Часть II.

Функциональность RTX

Управление процессами и потоками

В этом разделе обсуждается следующие темы:

Использование процессов и потоков

Понятие процесса включает в себя адресное пространство, хэндлы объектов и один или несколько исполняемых потоков. Потоки используются, например, в качестве обработчиков прерываний и для обработки асинхронных, связанных с процессом событий, в контексте потока. Функционирование потоков и процессов в RTSS во многом аналогично Win32.

Использование процессов

Ниже кратко описывается работа процессов в RTSS и Win32 среде.

Процессы в RTSS подсистеме

Процесс, исполняющийся в RTSS, состоит из набора хэндлов объектов, адресного пространства процесса, по меньшей мере одного потока и исполняемого файла. При создании процесса RTSS выполняет следующие действия:

Процесс может быть запущен одним из следующих способов: Процесс прекращает работы при одном из следующих условий: Максимальное число процессов, одновременно существующих в RTSS, равняется числу слотов RTSS-процессов, заданному в регистре (по умолчанию 10). RTSS-процесс не может использоваться в качестве объекта синхронизации.

Процессы в Win32 подсистеме

Процессы, выполняющиеся подсистеме Win32, начинают взаимодействовать с RTX, когда они вызывают функции RTAPI. Такой вызов связывает процесс с rtapi_w32.dll. После этого RTX может выделять ресурсы для этого процесса, изменять его приоритет и т.д. Число Win32 процессов, которое может взаимодействовать с RTX, непостоянно – оно зависит от конфигурации системы и свободных ресурсов.
 

Использование потоков

Функция CreateThread создает либо RTSS, либо Win32 поток, в зависимости от текущей исполняющей подсистемы процесса. Возвращаемый хэндл и ID потока действителен только в окружении, вызвавшем CreateThread. Например, Win32 процесс не может управлять приоритетом RTSS потока, потому что хэндл этого потока действителен только в RTSS подсистеме. Вы можете, однако, использовать средства межпроцессного взаимодействия (Inter-Process Communication,IPC), предоставляемые RTX – такие как mutex, semaphore, events и shared memory – для синхронизации и коммуникации между Win32 и RTSS процессами и потоками. См. раздел “Межпроцессное взаимодействие”.  

Объекты таймеры и прерывания

Объекты-таймеры и прерывания происходят от потоков, следовательно, хэндлы этих объектов действительны только в их собственной (Win32 или RTSS) среде. Аналогично, этими объектами можно управлять только из процессов в их собственной среде.

RTSS подсистема

Единицей исполнения в подсистеме RTSS является поток. Готовый к исполнению RTSS-поток получает приоритет над всеми Win32 потоками. RTSS-поток исполняется до тех пор, пока он не освободит CPU. Поток освобождает CPU, когда он:

RTSS-потоки не могут быть использованы как объекты синхронизации. Первичный поток процесса имеет стек размером 8 KB. Можно указать размер стека созданных впоследствии потоков с помощью функции CreateThread.

Приоритеты потоков

В этом разделе описывается система приоритетов потоков в RTSS и Win32 подсистемах.  

RTSS подсистема

RTSS подсистема не имеет понятия классов приоритетов, поэтому потоки всех RTSS-процессов состязаются за процессорное время только на основании приоритетов потоков. Поток в RTSS может иметь один из 128 уровней приоритета. Потоки выполняются в соответствии с приоритетом, а потоки одного приоритета – по принципу FIFO (first in-first out). Потоки не квантуются по времени. Это означает, что исполняющийся поток будет выполняться, до тех пор, пока не освободит CPU или внешнее событие не подготовит поток с более высоким приоритетом. Планировщик RTSS использует протокол продвижения приоритета для предотвращения инверсии приоритетов.

Win32 подсистема

Win32 RTX программа начинает исполняться в real-time классе приоритета. RTX обеспечивает соответствие между приоритетами в Win32 и RTSS. Однако, планировщик Win32 не исключает инверсии приоритетов.

В таблице 1 показано, как имена приоритетов RTSS транслируются в приоритеты Win32 при вызове функции RtSetThreadPriority из Win32 программы.

Таблица 1.

RTSS Symbolic Priority Name RTSS Value Windows NT Symbolic Priority Name for Real-Time Priority Class Win32 Value
RT_PRIORITY_MIN 0 THREAD_PRIORITY_IDLE  16
RT_PRIORITY_MIN + 1  1 THREAD_PRIORITY_LOWEST 22
RT_PRIORITY_MIN + 2  2 THREAD_PRIORITY_BELOW_NORMAL 23
RT_PRIORITY_MIN + 3  3 THREAD_PRIORITY_NORMAL 24
RT_PRIORITY_MIN + 4  4 THREAD_PRIORITY_ABOVE_NORMAL 25
RT_PRIORITY_MIN+ 5 …+ 126  5…126 THREAD_PRIORITY_HIGHEST 26
RT_PRIORITY_MAX  127 THREAD_PRIORITY_TIME_CRITICAL 31

Например, вызов RtSetThreadPriority(Thread,RT_PRIORITY_MIN+1) преобразуется в SetThreadPriority(Thread, THREAD_PRIORITY_LOWEST)

Если Win32 программа вызывает RtGetThreadPriority(), возвращается real-time приоритет, указанный в вызове RtSetThreadPriority().

В таблице 2 показано, как преобразуются вызовы Win32 “set” и “get” в RTSS подсистеме.

Таблица 2.

Windows NT Symbolic Priority Name for Real-Time Priority Class Win32 Value RTSS Symbolic Priority Name Value
THREAD_PRIORITY_IDLE  16 RT_PRIORITY_MIN 0
THREAD_PRIORITY_LOWEST  22 RT_PRIORITY_MIN + 1 1
THREAD_PRIORITY_BELOW_NORMAL  23 RT_PRIORITY_MIN + 2 2
THREAD_PRIORITY_NORMAL  24 RT_PRIORITY_MIN + 3 3
THREAD_PRIORITY_ABOVE_NORMAL  25 RT_PRIORITY_MIN + 4 4
THREAD_PRIORITY_HIGHEST  26 RT_PRIORITY_MIN + 5 5
THREAD_PRIORITY_TIME_CRITICAL  31 RT_PRIORITY_MAX 127
 

Между THREAD_PRIORITY_IDLE и THREAD_PRIORITY_HIGHEST нет других уровней приоритетов. Если необходим более широкий набор приоритетов в этом диапазоне, надо использовать спектр приоритетов RTSS.

Назад | Содержание | Вперед