1. Основные сведения о ВОЛС

 

1.1. Общие положения

Волоконно-оптическая линия связи (ВОЛС) — это вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно". Волоконно-оптическая сеть — это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи. Технологии волоконно-оптических сетей помимо вопросов волоконной оптики охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, протоколов передачи, вопросы топологии сети и общие вопросы построения сетей.

Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети оптических линий связи является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.

 

Преимущества ВОЛС

Широкая полоса пропускания — обусловлена чрезвычайно высокой частотой несущей 10'4 Гц [3]. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько тера бит в секунду. Большая полоса пропускания — это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.

Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более [4].

Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой избыточностью кода.

Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В много- волоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей много парным медным кабелям.

Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно "одеть" в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля [5, 6]

Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи используя свойства высокой чувствительности волокна, могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления [7]. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных. Рассмотрение волоконно-оптических сенсорных систем выходит за рамки материала данной книги.

Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "земельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, 4 что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.

Взрыв и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании соли тонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с [8].

Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

Несмотря на многочисленные преимущества перед другими способами передачи информации, волоконно-оптические системы имеют также и недостатки, главным образом из-за дороговизны прецизионного монтажного оборудования и надежности лазерных источников излучения. Многие из недостатков вероятнее всего будут нивелированы с приходом новых конкурентоспособных технологий в волоконно-оптические сети.

 

Недостатки ВОЛС

Стоимость интерфейсного оборудования. Электрические сигналы должны преобразовываться в оптические и наоборот. Цена на оптические передатчики и приемники остается пока

еще довольно высокой. При создании оптической линии связи также требуются высоконадежное специализированное пассивное коммутационное оборудование, оптические соединители с малыми потерями и большим ресурсом на подключение-отключение, оптические разветвители, аттенюаторы.

Монтаж и обслуживание оптических линий. Стоимость работ по монтажу, тестированию и поддержке волоконно-оптических линий связи также остается высокой. Если же повреждается ВОК, то необходимо осуществлять сварку волокон в месте разрыва и защищать этот участок кабеля от воздействия внешней среды.

Производители тем временем поставляют на рынок все более совершенные инструменты для монтажных работ с ВОК, снижая цену на них.

Требование специальной защиты волокна. Прочно ли оптическое волокно? Теоретически да. Стекло, как материал, выдерживает колоссальные нагрузки с пределом прочности на разрыв выше 1ГПа (10~ Н/м~) [9]. Это, казалось бы, означает, что волокно в единичном количестве с диаметром 125 мкм выдержит вес гири в 1 кг. К сожалению, на практике это не достигается. Причина в том, что оптическое волокно, каким бы совершенным оно не было, имеет микротрещины, которые инициируют разрыв. Для повышения надежности оптическое волокно при изготовлении покрывается специальным лаком на основе эпоксиакрилата, а сам оптический кабель упрочняется, например нитями на основе кевлара (kevlar). Если требуется удовлетворить еще более жестким условиям на разрыв, кабель может упрочняться специальным стальным тросом или стеклопластиковыми стержнями. Но все это влечет увеличение стоимости оптического кабеля.

Преимущества от применения волоконно-оптических линий связи настолько значительны, что несмотря на перечисленные недостатки оптического волокна, дальнейшие перспективы развития технологии ВОЛС в информационных сетях более чем очевидны.

 

Типовая схема системы волоконно-оптической связи

Типовая схема системы связи, использующей ВОЛС, показана на рис. 1.1. Аналоговый сигнал, генерируемый оконечным оборудованием данных (ООД), например, телефоном, терминалом, видеокамерой и т.д., приходит на узел коммутации, где аналого-цифровой преобразователь (кодер) оцифровывает его в битовый поток. Битовый поток используется для модуляции оптического передатчика, который передает серию оптических импульсов в оптическое волокно. На приемной стороне импульсы света преобразуются обратно в электрический сигнал при помощи оптического приемника. Декодерная часть коммуникационной системы преобразует бинарный электрический поток обратно в аналоговый сигнал ООД. Обычно кодеры и декодеры, а так же оптические приемники и передатчики совмещаются в одном устройстве, так что образуется двунаправленный канал связи.

 

 

 

 

 

1.2. Основные компоненты ВОЛС

Оптический передатчик обеспечивает преобразование входного электрического (цифрового или аналогового) сигнала в выходной световой (цифровой или аналоговый) сигнал. При цифровой передаче оптический излучатель передатчика "включается" и "выключается" в соответствии с поступающим на него битовым потоком электрического сигнала. Для этих целей используются инфракрасные светоизлучающие диоды LED или лазерные диоды ILD. Эти устройства способны поддерживать модуляцию излучаемого света с мегагерцовыми и даже гигагерцовыми частотами. При построении сетей кабельного телевидения оптический передатчик осуществляет преобразование широкополосного аналогового электрического сигнала в аналоговый оптический. В последнем случае оптический передатчик должен иметь высокую линейность.

Оптический приемник осуществляет обратное преобразование входных оптических импульсов в выходные импульсы электрического тока. В качестве основного элемента оптического приемника используются р4-и и лавинные фотодиоды, имеющие очень малую инерционность.

Если приемная и передающая станции удалены на большое расстояние друг от друга, например на несколько сот километров, то может дополнительно потребоваться одно или не- сколько дромежуочных регенерационных устройств для усиления ослабевающего в процессе распространения оптического сигнала, а также для восстановления фронтов импульсов. В качестве таких устройств используются повторители и оптические усилители.

Повторитель состоит из оптического приемника, электрического усилителя и оптического передатчика. При передаче дискретного сигнала электрическое усиление, как правило, также может сопровождаться восстановлением фронтов и длительностей передаваемых импульсов. Для этого повторитель принимает оптический сигнала в синхронном или асинхронном режиме, в зависимости от стандарта передачи.

При синхронном режиме приемное устройство повторителя регулярно принимает синхроимпульсы, на основании которых настраивает свой таймер, задающий частоту для последующей передачи. Существует непрерывный битовый поток в линии. И даже если нет передачи данных, синхроимпульсы продолжают поступать. В передающую последовательность повторитель добавляет синхроимпульсы, предназначенные для синхронизации следующего каскада.

При асинхронном режиме передаваемая информация организуется в специальные пакеты данных — кадры. Каждому пакету предшествует последовательность однотипных групп битов — преамбула. Именно преамбула обеспечивает синхронизацию приемного устройства, которое до начала приема находится в ждущем режиме.

Повторитель, который восстанавливает форму оптического сигнала до первоначальной, называется регенератором.

Оптический усилитель не осуществляет оптоэлектронного преобразования, как это делает повторитель или регенератор. Он, используя специальные активные среды и лазеры накачки, непосредственно усиливает проходящий оптический сигнал, благодаря индуцированному излучению. Таким образом, усилитель не наделен функциями восстановления скважности, в чем уступает повторителю. Однако, есть две основные причины, которые делают применение усилителя более предпочтительным.

1. Следует иметь в виду, что качество сигналов, передаваемых по оптическому волокну, даже если сегмент протяженный, остается очень высоким вследствие малой дисперсии и затухания. Также не велик уровень вносимых шумов из-за подверженности волокна влиянию электромагнитного излучения. Поэтому ретрансляция передаваемых данных простым усилением без полной регенерации становится весьма эффективной.

2. Оптический усилитель является более универсальным устройством, поскольку в отличии от регенератора он не привязан к стандарту передающегося сигнала или определенной частоте модуляции.

На практике на один регенератор может приходиться несколько последовательно рас- положенных оптических усилителей (до 4-8). Таким образом, эффективность использования оптических усилителей при построении волоконно-оптических магистралей большой протяженности очень высока.

Волоконно-оптический кабель (ВОК). Характерная строительная длина оптического кабеля (длина непрерывного участка кабеля, поставляемого на одном барабане) варьируется в зависимости от производителя и типа кабеля в пределах 2-10 км. На протяженных участках между повторителями (репитерами) могут помещаться десятки строительных длин кабелей. В этом случае производится специальное сращивание (как правило, сварка) оптических волокон. На каждом таком участке концы ВОК защищаются специальной герметичной проходной муфтой. 

 

2. Оптическое волокно

 

2.1. Типы оптических волокон

Оптические волокна производятся разными способами, обеспечивают передачу оптического излучения на разных длинах волн, имеют различные характеристики и выполняют разные задачи. Все оптические волокна делятся на две основные группы: многогодовые MMF (multi mode fiber) и одноподовые SMF (single mode fiber).

Многомодовые волокна подразделяются на ступенчатые (step index multi mode fiber) и градиентные (graded index multi mode fiber).

Одномодовые волокна подразделяются на ступенчатые одномодовые волокна (step in- dex single mode fiber) или стандартные волокна SF (standard fiber), на волокна со смещенной дисперсией DSF (dispersion-shifted single mode fiber), и на волокна с ненулевой смещенной дисперсией NZDSF (non-zero dispersion-shifted single mode fiber)

Типы и размеры волокон приведены на рис. 2.1. Каждое волокно состоит из сердцевины и оболочки с разными показателями преломления. Сердцевина, по которой происходит распространение светового сигнала, изготавливается из оптически более плотного материала. При обозначении волокна указываются через дробь значения диаметров сердцевины и оболочки. Волокна отличаются диаметром сердцевины и оболочки, а также профилем показателя преломления сердцевины. У многомодового градиентного волокна и одномодового волокна со смещенной дисперсией показатель преломления сердцевины зависит от радиуса. Такой более сложный профиль делается для улучшения технических характеристик или для достижения специальных характеристик волокна.

Если сравнивать многомодовые волокна между собой (рис. 2.1 а, б), то градиентное волокно имеет лучшие технические характеристики, чем ступенчатое, по дисперсии. Главным образом это связано с тем, что межмодовая дисперсия в градиентном многомодовом волокне — основной источник дисперсии — значительно меньше, чем в ступенчатом многомодовом волокне, что приводит к большей пропускной способности у градиентного волокна.

Одномодовое волокно имеет значительно меньший диаметр сердцевины по сравнению с многомодовые и, как следствие, из-за отсутствия межмодовой дисперсии, более высокую пропускную способность. Однако оно требует использования более дорогих лазерных пере- датчиков.

В ВОЛС наиболее широко используются следующие стандарты волокон (табл. 2.1):

многомодовые градиентное волокно 50/125 (рис . 2.1 а);

многомодовые градиентное волокно 62,5/125 (рис. 2.1 б);

одномодовое ступенчатое волокно SF (волокно с несмещенной дисперсией или стандартное волокно) 8-10/125 (рис. 2.1 в);

одномодовое волокно со смещенной дисперсией DSF 8-10/125 (рис. 2.1 г);

одномодовое волокно с ненулевой смещенной дисперсией NZDSF (по профилю показа- теля преломления это волокно схоже с предыдущим типом волокна).

 

 

 

Большинство устройств волоконной оптики используют область инфракрасного спектра в диапазоне от 800 до 1600 нм в основном в трех окнах прозрачности: 850, 1310 и 1550 нм, рис. 2.8 [1]. Именно окрестности этих трех длин волн образуют локальные минимумы затухания сигнала и обеспечивают большую дальность передачи.

 

 

Многомодовые градиентные волокна

В стандартном многомодовом градиентном волокне (50/125 или 62,5/125) диаметр светонесущей жилы 50 и 62,5 мкм, что на порядок больше длины волны передачи. Это приводит к распространению множества различных типов световых лучей — мод — во всех трех окнах прозрачности. Два окна прозрачности 850 и 1310 нм обычно используют для передачи света по многогодовому волокну.

 

Одномодовые волокна

B ступенчатом одноподовом волокне (SF) диаметр светонесущей жилы составляет 8-10 мкм и сравним с длиной световой волны. В таком волокне при достаточно большой длине волны света Х > Хс (Х > Хс~ — длина волны отсечки) распространяется только один луч (одна Mopa). Одномодовый режим в одноподовом волокне реализуется в окнах прозрачности 1310 и 1550 нм. Распространение только одной моды устраняет межмодовую дисперсию и обеспечивает очень высокую пропускную способность одномодового волокна в этих окнах прозрачности, Наилучший режим распространения с точки зрения дисперсии достигается в окрестности длины волны 1310 нм, когда хроматическая дисперсия обращается в ноль. С точки зрения потерь это не самое лучшее окно прозрачности. В этом окне потери составляют 0,3-0,4 дБ)км, в то время как наименьшее затухание 0,2-0,25 дБ/км достигается в окне 1550 нм.

В одномодовом волокне со смещенной дисперсией (DSF) длина волны, на которой результирующая дисперсия обращается в ноль, — длина волны нулевой дисперсии Х~ — смещена в окно 1550 нм. Такое смещение достигается благодаря специальному профилю показателя преломления волокна, рис. 2.1 г. Таким образом, в волокне со смещенной дисперсией реализуются наилучшие характеристики как по минимуму дисперсии, так и по минимуму потерь. Поэтому такое волокно лучше подходит для строительства протяженных сегментов с расстоянием между ретрансляторами до 100 и более км. Разумеется, единственная рабочая длина волны берется близкой к 1550 нм.

Одномодовое волокно с ненулевой смещенной дисперсией NZDSF в отличие от DSF оптимизировано для передачи не одной длины волны, а сразу нескольких длин волн (мультиплексного волнового сигнала) и наиболее эффективно может использоваться при построении магистралей "полностью оптических сетей" — сетей, на узлах которых не происходит оптоэлектронного преобразования при распространении оптического сигнала.

Передача мультиплексного сигнала на большие расстояния требует использования линейных широкополосных оптических усилителей, из которых наибольшее распространение получили так называемые эрбиевые усилители на основе легированного эрбием волокна (EDFA). Линейные усилители типа EDFA эффективно могут усиливать сигнал в своем рабочем диапазоне от 1530-1560 нм. Длина волны нулевой дисперсии у волокна NZDSF, в отличие от волокна DSF, выведена за пределы этого диапазона, что значительно ослабляет влияние не- линейных эффектов в окрестности точки нулевой дисперсии при распространении нескольких

длин волн.

Оптимизация трех перечисленных типов одномодовых волокон совершенно не означает, что они всегда должны использоваться исключительно под определенные задачи: SF — передача сигнала на длине волны 1310 нм, DSF — передача сигнала на длине волны 1550 нм, NZDSF — передача мультиплексного сигнала в окне 1530-1560 нм. Так, например, мультиплексный сигнал в окне 1530-1560 нм можно передавать и по стандартному ступенчатому одномодовому волокну SF. Однако длина без ретрансляционного участка при использовании волокна SF будет меньше, чем при использовании NZDSF, или иначе потребуется очень узкая полоса спектрального излучения лазерных передатчиков для уменьшения результирующей хроматической дисперсии. Максимальное допустимое расстояние определяется техническими характеристиками как самого волокна (затуханием, дисперсией), так и приемопередающего оборудования (мощностью, частотой, спектральным уширением излучения передатчика, чувствительностью приемника).

 

 

2.2. Распространение света по волокну

Основными факторами, влияющими на характер распространения света в волокне, наряду с длиной волны излучения, являются: геометрические параметры волокна; затухание; дисперсия.

 

Геометрические параметры волокна

Относительная разность показателей преломления. Волокно состоит из сердцевины и оболочки. Оболочка окружает оптически более плотную сердцевину, являющуюся светонесущей частью волокна, рис. 2.2. Будем обозначать через n~ и ng показатели преломления сердцевины и оболочки, соответственно. Один из важных параметров, который характеризует волокно, это — относительная разность показателей преломления

Если показатель преломления оболочки выбирается всегда постоянной величиной, то показатель преломления сердцевины в общем случае может зависеть от радиуса. В этом случае для проведения различных оценок параметров волокна в место п| используют п|,т.

Распространение света по волокну можно объяснить на основе принципа полного внутреннего отражения, вытекающего из закона преломления света Снеллиуса:

п,sin0, =п п0

 где n> — показатель преломления среды 1, 0| — угол падения, n — показатель преломления среды 2, 0> — угол преломления.

Формальные выкладки удобнее производить для ступенчатого волокна (волокна со ступенчатым профилем показателя преломления), в котором показатель преломления сердцевины является постоянной величиной (n, = const). На рис. 2.2 показан ход лучей в таком волокне. Так как сердцевина является оптически более плотной средой по отношению к оболочке ( п, ) п2), то существует критический угол падения 0С — внутренний угол падения на границу, при котором преломленный луч идет вдоль границы сред (0> — — 90 ). Из закона Снеллиуса легко найти этот критический угол падения:

 

Если угол падения на границу раздела меньше критического угла падения (луч 2), то при каждом внутреннем отражении часть энергии рассеивается наружу в виде преломленного луча, что приводит в конечном итоге к затуханию света, Если же угол падения больше критического угла (луч 1), то при каждом отражении от границы вся энергия возвращается обратно в сердцевину благодаря полному внутреннему отражению.

Лучи, траектории которых полностью лежат в оптически более плотной среде, называются направляемыми. Поскольку энергия в направляемых лучах не рассеивается наружу, та- кие лучи могут распространяться на большие расстояния.

 

 

 

Числовая апертура. Важным параметром, характеризующим волокно, является числовая апертура NA. Она связана с максимальным углом 0~ вводимого в волокно излучения из свободного пространства, при котором свет испытывает полное внутреннее отражение и распространяется по волокну, формулой:

NA = sin6Д. (2-3)

Фирмы-изготовители волокна экспериментально измеряют угол О и указывают соответствующее значение числовой апертуры для каждого поставляемого типа волокна. Для волокна со ступенчатым профилем легко получить значение числовой апертуры, выраженное через показатели преломления:

NA = $8 ~ — п~~ = n, /2Л . (2-5)

Для градиентного волокна используется понятие локальной числовой апертуры N=т)п, (т) — n~, значение которой максимально на оси и падает до 0 на границе сердцевины и оболочки. Для градиентного волокна с параболическим профилем показателя преломления, формула (2-10), определяется эффективная числовая апертура, которая равна (2-7) где п) (О) — максимальное значение показателя преломления на оси.

Нормированная частота. Другим важным параметром, характеризующим волокно и рас- пространяющийся по нему свет, является нормированная частота V, которая определяется

где d — диаметр сердцевины волокна.

Номенклатура мод. При более строгом рассмотрении процесса распространения света по волокну следует решать волновые уравнения Максвелла. Именно в этой трактовке лучи ассоциируются с волнами, причем различные типы волн — решения уравнений — называются модами. Сами моды обозначаются буквами Е и/или Н с двумя индексами п и m .Индекс п характеризует азимутальные свойства волны (число изменений поля по окружности), а m — радиальные (число изменений поля по диаметру). По оптическому волокну распространяются только два типа волн: симметричные (Epm и pm) у которых только одна про- дольная составляющая, и несимметричные (смешанные) (Е„„, и HДm), у которых имеется две продольные составляющие. При этом, если преобладает продольная составляющая электрического поля — Е„то волна обозначается ЕН„, а если преобладает продольная составляющая магнитного поля — Н„то волна называется НЕ„„. Сопоставляя волновую теорию с геометрической оптикой, следует отметить, что симметричные моды Е и Hp соответствуют меридиональным лучам, несимметричные моды Е„и Н„— косым. лучам [10].

По волокну могут распространяться как только одна мода — одномодовый режим, так и много мод многомодовый режим. Многомодовый или одномодовый характер идущего по волокну света коренным образом влияет на дисперсию, а следовательно, и на пропускную способность волокна. Расчет на основе уравнений Максвелла позволяет найти простой критерий распространения одной моды: V <2,405 (точное значение константы в правой части неравенства определяется первым нулем функции Бесселя Ip(x), [1, 2]). Это гибридная мода НЕ)). Отметим, что нормированная частота явно зависит от длины волны света. В табл. 2.2 приведены значения нормированной частоты, вычисленные по формуле (2-7).

Как видно из табл. 2.2, в одномодовом ступенчатом волокне при длине волны света 1550 нм выполняется критерий (2-8), и поэтому распространяется только одна мода. При длине волны 1310 нм критерий не выполнен, что означает возможность распространения не- скольких мод в одномодовом волокне на этой длине волны. На практике, однако, волокно помещается в кабель, который, будучи проложенным, имеет множество изгибов. Особенно велики искривления волокна в сплайс-боксах. Искривление волокна приводит к быстрому затуханию не основных мод. Во всех остальных случаях наблюдается многомодовый характер распространения света. Отметим, что при длине волны 880 нм критерий (2-8) нарушается для ) всех типов волокон. Таким образом, если вводить излучение длиной волны 850 нм в одномодовое волокно, то иметь место будет многомодовый режим распространения света. Противоречия здесь нет. Дело в том, что ступенчатое одномодовое волокно 8/125 предназначено для использования в спектральных окрестностях двух длин волн:1310 нм и 1550 нм, где оно в истинном смысле проявляет себя как одномодовое.

 

 

 

Значение этого выражения может быть как целым, так и дробным. В действительности же число мод может быть только целым и составлять величину от одной до нескольких тысяч.

Количество мод для градиентного оптического волокна с параболическим профилем сердцевины:

 (а — радиус сердцевины,  — радиус оболочки) определяется так:

На рис. 2.3 показана общая картина распространения света по разным типам световодов: многомодовому ступенчатому, многомодовому градиентному, и одномодовому ступенчатому волокну.

 

Рис. 2.3. Распространение света по разным типам волокон: а) многомодовое ступенчатое волокно, 6) многомодовое градиентное волокно, в) одномодовое ступенчатое волокно

 

 

Длина волны отсечки (cutoff wavelength)

Минимальная длина волны, при которой волокно поддерживает только одну распространяемую моду, называется длиной волны отсечки. Этот параметр характерен для одномодового волокна. Если рабочая длина волны меньше длины волны отсечки, то имеет место многомодовый режим распространения света. В этом случае появляется дополнительный источник дисперсии — межмодовая дисперсия, ведущий к уменьшению полосы пропускания волокна.

Различают волоконную длину волны отсечки (Х«) и кабельную длину волны отсечки ( Хс«). Первая соответствует слабо напряженному волокну. На практике же волокно помещается в кабель, который при прокладке испытывает множество изгибов. Кроме этого, сильные искривления волокон происходят при их укладке в сплайс-боксах. Все это ведет к подавлению побочных мод и смещению Х„в сторону коротких длин волн по сравнению с Х«. С практической точки зрения кабельная длина волны отсечки представляет больший интерес.

Волоконную длину волны отсечки можно оценить как теоретически, так и экспериментально. Теоретически легко это сделать для ступенчатого одномодового волокна — на основании выражений (2-7), (2-8) и (2-9) получаем X«л d NA/2,405=1,847 d n,~Б. Х, в отличие от Х«, можно оценить только экспериментальным образом. Одним из практических методов измерения длин волн отсечки Х«и Х~~~ является метод передаваемой мощности (transmitted power method) [5, 6]. Сравнивается измеренная переданная спектральная мощность в зависимости от длины волны для образца одномодового волокна дли- ной 2 м с аналогичным параметром, полученным на образце многомодового волокна. Строится кривая

 где А — разница затухании; Р, — мощность на выходе одномодового волокна; Р — мощность на выходе многомодового волокна.

Многомодовое волокно является эталонным. При этом один и тот же источник излучения с перестраиваемой длиной волны используется как для одномодового, так и многомодового волокна. Строится кривая А (k), рис. 2.4, длинноволновый участок которой экстраполируется прямой (1). Строится параллельная прямая (2), отстоящая ниже от (1) на 0,1 дБ. Точка пересечения прямой (2) с кривой А (Х) соответствует длине волны отсечки.

 

 

 

Условия измерения должны соответствовать рекомендациям TIA/EIA и CCITT [1, 2, 3]. Концы волокна очищаются от защитного покрытия, скалываются — угол скола не должен превышать 2. Диаметр светового пятна от источника излучения — 200 мкм; числовая апертура вводимого излучения 0,20; полная ширина спектра излучения <10 нм, измеренная на-полумаксимуме; измеряемый диапазон длин волн от 1000 нм до 1600 нм с шагом TO нм.

При измерении длины волны отсечки волокна X<F образец волокна должен иметь длину 2 м и располагаться таким образом, чтобы образовывалась одна петля радиусом 140 мм, рис. 2.5 а. Не должно быть дополнительных изгибов волокна с радиусом, меньшим 140 мм. Экспериментально измеренная длина волны отсечки волокна близка к теоретическому значению, которое можно получить из критерия (2-7), если обратить его в равенство.

При измерении кабельной длины волны отсечки тестируемый образец волокна должен иметь длину 22 м. Большая часть волокна свертывается и располагается на катушке с радиусом не меньше, чем 140 мм, что моделирует кабельные эффекты. Затем делается по одной петле диаметром 76 мм на расстоянии 1 м от каждого конца волокна для моделирования эффекта изгиба волокна в сплайс-боксах, рис. 2.5 б. И, наконец, в средней части делается две дополнительные петли радиусом, меньшим 140 мм.

 

 

 

 

 

Затухание

Волокно характеризуется двумя важнейшими параметрами: затуханием и дисперсией. Чем меньше затухание (потери) и чем меньше дисперсия распространяемого сигнала в волокне, тем больше может быть расстояние между регенерационными участками или повторителями,

На затухание света в волокне влияют такие факторы, как: потери на поглощении; потери на рассеянии; кабельные потери.

Потери на поглощении и на рассеянии вместе называют собственными потерями, в то время как кабельные потери в силу их природы называют также дополнительными потерями, рис. 2.6.

 

Полное затухание в волокне (измеряется в дБ/км) определяется в виде суммы:

Потери на поглощении а, состоят как из собственных потерь в кварцевом стекле

(ультрафиолетовое и инфракрасное поглощение), так и из потерь, связанных с поглощением света на примесях. Примесные центры, в зависимости от типа примеси, поглощают свет на определенных (присущих данной примеси) длинах волн и рассеивают поглощенную световую энергию в виде джоулева тепла. Даже ничтожные концентрации примесей приводят к появлению пиков на кривой потерь, рис. 2.7. Следует отметить характерный максимум в районе длины волны 1480 нм, который соответствует примесям ОН . Этот пик присутствует всегда, Область спектра в районе этого пика ввиду больших потерь практически не используется.

Собственные потери на поглощении растут и становятся значимыми в ультрафиолетовой и инфракрасной областях. При длине волны излучения выше 1,6 мкм обычное кварцевое стекло становится непрозрачным из-за роста потерь, связанных с инфракрасным поглощением, рис. 2.7.

Потери на рассеянии и„,. Уже к 1970 году изготавливаемое оптическое волокно становится настолько чистым (99,9999%), что наличие примесей перестает быть главенствующим фактором затухания в волокне. На длине волны 800 нм затухание составило 1,5 дБ/км. Дальнейшему уменьшению затухания препятствует так называемое рэлеевское рассеяние света. Рэлееиское рассеяние вызвано наличием неоднородностей микроскопического масштаба в волокне. Свет, попадая на такие неоднородности, рассеивается в разных направлениях. В результате часть его теряется в оболочке. Эти неоднородности неизбежно появляются во время изготовления волокна.

Потери на рэлеевском рассеянии зависят от длины волны по закону Х и сильней про- являются в области коротких длин волн, рис. 2.7.

 

 

Длина волны, на которой достигается нижний предел собственного затухания чистого кварцевого волокна, составляет 1550 нм и определяется разумным компромиссом между потерями вследствие рэлеевского рассеяния и инфракрасного поглощения.

Внутренние потери хорошо интерполируются формулой: а = К„~Х ~ +бон(Х)+Се ~~~, где Зон(Х)отражает пик поглощения на примесях ОН с максимумом при 1480 нм, а первое и последнее слагаемые соответствуют рэлеевскому рассеянию и инфракрасному поглощению соответственно (KДi = 0,8 мкм4дБ/км; С = 0,9 дБ/км; 1C = 0,7-0,9 мкм; данные приведены для кварца). На рис. 2.8 приводится общий вид спектральной зависимости собственных потерь с указанием характерных значений четырех основных параметров (минимумов затухания в трех окнах прозрачности 850, 1300 и1550 нм, и пика поглощения на длине волны 1480 нм) для со- временных одномодовый и многомодовый волокон.

 

Кабельные (радиационные) потери а„~ обусловлены скруткой, деформациями и изгибами волокон, возникающими при наложении покрытий и защитных оболочек, производства кабеля, а так же в процессе инсталляции ВОК. При соблюдении ТУ на прокладку кабеля номинальный вклад со стороны радиационных потерь составляет не больше 20% от полного затухания. Дополнительные радиационные потери появляются, если радиус изгиба кабеля становится меньше минимального радиуса изгиба, указанного в спецификации на ВОК.

 

Потенциальные ресурсы волокна и волновое уплотнение

Не принимая во внимание дисперсию, то есть искажение сигнала по мере распространения по волокну, рассмотрим сначала потенциальные возможности волокна.

Длина волны и частота светового излучения связаны между собой формулой v =c/Х,

где с — скорость света (3 10 м/с). Дифференцируя по Х, получаем dv/Ы = — с/Х, а сле- 8 / 2 довательно, окну ЛХ вокруг ~ — соответствует окно Лч, которое определяется по формуле: Лч = с Ы/Хр . Если Xp = 1 300 нм и ЛХ = 200 нм, то Лч = 35 ТГц ( 35 1 0'2 Гц), если же Хр 1550 нм и ЛХ= 200 нм, то Ы= 25 ТГц. Наиболее подходящим с точки зрения магистральных протяженных сетей является окно 1550 нм, поскольку в этом окне достигается минимальное затухание сигнала до 0,2 дБ/км, рис. 2.8. Несмотря на такие большие ресурсы волокна, реализовать передачу на скорости 25 Тбит/с в настоящее время невозможно, поскольку соответствующая частота модуляции пока не достижима. Однако есть другое очень эффективное решение, идея которого заключается в разделении всей полосы на каналы меньшей емкости. Каждый из таких каналов можно использовать под отдельное приложение. Эта технология известна как волновое уплотнение или волновое мультиплексирование — WDM. Технология WDM позволяет увеличить пропускную способность волокна не за счет увеличения частоты модуляции (при наличии одной передающей длины волны — одной несущей), а за счет добавления новых длин волн (новых несущих). Единственное условие, которое необходимо выполнить- это исключение перекрытий между спектральными каналами. Интервал между соседними длинами волн должен быть больше ширины спектра излучения. Современные одномодовое лазеры с распределенным брэгговским отражением — DBR лазеры — дают спектральную полосу меньше 0,1 нм. Так, при интервале 0,8 нм между соседними длинами волн в окне 1530- 1560 нм, соответствующем рабочей области оптического усилителя EDFA, может разместиться около 40 длин волн — 40 каналов. Причем полоса пропускания на каждый канал достигает 10 Гбит/с и более [8]. Технически реализованы оптические передатчики на основе временного мультиплексирования — TDM, способные вводить в волокно оптический TDM сигнал с частотой 100 ГГц в расчете на один канал, в результат чего полная емкость одного волокна составляет 4 Тбит/с (при 40 каналах волнового уплотнения) [9]. Но передать такой сигнал на большие расстояния не просто. Одним из главных факторов, препятствующих этому, является дисперсия.

 

 

Дисперсия и полоса пропускания

По оптическому волокну передается не просто световая энергия, но также полезный информационный сигнал. Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом уширении импульсы начинают перекрываться, так что становится невозможным их выделение при приеме.

Дисперсия — уширением импульсов — имеет размерность времени и определяется как квадратичная разность длительностей импульсов на выходе и входе кабеля длины Ь по формуле .Обычно дисперсия нормируется в расчете на 1 км, и измеряется / 2 2

в пс/км. Дисперсия в общем случае характеризуется тремя основными факторами, рассматриваемыми ниже:

различием скоростей распространения направляемых мод (межмодовой дисперсией

тто4) >

направляющими свойствами световодной структуры (волноводной дисперсией т),

 свойствами материала оптического волокна (материальной дисперсией т,~).


 

 

 

Межмодовая дисперсия

Межмодовая дисперсия возникает вследствие различной скорости распространения 'у мод, и имеет место только в многомодовом волокне (рис. 2.3 а, б). Для ступенчатого многомодового волокна и градиентного многомодового волокна с параболическим профилем показателя преломления (2-9) ее можно вычислить соответственно по формулам:

где L, — длина межмодовой связи (для ступенчатого волокна порядка 5 км, для градиентного — порядка 10 км).

Изменение закона дисперсии с линейного на квадратичный связано с неоднородностями, которые есть в реальном волокне. Эти неоднородности приводят к взаимодействию между модами, и перераспределению энергии внутри них. При L > L, наступает установившийся режим, когда все моды в определенной установившейся пропорции присутствуют в излучении. Обычно длины линий связи между активными устройствами при использовании многомодового волокна не превосходят 2 км и значительно меньше длины межмодовой связи. По- этому можно пользоваться линейным законом дисперсии.

Вследствие квадратичной зависимости от Л значения межмодовой дисперсии у градиентного волокна значительно меньше, чем у ступенчатого, что делает более предпочтительным использование градиентного многомодового волокна в линиях связи.

На практике, особенно при описании многомодового волокна, чаще пользуются термином полоса пропускания. При расчете полосы пропускания W можно воспользоваться формулой [1]:

            Измеряется полоса пропускания в МГц км. Из определения полосы пропускания видно, что дисперсия накладывает ограничения на дальность передачи и верхнюю частоту передаваемых сигналов. Физический смысл W — это максимальная частота (частота модуляции) передаваемого сигнала при длине линии 1 км. Если дисперсия линейно растет с ростом расстояния, то полоса пропускания зависит от расстояния обратно пропорционально.

 

Хроматическая дисперсия

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне из-за отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны:

(2-17)

Полноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны [1]:

где введены коэффициенты М(Х) и ]ч(Х) — удельные материальная и волноводная дисперсии соответственно, а ЛХ (нм) — уширении длины волны вследствие не когерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как Р(Х) = М(Х)+ М(Х) . Удельная дисперсия имеет размерность пс/(нм км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной, (Примерно 131 0 + 10 НМ ДЛЯ ступенчатого одномодового волокна) происходит взаимная компенсация М(Х) и В(Х), а результирующая дисперсия обращается в ноль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться Х для данного конкретного волокна.

Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной' не меньше  км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF) делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эта- лонном волокне (длина 2 м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне.

Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера (Sellmeier, [4]): т(Х) = А+ ВХ + СХ . Коэффициенты А, В, С являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую т(Х), рис. 2.10. Тогда удельная хроматическая дисперсия вычисляется по формуле:

где Х, =(С/В) — длина волны нулевой дисперсии, новый параметр— наклон нуле

вой дисперсии (размерность noj(H# км), а Х — рабочая длина волны, для которой определяется удельная хроматическая дисперсия.

 

 

 

 

Рис. 2.10. Кривые временных задержек и удельных хроматических дисперсией для:

а) многомодового градиентного волокна (62,5/125);

 б) одномодового ступенчатого волокна (SF);

в) одномодового волокна со смещенной дисперсией (DSF)

Для волокна со смещенной дисперсией эмпирическая формула временных задержек записывается в виде т(Х) = А+ Вл+Сл1пХ, а соответствующая удельная дисперсия определяется как со значениями параметров Х, =е с и S, =С/Х,, где Х — рабочая длина волны, Х — длина волны нулевой дисперсии, и S, — наклон нулевой дисперсии. Хроматическая дисперсия связана с удельной хроматической дисперсией простым со- отношением т.(М = D(X1 ЛХ, где Лл — ширина спектра излучения источника. К уменьшения, например лазерных передатчиков (АХь 2 нм), и использование рабочей длины волны более близкой к длине волны нулевой дисперсии. В табл. 2.4 представлены дисперсионные свойства различных оптических волокон.

 

 

 

Для того, чтобы при передаче сигнала сохранялось его приемлемое качество — соотношение, сигнал/шум было не ниже определенного значения — необходимо, чтобы полоса про- пускания волокна на длине волны передачи превосходила частоту модуляции. Ниже приводятся примеры расчета допустимой длины сегмента с использованием табл. 2.4.

Пример 2.1. Стандарт Ethernet для многомодового волокна. Оптический интерфейс 10Base-FL предполагает манчестерское кодирование с частотой модуляции 20 МГц. При использовании светодиодов с Ал, = 35 нм (850 нм) удельная полоса пропускания для волокна 50/125 составляет 125 МГцкм и при длине оптического сегмента 4 км будет 31 МГц, что больше 20 МГц. То есть, с точки зрения дисперсии, протяженность в 4 км является допусти- мой при указанной характеристике оптического передатчика и при данном типе волокна. Однако по затуханию, которое на этой длине волны составляет 3 дБ/км, динамического диапазона у стандартных приемопередатчиков на это расстояние может не хватить. Стандартом Ethernet 10Base-FL установлено допустимое расстояние 2 км с учетом менее строгих требований как к характеристикам кабельной системы (например волокно 62,5/125, наличие не- скольких сухих соединительных стыков), так и к оптическим приемопередатчикам — оптическим трансиверам Ethernet (например АХ= 50 нм ).

Пример 2.2. Стандарт FDDI для многомодового волокна. Оптический интерфейс

FDDI PMD предполагает кодировку 4В/5В с частотой модуляции 125 МГц. При использовании светодиодов с Лл, = 35 нм (1310 нм) удельная полоса пропускания для волокна 62,5/125 составляет 450 МГцкм, и при длине оптического сегмента 2 км будет 225 МГц, что больше 125 МГц, то есть, с точки зрения дисперсии, протяженность в 2 км является допустимой, что находится в полном соответствии со стандартом FDDI PMD на многомодовое волокно.

Слабая зависимость полосы пропускания многомодового волокна (например 62,5/125) от спектральной ширины источника излучения, работающего на длине волны 1310 нм (450 МГцкм

при АХ = 35 нм, и 452 МГц км при АХ = 2 нм), объясняется незначительной долей хроматической дисперсии по сравнению с межмодовой в силу близости рабочей длины волны к длине волны нулевой дисперсии. Таким образом, технические требования к спектральной полосе оптических передатчиков для работы по многомодовому волокну на длине 1310 нм обычно слабые.

Пример 2.3. Стандарт Fast Ethernet для одномодового волокна. Оптический интер - фейс 100Base-FX аналогично FDDI предполагает кодировку 4В/5В с частотой модуляции 125 МГц. При использовании лазеров с АХ = 2 нм (1310 нм) удельная полоса пропускания див ступенчатого одномодового волокна 8/125 составляет более 120000 МГц км и при длине оптического сегмента 100 км будет 1200 МГц, что больше 125 МГц. То есть, с точки зрения дисперсии, протяженность в 100 км является допустимой, однако здесь уже начинает сказываться затухание. При динамическом диапазоне 25 дБ с учетом потерь на сухих соединениях и сварках при затухании в волокне 0,4 дБ/км получаем максимальное расстояние 62,5 км.

Уменьшить потери можно, если передавать сигнал на длине волны 1550 нм. По потерян при прежнем динамическом диапазоне 25 дБ и при условии, что волокно имеет затухание 0,25 дБ/км, получаем расстояние 100 км. По дисперсии при использовании лазеров с АХ = 2 нм (1310 нм) удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет 12600 МГц км. В итоге на дистанции 100 км полоса пропускания будет 126 МГц, что сравнимо с частотой модуляции Fast Ethernet. Это не очень надежно. При фиксированной спектральной полосе АХ = 2 нм затруднения можно снять, если использовать для передачи волокно со смещенной дисперсией DSF. Если же кабельная система представлена исключительно одномодовыми волокнами со ступенчатым профилем (SF), то следует использовать оптические передатчики с более узкой спектральной полосой, например Лл. = 1 нм.

Пример 2.4. Стандарт АТМ 622 Мбит/с (STM-4) для одномодового волокна. Оптический интерфейс АТМ 622 Мбит/с использует кодировку 8В/10В, что соответствует частоте . модуляции 778 МГц. При использовании лазера с ЛХ = 0,1 нм (1550 нм) удельная полосы пропускания для ступенчатого одномодового волокна 8/125 составляет 252000 МГц км (12600 х 20) и при длине оптического сегмента 100 км будет 2520 МГц, что значительно больше 778 МГц. То есть, с точки зрения дисперсии, при использовании лазера с ЛХ = 0,1 нм ~ (1550 нм) протяженность в 100 км является допустимой, даже если применяется стандартное ступенчатое волокно.

Пример 2.5. Передача супер-сигнала на частоте 100 ГГц по одномодовому волок- ну со смещенной дисперсией DSF. При использовании лазеров с ЛХ = 0,1 нм (1550 н) удельная полоса пропускания для DSF 8/125 составляет более 2400 ГГцкм (20 х 120000 МГц км) и при длине оптического сегмента 20 км будет 120 ГГц, что незначительно превосходит 100 ГГц. То есть, с точки зрения дисперсии, протяженность сегмента в 20 км находится на грани предельного допустимого расстояния. Именно поэтому оптические супер-сети со скоростью передачи на канал 100 Гбит/с имеют ограниченный масштаб, например масштаб, города.

 

Поляризационная модовая дисперсия

Поляризационная модовая дисперсия т — возникает вследствие различной скорости

распространения двух взаимно перпендикулярных поляризационных составляющих моды. Коэффициент удельной дисперсии Т нормируется в расчете на 1 км и имеет размерность  а тр в Растет о Рвотам Расстояния по закону т„в Т ч/Ь. Для учета вклада в результирующую дисперсию следует добавить слагаемое тр 4в правую часть (2-13). Из-за г небольшой величины то может проявляться исключительно в одномодовом волокне, при- чем когда используется передача широкополосного сигнала (полоса пропускания 2,4 Гбит/с и выше) с очень узкой спектральной полосой излучения 0,1 нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.

В одномодовом волокне в действительности может распространяться не одна мода, а две фундаментальные моды — две перпендикулярные поляризации исходного сигнала. В идеальном волокне, в котором отсутствуют неоднородности по геометрии, две моды распространялись бы с одной и той же скоростью, рис. 2.11 а. Однако на практике волокна имеют не

 

 

 

 

Избыточный уровень Т , проявляясь вместе с чирпированным модулированным сигналом от лазера, а также поляризационной зависимостью потерь, может приводить к временным колебаниям амплитуды аналогового видеосигнала. В результате ухудшается качество изображения, или появляются диагональные полосы на телевизионном экране. При передаче цифрового сигнала высокой полосы (>2,4 Гбит/с) из-за наличия т может возрастать битовая скорость появления ошибок.

Главной причиной возникновения поляризационной модовой дисперсии является нециркулярность (овальность) профиля сердцевины одномодового волокна, возникающая в процессе изготовления или эксплуатации волокна. При изготовлении волокна только строгий контроль позволяет достичь низких значений этого параметра.

Пример 2.6. Оценить расстояние Lp при котором хроматическая т, , и поляризационная медовая дисперсии т„,, сравниваются по величине, если коэффициент хроматической дисперсии D = 2 пс/(нм км), коэффициент поляризационной модовой дисперсии Т= 0,5 пс/v/Kм, а ширина спектрального излучения ЛХ =0,05 нм. Приравнивая выражения т  Ес- 12 ли при Ь > Lp поляризационной модовой дисперсией можно пренебречь, то при Ь < Lp, наоборот, ее следует строго учитывать. Проблема поляризационной модовой дисперсии возникает при обсуждении проектов построения супермагистралей (>100 Гбит/с) городского масштаба.

Пример 2.7. Оценить максимальное допустимое расстояние оптического сегмента Lm~ на которое можно передать одноканальный сигнал с частотой W = 100 ГГц без ретрансляции, исходя из ограничений, вносимых поляризационной модовой дисперсией, если коэффициент поляризационной модовой дисперсии Т= 1,0 пс/,/км.

На основании соотношения (2-16) получаем: Тр ~ = T~L L< 0,44/W . Отсюда

=10441WТ) = (0,44/(100.10 .1.10-.~)) =19 км. При Т=О,о по!,1км расстояние возрастает до 77 км.

Ведущие фирмы-производители волокна обеспечивают выходной параметр поляризационной модовой дисперсии не выше 0,5. Однако, следует учитывать, что после инсталляции кабельной системы значение этого параметра возрастает.

 

2.3. Характеристики поставляемых волокон

Среди множества мировых производителей оптического волокна выделяются три крупнейших: Corning Optical Fiber, Lucent Technologies и Alcoa Fujikura. Кроме того, существуют сотни менее крупных производителей волокна. Волокна проходят тестирование как на этапе производства, так и после изготовления. Основные индустриально принятые методы тестирования, использующиеся для определения характеристик производимых волокон, приведены в табл. 2.5.

 

 

 

Градиентное многомодовое волокно

Широко используются два стандарта многомодового градиентного волокна — 62,5/125 и 50/125, отличающиеся профилем сердцевины, рис. 2.12 а. Соответствующие спектральные потери для типичных волокон показаны на рис. 2.12 б.

В табл. 2.6 приведены основные характеристики многомодовых градиентных волокон двух основных стандартов 50/125 и 62,5!125.

Отметим, что полоса пропускания на длине волны 1300 нм превосходит соответствующее значение на длине волны 850 нм. Это объясняется следующим образом. Дисперсия, которая определяет полосу пропускания, состоит из межмодовой и хроматической составляющих.

 

Если межмодовая дисперсия слабо зависит от длины волны — в соотношениях (2-14), (2-15) зависимостью показателя преломления от длины волны можно пренебречь, то хроматическая дисперсия пропорциональна ширине спектра излучения. Коэффициент пропорциональности Р(Х) при длинах волн в окрестности 1300 нм (Xp) близок к нулю, в то время как на длине волны 850 нм примерно равен 100 пс/(нм~ км). Специфика использования многомодового волокна такова, что обычно в качестве передатчиков используются светоизлучающие диоды, имеющие уширении спектральной линии излучения благодаря не когерентности источника примерно bХ — 50 нм, в отличии от лазерных диодов с уширением ЛХ — 2 нм и меньше. Это приводит к тому, что хроматическая дисперсия на длине волны 850 нм начинает играть существенную роль наряду с межмодовой дисперсией. Значительно уменьшить хроматическую дисперсию можно при использовании лазерных передатчиков, имеющих значительно меньшее спектральное уширении. Воспользоваться этим преимуществом лазерных передатчиков можно только при использовании одномодового волокна в окнах прозрачности 1310 нм и 1550 нм, когда полностью отсутствует межмодовая дисперсия и остается только хроматическая дисперсия.

 

Функциональные свойства одномодовых волокон

С точки зрения дисперсии, существующие одноподовые волокна, которые широко используются в сетях сегодня, разбиваются на три основных типа: волокна с несмещенной дисперсией SF (стандартные волокна со ступенчатым профилем, рис. 2.13 а), волокна со смещенной дисперсией DSF (рис. 2.13 б) и волокна с ненулевой смещенной дисперсией NZDSF.

Все три типа волокон очень близки по затуханию в окнах одномодовой передачи 1310 и 1550 нм, но отличаются характеристиками хроматической дисперсии. Поскольку дисперсия влияет на максимальную допустимую длину без ретрансляционных участков, то на первый взгляд, естественно, возникает желание выбрать волокно с наименьшим возможным значением дисперсии применительно к конкретной задаче, к конкретной длине волны. Это справедливо для случая передачи одной длины волны — одноканальной передачи. Многоканальное волновое мультиплексирование (WDM) в окне 1550 нм диктует иной рационализм. Исследования показывают, что, когда длина волны нулевой дисперсии попадает в зону мультиплексного сигнала, начинают проявляться нежелательные интерференционные эффекты, приводящие к более быстрой деградации сигнала. Поэтому поставщики средств связи должны отчетливо представлять себе преимущества и недостатки каждого волокна в аспекте эволюции традиционных сетей к полностью оптическим сетям [13].

 

 

 

Рис. 2.13. Профили показателей преломления наиболее распространенных одномодовых волокон: а) ступенчатое одномодовое волокно (стандартное волокно); б) одномодовое волокно со смещенной дисперсией (волокно со специальным профилем)

Волокно SF. В начале 80-х годов передатчики на длину волны 1550 нм имели очень высокую цену и низкую надежность и не могли конкурировать на рынке с передатчиками на длину волны 1300 нм. Поэтому стандартное ступенчатое волокно SF (рис. 2.13 а) стало первым коммерческим волокном и сейчас наиболее широко распространено в телекоммуникационных сетях. Оно оптимизировано по дисперсии для работы в окне 1310 нм, хотя и дает меньшее затухание в окне 1550 нм.

Волокно DSF. По мере совершенствования систем передачи на длине волны 1550 нм встает задача разработки волокна с длиной волны нулевой дисперсии, попадающей внутрь этого окна. В итоге в середине 80-х годов создается волокно со смещенной дисперсией DSF, полностью оптимизированное для работы в окне 1550 нм как по затуханию, так и по дисперсии. На протяжении многих лет волокно DSF считается самым перспективным волокном. С приходом более новых технологий передачи мультиплексного оптического сигнала большую роль начинают играть эрбиевые оптические усилители типа EFDA, способные усиливать многоканальный сигнал. К сожалению, более поздние исследования (в начале 90-х годов) показывают, что именно длина волны нулевой дисперсии (1550 нм), попадающая внутрь рабочего диапазона эрбиевого усилителя, является главным потенциальным источником нелинейных эффектов (прежде всего, четырех волнового смешивания), которые проявляются в резком возрастании шума при распространении многоканального сигнала.

Дальнейшие исследования подтверждают ограниченные возможности DSF при использовании в системах WDM. Чтобы избежать нелинейных эффектов при использовании DSF в WDM системах, следует вводить сигнал меньшей мощности в волокно, увеличивать расстояние между каналами и избегать передачи парных каналов (симметричных относительно Xp ).

Четырех волновое смешивание — это эффект, приводящий к рассеянию двух волн с образованием новых нежелательных длин волн. Новые волны могут приводить к деградации распространяемого оптического сигнала, интерферируя с ним, или перекачивать мощность из полезного волнового канала. Именно из-за эффекта четырех волнового смешивания стало яс- но, что необходимо разработать новый тип волокна, в котором Х, располагалось бы вдали, то есть, по одну сторону (левее или правее) от всех возможных каналов.

Волокно NZDSF создается в начале 90-х годов с целью преодолеть недостатки волокна 0SF, проявляющиеся при работе с мультиплексным оптическим сигналом. Известное также как Х-смещенное волокно, оно имеет особенность в том, что длина волны нулевой дисперсии вынесена за пределы полосы пропускания эрбия. Это уменьшает нелинейные эффекты и увеличивает характеристики волокна при передаче DWDM сигнала.

 

 

 

 

Две марки Х-смещенного волокна, появившиеся несколько лет назад, широко используются сегодня: волокно TrueWave фирмы Lucent Technologies [14] и волокно SMF-LS фирмы Corning [15, 16]. Оба имеют ненулевую дисперсию во всем диапазоне полосы пропускания эрбия. Волокно TrueWave обеспечивает положительную дисперсию при точке нулевой дисперсии в районе 1523 нм, в то время как SMF-LS обеспечивает отрицательную дисперсию с точкой нулевой дисперсией чуть выше 1560 нм, рис. 2.14. В начале 1998 года фирма Corning выпустила еще одну марку Х-смещенного волокна — LEAF™ [15].             Сравнительный анализ основных характеристик волокон TrueWave, SMF-LS и LEAF приведен в таблице 2.7.

 

 

 

По дисперсионным характеристикам волокно LEAF близко к волокну TrueWave. Главной отличительной чертой этого волокна по сравнению с двумя предыдущими является большая эффективная площадь для светового потока — диаметр модового пятна возрос на 1 мкм. Величина этого параметра становится весьма важной для оптимизации систем диапазона 1550 нм. Больший диаметр модового пятна позволяет увеличить уровень мощности излучения вводимого волокна на 2 дБ, сохраняя при этом влияние ряда нелинейных эффектов, в особенности четырех волнового смешивания, на прежнем уровне.

Современные тенденции развития средств телекоммуникационной связи свидетельствуют о перспективности ости систем передачи по волокну, в которых совмещаются временное

2 4 Гбит с и STM-64 на 10 мультиплексирование — TDM мультиплексирование (STM-16 на 2,4 Гбит/с и - на Гбит/с) в пределах одной длины волны и волновое мультиплексирование WDM.

ХОТЯ И Последователи Технологии волнового мультиплексирования (Lucent, MIT, Fujitsu и

др.) уже широко тестируют в рамках испытательных сетей мультиплексирование 32 и более каналов в расчете на одно волокно, добившись уже скорости передачи 40 Гбит/с на расстояния в несколько сотен км, в ближайшей перспективе видится меньшее количество мультиплексных каналов (до 16 при скорости передачи до 2,4 и 10 Гбит/с) в крупномасштабном индустриальном применении в телекоммуникационных сетях.

Инсталляция новых кабельных сегментов, или наращивание существующих с учетом перехода на скорости передачи 2,4 и 10 Гбит/с может осуществляться с использованием трех перечисленных видов волокон. При выборе волокна следует учитывать такие факторы, как общая стоимость проекта, требуемые емкости каналов, надежность, сложность системы и др.

В контексте эволюции ВОЛС ключевыми параметрами становятся методики, используемые для коррекции дисперсии в волоконно-оптических системах. Коррекция дисперсии позволяет увеличивать длину волоконно-оптических TDM систем, ранее ограниченных из-за большой дисперсии, и одновременно избежать влияния такого эффекта, как четырех волновое смешивание. Три методики коррекции дисперсии следующие [17]:

Использование волокон с компенсирующей дисперсией DCF (dispersion-compensating fi- bers). Положительная дисперсия, накопленная на одном участке с использованием стандартного волокна SF, может компенсироваться последующим примыкающим сегментом на основе волокна DCF с заранее подобранным значением отрицательной дисперсии, в результате чего итоговая хроматическая дисперсия может быть приближена к нулю. Компенсация хроматической дисперсии допустима в силу систематического характера накопления дисперсии с ростом длины;

Использование оптических лазерных передатчиков с очень узкой спектральной шири- ной (0,1 нм и менее), способных модулировать излучение на частотах в несколько ГГц;

Использование волокон типа NZDSF, в которых "сдвигается" длина волны нулевой дисперсии за пределы окна 1550 нм, в результате чего дисперсия становится достаточно большой, чтобы подавить эффект четырех волнового смешивания, в то же время достаточно малой, чтобы поддерживать распространение сигнала высокой емкости (высокой частоты модуляции) на большие расстояния.

Сегменты на основе волокна SF без использования коррекции дисперсии допускают протяженность до 90 км (при скорости передачи 2,4 Гбит/с). Первые две методики коррекции дисперсии, применяясь отдельно друг от друга или в комбинации, позволяют увеличить протяженность сегментов до 140 км при сохранении прежней скорости передачи, табл. 2.8 а.

Чтобы удовлетворить рабочим требованиям при планировании сети, следует тщательно вырабатывать стратегию наращивания сети. Нужно оценивать соответствующие топологии сетей с учетом возможности их работы на скоростях 2,4 и 10 Гбит/с. Ближайшая цель — построить протяженные участки (до 120-140 км) при передаче на скорости 2,4 Гбит/с с использованием любых из трех главных типов волокон — должна рассматриваться совместно с планами более далекой перспективы — инсталляция линий на скорость передачи 10 Гбит/с с использованием последовательно установленных линейных усилителей. Высокая скорость передачи в последнем случае может быть достигнута путем оптимизации длины сегментов между линейными усилителями (приблизительно 70 км).

Хотя волокна SF и DSF вполне приемлемы для осуществления наращивания сегментов сетей, волокно NZDSF более перспективно при использовании в новых инсталляциях. При сравнении волокон SF и DSF отметим, что SF лучше подходят для сетей, использующих волновое мультиплексирование. Недостаток SF — большое значение дисперсии в окне 1550 нм- может компенсироваться либо дополнительным участком на основе волокна с компенсирующей дисперсией, либо путем уменьшения спектральной ширины излучаемого сигнала (на- пример, используя передатчики на основе DFB лазеров).

Общие возможности по развертыванию кабельных систем на основе SF, DSF и NZDSF приведены в табл. 2.8 а, б.