Глава 3

ИМПУЛЬСНЫЕ ИСТОЧНИКИ ПИТАНИЯ ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ ТИПА АТ/ХТ

 

Совершенствование персональных компьютеров и используемых в них источников электропитания происходило постепенно и параллельно. Появление новых функциональных возможностей у вычислительных средств немедленно отражалось на моделях источников питания. Компьютеры АТХ форм-фактора имеют возможность установки дежурного режима для дистанционного включения и отключения вычислительного средства. В этом режиме компьютер практически не потребляет энергии от первичной сети. Обеспечение электропитания вычислительного средства в этом случае осуществляет вспомогательный, относительно маломощный источник, включенный в состав импульсного блока питания. Эта особенность работы блока питания компьютеров АТХ конструктива рассмотрена в предыдущей главе достаточно подробно. В более ранних модификациях блоков питания для ПК не было этого дополнительного канала питания. Кроме того, их структурное и схемотехническое построение имело некоторые существенные особенности по сравнению с более поздними моделями источников питания. В источниках для АТХ конструктива значительные изменения были внесены в построение силового каскада импульсного преобразователя и систему питания схемы управления. В данной главе будут рассмотрены основные принципы функционирования импульсных блоков питания для компьютеров типа АТ/ХТ. У различных фирм-производителей отдельные узлы данных источников подвергались схемотехническим модификациям. При описании базовой схемы будут проанализированы подходы построения этих узлов и даны фрагменты принципиальных схем отдельных каскадов.

 

3.1. Основные технические характеристики       

Источник питания подобного типа построен по схем импульсного преобразователя напряжения с бестрансформаторным подключением к питающей. Он выполняет преобразование переменного напряжения в постоянные с различными номиналами и допусками. Гальваническая развязка вторичных цепей питания и питают сети обеспечивается импульсным трансформатором преобразователя напряжения. Электропитание цепей системного блока персонального компьютера типа АТ/ХТ осуществляется стабилизированными напряжения с номинальными уровнями +12, +5, — 12 и — 5 В. модификации системных плат АТ компьютеров содержат элементы, требующие для питания

прядений 2 — 3,6 В. Эти напряжения вырабатывается интегральными стабилизаторами, установлении непосредственно на системных платах, а импульсными преобразователями напряжения. Отдельные позиции технических характеристик блоков питания АТ компьютеров соответствуют параметрам, приведенным в разделе 2.1, к которому обращаться за более подробной информационного основным параметрам блоков питания компьютеров. В настоящем же разделе приведены наиболее общие пользовательские.

Каждая фирма-производитель импульсных блоки питания выпускает серию преобразователей личной мощностью вторичных цепей. Максимальная мощность указывается в полном источника. Например, в блоке питания - LPS-02-200М (Level power supply) цифра 200 означает суммарную максимальную мощность цепей питания. Типовой ряд блоков питания, их характеристики и распределение токов узки для каждого номинала выходного  на примере модификаций изделий LPS-02 введен в табл. 3.1.

Номиналы и номенклатура вторичных постоянно напряжений стандартизованы. Значения видных напряжений фиксированы и какие-либо регулировки исключены. Из табл. 3.1  что самыми нагруженными каналами напряжений являются выходы +5 и +12 В. Тому система стабилизации построена таким разом, чтобы слежение за выходными напряжениями вторичных цепей производилось по состоял самых нагруженных каналов.

Существует зависимость распределения токовой нагрузки между вторичными напряжениями и допустимым уровнем их стабилизации. Так, например, к схеме блока питания предъявляются следующие требования: выходное напряжение+5 В должно меняться не более чем на 0,5% при колебаниях нагрузки от 25 до 100% по этому каналу и постоянной величине нагрузки по остальным каналам, поддерживаемой на уровне 25% от максимальной. При нагрузке от 50 до 100% всех вторичных каналов, кроме +5 В, величины их напряжений не должны изменяться более, чем на 0,1%, при сохранении нагрузки по каналу +5 В на уровне 25% от максимальной.

Параметры источников питания, общие для всех типов:

номинальные значения входных переменных напряжений - 115 и 220 В;

рабочий диапазон для первичных напряжений:

 — для 115 В — 90-135 В;

 — для 220 В — 180-265 В;

диапазон частот первичного питающего напряжения - 47 - 63 Гц;

максимальный уровень пульсаций по вторичным каналам, от номинального уровня напряжения - не более 0,1%;

общий КПД блока питания  не менее 75%;

сопротивление изоляции между входами первичной сети и общим проводом вторичных каналов не менее 10 МОм;

уровень сигнала «питание в норме» — ТТЛ (активный — высокий);

задержка появления сигнала «питание в норме» — 100-500 мс;

 минимальное время сохранения уровней выходных напряжений после выключения— 20 мс;

диапазон рабочих температур — 0 — 50 'С.

В состав блоков питания системных модулей компьютеров включены узлы для защиты силовых элементов схемы импульсного преобразователя от короткого замыкания по всем вторичным каналам и чрезмерного неконтролируемого повышения вторичного напряжения. Механизм срабатывания электронной защиты предусматривает блокировку функционирования схемы управления и импульсного преобразователя. После включения блокировки ее действие будет продолжаться до устранения причины короткого замыкания и повторного выключения/включения блока питания. Обязательным элементом защиты в блоке питания является предохранитель, установленный по одному из входных потенциальных проводников первичной сети.

 

 

 

На корпусе каждого блока питания закреплена этикетка с указанием его конкретной модификации и краткие сведения о характеристиках источника. Как правило, маркировка дополняется сведениями о параметрах семейства преобразователей, к которому принадлежит данное изделие.

 

3.2. Конструкция блока  питания

В состав блока питания для системного модуля персонального компьютера входят: металлический корпус, печатная плата с установленными на ней компонентами электронной схемы, вентилятор, два трехконтактных разъема для подключения к первичной питающей сети. Печатная плата и вентилятор размещены в полости корпуса. Лопасти вентилятора закрыты металлической сеткой или решеткой для предотвращения попадания предметов в его рабочую зону. Направление воздушного потока из внутренней полости блока питания наружу.

Компоновка электронных элементов на печатной плате обеспечивает улучшенное охлаждение силовых элементов воздушным потоком, создаваемым вентилятором. Элементы, наиболее подверженные разогреву, размещены на радиаторах. Как правило, на одном радиаторе устанавливается несколько элементов, работающих в разных цепях блока питания, Напряжения на корпусных электродах этих элементов также различны. Поэтому крепление на общем радиаторе производится через теплопроводящие изолирующие прокладки.

Приборные части разъемов для подключения сетевого электропитания размещены на одной боковой стенке корпуса с вентилятором. Один из разумов — сетевая вилка типа IEC320 с тремя ножевыми контактами, второй — аналогичная по конструкции розетка на три контакта. Два контакта каждого ив разъемов используются для передачи напряжения питания, а через третий, средний контакт осуществляется заземление корпуса блока питания.

Отличие блоков питания компьютеров АТ/ХТ от источников питания для модулей АТХ форм фактора заключается в наличии дополнительного кабеля соединения с сетевым выключателем. В блоках для компьютеров АТХ стандарта такой кабель отсутствует, питание в них вводится через приборную вилку, закрепленную на корпусе преобразовать ля, и сразу подается на каскады электронной схем Первичное подключение сети к источникам АТ/Х модулей производится через аналогичную вилк но далее кабелем подводится к сетевому выключателю. Через сетевой выключатель напряжены питания подается на входные цепи электронной преобразователя и на розетку, установлено на корпусе блока питания. Сетевая розетка  для транзита сетевого напряжения. Наиболее часто к ней подключается монитор компьютера импульсного блока питания происходит при замыкании контактов сетевого выключатель, выключение — их размыканием. Размыканием сетевого выключателя напряжение первичной сети снимается с входных клемм блока питания и транзитной розетки. Кабель, подводимый сетевому выключателю от блока питания, состоит  из четырех проводов, помещенных в общую трубку. Токоведущие проводники лепестками, которые надеваются ножевые контакты сетевого выключателя. Расположение сетевого выключателя на блоке жестко определено. Он может быть установлен на любой из боковых стенок настольного корпуса типа ESKTOP. На корпусе типа TOWER сетевой выключатель, как правило, выведен на его переднюю. Через отверстие в корпусе блока питания жгут проводников каналов вторичных постоянно напряжений. Проводники можно условно разбить на три группы в соответствии с числом и назначением розеток разъемов, включенных к проводникам каждой группы.

Первая группа проводников предназначена для печи электропитания на системную плату подключены к контактам двух разъемов, имеющих маркировку Р8 и Р9 истки разъемов имеют «ключ», исключающий правильный монтаж к ответным приборным материнской платы. При подключении к плате устанавливаются таким образом, что «об проводники (черного цвета) обоих разъемов полагаются рядом. Именно такое положение на плате является правильным. Номера  контактов и назначение проводников в разъеме Р8 дующие: (1) сигнал питание в норме (2) +5 В, ) +12 В; (4) — 12 В; (5), (6) общий провод. Р9: (1),(2) «общий» провод; (3) — 5 В; (4), (6)+5 В. Вторая группа проводников разведена на розетки, предназначенные для включения к периферийным устройствам. Тип

сток — АМР 1-480424-0 либо MOLEX 8981- Р. Разводка контактов у этих розеток полностью имеет следующее назначение: (1) +12 В; ), (3) общий; (4) +5 В..

Третья, последняя, группа проводников к контактам разъемов типа AMP 171822-4. и розетки соединяются с ответными частями, установленных на приводах гибких магнитных дисков. Они имеют следующую разводку: (1) +5 В; (2), (3) общий; (4) +12 В.

Цветовая маркировка одноименных токоведущих проводников вторичных каналов следующая: +5 В — красный, +12 В — желтый, — 5 В — белый,— 12 В — синий, общий провод вторичной цепи — черный, сигнал «питание в норме» (POWERGOOD или PG) — оранжевый.

При установке источника питания в системный модуль разъемы подключения сетевого напряжения и вентилятор имеют выход на заднюю стенку блока. Для выбора рабочего уровня входного напряжения на блоке питания установлен переключатель — селектор напряжения. Он также находится на задней стенке блока и доступ к нему постоянно открыт. На движке переключателя нанесена цифровая маркировка для каждого положения.

 

 

3.3. Структурная схема

Структурная схема импульсного блока питания для компьютеров типа АТ/ХТ, содержащая типовой набор функциональных узлов, представлена на рис. 3.1. Модификации блоков питания могут иметь различия только в схемотехнической реализации узлов с сохранением их функционального назначения.

На структурной схеме, приведенной на рис. 3.1, указано наименование узлов совместно с позиционным обозначением основных элементов, на которых выполнен данный каскад или узел. Позиционное обозначение соответствует принципиальной схеме базовой модели импульсного блока питания. Логические связи на структурной схеме показаны стрелками, которые указывают направление передачи сигналов, воздействий или подачу напряжений питания.

Блок питания, соответствующий данной структурной схеме, выполнен по схеме ВЧ преобразователя с внешним возбуждением.

Первым каскадом, на который поступает первичное переменное напряжение, является помехоподавляющий индуктивно-емкостный сетевой фильтр НЧ. Он установлен для ограничения влияния помех, проникающих через входные цепи из питающей сети, на работу ВЧ преобразователя. Появление помех в сети может отразиться на выходных характеристиках вторичных постоянных напряжений, вырабатываемых блоком питания. Если бы входной НЧ фильтр отсутствовал, то все помехи, возникающие в сети, трансформировались бы во вторичные цепи. Природа их различна, поэтому по каналам вторичных напряжений пришлось бы устанавливать дополнительные элементы, исключающие воздействие помех на электронные схемы нагрузки.

 

Высокочастотный преобразователь является усилителем сигналов, которые вырабатываются схемой управления. Мощные броски тока, возникающие в моменты коммутации силовых элементов УМ, вызывают появление помеховые сигналов в первичной цепи ПН. Входной сетевой фильтр препятствуют распространению этих помех через питающую сеть, ограничивая или полностью подавляя их.

Выход сетевого фильтра подключен к выпрямителю, который сначала преобразует переменное напряжение в униполярное, пульсирующее и затем сглаживает его. Сглаживание выпрямленного напряжения происходит электролитическими конденсаторами, также входящими в состав выпрямителя. Схемотехника блоков питания предусматривает их использование в регионах, отличающихся стандартизованными уровнями напряжения первичной сети. Для возможности работы блока питания при разных уровнях питающего напряжения в блок введен специальный переключатель — селектор входного напряжения SW. Коммутацией переключателя производится модификация цепей сетевого выпрямителя и элементов сглаживающего фильтра. Смысл реконфигурации входных цепей заключается в том, чтобы обеспечить постоянный уровень напряжения на силовом каскаде преобразователя при изменении уровня напряжения питания с 220 на 115 В и обратно. При этом не происходит переключения обмоток трансформаторов, для кoppeaтировки коэффициента трансформации, и все остальные цепи блока питания не изменяются.

Рассматриваемый блок питания не имеет каскада автогенератора, способного обеспечивать, дельные вторичные цепи постоянной электрической энергией. Поэтому в состав по мостового усилителя мощности входит схема  запуска, осуществляющая первоначальную поди импульсов управления для запуска усилителя мощности. Особая конструкция трансформаторных и полумостового усилителя создает условия кратковременной подачи питания на узел  после подключения блока питания к первичной сети. Временного интервала начального оказывается достаточно для установки режим стабильной генерации импульсных последовательностей, возбуждающих силовой каскад, на выход узла управления. Узел управления формирует следовательности особой формы, усиление приводит к появлению трехуровневого обмотках силового импульсного  включенного в диагональ полумостового усилителя мощности. Вторичные низковольтные силового импульсного трансформатора на диоды SBD1, SBD2, D19 — D22 блока выпрямителей. Для выпрямления импульсных применяются специальные дискретные диоды и матрицы диодов с малым временем восстановления обратного сопротивления. Выпрямители самых  каналов, то есть для вторичных напряжений 5 и+12 В, выполнены на матрицах, в состав входит по два диода. Для остальных каналов  пользованы дискретные элементы — диоды И — D22. Для ускоренного рассасывания зарядов в диодных структурах после полярности импульсного входного сигнала выпрямительным элементам ускоряющие резистивно-емкостные цепи и фильтрация импульсных сигналов на однозвенных LC каскадах блока литров, В режиме устойчивой коммутации силовых уровень энергетической мощности, топающей во вторичные цепи, зависит от степе- загруженности каналов постоянных напряжений значений вторичных напряжений системой автоматического регулирования контроля уровня энергии, поступающей вторичные цепи, входят в состав узла защиты блокировки. Они подключены к выходной цепи канала+5 В. Сигнал обратной связи.

 узлом защиты и блокировки, подается в узел явления блока питания. Основным элементом а управления является формирователь ШИМ зла на микросхеме IC1. Внутренний источник

1С1 вырабатывает стабилизированное, используемое измерительными  и в качестве опорного. В рассматриваемом блоке применен принцип групповой регулировки напряжений. Регулировка значений напряжений +12, — 5 и — 12 В производится по оценке состояния напряжения в - 5 В. В связи с этим для устойчивой работы блока питания и поддержания значений вторичных ряжений в заданных пределах необходимо создать баланс нагрузок по выходным каналам большая токовая нагрузка должна быть все х канала +5 В. Регулировка выполняется после нения этого напряжения с уровнем опорного.

Формирователь ШИМ сигнала импульсные последовательности, частота поддерживается постоянной, а импульсов управления варьируется в от состояния вторичных каналов. Если напряжение падает ниже уровня опорного, узел управления формирует сигнал воздействия схемы усилителей как промежуточного, так и си- то каскада на транзисторах Q5 и Q6 для уровня энергии, подаваемой во вторичные и. Реакция элементов управления на повыше вторичного напряжения обратная. Превыше выходным напряжением величины опорного напряжения посредством уменьшения длительности управляющих импульсов приводит к ограничению энергии, подаваемой на нагрузку.

В процессе эксплуатации блока питания могут возникать нештатные ситуации, в результате которых выходы каналов вторичных напряжений окажутся в состоянии перегрузки или КЗ. Организация системы защиты построена на различном подходе к оценке последствий воздействия КЗ на цепи основных и вспомогательных каналов вторичных напряжений. Для активизации защитного механизма блокировки по каналам отрицательных вторичных напряжений используются диодное резистивные датчики узла защиты и блокировки. Слежение за перегрузкой по основным каналам осуществляется с помощью отдельного каскада, построенного на специальном импульсном трансформаторе. Датчик на импульсном трансформаторе имеет большую инерционность, чем датчики фиксации КЗ отрицательных каналов. Это объясняется увеличением времени, требуемого для правильной оценки процесса, который развивается в этом или обоих основных вторичных каналах. Принцип действия всех элементов защиты одинаков и направлен на прекращение работы узла управления, а также на блокировку активных элементов силового каскада преобразователя. Выпрямленное напряжение первичной сети продолжает поступать для питания силового каскада, но коммутация транзисторов прекращается, предотвращая их от повреждение нарастающим током.

Процесс инициализации схем материнской платы компьютера начинается не после подачи питающего напряжения, а при получении внешнего сигнала высокого логического уровня «питание в норме». Это единственный служебный сигнал, который подается от блока питания внешним устройствам. Появление высокого уровня на сигнальном выходе «питание в норме» происходит с задержкой относительно выхода вторичных напряжений на номинальные уровни. Временной интервал задержки жестко не регламентирован, находится в диапазоне от 100 до 500 мс и устанавливается в схеме резитивно емкостными элементами.

 

 

3.4. Принципиальная схема

Импульсные источники питания данного класса имеют несколько различных модификаций схема технической реализации отдельных вспомогательных узлов. Принципиальных различий в их рабочих характеристиках нет, а разнообразие объясняется множеством производителей блоков питания. Поэтому при описании узлов и каскадов источника в питания и особенностей их функционирования будут также приведены и графические иллюстрации вариантов их исполнения. Для подробного обсуждения принципа построения и функционирования блока питания компьютеров типа АТ/ХТ в качестве базовой выбрана модель, принципиальная схема которой показана на рис. 3.2.

На принципиальной схеме не показан сетевой выключатель, так как он относится к системному модулю компьютера. В самом блоке питания по входу первичной электрической сети установлен предохранитель — необходимый элемент системы защиты. Предохранитель предназначен для отключения импульсного источника питания от питающей сети при возникновении в нем неисправностей и не используется для сохранения работоспособности активных элементов источника питания, так как обладает высокой тепловой инерционностью. Процессы пробоя развиваются лавинообразно, остановить их может только электронная защита. Предохранитель способен лишь предотвратить лавинообразное нарастание процесса, который разрушает конструктивные элементы блока питания и повреждает проводники печатной платы.

Терморезистор TR1, также подключенный по входу первичной цепи, имеет отрицательный коэффициент сопротивления. Этот элемент имеет максимальное значения сопротивления в холодном состоянии, то есть в момент включения источника. Основным назначением терморезистора TR1 является ограничение пускового тока, протекающего по входной цепи блока питания. При включении источника питания возникает скачок тока, так как конденсаторы сглаживающего фильтра С10 и С11 в начальный момент времени не заряжены и их сопротивление крайне мало. По мере их заряда уровень тока, протекающего по входным цепям блока питания, постепенно снижается. Под действием тока терморезистор TR1 медленно разогревается, а его сопротивление снижается. После выхода на рабочий режим сопротивление TR1 имеет значение десятых долей Ома и практически не влияет на общие энергетические показатели блока питания.

После терморезистора и предохранителя в первичную цепь источника питания включен сетевой фильтр. В конструкции фильтра использованы элементы, которые должны обеспечивать значительный уровень затухания помех, проникающих в источник питания и исходящих из него. В отсутствие сетевого фильтра блок питания можно применять только в идеальных условиях, при полном отсутствии приборов, способствующих возникновению помех. Но даже в этом случае целесообразность его установки вполне оправдана, так как фильтр значительно ограничивает уровень паразитных колебаний, проникающих в сеть от самого источника с импульсным преобразователем. Конструкцию входного фильтра рассчитывают ив условий, обеспечивающих работу блока питания при кратковременных бросках и провалах сетевого напряжения, Стандарт отечественной сети переменного тока допускает изменение напряжения в диапазоне 220 В +15%. Но стандарт не может предусмотреть уровней кратковременных импульсных помех, источником которых являются приборы и устройства на основе электродвигателей, электромагнитных пускателей. Импульсные помехи от таких приборов могут проникать во вторичные цепи источника питания и оказывать негативное влияние из функционирование нагрузочных элементов. Наличие входного фильтра способствует устранению или значительному ослаблению влияния внешних помех на работоспособность блока питания и элементов нагрузки, подключенных к его вторичным цепям.

Помехоподавляющий фильтр представляет собой звено П-типа, состоящее из конденсаторов; С1 — С4 и дросселя Т, две обмотки которого намотаны в одном направлении на общий сердечник из материала с высоким значением магнитной проницаемости. Обмотки имеют одинаковое количество; витков. Конденсаторы СЗ и С4 включены последовательно, точка их соединения подключается к корпусной клемме блока питания. В отечественной сети выполняется заземление нулевого провод и поэтому точка соединения обязательно должна, подключаться через корпус к «нулю». Таким образом, один из конденсаторов СЗ, С4 оказывается из шунтированным, а второй подключается параллельно конденсатору С2. Если корпус источники: питания с таким фильтром оставить без подключения к защитному «нулю», то в средней точке емкостного делителя образуется напряжение, равное половине входного питающего напряжения.

Емкостное сопротивление конденсаторов С1 и С2 фильтра на частоте питающей сети достаточно большое и составляет примерно 145 кОм. Такое сопротивление не оказывает заметного влияния на помехи с частотой, близкой к частоте промышленной сети. Импульсные же помехи, имеющие спеки от десятков килогерц до нескольких мегагерц, замыкаются через малое сопротивление этих конденсаторов, и поэтому происходит значительное снижение их уровня. Полностью нейтрализовать помеху, проникающую из сети, одними конденсаторами  удается, и для более глубокой фильтрации применяется индуктивный элемент — дроссель Т1. По конструкции и техническому смыслу дроссель Т1 больше похож на трансформатор, поэтому в специальной литературе иногда его называют нейтрализующим трансформатором. Каждая из обмоток дросселя включена в цепь потенциального проводника.

 

По одной из обмоток протекает ток, по второй — возвратный ток. 1 ков противоположно, но одинаковы. Токи, протекающие по  ток, будут создавать магнитные по величине, но противоположные. Взаимно противоположные поток друг друга. Ни один из  преобладающим, а значит, не буду намагничивание сердечника и моток дросселя будет иметь значение. Это положение справ от уровня тока потребления Магнитные потоки, создаваемые кс мехи, также взаимно компенсирую сопротивление обмоток дросселя частоте протекающего  сети его величина относительно неб высокочастотных колебаний помех на. Затухание помех растет по мере частоты. Установка отдельных отдельном проводнике будет меньший эффект. В напряжения устанавливаются Н протекающий через сетевой пульсирующий характер  (переключения силовых транзистора преобразователя. В моменты напряжения на диодах Ш — D4 происходит перезарядка.

Этот процесс занимает определенно интервал. Диоды, изменяющие состояние на закрытое, не могут и некоторое время. В это время одна пара диодов  а вторая — постепенно открывается и пускать ток. Возникают сквозные т возбуждают кратковременные Подавление помех такого тип; конденсаторы С2 — С4, заземлению. Все коня фильтра рассчитаны на напряжение 1 кВ. С помощью селектора уровня входа  S1 выполняется переключение в блока питания для работы от с номинальными уровнями 220 и имеет только два состоянии и разомкнутое. Разомкнутое состояние устанавливается, когда напряжены 220 В. Контакты переключателя зама подключения блока питания к сети с  напряжением.

Диодный мост выпрямителя электролитических конденсатора последовательно, а тюке импульсного преобразователя в состав фильтра, пульсирующее напряжение дому из конденсаторов С10 и С11 фильтра включены R17 и R18, создающие при отключении сети. Резисторы выбраны с такими противления, чтобы не оказывать ВЧ преобразователя.

Вся остальная электрическая предназначена усиления импульсных сигналов во вторичные напряжения, элементы нагрузки. Этапы преобразователя, соответствующе терзала в главе 2.

Но прежде чем перейти к  функционирования отдельных дать общую схему развития в блоке питания включения в сеть. Именно блоков питания для образом отличается от, используемых в АТХ .

В блоке питания, схема которого рис. 3.2, нет узла, аналогичного автогенератору АТХ преобразователя, от которого блок управления получает первичное питание для запуска генератора импульсных последовательностей. Поэтому одним из основных вопросов при подключении к питающей сети такого источника является обеспечение начального запуска и первичная запивка узла управления. Решение этой проблемы заключается в особой конструкции силового каскада преобразователя и, в частности, в способе подключения трансформатора внешнего возбуждения Т2 к базовой цепи транзистора 95. Вторичная цепь Т2 имеет три обмотки. Две из них традиционно подключены к базовым цепям силовых транзисторов Q5 и Q6, а третья — к эмиттеру транзистора Я5 и через конденсатор С15 с первичной обмоткой импульсного трансформатора Т4. Базовая цепь каждого силового транзистора соединена со своим коллектором через резистор с большим сопротивлением. Таким образом, через резисторы R27 и R29 на базы транзисторов Q5 и Q6 подается положительное смещение. Благодаря этим двум особенностям происходит полное открывание одного из силовых транзисторов Q5 или Q6, в результате которого на вторичных обмотках появляется импульс напряжения. Этим импульсным напряжением заряжаются емкости конденсаторов С18 и С17, образующие сглаживающий фильтр. Положительная обкладка конденсатора С17 подключена к выводу питания ICi/12 микросхемы ШИМ регулятора. Уровня напряжения на конденсаторах С17 и С18 и энергии их заряда оказывается достаточно для запуска микро схемы IC1 и получения на выходах IC1/8,11 последовательностей импульсов. Через каскады промежуточного усилителя, выполненного на транзисторах Q3 и ()4, импульсы управления подаются в базовые цепи силовых транзисторов Q5 и Q6. Возникает устойчивый колебательный процесс переключения силовых транзисторов, происходящий под управлением импульсов, формируемых схемой управления. Когда импульсные колебания принимают установившийся характер, напряжения на вторичных обмотках нарастают до номинальных уровней, и происходит формирование сигнала «питание в норме». Далее начинает действовать система слежения за выходным уровнем напряжения канала +5 В и регулирования поступления энергии во вторичные цепи. Если нагрузка каналов находится в определенных пределах, источник питания обеспечивает энергетическую поддержку вторичных цепей. При резком и неконтролируемом отклонении уровня нагрузки, приводящего к КЗ по одному из каналов, включается система блокировки схемы управления и отключения силового каскада.

Таков краткий обзор работы блока питания. Далее будет рассмотрено построение функциональных узлов схемы, приведенной на рис. 3.2, их особенности и различные варианты исполнения отдельных узлов. Существует достаточно большое число фирм-производителей источников питания, поэтому не исключено, что имеющийся у вас блок будет состоять из комбинации типовых узлов.

 

3.4.1. ШИМ преобразователь

ШИМ регулирование силового каскада импульсного преобразователя является наиболее оптимальным способом управления уровнем выходного вторичного напряжения источника питания. Схема широтно-импульсного модулятора построена на широко распространенной микросхеме типа TL494 (позиционное обозначение по схеме, представленной на рис. 3.2, — IC1). Подробное описание и основные технические характеристики этой микросхемы приведены в главе 2. Раздел, посвященный ее описанию, содержит структурную схему, представленную на рис. 2.7. Рассмотрим схему включения ШИМ преобразователя для случая применения согласно рис. 3.2. При ссылках в описании на

нумерация элементов микросхемы, соответствующие рис. 2.7.

После подачи питания на вывод IC1/12 включаются внутренние каскады микросхемы ШИМ преобразователя. Узлом, задающим частоту следования импульсов в выходных последовательностях, является генератор пилообразного напряжения, рабочая частота которого определяется внешними элементами, соединенными с выводам IC1/5 и IC1/6. Подключение элементов производится между общим проводом вторичной цепи и указанными выводами. К IC1/5 подсоединяется керамический конденсатор, а к IC1/6 — резистор. Частота генерации определяется значениями этих элементов и вычисляется по соотношению (2.1). Для ее вычисления в том случае, когда используемая схема, приведенная на рис. 3.2, в формулу должны быть подставлены значения сопротивления резистора R21 и емкости конденсатора С9. Частота, рассчитанная по формуле (2.1), при указанных номиналах элементов, составляет =34 кГц. Пилообразное напряжение амплитудой 3 В наблюдается на выводе IC1/5.

Выход источника опорного напряжения +5 В IC1/14 микросхемы TL494 подсоединен к IC1/13— разрешающему входу для ее внутренних логических элементов DD3 и DD4. Выход опорного напряжения IC1/14 подключен также к резистивному делителю, образованному резисторами R9 и Rio. Средняя точка этого делителя соединена с входом IC1/2— инвертирующим входом внутреннего усилителя сигнала рассогласования DAЗ. Второй вход внутреннего усилителя сигнала рассогласования DAЗ, на который внешние сигналы подаются через вывод IC1/1, присоединен к средней точке резистивного делителя на R7, R8. Верхний по схеме вывод резистора R7 подключен к выходу вторичного канала напряжения +5 В. Номиналы сопротивлений четырех резисторов R7 — R10 одинаковы и равны 5,1 кОм. При номинальном уровне напряжения в канале +5 В и стабильном уровне опорного напряжения микросхемы IC1, входные напряжения на входах DAЗ имеют идентичные уровни и сигнал рассогласования (напряжение на выходе DAЗ) равен нулю. Отклонение уровня вторичного напряжения +5 В относительно номинального уровня будет вызывать адекватное пропорциональное изменение уровня на выходе DAЗ, которое передается на неинвертирующий вход внутреннего компаратора DA2. На повышение уровня выходного напряжения система авторегулирования будет отвечать уменьшением длительности управляющих импульсов (диаграммы 7 и 8 рис. 2.8). На выходе же DA2 в данном случае вид положительных импульсов будет соответствовать диаграмме 4 (рис. 2.8), то есть их длительность будет увеличиваться. Из этой же диаграммы видно, что понижение уровня выходного напряжения вызывает уменьшение длительностей положительных импульсов, а временной интервал длительности выходных положительных импульсов возрастает. В схемотехнике узла входных цепей на входе усилителя рассогласования известно множество подходов к выполнению конструкций делителей, через которые подключаются опорное и выходное напряжения вторичного канала+5 В. Приведем два наиболее общих примера. Позиционные обозначения элементов для каждой схемы примеров индивидуальные. Первый вариант представлен на рис. 3.3. Канал обратной связи используется для слежения за уровнями напряжений по вторичным каналам напряжений +5 и +12 В. Плечо резистивного делителя напряжения, подключенное между выводом 1

 

 

микросхемы TL494 и общим проводом, состоит из набора резисторов RЗ — R6 различных номиналов. Параллельно включенными резисторами различных номиналов подбирается точный заданный уровень смещения на неинвертирующем входе внутреннего усилителя DA3 микросхемы TL494. Схемы  включения составных резистивных делителей встречаются довольно часто. Точный подбор номинала сопротивлений производится группой резисторов не только в делителе обратной связи, но и в делителе, соединенном с выходом опорного', напряжения микросхемы TL494. Плечи резистивных делителей, составленные из набора сопротивлений, могут подключаться как к общему проводу вторичного напряжения, так и между выходом опорного напряжения Т?.494/12 и одним из входов " внутреннего усилителя DA3. Главное в первом варианте построения делителей то, что установка начального смещения по входам DA3 выполняется постоянными резисторами: и поэтому такая схема регулировки выходного напряжения не допускает. Второй вариант конструкции делителей входных цепей усилителя сигнала рассогласования показан на рис. ЗА. В этой модификации постоянный уровень напряжения задается на инвертирующем входе внутреннего усилителя DA3 микросхемы TL494. Подстройка начального уровня смещения на входе TL494/1 выполняется с помощью построечного резистора RЗ. В данном случае существует возможность подстройки выходного уровня с некоторым произвольным допуском. В принципе построечные резисторы так же, как и составные в предыдущем примере, могут устанавливаться в произвольном месте резистивных делителей напряжения. Заводские установки положений построечных резисторов изменять без крайней необходимости не рекомендуется. Типовая схема включения для ШИМ преобразователя типа TL494 обязательно содержит корректирующую RC цепочку, подключенную между выводом IC1/3 и IC1/2 (в соответствии с нумерацией, принятой на рис. 3.2). Вывод IC1/2 — вход опорного

 

 

усилителя рассогласования, а 1С1/3— од внутренних усилителей ошибки DA3 и DA4, коррекция способствует сохранению в работе аналоговой части ШИМ при резких перепадах уровней выходного напряжения +5 В. Резкое изменение выходного уровня может быть обусловлено синхронностью цифровых элементов персонального компьютера. В такие моменты может возникнуть скачок или спад напряжения, которые система авторегулирования должна будет компенсировать. Для того чтобы в моменты перепадов не возникали колебания периодического характера, установлены данные элементы коррекции. Результатом работы микросхемы 1С1 является формирование последовательностей импульсов управления силовым каскадом блока питания. Схемотехническое решение подключения выходного транзисторного каскада ШИМ преобразователя полностью аналогично варианту, описанному в главе 2. Эмиттеры выходных транзисторов микросхемы TL494 подключены к общему проводу. Импульсные сигналы снимаются с их коллекторов через выводы 1С1/8 -и IC1/11 микросхемы Т1.494. Коллекторной нагрузкой выходных транзисторов 1С1 являются резисторы R22 и R24 с одинаковыми сопротивлениями, равными 3,9 кОм, а также базовые цепи транзисторов Q3 и Q4, входящих в состав согласующего каскада. В каскаде промежуточного усилителя применяются типовые транзисторы 2SC945. Первичные обмотки Ж1 и %2 трансформатора Т2, соединенные последовательно, являются нагрузка для транзисторов промежуточного усилителя. Начала обмоток трансформатора Т2 на принципиальной схеме, представленной на рис. 3.2, отмечены точками. Электропитание цепей промежуточного усилителя осуществляется от того же источника, что и микросхемы 1С1. Резисторы R22 и R24 подключены к накопительному конденсатору фильтра

питания С17. Напряжение питания в коллекторные цепи транзисторов Q3 и Q4 подается через последовательно соединенные резистор R23, диод 0 11 и обмотки W1, W2 трансформатора Т2. Диод Ш1 катодом подключен к точке соединения первичных обмоток трансформатора Т2. Вид импульсных сигналов на коллекторах транзисторов Q 3 и Q4 аналогичен представленному на рис. 2.10.

Импульсные последовательности одинаковы, но импульсы положительной полярности каждой из них сдвинуты по времени относительно друг друга. Эмиттеры транзисторов Q3 и Qi объединены и подключены к последовательно соединенным диодам D24 и D25. Параллельно диодам установлен электролитический конденсатор С12. Напряжение на эмиттерах транзисторов Q3 и Q4 поддерживается на уровне +1,6 В. Наличие постоянного смещения эмиттеров создает условия для наиболее эффективного переключения транзисторов под воздействием импульсов, подаваемых с выходов микросхемы IC1/8 и IC1/11. На базы транзисторов Q3 и Q4 импульсные сигналы подаются с коллекторов транзисторов, входящих в состав микросхемы IC1. Напряжение насыщения у них составляет 0,3 — 0,4 В. Импульс напряжения низкого уровня, появляющийся на базе любого из транзисторов ()3 и Q4, устанавливает на переходе эмиттер-база обратное смещение =1,2 В, что способствует быстрому рассасыванию избыточных зарядов в базе транзистора промежуточного усилителя и его ускоренному переключению. Импульсы управления на коллекторах Q3 и Q4 имеют положительную полярность. Первичная обмотка W2 трансформатора Т2 синфазно вторичным обмоткам W4 и W3. Обмотки трансформатора Т2 включены таким образом, что импульсное напряжение на обмотках W1 и W5 противофазно напряжению на W2. Следовательно, при появлении на коллекторе транзистора Q3 импульса положительной полярности, открывающий импульс наблюдается и в базовой цепи транзистора Q6. Спадом импульса заканчивается временной интервал активной работы Q6, и в этот момент транзистор Q6 переходит в закрытое состояние. Выходные транзисторы микросхемы IC1 не имеют определенных обязательных подключений эмиттерных и коллекторных электродов. Это обстоятельство позволяет изготовителям блоков питания применять разнообразные конфигурации при построении промежуточных усилителей. Для дополнительного усиления импульсных сигналов могут использоваться внешние по отношению к IC1 транзисторы, аналогичные приведенным на схемах рис. 2.2 и 3.2. Но это также не является обязательным; существуют схемы, в которых управляющие сигналы подаются от ШИМ преобразователя на согласующий трансформатор без дополнительного усиления. Применение согласующего трансформатора для передачи импульсных от схемы  управления на силовые сигналов от схемы управления на силовые элементы преобразователя является универсальный решением. Такой подход позволяет обеспечить развязку узла управления, подключенного к вторичной цепи питания, и осуществить пре образование сигнала управления по току. Параметры первичных обмоток согласующего трансформатор Т2 определяются напряжением питания каскад; промежуточного усилителя, а также схемой подключения этих обмоток к активным элементам каска да. Требования к характеристикам вторичных обмоток трансформатора практически не изменяются у различных модификаций импульсных источник питания с внешним возбуждением силового полу мостового каскада.

Рассмотрим три варианта схем промежуточных усилителей, встречающихся в источниках питания для компьютеров типа АТ/ХТ.

На рис. 3.5 представлен фрагмент схемы промежуточного усилителя, выполненный с использованием пары внешних транзисторов.

Особенностью данной схемы является подключение дополнительных транзисторов Q1 и Q2 каскада промежуточного усилителя к единственной первичной обмотке согласующего трансформатора Т. Начала обмоток трансформатора Т в данном примере показаны условно точками. Непременное условие, которое должно соблюдаться в соответствующей схеме, — это подключение вторичных обмоток согласующего трансформатора к транзисторам Qi и Q2.

Коллекторы выходных транзисторов VT1 и VT2 микросхемы TL494 подключены к шине источника питания, а к их эмиттерным электродам присоединены резисторы Ri и R3 соответственно. В данной конфигурации выходные транзисторы микросхемы TL494 работают в режиме эмиттерных повторителей. При таком включении фазы импульсных сигналов на эмиттерах и базах VTi, VT2 совпадают. Форма сигналов на эмиттерах выходных транзисторов соответствует, показанным на диаграммах 7 и 8 (см. рис. 2.8). Резисторы Ri и R2 последовательно подключены к эмиттеру ЧТ1 и образуют делитель, к средней точке которого подключена базовая цепь внешнего усилительного транзистора Q2. Аналогичная цепь образована резисторами R3, R4 и подключена к VT2. Средняя точка второго делителя соединяется с базовой цепью транзистора Q1, Структура и элементы усилительных каскадов абсолютно идентичны.

Эмиттеры выходных транзисторов ТАЯ4 соединены через резисторы с общим проводом. Наличие резисторов в эмиттерных цепях ЧТ1 и VT2 является фактором увеличения скорости срабатывания активных элементов, входящих в состав импульсного усилителя. Соотношение сопротивлений резисторов в делителях выбирается таким образом, чтобы уровень напряжения на базах Q1 и Q2 оказался достаточным для перевода транзисторов

 

 

промежуточного усилителя в состояние. Транзисторы Q1 и Q2 открываются, кота: в эмиттерных цепях VT1 и VT2 действует импульс высокого уровня.

Уровни сигналов на выводах 7 и 8 микросхемы, практически совпадают со значениями напряжений на выходах логических элементов DD5 и ПИ (см. рис. 2.7). Импульсы управления подаются m базы транзисторов Q1 и Q2 через токозадающий резисторы R5, R6 и форсирующие конденсаторы С1, и С2, подключенные параллельно резисторам. Конденсаторы С1 и С2 способствуют ускоренному рассасыванию избыточных зарядов в базах транзисторов Q1 и Q2 при изменении полярности входного напряжения. На рис. 3.6 представлены временные диаграммы импульсных сигналов на обоих выводах: конденсатора С1. Верхняя диаграмма отражает вид: импульсов на делителе из резисторов R3 и R4, На средней диаграмме показана форма сигнала непосредственно на базе транзистора Q2. Отрицательные выбросы на второй диаграмме, появляющиеся по спаду положительного импульса, обусловлены действием конденсатора в базовой цепи. Форма импульсных сигналов на конденсаторе С2 полностью аналогична. На нижней диаграмме приведена форма импульсов на коллекторах Qi и Q2.

На диаграммах 7 и 8 (см. рис. 2.8) активный временной интервал воздействия на силовые транзисторы преобразователя представлен импульсами высокого уровня. Интервалы нулевого напряжения между ними — это паузы. Примем условно, что на диаграммах 7 и 8 показаны последовательности импульсов, формируемые на выводах TL494/9 и TL494/10 соответственно. Действие импульсов высокого уровня на выводах TL494/9,10 сдвинуто по времени, Паузы же, представленные нулевыми уровнями, перекрываются между собой. Если на одном выводе устанавливается высокий уровень, то на другом — обязательно низкий. Сигнал высокого

 

 

уровня, пройдя через эмиттерный делитель, попадает в базовую цепь внешнего транзистора и открывает его. Эмиттеры дополнительных транзисторов Q1 и Q2 соединены с общим проводом, поэтому импульс высокого уровня переводит их в состояние насыщения. Существует три рабочих фазы в переключении транзисторов Qi и Q2. Причем состояние элементов, соответствующее начальным условиям работы схемы, в течение полного рабочего цикла повторяется дважды. Первая фаза начинается тогда, когда на базах обоих транзисторов действуют напряжения низкого уровня. В это время оба транзистора находятся в закрытом состоянии. ТЙ-через них не протекает. Если параметры всех элементов транзисторных схем одинаковы, то потенциалы на коллекторах Qi и Q2 также равны между собой. Следовательно, никакой разности потенциалов на выводах первичной обмотки Ж1 трансформатора Т не будет. Ток через нее не протекает, магнитного потока не создается, и на обеих вторичных обмотках W2 и W3 устанавливаются нулевые уровни напряжения. В дальнейших рассуждениях  сделано предположение о том, что, говоря  напряжений на вторичной обмотке, имеется в виду вывод обмотки, подключенный к базе силового транзистора. Значение напряжения на выводе, соединенном с базовой цепью силового транзистора, указывается относительно второго вывода этой же обмотки. Вторая фаза работы усилительной схемы начинается с момента поступления на базу Q1 импульса высокого уровня. Фронтом импульса высокого уровня транзистор Q1 переводится в открытое состояние. Вывод первичной обмотки W1 трансформатора Т, соединенный с коллектором Qi, через сопротивление этого открытого транзистора оказывается подключенным к общему проводу вторичной цепи питания. В течение всего времени действия импульса высокого уровня на базу транзистоpa Qi второй усилительный транзистор, то есть, остается в состоянии отсечки. Поэтому второй вод первичной обмотки W1 трансформатора Т к шине питания через сопротивление резистора R7. Выводы первичной обмотки трансформатора оказываются под разными потенциалами. Через эту обмотку протекает ток, который создать поток в сердечнике трансформатора Т вторичных обмотках наводится ЭДС, форма Второй повторяет сигнал, поданный на первичную (Мотку. Так как переключающим сигналом импульс, то и на вторичных обмотках импульс напряжения. В результате появления кого уровня напряжения на коллекторе трансформатора Qi, на базе Q3 возникнет положительной скачок, а на базе Q4 появится спад напряжения отрицательной полярности. Транзистор Q3 л

будет открываться, а на базу транзистора Q4 будет воздействовать отрицательный потенциал, повышающий его степень закрывания.

Транзисторы опять переходят в одинаковое закрытое состояние, когда действие импульса высокого уровня на базовую цепь Q1 заканчивается. Протекание тока через первичную обмотку его вторичных обмотках спадают до нулевого уровня. Рабочие условия этого состояния полностью повторяют ситуацию, с которой начато рассмотрение функционирования данной схемы. Оно продолжается до прихода на базу транзистора Q2 фронта положительного импульса. В этот момент наступает третья фаза работы каскада.

На этой стадии открывается транзистор Q2, а транзистор Q1 остается в состоянии отсечки. Вывод обмотки, соединенный с коллектором транзистора 92, подключается к общему проводу питания каскада усилителя. Второй вывод первичной обмотки остается соединенным с общим проводом через резистор R8. В этом случае концы обмотки

имеют инверсное подключение к питанию и общему проводу по сравнению с состоянием, в котором они находились во второй фазе работы импульсно- ro усилителя. Путь протекания тока по цепи усилителя следующий: шина питания — резистор R8— первичная обмотка трансформатора Т — транзистор Q2 — общий провод. Уровень управляющего сигнала, поступающего на базу Q2, изменяется скачкообразно. Протекающий ток оказывает воздействие на сердечник магнитопровода трансформатора Т, в результате на его вторичных обмотках появляются импульсные перепады напряжения. Изменение уровней происходит относительно состояния, когда на выводах обмоток присутствуют нулевые потенциалы. Полярность импульсов противоположна той, которая устанавливалась на втором этапе работы усилителя. На выводе обмотки W3, подключенном к базе транзистора Q4, появляется положительный фронт напряжения. На выводе обмотки W2, соединенном с базой транзистора Q3, напротив, перепад имеет вид спада нулевого уровня в область отрицательных значений напряжения. Транзистор Q4 открывается, а Q3 сохраняет свое закрытое состояние.

Переменное подключение разных выводов первичной обмотки трансформатора Т то к общему проводу, то к шине питания создает переменный магнитный поток в сердечнике трансформатора. Магнитным током, возникающим в результате коммутации обмоток трансформатора, наводится ЭДС в обмотках управления силовыми транзисторами преобразователя. Полная симметрия параметров элементов, установленных в каждом из транзисторных плеч усилителя, исключает возможность перемагничивания сердечника трансформатора. Источник формирования импульсов управления единый для усилительных трактов транзисторов Qi и Q2, что также обеспечивает равномерность протекания токов в каждом из направлений за каждый полный цикл работы каскада.

Рассмотренная выше схема промежуточного усилителя имеет дополнительные транзисторы (по отношению к базовой схеме TL494), но существуют варианты исполнения такого каскада, где используются только внутренние элементы интегрального ШИМ преобразователя. Фрагмент схемы; одного из вариантов представлен на рис. 3.7.

На этой схеме подключение согласующего трансформатора выполнено непосредственно к транзисторам VT1 и VT2, входящим в состав микросхемы TL494. Выходные транзисторы включены по ключевой схеме. Эмиттеры обоих транзисторов соединены с общим проводом. Их коллекторы нагружены первичными обмотками трансформатора Т. Обмотки включены последовательно, точка соединения выведена на шину питания микросхемы TL494. Подключение трансформатора Т должно быть обязательно выполнено в соответствии с рис. 3.7. Начала обмоток трансформатора на рисунке обозначены точками. Еще одна важная особенность использования трансформатора в схеме на рис. 3.7 заключается в том, что его обмотки подключаются между коллекторами выходных транзисторов и шиной питания без резисторов, ограничивающих ток через транзисторы. Индуктивное сопротивление первичных обмоток на частоте работы преобразователя должно быть достаточно высоким, чтобы чрезмерно большой ток коллектора не повредил структуру выходных транзисторов.

В двух предыдущих схемах промежуточных усилителей размах напряжения на коллекторах внешних транзисторов был меньше уровня напряжения питания каскада. Это происходило из-за включения последовательно с первичной обмоткой трансформатора ограничивающих сопротивлений.

 

 

 

Образовывался делитель, состоящий из сопротивления резистора и индуктивного сопротивления первичной обмотки. В схеме, приведенной на рис. 3.7, подобный эффект не наблюдается, и размах напряжения на коллекторах выходных транзисторов даже несколько превышает уровень питающего напряжения. Для защиты транзисторов от перенапряжения, возникающего при работе на индуктивную нагрузку, между шиной питания и коллектором каждого транзистора установлено по диоду — D1 и D2. Аноды диодов подключены к коллекторам транзисторов, а катоды — к шине питания каскада. Большую часть рабочего цикла транзисторы находятся в закрытом состоянии, которое поддерживается низким уровнем напряжения на их базах, что видно из диаграмм 7 и 8 (см. рис. 2.8). Импульсы управления положительной полярности подаются на каждый из транзисторов со смещением по времени. Когда на базу VT1 воздействует импульс высокого уровня, он открывается и переводится в насыщение. В течение всего времени действия этого импульса на базе ЧТ1 второй транзистор выходного каскада — VT2 — остается в закрытом состоянии. Ток протекает только через открытый транзистор VT1 и первичную обмотку W1 трансформатора Т. Резкое изменение тока, протекающего через обмотку W1, вызывает возникновение магнитного потока, результатом действия которого будет возбуждение ЭДС в обеих вторичных обмотках. Обмотка W1 включена синфазно с вторичной обмоткой W4. На выводе обмотки W4, подключенной к базе силового транзистора Q2, появляется импульс ЭДС положительной полярности. Так как обмотка W3 включена противофазно обмотке W4, то на ней в этот момент импульс ЭДС будет иметь отрицательную полярность. Появление импульсных сигналов на вторичных обмотках трансформатора Т приходит на смену состоянию покоя, так как в течение действия нулевых уровней на базы транзисторов ЧТ1 и VT2 напряжения на вторичных обмотках согласующего трансформатора Т равны нулю.

С окончанием действия положительного импульса на базе транзистора ЧТ1 схема усилителя вновь попадает во временной интервал формирования сигнала паузы между управляющими импульсами. Напряжения на вторичных обмотках опять  принимают нулевое значение. Оно сохраняется до прихода следующего управляющего импульса. Если на предыдущем этапе подача импульса на транзистор ЧТ1 вызывала открывание транзистора Q2, то следующий импульс будет поступать на базу транзистора УТ2, работа которого оказывает воздействие на второй транзистор полумостового усилителя мощности.

По фронту импульса открывается транзистор VT2, и ток начинает протекать через первичную обмотку W2 трансформатора Т. Следствием процессов, которые вызывают ток этой обмотки, будет появление положительного импульс ЭДС на обмотке WЗ и открывание транзистора Q1, Соответственно, в это же время произойдет усиление степени закрывания транзистора Q2 в результате действия на обмотке W4 импульса отрицательной полярности.

Как и в предыдущем примере схемы усилительного каскада, идентичность параметров плеч усилителя гарантирует симметричность циклов перемагничивания сердечника согласующего трансформатора и исключение его насыщения. Небольшое изменение магнитных характеристик сердечника может наблюдаться при работе микросхемы TL494 в циклах устранения отклонений выходных напряжений от номинальных уровней. В этом случае импульсы, воздействующие на транзисторы VT1 и VT2 и определяющие время протекания токов через каждую из обмоток трансформатора, будут иметь несколько различную длительность. Если текущее небольшое перемагничивание сердечника вызвано компенсацией повышения выходного уровня вторичного напряжения, то впоследствии при устранении понижения выходного уровня напряжения будет происходить противоположное перемагничивание магнитопровода. То есть усредненный баланс намагниченности будет соблюдаться.

Принципы функционирования схемы, представленной на рис. 3.7, близки или аналогичны логике работы промежуточного усилителя, входящего  обстав схемы по рис. 3.2. В базовой схеме применяются внешние дополнительные транзисторы, а также установлен резистор, ограничивающий ток, проходящий через эти транзисторы. Еще одной особенностью схемой является то, что в течение паузы между импульсами управления через транзисторы ЯЗ и (.)4 (см. рис. 32) протекают токи и эти транзисторы находятся в состоянии насыщения. Управляющий импульс переводит один из транзисторов в закрытое состояние. Порядок намотки первичной и вторичных обмоток согласующего трансформатора на обеих схемах идентичен.

На рис. 3.8 показан фрагмент схемы промежуточного усилителя, которая используется достаточно редко, но как один из вариантов построения подобного блока имеет смысл детально рассмотреть принцип ее работы.

Схема выполнена на основе двух согласующих трансформаторов Ti и Т2, каждый из них используется для управления только одним силовым транзистором преобразователя. Первичные обмотки согласующих трансформаторов состоят из двух трансформаторов Т1 и Т2 включены ( между коллекторами транзисторов и шиной питания без промежуточных токозадающий резисторов вторая половина каждой первичной обмотки имеет соединение с общим проводом через диод D2 и Di. ,соответственно. По постоянному току диоды включены с обратным смещением. Параметры намотки  магнитные свойства трансформаторов схемы идентичны. Для примера достаточно рассмотреть процессы, на UT1. Все описание будут справедливо для узла на ЧТ2 с учетом временного сдвига процессов. В моменты пауз между импульсами управления на коллекторах VT1 и ЧТ2 устанавливаются потенциалы, равные напряжению питания каскада. В течение пауз токи через обмотки Wi и Wi не протекают, транзисторы закрыты. Импульс управления высокого уровня открывает выходной транзистор ЧТ1 микросхемы TL494, напряжение на нем спадает до уровня насыщения. Выводы обмотки W1 оказываются под разными потенциалами. В течение действия импульса по обмотке протекает ток, создающий магнитный поток в сердечнике трансформатора. Происходит накопление энергии в индуктивном элементе. Первичные полуобмотки каждого из трансформаторов имеют между собой гальваническую и магнитную связь. Благодаря наличию магнитной связи по окончании действия управляющего импульса на транзистор VT1 на выводе обмотки,  пульс отрицательной полярности. Диод открывается. Через него начинает протекать ток, который замыкается через источник питания каскада, конденсаторы, установленные для фильтрации напряжения питания, и полуобмотку W2. В течение временного интервала протекания этого тока происходит возврат энергии, накопленной в трансформаторе. Токи, протекающие через обмотки Wi и W2, взаимно противоположны. Магнитные потоки также имеют.

 

 

встречную направленность. То есть намагничивание сердечника, которое происходит во время про хождения тока через Wf, компенсируется магнитным потоком, возникающим под действием токи протекающего через W2. Спадающий по мощность магнитный поток компенсации действует в промежутке между двумя импульсами открывания VT1

Во время рабочего открывания транзистора VT для формирования импульса положительной полярности, воздействующего на базу силового транзистора, подключаемого к вторичной обмотке W3 ток протекает через обмотку W1 трансформатор Т2. По мере закрывания транзистора VT1 импульс положительной полярности на обмотке W3 транс форматора Т2 прекращается. Время активной работы силового транзистора, подключенного к обмотки W3, заканчивается, и он закрывается. Трансформа торы Т1 и Т2 не оказывают влияния на работу друг друга. Импульсы, действующие на вторичной обмотке W3, имеют вид двухуровневого сигнала в отличие от схем с использованием единого трансформатора для управления силовыми транзисторами рассмотренными выше. Каждый силовой транзистор открывается синхронно с транзистором, установленным в его канале управления.

Все описанные выше процессы в микросхем IC1 и промежуточном усилителе протекают в установившемся режиме, когда напряжения питания каскада управления имеют номинальное значение Однако в начальный момент запуска ШИМ преобразователя каскад управления выводится в рабочий режим с помощью специальной схемы, обычно называемой схемой «медленного» (или «плавно го») запуска. Необходимость применения особы: мер по «медленному» запуску схемы управления обусловлено рядом причин.

Наиболее существенный момент в этом смысл состоит в том, что в момент подключения источника питания к сети все его емкости находятся в разряженном состоянии. Начальный бросок ток по цепи первичного питания, возникающий  заряде конденсаторов сетевого фильтра, нейтрализуется терморезистором. Конденсаторы в вторичной цепи источника также  и в начальный момент представляют собой КЗ то есть большую нагрузку. Силовые транзистора после включения питания работают в форсирован ном режиме до тех пор, пока не произойдет заряд конденсаторов. По мере заряда токовая нагрузка н. транзисторы снижается. Схема «медленного» за пуска предназначена для постепенного выведения силового каскада в штатный режим работы. Период включения искусственно затягивается для обеспечения безопасного функционирования силовых элементов импульсного преобразователя. В процессе «медленного» запуска на начальное преобразователя напряжения, воздействующих на силовой.

Рассматривая схему, приведен отметим, что после подключения и питанию происходит форм питания всего каскада ШИМ включая промежуточный усилитель tta ЯЗ и Q4. Напряжение питания вода подключенной к выводу 1С1/12 мик Появление напряжения в этой точке работу внутренних каскадов мик Запускается генератор пилообразно внутренним стабилизатором на формируется опорное напряжены. Между выводами IС1/12 и IС1/1 С6. В начальный схемы конденсатор не заряжен собой малое сопротивление. При  IС1/14 обе обкладки под одинаковым алом. Дальнейшее развитие микросхемы удобно проследить с.it грамм напряжения, приведенных на граммы показывают микросхемы IC1.

На диаграмме  приведена форме действующих на входах внутреннего DA2 микросхемы IС1, функционально которой изображена на рис. 2.7. Пил действует на его инвертор

 

 

Линейно возрастающее напряжение подается на неинвертирующий вход компаратора от внутреннего усилителя ошибки на DA3. Сначала напряжения всех вторичных цепей равны нулю. Поэтому на входе IC1/1 установлено также нулевое напряжение. После появления питания на 1С1 резисторным делителем из R9 и R10 на вход IC1/2 подается положительный потенциал. Соотношение потенциалов па входах IC1/1 и IC1/2 таково, что напряжение на выходе внутреннего компаратора DA3 равно нулю. По мере передачи энергии во вторичную цепь происходит постепенный заряд конденсаторов в выходной цепи канала+5 В. Повышение уровня напряжения на выходе DA3 является следствием нарастания положительного потенциала на входе IC1/1. компаратором DA2 производится сравнение входных напряжений. Результирующий выходной импульсный сигнал представлен на диаграмме 2. Рост линейного напряжения на его неинвертирующем входе сопровождается увеличением длительности положительных импульсов на выходе компаратора, с которого они поступают на первый вход внутреннего логического элемента DD1.

Появление положительного потенциала на выводе IC1/4 и его постепенный спад показаны на диаграмме 3. Вход IC1/4 является неинвертирующем входом. внутреннего компаратора «мертвой» зоны DA1. На его инвертирующий вход подается пило- образное напряжение. Форма результирующего сигнала, появляющегося на выходе DA1, отражена на диаграмме 4. Этот сигнал подается на второй вход логического элемента типа ИЛИ. Если в это время хотя бы один из входных сигналов также будет иметь высокий потенциал, напряжение на его выходе примет высокий логический уровень. Форма сигнала на выходе логического элемента РШ показана на диаграмме 5. Видно, что от появления питающего напряжения питания на IC1 до момента - Т длительность положительных импульсов на выходе DD1 определяется работой ШИМ компаратора DA2. Начиная с момента Т, после значительного спала напряжения на входе IC1/4 на выход DD1 поступают положительные импульсы, формируемые компаратором мертвой зоны DA1. При этом все  временные параметры импульсной последовательности, действующей на входе цифрового тракта микросхемы IC1, задаются рабочими внутреннего усилителя ошибки DA3 и внутреннего компаратора DA2. Диаграммы 6 и 7 демонстрируют форму импульсов на входах внутреннего триггера DD2. Последние две диаграммы показывают импульсных последовательностей, действующих на коллекторах транзисторов ЯЗ и Q4 промежуточного усилителя. Длительность положительных импульсов управления увеличивается постепенно, что видно из диаграмм 8 и 9. Происходит плавное наращивание мощности сигнала управления и плавное нарастание напряжений вторичных цепей. Передача управления от компаратора «мертвой зоны» DA1 тракту усилителя ошибки осуществляется тогда, когда конденсаторы вторичных цепей уже заряжены и требуется передача энергии для поддержания уровня этого заряда.

 

3.4.2. Импульсный усилитель мощности

Источник питания, принципиальная схема которого изображена на рис. 3.2, относится к классу преобразователей напряжения с внешним возбуждением. Генерация сигналов управления работой импульсного усилителя мощности выполняется узлом ШИМ преобразователя. Сигналы управления имеют малый уровень и мощность. Усиление этих сигналов по току и напряжению производится силовым каскадом, построенным на транзисторах ()5 и () 6. Импульсный усилитель мощности выполнен по полумостовой схеме. Нагрузкой силового каскада является импульсный трансформатор Т4, включенный в диагональ моста. Для защиты силового трансформатора от насыщения постоянной составляющей протекающего тока его включение произведено последовательно с керамическим конденсатором С15.

Схема усилительного, каскада в данном случае выполняет не только высокочастотное преобразование энергии источника постоянного напряжения, но она наделена еще и дополнительными функциями. Последовательно с первичной обмоткой силового трансформатора включена обмотка другого трансформатора — ТЗ. Она подключена в разрыв соединения первичной обмотки Т4 и точки соединения электролитических конденсаторов С10 и С11. Трансформатор входит в состав узла контроля перегрузки по току основных вторичных каналов блока питания. Первичная обмотка ЖЗ трансформатора ТЗ используется в качестве основного элемента датчика токовой нагрузки вторичных каналов. На основе элементов силового каскада построен узел начального запуска каскада ШИМ преобразователя или, точнее, подачи начального питания на этот каскад. Если на микросхеме TL494, являющейся базовым элементом схемы управления, не установлена блокировка, она запускается автоматически при нарастании напряжения питания на ее выводе IC1/12 до уровня +7 В. Под запуском понимается начало формирования импульсных последовательностей на выводах IC1/8,11.

Напряжение питания на вывод IC1/12 микросхемы поступает через последовательно соединенные диод D18 и резистор R31. Анод диода соединен с выходом выпрямителя на диодной сборке SBD2. Фильтрация напряжения питания микросхемы выполняется конденсаторами С17 и С18. Эта цепь питания единственная. Только по этой цепи напряжение питания подается на микросхему IC1 и каскад промежуточного усилителя с момента запуска преобразователя и в течение всего цикла работы. Для формирования начального импульса напряжения на вторичной обмотке силового трансформатора специально модифицированы базовые цепи силовых транзисторов. В классической схеме полумостового усилителя в базовые цепи транзисторов включено по одной вторичной обмотке согласующего трансформатора. Сигналы для открывания транзисторов поступают через эти обмотки. На рис. 3.2 показано, что вторичная обмотка трансформатора Т2, подключенная к цепям транзистора ()5, состоит из двух полуобмоток — W3 и W4. К элементам, составляющим базовую цепь транзистора Ц6, подсоединена обмотка W5. Обмотки W3 и W4 на мотаны синфазной противоположно намотке W5. Еще одним отличием схемы, приведенной на рис.3.2, от классического варианта является наличие резисторов R7 и R9, установленных между коллекторами и базами транзисторов Q5 и Q6 соответственно. Резисторы служат для подачи смещения на базы силовых транзисторов и являются необходимыми элементами в цепи формирования напряжения начального запуска ШИМ преобразователя.

В начальный момент времени после подачи электропитания на блок питания напряжение поступает только на элементы силового каскада. На всех вторичных обмотках трансформатора Т4 напряжение отсутствует. Конденсаторы С10 и С11 образуют емкостной делитель. Напряжение в точке их соединения равно половине напряжения питания силового каскада. Благодаря наличию резисторов R27 и R29, на базах транзисторов Q5 и Q6 постепенно нарастают напряжения начальных смещений. Оба транзистора начинают открываться, это вызывает протекание увеличивающихся токов через вторичную обмотку W4 согласующего трансформатора Т2. Токи имеют встречную направленность. Причиной появления первого из токов является открывание Q5, этот ток протекает по цепи: положительная обкладка конденсатора С10- коллектор-эмиттер Q5 — обмотка W4 трансформатора Т2 — конденсатор С15 — первичная обмотка Т4 — первичная обмотка ТЗ — отрицательная обкладка конденсатора, С11. В контур протекания тока, вызванного открыванием транзистора Q6, входят следующие элементы: положительная обкладка конденсатора С11 — первичные обмотки трансформаторов T3 и Т4 — конденсатор С15 — обмотка 7й трансформатора Т2 — коллектор-эмиттер Q6. В каждом контуре протекания токов присутствуют одно именные элементы. Но токи двигаются по ним в противоположных направлениях. Силовые транзисторы имеют технологические разбросы параметров, поэтому токи не могут полностью компенсировать друг друга. Один из них обязательно будет: преобладающим. В общем случае таким током может быть любой из двух. Но для определенности описания предположим, что большую величину: имеет ток, протекающий через транзистор Q6, поэтому потенциал на нижнем по схеме выводе обмотки W4 трансформатора Т2 будет немного выше, чем на ее верхнем выводе. Преобладающий ток протекает от нижнего вывода к верхнему. Вторичные обмотки трансформатора Т2 имеют между собой магнитную связь. Током, протекающим через обмотку. W4 трансформатора Т2, наводится ЭДС в обмотки WЗ и W5. Обмотки WЗ и W5 подключены в схему  таким образом, что напряжения ЭДС, приложенные к элементам базовых цепей силовых транзисторов в них, будут иметь противоположные знаки.

На выводе обмотки W5, подключенном к аноду диода Ш5, напряжение будет положительным. Ha аналогичном выводе диода Р14 приложенная в это же время ЭДС будет отрицательной. ЭДС обмоток: W4 и W5 с учетом знака напряжения будут складываться с потенциалами начального смещения транзисторов Q5 и Q6, образующихся благодаря' резисторам R27 и R29. Отрицательное напряжение обмотки WЗ, складываясь с базовым потенциалом транзистора Q5, будет уменьшать положительное напряжение, что приведет к закрыванию этого транзистора. Возрастающее же положительное напряжение на обмотке W5 будет только увеличивать уровень начального смещения на базе Q6. Этот процесс развивается очень быстро и, в итоге, вызывает, полное открывание транзистора Q6. В нашем слух чае происходит быстрое открывание Q6 и запирание Q5. При полном открывании транзистора Q6 ток, протекающий через первичную обмотку Т4, резко возрастает, создавая нарастающий магнитный поток в его сердечнике. На вторичных обмотках Т4 наводятся ЭДС, знаки которых определяются в соответствии с подключением обмоток. Все выпрямительные схемы вторичных цепей являются двух полупериодными, поэтому на выходах каждой  них обязательно появятся импульсы напряжений,. Полярность выходных напряжений определяется, схемой подключения выпрямительных диодов к вторичным обмоткам трансформатора Т4. Вывод1С1/12 микросхемы ШИМ преобразователя через резистор R31 и диод Ш8 подключается к выходу выпрямителя канала +12 В. Катоды сборки SBD2 соединены, на них возникает импульс положительной полярности, который сглаживается RC фильтром и в виде плавно нарастающего уровня напряжения попадает на IC1/12. Уровень напряжения и первичная мощность импульса достаточны для того, чтобы произвести запуск микросхемы ICi и поддержать работу транзисторов промежуточного усилителя на согласующий трансформатор. Транзисторы промежуточного усилителя переключаются под воздействием импульсов управления,

- поступающих от IC1/8,11. Параметры обмоток согласующего трансформатора Т2 выбраны таким образом, чтобы при минимальном уровне напряжения на усилительном каскаде напряжения на обмотках W5, W3 оказались бы достаточными для по очередного открывания силовых транзисторов. Как только начинается периодическая коммутация транзисторов Q5 и ()6, напряжения на вторичных обмотках Т4 достигают номинальных значений и устойчиво поддерживаются. Уровень напряжения на Ici/12 также стабилизируется.

 Далее система переходит в режим автоподстройки выходных уровней вторичных напряжений по сигналу датчика значения напряжения канала+5 В, выполненного на резисторе R13. Активная роль обмотки W4 трансформатора Т2 заканчивается в период стабилизации колебаний в силовом каскаде. В рабочем цикле через нее протекает ток того же направления и величины, что и через первичную обмотку силового трансформатора Т4.

Силовые каскады блоков питания для персональных компьютеров строятся по схеме полумостового преобразователя. В классическую схему полумостового преобразователя могут вводиться различные дополнения, обусловленные стремлением разработчиков совместить выполнение различных функций в одной группе элементов. В данном случае  степенное значение имеет обеспечение начального запуска микросхемы ШИМ управления. В варианте построения силового каскада, осуществляющего начальный запуск, предлагаются модификации базовых цепей транзисторов импульсного усилителя мощности. На рис. 3.10 представлен фрагмент схемы силового каскада, демонстрирующий способ подачи смещения на базы транзисторов от отдельного диодного выпрямителя. Позиционные обозначения элементов на схеме индивидуальны и действительны только для компонентов, приведенных на рис. 3.10. Схема не содержит полного типового набора компонентов, входящих в состав импульсных усилителей мощности. Представленные элементы предназначены для демонстрации особенностей подобного каскада. Электропитание силового каскада блока питания производится от выпрямленного напряжения первичной сети. Сетевой выпрямитель для усилителя мощности собран на диодах Di — 04. Выпрямленное напряжение подается только на соединенные последовательно транзисторы Qi и Q2 и электролитические конденсаторы фильтра С2 и СЗ. Смещение на базы транзисторов подается с помощью резистивных делителей. На базу транзистора Qi напряжение поступает от делителя напряжения, образованного резисторами R3 и R4. Аналогичная цепь для транзистора Q2 сформирована элементами R5 и R6. Резисторы Ri и R7, R2 и R8, установленные в базовых цепях транзисторов, ограничивают ток через переходы база-эмиттер транзисторов Q1 и Q2 соответственно. Для обеспечения подачи питания на делители смещения в схему введен отдельный однополупериодный выпрямитель, включающий в себя диод D5 и конденсатор С1. Резисторы, использованные в делителях, имеют большое сопротивление, ток разряда конденсатора составляет единицы миллиампер, поэтому его номинал может иметь относительно небольшое значение. Например,

 

конденсатор С1 керамический, емкостью 2200 пФ. Согласующий трансформатор Т2 содержит три вторичные обмотки, две из них подключены к базовым цепям силовых транзисторов Qi и Q2, Третья используется для формирования импульса для питания схемы ШИМ преобразователя на начальной стадии подключения схемы к первичной сети. Эта обмотка включена между эмиттером транзистора Qi и первичной обмоткой силового импульсного трансформатора Т1. На схеме показана только одна вторичная обмотка трансформатора Т1, хотя их может быть и несколько. Средняя точка вторичной обмотки соединена с общим проводом вторичной цепи. К этой единственной обмотке подключены два диода 06 и 07, образующие двухполупериодный выпрямитель. Выход выпрямителя нагружен на фильтр вторичного канала+12 В, не показанный на рис. 3.10 и сглаживающий фильтр цепи питания микросхемы ШИМ преобразователя и промежуточного усилителя. Нагрузкой промежуточного усилителя является первичная обмотка трансформатора Т2, к средней точке которого также подводится напряжение от цепи питания ШИМ микро схемы. Такая компоновка и назначение элементов в базовых цепях транзисторов Qi и Q2 практически повторяют структуру такого же узла схемы, приведенную на рис. 3.2. Главное отличие схемы, показанной на рис. 3.10, от других заключается в способе подачи постоянного напряжения на резистивные делители напряжения, подключенные к базовым цепям силовых транзисторов. Принципы же получения импульса напряжения для начального питания узла ШИМ полностью идентичны. Номиналы конденсаторов, представленных на схеме, приведенной на рис. 3.10, имеют одинаковые значения с элементами установленными в аналогичных позициях базовой схемы. Максимальное рабочее напряжение конденсаторов С2 и СЗ не превышает 200 В, номиналы резисторов имеют следующие значения: Ri

и R2 = 2,2 Ом, КЗ и R5 = 150 кОм, К4 и 26 = 2,7 кОм, R7 и RB = 39 Ом, R9 = 22 Ом, R10 = 1,5 кОм.

Варианты начального запуска каскадов ШИМ: преобразователя не ограничиваются схемами, использующими особую конструкцию согласующего трансформатора для этих целей. Существуют схемы, в которых применяется дополнительный мало мощный трансформатор, Фрагмент одной из таких схем представлен на рис. 3.11.

Дополнительный трансформатор Т1 — это мало габаритный трансформатор, рассчитанный на работу в первичной сети переменного тока с частотой 50 Гц. К его вторичной обмотке подключен двухполупериодный выпрямитель на диодах D5 — D8. Напряжение с выхода выпрямителя фильтруется конденсатором С4 и подается на среднюю точку согласующего трансформатора ТЗ, вывод питания микросхемы ШИМ преобразователя TL494/i), Отрицательный полюс выпрямителя на диодах . D5 — D8 соединен с общим проводом вторичной цепи. При включении питания сетевое напряжению выпрямляется и подается на силовой каскад, в конструкции которого не предусмотрено никаких элементов, обеспечивающих формирование импульса  для начальной Ш ИМ микросхемы. Структура базовых цепей усилителя мощности является типичной для каскадов, работа которых регулируется только внешними сигналами. То есть каскад: функционирует исключительно в режиме внешнего  возбуждения. Сигналы управления усилителем поступают через согласующий трансформатор T3 от ШИМ преобразователя. Начальное питание ва. ШИМ микросхему и весь каскад промежуточного усилителя поступает от выпрямителя на D5 — DS, Это напряжение появляется на элементах каскада ШИМ преобразователя также после подключения: блока питания к сети. После запуска преобразователя на вторичной обмотке силового импульсного,

 

трансформатора Т2 появляется переменное импульсное напряжение, которое выпрямляется диодами D9, ШО и фильтруется конденсатором С7. Параметры трансформатора Т1 выбраны так, что напряжение на выходе выпрямителя на диодах D9 и D10 превышает потенциал, установившийся на выходе выпрямителя на диодах D5 — D8. Выходы выпрямителей на D5 — D8 и D9, ШО соединены между собой через диод D13. Анод D13 подключен к катодам диодов D9 и D10. Напряжение от выпрямителя вторичного канала +12 В подается в цепь питания микросхемы ШИМ преобразователя и промежуточного усилительного каскада. Так как напряжение на выходе выпрямителя вторичного канала +12 В выше положительного потенциала в точке соединения диодов D7 и D8, то диоды D5 — D8 получают обратное смещение и исключаются из работы в схеме. В дальнейшем электропитание

- поступает на все элементы ШИМ преобразователя  от вторичной обмотки трансформатора Т2. Трансформатор Т1 используется только для начальной, подачи напряжения питания на узел ШИМ. Выйдя в рабочий режим, импульсный преобразователь блокирует работу трансформатора начального запуска. Этим достигается некоторое преимущество

 в увеличении общего КПД преобразователя. Данная схема может быть модифицирована в части  подключения выпрямителя напряжения +12 В  к цепи питания промежуточного усилителя. Если из схемы исключить диод ШЗ, то напряжение на узел ШИМ будет поступать только от трансформатора Т1. Общая логика работы схемы останется практически без изменений. В течение всего рабочего цикла преобразователя выпрямленное напряжение от D9, D10 будет поступать только на цепи фильтрации выходного напряжения +12 В. Никакого влияния на электропитание узла ШИМ силовой каскад оказывать не будет.

Силовые каскады с дополнительной вторичной обмоткой согласующего трансформатора обязательно содержат резисторы для подачи положительного смещения в базовые цепи усилительных транзисторов. Смещение может быть подано одним резистором, включенным между базой и коллектором транзистора, или с помощью делителя, как это  сделано, например, на рис. 3.10. Нижний по схеме резистор делителя может подключаться непосредственно к базовому выводу транзистора или через  резистор с типовым номиналом 2,2 Ом. Такая конструкция применяется только в схемах, где начальное питание на ШИМ преобразователь подается после генерации импульса каскадом импульсного усилителя мощности.

В базовых цепях силовых транзисторов по схеме, приведенной на рис. 3.2, установлены резисторы R27 и R29, которые подают положительное смещение на базы Q5 и Q6. Наличие этих резисторов позволяет запустить процесс, который приводит к генерации импульса начального питания ШИМ каскада. Электролитические конденсаторы Ci3 и С14 используют в качестве форсирующих при открывании и закрывании транзисторов Q5 и Q6. В установившемся режиме элементы базовых цепей выполняют функции, полностью аналогичные подробно рассмотренным в главе 2 применительно к идентичному узлу силового каскада.

Варианты схем базовых цепей для силовых транзисторов усилителей мощности каскадов, работающих только от сигналов внешнего возбуждения, представлены на рис. 3.12.

Каждый вариант схемотехнического исполнения базовых цепей предполагает наличие токозадающий резисторов, включенных между вторичными обмотками согласующего трансформатора и базовыми выводами силовых транзисторов. Позиционные обозначения элементов всех вариантов одинаковы. Резисторы рассчитаны на равную для всех максимальную мощность, которая составляет 0,25 Вт. Номиналы резисторов Ri и R2 могут иметь значения от 2,2 до 4,7 Ом. Естественно, что такой диапазон определяется наличием разных фирм-производителей источников. В конкретном изделии элементы каждой из базовой цепи должны быть полностью идентичны. Коммутация силовых транзисторов в этих схемах производится сигналами внешнего задающего генератора, питание на который поступает от отдельного маломощного источника. В этом случае нет необходимости формировать импульсы начального запуска схемы с помощью дополнительной обмотки в согласующем трансформаторе. В конструкции согласующего трансформатора применяются только сигнальные обмотки. Резисторы, подающие положительное смещение от первичного источника в базовые цепи силовых транзисторов, здесь также отсутствуют. Конфигурации первичных обмоток согласующего трансформатора определяются структурой транзисторных цепей выходного каскада промежуточного усилителя. Их возможные варианты были приведены на рис. 3.5, 3.7, 3.8.

На рис. 3.12б базовые цепи транзисторов содержат только резистивные элементы. Скорость открывания силовых транзисторов определяется лишь динамическими свойствами самих транзисторов. Здесь никаких специальных мер для ускорения процессов коммутации силовых элементов не предусмотрено. В схеме, приведенной на рис. 3.12a, пар

аллельно резисторам R1 и R2 подключено по конденсатору. Конденсаторы могут быть как керамическими, так и электролитическими. Конденсаторы

 

 

 

используются как элементы, ускоряющими  силовых транзисторов в момент пси фронта положительного импульса. В  момент времени пока конденсатор не, через него протекает максимальный ток. 1 транзисторов в насыщение происходит с  скоростью по сравнению со схемами, без конденсатора. Фронт импульса, силовым транзистором, получается к Динамические потери при включении снижаются, и улучшается тепловой режим боты. По мере заряда конденсатора тока через него снижается, основной же ток  в базу через резисторы, включенные вторичной обмоткой согласующего транса тора и базой транзистора. Когда на мотке возникает спад открывающего оказывается, что к базе транзистора напряжения заряженного и обмотки. Происходит быстрое закрь1 транзистора, благодаря ускоренному избыточных положительных зарядов, в базе. На рис. 3.12в представлен еще вариант ускорения коммутации силовых  торов. Вместо конденсаторов для этой цели  ускоряющие диоды Р1 и D2 диоды должны обладать хорошими скорость характеристиками для работы с импульсными каналами. Время восстановления их обратного с должно составлять несколько наносе.

 В течении действия открывающегося базе каждого из транзисторов диоды имеют  смещение, поэтому они не проводят ток оказывают эффективного влияния на транзисторов. Наличие диодов, когда на вторичных обмотках спады положительных импульсов и транзистор начинают закрываться. Резкий спад импульса водит к быстрому открыванию диода,  в проводящем состоянии имеет  меньшее, чем резистор, параллельно котором включен. Происходит резкое изменение течения тока. Скорость нарастания тока,  из базы, увеличивается очень быстро же быстро транзистор закрывается. Переход транзистора в закрытое  с большой скоростью, длительность или спада получается минимальной. В этот так же, как и в предыдущем, благодаря  дополнительных элементов, ускоряющих  силовых транзисторов, снижаются дин; кие потери во время переходных процессов транзисторов. Общим для всех вариантов каскадов  мощности импульсных преобразователей способ включения силового трансформатор  обмотка трансформатора Т4 на рис. 3.2, включена в диагональ каскада. Подключение произведена разделительный конденсатор С15, возможность подмагничивания сердечника форматора Т4 постоянным током. Паралич первичной обмотке Т4 подсоединена RC  элементах С16 и R32.

Снижая общую доброе резонансного контура, в состав которого в первичная обмотка Т4, эти элементы понижению уровня выбросов и паразитных, возникающих в моменты переключения  транзисторов Я и Q6. Режим работы силовых транзисторов зависит от величины нагрузки, к выходам вторичных цепей источника. По мере увеличения нагрузки импульсный ток, протекающий через  Q5 и Q6.

Также возрастает время нахождения из этих транзисторов в активном состоя. Для наблюдения формы импульсного формируемого транзисторным преобразовать выберем точку соединения первичной 06M( трансформатора Т4 и конденсатора С15. Если и: рения производить с помощью осциллографа эмиттера Q6, то форма напряжения в  контрольной точке будет диаграммам, представленным на рис. 2.13а — 2. Изменение вида диаграммы напряжения будет  исходить по мере возрастания суммарной по всем вторичным каналам напряжений нагрузки будет сопровождаться увеличен импульсного тока через транзисторы Q5 и Q6, снижением длительности паузы между импульсами положительной и отрицательной полярностей, в также появлением отчетливых очертаний этих импульсов. При правильной работе схемы управления и усилителя мощности импульсы имеют одинаковую длительность. Полный размах импульсного равен величине выпрямленного сетевого напряжения, то есть 310 В. Амплитуда импульсов составляет половину этого значения. Пауза между импульсами фиксируется также на уровне, соответствующем половине напряжения питания силового каскада.

 

3.4.3. Вторичные цепи источника питания

Выпрямленное, отфильтрованное и стабилизированное напряжение подается в нагрузку с выхода  вторичных цепей источника питания. В импульсных источниках для ПЭВМ класса ХТ/АТ во вторичной цепи формируются четыре номинала постоянных напряжений и особый служебный сигнал «питание в норме». Оригинальное наименование  сигнала — POWERGOOD или сокращенно PG. Значения вторичных напряжений и допустимые уровни их возможных отклонений от номиналов приведены в разделе 3.1. Вторичные каналы обладают различной токовой нагрузочной способностью. Самая большая нагрузка падает на вторичный канал напряжения +5 В. Максимально возможный ток по этому каналу зависит от общей габаритной мощности источника питания. Типовые градации мощности и соответствующее им распределение токовой нагрузки по вторичным каналам источника питания также отражены в разделе 3.1.

Силовой трансформатор Т4 источника, выполненного по принципиальной схеме (см. рис; 3.2), имеет две вторичные обмотки. Каждая полная вторичная обмотка состоит из двух полуобмоток. Точка их соединения подключена к общему проводу вторичной цепи питания. Одна вторичная обмотка используется для получения напряжений +5 и — 5 В, вторая является источником напряжения для каналов+12 и — 12 В.

Вторичные обмотки силового трансформатора Т4 нагружены на двухполупериодные диодные выпрямители. Импульсные источники питания  компьютеров всех модификаций во вторичных цепях используют двухполупериодный выпрямительные схемы. Такое решение обеспечивает симметричное распределение нагрузки обоих транзисторов усилителя мощности. Работа транзисторов 3 идентичных режимах исключает развитие неконтролируемых процессов, возникающих вследствие баланса нагрузки с разрушением структуры сначала одного транзистора, а затем и другого. Каждый выпрямитель выполнен по однотипной схеме на основе пары диодов, соединенных с выводами вторичных обмоток. Диоды выпрямительных схем с положительными выходными напряжениями подключены к обмоткам своими анодами, а диоды выпрямительных схем для каналов с отрицательными уровнями напряжений к выводам обмоток катодными выводами. Двухполупериодные схемы выпрямления на своем выходе формируют импульсные последовательности, в которых частота импульсов равна удвоенной частоте коммутации каждого из силовых транзисторов Q5 и Q6. Такой метод построения выпрямителя облегчает задачу фильтрации вторичных напряжений, а также способствует более равномерной подаче энергии в цепи нагрузки. Схема фильтрации импульсного напряжения каждого канала в данном варианте исполнения источника питания содержит только пассивные индуктивные и емкостные элементы. Обмотки дросселя L1 намотаны на общем магнитопроводе. Этим обеспечивается магнитная связь электромагнитных потоков, вызываемых токами, протекающими по каждой цепи вторичных напряжений. Обмотка дросселя L1 в цепи фильтрации напряжения +5 В является единственным индуктивным элементом в данном канале. В остальных цепях вторичных каналов напряжений включено по отдельному дополнительному дросселю. Канал +5 В также содержит наибольшее число электролитийских конденсаторов, установленных на выходе этой цепи. Резисторы R39 — R41, подключенные по выходам каждого вторичного канала, обеспечивают возможность работы импульсного преобразователя без обязательного подключения внешней нагрузки. Резисторы создают контур разряда выходных фильтрующих конденсаторов, исключая возрастание выходных напряжений до амплитудных уровней импульсов, поступающих от выпрямительных элементов. Максимальное рабочее напряжение конденсаторов, установленных в фильтрах вторичных каналов, не превышает 25 В. Амплитуда импульсов может быть выше этого предельного уровня. В отсутствие резисторов может происходить заряд выходных конденсаторов до уровня, превышающего предельный, что в итоге приведет к их повреждению. Номиналы балансных резисторов, устанавливаемых параллельно выходным фильтрующим конденсаторам, выбираются так, чтобы обеспечивать нагрузочный ток по каналу на уровне 50 мА.

Основные требования к технической реализации выпрямительных схем с точки зрения выбора элементной базы и принципов их функционирования подробно описаны в главе 2. Там же рассмотрен принцип групповой стабилизации выходных вторичных напряжений с помощью дросселей, выполненных на  едином магнитопроводе. В данном разделе в основном

будут рассмотрены реализованные на практике вторичные цепи импульсных источников питания.

В предельных режимах эксплуатации источника- питания токовая нагрузка по каналу +5 В имеет значение в десятки ампер. На выпрямительных элементах в этом случае происходит значительной тепловой мощности. Для повышения общего КПД источника и улучшения работы его теплового режима в импульсных преобразователях применяются матрицы на основе диодов Шоттки. Эти диоды обладают улучшенными импульсными рабочими характеристиками, что способствует снижению временного интервала нахождения обоих выпрямительных диодов в проводящем состоянии во время изменения полярности импульсного напряжения. Прямое падение напряжения на них не выше 0,6 В. Параллельно каждому из диодов в сборке SBD1 подключены демпфирующие RC цепочки, снижающие уровень паразитных колебаний, возникающих на фронтах импульсов. К выводам обмоток W4 и W5 трансформатора подключен пропорционально-интегрирующий фильтр на элементах КЗЗ и С21. В схеме выпрямителей каналов +12 и — 12 В применяются обычные диоды с улучшенными импульсными характеристиками. С помощью пропорционально интегрирующего фильтра КЗЗ, С21 происходит «затягивание» фронтов импульсов и создаются более благоприятные условия для переключения диодов как в сборке SBD2, так и диодов D21 и D22. В течение увеличенного фронта импульса происходит восстановление полного обратного сопротивления диодов.

К выходу стабилизированного напряжения +12 В подключен вентилятор блока питания, используемый для охлаждения металлических радиаторов,

на которых установлены силовые транзисторы Q5, ()6 и диодные сборки выпрямителей SBD1 и SBD2. На общем радиаторе могут устанавливаться элементы с различными напряжениями на корпусе. Поэтому все компоненты крепятся на радиаторах через электроизолирующие теплопроводящие прокладки. Для улучшения теплового контакта с радиатором дополнительно применяется теплопроводящая паста, изготовленная на основе кремнийорганических соединений.

С точки соединения катодов диодов сборки SBD2, выхода выпрямителя канала +12 В, снимается импульсное напряжение и через диод D18 подается на емкостной фильтр на элементах С17, С18 и R31. Выход этого фильтра соединяется с выводом IC1/12 внутреннего питания микросхемы ШИМ преобразователя.

Представленное техническое решение (см. рис. 3.2) реализации вторичных цепей импульсных источников питания не является единственным. Разнообразие наблюдается в выполнении схем выпрямителей и в использовании дополнительных интегрально;

стабилизаторов для поддержания постоянного уровня напряжения в каналах с наименьшей токовой нагрузкой. Наиболее часто дополнительные стабилизаторы устанавливаются в канале — 5 В.

На рис. 3.13 представлен первый вариант принципиальной схемы вторичной цепи импульсного источника питания. Схема имеет ряд особенностей по сравнению с рассмотренной выше. Вторичная цепь также содержит две вторичные обмотки W1 и W2 трансформатора Т. Средняя точка каждой из них соединена с общим проводом вторичной цепи. Обмотка W1 полностью используется только для

 

формирования напряжения +5 В. Остальные вторичные напряжения получают после выпрямления и преобразования исходного импульсного напряжения обмотки W2. Причем фильтрация отрицательных напряжений производится общей  цепью Г-образного индуктивно-емкостного фильтра на Lf, L3, С7. Для обеспечения групповой стабилизации вторичных напряжений в схему фильтра введен дроссель L1, который содержит три обмотки, намотанные в одном направлении на общем магнитопроводе. Две обмотки дросселя L1 включены в цепи фильтрации напряжений +5 и +12 В, третья — в цепь сглаживающего фильтра отрицательных напряжений.

В канале фильтрации напряжения +5 В использовано два последовательно соединенных Г-образных фильтра. Первый включает в себя обмотку Дросселя L1 и конденсатор С4, параллельно которому установлен балансный резистор R4. Второй фильтр образован дискретным дросселем L4 и группой электролитических конденсаторов С8, С9 и С10. Стабилизация напряжений вторичной цепи производится слежением за состоянием выходного уровня канала +5 В.

Схема выпрямителя и фильтра канала напряжения 12 В аналогична схеме, приведенной на рис. 3.2. Вентилятор подключается также к выходу стабилизированного напряжения этого канала. Последовательно с вентилятором включен токоограничивающий резистор R7. Типовое значение номинала этого резистора составляет 10 Ом при максимальной рассеиваемой мощности 0,5 Вт. Наибольшее отличие от других схемотехнических решений наблюдается в построении каналов с отрицательными номиналами выходных напряжений. Общий фильтр для двух отрицательных напряжений также выполнен в виде двух Г-образных индуктивно-емкостных фильтров. К выходу стабилизированного напряжения — 12 В через диод D5 подключен интегральный стабилизатор на микросхеме IC1 типа 7905. Схема интегрального стабилизатора для канала — 12 В одновременно выполняет роль балансного резистора, обеспечивающего частичный разряд конденсатора С7. Выходное напряжение — 5 В параметрического стабилизатора на IC1 дополнительно сглаживается конденсатором С11.

В главе 2 (см. рис. 2.17) был представлен фрагмент принципиальной схемы вторичной цепи источника, в котором средняя точка обмотки напряжения 112 В соединена с выходом канала +5 В. Такое решение используется и в схемотехнике источников Для компьютеров класса ХТ/АТ. Принципиальная  схема подобной вторичной цепи источника питания (вариант 2) представлен на рис. 3.14. формирования напряжения +5 В. Остальные вторичные напряжения получают после выпрямления и преобразования исходного импульсного напряжения обмотки W2. Причем фильтрация отрицательных напряжений производится общей цепью Г-образного индуктивно-емкостного фильтра на L1, L3, С7. Для обеспечения групповой стабилизации вторичных напряжений в схему фильтра введен дроссель L1, который содержит три обмотки, намотанные в одном направлении на общем магнитопроводе. Две обмотки дросселя L1 включены в цепи фильтрации напряжений +5 и +12 В, третья — в цепь сглаживающего фильтра отрицательных напряжений. В канале фильтрации напряжения +5 В использовано два последовательно соединенных Г-образных фильтра. Первый включает в себя обмотку дросселя L1 и конденсатор С4, параллельно которому установлен балансный резистор R4. Второй фильтр образован дискретным дросселем L4 и группой электролитических конденсаторов С8, С9 и С10. Стабилизация напряжений вторичной цепи производится слежением за состоянием выходного уровня канала +5 В. Схема выпрямителя и фильтра канала напряжения ti2 В аналогична схеме, приведенной на рис. 3.2. Вентилятор подключается также к выходу стабилизированного напряжения этого канала.

Последовательно с вентилятором включен токоограничивающий резистор R7. Типовое значение номинала этого резистора составляет 10 Ом при максимальной рассеиваемой мощности 0,5 Вт. Наибольшее отличие от других схемотехнических решений наблюдается в построении каналов с отрицательными номиналами выходных напряжений. Общий фильтр для двух отрицательных напряжений также выполнен в виде двух Г-образных индуктивно-емкостных фильтров. К выходу  стабилизированного напряжения — 12 В через диод D5 подключен интегральный стабилизатор на микросхеме IC1 типа 7905. Схема интегрального стабилизатора для канала — 12 В одновременно выполняет роль балансного резистора, обеспечивающего частичный разряд конденсатора С7. Выходное напряжение — 5 В параметрического стабилизатора на 1С1 дополнительно сглаживается конденсатором С11. В главе 2 (см. рис. 2.17) был представлен фрагмент принципиальной схемы вторичной цепи источника, в котором средняя точка обмотки напряжения 12 В соединена с выходом канала +5 В. Такое решение используется и в схемотехнике источников для компьютеров класса ХТ/АТ. Принципиальная схема подобной вторичной цепи источника питания (вариант 2) представлен на рис. 3.14.

Такой вариант включения обмотки позволяет применить в выпрямительной схеме канала +12 В диоды Шоттки. В этих диодах при работе с импульсными напряжениями =50 В происходит возрастание обратных токов, что и диктует необходимость снижения импульсного напряжения на них. При включении выпрямителя согласно схеме, приведенной на рис. 3.14, снижается амплитуда импульсов, воздействующих на выпрямительную схему, до уровня, при котором диоды сборки работают достаточно эффективно.

Источниками вторичных импульсных напряжений в схеме (рис. 3.14) являются три обмотки W1, W2 и WЗ трансформатора Т. Обмотка Wi используется для получения только напряжения +5 В. С обмотки W2 снимается импульсное напряжение, из которого после фильтрации получают стабилизированное постоянное напряжение +12 В. Обе обмотки Wi и W2 нагружены на выпрямительные сборки, состоящие из диодов Шоттки. Цепи фильтрации импульсного входного напряжения во всех каналах построены на основе индуктивно-емкостных Г-образных фильтров. В канале напряжения +5 В единственным индуктивным элементом в фильтре является одна из обмоток дросселя L1. Все остальные каналы дополнены отдельными дросселями, включенными последовательно с обмотками дросселя групповой стабилизации L1.

Выводы комбинированной обмотки WЗ присоединяются к катодам обычных импульсных выпрямительных диодов D1 — D4. Средняя точка обмотки WЗ

 

подключена к общему проводу вторичной цепи питания. Диоды Di и Р4 образуют двухполупериодный выпрямитель канала напряжения — 12 В. Аналогичная выпрямительная схема для канала — 5 В выполнена на диодах D2 и D3. Во вторичную цепь введен дроссель Li групповой стабилизации вторичных напряжений по взаимным магнитным потокам. Несмотря на это, в каждом канале напряжений с отрицательными значениями включены интегральные стабилизаторы на ICi и IC2. Между входом и выходом каждого интегрального стабилизатора подключаются демпфирующие диоды.

В схемах, где возбуждение микросхемы управления TL494 производится первичным импульсом, напряжение питания этой микросхемы и промежуточного усилителя снимается с выхода выпрямительной схемы канала +12 В. Каскады фильтрации данного напряжения аналогичны приведенным на рис. 3.13 и на этом рисунке не показаны. Амплитуда импульсов на выходе выпрямителя составляет =60 В. Уровень отфильтрованного постоянного напряжения непосредственно на ШИМ преобразователе будет зависеть от длительности выпрямленноro импульса и промежутка между импульсами «мертвой зоны. Диапазон изменения постоянного напряжения составляет примерно от +25 до +30 В.

 

 

3.4.4. Цепи защиты и цепи формирования служебных сигналов  

Энергетические характеристики силовых элементов импульсного преобразователя были выбраны, исходя из предположения, что в установившемся режиме работы на предельной мощности они не превысят предельно допустимых норм для данного прибора. Наиболее критичными являются режимы работы силовых транзисторов. Полумостовые импульсные преобразователи характеризуются тем что максимальное напряжение на силовых транзисторах этой схемы равно напряжению питания каскада. Броски напряжения, возникающие в моменты коммутации транзисторов, устраняются включением защитных диодов между коллектором и эмиттером каждого силового транзистора. Такими диодами на принципиальной схеме, приведенной на рис, 3.2, являются D6 и D7. Существующие нормы рекомендуют применять полупроводниковые приборы в цепях, предельные режимы эксплуатации которых имеют уровень 0,8.от максимального значений тока  или напряжения. При выполнении этого требования, как правило, предприятия-изготовители элементной базы гарантируют надежную работу приборов.

Наиболее критичным для работы силовых элементов (транзисторов) в усилителе мощности оказывается неконтролируемое возрастание нагрузки

по вторичным каналам напряжения, которое превышает установленный предельный уровень. Увеличение нагрузки приводит к росту тока, коммутируемого транзисторами полумостового усилителя мощности. Процесс неконтролируемого нарастания тока и превышения максимально допустимых значений может быть только следствием неисправности и возникновения экстренной ситуации в нагрузочной цепи. Иногда это может быть обусловлено неправильным использованием преобразователя в режимах, не предусмотренных техническими характеристиками. Для предотвращения повреждения элементов импульсного преобразователя в схему вводятся каскады, предназначенные для отключения формирователя ШИМ последовательностей,

 После остановки работы ШИМ регулятора прекращается подача управляющих импульсов в силовые цепи. Оба транзистора полумоста «замирают» в закрытом состоянии, их коммутация прекращается. Защита источника питания от перегрузки по вторичным цепям выполняется остановкой преобразователя. Прекращение коммутации силовых транзисторов вызывает понижение напряжения питания на ШИМ каскаде. Если не происходит выгорании сетевого предохранителя, то единственным каска дом, остающимся под напряжением питания, будет усилитель мощности. Все выходные цепи имеют гальваническую развязку от первичной сети, поэтому в отсутствие импульсных колебаний на вход усилителя мощности напряжения на них будут отсутствовать.

Существуют различные схемы построения каскадов защиты. Общим для всех схем является то, что их действие вызывает остановку функционирования маломощной схемы ШИМ регулятора при возникновении перегрузки в выходных цепях, Перегрузка источника питания по каждому каналу проявляется индивидуально. В соответствии с этим строится система блокировки работы ШИМ преобразователя. В системе защиты учитывается поведение схемы при увеличении нагрузки по сильноточным каналам, то есть +5 и +12 В. По мере возрастания нагрузки по этим каналам происходи заметное увеличение длительности импульса управления усилителем мощности. Комплекса система защиты производит слежение за их Длительностью. В качестве датчика контроля длительности управляющих импульсов в схеме, приведен, ной на рис. 3.2, используется узел, основу  составляют трансформатор ТЗ и схема на диод

D9 и D10. Первичная обмотка ЧЗ трансформатор ТЗ включена в

подключены к общему проводу вторичной цепи питания. Этими диодами образован двухполупериодный выпрямитель. Вторичные обмотки соединены последовательно. С точки соединения обмоток снимается сигнальное импульсное напряжение отрицательной полярности, которое сглаживается на фильтре, образованном элементами R19 и С7. Через балансный резистор R12 происходит частичный разряд конденсатора С7 при текущей работе и полный разряд при отключении источника питания от сети. В процессе работы преобразователя, когда происходит нормальная коммутация силовых транзисторов, на отрицательной обкладке конденсатора С7 накапливается заряд, пропорциональный длительности импульсов. Напряжение с этой обкладки  через резистор R14 подается на вывод IC1/15. Туда же через резистор R13 подводится напряжение вторичного канала источника питания +5 В. Согласно функциональной схеме, показанной на рис. 2.7, вывод IC1/15 является инвертирующим входом внутреннего усилителя ошибки DA4 ШИМ преобразователя. Выходы внутренних усилителей DA3 и DA4 микросхемы TL494 объединены по схеме монтажного ИЛИ через диоды развязки. Неинвертирующий вход внутреннего усилителя DA4 (вывод IC1/16) подсоединен к общему проводу Внутренний усилитель DA4 включен в режиме компаратора напряжения. Компаратор производит сравнение потенциалов на своих входах. В зависимости от их соотношения выходное напряжение принимает значения низкого или высокого уровней, быстро минуя промежуточные стадии переключения. Пока напряжение на выводе IC1/15 положительное, выход усилителя DA4 имеет низкий уровень напряжения, которым устанавливается обратное смещение на диоде 02. В таком режиме этот усилитель не оказывает влияния на работу ШИМ компаратора DA2 и. усилителя ошибки, выполненного на усилителе DA3. Когда напряжение на входе IC1/15 понижается до отрицательного уровня, происходит изменение состояния выхода DA4. На нем устанавливается положительное напряжение, практически равное по величине напряжению питания этого усилителя. Происходит открывание диода D2, и положительное напряжение поступает на неинвертирующий вход ШИМ компаратора DA2. Этим положительным напряжением запирается диод D1.

 Таким образом, отключается внутренний усилитель ошибки на DA3. На выходе внутреннего компаратора DA2 появляется устойчивый положительный потенциал, являющийся запрещающим для работы внутреннего логического элемента на 0Ш. Через элемент DD1 прекращается подача импульсов на цифровой тракт микросхемы IC1 и, следовательно, выработка импульсов на выходных контактах ШИМ преобразователя останавливается.

Делитель напряжения образован резисторами R13 и R14, подключенными к выводу IC1/15. Один вывод делителя соединен с источником положительного напряжения вторичного канала +5 В, а второй — с источником отрицательного напряжения, формируемого на конденсаторе С7. На конденсатор С подается выпрямленное и отфильтрованное напряжение, источником которого являются вторичные обмотки трансформатора ТЗ. Уровень напряжения на отрицательной обкладке конденсатора С7 пропорционален длительности импульсов, формируемых ШИМ преобразователем. Время нахождения силовых транзисторов усилителя мощности в активном состоянии, а, следовательно, и длительность импульсов зависят от уровня нагрузки вторичной цепи. Повышение нагрузки вызывает увеличение интервалов, в течение которых транзисторы находятся в открытом состоянии. При снижении нагрузки этот интервал уменьшается. Косвенное слежение за уровнем нагрузки по вторичной цепи проводится с помощью контроля за напряжением на конденсаторе С7. Изменение напряжения на выводе ICi/15 является следствием вариации потенциала на конденсаторе C7. Повышение нагрузки вторичной цепи вызывает рост отрицательного напряжения на С7, которое через резистор R14 передается на IC1/15. Когда отрицательная составляющая напряжения в резисторном дели- теле на R13 и R14 начинает преобладать над положительной, потенциал на ICi/15 становится отрицательным. Это вызывает переключение внутреннего компаратора DA4 микросхемы ШИМ преобразователя и полную блокировку работы каскада управления. Таким образом, на базе трансформатора Т3 собран узел защиты источника питания от перегрузки по основным каналам импульсного источника питания. Оценка уровня нагрузки проводится по ширине импульсов, коммутируемых силовыми транзисторами полумостового усилителя мощности.

Описанный узел может выполнять защитные функции только по основным каналам вторичных напряжений, где перегрузка вызывает заметное изменение интервалов импульсов. Вариации нагрузки, подключенной к относительно слаботочным каналам отрицательных напряжений, такого влияния на силовой каскад оказать не могут. Поэтому для слежения за состоянием уровней напряжения по этим каналам используется отдельный электронный узел, который выполнен на основе транзистора Qi.

Контроль осуществляется по отрицательным каналам напряжения и вторичной цепи+12 В. Вторичные каналы подключаются к эмиттерной цепи транзистора Q1. Выход канала +12 В соединяется с эмиттером Q1 через стабилитрон D1. Напряжение — 5 В подводится через диод D2, выходное напряжение — 12 В подключается к делителю, состоящему из резисторов Ri — R3. Транзисторный каскад защиты через диод D4 подсоединен к выводу IC1/4— неинвертирующем входу внутреннего компаратора DA2 микросхемы ШИМ преобразователя. Действие механизма защиты направлено на увеличение потенциала этого входа в случае возникновения нештатной ситуации в нагрузочных цепях вторичных каналов. Если напряжение на неинвертирующем входе DA1 превысит уровень пилообразного напряжения, действующего на втором входе компаратора, то произойдет остановка формирователя ШИМ последовательностей на выходах IC1. Возрастание напряжения на IC1/4 допускается только во время действия дестабилизирующих факторов в нагрузочных цепях. Во время нормального рабочего цикла преобразователя напряжение на этом входе не должно увеличиваться и вносить изменения в работу источника питания. Уровень напряжения на IC1/4 определяется резистивным делителем из R6 и R16 за вычетом напряжения, равного падению напряжения на диоде D4, а также состоянием переходов коллектор-эмиттер транзисторов Q1 и Q2. Резистор R6 подключен к источнику опорного напряжения схемы IC1. Транзисторы Q1 и Q2 соединены коллекторными электродами по схеме монтажного ИЛИ. Постоянное положительное смещение в базовую цепь транзистора Q2 не подается. В течение рабочего цикла этот транзистор остается закрытым и на уровень смещения на входе IC1/4 влияния не оказывает. Регулировка потенциала производится схемой на Q1. Для обеспечения процесса формирования импульсных последовательностей микросхемой IC1 на коллекторе Q1 должно устанавливаться напряжение, близкое к потенциалу общего провода либо с отрицательным уровнем. Такой режим транзистора поддерживается, если в его эмиттерной цепи напряжение.имеет отрицательный уровень. База транзистора Q1 подключена к общему проводу, поэтому управление проводится по эмиттерному электроду. Отрицательным напряжением на эмиттере транзистор Q1 переводится в проводящее состояние или насыщение. В этом случае напряжение на его коллекторе также имеет низкий уровень и шунтирует положительный потенциал, создаваемый резистивным делителем на R6 и R16. Отрицательное смещение на эмиттере Q1 устанавливается резистивным делителем. Резистор R2 в этом делителе подсоединен непосредственно к выходу канала -12 В. В точке соединения резистора R2 и катода диода D2 напряжение имеет значение — 5,8 В. При выбранном соотношении номиналов резисторов Ri и R3 транзистор Q1 находится в режиме насыщения, и напряжение на его эмиттере обусловлено открытым переходом база-эмиттер и равно примерно — 0,8 В. Следовательно, напряжение на коллекторе имеет уровень, близкий к потенциалу общего провода. Напряжение +12 В не оказывает влияния на формирование напряжения на эмиттерном электроде, так как стабилитрон Ш выбирается с напряжением стабилизации 14 — 16 В. Если во вторичной цепи происходит КЗ по одному из каналов с отрицательным номиналом, то напряжение на эмиттере будет повышаться и приблизится к уровню общего провода. Если КЗ произойдет в канале — 5 В, то на катоде диоды D2 напряжение составит — 0,7... — 0,8 В. При этом ва эмиттере Q1 потенциал будет иметь уровень при- мерно — 0,2... — 0,4 В, что не достаточно для перевода транзистора в активный режим. Короткое замыкание напряжения — 12 В вызовет блокировку диодом D2 подачи напряжения — 5 В в эмиттерную цепь транзистора Q1, так как диод в этом случае будет находиться под воздействием потенциала, вызывающего обратное смещение р-п перехода. В обоих случаях замыкания транзистор Q1 будет закрываться, это вызовет рост напряжения на его коллекторе. Увеличение напряжения передастся на вывод IC1/4, к которому подключен резистор R16. Значение сопротивления R16 в несколько раз превышает номинал R6, поэтому основное падение напряжения будет именно на R16, то есть на выводе IC1/4. Если напряжение на этом выводе превысит уровень +3 В, то произойдет блокировка цифрового тракта микросхемы IC1 и генерация импульсов на выводах IC1/8,11 прекратится.

Вторичные обмотки силового импульсного трансформатора выполняются проводами с различным. сечением. Сечение провода обмоток маломощных каналов меньше, чем сечение основных каналов, Внутреннее сопротивление источника напряжения, который образует вторичная обмотка, у маломощных каналов более высокое. Значительное увеличение потребления тока по этим каналам вызовет заметное падение напряжения на нагрузке, поэтому схема защиты может среагировать на резкое изменение выходного уровня до появления чистого КЗ и отключит блок питания.

Активное групповое слежение за состоянием вторичных напряжений в источнике питания производится сравнением выходного напряжения канала +5 В с уровнем опорного напряжения, формируемого внутренним узлом микросхемы IC1. Если во вторичных цепях возникает большой рээ- баланс нагрузки, то напряжение в канале +12 В может сильно отличаться от номинальной величины.

В качестве защитной меры от повышения напряжения в этой цепи к эмиттеру Q1 подключен датчик напряжения канала +12 В на стабилитроне Di. Когда значение выходного напряжения в этом канале превышает напряжение стабилизации стабилитрона Di, происходит пробой последнего, и отрицательное напряжение на эмиттере Q1 начинает компенсироваться положительным потенциалом, поступающим через D i. Снижение отрицательного напряжения в этой точке приведет к запиранию транзистора Qi и возрастанию положительного уровня на R16. Дальнейшее воздействие на ICi/4 остановит ШИМ преобразователь.

В начальный момент подачи электропитания на микросхему ICi на всех вторичных каналах напряжения отсутствуют. Поэтому транзистор Q1 не может находиться в активном состоянии и принимать  участие в запуске схемы преобразователя. В это время на ICi/14 появляется опорное напряжение, которое через делитель из R6 и R16 поступит на IC1/4 и блокирует работу микросхемы. Для обеспечения нормального запуска f C i применяется .ключевой: каскад на Q2, который начинает работать сразу после появления напряжения питания на выводе IC1/12. В базовую цепь Q2 включены резисторы R4 и R5. Резистор К4 через конденсатор С5 соединен с цепью питания микросхемы IC1/12. Когда происходит— формирование начального импульса питания = ШИМ преобразователя, положительное напряжение через разряженный конденсатор С5 поступает на резистор R4 и через него попадает на базу транзистора Q2. Возникшим импульсом транзистор открывается, и напряжение на коллекторе Q2 резко понижается до нулевого уровня. По мере заряда- конденсатора С5 на его отрицательной обкладке  происходит экспоненциальный спад положительного напряжения. Снижение положительного напряжения вызывает постепенное закрывание транзистора ()2. Постоянная времени разряда конденсатора определяется номиналами элементов С5 и R4 и параллельного соединения открытого перехода база-эмиттер транзистора Q2 и резистора R5. Параметры пассивных элементов должны выбираться таким образом, чтобы закрывание транзистора происходило после появления отрицательных напряжений вторичных каналов на резисторе R2 и диоде

D2. Если это условие соблюдается, то после закрывания транзистора Q2 напряжение на аноде D4 не примет положительного значения и сбоя в работе источника питания не произойдет.

Диод D4 выполняет функции развязывающего элемента, отделяющего элементы схемы «медленного, запуска от узла защиты и схемы на Q2. Присутствие этого диода является необходимым условием плавного запуска ШИМ преобразователя, так как

его наличие исключает шунтирование положительного потенциала на отрицательной обкладке конденсатора С6 открытым транзистором Q2. После завершения процедуры «медленного» запуска, если нагрузочные цепи в порядке, управление напряжением на выводе 1С1/4 сначала переходит к транзистору Q2, а затем к Qi.

Основное назначение схем защиты источника питания — исключение повреждений компонентов самого преобразователя при возникновении во вторичной цепи неконтролируемого увеличения нагрузки выше уровня, оговоренного условиями технической эксплуатации. Существует различный подход как к организации защиты, так и к применению электронных элементов. Как правило, в схемотехнике узлов защиты производится разделение каскадов, отвечающих за контроль работы основных вторичных каналов и маломощных цепей. Во внутренней структуре микросхемы TL494 введено несколько функциональных узлов, через которые можно оказывать воздействие на основной тракт формирования ШИМ последовательностей от принудительного ограничения длительности выходных импульсов до полной блокировки схемы. В зависимости от организации схемы защиты влияние на работу основной схемы может быть оказано через один или несколько таких узлов. Каждая схема преобразователя содержит элементы защиты, но выполнены они по-разному. На приведенных ниже схемах защиты показаны разные варианты практической реализации данного узла.

На рис. 3.15 представлен один из вариантов системы комплексной защиты импульсного преобразователя напряжения.

На рис. 3.15 приведены основные элементы узла  защиты. Нумерация элементов относится только  к компонентам этого рисунка. На схеме показаны первичная цепь каскада промежуточного усилителя с согласующим трансформатором Т, упрощенная  схема включения микросхемы TL494. Узел защиты  представлен полнофункциональной схемой.

Узел защиты выполняет следующие основные функции:

контроль длительности импульсов управления силовым каскадом;

блокировка работы узла ШИМ преобразователя в случае возникновения K3 в каналах с отрицательными номиналами напряжений.

Оценка временного интервала, занимаемого  положительным импульсом, проводится схемой постоянно. Слежение осуществляется с помощью элементов, подключенных к средней точке первичной обмотки согласующего трансформатора Т. На среднем выводе первичной обмотки действует сигнал,

 

 

форма которого представлена на рис. 2.11. Резистор - R14, диод D5 и конденсатор СЗ образуют схему выпрямителя и пассивного RC фильтра импульсного сигнала. В итоге на конденсаторе СЗ появится  положительное напряжение. Уровень этого напряжения будет прямо пропорционален длительности импульсов управления, формируемых микросхемой ШИМ преобразователя типа TL494. Напряжение, выделенное на конденсаторе СЗ, через резистор R10 подается на неинвертирующий вход внутреннего усилителя DA4 микросхемы TL494, На второй вход этого усилителя через вывод TL494/15 непосредственно поступает напряжение опорного источника+5 В. Логика работы этого каскада в части контроля длительности импульсов очень похожа на функционирование аналогичного узла из схемы, приведенной на рис. 3.2. Процесс: контроля длительности импульсов управления включает в себя несколько этапов рабочего цикла узла защиты. На внутреннем усилителе DA4 производится постоянное сравнение уровней напряжений, действующих на его входах.

Усилитель не оказывает влияния на работу ШИМ преобразователя, пока напряжение на выводе TL494/16 не превышает опорного уровня, постоянно установленного на выводе TL494/15. Увеличение нагрузки вторичной цепи источника питания будет отражаться на уровне напряжения, выделяемого на конденсаторе СЗ. Ширина управляющих импульсов будет возрастать, что вызовет увеличение напряжения на СЗ. Напряжение с конденсатора постоянно поступает на вход усилителя DA4. Пока оно ниже уровня, установленного на инвертирующем входе DA4, выходное напряжение усилителя равно нулю. Увеличение, длительности выше установленного порога вызывает включение механизма ее постепенного ограничения. Усилитель на DA4 не охвачен обратной связью, поэтому на его выходе значение напряжения очень быстро изменяется. Повышение уровня на выходе усилителя DA4 приведет к блокировке усилителя ошибки DAЗ. На неинвертирующем входе ШИМ, компаратора DA2 положительное напряжение также будет повышаться. При этом будет происходить принудительное ограничение длительности импульсов, формируемых схемой ШИМ преобразователя. Механизм активной защиты элементов источника питания включается с момента повышения:, напряжения на TL494/16 до уровня +5 В, когда напряжение на выходе DA4 начинает принимать положительное значение. Сначала наступает этан  принудительного ограничения длительности импульсов управления. Сигнал рассогласования от, DAЗ растет, и ШИМ преобразователь старается компенсировать падение напряжения во вторичной, цепи увеличением длительности импульсов управления. Когда происходит блокировка усилителя ошибки уровнем от DA4, продолжительность импульсов принудительно ограничивается. Если причина неконтролируемого увеличения потребления ' во вторичной цепи не устранена, то при достижении  сигналом от усилителя DA4 уровня +3,2 В, на выходе ШИМ компаратора появляется устойчивый высокий уровень. Импульсных сигналов нет, Генерация выходных импульсов ШИМ преобразователем останавливается. Источник питания прекращает подачу энергии во вторичные цепи.

Фрагмент принципиальной схемы этого узла защиты (см. рис. 3.15) демонстрирует реализацию узла, ограничивающего длительности импульсов, управления преобразователем, по, сигналу датчика, полностью установленного во вторичной цепи: источника питания. В предыдущем случае датчик располагался в силовой части схемы, а обработки его сигнала полностью была отнесена во вторичную цепь.

В случае возникновения КЗ по любому из каналов с отрицательными значениями напряжений сигнал оповещения узла управления вырабатывается с помощью транзисторной схемы на Q1 и 92, В базовой цепи транзистора Q1 включен делитель напряжения на резисторах Ri и R2. Питание делителя напряжения производится от разнополярных источников напряжения. Резистор R1 подключен к источнику опорного напряжения микросхемы TL494 с уровнем +5 В. Нижний по схеме вывод резистора R2 через резистор R3 соединен с цепью,— 12 В и через диод Ш с цепью — 5 В. Номиналы сопротивлений резисторов Ri и R2 равны, поэтому напряжение на базе транзистора Q1 будет иметь небольшое отрицательное значение. Эмиттер этого  транзистора соединен с общим проводом и, следовательно, переход база-эмиттер находится под напряжением обратного смещения. Транзистор закрыт, напряжение на коллекторе Qi имеет высокий уровень. Поддерживание напряжения на базе, закрывающего транзистор Q1, возможно только в том случае, когда выдерживается расчетное соотношение напряжений — 5 и — 12 В. Если во вторичных цепях происходит КЗ, в результате которого одно из отрицательных напряжений изменяет свой уровень, то потенциал на базе транзистора Q1 начинает возрастать. В результате замыкания напряжения — 12 В на диоде Di появляется обратное . смещение и блокируется подача напряжения — 5 В на резистор R2. Базовый потенциал транзистора Q1 получит приращение положительного напряжения, подаваемого через Ri. Аналогичная ситуация возникает при изменении напряжения -5 В до нулевого уровня. Диод D1 находится под воздействием отпирающего напряжения. Его анод подключается к общему проводу, а напряжение на катоде приобретает значение  — 0,8 В. Это небольшое напряжение мало отличается от нулевого потенциала. На базе транзистора Q1 преобладающим оказывается положительный потенциал, которым транзистор открыв каскада на ()1. Коллектор транзистора Q2 через резистор R5 соединен с шиной питания ШИМ преобразователя, напряжение на которой в установившемся режиме находится в диапазоне +25...+30 В. Состояние ключа на Q2 является определяющим для функционирования микросхемы ШИМ преобразователя. В нормальном состоянии схемы защиты, когда в нагрузочной цепи уровни напряжений соответствуют номинальным, транзистор ()2 открыт и находится в насыщении. В этом состоянии происходит подключение резистора R5 через открытый транзистор Q2 к общему проводу. Диод D2 закрыт. Вывод 4 микросхемы TL494 через резистор R6 соединен с общим проводом. Внешние элементы не оказывают действия на работу ШИМ преобразователя. Когда происходит КЗ и последовательное переключение транзисторных ключей, напряжение на коллекторе закрытого транзистора определяется соотношением сопротивлений R6 и R5. Оно выбирается таким образом, чтобы уровень напряжения на выводе 4 схемы TL494 в момент срабатывания защиты составлял +5 В. Переключение транзисторов происходит достаточно быстро, поэтому напряжение на TL494/4 изменяется практически скачком. Резкое возрастание напряжение на неинвертирующем входе компаратора «мертвой зоны» блокирует логический элемент DDi. Работа схемы управления останавливается. Запуск ШИМ преобразователя возможен только после выключения и повторного подключения напряжения первичного питания, если предварительно устранена причина, вызывавшая КЗ или ненормированную перегрузку.

Работа схем защиты источника питания, представленных на рис. 3.2 и 3.15, характеризуется тем, что воздействие на ШИМ преобразователь при возникновении перегрузки по основным каналам и в случае КЗ слаботочных цепей производится. Ключевая схема на транзисторе Q2 является нагрузкой транзисторного

 

 

различным внутренним цепям схемы TL494. Узел защиты схемы, показанной на рис. 3.16, выполнен таким образом, что блокировка схемы управления производится по общему входу компаратора «мертвой зоны»,

На данном рисунке приведены основные элементы, непосредственно относящиеся к каскаду защиты, а также датчик — измеритель длительности импульсов управления. Схема защиты, построенная в соответствии с рис. 3.16, выполняет отключение системы управления блоком питания при возникновении K3 по любому из каналов с отрицательными номиналами напряжения, а также в случае увеличения длительности импульсов управления: выше установленного интервала. После инициализации схемы ШИМ преобразователя процедурой «медленного» запуска, транзисторные каскады на Qi и Q2 определяют состояние схемы управления импульсного усилителя мощности. Цикл «медленного» запуска заканчивается, и схема управления находится в нормальном рабочем режиме, когда оба транзистора Qi и Q2 закрыты, а напряжение на выводе 4 микросхемы TL494 не будет превышать порогового уровня. Отключение ШИМ преобразователя и полная блокировка происходят при появлении на базе транзистора Q1 напряжения с положительным уровнем, равным 0,7... 0,8 В. Действие всех датчиков состояния канальных напряжений" направлено на формирование такого напряжения на базе Q1, когда возникает увеличение нагрузки в какой-либо вторичной цепи, превышающее уровень, заданный техническими характеристиками источника питания. Далее происходит последовательное переключение активных элементов, которое приводит к появлению высокого логического уровня на выводе TL494/4 и отключению этой микросхемы.

Контроль длительности импульсов управления осуществляется с помощью узла, собранного на элементах, подключенных к обмотке W2 согласующего трансформатора Т. Специальная обмотка W2 не используется в схеме формирования импульсных сигналов, а является дополнительным элементом, выполняющим функции датчика длительности положительных импульсов управления источником питания. Один вывод обмотки W2 соединен; с общим проводом вторичной цепи. Ко второму ее выводу подключен диод D8, образующий выпрямитель импульсного сигнала положительной полярности. Нагрузкой выпрямителя является емкостной фильтр на конденсаторе С5, на котором выделяется положительное напряжение, пропорциональное длительности импульсов управления. Далее в электрической цепи установлены резисторы R1 и R15 и построечный резистор R14. Цепью этих резисторов задается уровень напряжения на конденсаторе С5, при котором происходит открывание транзистора Q1. То есть соотношение резисторов в делителе определяет минимальную ширину импульсов управляющего сигнала, при которой происходит открывание транзистора Q1. В канале защиты применяются биполярные транзисторы разных типов проводимости, включенные по схеме электронных ключей. Транзистор Я1 открывается положительным напряжением относительно потенциала общего провода. Эмиттер транзистора Q2 соединен с выводом опорного напряжения схемы TL494. Его отпирание происходит, когда на базе действует напряжение, уровень которого ниже потенциала эмиттера. В режиме нормального функционирования возможно частичное открывание транзистора Q1, но оно не приводит к переключению Q2 из закрытого состояния в насыщение. В таком режиме напряжение на коллекторе Q2 мало изменяется и остается на уровне, близком к потенциалу общего провода. Низкое напряжение на аноде диода D4 не может его открыть, поэтому приращения напряжения на выводе 4 микросхемы TL494 не происходит. Потенциал этого вывода определяется падением только на резисторе R8.

Повышение нагрузки в основных каналах вторичной цепи приводит к тому, что схема управления усилителем мощности начинает увеличивать, длительность импульсов для компенсации энергетических потерь. На дополнительной обмотке W2 согласующего, трансформатора наводится ЭДС, форма которой полностью повторяет вид сигнала управления.

Импульсный сигнал детектируется выпрямителем на D8 и фильтруется конденсатором: С5. Если источник питания работает в режиме перегрузки, то постепенно напряжение на конденсаторе достигнет уровня, при котором на базе Q1 появится открывающий положительный потенциал. Нарастающее напряжение на базе Q1 плавно открывает транзистор, и напряжение на его коллекторе начинает понижаться. В коллекторной цепи Q1 включен делитель на резисторах R2 и R3, точка которого подсоединена к базе Q2. Понижение напряжения на коллекторе Q2 через R3 передается на базу-()2, открывая его. Собственное, сопротивление транзистора Q2 уменьшается, положительное напряжение на его коллекторе начинает, расти. Если источник перегрузки вторичной цепи не устранен, то рост напряжения на базе Q2 приведет к полному его открыванию и переключению транзистора в насыщение. Напряжение на аноде диода D4 будет равно опорному, имеющему значение +5 В, за вычетом падения на открытом транзисторе Q2. Через открытый диод D4 напряжение опорного источника поступает на вывод TL494/4 где его уровень будет составлять примерно +3,9 В. Это значение превышает. максимальный уровень пилообразного напряжения, поэтому формирование импульсного сигнала на выходах ШИМ преобразователя будет блокировано. Импульсы возбуждения не будут подаваться на усилитель мощности, передача энергии через импульсный силовой трансформатор во вторичную цепь прекратится. Постепенно произойдет спад всех вторичных напряжений до нулевого уровня. Возобновление работы преобразователя возможно только после переключения сетевого выключателя и нормальной генерации импульса начального питания ШИМ преобразователя.

Аналогичное воздействие на транзисторные каскады схемы защиты будет вызвано резким падением уровня любого из каналов с отрицательными номиналами напряжений, подключенных к схеме через диод D3 и резистор R7. Принцип действия узла защиты от K3 по слаботочным каналам основан на функционировании вентильной схемы, основным элементом которой является диод D2.

Диод включен между датчиками уровней напряжений отрицательных уровней и базой транзистора  Q1. Катодные диодов D2 и D5 соединены по схеме «монтажного ИЛИ». Переключение транзисторных ключей на Qi и Q2 будет выполняться, если в точке соединения диодов появится потенциал, достаточный для открывания транзистора Q1. При нормальной работе основных каналов, когда ширина импульсов управления укладывается в допуск, такое напряжение может быть подано только через диод D2. Уровень напряжения на аноде D2 определяется соотношением сопротивлений резисторов R6 и R5. В точке соединения резистора R7 и диода ' D3 напряжение имеет значение -5,8 В. Резистор R5

одним выводом подключен к источнику опорного напряжения микросхемы TL494 с номинальным уровнем +5 В, вторым — к аноду D2. Для того чтобы  на катод диода D2 не поступало положительное напряжение потенциал на аноде D2 должен быть нулевым или отрицательным. Для большей чувствительности схемы защиты потенциал выбирается именно нулевым. Для поддержания нулевого уровня на аноде диода D2, у резистора R6 должно быть сопротивление на 15% больше, чем у R5. В установившемся режиме, когда все напряжения имеют номинальный уровень, элементы, соединенные с D2, не влияют на состояние ключевой транзисторной схемы.

Если в нагрузочной цепи каналов -5 или — 12 В возникает ситуация, при которой происходит значительное падение уровней этих напряжений, происходит перераспределение напряжений в делителе из R5 и R6. Отрицательный потенциал, компенсирующий положительное напряжение опорного источника, в точку соединения этих резисторов поступать не будет. На анод D2 будет проходить только положительное напряжение через R5, которым последовательно откроются диод D2, а затем оба транзисторных ключа на Qi и Q2. Это приведет к появлению напряжения +3,9 В на выводе 4 микросхемы TL494 и вызовет блокировку ШИМ преобразователя и отключение источника питания.

В заключение описания схемы, приведенной на рис. 3.16, следует отметить, что диоды Ш, D2 и D5 выполняют функции элементов развязки и исключают взаимное влияние формируемых датчиками напряжений, возникающих при различных перегрузках источника питания.

Один из вариантов узла полной защиты источника питания по основным каналам вторичных напряжений представлен на рис. 3.17. Главная особенность данной схемы в том, что из нее полностью исключены элементы, используемые в каскадах защиты слаботочных каналов с отрицательными уровнями напряжений. Узел состоит из датчиков ширины импульсов управления и датчиков повышения уровней напряжений по каналам +5 В и +12 В. Оценка функционирования маломощных каналов может производиться по ширине импульсов. Такое схемотехническое решение может быть использовано в источнике питания, где применена дополнительная стабилизация вторичных каналов отрицательных напряжений. Интегральные стабилизаторы имеют внутренние схемы ограничения выходного тока в случае возникновения перегрузок. Включение защиты интегрального стабилизатора может быть вызвано также перегревом корпуса стабилизатора.

При получении сигнала об отклонении работы преобразователя от номинального режима схема защиты вырабатывает сигнал положительного уровня, который подается на вывод 4 микросхемы Т1.494. Остальные внутренние элементы ШИМ преобразователя для его блокировки не используются. Формирование сигнала о нарушении рабочего режима производится двухкаскадным усилителем на транзисторах Qi и Q2. В исходном состоянии оба транзистора закрыты. Напряжение на выводе 4 схемы TL494 задается соотношением сопротивлений резистивного делителя из R10 и R11. Сопротивление резистора R10 значительно больше, чем у R11, поэтому в установившемся режиме, в отсутствие перегрузки, напряжение на TL494/4 близко к потенциалу общего провода.

В качестве датчика ширины импульсов управления используется трансформатор Т1 и элементы R3, VD4 и С4. Первичная обмотка трансформатора Т1 включена в диагональ полумостового усилителя

 

мощности последовательно с первичной обмоткой силового импульсного трансформатора Т2. К вторичной обмотке трансформатора Т1 подключена: выпрямительная схема с однополупериодным выпрямителем на диоде D4 и емкостным фильтром — конденсатором С4. На конденсаторе С4 выделяется положительное напряжение, пропорциональное: длительности импульсов управления. К резистору- R11 кроме сопротивления R10 присоединена цепь,  состоящая из резисторов R4, R6 и диода D6. Параметры резисторов R4 и R6 подобраны так, чтобы колебания напряжения на конденсаторе С4 не влияли на уровень напряжения на резисторе R11. Анод— диода D6 соединен с коллектором транзистора Qi

и через резистор R9 с базой транзистора Q3, являющегося первым ключевым элементом в цепи формирования сигнала блокировки микросхемы TL494. Прежде чем положительное напряжение на аноде

D6 нарастет до уровня его отпирания, оно постепенно откроет транзистор ()3. Коллектор транзистора Q4 соединен через резистор R9 с базой ЯЗ, поэтому изменение напряжения на коллекторе первого транзистора будет сразу передаваться на базу второго. Повышение напряжения в этой точке может быть следствием увеличения нагрузки вторичных цепей и расширением положительных импульсов управления. Постепенное открывание транзистора с Q3 сопровождается понижением его коллекторного напряжения и потенциала базы Q4. Передача положительного напряжения происходит через открывающийся транзистор Q4 на базу Q3. Один транзистор подпитывает базу второго, процесс открывания обоих активных элементов развивается лавинообразно, и в итоге приводит к полному открыванию двух транзисторов. Через насыщенный,

транзистор Q4, диод D4 и резистор R11 протекает ток. Уровень напряжения, который устанавливается после открывания Q4 на резисторе R11, составляет примерно +3,9 В. Это напряжение превышает, амплитуду пилообразного сигнала, действующего на инвертирующем входе внутреннего компаратора мертвой зоны DA1, входящего в состав микросхемы TL494. Происходит блокировка пилообразного напряжения на этом компараторе и остановка генерации импульсов на выходах микросхемы ШИМ преобразователя. Такая последовательность действий осуществляется при увеличении нагрузки источника питания, когда система управления стремится компенсировать падение выходных уровней напряжений, увеличивая интервал активного состояния силовых транзисторов.

Цепи на элементах D1 — D3, R1 и R2 выполняют функции детекторов увеличения напряжений основных вторичных каналов выше установленного предела. К выходам каналов с напряжениями +5 и +12 В подключены пороговые схемы на стабилитронах D1 и D3 соответственно. В данном случае используется свойство стабилитронов пропускать электрический ток, когда напряжение на них превышает уровень стабилизации. Пока напряжения на стабилитронах будут ниже уровня стабилизации, ток через них протекать не будет и на положительной обкладке конденсатора С5 потенциал останется близким нулю. Диод D5 закрыт и никакого воздействия на базу транзистора ЯЗ не оказывается, Пороговый уровень включения защитного механизма по вторичному каналу +5 В составляет +6,3 В. Фиксация возрастания напряжения выше номинального значения по каналу +12 В должна производиться на уровне примерно +15 В, Напряжение стабилизации D1 составляет +5,1 В, а диода D3- +14 В. Если одно из положительных напряжений вторичных каналов достигает своего предельного уровня, то происходит «пробой» соответствующего стабилитрона и напряжение на конденсаторе С5 начинает повышаться, открывая диод D5. Отпирание диода и появление положительного потенциала на базе ЯЗ происходит, когда на конденсаторе С5 напряжение достигает положительного уровни, равного 0,7 — 0,8 В. Если напряжение продолжает повышаться, то растет положительный уровне и на базе Q3. Выполняются условия для переключения бистабильной транзисторной схемы на ключах Q3 и Q4. Каждый из транзисторов открывается, и на вывод 4 микросхемы TL494 подается положительное напряжение +3,9 В, появление которого вызывает прекращение работы импульсного преобразователя.

 Для устойчивой работы схемы защиты в базовую цепь транзистора Q3 включен керамический конденсатор С6. Он обеспечивает фильтрацию кратковременных импульсных помех, которые могут привести к переключению транзисторной схемы. В начальный момент, когда преобразователь подключает схему управления к напряжению питания, благодаря наличию конденсатора С5 происходит задержка включения транзисторного каскада. Диод 05 применяется для развязки каскадов, вырабатывающих сигналы воздействия на базу ЯЗ при различных проявлениях отклонения вторичных напряжений от номинальных уровней. Во всех примерах схем защиты датчики и схемы  воздействия на элементы управления преобразователем строились на основе дискретных элементов. В следующих примерах приведены схемы, в которых в качестве первичных узлов, формирующих сигналы отключения ШИМ преобразователя, применяются интегральные компараторы. Первая из схем приведена на рис. 3.18 (вариант 4). На схеме (рис. 3.18) показаны узлы, рассмотренные нами и в предыдущих вариантах исполнения и на базе Q3. Выполняются условия для переключения бистабильной транзисторной схемы на ключах Q3 и ()4. Каждый из транзисторов открывается, и на вывод 4 микросхемы TL494 подается положительное напряжение +3,9 В, появление которого вызывает прекращение работы импульсного преобразователя.

Для устойчивой работы схемы защиты в базовую цепь транзистора Q3 включен керамический конденсатор С6. Он обеспечивает фильтрацию кратковременных импульсных помех, которые могут привести к переключению транзисторной схемы. В начальный момент, когда преобразователь подключает схему управления к напряжению питания, благодаря наличию конденсатора С5 происходит задержка включения транзисторного каскада. Диод D5 применяется для развязки каскадов, вырабатывающих сигналы воздействия на базу Q 3 при различных проявлениях отклонения вторичных напряжений от номинальных уровней.

Во всех примерах схем защиты датчики и схемы воздействия на элементы управления преобразователем строились на основе дискретных элементов. В следующих примерах приведены схемы, в которых в качестве первичных узлов, формирующих  сигналы отключения ШИМ преобразователя, применяются интегральные компараторы. Первая из схем приведена на рис. 3.18 (вариант 4).

На схеме (рис. 3.18) показаны узлы, рассмотренные нами и в предыдущих вариантах исполнения каскадов защиты. Схема осуществляет контроль за длительностью управляющих импульсов, за коротким замыканием по каналам с отрицательными номиналами напряжений, а также слежение за превышением установленного уровня напряжения в канале +5 В. Взаимодействие с микросхемой ШИМ управления — TL494 выполняется только по входу 4.     Использование внутреннего усилителя DA4 для принудительного ограничения ширины импульсов управления не предусмотрено. В каскаде защиты используется два компаратора DA1 и DA2 из микросхемы типа LM339, выходы которых объединены по схеме «монтажного ИЛИ». В установившемся режиме оба выхода имеют высокий уровень. Транзистор Qf при этом закрыт, а напряжение на выводе Т1.494/4 определяется падением напряжения на резисторе R14, вызванным протеканием через него входного тока.

Датчик контроля длительности импульсов управления (трансформатор Т1 и элементы D3, D4, R10, R7 и С1) введен в первичную цепь преобразователя. Первичная обмотка трансформатора Т1 включена в диагональ полумостового усилителя. Через эту обмотку протекает тот же ток, что и через первичную обмотку силового импульсного трансформатора Т2. Форма сигнала на Т1 полностью совпадает с импульсами управления преобразователем. Трехуровневый импульсный сигнал появляется на вторичной обмотке трансформатора Т1. Вторичная обмотка имеет три вывода. Со среднего вывода

 

 

снимается сигнальное напряжение. Крайние выводы обмотки подключены к катодам диодов D3 и D4 двухполупериодного выпрямителя. Аноды диодов соединены с общим проводом вторичной цепи. На среднем выводе обмотки W2 присутствуют импульсы положительной полярности. Частота следования импульсов в этой точке в два раза превышает частоту следования импульсов по каждому из выходов микросхемы TL494. Импульсное напряжение сглаживается RC фильтром на элементах R7 и С1. Уровень напряжения на конденсаторе С1 зависит от длительности импульсов управления преобразователем. Повышение нагрузки вторичных цепей автоматически приводит к росту этого напряжения. Конденсатор С1 подключен к одному из выводов резистора R4. Второй вывод резистора R4 через диод Ш подсоединен к шине вторичного  напряжения канала +5 В. Резистивным делителем,  образованным элементами R4 — R6, задается уровень на инвертирующем входе компаратора DA1/4, входящего в состав микросхемы типа LM339. Компаратор производит сравнение этого напряжения с потенциалом на DA1/5, установленным резистивным делителем на R8, R9. Делитель включен между выходом опорного напряжения, вырабатываемого микросхемой TL494 на выводе 4, и общим проводом вторичной цепи. Средняя точка  делителя присоединена к неинвертирующем входу компаратора DA1/5. На резисторе R4 происходит

суммирование части вторичного напряжения от канала+5 В и напряжения, поступающего от датчика — ширины импульсов управления, на трансформаторе Т1. Сумма напряжений делится пропорционально величинам сопротивлений резисторов R5 и R6. Точка соединения этих резисторов подключена к входу компаратора DA1/4. При нормальном рабочем режиме источника питания уровень опорного напряжения на входе DA1/5 несколько больше, чем на входе DA1/4. Напряжение на выходе компаратора близко по значению к опорному.

Повышение одного из напряжений, суммируемых на R4, вызовет пропорциональное возрастание потенциала на DA1/4. Когда напряжение на инвертирующем входе компаратора станет больше, чем на другом его входе, произойдет быстрое переключение компаратора, На выходе установится низкий уровень. Нагрузкой, соединенной с выходами компараторов, являются последовательно соединенные резисторы R11 и R12. К точке их соединения присоединена база транзистора Q1. Когда происходит переключение выхода компаратора от высокого уровня к низкому, база Q1 оказывается под открывающим  потенциалом. Транзистор Q1 открывается, напряжение на его коллекторе повышается. Возрастающее

напряжение с коллектора Q1 подается через диод D5 на вход компаратора DA2/8. Повышение напряжения на входе компаратора DA2/8 вызывает его переключение. С этого момента выходы обоих компараторов имеют низкие уровни. Высокий уровень напряжения на выводе TL494/4 приводит к отключению ШИМ преобразователя в соответствии с описанной выше последовательностью действий внутри TL494. Начальное переключение компаратора DA1 происходит либо при повышении выходного уровня во вторичном канале +5 В, либо из-за увеличения нагрузки по основным вторичным каналам сверх установленного предела. Компаратор DAi совмещает в себе функции вторичного датчика уровня напряжения в канале+5 В и длительности импульсов управления усилителем мощности.

На втором компараторе микросхемы LM339 собран ключевой элемент, выполняющий слежение  состоянием каналов с отрицательными номиналами напряжений. В нормальном состоянии делителями напряжений на входах устанавливаются потенциалы, при которых выходной уровень напряжения компаратора — высокий (напряжение на DA2/9 больше, чем на DA2/8). Резисторами делителей, подключенных к входам компаратора DA2, выбирается порог чувствительности схемы. Малой разницей напряжений на входах обеспечивается быстрое переключение компаратора, но схема может быть слишком чувствительна к случайным кратковременным помехам. Исходная разность потенциалов по входам выбирается =1 В. Опорный уровень на входе DA2/9 формируется из опорного напряжения, вырабатываемого на выходе TL494/14. Когда происходит КЗ по одному из контролируемых каналов, напряжения на входах компаратора перераспределяются, в результате знак разности их потенциалов изменяется. Происходит переключение компаратора с последующим открыванием транзистора ()1. Открытый Q представляет собой малое сопротивление, через которое анод диода И подключается к опорному напряжению. Диод D5 используется как элемент обратной связи между входом DA2/8 и выходом схемы защиты — коллектором Q1. Положительный потенциал от коллектора ()1 передается на инвертирующий вход компаратора DA2, еще более увеличивая разность потенциалов между его входами. Система защиты после переключения компаратора и транзистора Q1 приходит в равновесное состояние. Вывести систему защиты из состояния блокировки микросхемы TL494 можно только переключением первичного напряжения питания и выполнения полного цикла начальной инициализации всей схемы источника питания.

На рис. 3.19 представлена комплексная схема защиты источника питания, последняя в данном подразделе, на которой компоненты узла защиты изображены полностью, а схемы включения полумостового усилителя мощности и ШИМ преобразователя — микросхемы Т1.494 — условно.

Схема реализует самый полный комплекс мер по защите элементной базы источника питания. Данный каскад защиты реагирует на увеличенное потребление энергии по основным каналам вторичных напряжений, чрезмерное возрастание уровня напряжения в канале +12 В, а также на КЗ по всем вторичным каналам. Ни в одной из схем защиты не рассматривался вариант, содержащий отдельные датчики, настроенные на контроль превышения уровня вторичного напряжения для канала +5 В. Основная нагрузка, как правило, подключается именно к выходу этого канала и функции слежения за значением его напряжения возложены на узлы микросхемы TL494. При рассмотрении работы функциональных узлов этой микросхемы будут использованы обозначения, принятые на рис. 2.7.

Управление длительностью импульсов управления усилителя мощности может выполняться как с помощью усилителя DA3, так и по сигналам DA4. Принципиальной разницы нет, но традиционно (что видно по всем приведенным примерам) сигнал рассогласования вырабатывается усилителем DA3, а усилитель DA4 используется в составе схемы защиты для принудительного ограничения длительности импульсов управления и блокировки ШИМ преобразователя. В схеме, представленной на рис. 3.19, слежение за выходным уровнем этого канала выполняется с помощью операционного усилителя DA3, входы которого выведены через выводы TL494/1 и TL494/2. Выходы усилителей соединены через развязывающие диоды. При нормальном режиме работы источника питания на выходе усилителя DA4 установлено нулевое напряжение, и оно не оказывает влияния на сигнал, действующий на выходе усилителя DA3. Усилитель DA4 не охвачен обратной связью, поэтому его работа аналогична функционированию компаратора — выход этого усилителя может иметь только два состояния: низкого и высокого уровней. Процесс перехода из одного состояния в другое происходит достаточно быстро. При низком уровне на выходе DA4 диод D2 закрыт, а при высоком уровне этот диод открывается. Выходной уровень усилителя зависит от соотношения напряжений на выводах TL494/16 и TL494/15, через которые подводятся входные сигналы к усилителю DA4. В схеме, приведенной на рис. 3.19, вывод TL494/16 подключен к общему проводу вторичной цепи. На вход Т?.494/15 подведено напряжение от делителя на резисторах R24 и R25. Резисторы делителя запутываются от датчика ширины импульсов управления (подводится к точке соединения R24 и R25) и источника напряжения, подключенного между выходом вторичного канала +5 В и выводом TL494/14. От датчика длительности импульсов управления на делитель поступает отрицательное напряжение, которое формируется на конденсаторе С7, куда оно подается от датчика, выполненного на трансформаторе Т1. Во вторичной цепи трансформатора включен двухполупериодный

На рис. 3.19 представлена комплексная схема защиты источника питания, последняя в данном подразделе, на которой компоненты узла защиты изображены полностью, а схемы включения полумостового усилителя мощности и ШИМ преобразователя — микросхемы TL494 — условно.

Схема реализует самый полный комплекс мер по защите элементной базы источника питания. Данный каскад защиты реагирует на увеличенное потребление энергии по основным каналам вторичных напряжений, чрезмерное возрастание уровня напряжения в канале +12 В, а также на КЗ по всем вторичным каналам. Ни в одной из схем защиты не рассматривался вариант, содержащий отдельные датчики, настроенные на контроль превышения уровня вторичного напряжения для канала +5 В. Основная нагрузка, как правило, подключается именно к выходу этого канала и функции слежения за значением его напряжения возложены на узлы микросхемы TL494. При рассмотрении работы функциональных узлов этой микросхемы будут использованы обозначения, принятые на рис. 2.7.

Управление длительностью импульсов управления усилителя мощности может выполняться как с помощью усилителя DA3, так и по сигналам DA4. Принципиальной разницы нет, но традиционно (что видно по всем приведенным примерам) сигнал рассогласования вырабатывается усилителем DA3, а усилитель DA4 используется в составе схемы защиты для принудительного ограничения длительности импульсов управления и блокировки ШИМ преобразователя. В схеме, представленной на рис. 3.19, слежение за выходным уровнем этого канала выполняется с помощью операционного усилителя DA3, входы которого выведены через выводы TL494/1 и TL494/2. Выходы усилителей соединены через развязывающие диоды. При нормальном режиме работы источника питания на выходе усилителя DA4 установлено нулевое напряжение, и оно не оказывает влияния на сигнал, действующий на выходе усилителя DA3. Усилитель DA4 не охвачен обратной связью, поэтому его работа аналогична функционированию компаратора — выход этого усилителя может иметь только два состояния: низкого и высокого уровней. Процесс перехода из одного состояния в другое происходит достаточно быстро. При низком уровне на выходе DA4 диод D2 закрыт, а при высоком уровне этот диод открывается. Выходной уровень усилителя зависит от соотношения напряжений на выводах TL494/16 и TL494/15, через которые подводятся входные сигналы к усилителю DA4. В схеме, приведенной на рис. 3.19, вывод TL494/16 подключен к общему проводу вторичной цепи. На вход Т1.494/15 подведено напряжение от делителя на резисторах R24 и R25. Резисторы делителя зачитываются от датчика ширины импульсов управления (подводится к точке соединения R24 и R25) и источника напряжения, подключенного между выходом вторичного канала +5 В и выводом TL494/14. От датчика длительности импульсов управления на делитель поступает отрицательное напряжение, которое формируется на конденсаторе С7, куда оно подается от датчика, выполненного на трансформаторе Т1. Во вторичной цепи трансформатора включен двухполупериодный

 

 

 

выпрямитель, с помощью которого выделяются импульсы отрицательной полярности. Импульсный сигнал сглаживается фильтром, состоящим из резистора R23 и конденсатора С7. Соотношение резисторов R24 — R27, подключенных к входу TL494/ 15, выбрано так, чтобы в режиме нормальной работы напряжение на этом выводе было положительным. Этим обеспечивается установка нулевого уровня на выходе DA4. При возникновении перегрузки и расширении импульсов управления силовым каскадом отрицательное напряжение на конденсаторе С7 начинает повышаться. Рост отрицательного напряжения приводит к снижению положительного потенциала на выводе TL494/15. Когда напряжение на этом выводе уменьшится до нулевого уровня, усилитель DA4 переключится и на его выходе появится высокое напряжение. Его значение превышает выходной уровень усилителя DA3, диод D1 оказывается закрытым, а выход DA3 блокированным. Переключение DA4 протекает быстро и проходит через стадию, в течение которой таким нарастающим напряжением вызывается принудительное ограничение длительности выходных импульсов ШИМ преобразователя. Перед полной блокировкой ширина импульсов плавно, но достаточно быстро уменьшается до нуля. Генерация импульсов прекращается, ритмичное переключение силовых транзисторов останавливается. Передача энергии через импульсный трансформатор отсутствует, вторичные цепи обесточиваются.

С помощью усилителя DA4 в схеме защиты выполняется слежение только за длительностью импульсов управления. Остальные функциональные узлы контроля состояния вторичных цепей воздействуют на микросхему TL494 через неинвертирующий вход внутреннего компаратора мертвой зоны DA1, соединенный с выводом 4 этой микросхемы.

К выводу TL494/4 подключены схемы «медленного» запуска, выход схемы защиты и каскад, шунтирующий схему защиты в течение инициализации узлов источника питания. «Медленный» запуск обеспечивается за счет применения дифференцирующей цепи на конденсаторе С2 и резисторе R14. Выходным активным элементом системы защиты является транзистор Ц2. К его коллектору по схеме «монтажного ИЛЦ» подключен ключевой транзистор Q1. К базе этого транзистора подсоединен резистивный делитель R7 и R8. Верхний по схеме резистор R7 делителя через конденсатор С1 соединен с шиной питания микросхемы TL494. Когда на этой шине появляется питающее напряжение, на базе транзистора Q1 возникает положительный импульс. Положительным импульсом транзистор Q1 открывается, и в течение времени перезарядки конденсатора С1 на его коллекторе поддерживается напряжение, близкое к потенциалу общего провода. Вторичные напряжения нарастают с задержкой относительно всех напряжений питания каскадов защиты и микросхемы ШИМ управления — TL494.

 Благодаря работе транзистора Q1, в начальный момент исключается возможность появления положительного потенциала на входе TL494/4. Только после появления нормальных уровней в цепях вторичных каналов транзистор Q1 переключается и остается в закрытом состоянии до конца рабочего цикла источника питания. Закрытый транзистор не мешает работе выходного каскада системы защиты на Q2.

Рабочее состояние источника питания сохраняется до тех пор, пока на коллекторе Q2 не появится положительный потенциал, который через диод D4 передается на вход TL494/4. С появлением этого напряжения прекращается функционирование импульсного преобразователя. Положительное напряжение достаточного уровня для блокировки микросхемы TL494 будет присутствовать на коллекторе Q2, если он окажется в закрытом состоянии. База транзистора Q2 постоянно подключена: к общему проводу, поэтому для поддержания его  в проводящем состоянии на эмиттере должен быть установлен потенциал, равный примерно — 0,7... — 0,8 В, Для формирования такого напряжения используется схема, состоящая из элементов D9, R21, R22, R13 и D6. На диоде D9 и резисторе R22 собран датчик фиксации КЗ, а на стабилитроне датчик превышения уровня напряжения по каналу +12 В. Если уровни напряжений по выходам отрицательных каналов нормальны, то в точке соединения диода D9 . и резистора R22 напряжение составляет — 5,8 В, Делителем напряжения, состоящим из резисторов, 213 и R21, на эмиттере транзистора Q2 устанавливается напряжение — 0,7... — 0,8 В. Пока уровень напряжения в канале +12 В находится в допустимых пределах, наличие стабилитрона D6 на работу транзисторного каскада на Q2 влияния не оказывает.

Переключение транзистора Q2 может произойти только в случае резкого падения уровня любого  вторичных каналов с отрицательными номиналами напряжений. При этом напряжение на катоде диода D9 приблизится к потенциалу общего провода, что также отразится на уровне напряжения на эмиттере Q2. Транзистор закроется, и напряжение опорного источника от TL494/14 через диод D4 поступит на вход TL494/4. Второе условие, Которое окажется достаточным для увеличения положи- тельного потенциала на эмиттере () 2, — рост напряжения по каналу +12 В выше уровня стабилизации стабилитрона D6, которое составляет 15 В. Если эти условие выполняется, то, несмотря на нормальное состояние напряжений по отрицательным каналам, потенциал на эмиттере Q2 будет нулевым или даже положительным. Транзистор закроется, и далее заблокируется микросхема TL494.

Наряду с рассмотренными каскадами к эмиттеру Q2 подключены датчики короткого замыкания по основным вторичным каналам. Выполнены они на двух компараторах DA1 и DA2 из состава микросхемы LM339. На неинвертирующий входах каждого из компараторов установлен общий опорный уровень, сформированный от стабильного напряжения, вырабатываемого на выводе TL494/14. На инвертирующие входы компараторов поданы напряжения, пропорциональные уровням выходов по каналам +5 и +12 В. В исходном состоянии уровень опорного напряжения на входах DA1/7 и DA2/5 ниже, чем на инвертирующих входах. Напряжение на выходах низкое. Каждый выход подключен к эмиттеру Q2 через диоды развязки. Падение напряжения в одном или обоих основных каналах вызовет переключение выходного уровня компаратора. Через соответствующий диод развязки D2 или D3 и диод D5 положительное напряжение поступит на эмиттер Q2, вызывая его запирание. С момента запирания транзистора Q2 начинаются последовательные переключения внутренних элементов микросхемы TL494, которые приводят к отключению ее выходных каскадов и обесточиванию вторичных цепей.

Логика микропроцессорной системы персонального компьютера организована таким образом, что для инициализации ее нормального функционирования требуется подача не только определенного напряжения питания, но и служебных сигналов, Импульсный преобразователь напряжения вырабатывает сигнал высокого логического уровня для информирования вычислительной системы о том, что напряжения питания приняли номинальное значение и компьютер может начинать свою работу. В схеме, представленной на рис. 3.2, узлом на транзисторе Q7 вырабатывается сигнал «питание в норме» (POWERGOOD). Сигнал снимается с коллектора транзистора Q7. В исходном состоянии

вторичных цепей, когда напряжения на них отсутствуют; каскад на Q7 обесточен. Питание коллекторной цепи транзистора ()7 осуществляется от выходной цепи вторичного напряжения канала +5 В. Принцип срабатывания каскада на этом транзисторе аналогичен функционированию узла на транзисторе Q2. Базовая цепь транзистора ()7 соединена с выходом канала +5 В через электролитический конденсатор С22. Появление положительного напряжения на выходе этого канала сопровождается возникновением положительного потенциала на отрицательной обкладке С22. Этот потенциал через резистор R36 поступает на базу транзистора Q7. Эмиттер транзистора Q7 соединен с общим проводом, поэтому возрастающее базовое напряжение открывает транзистор. Когда потенциал на базе увеличивается до уровня 0,7... 0,8 В, транзистор ()7 переходит в насыщение и напряжение на его коллекторе падает до низкого логического уровня. По мере заряда конденсатора С22 напряжение на базе транзистора Q7 снижается и он закрывается. Напряжение на коллекторе транзистора возрастает до уровня питания, равного +5 В. Сигнал «питание в норме» должен вырабатываться при каждом включении источника питания. Если через короткий промежуток времени появляется необходимость повторного включения источника питания, то необходимо полностью разрядить конденсатор С22. В цепь ускоренного разряда конденсатора введен диод D23, шунтирующий сопротивления резистивного делителя на R36 и R37. Разряд этого конденсатора после отключения электропитания осуществляется через диод D23, минуя резистивные элементы.

Существует определенное разнообразие схем формирования сигнала POWERGOOD. Они отличаются сложностью схемотехники и логикой работы. Приведем несколько примеров. Для формирования сигнала «питание в норме» в различных схемах очень часто применяется интегральная микросхема типа LM339, структурная схема которой представлена на рис. 3.20. Разводка выводов приведена для исполнения в пластиковом корпусе типа ШР.

Микросхема содержит четыре одинаковых компаратора напряжений. Выходные каскады в них содержат транзисторные ключи с открытым коллектором. Для нормального функционирования выход компаратора подключается к источнику положительного напряжения через токозадающий резистор. Положительное напряжение питания на все элементы микросхемы подается через вывод 3. Общий провод схемы, соединенный с выводом 12, подключается к отрицательному полюсу источника питания.

 

 Высокий уровень сигнала «питание в норме» устанавливается при достижении вторичными напряжениями номинальных величин. В схемотехнике используется несколько способов формирования сигнала «питание в норме». Оно может выполняться прямым измерением пороговым устройством выходного напряжения в канале +5 В или применением каскада, обеспечивающего задержку нарастания основного напряжения на выходе схемы и подачи его на вывод PG. В схеме, представленной  рис.3.21, генерация сигнала «питание в норме» происходит в результате косвенной оценки уровня напряжения вторичного канала +5 В. В электронном каскаде применен один интегральный компаратор из состава микросхемы LM339 и эмиттерный повторитель напряжения на Q 1. Благодаря применению компаратора на шине PG, сигнал имеет ступенчатый характер с крутым— фронтом. Этим исключается неустойчивая работа цифровых схем нагрузки, возможная при плавном нарастании уровней импульсов.

В начальный момент работы схемы напряжение  питания появляется на микросхеме ШИМ преобразователя — TL494. Внутренней источник опорного напряжения на выводе Т494/14 формирует опорное стабилизированное напряжение +5 В, которое через резистивный делитель на RЗ, R4 подается на инвертирующий вход усилителя DA3 микросхемы TL494. Пока на выходе вторичного канала +5 В напряжение не достигнет номинального значения, напряжение на выходе усилителя DA3 будет иметь низкий уровень. К выходу TL494/3 подключена база эмиттерного повторителя напряжения. Низкий уровень с этого выхода микросхемы передается в эмиттерную цепь транзистора и далее на неинвертирующий вход компаратора микросхемы LM339. На втором входе выставлен опорный уровень напряжения, снимаемый с резистивного делителя напряжения на резисторах R9 и R10. Резистивный делитель включен между выходом Т1.494/14 . и общим проводом. Напряжение на входе LM339 компаратора превышает уровень, установленный; на выводе.7. Напряжение на выходе компаратора низкое. В процессе «медленного» запуска источника питания происходит постепенное повышение напряжения на выходе канала +5 В, которое передается на вход TL494/1 внутреннего усилителя ошибки DA3. По мере увеличения разности потенциалов между входами усилителя DA3 на его выходе происходит изменение напряжения. Оно получает положительное приращение и достигает уровня, при котором открывается диод D

 Через открытый диод положительный потенциал проходит на внутренние каскады микросхемы TL494, а также на базу транзистора Q1. Повышение базового напряжения повторяется на эмиттере Q1 и передается на вход 7 компаратора микросхемы LM339. Когда напряжение на этом входе сравняется с уровнем, установленным на втором входе — выводе 6, произойдет переключение компаратора и на его выходе возникнет потенциал, близкий по значению выходному напряжению канала +5 В. Напряжение на выходе 1 компаратора появляется с задержкой относительно момента установки выходных уровней во вторичных каналах источника питания. Дополнительная задержка обеспечивается подключением к эмиттеру транзистора Q1 электролитического конденсатора С2. Заряд на конденсаторе нарастает плавно, задержку появления высокого уровня сигнала «питание  в норме можно регулировать как величиной емкости конденсатора С2, так и номиналом резистора R7, через который происходит процесс заряда. Таким образом, данная схема не содержит элементов ' слежения за уровнем напряжения непосредственно на выходе канала +5 В (за исключением усилителя DA3 микросхемы TL494). Решение о достижении вторичными напряжениями номинальных уровней принимается по виду сигнала на выводе TL494/3 в момент начала их активной регулировки микросхемой TL494.

В схеме, элементы которой изображены на рис.3.22, формирование сигнала «питание в норме» производится при предполагаемом условии, что во вторичных цепях все процессы протекают нормально.

 

 

Уровни вторичных напряжений в схеме не оцениваются. Схема разработана с учетом последовательности появления напряжений питания каскада ШИМ управления. Положительный перепад сигнала вырабатывается пороговыми схемами. Выходной каскад выполнен на транзисторном ключе, коллекторная нагрузка которого (резистор К6) подключены к напряжению вторичного канала +5 В.

Принцип работы электронной схемы, приведенной на рис. 3.22, становится понятным, если проследить динамику процесса появления питающих напряжений в каскаде ШИМ преобразователя. Когда источник питания подключается к первичной сети, возбуждается схема обеспечения начального питания каскада ШИМ управления. Появляется напряжение питания этого каскада; поступающее на TL494/12. При достижении этим напряжением уровня +7 В происходит запуск внутренних функциональных узлов схемы ШИМ преобразователя, а на его вывод 14 поступает опорное напряжение с номинальным уровнем +5 В. Этим опорным напряжением запутывается микросхема компаратора и от него же устанавливается уровень напряжения на выводах 5 и 6. В это время продолжается увеличение потенциала на TL494/14 и, соответственно, на стабилитроне D1. Пока его напряжение не превысит уровень стабилизации, потенциал на резисторе Ri будет оставаться нулевым. Уровень на выходе верхнего по схеме компаратора так же нулевой. На аноде диода D3, соединенном с входом 4 второго компаратора, напряжение имеет. значение +0,8 В, до этого уровня через резистор R4 и заряжается конденсатор С1. Так как опорное напряжение на входе 5 больше уровня на входе 4, на выходе второго компаратора устанавливается напряжение, равное опорному. Транзисторным ключом Q1 высокий уровень инвертируется. Когда происходит «пробой

 

 

стабилитрона и напряжение на резисторе R1 достигает уровня опоры, установленной на входе DA1/7, компаратор переключается. Диод DЗ оказывается под закрывающим напряжением. Напряжение на аноде DЗ начинает плавно повышаться, благодаря заряду конденсатора С1. Постоянная времени заряда зависит от значения емкости самого конденсатора C1 и резистора R4. Потенциал на С1 нарастает до уровня опорного напряжения. В момент сравнения напряжений на входах DA2/4 и DA2/5 компаратор DA2 опрокидывается и на его выходе уровень спадает практически до потенциала общего провода.

 Транзисторный ключ на Qf закрывается, на его коллекторе напряжение равно уровню, который в данный момент достигнут во вторичном канале +5 В. Применение компараторов в схеме обеспечивает формирование выходного сигнала с крутым фронтом. Без них изменение напряжения в цепи PG происходило бы плавно, отслеживая нарастание или спад уровня на конденсаторе С1.

На рис. 3.23 показан фрагмент принципиальной  схемы вторичной цепи импульсного источника питания. В состав фрагмента включена цепь выпрямления и фильтрации напряжения канала+5 В, а также узел, вырабатывающий сигнал POWERGOOD, выполненный с применением компараторов из микросхемы LM339.

Особенность данной схемы состоит в том, что при включении источника питания происходит формирование сигнала «питание в норме» с задержкой относительно вторичных напряжений, а при отключении блока питания от сети этот служебный сигнал снимается до спада уровней вторичных напряжений.

Для работы узла формирования сигнала «питание в норме» используются только вторичные напряжения источника питания. Питание компараторов микросхемы LM339 осуществляется от стабилизированного напряжения канала+5 В. Этим же напряжением устанавливаются опорные уровни на входах компаратора. К одному из выводов вторичной обмотки канала+5 В подключен однополупериодный выпрямитель положительного напряжения на диоде D1. Выпрямитель нагружен на RC фильтр (элементы Ri, С1) и резистивный делитель на R2 и RЗ. Керамический конденсатор С1 имеет относительно небольшую емкость (несколько тысяч пикофарад) по сравнению с фильтрующими конденсаторами, установленными на выходе канала+5 В. Заряд С1 происходит очень быстро и достигает уровня, равного амплитуде действующих на вторичной обмотке импульсов, то есть =10 В. Когда напряжение на выводе L

M339 возрастет до минимального уровня питания компараторов, на входе LM339/9 начнет действовать потенциал, превышающий значение напряжения на LM339/8. Напряжение на выходе компаратора DA1/14 будет

 

 

иметь высокий уровень, его абсолютное значение будет определяться степенью заряда выходных конденсаторов канала +5 В. С некоторой задержкой относительно вывода 9 напряжение нарастает на входе 10, а уровень напряжения на?.М339/11 зависит от времени заряда конденсатора С5. Заряд происходит через резистор R9. Емкость конденсатора С5 может составлять несколько микрофарад, а сопротивление резистора R9 примерно 50 кОм. Между выводами 9 и 11 включен резистор R7 достаточно большого номинала, благодаря которому обеспечивается развязка, а также разнесение по времени нарастания напряжений на них. В начальный момент работы схемы, когда заряд на конденсаторе С5 полностью отсутствует и ток, протекающий через него, максимален, напряжение на выводе LM339/11 определяется соотношением сопротивлений резисторов R7 и R8. Сопротивление R8 во много раз меньше, чем у резистора R7, поэтому потенциал в точке их соединения близок к уровню общего провода. Цепь заряда конденсатора С4 также имеет меньшую постоянную времени, чем цепь заряда конденсатора С5, поэтому более высокий уровень напряжения первоначально появляется на входе 1.М339/10. Выходное напряжение компаратора DA2 практически сразу после включения источника имеет на выходе низкий уровень. Через сопротивления резисторов R8 и R9 заряжается конденсатор С5. Когда напряжение на нем превысит потенциал на конденсаторе С4, произойдет переключение DA2 и на его выходе скачком появится высокий уровень напряжения.

Конденсаторы цепи фильтрации импульсного напряжения канала +5 В имеют достаточно большую емкость, чтобы сохранять заряд после отключения источника питания от сети. В цепи выпрямителя на диоде Ш установлен конденсатор небольшой емкости, уровень напряжения на котором быстро изменяется при флуктуациях напряжения на вторичной обмотке трансформатора Т. В результате исчезновения импульсов напряжения на вторичной обмотке конденсатор С1 быстро разрядится. В точке соединения резисторов R2 и R3 уровень также упадет раньше, чем это произойдет на входе LM339 Уровень на выходе компаратора РА1 изменится от высокого к низкому. Выходной транзистор компаратора DA1 будет открыт, и через него начнется разряд конденсатора С5. Постоянная времени разряда этого конденсатора зависит от его собственной емкости и величины сопротивления резистора R8. Однако она значительно меньше, чем постоянная времени разряда конденсатора С4. Спад напряжения на С5 произойдет быстрее, чем на С4. На выходе компаратора DA2 высокий уровень также изменится на низкий. Сброс активного уровня на шине «питание в норме  информирует вычислительную систему о необходимости завершения рабочего цикла и остановки.

 

3.5. Проведение работ с блоками питания компьютеров класса АТ/ХТ

 

В главе 2 настоящей книги достаточно подробно рассмотрены основные способы подключения оборудования и методика подачи питающих напряжений на импульсные блоки питания. Цель наших, рекомендаций заключается в том, чтобы максимально обезопасить процесс проведения измерений " и диагностики. Общие положения и рекомендации " по методике работ с импульсными бестрансформаторными источниками питания универсальны  и применимы для узлов, описанию которых посвящена глава 3. Диаграммы напряжений для каскадов ШИМ преобразователя, промежуточного усилителя, а также полумостового усилителя мощности приведены в соответствующих разделах главы 2. Материал раздела 2.5 является базовым, поэтому перед чтением нижеследующего описания следует ознакомиться с положениями этого раздела. В главе 2 содержится перечень контрольно-диагностического оборудования для проведения проверок работоспособности различных узлов. Безусловно, каждое изделие имеет свои особенности тестирования, кроме того, организация рабочего места для работы требует индивидуального подхода. Материал данного раздела посвящен конкретным особенностям работы с импульсными источниками питания, построенными на основе принципиальной схемы, соответствующей рис. 3.2. Все предварительные проверки функционирования отдельных узлов импульсного преобразователя должны производиться только от внешних источников питания, указанных в описании. Применение иных источников питания и особенно подключение преобразователя непосредственно к сети переменного тока может привести к дальнейшему повреждению тестируемого прибора.

 

3.5.1. Проверка каскада ШИМ преобразователя

Если в процессе функционирования источника питания отмечены отклонения от его нормального режима работы или произошел полный его отказ, проверку работоспособности преобразователя следует производить поэтапно, последовательно включая узлы схемы. Последовательная проверка необходима как для локализации неисправности, так и для обеспечения максимальной безопасности. Для облегчения собственной работы по проверке функционирования каскадов формирования ШИМ последовательностей следует предварительно выяснить, следующие ключевые моменты:

 какой способ подачи питания на ШИМ преобразователь применяется в данном изделии;

какая схема защиты используется; при этом необходимо определить цепи микросхемы TL494, к которым подключаются каскады защиты.

Правильная идентификация типа схемы позволит правильно подключить внешние источники питания и измерительные приборы.

На начальном этапе целесообразно проконтролировать корректность процесса генерации импульсных последовательностей на выходах микросхемы 1С1 и формирования сигналов внешнего возбуждения промежуточным усилителем на транзисторах Q3 и Q4. Для проверки работоспособности этих узлов достаточно двух источников стабилизированных положительных напряжений, а также осциллографа. При подключении оборудования электропитания все приборы должны быть обесточены. Схема подключения стабилизированных источников питания к узлу ШИМ преобразователя для проверки его функционирования приведена на рис. 3.24.

Позиционные обозначения элементов соответствуют их обозначению на принципиальной схеме, представленной на рис. 3.2. На схеме показано, что диод D4 исключен из цепи, в которой он установлен. Это сделать необходимо, иначе во время проверки в отсутствие вторичных напряжений будет происходить срабатывание защиты и возникнет блокировка выходных каскадов микросхемы TL494. Остальные элементы преобразователя не окажут влияния на ход проверки. Отключение системы защиты необходимо произвести при работе с любым преобразователем. Предварительно следует определить тип схемы защиты, элементы, входящие в ее состав, чтобы при отключении не внести изменений в работу каскада ШИМ преобразователя.

Напряжение питания, подаваемое от внешнего стабилизированного источника 1 должно составлять +25 В. Уровень напряжения на источнике 2 должен быть равен +5 В. Оба внешних источника

 

 

питания должны включаться одновременно. После включения источника 1 напряжение будет подано на микросхему 1С1 и промежуточный усилитель на транзисторах ЯЗ и Q4. После подачи питания микросхема IC1 должна перейти в режим автоматической генерации импульсных последовательностей на своих выходах IC1/8 и IC1/11. Измерение параметров сигналов и контроль режимов работы элементов следует проводить относительно общего провода вторичной цепи (отрицательный полюс внешнего источника). Прохождение импульсных сигналов в данном режиме питания схемы преобразователя можно проверить через согласующий трансформатор ТЗ, также их можно найти в базовых цепях силовых транзисторов усилителя мощности. Характеристики импульсов в базовой цепи транзистора 5 измеряются относительно эмиттера Q5. Точно так же все измерения в базовой цепи Q6 производятся относительно эмиттера Q6. Источник питания 2 имитирует работу выходных цепей вторичного канала +5 В. Изменением в небольших пределах напряжения этого источника проверяется функция слежения Ш ИМ преобразователя за уровнем вторичного канала. При понижении уровня напряжения источника 2 положительные импульсы на коллекторах транзисторов Q3 и Q4 должны расширяться. При повышении напряжения источника выше номинального значения длительность положительных импульсов сокращается.

 

3.5.2. Безопасная проверка функционирования силового каскада

Если при проверке функционирования каскадов ШИМ преобразователя и промежуточного усилителя не обнаружено отклонений от нормального режима, можно подключать питающее напряжение к усилителю мощности. Для этого отрицательный полюс источника питания 1 следует соединить с эмиттерной цепью транзистора Q6, а положительный полюс этого же источника подключить к коллекторной цепи транзистора Q5. При этом все соединения, выполненные для проверки ШИМ преобразователя, должны быть сохранены.

После одновременного включения обоих внешних стабилизированных источников питания должна запуститься микросхема IC1. Если в каскаде усилителя мощности нет поврежденных элементов, то в точке соединения конденсаторов сетевого фильтра С10 и С11 уровень напряжения будет равен половине напряжения источника 1. На коллекторе ()6 должен наблюдаться трехуровневый импульсный сигнал, полный размах которого равен напряжению питания усилителя мощности.

Измерения режимов работы усилителя мощности следует проводить относительно эмиттерной цепи транзистора ()6.

При использовании внешних низковольтных источников постоянного напряжения на вторичных обмотках силового трансформатора Т4 будут присутствовать импульсные колебания с пониженными уровнями, а именно: трехуровневые колебания с паузой, наблюдаемой при переходе сигнала через нулевой уровень. На выходах выпрямителей появятся униполярные импульсы. По частоте их следования можно оценить правильность работы каждого из диодов выпрямителя. В указанном режиме подключения источников питания импульсы на выходе выпрямителя канала+5 В будут отсутствовать.

По окончании проверки необходимо отключить все источники питания от преобразователя, а также восстановить все соединения, нарушенные в процессе подготовки к проведению диагностики.

 

3.5.3. Заключительная проверка блока питания

Завершающий этап контроля параметров импульсного источника питания следует выполнять только после предварительного прогона отдельных узлов от дополнительных внешних источников постоянного напряжения. На последней стадии все каскады преобразователя проверяются при подключении к источнику переменного напряжения номинального уровня, поэтому все неисправности должны быть устранены в процессе предварительной проверки.

Проведение проверки работоспособности всех функциональных узлов и проведение измерений с применением осциллографа следует выполнять при подключении тестируемого изделия к первичной сети через развязывающий трансформатор, Схема, демонстрирующая такое подключение, приведена на рис. 2.21. Трансформатор VT первичной обмоткой соединен с первичной сетью. К вторичной обмотке подключен тестируемый импульсный источник питания, Напряжение вторичной обмотки трансформатора должно укладываться в допуск на входное напряжение данного изделия. При соблюдении этого условия вторичные напряжения будут иметь номинальные уровни напряжений, все пороговые устройства системы защиты будут корректно работать. Измерения с помощью осциллографа можно производить относительно любой точки схемы.

Внимание! Несмотря на наличие развязывающего трансформатора, все работы следует выполнять, соблюдая общепринятые меры предосторожности, Будьте предельно внимательны, так как действующие напряжения первичной цепи преобразователя имеют уровни, превышающие 3 10 В. Когда источник находится под напряжением питания, категорически запрещается трогать руками элементы первичной сети.

 

3.6. Основные неисправности, методы их поиска и устранения

Проведение ремонтных работ любого электронного устройства в большинстве случаев имеет комплексный характер. Поиск неисправности, ее локализация и устранение проводятся, как правило, с помощью контрольно-диагностических измерительных приборов. После любого вида ремонтное восстановительных работ необходимо проводить тщательную предварительную проверку функционирования узлов блока питания по методике, приведенной в предыдущем пункте. В некоторых случаях постепенная проверка каскадов позволяет обнаружить дефекты, не выявленные ранее, и проконтролировать правильность проведенных замен элементов. Все операции по измерению электрических режимов работы элементов силового каскада следует проводить согласно рис. 2.21.при подключении источника питания к сети через трансформатор развязки.

При проведении диагностики основных полупроводниковых приборов необходимо проверять и пассивные элементы, задающие электрические режимы функционирования активных компонентов. Нередко дефект, вызванный отказом именно пассивных элементов, является причиной потери работоспособности узла на активных приборах. Перед принятием окончательного решения по поводу замены убедитесь в нормальном состоянии печатных проводников платы и пассивных элементов.

Безусловно, в качестве рекомендаций по проведению ремонтных работ следует особо отметить необходимость всестороннего анализа причин, которые могли привести к появлению дефекта или отказу работоспособности. При выявлении причины нужно восстановить логику действий, вызвавших тот или иной отказ, на основании которых легче спрогнозировать возможные неисправности элементов и локализовать их. Если возникает необходимость замены элементов, ее следует проводить с использованием оригинальных компонентов или самых близких функциональных аналогов. При этом подборе элементов в первую очередь учитываются параметры, наиболее критичные для функционирования

в конкретных условиях. К ним могут относиться тепловые режимы, максимальные величины тока или напряжения используемого прибора. Локализовать неисправный узел можно по внешним признакам проявления дефекта и, соответственно, наметить план действий по выявлению возникшей неисправности.

При включении блока питания сгорает предохранитель.

Возможная причина: в каскаде усилителя мощности неисправны силовые транзисторы. Алгоритм поиска неисправности:

1. При отключенном электропитании импульсного преобразователя тестером провести проверку целостности внутренней структуры силовых транзисторов Q5 и Q6. Дополнительно проверить отсутствие электрического контакта корпусов этих транзисторов с радиатором. Во время проверки транзисторов следует учитывать, что во внутренней структуре мощных полупроводниковых приборов могут быть включены дополнительные диоды между эмиттером и коллектором или между эмиттером и базой.

2. если требуется замена транзисторов, то аналоги должны соответствовать оригинальным приборам по рабочим уровням напряжений, тока, а также по частотным характеристикам. Выход из строя силовых транзисторов может повлечь за собой отказ пассивных элементов, установленных в базовых цепях транзисторов Q5 и Q6. Перед проведением контрольных прогонов при подключенном напряжении питания эти элементы также должны быть предварительно проверены.

Возможная причина: выход из строя элементов, обеспечивающих режим «медленного» запуска источника питания.

Алгоритм поиска неисправности:

1. Убедиться в целостности печатных проводников, соединяющих элементы R16 и C6 с соответствующими выводами микросхемы IC1.

2. Обязательно проконтролировать соответствие обозначенных на элементах номиналов реальным параметрам, а также отсутствие повреждений на них.

З.Влияние указанных элементов на неисправность можно объяснить следующими обстоятельствами. При подключении источника питания к сети конденсаторы вторичных каналов разряжены и находятся в состоянии КЗ. На начальном этапе запуска схемы преобразователя включается узел принудительного ограничения длительности импульсов управления. Работа узла основана на постепенном заряде конденсатора C6, включенного в дифференцирующую цепь последовательно с резистором R16. Принцип работы узла «медленного» запуска описан в подразделе 3.4.4. Если произошло нарушение соединения конденсатора C6 и резистора R16, то в начальный момент включения источника на выводе IC1/4 спадающий положительный импульс появляться не будет. При отсутствии

этого напряжения на IC1/4 компаратор «мертвой зоны» DA1 не будет оказывать влияния на параметры последовательности импульсов. Длительность импульсов возбуждения усилителя мощности будет максимальна, так как источник питания работает практически на короткозамкнутую нагрузку.

Возможная причина: переключатель S1 установлен неправильно, вследствие чего уровень входного напряжения не соответствует номиналу.

 Алгоритм поиска неисправности:

1. Если селектор входного напряжения 51 установлено положение, соответствующее 115 В, то выпрямитель и сетевой фильтр сконфигурированы для работы по схеме удвоителя напряжения. Включение такого источника в сеть 220 В приведет к повышению постоянного напряжения на усилителе мощности до уровня, превышающего 600 В, и повреждению электролитических конденсаторов C10 и C11, транзисторов Q5 и Q6 и элементов в базовых цепях силовых транзисторов.

2. После замены неисправных элементов перед включением источника в реальную сеть питания проведите полный комплекс проверок функционирования усилителя мощности в соответствии с методикой изложенной в разделе 3.6.

После подачи питания запуска источника не происходит.

Возможная причина: неисправность в цепи  грации импульса начального питания.

Алгоритм поиска неисправности:

1. В схеме с самовозбуждением узел начального питания ШИМ преобразователя IC1 подключается к выходу выпрямителя канала+12 В. В схеме, приведенной на рис. 3.2, это диод D18 и RC фильтр на C17, C18 и R31. Если есть повреждение в цепи, связывающей связи указанные элементы, то начальный импульс не дойдет до микросхемы IC1. Если же. существуют повреждения конденсаторов в цепи фильтрации, то импульс, действующий на IC1/12, будет очень коротким и внутренняя логика микросхемы не успеет выработать импульсы возбуждения усилителя мощности.

2. Для проверки работы цепи подачи первичного питания на микросхему IC1 при подключении источника питания к сети переменного тока проконтролируйте появление положительного импульса на конденсаторе C18, его сглаживание на C17 и подачу этого напряжения на вывод IC1/12. Контроль появления импульса начального питания, его преобразование в цепи выпрямления и фильтрации и прохождение положительного напряжения на IC1/12 проводить относительно общего провода вторичной цепи.

Возможная причина: отказ элементов каскада задержки включения защиты на транзисторе Q2.

Алгоритм поиска неисправности:

1. В начальный момент включения источника питания вследствие появления импульса положительной полярности на базе Q2 транзистор открывается и шунтирует каскад датчиков перегрузки вторичных цепей на Q1. Если импульс не появляется или неисправен транзистор Q2, шунтирование не происходит. В отсутствие вторичных напряжений транзистор Q1 закрыт и на его коллекторе устанавливается напряжение, равное по уровню опорному, выработанному на IC1/14. Высокий уровень напряжения через диод D4 поступит на IC1/4 и вызовет блокировку Ш И М преобразователя.

2. Контроль срабатывания каскада на транзисторе Q2 проводить при подключении источника питания к сетевому питающему напряжению. Измерения осуществлять относительно общего провода вторичной цепи питания. При нормальной работе каскада на Q2 после появления импульса начального питания на IC1/12 через конденсатор C5 проходит положительный импульс, уровень которого делится на резисторах R4 и R5. Напряжение, пропорциональное соотношению этих сопротивлений, поступает на базу Q2 и открывает его. Транзистор переходит в насыщение. По мере перезаряда конденсатора C5 напряжение на базе Q2 снижается и синхронно с ним закрывается транзистор Q2. Для выявления неисправного элемента необходимо: проверить логику срабатывания элементов в каскаде на транзисторе.

3. Если обнаружено, что в базовой цепи Q2 присутствуют отказавшие пассивные компоненты, замените их на элементы, полностью аналогичные по параметрам, так как их номиналы задают временные характеристики начального шунтирования цепи защиты.

В случае отказа транзистора Q2 его можно заменить п-р-п транзистором малой мощности, например КТ3102, в пластиковом корпусе с любым буквенным индексом.

Возможная причина: после включения происходит блокировка ШИМ преобразователя.

Алгоритм поиска неисправности.

1. Блокировка ШИМ преобразователя может возникать из-за сигналов, поступающих на входы IC1/15 и IC1/4. Ложное срабатывание защиты по входу IC1/15 может возникнуть, если нарушены связи между резисторами R13 — R15. Если из трех резисторов с IC1/15 соединен только один R14, то на этом выводе будет отрицательное напряжение, поступающее от датчика длительности импульсов управления на трансформаторе ТЗ. Напряжение на IC1/15 будет ниже уровня общего провода, к которому подключен вывод IC1/16. При таком соотношении напряжений на указанных входах произойдет блокировка импульсных последовательностей на выходах IC1.

2. Для проверки данного узла следует при выключенном источнике питания проверить все соединения элементов, подключенных к IC1/15, на соответствие принципиальной схеме. Если обнаружены повреждения печатных проводников, их следует восстановить. В случае повреждения элементов, их необходимо заменить.

Возможная причина: происходит ложное срабатывание защиты из-за нарушения электрических связей между элементами в эмиттерной цепи Qi.

Алгоритм поиска неисправности:

1. При нормальном режиме работы источника питания транзистор Q1 находится в проводящем состоянии. Уровень напряжения на его коллекторе близок к потенциалу общего провода. Если транзистор Q1 неисправен или нарушены связи между элементами, подключенными к его эмиттеру, напряжение на коллекторе будет иметь положительный уровень. Через диод D4 оно будет подаваться на вывод IC1/4 и приведет к блокировке ШИМ преобразователя. После подачи питания отключение преобразователя в случае неисправности элементов каскада на Q1 происходит довольно быстро, поэтому обычными измерительными приборами зафиксировать момент появления положительного напряжения на аноде D4 оно достаточно сложно.

2. Чтобы убедиться в исправности этого каскада, нужно при выключенном питании проверить правильность соединений элементов, подключенных к  Q1. Проверить сам транзистор Q1. Если обнаружен неисправный элемент, его обязательно нужно заменить на аналогичный по параметрам. Транзистор Q1 можно заменить на отечественный аналог КТЗ107 с любым буквенным индексом.

Возможная причина: отказ микросхемы ШИМ преобразователя или элементов промежуточного усилителя.

Алгоритм поиска неисправности:

1. При отсутствии воздействий по входам IC1/4 и IC1/15, приводящим к блокировке ШИМ преобразовала, микросхема IC1 начинает функционировать сразу после подачи питания на ее вывод 12. Проверку исправности микросхемы IC1 следует проводить, предварительно отключив все элементы, воздействующие на входы блокировки работы ШИМ преобразователя. Все нагрузки каналов вторичных напряжений должны быть отсоединены. Для отключения элементов защиты по выводу IC1/4 нужно отпаять один из выводов диода D4. При этом останутся включенными элементы, обеспечивающие процесс «медленного» запуска. Отпаяйте один из выводов резистора R14, при этом будет отключен датчик контроля длительности импульсов возбуждения силового каскада.

2. Включите источник питания. Проверьте генерацию импульса начального питания по появлению положительного напряжения на выводе IC1/14. На выводе IC1/12 должно появиться напряжение +5 В. Появление пилообразного напряжения на выводе IC1/5 будет свидетельствовать  нормальном запуске внутреннего генератора.

3. Если все предыдущие проверки дали положительный результат, проконтролируйте появление импульсов на выводах IC1/11 и IC1/8. Кратковременное появление импульсов на выходах микросхемы может служить признаком нормального ее запуска,

но затем она может отключаться вследствие появления сигнала блокировки.

4. Если такой эффект наблюдается, проверьте работоспособность всех элементов, подключенных к выводам IC1/1,2,4,15. Полное отсутствие переменных сигналов на сигнальных выводах и напряжения +5 В на IC1/14 указывает на отказ микросхемы и необходимость ее замены.

5. После проведения необходимых замен элементов все соединения восстановите.

б. Окончательное тестирование отремонтированного источника питания должно проводиться при полной комплектации с подключением всех узлов защиты.

Возможная причина: выход из строя резисторов смещения в базовых цепях силовых транзисторов.

Алгоритм поиска неисправности.

 1. Если в результате проверок предыдущих пунктов обнаружено отсутствие импульса начального питания микросхемы IC1, необходимо проверить исправность элементов в базовых цепях силовых транзисторов. Отсутствие положительного смещения в базовых цепях Q5 и Q6 приведет к нарушению условий автогенерации начального импульса питания и к невозможности запуска.

2. Проверку проводить при отключенном напряжении питания.

Возможная причина: выход из строя резисторов в делителе на R7 и R8.

Алгоритм поиска неисправности:

1. Если неисправен резистор R7, то вывод IC1/1 постоянно подключен к общему проводу через В8. На входах усилителя ошибки ОАЗ (схема на рис. 2.7) постоянно будет присутствовать сигнал рассогласования, заставляющий ШИМ преобразователь увеличивать длительность импульсов управления силовыми транзисторами. В результате напряжения во вторичных каналах будут чрезмерно возрастать, и включится защита по каналу+12 В. Либо от датчика на трансформаторе ТЗ на микросхему IC1 поступит сигнал, свидетельствующий о слишком большой длительности импульсов управления, что также вызовет блокировку ШИМ преобразователя.

2. Отказ резистора R8 приведет к тому, что во вторичных каналах уровни напряжений не будут повышаться до номинальных значений. Сопротивления резисторов в плечах делителей на R7, RВ и R9, R10 должны быть примерно одинаковы. Проверьте правильность соединений этих резисторов и их номиналы.

Короткое замыкание в канале с отрицательным номиналом напряжения не вызывает блокировки источника.

Возможная причина: нарушение электрических связей в канале защиты от перегрузки на Q1.

Алгоритм поиска неисправности: Такой эффект может возникнут  при КЗ в канале-5 В, если неисправен диод D2 или он не подсоединен  к выходу этого канала. Проверьте исправность диода и корректность его подключения в электрической цепи.

Вторичные напряжения в норме. С данным блоком питания компьютер не включается.

Возможная причина: нарушение работы узла формирования сигнала «питание в норме».

Алгоритм поиска неисправности:

1. Каскад на транзисторе Q7 вырабатывает сигнал высокого логического уровня с задержкой относительно времени установления вторичных напряжений. При включении источника питания и появлении вторичного напряжения +5 В на базе Q7 возникает положительный импульс, открывающий транзистор. На его коллекторе устанавливается напряжение, близкое к потенциалу общего провода. Постепенно положительный заряд на отрицательной обкладке конденсатора С22 спадает и транзистор Q7 закрывается. На коллекторе появляется напряжение, уровень которого равен значению, установившемуся во вторичном канале+5 В. В отсутствие этого сигнала не произойдет инициализации логики компьютерной системы.

2. Для того чтобы идентифицировать неисправность в каскаде формирования сигнала «питание в норме», при включении источника проследите логику срабатывания элементов, подключенных к транзистору Q7 и самого транзистора. Отказавший элемент замените.

В одном из вторичных каналов напряжение не достигает номинального уровня.

Возможная причина: отказ одного из диодов выпрямителя или отсутствие у него электрической связи с вторичной обмоткой.

Алгоритм поиска неисправности:

1. Если произошел отказ выпрямительного диода, то в контролируемый канал будет поступать энергии в два раза меньше номинального уровня.

2. Проверьте электрические соединения выпрямительных диодов и их исправность. В случае отказа, замените на аналогичный по параметрам.

 

 

 

 

ПРИЛОЖЕНИЕ

Элементная База для замены радиодеталей

 

При проведении ремонтных работ нередко возникают ситуации, когда нет возможности заменить вышедшие из строя элементы на оригинальные комплектующие. По большей части это относится к полупроводниковым приборам. В настоящее время отечественной промышленностью выпускается достаточно широкий ассортимент диодов и транзисторов, используя которые можно решить возникающие проблемы с элементной базой. Ниже предлагается сводная таблица по активным компонентам, наиболее часто применяемым в импульсных источниках питания, их основные параметры и наиболее близкие отечественные аналоги. В графе «Основные параметры» приведены минимальные характеристики параметров, определяющих возможность использования прибора в конкретной цепи.

 

 

 

Примечание 1. Отечественные сборки являются функциональными аналогами, но конструктивно не совместимы с оригинальными выпрямительными элементами. Конструктивным и функциональным аналогом считается сборка на основе диодов Шоттки фирмы Philips типа PBYR3045PT.

Примечание 2. Отечественные сборки являются функциональными аналогами, но конструктивно не совместимы с оригинальными выпрямительными - элементами. Конструктивным и функциональным аналогом считается диодная сборка фирмы Philips типа BYQ28-200.

При подборе элементов замены особое внимание следует уделять конструктивной совместимости полупроводниковых приборов. Прежде всего, должно учитываться функциональное назначение выводов и способ крепления прибора на теплоотвода. Сборки на основе диодов Шоттки в схемах выпрямителей канала +5 В, могут быть использованы и в цепях канала +3,3 В.

В современных электронных приборах широко применяются резисторы с маркировкой в виде цветных полос. Отечественные резисторы типа С2-23 также выпускаются с аналогичной маркировкой. Номиналы резисторов кодируются четырьмя или пятью полосами. Пять полос имеют резисторы, номиналы которых определяются с точностью до третьего знака. Внешний вид резисторов с маркировкой полосками представлен на рис. П.1.

Расшифровка кодовых обозначений цветовой маркировки приведена в табл. П.2.

Определение номиналов резисторов с четырьмя и пятью полосами проводятся на основе данных, приведенных в табл. П.2. У резисторов с четырьмя полосами первая и вторая полосы определяют соответственно первую и вторую цифры номинала сопротивления, третья полоса — множитель, на который следует умножить значение первых двух цифр. Три первые полосы у пятиполосных резисторов обозначают три цифры номинала, четвертая полоса—

множитель. Последняя полоса для каждого типа маркировки — это допуск. Множитель — число десять в степени, показатель которой определяется цветом соответствующей полосы. В табл., П.2 коэффициент «К» обозначает тысячу (третья степень числа 10), а «М» — миллион (шестая степень числа 10).