
D A T A B A S E
MANAGEMENT
S Y S T E M S

E r .V . K . J ain

B.E., M.TECH
FIE, FIETE, MISHARE

Published by

d r e a m t e c h

19-A, Ansari Road, Daryaganj,
N ew D elh i-1 1 0 0 0 2

© C opyright 2002 by D ream tech Press, 19-A, A nsari R oad, D aryaganj, N ew D e lh i-110002

T his book m ay no t be dup licated in any w ay w ithou t the express w ritten consen t o f the
publisher, excep t in the form o f b r ie f excerpts o r quotations for the purposes o f review . T he
inform ation contained herein is for the personal use o f the reader and m ay no t be incorporated
in any com m ercial program s, o ther books, databases, o r any k ind o f softw are w ithou t w ritten
consent o f the publisher. M aking copies o f th is b ook o r any portion for any purpose o ther
than your ow n is a v io lation o f copyright laws.

LIM ITS O F LIABILITY/DISCLAIM ER OF W A R R A N TY : The author and publisher have
used their best efforts in preparing this book. The author make no representation or warranties
with respect to the accuracy or completeness o f the contents o f this book, and specifically
disclaim any implied warranties o f merchantability or fitness o f any particular purpose. There are
no warranties which extend beyond the descriptions contained in this paragraph. No warranty
may be created or extended by sales representatives or written sales materials. The accuracy and
completeness o f the information provided herein and the opinions stated herein are not guaranteed
or warranted to produce any particulars results, and the advice and strategies contained herein
may not be suitable for every individual. Neither Dreamtech Press nor author shall be liable for
any loss o f profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

T R A D E M A R K S : A ll brand names and product nam es used in this book are tradem arks,
registered tradem arks, or trade nam es o f their respective holders. D ream tech Press is not
associated w ith any product or vendor m entioned in this book.

Edition: 2006

Printed at : Print Well Offset, Bhikaji Cama Place, New Delhi-66

Preface

T he present day world belongs to inform ation technology and the processing of
information. The application of computers has spread to influence every domain of
human activity. A plethora of data is available just for the click of the mouse; in no time,
right from where one happens to be. However, unless this ocean of inform ation is
harnessed with some powerful technique of data management, none of its bounties can
be availed for practical purposes. This accounts for Data Management being considered
as vital as, and as imperative as data procurement.

This book is devoted to the subject o f Database Management Systems and is intended
for the general learner as well as for those who need to learn about Databases as part of
the course they might be pursuing or for taking competitive exams which include Database
in the syllabus.

The book begins with an informative and interesting account of the information explosion
that has made the times we live in, a turning point in the history of mankind. The reader
is then briefed about the general principles governing the technique o f Database
Management. Following this, the organization of traditional Database Models and their
limitations are explained so as to set the stage for presenting the modern techniques. The
Standard Query Language and its various versions are detailed thereafter. Then, the
various modern Database Systems that are equipped to handle the current situation,
which could be attributed to the Internet and other means of fast data transfer technologies,
are explained exhaustively.

The book maintains a simple and easy-to-understand style of narration and every effort
has been made to render the presentation interesting. The entire field o f the subject dealt
with has been covered so that the reader genuinely profits by reading this book.

Readers are requested to send their suggestions for improvement and to point out
shortcomings or omissions, if any. These will be thankfully acknowledged and considered
for incorporation in the future editions.

Er. V. K. Jain

C o n t e n t s

1. O v e r v i e w O f D a t a b a s e m a n a g e m e n t S y s t e m s 17
1.1 D ata , In form ation and K now ledge.. 17

1.1.1 Information.. 18
1.1.2 Knowledge... 18
1.1.3 Difference between Information and D ata... 18

1.2 Increasing Use o f D a ta as R eso u rce ..19
1.2.1 Information Explosion.................. 21
1.2.2 Information Produced by Medium................... ~...21

1.3 D a ta Processing Vs D a ta M anagem ent S y s te m s ... 23
1.3.1 Characteristics of Data Processing Systems.. 24
1.3.2 Evolution of Data Management System...24

1.4 F ile -O rien ted A p p ro a c h ..25
1.4.1 File Processing Systems..25
1.4.2 Limitations of File Processing Systems..26
1.4.3 File Management Systems (FMSs)..27
1.4.4 Disadvantage of File Oriented System..28

1.5 D atabase O rien ted A p p ro ach to D a ta M a n a g e m e n t.. 28
1.5.1 Flat Databases.. 29
1.5.2 Databases... 30
1.5.3 Database: Some Definitions.. 30

1.6 C haracteristics o f a D a ta b a s e .. 32
1.6.1 Data Independence.. 34

1.7 D atabase M anagem ent System s (DBM Ss) .. 35
1.7.1 Purpose of Database Management Systems... 37
1.7.2 Requirements of a Well-Designed DBMS39
1.7.3 Characteristics of DBMS..40
1.7.4 Components of a DBMS..41
1.7.5 Database Architecture... 42
1.7.6 Elements of Databse Management Systems..44
1.7.7 Properties of DBMS D ata ..45
1.7.8 Advantages and Disadvantages of DBMS...45

1.8 D a ta Base A dm in istra to r (D B A) ...46
1.8.1 Other DBA Responsibilities.. 48
1.8.2 Required Skills.. 50
1.8.3 Qualifications..50
1.8.4 Database Manager.. 50
1.8.5 Monitoring Database Performance...51
1.8.6 Database Utilities and Tools..51

1.9 Types o f D a ta Base S ystem s..51
1.9.1 Analytic Databases... 51
1.9.2 Operational Databases...52
1.9.3 Object-oriented Databases.. .. 52

I ■

6 Database M anagem ent System s

1.10 D ata D ic tio n a ry .. 52
1.10.1 Advantages of Data Dictionary..56
1.10.2 Automated Data Dictionary...57
1.10.3 Desirable Features of a Data Dictionary.. 58
1.10.4 Implementation Level..59
1.10.5 Data Dictionary Functions...60

1.11 D ata M o d e llin g ...61
1.12 Types of D atabase M anagem ent sy stem .. 62

1.12.1 Oracle Based Databases..62
1.12.2 Microsoft’s SQL Server 2000...63
1.12.3 Microsoft SQL Server 7 .0 ..63
1.12.4 Sybase Adaptive Server Enterprise 12.0...67
1.12.5 IBM DB2 6.1 SQLServer..68
1.12.6 Informix’s Centaur SQL server...71
1.12.7 Other SQL Databases..72
1.12.8 MySQL...72
1.12.9 Integra RDBMS... 72
1.12.10 PostgreSQL.. 73
1.12.11 dBASE 7 .. 73
1.12.12 MS Access 97 Market and operation leader...74
1.12.13 Corel Paradox 8 ... 75
1.12.14 Füe Maker Pro 4 .0 ... 75
1.12.15 Lotus Approach 9 7 .. 75

1.13 W h o uses a D B M S ... 76
1.14. In te rac tive users o f a D B M S ..77

2. T r a d i t i o n a l D a t a M o d e l .. 8 0
2.1 Types o f D a ta M o d e ls ... 80
2.2 D atabase M o d e ls ... 80

2.2.1 Model of a model... 81
2.2.2 Business rules vs. database rules..81

2.3 M O D E L IN G : T h re e S chem a A rc h ite c tu re ... 82
2.4 C oncep tual level (or logical lev e l) ...82

2.4.1 Schema...83
2.4.2 Mappings..84
2.4.3 Schema Integration.. 84

2.5 O verall System S tru c tu re ..85
2.6 T h e H ierarch ica l M o d e l.. 86
2.7 T h e N etw ork M o d e l ..87
2.8 T h e R elational M o d e l .. 89

2.8.1 Relation.. 90
2.8.2 Relational Database Management System (RDBMS) ...92

2.9 D ata D efin ition Language (DDL) ...92
2.9.1 Data Manipulation Language (DML)... 92

3. R e l a t i o n a l D a t a b a s e ... 9 3
3.1 R D B M S93
3.2 T h e R elational M o d e l .. 95
3.3 T h e R elational D atabase M o d e l .. 95

Contents 7

3.4 R elational M odeling T e c h n iq u e s .. 98
3.5 C om ponen ts o f th e R elational M o d e l ..98
3.6 D efinitions of R elational T e r m s ...99
3.7 Features o f R elational D a ta b a se s .. . 101
3.8 C O D D ’s 12 Rules for a Fully R elational D B M S ... 102
3.9 T h e R elational M odel and R elational D B M S ... 103
3.10 Fully R elational D B M S ... 104

3.10.1 Relational Implementations..104
3.11 Primary an d Foreign K ey s 104

3.11.1 Primary/Candidate Keys...105
3.11.2 Atomic Data Values..105

3.12 R elationships in th e R elational M o d e l .. 105
3.12.1 One-to-one relationships..106
3.12.2 One-to-many relationships...106
3.12.3 Many-to-many relationships...108
3.12.4 Defining the Relational Model to the Database... 109
3.12.5 Example of Data Definition Language... 109

3.13 Q u e r ie s .. 110
3.14 S tru c tu red Q uery L anguage..................... ... 112
3.15 M ain ta in ing In teg rity ... 113
3.16 D efining D ata In te g r ity .. 113

3.16.1 Integrity Rules..114
3.16.2 Relational Integrity Rules...114
3.16.3 Referential Integrity...115
3.16.4 Entity Integrity... 117
3.16.5 Domain integrity..118
3.16.6 Entity Integrity... 118
3.16.7 User-defined Integrity..122

3.17 In tegrity C o n s tra in ts .. 123
3.17.1 Domain Constraints...123

3.18 N o rm a lisa tio n 124
3.19 Benefits o f N o rm alisa tio n ..126

3.19.1 Example of Deletion Anomaly...127
3.19.2 Example of Insertion Anomaly...127
3.19.3 Example of Update Anomaly...128
3.19.4 Use of Functional Dependencies and Keys in Normal Forms.. 128
3.19.5 Functional Dependency and Determinants.. 129
3.19.6 Why Normalise.. 130

3 .20 R e d u n d a n c y .. 130
3.21 U nfo reseen Scaleability Issu es ..131
3.22 Form s of N o rm a lisa tio n137

3.22.1 First Normal Form (INF)... 138
3.22.2 Second Normal Form (2NF)...140
3.22.3 Third Normal Form (3NF)...142
3.22.4 Boyce-Codd Normal Form (BCNF)... 145
3.22.5 Fourth Normal Form (4NF) ...145
3.22.6 5NF Definition... 146

8 Database Managem ent Sy stem s

3.23 N orm alisation T h e o r y ..147
3.23.1 Functional Dependence..147
3.23.2 Functional Determinant...147
3.23.3 Composite Attributes ..148
3.23.5 General Update Anomalies...................... ...148
3.23.6 Review of Normal Forms...148

3.24 N orm alisa tion G u id e lin e s158
3.24.1 Database Schema Design..158
3.24.2 Clustering... 158

3.25 A dvantages o f O p tim isa tio n ... 158
3.26 In d ex in g ...158

3.26.1 Introduction to Indexing..159
3.26.2 Types of Indexes..159
3.26.3 What to Index...160
3.26.4 What Not to Index..161

3.27 O rac le R eala tional D a ta b a se s ..161
3.27.1 Oracle Tables... 162
3.27.2 Primary Keys.. 163
3.27.3 Relational Databases in Oracle...163
3.27.4 Foreign Key...................... ,.. 164
3.27.5 Lookup Table.. ,.. 164

3.28 A R elational D atabase in A c t io n ..165
3.29 D o m a in s ... 168
3.30 S tru c tu re o f R elational D a ta b a se ..169

3.30.1 Basic Structure... 169
3.30.2 Database Scheme... 170

3.31 Q uery L a n g u a g e s ...171
3.32 T h e R elational A lg e b ra .. 171

3.32.1 Relational Algebra Reasons..172
3.32.2 Formal Definition of Relational Algebra...172
3.32.3 The Natural Join Operation...173
3.32.4 Join...174
3.32.5 The Division Operation... 175
3.32.6 The Assignment Operation.. 175

3.33 R elational T ab les O v e rv ie w ..176
3.34 RDBM S C rite r ia ... 176
3.35 Q uery O p tim isa tio n O v e rv ie w ... 177

3.35.1 Internal Representation for Queries..177
3.35.2 Stages of Query Optimisation... 177
3.35.3 Convert to Canonical Form.. 177
3.35.4 Canonical Form Definition... 177
3.35.5 Convert to canonical form.. 178
3.35.6 Advantages of Optimisation... 178

3.36 T h e R elational M odel vs. th e E -R M o d e l... 178
3.37 T h e T up le R elational C a lc u lu s ..179

3.37.1 Safety of Expressions...180
3.37.2 Expressive Power of Languages.. 180
3.37.3 Modifying the Database... 180

3.38 V iew D e n in itio n ...182
3.38.1 Updates Through Views and Null Values ... 182

3.39 E xtension o f th e C odd Rules and F e a tu re s ... 184
3.40 Past and F u tu re o f R elational D a ta b a se s ...187

4 . S t a n d a r d Q u e r y L a n g u a g e ... 1 9 0
4.1 H istory o f S Q L ..190
4.2 R elational D atabase M anagem ent S y s te m s .. 191
4.3 SQ L: T h e U niversal D atabase L a n g u a g e .. 192
4.4 SQ L: T h re e Types o f S ta te m e n ts .. 194
4.5 S Q L T a b le s ... 195
4.6 C rea tin g D a ta b a se s ... 196
4-7 D a ta D efin ition Language S ta te m e n ts ...197

4.7.1.Create Table..198
4.7.2 SQL Data Types..200
4-7.3 Constraints... 201
4.7.4 Deleting Databases and Dropping Tables and Views... 202
4.7.5 Altering a Table...202
4.7.6 Creating Multicolumn Table..203

4.8 R estructu ring a T able w ith S Q L ... 204
4.9 D a ta M an ipu la tion L anguage... 205
4 .10 R elational M odel B a s ic s ...208
4.11 W h a t is a v ie w ? ..209

4.11.1 Advantages of Using Views..209
4.11.2 SQL View.. 209

4.12 T h e D ata D ic tio n a ry .. 209
4.13 S Q L S ta n d a rd isa tio n ...210
4.14 S tru c tu red query language : M y S Q l... 211

4.14.1 SQL Data Type.. 211
4.14.2 Basics of the SELECT Statement...211
4.14.3 Conditional Selection...213
4.14.4 Relational Operators..213
4.14.5 More Complex Conditions: Compound Conditions/Logical Operators... 214
4.14.6 Aggregate Operators.................................. ...216
4.14.7 IN & BETWEEN..217
4.14.8 Using LIKE.. 217
4.14.9 Joins... 218
4.14.10 Keys... 219
4.14.11 Performing a Jo in ... 219
4.14.12 DISTINCT and Eliminating Duplicates.. 220
4.14.13 Aliases & In/Subqueries...220
4.14.14 Miscellaneous SQL Statements..221
4.14.15 Inserting into Database..222
4.14-16 Deleting data from Database..222
4.14.17 Updating data in Database...222
4.14.18 With Fields.. 222
4.14.19 With Tables... 223

Conten ts 9

10 Database M anagem ent System s

4.15 SQ L *Plus U ser G u id e ..224
4.15.1 Starting SQL*Plus... ..224
4.15.2 Entering Statements and Commands..224
4.15.3 Repeated Execution of Statements...224
4.15.4 Correcting Mistakes...225
4.15.5 Storing Statements...225
4.15.6 Retrieving and Executing Stored Statements... 225
4.15.7 The SET command..226
4.15.8 The LOGIN.SQL file.............. . ^ . .. 226
4.15.9 The SELECT Statement ...227
4.15.10 Common Elements pf SELECT..227
4.15.11 Numeric Expressions..228
4.15.12 Alphanumeric Expressions...228
4.15.13 Scalar functions...228
4.15Л4 Statistical Functions... 228

-4.15.15 The FROM Clause... 229
4.15.16 Specifying Tables.. ..229
4.15.17 Defining Views.. ...229
4.15.18 Pseudonyms... ,...229
4.15.19 The WHERE Clause..230
4.15.20 The Comparison Operator...230
4.15.21 Coupling conditions with AND, OR and NOT..230
4.15.22 The BETWEEN Operator...231
4.15.23 The IN Operator.. ..231
4.15.24 The LIKE Operator.. ... 232
4.15.25 The NULL operator.. 232
4.15.26 The IN Operator with Subquery..232
4.15.27 The Comparison Operator with a Subquery...233
4.15.28 The ANY and ALL Operators...233
4.15.29 The EXISTS Operator... 233
4.15.30 The SELECT Clause and Functions...234
4.15.31 Expressions in the SELECT Clause..234
4.15.32 Removing Duplicate Rows with DISTINCT..234
4.15.33 Statistical Functions... 235
4.1/5.34 General Rules for Using Statistical Functions...235
4.15.35 The GROUP BY and HAVING Clauses..236
4.15.36 Grouping on Two or more Columns..237
4.15.37 General Rule for the HAVING Clause..237
4.15.38 Sorting on one Column.. 237
4.15.39 Sorting with Sequence Numbers... 238
4.15.40 Sorting on More than One Column..238
4.15.41 Combining SELECT Statements.. 238

4.16 Basics o f a n S Q L Q u e ry ...240
4.16.1 Views.. 240
4.16.2 Creating New Tables... 241
4.16.3 Inserting into Database.. 241
4.16.4 Deleting data from Database ...241
4.16.5 Updating data in Database... 241
4.16.6 With Fields...242
4.16.7 Date/Time...242
4.16.8 With Tables..242
4.16.9 Altering Tables...243

4.16.10 Adding D ata ..243
4.16.11 Deleting Data.. . 243
4.16.12 Updating D ata ...244
4-16.13 Indexes.. 244
4.16.14 GROUP BY & HAVING... 244
4-16.15 More Subqueries..245
4.16.16 EXISTS & ALL...246
4.16.17 UNION & Outer Joins (briefly explained) .. 246
4.16.18 Select... From..247
4.16.19 Distinct..248
4.16.20 Where.. 249
4.16.22 C ount.. 250
4.16.23 Groupby...251
4.16.24 Having... 252
4.16.25 A lias.. 252
4-16.26 Joins... 253
4.16.27 Writing SQL Statements..254

5 . E m b e d d e d S Q L a n d A p p l ic a t io n P r o g r a m m in g In t e r f a c e s 2 6 5
5.1 O verview o f E m bedded S Q L .. 265
5.2 P ro * C ..266
5.3 S Q L ..266
5.4 Preprocessor D ire c tiv e s ...266
5.5 H ost V ariab les ...266
5.6 P o in te rs267
5.7 S tru c tu re s,L...267
5.8 A rray s.. 267
5.9 Ind ica to r V a ria b le s ... 268
5.10 D atatype E qu ivalencing ..268
5.11 D ynam ic S Q L ..269
5.12 Error H a n d lin g ... 269

5.12.1 SQLCA... 269
5.13 W H E N E V E R ...271
5.14 C + + U se rs ...272
5.15 M icrosoft E m bedded S Q L .. 273
5.16 C U R S O R S275

6 . O b j e c t M o d e l l in g a n d D a t a b a s e D e s i g n ..2 7 6
6.1 M o d e llin g ..276
6.2 M o d e ls ..276

6.2.1.Introduction to Data Modeling..277
6.2.2 Models in a System Context...279
6.2.3 The Relational Roots of Data Models..279
6.2.4 Data Model: Reality to Relational... 280

6.3 Types o f D ata M o d e ls .. 280
6.3.1 Conceptual Data Model.. ;... 280
6.3.2 Conceptual Data Model - An Example.. 281
6.3.3 The Logical Data Model..283

Contents 11

12 Database Managem ent System s

6.3.4 Physical Data Model..284
6.4 M odel D e v e lo p m e n t.. 284
6.5 A ttrib u tes o f M o d e lin g ... 285
6.6 Types o f M o d e l... 286

6.6.1 The E-R Model..287
6.6.2 The Object-Oriented Model... 287
6.6.3 Record Based Models...288
6.6.4 Physical Data Models...289

6.7 In tro d u c tio n to O b jec t M odeling ..289
6.8 Perspectives o f D ata M o d e lin g ...291
6.9 Types o f R e a lity .. 291
6.10 F un d am en ta l A nalysis C o n c e p ts ...292

6.10.1 The Traditional Process-Driven Approach.. 293
6.10.2 The Data Analysis Approach...294

6.11 Stages of D a ta M o d e llin g .. 295
6.11.1 Data Analysis.. .. 295
6.11.3 Database Construction...295

6.12 Fundam enta ls o f O b jec t M o d e lin g ..295
6.12.1 Purpose of an Object Model...297
6.12.2 Benefits of Data Modeling..297

6.13 Sources for a D a ta M o d e l.. 297
6.13.1 Business Rules7.. 298

6.14 M O D E L L IN G : T h ree S chem a A rc h ite c tu re ...300
6.15 E n tity -rela tionsh ip M o d e l.. 300

6.15.1 Entity..301
6.15.2 Diagramming Entities...301
6.15.3 Attributes.. 305
6.15.4 Relationships.. 307
6.15.5 Relationship Types... 310
6.15.6 Association in Relationship..311
6.15.7 Relationship Notations..313
6.15.8 Relationship Cardinality... 313
6.15.9 Relationships & Relationship Sets..314
6.15.10 Populating Attributes.. 314
6.15.11 Domains... 314
6.15.12 Looking for Hierarchies.. 315
6.15.13 Generalisation.. 315
6.15.14 Specialisation....... ..316
6.15.15 Specialisation of Relationships..317
6.15.16 Attributes...318
6.15.17 Mapping Constraints.. 318
6.15.18 Keys..318
6.15.19 Primary Keys for Relationship Sets...319
6.15.20 Relationship Cardinality... 320
6.15.21 Determining relationship cardinality...320
6.15.22 Relationship Modality.. 321

6.16 E ntities A ttr ib u te s a n d R elation (EAR) M o d e ls ...322
6.17 E ntity R ela tionsh ip D iag ram s..324

Conten ts 13

6.18.1 Roles in E -R D iag ra m s..........................
6 .18.2 W e a k E ntity Sets in E -R Diagrams
6.18.3 Nonbinary R elationships......
6 .18 .4 Reducing E -R Diagrams to T ab les
6 .18.5 Representation o f Strong Entity Sets .
6 .18 .6 Representation o f W e a k Entity S e ts ..
6 .18.7 Representation o f Relationship Sets ..
6 .18.8 G enera lisation ...
6 .18.9 A ggregation..
6 .18 .10 Design o f an E -R Database Scheme .
6.18.11 M apping C ard in a lities
6 .18.12 Use o f Extended E -R Features.....

6.18 O th e r S ty les o f E -R D ia g ra m 327
.............328
.............328
.............329
.............329
.............330
.............330
.............330
.............331
.............332

.....333

..... 333

.....335

6.19 T h e D ata D ic tio n a ry .. 335
6.20 M odelling From E xpert K now ledge.. 335
6.21 E ntity P a tte rn s .. 336
6.22 Evolving th e Logical M o d e l...337

6.22.1 N orm alizing to a Logical M o d e l
6 .22.2 R elational K e y s
6.22.3 W h a t are Candidate Keys?...................
6 .22.4 Re-N orm alize on the Candidate Key
6.22.5 E n tity Id e n tifie rs
6 .22.6 Selecting an Entity Id e n tif ie r
6 .22.7 C h ild Key O p t io n s

.......338

.......338

.......338

.......339
...339
....340
....341

6.23 T ransform ing from Logical to P h y s ic a l................................... ... 342
6.24 C rea tin g an O b jec t M o d e l.. 342

6.24.1 Defining the Focus...342
6.24.2 Developing an E-R Diagram...342
6.24.3 Veryfying D ata... 343
6.24.4 Defining the Data Dictionary...343
6.24.5 Many-to-Many Relationships...344
6.24.6 Minimum Cardinality...349
6.24.7 Existence Dependency (Weak Entity)..350
6.24.8 Multi-valued Attributes...350
6.24.10 Generalisation Hierarchy — Subtypes and Supertypes... 352
6.24.11 Exclusive Relationship for Generalisation Hierarchies... 353
6.24.12 Non-Exclusive Relationship...353

6.25 P opulating a C o ncep tua l D ata M o d e l... 354
6.25.1 Entity Variations.. 354
6.25.2 Entity Hierarchies.. 355
6.25.3 Partitioning.. 355
6.25.4 Decomposition... 355
6.25.5 Weak Entities.. 356
6.25.6 Characteristic Entity.. 356
6.25.7 Associative Entity.. 356
6.25.8 Relationship Variations..357
6.25.9 Entities with Multiple Relationships..357
6.25.10 Multi-member Relationship Links..357
6.25.11 Relationship Roles.. .. 358
6.25.12 Recursive Relationships...358

14 Database Managem ent Sy stem s

6.26 D ata M odeling G u id e lin e s ..358
6.27 N o rm a lisa tio n ..359
6.28 R epresen ting D ata by C oded V alues...360
6.29 Storage S tructu res O v e rv ie w ... 360

6.29.1 Types of Storage Structures...361
6.29.2 Sorting: Indexes..361
6.29.3 Advantages of Pointer Chains..362
6.29.4 Variations On Pointer Chains...362
6.29.5 Pointer chains storage structure..362
6.29.6 Disadvantages of Pointer Chains..363
6.29.7 Example of Pointer Chains...363

6.30 S toring D a ta in a F i le ..363
6.31 N ecessity o f F ile s ..364
6.32 W ork ing Parts o f a D B M S 366
6.33 File F o rm a ts ... 367
6.34 Fixed F o rm at F iles... 367
6.35 File Processing A c tiv itie s ..368
6.36 File organization M e th o d s ... 368

6.36.1 Tape Files... 368
6.37 D ata S torage D e v ic e s .. 369
6.38 File O rg a n is a t io n ...370

6.38.1 Overview of Physical Storage M edia..370
6.38.2 Grid F ile .. 372
6.38.3 Clustering File Organisation..:.......................... 372
6.38.4 Natural Join Operation.. 373

6.39 C lu ste red In d e x e s ... 374
6.40 N o n -c lu ste red In d e x e s ...374
6.41 C overing I n d e x e s ...375
6.42 Index S e le c t io n .. 376
6.43 D atabase D esig n ... 376

6.43.1 Selecting your D ata.. 378
6.43.2 Normalization..380
6.43.3 Identifying Domains... 380
6.43.4 Naming Standards.. 381
6.43.5 Denormalization and the Rules of Reconstruction..381
6.43.6 Physical Design of Databases.. 381
6.43.7 Denormalization... 382
6.43.8 Rule of Reconstruction.. 383
6.43.9 Over Normalization... 384

6.44 R everse Engineering o f D a tab ases ...386
6.45 G ood D atabase D e s ig n .. ‘391
6.46 D esigning DBM S for E n te rp rise s ... 391

7. N e t w o r k M o d e l .. 3 9 3
7.1 N etw ork M odel O v e rv ie w .. 393
7.2 N etw ork D a ta b a se s ..393

Conten ts 15

7.3 N etw ork and I n te r n e t .. 395
7.4 N etw ork D atabase R e c o rd s ... 396
7.5 N etw ork D a ta M a n ip u la tio n ...396
7.6 N etw ork M odel In te g r ity .. 396

8, D a t a b a s e s f o r W e b .. 3 9 8
8.1 D esigning d a ta Bases for W e b ...398
8.2 D atabase S e rv e rs .. 398
8.3 W hy th e W e b ? .. 399
8.4 A pache W eb S e rv e r .. 399
8.5 M ySQ L an d T h a t W hole D atabase/Server T h in g ... 401
8.6 M ySQL, SQ L, D DL, an d D M L .. 403
8.7 T h e Em bedded W eb-Program m ing P h ilo so p h y ... 405
8.8 DBI - T h e D atabase Interface for P e r l .. 409
8.9 T h e U navoidable C G I.p m ..411
8.10 D atabase Escape S eq u e n c e s ..412
8.11 Em bedding S u b ro u tin e s 414
8.12 Selecting a C lien t/S erver A pplication D evelopm ent T o o l ...419

8.12.1 Considering Application Requirements..419
8.12.2 Repositories... 419
8.12.3 Database Design Facility.. ... 420
8.12.4 Database Connectivity... 420
8.12.5 Application Design Facility...421
8.12.6 Correct Use of Objects...421
8.12.7 Programming Language..421
8.12.8 Application Deployment.. 422
8.12.9 Performance... 422
8.12.10 Third-Party Component Integration..422
8.12.11 Cross-Platform Support...422
8.12.12 Room to Grow... 423

9. D i s t r i b u t e d D a t a b a s e ...4 2 4
9.1 O verv iew of D isribu ted D a ta b a s e ... 424

9.1.1 Centralised Control.. 426
9.1.2 Distributed DBMS... 426
9.1.3 Client/Server Databases...427

9.2 D istribu ted D a ta b a s e ..428
9.2.1 Major Features of a DDB... 428
9.2.2 Advantages of Distributed Database..429

9.3 D isadvantages o f D istribu ted D atabase S y s te m s ...429
9.4 D istribu ted D atabase P ro b le m s .. 430
9.5 D istribu ted D atabase Issues... 430
9.6 G lobal Q uery O p tim iz a tio n ... 430
9.7 D istribu ted U pdate P ro p a g a tio n ..430
9.8 C oncurrency O v e rv ie w ..430
9.9 D istribu ted C oncurrency C o n tro l.. 431

16 Database Managem ent Sy stem s

9.10 D istrib u ted C atalog M a n a g e m e n t.. 431
9.11 S n a p s h o ts .. 432
9.12 T ransparency an d A u to n o m y ...432
9.13 D ata R e p lic a tio n433
9.14 R eplication T ra n sp a re n cy .. 433
9.15 D istribu ted D atabase T ran sp a ren cy ...433
9.16 L ocation T ra n sp a re n c y ... 433
9.17 R eplication or F ragm entation of D a ta ..433
9.18 D ata P a r ti t io n in g .. 434
9.19 C lien t/S erver Software A rch itec tu res— A n O v e rv ie w .. 434

9.19.1 Purpose and Origin..434
- 9.19.2 Why Client/Server ? ...434

9.19.3 Client/Server Analogy..435
9.19.4 Client/Server Definition...435

9.20 C lien t/server on I n te r n e t ..436
9.21 C lien t-S erver A p p lic a tio n s .. 437

9.21.1 Mainframe Architecture (not a client/server architecture)... 437
9.21.2 File Sharing Architecture (not a client/server architecture).. 437

9.22 C lien t-S erver B asics..438
9.22.1 Client-Server Architecture...438
9.22.2 File Server.. 439
9.22.3 Web Server.. 439
9.22.4 Two Tier Architectures... 439
9.22.5 Three Tier Architectures...439
9.22.6 Three-Tier with an Application Server..440
9.22.7 Three- Tier with an ORB Architecture...441
9.22.8 Distributed/Collaborative Enterprise Architecture...441

9.23 Usage C o n sid e ra tio n s... 441
9.24 C lien t-S erver A p p lic a tio n s .. 442
9.25 T h e T ech n ica l and Business A dvantages of C lien t-Server C o m p u tin g 442
9.26 Pros a n d C ons o f C lien t/S e rv e r...443
9.27 C o n c lu s io n .. 444
9.28 C o m p ilin g ... 444
9.29 C o n f ig u ra tio n .. 444
9.30 W indow s C o n fig u ra tio n ...446
9.31 S ta rtin g U p ... 446
9.32 A P A C H E ...446
9.33 Q u id P ro Q u o .. 447
9.34 W e b s ite ...448
9.35 T h re e -T ie r ...448

CHAPTER^ 1

O v er v iew O f D atabase

MANAGEMENT SYSTEMS

1.1 D a t a , I n f o r m a t i o n a n d K n o w l e d g e
D ata is th e nam e given to basic facts and en tities such as nam es and num bers. G ood exam ples
o f da ta are dates, weights, prices, costs, num bers of item s sold, em ployee nam es, p ro d u c t nam es,
addresses, tax codes, reg istra tion m arks etc.

D ata consists o f a series of facts or sta tem en ts th a t may have been collected, stored, processed
and /o r m an ipu la ted bu t have n o t been organised or placed in to con tex t. W h e n data is organised,
it becom es inform ation. Inform ation can be processed and used to draw generalized conclusions
or know ledge.

F o r ex am p le , a file listing o f all th e orders placed th rough an online service is an exam ple
of data. If we sort th e data by ZIP code an d sum m arize the num ber of orders th a t com e from
each city, we have c rea ted inform ation . W e can create know ledge by taking this in form ation
and m aking s ta tem en ts such as “M ost orders for W idget X com e from th e n o rth eas te rn U n ited
S ta te s .”

T his te rm is used to describe basic facts abou t the activities of a system, th a t could be a business
house, p ro d u c tio n cen tre or educational institu tion . D ata is generally in form of nam es and
num bers, tim es, dates, weights, prices, costs, em ployee’s nam e, p ro d u c t’s nam e, nam es o f books,
schools, s tud en ts , teachers, roll num bers, etc.

In business, th e data inpu t is a collection of facts about env ironm en ta l elem ents: consum ers,
suppliers, com petitors, governm ent, and th e like. D at4 are som eth ing like raw m aterials used
in p ro d u c tio n processes in factories or industries.

18 Database Managem ent System s

1.1.1 Information
Inform ation is da ta w hich has been converted in to a m ore useful or intelligible form. It is the
set o f data w hich has been converted or organised in to a m ore useful or intelligible form for
d irec t u tilisa tion o f m ank ind , as in form ation helps h u m an beings in th e ir decision-m aking
process. Examples are: tim e table, m erit list, repo rt card, headed tables, p rin ted docum ents,
pay slips, receipts, reports etc. T h e inform ation is ob tained by assem bling item s of da ta in to
a m eaningful form. W hereas m arks obtained by s tu d e n ts7 and th e ir roll num bers form data, the
report card /sheet is th e inform ation. O th e r forms of in form ation are pay-slips, schedules, reports,
w ork-sheet, bar-charts, invoices, accoun t-retum s. It may be rem em bered th a t in form ation may
fu rther be processed and /o r m anipulated to form knowledge.

Inform ation o u tp u t from one system may be data in p u t for an o th e r system. A n in fo rm ation system
is a set o f processes, execu ted on raw data, to produce inform ation, w h ich will be useful in
decision m aking.

A n inform ation system m ust have a full range of functions to achieve its purpose, including
observation, m easu rem en t, descrip tion , exp lanation , forecasting and decision m aking.

T h e h ea rt of th e in teg ra tio n of inform ation needed in M IS (M anagem ent Info rm ation System)
is a da ta base. A d a ta base is an organised repository o f th e organisation’s in fo rm ation resources
(in ternal and possible con ta in ing some ex ternal da ta), including raw d a ta an d procedures. T h e
idea is th a t th e da ta base consists of m ost o f th e da ta available, in th e organisation and can
be accessed by d ifferent m anagers for their varied uses, O n e m anager may access th e d a ta base
for planning, an o th e r m anager may need da ta for controlling, and in general all m anagers may
need to access th e da ta base for decision m aking.

Inform ation has been recognised as one of the critaria: corporate respiratory, w hich facilitates
b e tte r u tilisa tion o f o th e r im portan t resources su ch as m en, m achines, m aterials, m oney and
m ethods.

1.1.2 Knowledge
Inform ation co n ta in in g w isdom is knowledge. K now ledge is of tw o types:

• F acts b ased o r in fo rm a tio n based : K now ledge gained from fundam en ta ls and th rough *
experim ents. T h e know ledge like th e in fo rm atio n co n ta in ed in fu n d am en ta l science,
w hich has b een derived from experim ents, rules, regulations th a t are com m only agreed
by experts.

• H e u ris tic K now ledge: It is know ledge o f good practice, experience an d good judgm ent
like hypothesis. It is th e knowledge underly ing ’expertise”, rules o f thum b , rules o f good
guessing, th a t usually achieve desired results bu t do n o t guaran tee them .

1.1.3 Difference between Information and Data
In this ch ap te r it is necessary to m ake a d istinc tion betw een tw o term s, w h ich are usually used
in te rchangeab ly , nam ely in fo rm atio n an d d a ta . D a ta is th e m ateria l, o n w h ich co m p u te r
program s work upon. It c an be num bers, le tters o f th e alphabet, words, special symbols. B ut
by them selves they have no m eaning. For exam ple, th e following sequence o f digits 240343 is

Overview of Database Managem ent System s 19

m eaningless by itself. Since, it could refer to a da te of b irth , a part num ber for an autom obile,
th e num ber of rupees spen t o n a project, popu lation o f a tow n, th e num ber o f people em ployed
in a large organisation, e tc . O n ce we know w hat th e sequence refers to, th e n it becom es
m eaningful and can be called inform ation. W h en we write above as 24-03-43, it may m ean
d a te of b irth as 2 4 th M arch, 1943.

A se t o f words w ould be d a ta b u t te x t w ould be in fo rm ation . For exam ple “A N N U A L -
E X A M IN A T IO N , A M IT A B H , JY O T SN A , PH Y SIC S” is a set of d a ta and “JY O T S N A SC O R E D
T H E H IG H E S T M A RK S IN PHYSICS IN A N N U A L - E X A M IN A T IO N ” is inform ation. A nd
th a t is n o t the end of affair, Inform ation may be processed or m anipu la ted fu rth e r of course
e.g. a p rin ted tex t may be reorganised. A lso in form ation received from one source or system
may becom e data inpu t for an o th e r system. Say in case of exam ination resu lt ind iv idual’s score
card is an inform ation abou t th e individual bu t is actually a source of in p u t d a ta for m aking
m erit list o f the en tire board or university.

In th e business th e da ta in p u t is a co llection of facts abou t env ironm en ta l elem ents: consum ers,
suppliers, com petitors, governm ent, and th e like. A s data, these facts are relatively unprocessed,
a lthough they may have been sorted, classified, or sum m arised as an ad junc t to th e collection
process. D a ta are som eth ing like raw m ateria ls used in p ro d u c tio n processes p rac ticed in
factories or industries. In a paper m anufacturing factory bam boos and old clo thes are th e inputs
and paper is th e ou tpu t.

1 . 2 I n c r e a s i n g U s e o f D a t a a s R e s o u r c e
M o d em civilisation has becom e so com plicated and sophisticated th a t to survive one has to
be com petitive. T h is com pels th e people to keep him self inform ed of all types of happenings
in th e society. W ith th e adven t of educational reform s in society, m ank ind is su rrounded w ith
a vast am o u n t of da ta available. In U SA alone about 1 trillion docum ents are being created
every year and this ra te is increasing by 70% every year. M o d em business m anagem ent system
has also ren d ered itself to bulk co llection of da ta from various sources, w hich needs to be
rearranged in a fashion so th a t it can be utilised w ith m inim um possible tim e. A ll th is needs
a high am o u n t of filing, e ither a t da ta stage or a t inform ation stage. N o office can be w ithout
files, if you go to any tax collection dep artm en t or m unicipal office, you will find a h igh am ount
o f files stacked here an d there . M o d em rules, regulation and law requires every transaction
to h ap p en in a w ritten form, may be an agreem ent, application, voucher, bill, le tter, memo,
o rder e tc .

Paper files require a high am oun t o f storage space and paper storage creates several o th e r
problem s like fire risk, spoilage and d eterio ra tion by way of aging m icro-organism an d hum idity
etc. C om pu terisa tion o f docum ents and files has solved this problem to a great ex ten t. N o t only
this, b u t it has led to a h igh am oun t o f re laxation to h u m an m ind, as every th ing can be
au tom ated . Now th e docu m en t can be crea ted in a num ber of ways, styles and any num ber
of d o cum en ts can be crea ted as and w hen required , w ithout m aking any m istake.

H um an ity is curren tly leading to office au tom ation , w here every tran sac tio n in business is
co n d u c ted th rough com puters. E lectronic D ata Processing (EDP) systems m akes an d stores

2 0 Database M anagem ent System s

docum ents in m agnetic m edia i.e. the soft copy, w hich is in very condensed form of storage
o f inform ation. A floppy disk contains in form ation w orth 300 typed pages and C D R O M (laser
disk) con ta ins m a tte r w orth 45,000 typed papers.

T h e urge for converting facts in to useful in form ation is n o t a p h en o m en o n of m o d em life.
T h ro u g h o u t history, and ev en prehistory, people have found it necessary to sort da ta in to forms
th a t were easier to u n derstand . For exam ple, th e an c ien t Egyptians recorded th e ebb and flow
of th e N ile River an d used this inform ation to pred ict yearly crop yields. Today, com puters
convert da ta abou t land an d w ater in to recom m endations to farm ers o n crop planting. T h e great
M ughal em peror A k b ar appo in ted Raja T odarm al to keep record o f property possessed by all
farm ers and citizens and to keep track of personal and s ta te ’s properties. T h a t seem s to be first
ever database organised in w ritten m anner by Indians.

In m o d em days in fo rm ation is n eeded to ru n m a n ’s ow n livelihood, to ru n a system or process
or to com m and a business. Inform ation is n eed ed to:

• T o gain know ledge abou t th e surroundings, an d w hatever is happen ing in th e society
an d universe.

• T o keep th e system up-to-date .
• T o know abou t th e rules and regulations and bye-law s o f society, local governm ent,

provincial and cen tra l governm ent, associations, clients etc., as ignorance is no bliss.

• Based o n above th ree , to arrive at a particu lar decision for p lann ing cu rren t and prospective
actions in process o f forming, runn ing and p ro tec ting a process or system.

Use of in form ation systems has n o t been restric ted to com m erce and industry . In th e public
sector, governm ents have felt obliged to collect an d m ain ta in in fo rm ation o n th e ir operations,
finances, and citizenry for as long as there have b een governm ents. A n d th e re is n o sign th a t
govern m en t’s appetite for in form ation will be d im in ished in th e fu ture.

Prior to industrialisation , approxim ately 90% of th e labour force was engaged in agriculture,
i.e. society was agrarian. M ethods of com m unication w ere lim ited and a very small p roportion
of th e labour force was involved w ith th e processing storage and retrieval o f inform ation , w hich
in any case m erely involved m anual paper based m ethods or th ro u g h w ord o f m outh .

Industria lisation p roduced a m ajor shift in th e labour force, w ith th e p roportion involved in
agriculture falling below 10% in th e UK. W ith industria lisa tion cam e th e beginning of Inform ation
T echnology an d th e sta rt o f a series o f IT developm ents tak ing us righ t up to th e p resen t day:
T elegraph , T e lep h o n e , R adio /T V , C om puters, M icroelec tron ics e tc .

T h ese new form s o f IT , an d o th e r developm ents, p roduced new forms o f work. T h e larger scale
o f organisations has g iven rise to large adm in istra tive stru c tu res , in w hich th e re are large
num bers of clerical works an d people w ith techn ica l and m anagerial skills collectively know n
as “w hite collar w orkers”. C om puterisation has m ainly affected w hite collar work so far.

O rganisations are increasingly recognising th a t d a ta is an im p o rtan t resource, w hich, like o th e r
resources such as staff an d m aterials, has b o th value and cost to th e en terp rise . C onsequen tly
da ta needs to be m anaged so th a t it effectively serves th e in fo rm ation system s o f th e organisation.

Overview of Database Managem ent System s 21

For this m anagem ent to be successful th e re needs to be:

• K nowledge o f w hat da ta exists and how it is used.
• C on tro l o f m odifications to existing da ta or processes using data .
• C o n tro l over plans for new uses of d a ta and over the acquisition of new types o f data.

T his need for con tro l is increased, w here da ta is used for m ore th a n one application and the
tren d tow ards database solutions naturally m eans th a t this is o ften th e case. In such circum stances,
the cen tra l defin ition of da ta and its use is usually delegated to a D ata A d m in istra tion function .
T h e D ata A dm in istra to r will be co n cern ed w ith th e correct use and m ain ten an ce o f data, th e
in teg ra tio n o f new applications and am en d m en ts , and th e im p lem en ta tio n details o f d a ta
storage, access and m anipu la tion . T h e d a ta d ictionary is an essen tia l support tool for th e
successful perform ance of these tasks.

In add ition to changes in th e type o f work, there has been an increase in the num ber of
o rgan isations invo lved in ac tiv ities o th e r th a n m anufac tu re . Som e su ch o rganisations, for
exam ple those in th e pow er industries, co n trib u te to m anufactu ring an d provide a general
service. As a resu lt o f this change only 25% of the labour force rem ained in organisations directly
involved in th e m anufactu re of goods. For a num ber of reasons, n o t particularly re la ted to IT,
th a t 25% has fallen to 20% in th e last few years and levels o f unem ploym ent have risen.

T h e fact th a t so few rem ain in m anufactu re , a lthough m anufactu ring con tinues to generate
m ost w ealth , has lead to society today being called “Post Industria l Society”.

Looking a t th e w hole of the natio n a l an d in te rn a tio n a l com m unity, an d a t th e way organisations
are run , highlights th e fact th a t m o d em society is heavily d ep en d en t o n the com m unication ,
processing an d storage of inform ation. It is claim ed by some, th a t we are m oving tow ards an
“Info rm ation Society”, in w hich the m ajority of th e labour force will be engaged in In form ation
Processing an d the use of “Inform ation T echno logy”.

1.2.1 Information Explosion
T h e w orld produces betw een 1 and 2 exabytes of unique inform ation per year, w hich is roughly
250 m egabytes for every m an, wom an, an d child on earth . A n exabyte is a billion gigabytes.
Prin ted docum en ts o f all kinds com prise only .003% of th e to ta l. M agnetic storage is by far
the largest m edium for storing in fo rm ation and is the m ost rapidly growing, w ith shipped h ard
drive capacity doubling every year. M agnetic storage is rapidly becom ing th e universal m edium
for in fo rm ation storage.

T h e cost o f m agnetic storage is dropping rapidly; as of Fall 2000, a gigabyte of storage costs
less th a n Rs. 10 and it is p red icted th a t th is cost will drop to Rs. 1 by 2005. Soon it will be
technologically possible for an average person to access virtually all recorded inform ation. T h e
n a tu ra l q u estio n th e n becom es: how m u ch inform ation is there to store? If we w an ted to store
“every th ing ,” how m u ch storage w ould it take?

1.2.2 Information Produced by Medium
M ost in fo rm ation is s to red in four physical m edia: paper, film, optical (CDs and D V D s), an d
m agnetic. T h e re are very good data for th e worldwide p roduction o f each storage m edium , an d
there are reasonably good estim ates of how m uch original c o n ten t is p roduced in each o f these
d ifferent form ats.

22 Database M anagem ent System s

Table 1.1 dep icts the yearly worldwide p roduction of original s to red c o n te n t as o f 1999. In
general, the upper estim ate is based on the raw data, while the lower estim ate reflects an a ttem pt
to adjust for duplica tion and com pression. W e discuss these ad justm en ts below an d in the
m edium -specific docum ents. N o te th a t th e grow th rate estim ates are very rough.

T a b le L I : W o rld w id e p ro d u c tio n o f o rig in a l c o n te n t , s to re d d ig ita lly u s in g s ta n d a rd
co m p ressio n m e th o d s , in te rab y tes c irca 1 999

Type of Content Terabytes/Year

Upper Estim ate

Terabytes/Year,

Lower Estim ate

Growth Rate (%)

Paper Books 8 1 2
Newspapers 25 2 2
Periodicals 12 1 2
Office documents 195 19 2

Subtotal: 240 23 8

Film Photographs 410,000 41,000 5
Cinema 16 16 3
X-Rays 17,200 17,200 2

Subtotal: 427,216 58,216 4

Optical Music CDs 58 6 3
Data CDs 3 3 2
DVDs 22 22 100

Subtotal: 83 31 70

Magnetic Camcorder
Tape

300,000 300,000 5

PC Disk Drives 766,000 7,660 100
Departmental Servers 460,000 161,000 100
Enterprise Servers 167,000 108,550 100

Subtotal: 1,693,000 577,210 55

TOTAL: 2,120,539 635,480 50

T hree strik ing facts em erge from these estim ates. T h e first is th e “paucity o f p rin t.” P rin ted
m aterial o f all kinds m akes up less th a n .003 p ercen t o f th e to ta l storage o f inform ation . T his
doesn’t imply th a t p rin t is insignificant. Q u ite th e contrary: it simply m eans th a t th e w ritten
word is an ex trem ely efficient way to convey inform ation.

T h e second strik ing fact is th e “dém ocratisation o f d a ta .” A vast am o u n t o f un ique in form ation
is c rea ted a n d sto red by individuals. O riginal docum ents c rea ted by office w orkers are m ore
th an 80% o f all original paper docum ents, while photographs an d X-rays to g e th er are 99% of
all original film docum ents. C am corder tapes are also a significant frac tion o f to ta l m agnetic
tape storage o f u n ique co n ten t, w ith digital tapes being used prim arily for backup copies of
m aterial o n m agnetic drives.

Overview of Database Managem ent System s 2 3

A s for hard drives, roughly 55% of th e to ta l are installed in single-user desk top com puters. O f
course, m u ch o f th e c o n te n t o n individual users’ h ard drives is n o t un ique, w hich accounts
for th e large difference betw een the upper and lower bounds for m agnetic storage. H ow ever,
as m ore and m ore image data m oves on to hard drives, we expect to see th e am o u n t of digital
c o n te n t p roduced by individuals stored on h ard drives increase dram atically.

T h is dém ocratisation of da ta is quite rem arkable. A cen tury ago the average person could only
c rea te an d access a small am oun t of inform ation. Now, ordinary people n o t only have access
to huge am ounts o f data, b u t are also able to create gigabytes of da ta them selves and, potentially,
publish it to th e w orld via th e In te rn e t, if they choose to do so.

T h e th ird in teresting finding is th e “dom inance of d igital” co n ten t. N o t only is digital inform ation
p ro d u ctio n th e largest in to tal, it is also th e m ost rapidly growing. W hile un ique co n ten t on
p rin t and film are hardly growing a t all, optical and digital m agnetic storage sh ipm ents are
doubling each year. Even today, m ost tex tua l in form ation is “born d ig ital,” and w ith in a few
years th is will be true for images as well. D igital inform ation is inexpensive to copy an d distribute,
is searchable, and is m alleable. T h u s th e trend tow ards dém ocratisation o f d a ta — especially in
digital form — is likely to con tinue .

1 . 3 D a t a P r o c e s s i n g V s D a t a M a n a g e m e n t S y s t e m s
A ll da ta processing systems perform th e same five basic operations. T hese are

• In p u ttin g
• S to ring

• Processing,

• O u tp u ttin g ,

• C ontro lling .

S torage m ay be b o th in te rn a l an d ex ternal, and we can describe a da ta storage h ierarchy. W ith in
this h ierarchy, in order of increasing d a ta capacity are characters, da ta elem ents, records, files,
an d d a ta bases.

T h e typical approach to file design has been to set up a separate file for each d a ta processing
application . T h is provides a satisfactory file for th a t application bu t leads to several files w ith
sim ilar d a ta w hich m ust be separately m ain tained , and w hich are n o t necessarily com patible.

T hese systems perform th e essential role of collecting and processing th e daily transactions of
th e organisation, h en ce th e a lternative term , tran sac tio n processing. Typically, these include,
all forms o f ledger keeping, accoun ts receivable and payable, invoicing, c red it contro l, rate
dem ands, stock m ovem ents an d so on.

T h ese types o f systems were th e first to harness th e power of the com puter an d originally were
based o n cen tralised m ainfram e com puters. In m any cases th is still applies, especially for large-
volum e repetitive jobs, b u t th e availability of m icro and m ini com puters has m ade distributed
d a ta processing feasible and popular. D istribu ted d a ta processing has m any variations b u t in
essence m eans th a t d a ta handling and processing are carried ou t at or n ear th e point o f use
ra th e r th a n in one cen tralised location.

2 4 Database Managem ent System s

T ran sac tio n processing is substantially m ore significant in term s o f processing tim e, volum e of
in p u t and ou tpu t, th a n inform ation production for tactica l and strategic planning. T ran sac tio n
processing is essential to keep th e operations o f the organisation run n in g sm oothly an d provides
th e base for all o th er in te rna l inform ation support.

1.3.1 Characteristics of Data Processing Systems
T h ese systems are Cpre-specified’; th a t is th e ir functions, decision rules an d o u tp u t form ats
can n o t usually be changed; by th e end user. T hese systems are re la ted directly to th e structu re
of the o rgan isation’s data. A ny change in the data they process or th e functions they perform
usually requires th e in te rv en tio n of inform ation system specialists such as systems analysts and
program m ers.

Som e data processing systems have to cope w ith huge volum es and a wide range o f d a ta types
and o u tp u t form ats. As an exam ple, consider the Electricity and Gas Board Billing and Paym ent
H and ling systems, th e C learing B ank’s C u rren t A ccoun ting systems, th e M otor Policy H andling
systems of a large insurer and so on. T h e systems an d program m ing work requ ired for these
systems represen ts a m ajor investm en t. For exam ple th e developm ent of a large scale billing
system for a public; utility represen ts som ething like 100 m an-years o f effort.

O f course, da ta processing also takes place on a m ore m odest scale and th e ready availability
o f application packages i.e. softw are to deal w ith a particu lar adm inistra tive or com m ercial
taskm eans th a t sm all scale users have professionally w ritten an d te s ted program s to deal w ith
th e ir rou tine da ta processing. T h e b e tte r packages provide for som e flexibility and th e suer can
specify7 w ith in limits, variations in o u tp u t form ats, da ta types an d decision rules.

1.3.2 Evolution of Data Management System
In order to store all the new inform ation, hum anity in v en ted th e technology of w riting. A n d
th o u g h great scholars like A risto tle w arned th a t th e in v en tio n of th e alphabet w ould lead to
th e subtle, bu t to ta l dem ise of th e creativ ity and sensibility o f hum anity , da ta began to be stored
in volum inous d a ta repositories, called books.

As we know, eventually books propagated w ith great speed an d soon, whole com m unities of
books m igrated to th e first real “databases”, libraries.

U nlike previous versions o f da ta w arehouses (people and books), th a t m ight be considered th e
‘austra lop ithec ines’ o f the database lineage, libraries crossed over in to th e m o d em day species,
though they were incredibly prim itive of course.

Specifically, libraries in tro d u ced “stan d ard s,” by w hich d a ta cou ld be sto red an d retrieved .

A fter all, w ithou t standards for accessing data, libraries w ould be like my closet, endless and
engulfing swarms of chaos. Books, and th e da ta w ith in books, h ad to be quickly accessible by
anyone if they w ere to be useful.

In fact, th e usefulness o f a library, or any base o f data, is p roportional to its d a ta storage and
retrieval efficiency. T h is one corollary w ould drive th e evo lu tion o f databases over th e n ex t
2000 years to its cu rren t state.

Overview of Database Management Sy stem s 2 5

T hus, early librarians defined standardised filing and retrieval protocols. Perhaps, if you have
ever m ade it off th e web, you will have seen an old library w ith its cu te little indexing system
(card catalog) and poin ters (Dewey decim al system).

A n d for th e n ex t couple o f th ousand years libraries grew, and grew, an d grew along w ith
associated storage/retrieval technologies su ch as th e filing cabinet, co lored tabs, and th ree ring
binders. A ll this un til one day about ha lf a cen tu ry ago, some really brigh t folks including A lan
Turing, w orking for th e British governm ent w ere asked to in v en t an ad v an ced tool for breaking
G erm an cryp tograph ic “Enigm a” codes. T h a t day th e world ch an g ed again. T h a t day th e
com puter (Collossus) was bom . T h e com pu ter was an intensely revolu tionary technology of
course, b u t as w ith any technology, people took it and applied it to old problem s instead of
using it to its revolu tionary potential.

1 . 4 F i l e - O r i e n t e d A p p r o a c h
A lm ost instantly, th e com puter was applied to the age-old problem of inform ation storage and
retrieval. A fter all, by W orld W ar Two, inform ation was already accum ulating at rates beyond
the space available in publicly supported libraries. A n d besides, it seem ed som ehow cheap and
tawdry to store the en tire archives of “T h e T h ree Stooges” in the Library o f Congress. Inform ation
was seeping ou t o f every crack and pore o f m odem day society.

T hus, th e first a ttem p ts a t in fo rm ation storage an d retrieval followed trad itiona l lines and
m etaphors. T h e first systems were based on discrete files in a virtual library. In this file-oriented
system, a b u n ch of files would be stored o n a com puter and could be accessed by a com puter
operator. Files of archived data were called “tables” because they looked like tables used in
traditional file keeping. Rows in the table were called “records” and colum ns were called “fields”.

1.4.1 File Processing Systems
In early processing systems, an organ isation’s inform ation was stored as groups of records in
separate files. T h ese file processing systems (see Fig. 1.1) consisted o f a few da ta files and m any
application program s. E ach file, called a flat file, co n ta ined and processed in fo rm ation for one
specific function , such as accoun ting or inventory . Program m ers used program m ing languages
such as C O B O L to w rite applications th a t d irectly accessed flat files to perform data m anagem ent
services an d provide in form ation for users.

• P ro f lra m m tn w rote app lications in 3rd generation languages, such as
CO BO L, to d irectly access flies .

■ All processing, storage, retrieval, generation, and access functions were
coded Into the application.

• Th e app lication program m ig h t access several files In order to com pile
needed Inform ation fo r the user.

• If file structures w ere not consis ten t betw een flies fo r s im ilar fle lda,
program m ers w rote convers ions Into the app lication program .

Fig. 1.1: F ile Processing System

26 Database M anagem ent System s

In crea ting th e files and applications, developers focused o n business processes, or how business
was tran sac ted , an d th e ir in te rac tions. H ow ever, business processes are dynam ic, requiring
con tinuous changes in files and applications. In addition, early program m ers focused o n physical
im plem enta tion and access procedures w hen designing a database. T h ese physical procedures
were w ritten in to database applications; therefore, physical changes resu lted in in tensive rework
on the part o f th e program m er. As systems becam e m ore com plex, file processing systems offered
little flexibility, p resen ted m any lim itations, and were difficult to m ain ta in .

1.4.2 Limitations of File Processing Systems
1* S e p a ra te d a n d Iso la ted D a ta .

T o m ake a decision, a user m ight n eed d a ta from tw o separate files. First, th e files were
evaluated by analysts and program m ers to determ ine th e specific d a ta requ ired from each
file an d th e relationships betw een the data . T h e n applications could be w ritten in a th ird
g en era tio n language to process an d ex trac t th e needed data . Im agine th e w ork involved
if th e d a ta from several files was needed .

2 . D a ta R e d u n d a n c y

O ften , th e sam e inform ation was stored in m ore th a n one file. In ad d ition to .tak in g up m ore
file space o n th e system, this rep lication of d a ta caused loss o f d a ta integrity. For instance,
if a cu s to m er’s address was stored in four different files, an address change w ould have to
be u p d a ted in each file separately. If a user was n o t consisten t in updating all files, no one
would know w hich inform ation was correct.

3. P ro g ra m — D a ta in te rd e p e n d e n ce in vo lv ing file fo rm ats a n d access te c h n iq u e s
In file processing systems, files and records were described by specific physical form ats th a t
were co d ed in to th e application program by program m ers. If th e form at o f a ce rta in record
was changed , th e code in each file con ta in ing th a t form at m ust be updated . For exam ple,
a field in th e sales file m ight be coded as “decim al,” while th e sam e field in th e custom er
file cou ld be coded as “binary .” In order to com bine these fields in to one application, a
program m er w ould have to w rite code to convert every value o f th e ’’decim al” field in the
sales file to a “binary” field (or th e reverse) in add ition to coding th e application. F urtherm ore,
in struc tions for da ta storage and access were w ritten in to th e app lica tion’s code. T herefore,
changes in storage s truc tu re or access m ethods could greatly affect th e processing or results
o f an application .

4 . D ifficu lty in re p re se n tin g d a ta fro m th e u se r’s view
T o crea te useful applications for th e user, o ften da ta from various files m ust be com bined.
In file processing, it was difficult to de term ine relationships b etw een iso lated d a ta in order
to m eet u ser requirem ents.

5 . D a ta In flex ib ility

P rogram -data in te rdependency an d d a ta iso lation lim ited th e flexibility o f file processing
systems in providing users w ith ad hoc info rm ation requests. B ecause designing applications
was so program m ing-in tensive, in fo rm ation requests usually were re stric ted by M IS d ep artm en t
staff. T herefo re , users often reso rted to m anual m ethods to ob ta in n eed ed inform ation.

Overview of Database Managem ent System s 27

1.4.3 File Management Systems (FMSs)
A trad itional file system is m ade up o f m any program s accessing m any files. T hese are a m uch
less am bitious concep t th a n database systems. M any products for PCs have th e properties of
FMSs and database systems. It is the system th a t an operating system or program uses to organize
and keep track of files. For exam ple, a h ierarch ical file system is one th a t uses directories to
organize files in to a tree structu re .

A ltho u g h th e operating system provides its ow n file m anagem ent system, you can buy separate
file m anagem ent systems. T hese systems in te rac t sm oothly w ith th e operating system bu t provide
m ore features, such as im proved backup procedures and stric ter file p ro tection .

Program B:
Supplier Review

Ï
File Access

Methods

I
SUPPLIER file

Program C:
Payroll

I
File Access

Methods

I
EMPLOYEE

Fig 1.2: File Management Systems

Problem s w ith th e trad itional approach to data processing system developm ent system s evolve
i.e .

• E ach new application w hich uses d a ta has its ow n copy
• D a ta redundancy (due to duplication): leads to w asted file space, b u t m ore im portantly

in tegrity (in this case consistency) problem s
• D a ta dependence: program s d ep en d o n da ta
• A d hoc inquiry difficulties: traditionally require special program /system . T oday 4GLs m ake

th is possible bu t clumsy w ithou t a DBM S

C onsider th e following exam ple:

First Name Last Name Email Phone

V.K Jain vkj 1944@hotmail.com 011-3316697
Arihant Negi arihant_negi@ eff.org 011-3318516
Hema Rajput hema48@rediff.com 011-7319999
Sunil Vijay sunilvijay58@yahoo.com 011-5447376

mailto:1944@hotmail.com
mailto:hema48@rediff.com
mailto:sunilvijay58@yahoo.com

28 Database Managem ent System s

T h e “flat file” system was a start. H ow ever, it was seriously inefficient. Essentially, in order
to find a record, som eone w ould have to read th rough th e en tire file and hope it was n o t the
last record. W ith a h u n d red thousands records, you can im agine th e dilem m a.

W h a t was needed , com puter scientists tho u g h t (using existing m etaphors again) was a card
catalog, a m eans to achieve random access processing, th a t is th e ability to efficiently access
a single reco rd w ith o u t search ing th e en tire file to find it.

T h e resu lt was th e indexed file-oriented system in w hich a single index file sto red “key” words
and poin ters to records th a t were stored elsew here. T h is m ade retrieval m uch m ore efficient.
It w orked just like a card catalog in a library. T o find data, one n eed ed only search for keys
ra th e r th a n read ing en tire records.

1.4.4 Disadvantage of File Oriented System
H ow ever, ev en w ith the benefits o f indexing, th e file-oriented system still suffered from problem s
inc lud ing :

• D ata R edundancy - T h e same da ta m ight be stored in different places.
• Poor D ata C o n tro l - R ed u n d an t da ta m ight be slightly d ifferent su ch as in th e case w hen

Ms. Jones changes h e r nam e to M rs. Johnson and th e change is only reflected in som e
o f th e files con ta in in g h er data.

• Inability to Easily M anipu late D ata - It was a tedious and error prone activity to modify
files by h an d .

• C ryptic W o rk Flows - A ccessing th e da ta could take excessive program m ing effort and
was too difficult for real-users (as opposed to program m ers).

• C onsider how troublesom e th e following da ta file w ould be to m ain tain .

Name Address Course Grade

Mr. V .KJain 123 Kensigton Chemistry 102 C +
Mr. V .KJain 123 Kensigton Chinese 3 A
Mr. V .KJain 123 Kensigton Data Structures B
Mr. V .KJain 123 Kensigton English 101 A
Ms. Hema Rajput 88 W est 1st St. Psychology 101 A
Mrs. Naveena Bajaj 100 Capitol Ln. Psychology 102 A
Ms. Hema Rajput 88 W est 1st St. Human Cultures A
Ms. Hema Rajput 88 West 1st St. European Governments A

1 . 5 D a t a b a s e O r i e n t e d A p p r o a c h t o D a t a M a n a g e m e n t
Simply put, a database is a com puterised record keeping system. M ore com pletely, it is a system
involving data, th e hardw are th a t physically stores th a t data, th e softw are th a t utiliSes th e
hardw are's file system in order to 1) store the da ta and 2) provide a standard ised m eth o d for
re triev ing or chang ing th e data , and finally, th e users w ho tu rn th e da ta in to inform ation.

Overview of Database Managem ent System s 29

D atabases, an o th e r feature o f th e 60s, were created to solve th e problem s w ith file-oriented
systems in th a t they were com pact, fast, easy to use, curren t, accurate, allowed the easy sharing
of d a ta betw een m ultiple users, and were secure.

A database m ight be as com plex and dem anding as an accoun t track ing system used by a bank
to m anage th e constan tly changing accounts of thousands o f b ank custom ers, or it could be
as simple as a collection o f e lectron ic business cards on your laptop.

T h e im p o rtan t th ing is th a t a database allows you to store d a ta an d get it or modify it w hen
you n eed to easily an d efficiently regardless of th e am ount of da ta being m anipulated . W h a t
th e d a ta is an d how dem anding you will be w hen retrieving and m odifying th a t d a ta is simply
a m a tte r o f scale. T rad itionally , da tabases ran o n large, pow erful m ainfram es for business
applications. You will probably have heard o f such packages as O racle 8 or Sybase S Q L Server
for exam ple.

H ow ever, w ith the ad v en t of small, powerful personal com puters, databases have becom e more
readily usable by th e average com puter user. M icrosoft’s A ccess is a popular PC -based engine.
M ore im portan tly for our focus, databases have quickly becom e in tegral to th e design, developm ent,
an d services offered by web sites. C onsider a site like A m azon.com th a t m ust be able to allow
users to quickly jum p th ro u g h a vast v irtual w arehouse of books and com pact disks.

H ow could A m azon.com c rea te web pages for every single item in th e ir inventory and how could
they keep all those pages up to date. W ell th e answ er is th a t th e ir web pages are c rea ted on-
th e fly by a program th a t “queries” a database of inventory item s an d produces an H T M L page
based o n th e results o f th a t query.

1.5.1 Flat Databases
A single k in d of record w ith a fixed num ber of fields.

123 Smith “ r " 123456 "150:.. 4605: ...7803 60.3 3.4
Ï23ÏSmith Ï 23456 150 4605! .. 8005! “ 62.3; 3.7
123 Smith 649308 174 5409! 7902; 58.7 2.9
123: Smith 649308 174 5409: 8101 57.9 3.1
123; Smith 649308 174; 5409; 8205: 55.2 1.4
123 : Smith 238427 162 5204) 7511; 61.8 2.5
123; Smith 238427 162: 5204! 7801 : 64.1 : 2.7
220 Jones : 732293 155 5810 7906: 59.2 2.2
220;Jones 392382 177 4912! 75121 57.4 3.6
220[Jones 392382 177 49121 7706 58:2! 3.4

...1 59.51 2.89

Fig 1.3: Flat Database

N o tice th e rep e tition of d a ta , and thus a n increased chance o f errors.

3 0 Database M anagem ent System s

1.5.2 Databases
A database c a n be defined in various ways, for exam ple:

• A database is a co llection of struc tu red data . T h e s tructu re of th e d a ta is in d ep en d en t
o f any p articu lar application.

• A database is a file o f da ta struc tu red in such a way th a t it m ay serve a num ber of
applications, w ithou t its s truc tu re being d ic ta ted by any one of those applications. T h e
concep t being th a t program s are w ritten ro u n d the database, ra th e r th a n files being
stru c tu red to m eet th e needs of particu lar program s.

T h e cen tre of any in fo rm ation system is its database, w hich is a co llection o f th e d a ta resources
o f an o rgan isa tion designed to m eet th e req u irem en ts o f th e com pany for processing an d
retrieving in form ation by decision m akers. O n e im portan t use o f database is to ta rget m ore
precisely m arketing efforts. In U SA , the latest tren d in m anagem ent in fo rm ation systems is th e
executive in form ation system w hich is used by sen ior m anagers. Q uality softw are produces full
colour displays on large h igh quality m onitors.

1.5.3 Database: Some Definitions
“A co llection of in te rre la ted da ta stored w ith con tro lled redundancy to serve one or m ore
applications in an optim al fashion; the da ta are stored so th a t they are in d ep en d en t of the
programs, w hich use th e data; a com m on an d con tro lled approach is used in ad d in g new data
and m odifying existing d a ta w ith in th e da tab ase .” (M artin)

“A database is a co llection o f persisten t da ta th a t is used by th e app lication systems of some
given en te rp rise .”

“A database is a shared co llection o f in te rre la ted data , designed to m eet th e varied in form ation
needs of an organisation. A database has tw o im portan t properties: It is in teg ra ted and it is
sh a re d .” (M cF ad d em).

D atabases are collections o f in te rre la ted da ta organised according to a schem a to serve one
or m ^re applications. D atabase is a sophisticated concep t. You may n o t develop a good grasp
of w hat database is for a few weeks. M any products have been described as da tabase systems
th a t are m erely file m anagem en t systems.

A database implies separa tion o f physical storage from use of th e da ta by an app lication program
to achieve program /data in dependence. U sing a database system, th e user or program m er or
application specialist need n o t know the details o f how th e da ta are sto red an d su ch details
are “tran sp aren t to th e u ser”.

C hanges (or updating) can be m ade to da ta w ithou t affecting o th e r com ponen ts of th e system.
T hese changes include, for exam ple, change of d a ta form at or file s tru c tu re or re location from
one device to ano ther.

Overview of Database Managem ent System s 31

Briefly, a database is a co llection o f d a ta supporting th e operations o f th e organisation. It is
how ever, ra th e r m ore th a n th a t because it m ust also:

• Be substan tially n o n -red u n d an t.

• Be program in d ep en d en t (da ta in d ep en d en ce).
• Be usable by all th e programs.

• Inc lude all th e necessary structu ra l in terre la tions of da ta and have a com m on approach
to th e retrieval, insertion and am endm en t o f data.

Let us consider these requ irem ents individually:
1. N o n -re d u n d a n c y .

A s already suggested, this is o f benefit in elim inating contrad ic tions and in saving storage
space. O ccasionally, am oun t of redundancy is acceptable, such as, w hen th e n eed for data
security o r rapid access is param ount.

2 . D a ta In d e p e n d e n c e .

T h is m eans th a t th e da ta and th e program s are independen t. T h a t is to say, th e data can
be m oved or re s tru c tu red w ithou t th e n eed to m ake a lterations to the programs. Similarly,
an enforced program change does n o t call for rearrangem ent o f th e data layout. T h is point
is im p o rtan t because otherw ise a program requiring m ore da ta item s from a file necessitates
rearrang ing it, an d consequen tly o th e r program s have to be m odified to cope w ith the
rearran g em en t o f th e file.

3 . P ro g ra m U sage .

A database needs to be usable by n o t only all th e existing applications bu t also by all
fo reseeable applications. T hese are am bitious aims, b u t nonetheless a database m ust be open-
en d ed so as to accept new sets of d a ta item s and changes to existing da ta item sets.

4 . D a ta In te r - re la tio n s h ip s .
T h ese are necessary owing to th e fact th a t th e various applications use data in different
ways. O n e application may dem and a link betw een an em ployee’s nam e and his pension
c o n trib u tio n , an o th e r betw een his tax paym ent and his previous employer. R equirem ents
su ch as th ese im pose s tringen t dem ands upon th e database’s accuracy, security and flexibility.

5 . C o m m o n A p p ro a c h .

T h is is in th e in terests o f u n d erstand ing and simplicity. A ltho u g h application program m ers
are n o t co n c e rn e d w ith th e d a tab ase ’s s tru c tu re an d tech n iq u es, a com m on approach
simplifies th e database con tro l program s and facilitates th e database ad m in istra to r’s work.

T a b le 1.3 C o m p a riso n o f F ile M an ag em en t System s w ith D a tab ase System s

32 Database M anagem ent System s

File M anagement e.g. C + + , Database M anagement

VB or COBOL program eg. Postgres, Oracle

Small systems Large systems

often PC based mini-mainframe

relatively cheap relatively expensive

Few ‘files’ Many ‘files’

Files are files Files not necessarily files

Simple structure Complex structure

Little preliminary design Vast preliminary design

Integrity left to application programmer Rigorous inbuilt integrity checking

No security Rigorous security

Simple, primitive backup/recovery Complex & sophisticated backup/recovery

Often single user Multiple users

T hese com parisons te n d to be true b u t exceptions are possible.

Files ten d to c o n ta in duplication . T herefore, they are susceptible to a loss o f IN TEG R ITY if
all files are n o t u p d a ted at th e same time. Program s are bound to a file. If a file s truc tu re is
m odified th e n all program s th a t access it need to be m odified.

T hus, a lterations to file structu res are difficult an d expensive.

D ata base systems orig inated in th e late 1950s and early 1960s largely by research and developm ent,
of IBM C orporation . M ost developm ents were responses to needs of business, m ilitary, governm ent
and educational institu tions, w hich are com plex organisations w ith com plex d a ta and inform ation
needs. T ren d has been to increase separation betw een the user and th e physical rep resen ta tions
of the data, i.e. increasing da ta “transparency”.

1 . 6 C h a r a c t e r i s t i c s o f a D a t a b a s e
. It should perm it th e estab lishm ent o f a single area for com m on in fo rm ation th a t is usable

by all au tho rised users.
• It should allow im portan t inform ation to be recorded o n floppy disk, m agnetic disk, or

mass storage, while secondary records are m ain ta in ed on m agnetic tape or o th e r low-cost
storage m edium .

• It should guaran tee accuracy of updating by an au tom atic m a in ten an ce fea tu re for all
segm ents of th e d a ta file.

• It should allow variab le-length records in order to conserve space.

Overview of Database Management Sy stem s 3 3

• It should provided for expanding or reducing the file, b o th th e num ber of records in the
file and th e d a ta elem ents in each record.

• It should allow for security o f files o r segm ents of files.
• T h e re m ust be a provision for som e types of lockout feature so th a t certa in files or areas

o f files, or ev en individual records, can n o t be accessed during updating.
T h e im portan t features of a database are:

• D ata Independence, an item of d a ta is s to red for its ow n sake an d n o t for one specific
use. T h u s th e use of the data is generalised and is in d ep en d en t of th e program s, w hich
use it.

• D ata In tegrity m eans the avoidance of conflicting, dup licated da ta by only showing one
copy. If, for exam ple, a stock balance alters, only one update is need ed and all program s,
w hich access th e stock balance will autom atically be g iven th e co rrect figure.

• Flexibility m eans th a t da ta can be accessed in m any different way and for m any d ifferent
purposes. T h ese can range form ro u tin e accesses for tran sac tio n processes to one-off
queries by th e C h ief Executive.

• T h e database can grow and change and is built up, stage by stage w ith in the organisation.
It will actually com prise several databases, each providing th e an tic ipated inform ation
for several logically re la ted m an ag em en t in form ation systems, w here the data can be
accessed, re trieved and m odified w ith reasonable flexibility.

• T h e da ta struc tu res and relationships require highly techn ica l software, know n as th e
D a ta Base M anagem ent System (DBM S) to deal w ith them . F ortunately , th e user is
sh ielded, to a large ex ten t, from th e com plexity and is able to access the database w ith
th e m in im um of techn ica l know ledge.

• W h e n th e only form of da ta storage possible was unrelated , un ique files for each application,
th is engendered a narrow , parochial view of inform ation. T h e reality is th a t m anagem ent
n e e d in form ation w hich crosses functions, applications and levels and th e flexibility of
databases and th e linkages possible m ake th e concept a powerful one an d essential for
e n d user systems.

• A n organisation is n o t confined to its ow n in ternal database. T h e re are com panies, w hich
sell access to databases dealing w ith m atters, w hich an individual organisation w ould find
expensive to collect. Examples o f these public databases, S tock Exchange, and financial
da ta , env ironm en ta l data. Legal m atters including EU treaties an d legislation, consum er
re sea rch and m arketing da ta an d so on. In 1995, over 8000 ex ternal databases were
available an d th e num ber is con tinually growing.

In the early days of com puterisation, it was norm al to m ain tain specific files for individual
app lica tions. D a ta w ere processed cen tra lly in ba tches and th e re was little or n o on-line
in te rro g a tio n of files.

3 4 Database Managem ent Sy stem s

T his approach m ean t th a t there was dup lication o f data, inflexibility, co n cen tra tio n o n th e needs
o f th e com pu ter system ra th e r th a n th e user, and difficulties o f accessing files by on-line users.
T o overcom e these problem s databases were developed.

1.6.1 Data Independence
W e define d a ta independence as th e im m unity of applications to changes in storage and access
strategy, w h ich implies th a t th e applications concerned do n o t dep en d on any one particu lar
storage o r access strategy. In n o n da tabase im p lem en ta tio n s a know ledge o f how d a ta is
organised an d accessed is built in to application programs. Lots o f exam ples o f this exist in n o n
database applications and such know ledge could be:

• R ep resen ta tio n o f num eric da ta
• R ep resen ta tio n o f ch a rac te r da ta
• D a ta co d ing

• D a ta m a te ria lisa tio n
• S to red reco rd s tru c tu re
• S to red file s tru c tu re

All these possible m anifestations o f d a ta dependence are e lim inated w hen a DBM S is used,
because w hen using a DBM S it is possible for th e D BA to change th e storage stru c tu re or access
m ethods w ith o u t affecting application program s in any way. U sers can add new data , new
devices e tc .

D ata in d ep en d en ce is im portan t because:
• D ifferent applications will n eed to look a t da ta in d ifferent ways.
• O n e m ust be able to change storage m echanism s and form ats w ithou t having to modify

all app lica tion program m es. For exam ple:

■ M e th o d o f rep resen ta tio n o f num eric and alphanum eric d a ta (e.g., changing da ta
form at to avoid Y2K problem)

■ U nits (e.g., m etric vs. furlongs)
■ C od ing (e.g., IC D -9 vs. descriptive text)
■ R ecord s tru c tu re (e.g. file s tru c tu re in sequentia l, sorted , indexed , etc .)

D ata In d ep en d en ce is:
1. T h e ability to modify a schem e defin ition in one level w ithou t affecting a schem e defin ition

in a h igher level is called d a ta independence.
2. T h e re are tw o kinds:

• Physical d a ta in d ep en d en ce .

■ T h e ability to modify th e physical schem e w ithou t causing application program s to
be rew ritten .

• M odifications a t this level are usually to im prove perform ance.
• Logical d a ta in d ep en d en ce .

Overview of Database Managem ent System s 3 5

■ T h e ability to modify th e concep tual schem e w ithou t causing application program s
to be rew ritten .

■ Usually done w hen logical s truc tu re o f database is altered .
3. Logical da ta independence is harder to achieve, as th e application program s are usually

heavily d ep en d en t on th e logical s truc tu re of the data. A n analogy is m ade to abstrac t da ta
types in program m ing languages.

1 . 7 D a t a b a s e M a n a g e m e n t S y s t e m s (D B M S s)
T his is th e in terface betw een th e users (application program m ers) and the database (the data).
A database is a co llection of da ta th a t represents im portan t objects in a u ser’s business. A
D atabase M anagem ent System (DBM S) is a program th a t allows users to define, m anipulate ,
and process th e data in a database, in order to produce m eaningful inform ation.

FILE

FILE

• Programmers writ« application programs either In separate
languages or in the DBMS language.

• Files are acceased through the DBMS.
• The DBMS controls all processing, storage, retrieval, generation,

and physical access functions.

Fig 1.4: DBMS
DBM S is collection o f program s th a t enables you to store, modify, and ex trac t in fo rm ation from
a database. T h ere are m any different types of DBM Ss, ranging from small systems th a t ru n on
personal com puters to huge systems th a t ru n on m ainfram es. T h e following are exam ples of
da tabase applications:

• C om puterised library systems
e A u to m a ted te ller m ach ines
• Flight reservation systems

• C om puterised parts inventory systems

A D BM S is a software package for defining and m anaging a database.

A ‘rea l’ database includes:

3 6 Database Managem ent System s

• D efinitions of:

■ Field nam es

■ D ata form ats (text? binary? integer? etc.)
■ R ecord stru c tu res (fixed-length? pointers? field order, etc.)

■ File s tru c tu res (sequential? indexed? e tc .)

• Rules for valida ting an d m anipulating d a ta

• D a ta

A D atabase M anagem en t System, or DBM S, gives th e user access to th e ir da ta and helps th em
transfo rm th e d a ta in to in fo rm ation . S u ch D atabase M an ag em en t System s in c lu d e dBase,
Paradox, IMS, an d O racle . T hese systems allow users to create, update, an d ex trac t in form ation
from their databases. C om pared to a m anual filing system, th e biggest advantages to a com puterised
database system are speed, accuracy, and accessibility.

DBM S is an in term edia to ry betw een programs and th e data . Programs access th e DBM S, w hich
th e n accesses th e d a ta . A pp lication programs are in d ep en d en t o f th e file s tru c tu re i.e. changes
to th e file s tru c tu re do n o t require changes to application programs. C hanges to program s do
n o t n eed a new file s tru c tu re . D BM S uses m any cross-references b e tw een files to avoid
R E D U N D A N C Y (dup lication)

D atabases are m ade possible th rough th e use of special software called D atabase M anagem ent
Systems (DBM Ss.) A DBM S uses a D ata D efin ition Language (DDL) to define a database and
gives program m ers and /o r end-users a D ata M anipu la tion Language (DM L) to navigate, use,
and m ain ta in th e database. Som e DM Ls m ust be used in co n ju n c tio n w ith a host language
like C O B O L . T h e resu lt is to provide program m ers an d end-users w ith tools to s truc tu re ,
m ain tain , and use th e ir d a ta w ith greater ease an d flexibility.

T h e database um brella covers m any areas, including relational design, d a ta sem antics, DBM S
software, and physical file design. In studying each area individually, one m ight n o t grasp th e
relationships betw een them . H ow ever, it is im portan t to u n d ers tan d how th e areas are re la ted
in order to provide in fo rm ation and applications th a t fulfill user needs. A fter all, th e prim ary
purpose o f a DBM S is to provide th e user w ith a w orkable, m eaningful, and re lev an t system.

From a techn ica l standpo in t, DBM Ss can differ widely. T h e term s relational, netw ork , flat, and
h ierarchical all refer to th e way a DBM S organises in fo rm ation in ternally . T h e in te rn a l organisation
can affect how quickly and flexibly you can ex trac t inform ation.

R equests for in fo rm ation from a database are m ade in th e form o f a query, w hich is a stylised
question. For exam ple, th e query

SELECT ALL WHERE NAME = V i ja y " AND AGE > 35
requests all records in w hich th e N A M E field is S M IT H and th e A G E field is g rea ter th a n
35. T h e set o f ru les for construc ting queries is know n as a query language. D ifferent DBM Ss
support different query languages, although there is a sem i-standard ised query language called
S Q L (S tructu red Q uery Language). Sophisticated languages for m anaging database system s are
called F o u rth -G en era tio n Languages, or 4GLs for short.

Overview of Database Managem ent Sy stem s 37

T h e inform ation from a database can be p resen ted in a variety o f form ats. M ost DBM Ss include
a report w riter program th a t enables you to o u tp u t da ta in the form of a report. M any DBM Ss
also include a graphics com ponen t th a t enables you to o u tp u t in form ation in th e form of graphs
and charts.

DBM Ss com e in m any shapes and sizes. For a few hu n d red dollars you can purchase a DBM S
for your desk top com puter. For larger com puter systems, m u ch m ore expensive DBM Ss are
required . M any m ainfram e-based DBM Ss are leased by organisations. DBM S of this scale are
highly sophisticated and w ould be extrem ely expensive to develop from scratch . T herefo re, it
is cheaper for an organisation to lease su ch a DBM S program th a n to develop it. S ince, there
are a variety o f DBM Ss available, you should know some of th e basic features, as well as strengths
and w eaknesses, o f th e m ajor types.

D atabase M anagem ent Systems are applications th a t were developed to create , m anage, and
use d a ta an d to deal w ith th e problem s o f file processing systems. T h e d a ta is sto red as records
in various database files th a t can be com bined to produce m eaningful in fo rm ation for users.
T h e D BM S controls all functions of capturing, processing, storing, and re triev ing da ta from
databases and generates various forms o f data ou tpu t. T h e application program s are w ritten
e ither in a separate language or in th e DBM S language, and th e DBM S can co n ta in hundreds
of applications and files. M odeling business data, as opposed to business processes, allows the
defin ition o f da ta objects th a t are im portan t to th e business. T hese da ta objects are m ore stable
and less likely to change th a n business processes. Because th e rep resen ta tion of the da ta is
separate from th e physical im plem enta tion and access functions, th e relationships betw een th e
da ta files is m ore apparen t. T herefore, D BM S have m ore flexibility th a n file processing systems
and requ ire less program m ing m ain tenance. T his allows program m ers to focus m ore on inform ation
rep resen ta tio n th a n o n physical aspects o f da ta m anagem ent.

1.7.1 Purpose of Database Management Systems
F unctions o f a DBM S:

• T o store da ta
• T o organise da ta
• T o con tro l access to da ta
• T o p ro tec t da ta

Uses of a DBM S:

• T o provide decision support;
• M anagers and analysts retrieve in form ation generated by th e DBM S for inquiry, analysis,

an d decision-m aking .
• T o provide tran sac tio n processing; and
• U sers input, update, and process d a ta w ith transactions th a t generate in form ation needed

by m anagers and o th e r users or by o ther departm ents.

In detail, following are th e functions:
1. T o see why database m anagem ent systems are necessary, le t’s look a t a typical “file-processing

system ” supported by a conven tional operating system.

38 Database M anagem ent Systems

T h e app lication is a savings bank:

• Savings acco u n t and custom er records are kep t in p erm anen t system files.
• A pp lication program s are w ritten to m anipulate files to perform th e following tasks:

■ D ebit or cred it an account.
■ A d d a new account;

■ Find an accoun t balance; and

■ G en era te m onth ly sta tem ents.

2. D evelopm ent of th e system proceeds as follows:
• N ew application program s m ust be w ritten as th e n eed arises;
• N ew p e rm an en t files are crea ted as required;
• B ut over a long period of tim e files may be in different form ats; and

• A pp lica tion program s may be in different languages.
3. So we can see th e re are problem s w ith th e stra igh t file processing approach:

• D a ta red u n d an cy and inconsistency;
• Sam e inform ation may be dup licated in several places;
• A ll copies may n o t be updated properly.
• D ifficulty in accessing data:

■ M ay have to write a new application program to satisfy an unusual request.

■ E.g. find all custom ers w ith the sam e postal code.
■ C ould generate this da ta m anually, b u t a long job...

• D a ta iso lation.
• D a ta in d ifferent files.

• D ata in different form ats.
• D ifficult to w rite new application program s.
• M ultip le users:

■ W an t concurrency for faster response tim e.
■ N eed p ro tec tio n for co n cu rren t updates.
■ E.g. tw o custom ers w ithdraw ing funds from th e sam e a c c o u n t a t th e sam e tim e.

A c c o u n t has $500, in it, and they w ithdraw $100 and $50. T h e resu lt could be $350,
$400 o r $450 if no p ro tection .

• Security problem s:
■ Every user of th e system should be able to access only th e d a ta they are perm itted

to see.
■ E.g. payroll people only hand le em ployee records, and can n o t see custom er accounts;

tellers only access acco u n t d a ta an d can n o t see payroll da ta .
■ D ifficult to enforce this w ith application program s.

Overview of Database Management System s 39

• In tegrity problems:

■ D ata may be required to satisfy constrain ts.
■ E.g. n o accoun t balance below $25.00.
■ A gain, difficult to enforce or to change constrain ts w ith th e file-processing approach.

T hese problem s and o thers led to th e developm ent o f D atabase M anagem ent Systems.

1.7.2 Requirements of a Well-Designed DBMS
• D a ta In tegrity

1. E lim inate o r/reduce R edundancy:
• S eparate parts of th e database m ust correlate to reduce data redundancy an d provide

efficient da ta updates. D uplication o f da ta should a t best be elim inated . If n o t th e DBM S
shou ld be aware of it, and con tro l it.

2 . M ain ta in C onsistency:
• If th e re is dup lication of data, e.g. a person’s te lephone num ber may be sto red in two

tables (it sh o u ld n ’t), th e n a change will autom atically be reflected in b o th tables.
3. D a ta Sharing:

. • A single copy of th e da ta can be used by m any users.

4. S tan d ard s can be enforced:
• B o th in p resen ta tio n and storage
• U seful to aid d a ta in te rchange .

5. Provide Security o f th e D ata:
• R estric t access o f da ta to au tho rised users
• Perm issions
• Passw ords
• Log transactions
• P rovide backup/recovery facilities

6 . M a in ta in Integrity:
• E nsure th e d a ta in th e DB is correct, e.g. range checks

• D e le tio n ch eck

7. D a ta In d ep en d en ce :
• D ifferent applications need d ifferent views o f th e sam e data
• S torage s tru c tu re can change w ith o u t hav ing to * alter existing applications (programs)

e.g. new fields added
8 . R ed u ced program m a in ten an ce .
9. In te rface w ith a D ata D ictionary facility - M E T A D A T A :

• Provides in form ation about th e database
• Schem es and users

10. P rovide a Q uery Language to access th e data

4 0 Database Managem ent System s

• SQ L is th e standard
• Ingres has SQL, Q U E L and Q BF

• E m bedded in a t least one language (eg. C, C + + , C # ...)
11. A void possible deadlock situations in on-line D B ’s

12. D ow nloading facility to a PC?
13. Allow a program on PC to access th e data?

14. Sensitive d a ta m ust be pro tec ted .
15. C oncu rrency contro l.
16. A bility to lock records.
17. T ran sac tio n processing

18. A n ind iv idual tran sac tio n e ith er is com pleted or n o t com pleted.
19. R ecovery functions.

20. Efficient d a ta recovery after system or pow er failures.

1.7.3 Characteristics of DBMS
Typically, a d a ta base m anagem en t system (based u pon con tro lled activities) has th e following
ch arac teris tics :

• It is a com puterized record-keeping system.
• It con ta in s facilities th a t allow the user to . . .
■ A d d an d delete files to th e system.

■ Insert, retrieve, update , an d delete da ta in existing files.
■ It is co llection o f databases.

• A DBM S m ay co n ta in m any databases th a t can be used for separate purposes or com bined
to provide useful inform ation.

• O pera ting env iro n m en t independence-capability to ru n on m any com puters w ith certa in
types o f opera ting systems.

• U ser o rien ted provision for an English-like language w hich enables th e user to consider
logical en tities in place o f physical entities, su ch as hardw are and system software.

• D ata base in dependence from application program s-use of a da ta base language an d “call”
com m ands from th e application program.

• Security featuresprovision for controlling da ta base access and con tro l over th e database
e lem en ts.

• DBM S O vercom es Lim itations.
• E lim inates separation and iso lation of data.
• In a DBM S, all da ta is sto red in th e database. T h e DBM S allows for com plex relationships

betw een d a ta files, providing efficient d a ta in tegration . Program m ers specify, how th e da ta
is to be com bined; th e DBM S performs th e functions to provide th e inform ation .

• D BM S R educes D a ta R edundancy .

Overview of Database Management Sy stem s 41

M inim al duplication of da ta provides m ore storage space in th e system and allows for efficient
updates, w hen changes in records occur, m ain tain ing da ta integrity. For exam ple, if a custom er’s
address is stored in only one file and a change is m ade to th a t file, all affected applications
are u p d a ted autom atically .

• E lim inates D ependence betw een Program s and D ata.

In a D BM S record form ats are defined in th e database and accessed by th e DBM S. A pplication
program s only define, w hich data item s are needed, n o t da ta form ats. T herefore, form at changes
are m ade to the database by the DBM S, and , since m ost fields are stored in only one file, the
changes are m ade only to th e affected file. Also, because structu re form ats and access m ethods
are in d ep en d en t o f th e database, there is little im pact on application program s if s tructure/access
changes are m ade.

Allows for rep resen ta tion o f da ta from th e user’s view.

R elationships betw een da ta objects in a u ser’s env ironm en t are sto red in the DBM S. D ata
e lem ents from any num ber of files can be com bined to create useful forms, reports, and o th er
app lications.

• Increases D a ta Flexibility.

B ecause o f th e d a ta -in d ep en d en t s tru c tu re o f DBM S, applications can be c rea ted w ithou t
in tensive program m ing. T hus, ad hoc requests for in form ation and applications can be filled
w ith less tim e an d labor from program m ers, th a n w ith file processing systems.

1.7.4 Components of a DBMS

DESIGN TOOLS:

• TABLES CREATION

• QUERY CREATION y • REPORT CREATION

Èf • PROCEDURAL LANGUAGE

\ RUN TIME FACILrriES:

• FORM PROCESSOR

• QUERY PROCESSOR

• RE PORT WRITER

• PROCEDURAL RUNTIME

Fig 1.6: Components of a DBMS

T h e basic com ponen ts of a DBM S can be divided in to th ree subsystems:
1. D esign Tools:

Provide features for creating th e database and various applications, forms, and reports.

THE DBMS PROVIDES THE USEn
INTERFACE TO TilC DATA.

OPERATING DBMS
SYSTEM ENGINE

4 2 Database M anagem ent System s

2. R un -tim e Facilities:

Process th e applications c rea ted by th e design tools.
3. DBM S Engine:

T ransla tes be tw een th e design tools an d run-tim e facilities an d th e data.

A lthough they are all excellen t advantages to DBM S users th e in itial in v estm en t o f system
personnel tim e, as well as softw are an d eq u ip m en t cost c an be high; how ever, increasing
experience w ith D atabase M anagem ent Systems is reducing these costs. A n o th e r d isadvantage
o f DBM S is th a t inco rrec t transac tion da ta ten d to precip ita te add itional problem s an d errors
th ro u g h o u t th e system,. T herefore, various tests should be inco rpo ra ted to c a tc h errors en tering
th e database before they are stored. O verall, these disadvantages o f DBM S are capable of being
overcom e to a great degree, if the m anagem ent in form ation system is properly designed and
m anaged .

1.7.5 Database Architecture
L e ts briefly exam ine how the database env iro n m en t is im plem ented. T h e discussion is simplified
b u t n one the less adequa te for an in troduc to ry level trea tm en t.

In a database env ironm en t, th e n o tio n o f conven tiona l files disappears. In its place, we have
a struc tu re , w here records o f one type, such as O RD ER s, can be re la ted to records o f different
types, such as CU STO M ERS. If this is all precisely correct! D atabase physically im plem ents
logical en tities an d re lationships.

Figure 1.7 depicts th e database techn ica l env ironm ent. A systems analyst, or database analyst,
designs th e s tru c tu re o f th e da ta in term s of record types, fields con ta in ed in those record types,
and re lationsh ips th a t exist be tw een record types (once again, th is shou ld sound like data
m odeling). T h e analyst th e n uses th e D B M S’s D ata D efin ition Language (DDL) to physically
establish those record types, fields, an d relationships. A dditionally , th e D D L defines views of
th e da tabase . V iews re s tric t th e p o rtio n o f a da tabase th a t m ay be in a p e rm a n e n t da ta
d ic tionary . Som e d a ta d ic tio n aries in c lu d e form al, e lab o ra te softw are th a t he lps database
specialist keep track o f everything sto red an d inquiry responses (very sim ilar to ou r CA SE
c o n c e p t) .

C om puter program s are th e n w ritten to load, m ain tain , and use ac tual da ta . T h ese programs
may be w ritten in a host program m ing language, such as C O B O L , PL/1, or B A SIC th a t is
supported by th e DBM S. U sing th e host language, th e program s call subrou tines in th e D B M S’s
D a ta M an ip u la tio n Language (DM L) to re triev e , c rea te de le te , an d m odify reco rds, and
navigate b e tw een record types, for exam ple, from C U S T O M E R to O R D E R s for th a t custom er.
T h e program m ers d o n ’t have to u n d erstan d how th e d a ta is physically sto red (file organisation)
or accessed. T h e DBM S takes care of su ch details. T h e D M L refers to th e d a ta d ic tionary (DDL)
d u rin g ex ecu tio n .

A lternatively , m any DBM Ss d o n ’t require a host program m ing language. T h ey provide the ir
own self-contained program m ing language th a t includes a D D L and a DM L. G enerally speaking,
these se lf-contained languages greatly simplify applications proto typing an d developm ent. T hese
languages and. features are typically designed to be simple to learn an d use, so m u ch so th a t
experienced program m ers can be rep laced by analysts and end-users.

Overview of Database Management Sy stem s 4 3

M any m ain-fram e DBM Ss, greatly simplify in te rn a l controls by autom atically logging all updates
and enforcing security as defined by the database analyst. Eventually, th is should even be true
o f m icrocom puter DBM Ss.

M ultip le-user DBM Ss frequently include a teleprocessing or T P m onitor. T his is specialised
software th a t supervises and controls access to th e database via term inals in online environm ents.
M ost such systems can also interface w ith T P m onitors o ther th a n th e ir own, such as IBM ’s
CIC S.

A DBM S allows us to physically im plem ent a logical data m odel. T h e physical da ta m odel is
usually called a schem a. A ny given D BM S support two schem as, a logical schem a (w hich,
unfortunately , is sem iphysical as constra ined by the DBM S itself) and a physical schem a (w hich
truly describes th e physical storage of th e data).

T h e physical schem a defines records, files access m ethods, file organisations, indices, blocking,
pointers, and o th e r physical attributes. DBM S d o n ’t replace file s truc tu re , they just hide th em
from the program m ers and end-users. T h is aspect of th e database is n o t o f co n cern to m ost
system analysts.

T h e logical (or sem iphysical) schem a, defines the database in simple term s, as seen by end-
users and program m ers. It defines records an d associations, just like th e en tity re la tionsh ip da ta
models. H ow ever, th e logical schem a is co n stra ined by one of th ree popular DBM S structures:
hierarchical, netw ork or linked, and rela tional. A s previously m en tioned , d ifferent program s
or users m ay be restric ted to different views o f the database. T h e views are som etim es called
subschem as.

End
Users

Application
Programs

Database
Management
System

i
Orders Accounts Rec Externalcgi program program program Level

Database Control
System and DB

Description

File Access Methods

DBA Conceptual
Level

Database
Internal
Level

Fig. 1.7: A rc h ite c tu re o f an Ideal D B M S

4 4 Database Managem ent Sy stem s

N o t all D atabase M anagem ent Systems co n ta in all o f th e com ponen ts show n in this diagram ;
however, th e diagram is rep resen ta tive of a typical DBM S. T h e key com ponents are th e D ata
D efin ition Language and the D ata M anipu lation Language, th e com m on com ponents o f all
DBM Ss.

1.7.6 Elements of Databse Management Systems

Fig 1.8: Simplified picture of database system

A DBM S is a com puterised record-keeping system th a t stores, m ain tains and provides access
to inform ation . A database system involves four m ajor com ponents:

• D a ta
• H a rd w are
• Softw are
• U sers

DBM S are used by any reasonably self-contained com m ercial, scientific, tech n ica l or o th e r
organisation from a single individual to a large com pany and a DBM S may be used for m any
reasons. D ata itse lf consists o f individual entities, in add ition to w hich, there will be relationships
betw een en tity types linking th em together. G iven an en terp rise w ith a nebulously defined
collection o f data , th e m apping o f this collection o n to th e real D BM S is done based o n a da ta
m odel. V arious a rch itec tu re s exists for databases an d various m odels have b een proposed
including th e relational, netw ork, and h ierarch ic m odels. O th e r im portan t com ponen ts are:

• D a ta : D a ta stored in a database include num erical data , w hich may be in tegers (whole
num bers only) or floating po in t num bers (decim al), an d n o n -n u m erica l d a ta su ch as
ch a rac te rs (a lphabetic an d num eric characters), da te or logical (true or false). M ore
advanced systems may include m ore com plicated d a ta en tities such as p ictures an d images
as d a ta types.

Overview of Database Managem ent System s 4 5

• S ta n d a rd O p e ra tio n s : S tandard operations are provided by m ost DBM S. T hese operations
provide th e user basic capabilities for data m an ipulation . Exam ples o f these s tan d ard
opera tions are sorting, deleting and selecting records.

• D a ta D e fin itio n L anguage (D D L): D D L is th e language used to describe th e co n ten ts
o f th e database. It is used to describe, for exam ple, a ttrib u te nam es (field nam es), da ta
types, location in th e da ta base, etc.

• D a ta M a n ip u la tio n a n d Q u e ry L anguage: N orm ally a F o u rth -G en e ra tio n Language
(4G L) is supported by a DBM S to form com m ands for in pu t, ed it, analysis, o u tp u t,
reform atting , etc. Som e degree of standard isa tion has been ach ieved w ith SQ L (S tru c tu red
Q u ery L anguage).

• P ro g ram m in g T o o ls: Besides com m ands and queries, th e database should be accessible
d irectly from application program s th ro u g h function calls (subroutine calls) in co n ven tiona l
p rogram m ing languages.

• File S tructu res: Every DBM S has its own in ternal s truc tu res used to organise th e data
a lth o u g h some com m on da ta m odels are used by m ost DBM S.

1.7.7 Properties of DBMS Data
DBM S are available on any m achine, from small micros to large m ainfram es, and can be single
or m ulti-user - obviously, there will be special problems in m ulti-user env ironm ents in order
to m ake o th e r users invisible, bu t these problem s are in te rn a l to DBM S.

1. D ata m ay be shared over m any databases, giving a d istribu ted DBM S, th ough qu ite o ften
it is cen tra lised and stored in just one database o n one m achine. In general, th e data in
th e database, a t least in a large system , will be b o th in teg ra ted and shared.

2 . T h e goal o f a DBM S is to provide an env ironm ent th a t is b o th conven ien t and efficient
to use in:

• R etriev ing inform ation from th e database.
• S toring inform ation in to th e database.

3. D atabases are usually designed to m anage large bodies o f inform ation. T his involves:

• D efin ition o f structu res for in fo rm ation storage (data m odeling).
• Provision of m echanism s for th e m an ipu la tion of in form ation (file an d systems structu re ,

query processing).
• P rovid ing for the safety of in fo rm ation in th e database (crash recovery and security).
• C o n cu rren cy contro l if th e system is shared by users.

1.7.8 Advantages and Disadvantages of DBMS
Because th e new m anagem ent in fo rm ation system design will include a D atabase M anagem ent
System, th e advantages of this a rrangem ent should be carefully considered. First, D BM S is no t
only effec tive for g enera ting an d m a in ta in in g a w ide varie ty o f ro u tin e m an ag em en t and
o p era tin g rep o rts , b u t also ad ap tab le to m ee tin g th e new a n d em erging req u irem en ts o f
m anagem en t to answer a m yriad o f ”W h a t if?” questions. T h e la tte r capability m eans D atabase
M anagem en t Systems will be im p o rtan t aids to m anager seeking to explore and u n d erstan d new

4 6 Database Managem ent System s

relationships am ong various d a ta e lem ents. Second , d a ta e lem ents can be s tru c tu red in a
m anner m ore suitable to th e ir application, allowing the ir retrieval w ith a m in im um of effort.
T hird , DBM S keeps redundancy of da ta elem ents to a m inim um . S ince one d a ta file serves
m any users, as a resu lt o f this “single reco rd ” concept, a tran sac tio n is en te red once for all
users. T h e D B M S also allows tw o or m ore files to be u p d a ted w ith th e en try o f a single
transaction. F ourth , application programs are in d ep en d en t o f th e changes in th e database, so
th a t their m a in ten an ce is kept to a bare m inim um . Fifty, DBM S provides da ta p ro tec tion n o t
only for accessing one database record a t a tim e, bu t also for p reven ting database access by
unau thorized personnel.

T h e m ain advantage o f using a DBM S is th a t th e formalism of th e m odel of d a ta underlying
th e DBM S is im posed u pon the data set to yield a logical an d s tru c tu red organisation of the
data. G iven a fuzzy, real-w orld data set, w hen a m odel’s form alism is im posed on th a t da ta set
the result is easier to m anage, define an d m anipulate .

D ifferent m odels o f d a ta lead to different organisations. In general, th e re la tional m odel is the
m ost popular because th a t m odel is the m ost abstract and easiest to apply to data , while still
being powerful.

• A dvantages of U sing DBM S
T o sum m arise using a DBM S we have th e following advantages :

• C lear p ic tu re o f logical organisation o f d a ta set.
• C en tra lisa tio n for m ulti-users.
• D ata in d e p e n d e n c e .

• M onito ring database perform ance.
• C en tra lised d a ta reduces m anagem ent problem s.

• D ata red u n d an cy an d consistency are contro llable.
• P rogram -data in te rd ep en d en cy is d im in ished .
• Flexibility o f d a ta is increased.
• R ed u c tio n in d a ta redundancy .
• M a in ten an ce o f d a ta in tegrity an d quality.
• D ata are se lf-docum ented or self-descriptive.
• A voidance of inconsistency.
• R educed cost o f software developm ent.

• Security restric tions.
• A pplica tion program s are in d ep en d en t o f s truc tu re of DB.
• A pplica tion program s share the sam e data .
• N ew program s are easier and cost less to im plem ent.

1 . 8 D a t a B a s e A d m i n i s t r a t o r (D B A)
DBA are th e person(s) responsible for overall con tro l o f th e to ta l system. T h e D B A is responsible
for organising th e system so as to get the perform ance th a t is “best for th e system ” an d for m aking

Overview of Database Managem ent Sy stem s 47

th e appropriate ad justm ents as user requ irem ents change. A D BA can be som eone who, from
th e start, has co n cen tra ted in th e area o f da tabase design and adm inistra tion . A D B A can be
a program m er who, by default or by volunteering , took over th e responsibility of m ain tain ing
a SQ L Server during pro ject developm ent an d enjoyed th e job so m u ch th a t he sw itched. A
D BA can be a system adm inistra tor w ho was given the added responsibility of m ain tain ing a
SQ L Server. DBA s can ev en com e from un re la ted fields, such as accoun ting or th e help desk,
and sw itch to In form ation Systems to becom e DBAs.

T h e role o f th e database adm inistra tor is very im portan t in an organisation. L earn about some
o f th e responsibilities o f a th is position. In a very general sense, a database adm in istra to r is th e
individual responsible for m ain ta in ing th e RD BM S system. In this article, we will focus on
M icrosoft S Q L Server; how ever, th e concepts apply to virtually any database.

T h e D B A has m any different responsibilities, b u t th e overall goal o f th e D B A is to keep th e
server up at all tim es and to provide users w ith access to th e required inform ation , w hen they
need it. T h e D B A m akes sure th a t th e database is p ro tec ted and th a t any chance o f d a ta loss
is m inim ized.

T o help th e D B A in this task, certa in database utilities and tools m ay be used.

T h e responsibilities th a t an adm inistra ter has to discharge include:

• D efin ing th e co n cep tu a l schem a.
• D efin ing th e in te rn a l schem a.

• Liaising w ith users, m ainly application program m ers.
• Includes defining ex te rna l views for ex te rn a l users for access to th e DB.
• D efin ing security and in tegrity rules.
• D efin ing backup an d recovery procedures.

• M onito ring and fine-tun ing perform ance.
• S chem e definition: T h e crea tion o f th e original database schem e. T h is involves writing

a set o f definitions in a D D L (data storage an d defin ition language), com piled by th e
D D L com piler in to a set of tables stored in th e d a ta dictionary.

• S torage s truc tu re and access m ethod defin ition: W riting a set o f definitions transla ted
by th e D D L com piler.

• S chem e and physical organisation m odification: W riting a set o f defin itions used by the
D D L com piler to generate m odifications to appropriate in te rna l system tables (e.g. data
d ic tio n ary). T h is is done rarely, bu t som etim es th e database schem e or physical organisation
m ust be m odified.

• G ran tin g of au thoriza tion for data access: G ran tin g different types o f au tho risa tion for
da ta access to various users.

• In tegrity constra in t specification: G enera tin g in tegrity constrain ts. T h ese are consulted
by th e database m anager m odule, w henever updated .

• E nforcing standards.

48 Database M anagem ent System s

T h e D B A m ust ensure th a t all applicable standards are observed in th e rep resen ta tio n of the
data in the DBM S, w here applicable standards may include any or all o f corporate, installation,
departm en ta l, industry, na tio n a l and in te rna tiona l standards. S tandard ising is essential, w hen
m any people use th e sam e d a ta and is particularly desirable as an aid to da ta in terchange
betw een systems, b u t this is only possible, w hen da ta in dependence has b een achieved.

D atabase A dm in istra to r is also a nam e of the program (software). A database adm inistra tor
(DBA) contro ls and m anages th e database.

1.8.1 Other DBA Responsibilities
T h e following sections exam ine th e responsibilities of th e database adm in istra to r and how they
transla te to various M icrosoft SQ L Server tasks.

• Installing and U pgrading an SQ L Server:

T h e D BA is responsible for installing SQ L Server or upgrading an existing SQ L Server. In the
case of upgrading SQ L Server, th e D BA is responsible for ensuring th a t if th e upgrade is n o t
successful, th e SQ L Server can be rolled back to an earlier release un til th e upgrade issues
can be resolvedr^Fhe D B A is also responsible for applying SQ L Server service packs. A service
pack is n o t a true upgrade, b u t an installation of th e cu rren t version o f softw are w ith various
bug fixes a n d patches th a t have been resolved since th e p ro d u c t’s release.

• M on ito ring th e database server’s h ea lth and tu n in g accordingly.
M onitoring th e h ea lth of th e database server m eans m aking sure th a t th e following is done:

• T h e server is runn in g w ith optim al perform ance.

• T h e e rro r log or ev en t log is m onitored for database errors.

D atabases have rou tine m a in ten an ce perform ed o n them , and th e overall system has periodic
m a in ten an ce perform ed by th e system adm inistrator.

• U sing S torage Properly:

SQ L Server 2000 enables you to autom atically grow th e size o f your databases and tran sac tio n
logs, or you can choose to select a fixed size for th e database an d tran sac tio n log. E ither way,
m ain ta in ing th e proper use o f storage m eans m onitoring space requ irem ents and adding new
storage space (disk drives), w hen required .

• Perform ing B ackup an d Recovery D uties:

B ackup an d recovery are th e D B A ’s m ost critical tasks; they inc lude th e following aspects:

• E stablishing standards and schedules for database backups.
• D eveloping recovery procedures for each database.
• M aking sure th a t th e backup schedules m eet th e recovery requ irem ents.

• M anag ing D atabase U sers and Security:

W ith S Q L Server 2000, th e D B A works tightly w ith th e W indow s N T adm in istra to r to add
user N T logins to th e database. In n o n -N T dom ains, th e D B A adds user logins. T h e D B A is
also responsible for assigning users to database^ and determ in ing th e proper security level for
cach user. W ith in each database, th e DBA is responsible for assigning perm issions to th e various
database ob jects such as tables, views, and stored procedures.

Overview of Database Managem ent System s 49

• W ork ing w ith D evelopers:

It is im portan t for th e DBA to work closely w ith developm ent team s to assist in overall database
design, such as creating norm alised databases, helping developers tu n e queries, assigning proper
indexes, and aiding developers in th e c rea tion o f triggers and stored procedures. In th e SQ L
Server 2000 env ironm ent, a good D B A will show th e developers how to use and take advantage
o f the S Q L Server Index T u n in g W izard and th e SQ L Server profiler.

• Establishing and Enforcing S tandards:

T h e D B A should establish nam ing conven tions and standards for th e SQ L Server and databases
and m ake sure th a t everyone sticks to them .

• T ransfe rring D ata:

T h e D B A is responsible for im porting an d exporting da ta to an d from th e SQ L Server. In th e
cu rren t tren d to downsize and com bine clien t/server systems w ith m ainfram e systems and W eb
technologies to crea te Enterprise systems, im porting da ta from the m ainfram e to S Q L Server
is a com m on occurrence th a t is abou t to becom e m ore com m on w ith the SQ L Server 2000 D ata
T ransfo rm ation Services. G ood D T S D B A s will be in h o t dem and as com panies struggle to m ove
and transla te legacy system to Enterprise systems.

• R ep lica ting D ata:

SQ L Server version 2000 has m any different replication capabilities such as M erge replication
(2-way d isconnec ted replication) and queued replication. M anaging and setting up replication
topologies is a big undertak ing for a D B A because of th e com plexities involved w ith properly
se tting up and m ain ta in ing rep lication .

• D a ta W arehousing:

SQ L Server 2000 has substan tia l da ta w arehousing capabilities th a t require the D B A to learn
an ad d itio n a l p ro d u c t (th e M icrosoft O L A P Server) an d a rc h ite c tu re . D a ta w arehousing
provides new and in teresting challenges to the D BA and in some com panies a new career as
a w arehouse specialist.

• S chedu ling Events:

T h e database adm inistra tor is responsible for setting up and scheduling various even ts using
W indow s N T and SQ L Server to aid in perform ing m any tasks such as backups an d replication.

• Providing 24-H our Access:

T h e database server m ust stay up, an d th e databases m ust always be pro tec ted an d online. Be
prepared to perform some m ain ten an ce an d upgrades after hours. A lso be prepared to carry th a t
dreaded beeper. If th e database server should go down, be ready to get the server up and
running . A fter all, th a t’s your job.

• L earn ing C onstan tly :

T o be a good DBA, you m ust co n tin u e to study and practice your m ission-critical procedures,
such as testing your backups by recovering to a test database. In this business, technology
changes very fast, so you m ust c o n tin u e learning about SQ L Server, available client/servers,
and database design tools. It is a never-end ing process.

5 0 Database Managem ent Sy stem s

1.8.2 Required Skills
• G ood u n d erstan d in g o f th e O racle database, re la ted utilities an d tools.
• A good u n d erstan d in g o f th e underlying operating system.
• A good know ledge of th e physical database design.
• A bility to perform b o th O racle an d operating system perform ance tun ing and m onitoring.
• K nowledge o f A LL O racle backup and recovery scenarios.
• A good know ledge o f O racle security m anagem ent.
• A good know ledge of how O racle acquires and m anages resources.
• A good know ledge O racle da ta integrity .
• S ound know ledge of th e im plem ented application systems.
• E xperience in code m igration , da tabase change m an ag em en t an d d a ta m an ag em en t

th rough th e various stages of th e developm ent life cycle.
• A sound know ledge o f b o th database and system perform ance tun ing .
• A D BA shou ld have sound com m unication skills w ith m anagem ent, developm ent team s,

vendors an d systems adm inistrators.
• Provide a strategic database d irection for th e organisation.
• A D BA shou ld have th e ability to hand le m ultiple projects an d deadlines.
• A D BA shou ld possess a sound understand ing o f th e business.

1.8.3 Qualifications
• M ust be certified as an O racle/M S SQ L/SY BA SE/ DBII D BA
• Preferably a BS in com puter science or re la ted engineering field
• Lots an d lots o f EXPERIENCE

1.8.4 Database Manager
1. T h e database m anager is a program m odule, w hich provides th e in terface betw een th e low-

level da ta sto red in th e database an d th e application program s and queries subm itted to
th e system.

2 . D atabases typically require lots of storage space (gigabytes). T h is m ust be sto red o n disks.
D ata is m oved betw een disk and m ain m em ory (M M) as needed .

3. T h e goal o f th e database system is to simplify an d facilitate access to data . Perform ance
is im portan t. Views provide sim plification.

4. So th e database m anager m odule is responsible for:
• In te rac tio n w ith th e file m anager: S toring raw d a ta on disk using th e file system usually

provided by a conv en tio n a l operating system. T h e database m anager m ust transla te DM L
sta tem ents in to low-level file system com m ands (for storing, re triev ing an d u pdating data
in the da tabase).

• Integrity enfo rcem ent: C heck ing th a t updates in th e database do n o t vio late consistency
____/_ _ 1___________ 1. _______ ̂ 1__1____ 1___1__ D - nc\uuiiMi cuuiib vc*6* 11U uaiiK accuum ubuaiiuc uciuw iv>. l. j) .

Overview of Database Managem ent System s 51

• S ecurity en fo rcem en t: E nsuring th a t users only have access to in fo rm ation they are
perm itted to see.

• B ackup and recovery: D etec ting failures due to power failure, disk crash, software errors,
e tc ., an d resto ring th e database to its s ta te before th e failure C o n cu rren cy contro l:
P reserving d a ta consistency, w hen th e re are co n cu rren t users.

5. Som e small database systems may miss some of these features, resulting in sim pler database
m anagers. (For exam ple, n o concurrency is required on a PC ru n n in g M S-D O S.) T hese
features are necessary on larger systems.

1.8.5 Monitoring Database Performance
T h e D BA is responsible for organising the system so as to get th e perform ance th a t is “best
for the system ” and for m aking the appropriate ad justm ents as user requ irem ents change. T o
help th e D B A in this task, certa in database utilities and tools may be used.

1.8.6 Database Utilities and Tools
T h e D BA will n eed m any utilities to im plem ent proper contro l over th e database. T h e following
are some exam ples.

• Load rou tines - to create the in itial databse.

• D um p/resto re rou tines - for backup and recovery purposes.
• R eorganisation rou tines - to rearrange the da ta for various perform ance reasons.
• S ta tistica l rou tines - to com pute perform ance statistics etc.
• A nalysis rou tines - to analyse the statistics.

T hese tools allow the D BA to m onito r th e perform ance of th e DBM S.

1 . 9 T y p e s o f D a t a B a s e S y s t e m s
A m o d em DBM S uses one o f th e following data models for constructing its struc tu re :

• Flat file (tabular) - da ta in a single table (no link betw een tables).

• R e la tio n a l D atabases.
• N e tw o rk ed D atabases.
• H ie ra rch ica l D atabases.
• A naly tic D atabases.
• O p e ra tio n a l D atabases.
• C lie n t S erver D atabases.
• O b je c t O rie n te d D atabases.

1.9.1 Analytic Databases
A nalytic da tabases (a.k.a. O L A P w hich s tan d for O n Line A nalytical Processing) are primarily
static, read-on ly databases, w hich store archived, historical da ta used for analysis. For exam ple,
a com pany m ight store sales records over th e last ten years in an analytic database and use
th a t da tab ase to analyse m arketing strategies in relationship to dem ographics.

52 Database Managem ent Sy stem s

O n th e web, you will o ften see analytic databases in the form of inven to ry catalogs, such as
the one show n previously from A m azon.com . A n inventory catalog analytical database usually
holds descrip tive inform ation abou t all available products in th e inventory .

W eb pages are genera ted dynam ically by querying th e list o f available p roducts in th e inventory
against som e search param eters. T h e dynam ically-generated page will display th e in form ation
abou t each ite m (such as title, au thor, ISBN), w hich is sto red in th e database.

1.9.2 Operational Databases
O pera tiona l databases (a.k.a. O L T P O n Line T ransac tion Processing), o n th e o th e r hand , are
used to m anage m ore dynam ic bits of data . T hese types of databases allow you to do m ore th a n
simply view arch ived data . O pera tional databases allow you to modify th a t da ta (add, change
or d e le te d a ta).

T hese types o f databases are usually used to track real-tim e inform ation. For exam ple, a com pany
m ight have a n opera tional database used to track w arehouse/stock quan tities. A s custom ers
order products from an online web store, an operational database can be used to keep track
of how m any item s have been sold an d w hen th e com pany will n eed to reord stock.

1.9.3 Object-oriented Databases
O O D B M S are able to hand le m any new da ta types, including graphics, photographs, audio,
and video, o b jec t-o rien ted databases rep resen t a significant advance over its o th e r database
cousins. H ierarch ica l an d netw ork databases are all designed to han d le stru c tu red data, th a t
is, da ta th a t fits nicely in to fields, rows, and colum ns. T hey are useful for hand ling sm all snippets
of in form ation such as nam es, addresses, zip codes, p roduct num bers, an d any k ind o f statistic
or num ber you can th in k of. O n th e o th e r hand , an ob jec t-o rien ted database can be used to
store da ta from a variety o f m edia sources, such as photographs an d tex t, an d produce work,
as ou tp u t, in a m ultim edia form at.

1 . 1 0 D a t a D i c t i o n a r y
D ata D ictionary is a file th a t defines th e basic organisation o f a database. A da ta dictionary
con tains a list o f all files in th e database, th e num ber of records in each file, and th e nam es
and types o f each field. M ost database m anagem ent systems keep th e da ta d ictionary h idden
from users to p rev en t th em from accidentally destroying its co n ten ts .

D ata d ictionaries do n o t co n ta in any ac tual da ta from th e database, only bookkeeping inform ation
for m anaging it. W ith o u t a d a ta d ictionary, how ever, a database m anagem en t system can n o t
access d a ta from th e database.

A d a ta d ic tionary describes tables, co lum ns, indexes, an d o th e r e lem en ts o f th e database
structu re . O th e r term s for da ta d ictionary include da ta d irectory or m etada ta . Following is an
exam ple o f a p o rtio n o f th e d a ta d ic tionary for th e en tity C O U R SE .

Overview of Database Management Sy stem s 5 3

Object Model: Text for Entities

Entity: COURSE Component: Entity
Description: A course of study
Examples: INSY312 Database Design

INSY410 Systems Analysis & Design
INSY115 Introduction to Computers

Business Policies:
* A course may be taught more than once in a semester.
* Each class of a specific course held in the same semester will be differentiated by an extension

number.
* A course may be taught by more than one professor.
* Each class is held in only one room per semester.

Attributes: Course name
Course number
Course description

T h e d a ta d ictionary stores descriptions of d a ta item s and structures, as well as systems processes.
It is in te n d e d to be used to u n d erstan d th e system by analysts, w ho retrieve the details and
descrip tions it stores, and during systems design, w hen inform ation abou t such concerns as da ta
length , a lte rna tive nam es (aliases), and d a ta used in specific processes m ust be available. T h e
da ta d ictionary also stores validation inform ation to guide th e analysts in specifying controls
for th e system ’s accep tance of data.

D ictionary systems are im portan t for five reasons:
1. to m anage th e detail in large systems;
2 . to com m unicate a com m on m eaning for all system elem ents;
3. to d o cu m en t th e feature of th e system;
4 . to facilitate analysis o f th e details in o rder to evaluate characteristics and determ ine w here

systems changes should be m ade; an d
5. to locate errors and omissions in th e system. D uring analysis, particu lar a tte n tio n is paid

to un d erstan d in g the n a tu re o f th e transactions and inquiries m ade of th e system and th e
requ irem en ts for o u tp u t and repo rt genera tion , these m atters are significant in determ in ing
file an d database requ irem ents and system capacity needs.

T h e d ictionary also con ta ins definitions of da ta flows, da ta stores, and processes. T h e la tte r
includes a sum m ary of processing logic.

D ata d ictionaries can be developed m anually or using au tom ated systems. A u to m ated systems
offer th e ad v an tag e o f au tom atica lly p ro d u cin g d a ta e lem en t, d a ta s tru c tu re , and process
listings. T h ey also perform cross-reference checking and error d e tec tion , im portan t advantages
w hen w orking o n large systems th a t m ust be correct. A u to m ated d ictionary systems are becom ing
th e n o rm in th e developm ent of com pu ter inform ation systems.

1. D a ta E lem en ts

D ata elem ents, th e m ost fundam enta l d a ta level recorded in a dictionary, are th e building blocks
for all o th e r da ta in th e system. A set o f data items, term ed a d a ta structu re , describes th e
re la tion b e tw een individual elem ents. D a ta are arranged according to one of four relationships:

5 4 Database Managem ent Sy stem s

sequence, se lec tion (e ither/or), ite ra tion (repetition), and optional relationships. Regardless of
the specific re la tionsh ip , each data item m ust be described fully, including th e nam e, as well
as specification o f th e leng th and the type.

A d a ta d ic tionary (D D) is in ten d ed to provide a com plete d o cu m en ta tio n of all th e elem ents
of a da ta Flow Diagram , nam ely data item s, d a ta stores, and d a ta flows. D ata described in a
D D carries th e following details.

Data characteristics Characteristics of each data type

Data type
Data name
Data aliases
Data description

Data item/data store/data flow
Name of data item/data store/data flow
Alternate names used for convenience by multiple suers
A short description of data, explained in simple terms

A da ta item is characterised by its type (num eric/a lphanum eric), w idth, etc.

A da ta store is characterised by its com position (set of da ta item s), o rganisation (sequential,
random), etc.

A data flow is characterised by its origin, destination , etc.

Below, we describe th e con ten ts o f a D d for a sam ple da ta item , da ta item , da ta store and
data flow for a CBIS on payroll accounting.

(a) D A T A IT E M

* Data type
* Data name
* Data aliases
* Data description

Data item
G-SALARY
Wages
Monthly gross salary of an employee

(b) D a ta c h a ra c te r is tic s

Type Numerical

Width

Associated data stores

Associated data processes

7.2
4 digits for the rupee component
1 digit for the decimal point
2 digits for the paise component
Payroll file
Personnel file
Payroll file PF accounting
Personnel information systems
Comments Gross salary is based on employees designation

and hence falls within a specified range

Overview of Database Management Systems

(c) D a ta S to re

55

* Data type
* Data name
* Data aliases
* Data description

Data store
Payroll file
Salary file
Master file of employees for payroll accounting

(d) D a ta ch a ra c te ris tic s

Composition EMP-NAME
Designation
B-Salary
Department

G-Salary

Organisation Sequential file
Volume 1000 records (approximately)
Size 350 K bytes (approximately) per record
Associated data Payroll accounting
Processes PF accounting
Inbound data flow —
Outbound data flow —
Comments This file gets updated every, month at the time of pay roll processing.

O n an average, about 5 records are deleted per m onth (retiring/
leaving the organisation) and about 10 records are added per month
(new appointments).

(e) D a ta F low

* Data type Data flow
* Data name DATA ON EMPLOYEES
* Data aliases —
* Data description Data on employees required for payroll processing

56 Database Managem ent System s

D a ta c h a ra c te r is t ic s

Origin Accounts office
Destination Process 1 in payroll accounting
Contents EMP-NAME

Designation
B-Salary
Department

Associated data processes Payroll accounting
Associated data stores commands

1.10.1 Advantages of Data Dictionary
A nalysts use d a ta d ictionaries for five im portan t reasons:
1. T o m anage th e detail in large systems

2. T o com m unicate a com m on m eaning for all system elem ents

3. T o d o cu m en t th e features o f th e system
4. T o facilitate analysis o f th e details in order to evaluate characteristics and determ ine w here

system changes should be m ade

5. T o locate errors and omissions in th e system

T h e da ta d ic tionary may be view ed as aiding m ost analysis an d design activities. T h e BCS
W orking Party repo rt suggested th a t it could be used during each o f th e following stages:

• D ata analysis, to determ ine the fundam enta l s truc tu re o f th e d a ta o f th e enterprise;
• Functional analysis, to determ ine the way in w hich ev en t an d functions use data;
• D atabase o r co n v en tiona l file design:
• T ran sac tio n or program design;

• Storage s tru c tu re design, w here this is a fu rther refinem ent o f th e in itial database or file
design;

• O p era tio n a l ru n n in g o f application systems;
• C o llection an d evaluation o f perform ance statistics;
• D atabase tu n in g to im prove perform ance; and
• A pp lica tion m a in ten an ce and database restructu ring .

T h e first type of d a ta dictionary was a clerical card index system keeping track o f th e physical
im plem entation . Info rm ation held o n files and records used by program s m ade it easier to identify
program s w hich n e e d e d recom piling in th e e v e n t o f a ch an g e in reco rd or file s tru c tu re
(Redfearn, 1987). T h e ad v en t of D a ta Base M anagem ent Systems (DBM S) w ith the ir em phasis
on shared da ta re inforced th is n eed for docum en ta tion . A d a ta d ictionary provided a m eans
for ensuring s tan d ard term inology and effective do cu m en ta tio n co n tro l th ro u g h cross-referencing.
T h e au tom ation o f th is d ictionary was a n a tu ra l step.

Overview of Database Management Systems 57

C onsiderable advantages accrue from using an autom ated D ata D ictionary System (D D s). T h is
D D S software (usually referred to as data dictionary in this text) can effectively and efficiently
m aintain a large central repository o f data about the data o f an organisation-so-called m etadata
is a level o f abstraction higher than the actual data used in operations; it is n ot th e actual
data used but data about the actual data used.

Fig. 1.9 show s the d istinction b etw een th e tw o levels o f data. M etadata is used to define, identify
and describe the characteristics o f the user data. M etadata usually falls in to tw o categories.

• W h at the data is or w hat it m eans.

• W h ere the data can be found and h ow it can be accessed .

Metadata Metadata U ser data Entities

Database name: CUSTDB DATABASE T he data values in the
customer database

Database Size: lOKbytes
Record name: CUSTREL RECORD T he data values in the

customer records
Record size: 140 bytes
Data element name: CUSTID D A T A T he data values in the

CUSTID data

Data element size: 8 bytes ELEMENT Element such as 78534021

Fig. 1.9 Metadata Versus User Data

T h ere has recently b een an increased accep tance o f the benefits o f establish ing and m aintain ing
a data dictionary and a num ber o f products are available in the com m ercial m arket-place. A
com parative review o f 13 data dictionary system s was m ade by M ayne. 1984) revealed that it
increases th e efficiency to enorm ous level. T h e central role o f data dictionaries in com m ercial
software and data processing organisation and standards dem ands that the con cep t be exam ined
in greater depth .

1 . 1 0 . 2 A u t o m a t e d D a t a D i c t i o n a r y

T h e first au tom ated data dictionary system s were primarily con cern ed w ith d ocu m en tin g the
physical aspects o f data processing-system s, programs, files and data bases. H ow ever, their scope
has now increased to storing and m anipulating logical m odels-such as data flow and entity-
relationship diagrams. In doing so th e data d ictionary has progressed from a passive d ocu m enter
o f system s to an active productivity tool.

T h e activ ity o f a data dictionary system dem ands scrutiny. A ll data processing applications
require m etadata to operate (such as database schem es, C obol File D efin itions and Job C ontrol
Lan- guages) and an active data dictionary controls this processing en vironm en t. In deed it is
the scope o f the m etadata m anagem ent that determ ines the activity o f th e data dictionary
because th e D D S is only active “w ith respect to a program or process if and only if that program
or process is fully d ep en d en t upon the data dictionary for its m etadata” (Plagm an, 1978) In

58 Database Management Systems

a passive system m etadata m ay be defined from other sources and th e data d ictionary acts as
a d ocu m en tation facility rather than an active too l in system developm en t. In general, com m ercial
D D S may b e p laced u pon a spectrum o f activity w ith th e trend towards active or potentially
a ctive data dictionary system s.

T h is con cep t o f activity is an exam ple o f how th e term ‘data dictionary* is used by vendors to
describe software w ith a w ide range o f capabilities and facilities. C om parisons across products
reveal m arked differences in functionality. C onsequ en tly , the n ex t section describes desirable
features o f a data dictionary system w ith the aim o f providing an appreciation o f th e scope of
D D S as w ell as a fram ework in w h ich to assess com p etitive products. It is largely based upon
the BCS D ata D ictionary System s W orking Party report o f 1977 w h ich still rem ains an im portant
benchm ark in this field.

1 . 1 0 . 3 D e s i r a b l e F e a t u r e s o f a D a t a D i c t i o n a r y

T h e BCS W orking Party recom m ended that the D ata D ictionary should operate at two distinct
levels. T h e first is th e logical level that gives th e ability to record and analyse requirem ents
irrespective o f how they are going to be m et. T h is logical v iew represents an im plem entation
in d ep en d en t v iew o f th e enterprise and in itial and su ccessive im plem en tation s m ust take place
w ith in th e scope of; this framework. A t least four benefits may be ob ta in ed from building this
log ica l m odel:

• A perspective for system planning.

• A n appreciation o f h ow system s interact;

• A m eth od o f com m un icatin g com plexity.

• A database d esign tool.

T h e secon d level o f th e D ata D ictionary is th e im plem en tation level. T h is g ives th e facility
to record physical design d ecisions in terms o f th e im plem en ted database or file structures and
the programs that access them . If the logical leve l is h ow th e data is se en from th e enterprise,
th en the im plem en tation leve l is how the data is v iew ed by th e file h anding system or th e D BM S
itself.

T h e logical v iew describes th e nature o f the enterprise and its data. It is a m odel o f the
organisation sh ow ing things o f in terest to it, fun ction s it can perform and ev en ts w h ich in fluence
th e way it perform s. It is in d ep en d en t o f any current or proposed im p lem en ta tion and so
represents th e logical requirem ents that su ccessive im plem entations are d esign ed to fulfill. T h e
D ata D ictionary should be able to support this m odel.

A t this leve l th e data d ictionary should be able to record details of:

• Entities and relationships o f con cern to th e enterprise;

• Processes o f in terest to th e enterprise or carried out by it;

• R esponsibility for processes, perhaps in term s o f the structure o f th e organisation;

• Flows w h ich result from processes or from external en tities or events;

• T h e co n n ectio n s that ex ist b etw een en tities, processes and even ts.

Overview of Database Management Systems 59

T h e data dictionary should be able to record details o f d ifferent versions recognised as valid
at d ifferent tim es or con texts. It is also essentia l that the dictionary can define the relationships
betw een th e logical en tities and the corresponding files and records o f the im plem entation .

1 . 1 0 . 4 I m p l e m e n t a t i o n L e v e l

T h e im plem en tation view is the basic source o f inform ation about th e physical data processing
system . It provides data to help establish th e design o f the system , to prove its correctness and
to identify th e im pact and cost o f chan ges . It is likely to represent a partial im plem en tation
o f the logical m odel. It m ust be logically con sisten t w ith this latter m odel and n o t ex ceed it
in scope. A t this level the D ata D ictionary represents a coh eren t, centralised library o f data
about all aspects o f the data processing system , enabling all users to h ave a clear ;and con sisten t
view .

T w o exam ples o f su ch data are:

1. Data Description elements.
T h ese will describe th e different data types and structures used in th e system , su ch as records
and files. E lem ents should be described in terms o f their:

N a m e : Including aliases and past nam es.

C l a s s i f i c a t i o n s D escrip tion , ownership, status, etc .

R e p r e s e n t a t i o n : T ype, len gth , order, etc.

U s e : F requency and volum es.

A d m i n i s t r a t i o n : M em ory and storage requirem ents.

2. Process Description Elements.
T h ese w ill also dem and the same type o f m etadata as the D ata D escrip tion elem ents. Further
in form ation m ight include:

• Program size -in som e appropriate m etric.

• Processing type -B a tch or O n -lin e .

• Param eter -N u m b er and types required.

Several versions o f programs and data structures may exist at any on e tim e. T h ese may represent
live, test or d esign states and this m ust be recognised and recorded as such.

T h e data dictionary should also enab le descriptions o f the im p lem en tation -level structures to
be estab lished and m aintained. T h is m ay be ach ieved through a direct input language, from
program data d efin itions in high level language, from a D BM S source d efin ition or from program
procedure d efin ition s.

T h e im p lem en tation -v iew also d em anded details about the physical storage o f data and its use.
Facilities required in clu d e recording o f physical attributes su ch as:

• storage media: storage m edia type, eg disk

• storage size: describes space requirem ents, eg 640 Kbytes

• C PU : describes the C PU nam e and size required.

60 Database Management Systems

T h e data d ictionary system should validate input for syntax, con sisten cy and com pleteness.
T h ese ch eck s sh ou ld include:

• T h e characteristics o f each physical file.

• T h e c o n ten te d o f each file.

• Each physical structure, ch eck s that all the con stitu en ts o f th e im p lem en tation data
structure are allocated to at least on e physical file.

T h e im plem en tation view con tains all the inform ation necessary to derive an ‘op tim um ’ operational
schedule. T h is is supported by the co llec tio n o f perform ance and utilisation statistics su ch as:

• F requency: indicates th e average frequency that th e file is accessed (such as
daily, w eek ly).

• R esponse: refers to th e response tim e o f a process.

• Log inform ation: shows statistics on w hen a record or file is accessed , by w hom ,
and th e activity that is performed;

• U sage statistics: records summary o f usage.

H old ing data volu m es in each operational d efin ition and the physical descrip tion o f th e files
them selves provides inform ation for th e realistic sim ulation o f database perform ance. T h is gives
the facility to tu n e the perform ance o f the system to ach ieve a databases file structure that
give optim um perform ance.

1 . 1 0 . 5 D a t a D i c t i o n a r y F u n c t i o n s

T h e p revious se c tio n provided a flavor o f their co n ten ts o f a D ata D iction ary as w ell as
in troducing perform ance sim ulation as on e o f its possible fun ction s. Similarly, th e d ocu m en tation
and con trol features o f a D D S h ave b een described earlier in this chapter. H ow ever, th e D ata
D ictionary has other im portant fun ction s. T h ese include:

L Consistency Checking
T his is an essen tia l feature o f a D ata D ictionary. In the co n tex t o f a data flow diagram this
can answer su ch questions as:

• A re there any data flows specified w ithout a source or destinations?

• A re there any data elem en ts specified in any data stores that h ave n o way o f getting
there, as they are n ot present in any o f the in com in g data flows?

• D oes a process d efin ition dem and a data e lem en t that d oes n o t en ter that process?

• A re there any data elem en ts in any data flows entering processes that are n o t used in
the process and/or do n ot appear in th e output?

T h e verification o f system con sisten cy is a vital task that elim inates a considerable am ount o f
desk ch eck ing . It perm its th e in sertion o f vital, but om itted , data elem en ts and th e d eletion
o f irrelevant on es. C onsequently , th e data d ictionary n ot on ly ensures th e valid ity o f th e design
but also iden tifies and justifies th e role o f ea ch data elem en t. T h u s it is possible to dem onstrate
why certain data is co llec ted and w here and how it is used.

Overview of Database Management Systems 61

2. Testing
T h e d evelop m en t and entry o f test data is extrem ely tim e consum ing. But if descriptions and
ranges o f values are already stored th en test data can be autom atically generated .

3. Coding
T h e descrip tion o f data structures may be d eta iled en ou gh for th e generation o f data descriptions
in th e host language or D ata M anipulation Language (DM L) through a précom pilation pass
o f the dictionary. Furtherm ore, if the im plem en tation level m odel holds inform ation on th e
seq u en ce in w h ich data is used by processes th en autom atic program cod e d efin ition is feasible.
A further obvious application lies w ith in th e d efin ition o f validation rule in th e D ata D ictionary
perm itting th e gen eration o f data validation routines and integrity ch ecks.

4. Change
Program and system m ainten an ce is a m ajor system overhead. O n e o f its m ost tim e con su m ing
and difficult tasks is the tracing o f the effects o f changes through the com p lete system . Im pact
analysis is th e term given to the analysis o f the effect o f proposed program and system changes.
T h e recording o f th e relationships that ex ist b etw een th e various en tities should allow the effects
o f addition , am endm ent or d ele tion o f a particular entity to be predicted throughout the w hole
system . T h u s the system and resource im plications o f a ch an ge can be com pletely understood.
It may also be possible to generate som e o f th e cod in g changes autom atically in an active, or
p otentia lly active , d ictionary.

5. Reporting and Security
T h e in itial d ocu m en tation role o f m any D ata D ictionaries has led to m ost com m ercial D D S
h aving flex ib le and com p rehensive reporting facilities.

A variety o f analyses will be required and th e facility to search for textual descrip tions probably
essentia l if th e full p otentia l o f th e system is to be realised. T h e output facilities w ill play an
im portant part in the se lec tion o f an appropriate D D S because these are th e m ost im m ediate
part o f softw are. T h e princip les o f good ou tp u t d esign , d escrib ed in our co m p a n io n tex t
Introducing System D esign, have to be observed.

Security cod es can be assigned to individual system s and/or m etadata en tities, or to part or
all o f the D ata D ictionary. T h ese are used to restrict access to specific m eta objects (entities,
processes, files, records, etc .) and this type o f security can be im plem ented through passwords,
authority or ow nership facilities. Security design is considered in the com p anion tex t and the
general principles ou tline there apply to the design o f D ata D ictionary system s.

1 . 1 1 D a t a M o d e l i n g

M ost p eop le in vo lved in application d evelop m en t follow som e kind o f m ethodology. A m ethodology
is a prescribed set o f processes through w h ich the developer analyses the c lien t’s requirem ents
and d evelop s an application. M ajor database vendors and com puter gurus all practice and
prom ote their ow n m ethodology. S om e database vendors ev en m ake their analysis, design, and
d evelop m en t tools conform to a particular m ethodology. If you are using the tools o f a particular
vendor, it m ay be easier to follow their m ethod ology as well. For exam ple, w h en C N S develops

62 Database Management Systems

and supports O racle database applications it uses the O racle too lset. A ccordingly, C N S follows
O r a c le ’s C A S E * M e th o d ap plication d evelop m en t m eth od o logy (or a reason able facsim ile
th ereo f).

O n e tech n iq u e com m only used in analysing the c lien t’s requirem ents is data m odeling. T h e
purpose o f data m odelin g is to develop an accurate m odel, or graphical representation , o f the
c lien t’s in form ation n eed s and business processes. T h e data m odel acts as a fram ework for the
d evelop m en t o f the n ew or en h an ced application. T h ere are alm ost as m any m ethod s o f data
m odelin g as there are application d evelop m en t m ethod ologies.

1 . 1 2 T y p e s o f D a t a b a s e M a n a g e m e n t S y s t e m

S om e com m only used relational D B M S are as following:

• M S -E xcess

. IN F O

• EM PRESS

• O R A C L E

• Sybase

• IB M ’s DBII for M ainfram e Com puters

. dB A SE VII.

1 . 1 2 . 1 O r a c l e B a s e d D a t a b a s e s

A database is a structured co llec tion o f data. D ata refers to the characteristics o f people, things,
and events. O racle stores each data item in its ow n field. For exam ple, a person’s first nam e,
date o f birth, and their postal cod e are each stored in separate fields. T h e nam e o f a field usually
reflects its co n ten ts . A postal cod e field m ight be nam ed P O S T A L -C O D E or P ST L _C D . Each
D B M S has its ow n rules for nam ing the data fields.

A field has little m ean ing unless it is seen w ith in th e co n tex t o f other fields. T h e postal cod e
T 6 G 2H 1, for exam ple, expresses n oth in g by itself. T o w hat person or business does it belong?
T h e postal cod e field is in form ative only after it is associated w ith other data. In O racle, the
fields relating to a particular person, thing, or ev en t are b undled together to form a single,
com p lete unit o f data, ca lled a record (it can also be referred to as a row or an occu rren ce).
Each record is m ade up o f a num ber o f fields. N o tw o fields in a record can h ave th e sam e
field nam e.

D uring an O racle database design project, th e analysis o f your business n eed s identifies all the
fields or attributes o f interest. If your business needs change over tim e, you d efine any additional
fields or ch an ge th e d efin ition o f existing fields.

• Extra processing overhead.

• A s data is centralised there is a reliance on a central site.

• M ore com p lex to develop .

• If d evelop ed incorrectly, it can have disastrous con seq u en ces.

Overview of Database Management Systems 63

1 . 1 2 . 2 M i c r o s o f t ' s S Q L S e r v e r 2 0 0 0

M icrosoft S Q L Server 2 0 0 0 (originally g iven th e cod e nam e Sh iloh) is th e w idest used S Q L
server after O racle’s SQ L. M icrosoft’s d evelop m en t team in clu d ed en h an ced security m echanism s,
sim plified adm inistrative tools and support for advanced w eb in tegration tech n ologies. M any
database professionals b elieve that this release marks SQ L Server’s entry in to the big leagues,
ready to take on O racle in th e high-reliability D B M S world.

It in cludes greatly en h an ced analytical features. Full-fledged data m ining support is provided
through the use o f classification, regression and clustering algorithm s. M icrosoft’s im plem en tation
o f on lin e analytical processing (O L A P) tech n ology allows data w arehouses to store and m anipulate
large am ounts o f data w ith new fou nd ease. A dditionally , database adm inistrators con cern ed
w ith im porting data from diverse sources will be in terested in S Q L Server 2 0 0 0 ’s en h an ced D ata
T ransform ation Services.

Security en h an cem en ts abound in the latest S Q L Server release. M ost significantly, M icrosoft
adopted th e security industry standard Kerberos au th en tication algorithm to facilitate creation
and en forcem en t o f secure trust relationships. T h e N ational Security A g en cy recently an n ou n ced
their certifica tion o f S Q L Server 2 0 0 0 as a C 2-com p lian t com p u tin g platform . R eliability
im provem ents su ch as log shipping, on lin e backups and failover clustering are d iscussed in the
article M axim ising U ptim e.

A n old adage rem inds us that tw o statisticians can analyse th e sam e set o f num bers to reach
diam etrically opposed conclusions. D atabase server benchm arking studies prove n o ex cep tio n
to this rule!

SQ L Server 2 0 0 0 ’s debut marks th e release o f the first Back O ffice server product supporting
M icrosoft’s .N e t strategy. D evelop ers will d iscover in herent support for E xtensib le M arkup
Language (XM L) program m ing as on e o f a series o f im provem ents d esigned to en h a n ce the
SQ L Server d evelop m en t en vironm ent.

1 . 1 2 . 3 M i c r o s o f t S Q L S e r v e r 7 . 0

T h e database is the heart and soul o f any com p any’s business infrastructure. Sm all to m edium -
size b usin esses p lanning to m ake this critical in vestm en t m ust consider their specific business
needs, support requirem ents, and budgets. T h e so lu tion that offers the best value w ith the least
adm inistrative hassle is M icrosoft S Q L Server 7.0.

In th e sm all-business m arket, th e d ifferentiating factors are ease o f database adm inistration,
W eb co n n ectiv ity , th e sp eed and features o f the database server en g in e, branch-office and
m obile support, and the ability to w arehouse data efficiently. S Q L Server 7 .0 sh ines in all o f
these areas ex cep t W eb con n ectiv ity . Its adm inistration tools in clu d e m any wizards and self
tuning settin gs that m ake it the only database we review ed that m ight n ot require a specially
trained adm inistrator.

For branch offices or d istributed sales team s, SQ L Server’s per- seat c lien t licen se in clu d es th e
right to run its desktop version, and the database has ex ce llen t replication features that let
you sync up w ith h om e base and v ice versa. A n O L A P server in th e box lets you store and
analyze all th e data you have. A ll this com es at a fraction o f th e cost o f com peting databases.

64 Database Management Systems

O racle 8i has som e ex ce llen t features, in clu d ing its m ultiversioning concurrency system , and
its In tern et-cen tric approach is the way o f the future. But w ith th e database server still more
difficult to adm inister than the others w e saw, and at its h igh prices (especially w hen many
key features, standard elsew h ere, are availab le on ly at an extra co s t) , O racle is hard to
recom m end unless you are building a cu stom application that requires its Java or m ultim edia
features.

IBM D B 2 im presses w ith its stellar server en gine, m ultim edia support, and Java program m ability—
all areas w here it surpasses w hat M icrosoft S Q L Server provides. It costs m ore and will require
m ore care and feeding than S Q L Server, but this is on e to evaluate seriously as you m ake your
buying d ecision .

Packed w ith m ore features than com p etin g products and sporting a very attractive price,
M icrosoft S Q L Server 7 .0 is a m od em , full-featured SQ L database th a t’s right on target for
the small or m idsize organisation. Its com p lete set o f tools, h igh-en d en g in e features, and robust
analysis capabilities provide m ost o f w hat IBM and O racle offer on ly in their Enterprise Edition
databases (and a few key things that n eith er includes) for less th an either on e. In addition,
we found S Q L Server 7 .0 amazingly easy to use, yet still powerful en ou gh to crank through
hundreds o f com p lex transactions a secon d o n our test hardware w ith ou t chok ing. (SQ L Server
also com es in an Enterprise Edition version, w hose m ain benefit is to allow autom atic failover
to a secondary, standby m achine.)

Fig 1.10: SQL Server Administration

Y et S Q L S erver still lags b eh in d th e co m p etitio n in tw o key areas: program m ability and
m ultim edia data support. For those w ho write their ow n business applications and put part o f
the cod e in th e database itse lf (as opposed to putting all the cod e in to applications that run
on your W in d ow s clien t system s), and for th ose w h o are m oving to H T M L - or Java-based
database c lien t applications, S Q L Server provides less built-in fun ction ality and will be harder
to use th an D B 2 , Informix, O racle, or Sybase.

Overview of Database Management Systems 65

SQ L Server also runs only on W indow s operating system s, so if you are running U n ix-b ased
servers, look elsew here. But if you are running generic packaged W indow s applications to access
your database con ten ts, or if you have cu stom applications that use only the O D B C standard
to get inform ation from th e database, you will be right in S Q L Server’s sw eet spot.

V ersion 7 .0 is m ore than just an upgrade o f SQ L Server 6.5. It has a new heart and brain in
its latest incarnation . T h in k o f 7 .0 as a totally n ew database that just happens to h ave som ew h at
similar adm inistration tools and to use th e sam e program m ing language (T ransact-SQ L).

M icrosoft has m ade a w hole h ost o f ch an ges to bring its enterprise database up to tech n ica l
snuff. SQ L Server’s en g in e— the heart o f the product— n ow has a different data file form at
than its predecessors had.

O n e o f the key reasons for changing the database file format is a sw itch to using 8K disk pages
(the basic unit o f database storage) instead o f 2K pages. T h is perm its storing m ore in form ation
in any database row and also m akes th e database faster w h en reading in m any rows at a tim e,
sin ce the server has to retrieve fewer data pages from disk.

A lso , SQ L Server can n ow isolate data and in d ex inform ation at the row level (a feature called
row -level lock in g). Previously, S Q L Server cou ld protect on e user’s changes from th e activity
o f other users only by b locking other users’ access to a group o f perhaps 4 0 or 50 rows (depending
on th e size o f a row) around the on e b ein g changed. SQ L Server 7 .0 locks dow n only th e actual
rows being ch an ged and, as a result, ca n support m ore users at o n ce. Som e packaged business
applications, like th ose from P eople Soft and S A P A G , really n eed row -level locking to be at
all usable.

T h e query optim izer— S Q L Server’s brain— also got a total rewrite. M ost im portant, it now
supports intraquery parallelism, th e ability to process a single query on m ultiple C PU s. T h is
speeds up queries so m u ch that you sh ou ld consider the feature a m ust-have for your database
software if you have a m ulti-C PU server.

Top-Notch Tools
Beyond all its en gin e changes, S Q L Server includes an unm atched set o f database tools. N ew
w ith this release is a server product called SQ L Server O L A P Services (O L A P stands for on lin e
analytical p rocessing). It is a specialty-purpose database server th at precalculates sum m ary
in form ation for easy analysis and com parison.

For exam ple, if sam e on e may use O L A P Services to view sales figures by store, by town, by
region, and by country, and th en com pared last quarter’s figures w ith those o f this quarter.
S in ce the totals had all b een figured ou t ahead o f tim e, you cou ld flip instantly b etw een high-
level totals. W ith other O L A P servers currently priced at tens o f thousands o f dollars, O L A P
S ervices is an incredible bargain.

O L A P Services is powerful, flexible, and easy to use. H ow ever, it’s n o t all roses. First, you have
to buy separate, com patib le software to use it, because O L A P Services uses a query language
different from the on e S Q L Server uses. (Excel 2 000 is on e such clien t, but others are available
from com panies like C ognos Corp. and Seagate Software.)

66 Database Management Systems

S econ d , SQ L Server d oesn ’t m ake any use o f O L A P Services (or o f precalculation techn iqu es
in general) to speed up its ow n queries. T h e two are com pletely separate products; you have
to load data from S Q L Server in to O L A P Services before w e cou ld do any O L A P analysis. By
contrast, b oth IBM and O racle have introduced som e O L A P features directly in to their latest
databases, in th e form o f query summary tables.

Ease-of-use Leader
M icrosoft S Q L Server 6 .5 ’s adm inistration tools were d ecen t, but SQ L Server 7 .0 takes ease
o f use to a w hole n ew level. M any en gin e settings in S Q L Server 7 .0 are self-tuning. For exam ple,
you d id n ’t h ave to assign m em ory to our data cach e and stored procedure cach e separately;
SQ L Server dynam ically b alanced m em ory b etw een th e tw o. S Q L Server also exp an ds or
contracts the am oun t o f m em ory it is using as. a whole: it autom atically m akes room in the
m em ory for o th er applications w h en they were running, and expand again to fill extra m em ory
w h en they are c lo sed them down.

A u tom atic m em ory tun ing isn ’t especially im portant on a d ed icated database server m ach ine.
But on a server that has to run other applications like a m ail server and W eb server at the
sam e tim e as a database, dynam ic m em ory sizing m akes a huge difference to system usability.

SQ L Server ca n n ow run on W indow s 9x system s, a very handy feature for organisations w ith
m obile sales forces. E ach salesperson cou ld use locally installed database applications, su ch as
an order-m anagem ent system , and th en synchronize custom er and order data w ith headquarters
as necessary.

A lso boosting branch office support, S Q L Server 7 .0 in clu d es com p etitive rep lication features
that support a num ber o f one-w ay and b idirectional links b etw een S Q L Server m ach ines. A s
a result, databases in branch offices and headquarters autom atically keep each other in sync.

SQ L S erver’s 'u nm atch ed auto-tu n ing features m ean it is th e best ch o ice for organisations that
d o n ’t have database adm inistrators on staff. W h ile a good D B 2, O racle, or Sybase adm inistrator
can m anage several hundred database servers from a central location , you do n eed at least
on e exp erien ced adm inistrator to use these databases effectively. S Q L Server can get by w ith
a part-tim e or b egin ner adm inistrator quite w ell.

A n oth er in terestin g n ew tool in S Q L Server 7 .0 is th e In dex T u n in g W izard (part o f SQ L
Server’s Profiler too l). It suggests n ew server in d exes based o n actual database usage (indexes
are special database objects that speed th e process o f look ing up inform ation in a database table,
and they are essen tia l for getting good database perform ance). Programm er are able to turn
on in d ex data capturing, run a set o f queries against S Q L Server, and see w hat in d ex suggestions
the wizard m ade. It th e n asked us w heth er it sh ou ld go ahead and create th e n ew in d exes
for us, providing o n e-step tuning. IBM and O racle also offer sim ilar tools, but M icrosoft’s Index
T u ning W izard has a sm all edge over those offerings, becau se its op tions for capturing database
activity are m ore flexible.

Programming Pitfalls
A s m en tion ed , S Q L Server still offers only the sam e old cum bersom e T ransact-S Q L program m ing
language it always had. W h ile everyone else in th e S Q L database m arket is m ovin g (or has

Overview of Database Management Systems 67

already m oved) to a m odern program m ing language like Java, SQ L Server custom ers are still
stuck in the program m ing Dark A g es— n o object-oriented developm en t, n o big class libraries
to use, and n o cod e interoperability w ith anyth ing else. A lth ou gh it is certainly possible to create
large applications using T ransact-SQ L , you are in for a lot o f work.

T h e sam e applies to com panies that w ant to store m ultim edia data (such as th e con ten ts o f
a W eb site) in their databases. W h ile D B 2, Informix, and O racle go out o f their way to m ake
this easy, S Q L Server has n o special im age, sound, video, or geographic data support. You will
n eed to purchase a third-party application that has worked around S Q L Server’s lim itations.

1 . 1 2 . 4 S y b a s e A d a p t i v e S e r v e r E n t e r p r i s e 1 2 . 0

T aking d irect aim at Java programmers, the forthcom ing Sybase A d ap tive Server Enterprise
(ASE) 12.0 hits th em squarely b etw een the eyes. T h e server will be m ore Java-centric than
any other database on the market and w ill be a good ch o ice for com panies m oving to Java as
their preferred program m ing language.
In term s o f its relational database features, A SE is com p etitive but n ot a leader. It supports
recent database techn ology advances like the ability to use m ultip le C PU s to process a single
query, and it supports row -level locking, w hich allows more users to access th e database at
on ce. A S E 12.0 has m erge joins, a good way to join sorted inform ation from large tables, as
well as n ew support for SQ L outer joins. T h is m akes it easy to ask queries like ’’Show m e a
list o f custom ers and their orders, and in clu d e custom ers w ho d o n ’t h ave any orders at all y e t .”
T h ese features were already provided by the com petition.

Yet A S E still has to catch up in som e im portant areas. It d o esn ’t have sum m ary tables, and
it lacks th e ability to do hash joins, a fast way to com bine unsorted inform ation from m any large
tables. D B 2 and M icrosoft SQ L Server also provide m ulti-C PU support, plus all the relational
en gin e features A SE lacks, as w ell as greater usability, m aking th em better ch o ices if Java
support is n ot im portant to you.

A SE d oes have on e very d istinctive feature that only O racle8i Enterprise Edition shares: It can
prioritize queries based on w ho subm itted them . You can limit groups o f users (for exam ple,
those w h o run routine reports) to using only one C PU , w hile other users (say shop floor workers
w ho n eed quick response tim es n o m atter what) could have access to all the C P U s on the
m ach ine. You cou ld also ch oose to d ed icate a C PU for shop-floor use only. O n our tests, a
reporting query m ix took 5 m inutes in stead o f 6 m inutes 40 secon ds w h en we ran it using two
C PU s in stead o f restricting it to on e.

A S E ’s Java support has its lim itations, though. For exam ple, sin ce it requires a n ew query syntax,
older applications will have to be rew ritten to take advantage o f A S E ’s Java features. By contrast,
DB2 and O racle b oth include fu n ction s that can make object-oriented data look like norm al
relational data. T h is allows you to update your database designs w ithout having to change your
clien t ap plications.

68 Database Management Systems

W e also n o ticed that w e cou ld n ’t retrieve Java objects in sorted order w ithou t adding som e
extra cod e to con vert Java data types to S Q L data types. W e w ere able to use norm al SQ L
com m ands to group Java objects in to categories or retrieve only particular Java objects based
on their cp n ten ts (for exam ple, se lectin g only em ployees that had salaries over Rs. 5 0 ,0 0 0).

Sybase has arranged for partner com panies to d evelop extra-cost m ultim edia ex ten sion s for A SE ,
options that m ake com p lex text or geographic searches possible. T h e approach is clunky, though,
b ecau se th e m u ltim ed ia products aren ’t in tegrated in to th e d a tab ase’s query optim izer or
in dexin g en g in e. If you ’re going to be doing a lot o f m ultim edia work, ch oose a database like
D B 2, Inform ix, or O racle8 i that’s really designed for this task.

S ybase’s la test offering holds som e prom ise for com panies standardizing their d evelop m en t
around Java. But otherw ise it still seem s to be a step b eh ind its com petitors w hen m easuring
the state o f th e art for databases. (Sybase Inc., Em eryville, C A ; 8 0 0 -8 7 9 -2 2 7 3 ; w w w .sybase.com .)

1 . 1 2 . 5 I B M D B 2 6 . 1 S Q L S e r v e r

T h e result o f alm ost 30 years o f database research, IBM D B 2 can run your sm all business as
w ell as it can m anage your bank’s business— w h ich is pretty w ell in deed . D B 2 6 .1 , the latest
in a series o f big upgrades to D B 2 over th e past tw o years, wraps on e o f th e b est-designed sets
o f adm inistration and tun ing tools on th e m arket w ith a database en g in e that scales from a
glued- together p lastic laptop running W indow s 95 up to a cluster o f S /3 9 0 m ainfram es running
O S /390 .

D B 2 6.1 (replacing th e current D B 2 5 .2) is due to h it sh elves around th e tim e this issue com es
out. W e tested b eta 2 cod e o f D B 2 6 .1 , w h ich was com p lete excep t for som e bug fixing and
perform ance tun ing .

T h ere are tw o versions o f DB2: D B 2 W orkgroup, w hich costs $ 9 9 9 per server and $ 2 4 9 per
concurrent user, and D B 2 Enterprise Edition, w h ich is $ 1 2 ,5 0 0 per C P U , w ith unlim ited users.

T h e first step in D B 2 program preparation is, o f course, w riting a program that con ta in s
em bedded S Q L sta tem en ts. You cou ld use C O B O L , C (or C + +) , A ssem bler, F O R T R A N , PL/
I, or Java. (You m ay th in k that Java im plies only dynam ic SQ L , but it d o esn ’t if you take
advantage o f SQLJ. For a good in trodu ction to SQLJ, see the W eb D atabase co lum n in the
Spring 1999 issue.) You cou ld write the program to run o n the system o n w h ich the D B 2 for
O S /3 9 0 subsystem resides, or to access th e D B 2 database from a rem ote c lien t via distributed
relational d atab ase arch itecture (D R D A).

O n ce you ’ve w ritten the program, the D B 2 precom piler processes it and generates tw o outputs:

1. A m odified program source m odule. T h e precom piler com m en ts ou t each o f the program ’s
em bedded S Q L statem ents, and inserts a call to D B 2 for ea ch sta tem en t.

2. A database request m odule (D B R M). A D BR M con ta ins th e S Q L statem ents found in the
program source.

http://www.sybase.com

Overview of Database Management Systems 69

T h e precom piler p laces a unique identifier, called a con sisten cy token , in to ea ch o f th ese
outputs. I’ll say m ore about con sistency tokens w h en I get to program execu tion .

Follow ing the precom pile process, you com pile and link-edit th e m odified source program in to
an execu tab le load m odule and bind the associated D BR M . In th e D B 2 for OS/39C) bind process,
su ch tasks as access path se lec tion (optim ization), access authorization, and database object
validation are performed. T h e output o f the b ind process is a con trol structure that D B 2 w ill
use to ex ecu te the S Q L statem ents w hen the application program is run. T h e con tro l structure
will either be part o f a p lan (if the D BR M is bound directly in to a plan) or con ta in ed w ith in
a package that will be ex ecu ted via a plan.

H ow m any o f you work at a D B 2 for O S /3 9 0 site that still binds D BR M s directly in to plans?
I w ish I cou ld see a show o f hands. I w ould exp ect (and hope) that few hands w ould be raised.
T h e D B 2 package b ind process has b een around for quite som e tim e (since D B 2 version 2 release
3), and it offers som e im portant advantages over plan-direct binds.

• Im p roved availab ility: If you ch an ge a S Q L statem ent in a program, you only have to
rebind on e package. You can rebind on e package quickly, and it ’s im portant to do so:
A package can n ot be execu ted w hile it ’s b eing rebound. If, on the other hand , programs
are bound directly in to plans, a change o f on e SQ L statem ent requires that the plan be
rebound. If you h ave bound a large num ber o f D BR M s in to the plan, the rebind cou ld
take a fair am ount o f tim e, during w hich the plan can n ot be execu ted .

• Im p roved flex ib ility : A s w ill be see, b inding programs in to packages allows you to do
som e nifty things w ith your database and application architecture.

• If you use the package bind process, you h ave to bind th e package in to w hat is called
a co llection . H ow d o you create a collection? Pretty simple: You b ind a package in to it.

O f course, ev en if you are using packages, you still n eed to bind on e or m ore plans if th e program
in q u estion will run on th e local or a rem ote D B 2 for O S/39G subsystem . Programs that run
o n other rem ote clien ts and access D B2 via D R D A use a default plan ca lled D IST SE R V . You
can ex e cu te a particular package using a plan if the co llec tion in to w h ich you ’v e bound th e
package appears in w hat is called the p lan ’s package list (a list o f on e or m ore co llections
specified v ia the PKLIST op tion o f the B IN D PL A N com m an d). T h e program, in turn, invokes
th e plan through a sp ecification in th e resource con tro l table (or a D B 2E N T R Y if you are using
resource d efin ition on lin e) for a C IC S transaction, via the application program load m odule
nam e for an IM S transaction, or w ith a control statem ent in th e job con tro l language OCL)
for a b a tch job.

W h en you execu te th e application program, each call to D B 2 directs the database m anager
to e x e c u te th e corresponding prebound SQ L sta tem en t in the package associated w ith the
program. (R ecall that the precom piler com m en ts out SQ L statem ents in th e source program
and adds calls to D B 2) D B 2 searches for the package in on e or m ore co llection s using as search
criteria th e package nam e (sam e as th e program nam e) and the con sistency token accom panying
the call. (R ecall that the con sisten cy token, generated at precom pile tim e, is carried in both
th e application program and the related package) W h en a m atch is found, the statem ent is
ex ecu ted and control passes back to the application program until the n ex t D B 2 call is issued.

70 Database Management Systems

A fter accep ting this idea, th en clearly you n eed to buy an application server. You have O racle.
You h ave a W eb server program. But you have n o software at all for on e critical tier.

Before trashing th e idea o f th e application server, let m e trash the idea o f the three-tiered
architecture for W eb services.

D B 2 also has a full set o f m ultim edia extension s for storing and m anipulating full-text, sound,
video, im age, and geographic data. T h ese exten sion s m ake designing W eb -based applications
and applications that in clu d e photos or long text reports m uch easier. T h ey are extra-cost
options, but they offer features and pricing that are very com p etitive w ith those o f Informix
and O racle .

D B 2 is com p etitive as an applications developm en t platform as w ell. W e cou ld use Java to code
database logic, and a n ew too l in D B 2 6 .1 — Stored Procedure Builder— autom atically turned
a S Q L sta tem en t in to an eq u ivalen t Java class for us and th en installed it right in to th e database.
D B 2 d o esn ’t otherw ise in clu d e an internal program m ing language (it is th e only big database
on th e m arket that d oesn ’t), so som e Java expertise is essentia l w h en d evelop in g applications
w ith D B 2.

D B2 6.1 also provides m uch better interoperability than before b ecause it in clu d es built-in
support for OLE DB, M icrosoft’s new database access standard (designed to replace O D B C).
W ith this support, D B 2 can co n n ec t to and access database con ten ts (but n ot update data)
on just about any other database. For exam ple, using th e O LE D B link w e cou ld transparently
m ake a M icrosoft SQ L Server table look like a D B 2 tab le— very handy for shops that have m ore
than on e type o f database in house.

D B 2 ’s adm inistration tools, rew ritten in Java for this release and now W eb -accessib le , are top-
n otch . O n ly M icrosoft S Q L Server has better tools and takes less work to m aintain . D B 2 has
a d etailed graphical query plan display utility, com p rehensive perform ance-m onitoring tools, and
a full task schedu ler for running jobs at regular tim es.

A lth ou gh D B 2 ’s tools are better, w e think you will still n eed a trained database adm inistrator
to run D B 2 effectively; it is n o t easy en ou gh for a nonprofessional quite yet. For exam ple, w hen
we ran a test query that m odified a lo t o f rows and filled up D B 2 ’s transaction log, D B 2 aborted
the transaction and gave us an error instead o f just ex ten d in g th e log as M icrosoft S Q L Server
does. It d o esn ’t h ave th e autom atic m em ory tun ing S Q L Server does, either, and there are
a huge num ber o f server op tions to face w h en you try to reconfigure th e server.

But IBM is m aking big usability strides w ith this release. For exam ple, D B 2 6. l ’s In dex Smart
G uide, similar to M icrosoft S Q L Server’s Index T u n in g W izard, m ade tun ing our D B 2 databases
m uch easier th an in th e past, le ttin g us create th e right in d exes for our query w orkload. A fter
we had created our test database in D B 2, w e subm itted a num ber o f queries and th en started
the In dex Sm artG uide. A fter analyzing our workload, it offered to create appropriate in dexes
for us.

D B 2 is th e only database in this roundup that provides summ ary tables, a m ajor perform ance
booster for shops that d o data w arehousing or a lot o f en d -o f-m on th reports (sum m ary tables
are also available in O racleSi Enterprise E d ition). A sum m ary table is a k ind o f scratch-pad
area that a database can use to store answers to com m only asked queries.

Overview of Database Management Systems 71

For exam ple, w e created a table o f m onth ly and yearly sales sum m aries from a table con ta in in g
individual sales orders. W h en ever we asked a query that n eed ed any m onthly or yearly sales
totals (or any subset o f our summary table, really), D B 2 autom atically pulled th e inform ation
out o f th e related summary table. W e saw queries on a 5 00 ,000 -row table drop from taking
18 secon ds to being answered as fast as we cou ld blink.

W ith th ese n ew features, com b ined w ith its support for parallelism and alm ost com p lete se lec tion
o f jo in and in d ex types (excep t for bitm apped in d exes), D B 2 6.1 is shaping up as a top performer
at a bottom -dollar price. Its adm inistration tools are where th ey sh ou ld be, and it offers great
m ultim edia data h and lin g and program m ability, th e tw o key w eak nesses o f M icrosoft S Q L
Server. For organisations that can h and le its som ew hat higher com p lexity and cost, it will pay
off big.

1 . 1 2 . 6 I n f o r m i x ' s C e n t a u r S Q L S e r v e r

S om etim es being first just m eans you h ave to w ait longer for everyon e else to ca tch up. T h a t’s
w hat Inform ix found out in 1997. T h e com pany was on e o f th e first o f th e big relational database
vendors to add m ultim edia exten sion s to its database. N ow that everyon e from IBM to O racle
to Sybase has leaped upon that n otion , Inform ix seeks to d ifferentiate itse lf again w ith a big
relaunch o f its core database technology. It w ill m erge its core pure relational database, Inform ix
D ynam ic Server 7.3, w ith its object-relational database, Inform ix U niversal D ata O p tion 10.1.
T h e idea is to create a product that provides the perform ance o f D ynam ic Server o n relational
data w ith th e flexibility and m ultim edia support o f U niversal D ata O p tion .

W e co u ld n ’t get beta cod e to test, but w e did get an early briefing from Inform ix officials to
get th e scoop on th e n ew product, cod e-n am ed "Centaur." It is targeted at custom ers in vo lved
in In tern et developm en t. T h e goal is to provide a database w ith a very flexible d evelop m en t
en viron m en t, scalability to h and le In ternet-class loads, and th e capacity to h and le the new
types o f data the W eb has m ade im portant.

M ost notably, Inform ix has big plans to integrate Java in to its database, but it is keep ing m ost
o f the details secret until C en tau r’s official launch, around th e tim e you are reading this issue.

Inform ix did n o te that it will d istingu ish its product by allow ing custom ers to ch o o se from a
se lec tio n o f standard, off- th e -sh e lf Java virtual m achines to use w ith its database. (IBM , O racle,
and Sybase all use specially custom ized Java virtual m achines w ith their databases.) Java support
will a llow Inform ix developers to write Java-based stored procedures, user-defined routines, and
D ata B lades, w h ich are w hat Inform ix calls cu stom exten sion s to th e database.

T his w ill be big step forward for Inform ix custom ers, because right n ow the only languages they
can use for D ataB lades are C and SPL, Inform ix’s internal stored-procedure language. C entaur
will also h ave built-in support for A c tiv e X objects, m aking it possible, for exam ple, to write
a database stored procedure in V isual Basic, as long as you are running C entaur o n W indow s
N T .

C entaur w ill be a superset o f Inform ix D ynam ic Server and w ill use th e sam e database format,
so cu stom ers w on ’t lose any features or h ave com plicated upgrade procedures w h en m aking
the sw itch . C entaur will also in clu d e all th e design and program m ing flexibility that m ade

72 Database Management Systems

Inform ix U niversal Server su ch a tech n ica l ach ievem en t. It will support ob ject-orien ted database
designs, cu stom table and in d ex routines, and an extensib le SQ L query parser, so custom ers
can add arbitrary fun ction s to their S Q L queries and n ot just use standard S Q L functions.

Inform ix« G gntaur looks as if it will put the com pany back in to the database race— and provide
current Inform ix custom ers w ith a solid growth path for th e future. (Inform ix Software Inc.,
M enlo Park, C A ; 8 0 0 -3 3 1 -1 7 6 3 , 6 5 0 -9 2 6 -6 3 0 0 ; h ttp://w w w .in form ix.com /.)

1 . 1 2 . 7 O t h e r S Q L D a t a b a s e s

T here are m ore S Q L database system s available for L inux than anyone w ould exp ect. Lots o f
com m ercial products; a surprising num ber o f free S Q L databases.

T his is p resen ted at th e M ySQ L web site, so it m ight w ell h ave certain biases.

• Informix,

• O racle ,

• Postgre SQ L , M ySQ L)

• IBM D ata M anagem ent: D B /2 U D B 5 .2 for Linux

IBM D ata M anagem ent: D B /2 U D B 5 .2 for Linux

IBM now provides L inux support for their database system . T h is leaves on ly M S F T ’s S Q L Server
as th e only m em ber o f th e “top tier” o f R D B M S products that d o n ’t h ave any sort o f support
for Linux.

A n “em b ed ded ” version o f D B /2 w ith around a 150K footprint. It is particularly designed for
use o n sm all form factor com puters su ch as P D A s. It th en offers a S ync M anager to synchronize
m obile data w ith a full scale D B /2 server.

1 . 1 2 . 8 M y S Q L

T his is a fairly m ature database system that has recently b een m odified to use an A PI com patible
w ith m SQ L ’s. It’s “freely available” for m any uses, but also offers com m ercial support for those
n eed in g such . T h ere is a version now that is free software, using th e G PL as its licen se and
it supports O D B C .

It is m ulti-threaded, optim ized for speed and for use w ith large tables. A s sp eed is on e o f its
primary design goals, it does n ot im plem ent som e SQ L features that ten d to d im inish perform ance,
su ch as transactions, subselect, se lect in to table, stored procedures, triggers, foreign keys, or
view s. T h e upside is that this allows it to be considerably faster than m any other S Q L databases.
O f course, if you specifically w anted transactions, this may be troublesom e, but I actually th ink
that th a t’s w here on e m ight w ant to start look ing at a transaction processing m onitor, w hich
cou ld separate that out.

1 . 1 2 . 9 I n t e g r a R D B M S

A dd in g to the set o f “in tern ational” S Q L databases is this on e from India.

T h ey are n o t as u n k n ow n as o n e m ight think; their V isual Q u ery Builder was apparently
included w ith som e versions o f Borland C + + , and S C O has b un dled their C -IS A M library (now
nam ed O b jecT rieve) as part o f som e ed ition s o f S C O U nix.

http://www.informix.com/

Overview of Database Management Systems 73

Prim eBase “ T h e Prim eBase D B M S supports O D B C , S Q L and D A L and the m ost popular
protocols (TCP/IP, A ppleT alk) and platforms (M ac, W indow s 9 5 /N T , Solaris, LINU X , IBM
AIX , e tc .) .” Freely available for d evelop m en t projects...

1 . 1 2 . 1 0 P o s t g r e S Q L

T h is is an extensib le “object-relational” database system , the m ost sop histicated and probably
the best supported o f the “free "databases.

A t on e tim e, this was th e Postgres research R D B M S engine, by M ich ael Stonebraker (founder
o f Ingres, th e first co m m o n ly - available relational database, now a “senior tech n ica l d u d e” at
Inform ix). People liked Postgres en ou gh that som e people d ecided to m ake th e query language
S Q L -com pliant.

T h ere was a com m ercialized version o f Postgres that was called Illustra; the com pany was bought
out by Informix, and its object- oriented features h ave b een integrated in to Inform ix U niversal
Server.

M ore “free third-party too ls” h ave b een created for PostgreSQ L than any o f the other free
databases, and include:

• Perl, O D B C and JD BC support;

• P gA ccess - a T c l/T k -b ased interface;

• KPGsql, a Q t-b ased query tool;

• G tkPG A , a G tk-based query tool;

• EA R P - Easily A djustable R esponse Program; and

• Interfaces w ith G uile su ch as gu ile-pg and pg-guile.

T h ere’s a Linux D atabase H O W T O on PostgreSQ L . T h e author w axes a bit overevan gelistic/
overen thu siastic about PostgreSQ L, som ew hat overstating its advantages. H e m akes the sam e
sorts o f claim s that allow Project G utenberg proponents to claim that their work is w orth “billions
o f dollars,” w h en th e fact that th e public values th em en ou gh to d onate a few tens o f thousands
o f dollars suggests that they may be overvalu ing things a m ite. H e has a H O W T O on ”building
your ow n C P U ” that has similarly optim istic valu ation o f the m erits o f designing a “Free C P U ”
(in th e free software sen se).

1 . 1 2 . 1 1 d B A S E 7

D evelop ed by Borland, th e com pany has finally presented the rem oulded V isual dB A SE in the
32-b it version . D O S -com p atib ility that p lagued th e earlier tw o W indow s versions o f dBase n o
longer d om in ates th e product. Instead, Borland is all geared up for a n ew file format, a user-
friendly interface and a program mable report generator, dBase will con tin u e to support the
classical D B F form ats that can be read by m ost applications, w hile M icrosoft A ccess and Paradox
files will h ave n ative support.

A lth o u g h V isual dBase offers a com plete en vironm en t \for th e developer, Borland also seem s
sto have con sid ered th e en d-user w hile pricing th e product (introductory price o f Rs 15,400
for professional version o f the softw are). A ssistan ts and com p rehensive m ultim edia support

74 Database Management Systems

(including JPG and an im ated GIF,s) m ake dBase a com p lete and attractive database. Borland
apparently has also had a good look at M icrosoft’s A ccess . Like A ccess, they h ave m ade data
entry in the table grid very com fortable and user-friendly.

Static and Dynamic data in HTML
Borland’s Intra Builder based o n th e JavaScript is a reliable too l for In ternet and intranet
applications. S o there is n o scop e for com p etition b etw e en th ese in -h o u se p roducts. T h e
in terface and operation are very sim ilar in b oth programs. If you can work easily w ith on e, you
sh ould n o t face problem s w orking w ith the other.

Like th e 16-bit version o f V isual dBase 5 .5 , the n ew version offers several tools to publish data
on the Internet. A form feed programmable in V isual dBase takes you through th e process like
an assistant. E ven those w ho are n o t used to the C om m on G atew ay Interface (CGI) script should
face n o difficulty w hile build ing a database query in th e W eb Browser. O th er tools for creating
H T M L pages and page m anagem ent utilities are provided by D eltap oint, B orland’s W eb Server
that is supplied w ith th e package. T h e import and export fu n ction in dBase is disappointing.
A lth o u g h th e very fast database en gin e BDE 4 .5 allows access to alm ost all data (ev en text,
Excel, A cc ess) , th e entire process cou ld get uncom fortable. T o con vert a dBase table in the
n ew form at to on e w ith an older, com patible format, you have to sw itch to th e driver in the
BDE.

1 . 1 2 . 1 2 M S A c c e s s 9 7 M a r k e t a n d O p e r a t i o n L e a d e r

M icrosoft’s A cc ess has b een con sid ered as the user-friendliest database, but is overrated as far
as sim ple address and te lep h on e m anagem ent goes. A ssistan ce support user operation and the
program is also suitable for m ore com p lex projects. Each version m ight differ in com patibility,
but this is som eth in g that th e current users o f M S O ffice sh ou ld be accu stom ed to.

T h e M S A cc ess 97-file form at is based o n the tried-and-trusted structure o f th e previous version
(A ccess 9 5), th e n ew field for hyperlinks and In ternet addresses h ow ever causes com plications
w hile w orking w ith the older version . T h e entry o f reference fields is very sim ple. A n assistant
allows you to define the data source w hile creating a table, from w h ich reusable data like postal
cod e can be taken . By skilfully using reference fields, work w ith several, linked databases is
considerably sim plified .

A ccess cuts a good picture w h en generating reports and labels. Y ou can also v iew th e standard
reports produced w ith th e assistants. U nlike dBase 7, A cc ess does n o t provide you a W Y SIW Y S
(W h at You S ee Is W h at You G et) data in th e preview m ode.

A n H T M L export o f reports and forms directly possible through a W eb assistant. It d oes produce
reasonably good W eb pages and enables tex t and table form atting, but bitm aps can n ot be
autom atically lin k ed on to th e W eb pages-a serious sh ortcom ing for com panies that w ant to
publish their staff databases and photographs on th e in tern et.

T h e W eb assistant offers fun ction s su ch as creating a hom epage, from w here you can lau n ch
pages a long w ith th e tables, eva luation s and screens. H ow ever, there are n o op tions to se lect
th e page background or create navigation buttons. H ow ever, you can link readym ade H T M L
tem p lates.

Overview of Database Management Systems 75

1 . 1 2 . 1 3 C o r e l P a r a d o x 8

Background-com patibility is the strongest point o f C orel’s Paradox. N ew tables can be created
and ed ited in the Paradox, dBase and ev en in M S A ccess 95 form ats. Paradox allows you to
use A ccess 97 through a n ative interface. Like dBase 7, Paradox access databases through the
Borland database en gin e. Even the graphic S Q L query generator corresponds to that o f V isual
dBase 7. Like A cc ess 97, Paradox allows you to create n ew tables easily. Field se lec tion is
another advantage. D ata set lim itations, in pu t screens and reference fields can be directly
entered in th e data set plan.

Layout and R ep ort-generating u tilities are f lex ib le -a lb ie t th ey n eed m anu al work too . For
in stance, a few m ouse-clicks cou ld create a report, w hich w ould be satisfactory excep t that
the results w ould n ot m atch w ith the len gth o f the data fields.

Reports and form feeds can be published in H T M L former w ith an assistant, but text-form atting
does n ot help . T h e C orel W eb Server supplied w ith the package en ab les you to develop dynam ic
W eb applications a lthou gh tem plates and b utton s for the data set search in W eb browser are
absent. D elp h i programmers can ex ten t the H T M L interface through th e developer kit provided
w ith the product.

1 . 1 2 . 1 4 F i l e M a k e r P r o 4 . 0

Sim ple but In tern et friendly Claris advertises th e possibility o f im porting E xcel files to File M aker
Pro, but its w eak export filters do n o t really help this exercise. T h ere is n o way to do this ev en
in the dBase form at. A part from the standard fields such as data and tim e, the File M aker
data form at also provides a form ula and an evaluation field.
In case you h ave already used other W in dow s databases, you m ight n o t enjoy working o n File
M aker. T h o u g h th e program offers usable tem plates, it refrains form providing help tips like
A ccess and Paradox. File M aker is also com patib le w ith the M acin tosh .

1 . 1 2 . 1 5 L o t u s A p p r o a c h 9 7

A pproach 97 com es across as a user-friendly application because o f th e backing o f rem arkable
functions. E ven if th e typical Lotus interface should intim idate exp erien ced users, A pproach
97 offers m ore th an assistant support for th e h om e user. D ata set form at o f th e application m akes
it seem rather op en . U se o f the dBase and Paradox formats allow ex isting clien t databases to
be in tegrated w ithou t con version and can be linked w ith con tacts from th e Lotus Organizer.

H ighlights o f th e program in clude access to Lotus N otes and D B 2. Like A ccess, A pproach
provides severa l tem p lates w h ile d esign in g a n ew table. ‘Sm art M asters’-Lotus tem p lates,
produce com p lete applications w ith a m ouse-click , for exam ple an order m anagem ent system .
R elational links b etw een the c lien t and th e in voices are now n o th in g to worry about. T h o se
familiar w ith link ing tables will find th e Link Editor very useful.

A pproach performs w ell w hile generating reports. It displays data ev e n as you do the initial
layout. U n lik e Paradox or A ccess , you n eed n o t sw itch b etw een th e layout and th e preview
to v iew th e data. G rouping and integrating calcu lations are easy to do. A pproach 97 is the
only database that allows you to save files and applications directly o n th e Internet and the

76 Database Management Systems

Internet. D ata ca n be stored on an FTP server from th e Save M enu , from w here it can be
accessed by all users. Reports, from feeds and tables can also be directly saved as H T M L
d ocu m en ts.

1 . 1 3 W h o U s e s a D B M S

• D atabase U sers

• R elative to th e database a user cou ld be:

• D ata entry person using an application program

• D ata entry person using a forms based system

• Professional n o n D P person using a query language application program m er

• Program that accesses th e D B -w r itten in, say, C O B O L , C + + , Perl (for w eb programming)
or ev e n M icrosoft A ccess su ch programs in clu d e som e sort o f data sublanguage [where
data sublanguages con sist of: D ata D efin ition /D escr ip tion Language (D D L) and D ata
M an ip ulation Language (D M L)] w h ich is used to access th e D B . eg. SQ L .

Each u sers program application has its ow n host language (eg. C O B O L or Perl) w ith the D B ’s
data sub-language (eg. SQ L) em b ed ded w ith in the host language.

A n end data entry user can n ot differentiate b etw een an applications h ost language and the
D B ’s em b ed d ed language.

A n external v iew only con ta ins the data relevant to that user and an extern al v iew ’s definition
o f a record (logical record) may be different to w hat is actually stored. For exam ple, an end
user may see th e entry o f a n ew custom er’s order as a new , single record. H ow ever that single
order may be m apped over m any tables in th e D B. T h is sam e en d user sh ou ld n o t ev en ‘se e ’
(i.e. have access) to th e rest o f th e D B , w h ich m ay in clu d e cu stom er accou n ts, supplier’s
accou n ts, e tc .

T h e database users fall in to several categories:

• A p p lica tion programmers are com puter professionals in teracting w ith th e system through
D M L calls em b ed ded in a program w ritten in a h ost language (e.g. C, PL/1, Pascal).

• T h ese programs are called application programs.

• T h e D M L precom piler con verts D M L calls (prefaced by a special character like $, # ,
etc .) to norm al procedure calls in a host language.

• T h e h ost language com piler th en generates th e object code.

• S om e special types o f program m ing languages com b ine Pascal-like con tro l structures w ith
con tro l structures for th e m anipulation o f a database.

• T h ese are som etim es called fourth -generation languages.

D atabase o ften in clu d es features to help generate forms and display data:

• S op h istica ted users in teract w ith th e system w ithou t writing programs.

• T h ey form requests by writing queries in a database query language.

• T h ese are su b m itted to a query processor that breaks a D M L sta tem en t d ow n in to
in stru ctions for the database m anager m odule.

Overview of Database Management Systems 77

• Specialised users are sophisticated users writing special database application programs.
T h ese may be C A D D system s, know ledge-based and expert system s, com p lex data system s
(au d io /v id eo), e tc .

• N a ive users are unsophisticated users w ho interact w ith th e system by using perm anent
application programs (e.g. au tom ated teller m ach in e).

• End users

• D atabase adm inistrator

• Interactive users o f a D B M S

1 . 1 4 . I n t e r a c t i v e U s e r s o f a D B M S

T h e interactive user is a class o f database user w ho uses a D B M S from a terminal, probably
using an in teractive query language (like SQ L) to th e D B M S. T h is allows the user to create,
update, insert and retrieve in form ation . T h is is n o t th e sam e as an on lin e user using an
application program w h ich access a D B M S as in this case that user is running a program w h ich
access the database rather than th e user accessing the database directly.

T h e database interface may be m en u-driven (bullet proof but restricted as in IN FO R M IX) or
com m an d d riven (m ore powerful, but requires exp ertise). O R A C L E has a co m m a n d -lin e
in terface via SQ L PL U S.

R e v i e w Q u e s t i o n s

O b jective type q u estion (1 to 5): C h oose best possible a ttem ative from following:

1. F ile-processing system s h ave im portant lim itations:

• D ata is separated and isolated.

• D ata is o ften duplicated.

• A p p lication programs are d ep en d en t on file formats.

• A ll o f the above.

• N o n e o f th e above.

2. D atab ase-p rocessing programs:

• Call th e D B M S to access the stored data.

• C an n ot be used by m ore than on e person.

• R equire at least o n e d ed icated w orkstation .

• Present problem s w ith storage space.

3. In a database system , all the application data is stored in a single facility called the:

• D B M S

• C PU

• H ard drive

• D atab ase

4. T h e self-describ ing characteristics o f a database are im portant because:

• T h ey prom ote program /data in d ep en d en ce .

78 Database Management Systems

• If th e structure o f the data in the database is ch anged , only that ch an ge is entered in
th e data dictionary.

• If th e structure o f the data in the database is changed, few (if any) programs will need
to be ch an ged .

• N o n e o f th e above.

• A ll o f th e above.

5. T h e features and fun ction s o f a D BM S can be d ivided in to three parts:

• F ields, records, and files.

• R A M , R O M , and floppy diskettes.

• T h e d esign tools subsystem , th e run-tim e subsystem , and the D B M S en g in e.

• T h e file-processing subsystem , the transaction-processing subsystem , and th e L A N .

6. D efin e th e follow ing terms:

(a) Entity

(b) A ttr ib u te

(c) D ata item

(d) R ecord

(e) B lock

(f) File

(g) P oin ter

(h) In dex

7. Explain, com pare, and contrast the follow ing pairs o f terms:

(a) File and database

(b) S eq u en tia l and in d exed file organisation

(c) In d exed and h ashed file organisation

(d) T ap e and disk storage

(e) M aster file and transaction file.

8. H ow is a record identified for retrieval? W h at are th e criteria for se lec tin g th e identification?

9. W h y sh ou ld m ultip le record keys be needed? H ow can they be used in in form ation retrieval?

10. Explain th e organisation o f a sequentia l file on tape or disk. Sum m arize advantages and
disadvantages. G ive an exam ple where it w ould be appropriate. Explain how it is used in:

(a) U pd ating based on a transaction

(b) R etrieval request

(c) Preparing a report

11. W h at is th e relationship o f im proved data quality to th e user in design ing data files? Explain.

12. H ow im portant are th e data file design criteria in d evelop in g an organ isation ’s data base
and off-line files.

13. Explain th e co n cep t o f a data m odel. W h at data m odels are used in database m anagem ent
system? D iscu ss th e d istinguish ing features o f each .

Overview of Database Management Systems 79

14. W h at is the d ifference betw een a database and a database m anagem ent system? For w hat
reasons do organisations ch oose to in vest in database m anagem ent systems?

15. Explain th e d ifference b etw een a schem a and a subschem a, b etw een a h ost language system
and a se lf-con ta in ed system , and b etw een an application program and a database m anagem ent
system .

16. W h at is the d ifference b etw een a D B M S ’s physical structure and its logical structure? W h at
are three popular logical views supported by DM BM Ss? Prepare a sim ple schem a for each
type o f logical v iew and explain how they differ.

17. W hy is th e current trend toward relational m odels in com puter m ainfram e and m icrocom puter
DBM Ss?

18. W hy is th e use o f relation databases growing? W h at ad vantages d o they offer? W h at
disadvantages d o they present?

19. W h at operations are performed through relational database systems? exp lain th e m eaning
and purpose o f each operator.

20. D iscuss th e im plications that a database w ould have on each phase o f the system s d evelop m en t
life cyc le .

21. W hat is the relationship b etw een th e system s analyst and th e database administrator?

22. A analysis o f th e proposed system ’s requirem ents indicated that a database system w ould
give th e best approach. D escribe, w ith the aid o f a relevant exam ple in each case:

(a) T h e advantages o f the database approach com pared w ith th e use o f separate files

(b) H ow to k eep the data accurate and con sistent

(c) H ow to obtain th e factual in form ation about breakdowns

(d) H ow to prevent unauthorised access to data

23. Com pare the advantages to the d isadvantages o f data base m anagem ent system .

24. D escribe data processing system s and their characteristics.

25. W h at are the sub-divisions o f tran saction processing?

26. W h at is a database?

27. W h at is a DBM S?

28. W h at is en d -u ser com puting?

29. W h at are DSS?

30. W h ere sh ou ld D SS be applied?

31. W h at are the m ain types o f DSS?

32. W h at types o f packages can be o f assistance in support o f d ecision making?

33. W h at is a spread sh eet package and h ow can it be used?

c h a p t e r ^ 2

T r a d it io n a l D a t a M o d e l

2 . 1 T y p e s o f D a t a M o d e l s

D ata m odels are usually categorized by levels o f abstraction:

• C o n cep tu a l

• L ogical

• P hysical

T h ese have n o agreed formal defin itions. Professional data m odelers understand the approxim ate
scope o f each . T h ese layers may appear in different ways. S om e approaches deal on ly w ith the
physical or logical m odel. O thers offer elem en ts o f all three but n o t necessarily in three separate
view s.

2 . 2 D a t a b a s e M o d e l s

B esides d ifferentiating databases according to fun ction , databases can also be d ifferentiated
according to h ow they m odel th e data.

A m odel defines the m ethod o f storing and retrieving data. A data m odel is d efined as a set
o f gu id e lin es for rep resen tin g th e log ica l organ isa tion o f data in th e database; a p attern
accord in g to w h ich data and relation sh ip s can be organised; an u nderlying m ath em atica l
form ulation for build ing logical data organisations.

A data m odel consists of:

• A n am ed logical unit (record type, data item)

• R elationsh ips am ong logical units

• A data item is the sm allest logical unit o f data, an in stan ce o f w h ich is k n ow n as a data
item va lu e.

Traditional Data Model 81

• A record type is a co llection o f data item s, and a record is h en ce defined as an in stan ce
o f a record type.

W ell, essentially a data m odel is a “d escrip tion ” o f b oth a con ta in er for data and a m ethod ology
for storing and retrieving data from that container. A ctually , there isn ’t really a data m odel
“th in g”. D ata m odels are abstractions, oftentim es m athem atical algorithm s and con cep ts. You
can n ot really tou ch a data m odel. But n evertheless, they are very useful. T h e analysis and design
o f data m odels has b een the cornerstone o f th e evo lu tion o f databases. A s m odels, have ad vanced
so has database efficiency.

Before the 1 980’s, th e tw o m ost com m only used D atabase M odels w ere th e h ierarchical and
netw ork system s. Let us take a quick look at these two m odels and th en m ove on to the m ore
current m odels.

N o te : A data m odel does n ot specify th e data, data in p lem en tation or physical organisation
only th e way it can be logically organised.

2 . 2 . 1 M o d e l o f a M o d e l

A m odel is created to provide a sm all-scale representation o f a subject in order to study the
subject in depth .

W h en design ing a database, the developer, in con ju n ction w ith th e user, m akes decisions about
th e data to be stored in the database and the structure and relationships o f that data. From
these decisions, the developer creates m odels for th e user and for th e system im plem en tation
staff. Ideally, the m odels represent the business from the user’s view , n ot the real w orld view .
T herefore, th e created m odel is a m odel o f w hat th e user considers im portant in th e business.
T h is m odel depicts only objects and facts about the business, n o t processes, rules, or data storage
and access m ethod s.

• A representation o f the user’s world.

• It follow s a set o f rules.

• Includes business rules and database rules.

2 . 2 . 2 B u s i n e s s r u l e s v s . D a t a b a s e r u l e s

B usiness rules relate to how the business is con d ucted , in other words, rules regarding business
transactions and processes. Som etim es th ese business rules can be enforced through th e structure
o f th e database. O ften , how ever, th ese rules can n ot be im plem en ted in the D B M S or in the
database; they m ust be w ritten in application programs or enforced by user procedures.

Exam ples o f business rules:

• T h e store is closed o n Sunday.

• A n em ployee can only work 40 hours a w eek.

• A n in v o ice can n ot be paid w ith ou t an approved purchase order.

• D atab ase rules co n cern th e structure o f th e database. G enerally, these rules can be
im plem en ted in the database and th e D B M S.

82 Database Management Systems

Exam ples o f database rules are as follows:

• D ates are form atted as M M /D D /Y Y (m onth /date/year).

• In vo ice num bers range b etw een 10000 and 99999 .

• Sell price m ust be greater th an 0.

2 . 3 M O D E L I N G : T h r e e S c h e m a A r c h i t e c t u r e

In general, m o d e lin g is based on th e th ree-sch em a arch itectu re. A S ch em a is a abstract
d efin ition o f reality. T h e levels are:

• Level 0: R eal W orld

• Level 1: C on cep tu a l M od el - E-R M od el or O b ject-O rien ted M od el

• L evel 2: Im plem en tation M od el - R elational M odel

• Level 3: Physical M od el - Physical D ata Structures

In designing a database, w e begin w ith th e d evelop m en t o f a con cep tu a l m odel. A num ber
o f different co n cep tu a l m odeling approaches are used including:

• H ierarch ica l (legacy)

• N etw o rk (legacy)

• E n tity-R elation sh ip (linked to relational m odel)

• O b ject-O rien ted (generally co n verted to a relation al m odel)

2 . 4 C o n c e p t u a l l e v e l (o r l o g i c a l l e v e l)

• C on cep tu a l v iew is th e representation o f th e entire D B , o f th e data “as it really is”, e.g.
the logical m odel o f the w hole D B.

• C on cep tu a l sch em a is a d efin ition o f th e total D B.

• Security ch eck s are defined so on ly allow ed users obtain access e.g. passwords and grant
perm issions for ea ch table.

• Integrity ch eck s (validation) are also defined that ensure that users do n o t harm the
correctn ess o f th e database, e.g . range ch eck s o n certa in fields, referen tia l in tegrity
ch eck « .

• S pecification s sh ou ld be data in d ep en d en t, w ith n o reference to physical storage structure
or access m ethod s.

• Ideally, th e con cep tu a l schem a describes th e com p lete enterprise, in clu d ing data flows
from p o in t to point, audit considerations etc.

• O n ce a go o d con cep tu a l schem a is developed , th e rest is easy.

• C on cep tu a l D ata D efin ition Language (D D L) provides for creation and m ain ten an ce o f
th e full sch em a.

• T h e D atab ase A dm inistrator is responsible for th e m a in ten an ce o f th e co n cep tu a l schem a.

Traditional Data Model 83

2 . 4 . 1 S c h e m a

Pronounce skee-m a, the structure o f a database system , described in a formal language supported
by the database m anagem ent system (D B M S). In a relational database, the schem a defines the
tables, th e fields in each table, and the relationships b etw een fields and tables.

Schem as are gen erally stored in a data dictionary. A lthough a schem a is d efined in tex t database
language, the term is often used to refer to a graphical d ep iction o f the database structure.

T h e use o f database m anagem ent system s does n o t elim inate th e n eed for com puter programs.
T h e database m anagem ent system is a bridge b etw een the application program, w h ich determ ines
w hat data are n eed ed and how they are processed, and the operating system o f th e com puter,
w hich is responsible for placing data on th e m agnetic storage d ev ices. A schem a defines the
database and a subschem a defines th e portion o f the database that a specific program will use.
(Typically, programs use only a sectio n o f th e database.) T o retrieve data from th e database:

• T h e application program d eterm ines w hat data are n eed ed and com m un icates th e n eed
to th e database m anagem ent system ;

• T h e D atabase M anagem ent S ystem determ ines that th e data requested are in fact stored
in th e database (even thou gh they may be stored under a different n am e-an alias). T h e
data m ust be defined in th e su bschem a (possible only if the data are in th e database);

• T h e data base m anagem ent system instruction the operating system to locate and retrieve
th e data from th e specific location o n the m agnetic disk (or w hatever d ev ice it is stored
on); and

• A cop y o f the data is g iven to th e application program for processing.

T h e D atab ase M anagem ent system perm its data in d ep en d en ce, m eaning that th e application
program ca n ch an ge w ithou t affecting th e stored data. U nd er ordinary m aster file arrangem ents,
if the program changes in su ch a way th at the arrangem ent o f the data retrieved or stored is
m od ified , th e m aster files m ust be recreated and restructured . W ith data in d e p e n d en ce ,
changes m ay occur in on e data store or data use w ithout affecting th e other. A data dictionary
is em b ed d ed in the data m anagem ent system through th e schem a and su bschem a to ensure
that data are properly defined and described and that duplicate nam es (aliases) d o n ot result
in redu n dan t data storage or loss o f data integrity.

T h e E xternal sch em a describes th e extern al view .

External sch em a is defined by th e D ata D efin ition Language (D D L)

T h e D a ta M an ipulation Language (D M L) is used to access data.

A form al d efin ition o f the logical structure o f the database, o ften represented as an Entity-
R ela tion sh ip diagram .

T h e sch em a for th e external and in tern al levels is kept by the database in its D ata D ictionary,
also k n ow as th e C atalogue or System Tables.

84 Database Management Systems

Internal level
Internal v iew is th e representation o f th e actual storage o f th e D B . Internal schem a defines
the records, in d exes, files and other physical attributes. For every con cep tu a l file there may
be several actual storage files w h ich sh ou ld be able to change* reorganise and optim ize th e
physical ch aracteristics w ith ou t affecting con cep tu a l view .

Fine tun ing here affects all users (programs) that access the D B.

Internal D ata D efin ition Language is used to write the internal schem a. T h is language does
n ot specify actu al disk b lock sizes, disk pages etc . w h ich is perform ed by the O S . So th e
database’s in ternal level is on e rem oved from the com puter’s physical level.

2 . 4 . 2 M a p p i n g s

D B n eed s tw o sets o f mappings:

1. B etw een C on cep tu a l/In tern a l Levels:

• D efin es h ow th e con ceptu al schem a is actually to be stored

• A lteration s to the internal level should be h idd en from th e con cep tu a l view by updating
th e m appings

2. B etw een E xtern a l/C on cep tu a l Levels:

• D efin es h ow an external user sees th e database

• Eg. on ly certa in fields from a table are visible,

• Fields from different tables are com b ined as on e single v iew

• A n ew extern a l v iew is created by specifying a n ew m apping

• A lteration s to on e level may n ot necessarily have any im pact o n another level.

• Eg: ad d ition o f a n ew field to th e database (at the con cep tu a l level) does n o t im pact
an extern al user as th e external schem a m apped for the user ca n n o t see the n ew field
anyway, b ut naturally, th e n ew field n eed s to be m apped o n to th e in ternal database.

Similarly, ad d ition o f a n ew in d ex for this n ew field at th e in tern al lev e l may significantly
im prove perform ance, but has n o effect on th e external schem as.

2 . 4 . 3 S c h e m a I n t e g r a t i o n

Schem a integration , as defined by th e authors, occurs in tw o con texts:

1. V iew in tegration (in database design), w h ich produces a global co n cep tu a l description o f
a proposed database; and

2. D atabase in tegra tion (in d istributed database m an agem en t), w h ich produces th e global
schem a o f a co llec tio n o f databases.

S c h e m a O b j e c t s

A schem a is a co llec tio n o f logical structures o f data, or schem a objects. A schem a is ow ned
by a database user and has th e sam e nam e as that user. Each user ow ns a single schem a. S ch em a
objects can be created and m anipulated w ith S Q L and in clude th e fo llow in g types o f objects
as show n below in table:

T rad itio n a l D ata M o d e l

T able 2.1 Sch em a O bjects

85

• C lusters

• D atab ase links

• S tan d -a lon e stored fu n ction s*

• In d exes

• P ack ages*

• S tan d -a lon e procedures*

• S e q u e n c e s

• S napshots* +

• Snap shot logsO

• Synonym s

• T ab les

• D atab ase triggers*

• V iew s

• These objects are available only with ORACLE’S procedural option.

+ These objects are available only with ORACLE’S distributed option.

O th er types o f objects are also stored in the database and can be created and m an ip u la tes
w ith SQ L , but are n o t con ta in ed in a schem a:

• Profiles

• R oles

• R ollback segm ents

• T ab lesp aces

M ost o f th ese objects occupy space in the database.

2 . 5 O v e r a l l S y s t e m S t r u c t u r e

• D atabase system s are partitioned in to m odules for different functions. S om e fun ction s (e.g.
file system s) m ay be provided by the operating system .

• Softw are C om p onents include:
• F ile m anager m anages a llocation o f disk space and data structures u sed to represent

in form ation o n disk.
• D atabase manager: T h e interface b etw een low -leve l data and application programs and

q u eries.
• Q u ery processor translates statem ents in a query language in to low -leve l instructions the

database m anager understands. (M ay also attem pt to find an eq u ivalen t but m ore efficient
form .)

• D M L precom piler con verts D M L statem ents em b ed ded in an ap plication program to
norm al procedure calls in a h ost language. T h e precom piler in teracts w ith the query
processor.

• D D L com piler con verts D D L statem ents to a set o f tables con ta in in g m etadata stored
in a data dictionary.

86 Database Management Systems

In addition, several data structures are required for physical system im plem entation:

D ata files: Store the database itself.

• D a ta d iction ary: Stores inform ation about th e structure o f the database. It is used heavily.
G reat em phasis sh ou ld be p laced on develop in g a good design and efficien t im plem en tation
o f the dictionary.

• In d ices: Provide fast access to data item s h old ing particular values.

Fig. 2.1 Show s these com p on en ts.

Fig. 2.1: Database System Structure.

2 .6 The Hierarchical Model
T h e h ierarchical m odel has som e characteries ties:

• Similar to th e netw ork m odel.

• O rganization o f th e records is as a co llec tion o f trees, rather than arbitrary graphs.

Fig. 2.2: A Sample Hierarchical Database

Traditional Data Model 87

T h e hierarchical data m odel related en tities by superior/subordinate or p arent/ch ild relationship.
A n organization chart, for exam ple, show s the layers o f execu tives, m idd le m anagers, and
operating personnel. Graphically, the hierarchical data; m odel is sh ow n as an upside-dow n tree,
w ith th e h ighest level o f the tree know n as the root. T h e nodes o f th e tree represent entities.

A hierarchical data m odel perm its two o f relationship:

• O n e-to -o n e — A n entity at on e lev e l is related to one en tity at th e n ex t level.

• O n e-to -m an y — A n entity at on e lev e l is related to zero, on e, or m ore en tities at the
n ex t level.

T h e system s analyst is affected by th e d ecision m ade w h en a h ierarchical database is designed,
during design, the database administrator, w h o is responsible for th e design , determ ines the
en tities to be in clu d ed in th e database and the relationship that w ill ex ist b etw een entities.
T h e n odes represent instances o f records con ta in in g the appropriate data item s as determ ined
by th e data adm inistrator.

T h e design o f a hierarchical database w ill affect the accessibility o f th e data (th e design tradeoffs
n eed n ot be m ade w h en using relational databases).

T h e system s analyst m ust work w ith in the d esign constraints that result. For exam ple, th e data
m odel stipulates that item s are accessib le on ly through an occurrence o f an order record. T h is
relationship im plies that th e entire item list for all orders m ust be searched to prepare a report
for th e h istorical sale o f item s.

A n o m a lo u s (un desirab le) side effects occu r u n d er certa in datab ase d esign s. H ierarch ica l
databases in vo lve anom alies w ith respect to th e following:

• Insertion o f records — A d ep en d en t record can n ot be added to th e database w ithou t
a parent.

E xam p le: Item s can n ot be added w ithou t their in clu sion in an order.

• D e le tio n o f records — D eletin g a parent from the database also d eletes all its d escen dan ts.

E xam p le: d eletin g a custom er also d ele tes ou tstanding orders.

If these situ ation s are likely to occur in a particular application setting, it is necessary to establish
m ultip le cop ies o f th e records, ev en m ultip le databases (adding redundancy and additional
com plexity) to avoid th e problem.

2 . 7 T h e N e t w o r k M o d e l

• D ata are represented by a co llec tio n o f records.

• R elationsh ips am ong data are represented by links.

• O rganization is that o f an arbitrary graph.

88 Database Management Systems

The relational model does not use pointers:

Lowery Muple Queens 800 99

-------------------- - 996 100000

Shiree North Bronx J
k :

^ ^ > 1 . . . ■ ?
105266

Hodges Sidehill Brooklyn
1 ■■"]

| 10522

Fig. 2.3: A Sample Network Database

T h e netw ork data m odel is similar to th e hierarchical m odel, ex cep t that an en tity can have
m ore th an o n e parent. T hus, as sh ow n in F ig.2.3, m em bers can b elon g to m ore than one
relationship (i.e .,h ave m ore than on e ow ner). In th e laundry exam ple, a relationship can be
sh ow n b etw een custom ers and orders, as w ell as b etw een orders and item s. T h is capability
in troduces th e use o f an additional type o f relationship in th e data:

• M an y-to-m any — A n en tity can be related to zero, on e, or m ore than on e en tity at another
le v e l.

In netw ork databases, as in h ierarchical databases, th e relations b etw een en tities m ust be
established at th e tim e the data m odel is estab lished and the database created (in contrast
to the relational data m odel, w h ich does n o t require predefined access paths or en tity relations).
T h e system s analyst m ust conform to th ese details w h en d evelop in g applications that en ter or
retrieve data during processing.

T h e h ierarchical and netw ork databases are con ceptu ally sim ple and appear uncom p licated
w hen first exam in ed . In a large database en vironm en t, how ever, they ca n rapidly ev o lv e in to
a com p licated w e o f interrelationships that are difficult to m anage as th e database evo lves w ith
use.

A nom alies sim ilar to th ose in the hierarchical data m odel occur. T h us, if an order is cancelled ,
we do n o t w an t to can ce l the custom er, although th e m odel suggests this w ould happen.

T here is a p ositive side to h ierarchical and netw ork data m odels that system s analysts should
n ote. Suppose access paths and relationships b etw een en tities can be predefined (w h en the
schem a is d evelop ed and the database created). If th e access and retrieval fined access paths,
the processing o f inquiries, updates, and additions to th e database will be faster th an w hen
using re la tion a l databases.

System s analysts also recognize that there are a great m any databases based o n th e hierarchical
and n etw ork m od els currently in sta lled in th e business com m un ity . If th ese databases are
m eetin g op eration al requirem ents, it is unlikely that organizations w ill replace them . T h us,
d evelop in g in form ation system s app lications that take in to a cc o u n t th e op p ortu n ities and
constraints th ey offer is a necessity.

Traditional Data Model 89

2 .8 The Relational Model
T h e relational data m odel is currently th e m ost popular on e in database m anagem ent system s
because it is con ceptually simple and under standable by inform ation system s professionals and
m any en d = u sers; it can evo lve, sin ce relationships n eed n ot be predefined; and it uses data
values to im ply relationships. T h e relational data m odel, d eveloped in 1970 by E.F. C odd, is
based on a relation, a tw o-d im ensional table. Rows in the table represent the records; and
colum ns show th e attributes o f th e en tity (F ig.2.4). R elational databases use a m od el to show
how data in a record are logically related.

First Name Last Name Social Security No.
John Smith 010-22-9^32 ;
John Smith 003-634037

¡John
I Sally PI iff AH M : ra

6/12/B2 010-22-9432^
5/9/40 003163.0037,

iAddres
¡321 Byberry Road
1268 Monroe Avenue

010^ 9432

18120 Venshire Drive
■207 Congress Drive

519 Aa

Social Security Ho.
003-83-0037
D2CMS9326;,
289Æ432t

Fig. 2.4: Relational Database

T h e order o f th e data in th e table is n o t significant and n o order is im plied w h en records are
in clu d ed in the relation. Similarly, th e physical details o f storage (w hether random , in dexed ,
or sequ en tia l organization) are n o t o f con cern to the analyst. R elational table sh ow n logical,
n ot physical relationships.

W h en a request for in form ation is m ade, th e system produces a table con ta in ing th e inform ation.
In the laundry exam ple, i f a m anager w ishes to determ ine w ho uses napkins, th e system s will
produce a table con ta in in g th e nam es o f all users o f napkins.

D ata item s are individual units o f inform ation, e.g. nam e, address, num ber o f item s in inventory,
w eekly sales total, grade in a course. A record norm ally consists o f a set o f related data item s,
e.g. an em p loyee record w ould con sist o f various data item s con cern in g a g iven em ployee. A
file is a unified set o f data w hich is usually in th e form o f a co llec tio n o f records. (N o t all files
are subdivided in to records, e.g. th e govern m en t may keep a file consisting o f all in form ation
on a particular airplane disaster. S u ch a file is, in effect, a single record.) A data base is a
structured set o f files.

90 Database Management Systems

Each record has a set o f attributes (fields or item s). T h e range o f possible values (dom ain) is
defined for ea c h attribute.

Records o f ea ch type form a table or relation. In a table, ea ch row is a record or tup le and
each co lu m n is an attribute or field

2 . 8 . 1 R e l a t i o n

A RELATION (TABLE)
AN ATTRIBUTE
(FIELD)

Poly-ID Area

12 1046.23 QflltO

A TUPLE
(RECORD)

17 11261.24

= = =

Fig. 2.5: Relation, Tuple and Field.

T h e degree o f a relation is th e num ber o f attributes in th e table. A on e-attribu te table is a
unary relation. A tw o-attribute table is a binary relation. A n-attribute table is an n-ary relation.

Paddocks-ID

12

13
17
20

u n a r y

Paddocks-ID Name

12 Salt 6
13 Salt 5
17 Mandleman
20 Saloon

Paddocks-ID Name Area

12 Salt 6 1046.23
13 Salt 5 1376.90
17 Mandleman 11261 24

20 Saloon 4761 74

b in a r y

Fig 2.6: The degree of a relation.

t e r n a r y

K e y s

A key o f a relation is a subset o f attributes w ith th e follow ing properties:

• U n iq u e id entification: th e value o f a key is unique for ea ch tuple.

• N o n -red u n d a n cy : n o attr ibu te in th e key can be d iscard ed w ith o u t d estroy in g th e
k ey ’su n iq u en ess.

Traditional Data Model 91

• A prim e attribute o f a relation is an attribute w hich participates in at least on e key and
all other attributes are non-prim e.

T h e relationship o f character, item , record, file and database is g iven in Fig 2 .7 . Som e additional
data structures used in more com p lex files will be described in a later chapter.

D ata are sim ply values or sets o f values. A data item refers to a single unit o f values. Data
item s that are d ivided in to subitem s are ca lled group item s; those that are n o t are called
elem entary item s. For exam ple, an em p loyee’s nam e m ay be d ivided in to three subitem s-first
nam e, m idd le in itial and last n am e-but th e social security num ber w ould norm ally be treated
as a single item .

A n en tity is som eth in g that has certain attributes or properties w hich may be assigned values.
T h e values th em selves may be either num eric or nonnum eric. For exam ple, th e fo llow in g are
possible attributes and their corresponding va lu es for an entity, an em p loyee o f a g iven organization:

Attributes: Name Age Sex GPF NO
values: JAYANT KUMAR 34 M PAOIND2/15

Entities w ith sim ilar attributes (e.g., all th e em ployees in an organization) from an en tity set.
Each attribute o f an entity set has a range o f values, th eset o f all possible values that could
be assigned to th e particular attribute.

T h e term "information" is som etim es u sed for data w ith g iven attributes, or, in o th er words,
m eaningful or processed data.

T h e way th a t data are organized in to th e hierarchy o f fields, records and files reflects the
relationship b etw een attributes, en tities and entity sets. T h at is, a field is a single elem entary
unit o f in form ation representing an attribute o f an entity, a record is the co llec tio n o f field
values o f a g iv e n entity and a file is the co llec tio n o f records o f th e en tities in a g iven entity
set.

92 Database Management Systems

Each record in a file con ta in m any field item s, but th e value in a certain field m ay uniquely
determ ine th e record in the file. S uch a field is called a primary key.

D ata and relationships are represented by a co llec tio n o f tables. E ach table has a num ber o f
colum ns w ith u n iq u e nam es, e.g. custom er, accoun t.

name street city member

Lowery Maple Qneena 900

Shiver North Bronx 556

Shiver North Bronx 647

Hodger Sidehiil Brooklyn 801
Hodger Sidehill Brooklyn 617

name balance

900 55

556 100000

647 105366

801 10533

Fig. 2.8: A Sample Relational Database.

2 . 8 . 2 R e l a t i o n a l D a t a b a s e M a n a g e m e n t S y s t e m (R D B M S)

A co llec tion o f in tegrated services w h ich support database m anagem ent and together support
and control th e creation , use and m ain ten an ce o f relational databases. Servers as defined in
this M IB provide th e functions o f the R D B M S.

2 . 9 D a t a D e f i n i t i o n L a n g u a g e (D D L)

D D L is u sed to sp ec ify a database schem e as a set o f defin ition s.

D D L statem ents are com piled, resulting in a set o f tables stored in a special file ca lled a data
dictionary or data directory.

T h e data directory con ta in s m etadata (data about data). T h e storage structure and access
m ethods used by th e database system are specified by a set o f d efin ition s in a special type o f
D D L called a data storage and d efin ition language.

2 . 9 . 1 D a t a M a n i p u l a t i o n L a n g u a g e (D M L)

1. D ata M an ip u lation is:

• R etrieval o f inform ation from th e database;

• Insertion o f n ew inform ation in to the database;

• D e le tio n o f in form ation in the database; and

• M od ification o f inform ation in th e database.

2. A D M L is a language w hich enables th e users to access and m anipulate data.

T he goal here is to p rovid e effic ien t hum an interaction w ith the system .

3. T h ere are tw o types o f DML:

• Procedural: In this type o f DM L, the user specifies w hat data is n eed ed and how to get
it.

• N onprocedural: T h e user only specifies w hat data is n eed ed . It is easier for th e user.
H ow ever, it m ay n o t generate cod e as efficien t as that produced by procedural languages.

4. A query language is a portion o f a D M L in vo lv in g inform ation retrieval only. T h e terms
D M L and query language are often used synonym ously.

C H A P TE R ^ 3

R e l a t io n a l D a t a b a s e

3 . 1 R D B M S

Short for R elational D atabase M anagem ent system and pronounced as separate letters, a type
o f D atab ase M an agem en t S ystem (D B M S) that stores data in th e form o f rela ted tables.
R elational databases are pow erful because they require few assum ptions about how data is
related or how it will be extracted from th e database. A s a result, the sam e database can be
view ed in m any different ways.

A n im portant feature o f relational system s is that a single database can be spread across several
tables. T h is differs from flat-file databases, in w h ich each database is se lf-conta ined in a single
table.

A lm ost all fu ll-scale database system s are R D B M S ’s. Sm all database system s, how ever, use other
designs th at provide less flexibility in posing queries.

R elational databases use a m odel in ten d ed to greatly simplify the en d -u sers’ and program m ers’
view o f a database.

A s sh ow n in Fig. 3 .1 , files are seen as sim ple table, also k now n as relations. T h e rows are record
o ccu rren ces-a lso called tu p les-a n d the colum ns are fields, also called dom ains. R elationships
are h and led q uite differently from the way they are in hierarchical and netw ork m odels. Instead
o f physically d en o tin g re lation ship s by using pointers, location , or in d ex es, true relational
databases d o n ot store relationships. Instead, relationships are inferred w h en n eed ed . H ere it
is im perative to q uestion how this happens. R elationships are determ ined from in tention ally
redundant fields, usually keys, com m on to th e different tables. T h is con cep ts requires further
exp lan ation .

Database Management Systems

Fig. 3.1: Relational Data Structure

T h e D M L for a relational D B M S d o esn ’t navigate paths and pointers, w h ich is w hat happens
w ith hierarchical and netw ork databases. Instead, to write reports and answer inquiries, the
D M L lets th e programm er or end-user perform sim ple table operations to create temprorary
tables. T h ese operations in clu d e

• S electin g specific records from a table and creating a new , but temporary, table that
con ta in s only those occurrences. Criteria can be set to determ ine w h ich records to se lec t
from th e in itia l table.

• Projrcting ou t specific fields from a table, creating a tem porary table that has fewer fields.

• Joining tw o or m ore table across a com m on field (this is the sam e as navigating relationship
paths in a h ierarchical or netw ork database). A gain , a tem porary table is created .

In all cases, th e above relational op eration s-w h ich , unfortunately, have different nam es in the
varioius relational D B M Ss on the m ark et-create temporary, w orking tables that w ill go away
w h en you ex it th e program. If changes are m ade to the data in th ose tables, the ch an ges will
be updated in to th e perm anently stored tables before the w orking tables are discarded (assum ing
that th e en d -u ser has update authority).

A lso , n o te that th e relational com m ands can be com bined. For in stance, let us say w e n eed
a table o f orders for certain custom ers, perhaps to produce a report. First, w e can use SELECT
o n th e C U S T O M E R table to create a working table o f those custom ers n eed ed . S econ d , we
can PR O JEC T out only those fields n eed ed in both th e C U S T O M E R and O R D E R w orking
table to redu ce their size. Finally, w e JO IN the tw o w orking tables to give us th e final w orking
table n eed ed for the report.

R ela tion a l d atab ases are d efin ite ly th e trend. T h ey p resen t a sim pler v ie w -p o in t to b o th
programmers and end-users. Q uery language and report writers that are easy to learn and use
have b een built around relational databases. M ost relational databases are currently converging
to supersets o f a de facto standard language called S Q L that is utilized to create, update, and
use tables. S Q L in clu d es th e SELECT, PROJECT, and JO IN operations d iscu ssed earlier.

Exam ples o f relational D B M Ss in clu d e IBM ’s D B 2 and SQ L /D L , A D R s D A T A C O M , R elational
T ech n o lo lg y ’s Ingress, O racle C orporation’s O racle, and Inform ation B uilder’s F O C U S (w hich

Relational Database

is also hierarchical). A dditionally , m ost m icrocom puter D B M Ss are relational. Exam ples in clude
A s h to n -T a te ’s d B A S E -IV (w h ich recen tly em b raced true S Q L re la tion a l standards) and
M icrorim ’s R:BA SE for D O S . M any relational dBM Ss are offered in b oth m ainfram e and m icro
versions. F O C U S is o n e su ch D B M S.

T h a t’s about all w e w ant to say about th e three com m on data m odels database tex t bookis and
courses will offer entire chapters and units on each o f the three m odels. Let us consider a
sim plified translation o f a logical data m odel in to each o f th e three physical data structures
that w e h ave in trod u ced . But first w e n eed to describe th e roles o f th e database d esign
participants.

C ustom er Product

Fig. 3.2: Relational Data Structure

A relational D BM s depicts record types as sim ple tables, m u ch like th ose seen in spreadsheets
that exh ib it relational-like qualities. T ab les are related to on e another via in ten tion ally redundant
fields, usually keys. R elational D B M Ss provide operators that build temporary w orking tables
from th e tables illustrated that are physically stored.

3 . 2 T h e R e l a t i o n a l M o d e l

T h e relational m odel was th e first exam ple o f a formal data m odel. W ith it, the user data is
represented and m anipulated intu itively. T h e m odel also uses tech n iq u es that h elp developers
spot and correct possible design problem s as data is prepared for im plem en tation to th e D B M S.
R elation al m odels involve:

• D eterm in in g data structure; and

• D ata is stored in a structure o f relations (tables) defined by a data d efin ition language
(D D L). T h e e lem en ts o f data structure used in relational m odels are relations, attributes,
tup les, and dom ains.

3 . 3 T h e R e l a t i o n a l D a t a b a s e M o d e l

T h e relational database m odel has b ecom e the d e-facto standard for th e design o f databases
b oth large and small. W h ile th e con cep ts in vo lved are n ot terribly com plex, it can be difficult
at first to get a handle on the con cep t. Let us dwell o n a little in trodu ction to th e follow ing
topics:

• Primary and Foreign Keys;

• Q u er ies;

• S tru ctu red Q uery Language (SQ L);

96 Database Management Systems

• R eferentia l Integrity; and

• N orm alisation .

T h e sim plest m odel for a database is a flat file. You h ave only a single table that includes fields
for each elem en t you n eed to store. Nearly everyon e has worked w ith flat file databases, at
least in th e form o f spreadsheets. T h e problem w ith flat files is that they w aste storage space
and are problem atic to m aintain . Let us consider th e classic exam ple o f a cu stom er order entry
system . A ssu m e that you are m anaging the data for a com pany w ith a num ber o f custom ers,
each o f w h ich w ill be p lacing m ultiple orders. In addition, each order can h ave on e or more
item s.

Before m oving on , le t us describe the data that w e w ish to record for ea ch com p on en t o f the
application:

Customers
• C ustom er N um ber

• C om pany N am e

• A ddress

• City, S tate, ZIP C ode

• P hon e N um ber

Orders
• O rder N um ber

• O rder D a te

• PO N um ber

Order Line Items
• Item N um ber

• D escr ip tion

• Q u a n tity

• Price

It d oesn ’t take a database design expert to see w hat th e problem is in using a flat file to represent
this data. E ach tim e an order is placed, you w ill n eed to repeat th e cu stom er inform ation,
in clu d ing the C ustom er N um ber, C om pany N am e, etc . W h at is worse is that for ea ch item ,
you h o t only n eed to repeat the order inform ation su ch as th e O rder N um ber and O rder D ate,
but you also n eed to co n tin u e repeating the cu stom er inform ation as w ell. Let us say there is
on e custom er w h o has p laced tw o orders, each w ith four line item s. T o m ainta in this tiny am ount
o f inform ation, you n eed to enter th e C ustom er N um ber and C om pany N a m e eight tim es. If
th e com pany sh ou ld sen d you a ch an ge o f address, the num ber o f records you n eed to update
is equal to th e su m o f product o f orders and order line item s. O bviously, th is will quickly b ecom e
unacceptable in term s o f b oth th e effort required to m aintain th e data and th e lik elihood that
at som e point there w ill be data entry errors and th e custom er address w ill be in con sisten t

Relational Database

T h e so lu tion to this problem is to use a relational m odel for the data. D o n o t let the term inology
get you dow n - the co n cep t isn ’t that hard to understand. It sim ply m eans that in this exam ple
each order en tered is related to a custom er record, and each line item is related to an order
record. A R elational D atabase M anagem ent system (RDBM S) is th en a p iece o f software that
m anages groups o f records w hich are related to o n e another. Let us take our flat file and break
it up in to three tables: C ustom ers, Orders, and O rderD etails. T h e fields are just as they are
show n above, w ith a few additions. T o the Orders table, w e will add a C ustom er N um ber field,
and to the O rderD etails table we will add an Order N um ber field. H ere’s the list again w ith
the required ad ditional fields and m odified field nam es.

Customers
• C ustID

• C u stN am e

• C ust A ddress

• C ustC ity

• C u stS ta te

• CustZIP

• C u stP h on e

Orders
• O rd ID

• O rd C u stID

• O r d D a te

• O rd P O N um ber

OrderDetails
• O D ID

• O D O r d ID

• O D D esc r ip tio n

• O D Q ty

• O D P rice

I will digress here a little to describe how w e cam e up w ith the field nam es. T h is is totally
a personal preference. Every tim e we created a table, we have d ecid ed o n a field nam e prefix
to be used . A s you can see, w e have used “C u st” for the C ustom ers table, “O rd” for the Orders
table, and “O D ” for th e O rderD etails table. W e have done this for a couple o f reasons. First,
by using a field nam e prefix, we can identify the table associated w ith a field by simply reading
the field n am e. S econ d , W e have avoid ed nam e collisions in queries b ecau se every field in
a database, n o m atter h ow large and com p lex th e structure, will always b e unique. T h is is we
have d o n e particularly helpfu l in d istinguishing b etw een primary and foreign keys - a subject
I will take up a bit later. O n e other th in g you m ay have n oticed is a table nam ing co n v en tio n
we have used, w h ich is to nam e tables using th e plural form o f th e data they contain .

Database Management Systems

OK, back to th e tables. W h at w e have d one besides the nam e change is to add fields to the
Orders and O rderD etails tables. Each h ave key fields used to provide a link to th e associated
C ustom ers and Orders records, respectively. T h ese additional fields are called foreign keys.

3 . 4 R e l a t i o n a l M o d e l i n g T e c h n i q u e s

A fter an ob ject m odel is developed , a logical data m odel can be created to further define the
user’s business data. T o build th e logical data m odel, the e lem en ts o f th e object m odel (such
as the E-R diagram described in L esson 3) are con verted in to logical data tables. Rem em ber,
the term logical is used because th e tables may or m ay n o t be used as physical database tables
in the final design . A s logical tables are defined, business policies and rules are applied. T his
lesson w ill exp lore th e co n ce p ts o f th e relational m od el as a log ica l data m od elin g tool.
N orm alisa tion , a tech n iq u e applied to the relation al m od el, w ill also be d iscu ssed . S om e
exam ples in th is lesson will be clarified w ith screen illustrations from M icrosoft’s A ccess D B M S.

T h e term relation al com es from th e m athem atical field o f relational algebra. R elational m odels
are com p osed o f relations, or tw o-d im ensional tables, w h ich follow th e operations described in
relational algebra. W ith this m odel, tables o f data can be m anipulated to return other tables
o f data providing users w ith inform ation. A ll relational database structures are com posed o f
a series o f relations. T h e three aspects o f data addressed by relational m odels are data structure,
data integrity, and data m anip ulation .

T h e relational m odel was d evised in 1969 by Dr. E.F. C odd, a m ath em atician associated w ith
IBM ’s S an Jose R esearch Laboratory. H is m odel served as an in trod u ction to a relational
database structure that was d esigned to represent user data in a form easily understood by both
users and professionals w ithout regard for physical im plem en tation . T h e relational theory was
explored and prototypes d evelop ed during the 1970s. C om m ercial relational database products
began to em erge in the 1980s, originally for m ainfram e system s and later for m icrocom puters.

3 . 5 C o m p o n e n t s o f t h e R e l a t i o n a l M o d e l

W h en build ing a relational m odel, developers and users m ust create tables from elem en ts o f
the object m odel, determ ine ea ch tab le’s attributes, and estab lish relationships b etw een th e
tables. A s w ith other data m odeling con cepts, relational m odelin g has m any interchangeable
terms for its com p on en ts as sh ow n below:

Relation, table, file
A tw o-d im en sion a l table con sistin g o f colum ns and rows; created from th e en tities o f the object
m odel.

Attribute, column, field
The columns of the table, usually defined from the attributes of the object model.
Tuple, row, record
T h e rows o f th e table; derived from th e en tity occurrences o f th e ob ject m odel.

Relational Database

Consider the relation STUDENT. The column headings signify the attributes of the relation.

RELATION = STUDENT
1 stum StuName Age Major

1001 Jones ! 21 1
f

Accounting

1005 Phillips i 18 i Science

1006 [Stevens 1 20 Art

1010 1 Barber 1 18 ! Business

• Each cell is atomic.
• Each attribute contains the same type of information.
• Each tuple is unique.

Fig. 3.3: Relations

Relations
A relation is a tw o-d im ensional table con ta in in g a set o f related data. T h e true requirem ents
o f a relation are that:

• E ach cell m ust be atom ic (con ta in only one value);

• E ach attribute contains th e sam e type o f physical and sem an tic inform ation in all its cells.;

• Each tuple is unique; there can be n o duplicate rows o f data; and

• T h e order o f colum ns and rows is n ot significant.

3 .6 Definitions of Relational Terms
In addition to the above com p onents, th e following con cep ts are used in building a relational
m odel. N o tic e the definitions for various types o f keys. A key is an identifying property o f a
m odel and/or a database. H ow ever, th e term is am biguous w h en used w ithout a m odifier (i.e.,
primary, candidate, foreign). T o elim inate confusion in m odeling, the type o f key should always
be stated according to purpose.
Primary key
Primary keys are essentia l in relational m odeling; one sh ou ld be specified for ea ch relation. A
primary key uniquely identifies a record (or row) in a table; in other words, a particular primary
key va lu e returns a record that is id en tica l to n o other. A primary key is com posed o f on e colum n
(sim ple primary key) or a com b ination o f colum ns (com posite primary keys) that provide this
unique id en tification . T h e best possibilities for primary keys are attributes that se ldom change
and are familiar to users. T h e primary key should con ta in the few est colum ns n eed ed to uniquely
identify a record.

Simple primary key:
Q onsider the relation A D V IS O R w here each value o f A dvisor ID returns a unique record.

Sim ple primary key A dvisor-ID uniquely identifies records.

100 Database Management Systems

RELATION = ADVISOR
Advisor ID Adv Name \ Adv Fhone :

101 Brown 333-2111 1
102 Williams ! 405-8888 j
103 Benson 501-8241 \

104 Smith 222-2357 |

Fig. 3 .4

Composite primary key:
C onsider the relation S T U D E N T where each stud en t can take m ore than on e class. S tu d en t
ID , Class, or G rade alone does n o t return a unique record; how ever, a com posite primary key
o f S tu dent ID - C lass does.

RELATION = STUDENT
StudentID j Class Grade

1001 INSY312 j 95 _ j
1001 ENGL101 | 90
1005 INSY312 I 85
1006 INSY430 ! 87
1006 BUSN202 80
1010 HIST102 j 92

Fig. 3.5

Candidate key
A candidate key is a unique identifier that m ight be con sid ered w h en ch oosin g th e primary
key o f a relation. C andidate keys can also be sim ple or com posite. U sually on e can d idate key
is designated as a primary key, w hile the others may be called alternate keys.

Foreign key
A foreign key is an attribute in a relation that is also a primary key in an oth er relation. T h is
foreign key-primary key m atch allows references b etw een relations in order to locate inform ation.
For exam ple, th e attribute S tu d en tID cou ld be d esignated as a primary key in th e relation
EN R O L LED S T U D E N T and as a foreign key in th e relation IN D IV ID U A L ’S R E C O R D . T his
provides a referen ce to IN D IV ID U A L ’S R E C O R D in form ation w ith o u t p lacin g d u p lica te
in form ation in b o th relations. Primary keys and their corresponding foreign keys m ust share the
sam e physical and logical dom ains.

Relational Database 101

• Relation ADVISOR where AdvID is the primary key.
• Relation STUDENT where StuID is the primary key and AdvID is a foreign key.

R E L A T IO N = A D V IS O R R E L A T IO N = S T U D E N T

I AdvID AdvName AdvFhone Stun) StuName StuFhone AdvID

I 101 Brown 333-2111 1001 Jones 452-3311 104

j 102 Williams 405-8888 1 1005 Phillips 555-1450 ijj 102

1 103 1 Benson 501-8241 1 1006 Nelson 352-0913 101

104 Smith 222-2357 1 1010 Terrell 452-5974 102

Fig. 3 .6

Functional dependency
A fun ction ally d ep en dency is an association b etw een the colum ns o f a relation. T h is m eans
that a g iv en va lu e o f o n e co lu m n ca n d eterm in e a u n iq u e va lu e from an oth er co lu m n .
F un ction al d ep en dency is used in the norm alisation techn iqu e in order to simplify the structure
o f relations.

Index
Indexes are used to sort and access th e records in a relation. N o t to be con fused w ith a primary
key, an in d ex is overhead data that is specified w h en constructing the actual physical database.
T h ey p rovide the D B M S w ith a q u ick m eth od o f retrieving and accessin g data e lem en ts.
Indexes, unlike primary keys, do n o t h ave to be unique.

Domain
T h e co n ce p t o f dom ains is used to add m eaning to the attributes o f a relation. A dom ain is
the physical and logical description o f an attribute. A physical dom ain identifies th e format,
su ch as field type and length, o f a co lum n, w hile a logical dom ain identifies its valid pool of
values. D o m a in nam es can be used to represent the m eaning o f a co lum n and can be used
m ore th a n o n ce in a relation or in o ther relations. Each co lum n o f a relation sh ou ld have b oth
physical and logical dom ains.

3 . 7 F e a t u r e s o f R e l a t i o n a l D a t a b a s e s

D ata are organized as logically in d ep en d en t tables. Features:

■ ‘N a tu ra l’

■ N o t so strongly biased towards specific questions

■ E xpresses relationships by m eans o f redundant data rather than exp lic it pointers

■ T h eo r etic a l basis: relational algebra, calculus; closure

■ O p erations on tables Qoin, Project, Select) to form new tables.

Database Management Systems

3 . 8 C O D D ' s 1 2 R u l e s f o r a F u l l y R e l a t i o n a l D B M S

A ccord ing to Elmasri and N avath e (1994), Dr. E. F. C odd, the originator o f th e relational data
m odel, published a two-part article in C om puterW orld (Codd, 1985) that lists 12 rules for how
to determ ine w h eth er a D B M S is. relational and to w hat ex ten t it is relational. T h ese rules
provide a very useful yardstick for evaluating a relational system . C odd also m en tion s that,
according to these rules, n o fully relational system is available yet. In particular, rules 6, 9,
10, 11, and 12 are difficult to satisfy.

R u le 1: T h e Inform ation Rule

A ll inform ation in a relational database is represented explicitly at th e logical level in exactly
on e way-by values in tables.

R u le 2: G uaranteed A ccess Rule

Each and every datum (atom ic value) in a relational database is guaranteed to be logically
accessible by resorting to a table nam e, primary key value, and co lu m n nam e.

R u le 3: System atic T reatm en t o f N u ll V alues

N ull values (d istin ct from em pty character string or a string o f blank characters and d istinct
from zero or any other num ber) are supported in the fully relational D B M S for representing
m issing inform ation in a system atic way, in d ep en d en t o f data type.

R u le 4: D ynam ic O n -lin e C atalog Based on the R elational M od el

T h e database descrip tion is represented at the logical level in th e sam e way as ordinary data,
so authorized users can apply the sam e relational language to its in terrogation as they apply
to regular data.

R u le 5: C om p rehensive D ata Sublanguage Rule

A relational system may support several languages and various m odes o f term inal use (for
exam p le, th e fill-in -b lan k s m o d e). H ow ever, there m ust be at lea st o n e lan guage w h ose
statem ents are expressible, per som e w ell-defined syntax, as character strings and w hose ability
to support all o f th e follow ing is com prehensible: data definition , v iew d efin ition , data m anipulation
(interactive and by program), integrity constraints, and transaction boundaries (begin, com m it,
and ro llback).

R u le 6: V iew U pd ating Rule

A ll view s that are theoretically updateable are also updateable by th e system .

R u le 7: H igh -leve l Insert, U pdate, and D ele te

T h e capability o f handling a base relation or a derived relation as a single operand applies nor
only to the retrieval o f data but also to the insertion, update, and d ele tio n o f data.

R u le 8: Physical D ata In d ep en d en ce

A pp lication programs and term inal activ ities rem ain logically unim paired w h en ever any changes
are m ade in eith er storage representation or access m ethods.

Relational Database 103

R u le 9: Logical D ata In depend en ce

A p p lica tion programs and term inal activ ities rem ain logically unim paired w h en inform ation
preserving changes o f any kind that theoretically perm it unim pairm ent are m ade to th e base
tables.

R u le 10: Integrity In depend en ce

Integrity con stra in ts sp ec ific to a particular relation al database m ust be definab le in th e
relational data sublanguage and storable in the catalog, and n o t in th e application programs.

A m inim um o f the follow ing two integrity constraints m ust be supported:

1. Entity integrity: N o com p on en ts o f a primary key is allow ed to h ave a n u ll value.

2. R eferential integrity: For each d istinct n on n u ll foreign key value in a relational database,
there m ust exist a m atchin g primary key value from the sam e dom ain.

R u le 11: D istribution In depend en ce

A relational D B M S has distribution in d ep en d en ce . D istribution in d ep en d en ce im plies that users
should n o t have to be aware o f w heth er a database is distributed.

R u le 12: N on su b version R ule

If a relational system has a low -leve l (single-record-at-a-tim e) language, that low -leve l language
can n ot be used to subvert or bypass th e integrity rules or constraints expressed in the higher-
lev e l (m u ltip le-records-at-a-tim e) relation al language.

N o te : T h ere is a rider to th ese 12 rules k now n as Rule Zero: “For any system that is claim ed
to be a relational database m anagem ent system , that system m ust be able to m anage
data entirely through its relational capab ilities.”

O n the basis o f the above rules, there is n o fully relational D B M S available today.

3 . 9 T h e R e l a t i o n a l M o d e l a n d R e l a t i o n a l D B M S

A lth ou gh it is n ot th e only m odeling techn iqu e, sin ce its in troduction relational m odelin g has
b ecom e a standard in th e data m odelin g field. O n e reason is because the data is stored and
presented in an understandable way. A s a result, a system based on this type o f m odel requires
less professional system s support. W ith today’s sophisticated applications and a w ell-structured
system , th e user can specify the criteria for n eed ed inform ation w ith a few sim ple com m ands,
w hile th e system performs th e com p licated operations required to provide the inform ation. A lso ,
sin ce relational m odeling separates data from physical structures, a stable data foun dation is
provided for relational system s. D ata retrieval, updates, processing, and structural changes are
m ore effic ien t in this type o f system .

H ow ever, relational m odelin g does h ave its critics. R elational system s require m ore resources
from th e com puter and are slower to process than previous system s. T h is p resen ted a problem
in the days w h en system s were m ore exp en sive and less powerful. T h e huge storage capacities
and fast processors o f today s com puters provide th e power n eed ed to efficiently process relational
database system s. A lso , database developers have b een slow in adopting th e tech n iq u es of
relational m odeling. Rem em ber, originally business system s m odeled business processes and were

104 Database Management Systems

p rogram m ing-in tensive. R elation al tech n iq u es focus on data, w h ich requires a n ew way o f
th inking for developers. E ven though m ost adm it that relational system s are m ore flexible and
easier to use, som e professionals have balked at th e changes.

Inform ation system s form erly used, su ch as in verted list, h ierarchical, and netw ork system s are
n ot based on relational con cep ts. R elational database m anagem ent system s (R D B M S) are based
on C odd ’s relational m odel. W h ile a majority o f th e D B M S products currently in use claim
to be relational, n o n e o f th ese system s exactly fits the true description o f a R D B M S. T his
description can be found in C od d ’s “T w elve Rules o f a R elational D atab ase.”

3 . 1 0 F u l l y R e l a t i o n a l D B M S

A n im plem en tation o f a relational database that supports all aspects o f th e relational m odel,
including in particular dom ains and the two general integrity rules, is said to be fully relational.
H ow ever, n o system is fully relational at present, th ou gh several system s are b eginning to b ecom e
close .

3 . 1 0 . 1 R e l a t i o n a l I m p l e m e n t a t i o n s

A n im plem en tation o f th e relational m odel should support all th e facilities prescribed by the
m odel, but there are o ther desirable features o f su ch system s w h ich th e relational m odel does
n ot refer to - th ese in clu d e arithm etic operations, built-in functions, exp lic it updates, m odifies,
d eletions etc . T h e relational m odel provides a core o f fun ction s that sh ou ld be incorporated.

N o system supports th e relational m odel in its entirity thou gh several com e close; h ow ever a
d istinction m ust be m ade b etw een m odels w hich are considered relational and relational-like
m odels. T h e relational-like m odels can be categorised as follows.

• Tabular;

• M inim ally relational;

• R elation ally com p lete; and

• Fully relation al.

3 . 1 1 P r i m a r y a n d F o r e i g n K e y s

Like m ost o th er program m ing disciplines, relational databases are ripe w ith jargon. A key is
simply a field w h ich can be used to identify a record. In som e cases, key fields are a part o f
the data you are storing or derived from that data, but they are just as o ften an arbitrary value.
For the C ustom ers table, you cou ld use the com pany nam e as a key, but if you ever had two
com p an ies w ith th e sam e nam e, your system w ould be broken. Y ou cou ld also use som e
d erivation o f th e com pany nam e in an effort to preserve en ou gh o f th e nam e to m ake it easy
for users to derive the nam e based o n the key, but that o ften breaks d ow n w h en th e tables
b ecom e large. I find it easiest to simply use an arbitrary w h ole num ber. You can com p letely
hide the use o f th e num bers from the end users, or exp ose th e data. Its your ch o ice to m ake
based on th e n eed s and abilities o f the users.

Relational Database 105

T h ere are tw o types o f key fields we are dealing with:

• Primary keys

• Foreign keys

A primary key is a field that uniquely identifies a record in a table. N o tw o records can have
the sam e value for a primary key. Each valu e in a primary key will identify on e and only on e
record. A foreign key represents the va lu e o f primary key for a related table. Foreign keys are
the cornerstone o f relational databases. In the Orders table, th e O rdC u stID field w ould hold
the va lu e o f the C ustID field for the custom er w ho placed the order. By doing this, w e can
attach th e inform ation for th e custom er record to the order by storing only the on e value.

3 . 1 1 . 1 P r i m a r y / C a n d i d a t e K e y s

T h e primary key o f a relation or table is actually a special case o f a m ore general construct,
nam ely the candidate key. A candidate key is an attribute that is a unique identifier w ithin
a g iven table. O n e o f the candidate keys is ch o o sen to be th e primary key and th e others are
called alternate keys. U sually, there is on ly on e candidate key anyway.

Primary keys provide the sole tu p le -le v e l addressing m echan ism w ith in th e relational m odel
- th e only guaranteed way o f p inp oin tin g an individual tuple and thus they are fundam ental
to th e operation o f the overall relational m odel.

Tuples
A tuple o f a relation or table corresponds to a row o f su ch a table. T uples are unordered (top
to b ottom) because a relation is a m athem atical set and n ot a list. T h ere are n o duplicate tuples
in a relation /tab le w hich again stem s from the fact that a relation is a m athem atical set and
sets in m ath em atics by d efin ition do n o t include duplicate elem en ts.

A n im portant corollary o f this point is that the primary key always exists and sin ce tuples are
unique it follow s that at least the com b ination o f all attributes o f the relation has the uniqueness
property, so that at least the com b ination o f all attributes can serve as th e primary key - but
it is usually n ot necessary to in volve all o f the attributes i.e. som e lesser com b ination is usually
su ffic ien t.

3 . 1 1 . 2 A t o m i c D a t a V a l u e s

A ll data values in the relational m odel are atom ic. T h is im plies that at every row /colum n position
in every table there is always exactly one data value and n ever a set o f values (at th e external/
co n ce p tu a l lev e ls).

3 . 1 2 R e l a t i o n s h i p s i n t h e R e l a t i o n a l M o d e l

A s tables are created , th e relation ship s b etw een th em m ust also be d efined . R elation sh ip
cardinality determ ines how tables should be joined in the database. R elationship m odality can
also be illustrated w ith the sam e signs sh ow n on the E-R diagram.

106 Database Management Systems

3 . 1 2 . 1 O n e - t o - o n e r e l a t i o n s h i p s

In a relational m odel, the o n e-to -o n e (1:1) relationship is easily illustrated. In describing two
related tables, th e primary key o f on e table is placed as a foreign key in th e other. For exam ple,
in representing a 1:1 relationship b etw een T able A and T able B, th e primary key o f T able A
is specified as a foreign key in T able B. H ow ever, there are n o hard and fast rules governing
this designation; th e primary key from either table can be p laced as a foreign key in the other.
O n e con sideration m ight be w hether one relation is accessed more often th an th e other, w hich
cou ld affect database perform ance.

3 . 1 2 . 2 O n e - t o - m a n y r e l a t i o n s h i p s

A on e-to-m an y (1:N) relationship is usually represented using a “p aren t-ch ild ” con cep t. H ere,
the “o n e ” side o f th e relationship is called th e parent, w hile the “m any” side is designated as
the child . In describ ing this to the relational m odel, the primary key o f th e parent entity is
always p laced as a foreign key in the ch ild entity.

Example of a 6:1 Relationship link
C onsider th e follow ing E-R diagram o f a 6:1 relationship in w h ich ea ch class has a class roster
and each class roster is for a class:

C L A S S
1

h as; R O S T E R

Fig. 3 .8

T h e follow ing data structure diagram can be u sed to illustrate th e ab ove relationship in a
relational m odel. In the 1:1 relationship, the primary key o f on e relation is d esign ated as a foreign
key in the other. T h is primary key-foreign key link ca n be used to look up valu es b etw een tables.

R E L A T IO N = CLASS

Fig. 3.9

Relational Database

H ow ever, the relationship cou ld also be represented as follows:

Client D ServerD

-Application
-Driver Manager
-Driver

-Data access
software

-Data Storage

Oient £ Server E1 Server E2

P I
Application

-Driver Manager
-Driver

Data access
software
•Data Storage

Fig. 3 .10

T h e primary key can be designated either way, a lthou gh the designer m ight consider w hether
on e table is accessed m ore than the other. Still, C lassID can be used to look up values in the
R O ST E R relation, or R oster ID can be used to look up values in th e C L A SS relation.

A lso n o tice that the m odality is illustrated w ith bars drawn across the con n ectin g line, as in
th e E-R diagram .

Example of a 6:2: N Relationship link
C onsider this E-R diagram o f a 6:1:N relationship in w h ich a class can be offered m ore than
o n ce a quarter:

Fig. 3.11

Because it represents th e “ 1” side o f the relationship , C O U R SE is considered the parent entity
w hile C L A SS (the “M ” side) is the ch ild entity. T h e fork at the en d o f the co n n ectio n line
d en otes “m an y.” Pvemember, w h en building a relational m odel for this type o f relationship , the
primary key o f th e parent is always placed as a foreign key in the child . In this diagram, the
primary key o f C O U R S E (C ou rselD) is p laced in the relation C L A SS as a foreign key. T h en
the attribute C ou rselD ca n be used to look up values in the relation C L A SS. For exam ple,
if the course IN SY 410 is offered on T uesday and Thursday nights, C ou rselD IN S Y 410 would
return tw o records o f class inform ation from C LA SS.

108 Database Management Systems

Fig. 3 .12

T o prove w hy this can n ot be reversed, suppose th e primary key o f C L A SS was p laced as a foreign
key in C O U R SE . S ince a course can have m ore than on e class, th e relation C O U R S E would
con ta in duplicate values in th e primary key. T h is is unaccep tab le because a primary key field
m ust have unduplicated values in order to a unique record.

3 . 1 2 . 3 M a n y - t o - M a n y R e l a t i o n s h i p s

B ecause m any occurrences can ex ist on either side, the representation o f a m any-to-m any (M :N)
relationship is totally d ifferent from th e 1:1 and the 1:N. T o illustrate this type o f relationship ,
a new relation, called an in tersection table, is form ed. It consists only o f th e primary keys o f
th e first tw o relations.

Example of a M:N relationship link
C onsider this E-R diagram o f a M :N relationship in w h ich a stud en t can take m any classes
each quarter, and a class con ta in s m any students:

S T U D E N T N C L A S S

Fig. 3 .14

If the primary key o f S T U D E N T (StudentID) were p laced as a foreign key in C L A SS, the
primary key o f C L A SS w ould be duplicated. T his w ould also be true if C lassID w ere p laced
as a foreign key in S T U D E N T .

Relational Database 109

RELATTON=CLASS

ClassID ClassName j Professor StartDate StudentID

; ENGL101 Composition I Hall 9/25/96 101

j HIST211 | U.S. History | Bright 9/26/96 | 101

SCIE113 | Geology || Hill 9/23/96 105

ENG101 |I Composition I Hall 9/25/96 110

SCIE113 Geology Hill 9/23/96 101

Fig. 3 .15.

In th e relation al m odel, M :N relation ship s are represen ted by creatin g in te rse ctio n tables
con ta in in g on ly th e primary keys o f b oth relations as attributes. In this way, b oth original
relations (S T U D E N T and C L A SS) m aintain unique primary key values.

3 . 1 2 . 4 D e f i n i n g t h e R e l a t i o n a l M o d e l t o t h e D a t a b a s e

O n ce the tables and their relationships h ave b een defined, the database structure m ust be
described to th e database application. H ow this is d one depends on w h eth er th e database
application has a graphical or a textual in terface. A n application su ch as A cc ess provides "fill-
in-the-blank" tables to input structural defin itions or "wizards" that prom pt th e user (or developer)
to describe th e database structure. A pp lications w ith a textual interface require th e use of a
data d efin ition language (D D L) to write a tex t file that describes the database structure.

3 . 1 2 . 5 E x a m p l e o f D a t a D e f i n i t i o n L a n g u a g e

T h e d efin ition o f th e database structure to th e database application depends on w h ich type
o f application is used - graphical or textual. Follow ing is an exam ple o f a text-b ased data
d efin ition source as described to an application designed for an A S /4 0 0 m inicom puter.

1 10 Database Management Systems

S T U D E N T P E R S O N N E L F IL E

A UNIQUE

A R STUDENT TEXT (‘STUDENT RECORD’)

A*

A S S # 9S 0 TEXTCSS NUMBER’)

A ADDR1 25 TEXT(‘STREET ADDRESS I ’)

A ADDR2 25 TEXT (‘STREET ADDRESS 2 ’)

A CITY 25 TEXT(‘CITY’)

A STATE 15 TEXT (‘STATE’)

A ZIP15 TEXT(‘ZIP 1’)

A ZIP2 4 TEXT (‘ZIP 2’)

A STATUS 1 TEXTCSTUDENT STA TU S’)

A VALUESCA’ ‘I’)

DFT(‘A ’)

A K S S #

E x p la n a tio n :

• U N IQ U E - N O D U P L IC A T E R E C O R D S B A S E D O N KEY S S #

• V A L U E S - R EST R IC T S FIELD T O T H E SE V A L U E S

• D F T - D E F A U L T V A L U E W H E N R E C O R D IS C R E A T E D

D escriptions o f the database include:

• N am in g tables and colum ns.

• D escrib ing physical and logical dom ains.

• D efin in g in d exes.

• Specifying constraints, su ch as business policies, security restrictions, and interrelational
restraints, and integrity rules.

W h e n the tables and colum ns h ave b een created and defined, th e database can be filled w ith
th e user’s data. If th e data is already com puter-form atted (for exam ple, in an ex isting database),
it can often be im ported autom atically in to th e new ly created database files. O therw ise, the
data is m anually keyed in to th e proper database fields.

3 . 1 3 Q u e r i e s

S o far w e have broken d ow n our order entry system in to three tables and added foreign keys
to th e O rders and O rderD etails tables. N ow , rather th an repeating th e C ustom ers table data
for ea ch O rders table record, w e sim ply record a custom er num ber in th e O rdC u stID field.
By doing this, w e can ch an ge th e inform ation in th e C ustom ers table record and h ave that
ch an ge be reflected in every order p laced by the custom er. T h is is accom plished by using queries
to reassem ble th e data.

Relational Database

O n e o f the in herent problems o f any type o f data m anagem ent system is that ultim ately the
hum an users o f the system will only be able to view data in tw o d im ensions, w hich in the en d
b ecom e rows and colum ns in a table eith er on the screen or o n paper. W h ile peop le can
con ceptualize objects in three d im ensions, its very difficult to represent detail data in anything
other than a flat table. A fter all th e effort we w ent through to break dow n the original flat
file in to three tables, we are now going to undo that effort and m ake a flat file again.

W e are going to accom plish this am azing feat o f backwards progress by using queries. A query
is sim ply a v iew o f data w hich represents th e data from on e or m ore tables. Lets say w e w ant
to see th e orders p laced by our custom ers. W e can link the C ustom ers and Orders tables using
the C ustID field from C ustom ers and the O rdC ustID field from O rders - rem em ber, the value
o f the O rdC ustID field represents a related record in th e C ustom ers table and is equal to th e
C ustID value from that record. By joining together the two tables based on this relationship ,
we can add fields from b oth tables and see all orders along w ith any pertinent custom er data.

E xam p le Q u er ie s

1. For exam ple, to find the branch-nam e, loan num ber, custom er nam e and am ount for loans
over $1200:

{ t 11 E borrow A t[am oT m t] > 1 2 0 0)

T his gives us all attributes, but suppose w e only w ant the custom er nam es. (W e w ould use
project in th e algebra.)

W e n eed to write an expression for a relation on schem e (cnam e).

[t | 3s £ borrow (t[i? n a m c] = fi[c n a m c] A f i[a m a u n t] > 1 2 0 0)]

In English, w e m ay read this eq u ation as “th e set o f all tuples r su ch that there exists a tuple
f in th e relation borrow for w hich the values o f & and £ for th e cn am e attribute are equal,
and the value o f B for the am ount attribute is greater than 1 2 0 0 .”

T h e n o ta tio n ater(g(t)) m eans “there exists a tuple in relation su ch that predicate Q(t) is true”.

H ow did w e get the above expression? W e n eed ed tuples on sch em e cnam e such that there
w ere tuples in borrow pertaining to that custom er nam e w ith am ount attribute > 1200.

T he tuples £ get the schem e cnam e im p lic itly as that is the on ly attribute f is m en tion ed w ith.

Let us look at a m ore com plex exam ple.

Find all custom ers having a loan from th e SFU branch, and the th e cities in w h ich they live:

{ * 1 3b G barrou>(t[cnamc] = R e n a m e] A s [6 n a m e] = WS F U ”
A 3 u (E custt?mc r (u [c n ame] = s [c n a m c] A t[ec£ty] = i i [c c ity]))J

In English, w e m ight read this as “the set o f all (cnam e, ccity) tuples for w hich cn am e is a
borrower at the SFU branch, and ccity is the city o f cn am e”.

Database Management Systems

T u ple variable & ensures that the custom er is a borrower at th e SFU branch.

T uple variable u is restricted to pertain to the sam e custom er as jg, and also ensures that ccity
is the city o f th e custom er.

T h e logical co n n ectiv es /\ (A N D) and v (O R) are allow ed, as w ell as — (negation).

W e also use th e ex isten tia l quantifier = and y the universal quantifier .

S o m e m ore exam p les:

1. Find all custom ers having a loan, an accoun t, or b oth at the SFU branch:

{ t | 3s G &ffrrGuu(t[c7iamc] = s[mamc] A fi[6n am e] = KS F U W)

V 3u G d cp 0£ i't(t[cn arn c] = u [c n a m c] A uffcnam c] = * 5 F U *))

N o te the use o f th e y con n ective .

A s usual, set operations rem ove all duplicates.

2. Find all custom ers w ho have b oth a loan and an accou n t at th e SFU branch.

S o lu tio n : sim ply ch an ge the y co n n ectiv e in 1 to a

3. Find custom ers w h o h ave an accoun t, but n o t a loan at th e SFU branch.

{ t | 3 u G d cp & fi£ t(t[cn am c] = u[cnamc] A u [b n a m c] = * S F U ”)

A “ i3s G borrow(t[manic] = ¿ [c n a m c] A s [6 n a m c] = ^ S F C *))

4. Find all custom ers w ho have an accoun t at all branches located in Brooklyn (W e have used
d ivision in relational algebra).

For this exam ple we will use im plication, d en oted by a pointing finger in th e text, but by y
here.

T h e formula P =» Q m eans p im plies Q, or, if p is true, th en Q m ust be true.

{ t | 3b E 6orrffu;(t[O T arnc] = s[cnamc] A s[& nam c] = KS F U W

A 3u £ c u f ito m c r (u [i;n a m c] = & [cnam c] A t[cr:£ty] = u [c c i t y])))

In English: th e set o f all cnam e tuples f su ch that for all tuples u in th e branch relation, if
the value o f u o n attribute bcity is Brooklyn, th en the custom er has an accou n t at th e branch
w hose nam e appears in the bnam e attribute o f Tl.

D iv ision is d ifficult to understand. T h in k it through carefully.

3 . 1 4 S t r u c t u r e d Q u e r y L a n g u a g e

Q ueries are built in a relational database using Structured Q uery Language, or SQ L . Oust in
case you are w ondering, som e spell it out, and others say th e word sequel, h ere w e h ave used
the latter S Q L is th e standard language for relational databases and in clu d es th e capability
o f m anipulating b o th th e structure o f a database and its data. In its m ust corm non form, SQ L

Relational Database

is used to create a sim ple SELECT query. W ith ou t getting in to all th e details now , suffice it
to say that if you w ill be doing any serious work w ith databases, you re going to n eed to learn
SQ L .

Let us take th e earlier exam ple and build a query to look at custom er orders. H ere is th e SQ L
for it:

T h at w asn ’t too tough. Lets look in a little m ore detail. T h is query starts w ith th e SELECT
keyword. M ost o f th e queries you will be building will be SELECT queries. SELECT simply m eans
that w e w ish to "select" records, or retrieve records from the tables. Follow ing th e SELECT
keyword is th e list o f fields. N ex t com es th e FR O M keyword. T h is is used to indicate where
the data is com in g from. In this case, its com in g from the C ustom ers table and the O rders table.
T h e key to this query is the IN N E R JO IN . T h ere are two basic types o f joins w hich can be
d one b etw een tables: inner joins and outer joins. A n inner join will return records for w hich
only the m atch in g fields in both tables are equal. A n outer join will return all the records from
on e table, and only the m atching records from th e other table. O u ter joins are further d ivided
in to left joins and right joins. T h e left or right specifies w hich side o f th e jo in returns all records.
T h e balance o f th e exam ple query specifies w h ich fields are used to jo in th e table. In this case
we are m atch in g th e C ustID field from C ustom ers to the O rdC ustID field (the foreign key)
in O rders.

O n e th in g that sh ould be n oted is that th is is Jet SQ L. Each R D B M S has its ow n particular
d ialect o f SQ L , just as V isual Basic is derived from som e original B A S IC language som ew here,
Jet S Q L is a variation o f S Q L particular to M icrosoft’s Jet database en g in e. For a com plete
descrip tion o f th e features o f Jet SQ L, search th e V B help files for th e topics “Jet S Q L ” and
“reserved word, Jet”.

3 . 1 5 M a i n t a i n i n g I n t e g r i t y

M ainta in ing database integrity in volves ensuring data in the database is accurate. T h is applies
to cases w here redundancy appears and also w here it does n ot. C entralised con tro l of the
database ca n h elp in avoid ing this problem , insofar as it can be avoided - by perm itting th e
D B A to d o value range ch ecks w h enever any update operation is attem pted.

D ata integrity is ev e n m ore im portant in a m ulti-user database system b ecau se the data is shared,
for w ith o u t appropriate controls it w ould be possible for on e user to update th e database
incorrectly w h ich cou ld cause problem s for other users. It is w orth n o tin g that m ost com m ercial
products u sed to be som ew hat w eak in their support for integrity controls. M ore recently how ever
this is ch an gin g w ith m ore recent versions o f D B M S products, O R A C L E V 7 for exam ple, giving
m ore and m ore support. T h is is a con seq u en ce o f th e standardisation o f S Q L w here SQ L 2 does
support certa in types o f integrity.

3 . 1 6 D e f i n i n g D a t a I n t e g r i t y

D ata integrity m eans that data rem ains stable, secure, and accurate. It is m ainta in ed by internal
constrain ts know n as integrity rules that are invisib le to users.

1 14 Database Management Systems

In this section , we will discuss types o f data integrity, the m ethod s available to protect data,
and look at a few scenarios w here you m ight apply data integrity rules.
A s a database developer, protecting th e data in th e database is o n e o f your m ost im portant
resp onsib ilities, perhaps th e m ost im portant. T h e current g en era tion o f database en g in es,
in clu d ing Jet, provide a powerful array o f tools to assist you in m aking sure th e data in your
database is accurate and con sistent. A lth o u g h n o am ount o f program m ing can prevent every
type o f error that cou ld be introduced, you should use the tools available to you to do w hatever
you can to guarantee the validity o f the data.

T h e types o f data integrity can be broken dow n in to four basic areas:

• Entity Integrity - N o duplicate rows.

• D om ain Integrity - T h e values in any given co lum n fall w ith in an accep ted range.

• R eferential Integrity - Foreign key values point to valid rows in th e referenced table.

• U ser-d efin ed Integrity - T h e data com plies w ith applicable business rules.

3 . 1 6 . 1 I n t e g r i t y R u l e s

T h e relation al m od el uses in tegrity rules to create database tables th at are accurate and
con sisten t. A lth o u g h data integrity is o ften m aintained by building constrain ts in to the application
programs, m any developers apply these constraints at the m odelin g level, requiring less work
from the program itself. Integrity rules can be applied to m odels in tw o ways:

• By building tables that store inform ation in only on e place.

T his m eth od ensures that changes in data are autom atically updated across the system and
will n o t be redundant.

• By using norm alisation tech n iq u es to enforce constraints w ith dom ains and keys.

T h e four types o f integrity rules used in data m odeling are:

A s described above, som e o f th ese rules are built or defined in th e actual m odelin g structure,
w hile others ca n be specified in a D B M S application su ch as A ccess . H ow ever, n ot all D B M S
applications h and le integrity rules the sam e way. Follow ing are th e d efin itions o f th e various
types o f in tegrity rules and how they m ight be enforced in a D B M S application.

3 . 1 6 . 2 R e l a t i o n a l I n t e g r i t y R u l e s

T h ere are tw o integrity rules associated w ith th e relational m odel:

• Entity Integrity

• R eferen tia l Integrity

T h ese tw o rules are general rules w h ich apply to every database that claim s to conform to the
relational m odel prescription and h ave to do respectively w ith primary keys and foreign keys.
T h e rules refer to database states. T h ere is n oth in g solid said about h ow to avoid incorrect
database states and m any com m ercial D B M S support stopping th e ex ecu tio n o f D B updates
w hich w ould lead to. v io lations o f th ese states.

Relational Database

3 . 1 6 . 3 R e f e r e n t i a l I n t e g r i t y

T h e referential integrity rule for the relational m odel states that if base relation R2 in clu d es
a foreign key FK m atch in g th e primary key PK o f som e base relation R1 th en every va lu e o f
FK in R2 m ust

(a) Be equal to th e value o f PK in som e tuple o f R l; or

(b) Be w holly n u ll i.e . each attribute in that FK m ust be null.

Referential integrity states that a given n o n n u ll foreign key value m ust h ave a m atchin g primary
key value som ew here in the referenced relation. For exam ple, w h en adding a row to a relation
con ta in in g a foreign key, th e relation con ta in in g the referenced primary key m ust h ave a
m atchin g value. In addition, w h en a relation con ta in ing a primary key references a relation
w ith a foreign key, primary key values ca n n o t be changed or d eleted in th e primary key relation.
T h is w ou ld ca u se th e foreign key va lu e to b e orphaned, d estroy in g referen tia l in tegrity .
M icrosoft A ccess addresses referential integrity by restrictions or cascades. By specifying ’’Enforce
R eferential Integrity” in A ccess, d eletions or changes to primary key records con ta in ing foreign
key references are disallow ed, w hile design ating “C ascad es” autom atically updates d eletion s
or ch an ges.

R eferential integrity can be autom atically set in A ccess in th e follow ing screen:

Fig. 3 .23

Let us con sid er w hat happens w h en you start m anipulating th e records in volved in th e order
entry system . You can ed it the custom er inform ation at will w ithou t any ill effects, but w hat
w ould h ap p en if you n eed ed to d elete a custom er? If the custom er has orders, the orders will
be orphaned. Clearly you ca n ’t h ave an order placed by a n o n -ex isten t custom er, so you m ust
h ave a m ean s in place to enforce that for each order, there is a corresponding custom er. T h is
is the basis o f en forcing referential integrity. T h ere are tw o ways that you can enforce the validity
o f the data in this situation . O n e is by cascad ing d eletions through th e related tables; th e other
is by p reventin g d eletion s w h en related records exist.

1 1 6 Database Management Systems

D atabase applications h ave several ch oices available for enforcing referential integrity, but if
possible, you sh ou ld let th e database engine d o its job^and handle this for you. T h e latest
ad vanced database en g in es allow you to use declarative referential integrity. Y ou specify a
relation sh ip b e tw e en tables at d esign tim e, in d ica tin g if updates and d e le te s w ill cascad e
through related tables. If cascading updates are enabled , changes to th e primary key in a table
are propagated through related tables. If cascading d eletes are enabled, d eletions from a table
are propagated through related tables.

Looking again at our order entry system , if cascad ing updates are enabled , a ch an ge to the
C ustID for a C ustom ers table record w ould change all o f th e related O rdC u stID valu es in the
Orders table. I f cascad ing d eletes are enabled, d eletin g a record from C ustom ers w ould delete
any related records in th e O rders table. In contrast, if cascading updates or d eletes are n ot
enabled, you w ould be prevented from changing th e primary key or d eletin g a record from
C ustom ers if any related records exist in the Orders table.

M oreover, k eep in m ind that i f you have enforced referential integrity in th e relationship
b etw een O rders and O rderD etails, this relationship can also h ave an effect o n your ability to
m anage records in C ustom ers. Just as you ca n ’t d ele te a custom er w ith orders, n eith er can you
d elete an order w ith detail item s. T h e result is passed along as far as necessary. If you cascade
d eletes from C ustom ers to Orders, but n o t from O rders to O rderD etails, you w ill be p revented
from d e le tin g a record in C ustom ers if there are any O rders records w h ich h a v e related
O rderD eta ils records.

Before you go ahead and enab le cascading d eletes o n all your relationships, keep in m ind that
this can be a dangerous practice in som e situations. Let us say you h ave a table ca lled States,
w h ich lists th e U .S .P .S tw o letter state abbreviation for each o f th e states in th e country, along
w ith th e full n am e o f the state. Y ou use this table as a lookup table and to enforce th e validity
o f th e state en tered in th e C ustom ers table. If you d efine a relationship b etw een th e S tates
table and th e C ustom ers table w ith cascading d eletes enabled , th en d ele te a record from States,
you will d e le te all C ustom ers table records w here th e custom er is located in that state. In m ost
cases, I have c h o se n to le t my applications h and le cascad ing d eletes. T h is gives m e a bit o f
a buffer against errors in th e application and helps to p revent th e loss o f data. T h e database
engine w ill p reven t d eletion s if related records ex ist, forcing m e to accou n t for th ose records
exp lic itly .

Foreign key va lu es point to valid rows in the referenced table. A foreign key is a va lu e in one
table that references, or p oints to, a related row in an oth er table. I t s absolutely im perative that
referential in tegrity constrain ts be enforced. W h ile it is possible (likely, in fact) th a t foreign
key values m ay be null, they sh ou ld n ever be invalid . If a foreign key is en tered , it m ust reference
a valid row in th e related table. If you allow u nenforced references to exist, you are in v iting
chaos in your data. R eferential or relational integrity is really a special form o f d om ain integrity.
T h e dom ain o f a foreign key value is all o f th e valid primary key va lu es in th e related table.

D ep en d in g o n th e database en gin e you are using, you m ay h ave several ch o ices available for
how and in w hat m anner referential integrity con stra in ts will be en forced . M any database
engines (inclu din g Jet) allow you to use D eclarative R eferential Integrity rather th a n triggers

Relational Database

or application cod e to enforce constraints. W ith this approach, you define a relationship b etw een
the colum ns in tw o tables and the database engine enforces th e constrain t for inserts, updates,
and d ele tes .

A ssum ing a on e-to-m an y relationship, h ere are the constraints w h ich w ill be im posed:

• W h en a row is inserted on th e m any side, a foreign key that is en tered (poin ting to a
row on the on e side) m ust reference a valid row.

• If th e foreign key is updated o n th e m any side, the n ew value m ust point to a valid row
on th e m any side.

• A row o n th e on e side can n ot be d eleted if related rows ex ist o n th e m any side.

• T h e primary key from the on e side can n ot be updated if related rows ex ist o n th e m any
sid e .

Som e database en gin es also allow you to specify how to h and le changes to the o n e side o f th e
relationship:

Cascading Updates
If cascad ing updates are specified, a ch an ge to the primary key o n the on e side o f a relationship
will be propogated through related rows o n the m any side so that all foreign keys w h ich point
to the row o n th e on e side are updated.

Cascading Deletes
If cascad ing d eletes are specified, d eletin g a row on th e on e side w ill d e le te any related rows
on the m any side.

M icrosoft’s Jet en gin e allows you to specifiy either cascading updates, deletes, or both.

U se cau tion w h en specifying cascad ing d eletes. T his can be a dangerous practice if you are
using a look up table to enforce a dom ain . C onsider w hat w ould happen if you h ad a table o f
several th ou san d nam es and address related to a table o f th e 5 0 U .S . states (using th e table
o f states to enforce that the state en tered in the address is valid), th en d eleted California from
the table o f states. If cascading d eletes w ere requested, you w ould d elete n ot only th e California
row from th e states table, but also d e le te all rows from th e nam e and address table in the state
o f C alifornia.

A lso n o te that if you are using som e type o f autonum bering co lu m n as a primary key, there
is generally n o point in specifying cascad ing updates, sin ce this type o f co lum n typically ca n ’t
be u pd ated anyway.

T h is applies to b o th Jet C oun ter fields and M S SQ L Server ID E N T IT Y colum ns.

3 . 1 6 . 4 E n t i t y I n t e g r i t y

W h eth er th e primary key is sim ple or com posite, en tity integrity states that n o valu e in the
primary key field can be null. N u ll va lu es are defined as “em pty or con ta in in g n o va lu e ,” as
opposed to "0." S in ce primary key co lu m n values m ust be u nduplicated in order to determ ine
a un iq ue record, a null primary key va lu e m akes n o id en tification and returns n o corresponding
value. D B M S products su ch as A ccess autom atically enforce entity integrity by prohibiting null
values in primary key fields.

Entity integrity can be autom atically set in A ccess in th e follow ing screen:

118 Database Management Systems

Fig. 3.23:

3 . 1 6 . 5 D o m a i n I n t e g r i t y

D om ain integrity ensures that the values in colum ns o f a relation are legal according to the
physical and logical dom ain defin itions. T h ese dom ain descriptions are d efined in th e D BM S
application. For in stan ce, th e S tu d en tID attribute dom ains m ight be:

Physical: data type “n um eric”; len gth “4 characters”

Logical: “the range o f num bers b etw een 1000 and 4 9 9 9 ”

Therefore, th e field w ould only accep t input o f a four-digit num ber b etw een 1000 and 4999 .

3 . 1 6 . 6 E n t i t y I n t e g r i t y

T h is sim ply m ean s that in any g iven table, every row is unique. In a properly norm alized,
relational database, it is o f particular im portance to avoid duplicate rows in a table because
users will exp ect that w h en a row is updated, there are n o other rows that con ta in th e sam e
data. If there are duplicate rows, a user may update on e o f several dup licates and ex p ect that
the data has b een updated for all instances, w h en in fact there are duplicates elsew h ere that
have n ot b een updated. T h is will lead to in con sisten cies in th e data.

Entity integrity is norm ally enforced through the use o f a primary key or u niq ue in dex . H ow ever,
it may at tim es be possible to h ave a unique primary key for a table and still h ave duplicate
data. For exam ple, if you h ave a table o f nam e and address inform ation, you m ay enter a row
for the nam e “R obert S m ith ” w hile an oth er user enter a row for th e sam e in dividual but enters
the nam e as “B ob S m ith ”. N o form o f primary key or unique in d ex w ould be able to trap this

Relational Database 119

type o f violation. The only solution here is to provide the user a means o f performing a search
for existing data before new rows are created. (Don’t be fooled in to th inking that you can get
away w ith putting a unique index on a combination of first, middle, and last names to avoid
duplicates or your design w ill collapse when you need to enter rows for two people named John
David Smith.) A nother method o f finding this type o f situation before the data is entered is
by using a “soft” search algorithm, such as a Soundex search.

Soundex is an algorithm that w ill produce a code which describes a phonetic equivalent o f
a word. Soundex codes are widely used w ith name searches because they w ill detect matches
even i f names are misspelled. Microsoft SQL Server comes w ith a bu ilt-in function to determine
the Soundex code for a word. You can also build your own i f the database engine you are using
does not provide one. The algorithum is publicly available almost everywhere. A search of the
Web for the keyword “Soundex” should produce the algorith w ith in the first few matches.

In case o f Domain Integrity:
• The values in any given column fa ll w ith in an accepted range.
• I t is important to make sure that the data entered in to a table is not only correct, but

appropriate for the columns it is entered into. The validity o f a domain may be as broad
as specifying only a data type (text, numeric, etc.) or as narrow as specifying just a few
available values. D ifferent database engines w ill have varying means o f enforcing the
valid ity o f the domain o f a column, but most w ill permit the entry o f at least a simple
Boolean expression that must be True for the value in a column to be accepted (Jet calls
this a "Validation Rule"). I f the range o f acceptable values is large or changes frequently,
you can also use a lookup table o f valid entries and define a referential integrity constraint
between the column and the lookup table. A lthough this approach is more complex to
implement, i t allows you to modify the domain w ithou t changing the table design.
(Changing the table design often requires that you have exclusive access to the table
- something which can be nearly impossible w ith a production database in use by even
a modest number o f users.)

In addition to single column rules, the domain o f an entry may be dependent on two or more
columns in a table. For example, the range o f valid entries for a sub-category column may be
dependent on the value entered in an associated category column. Unfortunately, it can be
d ifficu lt or impossible to express this type o f rule as a simple Boolean expression. I f you are
fortunate enough to be working w ith a database engine which provides the capability o f writing
insert, update and delete triggers you can code complex logic to handle this type o f validation.

Unfortunately, Jet does not provide the capability o f w riting trigger code for data events. I f
you need to force some code to run when a row is inserted, updated, or deleted, you w ill need
to go through a few hoops to do it. One method that we have applied is to revoke all permissions
except Read on the table, then write functions to insert, update, or delete rows which use either
an owner access query or a priviledged workspace to change the data.

120 Database Management Systems

Let’s look at some examples o f columns which could have domain integrity rules applied:

Column Data Type Domain

Social Security Number Text In the format xxx-xx-xxxx, where x is a number from 0 to 9.
I tend to use text rather than numeric columns for formatted data
such as this even if the value contains only numbers. This not only
avoids the possibility of performing mathematical operations on the
data, but saves the trouble of formatting it each time you need to
present it if you save the data with the formatting in the column.

GradeLevel Text Exists in the following list: Freshman, Sophmore, Junior, Senior.
This type of list is probably stable enough that a “hardcoded” list
of values is sufficient.

Denomination Text Exists in the following list: Catholic, Episcopalian, Lutheran,
Methodist, etc.
This type of list is probably long enough and dynamic enough that
it would be better handled using a lookup table of valid entries. To
do this, you would need to create a table that holds a unique list
of valid denominations and define a relationship between the lookup
table and the Denomination column.

Insurer Text I f the Insured column is True, then Insurer is not null.
This type of multi-column validation typically can be defined at the
table level with most database engines. W ith Jet, for example, the
expression might be:
I f Insured Then Not Is Null (Insurer)
Where Insured is a Boolean column which cannot be null.

Salary Numeric Falls within the range defined by the job title.

Unless you have trigger capability, this can be d ifficu lt to implement. A workaround is to use
a lookup table o f valid salaries by job title and a m ultiple-field relationship between the table
containing the salary and the lookup table.

One thing to remember when working w ith domain integrity rules is that you not only need
to understand the design o f the database, you also need to understand the type o f expected
data and the business rules which apply to it. In many cases, you w ill have several choices
available to you for the manner in which you implement a rule.

Data Type

Simple data type rules, such as “Value is numeric” should always be defined by specifying the
appropriate data type for the column when you create it. Remember when working w ith numeric
values to specify the appropriate type o f number. In most cases, you w ill have a choice o f whole
number ranges (byte, integer, long integer), floating point (single and double precision), and
financial. Be sure to use a financial data type (money, currency, etc.) when working w ith
financial data. M ost database engines use special data formats to provide greater consistency
and accuracy than the equivalent floating point data type.

Relational Database 121

Form atted Data

For columns such as social security numbers, phone numbers, and other values which can be
guaranteed to be in a fixed format, it is better to use a formatting rule and store the data as
text. In general, you should prefer to use text data types for formatted data even i f the values
are all numerals. W hile you can use a numeric data type and perhaps save a few bytes o f storage,
you w ill need to deal w ith formatting issues each time you present the data. Additionally, by
storing the data as text, you can allow the database engine (rather than your application) to
enforce that the data is entered in the correct format.

Note: I f you are building an application for international use or which contains international
data, be sure to provide flexib ility in the rules to account for the locality. Values such
as phone numbers, postal codes, etc., vary from country to country.

N u lla b ility

This can nearly always be defined as a Boolean expression. A n exception would be i f the
nullability o f a column is defined by the value in another column. In this case, the possible
range o f values for the second column would determine i f you can use a simple expression or
would need to define a lookup table.

Value L is t

Unless we have a very high degree o f certainty that the list w ill not change, W e w ill use a
lookup table. Examples o f lists which could be "hardcoded" would be items such as m ilitary
rank, states or provinces w ith in the U.S. and Canada, school grade level, etc. I f there is a
possibility that the list is or could easily become dynamic or excessively long, you could prefer
to use a lookup table and a referential in tegrity constraint. Keep in m ind that data which appears
stable when you begin to build a design could easily become dynamic i f the business rules
change.

Remember that whenever possible, you should let the database engine do the job o f enforcing
the integrity o f a domain.

H o w d o m a in s a re d e s c r ib e d in M s -A c c e s s

Physical and logical attribute domains can be described in M icrosoft Access DBMS under “Field
Properties” and “Data Type.”

122 Database Management Systems

3 . 1 6 . 7 U s e r - d e f in e d I n t e g r i t y

The data complies w ith applicable business rules. User-defined integrity is a k ind o f "catch
all" for rules which don’t f it neatly in to one o f the other categories. A lthough all o f the other
types o f data integrity can be used to enforce business rules, all business rules may not be able
to be enforced using entity, domain, and referential integrity. The types o f rules that apply w ill
o f course vary by application. I f possible, you should take advantage o f the database engine
to apply whatever constraints it is capable of, but some may need to be enforced using the
application code.

A textbook example o f a business rule which must be enforced is a funds transfer in a banking
application. I f a customer wishes to transfer funds from a savings account to a checking account,
you must deduct the w ithdrawl from the savings account and add the deposit to the checking
account. I f you successfully record the w ithdrawl w ithout recording the deposit, the customer
w ill have “ lost” the amount (and not be pleased). I f you record the deposit w ithou t the
withdrawl, the customer w ill get a “ free” deposit (and the bank w ill be unhappy). To enforce
this type o f rule, you w ill need to use a Transaction in your application code.

Users can define integrity rules according to business policies. For example, the fact that “ a
student must register for 1996 Fall Quarter on or before September 16, 1996” is a business policy
o f Mercer. Some DBMS products allow the defin ition o f user-defined rules.

Relational Database 123

Some types o f user-defined integrity can be set in Access in the following screen:

Referential Integrity
O ften we wish to ensure that a value appearing in a relation for a given set o f attributes also
appears for another set o f attributes in another relation. This is called referential integrity.

3 . 1 7 I n t e g r i t y C o n s t r a i n t s

1. Integrity constraints provide a way o f ensuring that changes made to the database by
authorized users do not result in a loss o f data consistency.

2. We saw a form of integrity constraint w ith E-R models:
• key declarations: stipulation that certain attributes form a candidate key for the entity

set.
• form o f a relationship: mapping cardinalities 1- 1, 1-many and many-many.

3. A n integrity constraint can be any arbitrary predicate applied to the database.
4. They may be costly to evaluate, so we w ill only consider integrity constraints that can be

tested w ith m inimal overhead.

3 . 1 7 . 1 D o m a in C o n s t r a in t s

1. A domain o f possible values should be associated w ith every attribute. These domain
constraints are the most basic form of integrity constraint. They are easy to test for when
data is entered.

2. Domain types
• A ttributes may have the same domain, e.g. cname and employee- name.
• It is not as clear whether bname and cname domains ought to be distinct.
• A t the implementation level, they are both character strings.
• A t the conceptual level, we do not expect customers to have the same names as branches,

in general.
• Strong typing o f domains allows us to test for values inserted, and whether queries make

sense. Newer systems, particularly object-oriented database systems, offer a rich set o f
domain types that can be extended easily.

3. The check clause in SQL-92 permits domains to be restricted in powerful ways that most
programming language type systems do not permit.
• The check clause permits schema designer to specify a predicate that must be satisfied

by any value assigned to a variable whose type is the domain.

Examples:
c re a te domain hourly-w age num eric (5 ,2)
c o n s tra in t w a g e -va lu e -te s t check (va lue >= 4 .00)

Note that “ constraint wage-value-test” is optional (to give a name to the test to signal which
constraint is violated).

1 24 Database Management Systems

c re a te domain account-number c h a r(10)
c o n s tra in t a c c o u n t-n u m b e r-n u ll- ta s t
check (va lu e n o t n u l l)
c re a te domain a ccoun t-type c h a r(10)
c o n s tra in t a c c o u n t- ty p e - te s t
check(va lue in ("C heck ing ", "S a v in g "))

3 . 1 8 N o r m a l i s a t i o n
Normalisation is a subject that is made overly confusing by most literature on the subject that
we have read. In a nutshell, its simply the process o f d istilling the structure o f the database
to the point where you have removed repeating groups o f data in to separate tables. In our
example, we have normalized customers and orders by creating a separate table for the orders.
I f you look around, you can probably find a list o f books on normalisation theory as long as
your arm. Read on i f you wish, but the bottom line is that you need to design your database
to be efficient and reliable. A t times you may need to sacrifice normalisation to practicality.

Normalisation is essentially the process o f taking a wide table w ith lots o f columns but few rows
and redesigning i t as several narrow tables w ith fewer columns but more rows. A properly
normalized design allows you to use storage space efficiently, eliminate redundant data, reduce
or eliminate inconsistent data, and ease the data maintenence burden. Before looking at the
forms o f normalisation, you need to know one cardinal rule for normalizing a database:

• You must be able to reconstruct the original flat view o f the data.
• I f you violate this rule, you w ill have defeated the purpose o f normalizing the design.

I f you look at the Customers table, you can see that i t isn’t really necessary to include the
CustCity and CustState fields since a US ZIP Code uniquely defines a city and state in the
US. I f you were to fully normalize the Customers table, you would need to remove the CustCity
and CustState fields and create a table, perhaps called ZIPCodes, which included these fields,
then include only the CustZIP field and jo in the Customers table to the ZIPCodes table in order
to reconstruct the fu ll address. The problem w ith this is that you add the overhead o f an
additional jo in in every query where you need to have the fu ll address available.

There aren’t any hard and fast rules for when to stop normalizing a database. You need to make
your own choices based on the practicality o f the data structures and the performance trade
offs involved. I f possible, you should at least try to design the application so that you can
restructure the data to accomodate normalizing or denormalizing the tables.

Building a database structure is a process o f examining the data w hich is useful and necessary
for an application, then breaking i t down in to a relatively simple row and column format. There
are two points to understand about tables and columns that are the essence o f any database:

• Tables store data about an entity

A n entity may be a person, a part in a machine, a book, or any other tangible or intangible
object, but the primary consideration is that a table only contain data about one thing.

• Columns contain the attributes o f the entity

Relational Database 125

Just as a table w ill contain data about a single entity, each column should only contain one
item o f data about that entity. If, for example, you are creating a table o f addresses, there’s
no point in having a single column contain the city, state, and postal code when it is just as
easy to create three columns and record each attribute separately.

One method that is helpful when in itia lly breaking down the data for tables and columns is
to examine the names that are used. I use a plural form of a noun for table names (Authors,
Books, etc.), and a noun or noun and adjective for column names (FirstName, C ity, etc.). I f
you find* that you are coming up w ith names that require the use o f the word “ and” or the
use o f two nouns, i t ’s an indication that you haven’t gone far enough in breaking down the
data. A n exception to this would be a table tha t serves as middle o f a many to many relationship,
such as BookAuthors, etc.

Before continuing on to discuss normalisation, we w ill look at some o f the common flaws in
database designs and the problems they cause. To illustrate these problems, I ’ll use the following
sample table, which I ’l l call simply “Ugly” :

Table 3.1: U g ly

Student Name Advisor Name Course ID1 Course Description 1 Course Instructor Name 1 Course ID2 Course
Description 2 Course Instructor Name 2

Sanjay Sharma Ashu Jain VB1 Intro to Visual Basic Parveen Gupta D A O l Intro to DAO Programming Jatin
Verma

Manish Suri Gaurav Kumar DAOl Intro to DAO Programming Ravi Kalra VBSQL1 Client/Server Programming with
VBSQL Anurag Jain

Karan Joshi Hari Pal API1 API Programming with VB Ajay Verma OOP1 Object Oriented Programming in
VB Akash Tyagi

Mukesh Goel Vinay Khanna VB1 Intro to Visual Basic Aman Kumar API1 API Programming with VB Dev Kohli

Let us look at some o f the problems w ith this structure:

Repeating G roups
The course ID , description, and instructor are repeated for each class. I f a student needs a
th ird class, you need to go back and modify the table design in order to record it. W hile you
could add CourseID3, CourseID4, CourseID5, etc., along w ith the associated description and
instructor fields, no matter how far you take i t there may one day be someone who wants one
more class. Additionally, adding all those fields when most students would never use them is
a waste o f storage.

Inconsisten t Data
Let us say that after entering these rows, you discover that Bruce M cK inney’s course is actually
title “ In tro to Advanced Visual Basic” . In order to reflect this change, you would need to
examine all the rows and change each individually. This introduces the potential for errors
i f one o f the changes is om itted or done incorrectly.

126 Database Management Systems

Delete Anom alies
I f you no longer wished to track Joe Garrick’s In tro to D A O class, you would need to delete
two students, two advisors, and one additional instructor in order to do it. I f you remove the
first two rows o f the table, all o f the data is deleted w ith the reference to the course.
Insert Anom alies
Perhaps the department head wishes to add a new class - le t’s call i t "Advanced D A O
Programming" - but hasn’t yet set up a schedule or even an instructor. W hat would you enter
for the student, advisor, and instructor names?

As you can see, this single flat table has introduced a number o f problems - all o f which can
be solved by normalizing the table design. Do not be misled in to th inking that normalisation
is the answer to all your problems in developing a database design. As you w ill see later, there
may times when i t ’s prudent to denormalize a structure. There’s a variety o f other problems
that can be introduced in to your data as well as an in fin ite variety o f complex business rules
which may need to be applied.

The normal forms defined in relational database theory represent guidelines for record design.
The guidelines corresponding to first through fifth normal forms are presented here, in terms
that do not require an understanding o f relational theory. The design guidelines are meaningful
even i f one is not using a relational database system. We present the guidelines w ithout referring
to the concepts o f the relational model in order to emphasize their generality, and also to make
them easier to understand. O ur presentation conveys an in tu itive sense o f the intended
constraints on record design, although in its inform ality it may be imprecise in some technical
details.

The normalisation rules are designed to prevent update anomalies and data inconsistencies.
W ith respect to performance tradeoffs, these guidelines are biased toward the assumption that
all non- key fields w ill be updated frequently. They tend to penalize retrieval, since data which
may have been retrievable from one record in an unnormalized design may have to be retrieved
from several records in the normalized form. There is no obligation to fu lly normalize all records
when actual performance requirements are taken in to account.

3 . 1 9 B e n e f i t s o f N o r m a l i s a t i o n
Normalisation is a data analysis method used during the design stage o f relational data modeling.
The components o f normalisation are referred to as normal forms, a progressive series o f rules
that can be applied to simplify and refine each relation. Normalisation is not a part o f the
relational model, but a separate concept that can be applied to it.

The goal o f normalisation is to define database tables that can be updated and modified w ith
predictable results. O ften, relations contain problems called anomalies, which can result in data
redundancy and inconsistency. In the 1970s, relational theorists defined and classified these
anomalies and created normal forms to resolve them. In itia lly, Codd classified first, second, and
th ird normal forms; others, such as Boyce/Codd, fourth, and fifth normal forms, were defined
later. First, second, th ird, and fourth normal forms w ill be explored in this text Boyce/Codd
w ill be described briefly.

Relational Database 1 2 7

Designers should be careful not to apply normalisation techniques too soon in modeling, for
instance, in the object modeling stage. Remember, the purpose o f object modeling is to capture
the entities o f a business and their relationships. Subtyping and decomposing these entities
properly w ill eliminate most anomalies early in the design. Normalisation should only be applied
to tables at the relational modeling stage i f further refinement is needed.

The ultimate benefit o f normalisation is data integrity, which can be assured because normal
forms:

• Simplify entities by creating relations w ith one theme;
• Build tables that can be easily joined w ith other tables to produce information;
• Reduce redundant data across relations (since normalisation attempts to store each data

value in only one place.);
• A vo id lost data by requiring that each field contain atomic values and by designating

appropriate primary and foreign keys;
• Reduce modification anomalies, such as deletion, insertion, and update anomalies; and
• Define relation constraints that are a logical consequence o f domains and keys.

3 . 1 9 . 1 E x a m p le o f D e le t io n A n o m a ly

This anomaly occurs when deleting a row in a relation causes the loss o f other im portant
inform ation or creates orphans in another relation.

RELATION = STÜ-ACT

StulD A c t iv ity Fee i

100 Diving 200 ;

; 150 Softball 50 |

175 Racquetball 50 !

200 Softball 50 ;

Deletion o f Student 1001 also deletes the fact that diving costs $200.

3 . 1 9 . 2 E x a m p le o f I n s e r t i o n A n o m a l y

This anomaly occurs when a row cannot be inserted in to a relation w ithout having facts about
another entity.

128 Database Management Systems

RELATION - STÜ-ACT

StalD | A c t iv ity Fee

1001 j D iving 200

1005 j Softball 50 j

1006 !____ i Racquetball 45

1010 I Softball 50

The fact that Swimming costs $25 cannot be added to the table un til a student is enrolled.

3 . 1 9 . 3 E x a m p le o f U p d a t e A n o m a l y

This anomaly occurs when information must be changed in more than one field or relation to
update the database. I f this data is not changed in each location, the relation w ill contain
inconsistent data.

RELATION = STU-BLDG

StuID j Building Rent
100 Russell 1500 '

150 ! Baldw in 1000 !

200 : Russell 1500

250 j M onarch 1200 ;

I f the rent for Russell Building is increased to $1700, the data must be changed in every row
containing Russell.

3 . 1 9 . 4 U s e o f F u n c t i o n a l D e p e n d e n c ie s a n d K e y s in N o r m a l F o r m s

In a database, the value o f one attribute or combination o f attributes is used to look up a value
o f another attribute. Normalisation techniques use functional dependencies and keys to create
the most efficient database structures possible in order to obtain these values.

As previously described, a functional dependency is an association between the columns o f a
relation. For example, consider the following example o f this relation from the student registration
model:

Relational Database 129

RELATIO N = ENROLLED STUDENT

STUDENT ID STUDENT NAME STUDENT Phone

1001 Sapna Jain 011-3318113

1002 Raman Bhardwaj 011-3388026

1003 Sandhya Rajput 011-5146048

Here, one value o f the attribute Student ID can determine a unique value from the attributes
Student Name and/or Student Phone. For example, Student ID 1001 determines that the
Student Name is John Black and the Student Phone is 445-9385. Thus, Student Name and
Student Phone are functionally dependent on Student ID . Another way o f saying this is that
Student ID functionally determines Student Name and Student Phone. Therefore, a given value
o f one attribute w ill always return the same value o f another attribute.

In the above example, Student ID is a determinant and the primary key. This is not always
true. A relation can contain a determinant that does not have unique values because functional
dependency actually addresses how attributes are related. Remember, however, that a primary
key value identifies the values o f an entire row in a relation. Therefore, a primary key attribute
must have unique values.

3 . 1 9 . 5 F u n c t i o n a l D e p e n d e n c y a n d D e t e r m in a n t s

The example o f functional dependency and determinants shown in the text was extremely
simple. The following might provide more insight.

This relation represents a partial schedule of college classes offered for the Fall 1996 Quarter.
However, certain facts must be known about a relation in order to properly identify its functional
dependencies. The context o f this relation is that for Fall 1996 Quarter:

• A class can be offered more than once at a school.
• A class can be offered at more than one school.
• A specific class w ill not be offered at the same school on the same day.

1 ClassIDI School C lsS ta rt C lsEnd C apac ity

IN S Y 311 : Douglas 9/15/96 12/15/96 20

E N G L102 Atlanta 9/13/96 12/13/96 25

IN S Y 4 9 5 : Griffin 9/15/96 12/15/96 ; 15

EN G L102 Douglas 9/15/96 12/15/96 20

EN G L102 Douglas 9/11/96 12/11/96 22

Primary key = ClassID-School

130 Database Management Systems

The functional dependencies in this relation are:
• ClsStart is functionally dependent on ClassID-School (or ClassID- School functionally

determines ClsStart).
• Capacity is functionally dependent on ClassID-School (or ClassID-School functionally

determines Capacity).
• ClsEnd is functionally dependent on ClsStart (or ClsStart functionally determines ClsEnd).

This can be w ritten another way:
C lassID -S choo l -» C ls S ta r t
C lassID -S chool * C apac ity
C ls S ta r t -» ClsEnd

The arrow points from the determinant to the functional dependency.

Functional dependency simplifies the structure o f relations and increases understanding o f user’s
data. The concepts o f functional dependencies, determinants, and primary keys m ight be
confusing un til seen in their application to normal forms.

3 . 1 9 . 6 W h y N o r m a l i s e
Database normalisation can essentially be defined as the practice o f optimizing table structures.
Optim ization is accomplished as a result o f a thorough investigation o f the various pieces o f
data that w ill be stored w ith in the database, in particular concentrating upon how this data
is interrelated. A n analysis o f this data and its corresponding relationships is advantageous
because it can result both in a substantial improvement in the speed in which the tables are
queried, and in decreasing the chance that the database integrity could be compromised due
to tedious maintenance procedures.

Before delving further in to the subject o f db normalisation, allow me to introduce a few terms
that frequently arise when discussing this subject. To better illustrate the meaning o f the
respective terms, we w ill allude to a hypothetical database which contains information about
a school scheduling system.

Thus far the only th ing that we have really learnt about database normalisation is that it provides
for table optim ization through the investigation o f entity relationships. But why is this necessary?
In this section, we w ill elaborate a b it upon why normalisation is necessary when creating
commercial database applications.

Essentially, table optimization is accomplished through the elim ination o f all instances o f data
redundancy and unforeseen scaleability issues.

3 . 2 0 R e d u n d a n c y

Data redundancy is exactly what you th ink it is; the repetition o f data. One obvious drawback
o f data repetition is that it consumes more space and resources than is necessary. Consider the
following table:

Table 3: Poorly D efined Table

Relational Database 131

studentid classname time location professor_id

999-40-9876 Math 148 MWF 11:30 Rm. 432 profl 45

999-43-0987 Physics 113 TR 1:30 Rm. 12 profl 43

999-42-9842 Botany 42 F 12:45 Rm. 9 profl 67

999-41-9832 Matj 148 MWF 11:30 Rm. 432 profl 45

Basically this table is a mapping o f various students to the classes found w ith in the ir schedule.
Seems logical enough, right?

Actually, there are some serious issues w ith the choice to store data in this format. First of
all, assuming that the only in tention o f this table is to create student-class mappings, then there
really is no need to repeatedly store the class time and professor ID. Just th ink that i f there
are 30 students to a class, then the class information would be repeated 30 times over!

Moreover, redundancy introduces the possibility for error. You might have noticed the name
o f the class found in the final row in the table (M atj 148). Given the name o f the class found
in the first row, chances are that M atj 148 should actually be M ath 148! W hile this error is
easily identifiable when just four rows are present in the table, imagine finding this error w ith in
the rows representing the 60,000 enrolled students at my alma mater, The O hio State University.
Chances that you w ill find these errors are unlikely, at best. And the cost o f even attempting
to find them w ill always be high.

3 . 2 1 U n f o r e s e e n S c a l e a b i l i t y I s s u e s

Unforeseen scaleability issues generally arise due to lack o f forethought pertaining to just how
large a database m ight grow. O f course, as a database grows in size, in itia l design decisions
w ill continue to play a greater role in the speed of and resources allocated to this database.
For example, it is typically a very bad idea to lim it the potential for expansion o f the information
that is to be held w ith in the database, even i f there are currently no plans to expand. For
example, structurally lim iting the database to allot space for only three classes per student could
prove deadly i f next year the school board decides to permit all students to schedule three
classes. This also works in the opposite direction; W hat i f the school board subsequently decides
to only allow students to schedule two classes? Have you allowed for adequate flexibility in
the design so as to easily adapt to these new policies?

The remedy to these problems is through the use o f a process known as database normalisation.
A subject o f continued research and debate over the years, several general rules have been
formulated that layout the process one should follow in the quest to normalize a database.

Many o f your databases w ill be small, w ith one or two tables. But as you become braver, tackling
bigger projects, you may start finding that the design o f your tables is proving problematic. The
SQL you write starts to become unwieldy, and data anomalies start to creep in. I t is time to
learn about database normalisation, or the optimization o f tables.

1 32 Database Management Systems

Let us begin by creating a sample set o f data. Imagine we are working on a system to keep
track o f employees working on certain projects.

Project
number

Project
name

Employee
number

Employee
name

Rate
category

Hourly
rate

1023 Madagascar travel site 11 Rajeev Kohli A $60

12 Manoj Malhotra B $50

16 Anil Chawla C $40

1056 Online estate agency 11 Rajeev Kohli A $60

17 Prem Bhardwaj B $50

A problem w ith the above data should immediately be obvious. Tables in relational databases,
which would include most databases you w ill work w ith, are in a simple grid, or table format.
Here, each project has a set o f employees. So we couldn’t even enter the data in to this kind
o f table. A nd i f we tried to use nu ll fields to cater for the fields that have no value, then we
cannot use the project number, or any other field, as a primary key (a primary key is a field,
or list o f fields, that uniquely identify one record). There is not much use in having a table
i f we can’t uniquely identify each record in it. So, our solution is to make sure that each field
has no sets, or repeating groups. Now we can place the data in a table.

employee_project table

Project
number

Project
name

Employee
number

Employee
name

Rate
category

Hourly
rate

1023 Madagascar travel site 11 Rajeev Kohli A $60

1023 Madagascar travel site 12 Manoj Malhotra B $50

1023 Madagascar travel site 16 Anil Chawla C $40

1056 Online estate agency 11 Rajiv Kohli A $60

1056 Online estate agency 17 Prem Bhardwaj B $50

Notice that the project number cannot be a primary key on i t ’s own. I t does not uniquely identify
a row o f data. So, our primary key must be a combination o f project number and employee
number. Together these two fields uniquely identify one row o f data. (Th ink about it. You would
never add the same employee more than once to a project. I f for some reason this could occur,
you would need to add something else to the key to make it unique).

D a ta b a s e N o r m a l is a t io n

Database N orm alisa tion - Part 2

So, now our cjata can go in table format, but there are s till some problems w ith it. W e store
the information tha t code 1023 refers to the Madagascar travel site 3 times! Besides the waste
o f space, there is another serious problem. Look carefully at the data below.

Relational Database

employee p ro jec t table

1 3 3

Project
number

Project
name

Employee
number

Employee
name

Rate
category

Hourly
rate

1023 Madagascar travel site 11 Rajeev Kohli A $60

1023 Madagascar travel site 12 Manoj Malhotra B $50

1023 Madagascat travel site 16 Anil Chawla c $40

1056 Online estate agency 11 Rajeev Kohli A $60

1056 Online estate agency 17 Prem Bhardwaj B $50

Did you notice anything strange in the data above? Madagascar is misspelt in the 3rd record.
Now imagine trying to spot this error in a table w ith thousands o f records! By using the structure
above, the chances o f the data being corrupted increases drastically.

The solution is simply to take out the duplication. W hat we are doing formally is looking for
partial dependencies, ie fields that are dependent on a part o f a key, and not the entire key.
Since both project number and employee number make up the key, we look for fields that are
dependent only on project number, or on employee number.

We identify two fields. Project name is dependent on project number only (employee_number
is irrelevant in determining project name), and the same applies to employee name, hourly rate
and rate category, which are dependent on employee number. So, we take out these fields,
as follows:

em ployee_project table

Project number Employee number

1023 11

1023 12

1023 16

1056 11
1056 17

Clearly we cannot simply take out the data and leave it out o f our database. We take it out,
and put i t in to a new table, consisting o f the field that has the partial dependency, and the
field i t is dependent on. So, we identified the employee name, hourly rate and rate category
as being dependent on employee number. The new table w ill consist o f employee number as
a key, and employee name, rate category and hourly rate, as follows:

134 Database Management Systems

Em ployee tab le

Employee number Employee name Rate category Hourly rate

11 Rajeev Kohli A $60

12 Manoj Malhotra B $50

16 Anil Chawla C $40

17 Prem Bhardwaj B $50

And the same for the project data.

Project table

Project number Project name

1023

1056

Madagascar travel site

Online estate agency

Note the reduction o f duplication. The text “Madagascar travel site” is stored once only, not
for each occurrence o f an employee working on that project. The link is made through the
key, the project number. Obviously there is no way to remove the duplication o f this number
w ithout losing the relation altogether, but it is far more efficient storing a short number
repeatedly, than a large piece of text.

Database N orm alisa tion - Part 3

We are still no t perfect. There is still room for anomalies in the data. Look carefully at the
data below:

Employee table

Employee number Employee name Rate category Hourly rate

11 Rajeev Kohli A $60

12 Manoj Malhotra B $50

16 Anil Chawla c $40

17 Prem Bhardwaj B $40

The problem above is that Monique W illiams has been awarded an hourly rate o f $40, when
she is actually category B, and should be earning $50 (In the case o f this company, the rate
category - hourly rate relationship is fixed. This may not always be the case). Once again we
are storing data redundantly: the hourly rate - rate category relationship is being stored in
its entirety for each employee. The solution, as before, is to remove this excess data in to its
own table. Formally, what we are doing is looking for transitive relationships, or relationships
where a non-key attribute is dependent on another non-key relationship. Hourly rate, while
being in one sense dependent on Employee number (we probably identified this dependency
earlier, when looking for partial dependencies) is actually dependent on Rare category. So,
we remove it, and place it in a new table, w ith its actual key, as follows:

Relational Database

Employee table

Employee number Employee name Rate category

11 Rajeev Kohli A

12 Manoj Malhotra B

16 A n il Chawla C

17 Prem Bhardwaj B

Rate table

Rate category Hourly rate

A $60

B $50

C $40

We have cut down once again. I t is now impossible to mistakenly assume rate category “ B”
is associated w ith an hourly rate o f anything but $50. These relationships are only stored in
once place - our new table, where it can be ensured they are accurate.

Database N orm alisa tion - Part 4
Let us run again through the example we have just done, this time w ithout the data tables
to guide us. A fte r all, when you are designing a system, you usually won’t have test data available
at this stage. The tables were there to show you the consequences o f storing data in unnormalized
tables, but w ithout them we can focus on dependency issues, which is the key to database
normalisation.

In the beginning, the data structure we had was as follows:
• Project number
• Project name
• 1-n Employee numbers (1-n indicates that there are many occurrences o f this field - it

is a repeating group)
• 1-n Employee names
• 1-n Rate categories
• 1-n Hourly rates

So, to begin the normalisation process, we start by moving from zero normal form to 1st normal
form.

T he d e fin itio n o f 1st norm al fo rm
• There are no repeating groups
• A l l the key attributes are defined
• A l l attributes are dependent on the primary key

136 Database Management Systems

So far, we have no keys, and there are repeating groups. So we remove the repeating groups,
and define the primary key, and are left w ith the following:

Employee p ro je c t ta b le
P ro je c t number - p rim a ry key
P ro je c t name
Employee number - p rim a ry key
Employee name
Rate ca te g o ry
H ou rly ra te

This table is in 1st normal form.

Database N orm alisa tion - Part 5

A table is in 2nd normal form i f
• it is in 1st normal form
• it includes no partial dependencies (where an attribute is dependent on only a part o f

a primary key).

So, we go through all the fields. Project name is only dependent on Project number. Employee
name, Rate category and Hourly rate are dependent only on Employee number. So we remove
them, and place these fields in a separate table, w ith the key being that part o f the original
key they are dependent on. So, we are left w ith the following 3 tables:

Employee p ro j e c t ta b le
P ro je c t number - p rim a ry key
Employee number - p rim a ry key

Employee ta b le
Employee number - p rim a ry key
Employee name
Rate ca te g o ry
H o u rly ra te

P ro je c t ta b le
P ro je c t number - p rim a ry key
P ro je c t name

The table is now in 2nd normal form. Is it in 3rd normal form?

Database N orm alisa tion - Part 6

The defin ition o f 3rd normal form
• I t ’s in 2nd normal form
• I t contains no transitive dependencies (where a non-key attribute
• Is dependent on another non-key attribute).

We can narrow our search down to the Employee table, which is the only one w ith more than
one non-key attribute. Employee name is not dependent on either Rate category or Hourly rate,
the same applies to Rate category, but Hourly rate is dependent on Rate category. So, as before,
we remove it, placing i t in i t ’s own table, w ith the attribute i t was dependent on as key, as
follows:

Relational Database 137

Employee p ro je c t ta b le
P ro je c t number - p rim a ry key
Employee number - p rim a ry key

Employee ta b le
Employee number - p rim a ry key
Employee name
Rate Category

Rate ta b le
Rate ca te g o ry - p rim a ry key
H o u rly ra te

P ro je c t ta b le
P ro je c t number - p rim a ry key
P ro je c t name

These tables are all now in 3rd normal form, and ready to be implemented. There are other
normal forms - Boyce-Codd normal form, and 4th normal form, but these are very rarely used
for business applications. In most cases, tables in 3rd normal form are already in these normal
forms anyway.

Database N orm alisa tion - Part 7

Before you rush o ff and start normalizing everything, a word o f warning. No process is better
than good old common sense. Take a look at this example.

Customer ta b le
Number - p rim a ry key
Name
Address
Z ip Code
Town

W hat normal form is this table in? G iving it a quick glance, we see no repeating groups, and
a primary key defined, so it is at least in 1st normal form. There’s only one key, so we needn’t
even look for partial dependencies, so i t is at least in 2nd normal form. How about transitive
dependencies? W ell, it looks like Town m ight be determined by Zip Code. A nd in most parts
o f the world tha t’s usually the case. So we should remove Town, and place it in a separate
table, w ith Zip Code as the key? No! A lthough this table is not technically in the 3rd normal
form, removing this information is not w orth it. Creating more tables increases the load slightly,
slowing processing down. This is often counteracted by the reduction in table sizes, and
redundant data. But in this case, where the town would almost always be referenced as part
o f the address, i t isn’t worth it. Perhaps a company that uses the data to produce regular mailing
lists o f thousands o f customers should normalize fully. I t always comes down to how the data
is going to be used. Normalisation is just a helpful process that usually results in the most efficient
table structure, and not a rule for database design.

3 . 2 2 F o r m s o f N o r m a l i s a t i o n

Six normal forms have been formally defined. As a rule, each normal form builds on the one
before. W h ile it is important to normalize relations to the highest form possible, the designer
should strive at least for th ird normal form when building the relational model.

138 Database Management Systems

The process o f normalisation involves elim inating problems in a relation by decomposing it in to
two or more separate relations. This decomposition does not result in any loss o f information.
O n the contrary, often additional information is provided in building new tables.

W hen using norm alisation techniques, understanding the context (or meaning) and the
environment o f each relation and its attributes is essential. Otherwise, it m ight be difficu lt to
determine whether a relation meets the requirements for a specific normal form. A different
perspective o f a particular attribute can change dependency properties as the normal form is
applied. For example, whether a student can have more than one major can change how a
relation is normalized. (This is illustrated in the description o f the first normal form.)

Another im portant consideration is whether normalisation is always necessary. Normalisation
techniques are guidelines to be used for checking the usefulness and accuracy o f relational
models. But the ultimate purpose o f modeling is to create a well-structured, efficient database.
Just as redundant data can slow the performance o f the database, so can an overabundance
o f tables. W hen analyzing the relational model, use common sense. Relations should definitely
be normalized i f necessary, but consider the trade-offs.

Relational database theorists have divided normalisation in to several rules called normal forms.

3 .2 2 .1 F i r s t N o r m a l F o r m (I N F)

A relation is considered to be in IN F only i f i t meets the requirements o f a relation and each
column contains atomic (single) values. A n attribute that contains multiple values in one record
can result in lost data. However, a table in IN F often has problems tha t can result in
modification anomalies. For most models, relations should be tested beyond IN F .

Example of 1st normal form
Consider the relation STU D EN T where a student can have only one major. S tuID is the primary
key. Since it has a simple primary key, this relation is also in 2NF.

To be in INF, the table o f data must meet the requirements o f a relation.

RELATION = STUDENT

stuiD ; S tuN am e M a jo r

1001 ; Jones Accounting :

1005 1 Phillips Science

1006 i Stevens A r t

1010 I Barber Business

Fig. 3.29

Consider the same relation in a different context: A student can have more than one major.
Since a student can have more than one major, the primary key must be S tuID -M ajor. W ith
a composite primary key, the relation must be checked for 2NF.

Relational Database 1 3 9

R E L A T IO N = S T U D E N T S tu ID S tu N am e M a jo r

S tu ID S tuN am e M a jo r

1001 Jones Business

1001 Jones Accounting

1005 Phillips Science

1006 : Stevens A r t

1010 Barber English

1010 Barber Business

Fig. 3.30

Primary Key = StuID-M ajor

IN F D e fin itio n

By default, all tables in a relational database are in IN F as the underlying domain(s) contain
atomic or simple, nidivisible values only. The values o f any attribute in a tuple must be a single
value, not a set, from the domain o f that attribute. This disallows relations w ith in relations
or nested relations.

Another Example o f First Normal Form: N o repeating groups.

W hat we are looking for is repeating groups o f columns. The purpose is to reduce the w idth
o f the table. This is done by taking the groups of columns and making a new table where the
table is defined using the columns that repeat. Rather than having additional columns, the
resulting table has more rows.

OK, so what is a repeating group? Let us look at the columns in our sample table Ugly:
• StudentName
• AdvisorName
• C ourse lD l

• CourseDescription 1
• CourselnstructorName 1
• CourseID2
• CourseDescription2
• CourseInstructorName2

In the example, columns for course information have been duplicated to allow the student to
take two courses. The problem occurs when the student wants to take three course or more.
W hile you could go ahead and add CourseID3, etc., to the table, the proper solution is to remove
the repeating group o f columns to another table.

I f you have a set o f columns in a table w ith field names that end in numbers x x l, xx2, xx3,
etc., i t ’s a clear warning signal that you have repeating groups in the table. A common exception

140 Database Management Systems

to this would be a table o f street addresses, where you m ight have AddressLinel, AddressLine2,
etc., rather than using a single field for multiple line addresses.

Let us revisit the design to handle the repeating groups:

Table 3.2: F irs t N orm al Form

Students
StudentID

AdvisorName

SCCourselD

Student Courses
StudentName

SCStudentID

SCCourseDescription

SCCourselns tructorN ame

The primary keys are shown in italics.

We have divided the tables so that the student can now take as many courses as he wants
by removing the course information from the original table and creating two tables: one for
the student inform ation and one for the course list. The repeating group o f columns in the
original table is gone, but we can s till reconstruct the original table using the StudentID and
SCStudentID columns from the two new tables. The new field SCStudentID is a foreign key
to the Students table.

3 . 2 2 . 2 S e c o n d N o r m a l F o r m (2 N F)

A relation can be in 2NF only i f it is in IN F and every nonkey attribute is fully dependent
on the primary key. 2NF only applies to relations in IN F that have composite primary keys.
IN F relations w ith simple primary keys are automatically in 2NF (there can be no partial
dependence on a simple primary key). However, in a IN F relation that has a composite primary
key, each nonkey attribute must depend on the entire primary key, not just one or two columns,
to meet 2NF requirements.

To take a relation from IN F to 2NF, it should be decomposed in to two or more tables. Each
table should contain an appropriate primary key and attributes that apply to that key.

Consider the relation A C T IV IT Y where a student can take more than one activity and an
activity can have only one fee. To be in 2NF the relation the RDBMS must be in IN F , and
nonkey attributes cannot be partially dependent on the primary key.

^m T O N -S T D -A C T RELATION - ACT-FEE
StuID Activity Activity] Fee
1001 Diving Diving 150
1005 Softball Softball {50
1005 Swimming Swimming j 25
1006 Swimming Primary key - Activity
1010 Softball
Pruuxy key = StuID- Activity

Fig. 3.31

Relational Database 141

Fee is the only nonkey attribute. A partial dependency occurs because Fee is actually functionally
determined by A ctiv ity , not by StuID. Consider the possible anomalies:

• I f line 1 were deleted, the fact that D iving costs $150 would be lost (deletion).
• The activity “ Basketball” at $45 could not be added unless a student enrolled (insertion).
• I f the cost o f Softball changed to $60, each entry o f Softball would have to be changed

(update).

O th e r considerations: The relation has more than one theme and contains redundant data.

So lution:

Reevaluate each relation considering the anomalies above. Decomposing the relations in to two
separate relations removes anomalies, reduces redundancy, and allows easy updates.

! RELATION= STU-ACT RELATION = ACT-FEE
StuID Activity Activity Fee
1001 Diving Diving 150
1005 Softball Softball 50
1005 Swimming Swimming 25
1006
1010
Primary key*

Swimming
Softball

StuID-Activity

| Primary key = Activity

Fig. 3.32

2N F D e fin itio n

According to Date’s book, a relation R is in 2NF i f it is in IN F and every nonkey attribute
is fully functionally dependent on the primary key of R.

A n alternative and better defin ition of 2NF is that a relation R is in 2NF i f it is in IN F and
every non-prime attribute o f R is fully functionally dependent on each candidate key o f R. I f
a relation is not in 2NF it can be normalised in to a number o f 2NF relations using a reversible
nonloss decomposition which is equivalent.

A n o th e r Example o f Second N orm a l Form

No nonkey attributes depend on a portion o f the primary key.

Second Norm al Form really only applies to tables where the primary key is defined by two or
more columns. The essense is that i f there are columns which can be identified by only part
o f the primary key, they need to be in the ir own table.

Let us look at the sample tables for an example. In the StudentCourses table, the primary key
is the combination o f SCStudentID and SCCourselD. However, the table also contains the
SCCourseDescription and the SCCourselnstructorName columns. These columns are only
dependent on the SCCourselD column. In other words, the description and instructor’s name
w ill be the same regardless o f the student. How do we resolve this problem? Let us revisit the
sample tables.

142 Database Management Systems

T a b le 3 .3 : Second N o rm a l F o rm

Students Student Courses Courses

StudentID

StudentName

AdvisorName

SCStudentID

SCCourselD

CourselD

CourseDescription

Courselns true torN ame

W hat we have done is to remove the details o f the course information to their own table Courses.
The relationship between students and courses has at last revealed itself to be a many-to- many
relationship. Each student can take many courses and each course can have many students.
The StudentCourses table now contains only the two foreign keys to Students and Courses.

We are almost done normalizing this small sample, but before taking the last step, lets add
a little more detail to the sample tables to make them look something more like the real world.

Table 3.4: D e ta il Colum ns Added

Students Student Courses Courses

StudentID SCStudentID CourselD
StudentName SCCourselD CourseDescription
StudentPhone Courselns tructorN ame
StudentAddress CourselnstructorPhone
StudentCity
StudentS tate
StudentZIP
AdvisorName
AdvisorPhone

3 . 2 2 . 3 T h i r d N o r m a l F o r m (3 N F)

A relation is in 3NF only i f i t is in 2NF and has no transitive dependencies. In other words,
all nonkey attributes must be mutually independent (not dependent on any other nonkey
attribute). I f one nonkey attribute is dependent on another, the relation possibly contains data
about more than one theme, contradicting the normalisation’s “one theme per table” concept.
Therefore, nonkey attributes should be functionally determined by the primary key only.

To take a relation from 2NF to 3NF, it should be decomposed in to two or more tables w ith
each containing only applicable attributes, or the conflicting attribute should be placed in a
more appropriate table.

Consider the follow ing relation where a student can live in only one building and a building
can charge only one rental rate.

T o be in 3N F the re la tion :
• M ust be in 2NF; and
• Can have no transitive dependencies between nonkey attributes.

Relational Database 1 4 3

3NF D e fin itio n

According to Date’s book, a relation R is in 3NF if:
• I t is in 2NF and every nonkey attribute is non-transitive dependent on the primary key.
• A ll the nonkey attributes are mutually independent and fully functionally dependent on

the primary key.
• This defin ition can lead to inconsistencies in the question o f whether a BCNF relation

is in 3NF and 2NF also. By (b) above the nonkey attributes and not mutually exclusive.
• Thus an alternative definition o f 3NF is preferred.

3NF A lte rna tive D e fin itio n

In this defin ition o f 3NF, a relation R is in 3NF i f it is in 2NF and none o f the non prime
attributes are transitiv ily dependent on any candidate keys.

This defin ition o f 3NF is better than the other one as i t does not assume that there is only
one candidate key. However, there are s till some inadequacies w ith this form of 3NF which
led to the defh o f BCNF.

3NF M u tu a l Independence

M utual independence between attributes in the defin ition o f 3NF means that none o f the
attributes are functionally dependent on any o f the others.

Another Example o f a Third Normal Form
• No attributes depend on other nonkey attributes.

This means that all the columns in the table contain data about the entity that is defined by
the primary key. The columns in the table must contain data about only one thing. This is
really an extension o f Second Normal Form - both are used to remove columns that belong
in their own table.

To complete the normalisation, we need to look for columns that are not dependent on the
primary key o f the table. In the Students table, we have two data items about the student’s
advisor: the name and phone number. The balance of the data pertains only to the student
and so is appropriate in the Students table. The advisor information, however, is not dependent
on the student. I f the student leaves the school, the advisor and the advisor’s phone number
w ill remain the same. The same logic applies to the instructor information in the Courses table.
The data for the instructor is not dependent on the primary key CourselD since the instructor
w ill be unaffected i f the course is dropped from the curriculum.

144 Database Management Systems

Let us complete the normalisation for the sample tables.

Table 3.5: T h ird N orm al Form

Students Advisors Instructors StudentCourses Courses

StudendD AdvisorlD InstructorlD SCStudentID CourselD

StudentName AdvisorName InstructorName SCCourselD CourseDescription

StudentPhone

StudentAddress

StudentCity

StudentState

StudentZIP

StudentAdvisorlD

AdvisorPhone InstructorPhone CourselnstructorlD

There is one other potential m odification that could be made to this design. I f you look at
the Advisors and Instructors tables, you can see that the columns are essentially the same: a
name and phone number. These two tables could be combined in to a single common table called
Staff or Faculty. The advantage o f this approach is that i t can make the design simpler by using
one less table. The disadvantage is that you may need to record different additional details
for instructors than you would record for advisors. One possible way o f resolving this conflict
would be to go one further step and create a Staff table that records basic inform ation that
any organisation would retain about an employee, such as name, address, phone, Social Security
number, date o f birth, etc. Then you would have the Advisors and Instructors tables contain
foreign keys to the Staff table for appropriate individual along w ith any additional details that
might need to be stored specifically for that particular role. The benefit o f this approach is that
i f a member o f the staff is both an advisor and an instructor (this would often be the case in
a college or university), the basic information would not need to be duplicated for both roles.

D on’t go overboard w ith T h ird Normal Form or you’l l wreak havoc on performance. I f you look
at the Students table, you can see that in fact any city and state in the U.S. could be identified
by the ZIP code. However, it may not be practical to design the database so that every time
you need to get an address you have to jo in the row from Students to a table containing the
(approximately) 65,000 ZIP codes in the U.S. A general guideline is that i f you routinely run
queries which jo in more than four tables, you may need to consider denormalizing the design.

3N F Inadequacies

3NF in either defin ition cannot handle relations w ith multiple candidate keys where these
candidate keys are composite and overlapping.

Such situations do not tend to occur too often in practice, but where they do, Boyce-Codd
normal form (BCNF) has been defined to eliminate possible update anomalies.

Relational Database 145

3 . 2 2 . 4 B o y c e - C o d d N o r m a l F o r m (B C N F)

BCNF was developed to overcome some problems w ith 3NF. A relation meets the requirements
o f BCNF if every determinant is a candidate key. Remember, a determinant is an attribute
on which another attribute is fully functionally dependent.

B C N F D e fin itio n
A relation R is in BCNF i f and only i f every determinant is a candidate key. This is a simpler
defin ition than 3NF or the alternative 3NF as i t does not involve IN F, or 2NF or transitive
dependencies. Any relation R can be nonloss decomposed in to an equivalent collection o f BCNF
relation.

3 . 2 2 . 5 F o u r t h N o r m a l F o r m (4 N F)
A relation meets the requirements o f 4NF only i f it is in 3NF (or BCNF) and has no multivalued
dependencies. M ultiva lued dependencies exist only in relations containing at least three
attributes. The problem arises when a single value o f the primary key returns m ultiple records
for two or more attributes that are mutually independent. O ften this mean that the relation
contains m ultiple themes. Relations w ith multivalued dependencies can cause considerable
data redundancy and can make data updates d ifficu lt.

To take a relation from 3NF to 4NF, it must be decomposed in to two or more relations. Each
relation should address only one theme.

Consider the following relation where a student can have more than one major and can take
more than one activity.

To be in 4NF the relation :
• M ust be in 3NF, and
• Can have no multivalued dependencies.

RELATION = STUDENT
StuID | M a jo r A c t iv ity
100 | M ath Skiing
100 | Business | Skiing

f ~ 100 j M ath | Softball |
! lo oi. Business j Softball

150 | A r t Racquetball

Fig. 3.35

Notice tha t a single value of the primary key returns multiple records for two or more mutually
independent attributes. S tuID 100 has two majors (math and business) and two activities (skiing
and softball). The problem exists because each occurrence o f Major must be recorded w ith each
occurrence o f A ctiv ity .

146 Database Management Systems

Consider the possible anomalies:
• I f line 5 were deleted, the fact that A r t and Racquetball exist would be lost (deletion).
• Neither a new M ajor nor A c tiv ity could be added unless a student enrolled in both a

Major and an A c tiv ity (insertion).
• I f student 100 changed Majors or Activ ities, each entry would have to be changed

(update).

O ther considerations: The re lation has more than one theme and contains considerable
redundant data.

Solution:
Reevaluate each relation considering the anomalies above. Decomposing the relations in to two
separate relations removes anomalies, reduces redundancy, and allows easy updates.

RELATION = STU-MAJOR RELATION = STU-ACT
StuID Major StuID Activity

100 Math 100 Skiing
100 Business 100 Softball

150 Art 150 Racquetball

Primary key = StuID-Major Primary key:= StuID-Activity

Fig. 3.36

4NF D e fin ition

I f a relation R has three or more attributes grouped as A , B, or C, and

R -> -> R.B and R -» -» R.C

holds (i.e. there are multivalued dependencies present) then R is not in 4NF. R is in 4NF i f
and only i f i t is in BCNF and all multivalued dependencies are functional dependencies.

3 . 2 2 . 6 5 N F D e f i n i t i o n

A relation R is in 5NF (also called project/join normal form) i f and only i f every jo in dependency
in R is a consequence o f the candidate keys o f R i.e. is not implied by the candidate keys
o f R. I f R is in 5NF it is also in 4NF.

Discovering jo in dependencies is not easy as unlike functional dependencies and multivalued
dependencies they do not have a straightforward real world interpretation.

Additionally, for a database to be in second normal form, it must also be in first normal form,
and for a database to be in th ird normal form, it must meet the requirements for both first and
second normal forms. There are also additional forms o f normalisation, but these are rarely
applied. In fact, it may at times be practical to violate even the first three forms o f normalisation.

Relational Database 147

3 . 2 3 N o r m a l i s a t i o n T h e o r y

In normalisation theory, there are a hierarchy of normal forms in to which base tables should
be put. Each normal form has a set o f satisfiable criteria based on functional dependence and
fu ll functional dependence. Starting w ith first normal form, tables can be decomposed as:

N orm a/F orm s

Universe of relations (normalized and un-normalized)

1NF relations (normalized relations)_______ ________
2NF relations______________________________

3NF relations

BCNF relations
4NF relations

PJ/NF (5NF) relations

Fig. 3.37: Normal Forms

3 . 2 3 . 1 F u n c t i o n a l D e p e n d e n c e

In the defin ition o f normal forms in relational databases, given relation R, then attribute y of
R is functionally dependent on attribute x o f R, or R.x functionally determines R.y (denoted
R.x —> R.y) i f and only i f each R.x has associated w ith it precisely one R.y where x and y may
be composite attributes. I f R.x is the primary key of R, or even i f it is a candidate key, then
by defin ition all R.y’s must be functionally dependent on R.x. Functional dependence is not
the same as fu ll functional dependence, and is a property o f the meaning or the semantics of
data.

3 . 2 3 . 2 F u n c t i o n a l D e t e r m in a n t

A functional determinant is an attribute or a composite attribute in one table in a relational
database, whose values are functionally dependent on another possibly composite attributes of
that table. There is no requirement in the defin ition of functional dependence that a functional
determ inant has to be a candidate key, though all functional determinants are at least candidate
keys.

148 Database Management Systems

3 . 2 3 . 3 C o m p o s i t e A t t r i b u t e s

A composite attribute in a relational database is a combination o f two or more attributes, or
columns, from a single base table, which may functionally determine another, possibly composite,
attribute or may be a functional determinant.

3 .2 3 .4 M u lt iv a lu e d D e p e n d e n c ie s

IN F disallows a set or list o f values as a value for an attribute in a tuple and i f we have two
or more multivalued independent attributes in the same base relation, we have to repeat every
value o f one attribute for every value o f the other. Such a dependency is called a multivalued
dependency and because redundant in form ation is stored, a re la tion w ith a m ultivalued
dependency can have problems o f update anomalies.

M ultivalued dependencies can exist on relations which have three or more relations, and we say

R .A -> -» R.B

i f and only i f the set o f R.B values match the pairs (A values, C values) in R and R .A —>—>
R.C also holds. R.A, R.B, and R.C, may be composite. M ultiva lued dependencies may be
eliminated by nonloss decomposition in to equivalent 4N F relations.

3 . 2 3 . 5 G e n e r a l U p d a t e A n o m a l i e s

One goal o f schema design in normalisation is to minimise the storage space that the base
relations (files) occupy. A ttribu te values pertaining to a particular value should not be repeated,
but should appear only once. I f given values are repeated more than once then this can cause
update anomalies. These can be classified in to insertion anomalies, deletion anomalies, and
modification anomalies.

3 . 2 3 . 6 R e v ie w o f N o r m a l F o r m s
• FIRST N O R M A L FORM

First normal form deals w ith the “shape” o f a record type.

Under first normal form, all occurrences o f a record type must contain the same number of
fields.

First normal form excludes variable repeating fields and groups. This is not so much a design
guideline as a matter o f definition. Relational database theory doesn’t deal w ith records having
a variable number o f fields.

• SECOND A N D T H IR D N O R M A L FORMS

Second and th ird normal forms deal w ith the relationship between non-key and key fields.

Under second and th ird normal forms, a non-key field must provide a fact about the key, us
the whole key, and noth ing but the key. In addition, the record must satisfy first normal form.

We deal now only w ith “single-valued” facts. The fact could be a one-to-many relationship,
such as the department of an employee, or a one-to-one relationship, such as the spouse o f an
employee. Thus the phrase “Y is a fact about X ” signifies a one-to-one or one-to-many relationship
between Y and X. In the general case, Y might consist o f one or more fields, and so might
X. In the fo llow ing example, Q U A N T IT Y is a fact about the com bination o f PART and
W AREHO USE.

Relational Database 1 49

• Second Normal Form

Second normal form is violated when a non-key field is a fact about a subset o f a key. I t is
only relevant when the key is composite, i.e., consists o f several fields. Consider the following
inventory record:

PART W AREHOUSE Q U A N T IT Y W AREHOUSE-ADDRESS

The key here consists o f the PART and W AREHOUSE fields together, but W AREHO USE-
ADDRESS is a fact about the W AREHO USE alone. The basic problems w ith this design are:

• The warehouse address is repeated in every record that refers to a part stored in that
warehouse.

• I f the address of the warehouse changes, every record referring to a part stored in that
warehouse must be updated.

Because o f the redundancy, the data m ight become inconsistent, w ith different records showing
different addresses for the same warehouse.

I f at some point in time there are no parts stored in the warehouse, there may be no record
in which to keep the warehouse’s address.

To satisfy second normal form, the record shown above should be decomposed in to (replaced
by) the two records:

PAR T W AREHOUSE Q U A N T IT Y W AREHO USE W AREHOUSE-ADDRESS

W hen a data design is changed in this way, replacing unnormalized records w ith normalized
records, the process is referred to as normalisation. The term "normalisation" is sometimes used
relative to a particular normal form. Thus a set o f records may be normalized w ith respect to
second normal form but not w ith respect to third.

The normalized design enhances the integrity o f the data, by m inimizing redundancy and
inconsistency, but at some possible performance cost for certain retrieval applications. Consider
an application that wants the addresses o f all warehouses stocking a certain part. In the
unnormalized form, the application searches one record type. W ith the normalized design, the
application has to search two record types, and connect the appropriate pairs.

T h ird N o rm a l Form

The th ird normal form is violated when a non-key field is a fact about another non-key field,
as in

EMPLOYEE DEPARTM ENT LO C A T IO N

The EMPLOYEE fie ld is the key. I f each department is located in one place, then the
L O C A T IO N field is a fact about the DEPARTM ENT in addition to being a fact about the
EMPLOYEE. The problems w ith this design are the same as those caused by violations o f second
normal form:

150 Database Management Systems

• The department’s location is repeated in the record o f every employee assigned to that
department.

• I f the location o f the department changes, every such record must be updated.
• Because o f the redundancy, the data might become inconsistent, w ith different records

showing different locations for the same department.
• I f a department has no employees, there may be no record in w hich to keep the

department’s location.

To satisfy the th ird normal form, the record shown above should be decomposed in to the two
records:

EMPLOYEE DEPARTMENT DEPARTMENT LOCATION

To summarize, a record is in second and th ird normal forms i f every field is either part o f the
key or provides a (single- valued) fact about exactly the whole key and nothing else.

• Functional Dependencies

In relational database theory, second and th ird normal forms are defined in terms o f functional
dependencies, which correspond approximately to our single-valued facts. A field Y is “ functionally
dependent” on a field (or fields) X i f it is invalid to have two records w ith the same X-value
but different Y-values. That is, a given X-value must always occur w ith the same Y-value. W hen
X is a key, then all fields are by definition functionally dependent on X in a triv ia l way, since
there can’t be two records having the same X value.

There is a slight technical difference between functional dependencies and single-valued facts
as we have presented them. Functional dependencies only exist when the things involved have
unique and singular identifiers (representations). For example, suppose a person’s address is
a single-valued fact, i.e., a person has only one address. I f we don’t provide unique identifiers
for people, then there w ill not be a functional dependency in the data:

PERSON ADDRESS

John Smith

John Smith

123 Main St., New York

321 Center St., San Francisco

A lthough each person has a unique address, a given name can appear w ith several different
addresses. Hence we do not have a functional dependency corresponding to our single-valued
fact.

Similarly, the address has to be spelled identically in each occurrence in order to have a
functional dependency. In the following case the same person appears to be liv ing at two
different addresses, again precluding a functional dependency.

PERSON ADDRESS

John Smith

John Smith

123 Main St., New York

123 Main Street, NYC

Relational Database 151

We are not defending the use o f non-unique or non-singular representations. Such practices
often lead to data maintenance problems o f their own. We do wish to point out, however, that
functional dependencies and the various normal forms are really only defined for situations in
which there are unique and singular identifiers. Thus the design guidelines as we present them
are a b it stronger than those implied by the formal definitions of the normal forms.

For instance, we as designers know that in the following example there is a single-valued fact
about a non-key field, and hence the design is susceptible to all the update anomalies mentioned
earlier.

EMPLOYEE FATHER FATHER’S-ADDRESS

Arun Sethi

Varun Sethi

A tu l Roy

Prem Sethi

Prem Sethi

Suresh Roy

123, Gole Mkt., New Delhi.

123 Gole Mkt., New Delhi.

A/II, 321 Janak Puri, New Delhi

However, in formal terms, there is no functiona l dependency here between F A T H E R ’S-
ADDRESS and FATHER, and hence no violation of th ird normal form.

• FO U R TH A N D FIFTH N O R M A L FORMS

Fourth and fifth normal forms deal w ith multi-valued facts. The m ulti-valued fact may correspond
to a many-to-many relationship, as w ith employees and skills, or to a many-to-one relationship,
as w ith the children o f an employee (assuming only one parent is an employee). By “many-
to-many” we mean that an-employee may have several skills, and a skill may belong to several
employees.

Note that we look at the many-to-one relationship between children and fathers as a single
valued fact about a child but a multi-valued fact about a father.

In a sense, fourth and fifth normal forms are also about composite keys. These normal forms
attempt to minimize the number o f fields involved in a composite key, as suggested by the
examples to follow.

• Fourth Normal Form

Under fourth normal form, a record type should not contain two or more independent m u lti
valued facts about an entity. In addition, the record must satisfy th ird normal form.

The term “ independent” w ill be discussed after considering an example.

Consider employees, skills, and languages, where an employee may have several skills and
several languages. W e have here two many- to-many relationships, one between employees and
skills, and one between employees and languages. Under fou rth norm al form, these two
relationships should not be represented in a single record such as:

EMPLOYEE SKILL LANGUAGE

Instead, they should be represented in the two records:

EMPLOYEE SKILL EMPLOYEE LANGUAGE

Database Management Systems

Note that other fields, not involving multi-valued facts, are permitted to occur in the record,
as in the case o f the Q U A N T IT Y field in the earlier PART/W AREHO USE example.

The main problem w ith violating fourth normal form is that i t leads to uncertainties in the
maintenance policies. Several policies are possible for m aintaining two independent m u lti
valued facts in one record:
1. A disjoint format, in which a record contains either a skill or a language, but not both:

EMPLOYEE SKILL LANGUAGE

Sumit cook

Sumit type

Sumit Hindi

Sumit English

Sumit French

This is not much different from maintaining two separate record types. (We note in passing
that such a format also leads to ambiguities regarding the meanings o f blank fields. A blank
SKILL could mean the person has no skill, or the field is not applicable to this employee, or
the data is unknown, or, as in this case, the data may be found in another record).
2. A random mix, w ith three variations:

a. M in im al number o f records, w ith repetitions:

EMPLOYEE SKILL LANGUAGE

Sumit cook Hindi

Sumit type English

Sumit type French

b. M inim al number o f records, w ith nu ll values:

EMPLOYEE SKILL LANGUAGE

Sumit cook Hindi

Sumit type English

Sumit French

c. Unrestricted:

EMPLOYEE SKILL LANGUAGE

Sumit cook French

Sumit type

Sumit English

Sumit type Hindi

Relational Database 153

3. A “ cross-product” form, where for each employee, there must be a record for every possible
pairing o f one o f his skills w ith one of his languages:

EMPLOYEE SKILL LANGUAGE

Sumit cook French

Sumit cook English

Sumit cook Hindi

Sumit type French

Sumit type English

Sumit type Hindi

O ther problems caused by violating fourth normal form are similar in spirit to those mentioned
earlier for violations of second or th ird normal form. They take different variations depending
on the chosen maintenance policy:

• I f there are repetitions, then updates have to be done in m ultiple records, and they could
become inconsistent.

• Insertion o f a new skill may involve looking for a record w ith a blank skill, or inserting
a new record w ith a possibly blank language, or inserting multiple records pairing the
new skill w ith some or all o f the languages.

• Deletion o f a skill may involve blanking out the skill field in one or more records (perhaps
w ith a check that this doesn’t leave two records w ith the same language and a blank
skill), or deleting one or more records, coupled w ith a check that the last mention of
some language hasn’t also been deleted. Fourth normal form minimizes such update
problems.

• Independence

We mentioned independent multi-valued facts earlier, and we now illustrate what we mean
in terms o f the example. The two m any-to- many re la tionsh ips, em ployee:sk ill and
employee:language, are “ independent” in that there is no direct connection between skills and
languages. There is only an indirect connection because they belong to some common employee.
That is, it does not matter which skill is paired w ith which language in a record; the pairing
does not convey any information. T ha t’s precisely why all the maintenance policies mentioned
earlier can be allowed.

In contrast, suppose that an employee could only exercise certain skills in certain languages.
Perhaps Sm ith can cook French cuisine only, but can type in French, English, and H ind i. Then
the pairings o f skills and languages becomes meaningful, and there is no longer an ambiguity
of maintenance policies. In the present case, only the following form is correct:

Database Management Systems

EMPLOYEE SKILL LANGUAGE

Sumit cook French

Sumit type French

Sumit type English

Sumit type Hindi

Thus the employee:skill and employee:

language relationships are no longer independent. These records do not violate fourth normal
form. W hen there is an interdependence among the relationships, then it is acceptable to
represent them in a single record.

• M u ltiva lued Dependencies

For readers interested in pursuing the technical background o f fourth normal form a b it further,
we mention that fourth normal form is defined in terms o f multivalued dependencies, which
correspond to our independent m ulti-valued facts. M ultiva lued dependencies, in turn, are
defined essentially as relationships which accept the "cross-product” maintenance policy mentioned
above. That is, for our example, every one o f an employee’s skills must appear paired w ith every
one o f his languages. I t may or may not be obvious to the reader that this is equivalent to our
notion o f independence: since every possible pairing must be present, there is no “ inform ation”
in the pairings. Such pairings convey information only i f some o f them can be absent, that is,
only i f it is possible that some employee cannot perform some skill in some language. I f all pairings
are always present, then the relationships are really independent.

We should also point out that multivalued dependencies and fourth normal form apply as well
to relationships involving more than two fields. For example, suppose we extend the earlier
example to include projects, in the following sense:

• A n employee uses certain skills on certain projects.
• A n employee uses certain languages on certain projects.

I f there is no direct connection between the skills and languages that an employee uses on
a project, then we could treat this as two independent many-to-many relationships o f the form
EP:S and EP:L, where "EP" represents a combination o f an employee w ith a project. A record
including employee, project, skill, and language would violate fourth normal form. Two records,
containing fields E,P,S and E,P,L, respectively, would satisfy the fourth normal form.

• Fifth Norm al Form

The fifth normal form deals w ith cases where information can be reconstructed from smaller
pieces of inform ation that can be maintained w ith less redundancy. Second, th ird, and fourth
normal forms also serve this purpose, but the fifth normal form generalizes to cases not covered
by the others.

We w ill not attempt a comprehensive exposition o f fifth normal form, but illustrate the central
concept w ith a commonly used example, namely one involving agents, companies, and products.
I f agents represent companies, companies make products, and agents sell products, then we
might want to keep a record o f which agent sells which product for which company. This
information could be kept in one record type w ith three fields:

Relational Database

AGENT COMPANY PRODUCT
Sumit Ford car

Sumit GM truck

This form is necessary in the general case. For example, although agent Sumit sells cars made
by Ford and trucks made by GM, he does not sell Ford trucks or GM cars. Thus we need the
combination o f three fields to know which combinations are valid and which are not.

But suppose that a certain rule was in effect: i f an agent sells a certain product, and he represents
a company making that product, then he sells that product for that company.

AGENT COMPANY PRODUCT
Sumit Ford car
Sumit Ford truck
Sumit GM car
Sumit GM truck
Vikram Ford car

In this case, it turns out that we can reconstruct all the true facts from a normalized form
consisting o f three separate record types, each containing two fields:

These three record types are in fifth normal form, whereas the corresponding three-field record
shown previously is not.

Roughly speaking, we may say that a record type is in fifth normal form when its information
content cannot be reconstructed from several smaller record types, i.e., from record types each
having fewer fields than the original record. The case where all the smaller records have the
same key is excluded. I f a record type can only be decomposed in to smaller records which all
have the same key, then the record type is considered to be in fifth normal form w ithout
decomposition. A record type in fifth normal form is also in fourth, third, second, and first normal
forms.

The fifth normal form does not differ from fourth normal form unless there exists a symmetric
constraint such as the rule about agents, companies, and products. In the absence of such a
constraint, a record type in fourth normal form is always in fifth normal form.

One advantage o f the fifth normal form is that certain redundancies can be eliminated. In the
normalized form, the fact that Sm ith sells cars is recorded only once; in the unnormalized form
it may be repeated many times.

1 56 Database Management Systems

I t should be observed that although the normalized form involves more record types, there may
be fewer total record occurrences. This is not apparent when there are only a few facts to record,
as in the example shown above. The advantage is realized as more facts are recorded, since
the size o f the normalized files increases in an additive fashion, while the size o f the unnormalized
file increases in a m ultip licative fashion. For example, i f we add a new agent who sells x products
for y companies, where each o f these companies makes each of these products, we have to add
x + y new records to the normalized form, but xy new records to the unnormalized form.

It should be noted that all three record types are required in the normalized form in order to
reconstruct the same information. From the first two record types shown above we learn that
V ikram represents Ford and that Ford makes trucks. But we can’t determine whether V ikram
sells Ford trucks un til we look at the th ird record type to determine whether V ikram sells trucks
at all.

The following example illustrates a case in which the rule about agents, companies, and products
is satisfied, and which clearly requires all three record types in the normalized form. A ny two
o f the record types taken alone w ill imply something untrue.

AGENT COMPANY PRODUCT
Sumit Ford car

Sumit Ford truck

Sumit GM car

Sumit GM truck

Vikram Ford car

V ikram Ford truck

Bobby Ford car

Bobby GM car

Bobby Totota car

Bobby Toto ta bus

COMPANY PRODUCT

Ford car

Ford truck

GM car

GM truck

Toyota car

Toyota bus

AGENT PRODUCT

Sumit car

Sumit truck

Vikram car

Vikram truck

Bobby car

Bobby bus

AGENT COMPANY

Sumit Ford

Sumit Ovls

Vikram Ford

Bobby Ford

Bobby GM

Bobby Toyota

Relational Database

Observe that:
• V ikarm sells cars and GM makes cars, but V ikram does not represent GM.
• Bobby represents Ford and Ford makes trucks, but Bobby does not sell trucks.
• Bobby represents Ford and Bobby sells buses, but Ford does not make buses.

the fourth and the fifth normal forms both deal w ith combinations o f multivalued facts. One
difference is that the facts dealt w ith under the fifth normal form are not independent, in the
sense discussed earlier. Another difference is that, although the fourth normal form can deal
with’ more than two multivalued facts, it only recognizes them in pairwise groups. We can best
explain this in terms o f the normalisation process implied by the fourth normal form. I f a record
violates fourth normal form, the associated normalisation process decomposes it in to two records,
each containing fewer fields than the original record. Any of these violating the fourth normal
form is again decomposed in to two records, and so on un til the resulting records are all in fourth
normal form. A t each stage, the set o f records after decomposition contains exactly the same
information as the set o f records before decomposition.

In the present example, no pairwise decomposition is possible. There is no combination o f two
smaller records which contains the same tota l information as the original record. A ll three o f
the smaller records are needed. Hence an information-preserving pairwise decomposition is not
possible, and the original record is not in vio lation o f fourth normal form. The fifth normal form
is needed in order to deal w ith the redundancies in this case.

• Unavoidable Redundancies

Normalisation certainly doesn’t remove all redundancies. Certain redundancies seem to be
unavoidable, particularly when several multivalued facts are dependent rather than independent.
The example show it seems unavoidable that we record the fact that “Sumit can type” several
times. Also, when the rule about agents, companies, and products is not in effect, it seems
unavoidable that we record the fact that “Sumit sells cars” several times.

• Inter-Record Redundancy

The normal forms discussed here deal only w ith redundancies occurring w ith in a single record
type. The fifth normal form is considered to be the “ ultimate” normal form w ith respect to such
redundancies’.

O ther redundancies can occur across m ultip le record types. For the example concerning
employees, departments, and locations, the following records are in the th ird normal form in
spite o f the obvious redundancy:

EMPLOYEE DEPARTMENT DEPARTMENT LOCATION

EMPLOYEE LOCATION

In fact, two copies o f the same record type would constitute the ultimate in this kind of
undetected redundancy.

Inter-record redundancy has been recognised for some time, and has recently been addressed
in terms o f normal forms and normalisation.

1 58 Database Management Systems

3 . 2 4 N o r m a l i s a t i o n G u i d e l i n e s

Given a relation R in IN F and a set o f functional dependencies multivalued dependencies and
jo in dependencies we systematically reduce these to a collection of smaller, more desirable
relations by taking projections, thus eliminating any possible update anomalies.

These are guidelines only, and database designers do not have to conform to these guidelines.
There may be practical reasons based on anticipated usage o f a database, for not normalisating
a database schema to as high a normal form as it can go.

3 . 2 4 . 1 D a t a b a s e S c h e m a D e s ig n

The purpose o f database schema design is to decide on a suitable logical structure, and this
is usually based on the principles behind normalisation theory. The basic axiom is that one
semantic real-world fact should be stored in one place i f possible in order to avoid update
anomalies. Normalisation theory suggests a set o f guidelines for good database design.

3 . 2 4 . 2 C lu s t e r i n g

Clustering involves trying to store logically related records physically close together on the disk.
This is an important factor for performance. A relational DBMS supports such clustering by
allowing the creation o f clustered indexes - this is why i t needs to know about pages and files.
The D B A informs the DBMS what type of clustering to support. The D B A should be allowed
to vary the clusterings in mid-file, but all this should be transperent to the users. However,
i f data independence is to be achieved, any such changes in physical clustering should not
require and concomitant changes in application programs. Knowledge o f how the data is to
be used is essential to producing a good physical database design.

3 . 2 5 A d v a n t a g e s o f O p t i m i s a t i o n

The major advantage o f query optimisation is that users do not have to worry about how best
to state their queries (i.e. how to phrase requests in order to get the best performance out of
the system), and also there is a real possibility that the optimiser w ill do better than a human
programmer in terms o f using the DBMS efficiently. There are several reasons for this:

• The optimiser w ill have more information available than the user.
• Database statistics may change
• The optimiser is a program
• The optimiser embodies the skills of the best programmers
• A ll o f the above serve as evidence in support o f the claim that optim isability i.e. the fact

that relational database requests are optimisable, is in fact a strength o f relational systems.

3 . 2 6 I n d e x i n g

In order to get acceptable performance from a database application, you not only need to write
efficient code, you also need to provide the database engine w ith the tools it needs to do its
job well. The most important step you can take in that direction is the proper use o f indexes.

Relational Database

3 . 2 6 . 1 I n t r o d u c t i o n t o I n d e x in g

Like an index in a book, an index on a table provides a means to rapidly locate specific
information - but a table index is used by the database engine rather than the user. The proper
use o f indexes can yield significant performance improvements in a database application because
indexes can assist the database engine in avoiding costly disk i/o when searching a table for
specific data. Most importantly, proper indexing can prevent the database engine from using
the most costly o f database operations: the table scan.

Database engines often employ a form o f a binary search algorith when retrieving rows from
a table. I f you are familiar w ith the binary search, you know that a binary search can isolate
a specific item in a collection o f thousands o f items w ith only a handful o f comparisons. In a
database application, comparisons become seeks in a disk file (or a disk cache i f you are lucky).
File seeks are inherently expensive since even the fastest disks on the market today are orders
o f magnitude slower than R AM operations. A primary concern for improving performance is
to minimize the number of disk reads when querying the database. W ell chosen indexes are
the key to reducing file i/o operations because they reduce the number o f data pages which
must be read to locate a row in a table. W hen searching for a row, the database engine can
read a small number o f pages in the index rather than reading every row in the table until
it finds a match.

It is important to remember, however, that just as an index w ill improve read performance,
it w ill degrade write performance. W hen a new row is w ritten to a table, the database engine
must not only write the row, it must also update any associated indexes. I f you decided to
maximize read performance by indexing every column in a table and creating a multiple column
index for every possible search or sort, performance of inserts, updates, and deletes w ill come
to a grinding halt.

3 . 2 6 . 2 T y p e s o f I n d e x e s

Nearly every database engine available w ill support two fundamental types o f indexes.
• Unique Indexes

There are no duplicate entries in a unique index. Unique indexes are most often used
for the primary key of a table.

• Non-unique Indexes
Non-unique indexes may have duplicate values and are used anywhere than an index
w ill provide a performance improvement in the application.

A lthough it is the most common use, a unique index does not necessarily need to be the primary
key o f a table. A technique we have used to simplify query designs is to specify a unique index
on a combination o f columns that could serve as a primary key, then add an autonumbering
column to the table and specify that column as the primary key. This makes queries simpler
because only one column needs to be joined. Additionally, it can help eliminate redundancy
since only one value would need to be stored as a foreign key to the table. I ’ve never analysed
the performance impact o f adding an extra column for this purpose, but in some situations, a
performance cost (if one in fact exists) is w orth the price in the simplicity o f the design.

160 Database Management Systems

Some database engines can also create clustered or non-clustered indexes.
• Clustered Index - In a clustered index, the actual rows in the table reside on the leaf

pages o f the index.
• Non-clustered Index - In a non-clustered index, the leaf pages o f the index are pointers

to the data pages containing the rows in the table.

Clustered indexes can offer significant performance advantages over non-clustered indexes i f
your database engine supports them. Since the actual table data resides at the lowest level
o f the index, there is always one less seek involved in the file. However, keep in m ind that
there can only be one clustered index per table, so i f a clustered index is to be used, i t must
be chosen carefully. Additionally, dropping or changing a clustered index is a costly operation
because the data in the table must be entirely rewritten.

Another specification that is sometimes available is ascending or descending indexes. This is
as simple as it sounds. In an ascending index, the index is w ritten in ascending order. In a
descending index, its w ritten in descending order. N ot all database engines can create descending
indexes (SQL Server doesn’t), but most can use an ascending index to speed up a descending
sort.

One more consideration in creating an index is the nullability o f the index. This may be driven
by the index defin ition or simply inherited from the definitions o f the underlying columns. It
should be noted, however, that the treatment o f indexes which allow nulls can vary from one
database engine to another. For example, i f you create a unique index in a Jet database which
allows nulls, Jet w ill essentially ignore the nu ll values from the index and allow any number
o f rows w ith nu ll entries. Contrast that w ith MS SQL Server, where i f an index allows nulls,
only one nu ll entry is permitted in a unique index. This applies only to primarily to m ulticolumn
indexes since it would be rare to create a nullable unique index on a single column. T o illustrate
this, le t’s look at an example o f the difference.

Column A Column B SQL Server Result Jet Result

1 1 Allowed - unique entry Allowed - unique entry

1 Null Allowed - unique entry Allowed - unique entry

2 1 Allowed - unique entry Allowed - unique entry

2 Null Allowed - unique entry Allowed - unique entry

2 Null Disallowed - duplicate
value in unique index

Allowed - duplicate null
ignored

3 . 2 6 . 3 W h a t t o I n d e x

The following list indicates the types o f data which are good candidates for indexing.
• Columns used in joins

Joins w ill almost always benefit from having an index available on both sides o f the join.
• Columns used in a query W HERE clause

Relational Database 161

I f a column is part o f the selection criteria for a frequently run query, an index may improve
query performance. For less frequently used queries, you w ill need to consider the cost in terms
o f inserts, updates, and deletes against the gain in select queries.

• Columns used in a query ORDER BY clause

Sort performance can be improved substantially by indexing the
• Columns used in the ORDER BY clause o f the query. However, sorts are inherently slow

unless a clustered index is used for the sort (in which case the data w ill be stored in
the sorted order).

• Columns used in a query GROUP BY clause

Grouping operations w ill be enhanced by indexing especially in situations where the range of
values being grouped is small in relation to the number o f rows in the table.

3 . 2 6 . 4 W h a t N o t t o I n d e x

This list indicates columns that may not benefit from indexing.
• Tables w ith a small number o f rows

I f a table has only a handful o f rows, the query optimizer for the database engine m ight determine
that a table scan is more efficient than using an index. In this case, the index would only serve
to slow down inserts, updates, and deletes in the table.

• Columns w ith a wide range of values

I f the data in a column is different for nearly every row (such as a table o f addresses) the index
may not be useful because the database engine m ight determine that scanning the table is more
economical than traversing such a large index. A n exception would be using a clustered index
on a column or columns that are used in sorts. I f a clustered index is created using the same
sorting order as a query, the data would be stored in sorted order in the table.

• Tables w ith heavy transaction loads but lim ited decision support load

I f a table has a lot o f insert, update, and delete activity but there are few SELECT queries
run against it, added indexes w ill probably result in a net penalty in overall performance of
the application.

• Columns not used in queries

Columns which are rarely retrieved do not need to be indexed since the index only enhances
performance for SELECT queries where the column is part o f the WHERE, GROUP BY, or
ORDER BY clause. Even i f the column is part o f many queries but is never included in criteria,
sorting, etc., it w ill not benefit from an index.

3 . 2 7 O r a c l e R e a l a t i o n a l D a t a b a s e s

A database is a structured collection o f data. Data refers to the characteristics o f people, things,
and events. Oracle stores each data item in its own field. For example, a person’s first name,
date o f b irth , and their postal code are each stored in separate fields. The name o f a fie ld usually
reflects its contents. A postal code field m ight be named POSTAL-CODE or PSTL_CD. Each
DBMS has its own rules for naming the data fields.

162 Database Management Systems

A field has little meaning unless i t is seen w ith in the context o f other fields. The postal code
T 6G 2H 1, for example, expresses nothing by itse lf To what person or business does it belong?
The postal code field is informative only after it is associated w ith other data. In Oracle, the
fields relating to a particular person, thing, or event are bundled together to form a single,
complete un it o f data, called a record (it can also be referred to as a row or an occurrence).
Each record is made up o f a number o f fields. No two fields in a record can have the same
field name.

During an Oracle database design project, the analysis o f your business needs identifies all the
fields or attributes o f interest. I f your business needs change over time, you define any additional
fields or change the defin ition o f existing fields.

3 . 2 7 . 1 O r a c le T a b le s

Oracle stores records relating to each other in a table. For example, all the records for employees
o f a company would be stored by Oracle in one table, the employee table. A table is easily
visualized as a tabular arrangement o f data, not unlike a spreadsheet, consisting o f vertical
columns and horizontal rows.

EMPLOYEE

EMPLDD N A M E FIR S T N A M E LA S T DEPT POSITION SALARY

1 Himanshu Sharma 1 Owner 29

4 Deepak Choudhary 2 Excavator 13

5 Raman Kumar 2 Laborer 12

7 Ish Mjumdar 3 Laborer 11

11 Rashmi Garg 1 Secretary 12

A table consists o f a number o f records. The field names o f each record in the table are the
same, although the field values may differ. Every employee record has a salary field, called
SALARY. The values in the SALARY field can be different for each employee.

Each field occupies one column and each record occupies one row. In each column of the table,
you put a specific category o f information for the employees, such as their ID number, first name,
and position. Each row in the table contains the inform ation relating to a specific employee,
together as one record. Each record is a unique entry and is independent o f any other record
in the table. The EMPLOYEE table, for example, contains records for Raman Kumar and Rashmi
Garg. A lthough both records are part o f the EMPLOYEE table, the data contained w ith in them
is independent o f each other. There is no relationship between Raman’s and Rashmis salaries.

A fter the analysis o f the business requirements, the database design team defines the necessary
tables. D ifferent tables are created for the various groups o f information. A n EMPLOYEE table
is created for employee information, a D EPAR TM EN T table is created for department information.
Related tables are grouped together to form a database. For example, a personnel or human
resources application database includes both the EMPLOYEE and D EP A R TM E N T tables and
all other tables involved in the application.

Relational Database 1 6 3

3 . 2 7 . 2 P r im a r y K e y s

Every table in Oracle has a field or a combination of fields that uniquely identifies each record
in the table. This unique identifier is called the primary key, or simply the key. The primary
key provides the means to distinguish one record from all the others in a table. I t allows the
user and the database system to identify, locate, and refer to one particular record in the table.

The database design team determines the best candidate fie ld for the primary key. The
employee’s first and last names together could be a primary key, that is until a new employee
w ith the same name is hired. Then the key would no longer be unique. Sometimes the design
team has to define a new ID number or code field, just so that a table has a primary key. For
the EMPLOYEE table, the primary key would likely be the employee ID number.

Once a table has been assigned a primary key, Oracle won’t allow more than one record in
the table w ith the same value for the primary key. No two employees can have the same ID
number.

3 . 2 7 . 3 R e la t io n a l D a t a b a s e s in O r a c le

Sometimes all the information o f interest to a business operation can be stored in one table.
For example, let us say the only data you need to maintain about your office supplies is a
description o f each item, its supplier, and the quantity on hand. I t would be enough to have
one office supply table w ith those data items as the fields. More often, though, business
applications involve many tables. In a typical personnel application, there might be one table
for employees, another for information about their hours o f work, and another for the departments
in the company.

Oracle makes it very easy to link the data in multiple tables: matching an employee to the
department in which they work is one example. This is what makes Oracle a relational database
management system, or RDBMS. I t stores data in two or more tables and enables you to define
relationships between the tables. The lin k is based on one or more fields common to both tables.

For example, the fo llow ing diagram represents part o f the EM PLOYEE table and the entire
DEPARTM ENT table:

EMPLOYEE DEPARTMENT

EMPLJOD N A M E LA S T DEPT DEPTJNO DESCRIPTION LOCATION

1 Sharma 1 1 Administration New Delhi

4 Choudhary 2 2 Quarry New Delhi |

5 Kumar 2 3 Stockpile Noida

7 Majumdar 3

11 Garg 1

1 6 4 Database Management Systems

There is a department number field in both the EMPLOYEE and D EPAR TM EN T tables. In
the EMPLOYEE table, the department number represents the department in which the employee
works. In the D EPAR TM EN T table, the department number represents a valid department
w ith in the business. In both tables, they are department numbers; in essence, the contents of
the DEPT field in the EMPLOYEE table represents the same th ing as the contents o f the
DEPTJSfO field in the DEPAR TM EN T table. I t is not necessary that the link ing fields have
the same field names. W hat’s important is their value and what they represent.

The business is divided in to departments. The departments are identified and stored in the
D EPAR TM EN T table. Each department is assigned a department number. The relationship
between the EMPLOYEE and DEPAR TM EN T tables is based on the department number. Each
employee works in one specific department. The employee’s department number is stored in
the DEPT field o f the EMPLOYEE table. A n employee cannot be assigned to a department
tha t is not defined in the D E P A R TM E N T table. A departm ent can be defined in the
D EPAR TM EN T table, yet have no employees assigned to it.

3 . 2 7 . 4 F o r e ig n K e y

Remember that every table in O RACLE has a primary key a field or fields making each record
unique. In the employee table, the primary key is the employee ID number, and it is stored
in the EM PL_ID field. In the DEPAR TM EN T table, the department number is the primary
key and is stored in the DEPT_NO field.

The department number is also stored in a field in the EMPLOYEE table - the DEPT field.
The department number field links the EMPLOYEE table to the D EPAR TM EN T table. This
relationship is based on the department number field. Employee Flintstone works in department
number 2, Gravel works in department 1.

W hen a field in one table matches the primary key o f another table, the field is referred to
as a foreign key. A foreign key is a field or a group o f fields in one table whose values match
those o f the primary key o f another table. You can th in k o f a foreign key as the primary key
o f a foreign table. In the personnel database example, the DEPT field in the EMPLOYEE table
is a foreign key. The DEPT_NO field is still the primary key o f the D E P A R TM E N T table.

3 . 2 7 . 5 L o o k u p T a b le

W hen a foreign key exists in a table, the foreign key’s table is sometimes referred to as a lookup
table. The D EPA R TM E N T table in our example is a lookup table for the EMPLOYEE table.
The value o f an employee’s department can be looked up in the D E P A R TM E N T table.

In Oracle, on-line screens or forms, have the ability to display a list o f lookup table entries.
The employee form could have a lookup list o f departments from the D E P A R TM E N T table.
The user simply highlights the preferred department, and Oracle automatically enters that
department in to the employee’s record. This provides a means o f ensuring that only valid data
is entered in the database. A user can only select a listed department. W hether or not a lookup
list is used in a form,' Oracle w ill s till check for a valid department when one is entered.
However, i f the form displays the list o f possible departments, the user is less likely to enter
an invalid department number.

Relational Database 1 65

N ot only does Oracle allow you to link multiple tables, it also maintains consistency between
them. It can prevent you from deleting a department which still has employees in it. O r i f you
change an employee’s ID number, then all records o f their work hours w ill also reflect that
change. Ensuring that the data among related tables is correctly matched is referred to as
maintaining referential integrity. This also applies to the previous example where a user enters
an invalid department number for an employee. Oracle won’t accept a department number that
isn’t in the D EPAR TM EN T table.

Oracle’s relational databases represent a new and exciting database technology and philosophy
on campus. As the Oracle development projects continue to impact on University applications,
more and more users w ill realize the power and capabilities o f relational database technology.

3 . 2 8 A R e l a t i o n a l D a t a b a s e i n A c t i o n

Whenever you or a customer needs information, chances are that inform ation is coming from
a database. Here’s how such a database works, using the example o f finding a book at a Web
commerce site.

STEP 1:

You submit a Web form asking whether a particular book is in stock.

STEP 2:

The form request is sent across the internet to a Web server.

1 6 6 Database Management Systems

A query program on the Web server extracts fields from the Web form to construct a database
query, which i t sends to the database.

S T E P 3:

STEP 4:

The database network listener
1. Receives your query over the network; the query parser
2. Checks your query for correctness and breaks it in to simple steps the database can run; the

query optimizer
3. Modifies your query’s steps so they happen in the fastest way possible; and the database

worker thread
4. get an execution plan from the optimizer and begins work.

Relational Database 1 6 7

STEP 5:

The worker thread looks up the book’s name in the index to find which row in the inventory
table to retrieve; the worker thread looks up the correct book in the inventory table and gets
the quantity, which is 5.

STEP 6:

The worker thread returns “5” to the listener, which returns that information to the program
that submitted the query.

STEP 7:

The query program formats an H T M L page containing available inventory and returns it to
the Web server, which sends the page to you.

168 Database Management Systems

STEP 8:

You see real-time inventory information on your screen.

3 . 2 9 D o m a i n s

In his original de fin ition o f the relational database, Codd applied the term domain from
relational mathematics to mean the column o f a relational table.

In Codd’s more recent work, he adopts the term attribute for the individual column o f a relation.

Codd now clarifies the meaning o f domain to be a rule or list establishing the set o f values
which may occur in any column derived from that domain:

• “A ll positive integers”
• “ Geographic place names”
• “Gender as F or M ”

Relational Database 169

3 . 3 0 S t r u c t u r e o f R e l a t i o n a l D a t a b a s e

A relational database consists o f a collection of tables, each having a unique name. A row in
a table represents a relationship among a set o f values. Thus a table represents a collection
of relationships.

There is a direct correspondence between the concept o f a table and the mathematical concept
o f a relation. A substantial theory has been developed for relational databases.

3 .3 0 . 1 B a s ic S t r u c t u r e

Fig. 3.2 shows the deposit and customer tables for our banking example.

©name street ecity
Johnson

Smith
Hayen
Adams
Jonea

Pankler
North
Omita

No.3 Road
Oak

Vaneonver
Bumahy
Bumahy
Richmond
Vaneonver

bname account# ename balance
Downtown 101 Johnaon 500

Lougheed_Mall 215 Smith 700
SFU 102 Hayea 100
SFU 301 Adams 1300

Fig. 3.2: The deposit and customer relations.

It has four attributes. For each attribute there is a permitted set o f values, called the domain
of that attribute e.g. the domain o f bname is the set o f all branch names.

Let D j denote the domain o f bname, D j and d«, and the remaining attributes’ domains
respectively. Then, any row o f deposit consists o f a four-tuple (u iju*, where

vi e D i, £ Di) £ A j, ua € D*

In general, deposit contains a subset o f the set o f all possible rows.

That is, deposit is a subset o f

D 4

In general, a table o f n columns must be a subset o f

x J L j A (a i l p o s s ib l e r o w s)

Mathematicians define a relation to be a subset o f a Cartesian product o f a list o f domains.
You can see the correspondence w ith our tables. We w ill use the terms relation and tuple in
place o f table and row from now on.

Some more formalities:

• let the tuple variable £ refer to a tuple o f the relation p We say t £ r to denote that
the tuple f is in relation p.

170 Database Management Systems

Then r [bname] = p [1] = the value o f r on the bname attribute.

So j" [bname] = j- [1] = “Downtown” ,

and [cname] = j* [3] = “Johnson” .

We w ill also require that the domains of all attributes be indivisible units. A domain is atomic
i f its elements are indivisible units. For example, the set o f integers is an atomic domain.
However, the set o f all sets o f integers is not. This because integers do not have subparts, but
sets do - the integers comprising them. We could consider integers non-atomic i f we thought
o f them as ordered lists o f digits.

3 . 3 0 . 2 D a t a b a s e S c h e m e

We distinguish between a database scheme (logical design) and a database instance (data in
the database at a point in time). A relation scheme is a list o f attributes and their corresponding
domains.

The text uses the following conventions:
• Italics for all names
• Lowercase names for relations and attributes
• Names beginning w ith an uppercase for relation schemes
• These notes w ill do the same.

For example, the relation scheme for the deposit relation:

Deposit-scheme = (bname, account#, cname, balance)

We may state that deposit is a relation on scheme Deposit-scheme by w riting deposit (Deposit-
scheme).

I f we wish to specify domains, we can write:

(bname: string, account#: integer, cname: string, balance: integer).

Note that customers are identified by name. In the real world, this would not be allowed, as
two or more customers m ight share the same name. Fig. 3.3 shows the E-R diagram for a banking
enterprise.

Relational Database 171

The relation schemes for the banking example used throughout the text are:
’ • Branch-scheme = (bname, asse ts , b c i ty)
• Customer-scheme = (cname, s t r e e t , c c i t y)
• Deposit-scheme = (bname, account# , cname, balance)
• Borrow-scheme = (bname, loan#, cname, amount)

N o te : Some attributes appear in several relation schemes (e.g. bname, cname). This is legal,
and provides a way o f relating tuples o f distinct relations.

W hy not put all attributes in one relation?

Suppose we use one large relation instead o f customer and deposit:
Account-scheme = (bname, account#, cname, ba lance , s t r e e t , c c i ty)

I f a customer has several accounts, we must duplicate her or his address for each account.

I f a customer has an account but no current address, we cannot build a tuple, as we have no
values for the address. W e would have to use nu ll values for these fields. N u ll values cause
difficulties in the database. By using two separate relations, we can do this w ithout using nu ll
values.

3 . 3 1 Q u e r y L a n g u a g e s

A query language is a language in which a user requests information from a database. These
are typically higher-level than programming languages.

They may be one of:
• Procedural, where the user instructs the system to perform a sequence o f operations on

the database. This w ill compute the desired information.
• Nonprocedural, where the user specifies the information desired w ithout giving a procedure

for obtaining the information.
• A complete query language also contains facilities to insert and delete tuples as well as

to modify parts o f existing tuples.

3 . 3 2 T h e R e l a t i o n a l A l g e b r a

The relational algebra is an alternative and an equivalent to the relational calculus as the
manipulative part o f the relational model. There are eight operators in the relational algebra
used to build relations and manipulate the data. They are:
1. Select
2. Project
3. Product
4. U nion
5. Intersection
6. D ifference
7. Join
8. D iv ide

172 Database Management Systems

The output o f each o f the above is another relation and thus it is possible to nest and combine
operators. The five operations projection, product, union, difference, and selection, are all
prim itive. The other three can be defined in terms o f these. There are several reasons for
defining data manipulation as a relational algebra.

3 . 3 2 . 1 R e la t io n a l A l g e b r a R e a s o n s

We define data manipulation as a relational algebra not just to support data retrieval but also
to allow the w riting o f expressions (using the algebra) which in tu rn can be used for retrieval,
for defining scope for updates, for defining virtual data which may form part o f a users view,
for defining access rights, integrity, etc.

Thus expressions are a high-level symbolic representation which can be subject to transformation
rules to get equivalent expressions - this in essence means that relational algebraic expressions
are a convenient basis for query optimisation.

The relational algebra is a procedural query language. I t uses six fundamental operations:
• select (unary)
• project (unary)
• rename (unary)
• cartesian product (binary)
• union (binary)
• set-difference (binary)

Several other operations are defined in terms o f the fundamental operations:
• set-intersection
• natural jo in
• division
• assignment

Operations produce a new relation as a result.

3 . 3 2 . 2 F o r m a l D e f i n i t i o n o f R e la t io n a l A lg e b r a

A basic expression consists o f either:
• A relation in the database.
• A constant relation.

General expressions are formed out o f smaller subexpressions using

* №)

Fig. 3.4: Select (p a predicate)

Fig. 3.5: Project (S a list of Attributes)

P*(E 0

Fig. 3.6: Rename (x a Relation Name)

Relational Database 1 73

E \ U E 'l

Fig. 3.7: Union

E \ —

Fig. 3.8: Set Difference

p x (E i)

Fig. 3.9: Cartesian Product

A d d itio n a l Operations

Additiona l operations are defined in terms o f the fundamental operations. They do not add
power to the algebra, but are useful to simplify common queries.

The Set Intersection Operation

Set intersection is denoted by g l .gif , and returns a relation that contains tuples that are in
both o f its argument relations. It does not add any power as :

r f l s = r - (r - i)
To find all customers having both a loan and an account at the SFU branch, we write

D cn a m a (&bn

3 . 3 2 . 3 T h e N a t u r a l J o i n O p e r a t io n

O ften we want to simplify queries on a cartesian product.

For example, to find all customers having a loan at the bank and the cities in which they live,
we need borrow and customer relations:

Qbt>rrotD.enafnfl,eeity (^b o rrow .enam s= -eu ftom ar.ena fn a (b o r r o w X))

O ur selection predicate obtains only those tuples pertaining to only one cname.

This type o f operation is very common, so we have the natural join, denoted by a sign g5.gif
Natural jo in combines a cartesian product and a selection in to one operation. I t performs a

selection forcing equality on those attributes that appear in both relation schemes. Duplicates
are removed as in all relation operations.

To illustrate, we can rewrite the previous query as :

H cfiam a (&bn o m s ^ S F U * (pQTrQU)')} H D ensm s {& bnafna=r*SF U ’‘ (d e p o s i t))

The resulting relation is shown in Fig.

ename ecity
Smith
Hayes
Jones

Burnaby
Burnaby
Vanvuver

Joining borrow and customer relations.

1 74 Database Management Systems

We can now make a more formal defin ition o f natural join.

Consider Jl and 5 to be sets o f attributes. We denote attributes appearing in both relations
W R n S- We denote attributes in either or both relations by R (j 5 .

Consider two relations r (R) and B(S).

The natural jo in o f p and g, denoted by r m s is a relation on scheme R y 5 . I t is a projection
onto f lu S ° f a selection on 7» x g where the predicate requires rsj [= for each attribute

A in f l nS-
Formally,

B = H f l U i A f . i 4 a= f . j 4 a A ... A = ^ *■))

where

R n S = [A \ * A^ - , , j An]

To find the assets and names o f all branches which have depositors liv ing in Stamford, we need
customer, deposit and branch relations:

A
M

Note that ^ is associative.

To find all customers who have both an account and a loan at the SFU branch:

ama^SFU11 (borrow M deposit))

This is equivalent to the set intersection version we wrote earlier. W e see now that there can
be several ways to write a query in the relational algebra.

I f two relations r(J2) and s(S) have no attributes in common, then 5 = J, and r M = r X fi*
SELECT JO IN Example

A jo in on an SQL SELECT statement is, loosely speaking, a query in which data is retrieved
from more than one table. The ability to jo in two or more tables is one o f the most powerful
features o f relational systems. Many different types o f jo in can be made. Examples are given
o f a simple equijoin, and a greater-than join.

3 . 3 2 . 4 J o i n

In relational algebra the jo in o f relation A on attribute X w ith relation B on attribute Y yeilds
the set o f all tuples Y such that Y is a concatenation o f a tuple ‘a’ belonging to A and tuple
V belonging to B and the predicate ’a.X comp b.Y’ evaluates to true (attributes A .X and B.Y
sould be defined on the same domain). I f the ‘comp’ operator is then i t is an equi- jo in
and thus it must include two identical attributes. I f one ĉ f these is removed (using a projection)
then the result is a natural jo in - this is the most important k ind o f join. JOINs are represented

Relational Database 1 7 5

in SQL by the SELECT statement. Joins are w ritten in shorthand form e.g. A jo in B, (or A
| > < | B) and can be .regresentee diagramatically as follows:

Join Dependencies

Join dependencies arise where there is no lossless jo in decomposition in to two relations, but
there is a lossless jo in decomposition in to more than two relations. Such dependencies are
eliminated by decomposition in to 5NF. Join dependencies do not have a simple real-world
analogy.

3 . 3 2 . 5 T h e D iv i s i o n O p e r a t io n

Division, denoted, is suited to queries that include the phrase “ for all” .

Suppose we want to find all the customers who have an account at all branches located in
Brooklyn. Strategy: th ink o f it as three steps. We can obtain the names o f all branches located
in Brooklyn by:

r i = n b n a m e (f i r a n e f i))

We can also find all cname, bname pairs for which the customer has an account. Now we need
to f in d a ll custom ers w ho appear in r * w ith every b ranch nam e in

r i = H& nama {<7bcii1f - aBrooklyn'‘ (b ra nch))
The divide operation provides exactly those customers:

r» = H enafn fl,bnafnfl(dcp& filt)

which is simply r * -S-Tj Formally, Let r(J2) and b{S) be relations.

Let S C R

The relation p 4- 5 is a relation on scheme R — S

A tuple f is in p -L- 5 i f for every tuple ^ in g there is a tuple t r in p satisfying both of the
following:

MS]=t,[S] (3.2.1)
tr[R - S] = 1 { R - S] (3.2.2)

These conditions say that the portion o f a tuple is in i f and only i f there are tuples w ith the
portion and the portion in for every value o f the portion in relation . We w ill look at this
explanation in class more closely.

The division operation can be defined in terms o f the fundamental operations.

3 . 3 2 . 6 T h e A s s ig n m e n t O p e r a t io n

Sometimes it is useful to be able to write a relational algebra expression in parts using a temporary
relation variable (as we did w ith and in the division example).

176 Database Management Systems

The assignment operation, denoted, works like assignment in a programming language.

We could rewrite our division defin ition as:
• No extra relation is added to the database, but the relation variable created can be used

in subsequent expressions. Assignment to a permanent re lation would constitute a
m odification to the database.

3 . 3 3 R e l a t i o n a l T a b l e s O v e r v i e w

A relational DBMS is a database where data is a collection o f time-varying, normalised,
independent relations o f assorted degree and cardinalities. Each table or relation exists on
domain D1 to D N and consists o f :

• A set o f attributes A1 to A N such that attribute A i corresponds to domain D i
• A set o f n-tuples or entries in the table.

i i
N A M E

- n

where n ’ in this case is the degree of the relation. Primary keys also exist on tables.

The entire inform ation content o f the database is represented as explicit data values each of
which is atomic. There are no links or pointers connecting tables and thus the representation
of relationships is as data in another table.

3 . 3 4 R D B M S C r i t e r i a

A DBMS implementation is considered to be a relational DBMS i f it supports users viewing
the data as tables and nothing else, and at least the operators select, project, and jo in either
explicitly as operators or as parts o f other functions w ith no reference to physical access.

We can justify this subset o f the fu ll model because select, project and jo in are a useful subset
o f the fu ll algebra and a system w ith tables and no operators does not provide the real flavour
o f relational systems. Also a system that provides the relational operators but requires physical
predefinition o f physical access paths to support them does not provide the physical data
independence o f a true relational system. Finally, a system merely executing exact operations
requested by the user could not possibly provide query optimisation and would therefore be
slow.

Z W

i

Relational Database 177

3 . 3 5 Q u e r y O p t i m i s a t i o n O v e r v i e w

Query optimisation is essential i f a DBMS is to achieve acceptable performance and efficiency.
Relational database systems based on the relational model and relational algebra have the
strength that their relational expressions are at a sufficiently high level so query optimisation
is feasible in the first place; in non-relational systems, user requests are low level and optimisation
is done manually by the user - the system cannot help. Hence systems w hich implement
optimisation have several advantages over systems that do not.

The optimisation process itself involves several stages, which involves the implementation of
the relational operators. A different approach to query optimisation, called semantic optimisation
has recently been suggested.

3 .3 5 .1 I n t e r n a l R e p r e s e n t a t io n f o r Q u e r ie s

The first stage in the optimisation process in a relational database is to convert the query to
some internal representation that is more suitable for machine manipulation, thus elim inating
purely external-level considerations (e.g. SQL syntax). The internal representation language
must be rich enough to represent all possible queries in the system’s query language. I t should
also be neutral as far as possible, in the sense that it should not prejudice any subsequence
optimisation choices. The internal form that is typically chosen is some kind of abstract syntax
tree or query tree.

It is convenient to assume that the internal representation employs one o f the formalisms we
are already familiar w ith - namely, the relational algebra or relational calculus which must be
extended to be able to represent all SQL which is more powerful than i t (e.g. aggregate functions
etc.)

3 . 3 5 . 2 S t a g e s o f Q u e r y O p t im i s a t i o n

We can identify four broad stages in the overall query optimisation process, as follows:
• Cast the query in to some internal representation
• Convert to canonical form
• Choose candidate low-level procedures
• Generate query plans and choose cheapest

3 . 3 5 . 3 C o n v e r t t o C a n o n ic a l F o r m

The second stage in the query optimisation process in relational databases is to convert the
internal representation o f the query in to some equivalent canonical form i.e. converting a query
in to a version which is equivalent to all other versions, but w ith unnecessary parts omitted and
which is more efficient then the original in some respect. This canonical form is obtained using
a subset o f known well-defined algebraic transformation rules.

3 . 3 5 . 4 C a n o n ic a l F o r m D e f i n i t i o n

The notion o f canonical form in to which a query in a relational database is converted, is central
to many branches o f mathematics and related disciplines. It can be defined as follows. Given
a set o f Q objects (say queries) and a notion o f equivalence among those objects (say the notion

178 Database Management Systems

of q l and q2 are equivalent i f and only i f they produce the same result), subset C o f Q is said
to be o f canonical forms o f Q (under the stated definition o f equivalence) i f and only i f every
object q in Q is equivalent to just one object c in C. The object c is said to be the canconical
form for the object q. A ll ‘interesting’ properties that apply to an object q also apply to its
canconical form c; thus it is sufficient to study just the small set C o f canconical forms, not
the large set Q, in order to prove a variety o f ‘interesting’ results.

3 . 3 5 . 5 C o n v e r t t o C a n o n ic a l f o r m

A lgebraic T ransfo rm ation Rules

The canonical form for a query during the query optimisation process is obtained using a subset
o f known well-defined relational algebraic transform rules. These include the following:

• Transform a sequence o f restrictions.
• In a sequence o f projections, all but the last can be ignored.
• Transform a restriction o f a projection.
• Transformations based on the relational algebra.
• Commuting.
• Conjunctive normal form for predicate expressions.

3 . 3 5 . 6 A d v a n t a g e s o f O p t im i s a t i o n

The major advantage o f query optimisation is that users do not have to worry about how best
to state their queries (i.e. how to phrase requests in order to get the best performance out of
the system), and also there is a real possibility that the optimiser w ill do better than a human
programmer in terms o f using the DBMS efficiently. There are several reasons for this:

• The optimiser w ill have more inform ation available than the user;
• Database statistics may change;
• The optimiser is a program; and
• The optimiser embodies the skills o f the best programmers.

A ll o f the above serve as evidence in support o f the claim that optim isability i.e. the fact that
relational database requests are optimisable, is in fact a strength o f relational systems.

3 . 3 6 T h e R e l a t i o n a l M o d e l v s . t h e E - R M o d e l

W hy use an object model and a logical data model? Basically, models are a liaison between
users and database developers. Remember, the primary purpose o f modeling is to represent user
data in a way that is meaningful. But how is meaning determined? In an abstract way, the
object model provides meaning to business objects. In this phase, terms are defined, and
perspectives are explored. The relational model more explic itly defines objects by applying
business policies and restrictions and by evaluating data structures. For instance, in the student
registration model, the prerequisites for a particular class can be defined in order to determine
whether a student is eligible to register for that class (business policy). Accurate interpretations
can result in useful applications and more intelligent database systems. For this reason, user
perspective must be an ongoing consideration aduring the modeling phase o f database design.

Relational Database 1 7 9

3 . 3 7 T h e T u p l e R e l a t i o n a l C a l c u l u s

1. The tuple relational calculus is a nonprocedural language. (The relational algebra was
procedural.) W e must provide a formal description of the inform ation desired.

2. A query in the tuple relational calculus is expressed as:

{* I **(«)]
i.e. the set o f tuples t M for which predicate is true.

3. We also use the notation
* t[a[to indicate the value o f tuple t . on attribute a.
* t G r to show that tuple t a is in relation r-

Form al D e fin itions
1. A tuple relational calculus expression is o f the form

i t i p (t) j

where p is a formula.

Several tuple variables may appear in a formula.
2. A tuple variable is said to be a free variable unless it is quantified by a ^ or a g. Then

it is said to be a bound variable.
3. A formula is bu ilt o f atoms. A n atom is one of the following forms:

* s £ r> where & is a tuple variable, and r is a relation (g is not allowed).
* b[x] 0 where g and u are tuple variables, and ¡c and y are attributes, and 0 is a comparison

operator (< ,< ,= ,? £ ,> ,>) .
* b[x] 0 u[t/[, where e is a constant in the domain of attribute x-

4. A Formulae are bu ilt up from atoms using the following rules:

* A n atom is a formula.

* I f p is a formula, then so are - , p and (P).
* I f f t and f t are formulae, then so are p l v PA pand pi p.r

* I f P (b) is a formula containing a free tuple variable, then

3b £ r(P(s)) and Vs £ r(P(s))
are formulae also.
5. Note some equivalences:

f t A P* = V “ i f t)

vt £ r(P(t)) = -at e r(^p(t))

P i =£ f t = “ ' f t V f t

180 Database Management Systems

3 . 3 7 . 1 S a f e t y o f E x p r e s s io n s

1. A tuple relational calculus expression may generate an in fin ite expression, e.g.

[t | -i(t (E borrow)
2. There are an in fin ite number o f tuples that are not in borrow! Most o f these tuples contain

values that do not appear in the database.
3. Safe Tuple Expressions

We need to restrict the relational calculus a bit.
• The domain o f a formula p , denoted dom (p), is the set o f all values referenced in p .
• These include values mentioned in p as well as values that appear in a tuple o f a relation

mentioned in p . So, the domain o f p is the set o f all values explicitly appearing in p
or that appear in relations mentioned in p .

• dom(t £ borrow a t[amount] < 1200) is the set o f all values appearing in borrow.

• d o m { t | - i (t G b o r r o w)) is the set o f all values appearing in borrow.

We may say an expression {t | P(t)J is safe i f all values that appear in the result are values from
dom (p).
4. A safe expression yields a fin ite number o f tuples as its result.

Otherwise, i t is called unsafe.

3 . 3 7 . 2 E x p r e s s iv e P o w e r o f L a n g u a g e s
1. The tuple relational calculus restricted to safe expressions is equivalent in expressive power

to the relational algebra.

The D om ain R elationa l Calculus
1. Domain variables take on values from an attribute’s domain, rather than values for an entire

tuple.

Expressive Power o f Languages
1. A ll three o f the following are equivalent:

* The relational algebra.
* The tuple relational calculus restricted to safe expressions.
* The domain relational calculus restricted to safe expressions.

3 . 3 7 . 3 M o d i f y i n g t h e D a t a b a s e
1. Up un til now, we have looked at extracting information from the database. We also need

to add, remove and change information. Modifications are expressed using the assignment
operator.

Re la t i o na l D a t a b a s e 181

Deletion
1. Deletion is expressed in much the same way as a query. Instead of displaying, the selected

tuples are removed from the database. We can only delete whole tuples.
In relational algebra, a deletion is of the form

r <— r — E

where j* is a relation and £ is a relational algebra query.
Tuples 7" in for which £ is true are deleted.
2. Some examples:

1. Delete all of Smith’s account records.
d e p o s it <— d e p o s it — <7enanifl- " S fn^ th '(r fc j№ filt)

2. Delete all loans with loan numbers between 1300 and 1500.
deposit «— deposit — G’ioan# >1J[)U A

3. Delete all accounts at Branches located in Needham.

r <— r — E

Insertions
1. To insert data into a relation, we either specify a tuple, or write a query whose result is

the set of tuples to be inserted. Attribute values for inserted tuples must be members of
the attribute’s domain.

2. An insertion is expressed by

r <— r U E

where j* is a relation and £ is a relational algebra expression.
3. Some examples:

1. To insert a tuple for Smith who has $1200 in account 9372 at the SFU branch.
deposit «— deposit U {(̂ SFIT*, 9372, Ŝrrntft*, 1200))

2. To provide all loan customers in the SFU branch with a $200 savings account.
Tl <- {borrow))
r% * Hbnafnirloan̂ rensmi (r0
deposit <— deposit U (r*i X {(200)})

1. Updating
Updating allows us to change some values in a tuple without necessarily changing all. We use
the update operator, 5, with the form

w h er e y« is a r e l a t i o n w i t h a t t r i b u t e w h i c h is assigned t he va l ue o f exp ress ion £ .

1 8 2 D a t a b a s e M a n a g e m e n t S y s t e m s

The expression % is any arithmetic expression involving constants and attributes in relation p.
Some examples:
1. To increase all balances by 5 percent.

b a l a n ç a f -

This statement is applied to every tuple in deposit.
2. To make two different rates of interest payment, depending on the balance amount:

^ s l a n e f l +— b a la n e a < il .[) s (^ a !a n c f l > lü [ÎD ü (^ cP ^ i))

^ b a la n ç a t - baZ anefl* l.U & (^baianea <

Note: In this example, the order of the two operations is important. (Why?)
Views
1. We have assumed up to now that the relations we are given are the actual relations stored

in the database.
2. For security and convenience reasons, we may wish to create a personalized collection of

relations for a user.
3. We use the term view to refer to any relation, not part of the conceptual model, that is

made visible to the user as a “virtual relation”.
4. As relations may be modified by deletions, insertions and updates, it is generally not possible

to store views. This is because views must then be recomputed for each query referring to
them.

3.38 View Definition
1. A view is defined using the create view command:

create view v a§ < query expression >
where < query expression > is any legal query expression.

The view created is given the name .
2. To create a view all-customer of all branches and their customers:

create view all-customer ai
Hfcnom., ntmi (deposit) U Hfeami,<:nam«(&0rr0w)

3. Having defined a view, we can now use it to refer to the virtual relation it creates. View
names can appear anywhere a relation name can.

4. We can now find all customers of the SFU branch by writing
H cnam«((T&fl0fna- - 5ri’i7 - (a f f - e u r ta m e r))

3.38.1 Updates Through Views and Null Values
1. Updates, insertions and deletions using views can cause problems. The modifications on a

view must be transformed to modifications of the actual relations in the conceptual model
of the database.

R e la t i o na l D a t a b a s e

2. An example will illustrate: consider a clerk who needs to see all information in the borrow
relation except amount.

Let the view loan-info be given to the clerk:
create view loan-info as

3. Since SQL allows a view name to appear anywhere a relation name may appear, the clerk
can write:

loan-info <- loan-info U {(“SFU^X “Ruth”))
This insertion is represented by an insertion into the actual relation borrow, from which the
view is constructed.
However, we have no value for amount. A suitable response would be:

• Reject the insertion and inform the user.
• Insert (“SFU”,3,“Ruth”,null) into the relation.

The symbol null represents a null or place-holder value. It says the value is unknown or does
not exist.
4. Another problem with modification through views: consider the view

create view bran city as
H&fiafnfl,eeity(&Grr0UJ M CUrffflTlCr)

This view lists the cities in which the borrowers of each branch live.
Now consider the insertion

fc n z n c A -c i t y <— b r a n c h - c i t y U { (“ B r i g h t o n ” t " W o o d e id c ”) ']

Using nulls is the only possible way to do this.
If we do this insertion with nulls, now consider the expression the view actually corresponds to:

RELATION - STU-ACT
I StvID Activity | Fee

| 100 : Diving | 200

f 150 Softball | 50

1 175 Racquetball | 50

| 200 Softball 1 50

As comparisons involving nulls are always false, this query misses the inserted tuple.
To understand why, think about the tuples that got inserted into borrow and customer. Then
think about how the view is recomputed for the above query.

1 8 4 D a t a b a s e M a n a g e m e n t S y s t e m s

3.39 Extension of the Codd Rules and Features
In 1993, E.F. Codd & Associates published a white paper, commissioned by Arbor Software (now
Hyperion Solutions), entitled ‘Providing OLAP (On-line Analytical Processing) to User-Analysts:
An IT Mandate’. Dr Codd was, of course, very well known as a respected database researcher
from the 1960s through to the late 1980s and is credited with being the inventor of the relational
database model. Unfortunately, his OLAP rules proved to be controversial due to being vendor-
sponsored, rather than mathematically based. It is also unclear how much involvement Dr Codd
himself had with this activity, but it seems likely that his role was very limited. Several of the
rules seem to have been invented by the sponsoring vendor, not Dr Codd. The white paper
should therefore be regarded as a vendor-published brochure (which it is) rather than as an
academic paper (which it is not). Note that this paper was not published by Codd and Date,
and Chris Date has never endorsed Codd’s work in this area.
The OLAP white paper included 12 rules, which are now well known (and available for
download from vendors’ Web sites). They were followed by another six (much less well known)
rules in 1995 and Dr Codd also restructured the rules into four groups, calling them ‘features’.
The features are briefly described and evaluated here, but they are now rarely quoted and little
used.
Basic Features B
FI: Multi-dimensional Conceptual View (Original Rule 1). Few would argue with this feature;
like Dr Codd, we believe this to be the central core of OLAP. Dr Codd included ‘slice and
dice’ as part of this requirement.
F2 : Intuitive Data Manipulation (Original Rule 10). Dr Codd preferred data manipulation to
be done through direct actions on cells in the view, without recourse to menus or multiple
actions. One assumes that this is by using a mouse (or equivalent), but Dr Codd did not actually
say so. Many products fail on this, because they do not necessarily support double clicking or
drag and drop. The vendors, of course, all claim otherwise. In our view, this feature adds little
value to the evaluation process. We think that products should offer a choice of modes (at
all times), because not all users like the same approach.
F3: Accessibility: OLAP as a Mediator (Original Rule 3). In this rule, Dr Codd essentially
described OLAP engines as middleware, sitting between heterogeneous data sources and an
OLAP front-end. Most products can achieve this, but often with more data staging and batching
than vendors like to admit.
F4: Batch Extraction Vs Interpretive (New). This rule effectively required that products offer
both their own staging database for OLAP data as well as offering live access to external data.
We agree with Dr Codd on this feature and are disappointed that only a minority of OLAP
products properly comply with it, and even those products do not often make it easy or automatic.
In effect, Dr Codd was endorsing multidimensional data staging plus partial pre-calculation
of large multidimensional databases, with transparent reach-through to underlying detail.
Today, this would be regarded as the definition of a hybrid OLAP, which is indeed becoming
a popular architecture, so Dr Codd has proved to be very perceptive in this area.

Re la t i o na l D a t a b a s e 1 8 5

F5: OLAP Analysis Models (New). Dr Codd required that OLAP products should support all
four analysis models that he described in his white paper (Categorical, Exegetical, Contemplative
and Formulaic). We hesitate to simplify Dr Codd’s erudite phraseology, but we would describe
these as parameterized static reporting, slicing and dicing with drill down, ‘what if?’ analysis
and goal seeking models, respectively. All OLAP tools in this Report support the first two (but
some other claimants do not fully support the second), most support the third to some degree
(but probably less than Dr Codd would have liked) and few support the fourth to any usable
extent. Perhaps Dr Codd was anticipating data mining in this rule?
F6 : Client Server Architecture (Original Rule 5). Dr Codd required not only that the product
should be client/server but that the server component of an OLAP product should be sufficiently
intelligent that various clients could be attached with minimum effort and programming for
integration. This is a much tougher test than simple client/server, and relatively few products
qualify. We would argue that this test is probably tougher than it needs to be, and we prefer
not to dictate architectures. However, if you do agree with the feature, then you should be
aware that most vendors who claim compliance, do so wrongly. In effect, this is also an indirect
requirement for openness on the desktop. Perhaps Dr Codd, without ever using the term, was
thinking of what the Web would deliver? Or perhaps he was anticipating a widely accepted
API standard, which OLE DB for OLAP is becoming.
F7: Transparency (Original Rule 2). This test was also a tough but valid one. Full compliance
means that a user of, say, a spreadsheet should be able to get full value from an OLAP engine
and not even be aware of where the data ultimately comes from. To do this, products must
allow live access to heterogeneous data sources from a full function spreadsheet add-in, with
the OLAP server engine in between. Although all vendors claimed compliance, many did so
by outrageously rewriting Dr Codd’s words. Even Dr Codd’s own vendor-sponsored analyses of
Essbase and (then) TM/1 ignore part of the test. In fact, there are a few products that do fully
comply with the test, including Analysis Services, Express, and Holos, but neither Essbase nor
iTMl (because they do not support live, transparent access to external data), in spite of Dr
Codd’s apparent endorsement. Most products fail to give either full spreadsheet access or live
access to heterogeneous data sources. Like the previous feature, this is a tough test for openness.
F8 : Multi-User Support (Original Rule 8). Dr Codd recognised that OLAP applications were
not all read-only and said that, to be regarded as strategic, OLAP tools must provide concurrent
access (retrieval and update), integrity and security. We agree with Dr Codd, but also note
that many OLAP applications are still read- only. Again, all the vendors claim compliance but,
on a strict interpretation of Dr Codd’s words, few are justified in so doing.
Special Features S
F9: Treatment of Non-Normalized Data (New). This refers to the integration between an OLAP
engine and denormalized source data. Dr Codd pointed out that any data updates performed
in the OLAP environment should not be allowed to alter stored denormalized data in feeder
systems. He could also be interpreted as saying that data changes should not be allowed in
what are normally regarded as calculated cells within the OLAP database. For example, Essbase
allows this, and Dr Codd would perhaps disapprove.

1 8 6 D a t a b a s e M a n a g e m e n t S y s t e m s

F10: Storing OLAP Results: Keeping Them Separate from Source Data (New). This is really
an implementation rather than a product issue, but few would disagree with it. In effect, Dr
Codd was endorsing the widely held view that read-write OLAP applications should not be
implemented directly on live transaction data, and OLAP data changes should be kept distinct
from transaction data. The method of data write-back used in Microsoft Analysis Services is
the best implementation of this, as it allows the effects of data changes even within the OLAP
environment to be kept segregated from the base data.
FI 1: Extraction of Missing Values (New). All missing values are cast in the uniform representation
defined by the Relational Model Version 2. We interpret this to mean that missing values are
to be distinguished from zero values. In fact, in the interests of storing sparse data more
compactly, a few OLAP tools such as iTMl do break this rule, without great loss of function.
F12: Treatment of Missing Values (New). All missing values to be ignored by the OLAP analyser
regardless of their source. This relates to Feature 11, and is probably an almost inevitable
consequence of how multidimensional engines treat all data.
Reporting Features R
F13: Flexible Reporting (Original Rule 11). Dr Codd required that the dimensions can be laid
out in any way that the user requires in reports. We would agree, and most products are capable
of this in their formal report writers. Dr Codd did not explicitly state whether he expected the
same flexibility in the interactive viewers, perhaps because he was not aware of the distinction
between the two. We prefer that it is available, but note that relatively fewer viewers are capable
of it. This is one of the reasons that we prefer that analysis and reporting facilities be combined
in one module.
FI4: Uniform Reporting Performance (Original Rule 4). Dr Codd required that reporting
performance be not significantly degraded by increasing the number of dimensions or database
size. Curiously, nowhere did he mention that the performance must be fast, merely that it be
consistent. In fact, our experience suggests that merely increasing the number of dimensions
or database size does not affect performance significantly in fully pre-calculated databases, so
Dr Codd could be interpreted as endorsing this approach— which may not be a surprise given
that Arbor Software sponsored the paper. However, reports with more content or more on-the-
fly calculations usually take longer (in the good products, performance is almost linearly
dependent on the number of cells used to produce the report, which may be more than appear
in the finished report) and some dimensional layouts will be slower than others, because more
disk blocks will have to be read. There are differences between products, but the principal
factor that affects performance is the degree to which the calculations are performed in advance
and where live calculations are done (client, multidimensional server engine or RDBMS). This
is far more important than database size, number of dimensions or report complexity.
FI5: Automatic Adjustment of Physical Level (Supersedes Original Rule 7). Dr Codd required
that the OLAP system adjust its physical schema automatically to adapt to the type of model,
data volumes and sparsity. We agree with him, but are disappointed that most vendors fall far
short of this noble ideal. We would like to see more progress in this area and also in the related
area of determining the degree to which models should be pre- calculated (a major issue that

R e la t i o na l D a t a b a s e 1 8 7

Dr Codd ignores). The Panorama technology, acquired by Microsoft in October 1996, broke
new ground here, and users can now benefit from it in Microsoft Analysis Services.
Dimension Control D
FI6 : Generic Dimensionality (Original Rule 6). Dr Codd took the purist view that each
dimension must be equivalent in both its structure and operational capabilities. This may not
be unconnected with the fact that this is an Essbase characteristic. However, he did allow
additional operational capabilities to be granted to selected dimensions (presumably including
time), but he insisted that such additional functions should be grantable to any dimension.
He did not want the basic data structures, formulae or reporting formats to be biased towards
any one dimension. This has proven to be one of the most controversial of all the original 12
rules. Technology focused products tend to largely comply with it, so the vendors of such
products support it. Application focused products usually make no effort to comply, and their
vendors bitterly attack the rule. With a strictly purist interpretation, few products fully comply.
We would suggest that if you are purchasing a tool for general purpose, multiple application
use, then you want to consider this rule, but even then with a lower priority. If you are buying
a product for a specific application, you may safely ignore the rule.
FI 7: Unlimited Dimensions & Aggregation Levels'(Original Rule 12). Technically, no product
can possibly comply with this feature, because there is no such thing as an unlimited entity
on a limited computer. In any case, few applications need more than about eight or ten
dimensions, and few hierarchies have more than about six consolidation levels. Dr Codd
suggested that if a maximum must be accepted, it should be at least 15 and preferably 20; we
believe that this is too arbitrary and takes no account of usage. You should ensure that any
product you buy has limits that are greater than you need, but there are many other limiting
factors in OLAP products that are liable to trouble you more than this one. In practice, therefore,
you can probably ignore this requirement.
FI8 : Unrestricted Cross-dimensional Operations (Original Rule 9). Dr Codd asserted, and we
agree, that all forms of calculation must be allowed across all dimensions, not just the ‘measures’
dimension. In fact, many products which use only relational storage are weak in this area. Most
products, such as Essbase, with a multidimensional database are strong. These types of calculations
are important if you are doing complex calculations, not just cross tabulations, and are particularly
relevant in applications that analyse profitability.

3.40 Past and Future of Relational Databases
Today’s database market is dominated by products based on the Relational Model of data, which
is now over thirty years old. The challenge of the Object Model of data has faded, and the
economic case for adopting the hybrid Object/ Relational technology is unproven.
So is the Relational Model the last word in database architecture? Lazy Software believes not,
and offers a powerful alternative in the Associative Model of Data, which is implemented by
SentencesO, its database management system for the Internet and beyond.

1 8 8 D a t a b a s e M a n a g e m e n t S y s t e m s

Since the Relational Model was conceived, PCs and the Internet have extended the role of
computers into new areas that depend on the PC’s multimedia capability. The 1980s saw the
arrival of a new generation of databases based on the Object Model of data, that were better
able to manage complex multimedia data structures such as image and sound.
Analysts forecast that object databases would rapidly replace relational databases, but their sales
have fallen far short of predictions. In fact, the Object Model was never intended to compete
with the Relational Model. As a result, in many respects it is inferior to the Relational Model
for transaction processing. Moreover, the market has not bought into the need for specialised
technology solely to store multimedia files.
The most visible limitation of the Relational Model has been its inability to handle complex
data, but importance of this has been exaggerated. The Relational Model has some far more
significant limitations that the market has not yet challenged:

• If your programs are so expensive, why can they do only one job?
• If your applications are so vital, why can’t they work like you do?
• If your customers are so important, why store the same data for each one?
• If your databases are so critical, why can’t they work together?

Review Question for Unit 3
Objective type questions:
1. The relational model’s structure is defined by:

(a) Relations, tuples, and attributes.
(b) Files, records, and fields.
(c) Tables, rows, and columns.
(d) All of the above.
(e) None of the above.

2. The relational model is important because:
(a) It can be used to express DBMS-independent designs, since its constructs are broad and

general.
(b) It is the basis for an important category of DBMS products.
(c) Both A and B.
(d) None of the above.

3. The expression X Y is read as:
(a) “X functionally determines Y.”
(b) “X determines Y.”
(c) “Y is dependent on X.”
(d) All of the above.
(e) None of the above.

R e la t i o na l D a t a b a s e 1 8 9

4. A modification anomaly occurs when:
(a) Undesirable consequences result from changing data in a table.
(b) Functional dependencies must be modified.
(c) Relations are normalized.
(d) All of the above.
(e) None of the above.

5. Normal forms are nested, which means that:
(a) A relation in INF is also in 2NF and 3NF.
(b) A relation in Boyce-Codd NF is also in 4NF and 5NF.
(c) A relation in 3NF is also in 2NF and INF.
(d) None of the above.

6. Normalisation:
(a) Is used because not all relations are equal.
(b) Is a process for converting a relation that has certain problems to two or more relations

that do not have these problems.
(c) Can be used as a guideline for checking the desirability and correctness of relations.
(d) All of the above.
(e) None of the above.

CHAPTER < 4

S tandard Q uery L anguage

4.1 History of SQL
When IBM began implementing Dr. E. F. Codd’s relational database model in the early 1970’s,
Donald Chamberlin and others at IBM’s research division developed a prototype language called
Structured English Query Language, or SEQUEL for short. Later, IBM expanded and revised
the language, dubbing it SEQUEL/2. SEQUEL/2 became the application programming interface
(API) for IBM’s first relational database system prototype, System/R. For legal reasons, IBM
eventually changed the name SEQUEL/2 to SQL. That is why many people and reference books
today, like this magazine, use the pronunciation "sequel" and spell it out as Structured Query
Language.
SQL allows users to access data in relational database management systems, such as Oracle,
Sybase, Informix, Microsoft SQL Server, Access, and others, by allowing users to describe the
data the user wishes to see. SQL also allows users to define the data in a database, and
manipulate that data. This page will describe how to use SQL, and give examples.
The relational model was first introduced in a paper published in 1970 by Dr. E. F. Codd. It
provided a mathematical basis for structuring, manipulating, and controlling data, and it
abstracted data from any physical implementation. Prior to that time, database users had to
know how records were physically linked in order to access them. When the physical structure
of a database was changed (for performance reasons, for example), programmers had to rewrite
their applications, even if the logical structure remained the same. In the relational model,
data is separated from application programs. In fact, the model said nothing whatsoever about
how data should be stored or accessed. It dealt exclusively with how data was seen from the
user’s point of view. The relational model significantly changed the way people thought about
managing data. It transformed database technology from an art into a science and revolutionized
the industry.

S t a n d a r d Q u e r y L a n g u a g e 191

4.2 Relational Database Management Systems
The sole purpose of a DBMS is to manage data. If we measure quantity of DBMSs by the number
of installations, then by far the most common kind of DBMS is a relational DBMS. Some
commercial relational DBMSs are Oracle, Informix and Microsoft Access. Postgres is a research
prototype DBMS which supports relational and extended relational data models.
A relational DBMS manages data which are modeled as tables, such as the two tables illustrated
below.
The Employees table below describes the employees of a company, listing for each employee
their ID within the company, their name, and the ID of the department where they work. The
Departments table describes the company’s departments by listing each department’s ID, the
department’s name, and the building where the department is located. We have included a
small amount of sample data.

• Employees

Departments

EmpID Name DeptID

123 Sergio CS
234 Lara Comm
135 Elayne Comm
124 Dick CS

DeptID Name Bldg
Comm Communications Lincoln
CS Computer Science PCAT

Typically, the DBMS stores its data on disk. The user can write an SQL statement and submit
it to a DBMS, which then will retrieve the appropriate data from disk and return it to the
user. This interaction is depicted in the Fig. 4.1 below.

F o r m a t t e d

U s e r S Q L

О D a t a
"*

A ______________,

D BM S

R a w D a t a AУ

^ -------------

D a t a

S y s t e m
C a lls

Fig. 4.1

SQL has many more features than data retrieval, but we will cover only retrieval here.

1 9 2 D a t a b a s e M a n a g e m e n t S y s t e m s

4.3 SQL: The Universal Database Language
SQL (pronounced "ess-que-el") stands for Structured Query Language. SQL is used to
communicate with a database. According to ANSI (American National Standards Institute),
it is the standard language for relational database management systems. SQL statements are
used to perform tasks such as update data on a database, or retrieve data from a database.
Some common relational database management systems that use SQL are: Oracle, Sybase,
Microsoft SQL Server, Access, Ingres, etc. Although most database systems use SQL, most of
them also have their own additional proprietary extensions that are usually only used on their
system. However, the standard SQL commands such as “Select”, "Insert", “Update”, “Delete”,
“Create”, and “Drop” can be used to accomplish almost everything that one needs to do with
a database. This tutorial will provide you with the instruction on the basics of each of these
commands as well as allow you to put them to practice using the SQL Interpreter.
As we said, SQL (Structured Query language) is the language of choice for most modem multi
user, relational databases. That is because SQL provides the syntax and idioms (language) you
need to talk to (query) relational databases in a standardized, cross- platform/product way
(structured).
The beauty of SQL is that it idiomizes the relational model. Rather than refer to data as a
set of pointers, SQL provides predefined procedures to allow you to use any value in a table
to relate other tables in a database. So long as a database is structured using the relational
model, SQL will be a natural fit because SQL was designed to make sense in a relational system.
SQL by its very design is a language that can be used to talk about relating tables.
SQL databases (most modem relational databases), as you will recall, are composed of a set
of row/column-based “tables”, indexed by a “data dictionary”. To access data in the tables, you
simply use SQL to navigate the system and produce “views” based on search criteria defined
in the SQL query.
Let us now step back for a moment and look at each of these terms.
Relational database system contains one or more objects called tables. The data or information
for the database are stored in these tables. Tables are uniquely identified by their names and
are comprised of columns and rows. Columns contain the column name, data type, and any
other attributes for the column. Rows contain the records or data for the columns. Here is a
sample able called “weather”, city, state, high, and low are the columns. The rows contain
the data for this table:
Weather

City State High Low

Bhopal M.P. 42 7.2

NewDelhi Delhi 45 5.0

Mumbai Maharastra 44 14.4

Kolkata W. Bengal 46 8.9

Chennai Tamilnadu 40 18.3

S t a n d a r d Q u e ry L a n g u a g e 1 9 3

SQL is often cited as being the lingua franca of relational database management systems.
Certainly no other database language has found such wide acceptance among such a broad
range of products. Since it was first standardized in 1986, SQL has become universally adopted.
Even nonrelational database systems support a SQL interface. But unlike other computer
languages such as C or COBOL, which are the exclusive domain of programmers, SQL is
employed by a variety of professionals. Programmers, database administrators, and business
analysts alike use SQL to access information. A working knowledge of the language is valuable
to anyone who uses a database.
SQL is a special-purpose, nonprocedural language that supports the definition, manipulation,
and control of data in relational database management systems. It is a special-purpose language,
because you can use it only for handling databases; you can’t write general-purpose applications
with it. (To write an application, you have to embed SQL in some other language, and it is
frequently used that way.) That is why SQL is also known as a data sublanguage. A sublanguage
can be used with application languages, but it is not a full-fledged application language. Also,
a full-featured application language usually includes semantics for procedures, whereas SQL
is nonprocedural. It doesn’t specify how something should be done, it just specifies what should
be done. In other words, SQL is concerned with results rather than procedures.
By far the most important feature of SQL is that it provides access to relational databases. That
is so fundamental to SQL that many people think the terms SQL database and relational
database are synonymous. But as you will soon see, they’re not. In fact, the SQL-92 standard
doesn’t even mention the term relation.
A Simple SQL Statement
Here is an SQL statement which retrieves names of employees in the department whose ID
is CS:

SELECT Employees.Name
FROM Employees
WHERE Employees.DeptID = "CS"

We will begin by trying to understand this SQL statement. To understand any SQL statement,
it is best to begin with the FROM clause.

FROM Employees
means that the data retrieved will originate from the Employees table.
N ext, consider the W H E R E clause.

WHERE Employees.DeptID = "CS"
means that the data retrieved will come from rows whose DeptID column has the value CS.
Thus the data retrieved by this SQL statement will be derived from the rows.

EmpID Name Dept
123 Sergio CS
124 Dick CS

Finally, the SELECT clause specifies that data retrieved by this SQL statement is from the Name
column. Thus this SQL query will retrieve the table.

1 9 4 D a t a b a s e M a n a g e m e n t S y s t e m s

Name
Sergio
Dick

Some observations:
1. The terms Employees.Name and Employees.DeptID use Employees as a qualifier. These

qualifiers are necessary since the column names DeptID and Name appear in both tables.
However, it is good programming practice to use qualifiers even if they are not necessary.

2. SQL uses = for the equality relation, not = = . Other possible relations are >, <, <> (not
equal), >= and <= .

3. The meanings of terms in SQL clash with their meanings as logical operators. This table
should highlight the problems and help you avoid confusion.

Meaning in SQL Meaning as a Logical Operator
SELECT Retrieve certain columns s : Retrieve rows satisfying a condition
PROJECT NONE p : Retrieve certain columns WHERE Retrieve rows satisfying a condition
None
4. The official SQL language is defined by an international standards committee. DBMS

vendors typically advertise that they conform to some or all of the current standard.
5. The SQL standard (does not specify case sensitivity, so it is up to vendors. Most vendors

provide case insensitive SQL. Capitalization of keywords is just a user friendly artifact.
6 . The order of SELECT, FROM, WHERE clauses is specified by the standard.
7. More complex WHERE conditions can be used in SQL. Any boolean combination of

conditions can be used.

4.4 SQL: Three Types of Statements
Now we are ready to begin writing some SQL code. If you have access to a SQL database and
would like to try the examples as we go along, make sure to log on as a user with full privileges
and to use an interactive SQL facility. (If your SQL database is on a network, you will have
to talk to your database administrator about getting privileges.) If you don’t have access to a
SQL database, don’t worry: the examples are easy to follow. You don’t need to try them out
to understand what’s going on.
The only way to make anything happen in SQL is to execute a SQL statement. There are several
types of SQL statements, but they generally fall into three categories:

• Data definition language (DDL) statements
• Data manipulation language (DML) statements
• Data control statements

In a way, SQL is like three languages rolled into one.

S t a n d a r d Q u e r y L a n g u a g e

4.5 SQL Tables
We have already discussed the concept of tables in the last part, but let’s just refresh our memory
in terms of how tables relate to SQL. A table is a systematic way to store data. For the most
part, a table is just like a spreadsheet. Tables are composed of rows (records) and each row
is composed of columns (fields).
Employee Table

EmployeelD N um ber Employee N am e Employe Phone Salary

001 Sharmiia 3316697 90,000

002 Sushmita 3736789 40,000

003 Sangita 6789011 50,000

How the tables are stored by the database you are using does not really make a difference for
you. The beauty of SQL is that it works independently of the internal structure of the database.
The tables could be stored as simple flat files on a local PC or as complex, networked,
compressed, encrypted and proprietary data structures. All you need to know is the table’s name.
If you know the name, you can use SQL to call up the table. We will look at manipulating
tables in detail a bit later. But first, let’s look at the data dictionary.
A Sample Database
Okay, let is define a simple relational database that we can use to practice with...
We will define a database called “MY_COMPANY” with four tables, “CLIENTS”, "EMPLOYEES”,
"PRODUCTS”, and "SALES". These tables will look something like the following:
EMPLOYEES Table
E M P N U M EMP NAM E EM PC O M M ISSIO N EMP SALARY

001 Lim Li Chuen 10% 90,000 USD

002 Lim Sing Yuen 20% 40,000 USD

003 Loo Soon Keat 20% 50,000 USD

CLIENTS Table
C N U M C_NAM E C A D D R C_CITY C S T A T E C_ZIP C P H O N E

001 Jason Lim 100 w 10th St LA CA 90027 456-7890

002 Rick Tan 21 Jack St LA CA 90031 649-2038

003 Stephen Petersen 1029# A Kent Ave. LA CA 90102 167-3333

1 9 6 D a t a b a s e M a n a g e m e n t S y s t e m s

P R O D U C T S T a b le

P N U M P Q U A N T IT Y P P R IC E

001 104 99.99

002 12 865.99

003 2000 50.00

SALES Table

S_NUM P N U M S Q U A N IT Y S A M O U N T E_NUM C_NUM

001 001 1 99.99 101 102

002 001 2 199.98 102 101

003 002 1 865.99 101 103

4.6 Creating Databases
Okay, as we have said before, it would be too difficult for us to cover how to install and
conFig.ure all of the myriad of relational databases around, so it is your job to get something
installed on your local system or to arrange with your systems administrator to give you access
to an existing database system.
Specifically, to get a database working, you will 1) install the application on the host computer
(insert disk A, click install.exe), 2) create a database according to the instructions of the
database application you install, 3) populate your database with tables, and 4) populate your
tables with data.
In the case of Access and many other database systems around these days, the process of creating
databases and tables is pretty much handled by Wizards and GUI tools. Thus, you rarely need
to use SQL for such operations. More likely, you would choose something like “FILE | NEW
DATABASE” from the main menu.
Below is an example of the Wizard used by Microsoft Access. In this case, we have chosen
“File | New Database” from the main menu at the top of the application window and then we
double click “Blank Database”. Of course, although Access and other database systems offer
template databases for your convenience, we will create our own for practice.

S t a n d a r d Q u e r y L a n g u a g e 1 9 7

In Access, as will be the case in most databases, once you create a database, you will then
be asked to define the database structure.
Specifically, you will be asked to define some tables in your database (and perhaps other more
advanced tools like Macros, Indexes, Views, Forms, Queries, etc). Below is a screen-shot from
Access that offers a series of database definition tabs.

db2 Database

® Create table by usrtg wizard

l§] Create table by entering data

Fig. 4.3

To create a table, simply choose “New” from the “Tables” tab and follow instructions for defining
your fields. Nothing could be simpler. Hopefully, now that you understand what the database
is doing in the background, you will be easily able to understand what you need to do to get
it working.
However, even though GUIs are pretty swank these days, it is probably a good idea to learn
the SQL to which is being used in the background to create the database. Specifically, you
use the CREATE command to create a database such as in the following.

CREATE DATABASE DATABASE_NAME;
We might use the following code to create a database called MY_COMPANY.

CREATE DATABASE MY_COMPANY;

4.7 Data Definition Language Statements
Let us start with one of the fundamental DDL statements in SQL: the CREATE TABLE
statement. There are several types of tables in SQL, but the two basic types are

• Base tables
• Viewed tables (or views or virtual tables).

Base- tables are actual tables, and views are “virtual” tables; they are derived from base tables
but appear as actual tables to the user.

1 9 8 D a t a b a s e M a n a g e m e n t S y s t e m s

The create table statement is used to create a new table. Here is the format of a simple create
table statement:

• create table “tablename”
• (“columnl” “data type”,
• “column2” “data type”,
• “column3” “data type”);

The CREATE TABLE statement is used to create base tables. The CREATE TABLE statement
requires a table name and a list of columns along with their corresponding data types. There
are several optional elements that you can also include in the CREATE statement, but for the
moment, let’s just deal with the required ones. The basic syntax is as follows:

CREATE TABLE table (column datatype);
CREATE and TABLE are SQL keywords; table, column, and datatype are placeholders for
values that you supply. Notice that column and datatype are enclosed in parentheses. Generally
in SQL, parentheses are used to group items together. Here, they are required to enclose the
list of column definitions. The semicolon at the end is a statement separator. Use it at the
end of each SQL statement.
To create a new table, enter the keywords create table followed by the table name, followed
by an open parenthesis, followed by the first column name, followed by the data type for that
column, followed by any optional constraints, and followed by a closing parenthesis. It is
important to make sure you use an open parenthesis before the beginning table, and a closing
parenthesis after the end of the last column definition. Make sure you seperate each column
definition with a comma. All SQL statements should end with a
The table and column names must start with a letter and can be followed by letters, numbers,
or underscores - not to exceed a total of 30 characters in length. Do not use any SQL reserved
keywords as names for tables or column names (such as “select”, “create”, “insert”, etc).
Let us try an example. Suppose you want to keep track of all of your appointments in an
appointment table. You could create such a table in SQL by entering the following statement:

CREATE TABLE APPOINTMENTS (APPOINTMENT.DATE DATE);
Executing this statement creates a table named APPOINTMENTS consisting of a single column
named APPOINTMENT_DATE with a data type of DATE. At this point, there are no rows,
since the table is empty. (The CREATE TABLE statement only defines tables; the INSERT
statement, discussed later, populates them.)
APPOINTMENTS and APPOINTMENT_DATE are called identifiers in SQL, because they
identify specific database objects, in this case a particular table and column, respectively. There
are two types of identifiers in SQL: regular and delimited. Delimited identifiers are enclosed
in double quotation marks and are case sensitive; regular identifiers are neither delimited nor
case sensitive. Here we will use only regular identifiers.

4 . 7 . 1 C r e a t e T a b l e

S t a n d a r d Q u e r y L a n g u a g e 1 9 9

Identifiers must conform to certain rules. Regular identifiers can contain letters of the alphabet
(any alphabet, not just Latin), numeric digits, and underscores. (If you’re familiar with Japanese
Hiragana syllabary or Chinese, you can also include syllables and ideographs.) Identifiers can’t
contain any punctuation, spaces, or special characters (such as #, @, %, or !), nor can they
begin with a digit or an underscore. Although it’s possible to use some SQL keywords as
identifiers, common sense should tell you not to try this. Also, because an identifier identifies
something, it has to be unique within its namespace: You can’t create a table in a database
if a table of that name already exists, and you can’t have two columns of the same name within
a table. Remember that to SQL, APPOINTMENTS and Appointments are the same. Varying
the case won’t make a regular identifier unique.
Technically, although you need only one column to create a table, to be at all useful most
tables have more than one column. Let us change our syntax diagram slightly to reflect the
optional columns:

CREATE TABLE table (
column datatype
[{ , column datatype }]) ;

We used square brackets to denote optional elements and curly braces to denote an element
that can be repeated any number of times. (You wouldn’t include these special characters in
the actual SQL statement.) The syntax diagram now shows that we can include any number
of columns. Notice the comma before the second column placeholder. Whenever you specify
a list of items in SQL, you have to separate the items with commas.
Since our single-column APPOINTMENTS table isn’t very realistic, let us create a more useful
one. (We will have to give it a different name, though, because we already have an
APPOINTMENTS table in the database.)

CREATE TABLE APPOINTMENTS2 (
APPOINTMENT_DATE DATE,
APPOINTMENT_TIME TIME,
DESCRIPTION VARCHAR (256)) ;

Here we have defined a table called APPOINTMENTS2. As in our first example, it has a
column called APPOINTMENT__DATE, to record the date of the appointment, and
APPOINTMENT_TIME, to record the time. DESCRIPTION is a variable-length string of text
of up to 256 characters. We used the VARCHAR (short for CHARACTER VARYING) data
type, because we weren’t sure how much space we would need, but we knew we didn’t want
more than 256 characters. Character strings as well as some other data types take length
assignments. These assignments have to be enclosed in parentheses to the right of the data
type.
You may have noticed that we changed the spacing in our two examples. The first time, the
entire statement was written in one continuous string, but the second time, we broke the line
after the opening parenthesis and moved each column definition to a new line. There’s no rule
in SQL that says we had to do that. Listing columns in a stack just improves readability. SQL
is a free-form language to some extent. You can break up the lines or add indentation and
spaces however you see fit. Use whatever spacing is easiest to read and understand.

2 0 0 D a t a b a s e M a n a g e m e n t S y s t e m s

For example, you might see the following SQL code to create a table called PRODUCTS with
three columns in the MY_COMPANY database we just created. Note that the three columns
would be P_NUM which would be an integer value and could not be null, the P_QUANTITY
which would also accept integers as values, and the P_PRICE column which would accept
decimal numbers with 8 digits before and 2 digits after the decimal point.

CREATE TABLE PRODUCTS (P_NUM I NT NOT NULL,
P_QUANTITY I NT,
P_PRICE DECIMAL(8,2))

IN DATABASE MY_COMPANY;
Notice that as we mentioned before, when you create a table, you must specify the data type
for each column. Notice also that you may use the "NOT NULL" keyword to tell the database
that it should not allow any NULL values to be added to the column.
As a final note, I would like to mention that you can also typically create Views, Indexes, and
Synonyms, however, those topics are beyond the scope of this tutorial since you will most likely
not be doing database administration types of activities. For most web-development work, it
is simply enough to define some tables.
4.7.2 SQL Data Types
Data types specify what the type of data can be for that particular column. If a column called
“Last_Name”, is to be used to hold names, then that particular column should have a “varchar”
(variable-length character) data type.
Type Alias Description

CHARACTER CHAR Contains a string of characters. Usually, these fields will have a specified
maximum length that is defined when the table is created.

NUMERIC NONE Contains a number with a specified number of decimal digits and scale
(indicating a power to which the value should be multiplied) defined
at the table creation.

DECIMAL DEC Similar to NUMERIC except that it is more proprietary.
INTEGER INT Only accepts integers
SMALLINT NONE Same as INTEGER except that precision must be smaller than INT

precisions in the same table.
FLOAT NONE Contains floating point numbers
DOUBLE PRECISION NONE Like FLOAT but with greater precision

It is important to note that not all databases will implement the entire list and that some will
implement their own data types such as calendar or monetary types. Some fields may also allow
a NULL value in them even if NULL is not exactly the correct type.
Okay, we will explain data types when we actually start using them, so for now, let us go on
to some real examples of doing things with SQL. Let us log on to a database and start executing
queries using SQL.

S t a n d a r d Q u e r y L a n g u a g e 201

The following data types are usually supported by SQL though the SQL standards are supporting
more than these:
Numeric data: INTEGER signed integer 31 bits

SMALLINT signed integer 15 bits
DECIMAL(p,q) signed number p digits, q decimals
FLOAT(p) floating point number, p bits precision

String data: CHAR(n) fixed length string, of n-8 bits
VARCHAR(n) varying length string, up to n-8 bits
GRAPHIC (n) fixed length string, n-16 bits
VARGRAPHIC (n) varying length string n-16 bits

Date/time data: DATE date (yyyymmmdd)
TIME time (hhmmss)

TIMESTAMP combination of date and time

Many other types are also possible e.g. LOGICAL, BIT, MONEY etc.
4.7.3 Constraints
What are constraints? When tables are created, it is common for one or more columns to have
constraints associated with them. A constraint is basically a rule associated with a column that
the data entered into that column must follow. For example, a “unique” constraint specifies
that no two records can have the same value in a particular column. They must all be unique.
The other two most popular constraints are “not null” which specifies that a column can’t be
left blank, and “primary key”. A “primary key” constraint defines a unique identification of
each record (or row) in a table. All of these and more will be covered in the future Advanced
release of this Tutorial. Constraints can be entered in this SQL interpreter, however, they are
not supported in this Intro to SQL tutorial & interpreter. They will be covered and supported
in the future release of the Advanced SQL tutorial - that is, if “response” is good.
It is now time for you to design and create your own table. You will use this table throughout
the rest of the tutorial. If you decide to change or redesign the table, you can either drop it
and recreate it or you can create a completely different one. The SQL statement drop will
be covered later.
Format of create table if you were to use optional constraints:

• create table "tablename"
• ("columnl" "data type" [constraint],
• ”column2” "data type” [constraint],
• "column3" "data type" [constraint]);
• [] ■ optional

Note: You may have as many columns as you would like, and the constraints are optional.

2 0 2 D a t a b a s e M a n a g e m e n t S y s t e m s

Example:
• create table employee
• (first varchar(15),
• last varchar(20),
• age number (3),
• address varchar(30),
• city varchar (20),
• state varchar(20));

4.7 .4 Deleting Databases and Dropping Tables and Views
It is also simple to delete tables and databases using GUI tools or SQL In the case of a GUI,
you will simply select a table or database from your main menu and delete it as you would a
file in a file system manager.
In SQL, you would simply use the DELETE or DROP commands depending on if you were
deleting a whole database or just a table in a single database.
In the case of deleting a whole database, you will use the DELETE command as follows:

DELETE DATABASE DATABASE_NAME;
The following example would delete the database MY_COMPANY:

DELETE DATABASE MY_COMPANY;
In the case of a table, you use the DROP command:

DROP TABLE TABLEJNAME;
such as:

DROP TABLE EMPLOYEES;
Essentially, when you use delete and drop, you are modifying the database management system’s
data dictionary. Hence, ...BE CAREFUL WHEN DELETING OR DROPPING!
4.7.5 Altering a Table
Finally, you should know that it is possible to “alter” a table after it has been created using
either a standard GUI tool or by using the ALTER SQL command as follows:

ALTER TABLE TABLE_NAME
DROP COLUMN_NAME, COLUMN_NAME
ADD COLUMN_NAME DATA_TYPE, COLUMN_NAME DATA.TYPE
RENAME COLUMN.NAME MEW NAME
MODIFY COLUMNJHAME DATA_TYPE;

such as the following case in which we alter the table named EMPLOYEES by dropping the
E_GENDER Column and adding an E_ZIP column which will accept INTEGERS and which
must be filled in for every new employee added to the table, and the E_MIDDLE_INIT column
which will accept a single character as a value.

ALTER TABLE EMPLOYEES
DROP E_GENDER
ADD E_ZIP INTEGER NOT NULL,
E_MIDDLE_INIT CHAR (1) ;

S t a n d a r d Q u e r y L a n g u a g e 2 0 3

4.7.6 Creating Multicolumn Table
Now that you have the basic form under your belt, let us create a more complex multi-column
table. On the previous page, there is a table called EMPLOYEES which has columns for last
name, first name, date-of-hire, branch office, salary grade level, and annual salary. To define
this table, enter the following SQL statement:

CREATE TABLE EMPLOYEES (
LAST_NAME CHARACTER (13) NOT NULL,
FIRST_NAME CHARACTER (10) NOT NULL,
HIRE_DATE DATE ,
BRANCH.0F7ICE CHARACTER (15) ,
GRADE_LEVEL SMALLINT ,
SALARY DECIMAL (9 , 2)) ;

As you can see, we’ve introduced several new elements.
First off, the NOT NULL clauses at the end of the column definitions for LAST_NAME and
FIRST_NAME are examples of a constraint. A constraint sets requirements that have to be
met. In this case, we’re telling the system that LAST_NAME and FIRST_NAME must have
values when data is entered into the table; these columns can’t be left blank.
Also, our example shows three new data types: CHARACTER, SMALLINT, and DECIMAL.
We haven’t said much about data types up until now. Although SQL unfortunately doesn’t
support relational domains, it does support a set of basic data types. It uses them to allocate
storage, constrain comparisons, and restrict data entry to some extent, but it doesn’t have true
type-checking the way other languages do.
SQL data types fall into six categories: character strings, exact numerics, approximate numerics,
bit strings, datetimes, and intervals. We’ve listed all the categories here for completeness, even
though we won’t be discussing them all in this article. (Bit strings won’t mean much to non-
programmers.)
By the way, if you are wondering whether datetime is a typo, it isn’t. It is the term the SQL
standard uses to categorize most temporal data types. (Intervals are also temporal, but they’ve
been given their own category.) You have already been introduced to two of the datetime data
types, DATE and TIME, in our previous example.
Another data type you have already encountered, CHARACTER VARYING (or VARCHAR
for short), is in the character string category. One of our new data types, CHARACTER or
CHAR, is also a character string. But unlike VARCHAR, which is of varying length, CHAR
is a fixed-length data type. LAST_NAME will always be 13 characters long, whether the
employee’s name is Poe or Pennworth-Chickering. (In Poe’s case, the remaining 10 characters
would be padded by blanks.)
From the user’s perspective, VARCHAR and CHAR look the same, so why have two types?
The reasons mainly have to do with storage requirements and performance. Generally, fixed-
length character strings provide slightly faster access time, but unusually long ones waste space.
In our APPOINTMENT2 example, it wouldn’t make much sense to set aside 256 characters
for every appointment’s description; most entries wouldn’t require that much space. A name,

2 0 4 D a t a b a s e M a n a g e m e n t S y s t e m s

on the other hand, also varies in length, but is usually 13 characters or fewer, so any lost space
would be negligible. A good rule of thumb is, if you know that the length of a text field is
likely to be uniform or relatively short, use CHAR; otherwise, use VARCHAR.
Our other new data types, SMALLINT and DECIMAL, are examples of exact numeric data
types. SMALLINT is short for small integer. SQL also provides an INTEGER data type. Again,
the reason for having two types has to do with storage. In our example, we knew that the
GRADEJLEVEL column would never be larger than two digits, so SMALLINT was appropriate,
but sometimes you don’t know how large the values will be. When in doubt, use INTEGER.
The actual precision and storage of SMALLINT and INTEGER will vary depending on the
system you are using.
The DECIMAL data type, usually used for monetary values, lets you specify amounts with a
fixed number of decimal places. Because it is an exact numeric data type, you get back exact
results when using it in mathematical operations involving decimals. (The approximate numeric
data types such as FLOAT [floating point number] have rounding errors in their decimal values,
so they are not appropriate for financial applications.) To define a DECIMAL data type, use
the form shown in our example:

DECIMAL (p,d)
The p stands for precision and the d stands for decimal places. Replace p with the total number
of digits you will need and d with the number of digits you want placed to the right of the
decimal point.
Now look at Listing A to see our updated CREATE TABLE syntax diagram, which reflects
these new elements and shows the format for all the data types we have talked about so far.
(There are other data types, but these are enough to get you going.)
SQL syntax diagrams can get complicated fast, but since you have looked at some examples,
this one shouldn’t be too hard to understand. We have added one more symbol to our notation—
a vertical bar used to separate alternatives. In effect, we are saying that for each column
definition you have a choice of data types. You have to choose one data type for each column.
(As before, anything enclosed in square brackets is optional and anything enclosed in curly
braces can be repeated any number of .times. Except for parentheses, you would not include
these special characters in actual SQL statements.) To save space, we have given the full data
type names in the first set of alternatives and abbreviated names in the second set, but you
can use them interchangeably.

4.8 Restructuring a Table w ith SQL
To add a new column to a table:

ALTER TABLE CUSTOMER
ADD CUSTTYPE CHAR(l)

To add a new column to a table with a default value:
ALTER TABLE CUSTOMER
ADD CUSTTYPE CHAR(l) INIT='R'

S t a n d a r d Q u e r y L a n g u a g e 2 0 5

To delete a column from a table:
ALTER TABLE PART
DELETE WAREHOUSE_NUMBER

To change the data type of an existing column:
ALTER TABLE CUSTOMER
CHANGE COLUMN LAST TO CHAR(20)

4.9 Data Manipulation Language
The Data Manipulation Language (DML) is used to retrieve, insert and modify database
information. These commands will be used by all database users during the routine operation
of the database. Let us take a brief look at the basic DML commands:
• INSERT
The INSERT command in SQL is used to add records to an existing table. Returning to the
personaMnfo example from the previous section, let us imagine that our HR department needs
to add a new employee to their database. They could use a command similar to the one shown
below:

INSERT INTO personal.info
values('bart','sinpson',12345, $45000)

Note that there are four values specified for the record. These correspond to the table attributes
in the order they were defined: first_name, last_name, employee_id, and salary.
• SELECT
The select statement is used to query the database and retrieve selected data that match the
criteria that you specify. The SELECT command is the most commonly used command in SQL.
It allows database users to retrieve the specific information they desire from an operational
database. Let’s take a look at a few examples, again using the personaMnfo table from our
employees database.
The command shown below retrieves all of the information contained within the personaMnfo
table. Note that the asterisk is used as a wildcard in SQL. This literally means “Select everything
from the personaMnfo table.”

SELECT *
FROM personal_info

Alternatively, users may want to limit the attributes that are retrieved from the database. For
example, the Human Resources department may require a list of the last names of all employees
in the company. The following SQL command would retrieve only that information:

SELECT last_name
FROM personal_info

Finally, the WHERE clause can be used to limit the records that are retrieved to those that
meet specified criteria. The CEO might be interested in reviewing the personnel records of
all highly paid employees. The following command retrieves all of the data contained within
personaMnfo for records that have a salary value greater than $50,000:

2 0 6 D a t a b a s e M a n a g e m e n t S y s t e m s

SELECT *
FROM personal.info
WHERE salary > $50000

Here is the format of a simple select statement:
select "columnl" [,"column2",etc] from "tablename"
[where "condition"];
[] = optional

• The column names that follow the select keyword determine which columns will be
returned in the results. You can select as many column names that you would like, or
you can use a to select all columns.

• The table name that follows the keyword from specifies the table that will be queried
to retrieve the desired results.

• The where clause (optional) specifies which data values or rows will be returned or
displayed, based on the criteria described after the keyword where.

Conditional selections used in where clause:
= Equal
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to

• LIKE *See note below
*The LIKE pattern matching operator can also be used in the conditional selection of the where
clause. Like is a very powerful operator that allows you to select only rows that are "like" what
you specif/. The percent sign “%” can be used as a wild card to match any possible character
that might appear before or after the characters specified. For example:

• select first, last, city
• from empinfo
• where first LIKE ‘Er%’;

This SQL statement will match any first names that start with 4Er\ Strings must be in single
quotes.
Or you can specify,

select first, last
from empinfo
where last LIKE '%s';

This statement will match any last names that end in a ‘s’,
select * from empinfo
where first * 'Eric';

This will only select rows where the first name equals ‘Eric’ exactly.

S tan d ard Q uery L anguage

Sample table called “empinfo”

2 0 7

first id last id age city state
John Jones 99980 45 Payson Arizona
Mary Jones 99982 25 Payson Arizona
Eric Edwards 88232 32 San Diego California
Mary Ann Edwards 88233 32 Phoenix Arizona
Ginger Howell 98002 42 Cottonwood Arizona
Sebastian Smith 92001 23 Gila Bend Arizona
Gus Gray 22322 35 Bagdad Arizona
Mary Ann May 32326 52 Tucson Arizona
Erica Williams 32327 60 Show Low Arizona
Leroy Brown 32380 22 Pine top Arizona
Elroy Cleaver 32382 22 Globe Arizona

Enter the following sample select statements in the SQL Interpreter Form at the bottom of this
page. Before you press "submit", write down your expected results. Press “submit”, and compare
the results.

select first, last, city from empinfo;
select last, city, age from empinfo
where age > 30;
select first, last, city, state from empinfo
where first LIKE ' J % ' t
select * from empinfo;
select first, last, from empinfo
where last LIKE '*s';
select first, last, age from empinfo
where last LIKE '*illia*';
select * from empinfo where first ■ 'Eric';
UPDATE

The UPDATE command can be used to modify information contained within a table, either
in bulk or individually. Each year, our company gives all employees a 3% cost-of-living increase
in their salary. The following SQL command could be used to quickly apply this to all of the
employees stored in the database:

UPDATE personal_info
SET salary = salary * 1.03

On the other hand, our new employee Bart Simpson has demonstrated performance above and
beyond the call of duty. Management wishes to recognize his stellar accomplishments with a
$5,000 raise. The WHERE clause could be used to single out Bart for this raise:

UPDATE personal_info
SET salary ■ salary + $5000

2 0 8 D a t a b a s e M a n a g e m e n t S y s t e m s

WHERE employee_id = 12345
DELETE

Finally, let us take a look at the DELETE command. You will find that the syntax of this
command is similar to that of the other DML commands. Unfortunately, our latest corporate
earnings report didn’t quite meet expectations and poor Bart has been laid off. The DELETE
command with a WHERE clause can be used to remove his record from the personal_info table:

DELETE FROM personal_±nfO
WHERE employoe_id = 12345

4.10 Relational Model Basics
In the relational model, a relation is represented as a table of information. It has one or more
attributes, which correspond to the columns of the table, and zero or more instances of data
with those attributes (called n-tuples or simply tuples), which correspond to the rows (see the
table “The Relational Model,” below).
For any given tuple, the actual values of its attributes must be taken from the attributes’ domains.
A domain is essentially a data type that defines the set of all permissible values.
For example, assume there’s a domain called “Days-of-the-week” that consists of “Monday”
through “Sunday.” If a relation had a single attribute of that domain called WEEKDAY, every
tuple in the relation would have to contain one of those values in its WEEKDAY column. A
WEEKDAY value of “January” or “Cat” wouldn’t be allowed.
Notice that we said an attribute had to contain one of those values. It couldn’t contain more
than one. In addition to being constrained to a domain, attribute values have to be atomic.
That is, they have to be elementary; they can’t be broken down into smaller parts without losing
their meaning. An attribute’s value containing both "Monday" and “Tuesday” can be broken
down into two parts that still represent days of the week, so that value is not atomic. But if
you broke “Monday” down into smaller parts— the letters M through y — they wouldn’t mean
anything by themselves, so “Monday” is an atomic value.
Relations have other properties as well. Most important, they have the mathematical property
of closure. That is, any operation performed on a relation yields another relation. This allows
you to perform mathematical operations on relations with predictable results. It also allows
operations to be abstracted into variable expressions and nested.
In his original paper, Dr. Codd defined a collection of eight operators called relational algebra.
Four of those operators, union, intersection, difference, and Cartesian product, were based on
traditional set theory, but the rest were developed specifically for relations. Since then, Dr.
Codd, Chris Date, and others have developed more operators. We will discuss three of these
relational operators — project, select (or restrict), and join — later in this article.

S t a n d a r d Q u e r y L a n g u a g e 2 0 9

4.11 What is a view?
Creating a view with SQL
To create a new view called “Housewares” based on the PART table:

CREATE VIEW HOUSEWARES AS
SELECT PART_NUMBER, PART_DESCRIPTION, UNITS_ON_HAND/ UNIT_PRICE
FROM PART
WHERE ITEM_CLASS=' HW"

To create a new view called “Housewares” with new column names:
CREATE VIEW HOUSEWARES (PNUM, DESC,OHAND, PRICE) AS
SELECT PART_NUMBER, PARTJDESCRIPTION, UNITS_ON_HAND, UNIT_PRICE
FROM PART
WHERE ITEM_CLASS='HW"

4.11.1 Advantages of Using Views
• Views provide data independence;
• Data can be viewed in different ways by different users ;
• A view can contain only those columns required by a given user, making the database

seem simpler than it is to the user; and
• A view can provide a measure of security to the database by eliminating sensitive columns

from the views of unauthorized users.
4.11.2 SQL View
When you submit a query to an SQL database using SQL, the database will consult its data
dictionary and access the tables you have requested data from. It will then put together a “view”
based upon the criteria you have defined in your SQL query.
A "view" is essentially a dynamically generated “result” table that is put together based upon
the parameters you have defined in your query. For example, you might instruct the database
to give you a list of all the employees in the EMPLOYEES table with salaries greater than 50,000
USD per year. The database would check out the EMPLOYEES table and return the requested
list as a “virtual table”.
Similarly, a view could be composed of the results of a query on several tables all at once
(sometimes called a “join”). Thus, you might create a view of all the employees with a salary
of greater than 50K from several stores by accumulating the results from queries to the
EMPLOYEES and STORES databases. The possibilities are limitless.
By the way, many databases allow you to store “views” in the data dictionary as if they were
physical tables.

4.12 The Data Dictionary
How does the database know where all of these tables are located? Well, behind the scenes,
the database maintains a "data dictionary" (a.k.a. catalog) which contains a list of all the tables
in the database as well as pointers to their locations.

2 1 0 D a t a b a s e M a n a g e m e n t S y s t e m s

The system catalog, or data dictionary, is at the heart of any general-purpose DBMS. Essentially,
the data dictionary is a table of tables containing a list of all the tables in the database, as
well as the structure of the tables and often, special information about the database itself
When you use SQL to talk to the database and provide a table name, the database looks up
the table you referred to in the data dictionary. Of course, you needn’t worry about the data
dictionary; the database does all the searching itself As we said before, you just need to know
the name of the table you want to look at.
It is interesting to note that because the data dictionary is a table, in many databases, you
can even query the data dictionary itself to get information about your environment. This can
often be a very useful tool when exploring a new database.
Okay, so how do you actually grab table data using the data dictionary? Well, in an SQL
database you create “views”. Let’s examine views a bit.
It is a “minidatabase” in itself whose function is to store the descriptions of the databases that
the DBMS maintains. It stores data that describes each database, often called meta-data. This
descriptor information is essential if the system is to do it’s job properly e.g. it uses the catalog
information about indexes to choose a specific access strategy, and it may use the catalog
information about users and access privileges to grant or deny specific requests.
The catalog itself consists of a number of relations or tables, which hold all the data, but which
will also include entries for the catalog tables themselves. These entries (entries regarding the
catalog tables) are created automatically by the system as part of the system installation
procedure as opposed to being created explicitly by the CREATE TABLE statement. However,
methods do exist for updating and querying the catalog.

4.13 SQL Standardisation
At present, there are several standards for SQL but the goal it have DBMS products conform
to one standard in order to increase competition among products and to promote inter
operability. The standards are as follows:

• SQL-86 was defined in 1986 as a bare bones standard and defined the union or common
features of the most important DBMS products at thet time.

• SQL-89 is a higher version of SQL-86 and has a small number of new features.
• SQL-92 or SQL-2 was completed in 1992 and is significantly larger than SQL-89 including

extra data types, outer joins, catalog specifications, domains and assertions, etc.
• SQL-86 and SQL-89 were just catching up with what was already on offer in products

but SQL-2 has features not found yet in many products.
Conformance to SQL standards is becoming mandatory for many government agencies. In terms
of work in progress, SQL-3 is scheduled for completion in 1995 or 1996 and includes several
extensions on SQL-2 in the direction of type systems, stored procedures and object orientation.

S t a n d a r d Q u e r y L a n g u a g e

4.14 Structured Query Language : MySQL
The SQL used in this document is “ANSI”, or standard SQL i.e MySQL.
4.14.1 SQL Data Type
In SQL statement, data type is critical. Sometimes, it is even more important than the statement
itself. Without using the correct data type, your SQL statement will generate "Type Mismatch"
error message. There are 3 most commonly used data type:

• Number (In Access: AutoNumber, Number, Integer, Long, Double, Currency, etc.)
• String (In Access: Text, Memo)
• Date/Time (In Access: Date/Time)

Different data type has different syntax. This applies to WHERE, INSERT and UPDATE clause:
xnySQL = -SELECT * FROM table_name WHERE fldlD = 3"
my SQL = "SELECT * FROM table_name WHERE f ldFirstName = 'Frank'"
mySQL = "SELECT * FROM table_name WHERE fldDate = #05/06/99#"

For number, nothing is needed; for string, a pair of single quote 0 is required; for date/time,
a pair of pound sign (#) is needed. Without these special characters, your SQL statement won’t
work!
4.14.2 Basics of the SELECT Statement
In a relational database, data is stored in tables. An example table would relate Social Security
Number, Name, and Address:

Fig. 4.4
Now, let us say you want to see the address of each employee. Use the SELECT statement,
like so:

SELECT FirstName, Last Name, Address, City, State
FROM EmployeeAddressTable;

2 1 2 D a t a b a s e M a n a g e m e n t S y s t e m s

T h e fo llo w in g is th e re s u lts o f y o u r q u e ry o f th e da taba se :

Fig. 4.5

To explain what you just did, you asked for the all of data in the EmployeeAddressTable, and
specifically, you asked for the columns called FirstName, LastName, Address, City, and State.
Note that column names and table names do not have spaces...they must be typed as one word;
and that the statement ends with a semicolon (;). The general form for a SELECT statement,
retrieving all of the rows in the table is:

SELECT ColumnName, ColumnName, • • •
FROM T&bleUame;

To get all columns of a table without typing all column names, use:
SELECT * FROM TableName;

Each database management system (DBMS) and database software has different methods for
logging in to the database and entering SQL commands; see the local computer “guru” to help
you get onto the system, so that you can use SQL.

mySQL = "SELECT * FROM table.name"
RESULT: Retrieve all records with all fields
mySQL = uSELECT f ldFirstName, fldLastName FROM table_name"
RESULT: Retrieve all records with only First Name and Last Name
mySQL = "SELECT * FROM table_name ORDER BY fldDate"
RESULT: Retrieve all records sort by Date
mySQL = "SELECT * FROM table_name ORDER BY fldDate DESC"
RESULT: Retrieve all records sort by Date descending (Latest
date goes first)

mySQL = "SELECT DISTINCT fldState FROM tblUSCity ORDER BY
fldState"

RESULT: Retrieve all records from fldState where all duplicates have been eliminated sort
by fldState

S t a n d a r d Q u e r y L a n g u a g e 2 1 3

4.14.3 Conditional Selection
To further discuss the SELECT statement, let us look at a new example table (for hypothetical
purposes only):

’ '

Fig. 4.6
my SQL = "SELECT * FROM table_name WHERE f ldFirstName « 'Frank'"
RESULT: Retrieve only the record(s) where £ldFirstName is
"Frank"

mySQL = "SELECT * FROM table_name WHERE fldSalary >= 50000"
RESULT: Retrieve only the record(s) where fldSalary is greater
than or equal to 50000

mySQL = "SELECT * FROM table_name WHERE fldDate >= #" & Date -
7 & "#"

RESULT: Retrieve only the record(s) where fldDate is within the previous
7 days

mySQL = "SELECT * FROM table_name WHERE fldLastName LIKE 'f%'"
RESULT: Retrieve only the record(s) where fldLastName starts
with letter "f"

mySQL = "SELECT * FROM table_name WHERE fldLastName LIKE '%er'"
RESULT: Retrieve only the record(s) where fldLastName ends with
"er"

mySQL = -SELECT * FROM table_name WHERE fldLastName LIKE
'%frank%'■

RESULT: Retrieve only the record(s) where fldLastName contains "frank"
anywhere (even partial of a word)

4.14.4 Relational Operators
There are six Relational Operators in SQL, and after introducing them, we will see how they
are used:

2 1 4 D a t a b a s e M a n a g e m e n t S y s t e m s

= Equal
< or 1= (see manual) Not Equal
< Less Than
> Greater Than
<= Less Than or Equal To
>= Greater Than or Equal To

The WHERE clause is used to specify that only certain rows of the table are displayed, based
on the criteria described in that WHERE clause. It is most easily understood by looking at
a couple of examples.
If you wanted to see the EMPLOYEEIDNO’s of those making at or over $50,000, use the
following:

SELECT EMPLOYEEIDNO
FROM EMFLOYEESTATISTICSTABLE
WHERE SALARY >= 50000;

Notice that the >= (greater than or equal to) sign is used, as we wanted to see those who
made greater than $50,000, or equal to $50,000, listed together. This displays:

EMPLOYEEIDNO
010
105
152
215
244

The WHERE description, SALARY >= 50000, is known as a condition (an operation which
evaluates to True or False). The same can be done for text columns:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager';

This displays the ID Numbers of all Managers. Generally, with text columns, stick to equal
to or not equal to, and make sure that any text that appears in the statement is surrounded
by single quotes (‘). Note: Position is now an illegal identifier because it is now an unused,
but reserved, keyword in the SQL-92 standard.
4.14.5 More Complex Conditions: Compound Conditions/Logical
Operators
The AND operator joins two or more conditions, and displays a row only if that row’s data
satisfies ALL conditions listed (i.e. all conditions hold true). For example, to display all staff
making over $40,000, use:

SELECT EMPLOYEEIDNO
FRO# EMPLOYEESTATISTICSTABLE
WHERE SALARY > 40000 AND POSITION = 'Staff';

S t a n d a r d Q u e r y L a n g u a g e 2 1 5

The OR operator joins two or more conditions, but returns a row if ANY of the conditions
listed hold true. To see all those who make less than $40,000 or have less than $10,000 in
benefits, listed together, use the following query:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY < 40000 OR BENEFITS < 10000;
AND & OR can be combined, for example:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager' AND SALARY > 60000 OR BENEFITS >
12000;

First, SQL finds the rows where the salary is greater than $60,000 and the position column
is equal to Manager, then taking this new list of rows, SQL then sees if any of these rows satisfies
the previous AND condition or the condition that the Benefits column is greater than $12,000.
Subsequently, SQL only displays this second new list of rows, keeping in mind that anyone with
Benefits over $12,000 will be included as the OR operator includes a row if either resulting
condition is True. Also note that the AND operation is done first.
To generalize this process, SQL performs the AND operation(s) to determine the rows where
the AND operation(s) hold true (remember: all of the conditions are true), then these results
are used to compare with the OR conditions, and only display those remaining rows where any
of the conditions joined by the OR operator hold true (where a condition or result from an
AND is paired with another condition or AND result to use to evaluate the OR, which evaluates
to true if either value is true). Mathematically, SQL evaluates all of the conditions, then
evaluates the AND "pairs", and then evaluates the OR’s (where both operators evaluate left
to right).
To look at an example, for a given row for which the DBMS is evaluating the SQL statement
Where clause to determine whether to include the row in the query result (the whole Where
clause evaluates to True), the DBMS has evaluated all of the conditions, and is ready to do
the logical comparisons on this result:

True AND False OR True AND True OR False AND False
First, simplify the AND pairs:

False OR True OR False
Now do the OR’s, left to right:

True OR False
True

The result is True, and the row passes the query conditions. Be sure to see the next section
on NOT’s, and the order of logical operations.
To perform OR’s before AND’s, like if you wanted to see a list of employees making a large
salary ($50,000) or have a large benefit package ($10,000), and that happen to be a manager,
use parentheses:

2 1 6 D a t a b a s e M a n a g e m e n t S y s t e m s

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager' AND (SALARY > 50000 OR BENEFITS >
10000)7

Some Examples
mySQL = "SELECT * FROM table_name WHERE fldSex = 'Male' AND
fldAge >= 21”

Result: Retrieve only the record(s) where the following two conditions must all be satisfied:
fldSex is Male and fldAge is greater than or equal to 21

mySQL = "SELECT * FROM table_name WHERE fldSex = 'Female' OR fldAge >=
21-

Result: Retrieve only the record(s) where any of the following two conditions is satisfied: fldSex
is Female or fldAge is greater than or equal to 21

mySQL = -SELECT * FROM table_name WHERE fldPosition = 'Manager' AND _
(fldSalary > 50000 OR fldBenefit > 10000)"

Result: Retrieve only the record(s) where fldPostition must be Manager and fldSalary is greater
than 50000 or fldBenefit is greater than 10000

mySQL = "SELECT * FROM table_name WHERE fIdLastName IN
('Andrews', 'Dixon') "

Result: Retrieve only the record(s) where fldLastName is either Andrews or Dixon
mySQL = "SELECT * FROM table_name WHERE fldSalary BETWEEN 30000 AND
50000-

Result: Retrieve only the record(s) where fldSalary is between 30000 and 50000
mySQL = -SELECT * FROM tablel, table2 WHERE tablel.fldlD =
table2•f1dOwnerID"

Result: Retrieve only the record(s) from both tablel and table2 where fldlD in tablel matches
fldOwnerlD in table2
4.14.6 Aggregate Operators

mySQL = "SELECT MAX(fldPrice) FROM tblBook"
Result: Find out the highest price from table Book

mySQL = "SELECT AVG(fldAge) FROM tblEmployee"
Result: Find out the average age of all employees.

mySQL = "SELECT COUNT(fldSalary) FROM tblEmployees WHERE
fldSalary > 30000"

Result: Find out how many employees have salary higher than 30,000.
mySQL = "SELECT MIN(fldAge) FROM tblStudents"

Result: Find out the youngest student.
mySQL = "SELECT SUM(fldHits) FROM tblAllWebSites"

Result: Find out the total hits of all the websites.

S t a n d a r d Q u e r y L a n g u a g e 2 1 7

4.14.7 IN & BETWEEN
An easier method of using compound conditions uses IN or BETWEEN. For example, if you
wanted to list all managers and staff:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION IN ('Manager', 'Staff');

or to list those making greater than or equal to $30,000, but less than or equal to $50,000,
use:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY BETWEEN 30000 AND 50000;

To list everyone not in this range, try:
SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY NOT BETWEEN 30000 AND 50000;

Similarly, NOT IN lists all rows excluded from the IN list.
Additionally, NOT’s can be thrown in with AND’s & OR’s, except that NOT is a unary operator
(evaluates one condition, reversing its value, whereas, AND’s & OR’s evaluate two conditions),
and that all NOT’s are performed before any AND’s or OR’s.

SQL Order of Logical Operations (each operates from left to right)
NOT
AND
OR

4.14.8 Using LIKE
Look at the EmployeeStatisticsTable, and say you wanted to see all people whose last names
started with “S”; try:

SELECT EMPLOYEEIDNO
FROM EMPLOYEEADDRESSTABLE
WHERE LASTNAME LIKE 'SV;

The percent sign (%) is used to represent any possible character (number, letter, or punctuation)
or set of characters that might appear after the “S”. To find those people with LastName’s ending
in "S", use 1%S\ or if you wanted the “S” in the middle of the word, try '%S%'. The l°/o can
be used for any characters in the same position relative to the given characters. NOT LIKE
displays rows not fitting the given description. Other possiblities of using LIKE, or any of these
discussed conditionals, are available, though it depends on what DBMS you are using; as usual,
consult a manual or your system manager or administrator for the available features on your
system, or just to make sure that what you are trying to do is available and allowed. This
disclaimer holds for the features of SQL that will be discussed below. This section is just to
give you an idea of the possibilities of queries that can be written in SQL.

2 1 8 D a t a b a s e M a n a g e m e n t S y s t e m s

In this section, we will only discuss inner joins, and equijoins, as in general, they are the most
useful. For more information, try the SQL links at the bottom of the page.
Good database design suggests that each table lists data only about a single entity, and detailed
information can be obtained in a relational database, by using additional tables, and by using
a join. First, take a look at these example tables:

4 . 1 4 . 9 J o i n s

AntiqueOwners
OwtierlDj OwnerLastName OwnerFirstN ame |
01 Jones jBill I
02 Smith Bob 1
15

------------------ 1
Lawson |Patricia j

21 Akins Jane
50 Fowler Sam

Fig. 4.7

Table StoreJLnformation
store_name Sales Date 1
Los Angeles $1500j Jan-05-1999j
San Diego |$250 !Jan-07-1999!
Los Angeles; $300 IJan-08-1999!
Boston $700 ÍJan-08-1999!.............. J

Fig. 4.8
Antiques

SellerlD BuyerlD Item

01 50 Bed

02 15 Table

15 02 Chair \

21...... ' 50 Mirror |

50 01 Desk !

01 21 Cabinet I

02 21 Coffee Tablej

15 50 Chair j

01 15 Jewelry Box j

02 21 Pottery j

21 J 02 j Bookcase]

50 j 01 Plant Stand j

F ig . 4 .9

S t a n d a r d Q u e r y L a n g u a g e 2 1 9

4.14.10 Keys
First, let us discuss the concept of keys. A primary key is a column or set of columns that uniquely
identifies the rest of the data in any given row. For example, in the AntiqueOwners table, the
OwnerlD column uniquely identifies that row. This means two things: no two rows can have
the same OwnerlD, and, even if two owners have the same first and last names, the OwnerlD
column ensures that the two owners will not be confused with each other, because the unique
OwnerlD column will be used throughout the database to track the owners, rather than the
names.
A foreign key is a column in a table where that column is a primary key of another table, which
means that any data in a foreign key column must have corresponding data in the other table
where that column is the primary key. In DBMS-speak, this correspondence is known as
referential integrity. For example, in the Antiques table, both the BuyerlD and SellerlD are
foreign keys to the primary key of the AntiqueOwners table (OwnerlD; for purposes of argument,
one has to be an Antique Owner before one can buy or sell any items), as, in both tables, the
ID rows are used to identify the owners or buyers and sellers, and that the OwnerlD is the
primary key of the AntiqueOwners table. In other words, all of this "ID" data is used to refer
to the owners, buyers, or sellers of antiques, themselves, without having to use the actual names.
4.14.11 Performing a Join
The purpose of these keys is so that data can be related across tables, without having to repeat
data in every table—this is the power of relational databases. For example, you can find the
names of those who bought a chair without having to list the full name of the buyer in the
Antiques table...you can get the name by relating those who bought a chair with the names
in the AntiqueOwners table through the use of the OwnerlD, which relates the data in the
two tables. To find the names of those who bought a chair, use the following query:

SELECT OWNERLASTNAME, OWNERFIRSTNAME
FROM ANTIQUEOWNERS, ANTIQUES
WHERE BUYERID = OWNER ID AND ITEM = 'Chair';

Note the following about this query...notice that both tables involved in the relation are listed
in the FROM clause of the statement. In the WHERE clause, first notice that the ITEM =
‘Chair’ part restricts the listing to those who have bought (and in this example, thereby owns)
a chair. Secondly, notice how the ID columns are related from one table to the next by use
of the BUYERID = OWNERID clause. Only where ID’s match across tables and the item
purchased is a chair (because of the AND), will the names from the AntiqueOwners table be
listed. Because the joining condition used an equal sign, this join is called an equijoin. The
result of this query is two names: Smith, Bob & Fowler, Sam.
Dot notation refers to prefixing the table names to column names, to avoid ambiguity, as follows:

SELECT ANTIQUEOWNERS. OWNERLASTNAME, ANTIQUEOWNERS. OWNERFIRSTNAME FROM
ANTIQUEOWNERS, ANTIQUES
WHERE ANTIQUES.BUYERID = ANTIQUEOWNERS.OWNERID AND ANTIQUES. ITEM
'Chair';

As the column names are different in each table, however, this wasn’t necessary.

2 2 0 D a t a b a s e M a n a g e m e n t S y s t e m s

4.14.12 DISTINCT and Eliminating Duplicates
Let us say that you want to list the ID and names of only those people who have sold an antique.
Obviously, you want a list where each seller is only listed once—you don’t want to know how
many antiques a person sold, just the fact that this person sold one (for counts, see the Aggregate
Function section below). This means that you will need to tell SQL to eliminate duplicate sales
rows, and just list each person only once. To do this, use the DISTINCT keyword.
First, we will need an equijoin to the AntiqueOwners table to get the detail data of the person’s
LastName and FirstName. However, keep in mind that since the SellerlD column in the
Antiques table is a foreign key to the AntiqueOwners table, a seller will only be listed if there
is a row in the AntiqueOwners table listing the ID and names. We also want to eliminate
multiple occurences of the SellerlD in our listing, so we use DISTINCT on the column where
the repeats may occur (however, it is generally not necessary to strictly put the Distinct in front
of the column name).
To throw in one more twist, we will also want the list alphabetized by the LastName, then
by FirstName (on a LastName tie). Thus, we will use the ORDER BY clause:

SELECT DISTINCT SELLERID, OWNERLASTNAME, OWNERFIRSTNAME
FROM ANTIQUES, ANTIQUEOWNERS
WHERE SELLERID = OWNERID
ORDER BY OWNERLASTNAME, OWNERFIRSTNAME;

In this example, since everyone has sold an item, we will get a listing of all of the owners,
in alphabetical order by last name. For future reference (and in case anyone asks), this type
of join is considered to be in the category of inner joins.
4.14.13 Aliases & In/Subqueries
In this section, we will talk about Aliases, In and the use of subqueries, and how these can
be used in a 3-table example. First, look at this query which prints the last name of those owners
who have placed an order and what the order is, only listing those orders which can be filled
(that is, there is a buyer who owns that ordered item):

SELECT OWN.OWNERLASTNAME Last Name, ORD. ITEMDESIRED Item Ordered
FROM ORDERS ORD, ANTIQUEOWNERS OWN
WHERE ORD.OWNERID = OWN.OWNERID
AND ORD.ITEMDESIRED IN
(SELECT ITEM
FROM ANTIQUES);

This gives:
Last Name Item Ordered
Smith Table
Smith Desk
Akins Chair
Lawson Mirror

S ta n da rd Q u e r y L a n g u a g e 221

There are several things to note about this query:
• First, the “Last Name” and “Item Ordered” in the Select lines gives the headers on the

report.
• The OWN & ORD are aliases; these are new names for the two tables listed in the FROM

clause that are used as prefixes for all dot notations of column names in the query (see
above). This eliminates ambiguity, especially in the equijoin WHERE clause where both
tables have the column named OwnerlD, and the dot notation tells SQL that we are
talking about two different OwnerlD’s from the two different tables.

Note that the Orders table is listed first in the FROM clause; this makes sure listing is done-
off of that table, and the AntiqueOwners table is only used for the detail information (Last
Name).
Most importantly, the AND in the WHERE clause forces the In Subquery to be invoked (“ =
ANY” or “= SOME” are two equivalent uses of IN). What this does is, the subquery is
performed, returning all of the Items owned from the Antiques table, as there is no WHERE
clause. Then, for a row from the Orders table to be listed, the ItemDesired must be in that
returned list of Items owned from the Antiques table, thus listing an item only if the order
can be filled from another owner. You can think of it this way: the subquery returns a set of
Items from which each ItemDesired in the Orders table is compared; the In condition is true
only if the ItemDesired is in that returned set from the Antiques table.
Also notice, that in this case, that there happened to be an antique available for each one
desired...obviously, that won’t always be the case. In addition, notice that when the IN, “ =
ANY”, or ” = SOME” is used, that these keywords refer to any possible row matches, not column
matches...that is, you cannot put multiple columns in the subquery Select clause, in an attempt
to match the column in the outer Where clause to one of multiple possible column values in
the subquery; only one column can be listed in the subquery, and the possible match comes
from multiple row values in that one column, not vice-versa.
For now, that's enough on the topic of complex SELECT queries. Now let us dwell on to the
other SQL statements.
4.14.14 Miscellaneous SQL Statements
A ggregate F u n c tio n s

We will discuss five important aggregate functions: SUM, AVG, MAX, MIN, and COUNT
They are called aggregate functions because they summarize the results of a query, rather than
listing all of the rows.
SUM () gives the total of all the rows, satisfying any conditions, of the given column, where
the given column is numeric.

• AVG () gives the average of the given column.
• MAX () gives the largest Fig.ure in the given column.
• IN () gives the smallest Fig.ure in the given column.
• COUNT (*) gives the number of rows satisfying the conditions.

2 2 2 D a t a b a s e M a n a g e m e n t S y s t e m s

Looking at the tables at the top of the document, let’s look at three examples:
SELECT SUM(SALARY), AVG(SALARY)
FROM EMPLOYEESTATISTICSTABLE;

This query shows the total of all salaries in the table, and the average salary of all of the entries
in the table.

SELECT MIN(BENEFITS)
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager';

This query gives the smallest Fig.ure of the Benefits column, of the employees who are Managers,
which is 12500.

SELECT COUNT(*)
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Staff';

This query tells you how many employees have Staff status (3).
4.14.15 Inserting into Database

mySQL = "INSERT INTO table_naxne (fldUserlD, fldProductName,_
f1¿Approval, fldDate) VALUES (" & _ 3
Request("fldProductName") & " ', " & _
True & ",#" & _
DateO & -#)- s

RESULT: Insert data into table with user input. Note the different data type: fldUserlD is
Number, fldProductName is Text, fldApproval is Yes/No, and fldDate is Date/Time.
4.14.16 Deleting data from Database

mySQL = "DELETE FROM table_name WHERE fldlD = 123"
Result: Delete record(s) where fldlD is 123. Without WHERE clause, all records will be
deleted!
4.14.17 Updating data in Database

mySQL = "UPDATE table_name SET fldProductName = 'NewProd', _
fldApproval = False, _fldDate = #" & DateO & "# WHERE fldlD = 3"

Result: Update record where fldlD is 3. Without WHERE clause, all records will be updated!
4.14.18 With Fields

mySQL = "ALTER TABLE table_name ADD fldAuto Counter"
Result: Add a new field called fldAuto with the property of AutoNumber

mySQL = "ALTER TABLE table_name ADD fldlD Number NOT NULL"
Result: Add a new field called fldlD with the property of Number. Empty entry is not allowed.

mySQL = "ALTER TABLE table_name ADD fldFirstName char (50) NULL"
Result: Add a new field called fldFirstName with the property of Text (Length 50). Empty
is entry allowed.

S t a n d a r d Q u e r y L a n g u a g e 2 2 3

mySQL = "ALTER TABLE table.name ADD fldRemarks Memo NULL"
Result: Add a new field called fldRemarks with the property of Memo. Empty entry allowed.

mySQL = "ALTER TABLE table_name ADD fldDate Date"
Result: Add a new field called fldDate with the property of Date/Time.

mySQL = "ALTER TABLE table_name ADD fldApproval YesNo"
Result: Add a new field called fldApproval with the property of Yes/No.

mySQL = "ALTER TABLE table_name DROP COLUMN fldFirstName"
Result: Delete column “fldFirstName” and all data in it from a table.
4.14.19 With Tables

mySQL = "CREATE TABLE tblHuiYang (fldAuto Counter)"
Result: Create a new table called tblHuiYang with a field called fldAuto (AutoNumber)

mySQL = "DROP TABLE tblHuiYang"
Result: Delete an existing table - tblHuiYang from database
This SQL Statement very briefly demonstrates Joins between multiple table. It’s extremely useful
and can significantly speed up processing time by join multiple SQL statements into one.
Find the customer’s name who ordered Orderld “12345”

SQL = "SELECT C.Name FROM Customer C, Sale S WHERE C. Customer ID =
S.CustomerlD AND S.OrderlD = '12345'"

What’s the Unit Price for OrderlD “12345”
SQL = "SELECT P.UnitPrice FROM Product P, Sale S WHERE P.ProductID =
S.ProductID AND S.OrderlD - '12345'"

How many orders for SONY from 4/1/00 to 4/7/00?
SQL = "SELECT Count (S. Order ID) AS- Total FROM Product P, Sale S WHERE
P.ProductID = S.ProductID AND S.Date BETWEEN '4/1/00' AND '4/7/00' AND
P.Manufacturer = 'SONY'"
Set rs = con .Execute (SQL)
response.write rs("Total")

List all cutomers’ name who live in CA and ordered SONY for the previous week
SQL = "SELECT C.Name FROM Product P, Customer C, Sale S WHERE
P.ProductID = S.ProductID AND C.CusomterlD = S.CustomerlD AND
P. Manufacturer = 'SONY' AND С .State = 'CA' AND S. Date >= '" & Date - 7
£ или
Set rs = con .Execute (SQL)
While Not rs. EOF
response.write rs("Name”) & vbCrLf
rs.MoveNext
Wend

2 2 4 D a t a b a s e M a n a g e m e n t S y s t e m s

4.15 SQL*Plus User Guide
4.15.1 Starting SQL*Plus
When starting SQL*Plus for the first time, you will have to perform the following steps:
Add the following lines to your .cshrc file that is in your home directory:

* set path = ($path /usr/local/ucc/ssrul/oracle)
* source /usr/local/ucc/ssrul/oracle/oracle/oraenvl
* Initialize your environment to run Oracle by typing:
source ~/.cshrc

From this point on your environment initialization will be handled automatically whenever a
c shell is opened.
To start SQL*Plus, type sqlplus at the unix command prompt on the SGI server. On startup,
SQL*Plus displays the following:

Enter user-name:
when requested for a user-name just press return. If you run into problems, use your user-id
and user-password for the requested user-name and password.
Note: Because of the limited number of licences available, access to Oracle has been restricted

only to those required to use it. If you are having difficulties starting up SQL*Plus it
could be that you have not been granted access to it. In this case please bring it to
the attention of your instructor.

Having logged on, you should now have the Oracle prompt:
SQL> which will be refered to as the prompt throughout this guide. From this point you can
interactively enter SQL and SQL*Plus statements.
The EXIT and QUIT commands allow you to end your SQL*Plus session.
4.15.2 Entering Statements and Commands
Both SQL and SQL*Plus statements are entered by typing after the prompt, e.g. SQL>
DESCRIBE SPJ.
This command will ask for the description of the columns of the SPJ (Supplier-Parts-Jobs) table
in the database, e.g. SQL> SELECT * FROM SPJ;
The command will list all of the values in the SPJ table.
Note: all SQL commands must be terminated with a semi-colon.

4.15.3 Repeated Execution of Statements
The command buffer holds the most recently executed SQL statement. This statement can
be re-executed by typing either RUN or /, the difference being RUN will first display and then
execute the statement. Typing LIST will display the current SQL statement that is currently
held in the buffer.
Note: SQL* Plus commands are not held in the buffer.

S t a n d a r d Q u e r y L a n g u a g e 2 2 5

4.15.4 Correcting Mistakes
In multi-line statements, moving to a particular line (refered to as the current line) is done
by entering the line number at the prompt. Oracle automatically displays the desired line.
Corrections can be made using the CHANGE, INPUT and DEL commands. The CHANGE
command replaces one string with another string.
Example:

SQL> LIST
1* SELECT * SPJ
SQL> CHANGE / * / * FROM/
1* SELECT * FROM SPJ

Oracle will automatically display the effect of this change.
The INPUT command is used to add new lines to the statement after the current line. Multiple-
lines can be entered with a <CR> after each line and a blank line to finish inputing.
Conversely, the DEL command is used to delete the current line.
Example:

SQL> LIST
1 SELECT
2 *
3 FROM
4* SPJ
SQL> 2
2* *
SQL> DEL
1 SELECT
2 FROM
3* SPJ
SQL> 1
1* SELECT
SQL> INPUT S#
SQL> LIST
1 SELECT
2 S*
3 FROM
4* SPJ

Once corrections have been made, the statement can be re-executed using the RUN command.
4.15.5 Storing Statements
Any statement that is in the buffer can be saved into a file using the SAVE command.

e.g. SQL> SAVE SELS#. SQL
If the file already exists, you can overwrite the existing file by adding REPLACE to the end
of the SAVE command.
4.15.6 Retrieving and Executing Stored Statements
The GET command will place the stored statement into the command buffer. The RUN
command can then be used to execute the statement. You can also fetch and process the stored
statement in one step using either the START or the @ commands.

2 2 6 D a t a b a s e M a n a g e m e n t S y s t e m s

e . g . SQL> START SELS#•SQL
or
SQL> 0 SELS#. SQL

4.15.7 The SET command
SQ L* Plus supports th e SE T com m and w ith w hich th e user can define th e ir ow n w orking
env ironm ent. A num ber o f im portan t SE T com m ands are given, a com plete listing can be found
hy using th e H ELP SET com m and.

List o f useful SE T features:

pagesize <141 &> : sets th e page size w here n = # o f lines

pause {o f f | o n | t e x t) : contro ls scrolling on th e term inal w hen ru n n in g reports

spa c e { l |n } : sets th e num ber o f spaces betw een colum ns

l in e s iz e { 8 0 1n} : sets th e ch a rac ter w idth of a line

4.15.8 The LOGIN.SQL file
W h e n SQ L *Plus is started , this file is read and all s ta tem en ts an d com m ands in it are executed .
T his is especially useful if th e w orking env ironm ent th a t you prefer is different from th a t of
the defau lt w orking env ironnm en t. By placing all o f th e SET com m ands in th e login.sql file,
all o f your ev ironm en t changes will be in effect w hen you s ta rt up SQ L*Plus.

• T h e com parison operator
• C oupling conditions w ith A N D , O R and N O T ;
• T h e B E TW EEN operator;
• T h e IN operator;
• T h e LIKE operator;
• T h e N U L L operator;

• T h e IN opera to r w ith a subquery;
• T h e com parison operator w ith a subquery;

• T h e A N Y an d A LL operators; and
• T h e EX ISTS operator.

T h e SELEC T clause and functions
• Expressions in th e SELEC T clause;
• R em oving duplicate rows w ith D IS T IN C T ;
• Row num bers;
• S ta tis tica l functions; and
• G enera l ru les for using sta tistical functions.

T h e G R O U P BY an d H A V IN G clauses
• G rouping on one colum n;
• G rouping on two or m ore colum ns; and
• G enera l ru le for the H A V IN G clases.

S t a n d a r d Q u e r y L a n g u a g e 2 2 7

The ORDER BY clause
• Sorting on one column;
• Sorting with sequence numbers;
• Sorting on more than one column; and
• Sorting of NULL values;

4.15.9 The SELECT Statement
The select statment is the most important and most often used statement in SQL. A SELECT
statement is composed of a number of clauses, as shown in the following BNF definition.

<select statement> :: = <select clause> <from clause> [<where clause>]
[<connect by clause>] [<group by clause>] [<having clause>] [
corder by clause>]

when formulating SELECT statements, it is important to follow the following rules:
• Each SELECT statement must have the SELECT and FROM clauses. All other clauses

are optional.
• The order of the clauses is fixed and must be given in the order in which they are listed

in the above definition.
• A HAVING clause can only be used if there is a GROUP BY clause.

4.15.10 Common Elements of SELECT
In this section, the most commonly used elements of the SELECT statement are outlined.
Literal (constant)
Oracle supports the following literals:

• integer literal
• decimal literal
• floating point literal
• alphanumeric literal

An integer literal is a whole number without a decimal point and may be preceeded by a plus
or a minus.
A decimal literal is a number with or without a decimal point and may be preceeded by a plus
or minus. By definition, every integer literal is also a decimal literal.
A floating point literal is a decimal literal that may be followed by an exponent.
An alphanumeric literal is a string of zero or more alphanumeric characters enclosed in single
quotation marks. The following are characters are permitted in an alphanumeric literal:

• all lower case letters (a-z);
• all upper case letters (A-Z);
• all digits (0-9); and
• all remaining characters (such as ‘ # — _ and <).

2 2 8 D a t a b a s e M a n a g e m e n t S y s t e m s

Note: Single quotation marks within literals are represented by 2 single quotation marks to
separate it from the quotation marks used to enclose the literal.
e.g. Alphanumeric literal value
1Jones' Jones
'it"s' it's% /
\ # / / \

4.15.11 Numeric Expressions
A numeric expression is an arithmetic expression with either an integer, decimal or floating
point value.
Numeric literals and columns with numeric data types can be used with the four basic operators
(+• *> /)> if the required brackets can be used. The following points outline the use of numeric
expressions:

* The value of an expression that contains a NULL value is by definition equal to NULL.
» Expression evaluation is performed in the following manner:

■ left to right,
■ brackets,
■ multiplication and division,
■ addition and subtraction.

■ The data type of an expression is taken as the most precise data type occuring in the
expression.

■ Column specifications that occur in a numeric expression must have a numeric data type.
■ An alphanumeric expression can be a numeric expression provided the value of the

alphanumeric expression can be converted to a numeric value.
4.15.12 Alphanumeric Expressions
Alphanumeric expressions are similar to numeric expressions in that they have an alphanumeric
value that is typically CHAR or VARCHAR. The | | operator is the only operator defined for
alphanumeric expressions and is used to concatinate two alphanumeric expressions.
4.15.13 Scalar Functions
Scalar functions are used to perform various calculations. A scalar function may have zero or
more parameters and returns a value that is dependent upon the values of the parameters,
e.g.
ABS(-25.4) -> 25.4 - the absolute value funtion.
* 1 5 . 1 4 Statistical Functions

.-i istical functions are similar to scalar functions in that they both perform calculations,
. er there are two major diffences. Statistical function always have one parameter and the

■ l j of that parameter consists of a set of elements as opposed to one element for a scalar
•. ’on parameter.

S t a n d a r d Q u e r y L a n g u a g e 2 2 9

4.15.15 The FROM Clause
The FROM clause is used to specify which tables are to be queried. The syntax for the FROM
clause is given below.

<from clause> :: =
FROM <table reference> [{,<table reference>] . ..]
<table reference> ::=
<table specification [<pseudonym>]
<table specification :: = [<user> .] <table name>

4.15.16 Specifying Tables
If you wish to refer to a table created by someone else, you must specify the name of the owner
before the name of the table, e.g. the user JONES wishes to use a table created by SMITH.
The SELECT statement would be as follows:

SELECT *
FROM SMITH.ORDERS

4.15.17 Defining Views
(a) Specifying Columns
When you specify columns, you must identify from which table the column belongs. For example,
to obtain all of the part numbers from the ORDERS table (assuming SMITH owns the table)
we could use any of the following three SELECT statements:

SELECT P#
FROM ORDERS
SELECT ORDERS.P#
FROM ORDERS
SELECT SMITH.ORDERS.P#
FROM SMITH.ORDERS

If data from more than one table is required, all of the required tables must be named in the
FROM clause.
(b) Specifying Column Headings
At times it is convenient to use an alternative name for a column. An alternative column
heading may be specified behind any expression in the SELECT clause. SQL*Plus will place
the column heading on top of the result instead of the expression itself.
Example:

SELECT SUPPNO id, NAME supplier
FROM SUPPLIERS

Where id and supplier are the column headings for SUPPNO and NAME respectively.

4.15.18 Pseudonyms
When multiple table specifications appear in the FROM clause, it is sometimes easier iu u-e
pseudonyms (aliases). Pseudonyms are specified in the FROM clause after each table specific, m
eg-

SELECT S.S#

2 3 0 D a t a b a s e M a n a g e m e n t S y s t e m s

FROM SUPPLIER S, ORDERS O
WHERE S.J# = O.J#

Because oracle processes the FROM clause first, the use of pseudonyms before being declared
is permitted.
Note: In instances where a table is re-ferred to more than once, the use of pseudonyms is

mandatory.

4.15.19 The WHERE Clause
The WHERE clause is used to specify the rows required by a query through the use of a condition
or series of conditions. Oracle individually processes all of the rows that are found in the
intermediate table of the FROM clause. If a particular row satisfies the condition, the concerned
row is passed to the intermediate result table for the WHERE clause.
All of the possible conditions that can be used in the WHERE clause are described below.
4.15.20 The Comparison Operator
The comparison of two expressions is the simplest condition. The value of a condition is either
true, false or unknown depending on the operator and the value of the expression. The
comparison operators provided by Oracle are:

Comparison operator Meaning
= equal to
< less than
> greater than
< = ess than or equal to
> = greater than or equal to
<> or != or * = not equal to

In a comparison, it is possible to compare multiple values simultaneously. These combination
of expressions are called row expressions. For example, the following SELECT statement returns
all supplier numbers that supply part P3 to job J4. e.g.

SELECT S#
FROM SPJ
WHERE (P*, J#) = (P3, J4)

Note: Only the ‘equal to’ and ‘not equal to’ operators can be used when row expressions are
compared.

4.15.21 Coupling conditions with AND, OR and NOT
A WHERE clause may contain multiple conditions if AND, OR and NOT operators are used.
Oracle processes ANDs before ORs unless brackets are used to control the evaluation order.
The truth table below contains all of the possible values with AND, OR and NOT for two
conditions Cl and C2:

S t a n d a r d Q u e r y L a n g u a g e 231

C l C2 C l A N D C2 C l O R C2 N O T C l

true true true true false

true false false true false

true unknown unknown true false

false true false true true

false false false false true

false unknown false unknown true

unknown true unknown true unknown

unknown false false unknown unknown

unknown unknown unknown unknown unknown

4.15.22 The BETWEEN Operator
The BETWEEN operator is a special operator which determines whether a value occurs within
a given range of values.
Ex. Find supplier numbers that have status values between 20 and 30.

SELECT S#
FROM S
WHERE STATUS BETWEEN 20 AND 30

If, El, E2 and E3 are expressions, then:
El BETWEEN E2 AND E3

is equivalent to:
(El > 3 E2) AND (El <= E3)

Clearly, E2 <= E3 for the BETWEEN operator to behave correctly.
4.15.23 The IN Operator
When you are required to determine whether a value appears in a given set of values, it can
become rather combersome using OR operators. As a solution, Oracle provides the IN operator
to simplify the problem.
Ex. Find all job numbers for jobs in London, Paris and New York.

SELECT J#
FROM J
WHERE CITY » ' London'
OR CITY ■ 'Paris'
OR CITY = 'Now York'

While this statement is correct, clearly as the set of values inceases, the more long-winded
the statement becomes. The IN operator can be used to simplify the statement as follows:

SELECT J#
FROM J
WHERE CITY IN ('London', 'Paris', 'New York')

In addition, the IN operator can be used where row expressions are compared with each other.

2 3 2 D a t a b a s e M a n a g e m e n t S y s t e m s

Ex. Get supplier numbers for suppliers who supply P2 to J4 or P3 to J2 or P5 to Jl.
SELECT S*
FROM SPJ
WHERE (P#, J#) IN
(('P2' ,' J4 ■),
('P3' , ' J21),
('P5','J1'))

4.15.24 The LIKE Operator
The LIKE operator is used to select alphanumeric values based on a particular pattern mask.
In the pattern mask the percent sign (%) stands for zero, one or more characters while the
underscore (_) stands for exactly one character.
Ex. Get the supplier number of suppliers whose name begins with the capital letter T.

SELECT S#
FROM S
WHERE NAME LIKE XB %'

Ex. Get the supplier number for suppliers whose name begins with the captial letter S and has
a small e as the penultimate letter.

SELECT S#
FROM S
WHERE NAME LIKE 'S%e_'

4.15.25 The NULL operator
The NULL operator is used to select rows that have no value is a particular column.
Ex. Find part numbers for parts for which the part colour is unknown.

SELECT P#
FROM P
WHERE COLOUR IS NULL

Note: when using the NULL operator the IS cannot be replaced by an equals sign.

4.15.26 The IN Operator with Subquery
While in the previous section the values for expressions for the IN operator were listed explicitly.
However, the IN operator can also take on another form whereby Oracle determines the value
of the literals at the point when the statement is processed.
Ex. We want to get the part numbers for red parts that are used in at one or more jobs.
As covered so far, to do this we would have to execute two queries however, we can use a
subquery to generate the needed values:

SELECT P#
FROM SPJ
WHERE P# IN
(SELECT P#
FROM P
WHERE COLOUR = 'red')

S t a n d a r d Q u e r y L a n g u a g e 2 3 3

The difference between the use of the IN operator with a set of expressions as opposed to with
a subquery is that in the first case the set of values is fixed by the user, and in the second
case the the values are not known until they are determined by Oracle during the processing
of the subquery.

4.15.27 The Comparison Operator w ith a Subquery
In addition to being used after the IN operator, subqueries may also be used after any of the
comparison operators. It is important to note that comparison operators are only valid if the
subquery returns one value at that precise point in time. There are two reasons for using the
comparison operators as opposed to the IN operator when a subquery returns one value.
By using a comparison operator you signal that the query always has one value. If the subquery
returns more than one value, then either the contents of database are not correct or the database
structure is not as you expected. In both cases the comparison operator functions as a means
of control.
By using a comparison operator you give Oracle information about the expected number of values
to be returned by the subquery, namely one. This information allows Oracle to decide upon
the most appropriate processing strategy.
4.15.28 The ANY and ALL Operators
Another way of using the subquery is through the use of the ALL and ANY operators. The
ALL and ANY operators are very similar to the IN operator in that they apply a comparison
operator to a set of values. The ALL operator evaluates to TRUE if the result of the comparison
is TRUE for each element of the set. The ANY operator on the other hand evaluates to TRUE
if the there is at least one element in the set that evaluates to TRUE.
Ex. Give the supplier number and part number for parts that have the highest quantity on order.

SELECT SUPPNO, PARTNO
FROM QUOT
WHERE QONORDER >= ALL
(SELECT QONORDER
FROM QUOT)

Ex. Give the supplier number and part number for parts that do not have the longest delivery
time.

SELECT SUPPNO, PARTNO
FROM QUOT
WHERE DELIVERY.TIME < ANY
(SELECT DELIVERY_TIME
FROM QUOT)

4.15.29 The EXISTS Operator
The EXISTS operator evaluates whether a subquery returns a row or not.
Ex. List the names of suppliers that have parts on order.

SELECT NAME
FROM SUPPLIERS
WHERE EXISTS

2 3 4 D a t a b a s e M a n a g e m e n t S y s t e m s

(SELECT *
FROM QUOT
WHERE SUPPNO = SUPPLIERS • SUPPNO
AND QONORDER > 0)

When using the EXISTS operator a correlated subquery is required to establish a relationship
with the main query. This is accomplished through the use of column specification.

i.e. SUPPNO = SUPPLIERS • SUPPNO
But how does the statement acctually work? For every supplier, number in the SUPPLIERS
table separately Oracle executes the subquery. If at least one row is returned the row condition
is satisfied hence the supplier name for that particular row in the SUPPLIER table would be
returned by the main query.
It is important to remember that when using the EXISTS operator, Oracle looks to see if the
result of the subquery returns rows. Oracle does not look at the contents of the row. Hence,
what is specified in the SELECT clause is totally irrelevant.
4.15.30 The SELECT Clause and Functions
When using the WHERE clause the intermediate result is a horizontal subset of the table. In
contrast, the SELECT clause selects only columns, the result forming a vertical subset of a table.
This section will examine the manipulation of columns using the SELECT clause.
4.15.31 Expressions in the SELECT Clause
Because Oracle evaluates the intermediate result row by row, each column expresssion may
give rise to a value in the result row. So far only column names or an asterisk (*) - which
returns all columns, have be used in the SELECT clause. In addition, the SELECT clause may
also consist of expressions that may take the form of a literal, a calculation or a scalar function.
Ex. List the supplier number, part number and total cost of parts on order for each row of the
QUOT table.

SELECT SUPPNO, PARTNO, PRICE * QONORDER
FROM QUOT

4.15.32 Removing Duplicate Rows with DISTINCT
When a SELECT clause is written with one or more column expressions preceeded by the word
DISTINCT, Oracle removes all duplicate rows from the intermediate result.
Ex. List the cities that have suppliers.

SELECT DISTINCT CITY
FROM S

DISTINCT is concerned with the whole row and not only with the column expression that
directly follows the word DISTINCT in the SELECT clause. In two cases, the use of DISTINCT
has no effect on the result of a query.
When the SELECT clause includes at least one candidate key for each table specified in the
FROM clause, the DISTINCT has no effect. Any table that has a candidate key is guaranteed
to have no duplicates, hence the inclusion of a candidate key in the SELECT clause guarantees
that there will be no duplicates in the final result.

S t a n d a r d Q u e r y L a n g u a g e 2 3 5

When the SELECT clause results in one row with values, DISTINCT is clearly useless.
Row numbers
Row numbers can be displayed through the use of the system variable ROWNUM.

SELECT ROWNUM, *
FROM SPJ

4.15.33 Statistical Functions
Expressions in the SELECT clause may contain statistical functions. If a statistical function is
used, the SELECT statement will yield only one row as a result (note: it is assumed that the
SELECT statement has no GROUP BY clause.)
The following statistical functions are available in Oracle:

Function Meaning

COCNTO Counts the number of values in a column or the number of rows in a table

MIN() Determines the smallest value in a column

MAX() Determines the largest value in a column

SCMO Determines the sum of values in a column

AVGO Determines the weighted arithmetic mean of the values in a column

STEEEVO Determines the standard deviation of the values in a column

VARIANCE () Determines the variance of the values in a column

As opposed to COUNT, MIN and MAX, the functions SUM, AVG, VARIANCE and STDDEV
are only applicable to columns and expressions with numeric data types. Because of the
possibilities of duplicate values, the use of ALL and DISTINCT within these functions can lead
to different results. Suppose we have the following table:

TABLE: VAL
10
10
20
30
30
SELECT SUM(VAL)
FROM TABLE
result ■ 100
SELECT SUM(DISTINCT VAL)
FROM TABLE
result = 60

From this example, it is clear that care must be taken when using these statistical functions.
4.15.34 General Rules for Using Statistical Functions
Oracle does not include NULL values in the calculation of functions. This may cause incorrect
results to be returned. As a result, the user must make the appropriate modifications to the
expression to ensure a correct result.

2 3 6 D a t a b a s e M a n a g e m e n t S y s t e m s

Two principle rules that must be followed when using statistical functions are:
• If a SELECT statement has no GROUP BY clause, and if the SELECT clause has one

or more statistical functions, any column name specified in that SELECT clause must
occur within a statistical function.

• If a SELECT statement does have a GROUP BY clause, any column name specified in
the SELECT clause must occur within a statistical function or in the list of columns given
in the GROUP BY clause or in both.

4.15.35 The GROUP BY and HAVING Clauses
The GROUP BY clause groups rows on the basis of similarities between the rows. The HAVING
clause is similar to the WHERE clause in that it enables conditions to be applied to groups.
Clearly, the HAVING clause can only be applied in conjunction with a GROUP BY clause.
Grouping on one column
The simplest form of the GROUP BY clause is where only one column is grouped.

Ex. Give all of the cities from the S table.
SELECT CITY
FROM S
GROUP BY CITY

When using the GROUP BY clause, it is important to understand the underlying workings
of the GROUP BY clause. If we could view the intermediate result of the previous example,
it would appear like this:

s # SNAME STATUS CITY

S1.S4 Smith, Clark 20,20 London

S2, S3 Jones, Blake 10,30 Paris

S5 Adams 30 Athens

The columns are illustrated this way for illustrative purposes. When the GROUP BY clause
is used all rows having the same city form a group. Each row in the intermediate result will
have one value in the CITY column while the all other columns may contain multiple values.
While it is not possible to actually view the intermediate result of a GROUP BY clause, knowing
the underlying structure of the intermediate result is important when using statistical functions.
Ex. How many suppliers are there in each city.

SELECT TOWN, COUNT(*)
FROM S
GROUP BY TOWN

In this example the COUNT function is executed against each grouped row instead of against
all rows.
Note: In principle, any statistical function can be used in a SELECT clause as long as the

function operates on a column that is not grouped.

S t a n d a r d Q u e r y L a n g u a g e 2 3 7

4.15.36 Grouping on Two or more Columns
A GROUP BY clause may also contain two or more columns.
Ex. Give the number of suppliers supply the same part to the same job.

SELECT COUNT(*) # P#, J#
FROM SPJ
OROUP BY P#, J#

The HAVING clause is used in conjunction with the GROUP BY clause as a means of selecting
groups on the basis of their particular group properties. While a condition in the having clause
looks a lot like a 'normal' condition in a WHERE clause, conditions in the HAVING clause
may contain statistical functions.
Ex. List all CITYS that have more than one supplier.

SELECT CITY
FROM S
OROUP BY CITY
HAVING COUNT(*) > 1

In the HAVING, condition we specified the selection of groups where the number of rows
exceeds one. It is important to remember that the value of a statistical function in a HAVING
clause is calculated for each group separately.
4.15.37 General Rule for the HAVING Clause
Just as there are a number of rules for the use of columns and statistical fuctions in SELECT
clauses, the HAVING clause requires a similar type of rule, as follows:

• Each column specification specified in the HAVING clause must occur within a statistical
function or must occur in the list of columns named in the GROUP BY clause.

• The ORDER BY clause.
• When a SELECT statement has no ORDER BY clause the sequence of the final result

is unpredictable. Using an ORDER BY clause at the end of a SELECT statement is the
only guarantee that the resulting rows will be sorted in some particular manner.

4.15.38 Sorting on one Column
The simplest form of sorting is on one column.
Ex. Find all supplier numbers and names; sort the result in order of supplier name.

SELECT S#, SNAME
FROM S
ORDER BY SNAME

Note: By default, Oracle will sort the result in ascending order. If the result is to be sorted
in descending order, DESC must be specified. Similarily, the ascending order can be
explicitly stated using

ASC.
Ex.

GROUP BY STATUS DESC

2 3 8 D a t a b a s e M a n a g e m e n t S y s t e m s

4.15.39 Sorting with Sequence Numbers
Oracle assigns a sequence number to each expression in the SELECT clause. In the GROUP
BY clause expressions may be replaced by their respective sequence numbers. The following
statement is equivilent to the previous example:

SELECT S#, SNAME
FROM S
ORDER BY 2

In this statement, the sequence number 2 represents the second expression in the SELECT
clause namely, SNAME.
Note: It is essential to use sequence numbers when an expression consists of a function, a literal

or a numeric expression as these expressions are not permitted explicitly within the
GROUP BY clause.

4.15.40 Sorting on More than One Column
Multiple columns (or expressions) may also be specified in an ORDER BY clause.
Ex. list all supplier names, number and status; group the result by status and within that by
name.

SELECT S#, NAME, STATUS
FROM S
GROUP BY STATUS, NAME

Sorting of NULL values
Oracle recognizes NULL values as the highest values in a column, hence they are always placed
at the bottom of the result if the order is ascending and at the top if the order is descending.
4.15.41 Combining SELECT Statements
1. Introduction
A number of operators are provided to combine the results of individual SELECT statements.
These operators are referred to as set operators and are an extension of the functionality of
the SELECT statement. The set operators recognized in Oracle are: UNION, INTERSECT and
MINUS.
2 . Linking with UNION
When two select blocks are combined using the UNION operator, the result consists of the
resulting rows of either or both of the select blocks. The UNION operator is equivalent to set
union.
Ex. Give the supplier names for suppliers in London and Paris.

SELECT SNAME
FROM S
WHERE CITY = 'London'
UNION
SELECT SNAME
FROM S
WHERE CITY = 'Paris'

S t a n d a r d Q u e r y L a n g u a g e 2 3 9

In this example, each of the select blocks return a table with one column and zero or more
rows. The UNION operator essentially places the two tables under one another creating one
table.
Note: When the UNION operator is used Oracle automatically removes all duplicate rows from

the final result.
3. Rules for using UNION
The following rules for using the UNION operator must be observed:

• The SELECT clauses of all relevant select blocks must have the same number of expressions.
• Expressions which will be combined (or placed under one another) in the final result

must be of comparable data types.
• An ORDER BY clause may only be specified after the last select block. The ordering

is performed on the entire final result, only after all intermediate results have been
combined.

4. Linking with INTERSECT
When two select blocks are combined with the INTERSECT operator, the final result consists
of those rows which appear in the results of both of the select blocks. INTERSECT is equivalent
to set intersection.
Ex. Give the supplier number and name for suppliers in London with status > 15.

SELECT S*, SNAME
FROM S
WHERE CITY = 'London'
INTERSECT
SELECT S#, SNAME
FROM S
WHERE STATUS > 15

In this example the INTERSECT operator is looking for the rows appearing in both tables, giving
the final result as one table.
5. Linking with MINUS
When two select blocks are combined using the MINUS operator, the final result consists of
those rows appearing in the result of the first block which do not appear in the result of the
second block. The MINUS operator is equivalent to set difference.
Ex. Give the supplier numbers and names for suppliers in London that do not have status =
30.

SELECT S## SNAME
FROM S
WHERE CITY » ' London#
MINUS
SELECT S#, SNAME
FROM S
WHERE STATUS = 30

2 4 0 D a t a b a s e M a n a g e m e n t S y s t e m s

6. Set operators and NULL values
While NULL values are not considered to be equivalent, this is not true when set operators
are used. Duplicate rows that contain NULL values will be displayed as only one row, as Oracle
considers NULL values to be equivalent when set operators are processed. This is in accordance
with the relational model as defined by Codd (1990).
7. Combining multiple-set operators
No restriction is made on the number of set operations that can be used within a single SELECT
statement. By default, set operators are applied in order from left to right. Explicity control of
the execution may be handled through the use of round brackets around the select blocks.

4.16 Basics of an SQL Query
As we have already alluded to, a “query” is a structured request to the database for data. At
its core, a query is something like,
"Hey, give me a list of all the clients in the CLIENTS table who live in the
213 area code I"
Or, in more specific terms, a query is a simple statement (like a sentence) which requests data
from the database. Much as is the case with English, an SQL statement is made up of subjects,
verbs, clauses, and predicates.
Let us take a look at the statement made above. In this case, the subject is ”hey you database
thing”. The verb is “give me a list”. The clause is "from the CLIENTS table". Finally, the
predicate is “who live in the 213 area code.”
We will explain the code later, but let me show you what the above statement might look like
in SQL:

SELECT * FROM CLIENTS WHERE area.code = 213
SELECT = VERB = give me a list
FROM CLIENTS = CLAUSE = from the CLIENTS table
area_code = 213 = PREDICATE = who live in the 213 area code

4.16.1 Views
In SQL, you might (check your DBA) have access to create views for yourself. What a view
does is to allow you to assign the results of a query to a new, personal table, that you can use
in other queries, where this new table is given the view name in your FROM clause. When
you access a view, the query that is defined in your view creation statement is performed
(generally), and the results of that query look just like another table in the query that you
wrote invoking the view. For example, to create a view:

CREATE VIEW ANTVTEW AS SELECT ITEM DESIRED FROM ORDERS;
Now, write a query using this view as a table, where the table is just a listing of all Items Desired
from the Orders ta£le:

SELECT SELLERID
FROM ANTIQUES, ANTVTEW
WHERE ITEMDESIRED = ITEM;

S t a n d a r d Q u e ry L a n g u a g e 2 4 1

This query shows all SellerlD’s from the Antiques table where the Item in that table happens
to appear in the Antview view, which is just all of the Items Desired in the Orders table. The
listing is generated by going through the Antique Items one-by-one until there’s a match with
the Antview view. Views can be used to restrict database access, as well as, in this case, simplify
a complex query.
4.16.2 Creating New Tables
All tables within a database must be created at some point in time, let us see how we would
create the Orders table:

CREATE TABLE ORDERS
(OWNERID INTEGER NOT NULL,
ITEMDESIRED CHAR(40) NOT NULL);

This statement gives the table name and tells the DBMS about each column in the table. Please
note that this statement uses generic data types, and that the data types might be different,
depending on what DBMS you are using. As usual, check local listings. Some common generic
data types are:

• Char(x) - A column of characters, where x is a number designating the maximum number
of characters allowed (maximum length) in the column.

• Integer - A column of whole numbers, positive or negative.
• Decimal(x, y) - A column of decimal numbers, where x is the maximum length in digits

of the decimal numbers in this column, and y is the maximum number of digits allowed
after the decimal point. The maximum (4,2) number would be 99.99.

• Date - A date column in a DBMS-specific format.
• Logical - A column that can hold only two values: TRUE or FALSE.

One other note, the NOT NULL means that the column must have a value in each row. If
NULL was used, that column may be left empty in a given row.
4.16.3 Inserting into Database

mySQL = " INSERT INTO table_naxne (fldUserlD, f ldPro duct Name, _
£1dApproval, fldDate) VALUES (M & _ 3
Request ("fldProductName”) & " ', 11 & _
True
Date() & ■#)"

Result: Insert data into table with user input. Note the different data type: fldUserlD is Number,
fldProductName is Text, fldApproval is Yes/No, and fldDate is Date/Time.
4.16.4 Deleting data from Database

mySQL = "DELETE FROM table_name WHERE fldlD = 123"
R e su lt: D ele te record(s) w here fldlD is 123. W ith o u t the W H E R E clause, all records will be
d e le ted !

4.16.5 Updating data in Database
mySQL = "UPDATE table_name SET fldProductName = 'NewProd//_
fldApproval = False, _
fldDate = #" & Date() & "# WHERE fldlD = 3N

2 4 2 D a t a b a s e M a n a g e m e n t S y s t e m s

Result: Update record where fldlD is 3. Without WHERE clause, all records will be updated!
4.16.6 With Fields

mySQL = "ALTER TABLE table_name ADD fldAuto Counter"
Result: Add a new field called fldAuto with the property of AutoNumber

mySQL = "ALTER TABLE table_name ADD fldXD Number NOT NULL"
Result: Add a new field called fldlD with the property of Number. Empty entry is not allowed.

mySQL = "ALTER TABLE table_name ADD fldFirstName char(50) NULL"
Result: Add a new field called fldFirstName with the property of Text (Length 50). Empty
entry is allowed.

mySQL = «ALTER TABLE table_name ADD fldRemarks Memo NULL"
Result: Add a new field called fldRemarks with the property of Memo. Empty entry is allowed.

mySQL = »ALTER TABLE table_name ADD fldDate Date"
Result: Add a new field called fldDate.

4.16.7 Date/Time
mySQL = "ALTER TABLE table_name ADD fldApproval YesNo"

Result: Add a new field called fldApproval with the property of Yes/No
mySQL = "ALTER TABLE table_name DROP COLUMN fldFirstName"

Result: Delete column “fldFirstName” and all data in it from a table.
4.16.8 With Tables

mySQL = "CREATE TABLE tblHuiYang (fldAuto Counter)"
Result: Create a new table called tblHuiYang with a field called fldAuto (AutoNumber)

mySQL = "DROP TABLE tblHuiYang"
Result: Delete an existing table - tblHuiYang from the database
This SQL Statement Tutorial very briefly demonstrates the Joins between multiple table. It is
extremely useful and can significantly speed up processing time by join multiple SQL statements
into one. Please note that this demo is using the SQL Server.

Fig. 4.10

Find the customer’s name who ordered Orderld “12345”

Standard Query Language 2 4 3

SQL = "SELECT C.Name FROM Customer C, Sale S WHERE C.CustomerlD =
S.CustomerID AND S.OrderID = '12345'"

What’s the Unit Price for OrderlD “12345”
SQL = "SELECT P. Unit Price FROM Product P, Sale S WHERE P. Product ID =
S.ProductID AND S.OrderID = '12345'"

How many orders for SONY from 4/1/00 to 4/7/00?
SQL = "SELECT Count (S .OrderlD) AS Total FROM Product P, Sale S WHERE
P.ProductID = S•ProductID AND S.Date BETWEEN '4/1/00' AND '4/7/00' AND
P.Manufacturer = 'SONY'"
Set rs = con. Execute (SQL)
response.write rs("Total")

List all cutomers’ name who live in CA and ordered SONY for the previous week
SQL = "SELECT C.Name FROM Product P, Customer C, Sale S WHERE
P.ProductID = S.ProductID AND C.CusomterlD = S.CustomerlD AND
P.Manufacturer = 'SONY' AND C.State = 'CA' AND S.Date >= '" & Date - 7
jc " ' "
Set rs = con.Execute(SQL)
While Not rs. EOF
response.write rs("Name") & vbCrLf
r s. MoveNext
Wend

4.16.9 Altering Tables
Let us add a column to the Antiques table to allow the entry of the price of a given Item:

ALTER TABLE ANTIQUES ADD (PRICE DECIMAL(8,2) NULL);
The data for this new column can be updated or inserted, this is shown in a later portion of
this book.

4.16.10 Adding Data
To insert rows into a table, undertake the following:

INSERT INTO ANTIQUES VALUES (21, 01, 'Ottoman', 200.00);
This inserts the data into the table, as a new row, column-by- column, in the pre-defined order.
Instead, let us change the order and leave Price blank:

INSERT INTO ANTIQUES (BUYERID, SELLERID, ITEM)
VALUES (01, 21, 'Ottoman');

4.16.11 Deleting Data
Let’s delete this new row back out of the database:

DELETE FROM ANTIQUES
WHERE ITEM = 'Ottoman';

But if there is another row that contains ‘Ottoman’, that row will be deleted also. Let us delete
all rows (one, in this case) that contain the specific data we added before:

DELETE FROM ANTIQUES
WHERE ITEM = 'Ottoman' AND BUYERID = 01 AND SELLERID = 21;

2 4 4 Database Managem ent Systems

4.16.12 Updating Data
Let’s update a Price into a row that doesn’t have a price listed yet:

UPDATE ANTIQUES SET PRICE = 500.00 WHERE ITEM = 'Chair';
This sets all Chair’s Prices to 500.00. As shown above, more WHERE conditionals, using AND,
must be used to limit the updating to more specific rows. Also, the additional columns may
be set by separating equal statements with commas.
4.16.13 Indexes
Indexes allow a DBMS to access data quicker (please note: this feature is nonstandard/not
available on all systems). The system creates this internal data structure (the index) which
causes selection of rows, when the selection is based on indexed columns, to occur faster. This
index tells the DBMS where a certain row is in the table given an indexed-column value, much
like a book index tells you what page a given word appears. Let us create an index for the
OwnerlD in the AntiqueOwners column:

CREATE INDEX OID.IDX ON ANTIQUEOWNERS (OWNERID) ;
Now on the names:

CREATE INDEX NAME.IDX ON ANTIQUEOWNERS (OWNERLASTNAME,
OWNERFIRSTNAME);

To get rid of an index, drop it:
DROP INDEX OID_IDX;

By the way, you can also “drop” a table, as well (careful!—that means that your table is deleted).
In the second example, the index is kept on the two columns, aggregated together—strange
behavior might occur in this situation...check the manual before performing such an operation.
Some DBMS’s do not enforce primary keys; in other words, the uniqueness of a column is not
enforced automatically. What that means is, if, for example, we tried to insert another row
into the AntiqueOwners table with an OwnerlD of 02, some systems will allow me to do that,
even though we do not, as that column is supposed to be unique to that table (every row value
is supposed to be different). One way to get around that is to create a unique index on the
column that we want to be a primary key, to force the system to enforce prohibition of duplicates:

CREATE UNIQUE INDEX OID_IDX ON ANTIQUEOWNERS (OWNERID);
4.16.14 GROUP BY & HAVING
One special use of GROUP BY is to associate an aggregate function (especially COUNT;
counting the number of rows in each group) with groups of rows. First, assume that the Antiques
table has the Price column, and each row has a value for that column. We want to see the
price of the most expensive item bought by each owner. We have to tell SQL to group each
owner’s purchases, and tell us the maximum purchase price:

SELECT BUYERID, MAX(PRICE)
FROM ANTIQUES
GROUP BY BUYERID;

Now, say we only want to see the maximum purchase price if the purchase is over $1000, so
we use the HAVING clause:

Standard Query Language 2 4 5

SELECT BUYERID, MAX(PRICE)
FROM ANTIQUES
GROUP BY BUYERID
HAVING PRICE 1000;

4.16.15 More Subqueries
Another common usage of subqueries involves the use of operators to allow a Where condition
to include the Select output of a subquery. First, list the buyers who purchased an expensive
item (the Price of the item is $100 greater than the average price of all items purchased):

SELECT BUYERID
FROM ANTIQUES
WHERE PRICE >
(SELECT AVG(PRICE) + 100 FROM ANTIQUES);

The subquery calculates the average Price, plus $100, and using that Fig.ure, an OwnerlD is
printed for every item costing over that Fig.ure. One could use DISTINCT BUYERID, to
eliminate duplicates.
List the Last Names of those in the AntiqueOwners table, ONLY if they have bought an item:

SELECT OWNERLASTNAME
FROM ANTIQUEOWNERS
WHERE OWNERID IN
(SELECT DISTINCT BUYERID FROM ANTIQUES);

The subquery returns a list of buyers, and the Last Name is printed for an Antique Owner
if and only if the Owner’s ID appears in the subquery list (sometimes called a candidate list).
Note: on some DBMS’s, equals can be used instead of IN, but for clarity’s sake, since a set

is returned from the subquery, IN is the better choice.
For an Update example, we know that the gentleman who bought the bookcase has the wrong
First Name in the database...it should be John:

UPDATE ANTIQUEOWNERS
SET OWNERFIRSTNAME = 'John'
WHERE OWNERID =
(SELECT BUYERID FROM ANTIQUES WHERE ITEM * 'Bookcase');

First, the subquery finds the BuyerlD for the person(s) who bought the Bookcase, then the
outer query updates his First Name.
Remember this rule about subqueries: when you have a subquery as part of a WHERE condition,
the Select clause in the subquery must have columns that match in number and type to those
in the Where clause of the outer query. In other words, if you have “WHERE ColumnName
= (SELECT...);”, the Select must have only one column in it, to match the ColumnName in
the outer Where clause, and they must match in type (both being integers, both being character
strings, etc.).

2 4 6 Database Managem ent Sy stem s

4 .1 6 .1 6 EXISTS & ALL
EXISTS uses a subquery as a condition, where the condition is True if the subquery returns
any rows, and False if the subquery does not return any rows; this is a nonintuitive feature
with few unique uses. However, if a prospective customer wanted to see the list of Owners
only if the shop dealt in Chairs, try:

SELECT OWNERFIRSTNAME, OWNERLASTNAME
FROM ANTIQUEOWNERS
WHERE EXISTS
(SELECT * FROM ANTIQUES WHERE ITEM = 'Chair');

If there are any Chairs in the Antiques column, the subquery would return a row or rows, making
the EXISTS clause true, causing SQL to list the Antique Owners. If there had been no Chairs,
no rows would have been returned by the outside query.
ALL is another unusual feature, as ALL queries can usually be done with different, and possibly
simpler methods; let us take a look at an example query:

SELECT BUYERID, ITEM
FROM ANTIQUES
WHERE PRICE = ALL
(SELECT PRICE FROM ANTIQUES);

This will return the largest priced item (or more than one item if there is a tie), and its buyer.
The subquery returns a list of all Prices in the Antiques table, and the outer query goes through
each row of the Antiques table, and if its Price is greater than or equal to every (or ALL)
Prices in the list, it is listed, giving the highest priced Item. The reason “ = ” must be used
is that the highest priced item will be equal to the highest price on the list, because this Item
is in the Price list.
4.16.17 UNION & Outer Joins (briefly explained)
There are occasions where you might want to see the results of multiple queries, together,
combining their output; use UNION. To merge the output of the following two queries,
displaying the ID’s of all Buyers, plus all those who have an Order placed you may undertake
the following:

SELECT BUYERID
FROM ANTIQUES
UNION
SELECT OWNERID
FROM ORDERS;

Notice that SQL requires that the Select list (of columns) must match, column-by-column,
in data type. In this case BuyerlD and OwnerlD are of the same data type (integer). Also notice
that SQL does automatic duplicate elimination when using UNION (as if they were two “sets”);
in single queries, you have to use DISTINCT.

Standard Query Language 247

The outer join is used when a join query is “united” with the rows not included in the join,
and are especially useful if constant text “flags” are included. First, look at the query:

SELECT OWNERID, 'is in both Orders & Antiques'
FROM ORDERS, ANTIQUES
WHERE OWNERID = BUYERID
UNION
SELECT BUYERID, 'is in Antiques only'
FROM ANTIQUES
WHERE BUYERID NOT IN
(SELECT OWNERID
FROM ORDERS);

The first query does a join to list any owners who are in both tables, and putting a tag line
after the ID repeating, the quote. The UNION merges this list with the next list. The second
list is generated by first listing those ID’s not in the Orders table, thus generating a list of ID’s
excluded from the join query. Then, each row in the Antiques table is scanned, and if the
BuyerlD is not in this exclusion list, it is listed with its quoted tag. There might be an easier
way to make this list, but it’s difficult to generate the informational quoted strings of text.
This concept is useful in situations where a primary key is related to a foreign key, but the
foreign key value for some primary keys is NULL. For example, in one table, the primary key
is a salesperson, and in another table is customers, with their salesperson listed in the same
row. However, if a salesperson has no customers, that person’s name won’t appear in the customer
table. The outer join is used if the listing of all salespersons is to be printed, listed with their
customers, whether the salesperson has a customer or not—that is, no customer is printed (a
logical NULL value) if the salesperson has no customers, but is in the salespersons table.
Otherwise, the salesperson will be listed with each customer.
Another important related point about Nulls having to do with joins: the order of tables listed
in the From clause is very important. The rule states that SQL “adds” the second table to the
first; the first table listed has any rows where there is a null on the join column displayed; if
the second table has a row with a null on the join column, that row from the table listed second
does not get joined, and thus included with the first table’s row data. This is another occasion
(should you wish that data included in the result) where an outer join is commonly used. The
concept of nulls is important, and it may be worth your time to investigate them further.
4.16.18 Select ... From
What do we use SQL for? Well, we use it to select data from the tables located in a database.
Immediately, we see two keywords: we need to SELECT information FROM a table. There
you have it. The most basic SQL structure:

SELECT "column_name" FROM "table_name"

To illustrate the above example, assume that we have the following table:

2 4 8 Database Managem ent System s

Table Store lnform aüon
store_name iSales |Date j
Los Angeles! $1500 Jan-05-1999|
San Diego | $250 |Jan-07-1999j
Los Angeles! $300 |Jan-08-1999|
Boston $700 ;Jan-08-1999j

Fig. 4.11
We shall use this table as an example throughout the tutorial (This table will appear in all
sections). To select all the stores in this table, we key in,

SELECT store_name FROM Store_Information
Result:
store_name
Los Angeles
San Diego
Los Angeles
Boston

4.16.19 Distinct
The SELECT keyword allows us to grab all information from a column (or columns) on a table.
This, of course, necessarily means that there will be redundencies. What if we only want to
select each DISTINCT element? This is easy to accomplish in SQL. All we need to do is to
add DISTINCT after SELECT. The syntax is as follows:

SELECT DISTINCT "column_name"
FROM "table_name"

For example, to select all distinct stores in Table Store_Information,

Table Store ln fom tation
store_name jSales IDate 1....................f
Los Angeleŝ $1500; Jan-05-1999

? . ;
San Diego i$250 !Jan-07-1999
Los Angeles] $300 |Jan-08-199^
Boston $700 |Jan-08-1999

Fig. 4.12

Standard Query Language 249

we key in,
SELECT DISTINCT store_name FROM Store.Information
Result:
store_naxne
Los Angeles
San Diego
Boston

4.16.20 Where
Next, we might want to conditionally select the data from a table. For example, we may want
to only retrieve stores with sales above $1,000. To do this, we use the WHERE keyword. The
syntax is as follows:

SELECT "column.name"
FROM "table_name"
WHERE "condition"

For example, to select all stores with sales above $1,000 in Table Store_Information,
Antique Owners
OwnerlD OwnerL astN ame IOwnerFirstN ame |
01 Jones jBill
02 Smith 1Bob

15......... ! Lawson Patricia
21 1Akins Jane
50 jFowler jSam

Fig. 4.13
we key in,

SELECT store_name FROM Store_Inforxnation WHERE Sales > 1000
Result:
store_name
Los Angeles

4.16.21 Functions
Since we have started dealing with numbers, the next natural question to ask is whether it
is possible to do math on those numbers such as summing them up or taking the average of
them. The answer is yes! SQL has several arithematic functions, among them SUM and AVG.
The syntax for this is,

SELECT "function type" ("column_name")
FROM "table_nake"

For example, if we want to get the sum of all sales from our example table,

2 5 0 Database Managem ent System s

Antique Owners
OwnerUD) OwnerL astName OwnerFir stName]

’[of Jones Bill
02 Smith Bob
15

[

Lawson jPatricia
21 Akins Jane
50 Fowler !

............... J
Sam

Fig. 4.14
we would type in

SELECT SUM(Sales) FROM Store_Xnformation
Result:

SUM(Sales)
$2750
$2750 represents the sum of all Sales entries: $1500 + $250 + $300 +
$700.

4.16.22 Count
Another arithematic function is COUNT. This allows us to COUNT up the number of row
in a certain table. The syntax is,

SELECT COUNT ("column_name")
FROM "table_name"

For example, if we want to find the number of store entries in our table,

Table Store lnform ation
store_name !Sales Date
Los Angeles! $1500 Jan-05-1999
San Diego $250 Jan-07-1999
Los Angeles $300 Jan-08-1999:
Boston $700 Jan-08-1999)

Fig. 4.15
we would key in

SELECT COUNT(store_name)
FROM Store_Information

Result:
Count(store_name)
4

Standard Query Language 251

COUNT and DISTINCT can be used together in a statement to fetch the number of distinct
entries in a table. For example, if we want to find out the number of distinct stores, we would
type,

SELECT COUNT (DISTINCT store_xiame)
FROM Store_Information

Result:
Count(DISTINCT store_name)
3

4.16.23 Groupby
Now we return to the aggregate functions. Remember, we used the SUM keyword to calculate
the total sales for all stores? What if we want to calculate the total sales for each store? Well,
we need to do two things: First, we need to make sure we select the store name as well as
total sales. Second, we need to make sure that all the sales Fig.ures are grouped by stores.
The corresponding SQL syntax is,

SELECT "column_name1", SUM("column_name2")
FROM "table_name"
GROUP BY "column_namel"

In our example, table Store_Information,

Table Store lnform ation.
store_name]Sales !Date
Los Angeles $1500! Jan-05-1999|
San Diego !$250 IJan-07-1999
Los Angeles! $300 !Jan-08-19991
Boston $700 ;Jan-08-1999

Fig. 4.16

we would key in,
SELECT store_name, SUM(Sales)
FROM Store_Information
GROUP BY store.name

Result:
store.name SUM(Sales)
Los Angeles $1800
San Diego $250
Boston $700

The GROUP BY keyword is used when we are selecting multiple columns from a table (or
tables) and at least one arithematic operator appears in the SELECT statement. When that
happens, we need to GROUP BY all the other selected columns, i.e., all columns except the
one(s) operated on by the arithematic operator.

252 Database M anagem ent Sy stem s

4.16.24 Having
Another thing that people might want to do is to limit the output based on the corresponding
sum (or any other aggregate functions). For example, we might want to see only the stores with
sales over $1,500. Instead of using the WHERE clause, though, we need to use the HAVING
clause, which is reserved for aggregate functions. The HAVING clause is typically placed near
the end of SQL, and SQL statements with the HAVING clause may or may not include the
GROUP BY clause. The syntax is,

SELECT ncolu2nn_namel", SUM ("column_namft2")
FROM "table_name"
GROUP BY "column_naxnel"
HAVING (arithematic function condition)

Note: the GROUP BY clause is optional.
In our example, table Store__Information,

Antique Owners ___ ____
OwnerlD OwnerLastName OwnerFirstN ame
01 Jones Bill
02 Smith Bob
15 Lawson Patricia
21 Akins Jane
50 Fowler Sam

Fig. 4.17
we would type,

SELECT store_name, SUM(sales)
FROM Store_Information
GROUP BY store_name
HAVING SUM (sales) > 1500

Result:
store_name SUM(Sales)
Los Angeles $1800

4.16.25 Alias
We next focus on the use of aliases. There are two types of aliases that are used most frequently:
column alias and table alias.
In short, column aliases exist to help organizing output. In the previous example, whenever
we see total sales, it is listed as SUM (sales). While this is comprehensible, we can envision
cases where the column heading can be complicated (especially if it involves several arithmetic
operations). Using a column alias would greatly make the output much more readable.

Standard Query Language 2 5 3

The second type of alias is the table alias. This is accomplpished by putting an alias directly
after the table name in the FROM clause. This is convenient when you want to obtain
information from two separate tables (the technical term is ‘perform joins’). The advantage of
using a table alias when doing joins is readily apparent when we talk about joins.
Before we get into joins, though, let us look at the syntax for both the column and table aliases:

SELECT "table_alias"." column_name 1" "column_alias"
FROM wtable_name" "table_alias"

Briefly, both types of aliases are placed directly after the item they alias for, separate by a white
space. We again use our table, Store_Information,

Table Storeln form ation
store_name Sales Date I
Los Angeles $1500 Jan-05-1999|
San Diego $250 Jan-07-1999|
Los Angeles $300 Jan-08-1999)
Boston I$700 Jan-08-1999*

Fig. 4.18
We use the same example as that in Section 6, except that we have put in both the column
alias and the table alias:

SELECT Al•store_name Store, SUM(Sales) "Total Sales"
FROM Store_Information Al
GROUP BY Al • store_name

Result:
Store Total Sales
Los Angeles $1800
San Diego $250
Boston $700

Notice that difference in the result: the column titles are now different. That is the result of
using the column alias. Notice that instead of the somewhat cryptic uSum(Sales)”, we now have
‘Total Sales”, which is much more understandable, as the column header. The advantage of
using a table alias is not apparent in this example. However, they will become evident in the
next section.
4.16.26 Joins
Now we want to look at joins. To do joins correctly in SQL requires many of the elements
we have introduced so far.
A Join of Two Tables in SQL
This SQL statement retrieves the names of all employees who work in the department named
“Computer Science”

2 5 4 Database Managem ent System s

SELECT Emp • Name
FROM Employees AS Emp, Departments AS Dept
WHERE Emp.DeptID = Dept. Dept ID AND Dept .Name = "Computer
Science"

A clause such as Employees AS Emp identifies Emp as an alias for Employees and simplifies
the SQL statement.
The semantics of this SQL statement are similar to the previous one, except for the FROM
clause. This FROM clause specifies that the data retrieved will come from the cross product
of the tables Employees and Departments; you can view this cross product here. From this cross
product we select rows satisfying the condition

Emp.DeptID = Dept.DeptID AND Dept.Name = "Computer Science";
you can view this set of rows here. Finally, the SELECT clause specifies which data to return,
namely

Emp.Name
Sergio
Dick

The previous paragraph describes only the semantics of the SQL statement. In general, the
cross-product is huge and a DBMS should find an evaluation strategy which avoids the cross-
product.
This SQL statement is called a Join since it joins together two tables.
The semantics of a S ELECT /FROM/WHERE SQL query should be clear from this example:
begin with the cross product of terms in the FROM clause, retrieve rows satisfying the WHERE
condition, then return the columns specified in the SELECT clause.
Even data retrieval statements in SQL can be much more complex than illustrated by our
examples, e.g., it is possible to nest queries and to use aggregate functions such as COUNT
or MAX.
4.16.27 Writing SQL Statements
Our previous two examples have shown how to derive the output of SQL statements. As with
any programming language, it is much harder to transform a high-level specification into SQL.
We can provide this advice:

• Review the examples above and be sure you can derive the output yourself.
• Try some of the examples below.
• When writing an SQL statement, begin with the FROM clause.
• After writing your SQL statement, derive its output and check that it agrees with the

specification.
• Before writing an SQL statement, you should know the data type of each column.

For example, if you know that the type of EmpID is numeric, you would write the condition
in our first example as:

Standard Query Language 2 5 5

Employee. EmpID = 123
instead of

Employee.EmpID = "123"
Just knowing that all data in the table appears to be numeric is not sufficient to infer the type
of the column. The DBMS enforces strong typing, so will reject queries that do not conform
to its data types. Furthermore, your SQL statements should be valid if additional data, such
as the row
321A Jim CS
is added to the table.
A few examples and solutions:
Retrieve the IDs of all employes with the name Sergio

SELECT Emp•EmpID
FROM Employees as Emp
WHERE Emp. Name = "Sergio"

Retrieve the IDs of all employees whose department is in the PCAT building
SELECT Emp•EmpID
FROM Employees as Emp, Departments as Dept
WHERE Emp. EmpID = Dept. Dept ID and Dept.Bldg = PCAT

Epilogue
We have covered a very small part of what SQL can do. For further references, browse your
friendly neighbourhood bookstore for a book with SQL or Database in the title.
Emp.
Empld

Emp.
Name

Emp.
DeptID

Dept.
DeptID

Dept. Name Dept.
Bldg

123 Sergio CS Comm Communications Lincoln
234 Lara Comm Comm Communications Lincoln
135 Elayne Comm Comm Communications Lincoln
124 Dick CS Comm Communications Lincoln
123 Sergio CS CS Computer Science PCAT
234 Lara Comm CS Computer Science PCAT
135 Elayne Comm CS Computer Science PCAT
124 Dick CS CS Computer Science PCAT
rows satisfying the condition

Emp. Dept ID = Dept .Dept ID AND Dept. Name = "Computer Science'rt

Enpi Eropi Emp Dept Dept. Name Dept
EnpEd Name DeptID DeptID Bldg
123
124

Sergai CS
Dick CS

CS
CS

Computer Science PCAT
Computer Science PCAT

2 5 6 Database Managem ent System s

L e t us assum e th a t w e h a v e th e fo llo w in g tw o tab les,

T ab I e Siore_fnfQrmaiion Table Geography
j js to r e _ n a m e (S a le s j D a te re g io n _ n a m e | s to re _ n a m e |

i iL o s A n g e le s j $ 1 5 0 0 j [J a n -0 6 -1 9 9 9 j E a s t B o s to n

j jS a n D ie g o ;¡$ 2 5 0 ¡J a n -0 7 -1 9 9 9 j 1|

%
\

LU
! N e w Y o r k

I L o s A n g e le s ! $ 3 0 0 ; J a n -0 8 -1 9 9 9 j i W e s t I L o s A n g e le s !

I ¡B o s to n] ($ 7 0 0 | [ja n -0 8 -1 9 9 9 | 11 W e s t j S a n D ie g o I

Fig. 4.19
and we want to find out sales by region. We see that table Geography includes information
on regions and stores, and table Store_Information contains sales information for each store.
To get the sales information by region, we have to combine the information from the two tables.
Examining the two tables, we find that they are linked via the common field, “store_name”.
We will first present the SQL statement and explain the use of each segment later:

SELECT A1 • region_name REGION, SUM(A2.Sales) SALES
FROM Geography Al, Store_Information A2
WHERE Al. store_naxne = A2. store_name
GROUP BY Al. region_name

Result:
REGION SALES
East $700
West $2050

The first two lines tell SQL to select two fields, the first one is the field "region_name" from
table Geography (aliased as REGION), and the second one is the sum of the field “Sales” from
table Store_Information (aliased as SALES). Notice how the table aliases are used here:
Geography is aliased as Al, and Store_Information is aliased as A2. Without the aliasing, the
first line would become

SELECT Geography.region_name REGION, SUM(Store_Information.Sales)
SALES

which is much more cumbersome. In essence, table aliases make the entire SQL statement easier
to understand, especially when multiple tables are included.
Next, we turn our attention to line 3, the WHERE statement. This is where the condition
of the join is specified. In this case, we want to make sure that the content in “store_name”
in table Geography matches that in table Store_Information, and the way to do it is to set them
equal. This WHERE statement is essential in making sure you get the correct output. Without
the correct WHERE statement, a Cartesian Join will result. Cartesian joins will result in the
query returning every possible combination of the two (or whatever the number of tables in
the FROM statement) tables. In this case, a Cartesian join would result in a total of 4 x 4
= 16 rows being returned.

Standard Query Language 257

Sample Examples
Example 4.1 Calculating the Number of Days in a Month
You can use DATEDIFF for part of it:

select datediff(dd, 'Oct 1, 1998*,'Nov 1, 19981) Result: 31
select datediff(dd, 'Feb 1/ 1998','Mar 1, 1998') -> Result: 28
select datediff(dd, 'Feb If 20001,'Mar 1, 20001) -» Result: 29
select datediff(dd. 'Feb 1, 19001,'Mar 1, 1900') —» Result: 28

Code Sample
Set nocount on
declare QdatelnQuestion datetime,
GhowManyDaysThi sMonth lnt
select OdatelnQuestion = getdate()
select GdatelnQuestion = dateadd(DAY, 1 + (-1 * datepart(d,
QdatelnQuestion)), QdatelnQuestion) select OhowManyDaysThisMonth =
datedif f (DAY,@dateInQuestion, (dateadd(MONTH, l,9dateInQuestlon)))
select' thisMonth' =datepart (m, GdatelnQuestion), 'DaysInThisMonth7 =
OhowManyDay sThi sMonth

Example 4.2 A Method to Sum a Count
Ih a query that returns a count using COUNT(*), is there a way to sum the counts? In SQL
Server 7.0 Books Online, it is written that it “Cannot perform an aggregate function on an
expression containing an aggregate or a subquery.”
When we use a GROUP BY clause, we get a series of counts; we would like to find a way
to total them, we don’t necessarily need to show the counts, just the resultant SUM.
The SUM of the counts would be the count from the entire table without grouping.
If you are using other aggregates besides COUNT, aggregating the aggregates may give a
different value than just a simple aggregate on the whole table. You can use a derived table:

• select sum(counter) from
• (select counter=count(*) from titles group by type) as

To group in order to show the counts by grouping as well as the grand total, you can use the
rollup.

select type, numberscount(*) from titles
group by type with rollup

Doing this will give you a NULL for the type in the row with the total, but you can change
that as follows:

select case
when grouping(type)=1 then 'TOTAL'
else type
end,
number=count (*) from titles
group by type with rollup

Code Sample
Set nocount on

2 5 8 Database M anagem ent System s

use dbTopiev
drop table £00
go
create table £00
(counter int,type int)
Insert £00 values(1,1)
Insert £00 values(1,1)
Insert £00 values (1,1)
Insert £00 values(10,2)
Insert £00 values(2Q,2)
Insert £00 values(100 ,3)
Insert £00 values(200,3)
select * from £00
select counterscount(*) from £00
select counter^count (*) from foo group by type
select sum(counter) from
(select counterscount(*) from foo group by type) as t
select countersavg (counter) from foo group by type
select sum(counter) from
(select countersavg(counter) from foo g£oup by type) as t
select type, nunberscount(*) from £00
group by type with rollup
select case
when grouping (type) si then 'TOTAL'
else convert (char (10), type)
end Type,
numberscount (*) £rom foo
group by type with rollup

Example 4.3. Dropping all but the MAX Values in a GROUP BY Query
Here we would like to get a query that returns the last entries in a table. We have the following
fields at our disposal:

• UniquelD (incremented by one each time)
• City Name
• Date
• Sales

Here we would like to return the last entry in the table for each of the cities that have existing
sales.
My GROUP BY clause is CityName, Sales. I can't cause the MAX function that is used against
the UniquelD to return just the last sales Fig.ures by city. There may be weeks or days where
not all cities have sales, so they may be spread out in the table.
Answer

Try this:
SELECT
FROM T INNER JOIN

(

Standard Query Language 259

SELECT MAX(UniquelD) as Uniqueld
FROM T
GROUP BY CityName, Sales
) LastEntries
ON T.Uniqueld = LastEntries.Uniqueld
Code Sample
Set nocount on
Use dbTopisv
drop table £00
go
Create table £00 (UniqueID int,daysale datetime,CityName char(10),Sales
int)
Insert into foo values (1, 1999-02-01','aaaaa',10)
Insert into foo values (2, 1999-02-021,'aaaaa',10)
Insert into foo values (3, 1999-02-03','aaaaa',20)
Insert into foo values (4, 1999-02-01*,'bbbbb',30)
Insert into foo values (5, 1999-02-03','bbbbb',30)
Insert into foo values (6, 1999-02-041,'bbbbb', 40)
Insert into foo values (7, 1999-02-02•,'ccccc',50)
Insert into foo values (8, 1999-02-03’,'ccccc', 50)
Insert into foo values (9, 1999-02-05','ccccc',50)
Insert into foo values (10 '1999-02-07','ccccc' ,60)
SELECT *
FROM £00 INNER JOIN

(
SELECT MAX(UniquelD) as Uniqueld
FROM foo
GROUP BY CityName, Sales
) LastEntries
ON £00.Uniqueld = LastEntries.Uniqueld

Example 4.4. Setting the Current Date as the Default Value for a Date time Field How can
we cause the default value in a datetime table field to be set to the current date stamp?
Answer

Use the GETDATE function as your default:
* create table foo (datefield datetime default getdateO, bar
varchar(10))

Then,
insert foo (bar) select 'blah'

The date time field will be set to the current time.

26 0 Database Managem ent System s

we need to be able to display the count of unique rows within a SQL Server 7.0 database.
With a SELECT statement and a GROUP BY clause, we will get a result set containing
citynames and unique user names with duplicate citynames. Instead, here are want to display
the count of unique users within a city. Using DISTINCT does not seem to help.
Answer
Use the following SELECT statement:

select count(distinct users), city
from .. .
group by city

Code Sample
Set nocount on
Use dbtopisv
Drop table foo
go
Create table foo (users char(10), city char(10))

E x a m p le 4 .5 . S h o w in g U n iq u e R ecords

go
Insert foo values
Insert foo values
Insert foo values
Insert foo values
Insert foo values
Insert foo values
Insert foo values
Insert foo values
Insert foo values
Insert foo values

1useraa' r ' citya')
'useraa','citya')
'useraa','citya')
'userab','citya')
'userab','citya')
'userab','citya')
1userac','cityb')
'userad','cityb')
'useraa','cityb')
'useraa','cityb7)

select count(distinct users) users, city
from foo
group by city
Select * from foo

The Delete Statement
The delete statement is used to delete records or rows from the table,

delete from "tablename"
where "columnname" OPERATOR "value" [and|or "column" OPERATOR "value"];
[] = optional

Examples:
delete from employee;

Note: if you leave off the where clause, all records will be deleted!
delete from employee
where lastname = ‘May’;
delete from employee
where firstname = ‘Mike’ or firstname = ‘Eric’;
To delete an entire record/row from a table, enter “delete from” followed by the table name,
followed by the where clause which contains the conditions to delete. If you leave off the where
clause, all records will be deleted.

Standard Query Language 261

1. Select Statement
Enter select statements to:
(i) Display the first name and age for everyone that’s in the table,

select first, age from empinfo;
(ii) Display the first name, last name, and city for everyone that’s not from Payson.

select first, last, city from empinfo
where city <> 'Payson7;

(iii) Display all columns for everyone that is over 40 years old.
select * from empinfo
where age > 40;

(iv) Display the first and last names for everyone whose last name ends in an “ay”,
select first, last from empinfo
where last LIKE 'Hay7;

(v) Display all columns for everyone whose first name equals “Mary”,
select * from empinfo
where first = 'Mary7;

(vi) Display all columns for everyone whose first name contains “Mary”,
select * from empinfo
where first LIKE 1 HMaryV ;

2. Insert statement
It is time to insert data into your new employee table. Your first three employees are the
following:

Jonie Weber, Secretary, 28, 19500.00
Potsy Weber, Programmer, 32, 45300.00
Dirk Smith, Programmer II, 45, 75020.00

Enter these employees into your table first, and then insert at least 5 more of your own list
of employees in the table.
After they are inserted into the table, enter select statements to:
1. Select all columns for everyone in your employee table.
2. Select all columns for everyone with a salary over 30000.
3. Select first and last names for everyone that’s under 30 years old.
4. Select first name, last name, and salary for anyone with “Programmer” in their title.
5. Select all columns for everyone whose last name contains “ebe”.
6. Select the first name for everyone whose first name equals “Potsy”.
7. Select all columns for everyone over 80 years. old.
8. Select all columns for everyone whose last name ends in “ith”.
Create at least 5 of your own select statements based on specific information that you would
like to retrieve.

E x e r c i s e s

262 Database Managem ent System s

Answers
Your Insert statements should be similar to: (note: use your own table name that you created)

insert into myemployees_ts0211
(firstname, lastname, title, age, salary)
values ('Jonie', 'Weber', 'Secretary7, 28, 19500.00);
1.

select * from
myemployees_t s 0 211

2.
select * from
myemployees.t s 0 211
where salary > 30000

3.
select firstname, lastname
from myemployees_ts0211
where age < 30

4.
select firstname, lastname, salary
from myemployees_ts0211
where title LIKE '^Programmer?*'

5.
select * from
myenq>loyees_ts0211
where lastname LIKE 'HebeV

6.
select firstname from
myemployee s_t s 0 211
where firstname = 'Potsy'

7.
select * from
myemployees_t s 0 211
where age > 80

8.
select * from
myenS>loyees_t s 0 211
where lastname LIKE '*ith'

3. Exercise on Create Table
You have just started a new company. It is time to hire some employees. You will need to create
a table that will contain the following information about your new employees: firstname,
lastname, title, age, and salary. After you create the table, you should receive a small form
on the screen with the appropriate column names. If you are missing any columns, you need
to double-check your SQL statement and recreate the table.

Standard Query Language 2 6 3

IMPORTANT: When selecting a table name, it is important to select a unique name that
no one else will use or guess. Your table names should have an underscore followed by your
initials and the digits of your birth day and month. For example, Tom Smith, who was bom
on November 2nd, would name his table myemployees_ts0211 Use this convention for all of
the tables you create. Your tables will remain on a shared database until you drop them, or
they will be cleaned up if they aren’t accessed in 4-5 days. If “support” is good, we hope to
eventually extend this to at least one week. When you are finished with your table, it is
important to drop your table.

Your create statement should resemble:
create table myemployees_ts0211
(firstname varchar(30),
lastname varchar(30),
title varchar(30),
age number(2),
salary number(8,2));

4. Update statement
(after each update, issue a select statement to verify your changes).
(i) Jonie Weber just got married to Bob Williams. She has requested that her last name

be updated to Weber-Williams.
(ii) Dirk Smith’s birthday is today, add 1 to his age.
(iii) All secretaries are now called “Administrative Assistant”. Update all titles accordingly.
(iv) Everyone that’s making under 30000 are to receive a 3500 a year raise.
(v) Everyone that’s making over 33500 are to receive a 4500 a year raise.
(vi) All ’’Programmer II” titles are now promoted to “Programmer III”.
(vii)All “Programmer” titles are now promoted to “Programmer II”.

Create at least 5 of your own update statements and submit them.

2 6 4 Database Managem ent Systems

Ans:
update myemployees_ts0211
set lastname= 7 Sushma - Agarmwal7 where firstnaxne= 'Sushma' and

lastname=7 Agarwal7 ;
update myemployees_ts0211
set age=age+l
where firstname= 'Dirk7 and lastname= 'Smith7;

update myemployees_ts0211
set title = 'Administrative Assistant7
where title = 'secretary7;
update myemployees_ts0211
set salary = salary + 3500
where salary < 30000;
update myemployees_ts0211
set salary = salary + 4500
where salary > 33500;
update myemployees_ts0211
set title = 'Programmer III7
where title = 'Programmer II7
update myemployees_ts0211
set title = 'Programmer II7
where title = 'Programmer7

5. Delete Statement Exercises
(use the select statement to verify your deletes):
1. Jonie Weber-Williams just quit, remove her record from the table;
2. It’s time for budget cuts. Remove all employees who are making over 70000 dollars.

A n s w e r s to e x e r c i s e s

C H A P T E R < 5

E m b e d d e d S Q L a n d A p p l i c a t i o n

P r o g r a m m i n g I n t e r f a c e s

5 .1 O v e r v ie w o f E m b e d d e d SQ L
Embedded SQL refers to the use of standard SQL commands embedded within a procedural
programming language. Embedded SQL is a collection of these commands:

• All SQL commands, such as SELECT and INSERT, available with SQL with interactive
tools

• Flow control commands, such as PREPARE and OPEN, which integrate the
• Standard SQL commands within a procedural programming language
• Embedded SQL also includes extensions to some standard SQL commands.

Embedded SQL is supported by the ORACLE Precompilers. The ORACLE Precompilers interpret
embedded SQL statements and translate them into statements that can be understood by
procedural language compilers. Each of these ORACLE Precompilers translates embedded SQL
programs into a different procedural language:

• the Pro*Ada Precompiler
• the Pro*C Precompiler
• the Pro COBOL Precompiler
• the Pro FORTRAN Precompiler
• the Pro Pascal Precompiler
• the Pro PL/I Precompiler

2 6 6 Database Managem ent Sy stem s

5 .2 P r o * C
Compiler Embedded SQL is a method of combining the computing power of a high-level
language like C/C++ and the database manipulation capabilities of SQL. It allows you to
execute any SQL statement from an application program. Oracle’s embedded SQL environment
is called Pro*C. A Pro*C program is compiled in two steps. First, the Pro*C precompiler
recognizes the SQL statements embedded in the program, and replaces them with appropriate
calls to the functions in the SQL runtime library. The output is pure C/C++ code with all
the pure C/C+ + portions intact. Then, a regular C/C+ + compiler is used to compile the code
and produces the executable. For details, see the section on Demo Programs.

5 .3 S Q L
All SQL statements need to start with EXEC SQL and end with a semicolon You can place
the SQL statements anywhere within a C/C+ + block, with the restriction that the declarative
statements do not come after the executable statements. As an example:
{ int a; / * ... */

EXEC SQL SELECT salary INTO sa FROM Employ«« WHERE SSN-876543210;
/* . . . */
printf("Th« salary is \d\n", a)/ /* ... */ >

5 .4 P r e p r o c e s s o r D i r e c t i v e s
The C/C+ + preprocessor directives that work with Pro*C are #include and #if. Pro*C does
not recognize #define. For example, the following code is invalid:

id*fin« THE_SSN 876543210 / * ... */
EXEC SQL SELECT salary INTO sa FROM Employ«« WHERE SSN - THE_SSN;
/* INVALID * /

• Statement Labels
You can connect C/C++ labels with SQL as in:
EXEC SQL WHENEVER SQLERROR GOTO «rror_in_SQL; /• ... •/
•rror_in_SQL: /* do «rror handling */
We will come to what WHENEVER means later in the section on Error Handling.

5 .5 H o s t V a r ia b le s
Basics Host variables are the key to the communication between the host program and the
database. A host variable expression must resolve to an lvalue (i.e., it can be assigned). You
can declare host variables according to C syntax, as you declare regular C variables. The host
variable declarations can be placed wherever C variable declarations can be placed. (C+ +
users need to use a declare section; see the section on C++ Users.)
The C datatypes that can be used with Oracle include:

* char * char[n] * int * short * long * float * double
• VARCHAR[n] —This is a psuedo-type recognized by the Pro*C precompiler. It is used to
represent blank-padded, variable-length strings. Pro*C precompiler will convert it into a

Embedded SQ L and Application Programming Interfaces 267

structure with a 2-byte length field and a n-byte character array. You cannot use register storage-
class specifier for the host variables. A host variable reference must be prefixed with a colon

in SQL statements, but should not be prefixed with a colon in C statements. When specifying
a string literal via a host variable, the single quotes must be omitted; Pro*C understands that
you are specifying a string based on the declared type of the host variable. C function calls
and most of the pointer arithmetic expressions cannot be used as host variable references even
though they may indeed resolve to lvalues.
The following code illustrates both legal and illegal host variable references:

int deptnos[3] = { 000, 111, 222 }; int get_deptno() { return
deptnos[2];
} int *get_deptnoptr() { return &(deptnos[2]);
} int main() { int x; char *y; int z; I * ... */
EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES(sx, :y, :z);/* EGAL
*/
EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES (sx + 1,
/* LEGAL: the reference is to x */ 'Big Shot',
/* LEGAL: but not really a host var */ : deptnos [2]);
/* LEGAL: array element is fine */ EXEC SQL INSERT INTO emp(empno,
ename, deptno) VALUES (:x, :y, : (* (deptnos+2)));
/* ILLEGAL: although it has an lvalue */
EXEC SQL INSERT INTO exnp(empno, ename, deptno) VALUES(:x, :y,
:get_deptno()); /* ILLEGAL: no function calls */
EXEC SQL INSERT INTO emp(empno, ename, deptno) VALUES(:x, :y,
(*get_depnoptr()));
/* ILLEGAL: although it has an lvalue */ /* ... */ }

5 .6 P o in t e r s
You can define pointers using the regular C syntax, and use them in embedded SQL statements.
As usual, prefix them with a colon:

int *x; /* ... */
EXEC SQL SELECT xyz INTO :x FROM ...;

The result of this SELECT statement will be written into *x, not x.

5 .7 S t r u c t u r e s
Structures can be used as host variables, as illustrated in the following example:

typedef struct { char name [21];
/* one greater than column length; for 'N0' */
int SSN; > Emp; /* ... */ Emp bigshot; /* ... */
EXEC SQL INSERT INTO emp (ename, eSSN) VALUES (:bigshot);

5 . 8 A r r a y s
Host arrays can be used in the following way:

int emp_number [50];
char name[50] [11]; /* ... */
EXEC SQL INSERT INTO emp(emp_number, name) VALUES (:emp_number,
: emp_name);

2 6 8 Database Managem ent System s

which will insert all the 50 tuples in one go. Arrays can only be single dimensional. The example
char name [50] [11] would seem to contradict that rule. However, Pro*C actually considers
name a one-dimensional array of strings rather than a two-dimensional array of characters. You
can also have arrays of structures. When using arrays to store the results of a query, if the size
of the host array (say n) is smaller than the actual number of tuples returned by the query,
then only the first n result tuples will be entered into the host array.
5.9 Indicator Variables
Indicator variables are essentially “NULL flags” attached to host variables. You can associate
every host variable with an optional indicator variable. An indicator variable must be defined
as a 2-byte integer (using the type short) and, in SQL statements, must be prefixed by a colon
and immediately follow its host variable. Or, you may use the keyword INDICATOR in between
the host variable and indicator variable. Here is an example:

short indicator_var;
EXEC SQL SELECT xyz INTO shost_varsindicatorjvar FROM ...;-/* ... */
EXEC SQL INSERT INTO R VALUES (:host_var INDICATOR : indicator_var, ...);

You can use indicator variables in the INTO clause of a SELECT statement to detect NULLs
or truncated values in the output host variables. The values Oracle can assign to an indicator
variable have the following meanings:
1. The column value is NULL, so the value of the host variable is indeterminate. 0 Oracle

assigned an intact column value to the host variable. >0 Oracle assigned a truncated column
value to the host variable. The integer returned by the indicator variable is the original
length of the column value.

2. Oracle assigned a truncated column variable to the host variable, but the original column
value could not be determined. You can also use indicator variables in the VALUES and
SET clause of an INSERT or UPDATE statement to assign NULL’s to input host variables.
The values your program can assign to an indicator variable have the following meanings:
-1 Oracle will assign a NULL to the column, ignoring the value of the host variable. >=0
Oracle will assign the value of the host variable to the column.

5 . 1 0 D a t a t y p e E q u iv a le n c in g
Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes specify how
Oracle stores column values in database tables. External datatypes specify the formats used to
store values in input and output host variables. At precompile time, a default Oracle external
datatype is assigned to each host variable. Datatype equivalencing allows you to override this
default equivalencing and lets you control the way Oracle interprets the input data and formats
the output data. The equivalencing can be done on a variable-by-variable basis using the VAR
statement. The syntax is:

EXEC SQL VAR <host_var> IS <type_name> [(<length>)];
For example, suppose you want to select employee names from the emp table, and then pass
them to a routine that expects C-style Ô’-terminated strings. You need not explicitly ‘\0’-
terminate the names yourself. Simply equivalence a host variable to the STRING external
datatype, as follows:

Embedded SQ L and Application Programming Interfaces 2 6 9

char emp_name [21]; EXEC SQL VAR exnp_name IS STRING (21);
The length of the ename column in the emp table is 20 characters, so you allot emp_name
21 characters to accommodate the ‘\0’-terminator. STRING is an Oracle external datatype
specifically designed to interface with C-style strings. When you select a value from the ename
column into emp_name, Oracle will automatically ‘\0’-terminate the value for you. You can
also set the equivalence of user-defined datatypes to Oracle external datatypes using the TYPE
statement. The syntax is:

EXEC SQL TYPE <user_typ©> IS <type_name> [(<length>)] [REFERENCE] ;
You can declare a user-defined type to be a pointer, either explicitly, as a pointer to a scalar
or structure, or implicitly as an array, and then use this type in a TYPE statement. In these
cases, you need to use the REFERENCE clause at the end of the statement, as shown below:

typedef unsigned char *my_raw; EXEC SQL TYPE my_raw IS VARRAW(4000)
REFERENCE; my_raw buffer; /* ... */ buffer = malloc (4004);

Here we allocated more memory than the type length (4000) because the precompiler also
returns the length, and may add padding after the length in order to meet the alignment
requirement on your system.

5 .1 1 D y n a m ic S Q L
While embedded SQL is fine for fixed applications, sometimes it is important for a program
to dynamically create entire SQL statements. With dynamic SQL, a statement stored in a string
variable can be issued. PREPARE turns a character string into a SQL statement, and EXECUTE
executes that statement. Consider the following example.

char *e = "INSERT INTO emp VALUES(1234, 'jon', 3)";
EXEC SQL PREPARE q FROM :s;
EXEC SQL EXECUTE q;
Alternatively, PREPARE and EXECUTE may be combined into one statement:
Char *s ■ "INSERT INTO emp VALUES(1234, 'jon', 3)";
EXEC SQL EXECUTE IMMEDIATE :S;

5 . 1 2 E rror H a n d lin g
After each executable SQL statement, your program can find the status of execution either
by explicit checking of SQLCA, or by implicit checking using the WHENEVER statement.
These two ways are covered in details below.
5.12.1 SQLCA
SQLCA (SQL Communications Area) is used to detect errors and status changes in your
program. This structure contains components that are filled in by Oracle at runtime after every
executable SQL statement. To use SQLCA you need to include the header file sqlca.h using
the #include directive. In case you need to include sqlca.h at many places, you need to first
undefine the macro SQLCA with #undef SQLCA. The relevant chunk of sqlca.h follows:

27 0 Database Managem ent Sy stem s

* tifndef SQLCA *
#defin© SQLCA 1 struct sqlca { /* ubl */ char sqlcaid[8];
/* b4 */
long sqlabc; /* b4 */
long sqlcode; struct { /* ub2 */ unsigned short sqlerrml; /* ubl */
char sqlernnc [70]; > sqlerrm; /* ubl */
char sqlerrp[8]; /* b4 */
long sqlerrd[6]; /* ubl */
char sqlwarn [8]; / * ubl * /
char sqlext[8]; >; /* ... */

The fields in sqlca have the following meaning:
sqlcaid This string component is initialized to “SQLCA” to identify the SQL Communications
Area.
sqlcabc This integer component holds the length, in bytes, of the SQLCA structure,
sqlcode This integer component holds the status code of the most recently executed SQL
statement: 0 No error.
> 0 Statement executed but exception detected. This occurs when Oracle cannot find a row
that meets your WHERE condition or when a SELECT INTO or FETCH returns no rows. <0
Oracle did not execute the statement because of an error. When such errors occur, the current
transaction should, in most cases, be rolled back.
sqlerrm This embedded structure contains the following two components: sqlerrml - Length
of the message text stored in sqlernnc.
sqlerrmc - Up to 70 characters of the message text corresponding to the error code stored in
sqlcode.
sqlerrp Reserved for future use.
sqlerrd This array of binary integers has six elements: sqlerrd[0] - Future use. sqlerrd[l] - Future
use. sqlerrd[2] - Numbers of rows processed by the most recent SQL statement.
sqlerrd[31 - Future use.
sqlerrd[4] - Offset that specifies the character position at which a parse error begins in the
most recent SQL statement.
sqlerrd[5] - Future use.
sqlwarn This array of single characters has eight elements used as warning flags. Oracle sets
a flag by assigning to it the character ‘W\
sqlwarn [0] Set if any other flag is set.
sqlwam[l] Set if a truncated column value was assigned to an output host variable.
sqlwam[2] Set if a NULL column value is not used in computing a SQL aggregate such as
AVG or SUM.
sqlwarn [3] Set if the number of columns in SELECT does not equal the number of host variables
specified in INTO.
sqlwarn[4] Set if every row in a table was processed by an UPDATE or DELETE statement
without a WHERE clause.

Embedded SQ L and Application Programming Interfaces 271

sqlwam[5] Set if a procedure/function/package/package body creation command fails because
of a PL/SQL compilation error.
sqlwam[6] No longer in use.
sqlwam[7] No longer in use. sqlext Reserved for future use. SQLCA can only accommodate
error messages up to 70 characters long in its sqlerrm component. To get the full text of longer
(or nested) error messages, you need the sqlglm() function: void sqlglm(char *msg_buf, size_t
*buf_size, size _t *msg_length); where msg_buf is the character buffer in which you want Oracle
to store the error message; buf_size specifies the size of msg_buf in bytes; Oracle stores the actual
length of the error message in *msg__length. The maximum length of an Oracle error message
is 512 bytes.

5 . 1 3 W H E N E V E R
Statement This statement allows you to do automatic error checking and handling.
The syntax is:

EXEC SQL WHENEVER <Condition> <action>;
Oracle automatically checks SQLCA for <condition>, and if such condition is detected, your
program will automatically perform < action >. < condition > can be any of the following:
SQLWARNING - sqlwam[0] is set because Oracle returned a warning
.SQLERROR - sqlcode is negative because Oracle returned an error
.NOT FOUND - sqlcode is positive because Oracle could not find a row that meets your
WHERE condition, or a SELECT INTO or FETCH returned no rows < action > can be any
of the following:
.CONTINUE - Program will try to continue to run with the next statement if possible
.DO - Program transfers control to an error handling function
.GOTO < label > - Program branches to a labeled statement
.STOP - Program exits with an exit() call, and uncommitted work is rolled back.
Some examples of the WHENEVER statement:

EXEC SQL WHENEVER SQLWARNING DO print_waming_msg (); EXEC SQL WHENEVER
NOT FOUND GOTO handle_empty;

Here is a more concrete example:
/* cod« to find student name given id */ /* ... */
for (; ;)
{ printf("Give student id number : ");
scanf("%d", bid);
EXEC SQL WHENEVER NOT FOUND GOTO notfound;
EXEC SQL SELECT studentname INTO :st_name FROM student WHERE studentid =
:id;
printf(™Name of student is % в . \ п п, st_name);
continue;
notfound: printf("No record exists for id 4dl\n", id); }
/* . . . */

2 7 2 Database M anagem ent System s

5 . 1 4 C + + U s e r s
To get the precompiler to generate appropriate C++ code, you need to be aware of the following
issues: * Code emission by precompiler. To get C++ code, you need to set the option
CODE=CPP while executing proc. C users need not worry about this option; the default caters
to their needs. Parsing capability. The PARSE option of proc may take the following values:
* PARSE=NONE.
C preprocessor directives are understood only inside a declare section, and all host variables
need to be declared inside a declare section.

* PARSE=PARTIAL.
C preprocessor directives are understood; however, all host variables need to be declared inside
a declare section. * PARSE= FULL.
C preprocessor directives are understood and host variables can be declared anywhere. This
is the default when CODE is anything other than CPP; it is an error to specify PARSE= FULL
with CODE=CPP. So, C++ users must specify PARSE=NONE or PARSE= PARTIAL. They
therefore lose the freedom to declare host variables anywhere in the code. Rather, the host
variables must be encapsulated in declare sections as follows:
EXEC SQL BEGIN DECLARE SECTION; // declarations...
EXEC SQL END DECLARE SECTION; You need to follow this routine for declaring the host
and indicator variables at all the places you do so.
File extension. You need to specify the option CPP_SUFFIX=cc or CPP_SUFFIX=C.
Location of header files
By default, proc searches for header files like stdio.h in standard locations. However, C+ +
has its own header files, such as iostream.h, located elsewhere. So you need to use the
SYS_INCLUDE option to specify the paths that proc should search for header files.
List of Embedded SQL Statements Supported by Pro*C
Declarative Statements
EXEC SQL ARRAYLEN
To use host arrays with PL/SQL EXEC SQL BEGIN DECLARE
SECTION EXEC SQL END DECLARE SECTION
To declare host variables
EXEC SQL DECLARE: To name Oracle objects
EXEC SQL INCLUDE
To copy in files
EXEC SQL TYPE To equivalence datatypes EXEC SQL VAR
To equivalence variables EXEC SQL WHENEVER
To handle runtime errors Executable Statements
EXEC SQL ALLOCATE
To define and control Oracle data

Embedded SQ L and Application Programming Interfaces 2 7 3

EXEC SQL ALTER
EXEC SQL ANALYZE EXEC
SQL AUDIT
EXEC SQL COMMENT
EXEC SQL CONNECT
EXEC SQL CREATE
EXEC SQL DROP
EXEC SQL GRANT
EXEC SQL NOAUDIT EXEC
SQL RENAME EXEC
SQL REVOKE EXEC
SQL TRUNCATE EXEC
SQL CLOSE
EXEC SQL DELETE
To query and manipulate Oracle data EXEC SQL EXPLAIN PLAN EXEC SQL FETCH EXEC
SQL INSERT EXEC SQL LOCK TABLE EXEC SQL OPEN EXEC SQL SELECT EXEC SQL
UPDATE EXEC SQL COMMIT
To process transactions
EXEC SQL ROLLBACK
EXEC SQL SAVEPOINT
EXEC SQL SET TRANSACTION
EXEC SQL DESCRIBE
To use dynamic SQL EXEC
SQL EXECUTE
EXEC SQL PREPARE EXEC
SQL ALTER SESSION
To control sessions
EXEC SQL SET ROLE
EXEC SQL EXECUTE END-EXEC

5 .1 5 M ic r o s o f t E m b e d d e d S Q L
Server Microsoft threw its hat into the ring for embedded databases, demonstrating a
light weight Windows CE version of SQL Server at its Windows CE developer conference. The
lightweight SQL Server is in internal testing at Microsoft now. There is no official launch date
or name, said Microsoft officials. Microsoft does not know what the final size of the database
will be, but it will be larger than the 50-Kbyte databases out on the market from Sybase and
Oracle and smaller than the l-Mbyte-plus laptop databases, said Barry Goffe, SQL Server

2 7 4 Database Managem ent System s

product manager. In particular, Microsoft will offer a storage engine, a query processor, and
a replication engine to ISVs. Set-top boxes and small handhelds that need a sales-force-
automation application are the likeliest places the embedded version of SQL will show up, he
added. Oracle, Sybase, and IBM have all debuted or revealed plans for iny embedded databases.
There are three ways in which SQL can be used:
1. Executing SQL statement interactively (Direct or Interactive SQL),
2. Write a set of SQL statements in a module and then executing that module (Module

language or Procedures), and
3. Writing SQL statements from an application programming interface such as PowerBuilder

(Embedded SQL).
Although we have been using Direct Invocation of SQL to study SQL as a programming
language, SQL is mostly used in the context of some other host language. Module language
or Procedure is SQL code that resides separately from the host language. The host languages
then use native mechanisms to directly invoke those procedures. In contrast, embedded SQL
is SQL statement written directly in an application interface and executed along with other
code in the application. Consider the following example of code written in the PowerBuilder
environment:

String ls_nam Long ll_cost SELECT Item_Name,
Item_cost INTO :ls_name, :ll_cost FROM ITEM WHERE Item_id = '050';
IF SQLCA.SQLCode = -1 then MessageBox(-HOSPITAL APPLICATION",
SQLCA. SQLErrText, Information !)
HALT END IF
IF 11_cost > 10 THEN MessageBox("HOSPITAL APPLICATION", "This Item costs
more than ten dollars")

When using Embedded SQL, we must pay attention to the following:
• USING Matching Data Types. The variable declaration of string and long are PowerBuilder

data types. In this example, PowerBuilder data type String matches with the SQL data
type Char. The SELECT statement uses column item_name, which is of Char data type
in SQL and holds the value in the PowerBuilder variable ls_name which is a string. The
only expectation from SQL is that if the host language uses a data type, it should simply
match with the characteristics of a SQL data type.

• CHECKING FOR return codes. When executing a SQL statements interactively, you
may see an error message at times, even when your SQL statement in syntactically correct.
This may happen in situations such as a subquery returning more than one row, or the
requested record locked by some other user. You see the response visually and take
appropriate actions. In Embedded SQL, since it is your application program that is sending
the query, the programmer must take responsibility to check for the status of your query
after executing a SQL statement. An attribute SQLCODE of the SQLCA transaction
object contain the message returned by the database. This must be checked after every
embedded SQL statement. In embedded SQL, we use the host variables to store the values
return from the SQL query.

Embedded SQ L and Application Programming Interfaces 2 7 5

These host variables are application variables preceded by a colon (:). We must note that if
a SQL query returns a result set (as opposed to a single value), then we obviously cannot store
that in a single variable. In situations where we have to process multiple rows of table we must
resort to CURSORS.

5 . 1 6 C U R S O R S
A cursor is something like a pointer that traverses a collection of rows and acts as intermediary
to resolve our host language’s inability to handle an arbitrary collection of rows. There are four
Statements:

DECLARE findavg CURSOR FOR SELECT salary FROM Employee;
LONG ll.sal, 11_tot, 11_count OPEN findavg; emp: FETCH NEXT findavg INTO
:ll_sal;
IF SQLCA. SQLCODE <> 0 THEN GOTO finished;
ELSE ll_count++ ll_tot = ll_sal + ll_tot;
END IF GOTO emp finished: CLOSE findavg;
sle_l.text = string (ll_tot/ ll_count)

There are four steps to using a CURSOR:
• DECLARE a cursor.
• DECLARE findavg CURSOR FOR SELECT salary FROM Employee is an example of a

declaration of cursor. Findavg is the name of the cursor that is later used in the OPEN
and CLOSE statements as well. Any value that must be supplied by the host program can
be specified in the DECLARE statement. As an example, if we are interested in finding
the average of only those employees whose salary is above a certain value specifed by the
host program, we could have written.
DECLARE findavg CURSOR FOR SELECT salary FROM Employee WHERE salary >
:ll_mysal OPEN the cursor.

There is nothing complex about opening the cursor. OPEN findavg will do it! Note that there
are no host variables associated with the OPEN statement. All values to the cursor are specified
only in the DECLARE statement, but it is actually obtained by the OPEN statement.
.FETCH statement allows the data to be into applications’ area one row at a time. It simply
fetches the row after the row on which the cursor is positioned. Many DBMS also support formats
of FETCH other than the customary (and default) FETCH NEXT such as FETCH FIRST,
FETCH PRIOR, or FETCH LAST After fetching, you can also do a positioned delete or
Update.
.DELETE FROM TableName WHERE CURRENT OF CursorName; will delete the current
row where the cursor is positioned. CLOSE is used to close the cursor. Only when you CLOSE
the cursor the system resources are freed up. It also protects you from inadvertently using the
cursor in later data operations.

C H A P T E R <6

O b j e c t M o d e l l i n g

a n d D a t a b a s e D e s i g n

6 .1 M o d e l l in g
Modelling is the process of attempting to accurately characterize a physical phenomenon by
mathematical or logical relationships which can be programmed to run on a computer. Then,
by generating the appropriate representative input data, we can use this model to simulate the
real system and observe the responses to various input conditions.
Models are important aids to thinking, creativity and communication and, as these are major
preoccupations of the analyst, their relevance should be clear. The selection of an appropriate
model requires flexibility and imagination, adopting a model relevant to the circumstances.

6 .2 M o d e ls
A model is not just a smaller copy of something. A model is a formal representation which:

• Hides uninteresting detail
• Substitutes symbols for bulkier components
• Highlights important facts
• Promotes understanding of the whole.

The modeling phase of database design is crucial to assure an accurate representation of the
user’s perspective of the business. Some reasons for modeling data include the following:

• Comprehending thoroughly the user’s perspective of the data.
• Studying data apart from physical considerations.
• Understanding who uses the data and when.
• Preventing duplication of data in the database.

Object Modelling and Database Des ign 27 7

• Providing complete, accurate, and essential data input for physical design.
• A sound database design costs less!
• Better match to requirements = happier users, less maintenance
• More understandable solutions = more utilization, less maintenance
• Fewer construction errors = less debugging, less maintenance
• More system flexibility = less maintenance
• Greater reusability of ideas = less maintenance

Discovery
f t Mr

D esign
4

Documentation
I

Communication

*
Implémentation

Ins ^ '
Evolution

Fig. 6.2
One particular development, the use of models, is proving to be of especial importance because
their use extends intuition and experience by analyzing the effects of uncertainty and by
exploring the likely consequences of different planning assumptions.
A model is any simplified abstract of reality. It may be a physical object such as an architectural
scale model or it may be what is termed a ‘symbolic model'. These are representations of reality
in numeric, algebraic, symbolic or graphical form.
Business models are symbolic models which represents the operations of the organisation by set
of logically linked arithmetic and algebraic statements. Such models enable operations to be
explored at low cost and with nil risk. Models are invariably computer-based and; use the
processing power of the computer to enhance a manager’s analytical ability.
6.2.1 Introduction to Data Modeling
Most people involved in application development follow some kind of methodology. A methodology
is a prescribed set of processes through which the developer analyses the clients requirements
and develops an application. Major database vendors and computer gurus all practice and
promote their own methodology. Some database vendors even make their analysis, design, and
development tools conform to a particular methodology. If you are using the tools of a particular
vendor, it may be easier to follow their methodology as well. For example, when CNS develops
and supports Oracle database applications, it uses the Oracle toolset. Accordingly, CNS follows

2 7 8 Database Managem ent Systems

Oracle’s CASE*Method application development methodology (or a reasonable facsimile thereof).
One technique commonly used in analyzing the client’s requirements is data modeling. The
purpose of data modelling is to develop an accurate model, or graphical representation, of the
client’s information needs and business processes. The data model acts as a framework for the
development of the new or enhanced application. There are almost as many methods of data
modeling as there are application development methodologies. CNS uses the Oracle
CASE*Method for its data modeling.
As time goes by, applications tend to accrue new layers, just like an onion. We develop more
paper pushing and report printing, adding new layers of functions and features. Soon it gets
to the point where we can only see with difficulty the core of the application where its essence
lies. Around the core of the application we see layer upon layer, protecting, nurturing, but
ultimately obscuring the core. Our systems and applications often fall victim to these protective
or hiding processes. The essence of an application is lost in the shuffle of paper and the accretion
of day-to-day changes. Data modeling encourages both the developer and the client to tear
off these excess layers, to explore and revisit the essence or purpose of the application once
more. The new analysis determines what needs to feed into and what feeds from the core
purpose.
Creating an information system is a process that ranges from planning to implementation. The
systems development life cycle (SDLC) is a tool used to manage the activities of such a systems
development project. Professionals use various strategies, or methodologies, to complete each
phase of the SDLC. The modeling phase ensures that user requirements are met, issues are
addressed, and proper information is provided to developers. Two methodologies commonly used
to execute the modeling phase of a systems development project are:
• Process-oriented
Systems are modeled based on the flow of business processes.
• Data-oriented
Systems are modelled and based on the business application’s data, regardless of data usage
or data access needs. The phases of process modeling and data modeling do not coincide. As
a result, it is difficult to produce deliverables from both methods in a parallel timeframe.
Although process modeling is still used, in recent years database designers have placed more
emphasis on the use of data modeling. The process of data modeling generally involves a phase
concept similar to that of the SDLC. This course will focus on the phases, techniques, and
aspects of data modeling implementing object model and physical model techniques.

Object Modelling and Database Design 2 7 9

Fig. 6.3
In the creation of a database, data modeling is also described as a step-by-step process. Each
step is designed to solve certain problems, meet specific goals, and naturally lead to the next
step. This process is usually easier and more productive if each step is done independently and
in order.
6.2.2 Models in a System Context
We can think of modeling an information system as viewing a cube from (at least) three
dimensions.

Fig. 6.4

6.2.3 The Relational Roots of Data Models
Modeling data is not natural or intuitive. We use abstractions to translate from business problems
to RDBMS solutions. Relational theory lies at the root.

2 8 0 Database Managem ent System s

P r o b le m C o n c e p u a l C o n c e p tu a l L o g ic a l R D B M S R e la t io n a l
S p a c e O b je c t M o d e l E -R M o d e l P r o d u c ts T h e o r y

Fig. 6.5

6.2.4 Data Model: Reality to Relational
Today, most databases are relational. But the real world is not. Data models are built to map
business concepts into relational objects.

6 . 3 T y p e s o f D a ta M o d e ls
Data models are usually categorized by levels of abstraction:

• Conceptual
• Logical
• Physical

These have no agreed formal definitions. Professional data modelers understand the approximate
scope of each. These layers may appear in different ways. Some approaches deal only with the
physical or logical model. Others offer elements of all three but not necessarily in three separate
views.

6.3.1 Conceptual Data Model
A conceptual data model shows data through business eyes. It suppresses technical details to
emphasize:

Object Modelling and Database Design 281

• All entities which have business meaning
• Important relationships (including many-to-many)
• A few significant attributes in the entities
• A few identifiers or candidate keys

6.3.2 Conceptual Data Model - An Example

Fig. 6.6

2 8 2 Database M anagem ent Systems

L o g ic a l D a ta M o d e l - S am e E x a m p le

Fig. 6.7
Physical Data Model - Same Example

Fig. 6.8

Object Modelling and Database Design 2 83

6.3.3 The Logical Data Model
The Logical Data Model is a generic relational schema (in at least INF) which

• Replaces many-to-many relationships with associative entities
• Defines a full population of entity attributes

Fig. 6.9
Propagation of foreign keys may be explicit or implied in a logical data model. As long as the
resulting physical schema includes the necessary foreign key columns and joins, the representation
of foreign keys in the logical model is a matter of convenience and taste.
Replacing many-to-many relationships with associative entities is necessary to model 1st normal
form, support internal attributes and secondary relationships, and enable alternate identifiers.
There are other forms of conceptual data models, such as Object Role Models.
A Logical Data Model

• May Use non-physical entities for domains and sub-types
• Establishes entity identifiers
• Has no specifics for any RDBMS or conFig.uration

2 8 4 Database Managem ent Sy stem s

6.3.4 Physical Data Model

 ̂ &

•7T-T "

öflÜSfiLlü «pKft>
Name

Inspector
Inspector Badne <Bk>
Käme

Fig. 6.10
A physical data model is a database design for:

• One DBMS product;
• One site conFig.uration; and
• Physical Data Model.

A physical data model may include:
• Referential integrity;
• Indexes;
• Views;
• Alternate keys and other constraints; and
• Tablespaces and physical storage objects.

6 . 4 M o d e l D e v e l o p m e n t
To develop a model which is realistic and has adequate predictive qualities is a collaborative
effort between management and information specialists.
The key points are:

• The model should have a purpose and be objective orientated.

Object Modelling and Database Design 2 8 5

• Model building is an iterative, creative process with the aim of identifying those variable
and relationship which must be included in the model so that it is capable of predicting
overall system performance. It is not essential or indeed possible, to including all variables
in a model. The variables in a model of greatest importance are those which govern, to
a greater or less extent, the achievement of the specified objectives. These are the critical
variables.

• The best model is the simplest one with the fewest variables that has adequate predictive
qualities. To obtain this ideal there must be a thorough understanding of the system. The
management who operate the system have this understanding and must be involved in
the model building, otherwise over elaborate and overly mathematical models may result
if the model building exercise is left to systems professionals.

6 . 5 A t t r ib u t e s o f M o d e l in g
Modeling demands the following conventions and attributes.
• Simplicity
Models are used for simplifying the complicated business world. In reality systems are usually
large, complex and confusing. If the Analyst is to be able to gain understanding then unnecessary
complexity must be stripped way. Recalling all the detail about real systems will also be difficult
and the analyst will wish to keep track of a large amount of information so that it can later
be examined and understood. For this propose pictorial or graphical models are more suitable
than narrative ones. Imagine the difficulty of reading a map which is presented entirely in words!
A good model represents the system’s structures and relationships in a clear and concise way.
• Consistency
Consistency is highly desirable. Symbols may be used to represent various aspects of information
flow, organisational structure, decision making processes, etc. The same symbol needs to be

2 8 6 Database M anagem ent System s

used consistently through all models. Envisage the difficulties of following a map which changes
its scale and symbolic presentation from page to page.
• Completeness
Models need to be reasonably complete. Omissions and vague areas of understanding in a model
lead to similar difficulties with the actual system. Organisations develop standard models in
an attempt to ensure that models used are both consistent and comprehensive. The National
Computing Centre Documentation Standards (NCC,1979, 1987) provide a standard set of
consistent and interrelated models which have to be constructed and completed. It includes
a cross-reference system which the Analyst can use to check for consistency and completeness
in his models. However it is unlikely that standards alone can provide the variety of models
needed in system development. Any attempt to do so can quickly lead to bureaucratic and
time-consuming form- filling which threatens the very essence of models.
• Precision
Appropriate accuracy is necessary if a model is to communicate information effectively. This
demands an understanding of the propose of the model. A program specification is different
in detail from an overview of a proposed system presented to user management, and so different
models will be necessary. Many user manuals fail to grasp this point. They fail to communicate
because all facts are presented at the same level of accuracy and detail.
• Hierarchy
Hierarchical models enable the Analyst to maintain several levels of detail in the constructed
models. A high-level model will have little detail on it since its primary purpose is to highlight
the most important features of the system. A motorway map contained in a diary will show only
the motorway network or most of the main roads linking the towns and cities. It will be sufficient
to plan a journey from New Delhi to Noida (by motorway), but it will not help the motorist
find his way to a particular district of Noida. For this purpose a lower level model is required
showing the main trunk roads, and this should permit the general location of the desired area.
At this point a still lower lever model is necessary if the motorist is to find the actual street.
He will then consult a street plan, and possibly a location map of the particular premises he
wishes to visit to complete his journey. A similar model is required in information systems design.
Each tier of the model will provide vital information systems design. Each tier of the model
will provide vital information, but the different levels will mean that detail can be progressively
absorbed. Imagine the condition of the motorist trying to drive from London to Manchester
using only street plan!

6 . 6 T y p e s o f M o d e l
• The E-R Model
• The Object-Oriented Model
• Record-based Logical Models
• The Relational Model
• The Network Model

Object Modelling and Database Design 287

• The Hierrarchical Model
• Physical Data Models

6.6.1 The E-R Model
The entity-relationship model is based on a perception of the world as consisting of a collection
of basic objects (entities) and relationships among these objects.
An entity is a distinguishable object that exists. Each entity has associated with it a set of
attributes describing it. For example number and balance for an account entity. A relationship
is an association among several entities, e.g. A cust_acct relationship associates a customer
with each account he or she has. The set of all entities or relationships of the same type is
called the entity set or relationship set. Another essential element of the E-R diagram is the
mapping cardinalities, which express the number of entities to which another entity can be
associated via a relationship set. We will see later how well this model works to describe real-
world situations.
The overall logical structure of a database can be expressed graphically by an E-R diagram:

• Rectangles: represent entity sets.
• Ellipses: represent attributes.
• Diamonds: represent relationships among entity sets.
• Lines: link attributes to entity sets and entity sets to relationships.

See Fig. 6.12 for an example.

F i g . 6 .1 2

6.6.2 The Object-Oriented Model
The object-oriented model is based on a collection of objects, like the E-R model.
An object contains values stored in instance variables within the object. Unlike the record-
oriented models, these values are themselves objects.
Thus objects contain objects to an arbitrarily deep level of nesting. An object also contains
bodies of code that operate on the the object.
These bodies of code are called methods. Objects that contain the same types of values and
the same methods are grouped into classes.

2 8 8 Database M anagem ent System s

A class may be viewed as a type definition for objects. Analogy: the programming language
concept of an abstract data type. The only way in which one object can access the data of
another object is by invoking the method of that other object. This is called sending a message
to the object. Internal parts of the object, the instance variables and method code, are-net-
visible externally. Result is two levels of data abstraction. For example, consider an object
representing a bank account. The object contains instance variables number and balance. The
object contains a method pay-interest which adds interest to the balance.
Under most data models, changing the interest rate entails changing code in application
programs. In the object-oriented model, this only entails a change within the pay-interest
method. Unlike entities in the E-R model, each object has its own unique identity, independent
of the values it contains:

• Two objects containing the same values are distinct.
• Distinction is created and maintained in physical level by assigning distinct object

identifiers.
Object-based Logical Models

• Describe data at the conceptual and view levels.
• Provide fairly flexible structuring capabilities.

Allow one to specify data constraints explicitly.
Over 30 such models, including:

• Entity-relationship model.
• Object-oriented model.
• Binary model.
• Semantic data model.
• Infological model.
• Functional data model.

6.6.3 Record Based Models
Also describe data at the conceptual and view levels. Unlike object-oriented models, are used to

• Specify overall logical structure of the database, and
• Provide a higher-level description of the implementation.
• Named so because the database is structured in fixed-format records of several types.
• Each record type defines a fixed number of fields, or attributes.
• Each field is usually of a fixed length (this simplifies the implementation).
• Record-based models do not include a mechanism for direct representation of code in

the database.
• Separate languages associated with the model are used to express database queries and

updates.
• The three most widely-accepted models are the relational, network, and hierarchical.

Object Modelling and Database Design 2 8 9

• This course will concentrate on the relational model.
• The network and hierarchical models are covered in appendices in the text.

6.6.4 Physical Data Models
• Are used to describe data at the lowest level.
• Very few models, e.g.

• Unifying model.
• Frame memory.

Instances and Schemes
• Databases change over time.
• The information in a database at a particular point in time is called an instance of the

database.
• The overall design of the database is called the database scheme.
• Analogy with programming languages:
• Data type definition - scheme
• Value of a variable - instance

There are several schemes, corresponding to levels of abstraction:
• Physical scheme
• Conceptual scheme
• Subscheme (can be many)
• Logical data models.

Data flow diagrams, entity relationship models and entity life histories are the three major
models used to present a logical view of the information systems of the enterprise. These three
models are pictorial, and interrelated through the details maintained in a common data
dictionary.

• Structure chart
• Data Flow Diagram
• Decision Tables.
• Decision Trees.
• Tight or Structured English.

6 .7 I n t r o d u c t io n t o O b j e c t M o d e l in g
The first step of data modeling involves identifying objects that are important to the user. In
order to determine these objects accurately, designers and users must communicate frequently
and in-depth. The goal of this joint effort is to produce an object model that ultimately results
in an efficiently-structured base of data and information for the user. In this lesson, the object
model will be illustrated with the entity-relationship technique.

2 9 0 Database Managem ent Sy stem s

Sometimes called an entity-relationship (E-R) model, this technique is actually a graphic
diagram of the user’s objects. Since the E-R diagram is graphic, a data dictionary is used to
provide additional information, such as business rules and constraints, that cannot be drawn
on a diagram. When used together, these tools provide users and designers with effective
documentation for this phase of database design.
Object modeling interprets and represents the meaning of user’s objects from the user’s point
of view, without regard for processes, structures, or implementation. To place objects in the
proper perspective, developers usually conduct interviews and/or group discussions such as JAD
sessions with users. Since information is sometimes more readily understood in graphic form,
the E-R diagram, with its few simple geometric elements, has proved to be a successful tool
for user sessions.

Fig. 6.13: Object Modelling
The E-R diagram provides three main concepts for data analysis:
Entities:

• Objects of the business.
• Relationships
• Associations between objects.

Attributes:
• Descriptive properties of objects and relationships.
• In addition to the basic E-R elements, this text will cover several variations of entities

and relationships, including:
Entity hierarchies:

• Weak entities
• Characteristic entities
• Associative entities
• Multiple relationships
• Multi-member relationships
• Relationship roles
• Recursive relationships

Object Modelling and Database Design 291

Remember that in creating an E-R diagram, different modelers may use slightly different
structures; there is no single correct design. Still, since it was introduced, the basic theory and
design concepts of this technique have changed little. As a result, E-R diagramming continues
to be a popular technique of object modeling.

6 . 8 P e r s p e c t i v e s o f D a ta M o d e l in g
Since data modeling is not an exact science, it is important to realize that data modeling
methodologies, techniques, and terms often overlap, depending on the perspective and training
of the developer. This sometimes results in uncertainty about names and functions. For example,
a model of user data might be called a business model, an object model, or a logical data model.
Some professionals view these models as different techniques, while others use the names
interchangeably.

• Object Model
A model of facts and objects that describe the business compiled by users and data modelers.

• Logical Data Model
Transformation of the object model into logical tables that may or may not appear as physical
data tables in the DBMS. Policies, security functions, and audit features are added during this
phase.

• Physical Data Model
Implementation of the logical data model into physical data tables. Structures and access
methods are specified during this stage.

6 . 9 T y p e s o f R e a l i t y
Developers use facts about the business to build data models. Users provide and verify these
facts during the modeling process. However, verification is not enough since different types
of facts are used in various modeling phases. These facts are often classified into types of reality
to distinguish between them for different models. Three types of reality used are:

• Facts of life,
• Facts of policy
• Facts of implementation.

There are as detailed below:

Facts of Life Student buys books.
Professor teaches class.
Customer buys product.

Facts of Policy Student can have no more than two majors.
Course has a required textbook.
Salesman has one sales region.

Facts of Implementation Primary keys can contain no null values.
Each cell can contain only one value.
Filenames can have

2 9 2 Database Managem ent Systems

Facts of life are static, the things not likely to change. They provide the “essence,” or basic
ingredients, of all models. These facts are simple statements depicted in the object model during
the analysis phase. When accurately defined, these facts of life represent the user’s view of
reality and relevancy as defined by focus.
Facts of policy are the rules or conventions that define and govern everyday business. They
are sometimes difficult to define and are subject to change. These facts usually appear in the
logical data model during analysis and/or design.
Facts of implementation are determined by the system’s construction and can include system
limitations and structures. These are not facts about the business and are not included on object
or logical data models. Facts of implementation are considered in the physical model during
the implementation phase.

6 . 1 0 F u n d a m e n t a l A n a ly s i s C o n c e p t s
One of the early stages of database design is the analysis stage. In this stage, designers and
analysts communicate with users to determine important business information. Two methods
commonly used at this stage are process analysis and data analysis. Originally, developers
designed applications from the process perspective, and some still do. More recently, however,
the data analysis approach has become popular. Analysis from this perspective eliminates some
of the problems of the process approach.

DATA
ANALYSIS
IDENTIFIES

W H A T

NOT
H O W

PROCESS DATA

ANALYSIS ANALYSIS

Processes used to conduct business Objects needed to conduct business

Fig. 6.14

6.10.1 The Traditional Process-Driven Approach

Object Modelling and Database Design 2 9 3

S E P A R A T E F O E S A N D IN C O N S IS T E N T C A T E G O R Y T Y P E S A C R O S S F I L E S C A U S E
D A T A R E D U N D A N C Y , U P D A T E IN E F F IC IE N C Y , A N D IN T E G R A T I O N D IF F IC U L T Y .

Fig. 6.15
In process analysis, designers examine the user’s business processes and procedures in order to
develop applications and files for an information system. The focus in this approach is on how
business is carried out. Typically, this type of structured analysis is done along these guidelines:

• Identify relevant and required business processes.
• Analyse each process in complete detail.
• Convert processes to computer programs and manual procedures.
• Design storage methods for the data used by these processes.

Basically, process analysis is dynamic, showing the movement of information through the business
organisation. For example, the student registration process could be described as follows:

• A student visits an advisor.
• The advisor fills out and approves the student registration form.
• The advisor sends the student registration form to the registration office.
• The registration office checks availability of the requested classes.
• The registration office sends the student a letter confirming classes.

Process modelling is not without its problems. For instance, since business processes are subject
to change, so are process-oriented information systems. These changes can result in time-
consuming rework for programmers. Also, in viewing business processes, developers may actually
be viewing the same data from different perspectives. Therefore, the data could be replicated
in various files, causing data redundancy and update inconsistency. In addition, duplicate data
can be stored in conflicting formats, making file integration difficult.

2 9 4 Database Managem ent System s

Because this, analysis technique models business processes, it generally starts out representing
processes and procedures that are already in place. However, this approach can lead to an
incremental process of improvements to the existing system and prevent new and more creative
ways of viewing problems.
6.10.2 The Data Analysis Approach

DATA MODELING STEPS
Step Data Analysis

(what)
Database Design ;

(how)
Database

Construction
D̂eliverable Object Model Logical Data Model;

(Data Requirements) \Physical Data Model; Database

Constraints Business world facts;
(based on focus)

phis:
Data Characteristics;

phis:
Technology

Main Contributor ; Users Technicians

Fig. 6.16: Data Modelling Steps
Using data analysis techniques, developers design programs and files based on objects of the user’s
business and their associations. This approach views the objects, or data, independently from
processes, physical structure, or access methods. Thus, the focus is on what is important, not how
it is done. Analysis of data overcomes some of the problems of process analysis regarding :

• Redundancy of Data. Objects are considered individually, the goal being that each data
element is placed in only one location.

• Inconsistency of field types across files.
• Data elements are only stored once, so field type inconsistency is eliminated. * Inaccessibility

issues, including:
■ Data buried within data structures.
■ Designs based on the data analysis approach are independent of structural

considerations.
■ Data unavailable across applications.
■ Designs based on the data analysis approach are also independent of access issues.

If the data is stored in the database, it can be accessed.
■ No data.

One reason for user input into data analysis is to ensure that all data is captured.
The data analysis approach provides a more stable structure for an information system. Since
data is static, it seldom changes. Also, the emphasis on data rather than processes can provide
users with new perspectives. As a result, an opportunity is created to change ineffective
procedures or methods.
Data analysis techniques are designed to create an environment in which the developer and
the user can effectively communicate in order to decide what information should be kept in
the database.

Object Modelling and Database Design 2 9 5

6.11 S t a g e s o f D ata M od ellin g

N r A
-for

WATERING > - PLANT
glven

Fig. 6 .17

The following stages of data modelling were adapted from the article ’’Making Models” by
Richard Branton (see Sources of Information). They offer an organized strategy for developing
a database program and fit well into the systems development life cycle.
6.11.1 Data Analysis
Determination of the data requirements, or what information is to be kept in the database.

• Identify what not how.
• Develop two data models:
• Object modeJK

A business model that contains objects (and their relationships) that are important to the user.
Input is provided by business experts and users. Storage and access methods are not considered
in this phase. Some techniques used for this model are the entity-relationship diagram and the
conceptual data model.

• Logical data model
The object model is transformed into logical data tables. As this model is developed, business
policies, security, and audit control functions are added. The model is called logical because
the data may or may not be used in a physical database table.
6.11.2 Database Design
Definition of the database structure, or how the data is stored.

• Create a physical data model from a logical data model.
• Add DBMS constraints.
• Determine the operating environment and performance considerations.
• Describe the data tables that will be used and their characteristics.

6.11.3 Database Construction
Implementation of the data to the DBMS program.

• Build a database from the physical data model.
• Describe the database information to the DBMS program.

6 . 1 2 F u n d a m e n t a ls o f O b j e c t M o d e l in g
The object model is a model of the business world of things and their associations. The objects
and relationships become the essential model, defining what is important to the business.

2 9 6 Database Managem ent System s

Essential models are sometimes called business models, object models, logical models, or
conceptual models. The terms object model and business model will be used throughout this
course in describing the analysis phase.
The business model is not a computer model, but a business exercise. With the use of facilitation
techniques, business users, called subject matter experts (SME’s), provide facts about the
objects, come to understand the model, and verify its accuracy. One facilitation technique used
to accelerate the analysis process and to increase interaction between users and analysts is the
Joint Application Design GAD) session. This is a group session usually consisting of SME’s, a
sponsor, a facilitator, scribes, modeling experts, and observers. In the JAD session, participants
determine user requirements and identify issues and opportunities. The environment is user-
oriented with users creating the diagrams. The facilitator mediates the session and encourages
the users, but does not correct or change the diagrams. Tools typically used in JAD sessions
include:

• Focus statements and lists to determine the objects and relationships that should or should
not appear in the model and the terms used.

• Entity-relationship (E-R) diagrams and E-R text, which are techniques used to diagram
objects.

• Information requirements lists to identify user needs.
• Issues lists to identify important problems or issues.

Fig. 6.18

Object Modelling and Database Design 297

In building the data model, the developer communicates directly with users. Sometimes the
user can provide explicit answers, but often the developer must draw conclusions from the user’s
statements. From this communication, the developer makes decisions about what is to be stored
in the database. The result of this joint effort between users and developers is a business model
that accurately describes the business, and, consequently, becomes a corporate asset.
It is important to remember that object models are implementation-independent. They depict
the essence of the system and what the system must do apart from how the system will or could
be physically implemented.

6.12.1 Purpose of an Object Model
• Represents the relatively stable world of objects.
• Provides relatively stable data structures.
• Defines the world of objects and their relationships.
• Generates communication with the user.
• Provides an opportunity for new perspectives.

6.12.2 Benefits of Data Modeling
The benefits of data modelling in relation to the database as follows:

• Clear, factual data without ambiguity.
• Accuracy of data and facts as verified by the user.
• Ability to respond to ad hoc requests.
• Careful analysis of data results in less rework later.
• Allows evolution as the business scope expands.
• Technology independence allows easier implementation of models into changing technology.
• Application independence provides integration of databases with different applications.

In relation to development of the database, they are as follows:
• Step-by-step processes ensure that each issue is addressed appropriately.
• Less rework results in better productivity.
• The user participates while communicating with the developer in everyday language.
• Explicit questions asked by the developer can provide in-depth communication with the

user.

6 . 1 3 S o u r c e s f o r a D a ta M o d e l
• Business Rules
• Data dictionary
• Expert knowledge
• Use cases
• Patterns

2 9 8 Database Managem ent System s

Discover

Document

Model*

Execute

Fig. 6.19

6.13.1 Business Rules7
There is no formal science of business rules. They attempt to map business knowledge and
policies into executable systems. “Business rule” is a misnomer. They include both things and
their behaviors - “objects” and “rules”.
A number of business and system modeling tools hold problems, requirements, notes, or other
text in a catalog of business issues. See for example, CASEwise, LBMS Systems Engineer,
Silvemm, System Architect, Visible Workbench.
A few data modeling tools (e.g., PowerDesigner) provide features to capture business rules and
connect them to modeled objects.

Object Modelling and Database Design 2 9 9

Candidate
Key

Entity

i
I

Domain

Problem
Space

Concepual
Object Model

F i g . 6 .2 0

Conceptual
ERD

Several types of business rules have been proposed and are useful for categorizing.
Business rules reveal entities, attributes, relationships and procedural constraints.
• Types of Business Rules
Several sources suggest these types:

• Definition - Justifying the existence of an entity or attibute and describing its meaning
• Fact - A connection or relationship between two object types
• Derivation - How instances of one object type can be derived from others
• Constraint - Limiting the population of entities or values of attributes

Recent writings by Ross and von Halle, as well as Object Role Modeling, establish these four
categories of rules.
Since there is no formal science to business rules, these types are useful only for classification.
Even those tools which support them (e.g., PowerDesigner) make little or no attempt to operate
differently on the different types.
A fact type rule can express a complex relationship between what might become attributes and/
or entities in an entity-relationship diagram. For example:

• An employee (entity) may have an assigned parking space (entity) or monthly parking
allowance amount (attribute within employee) but not both.

3 0 0 Database Managem ent Systems

While this statement is a rather simple valid business fact, it cannot be modeled on an entity -
relationship diagram. Such rules are sometimes captured as text as pseudo-code for procedural
solutions.

6 .1 4 MODELING : T h ree S c h e m a A rch itec tu re
In general, modelling is based on the three-schema architecture. A Schema is a abstract
definition of reality. The levels are:

• Level 0: Real World
• Level 1: Conceptual Model - E-R Model or Object-Oriented Model
• Level 2: Implementation Model - Relational Model
• Level 3: Physical Model - Physical Data Structures.

In designing a database, we begin with the development of a conceptual model. A number
of different conceptual modeling approaches are used including:

• Hierarchical (legacy)
• Network (legacy)
• Entity-Relationship (linked to relational model)
• Object-Oriented (generally converted to a relational model)

In this chapter, we shall concentrate on Entity - Relationship Model only.

6 . 1 5 E n t i t y - r e la t io n s h ip M o d e l
An entity-relationship diagram is a snapshot of data structures. Entity-Relationship diagrams
(ERD) emerged in the 1970’s from work by Dr. Peter Chen and others. They were looking for
means to simplify the representation of large and complex data storage concepts. It has many
variations. CASE tools such as Oracle’s Designer/2000; Powersoft’s S-Designer tool; and the
Information Engineering Facility (IEF) tool implement the E-R modeling approach in a variety
of similar ways. There is no single standard diagramming approach, but there are a set of common
constructs that can be learned that will enable you to use any E-R modeling CASE tool or
understand any E-R modeling diagram.

Fig. 6.21
Since ERD relationships are between entities, the ERD is not capable of expressing intra-entity,
inter- attribute relationships - i.e., within one entity. This can be done by the following:

• By certain extensions to the ERD in some methods
• With unmodeled text rules and constrains
• Using Object Role Modeling for the conceptual model

Object Modelling and Database Design 301

Model, which is most often used as a tool for communications between database designers and
end users during analysis phase of database development process.
E-R model is a detailed, logical representation of the data for an organisation or for a business
area, is expressed in terms of entities in the business environment, the relationships (or
associations) among those entities, and the attributes, (or properties) of both entities and their
relationships.
An E-R model is normally expressed as an entity-relationship diagram, which is a graphical
representation of an E-R model.
6.15.1 Entity
Entity (sometimes called an entity class): - A collection of entities that share common properties
or characteristics. Normally is represented by rectangles. For example:

F i g . 6 .2 2

The next step in modeling a service or process is to identify the entities involved in that process.
An entity is a thing or object of significance to the business, whether real or imagined, about
which the business must collect and maintain data, or about which information needs to be
known or held. An entity may be a tangible or real object like a person or a building; it may
be an activity like an appointment or an operation; it may be conceptual as in a cost center
or an organisational unit.
Whatever is chosen as an entity must be described in real terms. It must be uniquely identifiable.
That is, each instance or occurrence of an entity must be separate and distinctly identifiable
from all other instances of that type of entity.
For example, if we were designing a computerized application for the care of plants in a
greenhouse, one of its processes might be tracking plant waterings. Within that process, there
are two entities: the Plant entity and the Watering entity. A Plant has significance as a living
flora of beauty. Each Plant is uniquely identified by its biological name, or some other unique
reference to it. A Watering has significance as an application of water .to a plant. Each Watering
is uniquely identified by the date and time of its application.
6.15.2 Diagramming Entities
The entity symbol is a rectangle with the name at the top. The entity name must be descriptive
and meaningful. An unambiguous text definition is important. The entity graphic symbol may
differ slightly by CASE tool or author but the shape is unimportant.
The entity name is how people will refer to the entity. In the conceptual model an entity name
should not be limited by RDBMS product limits - this is a generic name for the business. When
physical DBMS object names are assigned, be sure to take into account the naming limits and
reserved words of your targe platforms.

3 0 2 Database Managem ent Sy stem s

For example, what is a customer?
• Someone who has purchased?
• Any organisation or person who may purchase?
• Will this entity definition be clear two years later to a new team?

An Entity represents:
• A tangible thing, a real-world event, or any intangible concept:

“Product”, “Sales visit”, “Customer class discount”
• A class of things, not any one instance.

“Person” has instances of “Tom” and “Simone”.
Entities are not:

• Independent or Dependent. Those terms apply only to the identification choice you make.
• Fundamental, Attributive, or Associative. Classifications have meaning only in a model

context of entities and relationships.
An entity is an object that can be identified in the user’s world and is important to the user’s
view of the business. An entity class is a collection of entities of the same type; this term is
often used interchangeably with entity. Objects being classified as entities are independent and
can be physical or conceptual.

Entities are represented on
the diagram by a rectangle

with the entity name
noted inside.

IN D IV ID U A L

F i g . 6 .2 3

*Entities are represented on the E-R diagram by rectangles with the entity name noted inside.
*An Entity is something about which we store data for use by managers and workers. An entity
can be either an item found in reality or an abstract concept. ^Consider the example entities
shown in Fig. 6.24 here: CUSTOMER_ORDER, CUSTOMER, PRODUCT.

Object Modelling and Database Design 3 0 3

PlacesOrder

F i g . 6 .2 4

• Distinguish between an entity and instance (or occurrence) of an entity for each of the
entities shown in this example.

• Naming Conventions should follow a standard established by the work organisation. Here
we capitalize the names of entities, but this may vary from one organisation to another.

Below are some of the entities depicted in the Student Registration E-R Diagram.
Individual Mercer University Advisor Macon Campus Student Enrolled Atlanta Campus Student
Not Enrolled Douglas Center Campus Registration Procedure Class Registrar Office Classroom
Confirmation Letter Course Fee Class Roster Enrollment Qualification Individual Record
Financial Status

• An entity occurrence (or entity instance) is a particular instance of an entity (usually
more than one instance). These occurrences should not be confused with attributes.

E N T IT Y E N T IT Y O C C U R R E N C E

A D V I S O R D r. J o h n B r o w n

S T U D E N T E N R O L L E D M a r y J o n e s

C O U R S E I N S Y 312

F i g . 6 .2 5

• The entity name should be a singular noun or noun phrase and should convey the meaning
of the object appropriately.

3 0 4 Database Managem ent System s

Examples of entity names . . .
Singular noun or noun phrase
INDIVIDUAL not INDIVIDUALS
CLASS not CLASSES

Proper level of specificity
ENROLLMENT QUALIFICATION may be more appropriate than QUALIFICATION
INDIVIDUAL’S RECORD may be more appropriate than RECORD
Entities and Entity Sets
An entity is an object that exists and is distinguishable from other objects. For instance, John
Harris with S.I.N. 890-12-3456 is an entity, as he can be uniquely identified as one particular
person in the universe.
An entity may be concrete (a person or a book, for example) or abstract (like a holiday or a
concept). An entity set is a set of entities of the same type (e.g., all persons having an account
at a bank). Entity sets need not be disjoint. For example, the entity set employee (all employees
of a bank) and the entity set customer (all customers of the bank) may have members in common.
An entity is represented by a set of attributes.
e.g. name, S.I.N., street, city for “customer” entity. The domain of the attribute is the set of
permitted values (e.g. the telephone number must be seven positive integers).
Formally, an attribute is a function which maps an entity set into a domain. Every entity is
described by a set of (attribute, data value) pairs. There is one pair for each attribute of the
entity set. e.g. a particular customer entity is described by the set {(name, Harris), (S.I.N.,
890-123-456), (street, North), (city, Georgetown)}. An analogy can be made with the programming
language notion of type definition. The concept of an entity set corresponds to the programming
language type definition. A variable of a given type has a particular value at a point in time.
Thus, a programming language variable corresponds to an entity in the E-R model.
Fig. 6.26 shows two entity sets.

RELATIONSHIP RELATIONSHIP OCCURRENCÊ
ADVISOR Dr. John Brown
determines determines
CLASS INSY312
CLASS INSY430
located in located in

CLASSROOM Room 8
INDIVIDUAL Mary Jones
registers for registers for
CLASS BUSN202

Fig. 6.26
We will be dealing with five entity sets in this section:

• Branch, the set of all branches of a particular bank. Each branch is described by the
attributes branch-name, branch-city and assets.

Object Modelling and Database Design 3 0 5

• C ustom er, th e set o f all people having an accou n t at the bank. A ttributes are custom er-
nam e, S .I .N ., street and custom er- city.

• Em ployee, w ith attributes em ployee-nam e and phone-num ber.

• A cco u n t, th e set o f all accounts created and m aintained in the bank. A ttributes are
accou n t-n u m b er and balance.

• T ransaction, the set o f all accoun t transactions execu ted in the bank. A ttribu tes are
transaction-num ber, date and am ount.

6.15.3 Attributes
A fter you identify an entity, th e n you describe it in real terms, or through its attributes. A n
attribute is any detail that serves to identify, qualify, classify, quantify, or otherw ise express
th e state o f an en tity occurrence or a relationship. A ttributes are specific p ieces o f inform ation
w h ich n eed to be know n or held .

A n attribute is either required or optional. W h en it is required, we m ust have a value for it,
a value m ust be know n for ea ch entity occurrence. W h en it is optional, w e cou ld have a value
for it, a value m ay be know n for each en tity occurrence. For exam ple, som e attributes for Plant
are: description, date o f acquisition , flow ering or non-flow ering, and pot size. T h e description
is required for every Plant. T h e pot size is optional since som e plants do n ot com e in pots. A gain ,
som e o f W aterin g’s attributes are: date and tim e o f application, am ount o f water, and water
tem perature. T h e date and tim e are required for every W atering. T h e water tem perature is
optional sin ce we do n ot always ch eck it before w atering som e plants.

T h e attributes reflect the n eed for the inform ation they provide. In the analysis m eeting, the
participants should list as m any attributes as possible. Later, they can w eed out th ose that are
n ot applicable to the application, or those the clien t is n ot prepared to spend th e resources
o n to co llec t and m aintain . T h e participants com e to an agreem ent on w hich attributes belong
w ith an entity, as w ell as w h ich attributes are required or optional.

T h e attributes w h ich uniquely define an occurrence o f an entity are called primary keys. If
su ch an attribute d o esn ’t ex ist naturally, a new attribute is defined for that purpose, for exam ple
an ID num ber or code.

W h a t is an A ttr ib u te ?

R ea d in g U n c o m m itte d O utput Isn 't

U n d o a b le
T1: Start

Display outputN
•“User reads output

I f error, Abort
-------------------------- -j_ User enters input

T2: Start
►Get input from display

Commit

Fig. 6.27

3 0 6 Database Managem ent System s

T h e basic unit o f inform ation about any en tity occurance. E ventally those attributes w h ich
m igrate in to th e physical design b ecom e colum ns in database tables. A ttributes may be local
to th e en tity (“N a m e ”, “A dd ress”) or inherited by relationship from another entity. Synon om ou s
and/or related term s are data elem en t (as in a data flow diagram), co lu m n (o f a database table),
and data item .

D ata item som etim es d en otes a central, reusable d efin ition versus an attribute w h ich is an
in stan ce o f that d efin ition being used in som e entity.

A n attribute is an identifying or descriptive property o f either an en tity or a relationship . It
has n o m ean ing apart from th e e lem en t that it describes. A n attribute m ust appear in on ly on e
place in the m odel. If an attribute cou ld be represented in several en tities, it should be drawn
as a separate en tity . A n attribute usually has m any values and is described by a dom ain that
clarifies its valu e type. D ate form ats and ranges, num ber ranges, and decim al places are exam ples
o f attribute dom ains.

E xam p les o f A ttr ib u te s

ENTITY ATTRIBUTES

INDIVIDUAL

StudentID
StudentName

StudentAddress
StudentPhone

INDIVIDUAL'S RECORD ;

StudentID
Classes Completed

Class Grade
Major

F i g . 6 .2 8

A ttribu tes v /s A ttrib u te V alu es

Attributes for the entity INDIVIDUAL:

ATTRIBUTES _____ ATTRIBUTE VM.UES
100

StudentID 150
200

Bob Jones
StudentName Gad Smith

Bffl Wrtfit
449-6712

StudentPhone 384-2386
280-4555

F i g . 6 .2 9

A n attribute is represen ted o n th e E-R diagram in o n e o f tw o ways:

Object Modelling and Database Design 30 7

Attributes using ovals

Attributes using text

• StuName • School

• Stu Phone • Capacity

Fig. 6.30

• By ellipses (ovals) attached to th e elem en t it describes.

• By listing the attributes as text.

R elationsh ip B etw een E-R D iagram m ing E lem ents

• Data item 't- - ----------- j
I »
I »
I »

i
Attribute

> 1 ------ h

Entity

Fig. 6.31

6.15.4 Relationships
A fter tw o or m ore en tities are identified and defined w ith attributes, the participants determ ine
if a re la tion sh ip ex ists b etw een th e en titie s . A relationship is any association , linkage, or
co n n ec tio n b etw een the en tities o f in terest to the business; it is a tw o-directional, significant
association b etw een two entities, or b etw een an entity and itself. Each relationship has a nam e,
an op tion ality (optional or m andatory), and a degree (how m any). A relationship is described
in real term s.

3 0 8 Database Managem ent System s

Rarely w ill there be a relationship b etw een every entity and every o th er en tity in an application.
If there are on ly tw o or three en tities, th e n perhaps there w ill be relationships b etw een th em
all. In a larger application, there are n o t always relationships b etw een on e entity and all o f
the others.

A ssign in g a n am e, an optionality, and a degree to a relationship helps confirm th e valid ity o f
that relationship . If you can n ot give a relationship all th ese th ings, th e n perhaps there really
is no relationship at all. For exam ple, there is a relationship b etw een P lant and W atering. Each
Plant may be g iven o n e or m ore W aterings. E ach W atering m ust b e for o n e and only o n e specific
P lant.

R elationships is an association b etw een th e in stances o f o n e or m ore en tity types that is o f
in terest to th e organisation. R elationships are R epresented by d iam on d shape. For exam ple:

F i g . 6 .3 2

O w n s is a M :N relationship b etw een C ustom er and Product.

T h ere are others basic symbols:

Primary Key

M u lti-va lu ed a ttr ib u te

Object Modelling and Database Design 3 0 9

E -R D iagram for S C T & S D atab ase

W h at is a Relationship?

A co n n ectio n , association, or rule am ong entities:

• “C ustom er places Sales O rder”

• “Item occurs o n Sales O rder”

F i g . 6 .3 5

In a con cep tu a l m odel, it is sufficient to state or draw th e relationship .

A logical m od el defines specific m eans o f jo in ing tw o en tities via im plied or expressed foreign
k eys.

R elation sh ips ca n be classified in to a few relationship types. R elationship T ypes

R elation sh ips are grouped by their cardinality:

• O n e-to -M a n y is th e on ly relational form.

• > 9 9 % o f logical m odel

3 1 0 Database M anagem ent System s

Possession

Child

Characteristic

Paradox

P erso n . 4 Phone
-О --------------

Person : S ' Member
- i --------------

P erso n Name
-о ---------------- К

Person : 7 Citizenship

' ч ;
4 --------- К

F i g . 6 .3 6

6.15.5 Relationship Types
• O n e-to -O n e is a special case o f O n e-to-M any;

• < 1% o f a logical m odel

• M any-to-M any b ecom es an associative en tity

D ia g ra m m in g R e la t io n sh ip s

T h e relationship sym bol is a line b etw een tw o en tites.

D efin e a relationship with:

• Predicate sta tem en ts in on e or b oth d irections

• U nam biguous tex t descrip tion

• (A n am e is n o t im portant)

• Cardiality sym bols at ea ch end

W ill th e relationship be clear tw o years later to a n ew team?

R elationships are :

• U nam biguous, im m utable expressions o f business rules.

• Binary or unary in IE, S S A D M , IDEF1X and O O m ethod s.

• Logical objects. R elationsh ips can be reattached , w ith their properties in tact, to different
en titie s .

Object Modelling and Database Des ign

R elationships are not:

• Identifying or N on-Identifying. T h o se apply only to en tity identification .

• Inform ation containers. If you sen se a n eed for inform ation about a “relationship” th e n
it is an entity!

• D B M S objects. R elationships on ly define joins b etw een en tities.

6.15.6 Association in Relationship
R elationships show associations b etw een en tities. T h ey also clarify en tities. R elationsh ip classes
are associations am ong entity classes; th is term is often used interchangeab ly w ith relationship .
A relationship may or may n ot have attributes that n eed to be d efined . R elationships can be
binary (b etw een tw o entities) or com p lex (involv ing m ore than tw o en tities). O th er term s used
to describe com p lex relationships in clu d e ternary and unary.

RELATIONSHIP RELATIONSHIP OCCURRENCE
ADVISOR Dr. John Brown
determines * determines
CLASS INSY312
CLASS INSY430

located in located m
CLASSROOM Room 8
INDIVIDUAL Mary Jones

registers for registers for
CLASS BUSN202

• A relationship is represented o n th e E-R diagram by a d iam ond drawn b etw een associated
e n titie s .

F i g . 6 .3 7

• A relationship occurrence (or relationship instance) is actually an association b etw een
en tity occurrences.

3 12 Database M anagem ent System s

RELATIONSHIP RELATIONSHIP OCCURRENCE
ADVISOR Dr. John Brown
determines determines
CLASS INSY312
CLASS INSY430

located in located in
CLASSROOM Room 8
INDIVIDUAL Mary Jones

registers for registers for
CLASS BUSN202

Fig. 6.38

• A relationship nam e should:

■ Be a verb or verb phrase.

■ T h e m ajority o f cases can be covered w ith four basic verbs or phrases: know n by, has,
ow ned by, refers to.

■ U se correct n oun -verb agreem ent.

■ s ln c lu d e all participating en tities.

T h e relationship n ick n am e should n ot in clu d e the en tities. Establish o n e en tity in th e relationship
as an anchor in order to properly nam e the relationship . Specify an anchor only affects how
the relationship is read, n ot th e nature o f the relationship. T herefore, th e anchor ch o ice should
be based o n w h ich form sounds best.

• E xam p les o f re la tio n sh ip n a m es.

Examples o f proper noun -verb agreem ent . . . Yes . . .
INDIVIDUAL registers for CLASS REGISTRAR OFFICE processes ENROLLMENT
QUALIFICATION
No . . .
INDIVIDUAL registration CLASS REGISTRAR OFFICE procedure ENROLLMENT
QUALIFICATION

Examples o f relationship nam es in clu d ing all participating en tities . . .
MACON OFFICE stores INDIVIDUAL'S RECORD ADVISOR approves REGISTRATION
REGISTRAR OFFICE generates CLASS ROSTER

R elationship n ick n am e does n o t in clu d e en tities.

■ stores

■ approves

■ gen era tes

Examples o f n am in g anchor en tities.

C onsider:
MACON OFFICE stores INDIVIDUAL'S RECORD
- or -
INDIVIDUAL'S RECORD is Stored by MACON OFFICE

Object Modelling and Database Design 3 1 3

N o te that th e first exam ple sounds best; therefore, it sh ou ld probably be designated as th e anchor
entity . A n ch o r design ation can be d ep icted by placing an asterisk (*) o n th e diagram n ex t
to th e anchor entity .

6.15.7 Relationship Notations
T h ere are m any n o ta tion styles for relationships. T h ere are n o standards for relationship style.
D ifferent styles are read in different d irections. But they all express the sam e inform ation.

Fig. 6.39

6.15.8 Relationship Cardinality
C ardinality sp ec ifies th e num ber o f in sta n ces w h ich m ay be in v o lv ed in ea c h en tity o f a
relationship . M ost m ethod s show th e B oo lean abstract, n o t th e absolute num ber, b ecasue this
determ ines th e relationship type.

314 Database M anagem ent Systems

6.15.9 Relationships & Relationship Sets
A relationship is an association b etw een several en tities. A relationship set is a set o f relationships
o f the sam e type. Formally it is a m athem atical relation on n > 2 (possibly n on - d istinct) sets.

If E \ i E * , . . . , En are en tity sets, th en a relationship set R is a subset o f

{ (c i j Ejjj - - - j f in) | Ci G - ^ i j C* G E%j - - - j Cfi G E t i"̂

F i g . 6 .4 1

w here { (c i j c n) | e i G E \ t - - - j c n £

is a relationship.

For exam ple, consider the tw o entity sets custom er and accoun t. W e define th e relationship
C u stA cct to d en ote th e association b etw een custom ers and their accoun ts. T h is is a binary
relationship set. G oin g back to our formal defin ition , th e relationship set C u stA cc t is a subset
o f all th e possib le custom er and accoun t pairings. T h is is a binary relationship . O ccasionally
there are relationships in vo lv in g m ore than tw o en tity sets. T h e role o f an en tity is th e function
it plays in a relationship. For exam ple, the relationship works for ordered pairs o f em ployee
en tities. T h e first em ployee takes th e role o f m anager, and the secon d on e w ill take the role
o f worker.

A relationship may also h ave descriptive attributes. For exam ple, date (last date o f accoun t
access) cou ld be an attribute o f th e C u stA cct relationship set.

6.15.10 Populating Attributes
For each entity, ask “W hat properties does this thing have - even if noth ing else exists around it?”

■ A p erson has age - ev e n the last person on earth.

■ A build ing has h eigh t - ev en if it is abandoned.

■ A son g has a key, ev e n if it is unsung.

6.15.11 Domains*
A dom ain (in relational usage) is a set o f values and operations w h ich m ay be used to populate
and operate o n on e or m ore colum ns. T h e values may be specified by list or form ula. W h ile
is n o t yet any theoretica l or practical way to lim it th e operations applied to a dom ain , this
exam ple show s the n eed . Som etim es you can reveal en tities by look ing in the data dictionary
for h om eless attributes:

• “T o w h o m does atom ic w eight belong?

• A n d w hat about th e year in w h ich an elem en t was d iscovered?”

• A ggregate a tom ic w eight and year in to anew en tity

• C alled A to m ic E lem ent.

C ross-check data e lem en ts captured in th e data dictionary from data flow diagrams, use cases,
or other analysis.

• A ll d ata structures and data e lem en ts

• D iscovered in analysis m ust be

Object Modelling and Database Design 3 1 5

■ A cc o u n te d for in the logical m odel.

Entities o ften occur in hierarchies - family trees related by inheritance.

T h is is sub-typing or specialisation and generalisation - the sam e as building 0 0 class structures.

Each ch ild en tity inherits all attributes and relationships from its parent.

6.15.12 Looking for Hierarchies
Entities o ften occur in hierarchies - fam ily trees are related by inheritance.

T his is sub-typing or specialisation and generalisation - the sam e as building O O class structures.

Each ch ild en tity inherits all attributes and relationships from its parent.

Worker

Employee Contractor

F i g . 6 .4 3

W e d efin e properties at their h ighest lev e l in the hierarchy to avoid redundancy. In a con ceptu al
m odel, w e ignore how inheritance operates. Later we w ant to specify how super-and sub-types
m ap from the logical m odel to physical structures.

6.15.13 Generalisation
H ierarchies let us locate attributes and relationships at the appropriate level.

A ll v eh ic les have:

• V IN and R egistration

• O w n er

3 1 6 Database M anagem ent System s

The attributes and relationship are generalized to all vehicles.

< Cir £ Twck^
Seatbelts"
» " 'Vq(. ' . , v v-:

F i g . 6 .4 4

6.15.14 Specialisation
• O n ly cars h ave primary drivers and seat belts.

• O n ly trucks h ave gross veh ic le w eight.

T h ese attributes and relationships are specialized to the ch ild level.

Object Modelling and Database Design 317

6.15.15 Specialisation of Relationships
O p tional parent relationships usually h ide a n eed for specialisation . A sk your self:

• Is th e relationship som etim es true for ea ch instance? T h e n it is correctly m od eled as
op tion al.

• Is th e relationship always true for som e instances? T h e n it requires a specialisation .

C ustom er

“
h a s p re fe rre d

is p re fe rre d

Fig. 6 .46

Som e custom ers m ust have a default w arehouse.

For others it does n o t exist (in this m odel).

By sp litting th e C ustom er entity in to tw o sub-types, we can m odel th e relationship to W arehouse
precisely.

^ is served from

is default for

3 1 8 Database Managem ent Sy stem s

6.15.16 Attributes
It is possible to define a se t o f en tities and the relationships am ong th em in a num ber o f different
ways. T h e m ain d ifference is in how w e deal w ith attributes.

C onsider th e en tity set em ployee w ith attributes em ployee-nam e and phone-num ber. W e cou ld
argue that th e p hon e be treated as an en tity itself, w ith attributes p hon e-num ber and location .
T h en w e have tw o en tity sets, and th e relationship set Em pPhn d efin ing the association b etw een
em ployees and their phon es. T h is new defin ition allows em ployees to have several (or zero)
phones. N ew d efin ition m ay m ore accurately reflect the real world. W e can n ot ex ten d this
argum ent easily to m aking em p loyee-n am e an entity. T h e q u estion o f w hat con stitu tes an entity
and w hat con stitu tes an attribute depends m ainly on th e structure o f the real world situ ation
b eing m odeled , and th e sem an tics associated w ith th e attribute in question.

6.15.17 Mapping Constraints
A n E-R sch em e m ay d efin e certa in constraints to w h ich th e co n ten ts o f a database m ust
conform .

M apping Cardinalities: express th e num ber o f en tities to w h ich another entity can be associated
via a relationship . For binary relationship sets b etw een en tity sets A and B, th e m apping
cardinality m ust be on e of:

• O n e -to -o n e : A n en tity in A is associated w ith at m ost on e entity in B, and an entity
in B is associated w ith at m ost on e entity in A .

• O n e-to -m a n y : A n en tity in A is associated w ith any num ber in B. A n en tity in B is
associated w ith at m ost on e entity in A .

• M a n y -to -o n e : A n en tity in A is associated w ith at m ost on e entity in B. A n en tity in
B is associated w ith any num ber in A .

• M an y-to -m an y: E ntities in A and B are associated w ith any num ber from ea ch other.

T h e appropriate m apping cardinality for a particular relationship set depends on th e real world
being m odeled . (T h ink about th e C u stA cct relationship .)

E xistence D ep en dencies: if the ex isten ce o f en tity X depends on the ex isten ce o f en tity Y, then
X is said to be ex isten ce d ep en d en t on Y. (Or we say that Y is the dom inant en tity and X
is th e subordinate en tity .)

For exam ple, C onsider a cco u n t and transaction entity sets, and a relationship log b etw een them .
T h is is on e-to -m an y from accou n t to transaction. If an accou n t en tity is d eleted , its associated
transaction en tities m ust also be d eleted . T h us accou n t is d om in ant and transaction is subordinate.

6.15.18 Keys
D ifferences b etw een en tities m ust be expressed in terms o f attributes. A superkey is a set o f
one or m ore attributes w hich , taken co llectively , allow us to identify uniquely an en tity in the
en tity set. For exam ple, in th e en tity set custom er, cu stom er-nam e and S .I.N . is a superkey.
N o te that cu stom er-nam e a lon e is not, as tw o custom ers cou ld h ave the sam e nam e.

A su p erk ey m ay con ta in extraneous attributes, and w e are often in terested in th e sm allest
superkey. A superkey for w h ich n o subset is a superkey is called a can d idate key.

Object Modelling and Database Design 3 1 9

In the exam ple above, S .I.N . is a candidate key, as it is m inim al, and uniquely id en tifies a
custom er en tity .

A prim ary k ey is a candidate key (there m ay be m ore than on e) ch o sen by the D B designer
to identify en tities in an entity set. A n en tity set that does n o t possess sufficient attributes to
form a primary key is called a weak en tity set. O n e that does h ave a primary key is ca lled a
strong entity set. For exam ple,

T h e en tity se t tran saction has attributes tran saction -n um ber, d ate and am ount. D ifferen t
transactions o n different accounts cou ld share th e sam e num ber. T h ese are n o t su fficient to
form a primary key (uniquely identify a tran saction). T hus transaction is a weak en tity set.
For a w eak en tity set to be m eaningful, it m ust be part o f a on e- to-m any relationship set. T h is
relationship set sh ou ld h ave n o descriptive attributes.

T h e idea o f strong and w eak entity sets is related to the ex isten ce d ep en d en cies seen earlier.

M em ber o f a strong en tity set is a dom in ant en tity . M em ber o f a w eak entity set is a subordinate
entity. A w eak en tity set does n ot h ave a primary key, but w e n eed a m eans o f d istinguish ing
am ong the en tities. T h e discrim inator o f a w eak en tity set is a set o f attributes that allows this
d istinction to be m ade. T h e primary key o f a weak en tity set is form ed by taking th e primary
key o f th e strong en tity set on w hich its ex is te n c e depends (see M apping C onstraints) plus its
discrim inator.

T o illustrate:

• T ran saction is a w eak entity. It is ex isten ce-d ep en d en t o n accoun t.

• T h e primary key o f accou n t is account-num ber.

• T ransaction-n um ber d istinguishes transaction en tities w ith in th e sam e accou n t (and is
thus th e d iscrim inator). * So th e primary key for transaction w ould be (account-num ber,
tra n sa ctio n -n u m b er).

Just R em em b er: T h e primary key o f a w eak entity is found by taking the primary key o f the
strong en tity on w h ich it is ex isten ce-d ep en d en t, plus the discrim inator o f th e weak en tity set.

6.15.19 Primary Keys for Relationship Sets
T h e attributes o f a relationship set are th e attributes that com prise th e primary keys o f th e entity
sets in v o lv ed in th e relationship set.

F or ex a m p le:

• S .I .N . is th e primary key o f custom er, and

• A cco u n t-n u m b er is th e primary key o f account.

• T h e attributes o f the relationship set cu stacct are th en (account-num ber, S .I .N .).

• T h is is en ou gh inform ation to enab le us to relate an accou n t to a person.

If the relation sh ip has descriptive attributes, those are also in clu d ed in its attribute set. For
exam ple, w e m ight add the attribute date to the above relationship set, signifying th e date o f
last access to an accou n t by a particular custom er.

3 2 0 Database M anagem ent System s

N o te that this attribute can n ot instead be p laced in either en tity set as it relates to b oth a
custom er and an accoun t, and the relationship is m any-to-m any.

T h e primary key o f a relationship set R depends o n the m apping cardinality and th e presence
o f d escrip tive attributes.

W ith n o d escrip tive attributes:

• M an y -to -m a n y : all attributes in R.

• O n e-to -m a n y : primary key for th e “m any” entity.

• D escr ip tive attributes m ay be added, d ep en d in g o n th e m apping cardinality and th e
sem an tics in vo lved .

6.15.20 Relationship Cardinality
T h e cardinality o f a relationship show s th e num ber o f en tity occu rren ces possible b etw een
en tities in a relationship . T h e purposes o f cardinality are to d eterm in e reality, identify different
user perceptions, and to define m eaning. C ardinality can also be u sed to en force rules. In order
to d eterm in e relationship cardinality, th e m odeler should q u estion th e user.

Cardinality sh ow s th e m axim um num ber o f occurrences that can participate in a relationship
(as represented by “o n e ” or “m any”) and can be graphically expressed in several ways. H ow ever,
in this tex t it is sh ow n as on e (1) or m any (M or N) outside th e en tity rectangle. T h e types
o f cardinality are:

• 1:1 (o n e -to -o n e) relationships: A single occurrence o f o n e en tity relates to a single
occu rren ce o f another entity.

• 1 :N (o n e-to -m an y) relationships: A single occu rren ce o f o n e en tity relates to m any
occu rren ces o f another entity.

• N :M (m an y-to -m an y) relationships: M any occu rren ces o f o n e en tity relate to m any
occu rren ces o f another entity.

6.15.21 Determining relationship cardinality
T raditionally, tex tb ook s describe cardinality in a on e-d im en sion form at. T h ese form ats are:

• 1:1 (o n e -to -o n e) relationships

• 1:N (on e-to -m an y) relationships

• N :M (m any-to-m any) relationships

A 1:N relationship can be graphically represented as:

Fig. 6.48

Object Modelling and Database Design 321

T h is diagram can be read as "one course has m any classes." H ow ever, th e relationship is actually
tw o-dim ensional; it m ust be clear w hen read from either direction . For exam ple, w h en read
from the opposite d irection , on e class has on e course. C onsider the follow ing exam ple o f an
alternative diagram that may illustrate th e relationship m ore clearly.

Fig. 6 .49

N o te that the entity occurrence IN SY 410 has three relationship occurrences w ith th e entity
C L A SS. Furtherm ore, on e relationship occurrence o f Mhas" is d efined by on e en tity occurrence
from C O U R SE and on e entity occu ren ce from C L A SS. Finally, on e entity occurrence from
C L A SS (for exam p le, “Spring”) is on ly related to o n e o ccu rren ce o f C O U R S E . T h is last
relationship tells th e reader that “In th e spring INSY 4 1 0 is offered only on e tim e .”

T h e follow ing diagram (in th e typical E-R format) shows how the three objects ’’C O U R S E ,”
"CLASS," and "has" participate in describing th e business en vironm ent.

Fig. 6.50

N o te : T h e above exam ples d ep ict th e relationships only in th e specified con tex t. T h e focus
o f the user and the business actually determ ines th e real m eaning and cardinality in
a relationship .

6.15.22 Relationship Modality
M odality in dicates the m inim um num ber o f entity occurrences that m ust participate in order
for th e relationship to exist. In other words, m odality states that in a particular relationship
a specific en tity eith er m ust h ave an occurrence (mandatory) or may n ot have an occurrence
(optional). In th e E-R diagram, a bar is drawn o n the relationship line to illustrate a m andatory
occurrence, w hile a circle is drawn for an optional occurrence. M odality can be m andatory
on b oth sides o f th e relationship , op tion al on b oth sides, or m andatory on one side and optional
on the other. M odality can also be used to enforce rules.

3 2 2 Database Managem ent System s

6 .1 6 E n tit ie s A ttr ib u te s an d R e la tio n (EAR) M o d e ls
T h e E A R m odel is on e o f th e m ost com m on and successfu l types o f data m odel around. Its
basic elem en ts are called Entities, A ttributes and R elationships, h en ce th e nam e E A R m odel,
or occasionally E A R m odel.

T h e m odelin g constructs are as follows:

1. E n tity : A n entity is any ‘th in g ’ about w h ich data can be stored. For exam ple, if th e system
n eed s to store data about custom ers or products, th en the m odel w ould have custom er or
product en tities. A lth ou gh th e d efin ition is stated in term s o f w hat m ust be stored, in fact
it is retrieval o f the data that is the fundam ental requirem ent.

2. A ttr ib u tes : T h e attributes o f an entity are th ose facts that n eed to be stored about the
entity. For exam ple, the attributes o f a custom er m ight in clu d e th e accou n t num ber, nam e,
address and credit lim it.

3. R e la tio n sh ip s : R elationships ex ist b etw een various en tities w ith in a system . For exam ple,
there may be a relationship b etw een the custom er and an order.

4. N o rm a lisa tio n : For su ch a data m odel to be con sidered valid it m ust conform to a set o f
rules. A valid data m odel is on e that is fully norm alized and the process o f con vertin g an
invalid m odel in to a valid on e is called norm alisation.

T h e aim o f norm alisation is to ensure that each fact is on ly recorded in on e p lace so th at facts
can n ot be in con sisten t and th e perform ance o f updates ca n n o t produce anom alies by updating
on e copy o f th e fact but n o t another. T h e rules m ay be expressed in m ore formal terms, but
they are n ot con sid ered suitable in a book at this level.

Each occurrence o f an entity , for exam ple each individual custom er, m ust be uniquely identifiab le
by m eans o f a key con ta in in g on e or m ore attributes, th e cu stom er’s full n am e or accou n t num ber
m ight serve as a key, for exam ple. O th er attributes (non -k ey attributes) may be regarded as
fact relating to the key can be obtained .

T h e process o f norm alisation ensures that in each en tity o f th e final m odel every n on-key
attribute is a fact about th e key, th e w hole key and n o th in g but th e key.

T o round off th is d escrip tion o f data m odels here (Fig.. 6 .51) is a diagram o f a sim ple E A R
m odel con cern in g custom ers m aking orders for products.

| CUSTOMER Account No.,
main adore,
credit limit,
credit) | Place order
| CUSTOMER ORDER
(Order number,
account number,
date) |

Object Modelling and Database Design 3 2 3

Contains details
| ORDER DETAIL
(Order number,
product code,
No. requisite) |
Is ordered |
PRODUCT
(Product code,
product description) |

T h e Entity R elationsh ip Diagram

W e can express the overall logical structure o f a database graphically w ith an E-R diagram.

Its com p on en ts are:

• R ectan gles representing en tity sets.

• Ellipses representing attributes.

• D iam ond s representing relationship sets.

• Lines link ing attributes to en tity sets and entity sets to relationship sets.

In the text, lines may be directed (have an arrow on the end) to signify m apping cardinalities
for relationship sets. Fig. 6 .52 to 6 .53 sh ow som e exam ples.

Fig. 6.52: One-to-many from customer to account

F ig . 6 .53 : M a n y - t o - o n e fro m c u s to m e r to a c c o u n t

324 Database Managem ent Sy stem s

T h e arrow p osition in g is sim ple o n ce you get it straight in your m ind, so d o som e exam ples.
T h in k o f th e arrow h ead as pointing to th e entity that “o n e ” refers to.

6 .1 7 E n t ity R e la tio n s h ip D ia g ra m s
T o visually record th e en tities and th e relationships b etw een th em , an en tity re lation ship
diagram, or E R D , is drawn. A n ER D is a p ictorial rep resen tation o f th e en tities and the
relationships b e tw e en them . It allows th e participants in the m eetin g to easily see th e inform ation
structure o f th e application. Later, th e project team uses th e ER D to design th e database and
tables. K now ing h ow to read an ERD is very im portant. If there are any m istakes or relationships
m issing, th e ap plication will fail in that respect. A lth ou gh som ew h at cryptic, learning to read
an ERD com es quickly.

T h e inform al d efin ition o f E ntity-R elationship (ER) diagrams is d irectly taken from in order
to dem onstrate th e expressiveness o f our sp ecification language and th e reasoning capabilities
o f our D L system . Fig. 6 .57 show s an exam ple ER diagram specifying a relationship b etw een
a pilot and an aircraft. W e assum e a few prim itive con cep ts (d en oted in slan ted font) and spatial
relation s (to u ch in g , co n ta in in g , lin k ed _ w ith , tex t_ v a lu e) rep resen tin g g eom etr ica l ob jects
(rectangle, circle , d iam ond, line, tex t) and their relationships.

Fig.. 6.57: A simple entity-relationship diagram

• C o n n ec to r s

A re la tion sh ip -en tity c o n n e c t io n is a lin e that to u ch es ex a c tly o n e te x t label (exp ressin g
cardinality) and tw o other regions (rectangle or d iam ond). A cardinality is a tex t string w ith
values ch o sen from th e set ER6.GIF.

Object Modelling and Database Design 3 2 5

A n attribute-entity co n n ectio n is a line that tou ch es on ly tw o regions (circle or rectangle) and
n o tex t string.

entity

Fig. 6*59

a ttr ib u te e n t i t y =
{tine A (3sa touching) A
(V touching (circleV rectangle)) A
(3_i touching rectangle) A (i i touching circle) '

Fig. 6 .60

• E n titie s

A n en tity is a rectangle that con ta in s its nam e. It tou ch es at least on e relationship -entity and
optionally som e attribute- en tity con n ectors. It is lin k ed w ith at least on e diam ond.

named, region =
(region A (3*t containing) A (V containing tocf))

entity =
(rectangle A named ĵ gion A
(3fct touching relationship jantity) A
(V touching (attribute-entity V relationship .entity)) A
(3>t linkad-with diamond) A
(V linkad-with (circle V diamond)))

Fig. 6.61 Fig. 6 .62

• R e la tio n sh ip s

A re lation ship is a d iam ond that con ta in s its nam e. It tou ch es on e relation ship -en tity and
optionally som e attribute-entity con n ectors. It is linked w ith tw o entities.

3 2 6 Database Managem ent Sy stem s

relationship =
(diamond A named-r^gion A
(3_2 linked-with) A (V linked-with entity) A
(3_2 touching) A (V touching relationshipjentity) A
(3<2 touching (= (touching otext_value) 1)) A
(3<i touching (= (touching otsxt_value) m))A
(3<t touching (= (touching otext_value) n)))

Fig. 6.63 Fig. 6.64

• A ttr ib u tes

A n attribute is a circle that con ta ins its nam e. It tou ch es on e attribute-entity co n n ecto r and
is linked w ith an entity.

a ttr ib u te =
(circle A named-n̂ gion A
(3_i linked_with) A (V linked_with entity);

Fig. 6,65

Each en tity is drawn in a box. Each relationship is drawn as a lin e b etw een en tities. T h e
relationship b etw een Plant and W atering is drawn o n th e ERD as follows:

given

Fig. 6 .67

S in ce a relationship is b etw een tw o entities, an ERD show s how on e en tity relates to the other,
and v ice versa. R eading an ER D relationship m eans you h ave to read it from on e en tity to
th e other, and th en from the other to the first. E ach style and mark on th e relationship line
has som e sign ificance to th e relationship and its reading. H a lf th e relationship line belongs to
th e en tity o n that side o f th e line. T h e other h a lf belongs to th e other en tity on th e other side
o f th e line.

W h en you read a relationship , start w ith on e en tity and n o te th e lin e style starting at that
entity. Ignore th e latter h a lf o f th e lin e’s style, sin ce it ’s there for you to com e back th e other
way. A solid lin e at an en tity represents a m andatory relationship. In th e exam ple above, each
W atering m ust be for o n e and only on e Plant. A d o tted lin e at an en tity represents an optional
relationship . E ach Plant m ay be g iven on e or m ore W aterings.

Object Modelling and Database Des ign 3 2 7

T h e way in w h ich the relationship line co n n ects to an entity is sign ificant. If it con n ects w ith
a single line, it represents on e and on ly o n e occurrence o f that en tity . In the exam ple, ea ch
W atering m ust be for on e and only on e Plant. If th e relationship line co n n ects w ith three prongs,
i.e., a crow sfoot, it represents on e or m ore o f the entities. Each Plant m ay be g iven on e or m ore
W aterin gs. A s lon g as b o th sta tem en ts are true, th en you k n ow you h ave m o d e led th e
relationship properly.

In th e relationship b etw een P lant and W atering, there are tw o relationship statem ents. O n e
is: each W atering m ust be for on e and only on e Plant. T h ese are th e parts o f the ER D w hich
that sta tem en t uses:

f
for

\

WATERING PLANT

V. J
given

J

Fig. 6 .68

T h e seco n d statem ent is: each Plant m ay be g iven on e or m ore W aterings. T h e parts o f th e
ER D w h ich that statem ent uses are:

f N f \
for

WATERING PLANTT
f

given
V J ^ J

Fig. 6 .7 9

A fter som e experience, you learn to ask th e appropriate questions to determ ine if two en tities
are related to each other, and th e degree o f that relationship. A fter agreeing on the en tities
and their relationships, th e process o f identify ing m ore entities, describing them , and determ in ing
their relationships con tin u es u ntil all o f th e services o f th e application h ave b een exam ined .
T h e data m odel rem ains software and hardware in depend en t.

6 .1 8 O th e r S ty le s o f E-R D ia g ra m
T h e tex t uses on e particular style o f diagram. M any variations ex ist.

S om e o f th e variations you w ill see are:

• D iam ond s being om itted - a link b etw een en tities in dicates a relationship .

• Less sym bols, clearer picture.

• W h a t happens w ith descriptive attributes?

• In th is case, we h ave to create an in tersection entity to possess th e attributes.

• N um bers instead o f arrowheads in d icatin g cardinality.

3 2 8 Database Managem ent Systems

• Sym bols, 1, n and m used.

• E.g. 1 to 1, 1 to n, n to m.

• Easier to understand than arrowheads.

A range o f num bers in dicating optionality o f relationship , e.g (0 ,1) in d icates m inim um zero
(optional), m axim u m 1. C an also use (0 ,n), (1 ,1) or (l ,n) . Typically used on near en d o f link
- confusing at first, but gives m ore inform ation. E.g. en tity 1 (0 ,1) — (l ,n) en tity 2 indicates
that en tity 1 is related to b etw een 0 and 1 occurrences o f en tity 2 (o p tio n a l). Entity 2 is related
to at least 1 an d possibly m any occurrences o f en tity 1 (m andatory). M u ltiva lu ed attributes may
be in d icated in som e m anner. M eans attribute can h ave m ore than o n e value. For exam ples
hobbies. Hafr to be norm alized later on. C om posite attributes. D erived attributes. Subclasses
and superclasses. G eneralisation and sp ecialisation .

6.18.1 Roles in E-R Diagrams
T h e fu n ction that an en tity plays in a relationship is called its role. R oles are norm ally explicit
and n ot specified .

T h ey are u sefu l w h en th e m eaning o f a relationship set n eed s clarification.

For exam ple, th e en tity sets o f a relationship may n o t be d istinct. T h e relationship works-for
m ight be ordered pairs o f em ployees (first is m anager, secon d is w orker).

In th e E-R diagram , this can be show n by labelling th e lines co n n ectin g en tities (rectangles)
to relationships (d iam onds).

Fig. 6 .70: E-R Diagram with Role Indicators

6.18.2 Weak Entity Sets in E-R Diagrams
A weak en tity se t is in d icated by a doubly-outlined box. For exam ple, th e p reviously-m entioned
w eak entity set tran saction is d ep en d en t o n th e strong en tity set a cco u n t v ia th e relationship
set log.

Object Modelling and Database Design

Fig. 6 .72 Shows this Example.

Fig. 6.72: E-R Diagram w ith a weak en tity set.

6.18.3 Nonbinary Relationships
N on-binary relationships can easily be represented. Fig. 6 .73 show s an exam ple.

Fig. 6 .73: E-R Diagram with a Ternary Relationship

T h is E-R diagram says that a custom er may have several accounts, each located in
bank branch, and that an accoun t may b elon g to several different custom ers.

3 2 9

a specific

6.18.4 Reducing E-R Diagrams to Tables
A database conform ing to an E-R diagram can be represented by a co llec tion o f tables. W e
will use th e E-R diagram o f Fig. 6 .74) as our exam ple.

3 3 0 Database Managem ent Sy stem s

F i g . 6.74: E-R Diagram with strong and weak entity sets

For ea ch en tity set and relationship set, there is a unique table w h ich is assigned th e nam e
o f th e corresponding set. E ach table has a num ber o f colum ns w ith unique nam es.

6.18.5 Representation of Strong Entity Sets
W e use a table w ith on e co lu m n for each attribute o f the set. E ach row in th e table corresponds
to o n e entity o f th e en tity set. For th e entity set accoun t. W e can add, d ele te and m odify rows
(to reflect ch an ges in the real w orld). A row o f a table will con sist o f an n -tup le w here n is
th e num ber o f attributes.

A ctually , the table con ta ins a subset o f the set o f all possible rows. W e refer to th e set o f all
possible rows as th e cartesian product o f the sets o f all attribute values.

W e m ay d en o te this as

D\ x Da or D,
For th e accou n t table, w here d , and a6 .g if d en ote the set o f all accou n t num bers and all accoun t
balances, respectively. In general, for a table o f n colum ns, w e m ay d en o te th e cartesian product
o f a6 .g if by

* ? = i A

6.18.6 Representation of Weak Entity Sets
For a w eak en tity set, w e add co lum ns to the table corresponding to the primary key o f the
strong entity set o n w h ich th e w eak set is dependent.

For exam ple, th e w eak en tity set transaction has three attributes: transaction-num ber, date and
am ount. T h e primary key o f accou n t (on w hich transaction depends) is accoun t-n um ber.

6.18.7 Representation of Relationship Sets
Let R be a relationship set in vo lv in g en tity sets E \i E ^ < - , i Em
T h e table corresponding to th e relationship set R has th e follow ing attributes:

m

(J primuy-kjcy(£j)

Fig. 6.75

Object Modelling and Database Design 3 3 1

If th e relationship has k descriptive attributes, we add th em too:
m
(J primary-kcy(E\) ai t . . . , ait]
1-1

Fig. 6 .76

A n exam ple:

T h e relationship set C u stA cct in volves the entity sets custom er and accoun t. T heir resp ective
primary keys are S .I.N . and account-num ber. C u stA cct also has a descriptive attribute, date.

L in k in g a W e a k to a S tron g E n tity
T h ese relationship sets are m any-to-on e, and h ave n o descriptive attributes. T h e primary key
o f the w eak entity set is the primary key o f the strong entity set it is ex isten ce-d ep en d en t on ,
plus its discrim inator.

T h e table for the relationship set w ould h ave the sam e attributes, and is thus redundant.

6.18.8 Generalisation
C onsider ex ten d in g th e en tity set a cc o u n t by classifying accou n ts as being eith er savings-
acco u n t or ch eq u in g -a cco u n t.

E ach o f th ese is described by the attributes o f accoun t plus additional attributes, (savings has
in terest-rate and ch eq u in g has overdraft-am ount.)

W e can express the sim ilarities b etw een th e en tity sets by generalisation. T h is is th e process
o f form ing con ta in m en t relationships b etw een a h igher-level en tity set and one or m ore low er-
level en tity sets.

In E-R diagram s, generalisation is sh ow n by a triangle, as sh ow n in Figure 6 .77 .

F ig . 6 .7 7 : G eneralisation

3 3 2 Database M anagem ent System s

G eneralisation h ides differences and em phasizes sim ilarities. D istin ction m ade through attribute
in heritan ce. A ttribu tes o f h igher-level en tity are in herited by low er-level en tities.

T w o m ethod s for con version to a table form:

• C reate a table for th e h igh-level entity, plus tables for th e low er-level en tities con tain ing
also their specific attributes.

• C reate only tables for the low er-level en tities.

6.18.9 Aggregation
T h e E-R m odel can n ot express relationships am ong relationships.

W h en w ould w e n eed su ch a thing?

C onsider a D B w ith inform ation about em ployees w h o work o n a particular project and use
a num ber o f m ach ines doing that work. W e get the E-R diagram sh ow n in Fig. 6 .78 .

Fig. 6.78: E-R diagram with redundant relationships

R elationship sets work and uses cou ld be com b ined in to a single set. H ow ever, th ey sh ou ld n ’t
be, as this w ould obscure th e logical structure o f this sch em e. T h e so lu tion is to use aggregation.

A n ab straction th rou gh w h ich relation sh ip s are treated as h igher- le v e l en t itie s . For our
exam ple, w e treat th e relationship set work and th e en tity sets em ployee and project as a higher-
level en tity se t ca lled work.

Fig. 6 .79 show s th e E-R D iagram w ith A ggregation.

Object Modelling and Database Design 3 3 3

F i g . 6.79: E-R Diagram with Aggregation

Transform ing an E-R diagram w ith aggregation in to tabular form is easy. W e create a table
for each en tity and relationship se t as before. T h e table for relationship set uses con ta in s a
colum n for ea ch attribute in the primary k ey o f m achinery and work.

6.18.10 Design of an E-R Database Scheme
T h e E-R d ata m od el provides a w ide range o f ch o ice in d esign in g a database sc h e m e to
accurately m o d el som e real-world situ ation .

Som e o f th e decision s to be m ade are:

• U sin g a ternary relationship versus tw o binary relationships.

• W h eth e r an entity set or a relationship set best fit a re a l- world con cept.

• W h eth e r to use an attribute or an en tity set.

• U se o f a strong or w eak entity set.

• A ppropriateness o f generalisation .

• A pp rop riateness o f aggregation.

6.18.11 Mapping Cardinalities
T h e ternary relationship o f Fig. 6 .7 9 cou ld be replaced by a pair o f binary relationships, as show n
in Fig. 6 .8 0 .

3 3 4 Database Managem ent System s

H ow ever, there is a d istin ction b etw een th e tw o representations:

• In Fig. 6 .76 , relationship b etw een a custom er and accou n t can be m ade only if there is
a corresponding branch.

• In Fig. 6 .85 , an accou n t can be related to either a custom er or a branch alone.

• T h e d esign o f Fig. 6 .81 is m ore appropriate, as in th e banking world w e exp ect to have
an accou n t relate to b oth a custom er and a branch.

• U se o f Entity or R elationship Sets

• It is n o t always clear w heth er an object is best represented by an en tity set or a relationship
set.

• B oth Fig. 6.81 and Fig. 6 .85 show accou n t as an entity.

• Fig. 6 .8 3 show s h ow w e m ight m odel an accou n t as a relationship b etw een a custom er
and a branch.

Fig. 6 .8 1 : E -R D iagram w ith A c c o u n t as a R e la tionsh ip set

Object Modelling and Database Design 3 3 5

T his n ew representation can n ot m odel adequately the situ ation w here custom ers may h ave joint
accounts. (W hy not?) If every accou n t is h eld by only on e custom er, this m ethod works.

6.18.12 Use of Extended E-R Features
W e have seen w eak entity sets, generalisation and aggregation. D esigners m ust d ec id e w h en
these features are appropriate.

Strong en tity sets and their d ep en d en t w eak entity sets may be regarded as a single “o b ject”
in the database, as weak en tities are ex isten ce-d ep en d en t o n a strong entity. It is possib le to
treat an aggregated entity set as a single u n it w ithout co n cern for its inner structure details.

G eneralisation contributes to m odularity by allow ing com m on attributes o f similar en tity sets
to be represented in on e place in an E-R diagram. E xcessive use o f th e features can in trod u ce
unnecessary com plexity in to the design.

6 .1 9 T h e D a ta D ic t io n a ry
A data dictionary is a list o f formal d efin ition s for:

• C om p lex data structures

• E n tities

• D om ains

• A to m ic data item s

T h e dictionary com es from data flow diagrams, use cases, or other analyses.

It can be in h and w ritten notes, d ocu m en t files, or a repository tool.

Fig. 6 .84

6 . 2 0 M o d e l i n g f r o m E x p e r t K n o w l e d g e

• T rad ition al system s analysis o ften relies on personal know ledge w ithout formal m ethods.

• Every data m odel is primarily th e work o f experts w ho understand the problem space.

3 36 Database Managem ent System s

T his expertise sh ou ld be:

• Treasured for its irreplacable insight and exp erience

• U sed to su pp lem ent (not replace) formal techn iques

• Carefully cross-ch eck ed against other sources

• T h orou ghly d ocu m en ted for source and reasoning

/ P la n A n a ly s t '
v '

i i

F i g . 6 .8 5

6 .2 1 E n tity P a tte rn s
D ata m odels reveal familiar patterns su ch as:

• R ecu rsion

• Look-up tables

• M u ltip le ch ild ren

• Bill o f m aterials

Learn to recogn ize patterns and reapply past solu tions to familiar problem s.

T h ere are published sources w hich con ta in ex ten sive co llection s o f m odel patterns. S ee D avid
Hay, D ata M od el Patterns, C on ven tion s o f T h ough t.

Object Modelling and Database Design 3 3 7

03

' V

Z L v
C1 02 C3

Fig. 6 .86

6 .2 2 E v o lv in g th e L o g ic a l M o d e l
• N orm alize structures

• P opulate attributes

• A ggregate data item s in to new en tities

• N o m in a te can d idate keys

• R e-N orm alize on th e n ew can d idate keys

Entities are represented on
the diagram by a rectangle

with the entity name
noted inside

I N D I V I D U A L

Fig. 6 .8 7

3 3 8 Database M anagem ent Sy stem s

6.22.1 Normalizing to a Logical Model
• Every raindrop, every snowflake, every h ailstone

• H as a single speck o f dust at th e core.

• Every logical en tity has a single idea at its core.

T h e essen ce o f norm alisation is on e entity = on e idea:

• A custom er is a person or organisation w ho buys from us.

• A serv ice order holds on e custom er request for service.

E xam ine com p lex data structures for h idd en en tities in:

N o u n s - tangib le or in tangib le

A djectives w hose value is on e o f a know n list ... fem ale |m ale; green | yellow | red; 6* | 8* | 10'

E m bedded ideas w hich can ex ist on their ow n populate th e en tities w ith attributes ...

6.22.2 Relational Keys
T h e term key is m uch abused and m isunderstood.

A key o f a relation is any com b ination o f colum ns w h ose va lu es uniquely identify ea c h tuple
(row) in that relation.

A key is n o t an in d ex and an in d ex is n ot a key. T h is is a lingering con fu sion from non-relational
m eth od s.

R elation al keys are m ore form ally (and awkwardly) ca lled C and id ate Keys.

6.22.3 What are Candidate Keys?
A can d idate key is any se t o f o n e table’s colum ns w h ose com b in ed valu e is u nique throughout
th at table.

In the U .S . ea ch state has a unique cod e - on e can d idate Jcey.

Each state n am e is also u n iq ue - another candidate key. A n d so is th e order o f adm ission to
the union .

Fig. 6.88

Object Modelling and Database Design 3 3 9

S in ce b oth cod e and nam e are unique, co d e and nam e together are also unique. T h a t’s another
candidate key - sev en w ith all the com binations. - A s a can d idate for se lection as the on e
identifier or primary key.

A candidate key usually holds the core idea inside an entity:

• T h is state table is about states, w h ich are know n by their nam es.

A candidate key always expresses a business rule o f uniqueness:

• Every state has a unique state cod e for m ailing.

• A table or entity w ith n o can d idate key is probably n ot norm alized, and alm ost certainly
n ot useful in an inform ation system .

• A candidate key is unique.

• Social security num ber is unique. W ere you b om w ith one?

• A candidate key’s value m ust ex ist. It can n ot be null.

• Your driver’s license num ber is unique. C an it change?

• T h e value o f a candidate key m ust be stable. It’s value can n ot change outside th e control
o f th e system .

• T h e value o f a candidate key is unique, extant, and stable.

6.22.4 Re-Normalize on the Candidate Key
A fter at least on e candidate key has b een noted, every attribute and relationship o f the en tity
m ust be tested -

• D o es this property d ep en d solely and com pletely

• O n th e candidate key?

• If n ot, m ove the property (norm alize it) to the en tity w here

• It d epends solely and com p letely on the candidate key.

6.22.5 Entity Identifiers
W e ch o o se on e candidate key o f an en tity as the identifier. S in ce every candidate key is unique,
extan t, and stable, ch oosin g on e can d idate as the identifier is optional . A n identifier is not
required for a valid entity but it is very hard to use the resu lting table withoutKsome candidate
key. __

Code Name Admission
NV Nevada 36
TN Tennessee 16
MO Missouri 24
PA Pennsylvania 1
HI Hawaii 50
IN Indiana 19

Fig. 6.89

3 4 0 Database M anagem ent System s

W e can se lec t and jo in o n any can d idate key w ith equally valid results. S o w hy nam e an
identifier?

W h en th e logical m od el transforms in to a physical m odel, an en tity ’s identifier evo lves in to
a table’s primary key. T h e D B M S uses primary keys to m aintain referential integrity.

6.22.6 Selecting an Entity Identifier
S in ce any can d idate key ca n be an identifier, h ow d o you ch o o se one? M any say to use a natural
key. W h at is a natural key?

Picabo Street - th e A m erican dow nhill sk i racer - did n o t h ave a n am e u n til sh e was three.
A u to m anufacturers had to in v en t th e V IN b ecau se there was n o natural key (dataw ise) for
a car. N o key is natural, ex cep t perhaps atom ic num ber.

• T e c h n ic a l K eys

M any designers prefer tech n ica l keys, also called pseudo, surrogate, serial, or syn th etic keys.
C ode, nam e, and serial are all syn th etic keys - in v en ted identifiers.

F i g . 6 .9 0

S in ce 12 o th er sta tes w ould argue th at Pennsylvania was n o t th e first state , adm ission is a
questionable can d id ate key. T e ch n ica l keys are o ften serial num bers assigned by th e system .
S om e R D B M S products provide an autom atic serial num ber data type. S om e S A /S D authors
in sist you sh ou ld n ever use tech n ica l keys.

M ost O O authors in sist you sh ou ld always use tech n ica l keys (O ID s)

U se tech n ica l k eys w h e n they work in your m odel!

6.22.7 Child Key Options

Object Modell ing and Database Des ign 341

F i g . 6 .9 1

S h ou ld a ch ild in herit th e identifier o f its parent? Parent key and ch ild sub-key are con ca ten ated .

• K ey segm ents m ay seem m ore “n atural”.

• Few er jo ins are required for se lects .

• T h e key gets longer at ea c h ch ild level.

F i g . 6 .9 2

S h ou ld every table have its ow n serial key?

* Every k ey is th e sam e co n stru ction -

* V ery valuable for generic structures.

* M ore jo ins are required to se lect.

B oth w ork. E xperim ent in your m odel.

M erging Foreign Keys

(also k n o w n as Folding or U nifying)

3 4 2 Database Managem ent Sy stem s

6 .2 3 T ra n s fo rm in g fro m L og ica l to P h y s ic a l
In this session w e will n o t cover the tasks o f transforming a logical data m odel in to a physical
m odel specialized for:

• T arget R D B M S product (s)

• S ite con F ig .uration (s)

• M ost C A S E data m odelin g products provide som e degree o f logical to physical m odel
m apping.

• Few C A S E products satisfy D B A s w ho are responsible for k eep in g your database running.

6 .2 4 C re a tin g an O b je c t M o d e l
C reating an ob ject m odel requires a great deal o f p lanning and com m u n ication as w ell as a
variety o f tools and techn iqu es. S in ce tools and techn iqu es are in effective w ithout proper input,
users w ho k now the business extrem ely w ell (called SM E’s, or subject m atter experts) should
be se lec ted to participate in the m odeling process. C lose com m u n ica tion b etw een SM E ’s and
designers is crucial on a database design project. A lth ou gh all designers m ay n ot use th e sam e
m ethod s, for th is course the follow ing stages o f object m odelin g w ill be explored:

• D efin e th e focus o f the m odel.

• C reate an entity-relation sh ip diagram.

• Verify inform ation and data w ith the user.

• Build a data dictionary.

6.24.1 Defining the Focus
Before a diagram can be created, users and developers m ust understand th e focus o f th e m odel.
T h e purpose o f focus is to determ ine w h ich objects m ust be diagram m ed and to d ecide w hat
they will be called . Focus can be determ ined by asking a few q uestions, su ch as:

• A s m odelin g begins, general gu idelines and perspectives sh ou ld be set. W ith th ese in
m ind, focu s lists can help to identify statem ents that are w ith in focus, out o f focus, and
b orderline. D eterm in in g ou t o f focu s sta tem en ts e lim in ates som e areas from further
con sid eration , w hile borderline statem ents help to im prove focus. D uring this exercise,
in form ation requirem ents and issues are recorded as they surface.

6.24.2 Developing an E-R Diagram
T h e E-R tech n iq u e was in trodu ced by Peter C h en in 1976 as a to o l for m odeling data. T h e
diagram is n o t a substitu te for th e basic relational (tab le-structured) m odel, w h ich will be
discussed in a later lesson, but provides a foun dation for that m odel. Follow ing is on e possible
d evelop m en t strategy for d evelop in g an E-R m odel:

• Identify en titie s .

• Identify relationships b etw een en tities.

• Identify attributes o f en tities.

• Identify attributes o f relationships.

• G raphically represent all en tities, relationships, and attributes in an E-R diagram.

Object Modelling and Database Design 3 4 3

T h e purpose o f the diagram is to encourage dialogue b etw een users and designers and to provide
a graphic structure o f the users* data requirem ents. D uring a diagram m ing session, th e designer
m ust k eep discussions o n a n o n tech n ica l level. Focus lists, in form ation requirem ents lists, and
issues lists can con tin u e to h elp define user requirem ents.

In sessions or interview s, the requirem ents can be stated in sim ple sen ten ces. W ith th e follow ing
guidelines, these sen ten ces can be easily con verted in to E-R diagram m ing structures:

• N o u n s b ecom e entities.

• V erbs b ecom e relationships.

• A d jectives b ecom e attributes o f en tities.

• A dverbs b ecom e attributes o f relationships.

• Phrases im ply cardinality and m odality.

G eorge T illm an has provided an E nglish-to-E R con version chart that is very helpful in d eterm in in g
E-R structures from everyday language. For exam ple, during sessions facilitators ask q uestions
to en cou rage sim ple responses about business objects. “H ow does a stu d en t register for a course?”
can lead to “A n advisor registers a stu d en t” or “T h e registrar’s office registers a stu d en t.” T h ese
sen ten ces can be con verted to an E-R diagram. D uring this exercise, the facilitator guides th e
group’s con versation , but draws w hat th e user perceives.

E n g lish to E -R co n v e r s io n ch art

Source: "Building a Logical Data M odel,” by George Tillman, DBMS Fundamentals, July 1995, pg. 70.

What to look for: E-R Component: Common N oun Transitive Verb Gerund Adjective Adverb Proper Entity
Relationship Associative Entity Proper Entity Attribute Relationship Attribute (Associative
Entity) Words such as: many at least one only one at most Cardinality Words such as: must
can may not Modality

W ords su ch as: and but C on ju n ction W ords su ch as: or either nor neither, nor E xclusion

6.24.3 Veryfying Data
Equally im portant in th e diagram m ing process is iteration. D uring sessions, the facilitator often
restates an d q uestions th e users’ statem ents, som etim es from a slightly different perspective,
for understanding and verification . If th e diagram changes, th e facilitator repeats the process,
leading users to exam in e objects and relationships until they are con fid en t that th e diagram
is accurate. D evelopers should ask deta iled questions o f users, and users should provide their
ow n lists o f questions.

D esign in g an object m odel is n o t an ex a c t sc ien ce . Business facts are o ften com plex, and reality
m ay be d ifficult to define. A t tim es facilitators and designers m ay n eed to “read b etw een th e
lin es .” H ow ever, a user’s perception o f th e m odel can be in flu en ced by th e way th e designer
portrays objects. Iteration helps to ensure that th e m odel reflects th e user’s view .

6.24.4 Defining the Data Dictionary
W e have already learnt a lot about data dictionary. T h e data d ictionary provides in form ation
about objects that may be hard to represent in a diagram. N everth eless, this tex t is as im portant

3 4 4 Database M anagem ent System s

as the diagram itself. U se o f an accurate, com p lete, and current data d ictionary allows data
and programs to rem ain in d ep en d en t and flexible. A com plete data d ictionary con ta ins data
structure descriptions, user data, views, tables, in d exes, users, properties, application data, and
access privileges. H ow ever, at the object m odeling level, th e dictionary only provides inform ation
and rules about objects. O th er terms used to described the dictionary in clu d e m etadata, data
directory, system s database, system s catalog, and a database o f th e database.

T h e data d ictionary con ta in s additional in form ation about objects o n th e m odel. It m ight
con ta in th e following:

• Entity N am e

• D escr ip tion

• T yp e

. A ttribu tes F IN A N C IA L S T A T U S

• A n en ro llm en t q ualification .

• Entity Subtype

• Loans

• G rants

• Scholarsh ips

• T u itio n R eim bursem ent

• R elation sh ip N am e

• D escr ip tion

• T ype

• E ntities in v o lv ed

• C ard inality

• M odality IN D IV ID U A L pays FEE

• T o d eterm in e th e fees paid by a student.

• Binary

• IN D IV ID U A L , FEE

• O n e individual can pay m any fees

• O n e type o f fee can be paid by m any individuals.

• M an d atory-op tional

6.24.5 Many-to-Many Relationships
T here are different types o f relationships. T h e green hou se p lant application exam p le sh ow ed
a on e-to-m an y and a m an y-to -on e relationship , b oth b etw een Plant and W atering. T w o other
relationships com m only foun d in data m odels are o n e -to -o n e and m any-to-m any. O n e -to -o n e
relationships are b etw een tw o en tities w here b o th are related to ea ch other, o n ce and only
o n ce for each in stan ce o f either. In a m any-to-m any relationship , m ultip le occu rren ces o f on e
entity are related to o n e occurrence o f another, and v ice versa.

Object Modelling and Database Design 3 4 5

A n exam ple o f a m any-to-m any relationship in the greenhouse p lant application is b etw een the
Plant and A d d itive en tities. Each p lant m ay be treated w ith on e or m ore A dd itives. Each
A dd itive m ay be g iven to on e or m ore Plants. T h e ERD for this relationship is sh ow n below .

Fig. 6 .93

M any-to-m any relationships can n ot be d irectly con verted in to database tables and relationships.
T h is is a restriction o f th e database system s, n o t o f the application. T h e d evelop m en t team has
to resolve th e m any-to-m any relationship before it can con tin u e w ith th e database d evelop m en t.
If you id en tify a m any- to-m any relationship in your analysis m eeting, you should try to resolve
it in the m eetin g . T h e participants can usually find a fitting en tity to provide the resolu tion.

T o resolve a m any-to-m any relationship m eans to convert it in to tw o on e-to-m an y, m any-to-
on e relationships. A n ew entity com es b etw een th e two original en tities, and this n ew entity
is referred to as an in tersection entity. It allow s for every possible m atch ed occurrence o f th e
tw o en tities. Som etim es the in tersection en tity represents a point or passage in tim e.

T h e P lan t-A d d itive m any-to-m any relationship above is resolved in th e follow ing ER D diagram:

/ ----------------- \

ADDITIVE

V._________ y
given

/ ----------------- \

PLANT

V___________ /

Fig. 6 .94

W ith th ese n ew relationships, Plant is n ow related to T reatm ent. Each Plant may be g iven on e
or m ore T reatm en ts. Each T reatm en t m u st be g iven to on e and only on e Plant. A d d itive is
also related to T reatm en t. E ach A d d itiv e may be used in on e or m ore T reatm en ts. Each
T reatm en t m ust be com prised o f on e and on ly on e A dd itive. W ith th ese tw o new relationships,
T reatm en t ca n n o t ex ist w ithou t Plant and A d d itive . T reatm ent can occur m ultiple tim es, o n ce
for each treatm en t o f a plant additive. T o keep each T reatm en t unique, a new attribute is
defined. T rea tm en t now has application d ate and tim e attributes. T h ey are th e unique identifiers
or the primary key o f T reatm ent. O th er attributes o f T reatm ent are quantity and potency o f
th e a d d itiv e .

3 4 6 Database M anagem ent System s

M

♦ EnLjauL
Cmstjime

ctoliyeryjJate
UßÄgÖ
supp ott_ex p_date
eval_exp_d4ie

Fig. 6 .95

• A re lation ship is an association b etw een in stan ces o f o n e or m ore en tity types.

• M ost relationships are binary.

• A n e x a m p le is th e P lacesO rd er re la tio n sh ip th a t e x is ts b e tw e e n o cc u r re n c es o f a
C U S T O M E R en tity and a C U S T O M E R _O R D E R en tity

1. Binary R elation sh ips

• T h is type o f relationship in vo lves tw o en tities.
• W e say th e relation sh ip degree is eq u al to 2 b ecau se tw o en titie s participate in th e

re la tion sh ip .
• E xam ples in clu d e th e follow ing sh ow n in Fig. 6 .9 6

Binary EM PLOYEE 1:1 P A R K IN G _PL A C E
Binary P R O D U C T _L IN E 1:N P R O D U C T

Object Modelling and Database Design 3 4 7

Binary O R D E R N :N P R O D U C T
As8ignedTo

EMPLOYEE

O
PARKINGLPLACE

N /

Belongs To
A

PRODUCTJJNE PRODUCT

N / '

OrderUne
A

PRODUCT K > CUSTOMER.ORDER

Fig. 6 .96

• T h e m axim um cardinality (1:1, 1:M, M :N) expresses the num ber o f occurrences o f on e
en tity related to another entity.

• N o te how in tersection attributes are m odelled . C onsider the exam ple o f m od elin g the
D e s ir e d P r ic e v e r su s P u r c h a s e P r ic e a t tr ib u te s for th e r e la t io n s h ip b e t w e e n
C U S T O M E R _O R D E R and P R O D U C T en tities sh ow n in Fig. 6 .97 .

2. U nary R elationsh ips

• T h e unary relationship has degree = 1.

• T h is represents an association b etw een occurrences o f a single entity.

Exam ples in clu d e th e follow ing w ith th e cardinalities n o ted in Fig. 6 .98:

U nary P E R S O N 1:1 PE R SO N (M arriage)

U nary EM PLOYEE 1:N EM PLOYEE (Supervise)

U nary ITEM N :N ITEM (BillofM aterials)

• N o te h ow in tersection attributes are m odelled.

348 Database Management Systems

3. Ternary R elationsh ips

• T h is m odels th e association b etw een occurrences o f three en tities at th e sam e tim e.
D e g r e e = 6 .

• T h ese are som etim es m odeled incorrectly as m ultip le binary relationships.

• A s an exam ple, consider th e N :N :N Ternary S h ip m en t R elationship that ex ists am ong
th e ITEM , V E N D O R , and W A R E H O U S E en tities sh ow n in Fig. 6 .99

• N o te h ow in tersection attributes su ch as Q u antitySh ip ped are m odeled .

Fig. 6.99

Object Modelling and Database Design 349

4. G erund

* W h e n is a relationship an en tity or an en tity a relationship . Som etim es you ca n ’t determ ine
w h eth er som eth ing you n eed to m odel is an entity or a relationship , especially w h en there
are data attributes involved . *S om e experts in E-R m odelin g claim s there is, in fact, n o
su b stan tia l d ifference b etw een an en tity and a relationship . *C onsider the m od el o f
S H IP M E N T as a G erund sh ow n in Fig. 7. *A G erund looks like a relationship, but has
its ow n primary key that is n o t part o f th e primary key o f on e o f th e en tities that participate
in th e relationship.

* S H IP M E N T has a primary key o f Shipm entN um ber.

* N o te h ow th e in tersection attribute Q uantitySh ipped is m odeled .

T his m odel enab les the sh ipm ent o f m ultip le ITEM occurrences per SH IPM E N T .

6.24.6 Minimum Cardinality
W e previously exam in ed m axim um cardinality.

• C ardinality n eed s to be expressed as a range o f values. M axim u m cardinality can be one
or m any.

• M in im u m cardinality is also ca lled optional/m andatory cardinality and expresses how
m any occu rren ces o f on e en tity m ust, at a m inim um , be associated w ith occurrences o f
a n o th er en tity .

3 5 0 Database Managem ent System s

• T h e binary relationship b etw een M O V IE and M O V IE _C O PY sh ow n in Fig. 6 .101 has
both m axim u m and m inim um cardinality expressed.

• M inim um : For a given M ovie, the store may not have any cop ies (optional).

• M axim um : For a g iven M ovie Copy, there is at m ost on e M ovie.

• M inim um : For a g iven M ovie Copy, there m ust exist at least on e M ovie (m andatory).

F i g . 6.101

M aximum : For a g iven M ovie, the store m ay h ave on e or m ore cop ies.

• W h at are th e cardinalities b etw een th e follow ing relationships?:

- P A T IE N T - P A T IE N T JH IS T O R Y

. EM PLOYEE - PROJECT

- P E R S O N - PE R SO N (marriage)

6.24.7 Existence Dependency (Weak Entity)
• T h e M O V IE and M O V IE _C O PY exam ple also is a case o f ex isten ce d ep endency.

• T h is m ean s an occurrence o f on e en tity can n ot exist unless there is an occurrence o f
a related en tity .

• T h is usually happens for binary N :N relationships w here th e cardinality is m andatory-one.

• W eak en tities o ften do n ot h ave a natural identifier (can did ate key).

• T h e primary key o f th e parent en tity is used as part o f th e primary key o f the d ep en d en t
ch ild en tity .

• N o te th e primary key o f the M O V IE _C O P Y entity is a com p osite key.

T his situ ation is also called an identifying relationship . B enefits include:

1. D ata integrity o f th e ex isten ce d ep en d en t entity are enforced .

2. Ease o f access for related d ep en d en t en tities via part o f th e com p osite key.

6.24.8 Multi-valued Attributes
• Previously w e n o ted the ex isten ce o f m ultivalued attributes.

• A s an exam p le consider the Skill attribute o f EM PLOYEE. Skill m ay be m odeled as a
m ultiva lu ed attribute as sh ow n in Fig. 6 .1 0 2 .

• D urin g database m odeling, it is o ften desirable to d ecom p ose this situ ation in to tw o
separate en tities sin ce a m ultivalued attribute often results w h en w e capture only a single
data attribute o f w hat w ould otherw ise be m odeled as an entity .

Object Modelling and Database Design 351

H ere SKILL is an abstract entity. W e m ight im prove on this m odel by defin ing a system
generated primary key identifier S kiliC ode.

F ig . 6 .1 0 2

R epeating G roups (M u ltiva lued A ttribu te S ets).

• C onsider a situ ation sh ow n in Fig. 6 .1 0 6 w here a P A T IE N T entity has attributes w hich
are related to each other.

• N o t e th e s o lu t io n by d iv id in g th e m o d e l in to tw o e n t i t i e s , P A T I E N T an d
P A T IE N T _ H IS T O R Y .

• Is th is a situ ation w here there is a w eak entity? W h ich one?

• Is there an identifying relationship (look at the cardinality)?

<̂ s i c i a n N u m b g

HasHistory

PATIENT HISTORY

(^ati entNumbeh
(^a^ntNumber) (êcordNumber)

Fig. 6 .1 03

3 5 2 Database M anagem ent System s

6 .2 4 .9 Modeling Time Dependent Data
• A typical approach w here data are subject to change over tim e, but w here w e m ust track

all values, b oth previous and current, o f an attribute is the use o f a tim e stam p attribute.

• C onsider th e situ ation for a P R O D U C T entity.

• N o te th a t a so lu t io n ca n be o b ta in ed by d e f in in g tw o e n t it ie s , P R O D U C T and
PR IC E _H IST O R Y w here the diagram is very similar to that show n in Fig. 10. C an you
draw this diagram? *W h at w ould be the primary key attributes?

6.24.10 Generalisation Hierarchy — Subtypes and Supertypes
• T h is is th e con cep t o f categorizing or generalizing b etw een types and subtypes o f en tities.

• A s an exam ple, a C A R en tity can have several subtypes, e.g. C O N V E R T IB L E , C O M P A C T ,
S E D A N , etc .

• C onsider T h e EM PLOYEE supertype entity sh ow n in Fig. 11. T h is en tity can h ave several
different subtype en tities (H O U R LY and S A L A R IE D), each w ith d istinct properties n ot
shared by other subtypes.

• T h e Supertype EM PLOYEE stores all properties that subtypes have in com m on.

• N o te th e ISA sym bol used to diagram the G eneralisation H ierarchy in d icates that this
relationship is a G eneralisation H ierarchy. S om e versions o f the E-R m odel do n ot use
this sam e n otation .

Fig.. 6 .104

In heritan ce and Primary Keys for G eneralisation H ierarchies.

• Subtypes inherit th e attributes o f the Supertype.

• T h e primary key o f th e supertype and subtype are always id entical.

• T h e M axim um :M inim um cardinality b etw een th e supertype and subtype are always 1: 0.

Object Modelling and Database Design 3 5 3

6.24.11 Exclusive Relationship for Generalisation Hierarchies
• T h e subtypes are usually (but m ay n ot be) m utually exc lu sive w ith n o overlap.

• In this case, each instance o f a Supertype is associated w ith exactly on e in stan ce o f a
Subtype, e.g. an em ployee is eith er SAL A R Y or H O U R LY .

• N o te how this is diagram med.

6.24.12 Non-Exclusive Relationship
• A Supertype may have m ore than on e Subtype entity in stance.

• E xam p le: A VEH ICLE supertype m ay have overlapping subtypes o f A U T O M O B IL E ,
T R U C K , an d 4_ W H E E L _ D R IV E (an A U T O M O B IL E an d T R U C K m ay b o th b e
4_W H E E L _D R I V E).

• Practice by drawing the diagram. C reate som e attributes applicable to each Subtype entity.

B u s i n e s s R u l e s

• T h is topic deals w ith m odeling additional inform ation that is generally n ot am enable to
d iagram m ing tech n iq u es .

• T h e C A SE tool used may allow storage o f business rules expressed as sim ple logical
sta tem en ts and may enforce su ch rules during system execu tion .

E n t i t y I n t e g r i t y (U n i q u e n e s s I n t e g r i t y) .

• E ach in stan ce o f an entity type m ust have a unique identifier that is not null.

• T h is may also be term ed Primary Key Integrity or U n iq u en ess Integrity.

R e f e r e n t i a l I n t e g r i t y .

• Integrity rules that exist b etw een occurrences o f en tities w here relationships exist, for
exam ple, ex isten ce dep en dency is a type o f referential integrity.

• E xam p le: A n occurrence o f a C U S T O M E R entity may or m ay n o t have an associated
o c c u r r e n c e o f an C U S T O M E R _ O R D E R e n t ity ; b u t e a c h o c c u r r e n c e o f a n
C U S T O M E R _O R D E R en tity m ust h ave on e and only on e associated occurrence o f a
C U S T O M E R entity.

D o m a i n I n t e g r i t y .

• A D om ain is a defined list or range o f valid values for a specific attribute or set o f
asso c ia ted attributes.

• T h is constraint on valid values for attributes is term ed D om ain Integrity.

• Exam ples in clude data type, length, format, range, allowable values, m eaning, uniqueness,
and n u ll/n o t-n u ll.

T r i g g e r i n g O p e r a t i o n s .

• T riggering O perations is a broad class o f other business rules that protect the validity
o f attribute values.

3 5 4 Database Managem ent System s

• T h ese usually apply to th e insertion, d eletion , and update operations operations that
m an ip u la te data.

• For exam p le, it m ay be desirable to have the database autom atically d elete (term ed a
cascade d ele te) all active C U S T O M E R _O R D E R occurrences w h en ever th e associated
C U S T O M E R en tity is d eleted .

• Triggering O p erations are covered in detail later in th e course.

6 .2 5 P o p u la tin g a C o n c e p tu a l D a ta M o d e l
• D iagram en titie s

• D iagram relationships

• Look for hierarchies, aka:

■ Sub-types / super-types

■ S p ecia lisa tio n /gen era lisa tion

■ C lass h ierarchies

Fig. 6 .105

6.25.1 Entity Variations
In m od elin g system s, certa in objects ca n n o t be classified as clearly d efin ed , in d ep en d en t
entities. T o in terpret th ese en tities, m odelers h ave d evelop ed several d iagram m ing techn iqu es.
T h e follow ing variations are som e o f th e m ost com m on.

Object Modell ing and Database Design 3 5 5

6.25.2 Entity Hierarchies
H ierarchies represent how entities may be broken dow n. T w o types o f en tity hierarchies are
partitioning and decom position . S om e reasons that entity hierarchies are created include:

RELATIONSHIP RELATIONSHIP OCCURRENCE
ADVISOR Dr. John Brown
determines determines

CLASS INSY312
CLASS INSY430

located in located in
CLASSROOM Room 8
INDIVIDUAL Mary Jones

registers for registers for
CLASS BUSN202

Fig. 6 .106

■ R elationships may n o t apply to all en tity occurrences.

■ A ttribu tes may n ot apply to all en tity occurrences.

■ C larification o f the diagram.

■ C o n n ectio n s b etw een diagrams.

6.25.3 Partitioning
Partition ing in vo lves d ivid ing an entity in to subclasses, o ften referred to as supertypes and
subtypes. A relationship n icknam e o f “is a ” usually indicates that an entity should be partitioned.
Partition ing can be d one from the top d ow n (designate the supertype, th en break down the
subtypes) or from the b ottom up (illustrate the subtypes, th en designate a supertype). Subtypes
may have m any levels, and all subtypes m ust be sh ow n on the diagram (a subtype o f “O th er”
can be u sed if n eed ed). A n entity can be a supertype for m ore than on e subtype structure,
or a subtype for m ore than on e supertype.

W h ile all attributes o f th e supertype apply to the subtype, the reverse is n ot true. Therefore,
attributes sh ou ld be p laced at the h ighest level they describe. In addition, each hierarchy should
have a partitioning attribute that in dicates the reason for the partition.

6.25.4 Decomposition
D ecom p osition in vo lves breaking an en tity in to th e parts from w h ich it is com posed . A good
in d ication that an entity n eed s to be d ecom p osed is the relationship n icknam e “consists o f .”
In other words, if on e entity consists o f another entity, it is probably o f the sam e entity class
and sh ou ld be decom posed . A s w ith partitioning, decom posed en tities can in vo lve m ultiple
structures and should be exh au stive (“O th e r” can be used). A ttributes for d ecom p osed structures,
as for partitioned structures, should be p laced at the h ighest level possible.

3 5 6 Database Managem ent System s

6 .2 5 .5 Weak Entities

Fig. 6 .107

A w eak en tity is on e w hose ex isten ce in the diagram depends o n another entity. For exam ple,
in th e s tu d e n t reg istration m od el, th e en tity C L A SS co u ld n o t ex ist w ith o u t th e en tity
C O U R SE . A w eak en tity is represented on the E-R diagram by a round-cornered rectangle.

6 .2 5 .6 Characteristic Entity

Fig. 6 .108

A characteristic en tity is an en tity attribute that can be con sid ered as an en tity itself. W h eth er
the attribute b ecom es an entity depends on the focus o f the user. H ow ever, a relationship
n ick n am e o f "characterizes” usually in d icates th e n eed for a ch aracteristic en tity . S in ce it
depends on th e en tity it describes, a characteristic en tity is diagram m ed as a w eak entity.

6 .2 5 .7 Associative Entity

Fig. 6 .109

A n associative en tity is an en tity that has d evelop ed from a relationship for on e o f th e follow ing
reasons:

• T h e relationship is in v o lv ed in other relationships.

• T h e relationship need s to be subtyped.

• T h e user considers the relationship to be an entity.

• T h e relationship has a m any-to-m any cardinality.

Object Modelling and Database Design 35 7

A n associative entity nam e is form ed by ch an ging the relationship verb to a singular n oun . B oth
en tities in th e original relationship m ust rem ain in the diagram for th e associative en tity to
exist. A lth o u g h it is considered a d ep en d en t entity, o ften the associative entity is diagram m ed
by p lacing a rectangle around the ex isting relationship diam ond.

6.25.8 Relationship Variations
R elationsh ip variations can ex ist as w ell as en tity variations. In m odeling, certain relationships
do n o t fall clearly in to a binary relationship pattern. M odelers h ave also d eveloped tech n iq u es
to d efine th ese variations. S om e o f th e m ost com m on in stances are m en tion ed in the follow ing
sub sections.

6.25.9 Entities w ith Multiple Relationships

O ften , a set o f en tities may be associated in m ore than on e way. S in ce it is a precise sta tem en t
o f an assoc ia tion b etw een entities, each relationship m ust be clearly defined. T h e resu lt can
be m ore th a n on e relationship b etw een th e sam e entities.

6.25.10 Multi-member Relationship Links

Fig. 6.111

S om etim es, a n en tity can be in vo lved in tw o relationships that seem th e sam e. For in stance,
th e relation sh ip nam e and th e attributes m ay be th e sam e. H ow ever, ea ch relationship d ev ia tion
m ust be sh o w n on th e diagram.

3 5 8 Database Managem ent System s

6.25.11 Relationship Roles
A role is a part played by an entity w h en it participates in a relationship . Roles help establish
the true m ean ing o f a relationship and sh ould be n o ted if clarification is n eed ed . R oles played
by individuals and organisations are m ost o ften sh ow n on an E-R diagram.

Fig. 6 .112

6.25.12 Recursive Relationships
R elationships am ong en tities o f the sam e type or class are called recursive relationships. O ther
nam es for th ese relationships in clu d e bill o f m aterial structures or n ested structures. R elationship
roles can be u sed to clarify recursive relationships.

6 .2 6 D a ta M o d e lin g G u id e lin e s
T h e follow ing gu idelines were adapted from th e article “D ata M od elin g R ules o f T h u m b ” by
G eorge T illm an:

• U se abbreviations in a diagram only w h en necessary.

• Rework or elim inate confusing e lem en ts from the diagram.

• D o n ot diagram en tities that con ta in n o attributes or on ly on e attribute.

• U se en tity nam es that are m eaningful to th e diagram and the user, but are logical and
co n sis ten t.

• D o n ot diagram attribute values.

• D o n ot diagram data to be calcu lated , su ch as totals.

• D o n ot n est attributes.

• D o n ot put attributes in to groups; for exam ple, “c ity” and "state” sh ou ld rem ain separate
item s.

• A v o id diagram m ing reports, processes, screens, or views.

• D iagram on ly business rules or policies that com ply w ith th e structure and m ean in g o f
th e diagram .

Object Modelling and Database Design 3 5 9

6 .2 7 N o rm a lis a tio n
N orm alisation o f a relational data m odel is con cern ed w ith finding the sim plest structure for
a given set o f data. It deals w ith d ep en d en cy b etw een attributes and also tries to avoid loss
o f general inform ation w h en records are inserted or deleted .

For exam ple, consider the follow ing relation (Fig. 6 .113):

SOIL1 (Land System, Soil Type, Erodibility)

Land System Soil Type Erodibility

Faraway Loamy Sand 0 .10

Limestone Sandy Loam 0 ,25

Nundooka Loamy Sand 0 .10

Nuntherungie Loam 0 .35

Old Homestead Loamy Sand 0 .10

Fig. 6 .113

Fig. 6.113 r Non-normalised relation.

T h is relation is n o t norm alised sin ce Erodibility is uniquely d eterm ined by Soil-T ype. U sin g this
non-norm alised relation, problem s o f in sertion and d eletion anom alies arise:

• T h e relation b etw een soil type loam and erodibility 0 .35 will be lost if th e land system
record “N u n th eru n g ie” is d e le ted .

• A n ew relationship m ust be in serted b etw een soil type and erodibility if a land system
w ith a n ew soil type occurs. N o w consider the follow ing norm alised relations w ith the
sam e data set (Fig. 6 .114):

SO IL2 (Land System, Soil Type) E R O S IO N (Soil Type, Erod ib ility)

Land System Soil Type

Faraway

Limestone

Nundooka

■ Nuntherungie

Old Homestead

Loamy Sand

Sandy Loam

Loamy Sand

Loam

Loamy Sand

Soil Type Erodibility

Loamy Sand 0.10

Sandy Loam 0.25

Loam 0.35

Fig. 6.114: Norm alised relations.

3 6 0 Database Managem ent System s

H ere there are tw o relations instead o f on e - on e to establish soil type for each land system
and the other specifies erodibility for ea ch soil type. T h is exam ple illustrates a third norm al
form (3N F), w h ich rem oves d ep en d en ce b etw een non-prim e attributes.

A relational jo in is the reverse o f this norm alisation process, where the tw o relations SO IL2
and E R O S IO N are com bined to form SOIL1 (Fig. 6 .1 1 5).

SOIL2 (Land System , Soil Type) EROSION (Soil Type, Erodibility)

Land System Soil Type

Faraway Loamy Sand

Limestone Sandy Loam

Nuntherungie Loam

Old Homestead Loamy Sand

Soil Type Erodibility

,-r L 'sJÊÎà-Ékâ

Sandy Loam

Loam

0.25

0.35

Fig. 6.115: Relational join.

6 .2 8 R e p re s e n tin g D a ta by C o d ed V a lu e s .
In som e situations it may be desirable to represent data in storage by cod ed values i.e. store
a cod e for certain fields e.g. l= r e d , 2 = blue and so on, but this detracts from data in d ep en d en ce
and is thus n ot recom m en ded practice. A ctu a l data values should be stored in a D B M S.

• H ow N um eric D ata can be Stored

N um eric data can be stored in packed decim al or as a character string, binary or dem ical, fixed
or floating point, real or com p lex, and w ith varying precision (# digits) and all th ese still
preserve data in d ep en d en ce . A n y o f these aspects may be ch an ged to im prove or to conform
to a n ew standard or for m any other reasons.

• Storing C haracter Strings

A character string field may be stored in any o f several d istinct character cod es e.g. A SC II
or EB C D IC , w hile still preserving data in d ep en d en ce .

• S tored R ecord Structure

T h e application’s logical record m ay con ta in fields from several d istinct stored records i.e. it
w ould be a subset o f any g iven on e o f those stored records.

6 .2 9 S to ra g e S tru c tu re s O v e rv ie w
T h e internal leve l o f a database system is the lev e l that is co n cern ed w ith th e way the data
is actually stored. Physically, databases are stored alm ost invariably o n disks, w h ich are m uch
slower th an m ain m em ory and th e D B M S thus has an ob jective to m inim ise th e num ber o f disk
accesses (disk I /O ’s) w h en ex ecu tin g updates/retrievals. A storage structure is d efined as an

Object Modelling and Database Design 361

arrangem ent o f data. M any can be devised, each w ith different perform ance characteristics.
N o single storage structure is optim al for all applications, but a good D B M S should support
m any different types o f storage structures, so that d ifferent portions o f the database can be stored
in d ifferent ways, and the storage structure for a g iven portion can be ch an ged as perform ance
requirem ents ch ange or b ecom e better understood.

A g iven stored file may be physically im plem en ted in a num ber o f ways for e.g. it may be entirely
con ta in ed w ith in a single storage volum e or spread across several volum es. H ow ever, how it
is stored sh ould n o t affect applications in an^ way, other than in perform ance thus providing
data in d ep en d en ce . T h us the stored file structure should be an operating system con cern and
sh ould be transparent to the users o f a D B M S.

6.29.1 Types of Storage Structures.
M any different and varying types o f storage structures exist. T h ese vary considerably in their
arrangem ent o f th e data from on e to th e other; h ow ever there are som e fairly standard principles
o f database access w h ich id en tify w hat is in v o lv ed in th e overall process o f loca tin g and
a ccessin g particular records. W e d efin e several com m on ly occurring storage structures as
fo llow in g .

• In d ex in g

• H a sh in g

• P ointer chains

• C om p ression tech n iq u es

T h e only user w ho need s to understand th e above tech n iq u es is the D B A , for other users this
is transparent, but if they know th e basics, perform ance w ill be better.

6.29.2 Sorting : Indexes
Indexes are pointers that are used to im prove access and sorting functions o f D B M S. T h ey are
d efined in th e database structure along w ith other inform ation (such as field types and field
w idths) during th e im plem en tation phase. W h e n a field in a table (called the source table)
is specified as an index, the D B M S creates another table con ta in in g that in d exed field plus
an assigned cross-reference field. T h e cross-reference field con ta ins the record address o f the
in d exed record. T h is cross- reference enables the D B M S to quickly locate and retrieve source
data w ith ou t searching th e entire source table.

W ith o u t in d exes, th e D B M S w ould scan th e entire table, reading every row. B ecause in dex
cross-reference tables are m u ch sm aller than the base table, in d exed scans are m ore efficient.
H ow ever, con sid er d esignation o f in dexes carefully. A lth o u g h retrieval from in dexed tables is
faster, a ch an ge to an in d exed co lum n actually requires th e D B M S to m ake tw o writes: a change
to th e base tab le and a corresp on d in g ch a n g e to th e in d e x ed tab le . T h is ca n slow the
perform ance o f th e database.

It is n o t necessary that th e in d exed field co n ta in unique values. Indexes should n ot be confused
w ith primary keys, w hich m ust con ta in u niq ue values and will be d iscussed in a later lesson.

Follow ing is a n exam ple o f a table (S T U D E N T) w ith an in d exed field (S tud en t N um ber) and
its cross-referen ce table.

3 6 2 Database M anagem ent System s

T A B L E 1 .5 = S T U D E N T (in d ex ed o n S tu d e n t N u m b er)

Student Student Course Professor Relative Record

Number Name Number Number

100 Sushma CMP314 Salin Beg 1

105 Jasmine CMP345 VK Jain 2

100 Hemlata CMP567 Aditya Sharma 3

115 Karisma CMP432 Viajay Negi 4

REFERENCE TABLE CREATED FOR STUDENT NUMBER INDEX

Relative Record

Number Student Number

1 100 3 100 2 105 4 115

6.29.3 Advantages of Pointer Chains
T h e principle advantage o f th e pointer chain structure is that the in sertion /d eletion algorithm s
are som ew h at sim pler, and possibly m ore effic ien t, th an th e corresp on d in g algorithm s for
in dexin g. A lso , the structure w ill probably occupy less storage than the corresp ond ing in dex
structure, b ecau se ea ch parent value appears on ly o n ce in stead o f m ultip le tim es.

6.29.4 Variations On Pointer Chains.
Several variations are available on the pointer ch a in structure. Firstly, th e pointers cou ld be
m ade tw o way. T h is w ould sim plify th e pointer adjustm ent n ecessita ted by th e operation o f
d eletin g a ch ild record. A n o th er ex ten sion w ould be to in clu d e a pointer (parent pointer) from
ea ch ch ild record d irect to th e corresponding parent - this w ould reduce th e am oun t o f ch a in -
traversing in v o lv ed in answ ering queries. Y et an oth er variation w ould be n o t to rem ove the
field co n ta in ed w ith in th e parent file from th e ch ild file - this w ould th e n m ake certain
retrievals m ore efficien t. H ow ever, increased efficien cy is n o th in g to do w ith th e p ointer chain
stru cture.

6.29.5 Pointer Chains Storage Structure
T h e pointer ch ain s storage structure is a type o f storage structure w h ich ex ists at th e internal
leve l and w h ich in vo lves tw o seperate files, a ‘parent’ file and a ‘ch ild ’ file, w ith th e overall
structure b ein g an exam ple o f th e ’parent/ch ild organ isation’. In th e exam ple, th e stud en t file
is th e ch ild file, and th e address file is the parent file. T h e parent file has o n e record for each
d istinct address, g iving th e address value as th e h ead o f a ch a in or ring o f p ointers linking
together all records w ith that address and en d in g in parent file. T h is particular storage structure
con ta ins several variations, and also has som e advantages and d isadvantages.

Object Modell ing and Database Design 3 6 3

6.29.6 Disadvantages of Pointer Chains
T h e principal d isadvantages o f the pointer ch ain storage structure are firstly that th e structure
is suitable for on e type o f query only and may be a h inderance for others i.e. the parent file
will probably also require hash addressing in addition to a pointer ch a in for other queries.
Secondly, creating parent/child structures from existing data is n on-triv ia l and in fact su ch a
task w ould typically in volve a database reorganisation. By contrast, it is a com paratively easy
m atter to create a n ew in dex over an ex istin g set o f records. Finally, for a g iven value, the
only way to access th e ‘n t h value is to fo llow the entire chain . If th e records are n o t clustered
appropriately this w ould therefore in vo lve num berous disk accesses (one for each record) w h ich
w ould h en ce considerably increase access tim e.

6.29.7 Example of Pointer Chains
T h e follow ing is a diagram atic exam ple o f pointer chains.

$9mefc fate

SI Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

Pointer, titsins

Fig. 6 .116

6 .3 0 S to r in g D a ta in a F ile
T h e data that a program generates usually m ust be saved and reused at a later tim e. It w ould
be im practical to keep a single program running for w eeks or m on th s at a tim e if it were used
only infrequently . In other circum stances, th e com puter may n o t be able to store all th e data.
For in stan ces, m ost com puters cou ld n o t store all the data for every on e o f a bank’s depositors.
T o overcom e th ese difficulties, th e data sh ould be stored in a file on either a floppy disk or
a hard disk. W h e n there is a very large am ount o f data to b e stored, m agnetic tape can be
used to store it. For instance, in the first case d iscussed above, the program w ould be run and
the data stored in a disk file, at w h ich point th e execu tion o f the program w ould term inate.

3 6 4 Database Managem ent System s

W h en th e program is run at a later date, th e data stored in th e file w ould be read back in to
the m em ory, and th e program w ould proceed using the stored data and other new data. In
the case o f th e b ank ’s depositors, th e data for all the depositors w ould be stored on tape or
on a large hard disk. O n ly the data for th e depositor w hose record was being processed w ould
be read in to m em ory. W e shall consider th e writing and reading o f files stored o n a disk. T h e
operating system track o f these files. E ach file has a nam e that th e operating system uses to
identify it (In addition , the operating system m ust keep track o f o ther things, such as w here
th e file is stored and its size.) T h e operating system nam e is the on e th at appears in the directory
listing. W h en ev er a file is w ritten or read, an area o f m em ory ca lled a buffer is set up to speed
th e file operations. Suppose on e character at a tim e to and from th e file, a seq u en ce o f characters
is stored in th e buffer and transm itted to th e file as a group or, conversely, a seq u en ce o f
characters is transferred to the file as a group or, conversely , a seq u en ce o f characters is
transferred form th e file to th e buffer. Each input or output stream m ust be associated w ith
a buffer. T w o procedures are in vo lved in this process. First th e buffer m ust be established, and
th en it m ust be associated w ith the appropriate stream .T he file stream , h con ta ins a class type
called filebu. W h e n a variable o f type filebuf is declared, the appropriate m em ory allocation
is m ade. T h e buffer is identified by th e declared variable nam e.

6 .3 1 N e c e s s ity o f F iles
A database is a co llec tio n o f related data. A te lep h on e book, a ch eck b ook register, a recipe
file, and an address book are all co llection s o f related data. A database is created by op en ing
a database application, en tering a co llec tio n o f data, and saving to a file.

T h e follow ing se c tio n describes the structure o f a database and d efines basic database terms.

• Fields

A field holds o n e p iece o f inform ation and is th e sm allest com p on en t part in a database. In
an address book, th e n am e o f each person is stored n ex t to the la b e l’’N a m e .” T h e nam e, address,
city, and p h on e num ber are all separate fields. A ll nam es are en tered in to the “N a m e” field,
all cities are en tered in to th e “C ity” field, and so on. W h en this database is displayed in table
form, “N a m e ,” “C ity ,” etc . appear as co lu m n headings.

• Field D ata T ypes

Fields can co n ta in m any different types o f data; for exam ple, “N a m e ” is a tex t field, w hile
“Z ipcode” is a num ber. W h en the k ind o f data stored in a field has clearly defined type, a
database can perform sophisticated analyses o f the data. For exam ple, m ath em atica l fun ction s
can be perform ed o n a “num ber” field but n o t on a “te x t” field. D atabase applications offer
m any different data type defin itions that vary from package to package and can offer added
power to the database. Field W id th s

Som e database packages require a m easurem ent for each field size. In others th e field size can
be changed by c lick in g o n its ou tline and stretch ing it. Each field size has a size lim it. In A ccess ,
the size o f th e field d ep en ds upon the type o f data (see Field D ata T ypes) stored in th e field.

Object Modelling and Database Design 3 6 5

• F ield O p tions
M ost databases allow different options for fields in order to m ake data entry easier or m ore
useful to individual databases. O p tions su ch as drop boxes, input m asks (such as slashes in a
date field or dashes and parentheses in a phone num ber field), and default values are a few
exam ples o f field options that som e database applications can utilize.

• R ecords
A record is a co llec tio n o f related fields. W h en you put o n e person’s in form ation — nam e,
address, and p hon e num ber— in to appropriate fields, you h ave a record. In table form, a record
is on e row o f inform ation.

• D atabase or T able
A co llec tio n o f records is called a database. W h en displayed on the screen in a table form,
it m ay be called either a table or a database by your database application program. T h e tabular
format is only on e way to v iew your database. In it ea ch record occupies a single horizontal
row. In A ccess , a co llection o f related records is called a table; several related tables m ay m ake
up on e database. Paradox uses similar term inology. FileM aker, though, does n ot h ave tables.
T h us, any set o f records com prises on e database.

• Form or Layout
D ata can be en tered in to a database using a Form. A form separates each record from all other
records, sh ow ing only on e com p lete record at a tim e. For their default data entry m ethod ,
FileM aker Pro and FoxPro use a form, w hile Paradox and dBase IV use tables rather th an forms.
FileM aker Pro calls its form a “Layout.” A ccess allows b o th forms and “d atash eet” (table) view s
for data entry.

• Report

A report is the output o f your database. Reports can usually be view ed on th e screen or sent
to th e printer. Reports do n o t allow th e user to ch an ge inform ation w ith in th e database.
H ow ever, Report Layouts or D esigns are m ade to be created and custom ized by th e user to
show eith er the full in form ation in the database or only certain fields.

• F inding Inform ation

T h e am ou n t o f inform ation stored in a database can be very large. O ften v iew in g the entire
co n ten ts o f a database in its original format is n ot useful. T h e user may w ant to lim it th e records
to persons living in C hicago, or sort alphabetically by last nam e. D atabase programs provide
several too ls for accom plishing th ese goals.

• Sorts & Indexes

In m ost database packages in form ation can be sorted, w h ich usually m eans arranging it in som e
order o ther than the way it was entered . S om e database packages ask for d esign ated fields to
in d ex in order to “sort” efficiently. For exam ple, m aybe nam es are en tered in an address book
as peop le are m et, but the address book is m ore useful if arranged alphabetically. T h e last nam e
can be "indexed" so the database w ill autom atically sort by last nam e; w h en ever a n ew record
is en tered it will be sorted by last n am e w ith the rest o f the records. Sorting arranges th e records
in a table by a particular field. In this case, the records w ould be sorted alphabetically according
to each p erson ’s last nam e.

3 6 6 Database Managem ent System s

• Q ueries & Find

A query asks for specific inform ation (m atching certain criteria) from a database. For exam ple,
you cou ld query th e addresses in the address book to find only th ose records w hose “city” field
m atch es “C h ica g o .”

In Paradox, dBase IV and FoxPro, the answer to a query appears as a tem porary database or
table that con ta in s only inform ation specified in th e query ’ criteria.” T h is can be saved as a
new table (or database file) w hich can be analysed like any other database tables.

FileM aker Pro uses its "Find" request m ode to accom plish this job. It does n o t return a temporary
database. FileM aker Pro operates a little differently and can be highly effective . Paradox and
FoxPro use a "Query by Example" m eth od . A c c e ss provides a “Q u ery B u ild er” to create
sop h istica ted queries.

In a relational database application, queries may be designed to operate on several properly
linked databases at on ce . D atabase programs can be very flexible (for m ore inform ation on
relation al databases, see th e sec tio n “R elation al D atab ase”).

• O perators & Sym bols

A query or Find searches for values in a field. Expressions that use sym bols and operators define
th e search criteria for th e query. For exam ple, to find all addresses in C hicago, the query
expression m ight look like C ITY ="C hicago". O perators can be familiar m ath em atical symbols:
for exam ple, “ = ” and “ + ” are used to build expressions. D atabase programs m ay d efine sym bols
and operators differently. Each program should h ave a list o f operators and their m eanings.

6 .3 2 W o rk in g P a rts o f a D B M S
Each database m anagem ent application has ways o f describing itself. H ere are som e com m on
parts am ongst databases.

• Im ages: M ost databases work w ith Im ages or an eq u ivalent. O n screen a particular view
or Im age o f th e data is displayed. If changes are m ade to this data, they are only a screen
Image and n o ch an ge has occurred to the file on disk. C hanges are only w ritten to disk
w hen you exp licitly "Save" your work. F ileM aker Pro operates differently. It is autom atically
and con tinu ously saving to disk all changes as they are m ade, so there is n o save com m and
in its File M enu . T o protect data, use the “S ave a Copy A s ” com m and first to preserve
the original database, th en m ake changes.

• M acros & Scrip ts: A ll database applications provide a m ethod for m aking work easier
or quicker. Scripts and M acros are sm all snippets o f cod e or keystroke usage that can
be “played” to quickly perform a set o f actions. T h ey save tim e and effort, especially in
doing repetitive tasks. Several com m on on es usually ship w ith th e application, ready for
use, and cu stom m acros and scripts can always be created.

• O b jects: O b jects are th e parts o f a database. D efault objects store, display, and present
inform ation. T h e operation o f a table, form, or report is built in to th e application. T h ey
may be ch an ged or used as is. O bjects may be very sm all and sim ple, or com p lex . A field
that you design and p lace in a form is an object, and built in to th is object are th e ways

Object Modelling and Database Design 367

it lets you operate on it. It will allow you to change its size, fill it with data, and allow
you to drag it to a new location on the screen. Some applications have special terminology
and flexibility for their objects and some do not; most provide a built-in programming
language that may be used to create customized objects.

6.33 File Formats
Here is a brief introduction to some of the ways that data files can be formatted.

ASCII v s . b in a r y

ASCII files are ones which can be viewed with simple text editors, such as the “notepad”
program. Binary files can only be intelligibly read by a program designed to read the specific
format used. Binary files make up for the inconvenience of needing a special program to read
them by being much more compact than ASCII files. For example, an image in an ASCII
postscript file requires 3-20 times as much disk space for storage as the same image in a binary
image file, such as .gif or .jpeg files.
For small amounts of data or information that users may wish to access directly, an ASCII file
is an excellent choice. For this class, it is recommended to that you use ASCII files at all times.

6.34 Fixed Format Files
One of the easiest file formats for a programmer to work with is a fixed format file. This is
a file which always contains the same type of information at the same place in the file. Thus
the code to read such a file is a simple succession of read statements. The disadvantage of
a fixed file format is that it is inflexible, meaning that there is no built in way to change the
type of information in the file and still be compatable with the original program.
Record Format Another way to structure a file is as a sequence of records each of which is
identified by some sort of a keyword. The program reading the file identifies the keyword then
calls the routine to read that particular type of information. The program can be designed to
skip to the next keyword if it finds an unknown keyword. This lets several programs put different
types of information in the same file format and still be compatible with the older programs
(which just skip over the unknown data types). A variation on a record based file is a heirachical
file format. This is simply a record based file which allows records to be placed inside of other
records. This can be a more natural way to store information for some applications.
Maximum: For a given Movie, the store may have one or more copies.
• Fixed-length and variable-length records
The question whether to use records of a fixed or variable length is one that usually does not
have to be considered in manual systems.

• Fixed. Every record in the file will be of the same fixed number of fileds and characters
and will never vary in size.

• Variable. This means that not all records in the file will be of the same size. This could
be for two reasons:

368 Database Management Systems

1. Some records could have more fields than others. In an invoicing application, for example
(assuming a 6-character field to represent ‘total amount for each invoice’), we would add
a new field to a customer record for each invoice. So a customer’s record would vary in
size according to the number of invoices he had been sent.

2. Fields themselves could vary in size. A simple example is ‘the name and address’ field because
it varies widely in size.

Counters
A file may or may not include counters. A counter is simply an integer which is read from the
file before the data is read. This number tells the program how much data is going to be read
next. This may seem like a trivial point, but it affects how the data can be stored in the program.
If the program knows how much data is going to be read, it can allocate the correct amount
of memory before reading in the data and use a loop to read the data.

6.35 File Processing Activities
We will need to have access to particular records in the files in order to process them. The
major processing activities are given below:

■ Updating When data on a master record is changed to reflect a current position, e.g.
updating a customer ledger record with new orders. Note that the old data on the record
is replaced by the new data.

■ Referencing When access is made to a particular record to ascertain what is contained
therein, e.g. reference is made to ‘prices’ file during an invoicing run. Note that it does
not involve any alterations to the record itself.

■ File maintenance New records must be altered. Customers’ addresses also change and
new addresses have to be inserted to bring the file up to date. These particular activities
come under the heading of ‘maintaining’ the file. File maintenance can be carried out
as a separate run, but the insertions and deletions and deletions of records are sometimes
combined with updating.

■ File enquiry or interrogation This is similar in concept to refemcing. It involves the need
to ascertain a piece of information from, say, a master record. For example, a customer
may query a Statement sent to thim. A ‘file enquiry’ will get the data in disputs from
the record so that the query may be settled.

6.36 File Organization Methods
6 . 3 6 .1 T a p e F i l e s

• Files organisation on tape
Organisation of a file on tape is simply a matter of placing the records one after the other
ontto the tape. There are two possible arrangements of files:

[a]Serial When records are written onto tape without there being any relationship between
the records keys. Unsorted transation records would such a file.

[b]Sequential When records are written onto tape in sequence according to the record keys.

Object Modelling and Database Design 369

Examples of sequential files are:
1. Master files.
2. Sorted transaction files.

• Tape file access
[a] Serial Files The only way to access a serial file on tape is SERIALLY. This simply means

to say that each record is read from the tape into main storage one after the other in
the order they occur on the tape.

[b] Sequential Files The method of access used is still SERIAL but of course the fiels is now
in sequence, and for this reason the term SEQUENTIAL is often used in describing serial
access of a sequential tape file. It is important to note that to process (e.g. update) a
sequential master tape file, the transaction file must also be in the sequence of the master
file. Access is achieved by first reading the transaction file and then reading the master
file until the matching record (using and record keys) is found. Note therefore that if
the record required is the twentieth record on the file, in order to get in into storage
to process it the computer will first have to read in all nineteen preceding records.

Note. These limited methods of organisation and access have led to tape becoming very much
less common than disk as an on-line medium for the storage of master files. Tape continues
as a major storage medium for purposes such as off-line data storage and back-up.

6.37 Data Storage Devices
External memory can be of several type but following types are quite popular:

• Magnetic tapes
• Magnetic disk
• Optical Disk
• Audio cassette
• Digital Compact disk

Data is stored on disks and tape in the same way music or television programs are recorded
on tape with a difference that in these cases data is stored/recorded digitally. In both cases,
a thin plastic film is coated with a thin layer of an oxide of iron-chemically similar to plain
old rust. The write/record head of the drive is a sensitive electromagnet, whose magnetic field
rapidly changes with the data that is being fed into it. As the magnetic field changes, the head
leaves a track of magnetized particles in the film. When the read head passes over these tracks,
its field is affected by the fields of the particles, and the data or music can be accurately read
or played. The little particles of iron will retain their magnetic tracks for periods of us to several
years, but can also be reused, for new data, over and over again. Oddly enough, ordinary audio
cassette tapes can be used as external memory for computers. They are not ‘random-access’
of course and this makes them slow to use. But cassette tapes and recorders are cheap and
widespread, and many home computers depend on them.
An index for a file works like a catalogue in a library. Cards in alphabetic order tell us where
to find books by a particular author. In real-world databases, indices like this might be too large
to be efficient. We will look at more sophisticated indexing techniques.

3 7 0 Database Management Systems

There are two kinds of indices:
• Ordered indices: indices are based on a sorted ordering of the values.
• Hash indices: indices are based on the values being distributed uniformly across a range

of buckets. The buckets to which a value is assigned is determined by a function, called
a hash function.

We will consider several indexing techniques. No one technique is the best. Each technique
is best suited for a particular database application.
Methods will be evaluated on:
(a) Access Types— Types of access that are supported efficiently, e.g., value-based search or

range search.
(b) Access Time— Time to find a particular data item or set of items.
(c) Insertion Time— Time taken to insert a new data item (includes time to find the right

place to insert).
(d) Deletion Time— Time to delete an item (includes time taken to find item, as well as

to update the index structure).
(e) Space Overhead— Additional space occupied by an index structure.

We may have more than one index or hash function for a file. (The library may have card
catalogues by author, subject or title.) The attribute or set of attributes used to look up records
in a file is called the search key (not to be confused with primary key, etc.).

6.38 File Organisation
A file is organized logically as a sequence of records. Records are mapped onto disk blocks.
Files are provided as a basic construct in operating systems, so we assume the existence of an
underlying file system. Blocks are of a fixed size determined by the operating system. Record
sizes vary. In relational database, tuples of distinct relations may be of different sizes. One
approach to mapping database to files is to store records of one length in a given file. An
alternative is to structure files to accommodate variable- length records. (Fixed-length is easier
to implement.)
6 . 3 8 . 1 O v e r v i e w o f P h y s i c a l S t o r a g e M e d i a
1. Several types of data storage exist in most computer systems.
They vary in speed of access, cost per unit of data, and reliability.
■ Cache: most costly and fastest form of storage. Usually very small, and managed by the

operating system.
■ Main Memory (MM): the storage area for data available to be operated on.

(a) General-purpose machine instructions operate on main memory.
(b) Contents of main memory are usually lost in a power failure or “ crash”.
(c) Usually too small (even with megabytes) and too expensive to store the entire database.

■ Flash memory: EEPROM (electrically erasable programmable read-only memory).

Object Modelling and Database Design 371

(a) Data in flash memory survive from power failure.
(b) Reading data from flash memory takes about 10 nano-secs (roughly as fast as from main

memory), and writing data into flash memory is more complicated: write-once takes about
4-10 microsecs.

(c)To overwrite what has been written, one has to first erase the entire bank of the memory.
It may support only a limited number of erase cycles (to).

(d)It has found its popularity as a replacement for disks for storing small volumes of data
(5-10 megabytes).
■ Magnetic-disk storage: primary medium for long-term storage.

(a)Typically the entire database is stored on disk.
(b)Data must be moved from disk to main memory in order for the data to be operated on.
(c) After operations are performed, data must be copied back to disk if any changes were

made.
(d)Disk storage is called direct access storage as it is possible to read data on the disk in

any order (unlike sequential access).
(e)Disk storage usually survives power failures and system crashes.

■ Optical storage: CD-ROM (compact-disk read-only memory), WORM (write-once
read-many) disk (for archival storage of data), and Juke box (containing a few drives
and numerous disks loaded on demand).

■ Tape Storage: used primarily for backup and archival data.
Cheaper, but much slower access, since tape must be read sequentially from the beginning.
Used as protection from disk failures!

The higher levels are expensive (cost per bit), fast (access time), but the capacity is smaller.

Fig. 6.117: Storage-device hierarchy

372 Database Management Systems

Another classification: Primary, secondary, and tertiary storage.
• Primary Storage: The fastest storage media, such as cash and main memory.
• Secondary (or on-line) Storage: The next level of the hierarchy, e.g., magnetic disks.
• Tertiary (or off-line) Storage: Magnetic tapes and optical disk juke boxes.

Volatility of storage. Volatile storage loses its contents when the power is removed. Without
power backup, data in the volatile storage (the part of the hierarchy from main memory up)
must be written to nonvolatile storage for safekeeping.
6 . 3 8 . 2 G r i d F i l e
1. A grid structure for queries on two search keys is a 2-dimensional grid, or array, indexed

by values for the search keys. Fig. 1.118 shows part of a grid structure for the deposit file.

Fig. 6.118: Grid structure for deposit file

A particular entry in the array contains pointers to all records with the specified search key
values.

• No special computations need to be done
• Only the right records are accessed
• Can also be used for single search key queries (one column or row)
• Easy to extend to queries on n search keys - construct an n-dimensional array.
• Significant improvement in processing time for multiple-key queries.
• Imposes space overhead.
• Performance overhead on insertion and deletion.

6 . 3 8 . 3 C l u s t e r i n g F i le O r g a n i s a t i o n
1. One relation per file, with fixed-length record, is good for small databases, which also

reduces the code size.
2. Many large-scale DB systems do not rely directly on the underlying operating system for

file management. One large OS file is allocated to DB system and all relations are stored
in one file.

Object Modelling and Database Design 373

3. To efficiently execute queries involving , one may store the depositor tuple for each cname
near the customer tuple for the corresponding cname, as shown in Fig. 10.19. 6.This structure
mixes together tuples from two relations, but allows for efficient processing of the join.

4. If the customer has many accounts which cannot fit in one block, the remaining records
appear on nearby blocks. This file structure, called clustering, allows us to read many of
the required records using one block read.

5. Our use of clustering enhances the processing of a particular join but may result in slow
processing of other types of queries, such as selection on customer.

For example, the query

from customernow requires more block accesses as our customer relation is now interspersed
with the deposit relation.
Thus it is a trade-off, depending on the types of query that the database designer believes to
be most frequent. Careful use of clustering may produce significant performance gain.
6 . 3 8 . 4 N a t u r a l J o i n O p e r a t i o n
1. Another way to reduce the size of temporary results is to choose an optimal ordering of the

join operations.
2. Natural join is associative:

3. Although these expressions are equivalent, the costs of computing them may differ. *Look
again at our expression

* We see that we can compute deposit branch first and then join with the first part. *However,
deposit branch is likely to be a large relation as it contains one tuple for every account.
*The other part,

is probably a small relation (comparatively).
So, if we compute

first, we get a reasonably small relation. It has one tuple for each account held by a resident
of Port Chester. This temporary relation is much smaller than deposit branch.
4. Natural join is commutative:

Thus we could rewrite our relational algebra expression as:

374 Database Management Systems

• But there are no common attributes between customer and branch, so this is a Cartesian
product.

• Lots of tuples!
• If a user entered this expression, we would want to use the associativity and commutativity

of natural join to transform this into the more efficient expression we have derived earlier
(join with deposit first, then with branch).

6.39 Clustered Indexes
There can only be one clustered index per table. There is a simple physical reason for this.
While the upper parts (commonly referred to in SQL Server documentation as nonleaf levels)
of the clustered index binary tree structure are organized just like the nonclustered index binary
tree structures, the bottom level of the clustered index binary tree are the actual 2-KB data
pages associated with the table. There are two performance implications here:
Retrieval of SQL data based on key search with a clustered index requires no pointer jump
(with a likely nonsequential change of location on the hard disk) to get to the associated data
page because the leaf level of the clustered index is already the associated data page. The
leaf level of the clustered index is sorted by the columns that comprise the clustered index.
Because the leaf level of the clustered index contains the actual 2-KB data pages of the table,
this means the row data of the entire table is physically arranged on the disk drive in the order
determined by the clustered index. This provides a potential I/O performance advantage when
fetching a significant number of rows from this table (at least more than 16 KB) based on the
value of the clustered index, because sequential disk I/O is being used (unless page splitting
is occuring on this table, which will be discussed later in the section The importance of
FillFactor and PAD_INDEX). That is why it is necessary to pick the clustered index of a table
based on a column that will be used to perform range scans to retrieve a large number of rows.

6.40 Non-clustered Indexes
Non-clustered indexes are most useful for fetching few rows with good selectivity from large
SQL Server tables based on a key value. As mentioned before, nonclustered indexes are binary
trees formed out of 2-KB index pages. The bottom or leaf level of the binary tree of index pages
contains all the data from the columns that comprised that index from the leaf level 2-KB page
to the associated 2-KB data page. When a non-clustered index is used to retrieve information
from a table based on a match with the key value, the index binary tree is traversed until the
a key match is found at the leaf level of the index. Then a pointer jump is made if columns
from the table are needed that did not form part of the index. This pointer jump will likely
require a nonsequential I/O operation on the disk. It might even require the data to be read
from another disk if the table and its accompanying index binary tree(s) are large. If multiple
pointers lead to the same 2-KB data page, less of an I/O performance penalty will be paid because
it is only necessary to read the 2- KB page into the data cache once. For each row returned
for an SQL query that involves searching with a nonclustered index, one pointer jump is
required. These pointer jumps are the reason that nonclustered indexes are better suited for

Object Modelling and Database Design 375

SQL queries that return only one or a few rows from the table. Queries that require many rows
to be returned are better served with a clustered index.

6.41 Covering Indexes
A special case of non-clustered index is the covering index. The definition of a covering index
is a nonclustered index built upon all the columns required to satisfy an SQL query, both in
the selection criteria and the WHERE predicate. Covering indexes can save a huge amount
of I/O and bring a lot of performance to a query. But it is necessary to balance the costs of
creating a new index (and another binary tree index structure that needs to be updated every
time a row is written or updated) against the I/O performance gain the covering index will
bring. If a covering index will greatly benefit a query or set of queries that will be run often
on SQL Server, the creation of that covering index may be worth the cost.
Example of a Covering Index

S e l e c t c o l l , c o l 3 from t a b l e l w here c o l 2 = 'v a lu e '

The index created, called "indexnamel" in this example, is a covering index because it includes
all columns from the SELECT statement and the WHERE predicate. This means that during
the execution of this query, SQL Server does not need to access the data pages associated
with tablel. SQL Server can obtain all of the information required to satisfy the query by using
the index called indexnamel. Once SQL Server has traversed the binary tree associated with
indexnamel and found the range of index keys where col2 is equal to 'value', SQL Server knows
that it can fetch all of required data (coll,col2,col3) from the leaf level (bottom level) of the
covering index. This provides I/O performance in two ways:
SQL Server obtains all required data from an index page, not a data page, so the data is more
compressed and SQL Server saves disk I/O operations. The covering index has organized all
of the required data by col2 physically on the disk. This allows the hard drives to return all
of the index rows associated with the where predicate (col2 = ‘value’) in sequential order.
This gives us better I/O performance. In essence, a covering index, from a disk I/O standpoint,
becomes a clustered index for this query and any other query that can be satisfied by the columns
in the covering index. Please note also that the index was created with col2 first in the CREATE
INDEX statement. This is important to remember.
The SQL Server 6.5 query optimizer only makes use of the first column of a compound index
such as this. So, if one of the other columns had been specified as the first column of the
compound index, SQL Server would have ignored the index within the context of the example
query above.
In general, if the covering index is small in terms of the number of bytes from all the columns
in the index compared to the number of bytes in a single row of that table, it may make sense
to use a covering index.
When a SQL Server environment involves many SQL queries on a given table, these queries
ask for a large proportion of the columns of the table, and because it is not possible to reduce
the set of columns requested, it may be very difficult to rely on covering indexes for help. Having
many indexes (of any kind) on a table will slow down SQL Server at write time because insert/
update/delete activity requires updating associated information in the index binary tree structures.

376 Database Management Systems

6.42 Index Selection
How indexes are chosen significantly affects the amount of disk I/O generated and, subsequently,
performance. The previous sections described why nonclustered indexes are good for retrieval
of a small number of rows and clustered indexes are good for range scans. Here is some additional
information about index selection.
For indexes that will contain more than a single column, be sure to put the most selective column
first. This is very important in helping the SQL Server query optimizer use the index effectively.
Also try to keep indexes as compact (fewest number of columns and bytes) as possible.
In the case of nonclustered indexes, selectivity is important, because if a nonclustered index
is created on a large table with only a few unique values, using that nonclustered index will
not save I/O during data retrieval. In fact, using the index would likely cause much more 1/
O than a sequential table scan of the table. Some examples of good candidates for a nonclustered
index are invoice numbers, unique customer numbers, social security numbers, and telephone
numbers.
Clustered indexes are much better than nonclustered indexes for queries matching columns
that don’t have a lot of unique values because clustered indexes physically order table data
by clustered index order, allowing for sequential 16-KB I/O on the key values. Remember that
it is important to get rid of page splitting on a clustered index to ensure sequential I/O. Some
examples of possible candidates for a clustered index include states, company branches, date
of sale, ZIP codes, and customer district. It would tend to be a waste to define a clustered
index on the columns that have very unique values unless typical queries on the system fetch
large sequential ranges of the unique values. The key question to ask when trying to pick the
best column from each table to create the clustered index on is, “Will there be a lot of queries
that need to fetch a large number of rows based on the order of this column?” The answer
is very specific to each SQL Server environment. One company may do a lot of queries based
on ranges of dates whereas another company may do a lot of queries based on ranges of bank
branches.
Samples of WHERE predicates that benefit from clustered indexes:

• WHERE <colum n_name> > som e_va lu a
.WHERE <colum n_name> BETWEEN so m e_ v a lu e AND so m e_ v a lu e
• WHERE <column__name> < 8om a_value

6.43 Database Design
Database design is a process consisting of many steps. Although different designers may use
different methods, generally the process follows a basic pattern of data modeling, a description
of the data to the database, and physical implementation of the database. This basic process
can be broken down into five phases:

• Planning
• Analysis

Object Modelling and Database Design 3 7 7

• Design
• Implementation
• Maintenance

The Table 6.1 lists sthe five phases of database design, along with the purpose and some tools
and/or techniques of each.
Table 6.1 Five phases of database design

Phase Purpose Tools and Techniques

Planning Define what to accomplish • Focus lists
• Issue lists
• Goals

Analysis Define objects of importance • Business models
• Diagrams
• Logical data models

Design Define how the database is built • Tables or files
• Structure
• Constraints
• Physical models

Phase Purpose Tools and Techniques

Implementation Define the database to the DBMS • DBMS program
• Application design
• Views, queries, reports
• SQL

Maintenance Manage and control the database • Data dictionary
• Security functions
• Structure management
• Documentation

It is important to note that these phases often overlap and that some techniques and tools may
be used in more than one stage, especially between analysis and design. For example, although
the data dictionary is usually introduced in the analysis stage, it is often carried over into the
design phase and later used by the database administrator in the maintenance stage.
Keep in mind that many database terms are used interchangeably and that tools and techniques
are often perceptual. Also, remember that database design is nondeterministic; in other words,
there is no "right" design. The true goal of database design is to create a well-structured database
that represents the user’s perspective of the business and provides the user with a productive
business tool.

378 Database Management Systems

When thinking about good database design, it is important that you keep data retrieval, storage
and modification efficiency in mind. It will pay off one thousand fold if you take a week or
two to simply play with different arrangements of data. You will find that certain table structures
will provide easier and more intuitive access than others.
Tables should describe only one subject, have distinct fields, contain no redundant data, and
have a field with unique values so that the table can be related to others.
You should also keep in mind future expansion of the database and make sure that your design
is easily extensible. Typically, you will go through a requirements phase in which you should
simply sit with the problem, interview users, and achieve an intuition about the data and the
project.
Next, you should spend time modeling the data, preferably using some standard methodology
like ER Diagramming. However, even if you do not model in any traditional way, you can still
play with different ideas and think about the pros and cons. Finally, you should try out your
ideas and hone them through limited trials.
Hopefully, you will also choose a database with full- functionality such as security and concurrency
control (making sure that two users cannot simultaneously change a record). There are many
excellent choices available in the market today from freeware to commercial products.
Of course, as we said above, you will probably be coming onto a project with an already existing
database. This is the case for most web developers. In this case, you should work closely with
the database administrator to define the database.
6 . 4 3 . 1 S e l e c t i n g Y o u r D a t a
To determine what data to include in your database, begin by identifying and analyzing your
existing data sources, processes, and outputs. This analysis helps identify the depth and range
of the necessary data. Ask who will be using the system, who — if anyone — currently provides
the type of information it will provide, how these people are managed, and what their division
does for the company. Interviewing these people and documenting their interaction with the
data is vital for determining the system’s data requirements.
The next way to research what data you’ll need is to look at the systems being replaced or
consolidated. These systems may have provided the same or a similar type of functionality that
your system is to provide. What was the critical data factor or data function difficulty that led
to their demise? Analyzing and documenting these systems’ functionality is critical for your
database system’s success. If you fail to replace some data or functionality provided by the old
system, you may end up having to undertake costly reengineering later, even if your new system
has additional features or other important capabilities.
Another way to come up with breakthrough processing or data ideas is to think about what
is “impossible” or what the perfect database system would do. You are designing a new system,
so you might as well try to make the best system possible. Listen to input from different levels
of management, dedicated users of the existing system, and especially people who do not like
the system or its concept. People who don’t like the system can help you identify potential flaws
and weaknesses.

Object Modelling and Database Design 379

You should completely document and categorize all this analysis. The documentation, or
metadata, should include information on the data source, where it’s used, activity against it,
its primary and secondary keys, and any relationships with other data. The analysis efforts should
focus on identifying data groupings, duplicate data, important keys, relationships, and timeliness
of the data. As business intelligence requirements grow and OLAP database tools become easier
and less intrusive, timeliness and “transaction dimension” information (such as who, what,
when, where, and under what conditions or promotion) becomes much more valuable. Analysis
should also determine the aggregate knowledge that the data represents and ensure that it
corresponds to the new system’s overall processing objectives. This knowledge should match
the system’s mission statement and contain all the data knowledge necessary to provide the
functionality and features desired.

• What Data to Track
For example, consider "Name." Depending on the uses of the database, it might be useful to
split “Name” into separate first and last name fields, and salutations (Mr., Ms., etc.) and suffixes
(Jr., Ill, etc.). Where the Data Goes
Organize related sets of data into tables that are compact. Data sets that are unique belong
in a table separate from data sets that repeat. See the Client (unique) and Invoice (repeats)
databases below.

• Data Uses
Consider the possible ways the data might be used. There are reports, but what about writing
letters? Dialing phones? Making telephone directories and mailing lists?

• Relating Tables
Fields that establish a link between the databases (tables) are essential. Consider using unique
and arbitrary numbers (codes) to identify people, parts, invoices, etc. Using identifying numbers
in all tables makes it possible to relate tables, to join them to create reports that contain
information from two or three or more tables. This is what a relational database application
has the ability to do.

• Format
This word is used to refer to an empty form on which information can be recorded in pre
determined fields. The form can be on paper, or a layout on a word processor, or it can be
an entry layout within a database program. A completed format is called a “record”. The term
“standard format” is used to refer to a set of fields with prescribed scope notes (see definition
below) or rules of entry.

• DATA ENTRY
General instructions
To record information in a Standard Format involves a three-stage process:

• Collecting the documentation
• Analysing the information
• Recording the data

380 Database Management Systems

The documentation can be simply the statement of an eye witness, or it can consist of a whole
collection of evidence about a particular event. The first step is to become familiar with the
overall contents of the documentation.
Analysing the information and recording the data would normally be done as one process. Work
from the list of field names and the Scope Notes for the selected Format. Find the specific
information - e.g. the place where the event took place - from the documentation and record
it in the appropriate field in the form prescribed by the Scope Notes. Work systematically through
the fields, using the Scope Notes and the Supporting Documents as reference tools.
6 . 4 3 . 2 N o r m a l i z a t i o n
Once you have taken all the metadata into consideration, you’re ready to begin the database
design normalization process. This process breaks the data into groups, identifying keys, repeating
groups, and distinct elements. Normalization puts the keys and data together properly so that
it can be retrieved, updated, inserted, and deleted without jeopardizing the information’s
integrity. Validating the data integrity of the logical modeling process can be quite time
consuming, but it is critical to ensuring that interaction between data groups is correct.
Following your shop’s standard database normalization process is the best way to get everyone
to agree and endorse your design. And it is important to make your logical design the simplest
possible representation of the data so everyone understands what knowledge and information
the database represents.
Through your database normalization design process, eliminate repeating groups to expose
relationships within the data. Document these relationships and dependencies and develop
referential integrity constraints to govern them in your physical database design. Determination
of the proper physical design for relationship constraint rules, such as Delete Restrict, Cascade,
or Set Null, should be handled carefully to retain the integrity of the knowledge within the
database. You can ask several questions to determine the proper referential integrity constraint:
Is the data valid without other data? Is other data dependent on a child or parent relationship?
Is only part of that other data affected by the data relationship? For example, you could represent
a customer purchasing a piece of merchandise in a data relationship. The purchase could not
exist on its own or without the customer. The merchandise transaction is also dependent on
the purchase time and, potentially, the price. You could implement these relationships in several
different ways: by not letting customers be deleted from the database if they have transactions
(Delete Restrict); by cascading or deleting all customer transaction data when the customer
information is deleted (Cascade); or by only setting the transaction customer information to
null when the customer data is deleted (Set Null).
6 . 4 3 . 3 I d e n t i f y i n g D o m a i n s
Another factor critical to the success of any database design effort is identifying the data’s
domain, range, and indicator or code values and ensuring that these elements are compatible
across data groups and system interfaces. You will need to conduct domain recognition to
determine how the data is represented — for example, whether as a number, character field,

Object Modelling and Database Design 381

audio, image, or video. To determine the domain of a data element, ask people who work with
the data for typical and extreme examples of its use. Also, to ensure that you are identifying
the proper domain definitions, make sure that any composite data is broken down to its smallest
elements. Don’t make the common mistake of misrepresenting the data to conform to an older
system’s incorrect definition. Misrepresenting the data can cause tremendous data cleansing
difficulties when adding data from outside sources for data warehousing or marketing systems.
Logical database analysis should also identify data range or scope to facilitate physical database
definitions. Certain physical data element implementations, such as SMALLINT, can only
represent up to a certain range of values. Understanding an element’s range is also critical when
using the element to define physical database partitioning or spread very large databases out
for DASD I/O and parallelism considerations. Range information is especially important for
indicator or code data elements: You can avoid programming and data population nightmares
by staying with common consistent definitions. Standardization and validation software tools
are a tremendous help on this front. Using common industry codes or abbreviations, such as
stock keeping unit numbers, can also be a great help in settling tedious data range disputes.
6 . 4 3 . 4 N a m i n g S t a n d a r d s
Another important element of successful database design is the use of proper naming standards
or conventions. Every IS organization has standards, but often they aren’t used because of
internal politics, disputes, outdated names, or lengthy integration processes. Have your design
team address standards issues at the very beginning of the database design effort so you have
time to battle through the various opinions to a resolution. Working with a repository, standard
abbreviation list, or existing interface or system can help guide your team in developing naming
standards. Because these naming standards will exist for the lifetime of your system, it’s
important to ensure that they make sense and are easy to understand.
6 . 4 3 . 5 D e n o r m a l i z a t i o n a v id t h e R u l e s o f R e c o n s t r u c t i o n
Software and Database engineering are complex activities that require planning and control
to be successful. By the time the DBA is called up to tune the indices of a database it is probably
already too late. Efficiency should be designed into the data structure before the data is actually
put on disk. Since the invention of CASE tools there is usually a missing step in the database
design. The logical database design is set up in the modeling tool and then the DDL is
generated. The table design of the physical database is the entity design of the logical database.
Then when tuning is required, data is moved around on disk, indices are applied, freespace
is modified, and more CPU memory is assigned.
The DBMS level tuning steps are valid and will continue to be used. But, there has been a
missing step in the database design process.
6 . 4 3 . 6 P h y s i c a l D e s i g n o f D a t a b a s e s
The word ‘denormalization’ is used to describe changes to the table design that cause the
physical tables to differ from the normalized entity relationship diagram. ‘Denormalization’ does
not mean that anything goes. Denormalization does not mean chaos. The development of

382 Database Management Systems

properly denormalized data structures follows software engineering principles that insure that
information will not be lost. If the table is read-only (periodically refreshed from the system-
of-record) then the rules are looser. Star schemas and hyper-cubes are read-only denormalizations.
If the data is to be distributed and/or segmented and added-to, changed, or deleted from then
the reconstruction described below must be followed. Fundamentally, a single principal must
be followed. If the individual table is updated in more than one system, it should be possible
to reconstruct the original table as if the data was never reformatted or taken apart.
6 . 4 3 . 7 D e n o r m a l i z a t i o n
There are many techniques for denormalizing a relational database design. These include -
1. Duplicated data - This is the technique of making copies of data whole or in part and storing

and utilizing both the original and the copy(s). This technique is great unless you want
to update it. This is the area of distributed updates and synchronization. Whole texts have
been written on this subject. The general idea is that extra-DBMS processes must insure
integrity and accuracy. Stored joins are an example of duplicated data.

2 Derived data - The issues with storing derived data are accuracy and timeliness. When
the base data changes the derivation(s) must change accordingly. When the semantics of
the derived columns is ‘current balance’ you have one sort of accuracy problem. When the
semantics of the derived column is average sales by product, salesman, and division, and
month; and the salesman are constantly being reassigned. You have another accuracy
problem. Also many designers store the derivation in tables containing inappropriate keys.
When derivations are not stored with their logical (functionally dependent) keys subsequent
(tertiary) derivations are inaccurate. Also many derivations are non-additive (percents,
highest, lowest, etc). This subject deserves many chapters in data warehousing texts. See
references to summary data and slowly changing dimensions.

3. Surrogate keys - There is a problem with very long and compound keys in that they are
hard to use when writing queries and they generate inefficient indices. If the table has a
very long key and also has many rows this can generate a "show stopper" situation. If the
table has a maximum of 100,000,000 rows and a fifty byte real compound key, assigning a
10 digit surrogate key (and indexing on it) will increase performance dramatically. Imagine
the situation where the fifty byte key is used in an equi-join! The real key(s) should not
be deleted after the surrogate key is added. This would make reversing out the surrogate
key impossible. And would offend the Rule of Reconstruction (see below). Usually the long
real key is made up of many sub- keys that are useful in their own right.

4. Over Normalization (Vertical partitioning/segmentation) - This is the technique of splitting
the original logical table into two or more physical tables. By assigning some of the columns
to one physical table and some to another. Both tables end up with the same number of
rows and have the same keys (see “Rule of Reconstruction”, below). Grossly this will increase
performance since the individual tables are now smaller. In most DBMSs the negative affect
of long column length is non-liner. The query time against a 1000 byte row length table
can be more than twice the query time against a 500 byte row length table. So arbitrary

Object Modelling and Database Design 383

vertical partitioning will cause much better performance against each of the separate
partitions. If you are constantly joining the partitions, over normalization is self-defeating.
Therefore, the trick is to cluster the columns together that are used together.

5. Horizontal segmentation - This is the technique of storing some of the rows in one table
and some in another. Many modem DBMSs can do this automatically. When the criteria
for segmentation is non-simple, segmentation must still be done programmatically. Of course,
update anomalies occur when rows occur in more that one segment.

6* Stored Joins - This is the technique of joining two or more tables together and storing the
answer set as an additional table. This is one of the most common denormalizations. If the
stored join table is never updated, there is no problem with this. Since this always generates
duplicate data, updates are a problem. Look out for query anomalies when a measurement
column is on the many side of the relation being joined.

7. Recurring data groups (vector data) - When there is a fixed small number of subordinate
tables associated with a table collapsing the subordinate table into the parent table will
increase performance. Care must be taken that the logical key of the subordinate table is
not deleted or obscured. Otherwise the join is not reversible and the ”Rule of Reconstruction”
is offended.

6 . 4 3 . 8 R u l e o f R e c o n s t r u c t i o n
When the Rule of Reconstruction is ignored and the data updated, the data is corrupted.
Codd’s Rule of Reconstruction is a corollary to ‘Lossless-Join Decomposition’. Lossless
Decomposition is a method for creating well-formed normalizations from non-normalized database
designs. The Rule of Reconstruction is basically the same idea in reverse. Well-formed non
normalized structures are created from normalized tables.
Read-only database (data warehouses, data marts, etc.) gain flexibility and quality if they also
approximate this approach. The designer should think in terms of a series of transformations
via SQL. If the physical database design is not based on a well- formed (Third Normal Form)
logical database design you cannot know if the Rule of Reconstruction is being followed or
not. There seems to be some kind of data entropic law here. If data is not carefully designed
and managed through time, it slides into chaos. Constructions based upon algebra and set theory
are fragile. In my experience, if you don’t know and can’t prove the design is correct, it is very
likely incorrect.
In reality, it is more subtle than this. For example, if the business changes and the logical data
model is not updated and the corresponding physical database design is not updated, you will
more than likely get the same effect as a poorly formed denormalization. Add, Changes, and
Deletes will corrupt the data relative to the present real business. Future queries will then get
the wrong answer relative to the present real business. This is the "Silent Killer." As a designer,
you start out right, change nothing, and now you are wrong.
In the textbook theoretical literature written on the Relational Model, the operators used on
databases are Insert, Replace, Delete, Retrieve, Select, Project, and Join (and to be complete
- Product, Union, Intersection, Difference, and Divide). This causes some confusion with those

384 Database Management Systems

of us that know SQL. The Retrieve, Select, Project, and Join functions are all performed by
the SQL SELECT operator. Just to reduce the amount of re- statement and/or translation from
Codd’s original source, the following uses the Relational Model terminology.
The following is the Relational Model’s definition of Select, Project, and Join:

• Select - The Select function takes whole rows from a single table and creates an answer
set consisting of some (or all) of the rows

• Project - The Project function takes whole columns for a single table and creates answer
set consisting of some (or all) of the columns.

• Join - The Join function takes whole rows form two or more tables and creates an answer
set consisting of concatenated rows that pass the join criteria. The join criteria is usually
that two or more columns in the source tables’ rows are equal.

Any combination of relational operators can be applied to re-form how the data is distributed,
provided that the total transformation is reversible. The issue is verifying this reversibility. To
not cause inaccuracies and anomalies, each updateable physical data store must be reversible
to the well- formed normalized data model. The following is not intended to be exhaustive
and consists of only a few of examples of well-formed denormalizations.
6 . 4 3 . 9 O v e r N o r m a l i z a t i o n
This is achieved via the project relational operator. Each projection to be stored in some table,
possibly another database, must include the primary key of the relation from which the projection
is made. Then, each and every projection is well- formed with no duplicate rows. A table can
be split into any number of projections. Note that, at any time, the original table can be
recovered using equi-join with respect to the primary keys of the new denormalized tables being
joined. In applying relational technology to the management of a denormalized database, it is
essential that it be possible the relational operators can be used to decompose relations in the
global database into relations for the various denormalized target tables. In other words you
should be able to use SQL for the decomposition. This doesn’t mean that you must use SQL
for every decomposition, only that you could. You might have a non-SQL Extract Transform
and Load (ETL) engine interfacing one or more OLTP systems with an Operational Data Store.

Object Modelling and Database Design 385

K1 A1 B1 C1 D1
K2 A2 B2 C2 02
K3 A3 B3 C3 03
K4 A4 B4 C4 04
KS AS BS cs 05

PROJECT

K1 C1 01
K2 C2 02
K3 C3 03
K4 C4 04
K5 CS OS

K1 A1 B1
K2 A2 B2
K3 A3 B3
K4 A4 B4
KS AS BS

EQUI-JOIN

K1 A1 B1 C1 01
K2 A2 B2 C2 02
K3 A3 B3 C3 03
K4 A4 B4 C4 04
KS AS BS CS OS

Fig 6.119 Over Normalization

If the key in the above example was very long and compound, a surrogate key could be
substituted. And one of the vertical segments could be stored with the surrogate key only.
• Horizontal Segmentation
The select relational operator is used to insert some rows of a table into another table, and
other rows to other tables. The selection of rows cannot be arbitrary. The selection of rows
must be made using the select operator. When a table is partitioned by rows to be stored in
other tables, union is used to recover the original table.

386 Database Management Systems

K1 A1 B1 Cl 01
K3 A3 B a a
KJ A3 m a a
K4 M Bt a 01
KS « a a a

SELECT

K1 A1 B1 C1 01
a ta a - a a
KJ AS s - a a

K4 M B4 Ci 01
KS M B a a

K1 A1 B1 Cl D1
KJ A3 a a OB
KS A3 B a a
K4 M Bt a 04
KS AS B a a

UNDN

Fig 6.120 Horizontal Segmentation

• Stored Joins
The use of stored joins as a denormalization will formally offend the rule of reconstruction if
the joined-table is updated. Since this is a very common if not the most common denormalization
some discussion is appropriate. If you must update a stored join, non- relational programmatic
measures must be taken to see that data integrity is maintained. A simple example of this is
to not update the duplicate columns. It is always dangerous to have the data integrity rules
outside the data domain. When other update programs are added to the system they must also
contain the non-relational data integrity processes. It is better software engineering to have
all the data integrity rules in the DBMS in the form of constraints, triggers, and stored
procedures. Quality almost always implies simplicity in usage and a ‘minimum number of moving
parts.’ If you have to write complex code with a relational database to get the right answer
you are allowed to leap to the conclusion that the database design does not map to the business.

6.44 (Reverse Engineering of Databases
It is rare that the data architect encounters a true ‘green field’ situation, with the luxury of
being able to develop a new database from scratch, employing first principles, and using
established principles and techniques of data administration. More often than not, the architect
is faced with modifying an existing system, or at least with understanding an existing system
in order to extract data from it. An invaluable aid in such circumstances will be an E-R diagram
and/or data dictionary. However, it is often the case that the database is poorly documented,
with not a hint of an E-R diagram, let alone having the luxury of a data dictionary. On these
occasions, there is little alternative but to attempt to obtain a data model by a process of reverse

Object Modelling and Database Design 387

engineering from the database. In this note, we will outline a methodology that we have used
on a number of occasions to some success and hope it may be of some assistance to you when
faced with this situation.
The first step in the reverse engineering process is NOT to look at fancy database tools which
have a 'reverse engineering1 facility. This is like getting in to your car and turning on the ignition
without having figured out where you are going!
The real first step in the reverse engineering process is to understand the system. Ask the
questions: what does it do?; what are its inputs/outputs?; what data transformation occurs and
how is this likely to be achieved? This is done in the time honoured tradition of talking to
developers and users; reading what documentation exists; looking at screens, reports etc. In
short, treat the database as a classical black box and from its inputs/outputs formulate a tentative
hypothesis as to what sort of data may be stored within and what sort of data transformations
are involved. You will probably be wrong! But primed with this knowledge, the process of reverse
engineering is more focused and less tentative.
Next, as with any difficult problem, is to see whether it can be broken down into smaller, more
managable chunks. Can the system be readily split into identifiable sub-systems? A distinction
must be made between physical and logical implementation. Where a separation has been
enforced, by means of tablespaces (Oracle) or databases (Sybase), then there is a clear partition
of areas and each can be treated separately. However, it is often the case that several logical
sub-schemas are physically located within the same database/tablespace, particularly if some
loose coupling, i.e. a shared table, exists between them. In this instance, unless the sub-schema
tables have already been identified, it is not possible initially to treat them independantly.
During the reverse engineering process these sub- schemas will tend to be found naturally, by
inspection of the relationships amongst tables. Each sub-schema can then be analysed in some
detail.
Having acquired a preliminary understanding of the system, its data and the types of entities
that might be expected, now is the time to consider tools. It is possible to reverse engineer
with the database vendors own meta data query tools and some simple desktop utilities,
spreadsheets etc., but frankly, this is a tedious job. A number of database design tools exist
which specifically provide reverse engineering facilities by extracting the databases’s meta data
and producing an E-R diagram and a data dictionary. I feel that for realistic sized databases
such a tool is necessary. But do not be misled. Although, these tools generally provide a first
cut at an ER diagram and give a data dictionary of tables/columns/triggers/stored procedures
etc., there will be two areas where problems tend to arise.
Firstly, the layout of the automatically produced diagram will not reflect the logical arrangement
of the tables. Typically, the layout of the diagram will have to be adjusted so that the entities
are rearranged in a way, which reflects the logical and functional groupings within the database.
Usually, the tools will allow you to do this in a simple point and click manner. This is trivial
but time consuming.

388 Database Management Systems

More importantly, the relationships automatically inferred between entities will usually be
tentative. If you are lucky the database developer will have utilised any self documentation
facilities within the database, however, this is a rarety (if the developer was that thorough it
is unlikely that you would have to be doing a reverse engineering exercise!). Some reverse
engineering tools can utilise such self documentation features in order to infer relationships.
In the absence of explicit relationship information some other means of deriving this information
is required. Some tools will attempt to infer the relationships by assuming that primary keys
match unique indexes on tables and that foreign key relationships are thus defined either by
non-unique indexes or by matching field names. The results of such automated relationship
generation may be useful as a guide but will generally be wrong. Typically more relationships
are produced than is really the case and the directions of the relationships may be incorrect.
Techniques for pruning these ‘relationships’ are discussed below.
Assuming that a suitable tool has been used and a first cut schema produced, then tables should
be grouped together by related business areas. It is worth scanning the table names to see if
some naming convention has been employed which makes it obvious that tables are related
in some way. An alternative strategy, is to isolate those tables which seem to have a large number
of relationships with other tables. The level of connectivity between tables is usually not
constant, the most significant tables often have many relationships with other tables which are
not so well connected. There will often be only a few relationships between the 'hot' tables.
Redraw the E-R diagram to show clusters of tables tightly coupled with only a few relationships
between clusters. Each cluster will tend to correspond to a particular business process function.
There will always be a number of tables which do not seem to be related to anything. It is
better to put these to one side and arranging in some systematic maner, perhaps by name.
During this grouping phase full use should be made of any additional information that is
available, for example functionality may dictate that certain tables will be related, or inputs/
outputs will determine the attributes of some tables.
With the tables grouped together by business function, the identification of the purpose of each
table will greatly assist in the determination/validation of relationships. In order to help with
this I have found it useful to classify tables acording to the following taxonomy:

Object Modelling and Database Design

Table 6.2: A Taxonomy of Table Types

389

Type Description Typical Characteristics Relationships to other Tables

Reference Data

Assocation

Summary/Reporting

Business Entities Maps directly onto real business entities, e.g. personnel, product. Often named after
concrete nouns with relevance to the business area. Primary Key (PK) often a simple
reference number/code, e.g. employee_number. Usually has Foreign Key (FK)
relationships to other Business Entity tables. Cardinality same as business entity. Likely
to be normalised to 3NF.
Allowable list of codes, pick lists, domains. Number of fields << number of values.
Small no. of rows compared to related business entities. PK often code/integer single
fields. Description/text column often included. The PK will be a FK to one or more
business entity table (s).
Resolve many to many relationships. Small number of columns, most of which, perhaps
all, are part of the PK. May be description column. Links two or more business entity
tables. PK consists of a combination of FK from two (or more) business entity tables.
Data Summarised/aggregarted data Has a composite PK consisting of dimensions
along which the non PK columns can be grouped e.g. time, type, employee. Heavily
indexed with wide indexes. Non key field tend to be numeric and additive. Large
number of entries. Not directly linked to Business Entity tables. Columns within PK
will be linked to reference tables. Interface Used to transfer data from one system to
another, e.g. bulk inserts of data into database or transfer data out of database. No
PK. Typically not indexed. Not normalised. Large number of rows. Mimics data feeds
in/out. All fields may be char. Standalone.
Result Used as persistent storage for applications. Keeps data in a convenient form for
application. Denormalised/restructured/derived data that is already available in the
business entity tables. Not heavily indexed. Number of rows of a similar order to
business entity tables. Standalone - but often share same PK as a business entity table.
These are similar to the intermediate result tables, the difference is that additional
business information is stored which is not application specific but of general use. For
example, when storing hierarchies it is often useful to construct a table of all valid
paths through the hierarchy - strictly speaking this contributes no new information
but greatly simplifies some queries. Similar to intermediate result tables but tend to be
normalised with respect to business entity tables. Will be linked to one or other business
entity tables.

Audit/History Used to store a time history of changes/events to data. PK will contain time stamp
columns, e.g. start/end dates. Other columns will also be found in business entity
tables. Will not be explicitly linked to business entity tables but will “mirror” them.

System/Control Used to control behaviour/access/security operation of system. Columns tend to be
simple codes or integers. Small number of fields and rows. No obvious relation to
business entity tables. Standalone.

Intermediate

Helper

390 Database Management Systems

Establishing the type of each table within a schema, according to the above classification,
enables its location within the topology of a schema and its connectivity with other tables to
be determined or validated. For example, if a table appears to have no relationships with other
tables it may be a system/control table, or an audit/history table.
Alternatively, it could be that it is a reference table onto a business entity table and that the
appropriate relationship has not yet been identified. Attempting to classify the table according
to the above taxonomy, by inspection of its columns and indexes and general structure will
often clarify the situation.
There is no doubt that correct identification of relationships is the hardest part of the reverse
engineering process, but is the most important if the description of the database is to be more
than a simple listing of tables and columns. Without this, a true understanding of the database
cannot be achieved. In addition to the table taxonomy, there are a few “rules of thumb” to
be useful:
Primary keys will often correspond to unique indexes. Be aware though of physical implementation
issues, such as the use of index covering, where additional columns which are not properly part
of the primary key, are added to the index in order to improve query performance; or where
a number of alternate indexes are defined to support common joins/queries. Foreign key
relationships are harder to determine, however some implementation features that can provide
an indication of these relationships are:

• Matching columns names - where a column is a primary key in one table and occurs
in another table, then a foreign key relationship may exist. If a column is in the primary
key of both tables then the nature of the tables (as in the table taxonomy) needs to be
examined in order to determine whether a FK relationship really exists.

• Referential constraints - either imposed explicitly via constraints or programmatically
via triggers or stored procedures. Non-unique indexes - often these are defined in order
to expedite joins across tables, commonly these will be along FK relationships.

• Views - in a similar vein as to non-unique indexes, views will often be formed by the
merging of tables with FK relationships. If the database has a full realistic population of
data, (as in a production system), this can greatly assist the foreign key validation process
by providing a means of checking the overlap of values between differenct columns. For
example, if we think that table/column t2(c2) is a foreign key from table/column tl (Cl),
we can use the following SQL to determine whether or not all the values of c2 are
constrained within cl: select count(*) from tl where not exists (select * from t2 where
t2.c2 = t8.cl). If a value greater than zero is retrieved then there cannot be a foreign
key relationship between t2(c2) and tl(cl).

A word of caution: It often happens that in real databases, extraneous ‘special’ values are
purposely added which do not strictly conform to FK relationships, for example to indicate a
‘Not applicable’ or ‘Invalid’ condition (these are often introduced in order to prevent confusion
as to the meaning of the ‘NULL’ value). It is also quite likely that inconsistent data is

Object Modelling and Database Design 391

unintentionally present. The fact that you are having to perform reverse engineering could imply
that referential integrity has not been particularly well enforced in the past and that there is a
lot of 'dirty' data in the database. So we may have the situation where t2.c2 <> t8.cl for just
one example, whilst in 99% of the time there is a perfect correspondence. How you choose to
deal with this depends upon the purpose of the reverse engineering exercise. If you are trying
to determine the logical model then you should treat an almost perfect correspondence as a FK.
By now most of the pieces of the jigsaw puzzle are now in place and a tentative outline schema
should have emerged.
From this point forward the reverse engineering process is now more art than science. It is
necessary to use all the available information to put the pieces together: the business process,
mapping of business entities onto database tables, business constraints onto relationships and
the interaction between the database and other systems. As the tables slot into place, it is always
necessary to validate the model by comparing with the expected functionality and examining
real production data.
In this short note, we have outlined some of the techniques that we have used in the past
to perform reverse engineering of databases. This is something which we have had to do more
often that we would have liked, but by approaching it in a systematic manner the work overall
effort required can be guided and hopefully reduced.

6.45 Good Database Design
It is most likely that as a web developer, you will be working with one of the modem relational
databases and that you will be able to work in conjunction with an existing database administrator.
That is, this tutorial is limited to the “use” of databases rather than to the creation and
administration of them. In fact, the creation and administration of databases is a topic well
beyond the scope of this tutorial and probably well beyond the scope of your job. After all,
database administration is its own entire job description.
However, we have been spending a lot of time going through general database theory because
although you may not be designing databases yourself, in order to take the most advantage
of them, it is important that you understand how they work. Likewise, it is important that you
have a feel for good database design. After all, a database’s usefulness is directly proportional
to the sleekness and efficiency of its design. And your ability to take advantage of a database
is directly proportional to your ability to decipher and internalize that design.

392 Database Management Systems

6.46 Designing DBMS for Enterprises
If you ask an application developer what the most important task is in developing new or
enhanced applications for institutional data and processes, almost every time they will tell you
it is the initial analysis of client requirements. Before purchasing any software and before storing
a single byte of data in a database, analysis of the client’s requirements is paramount to
developing the appropriate solution. More time spent in analysis directly increases the effectiveness
of the resulting application. Since the early 1960s, and despite the waves of change since then,
one thing has remained constant — the initial analysis is still the most important activity that
an application designer undertakes. It gives the developer the chance to design an effective,
spectacular application, no holds barred.
This analysis takes on various forms. Usually the application developer has a feeling about what
form the analysis should take. It may simply require a phone call to the client asking them
“Do you want to add or subtract 5 percent from all the employees’ salaries?” Or, it may require
the organisation of week-long meetings with clients to collectively analyse their requirements.
Overkill is rarely a problem in the analysis stage as it guarantees the involvement of all the
relevant people. The worst thing a developer can do is to not include a key person in the
requirements analysis. Everyone’s knowledge and experience is needed during this analysis.
Their presence or absence makes or breaks the success of the analysis.
The participants in the analysis bring their much-needed knowledge and experience into the
meeting, but it is also important to ask them to "leave their baggage at the door.” Excess baggage
such as idealisation of the features or constraints of the current application can impede the
design of a new and improved application, one without those same “time- honored” constraints.
While the developer recognizes that there are always rules, regulations, and constraints, they
must also examine these constraints for their continuing validity within the new application.

CHAPTERS 7

N etw o r k M o del

7.1 Network Model Overview
A network data structure can be regarded as an extended form of the hierarchic data structure
- the principal distinction between the two being that in a hierarchic structure, a child record
has exactly one parent whereas in a network structure, a child record can have any number
of parents (possibly even zero). A network database consists of two data sets- a set of-records
and a set of links- where the record types are made up of fields in the usual way.
Networks are complicated data structures. Operators on network databases are complex,
functioning on individual records, and not sets of records. Increased complexity does not mean
increased functionality and the network model is not powerful than the relational model.
However, a network-based DBMS can provide good performance because its lack of abstraction
means it is closer to the storage structured used, though this is at the expense of good user
programming. The network model also incorporates certain integrity rules.

7.2 Network Databases
Network or linked databases organize dissimilar records using linked lists to implement
relationships between the rocords. These are constructed based on pointers and links between
data records (many-to-many relationship).
In many ways, the Network Database model was designed to solve some of the more serious
problems with the Hierarchical Database Model. Specifically, the Network model solves the
problem of data redundancy by representing relationships in terms of sets rather than hierarchy.

394 Database Management Systems

The model had its origins in the Conference on Data Systems Languages (CODASYL), which
had created the Data Base Task Group to explore and design a method to replace the
hierarchical model.
The actuality, the network model is very similar to the hierarchical model. In fact, the hierarchical
model is a subset of the network model. However, instead of using a single-parent tree hierarchy,
the network model uses set theory to provide a tree, like hierarchy with the exception that child
tables were allowed to have more than one parent. This allowed the network model to support
many-to-many relationships.
Visually, a Network Database looks like a hierarchical Database in that you can see it as a type
of tree. However, in the case of a Network Database, the look is more like several trees, which
share branches. Thus, children can have multiple parents and parents can have multiple children.

Fig 7.1 : Network Database

Nevertheless, though it was a dramatic improvement, the network model was far from perfect.
Most profoundly, the model was difficult to implement and maintain. Most implementations
of the network model were used by computer programmers rather than real users. What was
needed was a simple model, which could be used by real end users to solve real problems.
Network databases are similar to hierarchical databases for also having a hierarchical structure.
However, there are a few key differences, however. Instead of looking like an upside down
tree, a network database looks more like a cobweb or interconnected network of records. In
network databases, children are called members and parents are called owners. The most
important difference is that each child or member can have more than one parent (or owner).

Network Model 395

Fig 7.2

Like hierarchical databases, network databases are principally used on mainframe computers.
Since more connections can be made between different types of data, network databases are
considered more flexible. However, two limitations must be considered when using this kind
of database. Similar to hierarchical databases, network databases must be defined in advance.
There is also a limit to the number of connections that can be made between records.

7.3 Network and Internet
These are further development of linkage systems with many more record types and linkages.
Both the linkage systems require the user to know what linkages have been established in order
to know on what basis data can be retrieved. The linkage systems are technically more efficient
but do require greater data processing knowledge so their use tends to be restricted, to
information specialists.
The ability to store and access vast amounts of data in an efficient manner is being used to
refine and improve activities at stategic, tactical and operational levels. For example the UK
Clearing Banks use databases in marketing. Proviously data were collected on a branch basis
maninly relating to current accounts. If a customer had a loan or mortagage this was recorded
separately. Now the banks adopt an integrated database approach so that all information about
a customer is maintained centrally so that a financial profile of a customer can be derived and
used for marketing.
Database marketing in retailing is well developed in America and is being explored in this
country. In America it has developed to the point where the detailed buying patterns of
individual shoppers are recorded making possible the precise targeting of marketing information,
special offers etc.

396 Database Management Systems

7.4 Network Database Records
A network DBMS contains a set of multiple occurrences of each of several types of records
together with a set of multiple occurrences of each of several types of link. Each occurrence
of a record type contains a set of values for fields, as in conventional programming languages.
The network model makes no requirements on field values being drawn from certain domains,
as is done in the relational model.

7.5 Network Data Manipulation
A network data manipulation language consists of a set of operators for processing data
represented in the form of records and links. Examples of such operators include the following.

• Locate a specific record given a value of some of its field (s)
• .Move from a parent to its first child in some link
• Move from one child to the next in some link.
• Move from child to parent within some link.
• Create/delete/update a record.
• Connect an existing child into a link.
• Disconnect a child record from a link.
• Disconnect an existing child record from one occurrence of a given link type and

reconnect it to another, etc.
These operators are typically all record-level (as suggested by the examples themselves), as in
the hierarchic model.

7.6 Network Model Integrity
Like the hierarchic model, the network model includes built-in support for certain types of
referential integrity, by virtue of its primary data structure, the link. It is therefore possible,
for example, to enforce the rule that a child cannot be inserted unless its parent already exists.
Network Databases
In many ways, the Network Database model was designed to solve some of the more serious
problems with the Hierarchical Database Model. Specifically, the Network model solves the
problem of data redundancy by representing relationships in terms of sets rather than hierarchy.
The model had its origins in the Conference on Data Systems Languages (CODASYL) which
had created the Data Base Task Group to explore and design a method to replace the
hierarchical model.
The network model is very similar to the hierarchical model actually. In fact, the hierarchical
model is a subset of the network model. However, instead of using a single-parent tree hierarchy,
the network model uses set theory to provide a tree- like hierarchy with the exception that
child tables were allowed to have more than one parent. This allowed the network model to
support many-to-many relationships.

Network Model 397

Visually, a Network Database looks like a hierarchical Database in that you can see it as a
type of tree. However, in the case of a Network Database, the look is more like several trees
which share branches. Thus, children can have multiple parents and parents can have multiple
children.
Nevertheless, though it was a dramatic improvement, the network model was far from perfect.
Most profoundly, the model was difficult to implement and maintain. Most implementations
of the network model were used by computer programmers rather than real users. What was
needed was a simple model which could be used by real end users to solve real problems.
Network databases are similar to hierarchical databases by also having a hierarchical structure.
There are a few key differences, however. Instead of looking like an upside down tree, a network
database looks more like a cobweb or interconnected network of records. In network databases,
children are called members and parents are called owners. The most important difference is
that each child or member can have more than one parent (or owner).
Like hierarchical databases, network databases are principally used on mainframe computers.
Since more connections can be made between different types of data, network databases are
considered more flexible. However, two limitations must be considered when using this kind
of database. Similar to hierarchical databases, network databases must be defined in advance.
There is also a limit to the number of connections that can be made between records.

CHAPTER< 8

D atabases for W eb

8.1 Designing Data Bases for Web
It allows a lot of flexibility in how your data is stored and represented, yet it still lets you build
up fairly comprehensive structured data objects. A lot of pre-built libraries handle these
structures, and some languages are moving toward providing native support: Perl and Omnimark
come to mind. However, the problem is the source of your data. Do you expect people to provide
you with existing XML? Not too likely. Also, there might be too much flexibility. But you may
be willing to give up some of that control for the sake of speed and simplicity.

8.2 Database Servers
You’ve heard the names before: Oracle, Sybase, Microsoft SQL Server, Informix, Ingress.
Conceptually, these programs offer a grab bag of features and technologies that synergize nicely:

• They store data in tables. Tables are remarkably similar to fixed-width text files, but their
fields (also known as "columns") can contain many different structured data types.
Examples are integer, character string, money, date, and Binary.

• Large OBject (BLOB).
• They provide administrative facilities to manage tables.
• Tables and administrative facilities are guarded through sophisticated user/password/

domain protection schemes.
You can interact with data through powerful-yet-relatively-easy languages, SQL for example.
Even better, you can build stored SQL statements that your users can take advantage of without

Databases for Web 399

having to know the language themselves. A final advantage of databases is that so many people
before you have used them; you will find that virtually all of your seed data will already be
in some kind of database format.

8.3 Why the Web?
Why do somebody will want to be on the Web? Because that’s where your audience is. To
be fair, we should take a look at why our audience is on the Web. Also, maybe you are not
developing for the world at large. You could be building a corporate intranet Web site. In that
kind of situation, you get to decide how you want to distribute information to your users. (Well,
your manager gets to decide, but that’s a different story.) Let me give you a few points to
consider.
Even in a corporate environment, Web browsers are everywhere. That makes the Web a really
convenient information vehicle. Browsers are portable. You don’t need your computer and your
personal software at a particular physical location to get to your data. And neither do your
users. Web interfaces to databases are very quick and easy to program, even compared to such
rapid development languages as Visual Basic. You don’t have to concern yourself with the
logistics of distributing custom software to either internal users or to an infinite number of
external (Internet) users. You don’t have to worry about supplying everyone with upgrades.
Instead, you upgrade the production software on the server, and instantly everyone benefits.
You don’t have to train people to use your software - almost everyone knows how to work a
Web browser and fill out forms. Sure, proprietary technologies that help you create database
interface systems exist, like Visual Basic or Visual C+ + , Powerbuilder or Developer 2000. You
can create some great interfaces with these tools. But most of the time, the pro-Web reasons
we mention above win out, so that’s what we are going to teach you how to do.

8.4 Apache Web Server
The Apache Web server is quite a piece of work. Put simply, its role is to allow users to request
Web information from your computer. Most of the time this information is in HTML documents
and image files (GIFs and JPEGs primarily), but all modem Web servers are required to have
CGI (Web programming) support as well. That is the simple version of Apache’s job. But if
a particular application or demand crops up, you might need to take that simple version and
configure the bejeesus out of it.
Apache is powerful, highly configurable, and heavily documented.
Custom Apache Configurations
Three reasons why we will be making our custom Apache configurations:

• Our choice of DocumentRoot directory
• ePerl
• mod_perl

DocumentRoot is an easy enough idea to grasp. Let us say we have set up the domain
www.example.com. Then, URLs that might “hang off’ it would look like:

h t t p : / /w«m. ex a m p le . ccn /w *b > on k «y /d ay3 .h tm l

http://www.example.com

400 Database Management Systems

It it better if you decide on setting up the my DocumentRoot as /web/docs/, so the file
corresponding to that URL would be /web/docs/webmonkey/day3.html. Assuming you took my
advice from yesterday as to where to install Apache, you will have to edit /usr/src/apache_8.2.6/
conf/srm.conf to set DocumentRoot to /web/docs. (Don’t worry, once you look at the file, it’s
obvious how to do this.) You will also need to do a corresponding edit to /usr/src/apache_8.2.6/
conf/access.conf. (Again, no big deal.) At the Unix prompt, be sure to actually create your
DocumentRoot (likely /web/docs/) directory, too:

m kdir /w eb ; m kd ir /w e b /d o c s

Perl and ePerl together with modjperl, make up a world-class development toolkit for the
creation of database-activated Web pages. Yesterday’s instructions suggested using mod_perl’s
automatic Apache build feature, so you should now have a file called /usr/src/apache_8.2.6/
src/httpd.
OK. Now here’s what you do:
Step 1:
Create a symbolic link between

/ u s r / s r c /a p a c h e _ 8 . 2 . 6/ s r c / h t t p d and / u s r / s b i n / h t t p d .

The idea behind the creation of a symbolic link is that your Linux operating system expects
httpd to reside in the /usr/sbin directory, but any future re-builds of httpd will put it in /usr/
src/apache_8.2.6/src instead. This trick will save you from having to remember to copy httpd
into /usr/sbin each and every time,

cd / u s r / s b i n
In - s /u s r /s r c /a p a c h e _ _ 8 . 2 . 6/ s r c / h t t p d h t t p d

Step 2: Check to make sure that your build includes mod_perl.
We’ll do a quick check right now, just to make sure. Type in the following command:

/ u s r / s b i n / h t t p d - v

You should get a small message that says something like:
Server version Apache/8.2.6 mod_perl/8.08.
Step 3: Configure your /etc/rc.d/rc.M file.
This file is like the good old DOS autoexec.bat file. It runs as soon as your Linux server starts,
making sure that all the programs that need to be initialized and run at boot-time are started
properly. If your rc.M file doesn’t already have the following, you should put it in yourself:

S t a r t Web s e r v e r :
i f [- x / e t c / r c . d / r c . h t t p d] ; th e n
. / e t c / r c . d / r c . h t t p d
f i

All this bit of code says is that the Linux start-up process should activate the contents of the
file /etc/rc.d/rc.httpd (to start up your httpd). So here’s what should go in that:

e c h o h t t p d
/ u s r / s b i n / h t t p d - f / u s r / s r c /a p a c h e _ 8 . 2 . 6/ c o n f / h t t p d .c o n f &

You probably won’t have this file yet, so go ahead and create it.

Databases for Web 401

Step 4: Prepare Apache to handle CGI and ePerl documents. Get ready - you are in for a
truckload of minor configuration tweaks. Navigate back into the /usr/src/apache_8.2.6/conf
directory, and then:
In access.conf, make sure the text in bold is added:

< D ir e c to r y /w e b /d o c s>
O p tio n s In d e x e s F ollow Sym L inks ExecCGI
A llo w O v e r r id e None
o r d e r a l lo w ,d e n y
a l lo w from a l l
< /D ir e c to r y >

Now, edit srm.conf:
Directorylndex index.iphtml index.cgi index.html

Also, you will want to “uncomment” a line so that the final version looks like:
A ddH andler c g i - s c r i p t . c g i

In httpd.conf, add the following just above the <VirtualHost> area:
P e r lr e q u ir e / w e b /d o c s / s t a r t u p .p e r i
P er lM o d u le A p ach e: : e P e r l
< F i l e s - u .+ \ .ip h t m l$ " >
S e tH a n d le r p e r i - s c r i p t
P e r lH a n d le r A p ach e: : e P e r l
< F ile s >

Now, you will need a startup.perl file in /web/docs. Here, copy mine:
1/ u s r / b i n / p e r l
u s e s t r i c t ;
u s e A pache: : R e g is tr y ;
u s e CGI;
u s e DBI () ;
1;

To help you understand what we did in Step 4, here’s a quick post-mortem.
By default, Apache won’t let CGI programs run in any directory other than your duly-designed
/cgi-bin/. When security is your priority, this makes a lot of sense. But, since our priority is Web
database programming, the configs in Step 4 tell Apache that it’s OK to run CGI programs
anywhere underneath Document Root.
Also, we taught Apache what to do when it runs across files with the funny extension .iphtml.
These are “internally parsed HTML” files, and now Apache knows that they’re to be handed
off to ePerl for further processing. Finally, we told Apache to run a file called startup.perl as
soon as the server initializes. This loads a few highly useful modules into the server’s memory
once and for all, so each subsequent program that needs these modules can access them without
bothering to re-load them.

8.5 M ySQ L and That Whole Database/Server Thing
Database servers are memory-resident daemons that respond to requests, store data in smart
ways, and provide administrative interfaces to make sure that the data is handled only in an

402 Database Management Systems

authorized manner. We will now use MySQL to practice these ideas. Once you’ve got MySQL
built, you will have a lot less file configuration fiddling than Apache required. Once youve
gone through the full MySQL installation procedure (including running /usr/local/src/mysql-
VERSION/scripts/mysql_installjdb), only one more task remains: set it up as a memory-resident
daemon. This procedure is identical to what we did for httpd. Edit your /etc/rc.d/rc.M file to
include the code:

S t a r t m ysQ l d a ta b a se s e r v e r i
i f [- x / e t c / r c . d / r c . m y s q l] ; th e n
• / e t c / r c . d / r c . m y s q l
f i

Create a corresponding rc.mysql file - very straightforward:
/ u s r / l o c a l / b i n / m y s q l . s e r v e r s t a r t

When we are working with MySQL, we use two programs all the time: /usr/local/bin/mysql and
/usr/local/bin/mysqlshow. Don’t worry about typing all that in - mysql and mysqlshow should
work just fine, since /usr/local/bin is part of the command path environment variable.
Let us try it:

r d ic e : # m ysq lsh ow

Databases
mysql
test

This is what you should see (assuming you have Perl and Data::ShowTable correctly installed).
This output shows us that, at the highest level, MySQL organizes its data into databases. The
two shown above are created automatically by MySQL and each serve a special purpose: mysql
is used by MySQL itself to organize the program’s own internal settings, while test is made
available to all users as a sort of scratch-pad area. It is fully functional, but it comes with no
protection or authorization schemes. In other words, don’t put anything important into test in
case one of your rocket scientist coworkers decides to nuke it. Let us do it again, but this time
we will ask mysqlshow to tell us the contents of the test database:
rdice:# mysqlshow test

Database: test
Tables

Tables are the next level down after databases. Think of tables as spreadsheets: columns
represent data fields and rows represent individual entities or records. From our output, wé
can see that the test database is empty, which isn’t surprising since you have a brand-spanking-
new installation of MySQL. We’ll use the mysql program to work interactively with MySQL
and actually put some things in there.

Databases for Web 403

8.6 MySQL, SQL, DDL, and DM L
For the most part, interacting with MySQL means speaking its language: SQL, the structured
query language. By and large, SQL is divided into two main parts. The first is DDL, the data
definition language. You use this part of SQL to tell MySQL how to set up tables. There is
also DML, the data manipulation language, which you use to get at the data housed in your
tables. Here’s the plan, we will start up mysql, create a table, put some data in it, and then
review the data that we just put in.

r d ic e : # m ysq l t e s t
Welcome t o th e MySQL m o n ito r . Commands end w it h ; o r \ g .
Your MySQL c o n n e c t io n i d i s 4 t o s e r v e r v e r s io n : 3 . 28 . 28-
gam m a-log
Type 'h e lp ' f o r h e lp ,
m y sq l> c r e a t e t a b l e album s
-> t i t l e v a r c h a r (100) , t o s e t up a t a b l e w here
-> a r t i s t v a r c h a r (100) ,
-> r e l e a s e d d a t e) ; m u s ic a l i n f o
Q uery OK, 0 row s a f f e c t e d (0.07 s e c)
Now, h e r e com es some DML t o t e l l MySQL t o i n s e r t a r e c o r d i n t o
t h e album s t a b l e
m ysql> i n s e r t i n t o album s (t i t l e , a r t i s t , r e l e a s e d)
-> v a l u e s (' S e l l i n g E n glan d By The P o u n d ' , ' G e n e s i s ' , #1973- 01- 01 ’) ;
Q uery OK, 1 row a f f e c t e d (0.08 s e c)
n o te t h e * - i t m eans " a l l colum ns" i n SQ L-speak
m y sq l> s e l e c t * from alb um s;

title artist released
Selling England By The Pound Genesis 1973-01-01

1 row in set (0.06 sec)
The exact syntax of all SQL commands accepted by MySQL is covered very well in the MySQL
documentation, so it will all be there when you need it. But even today’s small session covers
a lot of the fundamentals, so it’s worth your while to take a close look at it. To create a table,
the basic syntax is:

c r e a t e t a b l e TABLENAME (
COLUMN1 c o lu m n ld a ta ty p e ,
COLUMN2 co lum n2d a ta t y p e ,

COLUMN_x co lu m n _ x d a ta ty p e
)

The formatting is optional, we find that spreading it across several lines makes it easier to read,
but it’s not mandatory. The allowed column data types can be found in the MySQL documentation.
In this example, we use the “date” data type as well as variable length character strings, which
represent album and artist names, “varchar” strings can be of any length up to a pre-declared
maximum: in this case, 100.

404 Database Management Systems

To end a statement in mysql, you type a semicolon followed by ENTER, mysql will then tell
you the status of your “query” (its term for any command), and how long it took to process.
The insert syntax is even more straightforward:

i n s e r t i n t o TABLE (c o lu m n l, colum n2 , . . . / co lum n_x)
v a l u e s (v a l u e l ,v a l u e 2 , . . . ,v a lu e _ x)

Character strings must be quoted, but that’s to be expected from any programming language,
select is the workhorse statement of SQL. It is used all the time, and it can be quite sophisticated
when necessary. It can be used for simple tasks (as shown in the above example), but we will
take it a bit more seriously now.
If we had a few hundred albums stored in the database, and we only wanted to see the ones
that were made by Genesis, we could easily create a select statement that would let me get
at exactly what we wanted:

s e l e c t t i t l e , r e l e a s e d
from album s
w here a r t i s t = 'G e n e s is '
o r d e r b y r e le a s e d

This time, we specified the columns that interested me by name rather than with a * wild
card. Since the line where artist = ‘Genesis’ will restrict the records MySQL returns to those
albums performed by Genesis, it wasn’t necessary to see the artist column explicitly named in
the select list. Also, we thought it would be keen to have MySQL order the records it returns
by release date, just in case we didn’t know that Wind & Wuthering came before We Can’t
Dance, (shudder) In addition to insert and select, there are two other basic DML commands:
update, which lets you change the data stored in a table row, and delete, which lets you remove
a row from a table altogether.
Here is how to use these commands:

I ' v e j u s t a r b i t r a r i l y d e c id e d t h a t t h e r e l e a s e d a te o f
S e l l i n g E n glan d i s now 1 F eb ru ary r a t h e r th a n 1 J a n u a r y ,
m y sq l> u p d a te album s
-> s e t r e l e a s e d « ' 1973- 02- 01 '
-> w h ere t i t l e = ' .S e l l in g E n glan d b y t h e Pound'
-> and a r t i s t = 'G e n e s i s ' ;
Q uery OK, 1 row a f f e c t e d (0.03 s e c)
m y sq l> s e l e c t * from alb um s;

title artist released

Selling England by the Pound Genesis 1973-02-01
Wind & Wuthering Genesis 1976-01-01
We Can’t Dance Genesis 1991-01-01

3 rows i n s e t (0.00 s e c)
What t h e h e c k . I n e v e r r e a l l y l i k e d G e n e s is anyhow . . .
m y sq l> d e l e t e from album s w here a r t i s t ■ 'G e n e s i s ' ;
Q uery OK, 3 row s a f f e c t e d (0.00 s e c)

Databases for Web 405

m y sq l> s e l e c t * from album s;
Empty s e t (0.00 s e c)

With both "update” and “delete” commands, you need to specify a where clause. (Otherwise
every row in your table will end up modified or deleted, which is something to watch out for!)
A pretty good SQL tutorial exists on the Web and it is recommanded that you go ahead and
give it a go. It isn’t 100 percent applicable to MySQL, but that’s only because there are different
dialects of SQL. This tutorial covers one that’s fairly close to MySQL’s dialect, but with a few
minor differences (these can be accommodated by the MySQL SQL documentation).
Let us now take one last look at

r d i c e : # m ysq l show t e s t
D a ta b a s e : t e s t

T a b le s
album s

r d i c e : # m ysq lshow t e s t album s

Database: test Table: albums Rows: 0

Field Type Null Key Default Extra

title varchar(lOO) YES
artist varchar(lOO) YES
released date YES

mysqlshow has taken note of all the work we have done in mysql. When you ask mysqlshow
to display table information, it tells you nothing about the data in the table apart from the
number of rows currently residing in it. What it does tell you is the structure of the columns.
We are familiar with “Field” and “Type” already, and the other columns relate to more advanced
table information.
We now know the basics of how to work with a database. All that’s left to do is come up with
a way to “glue” these SQL techniques to the Web. We will do this with DBI, Perl’s DataBase
Interface. Essentially, we will write SQL statements directly into ePerl programs, and enable
them with Perl’s DBI module.
Don’t worry - we have already got it set up and ready to go. All that remains is the coding.

8.7 The Embedded Web-Programming Philosophy
A few years ago, Web programming started out with the Common Gateway Interface, or CGI.
Here is a quick review of the basics concepts of CGI.
When a user makes a C.GI request of a Web server, something in the URL will tip off the
server to process it as a CGI request. The hint in the URL could look like one of the following
examples. The URL requested by the user is in a /cgi-bin/ directory:

h t t p : / /www. som ew here. c o n / c g i - b i n / arandosncgiprogram

406 Database Management Systems

The Web server might be configured to automatically recognize certain file extensions as being
CGI executables: http://www.erehwon.org/gosearch.py .py commonly denotes Python programs,
another popular language for Web programming. The file extension might be a ’’generic” CGI
extension:

h t t p : / /www. x y z . n et/d o so m e t h in g . c g i

In these cases, the Web server “hands off’ to a program specified by the URL, spawning it as
a child process and providing it with the information it needs to be a "Web program": generally
environment variables and standard input (STDIN).
The program will run and produce information, which it sends to standard output (STDOUT).
Usually, the program will then create a minimal amount of HTTP header information, at the
very least, as part of its output.
The Web server will “capture” the STDOUT stream and redirect it to the user via the Web.
The user’s browser will interpret the information according to the HTTP header. This will
usually be HTML text, but CGI programs can just as easily create byte streams to be reconstructed
as JPEG images or RealAudio feeds. The canonical simple C program is:

in c lu d e < s t d io .h >
i n t m ain () {
p r i n t (" H e llo , w o r ld ! \n ") ;
>

we can turn this into a CGI program in a snap by simply adding an HTTP header.
in c lu d e < s t d io .h >
i n t m ain () {

p r i n t (" C o n te n t- t y p e : t e x t / p l a i n \ n \ n ") ;
p r i n t (" H e llo , w o r ld I \n ") ;
}

Now all that’s left to do is compile this code and put the resulting binary in my Web directory
structure and then set permissions appropriately. CGI is still used quite a bit in the Web world,
but serious complaints have been made about it.
Spawning a child process is hard work and costs time and memory. This problem with speed
has prompted many a complaint from producers of high-traffic Web sites. Web servers contain
a lot more information than just environment variables and STDIN. It would be handy
sometimes for Web programs to gain access to these extra.
The whole classical programming paradigm has proven cumbersome for most Web-programming
needs. What you are really trying to do is write a program that will intelligently compose HTML
on your behalf. So, why does it look like computer code? Why can’t it look more like HTML?
More modem ways of programming Web applications have arisen over the past few years. Their
roots lie in server-parsed HTML, or .shtml, a programming option that’s been on the scene since
almost the beginning, but was never powerful enough for serious application programming. These
languages and techniques revolve around embedding programming code into HTML files. Some
popular examples are:

• Active Server Pages (.asp files), which are used by the Microsoft IIS Web server. ASP

http://www.erehwon.org/gosearch.py

Databases for Web 407

files can be activated with several different scripting engines, including VBScript,
JavaScript, and PerlScript.

• Allaire Cold Fusion, a very handy commercial Web-development environment. Though
it started off only being available on the Windows NT side of the house, lately it is cropped
up on the UNIX side as well.

• Meta-HTML, a “free software” product available for UNIX systems. It supports ODBC,
as well as a native interface to mSQL, and provides software plug-ins to Netscape and
Apache Web servers.

Here we are not going to touch any of these; instead, we will deliver Ralf Engelschall’s ePerl,
a program that allows you to embed Perl source code into text documents. It provides a few
special facilities to help out with HTML in particular, since it’s such a pervasive file format.
Also, it integrates with mod_perl/Apache, which we did with the Apache configurations
yesterday. The modjperl/Apache combination addresses the speed and access-to-server-intemals
failings in the CGI-programming approach, and ePerl deals with the clumsiness of standard
programming languages in the creation of HTML.

e P e r l - P e r l m e e ts HTML

To be truly proficient with ePerl, you should know both HTML and Perl. You do know both,
right?
Well, in case you don’t, consider this a quick introduction. Let us start off by looking at a
simple HTML document.

<HTML>
<HEAD><TITLE>A s im p le HTML document«*/TITLE» </HEAD>
<BODY>
<P>

This is about as simple as it gets. No big deal.
</BODY>
</HTML>

Now, we will put in some embedded Perl code:
<HTML>
<HEAD><TITLE>A s l i g h t l y l e s s s im p le ePerl-HTML

docum ent </TITLEx/HEAD>
<BODY>
<P>

Just before a chunk of embedded Perl ...
<HR>
<?
my $ in d e x ;
f o r e a c h $ in d e x (1 . . 10) {
p r i n t wC u r r e n t ly on lo o p in d e x : $ in d e x \n " ;
>
l>
<HR>
<P>
. . . and now, w e 'r e j u s t a f t e r t h e e P e r l .
</BODY>

408 Database Management Systems

</HTML>

You can take a look at the output of this little gem here, but, really, the outcome should be
obvious, we just set up a simple “for” loop to output a message indicating what loop iteration
was performed. The ePerl start delimiter is <?, and the ePerl end delimiter is !>. Also, you
can still output to the Web - inside an ePerl block - with the usual Perl print statement. ePerl
really is that simple, as long as you know Perl. Only a few other things should be kept in mind
with ePerl Web programming.
ePerl automatically detects the nature of your Web documents and outputs an appropriate
HTTP content header. If your document is HTML, it outputs text/html. Otherwise, it simply
outputs text/plain. When it comes to inserting the values of variables into HTML, ePerl offers
a shortcut. The special delimiting sequence is:

< ? a>$VARJABLE 1 >
Following the !> end delimiting sequence, you can add // to prevent the <? ... !> block from
outputting a new line. This can help clean up the HTML source that ultimately outputs to
the Web. You can include other files into ePerl with an #include statement.
Here we should consider two more points before going any further with ePerl. They both have
to do with mod_perl/Apache. mod__perl is a Perl interpreter linked into the Apache Web server.
So, any Perl programs that mod_perl runs won’t actually be their own program. They will be
treated as a sort of subroutine of a primary, hidden Perl process. It speeds things up, but it
also engenders a number of nasty name space issues: You don’t want variables with the same
name in different Perl scripts “colliding” with each other. ePerl is very strict about ensuring
that this doesn’t happen. To keep ePerl happy, declare all variables as my. This keyword tells
Perl to place the variables in a private name space. It works. That’s all we need here.
Second, you have to be careful with the use of #include statements in ePerl, since a problem
can arise. Consider a small ePerl file, TT>time.iphtml:

<?
p r in t s c a l a r lo c a l t im e ;
!>/ /

We might like to include this into a larger ePerl .iphtml file:
<HTML>
<HEAD> <TITLE>The C u rren t Time</TITLEx/HEAD>
<BODY>
<P>

The current time is:
in c lu d e t im e . ip h tm l

</BODY>
</HTML>

A technique mod__perl uses to help speed up the operation of Perl programs under Apache is
to cache their compiled states. Perl programs work by undergoing a two-phase interpret/compile,
which needs to happen before tunning each and every Perl program. But mod_perl ’’remembers”
the results of previous interpret/compile stages. It will only bother running through this stage
again if the time stamp of the file has changed since it was last compiled, which is a very

Databases for Web 409

reasonable thing to do. However, what would happen if the file time.iphtml was changed?
m°d_perl isn’t very sensitive to changes made to included files. Thus you can expect erratic
behavior in such circumstances.

8.8 DBI - The DataBase Interface for Perl
DBI is a very popular Perl module. No wonder. It is the gateway between Perl and SQL-driven
databases. It allows you to perform database-administration functions from within Perl programs
and, more importantly, issue SQL commands from within your Perl source code. For each
database, there is a DataBase Driver (DBD) that links the generic DBI interface to your specific
database server. This way, Perl programs written with DBI are quite portable. You can go from
using one database server to another without having to change more than a few lines of Perl
code. To gain access to the magic of DBI, you just need a line that says use DBI; at the beginning
of your Perl program. If you have your modjperl/Apache combination set up the way We learnt
earlier, then you don’t actually have to include the use DBI; statement in each ePerl file, since
the start-up.perl file we discussed this facility to all Perl/ePefl programs that run through
modjperl. Actual DBI Perl programming can get rather repetitive and algorithmic, which makes
it easier for me to explain.
First, create an object which will act as a “database handle.” This object gives you something
to reference all future SQL queries against, since it defines your database.

$dbh = DBI-> c o n n e c t (' DBI:m y s q l: t e s t : l o c a l h o s t ' , o r
d ie $ D B I : : e r r s t r ;

The three parameters involved with DBI->connect are Sdatabase, S username, and Spassword.
Since we are using the test database - which we set up yesterday - we don’t need to specify
a username and password. You can use the string constant DBI:mysql:test:localhost as your
Sdatabase parameter, but only in this very limited case. If you start doing different things with
different databases, you will need to refer to DBI and DBD documentation to help you decide
on a new Sdatabase string. Next, write some SQL code and put it into a variable. For instance,
consider the following example:

$SQL = <<"EOT";
s e l e c t t i t l e , r e l e a s e d
from album s
w h ere a r t i s t = 'G e n e s is '
o r d e r b y r e le a s e d
EOT

This variable will become the core of a client-side cursor. A cursor is a special kind of advanced
SQL query which is executed one row at a time. That’s not really what’s going on here; the
query is indeed executed all at once, but our Perl program only has the ability to step through
the results of the query row by row, so it “feels” like a cursor to applications programmers like
us. The client-side cursor is declared and executed with:

$ c u r s o r = $d b h -> p rep a re($ S Q L);
$ c u r s o r - > e x e c u t e ;

Now, we s t e p th r o u g h i t on e row a t a t im e :
w h i le (©colum ns = $ c u r s o r -> fe tc h r o w) {

410 Database Management Systems

p r i n t ((map { " [$ _]") © colum ns) , "Xn");
>

All that we are doing with this Perl code is printing out each entry in the columns array -
the values of which are extracted from the Scursor row with the $cursor->fetchrow method
- surrounded by square brackets, []. Obviously, we could have put anything in the while loop,
not just print statements. Lastly, to recycle system resources and make clean disconnections,
we want to close-off our cursor and database handle.

$ c u r s o r -> f i n i s h ;
$ d b h -» d is c o n n e c t ;

If the particular SQL command you wanted to execute was something other than a select
statement, you wouldn’t have to bother with the while ($cursor->fetchrow) { . . . } loop. Since
you didn’t actually request any returned information, no rows for you to loop through are here.
Let’s say I didn’t delete my Genesis information in the albums database yesterday, we can take
all of these ideas and turn them into a Web-ready ePerl program.

<?
u s e DBI; # i n c a s e you d o n 't h a v e th e s t a r t u p .p e r i f i l e g o in g
my $dbh * D B I -» c o n n e c t (' D B I : m y s q l : t e s t s l o c a l h o s t ' ,
w , ")
o r d i e $D B I: : e r r s t r ;
my $SQL * <<1№EOTjr;
s e l e c t t i t l e , r e l e a s e d
from album s
w here a r t i s t * 'G e n e s is '
o r d e r by r e l e a s e d
EOT
my $ c u r s o r ■ $ d b h -» p r e p a r e ($ SQL);
$ c u r s o r - » e x e c u t e ;
! » / /
<HTML>
<HEAD»<TITLE>ePerl/DBI/HTML I n t e g r a t io n
E xam ple< /TITLE» < /HEAD»
<BODY>
<P>

The results returned from the database query regarding Genesis albums in the database are

<HR>
CTABLE BORDER»
<TR»<TH COLSPAN*2»Albums b y G enesis< /T H »< /T R »

<TR »<TH »Title</TH »<TH »R elease
Date</TH »</TR>
<?
my © colum ns;
w h i le (© colum ns = $ c u r s o r - » fe tc h r o w) {
p r in t ("<TR»", (map { "<TD»$_</TD»W }
© colum ns) , " < /T R » \n ");
)
I» / /
</TABLE»

Databases for Web

<HR>
<P>
. . . and t h a t ' s i t !
</BODY>
</HTML>
<?
$ c u r s o r - > f in i s h ;
$ d b h -» d is c o n n e c t ;
I >11

8.9 The Unavoidable CGI.pm
You will find Lincoln Stein’s CGI.pm Perl module popping up in all sorts of discussions about
Perl CGI programming. In general, CGI.pm utilizes a philosophy that’s completely opposite.
From the beginning, my intention was to help you create interactive, dynamically generated
Web pages that look like Web pages from a developer’s point of view. That’s what embedded
HTML programming is all about. And hopefully this also makes it easier and faster to code
and organize sites.
The CGI.pm viewpoint is to abstract the heck out of your Web programming. To give you a
feel for what it’s like to construct a Web page using CGI.pm.

1/ u s r / b i n / p e r l
u s e CGI;
$ q u e r y = new CGI;
p r in t $q u e r y -» h e a d e r () ,
$ q u e r y - > s t a r t _ h t m l(- t i t le = > 'M a d e w it h C G I.p m '),
'T h is i s w hat I mean b y ' ,

$ q u e r y - > b ('a b s t r a c t e d ') ,
\ /• /

$q u e r y -> e n d _ h tm l() ;
e x i t 0;

The output of this program is, predictably enough, a simple HTTP header, a starting HTML
block (including a <TITLE>), a bit of text, and finally the standard HTML closing block.
Note that this is all generated through the CGI object Squery and its associated methods:

C o n te n t - t y p e : t e x t /h t m l
< IDOCTYPE HTML PUBLIC " -//IE T F //D T D HTML//E N "»
<HTML><HEAD»<TITLE>Made w it h CGI.pm</TITLE»
</HEAD»<BODY»This i s w hat I mean b y

< B » a b s tr a c te d < /B > . </BODY» </HTML»

we try to avoid this type of programming (maybe we are just not smart enough to abstract quite
this far). However, it can come in handy at times. What is intersting like about CGI.pm is
not the abstraction, but the tools it provides. CGI.pm includes a terrific cookie handler and
form parameter decoding methods.
We all know forms, right? It’s HTML, but with teeth. View the page source to see how we
put this one together.

412 Database Management Systems

Fig. 8.1

As a Web programmer, forms are the main method of getting information from your users. When
a user clicks the Submit button, the browser packs up the information that was typed into that
form, encodes it, and ships it off to your waiting CGI (or CGI-ish) program. It is that program’s
responsibility to un-pack, decode, and use the contents of the form.
This can be a real p&in, but it doesn’t have to be. Why not let CGI.pm take care of it for you?
Form parameters can be extracted using the param method:

! / u s r / b i n / p e r l
#
B A R .cg i i s a s im p le P e r l CGI program u s in g CGI.pm.
*
A Web p a g e w it h a form c o n t a in in g t h e FOO t e x t a r e a
i s m eant t o su b m it t o B A R .cgi (p ay a t t e n t i o n t o
t h e "param" m e th o d) .
#
u s e CGI;
$ q u e r y * new CGI;
p r i n t $ q u e r y - » h ea d er () ,
$ q u e r y -> s t a r t_ h tm l (- t i t l e * > ' T e s t o f th e param m e t h o d ') ,
'T he v a lu e o f th e FOO p a ra m eter i s : ' ,

$q u ery -> p a ra m ('FOO') ,
$ q u e r y -> e n d _ h tm l() ;
e x i t 0;

This is a CGI.pm way of approaching the problem, we will use CGI.pm later on in some ePerl
code, but only to take advantage of that nifty param method.

8.10 Database Escape Sequences
we played around with some albums. One of them was “We Can’t Dance,” which is not a string
that you can blindly insert into a database through the mysql program - MySQL uses the
character as the string delimiter! It’s easy to get around this limitation by “escaping” the
character with a backslash:

m y sq l> i n s e r t i n t o a l b u m s (t i t l e , a r t i s t , r e l e a s e d)
l v a l u e s ('W e C anX 't D a n c e ', ' G e n e s i s ' , ' 1991- 01- 01 ') ;

However, it is going to be tougher to do this in a Web-databasing context. Often, what you
want to insert into the database will be taken straight from a form parameter. You could set
up your ePerl code like:

$ fo o = $ q u e r y - >param (' f o o ') ;
$ fo o s / ' / \ \ ' / g ; # t h i s P e r l command w i l l s u b s t i t u t e ' w it h \ '
$SQL ■ «"E O T ";
i n s e r t i n t o m y _ ta b le (m y_colum n)
v a lu e s (' $ f o o ')
EOT

[v iew the page source to see hou I p u t t h i s one

Databases for Web 41 3

This setup is a very bad idea for a few reasons. MySQL "escapes" characters with a backslash,
but other database programs use different escape sequences, so hardcoding a backslash will
hurt the portability of your program. Another concern with this approach is that it only tests
for single quotes - 4 - yet there are other characters that need escaping as well.
Which ones? They vary from database to database.
Don’t look up these nitpicky details in documentation and don’t try to remember them. You
will waste time and open yourself up to human error if you do. Let $dbh-> quote do it for you,
because it will do it right every time.

$ fo o ■ $dbh- > q u ote ($ q u e ry - >param (' f o o ')) ;

Squery->param(‘foo’) will return the value of the form text input foo, and $dbh-> quote will
escape (aka quote) that value as needed, according to the DBD that corresponds with your
database. One last thing that $dbh->quote provides is exterior quotes around the string it acts
on, which saves you some typing.
Embedding Referential Expressions in Here-Document Strings
In case you haven’t come across the term before, here-document strings are created with the
syntax:

$8t r i n g * <<"HERE_DOCUMENT";

You can type all sorts of stuff in here....
You can also Sinterpolate variables right into your h-d string.
The here-document string will quit when it runs into the label given at its outset.

HERE_DOCUMENT

You have seen how they are used, many times before seen me use these plenty of times before.
They’re handy, especially for making the SSQL string that is passed off to Sdbh to create a
client-side Scursor. Take a look at our SSQL creation in the Sdbh->quote example above, we
had to create an intermediate variable, Sfoo, to interpolate into the here-document string that
actually created SSQL. But that’s no good. We can do better.
The problem is that, while Sdbh->quote returns a string scalar value, it isn’t a string scalar
value. It is a function (method, actually), and those can’t be shoved willy-nilly into here-
documents. For example, the following just won’t work:

$SQL = «"EO T";
i n s e r t i n t o m y _ ta b le (m y_colum n)

v a lu e s ($ d b h -> q u o te ($ q u ery -> p a ra m (' f o o ')))
EOT

What we will do instead is "trick" the here-document with the following incantation. (Look
out for the information in bold.)

$SQL = «"E O T ";
i n s e r t i n t o m y _ ta b le (m y_colum n)
v a lu e s ($ { \ ($ d b h -> q u o te ($ q u e r y -> p a r a m (' f o o '))) >)
EOT

The \ provides a reference to the value provided by Sdbh->quote. The S{ ... } de-references
the reference. It makes for some ugly syntax, but hey, Perl was never known for being a pretty
language.

414 Database Management Systems

8.11 Embedding Subroutines
Although ePerl allows you to embed as much Perl into HTML as you want, sometimes it’s nice
to put large-ish subroutines at the end of your .iphtml files. It is just cleaner that way. Here’s
an example:

<HTML>
<HEAD><TITLE>Embedding a S u b r o u t in e < /T IT L E x /HEAD>
<BODY>

<p>
H e r e 's an HTML c a le n d a r f o r t h e c u r r e n t m onth:
<?=${ \ (' c a l | h ea d - 1 ') } !> < /B >

<P>
<?=${ \ (c a l e n d a r . t a b l e ()) } ! > / /

</BODY>
</HTML>
<?

su b c a l e n d a r _ t a b le {

*
I make c o p io u s u s e o f t h e U n ix " c a l" command h e r e .
T h is w o n 't w ork on D O S -d e r iv a t iv e m a c h in e s .
#
my @ cal = ' c a l ' ; # f i l l t h e c a l a r r a y w it h th e o u tp u t o f a s h e l l e d

c a l command
my $ r e t u r n = ' ' ;
s h i f t d e a l ; # ju n k th e f i r s t l i n e . . . i t ' s n o t n eed ed
$ r e t u m .= "<TABLE BORDER>\n";
$ r e tu r n . = ,4<TR>'r;

And now, here’s that example I mentioned that brings these concepts into play. It consists of
two programs, selection.iphtml and receive.iphtml.

3 An ePeil Database Example. Fiddling with Albums - Microsoft internet Explcwef

Use the foDowing form to query the contents of an (admittedly limited) database of CD albums of mine.
Pick an artist: Or, pick a year:

Or, type in a tide: 1 I (for all titles, just put the cursor in this field and hit ENTER)

Fig. 8.2

Databases for Web 415

Access selection.iphtml first - it will give you a form, which you might want to play around
with. And selection submits to receive.iphtml. Once it gives a listing of the results, a link will
take you back to selection.
Unfortunately, we can’t demonstrate insert, update, or delete SQL statements here - can’t open
the database to the world.
Setting Up Forms with SQL Queries - selection.iphtml

<?
my §dbh = D B I-> co n n ect ('D B I : m y s q l : t e s t : l o c a l h o s t ' , w , " ,
{ P r in tE r r o r => 0}) | | d i e $DB1 : : e r r s t r ;
!>/ /
< 1DOCTYPE HTML PUBLIC " - / / IETF//DTD HTML//EN">
<HTML>
<HEAD>
<TITLE>An e P e r l D a ta b a se Exam ple: F id d l in g w it h A lbum s</ TITLE>
</HEAD>
<BODY>
<P>

Use the following form to query the contents of an (admittedly limited) database of CD albums
of mine.

<TABLE>
<TR>
<TD><?=${ \ (sea rch _ b y _ b a n d (\$ d b h)) } lx /T D >
<TD><?*${ \ (s e a r c h b y y e a r (\$ d b h)) } 1></TD>
</TR>
< /TABLE>
<FORM A C T IO N areceive. ip h tm l METHOD*POST>
Or, ty p e i n a t i t l e : < / B > <INPUT N A M E «title SIZE=20>
(f o r a l l t i t l e s , j u s t p u t t h e c u r s o r i n t h i s f i e l d and h i t ENTER)
</FORM>
</BODY>
</HTML>
<?

$ d b h -> d is c o n n e c t;
1 >/ /
<?
su b se a rc h _ b y _ b a n d {
*
N o te t h a t I p a s s e d a r e f e r e n c e t o t h e d a ta b a se h a n d le dbh.
T h is m eans t h a t , i n o r d e r t o r e f e r e n c e i t w i t h in t h i s
s u b r o u t in e , I ' l l h a v e t o r e f e r t o i t a s $$dbh .
#
my $dbh = s h i f t ;
my $ r e tu r n = w ;
*
The " d i s t i n c t " keyw ord i n SQL w i l l o n ly r e t u r n on e row f o r a s e t

o f
i d e n t i c a l m a tc h e s . "Order by" w i l l s o r t th e r e tu r n e d s e t
a l p h a b e t i c a l l y .
#

416 Database Management Systems

a y $SQL = <<nEOT";
s e l e c t d i s t i n c t a r t i s t
from album s
o r d e r b y a r t i s t
EOT
my $ c u r s o r = $ $ d b h -> p rep a re($ S Q L);
$ c u r s o r - > e x e c u t e ;
S r e tu r n .= "<FORM A C T IO N =receive. ip h tm l METHOD=POST>\n";
$ r e t u m . = "Pick an a r t is t :< /B > < B R > \n #/;
$ r e t u r n .= "< SELECT N A M E =artist> \n";
my © f i e l d s ;
w h i le (© f i e l d s = $ c u r s o r -> fe tc h r o w) {
S r e tu r n .= "< O P T IO N > $field s[0] \n " ;
}
$ r e t u r n .= " < / SELECT >
 \n " ;
$ r e t u m .= "< INPUT TYPE=SUBMIT N A M E =artist_su b m it VALUE=\"Go

T h is A r t i s t I \" > \n " ;
$ r e t u m .= "</FORM>\n";
>
su b se a r c h _ b y _ y e a r {
my $dbh = s h i f t ;
my $ r e t u r n = ' • ;
#
I f COLUMN i s d e f in e d a s a d a te datum , th e n y e a r (COLUMN)

o n ly
t h e y e a r p o r t io n o f th e d a ta i n t h e co lu m n . "O rder b y

d esc"
w i l l r e v e r s e t h e u s u a l s o r t o r d e r .
#
my $SQL = < < "EOT";
s e l e c t d i s t i n c t y e a r (r e l e a s e d)
from album s
o r d e r b y r e l e a s e d d e s c
EOT
my $ c u r s o r = $$d b h -> p rep a re($ S Q L);
$ c u r s o r - > e x e c u t e ;
$ r e t u m .= "<FORM A C T IO N =receive. ip h tm l METHOD=POST>\n";
$ r e t u r n . = "Or, p ic k a y e a r s < /B x B R > \n " ;
$ re tu m .= "<SELECT NAME=year>\n";
my © fie ld s ;
w h i le (© f i e l d s = $ c u r s o r -> fe tc h r o w) (
$ r e t u m .= "<OPTION>$f i e l d s [0] \n " ;
}

$ c u r s o r -> f i n i s h ;
$r e t u r n .= " < /SELECT> <^R >\n";
$r e t u r n .= "<INPUT TYPE=SUBMIT NAME=year_Submit VALUE=\"Go

T h is Y e a r ! \" > \n " ;
$ r e tu r n .= "</FORM>\n";
}
!>/ /

S e a r c h on

w i l l r e t u r n

COLUMN

Search on

Databases for Web 41

Processing Form Results with CGI.pm - receive.iphtml
<?
my S c g i = new CGI; # t o ta k e a d v a n ta g e o f t h e "param" d e c o d in g

m ethod
my $dbh = D B I-> c o n n e c t('D B I : m y s q l : t e s t s l o c a lh o s t ' / w , " ,
{ P r in tE r r o r => 0}) | | d ie $DBI: : e r r s t r ;
I >/ /
< !DOCTYPE HTML PUBLIC " - / /IETF//D TD HTML//EN">
<HTML>
<HEAD>
<T IT L E >R esults from th e D a ta b a se Search</TITLE>
</HEAD>
<BODY>
<P>
< ? = $ { \ (d i s p l a y _ q u e r y _ r e s u l t s (\$ d b h , \ $ c g i)) } ! > / /
<P>
<A H R E F =select io n . ip h tm l> R e tu r n t o t h e q u ery page
</BODY>
</HTML>
<?
$ d b h -> d is c o n n e c t;
!>/ /
<?
su b d i s p la y _ q u e r y _ r e s u i t s {
#
N o te t h a t we p a s s e d r e f e r e n c e s t o th e d a ta b a s e h a n d le dbh and th e
c g i o b j e c t - t h i s m eans t h a t in o r d e r t o r e f e r e n c e them i n t h i s
s u b r o u t in e , I ' l l h ave t o r e f e r t o them w it h $$dbh and $ $ c g i .
#
my $dbh = s h i f t ;
my $ c g i = s h i f t ;

my $ r e tu r n = ' ' ;
my $SQL;
i f (d e f i n e d ($ $ c g i - > p a r a m (' t i t l e '))) {
my $SQL = <<"EOT";
s e l e c t t i t l e , a r t i s t , y e a r (r e l e a s e d)
from album s
w h ere u c a s e (t i t l e) l i k e ${ \ ($ $ d b h - > q u o t e (u c ($ $ c g i-
> p aram (' t i t l e ')) .)))
o r d e r by t i t l e , a r t i s t
EOT
#
I u s e m ore c o m p lic a te d SQL i n th e ab ove s t a t e m e n t . SQL
w o n 't
a u t o m a t i c a l l y o r d e r t h e r e tu r n e d r e s u l t s , b u t i t ' s v e r y
e a s y t o do so w it h th e
" o r d e r by" s ta te m e n t - j u s t s p e c i f y th e co lu m n s you w ant
t o a p p e a r
and t h e i r o r d e r o f p r i o r i t y . "Like" a l lo w s me t o m atch on
s u b s t r i n g s -
i f you p r o v id e t h e t i t l e " a b c ," th e n a l l album s t i t l e s
b e g in n in g w it h "abc"

418 Database Management Systems

w i l l b e r e t u r n e d . In o r d e r t o make t h i s co m p a riso n c a s e -
i n s e n s i t i v e , I
u s e u c a s e (t i t l e) i n SQL, and uc ($ $ c g i-> p a r a m (' t i t l e 7) , t o
p u t b o th s t r i n g s
i n t o t h e u p p er c a s e . The % c h a r a c te r i s a w i ld c a r d , much
l i k e * i n U n ix
f i l e name g lo b b in g .
#
my $ c u r s o r = $$d b h -> p rep a re($ S Q L);
$c u r s o r - >e x e c u t e ;
$ r e t u m .= "<TABLE BORDER>\n<TR><TH C0LSPAN=3>";
$ r e t u m .= "M atches on th e t i t l e s e a r c h f o r :
< T T x I> $ { \ ($ $ c g i - > p a r a m (' t i t l e ')) } < / l x / T T x / B x / T H x / T R > " ;
$r e tu r n . =
"<T R ><T H >T itle</T H xT H >A rtist< /T H xT H >Y ear o f R e le a s e e /T H x /T R > \n " ;

my © f ie l d s ;
w h i le (© f i e l d s = $ c u r s o r -> fe tc h r o w) {
$r e tu r n . =

" < T R x T D > $ fie ld s [0] < /T D x T D > $ f ie ld s [1] < /T D x T D > $ f ie ld s [2] < / T D x /T R > \n " ;
}

$ c u r s o r - > f in i s h ;
$ r e t u m .= n< /TABLE>\n";
> e l s e {
i f (d e f i n e d ($ $ c g i - >param (' a r t i s t _ s u b m i t '))) {
$SQL ■ «"E O T ";
s e l e c t t i t l e , y e a r (r e l e a s e d)
from album s
w here a r t i s t = ${ \ ($ $ d b h - > q u o t e ($ $ c g i - > p a r a m ('a r t i s t '))) }
o r d e r b y r e l e a s e d d e s c , t i t l e
EOT
> e l s i f (d e f i n e d ($ $ c g i-> p a r a m ('y e a r _ s u b m it '))) {
$SQL ■ < <"EOT";
s e l e c t a r t i s t , t i t l e
from album s
w here y e a r (r e l e a s e d) = ${ \ ($ $ d b h - > q u o t e ($ $ c g i-
> p a r a m ('y e a r '))) }
o r d e r b y a r t i s t , t i t l e
EOT
)

my $ c u r s o r = $ $ d b h -> p rep a re($ S Q L);
$ c u r s o r - > e x e c u t e ;
$ r e tu r n .= "<TABLE BORDER>\n<TR><TH COLSPAN*2>";
$ r e tu r n . = (d e f in e d ($ $ c g i-> p a r a m (' a r t i s t _ s u b m i t #)) ?
(" < B > A r t is t : < T T x l> " .
"${ \ ($ $ c g i - > p a r a m (' a r t i s t •))) < / ! > " .

" < /T T x /B x /T H x /T R > \n < T R > " •
"<TH>Album T it le < /T H > " .
"<TH>Year o f R e le a s e < /T H x /T R > \n //) :
("Year o f R e le a s e : < T T x l> " .
n${ \ ($ $ c g i - > p a r a m ('y e a r #)) > < /3>".

1%< /T T x /B x /T H x /T R > \n < T R > " .
"<T H >A rtist</T H xT H >A lbum T i t l e < PH>/#.
" < /T R > \n ")) ;

Databases for Web 419

my © f ie l d s ;
w h i le (© f i e l d s = $ c u r s o r -> fe tc h r o w) {
$ r e tu r n .= "<T R > < T D > $fields[0] </TD>";
$ r e t u m .= " < T D > $ fie ld s [1] < /T D x /T R > \n ,#;
)

$ c u r s o r - > f in i s h ;
$ r e t u m .= " < / TABLE > \n " ;
)
$ r e t u m ;

> I >/ /

8.12 Selecting a Client/Server Application Development Tool
Selecting a client/server development tool is one of the most challenging tasks in the world
of client/server. The number and types of tools change so quickly that it’s difficult to keep up.
Each tool differs greatly in features and capabilities, and it’s often difficult to rely on marketing
literature for the information you need to make the right selection.
To make matters worse, unlike other enabling client/server technology, the penalty for selecting
the wrong tools is severe. Many a failed client/server development project can trace critical
problems back to bad tools. What’s more, the wrong tool for the job can double the cost of
a project, or result in lost end-user productivity.
8 . 1 2 . 1 C o n s i d e r i n g A p p l i c a t i o n R e q u i r e m e n t s
First, it is helpful to understand how system requirements fit in. The trick to selecting the right
client/server development tool for the job is to go from the application requirements to the tool,
and never from the tool to the requirements. This means that you must understand the
application requirements completely, and compose a list of features and functions that the tool
must possess to meet those requirements or the criteria.
For example, an application may require a connection to an obscure legacy database, as well
as a connection to a messaging system and the ability to utilize bar codes. Those requirements
(and many others,) become the criteria to select a development tool.
Because most applications have some unique requirements, there is no single set of criteria
that you can use to select a client/server development tool. However, there are some common
requirements such as repositories, object-oriented development, database connectivity, component
integration, cross-platform support, and three-tier and n-tier support.
8 . 1 2 . 2 R e p o s i t o r i e s
Repositories in development tools let you layer things such as validation rules, fonts, colors,
and relationships on top of the physical database schema. You build an application on top of
a repository, which automatically inherits the characteristics of the metadata. The idea is to
set up all this information once and reuse it throughout the application.
Using repositories, maintenance activities become easier because you can perform global changes
by changing a single item in a repository (for example, changing the attributes of a column).
A good tool propagates the changes throughout an application through the object-oriented
concept of inheritance. You can usually override the repository when required.

4 2 0 Database Management Systems

Some repositories also store application objects along with other data-related repository information.
You can reuse these application objects from the repositories, and sometimes repositories are
shareable among developers in a project team environment.
Most specialized client/server tools such as Powersoft’s PowerBuilder, Symantec’s Enterprise
Developer, JYACC’s JAM 7, and Compuware Corp.’s Uniface provide repositories. However,
each tool implements its repository in its own special way. For example, PowerBuilder’s repository,
known as the Extended Attribute Set, is stored in the database along with the data. This lets
you build on the simple schema information in the database. PowerBuilder lets you specify
extended attributes for each column, which lets you attach application-oriented information
(for example, display formats, validation rules, initial values, and header or label text) to
columns for use throughout the PowerBuilder application. Thus, you can specify application
standards.
8 . 1 2 . 3 D a t a b a s e D e s i g n F a c i l i t y
You have to build the database sometime, and you might as well have the power to do it right
from your client/server development tool. A database design facility lets developers and DBAs
create entire databases directly from the same tool in which they build the database application.
You have an easy-to-use design facility, as well as the capability to generate the native DDL.
Most database design facilities, such as those found in PowerBuilder and Symantec Enterprise
Developer, provide graphical diagramming capabilities that resemble CASE tools. These tools
let you create icons on the screen that represent tables in the database. You can set the
relationships when you link the icons together by common keys, usually using a drag-and-drop
facility. Once complete, the tool can generate the DDL automatically and create the objects
in the physical database. Some tools let you roll back database changes.
Some tools support database design through crude SQL interfaces, which require you to write
the proper SQL code, and some tools require you to use external facilities such as CASE tools
to create and alter a database. These are less desirable characteristics.

8 . 1 2 . 4 D a t a b a s e C o n n e c t i v i t y
Tools should support most popular databases, including Oracle, DB/2, Informix, and Sybase,
using native 32-bit drivers, and should offer support for many other databases through ODBC.
Database connectivity should be built directly into the tools, so you don’t have to integrate
third-party middleware. Some tools let you tune the application for a particular database. For
example, setting cache size, buffer size, bucket size, and so forth can help meet the particular
needs of the application using the database server.
In addition, the tool should be decoupled from the database server. In other words, you should
be able to swap out databases quickly, making only minor modifications to the application. Tools
should also support heterogeneous database connectivity, or the ability to connect to more than
one brand of database server at a given time, or multiple servers running the same DBMS.

Databases for Web 421

8 . 1 2 . 5 A p p l i c a t i o n D e s i g n F a c i l i t y
A less common tool feature is an application design facility that lets you model the processes.
Generally speaking, most development tools leave this to CASE tools and methodologies (for
example, Booch, Coad/Yourdon, OMT, and so on). However, most specialized client/server
development tools provide simple mechanisms to do things such as browse an application’s class
hierarchy. This lets you view how each object interacts with the others and move objects around
to structure the application better.
Application partitioning tools such as Forte and Dynasty provide high-level application design
facilities, letting you define application objects in a single environment and then partition them
to available application servers accessible by a network. Once the objects exist, you can move
them to application servers for realtime processing by dragging and dropping them inside the
application partitioning facility. Although this is a functional process, it is an example of an
application design facility built into a development tool.
8 . 1 2 . 6 C o r r e c t U s e o f O b j e c t s
Most client/server development tools use an object-oriented development model. However, they
do so in different ways. Object- oriented development, simply put, means that a development
tool or language supports inheritance, encapsulation, and polymorphism.
Using an object-oriented model, a tool can separate an application into classes and objects
(instances of a class), or self-contained modules that encapsulate both the data and the methods
that interact with the data. Inheritance lets developers program from the generic to the specific,
reusing as much code as possible. If designed correctly, object-oriented systems are easy to build
and maintain.
Some tools support multiple inheritance, or the ability to inherit data and methods from two
classes, combining them in a single class. Although this is sometimes nice to have, it is a
dangerous practice. Combining methods and data can cause conflicts, and they are difficult
to diagnose in an object-oriented environment because the problems actually exist in higher-
level classes. Therefore, use multiple inheritance at your own risk.
8 . 1 2 . 7 P r o g r a m m i n g L a n g u a g e
Programming languages give you the ability to make the application manipulate data and set
or alter properties of controls, forms, and dialogs, as well as access disk files, invoke the operating
system’s API, and many other low-level processing tasks. Keep in mind that the tool should
emphasize graphical design and minimize the amount of hand-coding necessary.
Most client/server tools provide fourth generation languages (4GLs), or high-level languages
(sometimes called scripts). These are often proprietary languages.
The programming language needs to provide typical operators such as if-then-else and looping
logic. Programming languages should also let you manipulate the database directly.'Moreover,
the programming language should provide object-oriented features, meaning support tor
inheritance, encapsulation, and polymorphism, not procedural programming.

422 Database Management Systems

8 . 1 2 . 8 A p p l i c a t i o n D e p l o y m e n t
Client/server development tools need to have an efficient application deployment mechanism,
or the ability to distribute runtime versions of the application to end users. This should be royalty-
free. Most client/server tools compile applications for distribution, but the differences lie in the
compiled code.
Typically, client/server development tools provide p-code interpreters. This means that the tool
creates a file that musst be interpreted at runtime into machine language for the processor.
This provides an easier development environment because the code does not go directly to the
processor as a native executable, but performance can suffer. A few client/server tools (such
as Delphi), as well as most 3GLs, provide true compilers that create native executables, which
are preferable.
8 . 1 2 . 9 P e r f o r m a n c e
No matter what deployment mechanism the tool uses, application performance varies greatly
from tool to tool. Performance is critical because it is how the user perceives the application.
Performance problems are difficult to solve with faster processors because it’s inevitable that
lower-powered clients will run your application.
There are two performance considerations: application performance and database performance.
Client/server tools should provide consistent application performance when painting screens,
displaying data, and jumping quickly from screen to screen. Doubling the number of objects
in an application should not greatly affect the performance of an application.
Tools should access databases quickly, moving the data efficiently from the physical database
over the network to local memory. Although much of this is dependent on the capabilities of
the database server, application performance should not change when the size of the database
increases. Measuring performance should not be a subjective process (for example, “seems fast”).
To obtain valid results, you should compare tools in the same category, using similar configurations
(for example, database, middleware, and so on).
8 . 1 2 . 1 0 T h i r d - P a r t y C o m p o n e n t I n t e g r a t i o n
Today, the key to quick development is the ability to build as much of an application as possible
from prebuilt component parts. Client/server development tools should support standard
components such as VBXs and the newer ActiveX (formerly called OCX) controls. Tools that
don’t support components lock you out of a world that could potentially save you a lot of money
— as much as 50 percent of the coding time, depending on the project.
Components are added in as objects to applications to solve particular problems, such as the
need for a built-in calculator, access to middleware layers, or high-level financial calculations.
An application can be made up of many components that were either developed in-house, or
better yet, purchased from third-party vendors.
8 . 1 2 . 1 1 C r o s s - P l a t f o r m S u p p o r t
Cross-platform support promises that the client/server tool will support more than one operating
system and GUI. This means that you can write an application one time, then port it without

Databases for Web 423

modification to other platforms. Some tools allow porting to similar platforms such as Windows
3.11, Windows 95, and Windows NT (we call these second-tier tools). Others support very
dissimilar platforms, including Unix, Macintosh, and OS/2 (we call these first-tier cross-platform
tools).
There is a tradeoff to cross-platform support. When a tool supports many different platforms,
it has a tendency to do no single platform well. Applications running on many of the supported
platforms lack a native look and feel or have performance problems. Therefore, it’s a good idea
to use cross- platform tools only if you really need them.
When considering cross-platform tools, you need to consider development platforms vs. deployment
platforms. Some cross- platform tools only let you build an application on a particular platform
(for example, Windows 3.11). Once an application exists, you can deploy it to other platforms
that the cross-platform tool supports. However, changes to and debugging of an application must
occur on the originating platform.
8 . 1 2 . 1 2 R o o m t o G r o w
Scalability refers to a tool’s ability to support a growing number of clients. Many specialized
client/server tools don’t scale well. Applications built with the tool should handle additional
clients without a significant impact on performance or stability. Scalability is also a function
of how efficiently the client uses the database server.
Products that scale well include tools that support application partitioning through the use of
proprietary ORBs (for example, Dynasty and Forte), remote OLE automation or Distributed
COM (PowerBuilder, Delphi, and Visual Basic), TP monitors (EncinaBuilder from Powersoft
and JAM/TPI from JYACC), or CORBA- compliant distributed objects (usually accessible using
DLLs). These tools can off-load some of the application processing to a standalone application
server. In addition, an application server is able to funnel database requests, thus placing a
lighter per- user load on the database server.

CHAPTER < 9

D istr ib u ted D atabase

9.1 Overview of Disributed Database
Information technology (IT) systems are experiencing rapid growth in numbers of users supported
and system complexity. The IT community must handle the requirements of mission-critical
applications, capacity growth rates that exceed 50 percent annually, excessive downtime, and
increasing business dependence on computer systems. To add a further layer of complexity,
systems management is now an issue-how can a system administrator or network manager
monitor and control all of the computing resources? Without centralized management tools,
he or she cannot effectively manage this data.
The quantity of data being stored on distributed systems has increased exponentially over the
last decade. From 1996 to 1998, Windows NT-based server data has grown from 11 to 39
petabytes worldwide. This data explosion shows no signs of slowing down; typical server
capacities that exceed 100 gigabytes are not far in the future. By 2002, data stored on the
Windows Server operating system is projected to exceed 260 petabytes worldwide. Much of the
data stored on Windows-based servers is business- critical. In a recent Strategic Research study
of over 200 sites, 31 percent of the servers were running Windows NT version 4.0 or earlier
to host mission-critical databases.
The migration of mission-critical systems to distributed environments, increases in the number
of Web-based applications, and general growth in the enterprise end-user community all
contribute to this rapid growth. As the number of client/server systems increases in an organization,
so does the number of storage subsystems. Unfortunately, tools for remote management and
management standards have only recently become mainstream in the distributed systems
market-place.

Distributed Database 4 2 5

The type of data being stored on client/server systems is changing as well. Growth in the
Internet/intranet space and 32- bit and 64-bit architectures gives impetus to the changes in
data seen in the distributed network. First, the increase in popularity in Web-based applications
has resulted in an increase of multimedia data types (including large video streams) that have
significant storage requirements. Moreover, the ease of use and low cost of ownership of Web-
based applications are sparking a trend toward publishing data that is content-oriented, rather
than application-oriented, as was previously the case. Content- style data ranges from static
(for example, publishing a book online) to dynamic (such as publishing a daily newspaper).
Finally, 32-bit and 64-bit platform support results in the development of more powerful, graphically
intense applications, which in turn create large volumes of data that present significant storage
management challenges.
As the popularity of the client/server infrastructure increases, the cost and complexity of
managing distributed storage increases as well. The LAN environment has seen a 60-percent
yearly growth rate of storage management expenditures since 1993.
Storage management and storage recovery is a concern for many IT managers. While most
recent IT magazines and articles address concerns with desktop application management and
software distribution, a large portion of enterprise computing budgets is spent on storage issues.
As much as 25 percent of a typical computing budget is dedicated to storage, storage management,
and other storage-related activity.
Storage limitations can also constrain other areas in enterprise computing. For example, the
ultimate scalability of application implementations is often limited by the effectiveness of the
storage and storage-recovery mechanisms in place. Without centralized control and management
of distributed systems, applications experience excessive downtime, much of which is caused
by storage-related failures. Server outages and inconsistent access to data directly affect
productivity. Through interviews with hundreds of IT managers, Strategic Research has
determined that centralized sites (those using central control and management tools to manage
distributed and host storage) typically experience less than half of the downtime of sites without
centralized control and management. A representative centralized site experiences 26 hours
of downtime annually, compared to a decentralized site that has 54 annual hours of downtime.
Conservative estimates place downtime costs at $80,000 per hour, which means that centralized
sites save over $2.2 million dollars in downtime-related costs each year.
The cost of managing a megabyte of storage on distributed systems has decreased from $8 per
megabyte in 1994 to $3 per megabyte in 1998, largely as a result of storage management tools
that support centralized storage management in distributed systems.
Innovations are emerging in the storage industry to meet the growing demands of client/server
computing. These innovations include new storage devices, media types, data transfer protocols,
and management standards. Storage concepts such as hierarchical storage management (HSM),
bulk media changers/libraries, data vaulting managers, and fault-tolerant storage subsystems
are being introduced by a variety of vendors. Storage requirements will continue to increase
because the trends described above are just the beginning of a new wave in the need for
increased storage and storage management. As enterprise storage becomes more complex, it

426 Database Management Systems

becomes essential for IT managers to be able to effectively manage it in order to be successful
in meeting their short-term and long-term computing goals.
9.1 Another Basis of Classifying Databases
Two common methodologies for database management are centralized data processing and
client/server processing. With centralized processing, one computer controls all data functions,
including storage, processing, applications, and programming. In a client/server processing
environment, the server controls the database and its storage, while clients process applications
to access the server base and retrieve information.
Databases are classified based on physical configuration:

• Centarilised
• Clinet server
• Distributed

9 .1 .1 C e n t r a l i s e d C o n t r o l
The concept of centralised control implies that there will be some identifiable person or persons
who have a central responsibility for the operational data in the DBMS. That person is the
Database Administrator (DBA).
The following are some advantages that accrue from this notion of centralised control:

• Redundancy eliminated
• Inconsistency avoided
• Data shared
• Standards enforced
• Security applied
• Integrity maintained
• Requiremants balanced
• Centralized Databases

A centralized database (e.g., hospital information system) can be very big and complex, but
offers the following advantages:

• Shared data, reduced redundancy
• Fewer inconsistencies in data
• Enforcement of standards
• Security restrictions
• Balancing of conflicting requirements

9 . 1 . 2 D i s t r i b u t e d D B M S
The DB is stored across many computers (servers or hosts) data is combined from several servers
many computers may help in the processing of one query machines may be both a client and
a server.

Distributed Database 427

Fig. 9.1

Each type of processing has its own advantages and disadvantages; therefore, the tradeoffs must
be considered. While both methods allow sharing of data by users and have communications
capabilities, client/server processing reduces communications costs and distributes the processing
burden between the main server machine and the supported clients, providing more power on
both ends. O n the other hand, centralized data processing offers more database control. With
processing in one location, it is easier to enforce system and procedural standards, to maintain
security and integrity, and to balance conflicting processing requirements.

9 . 1 . 3 C l i e n t / S e r v e r D a t a b a s e s

CLIENT SERVER

REQUEST

RESPONSE

1 u :
----- Q -

Send Request
Read Results

Process Request
Send Back Results

Fig 9.1

428 Database Management Systems

As we discussed earlier, most databases that you will come across these days will be relational
databases. However, there are many types of relational databases and not all of them will be
useful for web applications.
In particular, it will be the client/server databases rather than the stand-alone packages that
you will use for the web.
A client/server database works like this: A database server is left running 24 hours a day, and
7 days a week. Thus, the server can handle database requests at any hour. Database requests
come in from "clients” who access the database through its command line interface or by
connecting to a database socket. Requests are handled as they come in and multiple requests
can be handled at one time.
For web applications which must be available for world wide time zone usage, it is essential
to build upon a client/server database which can run all the time.
For the most part, these are the only types of databases that Internet Service Providers will
even provide. However, if you are serving web pages yourself, you should consider many of the
excellent freeware, shareware or commercial products around. You might like postgres for UNIX
since we prefer a UNIX-based web server. However, there are plenty of good applications for
PC and Mac as well.

• DBMS is housed within the server
• Clients access the server via some network
• Application programs are stored on the client machines

9.2 Distributed Database
A distributed database can be defined as consisting of a collection of data with different parts
under the control of separate DBMSs running on independent computer systems. All the
computers are interconnected and each system has autonomous processing capability serving
local applications. Each system participates, as well, in the execution of one or more global
applications. Such applications require data from more than one site. The distributed nature
of the database is hidden from users and this transperency manifests itself in a number of ways.
Although there are a number of advantages to using a distributed DBMS, there are also a
number of problems and implementation issues. Finally, data in a distributed DBMS can be
partitioned or replicated or both.
The DB is stored across many computers (servers or hosts) data is combined from several servers
many computers may help in the processing of one query machines may be both a client and
a server
9 .2 .1 M a j o r F e a t u r e s o f a D D B
The major features of a DDB are the following:

• Data stored at a number of sites, each site logically single processor
• Sites are interconnected by a network rather than a multiprocessor configuration
• DDB is logically a single database (although each site is a database site)

D is tr ib u te d D atabase 4 2 9

• D D B M S has full functionality of a D B M S

T o the user, the distributed database system should appear exactly like a non-distributed
database system.

9.2.2 Advantages of Distributed Database
Advantages of distributed database systems are as follows:

• Improved reliability/availability

• Capacity and growth

• Distributed database sharing

• Efficiency and Flexibility

• Local autonomy (in enterprises that are distributed already)

• Improved performance (since data is stored close to where needed and a query may be
split over several sites and executed in parallel)

• Economics

(1) R eliability and A vailability

A n advantage of distributed databases is that even when a portion of a system (i.e. a local
site) is down, the overall system remains available. W ith replicated data, the failure of one
site still allows access to the replicated copy of the data from another site. The remaining sites
continue to function. The greater accessibility enhances the reliability of the system.

(2) C apacity and G row th

A n advantage of distributed databases is that as the organisation grows, new sites can be added
with little or no upheaval to the D B M S . Compare this to the situation in a centralised system,
where growth entails upgrading with changes in hardware and software that effect the entire
database.

(3) D istributed D atabase Sharing

A n advantage of distributed databases is that users at a given site are able to access data stored
at other sites and at the same time retain control over the data at their own site.

(4) E fficiency and F lexibility

A n advantage of distributed databases is that data is physically stored close to the anticipated
point of use. Hence if the usage patterns change then data can be dynamically moved or
replicated to where it is most needed.

9 . 3 D i s a d v a n t a g e s o f D i s t r i b u t e d D a t a b a s e S y s t e m s

Disadvantages of distributed database systems are as follows:

• Complexity (greater potential for bugs in software)

• Cost (software development can be much more complex and therefore costly. Also,
exchange of messages and additional computations involve increased overheads)

• Distribution of control (no single database administrator controls the D D B)

• Security (since the system is distributed the chances of security lapses are greater)

4 3 0 D atabase M a n a g e m e n t S ystem s

• Difficult to change (since all sites have control of the their own sites)

• Lack of experience (enough experience is not available in developing distributed systems)

9 . 4 D i s t r i b u t e d D a t a b a s e P r o b l e m s

The disadvantages of the distributed approach to D B M S implementation are its cost and
complexity. A distributed system, which hides its distributed nature from the end user, is more
complex than the centralised system. Increased complexity means that the aquisition and
maintainence costs of the system are higher than those for a centralised D B M S . The parallel
nature of the system means that errors are harder to avoid and those in the applications are
difficult to pinpoint. In addition, the distributed system, by its very nature, entails a large
communication overhead in coordinating messages between the different sites.

9 . 5 D i s t r i b u t e d D a t a b a s e I s s u e s

There are a number of issues or problems which are peculiar to a distributed database and these
require novel solutions. These include the following:

• Distributed query optimisation

• Distributed update propagation

• Distributed concurrency control

• Distributed catalog management

9 . 6 G l o b a l Q u e r y O p t i m i z a t i o n

Global query optimization is complex because of:

• Cost models

• Fragmentation and replication

• Large solution space from which to choose

• Computing cost itself can be complex since the cost is a weighted combination of the
I/O, C P U and communications costs. Often one of the two cost models are used; one
may wish to minimize the total cost (time) or the response time. Fragmentation and
replication add another complexity to finding an optimum query plan.

9 . 7 D i s t r i b u t e d U p d a t e P r o p a g a t i o n

Update propagation in a distributed database is problematic because of the fact that there may
be more than one copy of a piece of data because of replication, and data may be split up because
of partitioning. A n y updates to data performed by any user must be propagated to all copies
throughout the database. The use of snapshots is one technique for implementing this.

9 . 8 C o n c u r r e n c y O v e r v i e w

Most D B M S ’s are multiple users systems; that is, they are systems that allow any number of
transactions to access the same database at the same time. In such a system some kind of
concurrency control mechanism is needed to ensure that concurrent transactions do not

D is tr ib u te d D a tabase 431

interfere with each other’s operation. There are essentially three ways in which things can go
wrong - three ways in which a transaction, though correct in itself, can nevertheless produce
the wrong answer because of interference on the part of some other transaction. The interfering
transaction may also be correct in itself as it is the interleaving of operations from the two correct
transactions that produces the overall incorrect result. The three problems are:

• The lost update problem.

• The uncommitted dependency problem.

• The inconsistent analysis problem.

The concurrency control techniques most commonly used are:

• Locking.

• Timestamping.

9 . 9 D i s t r i b u t e d C o n c u r r e n c y C o n t r o l

Concurrency control in distributed databases can be done in several ways. Locking and
timestamping are two techniques which can be used, but timestamping is generally preferred.

The problems of concurrency control in a distributed D B M S are more severe than in a
centralised D B M S because of the fact that data may be replicated and partitioned. If a user
wants unique access to a piece of data, for example to perform an update or a read, the D B M S
must be able to guarantee unique access to that data, which is difficult if there are copies
throughout the sites in the distributed database.

9 . 1 0 D i s t r i b u t e d C a t a l o g M a n a g e m e n t

The distributed database catalog entries must specify site(s) at which data is being stored in
addition to data in a system catalog in a centralised D B M S . Because of data partitioning and
replication, this extra information is needed. There are a number of approaches to implementing
a distributed database catalog. There are as follows:

• Centralised - Keep one master copy of the catalog;

• Fully replicated - Keep one copy of the catalog at each site;

• Partitioned - Partition and replicate the catalog as usage patterns demand; and

• Centralised/partitioned - Combination of the above.

4 3 2 D atabase M a n a g e m e n t S ystem s

□ □
fa/ Centraf/sed (b/ Fuffv rep/icated

fd Partitioned (d/ Centra/ised/frart/t/oned

Fig 9.4

9 . 1 1 S n a p s h o t s

A snapshot, like a view, is a derived relation (however, snapshot are physically stored in the
database), and are used for implementing update propogation in distributed databases. Snapshots
allow freezing without preventing transactions which are suitable for applications which tolerate
earlier versions of data. Supports one master copy and x snapshots. Note that snapshots are read
only.

9 . 1 2 T r a n s p a r e n c y a n d A u t o n o m y

Transparency involves the user not having to know how a relation is stored in the D D B ; it
is the system capability to hide the details of data distribution from the user.

Autonomy is the degree to which a designer or administrator of one site may be independent
of the remainder of the distributed system.

It is clearly undesirable for the users to have to know which fragment of the relation they require
to process the query that they are posing. Similarly, the users should not need to know which
copy of a replicated relation or fragment they need to use. It should be upto the system to figure
out which fragment or fragments of a relation a query requires and which copy of a fragment
the system will use to process the query. This is called replication and fragmentation transparency.

A user should also not need to know where the data is located and should be able to refer
to a relation by name which could then be translated by the system into full name that includes
the location of the relation. This is location transparency.

D is tr ib u te d D a tabase 4 3 3

9 . 1 3 D a ^ a R e p l i c a t i o n

In a distributed D B M S a relational table or a partition may be replicated or copied, and copies
may be distributed throughout the database. This feature can cause problems for propagating
updates and concurrency control and this is transparent to users in distributed databases.

9 . 1 4 R e p l i c a t i o n T r a n s p a r e n c y

By replication transparency in a distributed database we mean that partitioned/replicated
updates must be propagated through to all copies in existence. Replication is desirable and
transparent.

9 . 1 5 D i s t r i b u t e d D a t a b a s e T r a n s p a r e n c y

A distributed D B M S should provide a number of features which make the distributed nature
of the D B M S transparent to the user. These include the following:

• Location transparency

• Replication transparency

• Performance transparency

• Transaction transparency

• Catalog transparency

The distributed database should look like a centralised system to the users. Problems of the
distributed database are at the internal level.

9 . 1 6 L o c a t i o n T r a n s p a r e n c y

By location transparency in a distributed D B M S we mean that users/programs should not need
to know where data is stored. This is a system catalog concern only. This simplifies application
program logic and allows data movement within the distributed database as usage patterns
emerge.

9 . 1 7 R e p l i c a t i o n o r F r a g m e n t a t i o n o f D a t a

The unit of distribution may be a relation or a fragment; often fragment is a more suitable unit
since it allows parallel processing of a query.

Replication improves availability since the system would continue to be fully functional even
if a site goes down. Replication also allows increased parallelism since several sites could be
operating on the same relations at the same time. Replication does result in increased overheads
on update.

Fragmentation may be horizontal, vertical or hybrid (or mixed). Horizontal fragmentation splits
a relation by assigning each tuple of the relation to a fragment of the relation. Often horizontal
fragmentation is based on predicates defined on that relation. Vertical fragmentation splits the
relation by decomposing a relation into several subsets of the attributes. Relation R produces
fragments each of which contains a subset of attributes of R as well as the primary key of R.
A im of vertical fragmentation is to put together those attributes that are accessed together.

4 3 4 D atabase M a n a g e m e n t S ystem s

Mixed fragmentation uses both vertical and horizontal fragmentation. To obtain a sensible
fragmentation design, it is necessary to know some information about the database as well as
about applications. It is useful to know the predicates used in the application queries - at least
the ‘important’ ones.

A im is to have applications using only one fragment.

Fragmentation must provide completeness (all information in a relation must be available in
the fragments), reconstruction (the original relation should be able to be reconstructed from
the fragments) and disjointedness (no information should be stored twice unless absolutely
essential, for example, the key needs to be duplicated in vertical fragmentation).

9 . 1 8 D a t a P a r t i t i o n i n g

In a distributed D B M S a relational table may be broken up into two or more non-overlapping
partitions or slices. A table may be broken up horizontally, vertically, or a combination of both.
Paritions may in turn be replicated. This feature causes problems for concurrency control and
catalog management in distributed databases. This is transparent to users.

9 . 1 9 C l i e n t / S e r v e r S o f t w a r e A r c h i t e c t u r e s — A n O v e r v i e w

9.19.1 Purpose and Origin
The term client/server was first used in the 1980s in reference to personal computers (PCs)
on a network. The actual client/server model started gaining acceptance in the late 1980s.
The client/server software architecture is a versatile, message- based and modular infrastructure
that is intended to improve usability, flexibility, interoperability, and scalability as compared
to centralized, mainframe, time sharing computing.

A client is defined as a requester of services and a server is defined as the provider of services.
A single machine can be both a client and a server depending on the software configuration.
For details on client/server software architectures.

9.19.2 Why Client/Server ?
The business environment of the 1990’s is rapidly changing. Corporate organizations are flattening
their organization structures to be more responsive to customers and the marketplace. Traditional
competitors are now cooperating with one another while competing at the same time in different
markets. Key competitive advantages are characteristics like time-to- market, customer service
and simplicity. Being first to a market with a quality product or service which delights customers
can be the difference between market success or failure. Time to market is now measured in
weeks not years, and being first may be the only advantage one company has over its competitors.
Customer service means delighting the customer with both a product or service as well as being
responsive to changing customer requirements. Organizational structures are flattening in order
to empower employees to make decisions closer to the customer, to be more responsive to the
customer. Personal computers provide a whole new level of computing flexibility, with simple
easy to use programs. These programs are transportable, allowing businesses to react instantly
to customers needs. Simplicity, to the end user, is critical to the success of client/server

D is tr ib u te d D atabase 4 3 5

computing. End users need information access as easy as getting cash from an automated teller
machine (A T M). Customers can get money from their bank account at any A T M across the
country with just an A T M card and a password. Client/server computing means changing our
information systems to support the changes of the business environment. Lets look at an analogy.

9.19.3 Client/Server Analogy
Restaurant service is an analogy to help explain client/server computing. The customer (client)
makes a series of requests for a specific set of services that may include an appetizer, beverage,
main course and a dessert. These requests are all typically made to one person, the waiter
(server). The services may actually be provided by a number of other people in the restaurant
including the bus boy, bartender, and a variety of chefs. However, to the customer, these services
are all provided by one person, the waiter. The customer doesn’t want to know who performs
what service. He would just like to have a high quality meal delivered in a timely fashion.
The client, in client/server computing is much like the customer in a restaurant. The client
requests a service, like running an application or accessing some information from a data base.
The server becomes responsible for performing the service and returning the information to the
client in a timely manner. The server is like the waiter in a restaurant responsible for handling
the client’s requests and delivering the finished product to the client.

9.19.4 Client/Server Definition
Client/server computing provides the seamless integration of personal computers with host
systems. Th is style of computing allows organizations to be responsive to their customers while
still maintaining the security and integrity to manage their business effectively. Client/server
computing generally refers to a computing model where two or more computers interact in such
a way that one provides services to the other. This model allows customers to access information
resources and services located anywhere within the customers information network. Customers
are very interested in client/server computing because it allows them to be more responsive,
as well as to effectively utilize all computing resources within their network.

A s the term implies, client/server computing has two basic components, a client and a server.
The client requests a service to be performed. This service might be to run an application,
query a data base, print a document, or even perform a backup or recovery procedure. The
server is the resource that handles the client’s request. Clients are typically thought of as
personal computers but a client can be a midrange system or even a mainframe. Servers are
typically thought of as a midrange or mainframe system, however a server can be another personal
computer on the network. Client/server networks are like our restaurant example where specific
computers provide one or more services to other computers within a network. Today’s networks
have computers for file serving, data base serving, application serving, and communications
serving. Each of these servers are dedicated devices which provide a specific service to all
authorized users within a network. These servers also allow some of the processing to be handled
on each users PC and some on a centralized server.

4 3 6 D atabase M a n a g e m e n t S ys tem s

For example, a data base server uses the PC for the display (user interface) and processing
(application logic) portions of an application, while the server provides data management portion
of the application. O n the other hand, an application server uses the P C for the display portion
of an application, while using the server for both the processing and data management portions.

Client/Server systems allow many people to share centralized data. This requires a network of
personal computers (PCs) which are the "clients," to be linked to a central computer, known
as the "server." A n y kind of data (addresses, values, codes, phone numbers and so forth) can
be stored in a database on the server. The database is accessed with a software application
that runs on client PCs. Sometimes the work of the application is done on the server, and
sometimes it’s done on the PC - this functionality is more efficient than traditional computer
systems because work can be taken from the server, computed locally with a PC, then moved
back to the server. This process is not so taxing on the PCs or the server because they share
data, leading to more efficient use of computing resources.

Applications used in client/server systems are usually of the Graphical User Interface type, or
“G U I” (pronounced “gooey”). This type of application is usually in a Windows(tm) format, so
you can either use a mouse to point-and-click through the application or navigate with
keystrokes. G U I applications are much easier to use than traditional mainframe-based applications,
which leads to increased productivity and quality, as well as a reduced training investment.

Most of the time businesses have very specific types of data in their databases (whether Oracle
or Sybase), so the application used to access this data has to be customized. Th is can be done
with many development tools: Java, SilverStream, PowerBuilder, Visual Basic, Delphi, C + +
or Visual C + + , M S Access, H T M L , JavaScript, and W ebPB

9 . 2 0 C l i e n t / s e r v e r o n I n t e r n e t

Most transactions that occur on the Internet are client/server based. Some examples include:

• F T P (file transfer protocol) - A n FT P client program contacts an FT P server and requests
the transfer of a file; the FT P server responds by transferring the file to the client.

• W W W (World Wide Web) - In this case the client program is a browser. A browser
requests the contents of a web page and displays the results on the user’s computer.

• E-MAIL - A mail client program enables the user to interact with a server in order to
access, read and send electronic mail messages.

Client/server computing is a common networking model which enables many users to access
information in an efficient manner. Generally, the user’s computer is called the client and the
machine that contains the information being accessed is called the server.

The client computer runs an application called a client program. A client program enables a
user to send a request for information to the server and read the results that the server sends
back. The server computer runs a server program which processes requests and sends results
back to the client. M ost Internet transactions, such as FTP, e-mail and accessing web pages
are based on client/server networking.

D is tr ib u te d D atabase 4 3 7

9 . 2 1 C l i e n t - S e r v e r A p p l i c a t i o n s

Client/Server technology is the fastest growing segment of systems development and deployment
in the financial services industry.

The viability of the technology has increased to the point that client/server implementations
have expanded well beyond the original domain of this technology (e.g., Decision Support
Systems (DSS), and departmental, highly specialized transaction processing). Several mission
critical, enterprise wide client/server systems have been deployed throughout the financial
services industry. Large scale implementations (200+ clients) have grown tremendously, as well.

The increased reliance on client/server technology has resulted in far heavier utilization of local
and wide area connectivity. Network systems management, control and security remain the
greatest concern in managing the ever increasing distributed computing environment.

Client/server technology is not being utilized in the “downsizing” and "rightsizing" methodology
that many industry experts had anticipated it would be. The large majority (94^) of client/
server applications being developed in U S banks are new applications. Only 6 % of qlient/server
development represent downsized applications (e.g., retooling pre-existing host applications).

Client/server spending is the fastest growing segment of U S bank IT spending. The ¿lient/server
spending is approximately about 25.0% C A G R .

This technology description provides a summary of some common client/server architectures
and, for completeness, also summarizes mainframe and file sharing architectures. Detailed
descriptions for many of the individual architectures are provided elsewhere in the document.

9.21.1 Mainframe Architecture (not a client/server architecture)
W ith mainframe software architectures all intelligence is within the central host computer.
Users interact with the host through a terminal that captures keystrokes and sends that
information to the host. Mainframe software architectures are not tied to a hardware platform.
User interaction can be done using PCs and U N IX workstations. A limitation of mainframe
software architectures is that they do not easily support graphical user interfaces or access to
multiple databases from geographically dispersed sites. In the last few years, mainframes have
found a new use as a server in distributed client/server architectures.

9.21.2 File Sharing Architecture (not a client/server architecture)
The original P C networks were based on file sharing architectures, where the server downloads
files from the shared location to the desktop environment. The requested user job is then run
(including logic and data) in the desktop environment. File sharing architectures work if shared
usage is low, update contention is low, and the volume of data to be transferred is low. In the
1990s, P C L A N (local area network) computing changed because the capacity of the file sharing
was strained as the number of online user grew (it can only satisfy about 12 users simultaneously)
and graphical user interfaces (GUIs) became popular (making main-frame and terminal displays
appear out of date). PCs are now being used in client/server architectures.

A s a result of the limitations of file sharing architectures, the client/server architecture emerged.
This approach introduced a database server to replace the file server. Using a relational database
management system (D B M S), user queries could be answered directly. The client/server

4 3 8 D atabase M a n a g e m e n t S ys tem s

architecture reduced network traffic by providing a query response rather than total file transfer.
It improves multi-user updating through a G U I front end to a shared database. In client/server
architectures, Remote Procedure Calls (RPCs) or standard query language (SQ L) statements
are typically used to communicate between the client and server.

9 . 2 2 C l i e n t - S e r v e r B a s i c s
There are four forms of distributed processes that are widely used in distributed computing:
client, server, peer, and filter.

• Clients are usually computational entities that request service resources.
• Servers are usually resource entities that respond to service requests.
• Peers are usually identical to one another and may make or service requests.
• Filters are usually request or response relays that consistently modify what they relay.

Clients are consumers of services and resources. Servers are providers of services and resources.
Peers may consume and provide services and resources but are not generally specialized. Filters
are sometimes both client and server and frequently act as an intermediary in client-server
systems. Specialization tends to reduce the amount of common code that appears in multiple
places. In other words, such specialization has a tendency to keep application code in a single
place and not spread it around an enterprise.

Task division between clients and servers is a difficult problem. A s in any distributed application
the sharing of services and their availability must be considered. For instance, in the traditional
C -S we have a G U I on the client and a database on the server. In such a case, the computation
is usually best moved onto the client. This is a typical two-tier client-server environment.

9.22.1 Client-Server Architecture
Client-server architecture is a particular type of distributed computing networks which is very
popular and among he most widely used today for business computing networks. Client-server
architecture concerns how processing activity is distributed over the network, regardless of the
topological arrangement of the network’s components. A client node in a network is the
computer that requests and receives services from there computers on the network.

It is possible for larger and more powerful computers to ometimes play the role of "client" in
requesting processing services from other computers. In a distributed computing environment,
any client computer that has hardware and software capability to share can also act as a server.
Typically, clients in a local area network are user P C workstations. Such computers, are called
end-user clients, never play the role of server, ervers are usually “high-end” microcomputers
that are especially quipped to handle special processing and communication tasks. They are
provided with special server application software and he hardware resources to run the software
efficiently.

Additionally, the server is normally provided with special network connections that provide
rapid efficient delivery of data to the clients.

Under client-server architecture, processing work is distributed between the client and the server;
both are required to meet the entire need of the application. Client software running on the client
platform makes requests to servers, which are usually dedicated to that function alone.

D is tr ib u te d D a tabase 4 3 9

9.22.2 File Server
These simply provide entire data files to the client. One special ype, used to provide files over
the public internet, is known as an ftp server database server — these extract data from a database
according to the request of the client communication erver — provide gateway and other related
communication services servers— permit the queuing and management of printing services mail
server — hold user e-mail messages and forward them two particular types of mail servers found
on the internet are O P servers (receive and hold email for clients) S M T P servers (accepts email
from clients and forward it over the network) print server — provides “print spooling” services
to help hold print jobs scheduled for shared printers until the printer is free.

9.22.3 Web Server
Provides web pages for client browsers using the “H T T P ” protocol in organization may have
many servers; for example, Penn State niversity has hundreds, including some whose current
status is available for you to see on the Internet.

9.22.4 Two Her Architectures
W ith two tier client/server architectures, the user system interface is usually located in the
user’s desktop environment and the database management services are usually in a server that
is a more powerful machine that services many clients. Processing management is split between
the user system interface environment and the database management server environment. The
database management server provides stored procedures and triggers. There are a number of
software vendors that provide tools to simplify development of applications for the two-tier client/
server architecture.

The two-tier client/server architecture is a good solution for distributed computing when work
groups are defined as a dozen to 100 people interacting on a L A N simultaneously. It does have
a number of limitations. W hen the number of users exceeds 100, performance begins to
deteriorate. This limitation is a result of the server maintaining a connection via “keep-alive”
messages with each client, even when no work is being done. A second limitation of the two
tier architecture is that implementation of processing management services using vendor
proprietary database procedures restricts flexibility and choice of D B M S for applications. Finally,
current implementations of the two tier architecture provide limited flexibility in moving
(repartitioning) program functionality from one server to another without manually regenerating
procedural code.

9.22.5 Three Tier Architectures
The three tier architecture (see Three-Tier Software Architectures) (also referred to as the
multi-tier architecture) emerged to overcome the limitations of the two tier architecture. In
the three tier architecture, a middle tier was added between the user system interface client
environment and the database management server environment. There are a variety of ways
of implementing this middle tier, such as transaction processing monitors, message servers, or
application servers. The middle-tier can perform queuing, application execution, and database
staging. For example, if the middle-tier provides queuing, the client can deliver its request
to the middle layer and disengage because the middle-tier will access the data and return the

4 4 0 D atabase M a n a g e m e n t S ys tem s

answer to the client. In addition the middle layer adds scheduling and prioritization for work
in progress. The three tier client/server architecture has been shown to improve performance
for groups with a large number of users (in the thousands) and improves flexibility when
compared to the two tier approach. Flexibility in partitioning can be a simple as “dragging and
dropping” application code modules onto different computers in some three tier architectures.
A limitation with three tier architectures is that the development environment is reportedly
more difficult to use than the visually-oriented development of two tier applications. Recently,
mainframes have found a new use as servers in three tier architectures (see Mainframe Server
Software Architectures).

Three tier architecture with transaction processing monitor technology. The most basic type
of three tier architecture has a middle layer consisting of Transaction Processing (TP) monitor
technology (see Transaction Processing Monitor Technology). The T P monitor technology is
a type of message queuing, transaction scheduling, and prioritization service where the client
connects to the T P monitor (middle tier) instead of the database server. The transaction is
accepted by the monitor, which queues it and then takes responsibility for managing it to
completion, thus freeing up the client. W hen the capability is provided by third party middleware
vendors it is referred to as “T P Heavy” because it can service thousands of users. W hen it is
embedded in the D B M S (and could be considered a two tier architecture), it is referred to
as “T P Lite” because experience has shown performance degradation when over 100 clients
are connected. T P monitor technology also provides:

• The ability to update multiple different D B M S s in a single transaction;
• Connectivity to a variety of data sources including flat files, non-relational D B M S , and

the mainframe;
• The ability to attach priorities to transactions; and
• Robust security.

Using a three tier client/server architecture with T P monitor technology results in an environment
that is considerably more scalable than a two tier architecture with direct client to server
connection. For systems with thousands of users, T P monitor technology (not embedded in the
D B M S) has been reported as one of the most effective solutions. A limitation to T P monitor
technology is that the implementation code is usually written in a lower level language (such
as C O B O L), and not yet widely available in the popular visual toolsets [Schussel 96].

Three tier with message server. Messaging is another way to implement three tier architectures.
Messages are prioritized and processed asynchronously. Messages consist of headers that contain
priority information, and the address and identification number. The message server connects
to the relational D B M S and other data sources. The difference between T P monitor technology
and message server is that the message server architecture focuses on intelligent messages,
whereas the T P M on itor environment has the intelligence in the monitor, and treats transactions
as dumb data packets. Messaging systems are good solutions for wireless infrastructures.

9.22.6 Three-Tier with an Application Server
The three-tier application server architecture allocates the main body of an application to run
on a shared host rather than in the user system interface client environment. The application

D is tr ib u te d D atabase 441

server does not drive the GUIs; rather it shares business logic, computations, and a data retrieval
engine. Advantages are that with less software on the client there is less security to worry about,
applications are more scalable, and support and installation costs are less on a single server
than maintaining each on a desktop client [Schussel 96]. The application server design should
be used when security, scalability, and cost are major considerations [Schussel 96].

9.22.7 Three- Tier with an ORB Architecture
Currently industry is working on developing standards to improve interoperability and determine
what the common Object Request Broker (O RB) will be. Developing client/server systems using
technologies that support distributed objects holds great pomise, as these technologies support
interoperability across languages and platforms, as well as enhancing maintainability and
adaptability of the system. There are currently two prominent distributed object technolgoies:

• Com m on Object Request Broker Architecture (C O R B A); and

• C O M / D C O M (see Component Object Model (C O M), D C O M , and Related Capabilities).

Industry is working on standards to improve interoperability between C O R B A and C O M /
D C O M . The Object Management Group (O M G) has developed a mapping between C O R B A
and C O M / D C O M that is supported by several products.

9.22.8 Distributed/Collaborative Enterprise Architecture
The distributed/collaborative enterprise architecture emerged in 1993 (see Distributed/
Collaborative Enterprise Architectures). Th is software architecture is based on Object Request
Broker (O RB) technology, but goes further than the Common Object Request Broker Architecture
(C O R B A) by using shared, reusable business models (not just objects) on an enterprise-wide
scale. The benefit of this architectural approach is that standardized business object models
and distributed object computing are combined to give an organization flexibility to improve
effectiveness organizationally, operationally, and technologically. A n enterprise is defined here
as a system comprised of multiple business systems or subsystems. Distributed/collaborative
enterprise architectures are limited by a lack of commercially-available object orientation
analysis and design method tools that focus on applications.

9 . 2 3 U s a g e C o n s i d e r a t i o n s
Client/server architectures are being used throughout industry and the military. They provide
a versatile infrastructure that supports insertion of new technology more readily than earlier
software designs.

• Maturity

Client/server software architectures have been in use since the late 1980s.

• Costs and Limitations

There a number of tradeoffs that must be made to select the appropriate client/server architecture.
These include business strategic planning, and potential growth on the number of users, cost,
and the homogeneity of the current and future computational environment.

• Dependencies

4 4 2 D atabase M a n a g e m e n t S ys tem s

If a distributed object approach is employed, then the C O R B A and/or C O M / D C O M technologies
should be considered (see Com mon Object Request Broker Architecture and Component
Object M odel (C O M), D C O M , and Related Capabilities).

• Alternatives

Alternatives to client/server architectures would be main-frame or file sharing architectures.

• Complementary Technologies

Complementary technologies for client/server architectures are computer-aided software
engineering (C A SE) tools because they facilitate client/server architectural development, and
open systems (see C O T S and Open Systems— A n Overview) because they facilitate the
development of architectures that improve scalability and flexibility.

9 . 2 4 C l i e n t - S e r v e r A p p l i c a t i o n s
Client-Server database applications shift the burden of data torage and manipulation to a
dedicated application. In such pplications Access provides the interface to the server data.

Some methods for retrieving data from a server are:

• File-server - Database is moved to a network server’s hard drive, nefficient due to the
data moved across the network to serve ueries.

• Linked O D B C tables - User’s S Q L is translated to a universal S Q L ialect and is passed
to the O D B C manager running on the client orkstation.

• Direct connection using Data Access Objects - The OpenDatabase e thod is used. The
O D B C connection is given information to open server database directly.

• S Q L pass-through (SPT) queries - Used when some advanced feature of the database
server is required that O D B C S Q L can’t understand.

• O D B C D ire ct - Instead of the query being translated, it is sent directly to the database
server.

9 . 2 5 T h e T e c h n i c a l a n d B u s i n e s s A d v a n t a g e s o f C l i e n t -

S e r v e r C o m p u t i n g
Client-Server computing has several major advantages over entralized, "host-based" processing
strategies. It is scalable, earning that network administrators can easily add or remove storage,
processing and communication resources depending upon the organization’s need. Another
advantage is that client-server networks are relatively open systems, meaning that a variety
of different types of computers, running under various operating systems, can be attached to
the same network. In addition, an important advantage is that client-server architecture is more
robust” and less likely to fail. This is because processing responsibility is spread over many
computers; if one fails, although the services it provides are not available, other components
of the client-server network continue to function. Unlike host based systems, there is normally
no central component hose failure will incapacitate the entire network.

Migrating from older style systems to client-server architecture as been an expensive and difficult
task for many business rganizations. One problem is that the design of software and the etrofitting
of older legacy systems to work in a client-server rchitecture is a complex difficult task. Another

D is tr ib u te d D atabase 4 4 3

problem is that lient-server networks rely on the smooth interaction between lient and server
partitions of the applications. This requires hat both ends must be upgraded and maintained when
new versions f the application software are released. Finally, client-server ased applications often
require greater user knowledge concerning the software and data storage procedures; and
migrating to client-server architecture requires considerable retraining of the workers.

In spite of these difficulties, client-server networks provide a definite business advantage in
designing many types of application systems. Always keep in mind that a network provides he
capability for running centralized, decentralized or distributed applications, and that all three types
may run concurrently on computers attached to the same network. It is up to business decision
makers to determine how this capacity should e used in regard to a particular business application.

The network of streets and roads that connect our towns and cities permit businesses to
distribute their operations if it is desirable, or to keep them centralized. Similarly, client/server
networks permit businesses to choose the best strategy to distribute functions depending upon
the requirements of any articular application system. A n application system should be viewed
as the machine (hardware and software), data, and human people and procedures) elements
that function together to meet ome particular needs related to a business process.

For a three-tier client-server environment, we move the computation off the client as much as
possible, leaving it as just a thin veneer of application necessary to run the GUI. A ll of the auxiliary
additional logic (business rules) and computation are moved onto another platform (not the
server). M oving the business rules off to a shared server centralizes all rules making them easier
to change and modify. This reduces the complexity of maintaining and sustaining work.

Distribution may be calculated as a factor of frequency and size of messages between entities.
The higher the frequency or size of the messages, the greater the need for nearby placement
of the two communicating entities. Factoring such figures is done through affinity analysis.
Additional considerations must be given to the quality of service and failure models. If a rapid
response for certain requests is a requirement (low latency), then the two entities need to be
close. If a network partition occurring between entities could be critically damaging, the
likelihood of such a possibility must be reduced.

9 . 2 6 P r o s a n d C o n s o f C l i e n t / S e r v e r
Client/server was originally developed to allow more users to share access to database applications.
Compared to the mainframe approach, client/server offers improved scalability because connections
can be made as needed rather than being hard-wired. The client/server model also supports
modular applications. In the so-called “two-tier” and “three-tier” types of client/server systems,
a software application is separated into modular pieces, and each piece is installed on hardware
specialized for that sub-system.

One area of special concern in client/server networking is system management. W ith applications
distributed across the network, it can be challenging to keep configuration information up-to-
date and consistent among all of the devices. Likewise, upgrades to a newer version of a client/
server application can be difficult to synchronize or stage appropriately. Finally, client/server
systems rely heavily on the network’s reliability; redundancy or fail-over features can be
expensive to implement.

4 4 4 D atabase M a n a g e m e n t S ystem s

9 . 2 7 C o n c l u s i o n
Network clients request information or a service from a server, and that server responds to the
client by acting on that request and returning results. This approach to networking has proven
to be a cost-effective way to share data between tens or hundreds of clients. Usually the client
and server are two separate devices on a LA N , but client/server systems work equally well on
long-distance W A N s (including the Internet).

Client/server is just one approach to distributed computing. The client/server model has been
popular for a long time, but recently peer-to-peer networking has re-emerged as a viable
alternative. Other approaches like clustering also have benefits in specific situations.

9 . 2 8 C o m p i l i n g
Compiling our own version of Apache is a 4-step process:

• Downloading the archive and uncompressing it

• Editing the src/Configuration file

• Running src/Configure

• Runn ing make

Begin by downloading the archive from www.apache.org

< http://www.apache.org/> . If you are adventurous, then download the latest beta version.
Otherwise grab the version without any b’s listed in its name. (Notice how small the archives
are. They could easily fit on a single floppy disk!)

Next, uncompress and untar the downloaded file with gunzip and tar. Th is should result in
a directory named apache_1.2.5 or something similar. Change directories to the src directory
within the apache_1.2.5 directory.

Use your favorite text editor to edit the file named Configuration. The Configuration file lists
the modules (“patches”) you would like to incorporate into your httpd binary. A ll of these
modules are described in the online documentation. Consider uncommenting the module
named status__module.

This module will allow you to monitor the status of your server from a W W W browser. To
uncomment a module remove the pound sign (#) preceeding its definition. Next, enter the
Configure command. Th is command very quickly edits a few files in your distribution and
returns. Now, enter make and wait. If everything goes well, you should see a lot of text scrolling
up your terminal but finally, you will get your prompt back and your Apache H T T P server is
compiled.

9 . 2 9 C o n f i g u r a t i o n
Configuring the Apache server requires the following steps: copying the compiled binary up
one directory level editing conf/httpd.conf editing conf/srm.conf editing conf/access.conf Copy
your newly created Apache server application up one directory out of the src directory. T o make
your life easier, this directory should also contain the htdocs, logs, conf, and cgi-bin directories.

Change to the conf directory and cp httpd.conf-dist httpd.conf. This will make sure you have
an original version of the httpd.conf file. Using your text editor again, edit httpd.conf. In this

http://www.apache.org
http://www.apache.org/

D is tr ib u te d D a tabase 4 4 5

file you will want to change the following definitions: Port Enter an integer. The default port
of H T T P servers is 80. If you are the superuser of your Unix computer, then you will be able
to run the server on this port.

If you are just experimenting, then use a port like 8000. Example: 8000 User Enter a username.
The user variable is used to tell the server who owns the httpd process once it is running. Since
the httpd application will have to read and write files on your computer, it will be necessary
to select a username that has just the right number of priveleges. It is best to create a bogus
user named "nobody", give them few priveleges, and have the httpd application run under that
user. Example: nobody Group Enter an integer. Every username should be assigned to at least
one usergroup. Like usernames, groups help define priveleges on the computer and you should
have a group defined that has limited authority.

Enter a pound sign followed by an integer denoting the group the httpd application should run under.

Example: # -1

• ServerAdm in

Enter here the e-mail address of the person who should get messages when things go
wrong. (Obviously this will never be needed.) Example: webmaster@lib.univ.edu

• ServerRoot

Enter the full path to the httpd application. Example: /usr/local/ap^the ServerName Enter here
the IP address or fully qualified domain name of your U n ix computer. This address or name
will be the name returned to any clients connecting to your server. D o not make up a name.
Example: dewey.lib.univ.edu

Next, cp srm.conf-dist srm.conf so you have a backup of the file.

• Docum entRoot

Enter the full path to the location where you will be saving your H T M L documents. Example:
/usr/local/apache/htdocs

• ScriptAlias

If you plan on using C G I scripts, then you will want to change this configuration to map a
virtual directory to a real directory containing the scripts. Example: /cgi-bin/ /usr/local/apache/
cgi- bin/ AddHandler Again, if you want to run C G I scripts from your server, it is convienent
to create a filetype here with the .cgi extension.

Example: cgi-script .cgi
You are more than half way there. Keep editing! The final configuration requires you to edit
access.conf. First cp access.conf-dist access.conf. The access.conf file is made up of
< D irecto ry></D irecto ry> pairs. By default the file defines access configurations for your
H T M L document root and your cgi-bin directory. You will want to change the values already
in the file to the same values you specified for the DocumentRoot and ScriptAlias above.
Examples: < Directory /usr/local/apache/htdocs > and < Directory /usr/local/apache/cgi-bin>.
If you compiled your httpd binary with status_module, then uncomment all the lines in the
< Location /server-status> directive and edit the allow from line to include your domain. If
you do this, then once your server is running you will be able to enter a U R L like http://
www.lib.univ.edu/server- status and see how your server is running.

mailto:webmaster@lib.univ.edu
http://www.lib.univ.edu/server-

4 4 6 D atabase M a n a g e m e n t S ys tem s

9 . 3 0 W i n d o w s C o n f i g u r a t i o n
Installing and configuring the W indows95/NT version of Apache includes two options. First,
you can download the source code and compile it. This requires a Microsoft C + + compiler.
Alternatively, you can download a pre-compiled version of the application. If you own the
compiler, then you don’t need any instructions. Otherwise, download the pre-compiled version.
Whether you have downloaded the source-code or the pre-compiled version, you will want to
edit the *.conf files just as above.

9 . 3 1 S t a r t i n g U p
It is now time to actually start up your server. M ove up one directory and run the httpd
application with ./httpd -f path, where path is the fullpath name to your httpd.conf file. For
example, httpd -f /usr/local/apache/conf/httpd.conf. (If you are running the W indows version,
then you will want to run the application from the command line and specify the fullpath of
the httpd.conf file as an argument: c:\apache\apache.exe -f c:\apache\conf\httpd.conf.) If an
error is returned, then read it carefully and try to resolve the problem. If no errors occured,
then use your browser to open a connection to your server.

Remember to specify the Port in your U R L as you defined above. If for some reason you do
not get the “It worked!” message, then check the contents for your logs/error__log file for clues
to what went wrong. A t this point your are either overjoyed or overwhelmed. Those of you
who are overjoyed should now go back to your configurations to make more specific modifications.
T ho se o f you who are overw helm ed are encouraged to v isit
<news:comp.infosystems.www.servers.unix> and try to get some assistance there. Carefully
worded questions will get responses.

9 . 3 2 A P A C H E
A s you may expect, restricting access to your Apache server is more complicated when compared
to the desktop servers. The simplest and most direct way to restrict access requires you to create
.htaccess files within the restricted directories. These .htaccess files are exactly like the
instructions in your access.conf file except they do not require the

< Directory> < / D ire c tory> nor < Location> < /Location> directive tags.

IP and domain name restrictions Below is a simple sample .htaccess file restricting access based
on addresses. The first line specifies that all G E T and P O S T queries will be restricted. Next,
the restrictions will be processed in the deny-allow order since later configurations override
earlier ones. Then the hosts and/or IP address that are denied and allowed are specified. Finally,
the file is closed. # this is an .htaccess file for IP addresses # limit the types of access < Limit
G E T P O S T > # define how restriction will be processed order deny,allow # define who to
deny and allow deny from all allow from .ncsu.edu # close the directive </Lim it> Usernames
and passwords Restricting access based on usernames and passwords first requires you to define
users and sets of users called groups. Then you create .htaccess files specifying these users and/
or groups. If it hasn’t been done before, you will have to compile the htpasswd program. It is
located in the support directory of your original distribution. T o compile the program change
directories to the support directory and enter make. This should result in the creation of a

http://www.servers.unix

D is tr ib u te d D a tabase 4 4 7

number of utilities one of which is htpasswd. For the .htaccess technique to work, you must
edit your access.conf file and specify parent directories of your restricted directories with the
AllowOverride Limit option. Next, using htpasswd you will create new users. The command
takes the following form: htpasswd [-c] filename username where: -c This is used only the first
time htpasswd is used. Its purpose is to create the password file filename This is the full path
name to-your password file. It can be any path or name, but make sure it is not in your server’s
document directory structure. Example: /usr/local/apache/conf/passwd username This is the
name of the user you are creating. Example: eric After this, you have to create groups. Groups
are A S C I I text files with the following form: group: member member member where: group This
is the name of a group. Example: users member This is the name of somebody previously defined
by the htpasswd program. Example: eric Now you are finally ready to create your .htaccess file.
Specify the realm using AuthName. The value of AuthNam e will appear in the message asking
for username and password. Specify the authorization type with AuthType. (The majority of
the time this will be Basic.) Echo the location of your password and group files next. Define
the restricted methods of access. Specify what groups and users have access to this directory.
Last, close the directive. Here is a example .htaccess file limiting users to passwords. # this
is an .htaccess file for passwords # define the realm AuthNam e The Super Secret Space #
define the authentication type AuthType Basic # where are the password and group file
AuthUserFile /usr/local/users/Eric/apache/conf/passwd AuthGroupFile /usr/local/users/Eric/apache/
conf/group # limit the types of access < Limit G E T P O S T > # say exactly who can access require
group users # close the directive </Lim it> Once this sort of .htaccess file is saved in a directory,
the first time a user tries to access the directory they will be asked to enter their username
and password.

9 . 3 3 Q u i d P r o Q u o
IP and domain name restrictions Using Q uid Pro Quo, restrictions based on IP addresses or
domain names are called Allow/Deny. This server only permits you to “allow or deny” sets of
IP address or domain names for your entire server, not parts of it. It is unfortunately an all
or nothing deal. T o set up this sort of restriction, select Server Settings... from the Control
menu. Then select Allow/Deny from the resulting Configure Quid Pro Q uo dialog box. Next
you will want to add a new item and enter either IP addresses or domain names. Like the other
servers, you do not have to specify the entire address or name, just enough to make it meaningful.
Your configuration takes place as soon as you close the configuration dialog box. Usernames
and passwords Restrictions to parts of your server using usernames and passwords are called
realms. Th is method is more secure than the first method. Implementing it is a two step process.
First, using the Configure dialog box, select Realms. Now you can enter any name you want
for a realm and then a string of characters that will be used to match parts of client requests.
Any U R L containing the string of characters will be restricted by usernames and passwords.
The second step is to choose Passwords from the Configuration dialog box. From here you can
create new user names and passwords, and then associate them with realms created in the first
step. Like IP/domain name restrictions, these configurations take place as soon as you close
the Configuration dialog box.

4 4 8 D atabase M a n a g e m e n t S ystem s

9 . 3 4 W e b s i t e
Like Quid Pro Quo, WebSite provides the means of access control through a series of dialog
boxes. Its features are more robust than Quid Pro Q u o ’s and at least on par with Apache’s.
Its only a technical drawback is it inability to edit settings once they have been created. M any
times, to make changes you must delete the old settings and recreate them with your new edits.
IP and domain name restrictions The first step to limiting access by IP addresses and domain
names is to open the WebSite Server Properties window and select Users. Next, create an
authentication realm by clicking the New... button. A n y label for your realm will do, just make
it meaningful to yourself. Third, select Access Control and create a new U R L Path.

Enter the full path from your server’s root to the directory you want to restrict. Select a realm
too. Finally, specify what IP addresses and/or domain names will be allowed access to your realm
using the Class Restrictions panel. If you want to restrict access to particular hosts, then select
the Deny, then Allow button and enter the IP addresses or domain names you are allowing
access. Conversely, if you want to deny access to particular hosts (people who might be malicious
for example), then select the Allow, then Deny button and enter the hosts to deny.

Close the WebSite Server Properties window and when you hear a system beep you will know
the configuration has taken place. Usernames and passwords T o limit access to some or all of
your site, begin again with the WebSite Server Propertites window and the Users section. This
time select or create a new Authentication Realm and create a new user using the New...
button of the User panel. Second, go to the Access Control section and select or create a new
U R L Path for password protection. Remember to specify the full path name of the password
protected directory begining with the root of your WebSite server. Finally, select the users
allowed to access the directory by using the Add... button of the Authorized Users and Groups
panel. Using the Add... button shoul result in a list of users you previously created. Again,
changes won’t take effect until you close the WebSite Server Properties window and you hear
the system beep.

9 . 3 5 T h r e e - T i e r
A special type of client/server architecture consisting of three well-defined and separate
processes, each running on a different platform:

1. The user interface, which runs on the user’s computer (the client);
2. The functional modules that actually process data. This middle tier runs on a server and

is often called the application server; and
3. A database management system (D B M S) that stores the data required by the middle tier.

This tier runs on a second server called the database server.
The three-tier design has many advantages over traditional two- tier or single-tier designs, the
chief ones being:

• The added modularity makes it easier to modify or replace one * Tier without affecting
the other tiers; and

• Separating the application functions from the database functions makes it easier to
implement load balancing.

