4. Электронные компоненты систем оптической связи
4.1. Передающие оптоэлектронные модули
Передающие оптоэлектронные модули (ПОМ), применяемые в волоконно-оптических ,системах, предназначены для преобразования электрических сигналов в оптические. Последние должны быть введены в волокно с минимальными потерями. Производятся весьма разнообразные ПОМ, отличающиеся по конструкции, а также по типу источника излучения. Одни работают на телефонных скоростях с максимальным расстоянием до нескольких метров, другие передают сотни и даже тысячи мегабит в секунду на расстояния в несколько десятков километров.
Типы и характеристики источников излучения
Главным элементом ПОМ является источник излучения. Перечислим основные требования, которым должен удовлетворять источник излучения, применяемый в ВОЛС:
• излучение должно вестись на длине волны одного из окон прозрачности волокна. В традиционных оптических волокнах существует три окна, в которых достигаются меньшие потери света при распространении: 850, 1300, 1550 нм;
• источник излучения должен выдерживать необходимую частоту модуляции для обеспечения передачи информации на требуемой скорости;
• источник излучения должен быть эффективным, в том смысле, что большая часть излучения источника попадала в волокно с минимальными потерями;
• источник излучения должен иметь достаточно большую мощность, чтобы сигнал можно было передавать на большие расстояния, но и не на столько, чтобы излучение приводило к нелинейным эффектам или могло повредить волокно или оптический приемник;
• температурные вариации не должны сказываться на функционировании источника излучения;
• стоимость производства источника излучения должна быть относительно невысокой.
Два основных типа источников излучения, удовлетворяющие перечисленным требованиям, используются в настоящее время — светодиоды (LED) и полупроводниковые лазерные диоды (LD).
Главная отличительная черта между светодиодами и лазерными диодами — это ширина спектра излучения. Светоизлучающие диоды имеют широкий спектр излучения, в то время <ак лазерные диоды имеют значительно более узкий спектр, рис. 4.1 [1, 2]. Оба типа устройств весьма компактны и хорошо сопрягаются со стандартными электронными цепями.
Светоизлучающие диоды
Благодаря своей простоте и низкой стоимости, светодиоды распространены значительно шире, чем лазерные диоды.
Принцип работы светодиода основан на излучатель ной рекомбинации носителей заряда в активной области гетерогенной структуры при пропускании через нее тока, рис. 4.2 а. Носители заряда — электроны и дырки — проникают в активный слой (гетеропереход) из прилегающих пассивных слоев (р- и п-слоя) вследствие подачи напряжения на р-п структуру и за- тем испытывают спонтанную рекомбинацию, сопровождающуюся излучением света.
Длина волны излучения л (мкм) связана с шириной запрещенной зоны активного слоя Е, (эВ) законом сохранения энергии Х =1,24/Е, рис. 4.2 6.
Показатель преломления активного слоя выше показателя преломления ограничивающих пассивных слоев, благодаря чему рекомбинационное излучение может распространяться в пределах активного слоя, испытывая многократное отражение, что значительно повышает КПД источника излучения.
Гетерогенные структуры могут создаваться на основе разных полупроводниковых материалов. Обычно в качестве подложки используются GaAs и InP. Соответствующий композиционный состав активного материала выбирается в зависимости от длины волны излучения и создается посредством напыления на подложку, табл. 4.1.
Длину волны излучения Х, определяют как значение, соответствующее максимуму спектрального распределения мощности, а ширину спектра излучения ЛХ„— как интервал длин волн, в котором спектральная плотность мощности составляет половину максимальной.
Лазерные диоды
Два главных конструктивных отличия есть у лазерного диода по сравнению со светодиодом. Первое, лазерный диод имеет встроенный оптический резонатор. Второе, лазерный диод работает при значительно больших значениях токов накачки, чем светодиод, что позволяет при превышении некоторого порогового значения получить режим индуцированного излучения. Именно такое излучение характеризуется высокой когерентностью, благодаря чему лазерные диоды имеют значительно меньше ширину спектра излучения (1-2 нм) против 30-50 нм у светодиодов, рис. 4.1.
Зависимость мощности излучения от тока накачки описывается ватт амперной характеристикой лазерного диода. При малых токах накачки лазер испытывает слабое спонтанное излучение, работая как малоэффективный светодиод. При превышении некоторого порогового значения тока накачки 1 излучение становится индуцированным, что приводит к резкому росту мощности излучения и его когерентности, рис. 4.3.
Мощность выходного излучения Р или выходная мощность излучения светодиода (output power) отражает мощность вводимого в волокно излучения. Наряду с традиционной единицей измерения Вт она может измеряться в дБм. Мощности Р измеренной в мВт (10 з Вт), будет соответствовать мощность р,„, =101gР,„, (дБм). Использование единицы измерения дБм упрощает энергетический расчет бюджета линий. Мощность излучения, приводящаяся в характеристиках оптического передатчика, может варьироваться в некотором диа- пазоне. В таких случаях указывают диапазон мощности излучения (output power range). На-
пример, — 19/ — 14 дБм означает, что р= -19 дБм, а р,„, = — 14 дБм. В магистральных ВОЛС используются два окна 1,3 и 1,55 мкм. Поскольку наименьшее затухание в волокне достигается в окне 1,55 мкм, на сверх протяженных без ретрансляционных участках (Ь =- 100 км) эффективней использовать оптические передатчики именно с этой длиной волны. В то же время на многих магистральных ВОЛС в состав ВОК входят только ступенчатые одномодовое волокна, имеющие минимум хроматической дисперсии в окрестности 1,3 мкм (волокон со смещенной дисперсией нет). На длине волны 1,55 мкм удельная хроматическая дисперсия у SMF составляет 17 пс/нм км. А поскольку полоса пропускания обратно пропорциональна ширине спектра излучения, то увеличить полосу пропускания можно только уменьшая ширину спектра излучения лазера. Из табл. 2.4 (глава 2) видно, что при ширине спектра АХ =4 нм полоса пропускания на 100 км составляет 63 МГц, а при ЛХ= 0,2 нм соответственно 1260 МГц. Итак, для того чтобы оптические передатчики на длине волны 1,55 мкм могли в равной степени использоваться на протяженной линии не только с одномодовым волокном со смещенной дисперсией (DSF), но и со ступенчатым волокном (SMF), необходимо делать ширину спектра излучения передатчиков как можно меньше.
Четыре основных типа лазерных диодов получили наибольшее распространение: с резонатором Фабри-Перо; с распределенной обратной связью; с распределенным брэгговским отражением; с внешним резонатором.
Лазерные диоды с резонатором Фабри-Перо (FP лазеры, Fabry-Perot). Резонатор в та- ком лазерном диоде образуется торцевыми поверхностями, окружающими с обеих сторон гетерогенный переход. Одна из поверхностей отражает свет с коэффициентом отражения, близким к 100%, другая является полупрозрачной, обеспечивая, таким образом, выход излучения наружу.
На рис. 4.1 б показан спектр излучения промышленного лазерного диода с использованием резонатора Фабри перо. Как видно из рисунка, наряду с главным пиком, в котором сосредоточена основная мощность излучения, существуют побочные максимумы. Причина их возникновения связана с условиями образования стоячих волн. Для усиления света определенной длины волны необходимо выполнение двух условий. Первое, длина волны должна удовлетворять соотношению 2D = NX, где D — диаметр резонатора Фабри перо, а N — некоторое целое число. Второе, длина волны должна попадать в диапазон, в пределах которого свет может усиливаться индуцированным излучением. Если этот диапазон достаточно мал, то имеет место одномодовый режим с шириной спектра меньше 1 нм. В противном случае в область ЛХ,, могут попасть два или более соседних максимумов, что соответствует многомодовому режиму с шириной спектра от одного до нескольких нм. FP лазер имеет далеко не
самые высокие технические характеристики, но для тех приложений, где не требуется очень высокая скорость передачи данных, он, в силу более простой конструкции, наилучшим образом подходит с точки зрения цена-эффективность.
Следует отметить, что даже в том случае, когда соседние максимумы малы, то есть когда реализуется одномодовый режим излучения и Лл мало, с ростом скорости передачи у FP лазера наблюдается перераспределение мощности в модах, которое приводит к паразитному эффекту — динамическому уши рению спектра ЛХ (до 10 нм при частоте модуляции 1-2 ГГц).
Этот эффект отсутствует у перечисленных трех других более совершенных типов лазерных диодов, отличающихся способом организации оптического резонатора, и являющихся в некоторой степени модернизацией простого резонатора Фабри-Перо [2].
Лазерные диоды с распределенной обратной связью (DFB лазер) и с распределенным брэгговским отражением (DBR лазер). Резонаторы у этих двух довольно схожих типов представляют собой модификацию плоского резонатора Фабри-Перо, в которой добавлена периодическая пространственная модуляционная структура. В DFB лазерах периодическая структура совмещена с активной областью (рис. 4.4 а), а в DBR лазерах периодическая структура вынесена за пределы активной области (рис. 4.4 б). Периодическая структура влияет на условия распространения и характеристики излучения. Так, преимуществами DFB и DBR лазеров по сравнению с FP лазером являются: уменьшение зависимости длины волны лазера от тока инъекции и температуры, высокая стабильность одномодовости и практически 100- процентная глубина модуляции. Температурный коэффициент ЛХ/ЛТдля FP лазера порядка 0,5-1 нм/'С, в то время как для DFB лазера порядка 0,07-0,09 нм/'С. Основным недостатком DFB и DBR лазеров является сложная
технология изготовления и, как следствие, более высокая цена.
Лазерный диод с внешним резонатором (ЕС лазер). В ЕС лазерах один или оба торца покрываются специальным слоем, уменьшающим отражение, и соответственно, одно или два зеркала ставятся вокруг активной области полупроводниковой структуры. На рис. 4.4 в) показан пример ЕС лазера с одним внешним резонатором. Антиотражательное покрытие уменьшает коэффициент отражения примерно на четыре порядка, в то время как другой торец активного слоя отражает до 30% светового потока благодаря френелевскому отражению зеркало, как правило, совмещает функции дифракционной решетки. Для улучшения обратной связи между зеркалом и активным элементом устанавливается линза.
Увеличивая или уменьшая расстояние до зеркала, а также одновременно разворачивая зеркало-решетку, — это эквивалентно изменению шага решетки — можно плавно изменять длину волны излучения, причем диапазон настройки достигает 30 нм. В силу этого, ЕС лазеры являются незаменимыми при разработке аппаратуры волнового уплотнения и измерительной аппаратуры для ВОЛС [3], По характеристикам они схожи с DFB и DBR лазерами.
Другие характеристики
Также важными характеристиками источников излучения являются: быстродействие источника излучения; деградация и время наработки на отказ.
Быстродействие источника излучения. Экспериментально измеряемым параметром, отражающим быстродействие источника излучения, является максимальная частота модуляции. Предварительно устанавливаются пороги на уровне 0,1 и 0,9 от установившегося значения мощности светового излучения при низкочастотной модуляции прямоугольными импульсами тока. По мере роста частоты модуляции, т.е. при переходе на меньшие масштабы по временной шкале, форма световых фронтов становится более пологой. Для описания фронтов вводят времена нарастания т и спада т мощности излучения, определяемые как временные интервалы, за которые происходит нарастание от 0,1 до 0,9 и, наоборот, спад светового сигнала от 0,9 до 0,1. Максимальная частота модуляции определяется как частота входных электрических импульсов, при которой выходной оптический сигнал перестает пересекать пороговые значения 0,1 и 0,9, оставаясь при этом во внутренней области. Для светодиодов эта частота может достигать до 200 МГц, а у лазерных диодов — значительно больше (несколько ГГц). Времена нарастания и спада предоставляют информацию о полосе пропускания w/. .Если предположить, что они равны между собой (а это не всегда так), то полосу пропускания можно определить по формуле (2-8): W = 0,35/т„„.
Деградация и время наработки на отказ. По мере эксплуатации оптического передатчика его характеристики постепенно ухудшаются — падает мощность излучения, и, в конце концов, он выходит из строя. Это связано с деградацией полупроводникового слоя. Надежность полупроводникового излучателя определяется средней наработкой на отказ или интенсивностью отказов. Лазерные диоды, выпускаемые десять лет назад, обладали значительно меньшей надежностью по сравнению со светодиодами. Однако в настоящее время, благодаря совершенствованию конструкций и технологии изготовления, удалось значительно повысить надежность лазерных диодов и приблизить их к светодиодам по времени наработки на отказ, которое составляет до 50000 часов и более (5-8 лет).
Основные элементы ПОМ
Для организации передачи оптических сигналов не достаточно иметь только источник ч,=-,.иГ В любой конструкции ПОМ есть специальный держатель (housing), который позволяет закрепить и защитить составные элементы передатчика: источник излучения, узел электрического интерфейса и место сопряжения с волокном. Иногда требуются дополнительные внутренние элементы для оптимального подсоединения волокна. Важным элементом лазерных диодов является цепь тока накачки, и система контроля температуры. Для сложных лазерных систем добавляют выходной мониторинг оптического сигнала. Общая схема конструкции оптического передатчика, в которой не все элементы являются обязательными, показана на рис. 4.5, [4]. Поставщики. Крупными поставщиками передатчиков являются фирмы: Epitaxx Inc., Ericsson Components Ab, Fujitsu Microelectronics Inc., Hamamatsu Corp., Hewlett-Packard, Hitachi, Lasertron Inc., Laser Diode Inc., NEC Electronics Inc., OKI Semiconductors, Optek TechnologY Inc., Optical Communication Product Inc., Ortel Corp., Siemens Corp. и др. [5].
4.2 Приёмные оптоэлектронные модули.
Приемные оптоэлектронные модули (ПРОМ) являются важными элементами волоконно- оптической системы. Их функция — преобразование оптического сигнала, принятого из волокна, в электрический. Последний обрабатывается далее электронными устройствами.
Основные элементы приемных оптоэлектронных модулей
Основными функциональными элементами ПРОМ являются:
• фотоприемник, преобразующий полученный оптический сигнал в электрическую форму
• каскад электрических усилителей, усиливающих сигнал и преобразующих его в форму,
пригодную к обработке;
• демодулятор, воспроизводящий первоначальную форму сигнала.
На практике функциональные элементы могут несколько отличаться у разных ПРОМ. Например, детектор типа лавинный фотодиод обеспечивает внутреннее усиление, в результате чего собственные шумы последующего электронного усилителя становятся не столь заметными по сравнению с уровнем полезного сигнала. В некоторых ПРОМ отсутствует демодулятор, или цепь принятия решения, поскольку электрический сигнал с выхода каскада усилителей приемлем для непосредственной обработки другими электронными устройствами. Иногда для более эффективной работы ПРОМ перед детектором устанавливается оптический усилитель.
На рис. 4.6 приведены функциональные элементы аналогового (а) и цифрового (б) ПРОМ. Аналоговые ПРОМ принимают аналоговый оптический сигнал и на выходе также выдают аналоговый электрический сигнал. К аналоговым приемникам предъявляются требования высокой линейности преобразования и усиления сигнала при минимуме вносимых шумов — в противном случае возрастают искажения сигнала. На протяженных с большим количеством приемо-передающих узлов искажения и шумы накапливаются, что снижает эффективность аналоговых много ретрансляционных линий связи.
При цифровой передаче не требуется очень точная ретрансляция форм импульсов. Цифровой приемник должен включать узел принятия решения или дискриминатор, имеющий установленные пороги на принятие сигналов 0 и 1, который распознает, какой сигнал пришел, устраняет шумы и восстанавливает необходимую амплитуду сигнала. Правильное выделение нужного сигнала может происходить при большом уровне шумов.
Различают синхронные и асинхронные режимы приема-передачи цифрового сигнала [6]. Упрощенное описание каждого из методов приведено ниже. При синхронном режиме битовый поток между приемником и передатчиком носит непрерывный характер. При асинхронном режиме данные передаются в виде организованных битовых последовательностей — пакетов. В промежутках между пакетами линия молчит — сигнала нет. При синхронном режиме приема- передачи таймер приемника выделяет в приходящей битовой последовательности специальные сигналы — синхроимпульсы, на основании которых приемник регулярно настраивает или подстраивает свои часы. При асинхронном режиме приема-передачи приемник имеет свой независимый таймер. Принимая начальные биты пакета (преамбулу), таймер приемника настраивает узел принятия решения так, чтобы определение приходящего бита выполнялось на его середине. Электрический сигнал, который выдает узел принятия решения, идет на часто, Так как есть погрешность у разных таймеров, то, по мере принятия последующих битов пакета, момент определения приходящего бита плавно смещается в одну из сторон относительно середины приходящего бита. Для правильной идентификации всех битов пакета важно, чтобы смещение за время принятия пакета не превысило 0,5 бита. Это приводит к ограничению на максимальную длину пакета. Чем меньше погрешность таймеров, тем большая длина пакета может использоваться для передачи.
Принципы работы фотоприемника
Основным элементом ПРОМ является фотоприемник, изготавливаемый обычно из полупроводникового материала. В основе работы фотоприемника лежит явление внутреннего фотоэффекта, при котором в результате поглощения фотонов с энергией, превышающей энергию запрещенной зоны, происходит переход электронов из валентной зоны в зону проводимости (генерация электроннодырочных пар). При наличии электрического потенциала с появлением электронно-дырочных пар от воздействия оптического сигнала появляется электрический ток, обусловленный движением электронов в зоне проводимости и дырок в валентной зоне. Эффективная регистрация генерируемых в полупроводнике электронно-дырочных пар обеспечивается путем разделения носителей заряда. Для этого используется конструкция с р-п переходом, которая называется фотодиодом. Из фотоприемников, применяемых ВОЛС, получили распространение p-I-n фотодиоды, лавинные фотодиоды, фототранзисторы.
Рассмотрим принципы работы фотоприемника на примере р-i-n фотодиода, для которо- г -.=ДДu галич.ie i-слоя (слаболегированного полупроводника п-типа) между слоями р- и п+-типа (+ означает сильное легирование), рис. 4.7 а. Также i-слой называют обедненным слоем, поскольку в нем нет свободных носителей. На р-i-n структуру подается напряжение с обратным смещением О, (по сравнению со светоизлучающим диодом). Сильное легирование крайних слоев делает их проводящими, и максимальное значение электрического поля (градиент потенциала) создается в i-слое. Но поскольку нет свободных носителей в слое, нет и электрического тока, так что i-слой испытывает только поляризацию. При наличии падающего излучения на слой, в нем образуются свободные электронно-дырочные пары. Они под действием электрического поля быстро разделяются и двигаются в противоположных направлениях к своим электродам, образуя электрический ток. Эффективным является взаимодействие излучения только с i-слоем, так как при попадании фотонов в р+- и п+-слои возникает диффузионный ток, который имеет большую инерционность и ухудшает быстродействие. По- этому при изготовлении фотодиодов стремятся делать р+- и n+-слои как можно тоньше, а обедненную область достаточно большой протяженности, чтобы она полностью поглощала весь падающий свет.
Фотодиоды могут изготавливаться из разных материалов. Рабочие диапазоны длин волн, в которых достигается максимальная эффективность фотодиодов для разных полупроводниковых материалов, приведены в табл. 4.2.
Эффективность (квантовая) обедненной области в рабочем диапазоне длин волн достаточно высока — 80-100%. Однако часть падающего излучения испытывает френелевское отражение от фоточувствительной поверхности из-за скачка показателей преломления на границе между этой поверхность и средой. Для уменьшения отражения приемную поверхность обедненного слоя покрывают антиотражающим слоем — специально подобранным прозрачным для длины волны излучения л, материалом толщиной кратной Х/4 и показателем преломления, равным п,п,, где п, и п — показатели преломления i-слоя и воздуха.
Технические характеристики фотоприемников
Факторы, влияющие на технические характеристики фотоприемников, сложны и сильно взаимосвязаны между собой. На первый взгляд может показаться, что достаточно выбрать только три параметра — чувствительность, быстродействие, цену. На практике эти факторы часто оказываются зависящими от других факторов, включая рабочую длину волны, выбор волокна и передатчика, темновой ток, шумовые характеристики, тип кодировки передаваемого сигнала и др.
Ниже рассмотрены главные из них: токовая чувствительность; квантовая эффективность; темновой ток; время нарастания и спада; эквивалентная мощность шума; соотношение сигнал/шум и чувствительность аналоговых систем; частота появления ошибок и чувствительность цифровых систем; насыщение ПРОМ; максимально допустимое обратное напряжение; рабочий диапазон температур; наработка на отказ.
Токовая чувствительность (монохроматическая) S „(А/Вт) определяется как 9 „=1,„/Р(Х), где 1 „— фототок, а Р(Х) — полная оптическая мощность излучения на длине волны Л, падающего на фоточувствительную площадку. Токовая чувствительность характеризует фотоприемник при низких частотах модуляции. Квантовая эффективность q (безразмерная величина) определяется как т) = М,/М „, где Х,„— количество фотонов, падающих за единицу времени на приемник, а N, — количество рожденных в результате этого свободных электронов (или электронно-дырочных пар).
Квантовая эффективность для р-i-n фотодиодов не может быть больше 1 (100%). Кривые квантовой эффективности в зависимости от длины волны для разных материалов приведены на рис. 4.8.
Между токовой чувствительностью и квантовой эффективностью существует простая
связь Я,„= — q, где е — заряд электрона (1,60.10 '~ К), Х — длина волны, h — постоянная с
Планка (6,63 10 з4 Дж сек), с — скорость света (3,00 10~ м сек '). С подстановкой значений констант получаем S „= ~). На основании зависимостей рис. 4.8 легко оценить значения 1,24
токовой чувствительности для разных материалов и разных длин волн. Типичное значение токовой чувствительности для р-i-n фотодиодов в их рабочих диапазонах составляет 0,5-0,8 ,А/Вт, а для лавинных фотодиодов 20-60 А/Вт (табл. 4.3).
Характеристики q и S „используют при создании ПРОМ, когда необходимо согласовывать последующий каскад электронных усилителей.
Темновой ток 1 (А) протекает при обратном смещении через нагрузку в отсутствии падающего на фотодиод излучения. Его величина зависит от материала полупроводника, температуры окружающей среды, конструкции фотоприемника. Максимальные значения этот ток утечки имеет в фотодиодах, изготовленных из германия, и составляет от долей до единиц миллиампера (табл. 4.3). Этот ток добавляется к току полезного сигнала, когда на фотодиод поступает свет.
Для изучения шумовых характеристик приемника используются также еще два шумовых тока: дробовой ток 1,„— для р-i-n фотодиода 1,„= (2eI,В), где е — заряд электрона, 1— Ы/2 темновой ток, В — полоса пропускания (частота модуляции); и тепловой Джонсоновский ток 1„„, — I (4КТВ/R), где К — постоянная Больцмана (1,3810 ~~ Дж К '), Т — абсолютная 1/2 температура (К), В — полоса пропускания, 8. — сопротивление (Ом), [7]. Полный шумовой ток определяется, как среднее квадратичное дробового и теплового токов
Время нарастаниями (спада т„„) — это самая важная динамическая характеристика фотоприемника. Она определяется как время, необходимое выходному сигналу, чтобы воз- расти от уровня 0,1 до 0,9 (упасть от 0,9 до 0,1) от установившегося максимального значения при условии, что на вход подаются строго прямоугольные импульсы света большой длительности. Эти времена зависят от геометрии фотодиода, материала, напряженности электрического поля в слаболегированной области, температуры. Максимальная из двух величин (обычно та, что берется в качестве характеристики времени отклика фотоприемника. С увеличением частоты модуляции входных оптических импульсов максимальное значение фототока уменьшается. Предельная частота определяется как частота модуляции, при которой токовая чувствительность составляет 0,707 от значения токовой чувствительности при низких частотах модуляции.
Если внутренние задержки прямо не влияют на полосу пропускания или скорость передачи, то времена нарастания и спада главным образом определяют полосу пропускания. Различные фотоприемники могут очень сильно отличаться по быстродействию (табл. 4.3). Наиболее быстрыми являются р-i-n фотодиоды. У лавинных фотодиодов увеличение коэффициента умножения сопровождается уменьшением быстродействия по сравнению с р4-п фото- диодами. Наиболее медленными являются фототранзисторы.
Эквивалентная мощность шума Р„(Вт) — это одна из наиболее- важнейших характеристик, учитывающих шумовые свойства фотоприемников. Она определяет минимальную мощность оптического сигнала на входе фотоприемника, при которой отношение сигнал/шум равно единице, и вычисляются по формуле Р„= IД /S,„, где IД — полный шумовой ток. По определению, эквивалентная мощность шума пропорциональна квадратному корню из полосы пропускания. Р можно пронормировать, поделив на vB В. Такая нормированная эквивалентная мощность шума имеет размерность Вт/Гц'~~ и не зависит от полосы пропускания.
Например, если фотодиод имеет темновой ток 2 нА, дробовое сопротивление R= 5 10~ Ом, токовую чувствительность Б „ = 0,5 А/Вт, и полную полосу пропускания В =! Гц, то дробовой ток 1,„= 2,5 10 '4 А, тепловой ток 1,„= 5,6 10 'в А, полный шумовой ток IД = 2,6 10 '4 А, и эквивалентная мощность шума Р5,1.10 '4 Вт. В фотоприемниках, применяющихся в ВОЛС, имеет место доминирование дробового тока над тепловым, это связано с тем, что на фотоприемник подается обратно смещенное напряжение, приводящее к тем новому току, который, в свою очередь, влияет на дробовой ток. Только при нулевом напряжении смещения темновой и, следовательно, дробовой токи отсутствуют.
Главная функция фотоприемника — это как можно более точное воспроизведение оптического сигнала, получаемого из волокна. Две фундаментальные характеристики влияют на то, как хорошо фотоприемник справляется с этой задачей: амплитуда входного сигнала и уровень шумов.
Соотношение сигнал/шум и чувствительность аналоговых систем. Для аналоговых систем отношение сигнал/шум измеряется количественно. На практике приемлемое соотношение сигнал/шум зависит от приложения — для одних хорошим соотношением может быть величина 50-60 дБ, для других 30 дБ. Зная Р„и требования к отношению сигнал/шум, можно определить минимальный входной сигнал Р„,„— чувствительность аналогового ПРОМ, при котором вносимые искажения и шумы будут в пределах нормы. Этот параметр указывается
производителями для фотоприемников при поставке сетевого оборудования с вполне определенной областью приложения. Если входной сигнал ниже чувствительности приемника, то соотношение сигнал/шум может быть не достаточно большим, чтобы корректно выполнялось данное приложение. Принятой единицей измерения чувствительности фотоприемников, также как мощности излучения у светоизлучающих диодов, является дБм.
Частота появления ошибок и чувствительность цифровых систем. В цифровых системах, когда информация передается битами, мерой качества принятого сигнала является вероятность некорректной передачи 0 или 1, которая называется частотой появления ошибок BER. Она определяется как отношение неправильно принятых битов к полному числу принятых битов. Частота появления ошибок очень резко зависит от мощности входного сигнала, рис. 4.9.
В определенном диапазоне уменьшение на 5 дБ амплитуды входного сигнала приводит к увеличению BER с 10 до 10 з. Удовлетворительное значение BER, также как и соотношение, сигнал/ шум, может быть разным для разных приложений. В цифровых системах, применяемых для нужд телекоммуникаций, BER должна быть не больше 10 ~. В вычислительных сетях требования к BER более высокие 10 ''~. BER зависит от скорости передачи — чем меньше скорость передачи, тем меньше BER.
Чувствительностью цифрового ГРОМ называется минимальная мощность входного сигнала, при которой BER не выходит за рамки максимального допустимого значения установленного для данного приложения. Для нормальной работы приложения мощность входного оптического сигнала должна быть не меньше чувствительности ПРОМ. Чувствительность цифровых приемников также принято измерять в дБм.
Насыщение ГРОМ. В аналоговых ПРОМ каскад электронных усилителей имеет участок линейного усиления, что означает линейную зависимость амплитуды выходного электрического сигнала от входной оптической мощности. Это справедливо до тех пор, пока входной сигнал не превышает определенного значения, которое называется насыщением ПРОМ. В цифровых ПРОМ работа каскада усилителей в нелинейной области не столь опасна, однако при больших входных оптических сигналах могут проявляться "хвосты" фототока, остающиеся даже тогда, когда на фотоприемник уже не подается сигнал. В такой ситуации нулевой сигнал на входе, следующий непосредственно за единицей, может неправильно интерпретироваться, что приводит к росту частоты появления ошибок. Насыщением цифрового ПРОМ называется максимальная входная мощность, выше которого BER начинает превосходить максимально допустимую величину для данного приложения.
Диапазон значений мощности от чувствительности до насыщения ПРОМ называется динамическим .
Максимально допустимое обратное напряжение U, — это напряжение, превышение которого может привести к пробою фотоприемника и его разрушению. Наряду с этим значением или вместо него изготовители фотоприемников могут указывать просто обратное рабочее напряжение. Если выбрать меньшее значение рабочего напряжения, то будет ограничена область линейной характеристики фотоприемника.
Рабочий диапазон температур ( С). Есть две характеристики, на которые сильно влияет изменение рабочей температуры фотоприемника.
Во первых, это квантовая эффективность, которая может вести себя в общем случае довольно сложным образом с изменением температуры. Например, на рис. 4.10 а показана зависимость квантовой эффективности фотодиода на основе кремния. По горизонтальной оси отложена длина волны падающих фотонов, по вертикальной относительное процентное изменение квантовой эффективности при увеличении температуры на 1 градус. Из рисунка видно, что если длина волны меньше 600 нм, то с ростом температуры квантовая эффективность падает, а при Х>600 нм квантовая эффективность увеличивается с ростом температуры.
Во вторых, рост температуры приводит к экспоненциальному росту термических возбужденных электронно-дырочных пар, в результате чего также экспоненциально возрастает темновой ток, рис. 4.10 б. Утечка тока удваивается при повышении температуры на 8-10'С.
Наработка на отказ (тыс. часов). При правильной эксплуатации ресурс фотоприемников значительно выше, чем у светоизлучающих диодов.
Лавинный фотодиод
Принцип работы. Главным отличием лавинного фотодиода (ЛФД) от обычного фотодиода является внутреннее усиление сигнала, базируемое на лавинном электронном умножении сигнала. Если структура слоев у обычного фотодиода имеет вид р+4-n+, то у ЛФД добавляется р-слой (р+4-р-n+), рис. 4.7 б. Причем профиль распределения легирующих примесей выбирается так, чтобы наибольшее сопротивление, а следовательно, и наибольшую напряженность электрического поля имел р-слой. При воздействии света на i-слой образуются электронно-дырочные пары. Благодаря небольшому полю, происходит направленное движение носителей к соответствующим полюсам. При попадании свободных электронов из слоя в р- слой их ускорение становится более ощутимым из-за высокого электрического поля в р-слое. Ускоряясь в зоне проводимости р-слоя, такие электроны накапливает энергию достаточную, чтобы выбить (возбудить) другие электроны из валентной зоны в зону проводимости. Этот процесс носит название лавинного усиления или умножения первичного фототока. Коэффициент умножения составляет несколько десятков, поэтому токовая чувствительность ЛФД значительно выше токовой чувствительности р-i-n фотодиодов. Коэффициент умножения М определяется по эмпирической формуле М = 1/(! — (U UД)'), где U — напряжение внешнего обратного смещения, Ub — напряжение обратного смещения, при котором наступает электрический пробой (breakdown) фотодиода — обычно это напряжение порядка 100 В, но может достигать в некоторых устройствах нескольких сот вольт, п— число в диапазоне от 3 до 6, рис. 4.11.
ЛФД имеют высокое быстродействие, однако случайная природа лавинного тока приводит к шуму. В отличие от полезного сигнала, который усиливается пропорционально М, шум усиливается быстрее (приблизительно как М~'). В результате этого выбирается оптимальное значение коэффициента умножения М, обычно в пределах от 30 до 100.
Особенностью работы ЛФД являются более высокое рабочее напряжение по сравнению с р-(-n фотодиодами и повышенная температурная чувствительность коэффициента умножения. Это требует использования специальной электрической цепи, вырабатывающей необходимое рабочее напряжение, а также системы термостабилизации.
Электронные элементы ПРОМ
Выходящий электрический сигнал от фотоприемника усиливается каскадом электронных усилителей и, возможно, испытывает определенную обработку. Основные функции, которые выполняет ПРОМ на этом этапе: электронное предусиление и усиление, выравнивание, фильтрация, дискриминация, синхронизация и работа таймера.
Электронное предусиление и усиление. Типовое значение оптического сигнала на входе фотоприемника составляет 1-10 мкВт, а иногда и меньше. Если такой сигнал обрабатывается р-i-n фотодиодом с токовой чувствительность от 0,6 до 0,8 А/Вт, то выходной ток составит несколько микроампер, и необходимо последующее его усиление. Допускается одна или несколько стадий усиления. Обычно усилитель на первой стадии называется пред усилителем. Его особенностью является низкий уровень вносимых шумов. Далее следует усилитель мощности.
Выравнивание. Прием и усиление сигнала может несколько изменять обрабатываемый сигнал. Например, каскад электронных усилителей, принимающий широкополосный аналоговый сигнал, может иметь разный коэффициент усиления для высоких и низких частот. Чтобы восстановить правильное соотношение амплитуд в низкой и высокой областях спектра, необходимо добавить цепь выравнивания сигнала.
Фильтрация позволяет увеличить соотношение сигнал/шум посредством избирательного (в определенных диапазонах частот) подавления шума. Часто, таким образом, можно подавить высокочастотные гармоники шума, заведомо зная, что полезный сигнал не распространяется в этой области спектра.
Дискриминация. Если предыдущие три функции в равной степени могли относиться как при обработке аналогового сигнала, так и цифрового, то функция дискриминации применяется только при обработке цифровых сигналов. Из-за наличия дисперсии при распространении света по волокну приходящие фронты импульсов могут потерять первоначальную прямоугольную форму и стать размытыми. Необходимо восстановить их прямоугольную форму. Для этой цели предназначена цепь принятия решения или дискриминатор, который имеет порог срабатывания. Если амплитуда поступающего на дискриминатор сигнала меньше порога, то на вы- ходе сигнала нет (0), если же превосходит порог, то на выходе идет сигнал определенной амплитуды (1). Главным недостатком такой регенерации цифрового сигнала является допустимость нарушения длительности импульсов. Чем меньше амплитуда поступающего на дискриминатор сигнала, тем короче могут быть импульсы, соответствующие единичному сигналу на выходе дискриминатора. Низкое значение порога также не желательно, поскольку можно ошибочно принять шум за полезный сигнал.
Для того, чтобы строго сохранялась длительность импульсов на выходе дискриминатора, необходимо, чтобы дискриминатор получал информацию о частоте, с которой должны следовать импульсы.
Работа таймера. Основная функция таймера — это подавление ресинхронизации сигнала. Традиционный цифровой сигнал генерируется на характерной частоте, например, 1 раз в микросекунду. По мере передачи и ретрансляции сигнала случайные временные ошибки могут накапливаться и достичь уровня, сравнимого с длительность самого импульса. В результате приемник ошибочно может интерпретировать принятый бит или "потерять" бит. Такие случайные временные ошибки получили название джитер (jitter, дрожание). Их появление характерно при синхронном режиме передачи. Уменьшить джитер можно, повысив требования к стандарту частоты генератора импульсов. Однако если приемник имеет свой собственный таймер, то при длительном приеме будут проскакивать ошибки вследствие наличия джитера. Дальнейшее уменьшение ошибок из-за джитера достигается в более продвинутой технологии магистральных оптических сетей, основанных на так называемой синхронной цифровой иерархии SDH. В SDH при синхронной передаче в битовом потоке наряду с полезной информацией присутствуют специальные синхроимпульсы, по которым настраивается (плавно пере- страивается под частоту передатчика) таймер приемника. В сложной сети SDH существует один независимый ведущий таймер (master clock), на который равняются другие устройства сети.
Поставщики. Крупными поставщиками ПРОМ являются фирмы: Epitaxx lnc., Hamamatsu Corp., Hewlett-Packard, Hitachi, Honeywell Inc., Lasertron Inc., Laser Diode Inc., NEC Electronics Inc., OKI Semiconductors, Optek Technol
ogy Inc., Optical Communication Product Inc., ОИе! Corp., Siemens Corp., Sumitomo Electric Industries Ltd., Toshiba и др. [5].
4.3. Повторители и оптические усилители
Проблема расстояния
По мере распространения оптического сигнала происходит его ослабление, а также уширении импульсов из-за дисперсии. Любой из этих факторов может оказаться причиной ограничения максимальной длины без ретрансляционного участка волоконно-оптического сегмента. Если же максимальная допустимая длина между приемником и передатчиком превышена, то необходимо в промежуточных точках линии связи добавлять один или несколько ретрансляторов. В общем случае, ретранслятор выполняет функцию усиления оптического сигнала, и дополнительно (при цифровой передаче) может восстанавливать форму импульсов, уменьшать уровень шумов и устранять ошибки — такой ретранслятор называется регенератором.
Типы ретрансляторов
По методу усиления оптического сигнала ретрансляторы подразделяются на две категории: повторители и оптические усилители. В волоконно-оптических системах локальных сетей повторители значительно больше распространены, чем оптические усилители, в то время как при построении оптических магистралей оптические усилители играют незаменимую роль.
Повторитель (электронно-оптический повторитель) сначала преобразует оптический сигнал в электрическую форму, усиливает, корректирует, а затем преобразовывает обратно в оптический сигнал, рис. 4.12 а. Можно представить повторитель как последовательно соединенные приемный и передающий оптические модули. Аналоговый повторитель, в основном, выполняет функцию усиления сигнала. При этом вместе с полезным сигналом усиливается также входной шум. Однако при цифровой передаче повторитель наряду с функцией усиления может выполнять функцию регенерации сигнала, свойственную цифровому оптическому приемнику, рис. 4.6 б. Обычно блок регенерации охватывает цепь принятия решения и таймер. Блок регенерации восстанавливает прямоугольную форму импульсов, устраняет шум, ре синхронизирует передачу так, чтобы выходные импульсы попадали в соответствующие тайм- слоты. Повторитель может и не содержать таймера и восстанавливать прямоугольную форму импульсов по определенному порогу, независимо от того, на какой скорости ведется передача. Такие "средонезависимые" повторители применяются в локальных сетях, где имеет место асинхронный режим передачи.
Оптический усилитель (ОУ), в отличие от повторителя, не осуществляет оптоэлектронного преобразования, а сразу производит усиление оптического сигнала, рис. 4.12 б. Оптические усилители не способны в принципе производить регенерацию оптического сигнала. Они в равной степени усиливают как входной сигнал, так и шум. Кроме этого, вносится собственный шум в выходной оптический канал.
Сравнительные характеристики повторителя и оптического усилителя приведены в табл. 4.4. Концептуальная простота — один из притягивающих факторов ОУ. Простота конструкции, в которой преобладают пассивные компоненты, в конечном счете обещает низкую цену, так как число компонентов ОУ значительно меньше, чем у повторителя. На практике, однако, цена ОУ значительно выше, чем у повторителей. Но, по прогнозам специалистов, цена ОУ по мере увеличения рынка продаж будет падать. ОУ имеет более высокую надежность, чем повторитель. Это важное преимущество при создании ретрансляторов при прокладке подводного ВОК. ОУ не привязан к скорости передачи, в то время как повторитель обычно исполняется для работы на определенной скорости. Именно на эту скорость конфигурируется таймер повторителя.
Повторитель работает с одним сигналом. ОУ может одновременно усиливать несколько оптических сигналов, представленных несколькими длинами волн (WDM сигнал) в пределах определенного интервала, который называется зоной усиления. Это позволяет наращивать пропускную возможность линии связи, на которой установлены ОУ, без добавления новых волокон.
Повторители для цифровых линий связи
Хотя повторители для цифровых линий связи могут быть независимыми от среды, большинство из них рассчитано на вполне определенный стандарт. В локальных сетях распространены повторители, преобразующие сигналы из многомодового (mm) в одномодовое (sm) волокно. Такие повторители получили название конвертеры. Широко распространены FDDI (100 Мбит/с) [8, 9], АТМ (155 Мбит/с), АТМ (622 Мбит/с) [10] sm/mm конвертеры.
Оптические усилители
Эти устройства обеспечивают внутреннее усиление оптического сигнала без его преобразования в электрическую форму. Они используют принцип индуцированного излучения, аналогично лазерам. Существует пять типов оптических усилителей, см. табл. 4.5 [4].
1. Усилители Фабри перо. Усилители оснащаются плоским резонатором с зеркальными полупрозрачными стенками. Они обеспечивают высокий коэффициент усиления (до 25 дБ) в очень узком (1,5 ГГц), но широко перестраиваемом (800 ГГц) спектральном диапазоне. Кроме этого, эти устройства не чувствительны к поляризации сигнала и характеризуются сильным подавлением боковых составляющих (ослабление на 20 дБ за пределами интервала в 5 ГГц). В силу своих характеристик, усилители Фабри перо идеально подходят для работы в качестве де мультиплексоров, поскольку они могут всегда быть перестроены для усиления только одной определенной длины волны одного канала из входного многоканального WDM сигнала.
2. Усилители на волокне, использующие бриллюэновское рассеяние. Стимулированное бриллюэновское рассеяние — это нелинейный эффект, возникающий в кремниевом волокне, когда энергия от оптической волны на частоте, скажем, f, переходит в энергию но- вой волны на смещенной частоте f,.
Если мощная накачка производится на частоте f,, стимулированное бриллюэновское рассеяние способно усиливать слабый входной сигнал на частоте f,. Выходной сигнал со- средоточен в узком диапазоне, что позволяет выбирать канал с погрешностью 1,5 ГГц.
3. Усилители на волокне, использующие романовское рассеяние. Стимулированное романовское рассеяние — также нелинейный эффект, который подобно бриллюэновскому рассеянию может использоваться для преобразования части энергии из мощной волны накачки в слабую сигнальную волну. Однако, при романовском рассеянии частотный сдвиг между сигнальной волной и волной накачки ~К — f, ) больше, а выходной спектральный диапазон усиления шире, что допускает усиление сразу нескольких каналов в WDM сигнале. Большие
переходные помехи между усиливаемыми каналами представляют основную проблему при разработке таких усилителей.
4. Полупроводниковые лазерные усилители (ППЛУ). Основу ППЛУ составляет активная среда, аналогичная той, которая используется в полупроводниковых лазерах [11, 12]. В ППЛУ отсутствуют зеркальные резонаторы, характерные для полупроводниковых лазеров. Для уменьшения френелевского отражения с обеих сторон активной среды наносится специальное покрытие толщиной Х/4 с согласованным показателем преломления, рис. 4.13.
Полупроводниковые лазерные усилители не получили столь широкого распространения, как усилители на примесном волокне. Дело в том, что ППЛУ свойственны два существенных недостатка.
Светоизлучающий активный слой имеет поперечный размер несколько микрон, но толщину в пределах одного микрона, что много меньше, чем диаметр светонесущей части оптического волокна (- 9 мкм — для одномодового волокна). Вследствие этого большая часть светового потока из входящего волокна не попадает в активную область и теряется, что уменьшает КПД усилителя. Увеличить КПД можно, поставив между входящим волокном и активной средой линзу, но это приводит к усложнению конструкции.
Второй недостаток имеет более тонкую природу. Дело в том, что выход (коэффициент усиления) ППЛУ зависит от направления поляризации и может отличаться на 4-8 дБ для двух ортогональных поляризации. Это нежелательно, так как в стандартном одноподовом волокне поляризация распространяемого светового сигнала не контролируется. Мощность светового потока данной поляризации может флуктуировать вдоль длины. Отсюда вытекает, что коэффициент усиления ПОЛУ зависит от неконтролируемого фактора. Можно уменьшить эту зависимость от поляризации путем установки двух лазеров — возможно как параллельное (требуется пара разветвителей), так и последовательное их подключение. Но это снова приводит к усложнению конструкции и росту стоимости.
Два приведенных недостатка нивелируются в тех случаях, когда ППЛУ интегрирован с другими оптическими устройствами. И именно так преимущественно используются ППЛУ. Одна из возможностей — производство совмещенного светоизлучающего лазерного диода, непосредственно на выходе которого устанавливается ППЛУ.
На рис. 4.14 показана еще одна реализация источника мультиплексного много волнового излучения, в котором ППЛУ используются в качестве широкополосного усилителя. Несколько узкополосных полупроводниковых лазеров на разных длинах волн генерируют световые сигналы, которые мультиплексируются и размножаются посредством оптического разветвителя. ППЛУ устанавливаются на конечном участке, чтобы усилить ослабленные после разветвления оптические мультиплексные сигналы.
5. Усилители на примесном волокне. Этот тип оптического усилителя наиболее широко распространен и является ключевым элементом в технологии полностью оптических сетей, поскольку он позволяет усиливать сигнал в широком спектральном диапазоне [13, 14, 15].
На рис. 4.15 приведена схема усилителя на примесном волокне. Слабый входной оптический сигнал (1) проходит через оптический изолятор (2), который пропускает свет в прямом направлении — слева направо, но не пропускает рассеянный свет в обратном направлении, далее проходит через блок фильтров (3), которые блокируют световой поток на длине волны накачки, но прозрачны к длине волны сигнала. Затем сигнал попадает в катушку с волокном, легированным примесью из редкоземельных элементов (4). Длина такого участка волокна составляет несколько метров. Этот участок волокна подвергается сильному непрерывному излучению полупроводникового лазера (5), установленного с противоположенной стороны, с более короткой длиной волны накачки. Свет от лазера накачки — волна накачки (6) — возбуждает атомы примесей. Возбужденные состояния имеют большое время релаксации, чтобы спонтанно перейти в основное состояние. Однако при наличии слабого сигнала происходит индуцированный переход атомов примесей из возбужденного состояния в основное с излучением света на той же длине волны и с той же самой фазой, что и повлекший это сигнал. Селективный разветвитель (7) пере направляет усиленный полезный сигнал (8) в выходное волокно (9). Дополнительный оптический изолятор на выходе (10) предотвращает попадание обратного рассеянного сигнала из выходного сегмента в активную область оптического усилителя.
Активной средой усилителя является одномодовое волокно, сердцевина которого легируется примесями редкоземельных элементов с целью создания трехуровневой атомной системы, рис. 4.16. Лазер накачки возбуждает электронную подсистему привесных атомов. В результате чего электроны с основного состояния (уровень А) переходят в возбужденное состояние (уровень В). Далее происходит ре— глаксация электронов с уровня В на промежуточный уровень С. Когда заселенность уровня С становится достаточно высокой, так что образуется инверсная заселенность уровней А и С, то такая система способна индуцировано усиливать входной оптический сигнал в определенном диапазоне длин волн. Если же входной сигнал не нулевой, то происходит спонтанное излучение возбужденных атомов примесей, приводящее к шуму.
Особенности работы усилителя во многом зависят от типа примесей и от диапазона длин волн, в пределах которого он должен усиливать сигнал. Наиболее широко распространены усилители, в которых используется кремниевое волокно, легированное эрбием. Такие усилители получили название EDFA. Межатомное взаимодействие является причиной очень важного положительного фактора — уширении уровней, что, в конечном итоге, обеспечивает усилителю широкую зону усиления сигнала [16]. В EDFA наиболее широкая зона усиления от 1530 до 1560 нм, соответствующая переходу достигается при оптимальной длине волны лазера накачки 980 нм.
Усиление в другом окне прозрачности 1300 нм можно реализовать с использованием примесей празеодимия, однако такие оптические усилители не получили большого распространения.
Коэффициент усиления сигнала зависит от его входной амплитуды и длины волны. При малых входных сигналах амплитуда выходного сигнала линейно растет с ростом входного сигнала, коэффициент усиления достигает при этом своего максимального значения. Например, если входной сигнал 1 мкВт (-30 дБм), то выходной сигнал может быть на уровне 1 мВт (О дБм), что соответствует усилению в 30 дБ. Но при большом входном сигнале сигнал на выходе достигает своего насыщения, что приводит к падению коэффициента усиления. Например, на той же длине волны входной сигнал 1 мВт приведет к генерации выходного сигнала 20 мВт в режиме насыщения, что будет соответствовать коэффициенту усиления всего лишь 13 дБ.
На рис. 4.17 показано, как ведет себя коэффициент усиления для EDFA в зависимости от длины волны и при различных значениях мощности входного сигнала. Уменьшение К при Р =1 мВт связано с насыщением усилителя. На кривой зависимости от длины волны при малых значениях мощности входного сигнала заметны минимумы и максимумы. Отсутствие плато в широком диапазоне длин волн (от 1530 до 1560 нм) заставляет дополнительно на линии из каскада оптических усилителей устанавливать эквалайзеры с целью выравнивания амплитуд мультиплексных сигналов разных длин волн. В то же время ведутся интенсивные исследования по выравниванию кривой усиления. Следует подчеркнуть, что построение усилителей с такими характеристиками не является непреодолимой задачей, но скорее требует тщательно отработанной технологии производства всех элементов усилителя.
-
Характерным для оптических усилителей является широкополосный собственный рис. 4.18. Этот шум, которого избежать невозможно, главным образом связан со спонтан излучением инверсно-заселенных уровней на привесных атомах.
4.4. Разновидности усилителей EDFA
Две разновидности усилителей EDFA с привесным волокном преобладают в сяких реализациях сегодня: на кремниевой основе, и на фтор-цирконатной основ очень схожем внутреннем строении эти усилители отличаются только заготовочным
Усилители EDFA на кремниевой основе первыми появились на рынке и опрев витии благодаря возможности усиления WDM сигнала в широком спектральном при небольших вносимых шумах на разных длинах волн. Сегодня оба типа усилитьниевые и фтор-цирконатные) способны работать во всем диапазоне выхода опит лучения эрбия от 1530 нм до 1560 нм. Однако оптические усилители на кремниево имеют столь ровной передаточной кривой коэффициента усиления, как усилитель цирконатной основе, рис. 4.19.
В локальных и особенно в протяженных сетях емкости магистральных линий связи обычно значительно превышают емкости передач отдельных приложений. Это делается с целью одновременной передачи множества таких приложений. Дополнительно, сами приложения могут иметь разную природу, например, это может быть передача постоянного битового потока или передача файлов данных. С целью повышения эффективности передающей среды (носителя) и ее адаптации под множество разнородных приложений применяется передача Ч одновременно сразу нескольких информационных сигналов в одном носителе — мультиплет - сирование.
Различают два основных вида мультиплексирования:
• Частотное мультиплексирование FDM: каждому сигналу отводится определенная доля всей частотной полосы носителя, так что на одном носителе существуют одновременно сразу несколько сигналов.
• Временное мультиплексирование TDM: сигналу каждого приложения выделяется вся полоса носителя, но на короткий промежуток времени — тайм-слот, так что мультиплексный сигнал представляется в виде последовательности сменяющих друг друга тайм-слотов, ответственных за разные приложения. В рамках TDM различают синхронное мультиплексирование (каждому приложению соответствует тайм-слот (возможно 3 несколько тайм-слотов) с определенным порядковым номером в периодической последовательности слотов, и асинхронное или статистическое мультиплексирование, когда приписывание тайм-слотов приложениям происходит более свободным образом, например, по требованию.
На рис. 5.1 показаны схемы размещения каналов при FDM и TDM. Устройство, принимающее несколько каналов от разных приложений (например, голос, видео, данные) и передающее их в виде мультиплексного сигнала на одном носителе, называется мультиплексором MUX, а устройство, выполняющее обратную функцию на другом конце — де мультиплексором DEMUX. Обычно в системах двунаправленной связи функции мультиплексирования и демультиплексирования совмещаются в одном устройстве, которое также называется мультиплексором.
Частотное мультиплексирование FDM
Частотное мультиплексирование (рис. 5.1 а) распространено в системах беспроводной радиосвязи, в мобильных телефонных системах, в абонентских телевизионных системах, включая кабельное телевидение и телефонию. Каналы, представленные в мультиплексном ~ сигнале, могут быть как аналоговыми, так и цифровыми.
В сетях широковещательного телевидения сначала исходные низкочастотные телевизионные сигналы от передающих устройств смещаются посредством модуляции в определенные, отведенные специально для них области спектра — каждой области отводится полоса 6,5 :: МГц. Затем такой мультиплексный широкополосный сигнал (до 860 МГц) распространяется по эфиру или в коаксиальной кабельной системе от локальных студий кабельного телевидения к абонентам.
Разновидностью FDM является волновое мультиплексирование WDM, применяемое в волоконно-оптических системах передач. Преимущественно используется область спектра от 1,3 нм (230 ТГц) до 1,6 нм (188 ТГц). Для плотного волнового мультиплексирования используется область спектра 1530-1560 нм.
Синхронное временное мультиплексирование
Синхронное мультиплексирование объединяет п низкоскоростных цифровых каналов (или п периодически повторяющихся равных по длительности тайм-слотов) внутри одного носителя. С целью лучшей синхронизации непрерывного битового потока, в мультиплексорах используются таймеры с высоким стандартом частоты. На рис. 5.1 б показана схема следования тайм-слотов при12-канальном TDM. Тайм-слоты с номером 1 соответствуют первому приложению, с номером 2 — второму и т.д. Емкость отдельного приложения — емкость тайм-слота — равна W/п, где w — полная полоса носителя. Емкие приложения могут занимать полосу в несколько тайм-слотов.
Если от одного из приложений не поступают данные, мультиплексор не сбрасывает тайм-слоты этого приложения в скоростном канале и оставляет для него прежнюю полосу W/п. Никакому другому приложению эта полоса не доступна. Более того, ни одно из приложений не может получить большую полосу пропускания, чем ту, которая отводится. Это- особенность синхронного мультиплексирования.
Мультиплексирование может происходить на октетном, битовом или кадровом уровне. При мультиплексировании на октетном уровне последовательности в 8 битов от каждого
из п приложений — октеты — циклически сменяют друг друга. Задержка на время буферизации одного октета возникает между входным низкоскоростным и выходным мультиплексным потоками.
При мультиплексировании на битовом уровне происходит побитовое смешивание входных потоков. Более критичными, в этом случае, становятся требования к временным характеристикам, но и уменьшается задержка, вносимая мультиплексором. В городских коммутируемых телефонных сетях мультиплексирование на битовом уровне используется при построении горестных мультиплексных каналов.
При мультиплексировании на кадровом уровне кадры (специальные битовые последовательности с заголовком, сигнальными полями и полями данных) из входных низкоскоростных каналов смешиваются в выходном мультиплексном канале. Этот вид мультиплексирования, характерен при построении асинхронных мультиплексоров.
Логическая топология определяет характер движения данных в мультиплексном канале. Три основных типа логической топологии могут иметь синхронные мультиплексные системы: соединение "точка-точка", цепное соединение и кольцевое соединение, рис. 5.2. Допускаются более сложные смешанные логические топологии.
Физическая топология определяет структуру кабельной системы. Для повышения надежности сложные мультиплексные сети, использующие логическую топологию "кольцо", делают с использованием физической топологии "двойное кольцо", рис. 5.3. В нормальном состоянии активно первичное кольцо — по вторичному кольцу данные не идут. При повреждениях канала связи или одного из мультиплексоров происходит свертывание логического кольцо с восстановлением его целостности, при котором активизируется вторичное кольцо — общая целостность сети также сохраняется. Физическая топология "двойное кольцо" используется ~ в сетях SDH, а также в некоторых локальных сетях Token Ring, DQDB, FDDI.
По каждому из каналов мультиплексор может поддерживать одну из шести функций вы деления, добавления или пропускания каналов (drop-add-pass), рис. 5.4:
1. "Drop 8 Add" (выделение и добавление канала). Эту функцию могут поддерживать мультиплексоры как при цепной (на промежуточных узлах), так и при кольцевой логически: топологиях. При цепной топологии один выходной канал может быть заменен на другой например, при использовании специальных мультиплексоров для меж студийного обмена в сетях цифрового кабельного телевидения. При кольцевой топологии этой функцией могут обладать два или более мультиплексоров, которые сообща используют данный TDM канал, например, при организации удаленной связи сетей Ethernet или Token Ring. Фактически происходит подмена информации в соответствующих тайм-слотах.
2)"Drop 8 Pass" (выделение и пропускание). Эта функция наиболее характерна для физической топологии "цепная линия". Основная задача — размножить информационный поток. Структура ретранслируемых в мультиплексный канал тайм-слотов остается без изменения.
3)"Pass Only" (только пропускание). Эта функция обычно автоматически отрабатывается мультиплексором, если в физический слот мультиплексора, соответствующий данному каналу (номеру тайм-слота), не установлен ни один модуль.
4)"Terminate 8 Add" (прервать и добавить). Эта функция подменяет информацию в тайм- слотах соответствующего канала на новую, взятую из входного низкоскоростного канала. Прежняя информация не выводится наружу и становится недоступной как для текущего, так и для последующих мультиплексоров. Эта функция фактически предназначена для начального (мастер) мультиплексора при физической топологии "цепная линия".
5)"Drop Only" (только выделение). Эта функция характерна для конечного мультиплексора при физической топологии "цепная линия".
6)"Terminate" (прерывание). Эта функция характерна для конечного мультиплексора при физической топологии "цепная линия". Функция автоматически отрабатывается конечным мультиплексором, если в физический слот мультиплексора, соответствующий данному каналу (номеру тайм-слота), не установлен ни один модуль.
В практических реализациях скоростной мультиплексный канал строится преимущественно на основе волоконно-оптического интерфейса. Существует огромное разнообразие мультиплексоров, использующих волоконно-оптическую TDM-магистраль.
Оптический модем-мультиплексор Optimux производства RAD. Внешний вид и схема включения модема показаны на рис. 5.5, а в табл. 5.1 приведены технические характеристики.
Аналогичные оптические модемы-мультиплексоры, также широко используемые на росйском рынке, выпускаются фирмами: ADC Telecommunications — продукт Quad Fiber Loop converter, 4хЕ1 [2]; и Pan Dacom — продукт FME-Н, бхЕ1 [3])
Модульный TDM мультиплексор MagnumPlus фирмы ADC Kentrox. Это — более универсальное и более мощное решение, допускающее передачу множества различных протоколов. Его основные характеристики приведены в табл. 5.2.
Отметим, что логическая топология взаимодействия мультиплексоров MagnumPlus по TDM магистрали базируется на кольце, в то время как физическое соединение может быть как точка-точка, кольцо, или цепная линия. Кольцевая логическая топология необходима для дистанционного мониторинга и управления мультиплексорами на основе TDM магистрали.
При инициализации TDM магистрали одно из устройств автоматически выбирается мастером — по нему синхронизируются все остальные устройства. При подключении мультиплексоров через сеть SDH, синхронизация происходит от SDH магистрали.
Модули MagnumPlus, рис. 5.6:
• Интерфейсные модули (IN/OUT). Чтобы удовлетворить тем или иным специфическим требованиям, имеется большое разнообразие модулей, среди которых — модули Ethernet Switch (разъем AUI, BNC, F/О), Token Ring 4 или 16 Мбит/с (разъем DB9), Е1 (G.703);
• Модули питания. Питание может осуществляться от 48V DC, 110V AC, 220V AC. Для обеспечения защиты на случай выхода из строя блока питания допускается установка до двух блоков питания с распределяемой нагрузкой;
• Модуль контрольной логики. Необязательный модуль, позволяющий осуществлять дистанционное SNMP управление и мониторинг;
• Модули общей логики. Обеспечивают все необходимые возможности мультиплексирования и демультиплексирования на основе волоконно-оптического интерфейса (155 Мбит/с) или интерфейса на коаксиальном кабеле (DS3, 45 Мбит/с).
Похожие модульные TDM мультиплексоры выпускаются фирмами NBase-Fibronics (Multi- HUB) [5] и Racal Data Group (PremNet 5000, PremNet Branch) [6].
Синхронная цифровая иерархия SDH — наиболее широко распространенная технология синхронного временного мультиплексирования — рассматривается в главе 8.
Статистическое (асинхронное) временное мультиплексирование
Взрывная природа трафика, свойственная сетям передачи данных, привела к разработке более гибкого метода мультиплексирования — статистического. В этом методе тайм-слоты не приписываются жестко за каналами и могут более свободно распределяться под приходящие по разным каналам данные. Времена прибытия данных, а не номера низкоскоростных каналов определяют последовательность, в которой данные от разных каналов размещаются в тайм-слоты. Каждый раз, когда тайм-слот испускается в мультиплексную линию, мультиплексор добавляет к нему специальный идентификатор, по которому де мультиплексор на другом конце определяет, в какой выходной канал перенаправить содержимое данного тайм- слота. Если на вход мультиплексора данные не поступают, то он передает пустые тайм слоты с пустыми полями идентификаторов. Асинхронность выражается не в асинхронном испускании тайм-слотов — они следуют строго регулярно, а в допустимости асинхронного размещения приходящих данных в тайм-слоты.
Заметим, что идентификатор, выполняя очень важную функцию в этом методе мультиплексирования, является служебной информацией и, таким образом, уменьшает полосу, которая могла бы использоваться под передачу данных.
Статистический TDM мультиплексор предоставляет приложению такую полосу, которую оно запрашивает, если, конечно, эта величина не превосходит свободной емкости мультиплексной линии. Суммарная величина полос пропускания низкоскоростных каналов, входящих в мультиплексор, может превосходить полосу пропускания скоростного канала. Игра идет на том что на все низкоскоростные. приложения осуществляет
Статистическое мультиплексирование требует более сложного управления и значительно большей вычислительной мощности от оборудования.
Сначала статистическое мультиплексирование было использовано в сетях с протоколом Х.25, позже — в сетях Frame Relay и АТМ.
В табл. 5.3 приведен сравнительный анализ синхронного и статистического методов временного мультиплексирования. Как видно из таблицы, преимущества одного метода можно рассматривать в некоторой степени как недостатки другого.
Пример 5.1. Расчет производительности статистического мультиплексора. Допущения. Рассмотрим работу гипотетического статистического 4-канального мультиплексора, рис. 5.7 а [7]. Пусть максимальная скорость (полоса пропускания) каждого из 4-х входных каналов составляет 100 бит/с, а входные данные представляются 8-битными символами в обкладках "старт" и "стоп" битов. В процессе мультиплексирования биты "старт" и "стоп" сбрасываются, а два дополнительных бита — поле идентификатора — добавляются к тайм-слотам в мультиплексном канале, что приводит к общей длине 10 бит для тайм-слота.
Отклонения. Из-за нерегулярности входных потоков, средняя скорость по каждому из низкоскоростных каналов меньше 100 бит/с. Мультиплексный канал работает на скорости 200 бит/с. Таким образом, полоса пропускания мультиплексного канала в два раза меньше суммарной емкости 4-х низкоскоростных каналов. Каждый символ, прибывающий на мультиплексор, преобразуется в соответствующий тайм-слот. Если символы с разных каналов приходят на мультиплексор одновременно, они обрабатываются последовательно в соответствии с пред установками. При условиях рис. 5.7 а средняя битовая скорость по первому каналу равна 40 бит/с, по второму — 50 бит/с, по третьему — 40 бит/с, по четвертому — 30 бит/с. В итоге средняя битовая входная скорость равна 160 бит/с. Загруженность мультиплексного канала составляет 80% (заполнены 16 слотов из 20). Эффективность кода равна 80% — каждый тайм- слот содержит двух битный идентификатор, вследствие чего полезная информация составляет 8 бит из 10-ти в тайм-слоте, в выходная скорость — 160 бит/с (выход 64% = загруженность х эффективность кода).
Для сравнения на рис. 5.7 б приведены параметры работы синхронного мультиплексора. Эффективность кода 100% является следствием отсутствия при синхронном мультиплексировании служебных идентификаторов у тайм-слотов.
Инверсное мультиплексирование
Если обычное мультиплексирование объединяет п низкоскоростных каналов в один высокоскоростной, то инверсное мультиплексирование можно рассматривать как обратную процедуру, то есть как способ передачи скоростного потока данных посредством нескольких независимых каналов меньшей полосы пропускания, которые существуют на промежуточном участке между точками входа и выхода скоростного потока.
Инверсное мультиплексирование используется для передачи широкополосного сигнала, который не способен разместиться в одном независимом канале существующей телекоммуникационной сети. Например, сигнал видеоконференции емкости 384 Кбит/с не может быть передан по каналу 64 Кбит/с, но может быть разбит и размещен в шести таких каналах и вновь собран на другом конце. Также используют инверсное мультиплексирование, когда мультиплексор (или коммутатор) на промежуточном узле магистральной сети не может обрабатывать емкости больше заданной, например 64 Кбит/с.
На приемной стороне инверсный де мультиплексор получает информацию с разных каналов и проводит сборку сигнала — эта процедура может требовать переупорядочения потоков из разных сегментов и компенсации задержек, возникающих в различных низкоскоростных сегментах. Принципы работы инверсного мультиплексора показаны на рис. 5.8.
Инверсное мультиплексирование в ВОЛИ. При передаче широкополосного сигнала по волокну на очень большие расстояния (до 1000 км и более) приходится считаться с затуханием и дисперсией сигнала в волокне. Затухание можно компенсировать при помощи оптических усилителей (EDFA), установленных на промежуточных узлах. Дисперсию также можно уменьшать, используя специальные методы компенсации дисперсии (см. главу 2), но лишь до определенного предела. Кроме того, оптические усилители вносят дополнительный шум. Из двух оптических сигналов меньше подвержен влиянию шума и дисперсии тот сигнал, который модулируется меньшей частотой. В настоящее время прорабатываются проекты построения городских оптических супермагистралей на скорости 10/100 Гбит/с. В примере 2.5 (глава 2) приведена оценка максимального расстояния для канала с частотой 100 ГГц — 20 км. При построении интерсетей такой же высокой пропускной способности, единственный способ передать широкополосный сигнал — это разбить его на множество низкоскоростных сигналов, рис. 5.9 [8]. В результате мультиплексный сигнал, представленный множеством длин волн, лучше противостоит влиянию дисперсии и вносимому шуму оптических усилителей в протяженной линии. В рассмотренном примере инверсное мультиплексирование совмещено с частотным (временным) мультиплексированием. ''а
5.2. Сети с коммутацией каналов и пакетов
Передача данных между двумя удаленными оконечными сетевыми устройствами обычно осуществляется через промежуточные сетевые узлы — узлы коммутации. В качестве венечного устройства могут выступать рабочая станция, хост компьютер, терминал, телеф или другое коммуникационное устройство. Соответственно, разные функции могут иметь связанные между собой физическими каналами узлы коммутации. Совокупность оконечных устройств и узлов коммутации образуют сеть передачи данных, рис. 5.10.
На рис. 5.11 приведен спектр различных технологий коммутации для передачи данных по сети. Два крайних случая представляют две основные традиционные технологии коммутации: коммутация каналов и коммутация пакетов [9, 10].
Соединение с коммутацией каналов состоит в том, что на время передачи в сети создается канал, обеспечивающий вполне определенную, как правило, фиксированную скорость передачи данных, на которой приемное и передающее устройства поддерживают связь. Характерным примером сетей с коммутацией каналов являются телефонные сети с множеством АТС, включая традиционные аналоговые и более современные цифровые сети ISDN. Особенностью таких сетей является длительное время установления соединения (в аналоговых сетях до нескольких секунд и более).
Особенностью работы сетевых устройств в локальной сети является их очень быстрое взаимодействие с сетью (десятки миллисекунд и меньше).Технологии передачи данных, характерные для локальных сетей, преимущественно используют контролируемую со стороны рабочих станцией пакетную коммутацию.
Коммутация каналов
При использовании коммутации каналов подразумевается наличие выделенного коммуникационного канала между взаимодействующими устройствами. Этот путь образуется последовательностью определенных узлов сети.
Связь посредством коммутации каналов включает три фазы, объяснение которых проведем с использованием рис. 5.10.
1. Установление канала. Для простоты будем рассматривать передачу данных в одном направлении. Пусть устройство А хочет передавать данные на устройство Е. Прежде чем данные начнут передаваться, должен установиться канал, соединяющий оконечные станции через цепь узлов. Например, станция А посылает запрос узлу 4 с требованием установить соединение со станцией Е. Поскольку сегмент А-4 — выделенная линия, то часть канала уже существует. Узел 4 должен определить следующий узел в маршруте, ведущий к узлу 6. Основываясь на информации о маршрутах и анализируя стоимости каналов, узел 4 выбирает канал, например к узлу 5, выделяя в атолл канале (используя мультиплексирование TDM или FDM) соответствующую полосу. После этого выделенный канал установлен от устройства А через узел 4 до узла 5. Поскольку несколько станций может быть подключено к узлу 4, он должен быть способен устанавливать внутренние пути от множества станций к множеству узлов. Теперь узел 5 по аналогии с узлом 4 устанавливает канал к узлу 6 и внутренне привязывает этот канал к каналу, идущему от узла 4. Далее узел 6 завершает соединение с устройством Е. По завершении соединения проводится тестирование, определяющее, свободно ли устройство Е, готово ли оно принимать данные.
2. Передача данных. Если устройство Е свободно, данные могут передаваться через сеть. Данные могут быть цифровыми (например, взаимодействие терминала с хостом) или аналоговыми (например, передача голоса). Сигнализация и передача могут быть как цифровыми, так и аналоговыми. В любом случае, путь образуется через: сегмент А-4, внутреннюю коммутацию на узле 4, сегмент 4-5, внутреннюю коммутацию на узле 5, сегмент 5-6, внутреннюю коммутацию на узле 6 и сегмент 6-Е. В общем, происходит установление и обратного канала, так что соединение является полнодуплексным, и данные могут передаваться в обоих направлениях.
3. Отсоединение канала. После определенного времени передачи данных соединение терминируется, обычно после соответствующей команды от одной из станций. Сигналы разъединения должны пройти по узлам 4, 5, 6, чтобы высвободить ресурсы в сеть.
Подчеркнем, что путь соединения устанавливается до начала передачи данных. Таким образом, соответствующая емкость, требуемая для данного канала передачи, должна быть в наличие и резервируется между парами узлов на всем пути еще на этапе установления канала. Для этого каждый узел должен иметь внутреннюю коммутационную емкость, чтобы обеспечить соединение.
Коммутация каналов может быть довольно неэффективной. Емкость установившегося канала выделяется на время соединения оконечных устройств и не доступна под другие приложения, даже если данные не передаются. Для телефонных сетей эффективность голосового канала весьма далека от 100%. Еще хуже обстоит дело при подключении удаленного терминала к хосту, когда данные могут вовсе не идти в течение долгого времени, и канал будет простаивать. С точки зрения производительности, задержка вносится на этапе установления соединения. Однако, если соединение установлено, то сеть прозрачна по отношению к конечным устройствам, и данные идут с минимальными задержками.
Коммутация пакетов
Протяженные телекоммуникационные сети с коммутацией каналов при разработке оптимизировались для достижения наилучших характеристик при передаче голоса, и подавляющая доля потока данных в этих сетях связывалась именно с голосовой передачей. Ключевая характеристика таких сетей в том, что ресурсы внутри сети выделяются под определенные телефонные вызовы. Для голосового соединения это не плохо, поскольку один из абонентов обычно говорит, и канал не простаивает. Можно сказать, что дуплексный канал при телефонной связи используется на 50%. Полоса пропускания для канала также оптимизирована и установлена как раз такой, чтобы можно было обеспечить приемлемое качество передачи речи. Однако при использовании таких телекоммуникационных сетей для передачи данных между компьютерами, появляются два очевидных недостатка.
1. При типовом соединении (например, терминал-хост) значительную часть времени канал связи может быть свободен. Но телекоммуникационная сеть выделяет вполне определенную полосу пропускания под этот канал и не может использовать его для другого приложения. Таким образом, подход с коммутацией каналов не эффективен.
В сетях с коммутацией каналов соединение обеспечивает передачу на постоянной скорости. Поэтому любой паре устройств терминал-хост будет предоставлена одна и та же фиксированная скорость, что ограничивает возможности сети при подключении разнообразных хостов и терминалов.
Сеть с коммутацией пакетов способна устранить эти недостатки. Данные в такой сети передаются в виде блоков, называемых пакетами (или кадрами). Обычно верхний предел длины пакета в зависимости от стандарта может быть от тысячи до нескольких тысяч байт.
Если устройство — источник передачи желает передать данные размером больше максимальной длины пакета, то данные разделяются на несколько пакетов, рис. 5.12.
Каждый пакет имеет поле данных, заголовок, другие служебные поля, расположенные в начале или в конце пакета. Поле заголовка, как минимум, включает информацию, необходимую узлу сети для перенаправления (маршрутизации) пакетов в нужный канал. Возможна буферизация пакетов на узле.
На рис. 5.13 показаны основные операции. Рабочая станция или другое сетевое устройство посылает сообщение (например, файл данных) в виде последовательности пакетов (а). Каждый пакет наряду с данными содержит управляющую и/или контрольную информацию, в частности, адрес станции назначения, или идентификатор маршрута. Пакет первоначально посылается на узел, к которому подключена передающая станция. Узел, получая пакет, определяет по контрольной информации направление маршрута и на основание этого перенаправляет пакет в выходной порт соответствующего канала. Если связь между узлами по этому каналу исправна, пакет передается на соседний узел. Все пакеты последовательно "отраба- тывают" свои пути, двигаясь через сеть к нужной станции назначения. Коммутация пакетов имеет несколько преимуществ над коммутацией каналов.
1. Эффективность использования линии при пакетной коммутации выше, поскольку один сегмент от узла к узлу может динамически распределять свои ресурсы между многими пакетами от разных приложений. Если на передающем узле пакетов, предназначенных для отправки по определенному каналу, собирается больше, чем емкость этого канала, то пакеты помещаются в буфер, и устанавливается очередность передачи пакетов. На- против, в сетях с коммутацией канала время, предназначенное для каждого приложения, выделяется в виде определенного тайм-слота на основе синхронного временного мультиплексирования. Максимальная скорость передачи определяется полосой этого тайм-слота, а не всей полосой канала.
2. Сеть с пакетной коммутацией может осуществлять преобразование скорости передачи данных. Так способны обмениваться между собою пакетами станции, подключенные к соответствующим узлам сети каналами разной полосы пропускания.
3. Когда поток через сеть с коммутацией каналов возрастает, сеть может оказаться перегруженной, и в установлении каналов связи между новыми станциями может быть отказано. При перегруженности телефонной сети попытка дозвона может быть блокирована. В сетях с пакетной коммутацией при большой загруженности передача пакетов сохраняется, хотя и могут возникать задержки с доставкой пакетов, или может уменьшаться скорость передачи.
4. В сетях с пакетной коммутацией можно использовать систему приоритетов. Если узел хочет передать несколько пакетов, то он может, в первую очередь, передать пакеты, имеющие наивысший приоритет. Пакеты с высоким приоритетом будут доставляться с меньшей задержкой, чем пакеты с низким приоритетом.
Пусть одна станция хочет послать сообщение другой в виде файла, размер которого превосходит максимальный размер пакета. Станция распределяет содержимое файла между несколькими пакетами и последовательно направляет пакеты в сеть. И здесь возникает вопрос, каким образом сеть должна обрабатывать эту последовательность пакетов, чтобы доставить их нужному адресату. В современных сетях с коммутацией. пакетов используются два различных подхода, получившие название: дейтаграммные сети и сети с виртуальными каналами.
В дейтаграммной сети каждый пакет передается без ссылки на пакеты, которые идут до или после него, рис. 5.13.
Каждый узел на основании контрольной информации заголовка пакета и собственных данных об окружающих узлах сети выбирает следующий узел, на который перенаправляется пакет. Пакеты с одним и тем же адресом назначения могут следовать от станции отправителя к станции назначения разными маршрутами. Конечный узел маршрута восстанавливает правильную последовательность пакетов и уже в этой последовательности передает их станции::: назначения. В некоторых дейтаграммных сетях может отсутствовать функция упорядочения пакетов на выходном узле — тогда эту функцию берет на себя станция назначения. Пакет может повредиться при передаче по сети. Например, если один из узлов в сети вышел из строя, то все пакеты, находящиеся на этом узле в очереди на передачу, будут потеряны. Опять же, функцию обнаружения потерянных пакетов может брать на себя как конечный узел маршрута, так и станция-получатель. В такой сети каждый пакет передается независимо от остальных и назы вается дейтаграммой.
В сети с виртуальными каналами перед тем, как пакеты начинают идти, создается определенный маршрут следования. Это маршрут служит для поддержки логического соединения между удаленными станциями. Если маршрут установлен, то все пакеты между взаимодействующими станциями будут идти строго по этому маршруту, рис. 5.14. Поскольку на время логического соединения маршрут строго фиксирован, то такое логическое соединение в некоторой степени аналогично образованию канала в сетях с коммутацией каналов и называется виртуальным каналом. Каждый пакет теперь содержит идентификатор виртуального канала наряду с полем данных. Все узлы по маршруту знают, куда направлять такие пакеты — никакого решения по маршрутизации теперь эти узлы не принимают. В любое время каждая станция может установить один или несколько виртуальных каналов с другой станцией или станциями. Заметим, что виртуальный канал не является выделенным каналом, что было характерно для сетей с коммутацией каналов. Пакеты, двигаясь по виртуальному каналу, могут в случае перегруженности узла или сегмента помещаться в входные и выходные буферы на узлах . Главное различие с дейтаграммным подходом и классической маршрутизацией состоит в том, что в сетях с виртуальными каналами узел не принимает решения о выборе маршрута для каждого входящего пакета, а делает это (вернее, получает инструкции куда перенаправлять пакеты с соответствующими идентификаторами маршрута) только один раз — на этапе формирования виртуального канала.
Преимущества сети с виртуальными каналами. Если две станции желают обмениваться данными на протяжении длительного времени, то подход с использованием виртуальных ка налов имеет определенные преимущества. Первое, сеть может поддерживать ряд служб, связанных с виртуальными каналами, включая порядок следования, контроль ошибок и контроль потока. Правильный порядок следования легко поддерживается, поскольку все пакеты двигаются одним и тем же маршрутом и прибывают в первоначально установленной последовательности. Служба контроля ошибок гарантирует не только то, что пакеты прибывают в нужной последовательности, но и то, что все пакеты на приемной стороне корректны. Например, если один из пакетов в последовательности, двигаясь от узла 4 к узлу 6 (рис. 5.14) потерялся или пришел на узел 6 с ошибкой, то узел 6 может послать запрос на узел 4 с просьбой повторить соответствующий пакет последовательности. Служба контроля потока гарантирует, что отправитель не может "завалить" получателя данными. Например, если станция Е буферизует данные от станции А и видит, что приемный буфер близок к переполнению, то она может просигнализировать через обратный виртуальный канал о необходимости уменьшить 1 или временно прекратить передачу данных от станции А. Второе преимущество этой сети состоит в том, что пакеты передаются через узел быстрее, когда узел не принимает решения о маршрутизации пакета.
Преимущества дейтаграммной сети. Первое — при передаче пакетов в дейтаграммной сети отсутствует фаза установления логического виртуального канала. Второе — дейтаграмм- ная служба более примитивна и допускает бОльшую гибкость. Например, если один из узлов в сети с использованием виртуальных каналов становится перегруженным, то "открытые" виртуальные каналы, проходящие через этот узел, невозможно перестроить. В дейтаграммной сети при перегрузке одного из узлов другие узлы могут перенаправить приходящие пакеты в обход перегруженного узла. Третье — доставка самой дейтаграммы более надежна. При использовании виртуальных каналов, если узел повреждается, все проходящие через него виртуальные каналы также разрушаются.
Коммутация каналов на разных скоростях и сети ISDN
Один из недостатков сетей с коммутацией каналов — это отсутствие гибкости в отношении предоставляемой полосы пропускания. Если станция подключена к традиционной телекоммуникационной сети с коммутацией каналов, она вынуждена работать на определенной скорости передачи данных. Это скорость или полоса пропускания будет предоставлена станции независимо от приложения, оцифрованный ли это голос или передача файлов данных. В результате приложение с низкой скоростью будет не эффективно использовать предоставленный канал, а приложение, которому требуется высокая скорость передачи данных, наоборот, будет ограничено в выделенной емкости канала.
Для преодоления негибкости используется расширенная служба предоставления канала, известная как коммутация каналов на разных скоростях. Эта техника объединяет коммутацию каналов с мультиплексированием. Станция подключается к сети при помощи единственного канала связи. По этому каналу могут передаваться данные на разных предварительно установленных скоростях с определенной дискретизацией. Поток по каждому каналу может коммутироваться независимо через сеть в различных направлениях.
Для этой техники можно построить схему, при которой все возможные каналы работают на одной и той же фиксированной скорости, или схему, которая использует различные скорости передачи данных. Примером служит сеть ISDN.
ISDN обеспечивает коммутируемую систему связи с комплексом услуг по передаче как данных, так и голоса. Определены два интерфейса доступа к ISDN: интерфейс базового доступа (BRI) и интерфейс основного доступа (PRI). BRI (144 Кбит/с) обеспечивает два речевых канала типа В со скоростью передачи 64 Кбит/с и один сигнальный канал типа D со скоростью передачи 16 Кбит/с (2B+D). PRI позволяет работать с каналами Т1 (1,544 Мбит/с) и Е1 (2,048 Мбит/с), которые разделены на 23 и 30 каналов типа В соответственно, и, кроме этого, имеют один сигнальный D-канал полосой 64 Кбит/с (23B+D или 30B+D). Выделенная линия может использовать как отдельный В канал, так и их комбинацию для достижения большей полосы пропускания. Как установление, так и разъединение связи между абонентами осуще- ствляется цифровым образом через сигнальный канал D и происходит почти мгновенно.
Почему пользователи (абоненты) могут предпочесть ISDN альтернативным решениям: модемам, выделенным линиям и другим службам глобальных сетей? Во первых, если сравнивать с работой модемов на аналоговых линиях, то ISDN дает с учетом компрессии переда- ваемых данных выигрыш от 8 до 26 раз в пропускной способности. Во вторых, цифровая коммутация с технологической точки зрения более надежна, чем аналоговая. Цифровая коммутация также позволяет защищать данные, используя разнообразные алгорит
мы шифрова ния. При значительно большей гибкости по сравнению с простой аналоговой коммутацией каналов в технологии ISDN сохраняется фундаментальное ограничение. Хотя пользователь имеет возможность выбора скорости передачи, сам набор скоростей остается вполне определенный, что не позволяет в конечном итоге эффективно использовать ресурсы сети.
Цифровые сети ISDN широко распространены сегодня, как альтернатива традиционным аналоговым абонентским сетям. Лидерами в распространении сервиса ISDN являются США, Япония и ряд европейских стран — Франция, Германия, Бельгия, Дания, Португалия, Великобритания.
Протокол Х.25
Низкое качество каналов связи, которые были два десятилетия назад, сильная их подверженность воздействию помех и, как следствие, низкая достоверность передачи данных стали причиной разработки помехоустойчивых процедур передачи информации. Одним из наиболее широко распространенных и популярных протоколов, позволяющих решать проблемы плохих телефонных каналов связи, становится протокол Х.25.
Протокол Х.25 также задумывается как эффективное средство удаленного доступа к хост машинам. На основе коммутаторов Х.25 несколько пользователей одновременно могут общаться с одним хостом, причем каждый пользователь загружает канал связи с хост машиной только на время передачи информации, при этом оставаясь на связи и в другие моменты времени. Поддержка связи обеспечивается благодаря установлению логического соединения или виртуального канала.
Протокол передачи данных с коммутаций пакетов Х.25 разработан комитетом MKKTT (ныне ITU-Т) именно для работы по линиям связи с большим уровнем помех, каковыми, например, являются аналоговые телефонные линии. Для обеспечения требуемой достоверности передачи информации используется многоуровневая система обнаружения и коррекции ошибок.
Каждый узел коммутации сети Х.25 на пути движения пакета проверяет целостность пакета, читает контрольную сумму, содержащуюся в его заголовке и вычисленную при передачe, находит ее значение для полученного пакета и сравнивает эти два значения. При небольшом количестве ошибок узел способен восстановить пакет и передать его дальше по пути следования. При этом узел посылает подтверждение предыдущему узлу о корректном приеме пакета. Если же восстановить пакет невозможно, делается запрос на его повторную передачу. По аналогичной схеме работают все сетевые узлы — коммутаторы Х.25. Высокий уровень помех на линии приводит к падению скорости передачи, и по этой причине многие сети с пакетной коммутацией работают со скоростью передачи до 64 Кбит/с. Кроме того, скорость передачи информации (не следует ее путать со скоростью передачи данных непосредственно в физическом канале) не остается постоянной и зависит от уровня помех и вызванных ими ошибок. Другими словами, время доставки одного пакета, обусловленное только качеством канала, не является постоянной величиной.
Ретрансляция кадров Frame Relay
Методы пакетной коммутации были разработаны в то время, когда в протяженных цифровых сетях при передаче данных появлялось большое количество ошибок. Как следствие, пакеты были перенасыщены заголовками и содержали большую избыточную информацию, позволяющую восстанавливать ошибки в пакетах. Восстановление пакетов и ликвидация ошибок входило в функции не только конечных станций, но и всех узлов сети, например, использование протокола Х.25.
В современных скоростных телекоммуникационных сетях, применяющих волоконно- оптическую среду для передачи данных, уровень ошибок резко снизился. В результате большая избыточность кодировки поля пакета становится ненужной и лишь отнимает сетевые ресурсы.
Протокол Frame Relay разработан для использования на линиях связи с низким уровнем помех, каковыми являются волоконно-оптические магистрали. Именно поэтому в протоколе Frame Relay нет той избыточности, которая была характерна для Х.25. В Frame Relay устранена система контроля ошибок всего кадра. Вместо этого сетевой коммутатор проверяет целостность полученного кадра и только для адресного поля осуществляет контроль ошибок. Если хотя бы один из этих тестов не проходит, коммутатором посылается запрос на повторную передачу кадра.
Если первоначальные сети с коммутацией каналов предоставляли конечному потелю скорость около 64 Убит/с, то сети Frame Relay позволили подключаться пользовал глобальную телекоммуникационную сеть со скоростью 2 Мбит/с. Главным достоинства нологии Frame Relay стала низкая избыточность информации в пакете, что сильно уве производительность передачи данных в сети.
Первоначально предназначенные для объединения ЛВС сети Frame Relay сегодн тывают широкий диапазон потоков данных, включая SNA, Х.25 и ряд других. В то же Frame Relay получил ограниченное применение в территориальных сетях. Одна из кроется в том, что в стандарте заложена возможность передачи протяженных кадров, разной длины: передаваемые кадры могут иметь переменную длину до 1500 бит. Друга чина в том, что битовая скорость для потока данных от конкретного передающего уотс может быть непостоянной от узла к узлу в сети Frame Relay из-за статистического лексирования пакетов разной длины. Таким образом, возможны задержки в следованитов и вариации этих задержек. Хотя эти свойство весьма удобны для передачи данных щений, команд, файлов и так далее), они плохо "уживаются" с передачей голоса и изображения. Последние требуют передачи регулярных потоков, скорость же перед,- формации от узла к узлу в сети Frame Relay не постоянна, и поэтому при передаче голс видеоизображения их качество может ухудшаться при большой загруженности сети.
Интерфейс Frame Relay, безусловно, останется пользовательским интерфейсом, подключении к глобальной сети он, очевидно, будет преобразовываться в более унией ный протокол АТМ.
Ретрансляция ячеек Cell Relay
Ретрансляция ячеек, более известная как АТМ, представляет собой кульминацидований в области пакетной коммутации и коммутации каналов на протяжение после лет. Удобно рассматривать технологию ретрансляции ячеек, как эволюцию теретрансляции кадров. Главным отличием между ними является то, что Frame Relay uc пакеты переменной длины, а Cell Relay использует пакеты фиксированной длины,
называются ячейками, и предоставляют ограничить до минимума заголовок для в ния контроля. Используя фиксированную длину пакетов в ячейке АТМ, удалось еще сократить заголовок по сравнению с заголовком пакета. Если Frame Relay обычно прляет скорость канала подключения для конечного пользователя к сети до 2 Мбит/с, позволяет подключать конечных пользователей на скорости от десятков до сотен Мби
Эволюция концепций передачи информации с появлением волос
В последнее десятилетие имеет место мощный технологический прогресс в сс лекоммуникаций и особенно в области ВОЛС. Это отражается на росте скоростей переувеличении расстояний передающих линий. Главной особенностью ВОЛС является оч кий уровень помех при очень высокой полосе пропускания.
Протокол Х.25 был одним из первых протоколов, использующих принципы коммутации. Однако чрезмерная сложность протокола и встроенная избыточность
ваемой информации были необходимы, поскольку протокол предназначался для раба ловиях, когда использовались плохие медные линии связи с большим уровнем пом ростом качества линий связи, каковыми являются ВОЛС, эти свойства протокола струдиментарными.
Главная идея дальнейшего развития принципов пакетной коммутации заклюю том, что функция контроля передаваемых данных совсем не обязательно должна быт сана всем узлам сети, если этой функцией наделены конечные сетевые устройства 1 этом случае линия связи должна быть семантически прозрачной, т.е. гарантировать ную доставку битов, передаваемых от источника в пункт назначения. Именно это и n( сделать ВОЛС.
В ранних сетях с коммутацией пакетов (Х.25) из-за плохих линий связи качеств дачи падало от узла к узлу. Для обеспечения семантической прозрачности требовал; верка ошибок на каждом сегменте, рис. 5.15 а. Так, например, контроль ошибок, по, ваемый протоколом HDLC, включает анализ начальных и конечных ограничителей кад троль целостности кадра, контроль ошибок, исправление ошибок и другие функци
В совершенствующейся технологии качество среды передачи и коммутации растут. Таким образом, уменьшается количество ошибок в сети. В протоколе Frame Relay только одна функция — проверка целостности кадра — сохраняется за узлами ретрансляции. Остальные функции переносятся на конечные сетевые устройства, см. рис. 5.15 б.
В протоколе широкополосной передачи данных В480М (АТМ) эта идея получает дальнейшее развитие. Отпадает функция целостности контроля кадра на узлах. Вся работа переносится на конечные сетевые устройства, а узел коммутации наделяется минимумом сетевых функций, рис. 5.15 в.
Сетевая система конструируется по слоям или уровням. Каждый уровень выполняет определенный набор присущих ему функций. В результате объединения уровней образуется сетевая архитектура. Сетевая архитектура выделяет функции связи по определенным логическим группам — уровням, что в значительной степени упрощает стандартизацию. Главной чертой открытой сетевой архитектуры является то, что правила взаимодействия уровней не представляют закрытую информацию или собственность какой-либо организации, а открыты для всеобщего изучения и использования.
Каждый уровень имеет свои определенные правила и процедуры, которые называются протоколами. Протоколы регулируют активность в пределах уровня и характер взаимодействия между уровнями. Допускается взаимодействие как между соседними уровнями по вертикали в пределах одного сетевого устройства, так и между однотипными уровнями разных сетевых устройств. В результате этого происходит передача и преобразование данных между уровнями в пределах одного сетевого устройства и между различными сетевыми устройствами. Уровни независимы друг от друга в том смысле, что изменение одного уровня или его внутренних протоколов не влечет изменения протоколов в соседних уровнях.
Разделение на уровни очень удобно и позволяет следующее:
• упростить конструирование сети и структурировать ее функции;
• расширить набор приложений, ориентированных на пользователей сети;
•обеспечить наращивание сети в процессе ее развития.
Наибольшую популярность в мире получила открытая сетевая архитектура, использующая в своей основе эталонную модель взаимодействия открытых систем или ЭМВОС (Open Systems Interconnection/Reference Model), или кратко модель OSI (BOC).
Эта семиуровневая модель была разработана в 1977 г. совместно ISO и CCITT (современное название ITU-Т) и на сегодняшний день составляет основу для развития международ- ных стандартов в области компьютерных коммуникаций, табл. 5.4 [12].
Уровни с меньшим номером принято называть низкими уровнями, а уровни с большим номером — высокими.
Стандарты IEEE 802
Сетевые протоколы и стандарты, охватывающие два нижних уровня модели OSI (физический и канальный) были разработаны комитетом IEEE 8802 (сокращенно IEEE 802). Получило распространение несколько различных вариантов построения этих уровней. Причем у канального уровня только его нижний подуровень — МАС (управление доступом к среде) — был выделен и объединен с физическим уровнем для организации сетевого стандарта. Таким образом, протоколы подуровня LLC (канального уровня) и более высоких уровней 3, 4 и т.д. остались независимыми от сетевых стандартов.
На рис. 5.16 приведены основные сетевые стандарты IEEE 802. Следует отметить, что стандарт FDDI, несмотря на то, что был разработан другой организацией, также включен в эту группу сетевых стандартов, так как он выполнен в полном соответствии с эталонной моделью
OSI/IEEE 802.
Причин разработки столь большого числа сетевых стандартов две: первая — обеспечить на сетевом рынке для обычных пользователей менее дорогие сетевые интерфейсы, стоимость которых была бы значительно меньше стоимости настольного ПК; вторая — удовлетворить потребности в скоростной передаче данных, свойственной современным приложениям (например, клиент-сервер) и необходимой при организации сетевых магистралей.