Назад Вперёд

9.3.     Высокочастотные полевые транзисторы. Геометрия, характеристики и параметры

Полевым транзистором называется полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал, управляемый электрическим полем.

Полевые транзисторы были запатентованы в Англии в 1939 г., задолго до появления  БT. Kонструктивно-технологические отличия ПT, вытекающие из иъх принципа действия, позволяют повысить частотную границу СВЧ-транзисторных устройств по сравнению с устройствами на основе БT.

Принцип действия ПT заключается в том, что при изменении напряжения на затворе меняются эффективная ширина пролетного канала и соответственно ток в цепи исток — сток. Полевые транзисторы различаются по методу управления потоком основных носителей заряда, движущихся в полупроводниковом канале. Они могут иметь изолированный затвор, затвор на основе p-n-перехода или затвор на основе барьера Шоттки. Полевые транзисторы с p-n-переходом не позволяют существенно увеличивать уровень мощности вследствие низких допустимых напряжений и малой площади  поверхности, отводящий теплоту.

Наиболее широкое применение на СВЧ находят ПТ с барьером Шоттки (рис. 9.5). В таких транзисторах в высокоомной подложке 1, выполненной из GаAs, создан эпитаксиальный проводящий канал 2 n-типа. Через невыпрямляющие контакты, образованные n+- областями 3 и металлическими пленками 4 и 6, канал 2 подсоединен к выводам истока И и стока C. Между  истоком и стоком расположен затвор 5, у которого на границе с n-каналом образован барьер Шоттки. При подаче напряжения между стоком и истоком через n-канал протекает электронный ток. Отметим, что подвижные носители заряда в ПT     вводятся в n-канал и выводятся из него через невыпрямляющие контакты. Поэтому ПT относят к однополярным (униполярным) полупроводниковым приборам.

Затвор 5 используется в ПT для управления током транзистора с помощью внешнего сигнала. При протекании тока через канал возникает падение напряжения на распределенном сопротивлении канала вдоль его длины. Поэтому часть барьера Шоттки, расположенная ближе к стоку, оказывается сильнее смещенной в обратном направлении, чем остальная часть транзистора. Это приводит к несимметричному расширению слоя обедненного заряда 7 под затвором (на рис. 9.5 область 7 заштрихована). Область обедненного слоя может расширяться до высокоомной подложки 1 и перекрывать проводящий канал. При этом ток транзистора в цепи исток — сток практически перестает зависеть от напряжения стока; наступает режим насыщения тока исток — сток на рабочем участке характеристики транзистора. Характерные размеры БТ: ширина затвора 0,2—2 мм, длина затвора 0,5—2 мкм толщина эпитаксиальной пленки 0,15—0,5 мкм.

 

Рис.   9.5.   Структура  полевого   СВЧ-транзистора   с   затвором   Шоттки   (а), топологическая   схема   транзистора   гребенчатого   типа   (б)   и    транзистора с двумя выводами затвора (в):1-подложка;  2 - канал;  3 - области  n+ - вывода истока и стока;4 - исток;  5 - затвор;  6 - сток;  7  -обедненная область

 Повышение обратного смещения на электроде затвора вызывает увеличение ширины обедненной  области и тем самым сужение n–канала. При этом возрастает сопротивление n-канала и уменьшается ток стока. Таким образом осуществляется модуляция электронного потока в n-канале с помощью внешнего управляющего напряжения.

В соответствии с общим определением граничной частоты транзистора fгp как частоты, на которой коэффициент передачи входного тока равен единице. Тогда

                                                                                                                            (9.10)

где tпр - время пролета электронов через канал.

Таким образом, граничная частота определяется временем пролета электронов в канале tnp, минимальное значение которого достигается при движении электронов со скоростью насыщения vнас и равно

tпр = L/vнас.                                                                                                                           (9.11)

где L — длина канала; L = l1 + l2 +l3 ;

Очевидно, что для получения высокочастотных приборов необходимо обеспечить малую  длину канала и большую дрейфовую скорость насыщения. Из этих условий вытекает ряд требований к материалу транзистора и к размерам его электродов. В качестве материала канала в ПT используют преимущественно арсенид галлия GаAs.   Это   объясняется  тем,   что   подвижность   электронов   в   этом материале примерно в 6 раз выше, чем в кремнии.

Однако сокращая L, нужно одновременно уменьшать и глубину канала wк (рис. 9.5) так, чтобы выполнялось условие L/wк> 1, в противном случае затвор транзистора не сможет эффективно контролировать движение электронов в канале. Для уменьшения  wк используют более высокий уровень легирования канала, не превышающий, однако, 5·1017см-3  (во избежание пробоя). При таком уровне легирования минимальная длина затвора  ограничена значением около 0,1 мкм, что соответствует граничной частоте fгр=100 ГГц.

Имеются данные о создании ПT на основе фосфида индия InP, в котором дрейфовая скорость носителей в 1,5 раза выше, чем в арсениде галлия.

Усилительные свойства ПТ на СВЧ, как и в случае БТ, характеризуют коэффициентом однонаправленного усиления Кр и максимальной частотой генерации fmax.

                                                                                                            (9.12)

где R- дифференциальное выходное сопротивление, Rзи - сопротивление части канала между истоком и затвором, неперекрытой обедненным слоем барьера Шоттки

Определяем частоту fтax  из условия Кр (fmах) = 1:

                                                                                                                     (9.13)

Из  (9.13) следует, что для повышения fmax нужно оптимизировать отношение сопротивлений Rси/Rзи и, главное, увеличивать граничную частоту fгp, т.е. уменьшать время пролета электронов в канале tпp.

Важнейшим преимуществом ПТ перед БТ, определившим их широкое применение в приемных устройствах, является малый уровень шумов. Важным направлением в разработке маломощных полевых транзисторов с барьером Шоттки на арсениде галлия является снижение коэффициента шума. Основные источники шума в этом транзисторе — тепловой шум в канале, индуцированный шум затвора и шум паразитных (пассивных) элементов. Тепловой шум в канале — это тепловой шум сопротивления проводящей части канала. Индуцированный шум затвора является следствием шума в канале, так как любая флуктуация потенциала в канале вызывает флуктуацию напряжения между затвором и каналом. Эти шумы при коротких каналах сильно коррелированы (коэффициент корреляции близок к единице). Шумы пассивных элементов связаны с сопротивлением затвора и истока и по своей природе тепловые. Так как шумы в активной области полевых транзисторов с барьером Шоттки очень малы, то шумы пассивных элементов дают больший относительный вклад в общий шум, чем в биполярных транзисторах.

Минимальный коэффициент шума ПТ, реализуемый при оптимальной настройке входной цепи и оптимальной проводимости источника сигнала, определяется выражением

                                                                                             (9.14)

где S - крутизна транзистора, rзсопротивление металлизации затвора, Rи- сопротивление части эпитаксиального n-слоя на участках И-3, которые включает в себя сопротивления контактов И.

Из (9.14) следует, что для улучшения шумовых характеристик ПТ нужно уменьшать длину затвора  и снижать паразитные сопротивления затвора rз и истока rи.

Поскольку в ПТ преобладают шумы теплового происхождения, то особенно эффективным способом снижения шумов оказывается охлаждение. Одновременно оно позволяет поднять усиление ПТ, так как в GаАs в отличие от кремния и германия при уменьшении температуры возрастают подвижность электронов и их дрейфовая скорость.

Особенностью полевых транзисторов является большое различие сопротивлений источника сигнала, необходимых для получения максимального коэффициента усиления и минимального коэффициента шума. Это приводит к тому, что при минимальном коэффициенте шума коэффициент усиления примерно в 2 раза меньше максимально возможного. Однако в этом случае коэффициент усиления еще достаточно велик (8-15дБ). Необходимо отметить, что существует также трудность согласования полевого транзистора со стандартным СВЧ трактом, особенно на частотах ниже 1—2 ГГц. В связи с этим приходится увеличивать ширину затвора, хотя последнее и приводит к увеличению емкости и сопротивления металлизации затвора.

Для мощных полевых транзисторов требование низкого уровня шума не существенно. Применение арсенида галлия с большой шириной запрещенной зоны (1,4эВ) позволяет повысить рабочую температуру вплоть до 350°C.

В мощных полевых транзисторах необходимо обеспечить высокое напряжение пробоя затвора, низкоомные контакты истока и стока, а также возможно большее значение периметра истока.

Наибольшее применение полевые транзисторы на GаАs с барьером Шоттки нашли в малошумящих СВЧ усилителях. В диапазоне 4—20 ГГц они являются лучшими по шумовым и усилительным характеристикам, чем другие приборы того же назначения. Большой динамический диапазон и хорошие шумовые характеристики позволяют использовать их в смесителях. В последнее время наметилась тенденция к широкому внедрению полевых транзисторов с барьером Шоттки в усилителях, предназначенных для замены ламп бегущей волны и в параметрических усилителях.

В последнее время значительный интерес проявляется к охлаждаемым усилителям на полевых транзисторах из GаАs с барьером Шоттки. Так как шумы в этих приборах в основном имеют тепловую природу, то охлаждение приводит к существенному, уменьшению коэффициента шума. При этом, в отличие от биполярных транзисторов, коэффициент усиления увеличивается. Трехкаскадный усилитель для спутниковой связи США в диапазоне 11,7—12,2 ГГц имеет при комнатной температуре коэффициент шума 5,3 дБ, а коэффициент усиления 18 дБ. Охлаждение усилителя до 40 К снижает Kш до 1,6дБ и увеличивает коэффициент усиления до 31 дБ, что сравнимо с параметрами неохлаждаемых параметрических усилителей.

Малошумящие усилители на полевых транзисторах из GаАs с барьером Шоттки по сравнению с параметрическими усилителями характеризуются простотой настройки, высоким постоянством усиления, большой мощностью насыщения.

Преимущества ПT, как уже отмечалось, заметно проявляются с повышением рабочей частоты. Так, на частоте 6 ГГц выходная мощность ПT достигает 25 Bт при КПД около 50% и коэффициенте шума 3 дБ. Hа частоте 15 ГГц мощность остается значительной — около 2 Bт, КПД—в пределах 20-25% и коэффициент шума 3 — 6 дБ. Hа частоты выше 15 ГГц БT промышленного выпуска отсутствуют, тогда как ПT, например на частоте 18 ГГц, имеют мощность более 1 Bт при КПД около 10 — 20% и коэффициенте шума, равном 5 — 8 дБ. Малошумящие  ПT имеют коэффициент шума 0,7 дБ на частоте 4ГГц; 1,7 дБ на 12 ГГц и менее 3 дБ на частоте 18 ГГц. Малошумящие  ПT имеют меньший коэффициент усиления (около 5 дБ). В ближайшее время возможно появление ПT, работающих на частоте до 30 ГГц с выходной мощностью около 1 Bт и коэффициентом шума 3 дБ.

В настоящее время конструктивные параметры  и  высокочастотные  характеристики биполярных и полевых микроволновых транзисторов рассчитываются с применением широко доступных компьютерных программ, позволяющих определить оптимальные режимы по коэффициенту усиления и шума, а также цепям согласования по входу и выходу   транзисторов. Компьютерная разработка транзисторных структур позволяет обеспечить их высокую надежность  при эксплуатации, улучшить высокочастотные свойства, совершенствовать методы отвода тепла от полупроводникового кристалла, значительно сократить время разработки и ее стоимость.

Назад Вперёд