УЗБЕКСКОЕ АГЕНТСТВО СВЯЗИ И ИНФОРМАТИЗАЦИИ

ТАШКЕНТСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Факультет Радиотехники, Радиосвязи и Телерадиовещания

                                            

 

                                                                                           Кафедра

Антенно-фидерных

устройств

 

 

 

 

 

 

 

 

Конспект лекций по дисциплине

 

“Устройства СВЧ и Антенны”

 

для направления «Радиотехника»

 

 

 

 

 

Составитель

доц. кафедры АФУ

Губенко В.А.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ОГЛАВЛЕНИЕ

ТЕМА 1. Классификация и характеристики антенн ………………………………………………………………….3

ТЕМА 2. Теория симметричного вибратора …………………………………………………………………………11

ТЕМА 3. Связанные вибраторы. Характеристики вибраторных антенн …………………………………………..31

ТЕМА 4. Способы увеличения рабочего диапазона волн вибраторных антенн.

Частотно–независимые антенны ……………………………………………………………………………………...28

ТЕМА 5. Теория антенных решеток. Линейные и плоские решетки……………………………………………….32

ТЕМА 6. Теория апертурных антенн. Устройство и принцип действия рупорной и

зеркально-параболической антенн ……………………………………………………………………………………44

ТЕМА 7. Антенны поверхностных волн. Устройство и принцип действия диэлектрической антенны. Коэффициент замедления……………………………………………………………………………………………..61

Тема 8. Особенности построения антенн УВЧ и СВЧ диапазонов. Синтез антенных систем и перспективы развития антенной техники……………………………………………………………………………………………66

ТЕМА 9. Введение. Основные параметры и типы линий передачи.

 Классификация линий передачи. Основные режимы работы…………………………………………………………………………………………………………76

ТЕМА 10. Основные типы волн в волноводах. Возбуждение электромагнитных колебаний в направляющих системах…………………………………………………………………………………………………………………80

ТЕМА 11. Элементы трактов СВЧ, их устройство, параметры и характеристики………………………………..82

ТЕМА 12. Направленные ответвители……………………………………………………………………………….94

ТЕМА 13. Фильтры и согласующие цепи СВЧ………………………………………………………………………97

ТЕМА 14. Согласование линий передач…………………………………………………………………………….. 98

ТЕМА 15. Объемные резонаторы СВЧ……………………………………………………………………………..100

ТЕМА 16. Управляющие ферритовые устройства СВЧ…………………………………………………………..107

ТЕМА 17. Перспективы развития техники СВЧ…………………………………………………………………..111

 

 

 

ТЕМА 1. Классификация и характеристики антенн

Антенной называется радиотехническое устройство, предназначен­ное для излучения или приема электромагнитных волн. Антенна является од­ним из важнейших элементов любой радиотехнической системы, связанной с излучением или приемом радиоволн. К таким системам относят: системы ра­диосвязи, радиовещания, телевидения, радиоуправления, радиорелейной свя­зи, радиолокации, радиоастрономии, радионавигации и др.

В конструктивном отношении антенна представляет собой провода, металлические поверхности, диэлектрики, магнитодиэлектрики.

Электромагнитные колебания высокой частоты, модулированные по­лезным сигналом, преобразуются передающей антенной в электромагнитные волны, которые излучаются в пространство. Обычно электромагнитные ко­лебания подводят от передатчика к антенне не непосредственно, а с помо­щью фидера.

Приемная антенна улавливает распространяющиеся радиоволны пре­образует их в электромагнитные колебания, которые через фидер поступают на вход приёмного устройства. В соответствии с принципам обратимости антенн свойства антенны, работающей в режиме передачи не изменятся при работе этой антенны в приемном режиме.

Преобразование антенной одного вида электромагнитных волн в дру­гой должно происходить с минимальными потерями энергии, т.е. с макси­мально возможным КПД, определяемым в передающем режиме по формуле = P/ Р0, где P - мощность излучаемая антенной, Р0 - мощность подводи­мая к антенне.

Способность антенны излучать электромагнитные волны с различной интенсивностью в разных направлениях характеризуется её                                         

направленными свойствами, т.е. диаграммой направленности (ДН).

Антенны, обладающие узкой ДН, позволяют увеличивать напряжен­ность поля в точке приёма без увеличения мощности передатчика. В боль­шинстве случаев это экономически более выгодно, чем увеличения мощно­сти передатчика. Кроме того, концентрация электромагнитных волн в тре­буемом направлении приводит к уменьшению взаимных помех различных радиотехнических систем. Наличие направленных приемных антенн ведёт к ослаблению приема различных внешних помех, т.е. к повышению качества приёма и улучшению помехозащищенности приемного устройства. Больши­ми направленными свойствами должны обладать антенны для космической радиосвязи, радиоастрономии, радиолокации, радиорелейных линий.

В тоже время для радио и телевидения передающие антенны должны иметь одинаковое излучение в горизонтальной плоскости (за исключением отдельных случаев - гор и т.д.).

Направленные свойства являются настолько важными, что принято го­ворить о двух функциях, выполняемых антенной:

- преобразование электромагнитных колебаний в свободные

 электромагнитные волны;                                                           

- излучение этих волн в определенных направлениях.

Важную роль в работе антенного устройства играет линия питания (фидерный тракт), которая передаёт (каналирует) электромагнитную энер­гию от генератора к антенне (или от антенны к приёмнику). Фидер не дол­жен излучать электромагнитные волны и должен иметь минимальные поте­ри. Его необходимо согласовывать с  выходной  цепью  передатчика  ( или  с входной цепью приемника) и с входным сопротивлением антенны, т.е. в фидере должен быть режим бегущей волны или близкий к нему.

В зависимости от диапазона радиоволн применяют различные типы фидеров: двухпроводные или многопроводные воздушные фидеры, несим­метричные экранированные (коаксиальные) линии, различные типы волно­водов и др.

Классификацию антенн можно, например проводить по способу фор­мирования излучаемого поля, выделяя следующие четыре класса антенн:

Излучатели небольших размеров (,где - длина волны) для диа­пазона частот 10кГц...1ГГц. К числу антенн этого класса относятся одиноч­ные вибраторные и щелевые излучатели, полосковые и микрополосковые антенны, рамочные антенны, а также частотно-независимые излучатели.

Антенны бегущей волны размерами от до 100 для диапазона частот 3МГц...10ГГц. Сюда относятся спиральные, диэлектрические,директорные, импедаксные антенны, а также антенны «вытекающей» волны.

Антенные решетки размерами отдо 100 и более для диапазона час­тот 3МГц...30ГГц. Это антенны, состоящие из большого числа отдельных излучателей. Независимая регулировка фаз (а иногда и амплитуд) возбужде­ния каждого элемента антенной решетки обеспечивает возможность электри­ческого управления диаграммой направленности. Применяются линейные, плоские, кольцевые, выпуклые и конформные (совпадающие с формой объ­екта установки) антенные решетки. На основе антенных решеток выполняют антенные системы с обработкой сигнала, в том числе адаптивные к изме­няющейся помеховой обстановке.

Апертурные антенны размерами от до 1000 для диапазона частот 100МГц... 100ГГц и выше. Наиболее распространены зеркальные, рупорные и линзовые апертурные антенны. К апертурным антеннам примыкают, так называемые, «гибридные» антенны, представляющие сочетание зеркал или линз с облучающей системой в виде антенной решетки. Апертурные антенны строятся по оптическим принципам и обеспечивают наиболее высокую на­правленность излучения.

Свойства направленности антенны описывают характеристикой (диа­граммой) направленности. Количественно эти свойства оцениваются с по­мощью таких параметров, как ширина ДН, уровень боковых лепестков, ко­эффициент направленного действия (КНД) и других.

Важным параметром является входное сопротивление антенны, харак­теризующее её как нагрузку для генератора или фидера. Входным сопротив­лением антенны называется отношение напряжения между точками питания антенны (зажимы антенны) к току в этих точках. Если антенна питается вол­новодом, то входное сопротивление определяется отражениями, возникаю­щими в волноводном тракте. В общем случае входное сопротивление - вели­чина комплексная Zвх= Rвх+ iXвх. Оно должно быть согласовано с волно­вым сопротивлением фидерного тракта

 (или с выходным сопротивлением генератора) так, чтобы обеспечить в по­следнем режим, близкий к режиму бегущей волны.

Мощность, излучаемая антенной РΣ, связана с током в точках питания

антенны соотношением P = I02 R0 / 2, где RΣ0 – сопротивление излучения антенны (при отсутствии потерь в антенне это активная составляющая входного сопротивления антенны). Данное определение относится к проволочным ан­теннам.

Одним из основных параметров антенны является ширина её рабочей полосы частот, в пределах которой параметры антенны (характеристика направленности, входное сопротивление, КПД и др.) удовлетворяют опреде­ленным техническим требованиям. Требования к постоянству параметров антенны в пределах рабочей полосы могут быть различными; они зависят от условий работы. Обычно рабочая полоса частот определяется тем парамет­ром, значение которого при изменении частоты раньше других выходит из допустимых пределов. Очень часто таким параметром является входное со­противление антенны. Изменение его при изменении частоты приводит к рассогласованию антенны с фидером. В ряде случаев ширина рабочего диа­пазона определяется ухудшением одного из параметров, характеризующих направленные свойства: изменением направления максимального излучения, расширением ДН, уменьшением КНД и др. В зависимости от ширины рабо­чего диапазона антенны условно разбивают на:

узкополосные (настроенные), относительная рабочая полоса которых менее 10% номинальной частоты;

широкополосные, с рабочей полосой частот 10...50%;

диапазонные, коэффициент перекрытия частот которых(fMAX/fMIN) составляет примерно 2...5;

частотно-независимые (сверхширокополосные), с коэффициентом перекрытия, теоретически не зависящим от частоты (практически fMAX/fMIN таких антенн > 5).

Еще одним параметром является предельная мощность, которую мож­но подвести к антенне без опасности её разрушения и не вызывая пробоя ок­ружающей среды. Существуют также параметры, характеризующие поляри­зационные свойства антенны.

В данном курсе рассматриваются антенны следующих диапазонов: ми-риаметровые или сверхдлинные волны ( =  10...100 км); километровые или длинные волны ( = 1...10 км); гектометровые или средние волны ( = =100...1000 м); декаметровые или короткие волны ( = 10...100 м); метровые волны ( = 1...10м); дециметровые волны ( = 10 см...1 м); сантиметровые волны ( = 1...10 см); миллиметровые волны ( = 1...10 мм). Последние четы­ре диапазона объединяются общим названием "ультракороткие волны" (УКВ).

 

При расчете излученного антенной электромагнитного поля ее удобно рассматривать как состоящую из бесконечного большого числа элементар­ных источников (излучателей). Благодаря линейности уравнений Максвелла к полям элементарных источников применим принцип суперпозиции, позво­ляющий найти поле антенны в результате суммирования полей всех состав­ляющих ее элементарных излучателей с учетом амплитуд и фаз возбуждаю­щих их токов. Суммирование полей сводится к их интегрированию по источ­никам. Элементарными источниками являются: элементарные электрические вибраторы ЭЭВ в случае проволочных антенн; элементарные магнитные вибраторы в случае щелевых антенн; бесконечно малые элементы волнового фронта или элементы Гюйгенса в случае апертурных антенн.

Формула для комплексной амплитуды напряженности электрического поля Ė произвольной реальной антенны в дальней зоне без учета векторного характера электромагнитного поля имеет вид

.                                                                        (2.1)

Здесь А - комплексный множитель, не зависящий от направления на точку наблюдения (в него входит стандартный множитель exp(-ikr)/r, где r -расстояние от фазового центра антенны до точки наблюдения;  - коэффициент фазы или волновое число в свободном пространстве); θ,φ - координаты точки наблюдения; |f(θ,φ)| - амплитудная характери­стика направленности; Ψ(θ,φ) - фазовая характеристика направленности. Из­вестно, что в случае элементарного электрического вибратора

(2.2)

 

где I - амплитуда тока   в   вибраторе; l - длина вибратора;  характеристическое сопротивление волны; в свободном пространстве ,  Ом

Амплитудной характеристикой направленности антенны называется зависимость величины (модуля) напряженности электрического поля, созда­ваемого антенной в точке наблюдения, от направления на эту точку, характе­ризуемого углами θ и φ сферической системы координат при постоянном расстоянии (r = const) точки наблюдения от антенны. Фазовой характери­стикой направленности антенны Ψ (θ,φ) называется зависимость фазы поля, создаваемого антенной в точке наблюдения, находящейся на поверхности сферы в дальней зоне, от направления на эту точку, характеризуемого углами θ и φ. Множитель f(θ,φ)  определяет  не  только величину,  но  и  фазу  напря-

 женности поля, так как при переходе функции f() через нуль меняется ее знак, что соответствует скачку фазы напряженности поля на 180°. Поэтому амплитудной характеристикой направленности является мо­дуль этой функции |f()|. В дальнейшем для упрощения записи знак модуля опускаем. В общем случае характеристика направленности является вектор­ной и комплексной величиной. Выражение ƒ()=f() exp[i] называ­ется комплексной характеристикой направленности антенны. Она полно­стью определяет угловое распределение и фазовые свойства излучаемого электромагнитного поля в дальней зоне антенны. Характеристика направлен­ности антенны определяется размерами и конфигурацией антенны, а также распределением возбуждающего тока (как действительного, так и эквива­лентного). Напомним, что дальняя зона (зона излучения или зона Фраунгофе-ра) характеризуется тем, что направления (лучи), проведенные из любой точ­ки антенны на точку наблюдения, находящуюся в этой зоне, считаются па­раллельными. При этом возникает ошибка в определении фаз полей, созда­ваемых в точке наблюдения различными элементами антенны. Эта ошибка оказывается тем меньше, чем больше расстояние от антенны до точки на­блюдения по сравнению с размерами антенны. Расстояние дальней зоны rизл

определяется из условия rизл 2R2/, где R - наибольший размер излучающей системы. В этой зоне поле имеет поперечный характер (отсутствуют состав­ляющие векторов Е и Н в направлении распространения); в окрестности точ­ки наблюдения поле имеет характер плоской волны; амплитуды полей, излу­чаемых элементами антенны, убывают обратно пропорционально расстоя­нию.

В антенной технике обычно интересуются характером зависимости на­пряженности поля от направления на точку наблюдения, а не абсолютной ве­личиной напряженности поля. Поэтому удобно пользоваться нормированной характеристикой направленности F(), т.е. отношением напряженности поля, излучаемого антенной в произвольном направлении, к значению на­пряженности поля в направлении максимального излучения

F()= | E()| / | Emax()| = f()/fmax().

Максимальная величина F(θ,φ) всегда равна единице. Графическое изображение амплитудной характеристики направленности называют диа­граммой направленности (ДН) антенны. Пространственная ДН изображается в виде поверхности f(θ,φ) или F(θ,φ), описываемой концом   рдиуса-вектора, исходящего из начала координат, длина которого в каждом направлении в определенном масштабе равна функции f(). На рис.2.1.а изображена про­странственная ДН элементарного вибратора (тороид), на рис.2.1.б - ДН более сложной антенны (так называемая игольчатая ДН). На практике обычно ис­пользуют ДН, изображающие характеристику направленности в каких-либо выбранных плоскостях. В качестве таких плоскостей обычно выбирают две взаимно   перпендикулярные   плоскости,   проходящие   через   направление

максимального излучения (главные плоскости). Для ан­тенн, излучающих линейно поляризованное поле, главными плоскостями на­зываются плоскости, в которых лежит либо вектор Е (плоскость Е), либо вектор Н (плоскость Н).

Диаграммы    направленности     изображают     обычно     либо     в     полярной (рис.2.2.а - ДН  элементарного   вибратора  в   Е - плоскости;   рис.2.2.б - ДН элементарного вибратора в Н - плоскости), либо в декартовой (прямоуголь­ной) системе координат (рис.2.3. - ДН реаль­ной антенны).

В некоторых случаях применяется картографический метод изображения про­странственных (трехмерных) ДН. Он удобен для изображения многолепестковых (т.е. имеющих много нулей и максимумов) ДН в широком диапазоне углов. Этот метод со­стоит в том, что строится плоская сетка ко­ординат  в какой-либо координатной системе (прямоугольной, полярной и др.) по­добно сетке меридианов и параллелей на географической карте. На этой сетке замкну­тыми линиями изображаются одинаковые

значения нормированной характеристики направленности F() в том или ином масштабе. При изображении ДН часто используется логарифмический масштаб, вводимый соотношением в децибеллах F()=20 lgF().

В         некоторых случаях        пользуются понятием    характери­стики (диаграммы) направленности по мощ­ности F2(). Функция F()  для   различных

 

 

 

 

270

 

 

 

 

Рис. 2,2. ДН диполя Герца (а-Е-плоскость, б-Н-плоскость)

 

 

углов  и  проходит через нуль и имеет не­сколько максимумов, т.е. ДН имеет многолепестковый характер (см. рис.2.3).   Диаграмму направленности принято численно характеризо­вать шириной главного лепестка (шириной луча) и относительным уровнем боковых лепестков (УБЛ).

Шириной ДН (шириной луча) называется угол между направлениями, вдоль которых напряженность поля падает до определенного значения. Так, шириной ДН по уровню нулевого излучения называют угол  20  между  направлениями вдоль которых напряженность поля падает до нуля (см. рис.2.3). Шириной ДН по половинной мощности называют угол 20,5 между направлениями, вдоль которых |Е| = |Emax|/ или соответственно среднее значение плотности потока мощности П=Пmaх/2. Наибольший лепесток, мак­симум которого соответствует направлению максимального излучения, называют главным, меньшие лепестки - боковыми (лепестки, на­ходящиеся в задних квадрантах, т.е. в диапазоне углов 90°180° и 180°270°, часто называют задними).

Относительный УБЛ () есть отношение апряженности поля в направлении максимума данного лепестка (ENmax) к апряженности поля внаправлении главного максимума (Еmax), т.е.

N=|ENmax|/max|=FN(), или в децибеллах дБ = 20lg FN(), где N=1,2,3,...-номер бокового лепестка (для главного лепестка N=0).

Обычно стремятся к подавлению боковых лепестков, т.е. к тому, чтобы величина была мала.

 

В большинстве случаев интересуются амплитудными      характеристиками направленности

(слово "амплитудная" в дальнейшем не используем). Фазовые характеристи­ки направленности используют в радиолокации, радионавигации и в некото­рых других случаях.

Если фаза, излучаемого антенной поля, не зависит от направления на точку наблюдения и изменяется на обратную только при переходе функции f() или F() через нуль, т.е. при переходе от одного лепестка ДН к дру­гому, то такая антенна является источником сферических волн, о чем свиде­тельствует множитель [ехр(-ikr)]/r. Эти волны исходят как бы из одной точки, называемой фазовым центром антенны. Эта точка расположена в на­чале выбранной системы координат, и поэтому, фазовая характеристика за­висит от положения начала координат. Однако не все реальные антенны об­ладают фазовым центром, т.е. излучают сферические волны. Для них обычно можно подобрать сферу, наилучшим образом аппроксимирующую фронт волны (обычно в пределах главного лепестка). Центр этой сферы называют центром излучения антенны. Графическое изображение фазовой характери­стики называется фазовой ДН.

 

Коэффициент направленного действия (КНД), коэффициент усиле­ния антенны (КУ) и параметры, связанные с КНД

Коэффициент направленного действия (КНД) характеризует способ­ность антенны концентрировать излученное электромагнитное поле в каком-либо определенном направлении. Это понятие было введено в 1929 г. А.А.Пистолькорсом. Коэффициентом направленного действия называется отношение среднего значения за период высокой частоты плотности пото­ка мощности (среднее значение вектора Пойнтинга), излучаемого антенной в данном направлении , к усредненному по всем направлениям значе­нию плотности потока мощности Пуср

.                                                                                    (2.3)

Здесь , где || - амплитудное значение на­пряженности электрического поля в направлении, характеризуемом углами . Таким образом, при определении КНД данная антенна сравнивается с воображаемой абсолютно ненаправленной (изотропной) антенной, излучаю­щей ту же мощность, что и данная. Очевидно, что

,                                                                                           (2.4)

где - мощность излучения; r - радиус воображаемой сферы, охватываю­щей антенну, причем величина r должна быть такой, чтобы поверхность сфе­ры находилась в дальней зоне поля антенны.

Коэффициент направленного действия показывает во сколько раз сле­дует уменьшить излучаемую мощность при замене изотропной (ненаправ­ленной) антенны на направленную, чтобы среднее значение плотности по­тока мощности в точке наблюдения осталось неизменным.

Учитывая, что , и подставляя в (2.3) выражение (2.4), получаем формулу для КНД в другом виде или для свободного пространства (Wc°=120 Ом) в направлении максимального излучения

                                                                  (2.5)

 

Если в эту формулу подставить вместо выражение (2.2) в квадрате (без фазовых множителей) и учесть, что , где  - сопротивление излучения элементарного электрического вибратора, то получим КНД эле­ментарного вибратора D=1,5.

Коэффициент направленного действия тем больше, чем уже главный лепесток пространственной ДН и чем меньше УБЛ. Коэффициент направ­ленного действия можно выразить с помощью еще одного параметра, назы­ваемого действующей длиной или действующей высотой антенны .Этот параметр иногда используют при анализе приемных антенн, а также проволочных длинноволновых и средневолновых антенн и антенн-мачт.

В случае линейной антенны ток по ее длине распределен неравномерно. Од­нако реальную антенну можно заменить воображаемым вибратором длиной lд (действующей длиной) с равномерным распределением тока создающим в направлении максимального излучения поле, равное полю данной антенны в главном направлении. При этом ток в точке питания реальной антенны счи­тается равным току, текущему по воображаемому вибратору. По аналогии с (2.2) (вибратор с равномерным распределением тока) напряженность поля реальной антенны в главном направлении можно представить в виде

                                                                               (2.6)

где I0 - амплитуда тока в точках питания антенны; 60π = Wc°/2, где - волно­вое сопротивление среды. Напишем выражение для величины напряженно­сти поля любой вибраторной антенны в произвольном направлении

                                                              (2.7)

Подставляя   в   (2.5)   вместо      выражение   (2.6)   и   учитывая,   что

 (- сопротивление излучения антенны, отнесенное к току в точках питания; I -ток в точках питания антенны), получаем

      или       (2.8)

Формально параметром "действующая длина" можно пользоваться в 21

случае любой антенны (линейной, апертурной или какой-либо другой), так как этот параметр выражается через КНД, а последний определяется только характеристикой направленности.

Коэффициент направленного действия не учитывает потерь подводи­мой энергии в проводниках антенны, в изоляторах, в окружающих антенну предметах и в земле. В связи с этим вводится параметр, учитывающий эти потери, называемый коэффициентом усиления (КУ) антенны, равный отно­шению среднего значения плотности потока мощности, излучаемой антен­ной в данном направлении , к среднему значению плотности пото­ка мощности, создаваемого воображаемым абсолютно ненаправленным из­лучателем н). При этом предполагается, что точка наблюдения находится на одинаковом расстоянии от обеих антенн; мощности, подводимые к той и другой антеннам, равны и КПД ненаправленной антенны равен единице. Та­ким образом, КУ

.                                                                                       (2.9)

Коэффициент усиления показывает во сколько раз следует умень­шить мощность, подводимую к направленной антенне, по сравнению с абсо­лютно ненаправленной (изотропной) антенны, КПД которой считается равным еди­нице, чтобы среднее значение плотности потока мощности в точке наблю­дения оставалось неизменным.

Отличие КУ от КНД состоит в том, что при определении КУ исходят из равенства мощностей, подводимых к исследуемой и эталонной  ( ненаправленной) антеннам Р0, а не из равенства мощностей излучения P, этих  антенн.   Умножим   и  разделим  правую  часть  (2.9)   на  Пуср.   Тогда [П()/Пуср](Пусрн), где Пусрн =- КПД антенны.

Параметры ( D, G и ) связаны соотношением

G=D.                                                                                                     (2.10)

Учитывая, что D=G/, можно написать

Emax=/r=/r .                                  (2.11)

Поляризационные параметры антенн. Турникетный излучатель

Направление векторов Е и Н излучаемого антенной поля определяется плоскостью поляризации, т.е. плоскостью, проходящей через направление распространения волны (вектор Пойнтинга) и вектор напряженности элек­трического поля. В общем случае за один период высокой частоты плоскость поляризации делает полный оборот вокруг направления распространения. Такое поле называют вращающимся. За это время конец вектора Е описыва­ет замкнутую кривую (эллипс), лежащую в плоскости, перпендикулярной направлению распространения, и называемую поляризационным эллипсом. Это - эллиптическая поляризация электромагнитного поля. Частными ви­дами эллиптической поляризации являются: линейная поляризация - конец вектора Е лежит на прямой линии; круговая поляризация - конец вектора Е за один период высокой частоты описывает окружность.

Существуют антенны, рассчитанные на излучение (прием) поля круго­вой поляризации. Многие антенны (симметричный вибратор и другие) излу­чают во всех направлениях линейно поляризованные волны. Однако имеют­ся антенны, которые либо из-за своих конструктивных особенностей, либо из-за неточностей исполнения излучают волны чисто линейной поляризации только в двух взаимно перпендикулярных плоскостях, проходящих через на­правление максимального излучения (главные плоскости). Поляризация поля в этих плоскостях называется главной или основной, В других плоскостях имеется составляющая поля, поляризованная перпендикулярно (ортогональ­но) основной поляризации (к таким антеннам относят, например, параболи­ческую). Эта составляющая, называемая поперечной или кроссполяризацион-ной, является вредной. Ортогональность составляющих поля основной и кроссполяризации (иногда ее называют паразитной) понимается как незави­симость переноса мощности каждой из них. Мощность, соответствующая кроссполяризации, расходуется на образование боковых лепестков, вследст­вие чего КНД антенны уменьшается. Кроме того, возрастают помехи, созда­ваемые передающей антенной различным приемным антеннам, работающим в том же или смежном диапазоне частот. Если поле передающей антенны имеет две ортогональные составляющие, а приемная  антенна  рассчитана  на прием лишь линейно поляризованного поля, то часть излученной мощности, соответствующая паразитной поляризации, не ис­пользуется.

Эллиптическая поляризация может рассматриваться либо как результат сложения двух линейно поляризованных взаимно перпендикулярных состав­ляющих поля, не совпадающих по фазе, либо двух полей круговой поляриза­ции с противоположными направлениями вращения и разными амплитудами.

Отношение малой полуоси эллипса к большой (рис.2.4.а) называется коэффициентом равномерности (коэффициентом эллиптичности) поляри­зационного эллипса: t=b/a. В случае линейной поляризации поля t = 0. Услови­ем этой поляризации является или  (- сдвиг фаз между состав­ляющими  и  ). Линейная поляризация также имеет место, если =0 или =0. При круговой поляризации поля (=;) t=l. Таким образом, коэффициент равномерности поляризационного эллипса может изменяться в пределах 0< t < 1. Зависимость коэффициента эллиптичности от направления на точку наблюдения называется поляризационной ДН.

Поляризационный эллипс характеризуется также углом поляризации и направлением вращения вектора Е (направление вращения плоскости поля­ризации). Углом поляризации  называется угол, образованный большой осью поляризационного эллипса и направлением орта  или 0 сферической сис­темы координат (см. рис. 2.4.б). Направление вращение вектора Е в точке на­блюдения определяется знаком угла сдвига фаз между составляющими поля.     и . Это направление называется правым, если           наблюдатель, глядя на­встречу волне, видит вектор Е вращающимся против часовой стрелки   (рис. 2.5). Противоположное направление вращения плоскости поляризации назы­вается левым. Вектор Е всегда вращается в сторону составляющей поля, от­стающей по фазе.

В соответствии с (2.3) под КНД антенны с эллиптической поляризаци­ей поля при полном поляризационном приеме будем подразумевать величину  где - пар­циальные КНД для каждой из ортогональных составляющих поля; Пуср — ус­редненное по всем направлениям значение плотности потока мощности пол­ного поля; . Здесь  - полная мощность излуче­ния;  и - мощности излучения, соответствующие ортогональным ком­понентам поля. В соответствии с (2.3) под КНД антенны с эллиптической поляризаци­ей поля при полном поляризационном приеме будем подразумевать величину  где - пар­циальные КНД для каждой из ортогональных составляющих поля; Пуср — ус­редненное по всем направлениям значение плотности потока мощности пол­ного поля; . Здесь  - полная мощность излуче­ния;  и - мощности излучения, соответствующие ортогональным ком­понентам поля.

В качестве примера простейшей антенны, создающей вращающееся поле рассмотрим два линейных излучателя (для простоты считаем их эле­ментарными), расположенных крестообразно и питаемых токами равной ам­плитуды, но сдвинутых по фазе на .Такой излучатель час­то называют турникетным. В меридиональной по отношению к обоим виб­раторам плоскости yoz (см. рис.2.6) они создают поля одной поляризации, причем векторы  и  лежат на одной и той же линии. В точке N, лежа­щей на нормали (ось х) к плоскости расположения двух вибраторов, первый создаёт вектор напряжённости электрического поля  а второй - , находящиеся в плоско­сти, перпендикулярной оси х, Эти векторы равны по амплитуде, сдвинуты по фазе друг относи­тельно друга на 90° и взаимно перпендикулярны. Таким образом в направлении нормали плоскости вибраторов (yoz) имеет место круговая поляриза­ция поля.

 

 

ТЕМА 2. Теория симметричного вибратора

Изучение симметричного электрического вибратора представляет большой интерес, так как, во-первых, этот вибратор применяется как само­стоятельная антенна и, во-вторых, он является составным элементом ряда сложных антенн. Симметричные вибраторы начали широко применять в первой половине двадцатых годов в связи с возникновением и развитием ра­диосвязи на коротких волнах. В настоящее время симметричный вибратор как самостоятельная антенна применяется на коротких, метровых и деци­метровых волнах. В этих же диапазонах широко используются сложные ан­тенны, состоящие из ряда симметричных вибраторов. Симметричные вибра­торы используются также в сантиметровом диапазоне волн в качестве эле­ментов сложных систем (например, облучатели зеркальных антенн).

24кСимметричный вибратор состоит из двух одинаковых по размерам и форме проводников, между которыми включается генератор высокой часто­ты (часто эти проводники называются плечами). Рассмотрим симметричный вибратор, представляющий собой тонкий цилиндрический проводник дли­ной 2 и радиусом а (рис.3.1), находящийся в свободном пространстве. Строгое   решение                                               основной   задачи   теории   антенн

 

 

для симметричного вибратора связано с большими трудностя­ми, так как закон распределения тока по вибратору неизвестен.

Существует приближенный  метод расчета поля,

создаваемого симметричным вибратором в дальней зоне. В основе этого ме­тода лежит предположение о синусоидальном распределении тока по вибра­тору, основанное на некоторой внешней аналогии между симметричным вибратором и двухпроводной разомкнутой на конце линией без потерь. Дей­ствительно, от двухпроводной линии (рис.3.2.а) можно перейти к симмет­ричному вибратору, если провода линии развернуть под углом 180° друг к другу (рис.3.2.б). Можно полагать, что при переходе от двухпроводной ли­нии к симметричному  вибратору  закон  распределения  тока  не  нарушается,  т.е.

 Iz = Iпsink(-)  , где Iп - амплитуда тока в пучности тока вибратора (в об-

щем случае, это величина комплексная)  İп = Iпexp(i); - длина одного плеча вибратора; z - расстояние от начала вибратора (точки питания) до про­извольной точки на вибраторе (текущая координата); k = 2/, - волновое число (коэффициент фазы тока в вибраторе).

 

25kПолагают, что длина волны в виб­раторе

λ, равна длине волны в свободном прост-

ранстве. В действительности данная анна-

логия весьма приближённа.Обе системы-

линия и вибратор – являются колебатель-

ными системами с распределенными па-

раметрами, однако они существенно раз- 

личаются.  Во-первых, распределенные

 параметры

 

 

линии (Li,Ci) не изменяются по ее длине, распределенные параметры вибра­тора непостоянны по его длине (рис.3.2.6). Во-вторых, линия служит для ка­нализации электромагнитных волн и является практически неизлучающей системой; вибратор же излучает волны. В разомкнутой на конце линии ток изменяется по закону стоячей волны только в том случае, если линия выпол­нена из идеального проводника, т.е. в ней нет потерь энергии.

В вибраторе, выполненном даже из идеального проводника, обязатель­но есть потери (полезные) на излучение. Очевидно, поэтому ток в вибраторе, строго говоря, не может быть распределен по закону стоячей волны. Однако расчет поля симметричного вибратора по формулам, основанным на сину­соидальном распределении тока, дает хорошее совпадение с эксперимен­тальными данными для дальней зоны и тонких вибраторов. Поэтому для ин­женерного расчета это приближение в ряде случаев вполне допустимо. Стро­гая теория симметричного вибратора подтверждает, что в тонких вибраторах ток распределен по закону, весьма близкому к синусоидальному. Задавшись законом распределения тока по вибратору, легко установить приближенный закон распределения заряда z=Пcosk(- ), где П амплитуда заряда в его пучности. Этот закон распределения заряда вдоль симметричного вибратора совпадает с законом распределения потенциала (напряжения) в разомкнутой на конце длинной линии без потерь. В теории антенн понятием напряжения следует пользоваться с большой осторожностью, так как поле антенны не яв­ляется потенциальным. Понятием напряжения применительно к антенне можно пользоваться, если расстояние между точками измерения мало по сравнению с длиной волны. Это справедливо при измерении напряжения между зажимами антенны (точки присоединения генератора), а также для длинноволновых антенн. На рис.3.3 приведены кривые распределения ам­плитуд тока и заряда на вибраторах разной длины. По аналогии с волновым сопротивлением длинной линии вводится понятие волнового сопротивления симметричного вибратора. Как известно, из теории длинных линий, волно­вое сопротивление двухпроводной   линии    без потерь определяется вы­ражением W =, где L1-распределенная индуктивность линии (индуктивность, приходящаяся на единицу длины ли­нии), Г/м; C1 -, распределенная емкость линии, Ф/м. Так как 1/= с, где

с - скорость света, м/с, то

W=l/cC1, Ом.                                                                                                      (3.1)

Волновое сопротивление двухпроводной линии связано с ее геометри­ческими размерами соотношением

W=2761g (D/a),                                                                                                        (3.2)

где D - расстояние между центрами про­водов линии; а - радиус провода.

Волновое   сопротивление   симмет­ричного вибратора (а также других ли­нейных антенн, т.е. антенн, длина кото­рых   значительно   превосходит   размеры поперечного  сечения)  рассчитывают  по формуле   (3.1).   Однако   распределенная емкость по длине вибратора непостоянна. Поэтому в данном случае под C1 подра­зумевается усредненная величина, равная отношению полной статической емкости антенны (СА) к ее длине (2l). Одним из наиболее распространенных приближен­ных методов расчета полной статической емкости является метод Хоу или метод усредненных потенциалов. Волновое со­противление  симметричного  вибратора из провода цилиндрической формы, оп­ределенное по методу Хоу,

WA=120(ln l/a-1), Oм,                                                                                  (3.3)

где   l-длина плеча вибратора; а - радиус провода.

Расчет волнового сопротивления вибратора методом Хоу дает приемлемую точность для вибраторов, коротких по сравнению с длиной волны. Точность этого метода снижается по мере удлинения вибратора.

 

Направленные свойства симметричного вибратора

Рассмотрим симметричный вибратор произвольной длины (рис.3.4). Задаемся синусоидальным законом распределения тока вдоль вибратора Iz = (I0/sinkl)sink(l -), где I0 - ток в точках питания вибратора (I0=Iпsinkl). Мысленно разобьем вибратор на бесконечно большое число элементов dz. Так как длина каждого элемента бесконечно мала, то можно полагать, что в пределах его ток не изменяется ни по амплитуде, ни по фазе. Таким образом, весь симметричный вибратор можно рассматривать как совокупность

элементарных электрических вибраторов dz и поле симметричного вибрато­ра рассматривать как результат сложения (интерференции) полей, излучае­мых элементарными вибраторами. Ввиду малости воздушного промежутка (зазора) между плечами вибратора можно пренебречь влиянием электриче­ского поля (магнитного тока), существующего в нем на излучение, и считать, что электрический ток течет по сплошному проводнику длиной 2l. Выделим на вибраторе (рис.3.4) элементы 1 и 2, каждый длиной dz, симметричные относительно центра вибратора 0, и определим поле, создаваемое этими эле­ментами в произвольной точке наблюдения М, находящейся в зоне излуче­ния. Проведем от элементов 1 и 2 и от центра вибратора линии в точку на­блюдения r1, r0, r2. Поскольку расстояние до точки наблюдения очень велико по сравнению с длиной вибратора, то направления от всех точек вибратора на точку М можно считать параллельными. Напряженность поля, излучаемо­го первым элементом в точке М

 dE1 = i [60Izdz/ (r1)]sinexp(-ikr1).

(3.4.a)

Напряженность    поля,    излучаемого вторым элементом в той же точке М        dE2 = i [60Izdz/(r2)] sinexp(-ikr2).

(3.4.б)

Здесь Iz - амплитуда тока в эле­менте, находящемся на расстоянии z от центра вибратора;

r1 - расстояние от первого эле­мента до точки М;

г2 - расстояние от второго эле­мента до точки М;

 - угол между осью вибратора  и направлением на точку наблюде­ния.

Найдем суммарное поле, создаваемое в точке наблюдения элемента­ми 1 и 2. Так как векторы напряженности полей, создаваемых всеми элемен­тами вибратора в точке наблюдения, направлены вдоль одной прямой (пер­пендикулярной направлению от данного элемента в точку наблюдения), то поля, создаваемые отдельными элементами, можно складывать алгебраиче­ски. Поэтому

dE = dE1+dE2=i (60Izdz/)sin[(exp(-ikr1)/r1+exp(-ikr2)/r2)].     (3.5)

Выразим расстояния r1 и r2 через расстояние r0. Для этого из точки 1 (рис.3.4) опустим перпендикуляр на направление r0 и из точки 0 опустим перпендикуляр на направление r2. Из прямоугольных треугольников 1-0-3 и 2-0-4 находим, что разность расстояний от данных элементов и центра виб­ратора до точки наблюдения равна r = cos.

Следовательно,                  

r1 = r0 - |z|cos       и        r2 = r0 + cos.                                                                     (3.6)

Величину r часто называют разностью хода лучей. Так как точка на­блюдения находится в дальней зоне, то величина r мала по сравнению с r0 и расстояния r1 и r2 мало отличаются друг от друга. Поэтому можно считать, что амплитуды напряженности полей, создаваемых элементами 1 и 2 в точке наблюдения М, одинаковы. Однако пренебрегать разностью хода в фа­зовых множителях (exp(-ikr1) и exp(-ikr2)) ни в коем случае нельзя, так как пространственный сдвиг фаз между полями элементов 1 и 2 kr = 2k|z|cosν = 4(|z|/)cosопределяется отношением разности хода лучей к длине волны. На основании формул (3.6) получаем следующие выражения для фазовых множителей exp(-ikr1)= exp(-ikr0) * exp(ik|z|)cos;

exp (-ikr2) =   exp (-ikro) * exp (-ik)cos.

 Подставляя эти выражения в формулу (3.5), вынося за скобки общие множители и полагая, что в знаменателях r1r2 r0, получаем

dE=i[60I0sink(l-)dz/(r0 sinkl)]sinexp(-ikr0)[(exp(ik)cos+

+exp (-ik) cos)].

Воспользовавшись известной формулой exp(i) + exp(-i) = 2cos, по­лучаем следующее выражение

dE = i[120I0/( r0 sinkl)] sin exp(-ikr0)sink(l-)cos(kcos)dz.

Для определения напряженности поля, создаваемого в точке наблюде­-
ния всем симметричным вибратором, необходимо это выражение проинтег­-
рировать                          по                      длине                         одного                          плеча                        вибратора

Е=i[120I0/(r0 sinkl)] sin exp(-ikr0) sink(l-)cos(kcos)dz.

В результате интегрирования получается формула для расчета напря-
женности поля симметричного   электрического   вибратора   в   дальней  зоне
            
E=i [60I0/ (r0sinkl)] * [(cos(klcos) - coskl) / sin]exp(-ikr0).                 (3.7)

Как и в случае элементарного электрического вибратора, эта формула состоит из трех множителей: множителя, определяющего только величину напряженности поля и не зависящего от направления в данную точку [60I0/(r0sinkl)], множителя, определяющего направленные свойства (характе­ристика направленности).

f()=[cos(klcos) - coskl]/sin

и фазового множителя  = iexp(-ikr0) из выражения (3.7) видно, что симметричный вибратор обладает направленными свойствами только в ме­ридиональной плоскости (плоскость электрического вектора). Напряжен­ность электрического поля симметричного вибратора в его экваториальной

 

плоскости ( плоскость магнитного вектора ν= /2) - определяется выражени­ем

E = i [60I0/(r0sinkl)](l-coskl)exp(-ikro),                                                                               (3.8)

т.е. не зависит от азимутального угла . Поэтому  диаграмма   направленности

симметричного вибратора в его экваториальной плоскости, как и в случае элементарного вибратора,  представляет   в  полярной  системе  координат ок-

Диаграммы направленности симметричного вибратора

 

ружность. Как видно из формулы (3.7), направленные свойства симметрич­ного вибратора определяются только отношением длины плеча вибратора к длине волны l/.В случае полуволнового вибратора (l/=0,25) формула (3.7) при­нимает вид

  Е= iA{cos[(/2)cos]/(sin)}exp (-ikr0).

Амплитудные диаграммы направленности, рассчитанные по форму­ле (3.7), для вибраторов с различной относительной длиной l/ показаны на  рис.3.5. Анализ формулы (3.7) и рассмотрение этих кривых показывают, что при любой величине отношения l/ симметричный  вибратор  не  излучает  вдоль  своей оси. Если длина плеча симметричного вибратора l  0,5,  то  в  направлении, перпендикулярном   его   оси   (= 90°, = 270°),   т.е.   в   экватори­альной плоскости, поля всех  элементарных  вибраторов  максимальны,  синфазны  и складываются   арифметически.   Поэтому   поле   в    данном    направле­нии является максимальным. Диаграмма направленности при l/  0,5 со­стоит из двух (главных) лепестков (рис. 3.5.а, 3.5.б).  Увеличение  длины  виб­ратора  до l=0,5 сопровождается ростом  излучения  в  направлении,  перпен­дикулярном оси вибратора (главное направление излучения),за счет уменьшения излучения в других направлениях. При этом диаграмма направленности становится уже. При увеличении l/до 0,625 излучение в главном направлении продолжает возрастать, но характеристика направ­ленности проходит через нуль не только при =0° и =180°, но и при неко­торых других значениях угла. Главные лепестки диаграммы становятся уже, но появляются боковые лепестки (рис.3.5.в). При дальнейшем увеличе­нии l/ излучение в главном направлении уменьшается и возрастают боко­вые лепестки. Уменьшение излучения в главном направлении объясняется следующим. Результирующий сдвиг фаз полей, излучаемых элементарными вибраторами в данном направлении, определяется пространственным сдви­гом фаз и сдвигом фаз токов, возбуждающих эти вибраторы. При l/ >0,5 на вибраторе появляются участки с противофазными токами (рис.3.3), длина которых растет по мере увеличения l/. Поэтому в данном случае, хотя в главном направлении пространственные сдвиги фаз равны нулю, по­ля, излучаемые отдельными элементами вибратора, складываются несинфазно, т.е. геометрически. При l/= 1 (или при l/ = п, где п = 1, 2, ..,) излу­чение в главном направлении отсутствует, так как противофазные участ­ки вибратора имеют одинаковую длину. Рост l/ сопровождается также ростом боковых лепестков. Уже при l/=0,75 напряженность поля в на­правлении максимума бокового лепестка превосходит напряженность поля в главном направлении (рис.3.3.г).

 Нормированная характеристика направленности симметричного виб­ратора, определяемая как F() = f()/f(90°), равна

         F() = [cos(klcos) - coskl]/[(l – coskl)sin].                                 (3.9)

                У Диполя Герца 20,5= 90°. Полуволновый симметричный вибратор имеет ширину диаграммы направленности по половинной мощности 20,5= 80°, волновой симметричный вибратор - 20,5= 44°, симметричный вибратор, у которого l/=0,625, имеет 20,5= 31°. Последний вибратор обладает наи­лучшими направленными свойствами, так как при дальнейшем увеличении l/, сильно возрастают боковые лепестки, хотя главный лепесток диаграммы направленности становится уже. На практике применяются симметричные вибраторы, у которых l/ 0,7. Фаза напряженности поля, создаваемого симметричным вибратором в соответствии с выражением (3.7), в пределах одного лепестка диаграммы направленности не зависит от координатного угла . Она изменяется скачком на обратную при переходе напряжённости поля через нуль. Симметричный вибратор излучает сферические волны, о  чем   свидетельствует   множитель            exp(-ikr)/r. Эти волны как бы исходят из од­ной точки, совпадающей с центром вибратора.

 

Мощность излучения, сопротивление излучения и КНД симметричного вибратора

     Мощность электромагнитной волны, излучаемой симметричным виб­ратором, можно определить, как и для элементарного вибратора, методом вектора Пойнтинга. В соответствии с данным методом симметричный вибра­тор окружается сферой, радиус которой r », вследствие чего поверхность сферы находится в дальней зоне поля вибратора. Центр вибратора совпадает с центром сферы, ось вибратора лежит на оси z прямоугольной системы ко­ординат. На поверхности сферы выделяется бесконечно малый элемент dS, площадь которого в сферической системе координат dS = r2sinνdd.                                                                             Излучаемая мощность, приходящаяся на данный элемент поверхности

dP = ПсрdS=(E2/2Wc)dS.                                                                                  (3.10)

Здесь Е - амплитуда (модуль)  напряженности  электрического  поля  в  любой

точке элемента dS, определяемая выражением
                  
E = (60Iп/r)  [cos (kl cos) - cos kl] / sin  .                                                                                      (3.11)

В общем виде выражение для сопротивления излучения имеет вид

Rп = [r2Е2 макс/( Wc Iп2 )] F2(,)sin dνd .                                                         (3.12)

P = Iп2Rп/2.

Величина Rп определяется характером распределения электромагнит­ного поля в дальней зоне, т.е. диаграммой направленности рассматриваемой антенны. Интегрирование дает следующую формулу, впервые полученную Баллантайном в 1924 г.

Rп  = 30 [2 (+ln2kl - Ci 2kl) + cos 2kl (+lnkl+ Ci 4kl - 2Ci 2kl) +
+
sin2kl (Si 4kl- 2Si 2kl)].                                                                                     (3.1)

 


Здесь  = 0,5772... - постоянная Эйлера; Si x =   (sin u/u)du – интегральный

синус; Ci x = (cos u/u)du - интегральный косинус.

Как видно из формулы (3.13), сопротивление излучения симметрично­го вибратора зависит только от величины отношения l/. Формула (3.13) яв­ляется приближенной, поскольку при ее выводе исходили из синусоидально­го распределения тока по вибратору, что справедливо только для тонких вибраторов. Однако результаты расчетов по формуле (3.13) хорошо совпа­дают с экспериментальными данными. Это объясняется тем, что сопротив­ление излучения определяется полем в дальней зоне, которое мало зависит от толщины вибратора. Следует также иметь в виду, что изложенный здесь метод расчета дает только активную составляющую сопротивления излуче­ния, так как учитывается только излученная активная мощность.

В литературе имеются таблицы и графики Rп как функции отношения (рис.3.6), рассчитанные по формуле (3.13). Осциллирующий характер зави­симости объясняется тем, что интерференционная картина поля в дальней зоне меняется при изменении l/.

Если    отношение  l/,  не   превышает  0,1,   то   формулу  (3.13)  можно упростить Rп=20 (k l)4 .

КНД симметричного вибратора можно определить по формуле

D = (120 / Rп ) (1 -coskl)2.                                                                                (3.14)

При l/=0,25   Rп = 73,1 Ом и D= 1,64 ;

     l/= 0,5    Rп =199 Ом и D = 2,4;

    l/=0,625 Rп =110 Ом и D = 3,l.

 Для сравнения КНД элементарного электрического вибратора имеет

 D = 1,5. КНД любой вибраторной антенны можно рассчитать по формуле

D = (120/ Rп) f2max ().                                                                         (3.15)

В этой формуле Rп  - полное сопротивление излучения  антенны.  Дей­ствующая  длина   симметричного   вибратора    определяется    по     формуле  lд = (1 - coskl) / (sinkl).

                 

Зависимость R п От величины l/

 


Входное сопротивление симметричного вибратора. Инженерный метод расчета входного сопротивления

Часть мощности, подводимой от генератора к симметричному вибрато­ру, излучается. Другая часть мощности теряется в самом вибраторе (нагрева­ние проводов), в изоляторах и в окружающих вибратор предметах. Излучен­ной мощности соответствует активное сопротивление излучения. Мощности потерь соответствует активное сопротивление потерь. Кроме излученного, есть колеблющееся вблизи антенны связанное с ней электромагнитное поле, которому соответствует реактивная мощность. Эта мощность то отдается ге­нератором, переходя в ближнее поле, то возвращается к нему обратно. Реактивной мощности в большинстве случаев соответствует реактивное сопро­тивление антенны.

33KТаким образом, включенный в антенну генератор нагружен на комплексное сопротивление, которое называется входным сопротивлением антенны и равно отношению напряжения на зажимах вибратора (точки питания) к току в точках питания ZBX=U0/I0=RBX+i XBX.

Рис. 3.7. Распределение тока по "коротким"  и "длинным" вибраторам

Величина и характер входного сопротивления определяют режим работы включенного в антенну гене­ратора. Обычно в симметричных виб­раторах потери малы, поэтому будем полагать, что RBX  Ro, где Ro - со­противление излучения вибратора, отнесенное к току в точках питания. Для точного определения входного сопротивления необходимо знать за­кон распределения тока вдоль вибра­тора. Часто с достаточной для инже-

нерных целей точностью входное сопротивление рассчитывается, исходя из приближенных законов распределения тока по вибратору. Рассмотрим такой приближенный (инженерный) метод расчета входного сопротивления. Предположив, что ток вдоль вибратора распределен по закону синуса, найдем входное сопротивление симметричного вибратора, у которого l/=0,5 (рис.3.7). В этом случае ток в точках питания оказывается равным нулю и очевидно, что ZBX = U0/I0= . В действительности же ток в точках пита­ния никогда не бывает равен нулю (его величина обязательно конечна), а следовательно, входное сопротивление симметричного вибратора никогда не бывает бесконечно велико. Физически это совершенно ясно. Ведь закон си­нуса (стоячая волна) справедлив в линиях только при отсутствии потерь. Вибратор же в принципе является системой с потерями на излучение. Следо­вательно, при расчете входного сопротивления лучше проводить аналогию между симметричным вибратором и разомкнутой на конце линией с потеря­ми. Известно, что ток в такой линии распределен по закону гиперболическо­го синуса (рис.3.7) Iz = Iпsh(z - l), где  =  + i - коэффициент распро­странения,  - коэффициент ослабления,  - коэффициент фазы.

Из рис.3.7 видно, что существенная разница в распределении тока по законам кругового и гиперболического синусов получается только на сравнительно близких расстояниях от узла тока. Поэтому при расчете входных сопротивлений "коротких" вибраторов (l/)  0,35...0,4; (0,6...0,65) l/  (0,85...0,9), т.е. таких, у которых узел тока находится от точек питания вибратора не ближе, чем на расстоянии (0,1...0,15), исходят из синусоидального распределения тока. При расчете входного сопротивления "длинных" вибраторов (0,35 l/ 0,65) следует исходить из распределения тока по закону гиперболического синуса. Найдем  формулы для расчета активной

35

и реактивной составляющих входного сопротивления "короткого" вибратора. Выразив мощность, излучаемую вибратором, через амплитуды тока в пучно­сти (IП) и в точках питания (Iо), получим:

P = (Iп2Rп )/2   и  P = (I02 R0)/2.                                                                              (3.17)

 Так как левые части этих выражений равны между собой, то I2п Rп = I02 R0. Решая это равенство относительно R0, получаем R0= Rп (Iп2/ I02).

Подставляя вместо I0 выражение I0=Iпsinkl, получаем формулу для рас­чета активной составляющей входного сопротивления вибратора (без учета потерь в вибраторе)

R0 = Rп /sin2kl.                                                                                                (3.18)

Величину Rп  для вибратора заданной длины легко найти из таблиц или графиков. При расчете реактивной составляющей входного сопротивле­ния короткого симметричного вибратора пользуются формулой входного со­противления разомкнутой на конце двухпроводной линии без потерь, заме­няя в ней волновое сопротивление линии волновым сопротивлением антен­ны

Xвх= -i WActg kl.                                                                                                    (3.19)

Таким образом, полное входное сопротивление короткого вибратора можно определить по формуле

Zвх= (Rп/sin2kl) – i WActg kl.                                                                           (3.20)

Точность расчетов по формуле (3.20) повышается при уменьшении размеров поперечного сечения вибратора. В случаях длинных вибраторов входное сопротивление рассчитывается аналогично входному сопротивле­нию двухпроводной разомкнутой на конце линии, обладающей потерями

Zвх = WA [(sh2l- (/) sin 2l) / (ch2l - cos 2l)] – i WA [(/) sh 2l+

+ sin 2l) / (ch2l - cos 2l)].                                                                     (3.21)

Здесь WA - волновое сопротивление вибратора; l- длина плеча вибра­тора; - коэффициент фазы в вибраторе; - коэффициент затухания. По аналогии с длинными линиями, пренебрегая потерями в проводах вибратора коэффициент затухания можно рассчитать по формуле  = R1 / WA, где R1 -активное сопротивление излучения, приходящееся на единицу длины вибра­тора. Приближенно полагая, что сопротивление излучения Rп распределено равномерно по всей длине вибратора, для расчета R1 получают формулу  R1= Rп/[l(l - (sin2kl/2kl)]. Данная формула позволяет, зная сопротивление излучения, отнесенное к пучности тока, найти распределенное сопротивле­ние излучения. Следовательно, коэффициент ослабления

 = R1/ WA = Rп/ [lWA (1- (sin2kl/2kl))].

Коэффициент фазы  в формуле (3.21) несколько отличается от

 


Зависимость R вх  от величины   l/




коэффициента фазы в свобод­-
ном пространстве k, так как
фазовая скорость в линии с потерями, а, следовательно, и в
вибраторе несколько меньше
скорости света. Поэтому=
/ >
k = /с , где -фазовая
скорость в вибраторе. Чем
меньше волновое сопротивление вибратора (чем толще вибратор),­
 тем меньше фазовая
скорость. Из формулы (3.21)
видно, что как активная, так и
реактивная                         составляющие

входного сопротивления сим­метричного вибратора, в об­щем случае, зависят не только от длины вибратора, но и от его диаметра. Зависимость входного сопротивления сим­метричного вибратора от вели­чины отношения l/ и от вол­нового сопротивления WA по­казана на рис. 3.8 и 3.9.

Кривые рассчитаны по формуле (3.21). При расчете полагалось, что = k. Из кривых видно, что при увеличении l/ активная со­ставляющая входного сопро­тивления постепенно растет и достигает при l/=0,5 макси­мума, величина которого тем больше, чем больше wa, т.е. чем тоньше вибратор. При даль­нейшем увеличении l/ rbx по­степенно уменьшается и дос­тигает минимума при l/=0,75. Затем Rвх снова начинает уве­личиваться и достигает

 

Рис. 3.9. Зависимость    X вх   от    величины   l/

 


 


нового максимума при l= (на рисунке этот максимум не показан). Вообще максимумы Rвх повторяются при всех отношениях l/, кратных 0,5. Актив­ная составляющая входного сопротивления минимальна в тех случаях, когда относительная длина вибратора становится равной нечетному числу /4. В случае полуволнового вибратора минимум Rвх отсутствует. Реактивная со­ставляющая входного сопротивления вибратора изменяется периодически, проходя через нуль при l/=0,25; 0,5;0,75; 1 и т.д. При l/<0,25 Хвх имеет емкостный характер, при 0,25< l/<0,5 - индуктивный. Можно сказать, что вблизи значений l/= (2n + 1)/4, где n=0, 1, 2..., симметричный вибратор ведет себя подобно последовательному колебательному контуру (резонанс напряжения), а вблизи значений l/=n/2- подобно параллельному колеба­тельному контуру (резонанс токов). В первом случае вибратор питается в пучности тока, а во втором - в узле тока. Наибольшую длину волны, при ко­торой вибратор оказывается настроенным в резонанс с питающим его гене­ратором (Хвх= 0), называют собственной длиной волны антенны. Как видно из формул (3.20) и (3.21), собственная длина волны симметричного вибратора 0=4l. В действительности из-за того, что фазовая скорость распростране­ния в вибраторе несколько меньше скорости света ( > k), резонансные дли­ны вибраторов оказываются несколько меньшими, чем получаемые по фор­мулам (3.20) и (3.21). При этом, чем толще вибратор, тем меньше фазовая скорость и тем короче его резонансная длина. В частности, при l/=0,25 и а0     Хвх=i42,5 Ом. Обычно стремятся к нулевой реактивной составляющей входного сопротивления вибратора на рабочей частоте. Поэтому длину плеча вибратора делают несколько короче, чем /4 или /2. Величина укорочения тем больше, чем толще вибратор. Активная составляющая входного сопро­тивления симметричного вибратора при питании вибратора в пучности тока (последовательный резонанс), как следует из формулы (3.20), равна Rвх=R0=Rп.. При определении входного сопротивления симметричного вибратора, питаемого вблизи узла тока, полагая, что l<<1 (что соответству­ет действительности), можно несколько преобразовать выражение (3.21) и получить следующие формулы:

Rвх = Rп / [sin2 kl+ (Rп2/W2A)];                                                                                             (3.22)

Хвх = - i (WA/2) [sin2kl/ (sin2 kl + (Rп2/W2A))] .                                                                                             (3.23)

В случае параллельного резонанса (kl=180°) получаем

R0 = WA2 / Rп    и      Хвх = 0.                                                                                                  (3.24)

Из формулы (3.24) видно, что в случае параллельного резонанса R0   весьма велико, так как Rп 200 Ом, a WA составляет 300 ... 1000 Ом. Фор­мулами (3.22) и (3.23) можно пользоваться наряду с формулой (3.21) для расчета входного сопротивления симметричного вибратора, если 0,35  l/ 0,65. Отметим, что при увеличении волнового сопротивления вибратора за­кон распределения тока по нему становится ближе к синусоидальному.

   Поэтому в случае тонких вибраторов (WA=700...1000 Ом) пределы приме­нимости формулы (3.20) расширяются. Как видно из кривых рис. 3.8 и 3.9, при уменьшении волнового сопротивления вибратора уменьшается зависи­мость его активного и реактивного входного сопротивления от частоты (улучшаются диапазонные свойства). По аналогии с обычным колебатель­ным контуром можно сказать, что при уменьшении WA уменьшается доб­ротность вибратора, под которой понимается отношение связанной с виб­ратором реактивной энергии к активной (излученной и теряемой) энергии. Добротность вибратора определяется выражением

                                          QA= A (WA/Rвх),                                            (3.25)

где А - коэффициент пропорциональности.

WA уменьшают, увеличивая размеры по­перечного сечения вибратора; при этом увели­чивается распределенная емкость C1 вибрато­ра.

Зависимость Rвх и Хвх от относительной длины плеча вибраторов реальной толщины приведены на рис.3.10.

 Зависимость Rвх  и Xвх  реальных

                  вибраторов от

                   величины   l/

Основные результаты, даваемые строгой теорией симметричного вибратора

Задача об излучении тонкого симметричного вибратора (электриче­ский радиус вибратора ka < 0,1) в строгой электродинамической постановке была решена Халленом и независимо от него российскими учеными М.А.Леонтовичем и М.Л.Левиным методом интегро-дифференциального уравнения. Как показали расчеты, даже в случае сравнительно тонких вибраторов (ka  0,05) распределение тока уже несколько отличается от си­нусоидального. Таким образом, метод интегро-дифференциального уравне­ния подтверждает правильность выбора приближенного (синусоидального) закона распределения тока и позволяет найти точное распределение тока в тонких вибраторах. Однако он не позволяет найти закон распределения тока в вибраторах средней (ka= 0,1...0,5) и большой (ka > 0,5) толщины. Кроме того, в рассмотренном методе не учитывается влияние ширины возбуждаю­щего зазора на распределение тока. Входное сопротивление полуволнового вибратора, рассчитанное этим методом, при а0 оказывается комплексным и равным     Zвх = 73,1 + i42,5 Ом. Как видно, активная составляющая входно­го сопротивления (R0) получается такой же, как и по методу вектора Пойнтинга. Реактивная составляющая входного сопротивления имеет индуктив­ный характер. Укорочение l, необходимое для того, чтобы сделать вибра­тор резонансным, определяется по формуле

l/l = - 0,225/ ln (l/a).                                                                               (3.26)

Расчет входного сопротивления полуволнового вибратора с учетом только первого приближения показал, что даже в случае тонких вибраторов величина радиуса заметно, влияет на входное сопротивление.

Задача об излучении толстого вибратора (ka>0,5) в строгой постановке была решена Е. Н. Васильевым в 1958-1959 гг. В отличие от методов Халлена или Леонтовича-Левина, где использовались граничные условия для век­торов электрического поля на поверхности вибратора, в методе Васильева используется граничное условие для векторов магнитного поля. Полученное из этого условия интегральное уравнение относительно текущего по вибра­тору тока решается численно при помощи ЭВМ. Решение тем более точно, чем толще вибратор. В дальнейшем Е.Н. Васильевым и Г.Д. Малушковым был разработан более общий метод решения задачи возбуждения осесимметричного тела вращения, позволяющий рассчитать распределение тока на вибра­торах среднего электрического радиуса (ka = 0,1...0,5), что особенно важно для анализа работы вибраторов, применяемых в метровом и особенно в де­циметровом диапазонах волн. Проведенные расчеты показали, что распреде­ление тока в вибраторах средней и большой толщины значительно отличает­ся от синусоидального. Ток на кромке торца имеет конечную величину. В центре торца ток равен нулю. Расчеты показали также, что: 1) с увеличением радиуса цилиндра существенно уменьшается коэффициент отражения от его концов и распределение тока по вибратору приобретает характер бегущей волны: амплитуда тока постепенно уменьшается по мере удаления от точек питания вибратора, фаза тока изменяется примерно по линейному закону; 2) ширина зазора между плечами вибратора значительно влияет на распреде­ление тока вблизи точек питания вибратора. Зависимость распределения то­ка от толщины вибратора влияет на диаграмму направленности последнего. С увеличением толщины вибратора направления нулевого излучения заме­няются направлениями минимального излучения. При этом чем толще виб­ратор, тем менее глубоки минимумы.

Действительные диаграммы направленности заметно отличаются от рассчитанных приближенным методом при l/а, равном нескольким десяткам.

 

ТЕМА 3. Связанные вибраторы. Характеристики вибраторных антенн

Одиночные вибраторы применяют только тогда, когда требуется нена­правленное или почти ненаправленное излучение. В тех же случаях, когда необходимо получить однонаправленное излучение или узкие диаграммы направленности применяют антенны, состоящие из двух или нескольких вибраторов, расположенных на небольшом расстоянии (меньше ) друг от друга. Такие вибраторы заметно влияют друг на друга, поэтому их называют связанными. Взаимодействие связанных вибраторов аналогично взаимодей­ствию связанных колебательных контуров с сосредоточенными постоянны­ми. Поле одного вибратора наводит в другом вибраторе некоторую ЭДС, что эквивалентно изменению сопротивления излучения или входного сопротив­ления вибратора. Поле, создаваемое системой вибраторов, является резуль­татом сложения полей, - создаваемых отдельными вибраторами, с учетом фаз этих полей, определяемых как разностью хода лучей, так и разностью фаз токов в излучателях. Ниже рассматривается работа двух связанных сим­метричных вибраторов. Получаемые при этом результаты нетрудно распро­странить на случай нескольких связанных вибраторов. Выведем формулу для расчета характеристики направленности двух параллельных вибраторов 1 и 2, находящихся на расстоянии d друг от друга (рис. 4.1), питаемых токами

. Обозначим              =q exp(i),                                                 (4.1)

где q - отношение модулей токов ; - сдвиг фазы тока I2 по отношению к току I1.

Рис. 4.1. К определению поля излучения связанных вибраторов

Рассмотрим поле в мери­диональной плоскости вибраторов xoz. Так как расстояние между вибраторами d несоизмеримо мало по сравнению с расстояниями до точки наблюдения (r1 и r2), на­правления в точку М можно счи­тать параллельными. Опустив из центра первого вибратора перпен­дикуляр на направление r2, найдем разность расстояний от 44 вибрато­ров до точки

47

наблюдения, равную r = d cos, где - угол между нормалью к оси вибратора и направлением на точку наблюдения. Обозначим напряженность поля, создаваемого в точке наблюдения первым вибратором, через E1. Выразим напряженность поля второго вибратора в точке наблюдения М через напряженность поля первого вибратора, приняв ее фазу в точке наблюдения за нулевую. Так как напряженность, создаваемо­го вибратором, поля пропорциональна току в вибраторе и влиянием разности расстояний от вибратора до точки наблюдения на амплитуду напряженности поля можно пренебречь, то = E1q exp(-ikdcos) exp(i), где kd cos- сдвиг фаз полей из-за разности хода лучей (пространственный сдвиг фаз). Найдем суммарное поле, создаваемое обоими вибраторами в данной точке

                                           (4.2)

На основании формулы (3.7) и с учетом того, что угол 0 является дополнительным по отношению к углу , запишем



     Обычно интересуются величиной напряженности суммарного поля, а не ее фазой. Поэтому, переходя к модулю выражения (4.2), получаем

Е =(60IП1 / r)[(cos(klsin) - coskl) / cos]      (4.3) или E= Af1()fc().Как видно из формулы (4.3), амплитудная характеристика направленности системы из двух связанных вибраторов определяется двумя множителями. Первый множитель f1() представляет собой характеристику направленности симметричного вибратора, находящегося в свободном пространстве. Второй множитель fc() учитывает наличие второго вибратора; он зависит от рас­стояния d между вибраторами, от отношения амплитуд токов в вибраторах q и от сдвига фаз токов в вибраторах . Этот множительназывают множителем системы. В экваториальной плоскости направленные свойства данной системы определяются только множителем системы, так как одиночный симметричный вибратор в этой плоскости (= 0°) не обладает на­правленными свойствами. Напряженность суммарного поля в экваториаль­ной плоскости определяется выражением

             Е = А (1- coskl) .                      (4.4)

В зависимости от величин d/, q и  диаграммы направленности могут иметь различную форму (рис.4.2, 4.3), При увеличении расстояния между вибраторами (начиная от d/ = 0,5) диаграмма направленности приобретает многолепестковый характер; чем больше d/, тем больше лепестков. Особенно важен случай однонаправленного излучения. Пусть токи в вибраторах одинаковы по величине (q = 1). Тогда формулу (4.4), воспользо­вавшись формулой для косинуса двойного угла, можно привести к виду

                   Е = 2А (1 - cos kl) cos [/2 - (kd/2) cos]                         (4.5)

Положим теперь, что =± 90° и расстояние между вибраторами d =/4. При этом формула (4.5) принимает вид

Е = 2А (1 - cos kl) cos (±45° - 45°cos).

Множитель f() = cos(±45°- 45°cos) описывает кардиоиду.  При= + 90° и = 0° этот множитель обращается в единицу; при =180° он обращается в нуль. Таким образом, в направлении = 0° напряженность по­ля удваивается (по сравнению с полем одиночного вибратора, возбуждаемо­го током, одинаковым с текущим по одному из связанных вибраторов). Это увеличение в одном направлении происходит за счет уменьшения поля в других направлениях. При  = - 90° напряженность поля удваивается в об­ратном направлении (=180°); поле равно нулю в направлении = 0°.

Поясним эти результаты. Если ток во втором вибраторе пережает по фазе ток в первом вибраторе, то в точке наблюдения, находящейся в направ­лении = 0°, поля от обоих вибраторов складываются в фазе, так как сдвиг фаз за счет несинфазности возбуждающих токов (= 90°) компенсируется пространственным сдвигом фаз (р= kd = (2/)(/4)= 90°). Этот сдвиг фаз берется со знаком минус, так как второй вибратор находится дальше от точ­ки наблюдения, чем первый. В обратном направлении (= 180°) множитель f() обращается в нуль, потому что в этом направлении поля от первого и второго вибраторов складываются в противофазе и компенсируют друг дру­га, так как рез=+ р=180°. Если ток во втором вибраторе отстает по фазе на 90° от тока в первом вибраторе (= - 90°), то получается обратная карти­на. В первом случае ( = 90°) второй вибратор усиливает излучение в на­правлении на первый вибратор. Во втором случае ( = -90°) он усиливает излучение в обратном направлении и ослабляет излучение в направлении первого вибратора. Вибратор,усиливающий излучение в направлении на другой вибратор и ослабляющий излучение в обратном направлении, называется рефлектором (отражате­лем). Чтобы рефлектирующее действие вибратора было полным (в одном на­правлении поле увеличивается, а в противоположном - равно нулю), в рас­сматриваемом случае (d =/4) токи в обоих вибраторах должны быть равны по величине (q = 1), а ток в рефлекторе должен опережать ток во втором свя­занном вибраторе на 90° (рис.4.4.а). Вибратор, ослабляющий излучение в на­правлении на другой вибратор и усиливающий излучение в противополож­ном направлении, называется директором (направителем). В идеальном слу­чае директор должен работать в режиме  (рис.4.4.б): q=l;  = -/2  (при d = /4). Отметим, что в обоих случаях напряженность поля увеличивается в направлении отставания фазы возбуждающего тока. Получить однонаправ­ленное излучение можно и при расстояниях между вибраторами, отличных от  /4. Как видно из формулы (4.5), условие отсутствия излучения в направ­лении  = 180° можно записать в виде  +kd = 180°. Для выполнения этого условия при d < /4 угол сдвига фаз у должен быть больше 90°. Хотя диа­грамма направленности при этом оказывается однонаправленной и макси­мум излучения лежит в направлении  = 0°, однако напряженность поля в этом направлении не удваивается. Чем ближе друг к другу расположены виб­раторы, тем меньшая напряженность поля получается в направлении макси­мального излучения (считая, что при изменении d величина тока в вибрато­рах постоянна).

Возбуждение каждого из двух связанных вибраторов токами, сдвину­тыми по фазе, усложняет систему питания. Поэтому в большен-

стве случаев вибраторы, выполняющие роль рефлекторов или директоров, не содержат источников питания (генераторов), т.е. являются пассивными. Они возбуж­даются электромагнитным полем активного (питаемого) вибратора. В случае пассивных вибраторов не удается осуществить режим, обеспечивающий пол­ное рефлекторное или директорное действие, так как не удается получить со­вместно q = 1 и  = 90°. Поэтому не получается полного удвоения поля в главном направлении и нуля поля - в обратном.

 

 

 

ТЕМА 4. Способы увеличения рабочего диапазона волн вибраторных антенн.

Частотно–независимые антенны

Рабочий диапазон простых вибраторных антенн (в том числе несим­метричных) определяется частотной зависимостью входного сопротивле­ния антенны.

   Уменьшить эту зависимость можно тремя способами:

1) как уже отмечалось - снижением волнового сопротивления вибратора; 2) плавным изменением его поперечного сечения;

3) коррекцией входного со­противления вибратора.

   Первый способ. Снижение волнового сопротивления вибратора путем увеличения размеров поперечного сечения является одним из основных ме­тодов расширения рабочего диапазона вибратора. По этому принципу по­строен симметричный вибратор, предложенный в начале 30х годов С.И.Надененко, широко применяемый в диапазонах коротких и метровых волн. Этот вибратор выполняется из ряда проводов, натянутых по образую­щим цилиндра (рис.3.12), в результате чего волновое сопротивление снижа­ется до 250...400 Ом (вместо 600...1000 Ом у обычного вибратора). Волно­вое сопротивление такого вибратора рассчитывается по формуле

WA = 120[ln (l/э-1],                                                                                (3.32)

где э - эквивалентный радиус вибратора.

 

42k
 

 


Вибратор Надененко

Эквивалентным радиусом вибратора называется радиус сплошного металли­ческого цилиндра, волновое сопротивление которого равно волновому со­противлению данного цилиндра, выполненного из отдельных проводов

э = ,                                                                               (3.33)

где  - радиус цилиндра, образованного проводами;

       n - число проводов (обычно n = 6...8)

       а - радиус провода.

Диапазонные вибраторы могут иметь различную форму поперечного се­чения: круглую, прямоугольную, треугольную и т.д.

Второй способ. Этот способ основан на том, что антенну можно рассмат­ривать как переходное устройство между фидерной линией, в которой су­ществует связанная плоская волна, и свободным пространством,в котором существует пространственная волна. Если в качестве фидера при­меняется двухпроводная симметричная линия, то плавный переход от такой линии к свободному пространству может быть осуществлён при помощи биконической антенны (рис.3.13). Волновое сопротивление биконической ан­тенны (l) равно

WA=276lg [ctg (/2)],                                                                    (3.34)

где - угол между осью конуса и его образую­щей. При 30° < < 60° входное сопротивление биконической антенны в довольно широком диа­пазоне слабо зависит от частоты.

Третий способ. Этот способ состоит в том, что ан­тенна выполняется из двух частей, реактивные со­ставляющие входных сопротивлений которых имеют различные частотные зависимости (например, одно является индуктивным, а другое ёмкостным) и компенсируют друг друга в                               некоторой полосе частот. Примером может служить диапазонный шунтовой вибратор, предло­женный Г.З.Айзенбергом.

 

Логопериодические антенны (ЛПА) относятся к классу сверхширокополосных  антенн, сохраняющих при изменении частоты как ДН, так и величину входного сопротивления. Работа антенны основана на принципе электродинамического подобия, согласно которому при изменении размеров антенны в определенное количество раз и изменении длины волны во столько же раз характеристики антенны останутся без изменения. Существует большое число различных модификации ЛПА. Рассмотрим вариант вибраторной ЛПА, приведенной на рис.11.10. Антенна состоит из линейных вибраторов, присоединенных к двухпроводной линии. Возбуждение осуществляется с помощью коаксиальной  линии, которая проложена внутри одного из проводов двухпроводной линии, имеющей форму трубки. Подобный переход от коаксиальной к двухпроводной линии не требует симметрирующего устройства.

 

 

 

pic_11-10

Длины вибраторов удовлетворяют соотношению

ln /ln+1 =τ,

где  τ - период структуры, независимо от номера n (n = 1, 2, ...). Линии, соединяющие концы вибраторов, образуют угол α.

По принципу действия подобная ЛПА напоминает директорную антенну. На частоте f0  резонирует, т.е. возбуждается наиболее интенсивно вибратор, длина плеча которого близка к  λ0/4 (λ0 =c/f0 ), поскольку входное сопротивление этого вибратора можно считать активным. Другие вибраторы возбуждаются значительно слабее, так как входное сопротивление их велико из-за большой реактивной составляющей. Активная область антенны,   формирующая   излученное   поле, включает обычно три - пять вибраторов, в том числе резонансный и прилегающие к нему с двух сторон. Фазовые соотношения токов  в  вибраторах  активной  области  определяются  длиной  вибраторов, взаимным влиянием и поочередным подключением их к разным проводникам питающей линии. При этом оказывается, что токи в более коротких вибраторах отстают, а в более длинных - опережают по фазе ток в резонансном вибраторе. Соответственно более короткие вибраторы работают в режиме директоров, а более длинные выполняют функцию рефлектора. Максимум излучения направлен в сторону вершины антенны.

Если частота генератора уменьшится и станет равной τf0, то начнет резонировать следующий, более длинный вибратор, соответственно активная область переместится в сторону более длинных вибраторов. Напротив, при увеличении частоты активная область сместится к вершине антенны. На всех частотах fn =τn-1f1, где n - номер вибратора; fn - резонансная частота n-го вибратора, свойства антенны остаются неизменными. В интервалах между резонансными частотами свойства антенны меняются, но незначительно. Прологарифмировав, получим lnfn =(n-1)lnτ + lnf1. В логарифмическом масштабе резонансные частоты повторяются через интервалы, равные lпτ, что и определило название антенны этого класса.

Из изложенного ясно, что ширина рабочей полосы частот ЛПА с нижней стороны ограничивается допустимыми размерами самых длинных вибраторов (λmах 4lmах ), а с верхней стороны - возможной точностью выполнения вибраторов вблизи точек питания (λmin 4lmin). Практически можно получить примерно в десятикратном диапазоне волн (fmax/fmin =10) почти неизменную ДН. В этом же диапазоне КБВ в фидере не падает ниже 0,6... 0,7. Следует учитывать, что вследствие перемещения активной области по длине антенны с изменением частоты меняется также положение фазового центра антенны. Последнее обстоятельство не имеет значения, например, при приеме телевизионных программ, но принципиально при использовании ЛПА в качестве облучателя параболических антенн (см. лк.9), а также при работе с широкополосными сигналами.

Расчет токов в вибраторах ЛПА требует учета их взаимного влияния не только по свободному пространству, но и по проводам питающей линии.

В связи с тем, что в излучении на данной частоте участвует только несколько вибраторов, ДН получается довольно широкой, причем в Е-плоскости (плоскость, в которой расположены вибраторы) получается уже, чем в H-плоскости. Увеличение τ при неизменном α сужает ДН, так как увеличивается число вибраторов, входящих в активную область. Уменьшение угла α при неизменном τ также сужает ДН, поскольку при этом увеличивается расстояние между соседними вибраторами, т.е. активная область расширяется. Сказанное справедливо только до некоторых критических значений τmах0,95 и αmin10°.

Если провода линии, питающей ЛПА, разместить под углом друг к другу, то получится пространственная ЛПА (рис.11.11).

 


Диаграмма   направленности   такой   антенны   в   H-плоскости   получается pic_11-11значительно уже, чем у плоской ЛПА, за счет влияния множителя системы, образованной разнесением в H-плоскости активных областей каждого из полотен. В E-плоскости вид ДН остается практически прежним. Провода питающей линии в подобной конструкции вызывают излучение с паразитной поляризацией,    однако оно, как правило, невелико.

Подпись: Рис.11.11. Пространственная вибраторная ЛПАВ диапазоне УКВ логопериодические антенны применяются в качестве широкополосных
облучателей параболических и линзовых антенн,
приемных телевизионных антенн и т.д.
На практике используются также вертикальные
синфазные ЛПА (рис.11.12), максимум излучения
которых перпендикулярен плоскости полотна
антенны. Вибраторы такой антенны питаются
двухпроводной линией. Сужение ДН в горизонтальной плоскости достигается применением двух или трех секций, питаемых синфазно. Такие ЛПА с рефлектором используются в секторных антеннах, применяемых в сотовой радиосвязи.   В   частности,   антенна,   состоящая   из   двух   полотен   по  6 вибраторов имеет коэффициент усиления порядка 13 дБ.

 

 

ТЕМА 5. Теория антенных решеток. Линейные и плоские решетки

 

Пусть имеется ряд из n симметричных вибраторов, одинаковым обра­зом ориентированных в пространстве (рис.4.9.а). Расстояние между центра­ми соседних вибраторов равно d1. Линейной решеткой называется система идентичных излучателей, центры излучения которых расположены на пря­мой, называемой осью решетки. Будем считать, что токи во всех элементах решетки имеют одинаковую величину (I1=I2=…In = I), фаза же тока в каж­дом последующем вибраторе данного ряда отстает от фазы тока в предыду­щем на величину . Таким образом, I2 = Iexp(-i)...In = Iexp[-i(n-l)]. Следо­вательно, вдоль каждого ряда вибраторов фаза возбуждающего тока изменя­ется по линейному закону.



Рис. 5.1. К определению множителя решётки по­перечного излучения


Рассмотрим вначале линейную систему из n ненаправленных излуча­телей, расположенных на равных расстояниях друг от друга, возбужденных токами, равными по амплитуде. Такая система вибраторов называется экви­дистантной равноамплитудной решеткой. Пусть фаза тока в каждом после­дующем вибраторе отстает на угол  по отношению к току предыдущего. На большом удалении от антенны в точке М, когда d1<<r, лучи от отдельных вибраторов можно считать параллельными. Поле в точке М (рис.5.1.а), соз­данное вибратором 1, обозначим через E1. В равноамплитудной решетке ам­плитуды поля, созданные различными вибраторами на большом удалении, можно принять равными амплитуде поля первого вибратора, но фазы этих полей будут различными. Поле Е2 вибратора 2 за счет разности хода лучей r будет опережать поле вибратора 1 по фазе на угол kr = kd1sin и отставать на угол  за счет питания. Результирующий сдвиг по фазе между полями, созданными вибраторами 1 и 2 равен Ф = kd1sin(-). Этот сдвиг по фазе будет и для полей, созданных любыми соседними вибраторами. На рис.5.1.б приведено графическое сложение полей отдельных вибраторов, сдвинутых по фазе друг относительно друга на угол Ф.

Векторы полей образуют часть правильного многоугольника, замыкающая сторона которого Еn равна результирующей напряженности поля, созданной всеми вибраторами в точке М. Перпендикуляры, восстановленные из сере­дин сторон (векторов Е) правильного многоугольника, пересекутся в одной точке 0, являющейся центром описанной окружности радиуса . Для тре­угольников ОАВ и ОАС можно записать

sin(Ф/2) = АВ/ = Е1/2 и sin(nФ/2) = АС/ = Еn/2. Поделив одно уравнение на другое, получим

Еn1= sin (0,5 nФ)/sin(0,5Ф) или Еn = Е1fс (), где Ф = kd1sin-;

fc() = sin (0,5 nФ)/sin(0,5Ф) = sin[0,5 n(kd1sin -)]/ sin[0,5(kd1sin -)] (5.1) - множитель системы (решетки) излучателей.

Здесь рассматривалась решетка, состоящая из ненаправленных излуча­телей. Если линейную решетку составить из направленных излучателей, на­пример, симметричных вибраторов, то поле Е1 созданное каждым вибрато­ром, определится его направленными свойствами f1() и результирующая характеристика направленности будет равна

f() = f1() fc().                                                                                                  (5.2)

На основании выражения (5.2) может быть сформулирован общий принцип умножения характеристик направленности: характеристика на­правленности системы (антенной решетки) однотипных излучателей пред­ставляет собой произведение характеристики направленности одного эле­мента данной системы на множитель системы.

При большом числе вибраторов n множитель системы при изменении угла  изменяется, значительно быстрее чем множитель f1(). Это объясня­ется тем, что величина nkd1/2 значительно больше величины kl. Поэтому ха­рактеристика направленности решетки, в основном, определяется множите­лем системы. Поскольку множитель системы sin(nu)/sin(u) является перио­дической функцией, то при изменении угла  этот множитель может обра­щаться в нуль, затем он возрастает, достигая максимального значения, далее уменьшается, снова становится равным нулю и т.д. Поэтому можно утвер­ждать, что диаграмма направленности решетки имеет многолепестковый ха­рактер.

Синфазная решетка

Широкое практическое применение находят антенные решетки с оди­наковыми по амплитуде и фазе токами в вибраторах (равноамплитудные синфаз­ные решетки). Полагая в формуле (5.1) =00, получим формулу для характе­ристики направленности, такой решетки из т рядов в плоскости E

E= (m60Iп/r)[(cos(klsin) -coskl)/ соs] *

*sin [(n/2) (kd1sin)]/sin [(l/2) (kd1sin)].                                 (5.3)

Напряженность, излучаемого антенной, поля максимальна в направле­нии =0° (главный максимум), т.е. в экваториальной плоскости антенны. Каждый из вибраторов в этом направлении излучает с максимальной интен­сивностью, если l/0,7; множитель f1() в этом случае равен 1 - coskl. Поля от отдельных вибраторов в направлении =00 синфазны и складываются арифметически, так как в направлении нормали к осям вибраторов разность расстояний до точки наблюдения равна нулю. Выражение множителя сис­темы в этом случае представляет собой неопределенность вида 0/0 , при рас­крытии которой по правилу Лопиталя оказывается, что множитель системы максимален и равен n. Таким образом, в данном случае выражение (5.3) при­нимает вид Еmах= nЕ1mах. Здесь n - число симметричных вибраторов в решет­ке. Такой же вид принимает выражение (5.3) и при =1800. Как следует из формулы (5.3), нормированная характеристика направленности определяется выражением

F () = (Е/Емакс) = [(cos (klsin) - coskl) / соs (1- coskl)] *
*sin [(n/2) (kd1sin)]/ {[nsin (l/2) kd1sin)]}.             (5.4)

При некоторых значениях угла  сдвиг фаз между полями соседних вибраторов, равный kd1sin, становится таким, что в результате интерферен­ции полей от всех вибраторов суммарное поле обращается в нуль. Направле­ния, в которых отсутствует излучение, определяются из условия равенства нулю числителя множителя системы, т.е. (nkd1/2)sin0 = N, откуда sin0 = N/(nd1), N = 1, 2, 3, ... . Так как синус всегда меньше единицы, то чем больше знаменатель, тем больше направлений нулевого излучения (N) имеет диаграмма направленности. Следовательно, чем больше число вибра­торов п (точнее, чем больше относительный размер nd1/ решетки), тем больше лепестков в диаграмме направленности. Направления нулевого из­лучения рассчитываются по формуле

0=arcsin [N/(nd1)], где N= 1, 2, 3, ...                                                                                         (5.5)

Направления максимумов боковых лепестков приближенно можно найти из условия максимума числителя множителя системы, так как знаме­натель этого множителя при kd1<<nkd1 (т.е. при большом числе вибраторов) с изменением угла  изменяется значительно медленнее числителя. Это ус­ловие записывается в виде sin[(nkd1/2)sinmax] = ±1, откуда   nu=(nkd1/2)sinmax = (2N+l)/2,   N= 1,2,3,...

Направления максимумов боковых лепестков рассчитываются по формуле

max = arcsin[(2N+l)/(2nd1)], где N= 1,2,3, ...                                                                        (5.6)

На рис.5.2 приведены диаграммы направленности синфазной решетки (в плоскости Е) для разного количества симметричных полуволновых вибраторов и расстояния между ними. Ближайшее к главному максимуму направление нулевого излучения определяют по формуле sin0 = /(nd1).

Следовательно, главный лепесток диаграммы направленности заключен в угле, равном 20. Как видно из формулы главный лепесток диаграммы на­правленности тем уже, чем больше вибраторов в одном ряду, или чем боль­ше относительная длина антенны nd1/ = L/.





 


20 = 2(/nd1), рад или 20 115°/nd1.                                                                                (5.7)

В случае равномерной синфазной решетки ширину диаграммы направ­ленности по половинной мощности можно определить по приближенной формуле

20,5 0,89(/nd1),    рад или 20,5 510 /nd1.                                                     (5.8)

Симметричный вибратор с относительной длиной l/ = 0,5 имеет ширину диаграммы направленности шириной по половинной мощности 44°. Для того чтобы сузить диаграмму направленности до 6,4°, т.е. примерно в 7 раз, надо приме­нить 8 синфазных симметричных вибраторов, т.е. увеличить размер антенны примерно в 8 раз.

Направленные свойства антенны характеризуются не только шириной главного лепестка диаграммы направленности, но и уровнем боковых лепе­стков

N= l/nsin{[(2N+l)/n)](/2)}.                                                                                                         (5.9)

При большом значении n (аргумент синуса мал) можно перейти к сле­дующей приближенной формуле для расчета первых двух боковых лепестков N= 2/[(2N+l)]. В этом случае уровень первого бокового лепестка 1=2/3  0,21. Уровень второго бокового лепестка составляет примерно 0,13. Уровень первого бокового лепестка в децибеллах составляет примерно -13,3 дБ. Отметим, что два главных максимума (при =0° и =180°) или два главных лепестка в диаграмме направленности получаются только при d1<. При d1  возможно одновременное обращение в нуль числителя и знамена­теля множителя системы при некоторых значениях углов, не равных 0° и 180°. Это происходит при выполнении условия (kd1sin)/2 = N или kd1sin = 2N, т.е. в том случае, когда сдвиг фаз между полями соседних вибраторов равен или кратен 2. При этом множитель системы, как и в случаях =0° и =180°, имеет наибольший максимум, равный n. Это приводит к появлению в диаграмме направленности антенны, кроме боковых лепестков дополни­тельных (вторичных) боковых лепестков. Уровень этих лепестков тем боль­ше, чем шире диаграмма направленности одного элемента решетки. Он ра­вен единице, если элементы не обладают направленными свойствами.

Так как симметричный вибратор не обладает направленными свойст­вами в экваториальной плоскости, то характеристика направленности син­фазной решетки в плоскости H определяется только мно­жителем системы, который совершенно аналогичен этому множителю для плоскости E. Ширину диаграммы направленности, на­правления максимумов боковых лепестков и их уровень определяют по фор­мулам, полученным для плоскости вектора Е решетки, заменяя в них угол   углом . Чем больше рядов m в синфазной решетке, тем уже ее диаграмма направленности в плоскости H. КНД синфазной решетки в направлении максимального излучения может быть рассчитан по формуле

             D = (120/ Rполн) (mn)2 (1-coskl)2,                                                                                       (5.10)

где Rполн - полное сопротивление излучения антенны. Заметим, что при

d1=>0, d2=>0, n=>, m=> но при nd1= const = b и md2 = const = а, где а и b

разме­ры излучающей системы в плоскостях Н и Е соответственно, с помощью предельного перехода можно перейти от формул характеристик направлен­ности антенных решеток к формулам характеристик направленности систем с непрерывным распределением возбуждающих источников (излучающих поверхностей). При а >>, b >> и небольших расстояниях между излучате­лями (d1 < 0,07) характеристики направленности обеих систем практически совпадают. Выясним направленные свойства линейной равномерной решетки. Как видно из выражений (5.1) и (5.4), множители системы равноамплитудной эквивалентной линейной и равноамплитудной эквидистантной синфазной решеток идентичны и отличаются только аргумен­тами синусов. Однако в случае равноамплитудной эквидистантной линейной решетки множитель системы максимален и равен п при условии u = . При этом поля от всех элементов антенны в точке наблюдения, характеризуются углом mах, имеют одинаковую фазу, так как сдвиг фаз из-за несинфазности возбуждения Ψ компенсируется пространственным сдвигом фаз Ψp = kd1 sin. Из множителя системы, получаем

sin maxuл = λ / (2).                                                                                                    (5.11)

Таким образом линейный закон изменения фазы возбуждающего поля приводит к изменению направления максимального излучения. Это направ­ление отклоняется от перпендикуляра к оси решетки на угол φmaxгл. Так как излучение максимально в том направлении, в котором происходит взаимная компенсация сдвигов фаз Ψ и Ψр, то диаграмма направленности поворачива­ется обязательно в сторону отставания фазы возбуждающего тока. Поворот диаграммы направленности, т.е. управление ею путем изменения величины сдвига фаз Ψ, находит широкое применение на практике.

Направление нулевых излучений можно определить по формуле    sin0 = Nλ/(ncosφmaxгл). При узких диаграммах направленности значение

                                  0 равно 2φ0 = 2λ/(nсщыφmaxгл).

 

Таким образом ширина диаграммы направленности растет по мере от­клонения направления максимального излучения от перпендикуляра к оси решетки. Уровень боковых лепестков, близких к главному, приближенно может быть найден тем же методом, что и в случае синфазной решетки. На­правления максимумов боковых лепестков при этом определяются из фор­мулы sin φmaxгл, = (2N+l)λ/(2nd1cos φmaxгл).

Так как при отклонении направления максимального излучения от нормали к оси решетки диаграмма направленности расширяется, а уровень боковых лепестков не изменяется, то казалось бы, что КНД решетки должен уменьшаться. Однако при этом пространственная диаграмма направленности приобретает коническую форму и телесный угол, в пределах которого за­ключено излученное поле (главный лепесток), уменьшается, что компенси­рует расширение диаграммы направленности в плоскости вектора Е. В ре­зультате оказывается, что КНД линейной равномерной решетки не зависит от угла φmaxгл. КНД линейной равномерной решетки, можно рассчитать по формуле D = 101,5/2φ0,5, где 2φ0,5 - ширина диаграммы направленности по половинной мощности, рад. Рассмотренные антенные решетки излучают

с максимальной интенсивностью либо в направлении нормали к своей оси (φ =  - синфазная решетка), либо под некоторым углом к нормали (равно­мерная линейная решетка). Вдоль оси решетки (ось у) излучение равно нулю, так как элементы решетки в этом направлении не излучают, это - решетки с поперечным излучением.

Вывод. Ширина ДН синфазной решетки сужается с уменьшением длины волны, увеличением числа вибраторов и увеличением расстоянии ме­жду ними. Если в синфазной решетке уменьшить число вибраторов и увели­чить расстояния между ними так, чтобы сохранить неизменным произве­дение nd1, т.е. линейные размеры антенны, то ширина главного лепестка останется неизменной, но возрастут уровни боковых лепестков. При          < 0,5 λ, уровни боковых лепестков практически остаются неизменными, но возрастает число вибраторов и усложняется система питания. Поэтому расстояния  между центрами ненаправленных или полуволновых вибрато­ров обычно выбирают равными 0,5λ, а одноволновых - λ. Для уменьшения уровня боковых лепестков применяют эквидистантные решетки, в которых центральные вибраторы имеют большие токи, а периферийные меньшие или равноамплитудные решетки, в которых расстояния между вибратора­ми по мере удаления от центра антенны увеличиваются. Подбирая закон распределения амплитуд или размещения вибраторов, можно снижать уровни боковых лепестков до необходимых значений.

При заданных линейных размерах антенны наибольшим КНД обладают равноамплитудные эквиди­стантные решетки. Следовательно, снижение уровня боковых лепестков достигается уменьшением КНД или увеличением размеров антенны.

Диаграмма направленности системы ненаправленных (изотропных) синфазных излучателей, расположенных вдоль прямой линии есть ДН линей­ной решетки, являющейся фигурой вращения, ось которой совпадает с ли­нией расположения вибраторов в решетке. В плоскости, перпендикулярной линии расположения вибраторов и проходящей через ее центр, синфазная линейная решетка имеет круговую (ненаправленную) ДН. Для получения уз­ких ДН в двух плоскостях, например в горизонтальной и вертикальной, син­фазная решетка должна быть двухмерной.

При линейном законе изменения фаз токов в вибраторах ДН поворачи­вается в сторону отставания фаз.

      Рассмотрим равномерную линейную решетку (рис.4.9.б), состоящую из ряда вибраторов, оси которых параллельны и каждый вибратор излучает с максимальной интенсивностью вдоль оси решетки (оси х). Необходимый сдвиг фаз токов, в элементах антенны (ψ) можно создать с помощью соот­ветствующих фазовращателей. Однако схема питания антенны при этом по­лучается весьма сложной. Проще последовательно возбуждать элементы ан­тенны с помощью бегущей электромагнитной волны, распространяющейся от начала антенны (первый вибратор) к ее концу с определенной фазовой скоростью. При этом ток в последующем вибраторе отстает по фазе от тока в предыдущем на величину ψ = β где  -  расстояние между вибраторами, β = /v = kc/v - коэффициент фазы, c/v - коэффициент замедления. Таким об­разом, если считать, что токи в вибраторах равны по амплитуде, то

 

        Так как последующий вибратор возбуждается позже предыдущего, но находится ближе к точке наблюдения, то сдвиг фаз между полями соседних вибраторов в этой точке (фаза поля первого вибратора принимается за нуле­вую) равен

.                            (6.1)

Сдвиг фаз между полями крайних вибраторов

Ψn = (n - l) k(cosφ - c/v).                                                                                 (6.2)

Учитывая сказанное, а также то, что имеется только один ряд вибрато­ров (m=1), можно от формулы (5.3) перейти к формуле (плоскость Е)

Е = (60Iп