
Mauro Dragoni
María Poveda-Villalón
Ernesto Jimenez-Ruiz (Eds.)

 123

LN
CS

 1
01

61

13th International Workshop, OWLED 2016
and 5th International Workshop, ORE 2016
Bologna, Italy, November 20, 2016, Revised Selected Papers

OWL: Experiences
and Directions –
Reasoner Evaluation

Lecture Notes in Computer Science 10161

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Mauro Dragoni • María Poveda-Villalón
Ernesto Jimenez-Ruiz (Eds.)

OWL: Experiences
and Directions –
Reasoner Evaluation
13th International Workshop, OWLED 2016
and 5th International Workshop, ORE 2016
Bologna, Italy, November 20, 2016
Revised Selected Papers

123

Editors
Mauro Dragoni
Fondazione Bruno Kessler
Povo, Trento
Italy

María Poveda-Villalón
Universitad Politecnica de Madrid
Madrid
Spain

Ernesto Jimenez-Ruiz
University of Oslo
Oslo
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-54626-1 ISBN 978-3-319-54627-8 (eBook)
DOI 10.1007/978-3-319-54627-8

Library of Congress Control Number: 2017932791

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The OWL: Experiences and Directions Workshop series is an international forum for
the OWL community, where practitioners in industry and academia, tool developers,
and others interested in making use of OWL present research advances, real and
potential applications, share experiences, and discuss requirements for language
extensions/modifications. OWLED 2016 was the 13th edition of this workshop and
was held on November 20 in Bologna, Italy, co-located with the 20th International
Conference on Knowledge Engineering and Knowledge Management (EKAW 2016).

The technical program featured 11 presentations of accepted full (8) and short
papers (3) and one invited talk:

– Maria Keet (University of Cape Town, South Africa): “Test-driven Development of
Ontologies”

This year, for the first time, we joined efforts with the OWL reasoner evaluation
workshop (ORE), which aims at gathering solutions and experiences for particular
reasoning tasks on specific problems. There were 13 paper submissions to the work-
shop, which were reviewed by at least three Program Committee members. Reviews
were aimed at constructive feedback and inclusiveness, in order to foster and strengthen
the community spirit that characterizes OWLED. In all, 11 submissions were accepted
to be presented during the workshop; three of them were categorized as controversial
according to the reviewers’ comments and were reserved a special slot within the
workshop’s program. We thank the Program Committee for their hard work in
reviewing the submitted papers and for the useful feedback they gave to the authors.
We would also like to thank the authors for submitting their papers and responding to
the reviewers’ comments in the final version. We further wish to thank the invited
speaker for her inspiring talk. Our thanks also go to the University of Bologna, the local
organizers of the 20th International Conference on Knowledge Engineering and
Knowledge Management for helping us with the logistic organization of OWLED
2016, and the EKAW 2016 Organizing Committee. Finally, we would like to thank the
development team of the EasyChair conference management system.

November 2016 Mauro Dragoni
María Poveda-Villalón
Ernesto Jimenez-Ruiz

Organization

Executive Committee

General Chair

Mauro Dragoni Fondazione Bruno Kessler, Italy

Program Chairs

María Poveda-Villalón Universidad Politecnica de Madrid, Spain
Ernesto Jimenez-Ruiz University of Oslo, Norway

OWLED Steering Committee

Melanie Courtot BCCRC, Canada
Matthew Horridge Stanford University, USA
Pavel Klinov University of Ulm, Germany
Simon Jupp EBI, UK
Mariano Rodriguez-Muro IBM, USA
Bijan Parsia University of Manchester, UK
Valentina Tamma University of Liverpool, UK

Program Committee

Loris Bozzato Fondazione Bruno Kessler, Italy
Francesco Corcoglioniti Fondazione Bruno Kessler, Italy
Mauro Dragoni Fondazione Bruno Kessler, Italy
Claudia D’Amato University of Bari, Italy
Michel Dumontier Stanford University, USA
Mariano Fernández López Universidad San Pablo CEU, Spain
Daniel Garijo Universidad Politecnica de Madrid, Spain
Rafael Gonçalves Stanford University, USA
Pascal Hitzler Wright State University, USA
Rinke Hoekstra University of Amsterdam/VU University Amsterdam,

The Netherlands
Ernesto Jimenez-Ruiz Oxford University, UK
Yevgeny Kazakov University of Ulm, Germany
C. Maria Keet University of Cape Town, South Africa
Ilianna Kollia National Technical University of Athens, Greece
Agnieszka Lawrynowicz Poznan University of Technology, Poland
Despoina Magka Facebook, UK
Francisco Martin-Recuerda Universidad Politecnica of Madrid, Spain
Nicolas Matentzoglu University of Manchester, UK

Christian Meilicke University of Mannheim, Germany
Julian Alfredo Mendez TU Dresden, Germany
Yavor Nenov University of Oxford, UK
Silvio Peroni University of Bologna, Italy
María Poveda-Villalón Universidad Politecnica de Madrid, Spain
Marco Rospocher Fondazione Bruno Kessler, Italy
Floriano Scioscia Politecnico di Bari, Italy
Larisa Soldatova Brunel University, UK
Andreas Steigmiller University of Ulm, Germany
Mari Carmen

Suárez-Figueroa
Universidad Politecnica de Madrid, Spain

Vojtěch Svátek University of Economics Prague, Czech Republic
Valentina Tamma University of Liverpool, UK
Dmitry Tsarkov The University of Manchester, UK
Zhe Wang Griffith University, Australia

VIII Organization

Contents

OntoJIT: Parsing Native OWL DL into Executable Ontologies in an Object
Oriented Paradigm . 1

Sohaila Baset and Kilian Stoffel

Healthy Lifestyle Support: The PerKApp Ontology 15
Tania Bailoni, Mauro Dragoni, Claudio Eccher, Marco Guerini,
and Rosa Maimone

An Experimental Evaluation of Automatically Generated Multiple Choice
Questions from Ontologies . 24

Ghader Kurdi, Bijan Parsia, and Uli Sattler

Use Cases and Suitability Metrics for Unit Ontologies 40
Markus D. Steinberg, Sirko Schindler, and Jan Martin Keil

A Simplified Agile Methodology for Ontology Development 55
Silvio Peroni

Using Ontology Design Patterns to Represent Sustainability Indicator Sets . . . 70
Lida Ghahremanlou, Liam Magee, and James A. Thom

Application of Inference Rules to a Software Requirements Ontology
to Generate Software Test Cases . 82

Vladimir Tarasov, He Tan, Muhammad Ismail, Anders Adlemo,
and Mats Johansson

Collaborative Ontology Evolution and Data Quality - An Empirical
Analysis. 95

Nandana Mihindukulasooriya, María Poveda-Villalón,
Raúl García-Castro, and Asunción Gómez-Pérez

Towards Ontology-Based Event Processing . 115
Riccardo Tommasini, Pieter Bonte, Emanuele Della Valle,
Erik Mannens, Filip De Turck, and Femke Ongenae

Minimal Coverage for Ontology Signatures . 128
David Geleta, Terry R. Payne, and Valentina Tamma

OWL API for iOS: Early Implementation and Results 141
Michele Ruta, Floriano Scioscia, Eugenio Di Sciascio,
and Ivano Bilenchi

Author Index . 153

http://dx.doi.org/10.1007/978-3-319-54627-8_1
http://dx.doi.org/10.1007/978-3-319-54627-8_1
http://dx.doi.org/10.1007/978-3-319-54627-8_2
http://dx.doi.org/10.1007/978-3-319-54627-8_3
http://dx.doi.org/10.1007/978-3-319-54627-8_3
http://dx.doi.org/10.1007/978-3-319-54627-8_4
http://dx.doi.org/10.1007/978-3-319-54627-8_5
http://dx.doi.org/10.1007/978-3-319-54627-8_6
http://dx.doi.org/10.1007/978-3-319-54627-8_7
http://dx.doi.org/10.1007/978-3-319-54627-8_7
http://dx.doi.org/10.1007/978-3-319-54627-8_8
http://dx.doi.org/10.1007/978-3-319-54627-8_8
http://dx.doi.org/10.1007/978-3-319-54627-8_9
http://dx.doi.org/10.1007/978-3-319-54627-8_10
http://dx.doi.org/10.1007/978-3-319-54627-8_11

OntoJIT: Parsing Native OWL DL
into Executable Ontologies in an Object

Oriented Paradigm

Sohaila Baset(B) and Kilian Stoffel

Information Management Institute, University of Neuchatel, Neuchatel, Switzerland
{sohaila.baset,Kilian.Stoffel}@unine.ch

Abstract. Despite meriting the growing consensus between researchers
and practitioners of ontology modeling, the Web Ontology Language
OWL still has a modest presence in the communities of “traditional” web
developers and software engineers. This resulted in hoarding the seman-
tic web field in a rather small circle of people with a certain profile of
expertise. In this paper we present OntoJIT, our novel approach toward
a democratized semantic web where we bring OWL ontologies into the
comfort-zone of end-application developers. We focus particularly on
parsing OWL source files into executable ontologies in an object oriented
programming paradigm. We finally demonstrate the dynamic code-base
created as the result of parsing some reference OWL DL ontologies.

Keywords: Ontologies · OWL · Semantic web · Meta programming ·
Dynamic compilation

1 Background and Motivation

With a stack full of recognized standards and specifications, the Web Ontology
Language OWL has made long strides to allocate itself a distinctive spot in the
landscape of knowledge representation and semantic web. Obviously, OWL is
not the only player in the scene; over the couple of last decades many other
languages have also emerged in the ontology modeling paradigm. Most of these
languages are logic-based formalisms with underlying constructs in first order
logic [5,7,8,11] or in one of the description logic fragments like OWL itself [3,4]
and its predecessor DAML+OIL [10]. Some frame-based languages have also
seen some success in that area [12–14], in particular KL-One has integrated
the automated deductive reasoning of logic-based languages into hierarchical
semantic networks [9].

If we look at OWL characteristics; beside its strong expressive capabilities
and logic based formalism, OWL has also got many flavors that are tailored to
fulfill the different needs of ontology systems stakeholders [4]. These character-
istics allowed OWL to stand out among its counterparts and OWL ontologies
became dominant in a wide range of application domains. From the perspective
of traditional software developers, however, these very same characteristics have
c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 1–14, 2017.
DOI: 10.1007/978-3-319-54627-8 1

2 S. Baset and K. Stoffel

contributed to a certain extent in augmenting the complexity surrounding OWL
ontologies and logic-based formalisms in general.

We raise the issue of democratized semantics where a wider range of devel-
opers are invited to actively participate in the making process of semantic appli-
cations. Addressing this issue involves certainly more aspects than what we can
cover in a single paper. In this paper, we rather start by whetting develop-
ers’ appetite for ontologies by expressing them in a programming language –or
paradigm– that developers are already comfortable with. For that purpose, we
sketch our tool OntoJIT that parses existing OWL DL ontologies into executable
fragments of code in C# while maintaining their semantics. We demonstrate the
parsing results obtained and the limitations of the current state. We finally dis-
cuss some of the related projects and directions for future work.

2 Preliminaries

2.1 Executable Ontologies

Before being able to work on an ontology, inference engines require the ontology
to be loaded into memory. This task is achieved by an ontology loader that trans-
forms the ontology from its syntactic form e.g. RDF/XML into an in-memory
representation. In the literature, there are two prominent in-memory represen-
tations for OWL ontologies: The first one is the abstract syntax tree AST model
which is used in OWL API, previously known as the WonderWeb OWL API,
[18,19]. The other representation model is the RDF triple and is the format that
is adopted in Jena [15].

In our work, we look into the classification of in-memory ontology repre-
sentations from a different perspective. More precisely we differentiate between
two forms of in-memory representation: The passive form and the active form.
To illustrate what we designate by each form, we consider the parsing output
produced by Jena and OWL API; after the parsing step is completed, both pars-
ing output models, i.e. AST or RDF graph, will eventually reside in the data
segment of the program allocated memory waiting to be operated on by the
inference engine and in that sense both are examples of the passive forms. In
the active form, on the other hand, the output of the parsing step belongs to
the code segment of the allocated memory. That is, the syntactic RDF/XML
representation is transformed and loaded in memory as a set of executables.

Projecting the object oriented programming paradigm into this view of active
in-memory ontology representation yields the term executable ontology that we
first present in this paper. We can now think of OWL concepts and individuals
as OOP classes and instances spread over code namespaces that can be compiled
and run.

2.2 Meta Programming in Strongly Typed Languages

Parsing RDF/XML into executable ontologies clearly adds another layer of com-
plexity into the already non-trivial parsing task. It requires dynamically gener-
ating code statements that are equivalent to the RDF triple being parsed. In

OntoJIT: Parsing Native OWL DL into Executable Ontologies 3

such settings, the deployment of meta programming techniques proves advanta-
geous. Meta programming refers to the programming paradigms and the means
by which a program has knowledge of itself or can manipulate itself. To that end,
meta programs are programs that write programs. Examples of meta programs
are optimizers, partial evaluation systems and program transformers [20]. There
exists many classification of meta programs, among them is the static vs run-
time classification i.e. whether the produced output program is written to disk
or dynamically compiled at run-time, the manually vs automatically annotated
classification i.e. whether the staging annotations are placed directly by the pro-
grammer or produced by an automatic process and finally the homogeneous vs
heterogeneous programs which concerns whether or not the meta language is the
same as the program output language [20]. Our proposed OntoJIT RDF/XML
parser is a manually annotated, run-time heterogeneous meta program.

Like many paradigms in software development, Meta programming is an
approach that is not equally supported by all programming languages. Some
languages, such as CaML [24], are designed with meta programming in the core
of their philosophy. Dynamic languages like Prolog and smalltalk have funda-
mental meta programming features [21]. Macros in Lisp and Scala also provide
strong support for meta programming [22,23], whereas Python programmers
usually use meta classes. When it comes to strongly typed languages, however,
the emphasis on meta programming features becomes less evident. This does
not mean that meta programming is not supported in many of these languages;
C++ offers templates for meta programming [31], Java programs have annota-
tions [30] and .Net languages use annotations and/or reflection to produce meta
programs [32]. Indeed, the parser presented here was realized using one of the
meta programming libraries offered in .Net [33].

3 OntoJIT Parser

Parsing OWL source files into executable source code is the first step of an
ongoing effort to bring ontologies into the table of application developers. The
overall goal of this effort is not limited to parsing ontologies into compiled source
code, the real interesting part is the potential reasoning possibilities over this
newly created eco-system of executable ontologies; hence the name OntoJIT
refers to just in time ontologies and is inspired from the dynamic “Just in Time”
compilation in .Net languages. The OntoJIT parser we present here is written
C#. It produces compiled source code in the form of dynamic linking libraries or
executables and it can also produce C# source files as an intermediate output.
In the following sections we discuss some of the key points in the design and
implementation of OntoJIT parser.

3.1 Parsing OWL Files

OWL Graph Traversal. Most existing OWL parsing tools use a recursive
depth first search to perform a one-pass traversal of OWL source. This seems like

4 S. Baset and K. Stoffel

an elegant approach for a streaming-like parsing; the DFS serves as a serializa-
tion technique and for each construct visited in the source, a corresponding node
or edge is attached to the OWL graph being constructed in memory. However,
when parsing output is an executable, the pure DFS approach is unfortunately
insufficient. Deciding on the corresponding code statements to a syntactic con-
struct requires all information related to this construct to be available at node
processing time; which is clearly not the case with the inter-node associativity
present in OWL source documents. Here we have two approaches to overcome
this limitation, first approach is to use multiple-pass traversal to guarantee that
we have complete information before generating the corresponding output. This
approach is clearly less efficient compared to the one-pass traversal both in exe-
cution time as well as in space complexity since it requires maintaining the
intermediate state of nodes being parsed over many passes. The other approach,
which is the one used in this paper, is to combine pre-order DFS traversal with
look up operations when necessary. The parser presented here is built to read
RDF/XML syntax; in that case, the look-up operations are simply forward jumps
within to the RDF/XML child nodes and the set of possible look-ups is limited
assuming prior knowledge of the associations patterns of OWL nodes.

Import Closure. Ontology modeling practices share some of the design prin-
ciples with software engineering, mostly with regards to the re-usability of exist-
ing ontologies. An ontology is not isolated from other ontologies, it builds up
on top of other already existing ones. In ordinary programming languages, this
corresponds into importing packages or libraries and in OWL, to using import
keyword to allow the usage of terms defined in the imported namespaces. Keep-
ing on with this analogy, the OntoJIT parser treats imported namespaces in
OWL source as namespaces in the target output code. When the parser reads
an owl:imports term, it triggers a recursive call to the main parsing routine for
all imported ontologies until an import closure is achieved.

3.2 OWL to OOP Mapping

When comparing the expressiveness aspect of OWL to that of formal program-
ming languages, programming languages rank way below than even the most
restricted profile of OWL. The semantic richness of OWL DL ontologies makes
it difficult to find an OOP counterpart for each OWL DL semantic construct.
Furthermore, there are some fundamental differences between the two schools
of modeling such as the notion of disjoint classes, inheritance model and many
others. When mapping OWL DL to OOP, our goal was to exploit the native pro-
gramming language constructs while at the same time trying not to violate the
OOP design principles. Although the mapping seems self-evident in some parts
e.g. owl:class as an OOP class, rdfs:subClassOf as an OOP class inheritance
relation and OWL individuals as instances of OOP classes; finding the right
mapping becomes more problematic when we consider OWL DL terms such as:
owl:disjointWith, owl:sameAs and owl:equivalentClass. One could still cre-
ate native constructs that are semantically equivalent to such terms by enforcing

OntoJIT: Parsing Native OWL DL into Executable Ontologies 5

Fig. 1. The initial output scheme in OntoJIT.

some design patterns and constraints but this approach has some consequences
that we will discuss in one of the following sections. One other possibility is
to rely on annotations to express all OWL terms that are foreign in the OOP
language, but in plain OOP terms this means that most of the modeled infor-
mation about an object is laid outside of it and is not directly accessible via its
properties. Instead, in OntoJIT parser, for the major part of OWL terms, meta
properties are created that form the bases for mapping OWL concepts, proper-
ties and restrictions. The meta properties are defined in the top hierarchy level
and are then inherited by all parsed classes afterwards and masked where neces-
sary. One important thing to clarify is that the term “meta” used here refers to
a completely different sense than the programming technique discussed earlier,
the usage of the term here is rather functional; the idea is that these meta prop-
erties would cover up for the missing explicit semantics in the formal language
constructs, and the full interpretation of the meta properties semantics is to be
realized by an inference component on top of the parsing layer. Figure 1 shows
the initial output scheme in OntoJIT where meta properties are first defined.

Blank Nodes. Just like in RDF/XML, OntoJIT uses blank nodes to express
a property restriction or class description axioms. Though in our implementa-
tion, blank nodes are not anonymous; they are created as class definitions with
automatically (and deterministically) generated names to make them available
for subsequent inference tasks. On the other hand, since these nodes are not

6 S. Baset and K. Stoffel

Table 1. OWL DL axioms and their OntoJIT counterparts

Axiom OWL OntoJIT counterpart

Ontology owl:Ontology Code namespace

Class owl:class C# class

rdfs:subclass C# class inheritance

Class description rdfs:equivalentClass Static meta properties

owl:intersectionOf

owl:unionOf

owl:complementOf

owl:disjointWith

Individual Individual Object instance

owl:AllDifferent Non-static meta properties

owl:differentFrom

owl:sameAs

Property owl:ObjectProperty C# class

owl:DataTypeProperty

rdfs:subPropertyOf C# class inheritance

Property association rdfs:range Static meta properties

rdfs:domain

Property restriction rdfs:cardinality Static meta properties

rdfs:hasValue

rdfs:someValuesFrom

rdfs:allValuesFrom

Property Description owl:FunctionalProperty Static meta properties

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

Property relations owl:inverseOf Static meta properties

owl:subPropertyOf

owl:equivalentProperty

explicitly part of the ontology class definitions, these classes get the private access
modifier and are therefore invisible from outside the namespace they belong to.

Semantic Equivalence. The semantic expressiveness of the source ontology
is preserved with the aid of meta properties. As stated earlier, the role of meta
properties is to cover up for missing explicit semantics in the formal language
constructs, i.e., when there is no programming language counterpart for an axiom
in the source ontology or when relying on the programming language to express
an axioms would interfere with the Open World Assumption OWA. For example,

OntoJIT: Parsing Native OWL DL into Executable Ontologies 7

the property association axiom rdfs:range could be easily parsed into the data
type of the property in the class definition where it belongs to. While this is the
norm from a strict modeling perspective, it does not conform to OWA inference
mechanism. According to OWA, having two different fillers for the range property
is perfectly fine as long as they are not stated to be distinct; whereas this would
certainly not pass type checking performed by an OOP language compiler.

It is also worth mentioning that OntoJIT, in its current state, supports OWL
SHOIN (D) DL profile. Parsing ontologies with OWL 2 DL SROIQ(D) exten-
sions [6], like for example General Concept Inclusion axioms, has not been tested.
Table 1 lists OWL DL axioms and their OntoJIT C# counterparts.

4 Demonstrations

To test the parsing process introduced in the previous section, we used the two
famous OWL DL Pizza1 and wine2 ontologies. These ontologies are relatively
small in size but they are pretty expressive as they were created for the purpose
of demonstrating the different capabilities of OWL DL and they would therefore
be helpful in validating the parsing routine.

Fig. 2. Non-vegetarian pizza class defini-
tions (a).

Formally proving the seman-
tic equivalence of an OWL DL
ontology and the corresponding
executable produced by OntoJIT
would require at least comparing
results of some inference tasks over
the two formats which, at this stage
of our work, is not possible yet.
Instead in this section we demon-
strate some code snippets exam-
ples of the parsing results and their
OWL counterparts.

OWL Classes. To start with,
we consider the example of non-
vegetarian pizza definition in the
pizza ontology. The produced code
snippet is demonstrated in Figs. 2
and 4 and the original OWL source is shown in Fig. 3. The following is the DL
notation of the same information:

NonV egetarianPizza ≡ ¬V egetarianPizza � Pizza

NonV egetarianPizza � V egetarianPizza ≡⊥

1 www.protege.stanford.edu/ontologies/pizza/pizza.owl.
2 www.w3.org/TR/owl-guide/wine.rdf.

www.protege.stanford.edu/ontologies/pizza/pizza.owl
www.w3.org/TR/owl-guide/wine.rdf

8 S. Baset and K. Stoffel

In the “NonVegetarian” class definition in Fig. 2. We can see that the
owl:equivalentClass term is expressed by mean of the meta property equiv-
alentClass which returns as object (of the RDF triple) a blank node identi-
fier “Blank23”. The “Blank23” stands for the anonymous class representing
¬V egetarianPizza�Pizza that in turn is defined as the intersection of another
blank node “Blank22” with the class pizza. Finally “Blank22” is defined as a
blank node class with the “ComplementOf” and “VegetarianPizza” meta prop-
erties values. As mentioned earlier, the meta properties used in expressing the
definitions are essential for substituting for the explicit semantics that are not
available as native language constructs. The examples shown here use a textual
representation of the values for these properties, in fact these values are just the
handles to the created types in the code namespace and are available for later
use by the inference component in runtime via reflection.

Fig. 3. Non-vegetarian pizza description in manchester syntax

Fig. 4. Non-vegetarian pizza class definitions (b).

OntoJIT: Parsing Native OWL DL into Executable Ontologies 9

Fig. 5. Reduced sketch of the hierarchy of wine ontology parsed properties

OWL Properties. Just like classes, OWL properties have hierarchical struc-
tures. They also have characteristics such as domain, range and cardinality. This
is well reflected into OntoJIT executable ontologies. The parser starts with initial
hierarchy shown in Fig. 1 and expands it as the parsing continues. Parsed classes
would then have instances of these properties to express relation between indi-
viduals. Figure 5 shows a reduced (incomplete) sketch of the properties hierarchy
in the wine ontology. The code snippets in Fig. 6 show the definitions for some
properties along with their characteristics. The characteristics of a property are
supposed to be shared among all its instances and are therefore declared static
whereas the instance value of the property is a non-static variable.

Fig. 6. OntoJIT property classes for hasFlavor property and its parent property.

10 S. Baset and K. Stoffel

5 Limitations

5.1 Multiple Inheritance

One of the major differences between modeling in description logic and that
in OOP is the different positions the two paradigms have with regards to mul-
tiple inheritance. Description logic has a looser interpretation of a class being
the subclass of another; indeed, the multiple inheritance term does not really
fit in description logic vocabulary. In OWL, the rdfs:subclassOf term is the
manifestation of the subsumption operator of DL. An OWL class is allowed to
have many parent classes (named or anonymous) as long as it is subsumed by
all these parents. On the other hand, pure OOP languages like C# or Java –
though not all – have a more strict definition of class inheritance, OOP classes
are disjoint by design and that is why a class can not be a subclass of two differ-
ent parent classes and multiple inheritance is thus not supported. To keep record
of all parent classes, OntoJIT parser uses meta properties beside the native class
inheritance support in C#, whenever multiple inheritance is encountered, the
subClassOf property is extended. This workaround suffers from inconsistency
but is still preferable over relying on interfaces where one could use interface
declarations instead of classes to reflect OWL hierarchies. The problem with the
interface approach is that interfaces are abstract and thus are not instantiable
and one would need to create a shadow class for each declared interface. This
can quickly become an overkill and unscalable when considering relatively com-
plex ontologies with a lot of blank nodes. Left with these two not really optimal
solutions, the pursuit of a more elegant one is still an open question.

5.2 Import Closure

The approach taken to handle the owl:imports terms is a little bit a minimalist
approach for one reason; it doesn’t handle the case where the ontology being
parsed is an OWL DL or OWL light ontology and the imported ontology is
an OWL Full one. The parser presented here is mainly concerned with OWL
DL or Light profiles and more investigations and analysis are necessary before
attempting on parsing an OWL FULL ontology. In this case, the parser is not
able to process OWL Full constructs and will therefore skip them. This for sure
would have an impact on the soundness of the reasoning results but as reasoning
is not yet in the scope of the current state of OntoJIT, this is something to be
addressed again as the work in the project advances.

6 Related Work

The difficulty of utilizing OWL ontologies in conventional software projects was
behind the work presented in [29]: The authors demonstrate some of the fun-
damental differences between the “subject-predicate-object” school of modeling
(with persistent triple-stores) and the object oriented school (with normalized

OntoJIT: Parsing Native OWL DL into Executable Ontologies 11

relational databases). According to the authors, the combined use of ontologies
with standard programming practices would enable the development of semantic-
rich enterprise applications and they suggest a framework for translating some
ontology constructs into Enterprise Java Beans. In [28], the primary intention is
to provide guidance on how to build real-world semantic web applications. The
authors draw analogy between deploying ontologies as high-level models in soft-
ware development and the approach used in Model Driven Architecture MDA.
They also suggest a software architecture for web services and agents for the
semantic web driven by domain ontologies. [26] proposes a hybrid modeling soft-
ware framework that combines the object oriented representation of a domain
with its ontological representation. The authors analyze the advantages and
disadvantages of such hybrid modeling approach by means of a case study of a
large medical records system. There exist as well many API projects to integrate
OWL ontologies into application development. The OpenRDF API3 along with
its satellite projects Elmo/Alibaba4, provides object triples mapping for creation
of flexible RDF-based applications. Another object-oriented API for managing
RDF is ActiveRDF [25], it offers schema-free manipulation and querying of RDF
data while conforming to RDF(S) semantics. Overall, OWL to UML mapping
has a good share of papers in the literature. In [27] A UML-based visualization
of OWL DL ontologies is presented. The work done in [34] provides a rigor-
ous comparison between UML and OWL as two flagship languages for artificial
intelligence and software engineering communities; the authors argue that based
on the core definitions of ontologies and models, none of the common informal
distinctions made between the two terms is actually justifiable. Instead, ontolo-
gies themselves are to be regarded as models. Further more, without changes
to the currently used ways of distinguishing between models and ontologies the
confusion around the two terms will continue to arise.

On the technical side, one particular project that addressed the idea of map-
ping OWL ontologies into JAVA OOP classes is in [16]. The main aim of the
project was aiding semantic application development and the approach taken
was to try to stretch the expressiveness of modeling in Java to that of OWL
DL by enforcing some constraints and design patterns: Interfaces for multiple
inheritance, special listeners on property accessors, type checking for domain
and range properties, etc. While we see the motivation behind this approach, we
believe that it entails some twisting in the interpretation of OO design principles
and what is originally supposed to be explicit semantics in OWL is becoming
rather implicit and dependent on the interpretation of the “special purposes”
patterns used. Another observation is that this approach would work just fine
as long as only the modeling part is concerned but if performing inference tasks
is part of the deal, then more caution is necessary. Relying merely on native
Java constructs to translate OWL DL means in a certain way delegating the
responsibility of enforcing restrictions and properties characteristics to the com-
piler, which is not exactly the point of properties and restrictions axioms from an

3 OpenRDF, http://www.openrdf.org/.
4 https://bitbucket.org/openrdf/alibaba.

http://www.openrdf.org/
https://bitbucket.org/openrdf/alibaba

12 S. Baset and K. Stoffel

open world reasoning perspective. Another related project is in [17]. The authors
proposed an initial Python metaclass-based representation of OWL ontologies
that offer class declaration and instance creation. Their prototype also allows
integrating an OWL DL reasoner with their metaclass representation.

7 Conclusion and Future Work

In this paper we presented a novel approach into democratized semantics by
bringing OWL ontologies into the context of programming languages. We also
reported on our experience in automatically parsing ontologies into executables.
Since the project is in its early stage, there is a lot on the road map for Onto-
JIT; mainly exploring the reasoning possibilities over executable ontologies and
potential advantages or drawbacks this can bring. One idea here is that with
run-time dynamic compilation of modern programming languages, the gener-
ated source code can change and adapt at run time. In that sense, executing the
ontologies would result in spanning the source code as more explicit information
are inferred from initial implicit semantics. Another interesting possibility is to
exploit hierarchical self-organizing models when inferring class hierarchy using
meta properties as features of asserted input class definitions.

Apart from reasoning, there is also more to investigate on the subject of
the chosen programming paradigm; the OOP paradigm was a close fit from
the modeling perspective but applying the same idea in a declarative paradigm
would also be of interest.

In the long run, we believe that even though the presented idea of democra-
tized semantics is in its infancy stage: the more research we do in this direction
the more potentials arise in the two universes of application development and
knowledge representations alike.

References

1. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. Web Semant. Sci. Serv. Agents
World Wide Web 1(1), 7–26 (2003). ISSN 1570–8268

2. Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic:
Handbook Theory, Implementation and Applications. Cambridge University Press,
Cambridge (2002)

3. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C
Recommendation 10(10), 2004 (2004)

4. OWL 2 Profiles, OWL 2 Web Ontology Language Profiles, W3C Recommendation
(2009)

5. Delugach, H.: ISO/IEC WD 24707 Information technology Common Logic (CL)
A Framework for a Family of Logic-Based Languages. Pacific Northwest National
Laboratory, Chantilly, VA 7 (2004)

6. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Kr 6, 57–67
(2006)

OntoJIT: Parsing Native OWL DL into Executable Ontologies 13

7. Lenat, D.B., Guha, R.V.: The evolution of CycL, the Cyc representation language.
ACM SIGART Bull. 2(3), 84–87 (1991)

8. Genesereth, M.R., Fikes, R.E.: Knowledge interchange format-version 3.0: reference
manual (1992)

9. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge repre-
sentation system. Cognit. Sci. 9(2), 171–216 (1985)

10. Horrocks, I.: DAML+OIL: a description logic for the semantic web. IEEE Data
Eng. Bull. 25(1), 4–9 (2002)

11. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the
International Conference on Formal Ontology in Information Systems, vol. 2001.
ACM (2001)

12. Kifer, M., Lausen, G., James, W.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42, 741–843 (1995)

13. Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.P.: OKBC: a Program-
matic foundation for knowledge base interoperability. In: AAAI 1998 Proceedings
(1998)

14. Clark, P., Porter, B., Works, B.P.: KM-the knowledge machine 2.0: users manual,
vol. 2, p. 5. Department of Computer Science, University of Texas at Austin (2004)

15. Carroll, J.J., et al.: Jena: implementing the semantic web recommendations. In:
Proceedings of the 13th International World Wide Web Conference on Alternate
Track Papers & Posters. ACM (2004)

16. Kalyanpur, A., et al.: Automatic mapping of OWL ontologies into Java. In: SEKE,
vol. 4 (2004)

17. Babik, M., Hluchy, L.: Deep integration of python with web ontology language. In:
Proceedings of the 2nd Workshop on Scripting for the Semantic Web (2006)

18. Bechhofer, S., Carroll, J.J.: OWL DL: trees or triples? In: Proceedings of the
Thirteenth International World Wide Web Conference (WWW 2004) (2004)

19. Bechhofer, S., Volz, R., Lord, P.: Cooking the semantic web with the OWL API.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
659–675. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39718-2 42

20. Sheard, T.: Accomplishments and research challenges in meta-programming. In:
Taha, W. (ed.) SAIG 2001. LNCS, vol. 2196, pp. 2–44. Springer, Heidelberg (2001).
doi:10.1007/3-540-44806-3 2

21. Abramson, H., Rogers, M.H.: Meta-Programming in Logic Programming. MIT
Press, Cambridge (1989)

22. Burmako, E.: Scala macros: let our powers combine!: on how rich syntax and static
types work with metaprogramming. In: Proceedings of the 4th Workshop on Scala.
ACM (2013)

23. Hoyte, D.: Let Over Lambda. Lulu.com (2008)
24. Pottier, F.: An overview of CML. Electron. Notes Theor. Comput. Sci. 148(2),

27–52 (2006)
25. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: Object-oriented semantic

web programming. In: Proceedings of the 16th International Conference on World
Wide Web (WWW 2007), pp. 817–824. ACM, New York (2007). doi:http://dx.doi.
org/10.1145/1242572.1242682

26. Puleston, C., Parsia, B., Cunningham, J., Rector, A.: Integrating object-oriented
and ontological representations: a case study in Java and OWL. In: Sheth, A.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 130–145. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88564-1 9

http://dx.doi.org/10.1007/978-3-540-39718-2_42
http://dx.doi.org/10.1007/3-540-44806-3_2
http://dx.doi.org/10.1145/1242572.1242682
http://dx.doi.org/10.1145/1242572.1242682
http://dx.doi.org/10.1007/978-3-540-88564-1_9
http://dx.doi.org/10.1007/978-3-540-88564-1_9

14 S. Baset and K. Stoffel

27. Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual modeling of OWL DL
ontologies using UML. In: McIlraith, S.A., Plexousakis, D., Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 198–213. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30475-3 15

28. Knublauch, H.: Ontology-driven software development in the context of the seman-
tic web: an example scenario with Protege/OWL. In: 1st International Workshop
on the Model-Driven Semantic Web (MDSW2004), Monterey, California, USA
[WWW document] (2004). http://www.knublauch.com/publications/MDSW2004.
pdf

29. Athanasiadis, I.N., Villa, F., Rizzoli, A.-E.: Ontologies, JavaBeans and relational
databases for enabling semantic programming. In: 31st Annual International Com-
puter Software and Applications Conference (COMPSAC 2007), vol. 2. IEEE
(2007)

30. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and
Applications. Addison-Wesley, Reading (2000). Edited by Goos, G., Hartmanis,
J., van Leeuwen, J

31. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond. Pearson Education, Stoughton (2004)

32. Schult, W., Polze, A.: Aspect-oriented programming with C# and .net. In: Pro-
ceedings of the Fifth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2002). IEEE (2002)

33. Ganz, Carl., Jr.: Runtime code compilation. In: Pro Dynamic. NET 4.0 Applica-
tions, pp. 59–75. Apress (2010)

34. Atkinson, C., Gutheil, M., Kiko, K.: On the relationship of ontologies and models.
WoMM 96, 47–60 (2006)

http://dx.doi.org/10.1007/978-3-540-30475-3_15
http://dx.doi.org/10.1007/978-3-540-30475-3_15
http://www.knublauch.com/publications/MDSW2004.pdf
http://www.knublauch.com/publications/MDSW2004.pdf

Healthy Lifestyle Support:
The PerKApp Ontology

Tania Bailoni, Mauro Dragoni(B), Claudio Eccher, Marco Guerini,
and Rosa Maimone

FBK-IRST, Trento, Italy
{tbailoni,dragoni,eccher,guerini,rmaimone}@fbk.eu

Abstract. Healthy lifestyle is not only a today trend fostered by the
explosion of gluten-free foods (or similar) or by the presence on the mar-
ket of many devices for monitoring how many steps you do during a day
and how many calories you spent in the last twenty-four hours. Following
a healthy lifestyle means also to prevent diseases as consequence of an
incorrect diet or to avoid chronic pathologies that may occur after sensi-
tive surgeries. In this paper, we present the first version of the PerKApp
ontology. Here, we model concepts representing detailed foods proper-
ties, with the goal of supporting the construction of intelligent interfaces
for domain experts. This ontology is part of the PerKApp project aim-
ing to provide a full-fledged platform supporting the remote lifestyle
monitoring of users by providing real-time feedback through persuasive
context-based messages when necessary. Beside the ontology, the paper
will also provide an overview of the PerKApp project and how the pre-
sented ontology will be used.

1 Introduction

Diets and physical activity play a crucial role for a long and healthy life.
Best practices are available in guidelines and expert recommendations regard-
ing healthy lifestyle that people should adopt for maintaining their physical and
mental well being. This way, they will be able to prevent cognitive decline, obe-
sity, disability, and death from major chronic diseases: diabetes, cardiovascular
disease, and several forms of cancer, just to mention a few. However, engaging
people in developing and maintaining healthier patterns of living is a challenging
task.

ICT-based persuasion systems can be effective tools to persuade and moti-
vate people to change their behavior. Such systems are able to collect and rea-
son on user’s data gathered from personal devices, off-the-shelf wearable sen-
sors, and external sources (e.g., electronic health-care records). By exploiting
these data, persuasive systems can generate effective personalized recommen-
dations by adapting the message generator in response to the modification of
the environment and the user status. To carry out this task, a persuasion tool
must rely on a considerable amount of knowledge from different domains (e.g.
user attitudes, preferences and environmental conditions, etc.) for suggesting the
c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 15–23, 2017.
DOI: 10.1007/978-3-319-54627-8 2

16 T. Bailoni et al.

behavior to adopt and for justifying such suggestions. Examples are food content
and nutrients, physical activities accompanied by information concerning their
categorization and effort, user attitudes and preferences, linguistic knowledge,
and smart environment information (places, weather, etc.). As we may notice,
these systems can greatly benefit from the adoption of an ontological approach
to model knowledge, ensuring disambiguation of terms and formal definition of
concepts and relations of the domains of discourse, which the system can exploit
for reasoning purposes.

In this paper, we present the first version of the PerKApp ontology aiming to
describe food properties and to support the construction of intelligent interfaces
allowing domain experts to model monitoring rules for recommending healthier
life styles. The ontology is part of the several knowledge bases modeled in the
PerKApp project [1], which aims to provide a full-fledged platform supporting
the monitoring of citizens and patients lifestyles and the provision of real-time
feedback through persuasive context-based messages when the need for an inter-
vention is detected.

Section 2 provides a brief overview of the main ontologies concerning the food
domain. In Sect. 3, we present the PerKApp project. Then, in Sect. 4 the PerKApp
ontology is described, while, in Sect. 5, we show how the ontology is used within
the PerKApp architecture. Finally, Sect. 6 concludes the paper.

2 Related Work

Literature about food ontologies is not new and some works already provided
useful artifacts. In this section, we briefly resume the most relevant work in this
direction.

In [2] the authors describe food intake patterns identified by applying new
food categories. New food groups were formed using a systematic approach
involving the consideration of (i) nutrient composition and energy density,
(ii) current scientific evidence of health benefits, and (iii) culinary use of each
food. In this way the researchers identified 17 food groups.

Regarding the use of ontologies, in [3] it is presented a process for a rapid
prototyping of a food ontology oriented to the nutritional and health care domain
that is used to share existing knowledge. The aim of this ontology is to present
a complete description of food with nutritional information, type, nutrients, and
the recommended daily or weekly quantity to be consumed in a healthy diet for
people with diabetes. The main steps of this process consist in: (i) identifying
the domain and its rules; (ii) finding nouns used in common language for generic
food; (iii) defining relations among food and properties and, also, among different
foods (i.e. it does not exist any difference between two apples). The described
ontology contains 177 classes, 53 properties of foods, and 632 relations.

The contribution presented in [4] discusses the design and development of a
food-oriented ontology-driven system (FOODS), used for food or menu planning
in a restaurant, clinic/hospital, or at home. FOODS comprises (i) a food ontol-
ogy, (ii) an expert system using such an ontology and some knowledge about

Healthy Lifestyle Support: The PerKApp Ontology 17

cooking methods and prices, and (iii) a user interface suitable for users with
different levels of expertise.

Other works use ontologies for delivering personalized and customized infor-
mation. The work presented in [5] focuses on the integration of different domain
ontologies, like food, health, and nutrition, in order to help personalized infor-
mation systems to retrieve food and health recommendations based on the user’s
health conditions and food preferences.

Finally, in [6] there are described the design steps, the working mechanism,
and the case of use of the Ontology-Driven Mobile Safe Food Consumption Sys-
tem (FoodWiki) using semantic matching. The system is designed to evaluate
commercial packaged food products and suggesting the selected product’s appro-
priateness to food consumers according to their health conditions or intolerance.
The Food Ontology Knowledge Base (FOKB) is also presented: it contains four
main classes, 58 sub-classes, 15 object type properties and 17 sub-object type
properties, 12 data type properties, 1530 individuals with annotation type prop-
erties, and 210 semantic rules.

The principal novelty of the presented ontology consists in providing a knowl-
edge schema that is able not only to describe detailed information about foods,
but also to support reasoning activities on users’ behaviors and the creation of
smart interfaces for creating rules for monitoring users.

3 The PerKApp Project

The PerKApp project1 aims to merge the advantages of using diverse knowledge
representation and reasoning techniques with rich persuasive natural language
generation approaches. It is composed of two parts:

1 An application for personal devices, able to collect data from the user (e.g.,
food intake), wearable sensors (e.g., fitness trackers), and contextual data
(e.g., the weather, the proximity of fitness facilities) and to notify persuasive
and motivational messages by exploiting different representation mechanisms:
textual, speech, video, and graphical alerts.

2 A core persuasive component that combines data and knowledge to generate
effective persuasive messages customized to the user needs, attitudes and pref-
erences, conveyed through multiple communication channels and modalities,
dynamically selected exploiting contextual information (e.g., user’s location
and activity).

Three main concepts drive the message generation process:

external event: an event that occurs in the real world acting as trigger for
the system (e.g., a timer, a user eating too much food or performing too low
in physical activity).
communicative goal: the top most intention of the system that drives its
planning (e.g., diverting from an actual unhealthy behavior).

1 https://perkapp.fbk.eu.

https://perkapp.fbk.eu

18 T. Bailoni et al.

persuasive goal: goals within the persuasion engine activated according to
the top communicative goal, and representing partial “plans” to fulfill it.

The persuasion engine combines different knowledge bases for inferring the
right content, type, and timing of the messages sent to users. In particular, the
full-set of the exploited knowledge contains:

– “static” domain knowledge: i.e., the knowledge describing the objects of the
domain of interest and their relationships, such as the food ontology presented
here.

– The “dynamic” user model, i.e., the knowledge about users that may change
over time as a consequence of external events (e.g., the health status) or sys-
tem’s actions (e.g., after the adoption of suggested behaviors).

– “environment” information concerning the context and the environment
around users: city maps, information about sport facilities, areas for physi-
cal activities, etc.

– The “linguistic” model: i.e., the knowledge about the linguistic terms (noun,
verbs, adjectives, etc.) and phrases more adapt for the domain of intervention,
augmented with information about evocative qualities of such terms (e.g.,
sentiment bearing words, adjectives that represent level of intensity in physical
activity).

4 The PerKApp Ontology

The development of the PerKApp ontology followed the need of providing a
knowledge artifact able not only to provide a representation of domains concern-
ing healthier lifestyle, but, also, to support further activities like, for example,
remote medical monitoring. As we discussed in Sect. 2, ontologies available in
domains connected with wellness and health lifestyle have been designed with
different aims. For example, ontologies concerning sport activities are created
with a focus on classifying data without connecting each activity with poten-
tial problems or benefits associated with the health status of a user. Similarly
happened for ontologies concerning foods.

In the PerKApp project, we decided to model an ontology with a focus on the
connection between diet and physical behavior with people health. The devel-
opment of our ontology has been driven by the following main questions:

– Which information are needed for having a detailed description of each food?
– Which concepts are necessary for supporting the design of rules allowing user

monitoring?
– Which data have to be provided by users for allowing reasoning tasks?

At this stage, the ontology has not been connected with fundamental ontolo-
gies like DOLCE [7]. The reason is that this first version of the ontology will be
extended for covering further domains that will be of interest for the PerKApp
project. Thus, the alignment task has been postpone as future work.

Figure 1 shows a general overview of the ontology with the main concepts.
Below, we distinguished concepts in three main categories and we provided

the semantic meaning of the most important entities.

Healthy Lifestyle Support: The PerKApp Ontology 19

Fig. 1. Overview of the PerKApp ontology.

4.1 Diet-Oriented Concepts

These concepts are used for classifying foods and for describing, in detail, their
composition. According to project aims, modeling only the category of each
food and its calories is not enough. Thus, what we need is to model all possible
information connected with food compositions. The main concepts belonging to
this category are the following.

“Food”. Trivially, this is the root concept of all foods contained into the ontology.
As specifications of the concept “Food”, we defined three main sub-concepts:
“Basic Food”, “Composed Food”, and “Dressing”. With “Basic Food”, we
intended to model foods that are described within the resources we adopted
for creating the ontology. For all entities of type “Basic Food”, we are able
to provide a full description of their properties, as described later. While, the
“Composed Food” concept represents entities, like dishes, that are composed by
two or more concepts of type “Basic Food”. The “Dressing” concept is exploited
for modeling different dressings and toppings commonly available. This type of
concepts has been thought for easing user monitoring activities. This distinction
allows to map common-sense dishes that can be provided by users, as “Pasta alla
Carbonara”, to the set of basic foods accompanied with nutrition information.

Concerning the “Basic Food” concept, many specifications have been defined.
The reader may consult them into the ontology. Here, we only want to mention
that many of the modeled categories have been created for facilitating the user

20 T. Bailoni et al.

monitoring task. For example, by grouping foods under the concept “Fats and
Oils”, it is easy for a dietitian to define a rule for monitoring the quantity of
fatty foods consumed by a user.

“Nutrient”. The “Nutrient” concept allows to describe fine-grained properties
of each food. This concept and its sub concepts are very useful for designing
monitoring rules. Indeed, based on the user profile, an expert may decide to
define a fine-grained monitoring on specific nutrients. For instance, users with
cardiological issues should limit the consumption of fat foods, or people having
calcium shortage should consume specific foods, etc.

Within our ontology, nutrients have been then classified among a set of sub-
concepts: “Carbs”, “Protein”, “Lipids”, “Vitamin”, and “Mineral”. This way, it
is possible to monitor also groups of nutrients instead of single ones.

“Timespan” and “Meal”. The last diet-oriented concepts concern timing infor-
mation that can be exploited for different monitoring purposes. For example,
when a domain expert creates a rule, he/she might decide to mark such a rule as
valid only for a specific moment during the day, or as a check for a given period
of time. By considering the diet purpose of the ontology, specific moments dur-
ing a single day are described by the concept “Meal” that identifies the most
common moments when people eat.

Instead, concerning specific time period, we defined the concept “Timespan”.
Such a concept is instantiated with individuals defined through the interface
provided to domain experts. The “Timespan” concept is in relation with the
datatype property “duration” allowing to specify the number of seconds for
which a specific timespan subsists.

4.2 Rule-Support Concepts

This set of concepts has been designed for supporting reasoning activities and
for tracking potential rule violations caused by users.

The concept “Rule” represents the rules defined by domain experts through
the platform interface. In the current version of the ontology, instances of this
concept are represented by a string composed by a set of atomic logical clauses.

The second concept, “Violation”, is exploited for instantiating user’s vio-
lations with respect to each rule. Such a class is defined with restrictions as
following:

<owl:Class rdf:about="perkapp:Violation">
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="perkapp:hasViolationRule"/>
<owl:onClass rdf:resource="perkapp:MonitoringRule"/>
<owl:qualifiedCardinality

rdf:datatype="&xsd;nonNegativeInteger">1
</owl:qualifiedCardinality>

</owl:Restriction>
<owl:Restriction>

Healthy Lifestyle Support: The PerKApp Ontology 21

<owl:onProperty rdf:resource="perkapp:hasViolationUser"/>
<owl:onClass rdf:resource="perkapp:User"/>
<owl:qualifiedCardinality

rdf:datatype="&xsd;nonNegativeInteger">1
</owl:qualifiedCardinality>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="perkapp:hasViolationLevel"/>
<owl:qualifiedCardinality

rdf:datatype="&xsd;nonNegativeInteger">1
</owl:qualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;integer"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

Beside their use in reasoning activities, violation instances may be used by
external services for data aggregation purposes.

4.3 User Information

Users are represented in the ontology for linking purposes only. Indeed, users’
personal data are managed by external organizations, e.g., hospital institution
in the case of users under medical control. Within the ontology, we modeled only
the “User” concept that is used as a bridge between ontology data and actual
user’s information stored in the external resources. Such a concept has only a
datatype property containing the unique identifier of the user within the external
resources. Within the ontology, user instances are adopted for associating meals
and, eventually, violations to the respective instances.

5 The PerKApp Ontology in Action

The PerKApp project does not aim to just provide yet another ontology and
application wellness-related like many others already present on the market. The
PerKApp project was born with the main aim of supporting different monitoring
activities from sponsoring healthier lifestyles to avoiding chronic diseases and
preventing onset of pathologies. Below, we will describe the role of the PerKApp
ontology for supporting different tasks concerning the development of the full-
fledged PerKApp platform.

Definition of Rules Schemata. As introduced above, one of the objectives on the
PerKApp project is to monitor eating habits of users in order to prevent different
type of pathologies and chronic diseases. Such a monitoring activity is performed
by implementing within the platform a machinery for defining dietary rules.
Rules definition is performed by domain experts supported by easy interfaces
allowing the exploitation of ontological concepts for defining both simple and
complex rules.

Designed rules combined with information provided by users can be used for
performing reasoning on the populated knowledge base. Results of the reasoning
activity can then be exploited for carrying out further actions with the aim of
redirecting users’ behaviors to better lifestyles.

22 T. Bailoni et al.

Ontology Enrichment for Persuasion. In Natural Language Generation (NLG)
usually two levels can be identified: strategic and tactical [8]. It should be noted
that most systems and approaches in NLG are based on descriptive tasks, focus-
ing on texts which realize a single, often informative, communicative goal, as
opposed to persuasive NLG where the communicative goal is usually surmounted
by reasoning about the persuadee’s behavior modification. Persuasive features
can have an impact on both strategic and tactical levels since the effectiveness
of a message can be enhanced by appropriate content selection, text planning
and linguistic choices. Within PerKApp the ontology design has been driven by
the needs of “persuasive” NLP reasoning.

For example at the strategic level, diverting a user from eating unhealthy
foods often requires suggesting viable alternatives. Alternatives can be either
found reasoning on nutrients or by encoding more abstract concepts as taste.
So, for example, given a food F1, we can found a substitute food F2 that has
similar nutrients, minus the unhealthy ones. Another direction might be the
adoption of a “similar to” relation given by taste similarity. This way, it would
be able to find a food F2 that is connected to F1 on the basis of criteria different
from a mere data similarity.

APIs Service. Finally, the PerKApp ontology is exposed as a web service available
on the PerKApp project website2. Currently, it supports three methods described
below. Here, we reported only the description of each method, while, details
concerning output data structures are reported on the project website.

“/GetFoodList”: This method returns the list of foods contained within
the ontology with their labels.

“/SingleFoodData”: This method returns all information associated with
a specific food. The method supports two parameters:

– food (mandatory): the “id” of the food the user wants to retrieve;
– quantity (optional): the quantity, expressed in grams, that has to be used by

the service for computing the amount of nutrients contained in the requested
food. Default value is 100.

“/CheckMeal”: The last method currently implemented allows to compute
the amount of calories and nutrients consumed in a given meal. This method
expects two mandatory parameters:

– mealFoods: a string listing food ids separated by “;”.
– mealFoodsQuantity : a string of numbers indicating, for each of the food listed

within the “mealFoods” parameter, the amount of grams consumed. Also for
this method, the separator between numbers is “;”. Number placed at position
n in this parameter corresponds to the quantity of the n-th food listed within
the “mealFoods” parameter.

2 The base url of the web service is “http://shellvm1.fbk.eu:8080/virtualcoach
webservice”.

http://shellvm1.fbk.eu:8080/virtualcoach_webservice
http://shellvm1.fbk.eu:8080/virtualcoach_webservice

Healthy Lifestyle Support: The PerKApp Ontology 23

6 Conclusions and Future Work

In this paper, we presented the first version of the PerKApp ontology and its role
in the PerKApp platform. Concepts modeled into the ontology will not have only
descriptive purposes, but they will also act as support for further activities con-
cerning the monitoring and the persuasion of patients and citizens for pursuing
healthier lifestyles.

Future work on the ontology will concern the integration of further domains
(e.g. the physical activity one) and the linking with existing environmental
ontologies (e.g. locations, weather, etc.) that, in smart contexts, would support
the development of more intelligent platforms.

References

1. Bailoni, T., Dragoni, M., Eccher, C., Guerini, M., Maimone, R.: PerKApp: A context
aware motivational system for healthier lifestyles. In: ISC2, pp. 1–4. IEEE (2016)

2. Grafenauer, S., Tapsell, L., Beck, E.: Beyond nutrients: classification of foods to
identify dietary patterns for weight management. In: 16th International Congress of
Dietetics

3. Cantais, J., Dominguez, D., Gigante, V., Laera, L., Tamma, V.: An example of food
ontology for diabetes control. In: Proceedings of the International Semantic Web
Conference 2005 Workshop on Ontology Patterns for the Semantic Web (2005)

4. Snae, C., Bruckner, M.: Foods: a food-oriented ontology-driven system, pp. 168–176
(2008)

5. Helmy, T., Al-Nazer, A., Al-Bukhitan, S., Iqbal, A.: Health, food and user’s profile
ontologies for personalized information retrieval. In: Shakshuki, E.M. (ed.) Pro-
ceedings of the 6th International Conference on Ambient Systems, Networks and
Technologies (ANT 2015), the 5th International Conference on Sustainable Energy
Information Technology (SEIT-2015), London, 2–5 June 2015. Procedia Computer
Science, vol. 52, pp. 1071–1076. Elsevier (2015)

6. Çelik Ertuğrul, D.: FoodWiki: a mobile app examines side effects of food additives
via semantic web. J. Med. Syst. 40(2), 1–15 (2016)

7. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002). doi:10.1007/
3-540-45810-7 18

8. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, Cambridge (2000)

http://dx.doi.org/10.1007/3-540-45810-7_18
http://dx.doi.org/10.1007/3-540-45810-7_18

An Experimental Evaluation of Automatically
Generated Multiple Choice Questions

from Ontologies

Ghader Kurdi(B), Bijan Parsia, and Uli Sattler

School of Computer Science, The University of Manchester,
Kilburn Building, Oxford Road, Manchester M13 9PL, UK

{ghader.kurdi,bijan.parsia,Ulrike.Sattler}@manchester.ac.uk

Abstract. In order to provide support for the construction of MCQs,
there have been recent efforts to generate MCQs with controlled diffi-
culty from OWL ontologies. Preliminary evaluation suggests that auto-
matically generated questions are not field ready yet and highlight the
need for further evaluations. In this study, we have presented an exten-
sive evaluation of automatically generated MCQs. We found that even
questions that adhere to guidelines are subject to the clustering of dis-
tractors. Hence, the clustering of distractors must be realised as this
could affect the prediction of difficulty.

1 Introduction

Multiple Choice Questions (MCQs) are a widely adopted form of question in both
paper- and electronic-based tests. A great proportion of large scale tests consist
of MCQs. They have gained further importance with the advent of e-learning
and Massive Open Online Courses (MOOCS) (e.g. Coursera, Future Learn, and
Udacity), in which providing assessment and feedback on a large scale is chal-
lenging. However, MCQs are labour intensive, time consuming and difficult to
construct. Well-constructed MCQs require a considerable time for design, writ-
ing, and revision. In order to provide support for the construction of MCQs,
there have been recent efforts to generate MCQs with controlled difficulty from
OWL ontologies based on the similarity theory of difficulty [1]. The similarity
theory associates difficulty with the degree of similarity between the key (cor-
rect option) and the distractors (incorrect options). Despite the advances in the
method, preliminary evaluation suggests that generated questions are not field
ready yet and highlight the need for more extensive evaluation of the questions.

The objective of this study is to evaluate the quality of, and to categorise
various problematic phenomena of, automatically generated MCQs from ontolo-
gies based on the aforementioned theory [1]. Another objective of this study is
to distinguish issues that are intrinsic to similarity theory from natural language
and presentation issues. The specific questions driving this study are:

c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 24–39, 2017.
DOI: 10.1007/978-3-319-54627-8 3

An Experimental Evaluation of Automatically Generated MCQs 25

1. What are the issues presented in automatically generated question? And to
what degree are they prevalent?

2. Are these issues intrinsic properties of the similarity theory as opposed to
natural language and presentation issues?

The main contribution of this study is the identification of a new problematic
phenomenon of clustered distractors that influences the prediction of difficulty.

2 Materials and Methods

Experimental Data. Our study used two domain ontologies for the evaluation:
the Knowledge Acquisition (KA) ontology and the Java ontology. The KA and
Java ontologies were handcrafted with the purpose of question generation in
mind.1 The reason behind choosing these two ontologies is the availability of
corresponding courses provided by the School of Computer Science at the Uni-
versity of Manchester. The ontological statistics are provided in Table 1.

Experimental Set-up. The following machine has been used to carry out the
experiment presented in this study: Intel core i7 2.4 GHz processor, 8 GB RAM,
running Windows OS 8.1 (HP Spectre 2015 model).

Table 1. Statistics for the experimental ontologies.

Ontology Classes Properties Individuals Logical axiom

KA 151 7 0 254

Java 305 74 0 554

2.1 MCQ Generation

We used the MCQ generator developed by Alsubait et al. [1] to automatically
generate MCQs using the aforementioned ontologies as inputs. The tool gen-
erates six types of questions that are explained in AppendixA. The generated
questions are classified by the tool into ‘easy’ or ‘difficult’ questions. Each ques-
tion consists of a stem (a text that poses the question), a key, and a non-empty
set of distractors minimally containing two distractors. Different versions can be
constructed from the suggested questions by selecting different subsets of the dis-
tractors. The number of generated questions is provided in Table 2. Generating
questions from the Java ontology took 12 days while generating questions from
the KA ontology took around 12 h. It is clear from the table that the number of
difficult questions (67 difficult questions) is low compared to the number of easy
questions (2090 easy questions). The reason is that few distractors with a very
high similarity to the key can be found in ontologies [1].
1 For a detailed description of both ontologies, the reader is referred to [1,2].

26 G. Kurdi et al.

Although the size of the Java ontology is about double the size of the KA
ontology, the number of easy questions generated from the Java ontology is about
11 times larger than the number of questions generated from the KA ontology.
In addition, generating questions from the Java ontology took much more time
than generating questions from the KA ontology. We expect that the magnitude
of the difference between the number of questions and the generation cost in
terms of time is related to the depth of the inferred class hierarchy. Looking
at both ontologies, we noticed that the class hierarchy of the Java ontology is
divided into eleven levels compared to five levels in the KA. In addition, many
classes in the Java ontology have multiple direct subsumers while classes in KA
have only one direct subsumer. To illustrate the effect of this, let us consider
two classes: class (A) which is located at level 11 and has two direct subsumers
throughout the hierarchy, and class (B) which is located at level 5 and has a
single subsumer at each level. Taking the question category “What is X” as
an example, the number of generated questions for class (A) is expected to be
about 2n−2 = 211−2 = 2046 questions where n represents the number of levels.
However, the number of questions for class (B) is only 30. Note that to generate
the questions, similar distractors for each class must be found first. This non-
linear growth suggests ontologies as a supplier that can satisfy the demand for
a large number of questions since adding a few classes and submission relations
increases the number of generated question significantly.

2.2 Sample Selection

Due to the large number of easy questions generated, we used a stratified sam-
pling method in which questions were divided into groups according to the ques-
tion category. With regards to easy questions, we randomly selected the questions
from the different groups in proportion to their number, taking into account a
95% confidence level and 5% margin of error. As the number of difficult questions
was small, we evaluated them all. The total number of evaluated questions is 506
questions (67 difficult questions and 439 easy questions), as shown in Table 2.

Table 2. Statistics for the number of generated questions. Note that the sizes of the
samples of easy questions are represented between parentheses.

Question category Java KA

Easy Difficult Easy Difficult

Generalisation: What is X 393 (66) 6 11 (8) 0

Generalisation 2: What is X2 0 0 56 (39) 8

Specification: Which is X 260 (43) 22 15 (11) 0

Specification 2: Which is X2 88 (15) 11 82 (58) 0

Definition: Which term 207 (35) 20 2 (1) 0

Recognition: Which is odd 976 (163) 0 0 0

Total 1924 (322) 59 166 (117) 8

An Experimental Evaluation of Automatically Generated MCQs 27

2.3 Evaluation Criteria

We performed a preliminary evaluation of automatically generated questions and
observed some problematic questions. We then referred back to the literature
that discussed and suggested guidelines for developing MCQs [3,4]. Haladyna
et al. [3] conducted a review of MCQ writing guidelines for assessment. In addi-
tion, Pho et al. [4] performed an analysis of multiple choice question corpus in
order to define distractor characterisation. The initial criteria for our evaluation
started with suggestions described in the aforementioned studies. Table 3 gives
an overview of the initial set of criteria. A detailed discussion of each criterion
will be provided in the associated result section for clarity. Examples of gener-
ated questions that do not adhere to guidelines can be found in AppendixB.
Then, through an iterative process of evaluating the questions, we developed a
new criterion for selecting distractors that was not mentioned in the literature,
as will be discussed in Sect. 3.5.

Table 3. The predefined criteria for assessing automatically generated questions
(adapted from [3,4]).

Quality criterion

(Q1) The question is grammatically correct

(Q2) The question contains no clues to the key

(Q3) Options are homogeneous in grammatical structure

(Q4) Options are homogeneous in content

3 MCQ Evaluation: Results and Discussion

3.1 Grammatical Correctness

The grammatical correctness of questions is an important consideration when
constructing MCQs since grammatical inconsistency could give test takers with-
out sufficient knowledge a clue to the correct answer. In order to investigate the
grammatical correctness of automatically generated MCQs, we classified ques-
tions based on the level of the grammatical corrections required into:

(MIN) minor correction: involves adding appropriate articles, fixing any
subject-verb disagreement and tokenising the stem and the options,
including segmentation, as well as processing of camel case and under-
scores;

(MED) medium correction: involves inserting or deleting up to three words from
the stem and the options;

(MAJ) major correction: involves rephrasing of the stem or the options.

28 G. Kurdi et al.

The distribution of questions according to the level of the grammatical correc-
tions required is shown in Table 4. Although the majority of MCQs required only
minor corrections, there is a considerable number of questions requiring major
corrections. Presenting questions in OWL syntax is the main reason behind
the need for major grammatical corrections. However, this issue is repairable by
employing one of the available ontology verbalisers. Evaluating different verbalis-
ers in order to choose the most suitable for the purpose of question verbalisation
is a part of future work. In addition, the issues of segmentation and processing
of camel-case and underscore can be achieved by employing regular expressions.
The total number of questions requiring major correction was higher in the KA
ontology because a higher number of questions containing sub-expressions was
generated from the KA ontology (Table 11).

Table 4. Results for question evaluation in regards to the required level of grammatical
corrections.

Question category Easy Difficult

Minor Medium Major Minor Medium Major

What is X 70 4 0 6 0 0

What is X2 0 0 39 0 0 8

Which is X 54 0 0 22 0 0

Which is X2 0 0 73 0 0 11

Which term 36 0 0 20 0 0

Which is odd 159 0 4 – – –

Total 319 4 116 48 0 19

3.2 Syntactic Clues

One of the MCQ writing guidelines in regards to writing the choices is to avoid
“choices identical to or resembling words in the stem” [3]. Alsubait et al. [1]
identified word clues as a problem that affects the accuracy of the difficulty
prediction. We have considered different possible similarities in wording between
the stem and the options:

(SK) shared word(s) or phrase between the stem and the key;
(SD) shared word(s) or phrase between the stem and one or more distractors;

(SKD) shared word(s) or phrase between the stem and the options including
the key and one or more distractors.

(ANT) a word in the stem has an antonym in one or more of the distractors.

The form (SK) should be avoided because it makes the key stand out as
the correct answer. On the other hand, if word(s) or a phrase in the stem are
repeated in the distractor(s) only, this make the distractor(s) more attractive to

An Experimental Evaluation of Automatically Generated MCQs 29

low information students. This form (SD) can be desirable because it improves
the functionality of the clued distractor(s) and possibly the discrimination of the
item. However, the attractiveness of the clued distractors tends to decrease the
functionality of the other distractors. Finally, regarding the third form (SKD),
there is a preference over other options for options that share similar wording
with the stem, as mentioned earlier. This leads to the nonfunctionality of some
of the distractors and increases the guessability of the item. However, we did
not consider questions where all distractors share word(s) with the key and the
stem as containing a syntactic clue. We identified another form of syntactic clue
in which a word in the stem has an antonym in one or more of the distractors.
This form also needs to be avoided because the distractor(s) are clued as the
wrong answer(s). A lexical database such as WordNet can be used to acquire the
antonyms of concepts in the stem. The acquired terms can be associated with
the stem and taken into account during the question generation.

Table 5 shows the distribution of the evaluated questions in regards to the
aforementioned forms. Table 11 shows the proportion of questions that contain
syntactic clues to the total number of questions in each ontology. The evaluation
indicated that 25.4% and 12.5% of difficult questions generated from the Java
and the KA ontologies respectively contain clues to the keys which, in turn,
make the questions easy. One of the suggested solutions is to provide alternative
names using OWL annotation properties which can be used by the tool if wording
similarity between the stem and key is detected.

Table 5. Results for question evaluation in regards to syntactic clues.

Question category Easy Difficult

SK SD SKD ANT No clue SK SD SKD ANT No clue

What is X 4 27 6 0 37 1 4 1 0 0

What is X2 13 2 5 0 19 1 0 0 0 7

Which is X 15 12 6 5 19 8 1 1 0 12

Which is X2 13 8 8 0 44 2 0 0 0 9

Which term 1 13 16 2 6 4 7 7 0 2

Which is odd 0 0 0 0 163 – – – – –

Total 42 62 48 7 274 16 12 9 0 30

3.3 Syntactic Consistency

One of the recommendations from the literature regarding the syntactic struc-
ture of the options is to “keep choices homogeneous in content and grammatical
structure” [3]. Another related recommendation is to avoid “grammatical incon-
sistencies that cue the test-taker to the correct choice” [3]. In order to investigate
to what extent automatically generated questions follow these rules, we auto-
matically annotated the distractors with syntactic information about parts of

30 G. Kurdi et al.

speech (i.e. nouns (NN), verbs (VB), determiner (DT), etc.) using the Stanford
part-of-speech tagger2. We then manually applied corrections where needed to
the assigned part of speech for each distractor. We compared the key and each
distractor in terms of their syntactic structures independently of their meaning
as suggested in [4]. We consider the distractor and the key to be:

(GC) grammatically consistent: if their assigned parts of speech are identical,
(PC) partially consistent: if they share some parts of speech,
(IC) grammatically inconsistent: if their assigned parts of speech are totally

different.

Looking at different generated questions where syntactic inconsistency
presents, we concluded that grammatical inconsistency can highlight the need
for modification of either the questions, or the names used in the ontology, even
though this is not always associated with invalid distractors.

The number of questions that contain syntactic inconsistency and a detailed
analysis of the number of syntactically consistent and inconsistent distractors is
presented in Table 6. Table 11 show the percentage of distractors that are syntac-
tically inconsistent with the key in each ontology. The proportion of distractors
distributed over the three categories seems to be consistent in the two ontologies.

Table 6. Results of evaluating syntactic consistency. Note that the upper part reports
the number of questions while the lower part reports the number of distractors.

Question category Easy Difficult

GC and PC IC GC and PC IC

What is X 24 50 6 0

What is X2 39 0 7 0

Which is X 34 20 22 0

Which is X2 73 0 11 0

Which term 18 18 17 3

Which is odd 151 12 – –

Total 339 100 63 3

GC PC IC GC PC IC

What is X 556 3,984 374 0 38 0

What is X2 45 74 0 12 39 0

Which is X 259 801 221 23 88 0

Which is X2 69 280 0 11 63 0

Which term 281 765 81 39 86 4

Which is odd 138 452 61 – – –

Total 1,348 6,356 737 85 314 4

2 Downloaded from: http://nlp.stanford.edu/software/tagger.shtml.

http://nlp.stanford.edu/software/tagger.shtml

An Experimental Evaluation of Automatically Generated MCQs 31

3.4 Semantic Homogeneity

The guidelines suggest maintaining the homogeneity of options in MCQs (Q4 in
Table 3). Pho et al. [4] define semantically homogeneous distractors as the alter-
natives that “share a common semantic type (expected by the question)”. We
observed that there are some questions for which the semantic type is deducible
from the stem which, in turn, enforces the use of semantically homogeneous
options. Otherwise, distractors are ruled out because of type mismatch between
the distractors and the key. Based on this, we consider a distractor to be either:

(HOMO) homogeneous: if its type is compatible with the expected type of
the key,

(HETERO) heterogeneous: if its type is not compatible with the expected type
of the key.

We conducted an analysis by checking whether the expected answer type is
suggested in the question either explicitly or implicitly. Then, we checked the
compatibility of distractors with the expected answer type. Table 7 shows the
results of investigating the compatibility of automatically generated MCQs with
the semantic homogeneity rule (Q4). Table 11 shows the distribution of questions
per ontology according to semantic homogeneity.

Table 7. Results for question evaluation in regards to semantic homogeneity.

Category Easy Difficult

Homo Hetero Not applicable Homo Hetero Not applicable

What is X 3 0 71 0 0 6

What is X2 0 0 39 0 0 8

Which is X 12 12 30 5 0 17

Which is X2 0 0 73 0 0 11

Which term 17 18 1 14 6 0

Which is odd 0 0 163 – – –

Total 32 30 377 19 6 42

3.5 Clustered Distractors

All aforementioned flaws are regarded as linguistic or presentation issues that can
be repaired by incorporating existing natural language processing and generation
techniques. However, we observed an interesting phenomenon of the existence
of interrelations between distractors in automatically generated questions. We
called this phenomenon “clustered distractors”. The following examples illus-
trate this phenomenon. The first two examples represent different versions of
the same question where the difference is in the distractor sets. In the first ver-
sion, distractors (A) and (B) are clustered because they both represent relational

32 G. Kurdi et al.

operators. A test taker who knows that relational operators are binary operators
will easily eliminate the distractors and arrive at the correct answer. Hence, the
item functions as a true-false question. Recognising one as a binary operator and
the relation between the distractors gives a clue to the answer. However, in the
second version, a test taker must consider each distractor and recognise it as a
binary operator in order to arrive at the correct solution.

Stem: Which of the following is [a] Unary Operator

A. Less than or equal
B. Less than
C. Logical complement operator

� Key

A. Less than or equal
B. Logical OR
C. Logical complement operator

� Key

Another form of clustered distractors is presented in the following example
generated from the Java ontology. Recognising that a primitive type and a scalar
represent the same concept clue the test taker to select array because (A) and (B)
cannot both be correct as MCQs require only one correct option. More examples
are presented in the appendix.

Stem: Which of the following is [a] Reference Type?
A. Primitive type
B. Scalar
C. Array � Key

We define clustered distractors as a subset of distractors with very high simi-
larity among them. Our assumption is that clustered distractors make questions
easier than expected. That is, even if the question is predicted to be difficult
because of the high similarity between the key and the distractors, the high
similarity between the distractors draws a boundary between the key and the
cluster of distractors. However, the similarity theory is blind to this fact since
only the similarity between the key and distractors is considered.

The results of analysis for clustered distractors are presented in Tables 8 and
11. The evaluation indicated that the phenomenon is dominant. A considerable

Table 8. Statistics for the number of questions containing clustered distractors.

Question category Easy Difficult

Clustered Not clustered Clustered Not clustered

What is X 71 3 6 0

What is X2 14 25 0 8

Which is X 52 2 22 0

Which is X2 43 30 11 0

Which term 26 10 13 7

Which is odd 163 0 – –

Total 369 70 52 15

An Experimental Evaluation of Automatically Generated MCQs 33

Table 9. Statistics for the number of flawed questions and the level of repair required.

Category Easy Difficult

Flawless 1 flaw ≥2 flaws Flawless 1 flaw ≥2 flaws

What is X 0 5 69 0 0 6

What is X2 0 14 25 0 7 1

Which is X 0 0 54 0 0 22

Which is X2 0 13 60 0 0 11

Which term 5 0 31 0 3 17

Which is odd 20 130 13 – – –

Total 25 162 252 0 10 57

None MIN MED MAJ None MIN MED MAJ

What is X 0 63 6 5 0 4 1 1

What is X2 0 20 6 13 0 7 0 1

Which is X 0 26 5 23 0 11 4 7

Which is X2 0 53 9 11 0 9 0 2

Which term 0 23 11 2 0 14 5 1

Which is odd 25 138 0 0 − - - -

Total 25 323 37 54 0 45 10 12

Table 10. The proportion of flawed questions per ontology.

Difficulty Category Java KA

Number Percentage Number Percentage

Easy Flawless 25 7.76% 0 0

1 flaw 136 42.24% 26 22.22%

≥2 flaws 161 50% 91 77.78%

Difficult Flawless 0 0 0 0

1 flaw 3 5.09% 7 87.50%

≥2 flaws 56 94.92% 1 12.50%

The level of repair required

Easy Not required 25 7.76% 0 0

Minor 259 80.44% 64 54.70%

Medium 19 5.90% 18 15.39%

Major 19 5.90% 35 29.92%

Difficult Not required 0 0 0 0

Minor 38 64.41% 7 87.50%

Medium 10 16.95% 0 0

Major 11 18.64% 1 12.50%

34 G. Kurdi et al.

Table 11. The proportion of questions per ontology distributed according to: (A)
grammatical corrections, (B) syntactic clues, (C) syntactic consistency, (D) semantic
homogeneity, and (E) clustered distractors

Difficulty Category Java KA

Number Percentage Number Percentage

(A) Grammatical corrections

Easy Minor 299 92.86% 20 17.09%

Medium 4 1.24% 0 0

Major 19 5.90% 97 82.91%

Difficult Minor 48 81.36% 0 0

Medium 0 0 0 0

Major 11 18.64% 8 100%

(B) Syntactic clues

Easy SK 20 6.2% 22 18.80%

SD 50 15.5% 12 10.26%

SKD 28 8.7% 20 17.09%

ANT 7 2.2% 0 0

No clue 222 68.9% 52 44.44%

Difficult SK 15 25.4% 1 12.5%

SD 12 20.3% 0 0

SKD 9 15.3% 0 0

ANT 0 0% 0 0

No clue 23 39% 7 87.5%

(C) Syntactic consistency (no. of questions)

Easy GC and PC 231 71.74% 108 92.31%

IC 91 28.26% 9 7.69%

Difficult GC and PC 56 94.92% 7 100%

IC 3 5.09% 0 0

(C) Syntactic consistency (no. of distractors)

Easy GC 1,258 15.7% 91 17.95%

PC 6,028 75.6% 369 72.78%

IC 690 8.6% 47 9.27%

Total 7,976 100% 507 100%

Difficult GC 73 20.74% 3 9.68%

PC 275 78.13% 28 90.32%

IC 4 1.14% 0 0

Total 352 100% 31 100%

(D) Semantic homogeneity

Easy Homogeneous 23 7.14% 9 7.69%

Heterogeneous 30 9.33% 0 0

Not applicable 269 83.54% 108 92.31%

Difficult Homogeneous 19 32.20% 0 0

Heterogeneous 6 10.17% 0 0

Not applicable 34 57.63% 8 100%

(E) Clustered distractors

Easy Clustered distractors 305 94.72% 64 54.70%

Not clustered distractors 17 5.28% 53 45.30%

Difficult Clustered distractors 52 88.14% 0 0

Not clustered distractors 7 11.86% 8 100%

An Experimental Evaluation of Automatically Generated MCQs 35

number of questions in both ontologies contain clustering of distractors, with the
Java ontology having a higher percentage (94.7% of easy questions and 88.1%
of difficult questions). All questions in the question category “Which is odd”
contain clustered distractors, which is the nature of this category of questions.
One of the patterns that we noticed with regards to clustered distractors is that
they represent siblings in the ontology. This is not surprising as it is expected
that, in ontologies, siblings are usually very similar to each other.

3.6 Level of Repairs

The final phase of the evaluation was to investigate the relationship between
the flaws in the questions and the effort required to repair the questions. We
classified questions in terms of the level of repairs required into:

– minor repair: involves minor grammatical corrections and selecting distractors
if enough distractors are provided by the tool;

– medium repair: involves medium grammatical corrections and writing one dis-
tractor in order to have a question with one key and 2 distractors (3 options
MCQs) if not enough distractors are provided;

– major repair: involves major grammatical correction and writing two or more
distractors in order to have a question with one key and 2 distractors (3 options
MCQs) if not enough distractors are provided.

The results are summarised in Tables 9 and 10. It is not surprising that few
questions are flawless given the fact that no natural language generation tech-
niques were incorporated into the tool. Filtering flawed questions will result in an
insufficient number of questions (Table 9). Although the majority of questions
contain more than one flaw, most of them are repairable by applying minor
repairs. This is because a large number of distractors per question is suggested.

4 Conclusion

In this study, we have presented an evaluation of automatically generated MCQs.
The objective was to validate the quality of the questions and thus later be able
to improve the automatic question generation process. The study confirms the
need to present questions more naturally. Syntactic, and syntax-based similarity
as well as semantic similarity between options must be taken into consideration
when automatically selecting distractors from ontologies. Available natural lan-
guage processing and generation techniques, as well as some ontology modeling
guidelines, suffice to overcome the linguistic issues. Alternatively, an automatic
checker would be highly valuable in highlighting problematic questions and min-
imising review time. We also found that even questions that adhere to guidelines
are subject to the clustering of distractors. This is a significant issue that is
related to the core of the generation process “the similarity theory”. Although

36 G. Kurdi et al.

this phenomenon does not weaken the validity of the similarity theory, it high-
lights the need for more sophisticated application of similarity. Hence, different
patterns of similarity between the options must be realised as this could affect
the prediction of difficulty. We are planning to validate the effect of clustered
distractors on difficulty and to develop strategies to avoid or highlight such dis-
tractors when generating questions.

Acknowledgments. The authors would like to thank Tahani Alsubait for sharing the
MCQ generator code.

Appendix

A Question Categories

Table 12. Explanation of the six question categories generated by the MCQ generator
(adapted from [1]).

Question category Stem Key Distractors

Generalisation What is X? where X
is an atomic concept
name

an atomic subsumer
of X

atomic
non-subsumers
of X

Generalisation 2 What is X? where X
is an atomic concept
name

a complex subsumer
(concept expression)
of X

complex
non-subsumers
of X

Specification Which is X? where
X is an atomic
concept name

an atomic subsumer
of X

non-subsumees of
X excluding
subsumers and
siblings of the stem

Specification 2 Which is X? where
X is a complex
concept

an atomic subsumee
of X

non-subsumees of
X excluding
subsumers of the
stem

Definition Which term can be
defined as
‘annotation’

an atomic concept
name annotated
with the annotation

atomic concept
names not
annotated with the
annotation

Recognition Which is odd? an atomic concept
name not subsumed
by X where X is a
concept name

atomic concept
names subsumed
by X

An Experimental Evaluation of Automatically Generated MCQs 37

B Example Questions

Syntactic Clues

Examples of the form (SK)

Stem: State Transition Network ...:
A. is Produced By some Concept Map Technique
B. is Produced By some Process Map Technique
C. is Produced By some State Transition Technique � Key

Examples of the form (SD)

Stem: Repertory Grid Stage 2 ...
A. involves Providing A Running Commentary
B. involves Repertory Grid Stage 1
C. involves Rating Concepts Against Attributes � Key

Stem: Which of the following terms can be defined by “a Java keyword used
to declare a variable that holds an 8 bit signed integer”?

A. Char
B. Short
C. Int
D. Byte � Key

Examples of the form (ANT)

Stem: Which of the following is [a]3 Binary Operator?
A. Unary operator
B. Unary minus operator
C. Equality operator � Key
D. Logical complement operator

Syntactic Consistency

Stem: What is [a] Book?
A. (Is)VB (A)DT
B. (Has)VB (Part)NN
C. (Concept)NN � Key

Stem: Which of the following is [a] Java Language Feature?
A. (Recursion)NN � Key
B. (Implementation)NN
C. (Requirement)NN (analysis)NN
D. (Throw)VB

3 This is a grammatical correction that is manually added to the question.

38 G. Kurdi et al.

Note that in the previous example, although (D) is inconsistent with the key,
it is indeed a Java language feature.

Stem: Which of the following terms can be defined by “A binary remainder
operator that produces a pure value that is the remainder from an implied
division of its operands”?

A. (Divide)VB
B. (Multiply)VB
C. (Modulus)NN � Key

In this example, both distractors (A) and (B) are inconsistent with the key
but they are both plausible. By investigating the ontology, we found that this
issue resulted from the inconsistent naming of concepts.

Semantic homogeneity

Stem: Which of the following terms can be defined by “A layout manager that
allows subcomponents to be added in up to five places specified by constants
NORTH, SOUTH, EAST, WEST and CENTER”?

A. Simple Object (heterogeneous)
B. Event (heterogeneous)
C. Border Layout (homogeneous) � Key
D. Grid Layout (homogeneous)

It is clearly deduced from the previous question that the expected answer is
a layout manager. As can be seen, distractors (A) and (B) are heterogeneous in
relation to the key type while option (D) is homogeneous.

Clustered Distractors

Stem: Which of the following terms can be defined by “A stage in the software
development process where customer needs are translated into how it could
be implemented”?

A. Testing
B. Unit Testing
C. Implementation
D. Design � Key

Distractors (A) and (B) are clustered since knowing that the answer is not
testing will allow the elimination of all types of testing.

Stem: Protocol Analysis Technique ...
A. involves Repertory Grid Stage 1
B. involves Repertory Grid Stage 2
C. involves Repertory Grid Stage 4
D. involves Identifying Knowledge Objects � Key

Stem: Which of the following is produces some Protocol?
A. Attribute Laddering
B. Process Laddering
C. Laddering
D. Semi-structured Interview � Key

An Experimental Evaluation of Automatically Generated MCQs 39

References

1. Alsubait, T., Parsia, B., Sattler, U.: Generating multiple choice questions from
ontologies: lessons learnt. In: OWLED, Chicago, pp. 73–84 (2014)

2. Alsubait, T., Parsia, B., Sattler, U.: Generating multiple choice questions from
ontologies: how far can we go? In: Lambrix, P., Hyvönen, E., Blomqvist, E., Presutti,
V., Qi, G., Sattler, U., Ding, Y., Ghidini, C. (eds.) EKAW 2014. LNCS (LNAI),
vol. 8982, pp. 66–79. Springer, Cham (2015). doi:10.1007/978-3-319-17966-7 7

3. Haladyna, T.M., Downing, S.M., Rodriguez, M.C.: A review of multiple-choice item-
writing guidelines for classroom assessment. Appl. Measur. Educ. 15(3), 309–333
(2002)

4. Pho, V.-M., Andre, T., Ligozat, A.-L., Grau, B., Illouz, G., Francois, T., et al.:
Multiple choice question corpus analysis for distractor characterization. In: LREC,
pp. 4284–4291, Reykjavik (2014)

http://dx.doi.org/10.1007/978-3-319-17966-7_7

Use Cases and Suitability Metrics
for Unit Ontologies

Markus D. Steinberg, Sirko Schindler, and Jan Martin Keil(B)

Heinz Nixdorf Chair for Distributed Information Systems,
Institute for Computer Science, Friedrich Schiller University Jena, Jena, Germany
{markus.daniel.steinberg,sirko.schindler,jan-martin.keil}@uni-jena.de

Abstract. Units of measurement are an essential part of dataset
descriptions as they are required for a valid interpretation of the data.
One obvious choice for representing units are ontologies, but as every
application supports different use cases a multitude of ontologies has
been created. Each of these is suited best for just a subset of the possible
use cases. The problem of choosing an ontology for a new project hence
consists of two major aspects: What use cases need to be covered and
which ontology caters best to them?

We describe possible use cases and analyze their requirements. The
results are then used to assess the modeling of the domain in different
ontologies with respect to their suitability for those use cases. This analy-
sis shows the differences in the support for different use cases. It can help
developers to choose the best ontology for their specific needs and also
highlights areas for further ontology improvement.

Keywords: Measurement unit · Ontology · Ontology comparison ·
Ontology evaluation · Use cases

1 Introduction

Units of measurement like meter, kilogram or yard are essential for a precise
description of data. They alone allow an unambiguous interpretation of values
in datasets. Ontologies like the ones proposed in [1–5] provide one good option for
modeling this aspect. However, different data-centric applications cater to differ-
ent audiences and provide different functionalities. As a consequence, ontologies
created by different projects differ in their level of support for individual use
cases. This situation challenges new projects to select a suitable ontology that
fits their specific needs.

In this paper, we aim to provide support for such a decision, by analyzing a
set of use cases for unit of measurement ontologies. After providing the necessary
background in Sect. 2, we present possible use cases in Sect. 3. In order to cover
all relevant aspects, we have complemented use cases described in the literature
with a number of new ones. Following this requirements analysis, a set of seven
ontologies will be studied to check their support for each requirement. In Sect. 4

c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 40–54, 2017.
DOI: 10.1007/978-3-319-54627-8 4

Use Cases and Suitability Metrics for Unit Ontologies 41

suitable metrics will be defined to rate each ontology use case pairing. Finally,
in Sect. 5 the ontologies are evaluated with respect to their suitability for each
use case. This results in a ranking of ontologies for each use case, which can be
used to identify the best existing ontology for new projects’ use cases.1

2 Related Work

Several use cases (UCs) for unit ontologies are described in [2,3,5,7–9]. They
will be reviewed in detail in Sect. 3. In [8] the coverage of features in multiple
unit ontologies was analyzed. This analysis determined a lack of a unit ontology
containing all important concepts of this domain. In [7] five feature support
levels were defined to rank unit ontologies, which provides a fast overview of
scope and level of development of ontologies. The order of requirements for each
ranking level, however, seems biased by the author’s background. An example is
conversions, which are necessary to the second level. Even an ontology modeling
all other features mentioned can not go beyond level two as long as it is missing
conversions. Finally, the ranking was applied to multiple ontologies. Nevertheless,
a metric based suitability evaluation of unit ontologies per UC is still missing.

The application of Competency Questions (CQs) [10] is a popular method in
the field of ontology engineering to describe the required concepts for a UC of an
ontology, that can also be used for ontology evaluation [11]. However, this app-
roach is limited to the mere assessment of a single ontology, instead of comparing
multiple ones. Furthermore, if the list of requirements can be gathered otherwise,
it is not mandatory to formulate CQs. Therefore, a metric that directly uses a
list of requirements is favorable.

OntoQA [12] is a popular set of metrics in the field of ontologies. These
metrics provide different relationship based rankings of a schema and its classes
and instances. In addition, it is possible to provide a keyword list, to focus the
ranking on relevant terms. But a high ranking does not assure that an ontology
can fulfill a given UC, even if an adequate keyword list was provided.

Another extensive set of metrics is provided by OntoMetric [13]. It con-
sists of a taxonomy of 160 metrics in the five main branches content, language,
methodology, tools and costs and a method to calculate the total ranking of the
ontologies. This includes, for instance, the metrics essential concepts and essen-
tial relations. The metrics can be weighted by the user, but it is not possible to
rank the importance of the required concepts and relations.

3 Use Cases

To evaluate the suitability of ontologies for a certain use case, the corresponding
requirements have to be known. Therefore we will provide a description and a
requirements analysis for each use case. Requirements will be distinguished in
necessary and optional requirements. Necessary requirements are features that

1 The terminology throughout this paper follows the definitions given in [6].

42 M.D. Steinberg et al.

make the ontology eligible for a use case - if one of them is not modeled, the
ontology is not able to provide even basic support for the use case. Optional
requirements are those that are not necessary but simplify the implementation
of a use case or increase its usefulness. Besides covering all use cases mentioned
in the literature, we also provide some new use cases (marked by *) that have, to
the best of our knowledge, not yet been presented. To provide a better overview,
we group use cases that are concerned with similar domains.

Figure 1 outlines the use case grouping, while Table 1 summarizes the rela-
tionship between use cases and requirements.

Group 1 (Data Annotation). The first group consists of use cases that are
related to data annotation. Data annotation here is the assignment of a unit
of measurement or kind of quantity to a dataset or parts thereof. Consistent
and consequent data annotation can prevent misunderstandings and ambiguities
when exchanging, merging or comparing datasets.

UC 1 (Manual Annotation). [2,7]
An ontology can assist manual data annotation by providing lists containing

kinds of quantities or units of measurement for the user to choose from.
Example: Before publishing a dataset, researchers have to create meta data,

which includes annotation with units of measurement.
Necessary: An ontology has to model kinds of quantities or units of

measurement.
Optional: The connection between kinds of quantities and units of measure-

ment can be modeled so after choosing from one list, the other one is limited

Fig. 1. Schematic overview over use cases and groups.

Use Cases and Suitability Metrics for Unit Ontologies 43

T
a
b
le

1
.

R
eq

u
ir

em
en

ts
p
er

u
se

ca
se

.
(�.

..
n
ec

es
sa

ry
re

q
u
ir

em
en

t;
��.

..
o
p
ti

o
n
a
l

re
q
u
ir

em
en

t;
�.

..
n
o
t

re
q
u
ir

ed
;

fo
r

en
tr

ie
s

w
it

h
th

e
sa

m
e

in
d
ex

a
t

le
a
st

o
n
e

h
a
s

to
b
e

p
re

se
n
t)

44 M.D. Steinberg et al.

to matching entries. In the same way, fields of application and their connections
to units of measurement or kinds of quantities as well as systems of units and
their connections to units can be used. Additionally, if there are values given
in the dataset, those can be used alike if there is a model of typical or allowed
values for kinds of quantities or units of measurement. The content of the lists
can also be translated into the preferred language of the user if there are labels in
multiple languages present in the ontology. To improve the visual representation
of annotated data, symbols for units and kinds of quantities can be included.

UC 2 (Automated Annotation). [2]
When the amount of datasets grows, manual annotation is not feasible any-

more and has to be replaced by an automatic approach. An ontology can enable
a system to automatically derive kinds of quantities or units of measurement
from a textual description.

Example: For populating a new, semantically enhanced data management
platform with a large amount of datasets, they have to be annotated.

Necessary: An ontology has to model kinds of quantities or units of measure-
ment to enable this.

Optional: To improve the efficiency of such a system the ontology can include
the connection between units of measurement and kinds of quantities. It can
also model fields of application and systems of units as well as the respective
connections to units of measurement and kinds of quantities. Additionally, typical
and allowed values per units of measurement or per kinds of quantity can be used
to limit the possible options.

The textual description can contain symbols and be written in the user’s
preferred language, so models for symbols and labels in multiple languages can
be exploited, too. In [2] the authors also mention modeling everyday language
designators to handle common mistakes like writing “weight” instead of “mass”.

UC 3 (Automated Translation). [3,8]
Designators, e.g., for kinds of quantities and units of measurement can auto-

matically be translated for annotated data to cater to users of different language
backgrounds. This will also reduce the number of errors as a result of missing
(English) language skills.

Example: When datasets are exchanged between researchers each individual
can work on them using their own language.

Necessary: An ontology needs to provide models for units of measurement or
kinds of quantities and labels in at least two languages.

UC 4 (Representation of Experiments). [2]
An ontology can be used to represent observations and experiments. [2]

defines an observation as a link between a phenomenon, a kind of quantity,
a numerical value and a unit of measurement. Hence, this can be interpreted
as the annotation of an observation with the aforementioned concepts of the
ontology.

Example: A user wants to represent his measurement of the height of a certain
specimen within an ontology.

Use Cases and Suitability Metrics for Unit Ontologies 45

Necessary: An ontology needs to provide models for units of measurement,
kinds of quantities, measurements and the connections between those concepts.
Additionally, there has to be the possibility to state the measured phenomenon
and the measured value.

Optional: The suitability can further be improved if the ontology itself models
phenomenon so no further ontology has to be included.

Group 2 (Conversion). The second group consists of use cases that are
related to conversions between units. Unit conversion is changing the unit used
to represent a measurement.

UC 5 (Conversion between Units). [2,7]
For the unit conversion a proper formula has to be provided.
Example: Differences in measured units can easily be overcome as, e.g., mea-

surements taken using imperial units can be converted into the metric system.
Necessary: An ontology has to model units and a conversion between them.

A conversion here consists of a conversion factor and an offset.

UC 6 (*Precision of Conversions).
Many applications depend on exact data. Due to the limited precision of float-

ing point arithmetics in computer systems, conversions influence the accuracy of
the converted data. As a consequence, an ontology has to augment each conversion
it provides with an estimation of the respective accuracy for the values.

Example: Many conversions introduce an error of some degree. For the final
result of possibly multiple conversions one has to be able to estimate whether
the achieved accuracy of the result still matches the given requirements.

Necessary: An ontology needs to model units of measurement, conversion
and information about the precision for the latter.

Group 3 (Consistency Checking). The third group includes all use cases
that check formulas or annotated terms for consistency. In [3] consistency check-
ing is mentioned but is not described in detail. Hence, is not listed as a reference
in the individual use cases.

UC 7 (Dimensional Consistency). [2,7]
Equations and terms can be checked for dimensional consistency by compar-

ing the dimensions or dimension vectors of all its components. Individual terms
can also be checked for conformance with a given dimension vector. In [7] the
necessity to check code for dimensional consistency is mentioned, too.

Example: Considering a formula like “x m + y ft = z pc” a system should
state that the formula is dimensional consistent.

Necessary: An ontology has to model dimension vectors, units of measure-
ment and the connection between them to be suitable for this use case.

Optional: The suitability can be improved by modeling dimensions and their
connection to units of measurement so equations do not have to be compared
by their dimension vectors but their dimensions.

46 M.D. Steinberg et al.

UC 8 (Unit Consistency). [2]
In extension of UC 7, not only the dimensions of the involved components

are compared, but also the actually used units. This highlights cases, where, e.g.,
values given in meter and foot are added without the necessary conversions.

Example: Using the same formula as UC 7, “x m + y ft = z pc”, a system
should this time determine that the formula is not unit consistent.

Necessary: An ontology has to model units of measurement and unit
compositions.

UC 9 (*Quantity Consistency).
Similar to UC 8 the consistency with regard to kinds of quantities can also be

tested. An equation or term is considered quantity consistent if all its components
use kinds of quantities in a compatible manner.

Example: Adding two lengths is considered compatible, whereas adding a
width and a height is not, although they might share the same unit of measure-
ment.

Necessary: An ontology has to model kinds of quantities and the quantity
composition.

UC 10 (Consistency between Kind of Quantity and Unit of Measure-
ment). [2]

Each kind of quantity is accompanied by a set of units of measurement that
can be used to express observations of it. A system can now check for the cases,
where a unit of measurement is used in conjunction with a kind of quantity
without being assigned to it.

Example: A measurement of two meters is considered compatible to height,
whereas a measurement of two seconds is not.

Necessary: To check consistency between a given unit of measurement and
a kind of quantity an ontology has to provide both concepts and a connection
between them.

UC 11 (Value Consistency). [8]
Some units of measurement and kinds of quantities have a restricted range of

allowed values. A system can assure the data quality by checking entered data.
Example: A value of minus five for degree Celsius is considered compatible,

whereas for Kelvin it is not.
Necessary: To check if values that are annotated with such a kind of quantity

or unit of measurement lie within those ranges, an ontology has to model units
of measurement or kinds of quantities and the respective allowed values.

Optional: To further improve on this, an ontology can not only model allowed
values but also typical values for units of measurement or kinds of quantities.
Since typical values vary heavily depending on the field of application, they
should be stated per field of application. A model for conversions between units
can help further, because typical and allowed values for units of measurement,
that have not been specified, can then be calculated from the values of other
units of measurement.

Use Cases and Suitability Metrics for Unit Ontologies 47

Group 4 (Ontology as a Knowledge Base). The ontology can be used as
a knowledge base to search for important information. Depending on the kind
of information, multiple use cases can be distinguished.

UC 12 (Search for alternative Units of Measurement). [8]
An ontology can be used to search for possible alternatives given a unit of

measurement. To determine the set of possible alternatives kinds of quantities,
dimensions or dimension vectors can be used.

Example: When encountering an unfamiliar unit like Gunter’s chain this
allows for easy access to possible alternatives like meter.

Necessary: An ontology has to model units of measurement and kinds of
quantities, dimensions or dimension vectors as well as their connections to units
of measurement.

Optional: Similar to the manual annotation, the suitability for this use case
can be improved by modeling fields of application and systems of units and their
connections to units of measurement so the number of possible alternatives can
be reduced.

UC 13 (Search for Symbols). [8,9]
Symbols for units and kinds of quantities can, e.g., be used for informal

data annotation or for a shortened representation in a user interface. The search
for symbols and abbreviations for units of measurement or kinds of quantities
therefore is an everyday use case.

Example: When creating natural language texts from more formal data
sources measurements usually will use abbreviations of used units instead of
their full name.

Necessary: An ontology has to model kinds of quantities or units of measure-
ment and the respective symbols.

UC 14 (*Unit Resolving).
In unit resolving, one is given a formula and the unit for each contained value.

The task is now to determine the resulting unit of this formula. This assumes,
that the formula is consistent with regard to UCs 7 to 9.

Example: Given a formula like “x kg × y m
s2 = z ?” a system has to deduce

that the missing unit could be Newton.
Necessary: This use case relies on units of measurement and unit composition

because it has to compute possible compositions for the units of measurement
used in the formula.

Optional: It can further be improved by using conversions so that mismatch-
ing units can automatically be converted.

UC 15 (Search for Units of Measurement). [8]
The search for units of measurement is not restricted to alternatives, but can

use a variety of different inputs. The input can, for example, consist of kinds of
quantities, symbols, dimensions, dimension vectors, prefixes, systems of units or
any combination of those.

48 M.D. Steinberg et al.

Example: A user is looking for a metric unit of measurement for the kind of
quantity length that uses the prefix kilo.

Necessary: Any ontology that models units of measurement is eligible to
support the search for units because a plain list is sufficient to choose a unit of
measurement.

Optional: Each concept modeled in addition can improve the suitability by
enabling more input combinations and therefore narrowing down the results.
These concepts are kinds of quantities, symbols for units of measurement, fields
of application, dimensions, dimension vectors, prefixes, systems of units and the
connections between each of those concepts and units of measurement. Labels
in multiple languages and everyday language designators can also be helpful in
order to enable users to state input in their preferred language.

UC 16 (Ontology as Unit Reference). [3,5]
A unit ontology can be used as a reference by other ontologies by providing

unique identifiers for units of measurement.
Example: An ontology about animals can reuse the definition of meter or

kilogram in the description of specimen, without having to redefine them.
Necessary: An ontology only needs to model units of measurement.
Optional: To improve the suitability for this use case, more concepts can be

modeled to provide even more unique identifiers. These concepts are systems of
units, kinds of quantities, fields of application and dimensions. To enable the user
to easily access further information, there should be labels in multiple languages
and resolvable URIs for the ontology.

4 Methods

We will use a metric to evaluate the suitability of an ontology for a UC. This
metric depends on the list of necessary and optional requirements of each UC
outlined in Sect. 3. To simplify the metric we first define a set of sub-metrics. For
each required concept, relation or other feature, except the language support,
we define a boolean metric m in Eq. 1. Those sub-metrics remain boolean since
we are only concerned with the mere existence of a feature and not the extent
of its usability.

m =

{
1 : concept, relation (direct or indirect) or feature contained
0 : otherwise

(1)

RDF provides a dedicated mechanism for the usage of different languages by
allowing developers to attach language tags to labels [14]. Hence, the ontologies
do not have to model this on their own. To assess the support, we check the
usage of the RDF concept. The value an ontology reaches should be the higher
the more languages are supported by it. Therefore we need a metric to rate the
number of different languages l in an ontology.

mlang = 1 − 1
l + 1

(2)

Use Cases and Suitability Metrics for Unit Ontologies 49

Finally, we define for each UC the encompassing suitability metric msuit as
the aggregation of its sub-metrics:

Mnec = {m | m is metric of a necessary requirement} (3)
Mall = {m | m is metric of a necessary or optional requirement} (4)

msuit =
(

min
m∈Mnec

�m�
)

×
(∑

m∈Mall

m

|Mall|

)
(5)

The first part in Eq. 5 ensures that an ontology is rated with zero if at least one
necessary feature is missing. The ceiling function is necessary to accommodate
for the language sub-metric. The second part is the average over all sub-metrics
and provides a gradation between ontologies, that implement a different number
of optional requirements. All sub-metrics are equally weighted for now, but this
can easily be extended to use a vector of weights.

5 Results

To evaluate the current state of ontology development in the field of units of
measurement we applied the requirements of the use cases identified in Sect. 3
and the metrics defined in Sect. 4. We analyzed the following seven prominent
representatives of unit ontologies.

– Measurement Units Ontology (MUO)2; result of a project to exploit seman-
tics in mobile environments; the instances were automatically generated from
UCUM [15],

– Extensible Observation Ontology (OBOE)3; an ontology suite to represent
scientific observations,

– Ontology of units of Measure and related concepts (OM)4; an ontology to
model concepts and relations important to scientific research, developed in
the context of food research [2],

– Library for Quantity Kinds and Units (QU)5; a showcase ontology based on
the OMG SysML 1.2 QUDV specifications and the UN/CEFACT Recommen-
dation 20 code list [16],

– Quantities, Units, Dimensions and Data Types Ontologies (QUDT)6; devel-
oped in the context of NASA projects,

2 muo-vocab.owl and ucum-instances.owl dated 2008 from
http://idi.fundacionctic.org/muo/.

3 Version 1.0 from https://semtools.ecoinformatics.org/oboe.
4 Version 1.8.2 dated 2016-03-22 from

http://www.wurvoc.org/vocabularies/om-1.8/.
5 qu.owl and qu-rec20.owl dated 2011-06-28 from

https://www.w3.org/2005/Incubator/ssn/ssnx/qu/.
6 Version 1.1 from http://www.qudt.org/.

http://idi.fundacionctic.org/muo/
https://semtools.ecoinformatics.org/oboe
http://www.wurvoc.org/vocabularies/om-1.8/
https://www.w3.org/2005/Incubator/ssn/ssnx/qu/
http://www.qudt.org/

50 M.D. Steinberg et al.

– Semantic Web for Earth and Environmental Terminology (SWEET)7; also
developed in the context of NASA projects and

– Units of Measurement Ontology (UO)8 + Phenotypic Quality Ontology
(PATO)9; both modules of the OBO family to model units and phenotypic
qualities.

In a first step, each ontology was examined with respect to the requirements.
In the process, the results of [17,18] were used where possible. In that project we
analyzed the ontologies’ instances with respect to their distribution and possible
errors. Bear in mind, though, that with this work we are just analyzing ontologies
with regard to their basic support for use cases and not the extent of such
support. As a consequence, a feature is regarded as supported if there is any
modeling of such a feature. The number of actual instances of such a feature
does not matter as long as there is a matching concept. Note, furthermore, that
the modeling of concepts related to UC 4 like phenomenon or measurement is
not part of [18] and therefore had to be checked manually.

To judge the number of languages used by an ontology we counted the number
of different language tags appearing within. This, however, is not accurate as
ontologies do not seem to use language tags consequently: Even if a language
tag is used in the label for one instance, one should not assume the same for all
instances. Sometimes the language tag is even missing entirely. That is if there is
a label at all, which can not be taken for granted. To improve this sub-metric a
further analysis on an instance level has to be conducted. In this work, however,
the main focus was the modeling used by the ontologies and hence the number of
different language tags seems a suitable approximation. The existence of features
in the ontologies as per our analysis is given in Table 2.

Using the requirements of Sect. 3, the metrics presented in Sect. 4 and the
results from Table 2 a suitability score has been computed for each pair of ontol-
ogy and use case. Table 3 shows an overview of the computed values. Note that
the sub-metric describing the presence of language tags can never reach a value
of one (cp. Eq. (2)). As a consequence all metrics using that sub-metric should
only be used to compare ontologies and not to rate a single ontology.

The support for different use cases varies quite a lot. One prime example is data
annotation (Group 1): While both manual (UC 1) and automatic (UC 2) annota-
tion are basic features supported by all ontologies, the translation of designators
(UC 3) on the other hand oftentimes fails as just OM contains multiple languages
for its labels. The representation of experiments (UC 4) fails in most ontologies as
well due to missing concepts in that area.

Conversion (Group 2) in its basic form (UC 5) is supported by almost all
ontologies, but no ontology includes any estimation of the accuracy of the pro-
vided values (UC 6).

7 Version 2.3 from http://sweet.jpl.nasa.gov/.
8 Version 2016-05-13 from http://purl.obolibrary.org/obo/uo.owl.
9 Version 2016-05-22 from http://purl.obolibrary.org/obo/pato.owl.

http://sweet.jpl.nasa.gov/
http://purl.obolibrary.org/obo/uo.owl
http://purl.obolibrary.org/obo/pato.owl

Use Cases and Suitability Metrics for Unit Ontologies 51

Table 2. The presence of features within the examined ontologies. (�. . . feature mod-
eled; � . . . feature not modeled)

MUO OBOE OM QU QUDT SWEET UO

unit of measurement (unit) � � � � � � �
kind of quantity (qk) � � � � � � �

field of application (app) � � � � �a � �
dimension (dim) � � � � � � �

dimension vector (vector) � � � � � � �
system of units (system) � � � � � � �

phenomenon (phen) � � � � � � �
measurement (meas) � � � � � � �

conversion (conv) � � � � � � �
prefix (prefix) � � � � � � �

unit ↔ system � � � � � � �
unit ↔ qk � � � � � � �

unit ↔ dim � � � � � � �
unit ↔ vector � � � � � � �
unit ↔ prefix � � � � � � �

unit ↔ app � � � � � � �
qk ↔ app � � � � � � �

meas ↔ phen � � � � � � �
meas ↔ qk � � � � � � �

meas ↔ unit � � � � � � �
meas ↔ value � � � � � � �

symbols for units � � � � � � �a

symbols for qks � � � � � � �
typ. values per units and apps � � � � � � �

typ. values per qks and apps � � � � � � �
allowed values per units � � � � � � �

allowed values per qks � � � � � � �
precision of conversion � � � � � � �

number of diff. lang. tagsb 1 1c 3 0 0 0c 0

unit composition � � � � � � �
quantity composition � � � � � � �

everyday lang. designators � � � � � � �
resolvable URIs �d �d � � � �d �

aInformation is included in the ontology, but not explicitly modeled using a specific
concept or relation.
bMissing language tags in labels result in a zero rating here.
cLabels were almost always missing.
dURIs did not resolve to concept specific websites, but to the whole ontology instead.

52 M.D. Steinberg et al.

Table 3. Suitability scores for the examined ontologies.

MUO OBOE OM QU QUDT SWEET UO

Group 1

UC 1a 0.27 0.20 0.71 0.40 0.47 0.40 0.20

UC 2a 0.25 0.19 0.73 0.38 0.44 0.38 0.19

UC 3a 0 0 0.89 0 0 0 0

UC 4 0 1.00 1.00 0 0 0 0

Group 2
UC 5 0 1.00 1.00 1.00 1.00 1.00 0

UC 6 0 0 0 0 0 0 0

Group 3

UC 7 0 0 1.00 0 1.00 0 0

UC 8 0 0 1.00 0 0 0 0

UC 9 0 0 0 0 0 0 0

UC 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00

UC 11 0 0 0 0 0 0 0

Group 4

UC 12 0.27 0.27 1.00 0.36 0.82 0.36 0.27

UC 13 0.75 0 1.00 0.75 1.00 0.75 0

UC 14 0 0 1.00 0 0 0 0

UC 15a 0.31 0.19 0.98 0.44 0.69 0.44 0.25

UC 16a 0.29 0.29 0.95 0.43 0.57 0.43 0.43
aThe result should only be used to compare ontologies, not to rate a
single one.

Consistency checks (Group 3) just succeed for connections between unit of
measurement and kind of quantity (UC 10). Other checks fail for different reasons
with just a few exceptions: OM (UCs 7 and 8) and QUDT (UC 7).

Finally, the use of the ontology as a knowledge base (Group 4) seems pretty
well supported. The only exception here is unit resolving (UC 14), which fails in
all ontologies but OM due to the missing unit composition.

Overall there are just three use cases, that are currently not supported by
any ontology. For each of those use cases, one crucial feature is missing:

– UC 6: Precision of Conversions.
– UC 9: Quantity Consistency.
– UC 11: Value Consistency.

From the point of view of a new project, OM seems to be the best choice right
now. For no use case, any other ontology surpasses OM with respect to the
suitability scoring with the closest overall contenders being QUDT, QU and
SWEET.

6 Conclusion

We compiled an inventory of possible use cases for unit ontologies, grouped by
similarity. This list consists of use cases given in literature as well as some, that

Use Cases and Suitability Metrics for Unit Ontologies 53

have not been covered so far. We analyzed necessary as well as optional require-
ments. This resulted in the definition of a metric to compare the suitability of
different ontologies for specific use cases. Using both requirement list and metric
we then evaluated a set of seven representative ontologies.

The comparison highlighted the different focus in the development of the
ontologies. Each one was created with a different set of use cases in mind. Sum-
ming up, current ontologies support a lot of use cases to a pretty decent level.
However, our analysis reveals missing support for some use cases by ontologies.

Acknowledgments. Part of this work was funded by DFG in the scope of the Lake-
Base project within the Scientific Library Services and Information Systems (LIS)
program.

References

1. Madin, J., Bowers, S., Schildhauer, M., et al.: An ontology for describing and
synthesizing ecological observation data. Ecol. Inform. 2(3), 279–296 (2007). doi:10.
1016/j.ecoinf.2007.05.004

2. Rijgersberg, H., van Assem, M., Top, J.: Ontology of units of measure and related
concepts. Semant. Web 4(1), 3–13 (2013). doi:10.3233/SW-2012-0069

3. Hodgson, R., Keller, P.J., Hodges, J., Spivak, J.: QUDT - quantities, units, dimen-
sions and data types ontologies, 18 March 2014. http://www.qudt.org/. Accessed
17 Aug 2016

4. Raskin, R.: Semantic Web for Earth and Environmental Terminology (SWEET).
In: Earth Science Technology Conference. University of Maryland Inn., June 2003

5. Gkoutos, G.V., Schofield, P.N., Hoehndorf, R.: The Units Ontology: a tool for
integrating units of measurement in science. In: Database (2012). doi:10.1093/
database/bas033

6. Joint Committee for Guides in Metrology: International vocabulary of metrology.
Basic and general concepts and associated terms. JCGM 200: 2012 (JCGM 200:
2008 with minor corrections), 3rd ed. (2012)

7. Foster, M.P.: Quantities, units and computing. Comput. Stan. Interfaces 35(5),
529–535 (2013). doi:10.1016/j.csi.2013.02.001

8. Rijgersberg, H., Wigham, M., Top, J.: How semantics can improve engineering
processes: a case of units of measure and quantities. Adv. Eng. Inform. 25(2),
276–287 (2011). doi:10.1016/j.aei.2010.07.008. Information mining and retrieval in
design

9. OASIS Quantities and Units of Measure Ontology Standard (QUOMOS) TC:
Charter. https://www.oasis-open.org/committees/quomos/charter.php. Accessed
13 Sept 2016

10. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications.
Knowl. Eng. Rev. 11, 93–136 (1996). doi:10.1017/S0269888900007797

11. Hüsemann, B., Vossen, G.: Ontology engineering from a database perspective. In:
Proceedings of the 10th Asian Computing Science Conference on Advances in
Computer Science - ASIAN 2005, Data Management on the Web, Kunming, China,
7–9 December 2005, pp. 49–63 (2005). doi:10.1007/11596370 6

12. Tartir, S., Budak Arpinar, I.: Ontology evaluation and ranking using OntoQA.
In: International Conference on Semantic Computing, ICSC 2007, pp. 185–192,
September 2007. doi:10.1109/ICSC.2007.19.

http://dx.doi.org/10.1016/j.ecoinf.2007.05.004
http://dx.doi.org/10.1016/j.ecoinf.2007.05.004
http://dx.doi.org/10.3233/SW-2012-0069
http://www.qudt.org/
http://dx.doi.org/10.1093/database/bas033
http://dx.doi.org/10.1093/database/bas033
http://dx.doi.org/10.1016/j.csi.2013.02.001
http://dx.doi.org/10.1016/j.aei.2010.07.008
https://www.oasis-open.org/committees/quomos/charter.php
http://dx.doi.org/10.1017/S0269888900007797
http://dx.doi.org/10.1007/11596370_6
http://dx.doi.org/10.1109/ICSC.2007.19.

54 M.D. Steinberg et al.

13. Tello, A.L., Gómez-Péerez, A.: ONTOMETRIC: a method to choose the appropri-
ate ontology. J. Database Manag. 15(2), 1–18 (2004). doi:10.4018/jdm.2004040101

14. Resource Description Framework (RDF): Concepts and Abstract Syntax. Recom-
mendation. W3C, 10 February 2004

15. Schadow, G., McDonald, C.J.: The unified code for units of measure. http://
unitsofmeasure.org/ucum.html. Accessed 26 Apr 2016

16. United Nations Economic Commission for Europe (UNECE): Recommendation
No. 20: Codes for Units of Measure Used in International Trade. Recommendation.
UN/CEFACT Information Content Management Group (2009)

17. Schindler, S., Keil, J.M.: Unit ontology review v1.2.0, 8 September 2016. doi:10.
5281/zenodo.61789

18. Schindler, S., Keil, J.M.: Unit ontology review results v1.2.0, 8 September 2016.
doi:10.5281/zenodo.61787

http://dx.doi.org/10.4018/jdm.2004040101
http://unitsofmeasure.org/ucum.html
http://unitsofmeasure.org/ucum.html
http://dx.doi.org/10.5281/zenodo.61789
http://dx.doi.org/10.5281/zenodo.61789
http://dx.doi.org/10.5281/zenodo.61787

A Simplified Agile Methodology
for Ontology Development

Silvio Peroni(B)

DASPLab, DISI, University of Bologna, Bologna, Italy
silvio.peroni@unibo.it

Abstract. In this paper we introduce SAMOD, a.k.a. Simplified Agile
Methodology for Ontology Development, a novel agile methodology for
the development of ontologies by means of small steps of an iterative
workflow that focuses on creating well-developed and documented models
starting from exemplar domain descriptions. In addition, we discuss the
results of an experiment where we asked nine people (with no or limited
expertise in Semantic Web technologies and Ontology Engineering) to
use SAMOD for developing a small ontology.

Keywords: Agile ontology development methodology · Conceptual
modelling · Knowledge engineering · OWL Ontologies · Ontology engi-
neering · SAMOD · Test-driven development

1 Introduction

Developing ontologies is not a straightforward task. This assumption is implicitly
demonstrated by the number of ontology development processes that have been
developed in last 30 years, that have their roots in the Knowledge and Software
Engineering domains. Moreover, the choice of the right development process to
follow is a delicate task, since it may vary according to a large amount of vari-
ables, such as the intrinsic complexity of domain to be modelled, the context
in which the model will be used (enterprise, social community, high-profile aca-
demic/industrial project, private needs, etc.), the amount of time available for
the development, and the technological hostility and the feeling of unfruitfulness
shown by the final customers against both the model developed and the process
adopted for the development.

In the past twenty years, the Software Engineering domain has seen the pro-
posal of new agile methodologies for software development, in contrast with
highly-disciplined processes that have characterised such discipline since its
beginning. Following this trend, recently, agile development methodologies have
been proposed in the field of Ontology Engineering as well (e.g. [3,7,13]). Such
kind of methodologies would be preferred when the ontology to develop should
be composed by a limited amount of ontological entities – while the use of

RASH: https://w3id.org/people/essepuntato/papers/samod-owled2016.html.

c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 55–69, 2017.
DOI: 10.1007/978-3-319-54627-8 5

https://w3id.org/people/essepuntato/papers/samod-owled2016.html

56 S. Peroni

highly-structured and strongly-founded methodologies remain valid and, maybe,
mandatory to solve and model incredibly complex enterprise projects.

One of main characteristics that ontology development methodologies usually
have is the use of exemplar data during the development process so as to:

– avoid inconsistencies – a common mistake when developing a model is to make
the TBox consistent if considered alone, and inconsistent when we define an
ABox for it, even if all the classes and properties are completely satisfiable.
Using real-world data, as exemplar of a particular scenario of the domain we
are modelling, can definitely prevent this problem;

– have self-explanatory and easy-understandable models – trying to implement
a particular real-world and significative scenario related to a model by using
real data allows one to better understand if each TBox entity has a meaningful
name that describes clearly the intent and the usage of the entity itself. This
allows users to understand a model without spending a lot of effort in reading
entity comments and the related documentation. The use of real data as part of
the ontology development obliges ontology engineers and developers to think
about the possible ways users will understand and use the ontology they are
developing, in particular the very first time they look at it;

– provide examples of usage – producing data within the development process
means to have a bunch of exemplars that describe the usage of the model in
real-world scenarios. This kind of documentation, implicitly, allows users to
apply a learn-by-example approach [1] in understanding the model and during
their initial skill acquisition phase.

As already mentioned, several methodologies already propose the use of data
during the development. However, the current ontology engineering processes,
that deal with the development of small-/medium-size ontologies, usually do not
include other aspects that, according to our experience, are crucial for guaran-
teeing a correct and quick outcome. In particular, it would be important:

– to take advantages of existing agile methodologies from the Software Engi-
neering domain, by considering important features such as adaptive planning,
evolutionary development, early delivery, continuous improvement, and rapid
and flexible response to change;

– not to oblige pair programming – from our personal experience, the develop-
ment of small ontologies usually involves only one ontology engineer;

– to provide a precise definition of different kinds of tests that the ontology must
pass at each stage of the development, and that can be used for documenting
the ontology as well.

In order to address all the aforementioned desiderata, in this paper we intro-
duce SAMOD (Simplified Agile Methodology for Ontology Development), a novel
agile methodology for the development of ontologies, partially inspired to the
Test-Driven Development process in Software Engineering [2] and to existing
agile ontology development methodologies such as eXtreme Design (XD) [13]. In
particular, SAMOD is organised in three simple steps within an iterative process

A Simplified Agile Methodology for Ontology Development 57

that focuses on creating well-developed and documented models by using signi-
ficative exemplars of data, so as to produce ontologies that are always ready-
to-be-used and easily-understandable by humans (i.e. the possible customers)
without spending a lot of effort.

SAMOD is the result of our dedication to the development of ontologies in
the past six years. While the first draft of the methodology has been proposed
in 2010 as starting point for the development of the Semantic Publishing and
Referencing Ontologies1 [10], it has been revised several times so as to come
to the current version presented in this paper – which has been already used
for developing several ontologies, such as the Vagueness Ontology2, the F Entry
Ontology3, the OA Entry Ontology4, and the Imperial Data Ontology5. While
a full introduction to SAMOD is provided in [11], in this paper we provide a
summary of it and we discuss some outcomes of an user-based evaluation we
have conducted in the past months.

The rest of the paper is organised as follows. In Sect. 2 we introduce the enti-
ties involved in the methodology. In Sect. 3 we present all the steps of SAMOD,
providing details for each of them. In Sect. 4 we discuss the outcomes of an
experiment where we asked to subjects with limited knowledge about Semantic
Web technologies and Ontology Engineering to use SAMOD for developing an
ontology. In Sect. 5 we present some of the most relevant related works in the
area. Finally, in Sect. 6 we conclude the paper sketching out some future works.

2 Preliminaries

The kinds of people involved in SAMOD are domain experts and ontology engi-
neers. A domain expert, or DE, is a professional with expertise in the domain to
be described by the ontology, and she is mainly responsible to define, often in nat-
ural language, a detailed description of the domain in consideration. An ontology
engineer, or OE, is a person who constructs meaningful and useful ontologies by
using a particular formal language (such as OWL 26) starting from an informal
and precise description of a particular problem or domain provided by DEs.

A motivating scenario (MS) [17] is a small story problem that provides a short
description and a set of informal and intuitive examples about it. In SAMOD, a
motivation scenario is composed by a name that characterises it, a natural lan-
guage description that presents a problem to address, and one or more examples
according to the description.

An informal competency question (CQ) [17] is a natural language question
that represents an informal requirement within a particular domain. In SAMOD,

1 http://www.sparontologies.net/.
2 http://www.essepuntato.it/2013/10/vagueness.
3 http://www.essepuntato.it/2014/03/fentry.
4 http://purl.org/emmedi/oaentry.
5 http://www.essepuntato.it/2015/07/ido.
6 http://www.w3.org/TR/owl2-syntax/.

http://www.sparontologies.net/
http://www.essepuntato.it/2013/10/vagueness
http://www.essepuntato.it/2014/03/fentry
http://purl.org/emmedi/oaentry
http://www.essepuntato.it/2015/07/ido
http://www.w3.org/TR/owl2-syntax/

58 S. Peroni

each informal competency question is composed by an unique identifier, a nat-
ural language question, the kind of outcome expected as answer, some exemplar
answers considering the examples provided in the related motivating scenario7,
and a list of identifiers referring to higher-level informal competency questions
that the question in consideration requires, if any.

A glossary of terms (GoT) [5] is a list of term-definition pairs related to
terms that are commonly used for talking about the domain in consideration.
The term in each pair may be composed by one or more words or verbs, or even
by a brief sentence, while the related definition is a natural language explanation
of the meaning of such term. The terminology used for naming terms and for
describing them must be as close as possible to the domain language.

As anticipated in the introduction, SAMOD prescribes an iterative process
which aims at building the final model through a series of small steps. At the end
of each iteration a particular preliminary version of the final model is released.
Within a particular iteration in, the current model is the version of the final model
released at the end of the iteration in−1. Contrarily, a modelet is a stand-alone
model describing a particular aspect of the domain in consideration which is
used to provide a first conceptualisation of a motivating scenario, without caring
about the current model available after the previous iteration of the process –
it is similar to a microtheory as introduced in Cyc [15]. By definition, a modelet
does not include entities from other models and it is not included in other models.

A test case Tn, produced in the nth iteration of the process, is a sextuple
including a motivating scenario MSn, a list of scenario-related informal compe-
tency questions CQn, a glossary of terms GoTn for the domain addressed by
the motivating scenario, a TBoxn of the ontology implementing the description
introduced in the motivating scenario, an exemplar ABoxn implementing all the
examples described in the motivating scenario according to the TBoxn, and a set
of SPARQL8 queries SQn formalising the informal competency questions. A bag
of test cases (BoT) is a set of test cases.

Given as input MSn, TBoxn and GoTn – a model test aims at checking the
validity of TBoxn against specific requirements:

– [formal requirement] understanding (even by using appropriate unit tests
[19]) whether TBoxn is consistent;

– [rhetorical requirement] understanding whether TBoxn covers MSn and
whether the vocabulary used by TBoxn is appropriate.

Given as input MSn, TBoxn and ABoxn built according to TBoxn, and con-
sidering the examples described in MSn, a data test aims at checking the validity
of the model and the dataset and against specific requirements:

7 Note that if there are no data in any example of the motivating scenario that answer
to the question, it is possible that either the competency question is not relevant for
the motivating scenario or the motivating scenario misses some important exemplar
data. In those cases one should remove the competency question or modify the
motivating scenario accordingly.

8 http://www.w3.org/TR/sparql11-query/.

http://www.w3.org/TR/sparql11-query/

A Simplified Agile Methodology for Ontology Development 59

– [formal requirement] understanding whether the TBoxn is still consistent
when considering the ABoxn;

– [rhetorical requirement] understanding whether the ABoxn describes all
the examples accompanying the motivating scenario completely.

Given as input TBoxn, ABoxn, CQn, and SQn, a query test aims at check-
ing the validity of TBoxn, ABoxn, and each query in SQn against specific
requirements:

– [formal requirement] understanding whether each query in SQn is well-
formed and can correctly run on Tboxn + ABoxn;

– [rhetorical requirement] understanding whether each query in CQn is
mapped into an appropriate query in SQn and whether, running each of them
on TBoxn + ABoxn, the result conforms to the expected outcome detailed in
each query in CQn.

3 Methodology

SAMOD is based on the following three iterative steps (briefly summarised in
Fig. 1) – where each step ends with the release of a snapshot of the current state
of the process called milestone:

1. OEs collect all the information about a specific domain, with the help of
DEs, in order to build a modelet formalising the domain in consideration,
following certain ontology development principles. Then OEs create a new
test case that includes the modelet. If everything works fine (i.e. model test,
data test, and query test are passed), OEs release a milestone and proceed;

Fig. 1. A brief summary of SAMOD, starting with the “Collect requirements and
develop a modelet” step.

60 S. Peroni

2. OEs merge the modelet of the new test case with the current model produced
by the end of the last iteration of the process, and consequently they update
all the test cases in BoT specifying the new current model as TBox. If every-
thing works fine (i.e. model, data and query tests are passed according to
their formal requirements only), OEs release a milestone and proceed;

3. OEs refactor the current model, in particular focussing on the last part added
in the previous step, taking into account good practices for ontology develop-
ment processes. If everything works fine (i.e. model, data and query tests are
passed), OEs release a milestone. In case there is another motivating scenario
to be addressed, OEs iterate the process, otherwise the process ends.

The next sections elaborate on these steps introducing a real running exam-
ple9 considering a generic iteration in.

3.1 Step 1: Define a New Test Case

OEs and DEs work together to write down a motivating scenario MSn, being
as close as possible to the language DEs commonly use for talking about the
domain. An example of motivating scenario is illustrated in Table 1.

Given a motivating scenario, OEs and DEs should produce a set of informal
competency questions CQn, each of them identified appropriately. An example
of an informal competency question, formulated starting from the motivating
scenario in Table 1, is illustrated in Table 2.

Now, having both a motivating scenario and a list of informal competency
questions, OEs and DEs write down a glossary of terms GoTn. An example of
glossary of terms is illustrated in Table 3.

The remaining part of this step is led by OEs only10, who are responsible of
developing a modelet according to the motivating scenario, the informal compe-
tency questions and the glossary of terms11.

In doing that work, they must strictly follow the following principles:

– Keep it small. Keeping the number of the developed ontology entities small
– e.g. Miller’s magic number “7 ± 2” [9] entities per type (classes, object
properties, data properties) – so as not to overload OEs’ working memory.
In addition, by making small changes (and retesting frequently, as our frame-
work prescribes), one has always a good idea of what change has caused an
error/inconsistency in the model [2].

– Use patterns. OEs should take into consideration existing knowledge, in
particular existing and well-documented patterns – the Semantic Web Best
Practices and Deployment Working Group page12 and the Ontology Design

9 The whole documentation about the example is available at http://www.
essepuntato.it/2013/10/vagueness/samod.

10 The OEs involved in our methodology can vary in number. However SAMOD has
been thought for being used also by one OE only.

11 Note that it is possible that multiple entities (i.e. classes, properties, individuals)
are actually hidden behind one single definition in the glossary of terms.

12 http://www.w3.org/2001/sw/BestPractices/OEP/.

http://www.essepuntato.it/2013/10/vagueness/samod
http://www.essepuntato.it/2013/10/vagueness/samod
http://www.w3.org/2001/sw/BestPractices/OEP/

A Simplified Agile Methodology for Ontology Development 61

Table 1. An example of motivating scenario.

Name Vagueness of the TBox entities of an ontology

Description Vagueness is a common human knowledge and language phenomenon, typ-
ically manifested by terms and concepts like High, Expert, Bad, Near etc.
In an OWL ontology vagueness may appear in the definitions of classes,
properties, datatypes and individuals. For these entities a more explicit
description of the nature and characteristics of their vagueness/non-
vagueness is required.
Analysing and describing the nature of vagueness/non-vagueness in onto-
logical entities is subjective activity, since it is often a personal interpre-
tation of someone (a person or, more generally, an agent).
Vagueness can be described according to at least two complementary
types referring to quantitative or qualitative connotations respectively.
The quantitative aspect of vagueness concerns the (real or apparent) lack
of precise boundaries defining an entity along one or more specific dimen-
sions. The qualitative aspect of vagueness concerns the identification of
such other discriminants of which boundaries are not quantifiable in any
precise way.
Either a vagueness description, that specifies always a type, or a non-
vagueness description provides at least a justification (defined either as
natural language text, an entity or a more complex logic formula, or any
combination of them) that motivates a specific aspect of why an entity
should be intended as vague/non-vague. Multiple justifications are possible
for the same description.
The annotation of an entity with information about its vagueness is a
particular act of tagging done by someone (i.e., an agent) who associates
a description of vagueness/non-vagueness (called the body of the
annotation) to the entity in consideration (called the target of the
annotation).

Example 1 Silvio Peroni thinks that the class TallPerson is vague since there is no
way to define a crisp height threshold that may separate tall from non-tall
people.
Panos Alexopoulos, on the other hand, considers someone as tall when
his/her height is at least 190 cm. Thus, for Panos, the class TallPerson is
not vague.

Example 2 In an company ontology, the class StrategicClient is considered vague.
However, the company’s R&D Director believes that for a client to be
classified as strategic, the amount of its R&D budget should be the only
factor to be considered. Thus according to him/her the vague class Strate-
gicClient has quantitative vagueness and the dimension is the amount of
R&D budget.
On the other hand, the Operations Manager believes that a client is strate-
gic when he has a long-term commitment to the company. In other words,
the vague class StrategicClient has quantitative vagueness and the dimen-
sion is the duration of the contract.
Finally, the company’s CEO thinks that StrategicClient is vague from a
qualitative point of view. In particular, although there are several
criteria one may consider necessary for being expert (e.g. a long-standing
relation, high project budgets, etc.), it’s not possible to determine which
of these are sufficient

62 S. Peroni

Table 2. An example of competency question.

Identifier 3

Question What are all the entities that are characterised by a specific
vagueness type?

Outcome The list of all the pairs of entity and vagueness type.

Example StrategicClient, quantitative

StrategicClient, qualitative

Depends on 1

Patterns portal13 are both valuable examples – as well as widely-adopted
Semantic Web vocabularies – such as FOAF14 for people, SIOC15 for social
communities, and so on.

– Middle-out development. OEs should start to define the most relevant
concepts and then to focus on more high-level and more concrete ones. Such
middle-out approach [18] allows one to avoid unnecessary effort during the
development because detail arises only as necessary, by adding sub- and super-
classes to the basic concepts. Moreover, this approach, if used properly, tends
to produce much more stable ontologies [17].

– Keep it simple. The modelet must be designed according to the informa-
tion obtained previously (MSn, CQn, GoTn) in an as-quick-as-possible way,
spending the minimum effort and without adding any unnecessary seman-
tic structure – avoiding to think about inferences at this stage, and rather
focussing on describing the motivating scenario fully.

– Self-explanatory entities. Each ontological entity must be understandable
by humans by simply looking at its local name (i.e. the last part of the entity
IRI). No labels and comments have to be added at this stage and all the
entity IRIs must not be opaque – class local names has to be capitalised
(e.g. Justification) and in camel-case notation if composed by more than one
word (e.g. DescriptionOfVagueness), property local names must start with a
non-capitalised verb16 and in camel-case notation if composed by more than
one word (e.g. wasAttributedTo), and individual local names must be non-
capitalised (e.g. ceo) and dash-separated if composed by more than one word
(e.g. quantitative-vagueness).

The goal of OEs is to develop a modeletn, possibly starting from a graphical
representation written in a proper visual language – such as Graffoo [4] – so as to
convert it automatically in OWL by means of appropriate tools, e.g. DiTTO [6].

13 http://www.ontologydesignpatterns.org/.
14 http://xmlns.com/foaf/spec.
15 http://rdfs.org/sioc/spec.
16 http://www.jenitennison.com/blog/node/128.

http://www.ontologydesignpatterns.org/
http://xmlns.com/foaf/spec
http://rdfs.org/sioc/spec
http://www.jenitennison.com/blog/node/128

A Simplified Agile Methodology for Ontology Development 63

Table 3. An example of glossary of terms.

Term Definition

annotation of
vagueness/non-
vagueness

The annotation of an ontological entity with
information about its vagueness is a particular act of
tagging done by someone (i.e., an agent) who associates
a description of vagueness/non-vagueness (called the
body of the annotation) to the entity in consideration
(called the target of the annotation).

agent The agent who tags an ontology entity with a
vagueness/non-vagueness description.

description of
non-vagueness

The descriptive characterisation of non-vagueness to
associate to an ontological entity by means of an
annotation. It provides at least one justification for
considering the target ontological entity non-vague. This
description is primarily meant to be used for entities
that would typically be considered vague but which, for
some reason, in the particular ontology are not.

description of
vagueness

The descriptive characterisation of vagueness to
associate to an ontological entity by means of an
annotation. It specifies a vagueness type and provides at
least one justification for considering the target
ontological entity vague.

vagueness type A particular kind of vagueness that characterises the
entity.

quantitative vagueness A vagueness type that concerns the (real or apparent)
lack of precise boundaries defining an entity along one
or more specific dimensions.

qualitative vagueness A vagueness type that concerns the identification of
such other discriminants of which boundaries are not
quantifiable in any precise way.

justification for
vagueness/non-
vagueness
description

A justification that explains one possible reason behind
a vagueness/non-vagueness description. It is defined
either as natural language text, an entity, a more
complex logic formula, or any combination of them.

has natural language
text

The natural language text defining the body of a
justification.

has entity The entity defining the body of a justification.

has logic formula The logic formula defining the body of a justification

Starting from modeletn, OEs proceed in four phases:

1. run a model test on modeletn. If it succeeds, then
2. create an exemplar dataset ABoxn that formalises all the examples introduced

in MSn according to modeletn. Then, OEs run a data test and, if succeeds,
then

64 S. Peroni

3. write SPARQL queries in SQn as many informal competency questions in
CQn. Then, OEs run a query test and, if it succeeds, then

4. create a new test case Tn = (MSn, CQn, GoTn, modeletn, ABoxn, SQn) and
add it to BoT.

When running the model test, the data test and the query test, it is possible
to use any appropriate software to support the task, such as reasoners (Pellet17,
HermiT18) and query engines (Jena19, Sesame20).

Any failure of any test that is considered a serious issue by the OEs results
in getting back to the more recent milestone. It is worth mentioning that an
exception should be also arisen if OEs think that the motivating scenario MSn

is to big to be covered by only one iteration of the process. In this case, it may
be necessary to re-schedule the whole iteration, e.g. by splitting adequately the
motivating scenario in two new ones.

3.2 Step 2: Merge the Current Model with the Modelet

At this stage, OEs merge modeletn, included in the new test case Tn, with the
current model, i.e. the version of the final model released at the end of the
previous iteration (i.e. in−1). OEs proceed in three consecutive steps:

1. to define a new TBoxn merging21 the current model with modeletn, by adding
all the axioms in the current model and modeletn to TBoxn and then by col-
lapsing semantically-identical entities, e.g. those that have similar names and
that represent the same real-world entity (for instance Person and Human-
Being);

2. to update all the test cases in BoT, swapping the TBox of each test case with
TBoxn and refactoring each ABox and SQ according to the new entity names
if needed, so as to refer to the more recent model;

3. to run the model test, the data test and the query test on all the test cases
in BoT, according to their formal requirements only;

4. to set TBoxn as the new current model.

Any serious failure of any test – i.e. something went bad in updating the
test cases in BoT – results in getting back to a previous milestone. In this case,
OEs have to consider either the most recent milestone, if they think there was a
mistake in some actions performed during the current step, or one of the other
previous milestones, if the failure is demonstrably a consequence of any of the
components of the latest test case Tn.

17 http://clarkparsia.com/pellet.
18 http://hermit-reasoner.com/.
19 http://jena.sourceforge.net/.
20 http://www.openrdf.org/.
21 If in is actually i1, then the modeletn becomes the current model since no previous

model is actually available.

http://clarkparsia.com/pellet
http://hermit-reasoner.com/
http://jena.sourceforge.net/
http://www.openrdf.org/

A Simplified Agile Methodology for Ontology Development 65

3.3 Step 3: Refactor the Current Model

In the last step, OEs work to refactor the current model shared among all the
test cases in BoT, and, accordingly, each ABox and SQ of each test case, if
needed. In doing that task, OEs must strictly follow the following principles:

– Reuse existing knowledge. Reusing concepts and relations defined in other
models is encouraged and often labelled as a common good practice [18]. The
reuse can result either in including external entities in the current model as
they are or in providing an alignment22 or an harmonisation23 with another
model.

– Document it. Adding annotations – i.e. labels (i.e. rdfs:label), comments
(i.e. rdfs:comment), and provenance information (i.e. rdfs:isDefinedBy) – to
ontological entities, so as to provide natural language descriptions of them
and to allow tools (e.g. LODE [12]) to produce an HTML human-readable
documentation from the ontology source;

– Take advantages from technologies. Enriching the current model by using
all the capabilities offered by OWL 2 (e.g. keys, property characteristics, prop-
erty chains, inverse properties and the like) in order to infer automatically as
much information as possible starting from a (possible) small set of real data.
In particular, it is important to avoid over-classifications by specifying asser-
tions that may be automatically inferred by a reasoner – e.g. creating an
inverse property of a property P defining explicitly its domain and range even
if they can be inferred automatically.

Finally, once the refactor is finished, OEs have to run the model test, the
data test and the query test on all the test cases in BoT. This is a crucial task to
perform, since it guarantees that the refactoring has not damaged any existing
conceptualisation implemented in the current model.

3.4 Output of an Iteration

Each iteration of SAMOD produces a new test case that will be added to the
bag of test cases (BoT). Each test case describes a particular aspect of the model
under-development, i.e. the current model under consideration after one iteration
of the methodology.

In addition of being integral part of the methodology process, each test
case represents a complete documentation of a particular aspect of the domain
described by the model, due to the natural language descriptions it includes
(the motivating scenario, the informal competency questions, and the glossary
of terms), as well as the formal implementation of exemplar data (the ABox)
and possible ways of querying the data compliant with the model (the set of

22 An alignment is set of correspondences between entities belonging to two models
different models.

23 It is the process of modifying a model (and also to align it, if necessary) to fully fit
or include it into another model.

66 S. Peroni

formal queries). All these additional information should help end-users in under-
standing, with less effort, what the model is about and how they can use it to
describe the particular domain it addresses.

4 Experiment

We performed an experiment so as to understand to which degree SAMOD can
be used by people with limited experience in Semantic Web technologies and
Ontology Engineering. In particular, we organised a user testing session so as
to gather some evidences on the usability of SAMOD when modelling OWL
ontologies.

We asked nine Computer Science and Law people – one professor, two post-
docs, and six Ph.D. students – to use SAMOD (one iteration only) for modelling
a particular motivating scenario provided as exercise. SAMOD, as well as the
main basics on Ontology Engineering, OWL, and Semantic Web technologies,
were introduced to the subjects during four lectures of four hours each. At the
end of the last lecture, we asked them to answer three questionnaires:

– a background questionnaire containing questions on previous experience in
Ontology Engineering and OWL;

– another questionnaire containing ten likert questions according to the System
Usability Scale (SUS), which also allowed us to measure the sub-scales of pure
Usability and pure Learnability, as proposed recently by Lewis and Sauro [8];

– a final questionnaire asking for the experience of using SAMOD for completing
the task.

The mean SUS score for SAMOD was 67.25 (in a 0 to 100 range), approaching
the target score of 68 to demonstrate a good level of usability (according to
[14]). The mean values for the SUS sub-scales Usability and Learnability were
65.62 and 73.75 respectively. In addition, an Experience score was calculated for
each subject by considering the values of the answers given to the background
questionnaire. We compared this score (x-axis in Fig. 2) with the SUS values
and the other sub-scales (y-axis) using the Pearson’s r. As highlighted by the
red dashed lines (referring to the related Least Squares Regression Lines), there is
a positive correlation between the Experience score and the SUS values – i.e. the
more a subject knew about ontology engineering in general, the more SAMOD
was perceived as usable and easy to learn. However, only the relation between
the Learnability score and the Experience score was statistical significant (p <
0.05).

Axial coding of the personal comments expressed in the final questionnaires
[16] revealed a small number of widely perceived issues. Overall the methodology
proposed has been evaluated positively by 7 subjects (described with adjectives
such as “useful”, “natural”, “effective”, and “consistent”), but it has also received
criticisms by 5 subjects, mainly referring to the need of more expertise in Seman-
tic Web technologies and Ontology Engineering for using it appropriately. The
use of the tests for assessing the ontology developed after a certain step has been

A Simplified Agile Methodology for Ontology Development 67

Fig. 2. Three comparisons between the SUS score (and its sub-scales) and the experi-
ence score by the subjects.

appreciated (3 positive comments vs. 1 negative one), as well as the use of the
scenarios and examples in the very first step of SAMOD (3 positive comments)
and the implementation of competency questions in form of SPARQL queries (2
positive comments). All the outcomes of the questionnaires are available online
in the SAMOD GitHub repository24.

5 Related Works

Several quick-and-iterative ontology development processes have been intro-
duced recently, which could be preferred when the ontology to develop should
be composed by a limited amount of ontological entities – while the use of
highly-structured and strongly-founded methodologies (e.g. [5,17,18]) is still nec-
essary and, maybe, mandatory for incredibly complex enterprise projects. In this
section we introduce some of the most interesting agile approaches to ontology
development.

One of the first agile methodologies introduced in the domain is eXtreme
Design (XD) [13], which has been inspired by the eXtreme Programming method-
ology in Software Engineering. The authors described XD as “an approach, a
family of methods and associated tools, based on the application, exploitation,
and definition of ontology design patterns (ODPs) for solving ontology develop-
ment issues”. Summarising, XD is an agile methodology that uses pair design
(i.e. groups of two ontology engineers working together during the development)
and an iterative process which starts with the collection of stories and compe-
tency questions as requirements to address, and then it proposes the re-use of
existing ontology design patterns for addressing such informal requirements.

Another recent approach has been introduced by Keet and Lawrynowicz
in [7]. They propose to transfer concepts related to the Test-Driven Development
in Software Engineering [2] into the Ontology Engineering world. The main idea
24 http://github.com/essepuntato/samod.

http://github.com/essepuntato/samod

68 S. Peroni

behind this methodology is that tests have to be run in advance before to proceed
with the modelling of a particular (aspect of a) domain. Of course, the first
execution of the tests should fail, since no ontology has been already developed
for addressing them properly, while the ontology developed in future iterations
of the process should result in passing the test eventually.

De Nicola and Missikoff [3] have recently introduced their Unified Process for
ONtology building methodology (a.k.a. UPON Lite), which is an agile ontology
engineering method that places end-users without specific ontology expertise
(domain experts, stakeholders, etc.) at the centre of the process. The method-
ology is composed by an ordered set of six steps. Each step outputs a self-
contained artefact immediately available to end users, that is used as input of
the subsequent step. This makes the whole process progressive and differential,
and involves ontology engineers only the very last step of the process, i.e. when
the ontology has to be formalised in some standard language.

6 Conclusions

In this paper we have introduced SAMOD, a Simple Agile Methodology for Ontol-
ogy Development. In particular, we have introduced its process by detailing each
of its steps, and we have also discussed the results of an experiment we have run
involving nine people with no or limited expertise in Semantic Web technologies
and Ontology Engineering.

In the future, we plan to involve a larger set of users so as to gather additional
data about its usefulness, usability, and effectiveness. In addition, we plan to
develop supporting tools for accompanying and facilitating users in each step of
the methodology.

Acknowledgements. We would like to thank Jun Zhao for her precious comments
and concerns about the initial drafts of SAMOD, David Shotton for our fruitful discus-
sions when developing the SPAR Ontologies, Francesca Toni as one of the first users
of such methodology, and Panos Alexopoulos as co-author of the Vagueness Ontology
that we used herein to introduce all the examples of the SAMOD development process.

References

1. Atkinson, R.K., Derry, S.J., Renkl, A., Wortham, D.: Instructional principles
from the worked examples research. Rev. Educ. Res. 70(2), 181–214 (2000).
http://dx.doi.org/10.3102/00346543070002181

2. Beck, K.: Test-Driven Development by Example. Addison-Wesley (2003). ISBN:
978-0321146533

3. De Nicola, A., Missikoff, M.: A lightweight methodology for rapid ontology engi-
neering. Commun. ACM 59(3), 79–86 (2016). http://dx.doi.org/10.1145/2818359

4. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL ontolo-
gies with Graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis,
I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 320–325. Springer, Heidel-
berg (2014). doi:10.1007/978-3-319-11955-7 42

http://dx.doi.org/10.3102/00346543070002181
http://dx.doi.org/10.1145/2818359
http://dx.doi.org/10.1007/978-3-319-11955-7_42

A Simplified Agile Methodology for Ontology Development 69

5. Fernandez, M., Gomez-Perez, A., Juristo, N.: METHONTOLOGY: from ontolog-
ical art towards ontological engineering. In: Proceedings of the AAAI97 Spring
Symposium Series on Ontological Engineering, pp. 33–40. http://aaaipress.org/
Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf

6. Gangemi, A., Peroni, S.: DiTTO: diagrams transformation inTo OWL. In: Proceed-
ings of the ISWC 2013 Posters & Demonstrations Track (2013). http://ceur-ws.
org/Vol-1035/iswc2013 demo 2.pdf

7. Keet, C.M., �Lawrynowicz, A.: Test-driven development of ontologies. In: Sack, H.,
Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC
2016. LNCS, vol. 9678, pp. 642–657. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-34129-3 39

8. Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: Kurosu,
M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 94–103. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02806-9 12

9. Miller, G.A.: Some limits on our capacity for processing information. Psychol. Rev.
63(2), 81–97 (1956). http://dx.doi.org/10.1037/h0043158

10. Peroni, S.: The semantic publishing and referencing ontologies. In: Semantic Web
Technologies and Legal Scholarly Publishing, pp. 121–193 (2014). http://dx.doi.
org/10.1007/978-3-319-04777-5 5

11. Peroni, S.: SAMOD: an agile methodology for the development of ontologies.
figshare (2016). http://dx.doi.org/10.6084/m9.figshare.3189769

12. Peroni, S., Shotton, D., Vitali, F.: The Live OWL Documentation Environment:
a tool for the automatic generation of ontology documentation. In: Proceedings of
EKAW 2012, pp. 398–412 (2012). http://dx.doi.org/10.1007/978-3-642-33876-2
35

13. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme design with content
ontology design patterns. In: Proceedings of WOP 2009 (2009). http://ceur-ws.
org/Vol-516/pap21.pdf

14. Sauro, J.: Background, Benchmarks & Best Practices (2011). ISBN: 978-
1461062707

15. Sowa, J.F.: Representation and inference in the cyc project:
D.B. Lenat and R.V. Guha. Artif. Intell. 61(1), 95–104 (1993).
http://dx.doi.org/10.1016/0004-3702(93)90096-T

16. Strauss, A., Corbin, J.: Basics of Qualitative Research Techniques and Procedures
for Developing Grounded Theory, 2nd edn. Sage Publications, London (1998).
ISBN 978-0803959408

17. Uschold, M., Gruninger, M.: Principles, methods and applications. IEEE Intell.
Syst. 11(2), 93–155 (1996). http://dx.doi.org/10.1109/MIS.2002.999223

18. Uschold, M., King, M.: Towards a methodology for building ontologies. In: Work-
shop on Basic Ontological Issues in Knowledge Sharing (1995). http://www.aiai.
ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf

19. Vrandečić, D., Gangemi, A.: Unit tests for ontologies. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006. LNCS, vol. 4278, pp. 1012–1020. Springer, Heidelberg
(2006). doi:10.1007/11915072 2

http://aaaipress.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf
http://aaaipress.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_2.pdf
http://ceur-ws.org/Vol-1035/iswc2013_demo_2.pdf
http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/978-3-642-02806-9_12
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1007/978-3-319-04777-5_5
http://dx.doi.org/10.1007/978-3-319-04777-5_5
http://dx.doi.org/10.6084/m9.figshare.3189769
http://dx.doi.org/10.1007/978-3-642-33876-2_35
http://dx.doi.org/10.1007/978-3-642-33876-2_35
http://ceur-ws.org/Vol-516/pap21.pdf
http://ceur-ws.org/Vol-516/pap21.pdf
http://dx.doi.org/10.1016/0004-3702(93)90096-T
http://dx.doi.org/10.1109/MIS.2002.999223
http://www.aiai.ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf
http://www.aiai.ed.ac.uk/publications/documents/1995/95-ont-ijcai95-ont-method.pdf
http://dx.doi.org/10.1007/11915072_2

Using Ontology Design Patterns to Represent
Sustainability Indicator Sets

Lida Ghahremanlou1(B), Liam Magee2(B), and James A. Thom3

1 Coventry University, Coventry, UK
lida.ghahremanlou@bcu.ac.uk

2 University of Western Sydney, Sydney, Australia
l.magee@westernsydney.edu.au

3 RMIT University, Melbourne, Australia
james.thom@rmit.edu.au

Abstract. Sustainability indicators are increasingly being used to mea-
sure the economic, environmental and social properties of complex sys-
tems across different temporal and spatial scales. This motivates their
inclusion in open distributed knowledge systems such as the Semantic
Web. The diversity of such indicator sets provides considerable choice
but also poses problems for those who need to measure and report. To
address the modelling problems of indicator sets, we propose the use
of Value Partition pattern to construct two design candidates: generic
and specific. The generic design is more abstract, with fewer classes and
properties, than the specific design. Documents describing two indicator
systems – the Global Reporting Initiative and the Organisation for Eco-
nomic Co-operation and Development – are used in the design of both
candidate ontologies. We show the use of existing structural ontology
design patterns can help to solve problems of ontology representations
for modelling sustainability indicator sets.

Keywords: Sustainability Indicator Sets · Sustainability Reporting ·
Ontology Design Patterns · Value Partition

1 Introduction

Sustainability indicators estimate the past, current and future states of complex
systems, such as cities, organisations, community groups and natural habitats.
In a measurement context, a “system” is the entity that is the focus of various
tasks that include identifying properties, devising scales, testing and measuring,
and reporting on progress towards defined sustainability goals. In response to
the demands of measuring and maintaining sustainability for diverse systems,
many indicator sets have been developed and are in use today [4,16,19].

The diversity of such indicator sets provides considerable choice but also
poses problems for those who need to measure and report. Often, relevant indi-
cators need to be selected from multiple sets, with any gaps in specific measure-
ment goals filled by the development of new indicators. Ontologies provide one
c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 70–81, 2017.
DOI: 10.1007/978-3-319-54627-8 6

Using Ontology Design Patterns to Represent Sustainability Indicator Sets 71

means for consolidating these multiple sets in a single representation, but leave
open the problem of exactly how this representation is designed. In many cases,
it remains an advantage for such a representation to be human-readable as well
as machine-readable. This facilitates interpretation of how different sets com-
pare and contrast. To support human usability in the sustainability domain, any
such representation should aim to support the easy reading of existing indicators
compiled from heterogeneous sources, and the easy writing of new indicators and
annotations to the ontology through common authoring tools such as Protégé
Desktop1.

We argue ontology design patterns can help to address both problems in a
way that is systematic and builds upon the experience of others. Our focus in this
paper is on the first of these problems: How to represent indicators from
multiple indicator sets in an ontology? This problem includes a further
semantic challenge, since multiple sets may overlap at the level of individual con-
cepts but may also overlap between broader conceptual clusters. We argue this
challenge in turn has at least two levels: (i) indicators may be named differently,
due to different languages, disciplinary jargon, or designer preferences; and (ii)
indicators may also be conceptually organised differently, due to the knowledge
paradigms and priorities motivating indicator selection. In both cases, merging
two or more indicator sets into a single, combined ontology can assist in identi-
fying which specific indicators might be most relevant to the measurement task
at hand.

Well-known standardised frameworks for sustainability reporting include the
Global Reporting Initiative (GRI) indicators and guidelines2, the Organization
for Economic Co-operation and Development (OECD)3 and the United Nations
Statistics Division (UN Social Indicators)4. Each of these frameworks group
sustainability indicators into hierarchical structures that include categories and
sub-categories of indicators. Extracts of GRI and OECD indicator sets are shown
in Fig. 1, which illustrates (i) categories (or aspects), (ii) sub-categories (themes)
and (iii) indicators. This shows, at least at a structural level, that there is some
basis for comparison between these two widely used sets of sustainability indi-
cators.

To date, there have been few efforts to represent multiple sustainability indi-
cator sets in a systematic semantic way. Advantages of representing indicators in
a formal ontology include developing a consistent definition of what an indicator
is, how it can be applied, and how it relates to higher order grouping constructs
used in theories and definitions of sustainability. An ontology representation
also builds upon the many tools now available for ontology reasoning, alignment
and visualisation, allowing organisations to browse and review different kinds of
indicators for different measurement applications. Most importantly, by utilising
pre-defined matches between non-identical but related indicators, measurements

1 http://protege.stanford.edu/.
2 http://www.globalreporting.org/.
3 http://www.oecd.org/.
4 http://www.un.org/esa.

http://protege.stanford.edu/
http://www.globalreporting.org/
http://www.oecd.org/
http://www.un.org/esa

72 L. Ghahremanlou et al.

Fig. 1. Extracts of GRI and OECD indicator sets

and reports developed by different organisations and contexts can be more easily
compared.

A key concern in ontology engineering is to design and organise groups of
related concepts that capture the relevant information of the domain being mod-
elled as an ontology. Ontology Design Patterns (ODPs) have been proposed
to encourage compatibility, efficiency and recognisability of ontology designs
[14,17]. In the formal sense provided by those listed5, patterns make explicit
relations that would otherwise remain implicit, or at best only documented. As
one example, the Role pattern6 makes clear that two ontology classes are not
simply related through user-defined properties, but are related specifically as
task actions and role objects.

In this paper we discuss two ontology design candidates, which we term
generic and specific, developed to represent sustainability indicator sets. We
have termed the target end ontology OSIS (Ontology for Sustainability Indicator
Sets), and the two design candidates GOSIS and SOSIS. The details of ontology
engineering steps are described in earlier work [13]. This paper instead discusses
the varied use of an ODP called Value Partition in the construction of the two
candidates, and presents conclusions on the relevant merits of each variation.

2 Related Work

To prepare our discussion of the two ontologies, we review briefly literature
relating to (i) sustainability indicator sets and (ii) ontology design patterns.

5 http://ontologydesignpatterns.org.
6 http://ontologydesignpatterns.org/wiki/Submissions:Role task.

http://ontologydesignpatterns.org
http://ontologydesignpatterns.org/wiki/Submissions:Role_task

Using Ontology Design Patterns to Represent Sustainability Indicator Sets 73

2.1 Ontologies and Taxonomies Used in Sustainability
Indicator Sets

There have been several attempts to develop domain and application ontologies
in the context of sustainability and sustainability reporting. Brilhante et al. [4]
present an ontology that aims to represent economic indicators of sustainable
development. Similarly, Madlberger et al. [18] develop an ontology for the domain
of corporate sustainability, heavily influenced by the design of the Global Report-
ing Initiative’s XBRL specification. Kumazawa et al. [16] outline an ontological
approach to capture a very broad problem-based definition of sustainability sci-
ence, developed around five key concepts of Problem, Goal, Evaluation, Coun-
termeasure and Domain Concept. Han and Stoffel [15] apply text extraction
and analysis techniques to environmental sustainability case studies to generate
machine and humanly-readable ontologies. An ontology-based approach has also
been used by Pinheiro et al. [19] to assist selection of relevant sustainability indi-
cators. Finally, Fox [7] has developed an ontology to represent ISO37120 Global
City Indicators, a standard that defines measures for urban sustainability.

This prior work has not sought to combine more than one representation
of sustainability indicators into a single ontology design. To help address this
problem, we next examine ontology design patterns.

2.2 Ontology Design Patterns

Ontology design patterns borrow heavily from the related concept of Software
Design Patterns (SDPs) [8] in software engineering. Using object oriented SDPs
provides software class models with well-understood properties and behaviours
that solve common engineering challenges in generic, abstract and reusable ways.
As a result, such patterns improve software development efficiency and generate
high-quality and more maintainable software artefacts [3]. In an equivalent way,
an ontology can be composed of different related ODPs, which resemble building
blocks that make up the ontology structure. Recognising generic or abstract
ontology components is an integral part of specifying appropriate ODPs. This
process is often domain-dependent, and thus requires deep understanding of the
key concepts of the domain problem. Similar to SDPs, ODPs are abstract, flexible
and reusable solutions that address common problems and use cases in the field
of ontology engineering [1,2]. However, given that ontology engineering is a less
mature field compared with software engineering, the definition, representation
and application of ODPs lack the same level of consensus as software engineering
design patterns.

The ODP literature can be divided into studies that discuss general ideas
about ODPs and those that discuss concrete ODPs for tackling specific design
problems in developing ontologies. As examples of the former, Reich [21] first
introduced the notion of ODPs in the context of molecular biology. Shortly after,
Staab et al. [23] discussed the idea of Semantic Patterns and Knowledge Pat-
terns as reusable components for building knowledge bases. Their work was later

74 L. Ghahremanlou et al.

Fig. 2. An extract of a GRI indicator

followed by the work of Gangemi [9] and Gangemi et al. [11] that distinguished
between Logical, Conceptual and Content Ontology Design Patterns. Finally,
Gangemi and Presutti [10] classify a number of commonly-used ontology pat-
terns into six major categories including: Structural, Correspondence, Content,
Reasoning, Presentation, and Lexico-Syntactic ODPs. This classification system
continues to influence their organisation on the widely-used pattern repository7.

7 http://ontologydesignpatterns.org.

http://ontologydesignpatterns.org

Using Ontology Design Patterns to Represent Sustainability Indicator Sets 75

3 Sustainability Indicator Sets Ontology Development

In this section we discuss the development process of our ontology design.

3.1 Extracting Foundational Concepts

After reviewing GRI and OECD indicator sets, and interviewing sustainability
domain experts, we first identify several common foundational concepts of sus-
tainability indicators. Highlighted in Fig. 2, these concepts include: Indicator,
IndicatorSet, Category, SubCategory (Group, Theme, Aspect), Issue, Descrip-
tion (Relevance, Compilation, Definitions, Documentation), Reference (Sources,
Information).

3.2 Modelling Problems

Second, given the identified key concepts within the domain-dependent tax-
onomies, we further identify relations between these concepts and the relevant
entities within those taxonomies. These may have quite different representations.
In particular, we have noticed that specific GRI and OECD indicator systems
can be specified in relation to abstract concepts of IndicatorSet and Indicator
in different ways. The question here is of how to determine whether such
relations be represented as disjoint class hierarchies, as subclasses of
a common parent class, or as instances of a given class, and represents
a refinement of the overall research question of how to represent indicators from
multiple sets in an ontology. In concrete terms, as we discuss in the next subsec-
tion, the design problem involves the association of the Indicator concept with
the IndicatorSet concept. This also affects the relations of other concepts such
as Category, Description and Reference. Addressing these modelling prob-
lems ideally should reflect the requirements of the final ontology design, leading
us to choose appropriate patterns that satisfy both computational properties
and the human interpretation of ontologies. These ontology requirements for
sustainability indicator sets are discussed in our earlier work [12].

3.3 Ontology Design Patterns Solution

Third, to address the aforementioned modelling problems, we decided upon the
use of the Value Partition (VP) pattern. The VP ontology pattern was first intro-
duced by Rector [20] and further reviewed and developed by Aranguren [1] for
the biomedical domain. The VP pattern represents specified collections of “val-
ues” – also known as a “feature space” – using hierarchical modelling. Generally
speaking, in any domain, such characteristics are used to describe different con-
cepts in the ontology. For example, given the description of the “IndicatorSet”
concept in the sustainability domain, in the presented ontology model, there are
two VP patterns as follows.

76 L. Ghahremanlou et al.

As Rector [20] notes, the VP pattern can be implemented in different ways:
as a collection of individuals, as disjoint classes, or as datatypes. As the values
we are modelling form themselves complex taxonomic structures, datatypes are
not adequate. Accordingly we present two approaches to OSIS that represent
multiple indicator sets, respectively, as collections of interrelated individuals and
as disjoint classes. In doing so, we also acknowledge subsequent clarifications
of complex uses of the Value Partition ODP in, for example, Rodriguez-Castro
et al. [22], who relate VP to two other ODPs: Normalisation and Class as a Property
Value (or CPV). In line with their findings, both of our VP implementations
simultaneously constitute implementations of Normalisation and what they term
strict-CPV ODPs.

– Pattern 1 - GOSIS design: This design assumes indicator sets and indicators
are instances of classes. Both GRI and OECD taxonomic structures are rep-
resented as individuals of the IndicatorSet class. Specific measures, such as
GRI’s “Percentage of total employees covered by collective bargaining agree-
ments” (Disclosure 102-41) and OECD’s “share of the population connected
to sewerage with primary, secondary, tertiary treatment”, are represented as
instances of the Indicator class. The Indicator class is further linked by
a particular property, belongsToIndicatorSet, to the IndicatorSet class.
This view is broader to cover sustainability indicators’ key information with
no reference to any particular organisations and is called Generic Ontology
for Sustainability Indicator Set or GOSIS.
In our discussions with domain experts, the particular affordance of this design
is its reusability and extensibility. People who are not ontology designers can
add new indicator sets and indicators without modifying the classes and prop-
erties of the ontology.

– Pattern 2 - SOSIS design: This design treats indicator sets and their indica-
tors as disjoint class hierarchies. For example, GRIIndicatorSet is a subclass
of the IndicatorSet superclass, while indicators are instances of classes that
model properties specific to each indicator system. This allows for a more
direct representation of the underlying conceptualisation of those systems.
The GRI Relevance class has no equivalent concept in the OECD taxonomy,
and this difference is evident in the class design of the ontology alone. Since
this view includes direct references to specific indicator sets, it is called Spe-
cific Ontology for Sustainability Indicator Sets or SOSIS.
Domain experts considered this design more helpful in terms of explicitness, as
it is clear what information is available about indicators in each of the distinct
indicator sets. However new indicator sets require additional modelling of the
ontology’s classes and properties, which impacts its reusability.

4 Discussion

Following the ontology engineering process of METHONTOLOGY [6] described
in earlier works [12,13] and using the Value Partition pattern – described in the

Using Ontology Design Patterns to Represent Sustainability Indicator Sets 77

Fig. 3. UML diagram of GOSIS design using Value Partition pattern 1

series of WC3 practices8 and discussed in Sect. 3.3 – we have developed two
ontology design candidates, labelled respectively GOSIS and SOSIS. These differ
largely in terms of abstraction, as discussed below.

The GOSIS design defines broadly a suitable structure and reflects the generic
key concepts of sustainability indicators. As a result, and in line with pattern 1,
this design applies an object-oriented approach that encapsulates the generic
features of all indicator sets into a series of base or foundational classes. The
SOSIS design, on the other hand, emphasises the role of the organisations that
develop sustainability indicators. In designing SOSIS, we use VP pattern 2, that
includes the key concepts of these organisations with their own indicator classi-
fications. As a result, this design uses a range of classes and relations that are
specifically added for each sustainability indicator set.

The UML diagrams, built upon the aforementioned Patterns of VP, are shown
in Figs. 3 and 4 and the OWL representation of both ontology designs can be
found here9.

The GOSIS design treats each indicator set as well as their indicators as indi-
viduals, and each set instantiates properties and relations of the IndicatorSet
class (Fig. 3). It contains fewer classes, and is less intuitive for domain experts
to read – at least in an ontology editing tool such as Protégé Desktop, under-
standing the structure of the ontology requires frequent traversal of ‘Class’ and
‘Individual’ tabs, for instance. Accordingly, we consider this a more abstracted
view of the underlying domain of multiple sustainability indicator systems.

By contrast, the SOSIS design treats each indicator set as a class. Accordingly,
they inherit rather than instantiate properties and relations of the IndicatorSet

8 http://www.w3.org/2001/sw/BestPractices/OEP/SpecifiedValues-20050223/.
9 http://www.circlesofsustainability.org/wp-content/uploads/2016/12/.

http://www.w3.org/2001/sw/BestPractices/OEP/SpecifiedValues-20050223/
http://www.circlesofsustainability.org/wp-content/uploads/2016/12/

78 L. Ghahremanlou et al.

Fig. 4. UML diagram of SOSIS design using Value Partition pattern 2

class. This produces a much larger ontology that maps directly to the specific
frames of reference that it is derived from, and we term this the concrete variation
of the Value Partition ontology design pattern (Fig. 4).

5 Conclusion and Future Work

In this work, we have discussed how the use of existing ontology design patterns
can help resolve modelling issues in developing and constructing an ontology for
sustainability indicators.

Our focus in designing GOSIS and SOSIS was to employ the Value Partition
ODP to develop generic and specific models for sustainability indicators that
covers broad key concepts of the domain as well as specific indicator sets. The
findings from the previous section indicate the relative merits of our ontology
designs. From a human readability perspective, we determine the two candidates,
the generic design GOSIS and the specific design SOSIS, differ largely in terms
of their relative abstractness or concreteness. The generic design contains less
classes, and is less readable; the specific design has more classes, but is more
difficult to modify or extend.

We have previously evaluated these ontology design candidates in earlier work
[13]. Based on the findings presented here, we conclude that the specific design
is preferable where the domain requirements require a high degree of fidelity to
existing and known frames of reference, while the generic design offers greater
reuse in contexts where unseen and unknown sets of indicators need to be added
to the ontology in an ad hoc fashion. Accordingly, we also suggest that both

Using Ontology Design Patterns to Represent Sustainability Indicator Sets 79

ontology design models have their distinct merits, satisfying different require-
ments for representing indicator systems. Such requirements are generality and
reusability in the case of GOSIS, and precision and intuitiveness in the case of
SOSIS.

Our conclusion is aligned with one of the limitations of the VP ontology design
pattern, which was developed based on OWL 1 in 2005 [20]. The constraints with
OWL 1 was that a class in ontology must not be the value of a property. According
to Rodriguez-Castro et al. [22], this constraint is resolved in OWL 2, where a
class can have a property or instance values at the same time for DL reasoner.
In addition, recent studies [5,24] propose mapping structural design patterns in
OWL as new solutions for such constraints.

Further work can be undertaken to incorporate additional sustainability indi-
cators systems, and to further refine the candidate OSIS ontologies presented
in this research. One approach for incorporating new systems is through the
automation facilities provided by ontology matching algorithms10. Though dis-
couraged by Rector [20], we also anticipate the possibility of blending the generic
and specific designs in future, possibly using Simple Knowledge Organization
System (SKOS)11 as a means for representing complex sets of values that align
to the IndicatorSet and Indicator classes of the generic and more abstract
design. Recent work by Dudáš et al. [5] has also proposed PURO, a partially auto-
mated approach to generating alternative OWL encodings. Future work aims to
examine how the respective merits of both designs can be preserved, and the
ontology extended to other indicators systems, using combinations of ontology
matching, SKOS representations and PURO software. Once complete, we also
aim to conduct an axiom-based comparison of the two designs, to evaluate for-
mally their respective similarities, differences and merits.

Acknowledgements. We thank the anonymous reviewers for their valuable com-
ments. This research has been supported in part by an Australian Research Council
(ARC) funded linkage project LP0990509 on Accounting for Sustainability: Developing
an Integrated Approach for Sustainability Assessments.

References

1. Aranguren, M.E.: Ontology design patterns for the formalisation of biological
ontologies. Master’s thesis, University of Manchester (2005)

2. Aranguren, M.E.: Role and Application of Ontology Design Patterns
in Bio-Ontologies. PhD thesis, University of Manchester (2009). http://
mikeleganaaranguren.files.wordpress.com/2010/01/thesis.pdf

3. Booch, G.: Object-Oriented Analysis and Design with Applications. Benjamin-
Cummings, Redwood City (1994)

4. Brilhante, V., Ferreira, A., Marinho, J., Pereira, J.S.: Information integration
through ontology and metadata for sustainability analysis. In: The International
Environmental Modelling and Software Society (iEMSs) 3rd Biennial Meeting
(2006)

10 http://ontologymatching.org/projects.html.
11 https://www.w3.org/2004/02/skos/.

http://mikeleganaaranguren.files.wordpress.com/2010/01/thesis.pdf
http://mikeleganaaranguren.files.wordpress.com/2010/01/thesis.pdf
http://ontologymatching.org/projects.html
https://www.w3.org/2004/02/skos/

80 L. Ghahremanlou et al.

5. Dudáš, M., Hanzal, T., Svátek, V., Zamazal, O.: OBOWLMorph: Starting ontol-
ogy development from PURO background models. In: Tamma, V., Dragoni, M.,
Gonçalves, R., �Lawrynowicz, A. (eds.) OWLED 2015. LNCS, vol. 9557, pp. 14–20.
Springer, Cham (2016). doi:10.1007/978-3-319-33245-1 2

6. Fernandez, M., Gomez-Perez, A., Juristo, N.: METHONTOLOGY: From ontolog-
ical art towards ontological engineering. In: Proceedings of the AAAI97 Spring
Symposium Series on Ontological Engineering, pp. 33–40. AAAI Press (1997)

7. Fox, M.S.: A foundation ontology for global city indicators. Department of Mechan-
ical and Industrial Engineering University of Toronto, Global Cities Institute Work-
ing Paper No. 3 (2014)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Pearson Education, Upper Saddle River (1994)

9. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 262–276. Springer, Heidelberg (2005). doi:10.1007/11574620 21

10. Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. International Handbooks on Information Systems,
pp. 221–243. Springer, Heidelberg (2009). doi:10.1007/978-3-540-92673-3 10

11. Gangemi, A., Gómez-Pérez, A., Presutti, V., Suárez-Figueroa, M.C.: Towards a
catalog of OWL-based ontology design patterns. In: CAEPIA. Neon Project Pub-
lications (2007)

12. Ghahremanloo, L.: An integrated knowledge base for sustainability indicators. In:
Australasian Computing Doctoral Consortium. RMIT Melbourne (2012). http://
www.cs.rmit.edu.au/acdc2012/

13. Ghahremanloo, L., Thom, J.A., Magee, L.: An ontology derived from heteroge-
neous sustainability indicator set documents. In: Proceedings of the Seventeenth
Australasian Document Computing Symposium, pp. 72–79. ACM (2012)

14. Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean. Commun.
ACM 45(2), 61–65 (2002). doi:10.1145/503124.503150

15. Han, D., Stoffel, K.: Ontology based qualitative case studies for sustainabil-
ity research. In: Proceedings of the AI for an Intelligent Planet. ACM (2011).
Article 6

16. Kumazawa, T., Saito, O., Kozaki, K., Matsui, T., Mizoguchi, R.: Toward knowledge
structuring of sustainability science based on ontology engineering. Sustain. Sci.
4(1), 99–116 (2009). doi:10.1007/s11625-008-0063-z

17. Lozano-Tello, A., Gómez-Pérez, A.: ONTOMETRIC: a method to choose the
appropriate ontology. J. Database Manage. 15(2), 1–18 (2004). http://oa.upm.
es/6467/

18. Madlberger, L., Thöni, A., Wetz, P., Schatten, A., Tjoa, A.M.: Ontology-based data
integration for corporate sustainability information systems. In: Proceedings of
International Conference on Information Integration and Web-Based Applications
& Services, pp. 353–357. ACM (2013)

19. Pinheiro, W.A., Barros, R., De Souza, J.M., Xexeo, G.B., Strauch, J., Barros, P.,
Campos, M.: Adaptative methodology of sustainability indicators management by
ontology. Int. J. Glob. Environ. Issues 9(4), 338–355 (2009). http://EconPapers.
repec.org/RePEc:ids:ijgenv:v:9:y:2009:i:4:p:338-355

20. Rector, A. (ed.) Representing specified values in OWL: “value partitions” and
“value sets”. W3C working group note, 17 May 2005

http://dx.doi.org/10.1007/978-3-319-33245-1_2
http://dx.doi.org/10.1007/11574620_21
http://dx.doi.org/10.1007/978-3-540-92673-3_10
http://www.cs.rmit.edu.au/acdc2012/
http://www.cs.rmit.edu.au/acdc2012/
http://dx.doi.org/10.1145/503124.503150
http://dx.doi.org/10.1007/s11625-008-0063-z
http://oa.upm.es/6467/
http://oa.upm.es/6467/
http://EconPapers.repec.org/RePEc:ids:ijgenv:v:9:y:2009:i:4:p:338-355
http://EconPapers.repec.org/RePEc:ids:ijgenv:v:9:y:2009:i:4:p:338-355

Using Ontology Design Patterns to Represent Sustainability Indicator Sets 81

21. Reich, J.R.: Ontological design patterns: metadata of molecular biological ontolo-
gies, information and knowledge. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA
2000. LNCS, vol. 1873, pp. 698–709. Springer, Heidelberg (2000). doi:10.1007/
3-540-44469-6 65

22. Rodriguez-Castro, B., Ge, M., Hepp, M.: Alignment of ontology design patterns:
class as property value, value partition and normalisation. In: Meersman, R., et al.
(eds.) OTM 2012. LNCS, vol. 7566, pp. 682–699. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33615-7 16

23. Staab, S., Erdmann, M., Maedche, A.: Engineering ontologies using semantic pat-
terns. In: Proceedings of the IJCAI 2001 Workshop on E-Business & the Intelligent
Web, pp. 174–185 (2001)

24. Svátek, V., Homola, M., Kluka, J., Vacura, M.: Mapping structural design pat-
terns in owl to ontological background models. In: Proceedings of the Seventh
International Conference on Knowledge Capture, pp. 117–120. ACM (2013)

http://dx.doi.org/10.1007/3-540-44469-6_65
http://dx.doi.org/10.1007/3-540-44469-6_65
http://dx.doi.org/10.1007/978-3-642-33615-7_16

Application of Inference Rules to a Software
Requirements Ontology to Generate Software

Test Cases

Vladimir Tarasov1(B), He Tan1, Muhammad Ismail1, Anders Adlemo1,
and Mats Johansson2

1 School of Engineering, Jönköping University, Box 1026, 551 11 Jönköping, Sweden
{vladimir.tarasov,he.tan,muhammad.ismail,anders.adlemo}@ju.se

2 Saab AB, Slottsgatan 40, 551 11 Jönköping, Sweden
mats.e.johansson@saabgroup.com

Abstract. Testing of a software system is resource-consuming activ-
ity. One of the promising ways to improve the efficiency of the software
testing process is to use ontologies for testing. This paper presents an
approach to test case generation based on the use of an ontology and
inference rules. The ontology represents requirements from a software
requirements specification, and additional knowledge about components
of the software system under development. The inference rules describe
strategies for deriving test cases from the ontology. The inference rules
are constructed based on the examination of the existing test documenta-
tion and acquisition of knowledge from experienced software testers. The
inference rules are implemented in Prolog and applied to the ontology
that is translated from OWL functional-style syntax to Prolog syntax.
The first experiments with the implementation showed that it was pos-
sible to generate test cases with the same level of detail as the existing,
manually produced, test cases.

Keywords: Inference rules · Ontology · OWL · Prolog · Requirement
specification · Test case generation

1 Introduction

In modern society software products and systems permeates every aspect of our
lives, such as our homes, cars, the public infrastructure and even our bodies. As
a consequence, quality concerns are becoming much more vital and critical as we
get more dependent on these products and systems. The yearly cost of software
errors as a consequence of poor quality procedures in the software industry was
estimated to roughly $312 billion, according to a report in 2013 by the Cambridge
University [8], and the cost still continues to increase. As detection of software
errors goes hand-in-hand with testing, the same increase in cost is true for all
kind of software testing activities [3,8].

One way of curbing this ongoing trend is to automate as many as possible
of the software test activities. As far as test case execution goes, this is already
c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 82–94, 2017.
DOI: 10.1007/978-3-319-54627-8 7

Inference Rules and a Requirements Ontology to Generate Test Cases 83

a mature field where commercial products help software testers in their daily
work. The automatic generation of test cases, however, is an entirely different
matter.

The use of ontologies for testing has not been discussed as much as the use of
ontologies in other stages of the software development process. In [6] the authors
discussed possible ways of utilizing ontologies for the test case generation, and
the feasibility of reuse of domain knowledge encoded in ontologies for testing.
In practice, however, few results have been presented in the area. Most of them
have had a focus on testing web-based software and especially web services (e.g.
[14,17]).

This paper proposes an approach to combine an OWL ontology with inference
rules in order to construct an ontology-based application. The purpose of the
application is to generate software test cases based on a software requirements
specification1. The ontology, which represents both the software requirements
and the software, hardware and communication components belonging to an
embedded system, is translated from OWL functional-style syntax into Prolog
syntax. The inference rules, that represent the expertise of an expert software
tester, are coded in Prolog and make use of the ontology entities to generate test
cases. The Prolog inference engine controls the process of selecting and invoking
inference rules.

The rest of this paper is structured as follows. Section 2 details the proposed
approach, including the ontology representing software requirements and soft-
ware components, inference rules capturing strategies for test case generation,
and the OWL to Prolog translation. Section 3 presents an evaluation of the app-
roach. Related work is described in Sect. 4. Our conclusions on the result are
given in Sect. 5.

2 Approach to Test Case Generation

When testers create test cases, they do it based on software requirements spec-
ifications and their own expertise, expertise that comes from previous work on
testing software systems. To automate this process, both parts should be repre-
sented in machine-processable form. The requirements are usually described in
semi-structured text documents or stored in requirements management systems.
This part is captured in a requirements specification ontology, which concep-
tualizes the structure of software requirements and their relations to different
components of a software system (Sect. 2.1). The second part, the testers’ exper-
tise is less structured and is acquired by interviewing experienced testers and
studying existing test cases with their corresponding requirements. Such knowl-
edge is represented with inference rules that utilize the ontology for checking
conditions and querying data (Sect. 2.3). To make it possible to use the ontology
entities together with the inference rules, it is necessary to translate the ontology
to a format supported by the rules (Sect. 2.2).
1 The study presented in this paper is part of the project Ontology-based Software

Test Case Generation (OSTAG).

84 V. Tarasov et al.

2.1 Representation of Requirements with Requirements
Specification Ontology

The ontology in this paper includes three pieces of knowledge: (1) a meta model
of the software requirements, (2) the domain knowledge of the application, e.g.
general knowledge of the hardware and software, the electronic communication
standards etc., and (3) each system requirements specifications. The components
that make up the domain ontology come from an embedded system within an
avionic system provide by Saab Avionics. In this work the ontology is used to
support test case generation. It can also be used to support other tasks in the
software development process, such as requirement analysis, and requirement
verification and validation.

The current version of the ontology contains 42 classes, 34 object properties,
13 datatype properties, and 147 individuals in total. Figure 1 presents the meta
model of the software requirements. As indicated in the figure, each requirement
is concerned with certain functionalities of the software component. For example,
a requirement may be concerned with data transfer. Each requirement consists
of at least (1) requirement parameters, which are inputs of a requirement, (2)
requirement conditions, and (3) results, which are usually outputs of a require-
ment, and exception messages. Some requirements require the system to take
actions. Furthermore, there exists traceability between different requirements,
e.g. traceability between an interface requirement and a system requirement.

Figure 2 shows the ontology fragment for one particular functional require-
ment, SRSRS4YY-431. If the communication type is out of its valid range,
the initialization service shall deactivate the UART (Universal Asynchronous
Receiver/Transmitter), and return the result “comTypeCfgError”. In Fig. 2, the
rectangles represent the concepts of the ontology; the round rectangles represent
the individuals; and the dashed rectangles provide the data values of datatype
property for individuals. More details about the ontology can be found in [16].

2.2 OWL-to-Prolog Translation

To prepare the ontology for the use by the inference rules, it is necessary to
translate it into the syntax that is supported by the rules. As soon as Prolog

Fig. 1. The meta model of a requirement in the ontology

Inference Rules and a Requirements Ontology to Generate Test Cases 85

Fig. 2. Ontology fragment for the SRSRS4YY-431 requirement specification

is chosen for coding inference rules (see Sect. 2.3), the ontology constructs have
to be translated into the Prolog syntax. There exist a number of serialisation
formats that can be used to save an OWL ontology to a file: RDF/XML, Turtle,
OWL/XML, Manchester OWL syntax or functional-style syntax. The functional-
style syntax is the closest one to the Prolog syntax. An ontology document in
the functional-style syntax is a sequence of OWL constructs enclosed in the
Ontology statement as well as a number of prefix definitions [11]. As a logical
consequence, we have chosen functional-style syntax as the starting point for the
ontology translation.

A Prolog program consists of clauses. The term “clause” denotes a fact or
a rule in a knowledge base. A clause is ended with full stop (.) and different
terms in a clause are separated with commas (,). The basic terms that are used
in Prolog programs are atoms, numbers, variable and structures [2]:

– An atom is a string of characters that starts with a lower-case letter,
– A variable is a string of characters that starts with an upper-case letter,
– Integers and real numbers (floating point numbers) are also allowed in Prolog,
– Structures or complex data objects are objects with several components. Func-

tor is used to combine several components into a single one, e.g. “date(14,
June, 2006)”.

When an ontology is written in the functional-style syntax, every single line
is a separate statement that represents one construct. Each line is processed
separately to translate it into the corresponding Prolog statement. A Python
script has been written for the OWL-to-Prolog translation, which performs these
steps for every OWL statement:

86 V. Tarasov et al.

Table 1. Example of translation of some OWL statements

OWL functional-style syntax Prolog syntax

ClassAssertion(OSTAG:Error Handling
Requirement :SRSRS4YY-431)

classAssertion(error handling require-
ment, srsrs4yy 431)

DataPropertyAssertion(:hasParameter-
ValueList :NumberOfStopBits
“[stopBits1, stop-Bits2]”^^xsd:string)

dataPropertyAssertion(hasParameter-
ValueList, NumberOfStopBits,
[stopBits1, stopBits2])

DataPropertyDomain(:hasParameter-
ValueList :Requirement Parameter)

dataPropertyDomain(hasParameter-
ValueList, requirement Parameter)

ObjectPropertyAssertion(OSTAG:
requirementForService :SRSRS4YY-431
:InitializationService)

objectPropertyAssertion(require-
mentForService, srsrs4yy 431,
initializationService)

SubClassOf(OSTAG:Error Handling
Requirement OSTAG:Requirement)

subClassOf(error handling
requirement, requirement)

AnnotationAssertion(rdfs:label
OSTAG:FIFO “FIFO”)

annotationAssertion(rdfslabel, fifo,
‘FIFO’)

– Read an OWL statement and remove OWL prefixes2,
– Tokenize the statement and convert each token into lowerCamelCase notation

because Prolog atoms start with a lower case latter.
– Convert the list of tokens into a Prolog clause in the form of a fact.

The following OWL statements are translated at the moment: ClassAssertion,
subClassOf, ObjectPropertyAssertion, DataPropertyAssertion, objectProperty-
Range, objectPropertyDomain, annotationAssertion. Table 1 shows several
examples of translation from OWL to Prolog.

2.3 Deriving Test Cases from the Ontology with Inference Rules

To derive test cases from the ontology, it is necessary to represent testers’ exper-
tise on how they use requirements to create test cases. This kind of knowledge
is less structured and more difficult to capture. Few general guidelines can be
found in literature, such as boundary value testing. However, most expertise
is specific to particular types of software systems and/or particular domains.
To capture this expertise or knowledge it is necessary to interview experienced
testers and study existing test cases and their corresponding requirements. Such
knowledge embodies inherent strategies for test case creation, knowledge that
can be expressed in the form of heuristics represented as if-then rules.

In this study we examined 16 requirements and 20 corresponding test cases.
Each requirement describes some functionality of a service (function) from a
driver for a hardware unit, in this case represented by an embedded avionic

2 There is only one ontology used at the moment but if there are imported ontologies
in the future, prefixes can be translated as well.

Inference Rules and a Requirements Ontology to Generate Test Cases 87

system component. Thus, all requirements are grouped according to services. We
analysed requirements covering six services. During the analysis an original test
case, previously created manually by a software tester, was compared with the
corresponding requirement to fully understand how different parts of the original
test case had been constructed. Then, any inconsistencies or remaining doubts
were cleared during discussions with the industry software testers participating
in the study.

The outcome from these activities was a set of inference rules formulated in
plain English. Each original test case consists of four parts: prerequisite con-
ditions, test inputs, test procedure, and expected test results. Consequently,
inference rules were formulated for each of the test case parts. An example of a
inference rule for the test procedure part of the requirements SRSRS4YY-431 is
shown below:

IF the requirement is for a service and a UART controller is to be
deactivated

THEN add the call to the requirement’s service, calls to a trans-
mission service and reception service as well as a recovery
call to the first service.

The condition (if-part) of a heuristic rule is formulated in terms of the individ-
ual representing the requirement and the related ontology entities representing
connected hardware parts, input/output parameters for the service and the like.
The action (then-part) part of the rule contains instructions on how a test case
part is to be generated.

After formulating the inference rules, they need to be implemented in a pro-
gramming language. There are two basics requirements that have to be met by
such a language: (1) it should have means to represent the rule in a natural way
and (2) it should have means to access the entities in the ontology. We chose
Prolog [2] as the language for the implementation as Prolog complies with both
of the basic requirements. The acquired inference rules can be implemented with
the help of Prolog rules (a Prolog rule is analogous to a statement in other pro-
gramming languages). After the OWL-to-Prolog translation (described in the
previous sub-section), the ontology becomes an inherent part of the Prolog pro-
gram, and, as a consequence, the ontology entities can be directly accessed by
the Prolog code. Finally, the inference engine that is built-in into Prolog is used
to execute the coded rules to generate test cases.

An example of the inference rule written in Prolog that implements the pre-
vious heuristic rule is given below:

1 tc_procedure(Requirement, Procedure) :-
% get service individual for call #1

2 objectPropertyAssertion(requirementForService, Requirement,
Service),

% check condition for calls #2-4

88 V. Tarasov et al.

3 objectPropertyAssertion(requiresAction, Requirement,
DeactivateUART),

4 objectPropertyAssertion(actsOn, DeactivateUART,
UartController),

5 classAssertion(uart_controller, UartController),
% get individuals of the required services

6 classAssertion(transmission_service, WriteService),
7 classAssertion(reception_service, ReadService),
8 Procedure = [Service, WriteService, ReadService,

recovery(Service)].

Line 1 in the example is the head of the rule consisting of the name, “input”
argument and “output” argument. Lines 2–7 encode the condition of the heuristic
as well as acts as queries to retrieve the relevant entities from the ontology. Line
8 constructs the procedure part of the test case as a list of terms. The list is
constructed from the retrieved ontology entities and special term functors.

Figure 3 shows the ontology entities used by the inference rule, when it is
invoked to generate a test case for the requirement SRSRS4YY-431. The figure
shows ontology paths, each one being a number of ontology entities connected
by object properties or subsumption relation.

Each test case is generated sequentially, from the prerequisites part through
to the results part. The generated parts are collected into one structure by the
following rule:

test_case(Requirement,
tc(description(TCid, ReqID, Service), Prerequisites, Inputs,

Procedure, Results)) :-
req_id(Requirement, ReqID),
objectPropertyAssertion(requirementForService, Requirement,

Service),
tc_prerequisites(Requirement, Prerequisites),
tc_inputs(Requirement, Inputs),
tc_procedure(Requirement, Procedure),
tc_results(Requirement, Results),
new_tcid(TCid).

Finally, the test case structure is translated into plain text in English. The
final result can be found in the right column in Table 3.

3 Experiment and Evaluation

The example provided by Saab consisted of a hardware module with embedded
code. The examined part of the example consisted of 15 requirements, specified
in the SRS (Software Requirement Specification document), with corresponding
18 test cases, specified in the STD (Software Test Description document). In

Inference Rules and a Requirements Ontology to Generate Test Cases 89

Fig. 3. Ontology paths used by the inference rules to generate a test case for the
requirement SRSRS4YY-431. The dashed line indicates the paths used by the inference
rule demonstrated in the example above to generate the test procedure part of the test
case. The other paths are used by the remaining rules to generate the other parts of
the test case.

most cases one requirement is evaluated by executing one test case but in some
occasions one requirement is evaluated by executing two or more test cases.

A total of 40 inference rules were used to generate the 18 test cases. The
number of rules for each test case part is detailed in Table 2 (an auxiliary rule is
intended to be invoked by a main rule). The corresponding test cases have been
reproduced in plain English, using the same format as described in the STD
document, by applying the inference rules to the ontology. The result from this
exercise can be observed in Table 3 where the text in left column is a slightly
modified excerpt from the STD document while the text in the right column is
the generated output through applying some of the inference rules to the ontol-
ogy. The result presented in the table corresponds to one specific requirement,
in this case SRSRS4YY-431, a requirement that is evaluated in one test case, in
this case STDRS4YY-114. As can be observed, there is an almost one-to-one cor-
respondence between the texts in the two columns. However, the authors would
like to point out that in some occasions the generated test case texts indicated a
discrepancy with the corresponding test case texts found in the STD document.
These discrepancies were presented to and evaluated by personnel from Saab
and on occasions the observed discrepancies indicated a detected error in the
STD document. Hence, this correctness insurance exercise helped improving the
quality of the STD document.

90 V. Tarasov et al.

Table 2. Number of inference rules used to generate different parts of test cases

Test case part Main rules Auxiliary rules

Prerequisite conditions 8 4

Test inputs 8 1

Test procedure 5

Expected test tesults 9 5

4 Related Work

The reason for conducting tests on a software product/system is mainly to be
able to put some level of trust on the quality and requirement fulfilment of
the product/system. To run the tests on the product/system, some kind of test
case(s) must be designed and the corresponding test code(s) be programmed. In
many occasions, if not most, this is a manual activity with everything that this
embodies of potential errors in the test code caused by missed or misinterpreted
requirements due to a deficient test case description or a non-experienced tester.

In an attempt to counteract on these negative effects, model-driven testing
techniques have surged in recent years as an alternative field of applied research
in the software testing domain [1,12]. One specific modelling language that has
emerged as the prime modeling-tool in this domain is UML. There have been
presented a large number of projects with a focus on automatic generation of
test cases based on the usage of UML to describe some parts of the testing
activities [9] Other examples of model-driven test case generation projects have
been based on Function Block Diagrams [4] or State-based testing [7], just to
mention two. The different model-driven test case generation approaches pre-
sented by different researcher teams often depend on some kind of requirement
specification as input to the process [9]. When it comes to the focus of the test
activities, i.e. what is the output from the testing activities that needs to be
evaluated, two main areas can be identified, code coverage testing (which could
be looked upon as testing the output of a software design process) and require-
ment coverage testing (which could be looked upon as testing the input to a
software design process). All of the presented model-driven test case generation
approaches referred to earlier have had a focus on some kind of code coverage.
However, in some application domains the verification of the coverage of the
requirements, which means that all requirements stated in a requirements spec-
ification document have been considered and tested in a traceable manner, is
equally, and sometimes even more, important than code coverage. This is the
case in, for example, the avionics industry of which Saab is a perfect example.

There exist only a few projects that rely on ontologies for software testing
activities, for example [5,13]. As mentioned earlier in this paper, an ontology
represents a formal model of the knowledge captured for a specific domain, in this
paper being software testing. However, it should be stressed that the creation
of an ontology is only the first step in order to automatically create software

Inference Rules and a Requirements Ontology to Generate Test Cases 91

Table 3. Test case from the STD (left column) and the corresponding generated test
case by applying inference rules to the ontology (right column)

. . .

Test Inputs
1. According to table below.
2. <uartId> := <uartId> from the

rs4yy init call
3. <uartId> := <uartId> from the

rs4yy init call
4. <comType> := rs4yy rs422Com

. . .

Test Inputs:
1. <communicationType> := min value - 1
<communicationType> := max value + 1
<communicationType> := 485053

2. <uartID> := <uartID> from the
initializationService call

3. <uartID> := <uartID> from the
initializationService call

4. <communicationType> := RS422

Test Procedure
1. Call rs4yy init
2. Call rs4yy write
3. Call rs4yy read
4. Recovery: Call rs4yy init

Test Procedure:
1. Call initializationService
2. Call writeService
3. Call readService
4. Recovery: Call initializationService

Expected Test Results
1. <result> ==

rs4yy comTypeCfgError
2. <result> == rs4yy notInitialised
3. <result> == rs4yy notInitialised,

<length> == 0
4. <result> == rs4yy ok

. . .

Expected Test Results:
1. <result> ==

communicationTypeConfigurationError
2. <result> == rs4yyNotInitialised
3. <result> == rs4yyNotInitialised,

<length> == 0
4. <result> == rs4yyOk

. . .

test cases. It must also be contemplated that the test cases must be generated
with some specific test objectives in mind. The OSTAG-project that has been
presented in this paper is one of very few examples where both code coverage
and requirement coverage can be handled.

Prolog has been used as a reasoner for OWL ontologies in a number of cases.
For example, in [15] the authors describe an approach to reasoning over temporal
ontologies that translates OWL statements to clauses in Prolog and then uses
the built-in inference mechanism. In [10] an OWL ontology and OWLRuleML
rules are translated into Prolog clauses, which are then used to infer new facts
by the Prolog inference engine. The work presented in this paper has utilised a
similar idea, however, we have used OWL functional-style syntax for the OWL
to Prolog translation, which makes queries to the ontology as close as possible
to OWL syntax.

92 V. Tarasov et al.

5 Conclusions

We have proposed an approach to generate software test cases based on the use
of an ontology, representing software requirements as well as knowledge about
the components of the software system under development, and inference rules,
representing strategies for test case creation. The inference rules are coded in
Prolog and the built-in inference engine is used for executing the rules. During
the execution the rules query the ontology to check conditions and retrieve data
needed for the construction of test cases. To make this possible, the ontology is
serialised in OWL functional-style syntax and then translated to Prolog syntax.
The first experiment showed that, by using 40 inference rules, 18 test cases for
15 requirements were generated as plain text in English. The examination of
the result showed an almost one-to-one correspondence between the texts in the
generated test cases and the texts provided by one of our industrial partners,
Saab.

The translation from the OWL functional-style syntax to the Prolog syntax
allowed for seamless integration of the ontology into the Prolog program. On
one hand, the syntax of the OWL statements was preserved to a great extent.
On the other hand, the inference rules could directly reference the ontology
constructs in their bodies. The Prolog inference mechanism took care of finding
an inference rule with a satisfied condition and firing it. As a result, the ontology
was effectively used for an applied purpose—automation of software testing.
However, it should be noted that not all OWL statements are translated at the
moment. Most notably complex class constructors are not translated (due to the
fact that we did not find the need to use them in the ontology so far). There
is also lack of inference rules preserving the semantics of OWL, e.g. rules to
find all individuals of a class having several subclasses. Moreover, the conducted
experiment is of limited scale. More experiments with an increased number of
inference rules are needed to evaluate the proposed approach to demonstrate its
full potential.

There exist other languages to implement inference rules, e.g. SWRL or the
inference rule language built-in in Jena, which are closer to the syntax and
semantics of OWL and follow the open world assumption. Such languages may
be better suited for situations when new data need to be integrated into the
knowledge base. Despite that, we have chosen Prolog because our case does not
require data integration. Additionally, Prolog provides both inference mecha-
nism and traditional programming facilities, thus, eliminating the need to use
one language for implementing inference rules and another one for developing
a software prototype. At the same time, OWL was chosen as the language to
implement the ontology to support test case generation because the ontology
can also be used to support other tasks in the software development process,
such as requirement analysis, and requirement verification and validation.

The future work will go along the lines of increasing the number of inference
rules to generate test cases for the so far uncovered requirements. This will
allow us to further test the applicability of the proposed approach of combining
an OWL ontology and Prolog inference rules in an ontology-based application,

Inference Rules and a Requirements Ontology to Generate Test Cases 93

such as in the software test case generation domain. A comparison can also be
done between the Prolog and OWL reasoning systems.

So far the results from the project have been positive and have demonstrated
the feasibility of producing test cases in a semi-automatic fashion. The automa-
tion of the test case generation process has demonstrated that the correctness of
the generated test cases was also improved. Minor errors that went undetected
by the human test case designers were identified and corrected as mentioned in
Sect. 3. This result puts the finger on the benefits of automating a process in
general and the test case generation process in specific. However, this is not the
only measurable result that is expected to come from the project. In the near
future other types of metric are going to be evaluated, such as to quantify the
time savings gained from automating the test case generation process through
real-life time studies, and to verify the coverage of the requirements to demon-
strate that all requirements stated in a requirements specification document have
been considered and tested.

Acknowledgments. The research reported in this paper has been financed by grant
#20140170 from the Knowledge Foundation (Sweden).

References

1. Anand, S., Burke, E., Chen, T., Clark, J., Cohen, M., Grieskamp, W., Harman,
M., Harrold, M., McMinn, P.: An orchestrated survey on automated software test
case generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

2. Bratko, I.: Prolog Programming for Artificail Intelligence, 4th edn. Pearson Edu-
cation, Upper Saddle River (2011)

3. CapGemini, HP, Sogeti: World quality report 2015–16, 80 p. (2015)
4. Enoiu, E., Causevic, A., Ostrand, T., Weyuker, E., Sundmark, D., Pettersson, P.:

Automated test generation using model-checking: an industrial evaluation. Int. J.
Softw. Tools Technol. Transf. 1(1), 1–19 (2014)

5. Freitas, A., Vieira, R.: An ontology for guiding performance testing. In: 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and
Intelligent Agent Technologies (IAT), pp. 400–407 (2014)

6. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In:
Proceedings of Workshop on Sematic Web Enabled Software Engineering (SWESE)
on the ISWC, pp. 5–9 (2006)

7. Holt, N., Briand, L., Torkar, R.: Empirical evaluations on the cost-effectiveness
of state-based testing: an industrial case study. Inf. Softw. Technol. 56, 890–910
(2014)

8. Judge Business School, Cambridge University: Cambridge university study states
software bugs cost economy $312 billion per year (2013). http://www.prweb.com/
releases/2013/1/prweb10298185.htm. Accessed 22 Sept 2016

9. Kaur, A., Vig, V.: Systematic review of automatic test case generation by UML
diagrams. Int. J. Eng. Res. Technol. (IJERT) 1(6), 17 (2012)

10. Laera, L., Tamma, V., Bench-Capon, T., Semeraro, G.: SweetProlog: a system
to integrate ontologies and rules. In: Antoniou, G., Boley, H. (eds.) RuleML
2004. LNCS, vol. 3323, pp. 188–193. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30504-0 15

http://www.prweb.com/releases/2013/1/prweb10298185.htm
http://www.prweb.com/releases/2013/1/prweb10298185.htm
http://dx.doi.org/10.1007/978-3-540-30504-0_15
http://dx.doi.org/10.1007/978-3-540-30504-0_15

94 V. Tarasov et al.

11. Motik, B., Patel-Schneider, P., Parsia, B.: OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C, 2nd edn. (2012)

12. Mussa, M., Ouchani, S., Al Sammane, W., Hamou-Lhadj, A.: A survey of model-
driven testing techniques. In: QSIC 2009 9th International Conference on Quality
Software, 24–25 August 2009, Jeju, South Korea, pp. 167–172 (2009)

13. Nasser, V.H., Du, W., MacIsaac, D.: Knowledge-based software test generation.
In: The 21st International Conference on Software Engineering and Knowledge
Engineering, Boston, USA, pp. 312–317, July 2009

14. Nguyen, C.D., Perini, A., Tonella, P.: Ontology-based test generation for mul-
tiagent systems. In: Proceedings of the 7th international Joint Conference on
Autonomous Agents and Multiagent Systems, vol. 3, pp. 1315–1320 (2008)

15. Papadakis, N., Stravoskoufos, K., Baratis, E., Petrakis, E., Plexousakis, D.: PRO-
TON: a prolog reasoner for temporal ontologies in OWL. Expert Syst. Appl.
38(12), 14660–14667 (2011)

16. Tan, H., Muhammad, I., Tarasov, V., Adlemo, A., Johansson, M.: Development
and evaluation of a software requirements ontology. In: 7th International Work-
shop on Software Knowledge-SKY 2016 in Conjunction with the 9th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management-IC3K 2016 (2016)

17. Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for testing
web services. In: Eighth International Symposium on Autonomous Decentralized
Systems, ISADS 2007, pp. 43–50. IEEE (2007)

Collaborative Ontology Evolution and Data
Quality - An Empirical Analysis

Nandana Mihindukulasooriya(B), Maŕıa Poveda-Villalón, Raúl Garćıa-Castro,
and Asunción Gómez-Pérez

Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
{nmihindu,mpoveda,rgarcia,asun}@fi.upm.es

Abstract. Since more than a decade, theoretical research on ontology
evolution has been published in literature and several frameworks for
managing ontology changes have been proposed. However, there are less
studies that analyze widely used ontologies that were developed in a
collaborative manner to understand community-driven ontology evolu-
tion in practice. In this paper, we perform an empirical analysis on how
four well-known ontologies (DBpedia, Schema.org, PROV-O, and FOAF)
have evolved through their lifetime and an analysis of the data quality
issues caused by some of the ontology changes. To that end, the paper
discusses the composition of the communities that developed the afore-
mentioned ontologies and the ontology development process followed.
Further, the paper analyses the changes in those ontologies in the 53
versions of them examined in this study. Depending of the use case, the
community involved, and other factors different approaches for the ontol-
ogy development and evolution process are used (e.g., bottom-up app-
roach with high automation or top-down approach with a lot of manual
curation). This paper concludes that one model for managing changes
does not fit all. Furthermore, it is also clear that none of the selected
ontologies follow the theoretical frameworks found in literature. Never-
theless, in communities where industrial participants are dominant more
rigorous editorial processes are followed, largely influenced by software
development tools and processes. Based on the analysis, the most com-
mon quality problems caused by ontology changes include the use of
abandoned classes and properties in data and introduction of duplicate
classes and properties.

Keywords: Ontology · Change · Evolution · Quality · DBpedia ·
Schema.org · PROV-O · FOAF

1 Introduction

Ontologies are defined as formal, explicit specifications of a shared conceptual-
ization of a domain of interest [1] and inherently ontology development becomes
a collaborative process due to the “shared conceptualization” aspect. Once an
ontology is defined, changes to it are inevitable. The main causes of ontology
c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 95–114, 2017.
DOI: 10.1007/978-3-319-54627-8 8

96 N. Mihindukulasooriya et al.

change include (i) changes in the domain; (ii) changes in conceptualization; and
(iii) changes in the explicit specification [2]. As the knowledge about the domain
of interest evolves dynamically over time, ontology changes have to occur to
reflect those changes in the conceptualization. Changes may occur not only
because of the changes in the reality but also because of the decisions of the
ontology engineer. The ontology engineer may decide to expand the scope of the
conceptualization by adding new concepts and relations or to apply other design
patterns and strategies requiring modifications to the existing ontology both in
structure and in semantics, or to remove existing terms due to various reasons,
for instance, because some existing terms become obsolete or cause confusion
in users.

The elements that are subject to change in ontologies include concepts, prop-
erties, instances and axioms. These changes impact the entities that are described
using these ontologies as well as any other ontologies that are dependent on the
given ontology. In the ontology evolution topic, research looked into several prob-
lems and challenging tasks. These problems include consistency maintenance,
backward compatibility, ontology manipulation, understanding of ontology evo-
lution, change propagation, etc. In this paper, we focus on analyzing the changes
in different versions of the ontology and on discussing their effect on data quality.

According to Stojanovic [3], ontology evolution refers to the activity of facil-
itating the modification of an ontology by preserving its consistency, while the
ontology modification activity would consist on changing the ontology without
considering the consistency. For the sake of clarity we will use the term “ontology
evolution” regardless of whether consistency is preserved.

Furthermore, ontology engineers are not always aware of or have any cen-
tralized control over the ontology users. Thus, it is not always possible for them
to notify the changes in an ontology to their users. And, even if those changes
were notified, there could be data that use a previous version of the ontology.

Starting in the early nineties, theoretical research on ontology evolution has
been published in literature [2,4] and frameworks for managing ontology evolu-
tion [5–7] have been developed. However, to the best of the authors’ knowledge
there are no studies that analyze how such research was used in ontologies devel-
oped in a collaborative manner. In this regard, this paper provides an empirical
study on how four widely-used ontologies have evolved through their lifetime.

The rest of the paper is organized as follows. Section 2 presents an overview
of pioneer works on ontology evolution and a review of the quality issues that
ontology evolution might cause. Next, Sect. 3 describes the ontologies selected to
be analyzed. Section 4 details the obtained results and the analysis carried out
for each of the selected ontologies. Finally, Sect. 5 presents some conclusions and
suggestions for next steps.

2 Ontology Evolution

First steps towards ontology evolution were proposed by Noy and Klein [2] in
the early nineties. They presented an analysis of the traditional versioning and

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 97

evolution dimensions that apply to databases and discussed whether they can
be applied to ontologies. They also provided a comprehensive list of possible
changes affecting the ontology and their impact on the instance data (mostly
oriented to DAML-OIL ontologies).

From a methodological point of view, the DILIGENT [8] methodology has
been one of the first approaches for supporting distributed ontology development
in a distributed environment taking into account the evolution of ontologies. The
general process proposed comprises five main activities: build, local adaptation,
analysis, revision, and local update.

Regarding approaches based on OWL ontologies, we can mention the process
proposed by Stojanovic [3] that enables handling ontology changes ensuring the
consistency of the ontology. Along this work a taxonomy of ontology changes is
proposed based on whether the changes are additive or subtractive applied to
certain ontology elements or meta changes.

Finally, Palma [5] proposed an ontology metadata model to provide a high-
level overview of how an ontology has changed. Such model is the basis for the
methods proposed in his work for ontology change management in distributed
environments and the strategies for supporting collaborative ontology develop-
ment. In this work, not only a plain list of possible changes is provided but a
more complex model that includes atomic changes, entity changes and composite
changes.

More recently, Dragoni and Ghidini [9] explored ontology evolution from the
information retrieval tools point of view. In this work, the authors analyze how
changes in ontologies might affect information retrieval performance in terms
of precision and recall. In this case the modifications made on an ontology are
defined in terms of patterns that might occur over taxonomical information. The
three patterns considered are “Rename” (change of the label used for identifying
the concept), “Delete” (removal of a concept from the ontology) and “Move”
(change of the position of the concept in the ontology).

The above-mentioned works established definitions and first steps towards
ontology change managements and automation. However, to the best of the
authors’ knowledge there are less studies that analyze how such research was
used in widely-used ontologies developed in a collaborative manner.

In this paper, we look at a subset of the change operations already proposed
in the literature. First, we identify the main meta elements defined in the OWL
2 Web Ontology Language (RDF Semantics). In this study, we mainly focus on
(a) rdfs:Class, (b) owl:Class, (c) rdf:Property, (d) owl:ObjectProperty,
and (e) owl:DatatypeProperty.

2.1 Quality Issues Caused by Ontology Evolution

When parts in a given ontology change and evolve, they can cause impact on
the entities described using them as well as on any other ontologies that are
dependent on them [3].

98 N. Mihindukulasooriya et al.

On the one hand, when changes cause inconsistencies in the ontology itself,
they can be identified through validation, for instance, using a reasoner to check
for inconsistencies. However, some problems are not so evident and are hard
to detect automatically. For instance, if a redundant property is added that
has the same semantics of an existing property (same meaning but different
term/identifier), it decreases the conciseness quality but it is not straightforward
to detect it.

On the other hand, when the changes in the ontology cause problems in data
instances described using the ontology as well as in other ontologies that import
the given ontology, it is hard to detect those problems. Most often the ontology
developers are not aware of all the downstream users of the ontology and at the
moment there are no well-established methods for automatically notifying the
users of an ontology about changes in new versions of it. Though there are several
approaches in the literature [10,11], there is a lack of practical tools for determin-
ing the impact of changes of a given on ontology on data instances and dependent
ontologies. If we take the analogy of software development, when a dependency
changes in a software project compilation, errors, unit test and integration test
failures reveal any potential problems due to changes in the dependency. Such
practices are not yet well-established in the ontology engineering community.

In the literature, changes to the ontology are categorized into two main
groups: structural changes and semantic changes [12]. On the one hand, struc-
tural changes include addition, deletion, renaming, splitting/merging a concept,
property, restriction, or axiom. On the other hand, semantic changes include
changes such as generalization or specialization of a concept or a property,
increase or decrease of descriptiveness of a concept or a property, changes to
restrictiveness of a property, etc. The semantic changes are the result of one or
more structural changes. For instance, adding or removing a sub-class relation
could move a concept up or down in the concept hierarchy making it more gener-
alized or specialized. In this paper, we mainly analyze structural changes, which
could lead to semantic changes.

Adding a new class or a property to an ontology generally does not cause
problems in the data because there is no data loss. However, as it has been seen
in a recent analysis of DBpedia [13], new concepts and properties can introduce
duplicates in the ontology. These duplicates (i.e., concepts or properties that
have the same meaning but different identifiers) decrease the conciseness of the
ontology and further make it harder to query or understand data. Adding a
sub-class or sub-property can introduce some undesired effects if not done in a
careful manner. When a new sub-property relationship is defined, one should
take care that the domain and range restrictions of the sub-property are com-
pliant with the ones of the super-property. Otherwise, undesired facts can be
inferred by a reasoner. Further, if a data provider or an application used the
given property without having this new hierarchical relation in mind, they can
get undesired results.

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 99

3 Approach

This sections describes the approach followed in order to carry out the proposed
analysis. For doing this, the section explains first the ontology selection process
(Sect. 3.1) and then the data extraction implementation details (Sect. 3.2).

3.1 Ontology Selection

For the selection of the ontologies several criteria were considered: (i) wide usage
in the datasets in the LOD Cloud, (ii) availability of multiple versions of the
ontology, (iii) whether the ontology was developed collaboratively, and (iv) the
process used for collaborative development.

2006 2007 2008 2009 20102005 2011 2012

04

3.3

2013 2014 2015 2016

05

06

01

0.9

0.91

0.96

3.4

0.97

0.98

3.5 3.6

3.7

3.8

0.91

0.95

0.97

0.99

05

07

12

release month (- day when needed)

3.9

1.0a

1.0b

1.0c

1.0d

1.0e

03

04

2014

1.0f

1.1

1.2

1.4

1.5

1.6

1.7

1.8

1.9

1.91

1.92

06

0.99

2015
-04

1.93

2.0

2.1

2.2

01

2015
-10

2016
-04

F
O

A
F

P
R

O
V

-O
D

B
pe

di
a

S
ch

em
a.

or
g

version label (when available)

Fig. 1. Selected ontologies

For checking the usage of the ontologies, we analyzed the data from the
LOD Cloud State1 which describes the usage of terms from a given ontology in
the LOD Cloud. We used the Linked Open Vocabularies (LOV2) [14] dataset
to verify the availability of multiple versions of a given vocabulary. We only
1 http://lod-cloud.net/state/#terms.
2 http://lov.okfn.org.

http://lod-cloud.net/state/terms
http://lov.okfn.org

100 N. Mihindukulasooriya et al.

considered ontologies with at least 5 versions and spanning at least a 3 year
duration. Then we checked if the ontology was developed in a collaborative way
with a large group of people. Finally, we tried to include ontologies developed
following different processes of different organizations such as W3C, DBpedia
Community, etc. Figure 1 shows a summary of the 4 ontologies selected (53
versions).

Fig. 2. Class and property counts of selected ontologies.

– DBpedia3 which launched in 2007, and is maintained by the Free University
of Berlin, the University of Leipzig and OpenLink Software, is a multilingual
and cross-domain dataset created by extracting structured information from
Wikipedia. The DBpedia ontology is a general ontology that covers multiple
domains. It consists of a shallow class hierarchy of 320 classes and was created
by manually deriving 170 classes from the most common Wikipedia infobox
templates in the English edition. It also includes 750 properties resulting from
mapping attributes from within these templates. There are 11 versions of
DBpedia ontology.

– Schema.org4 is a collaborative initiative that aims at promoting schemes for
structured data on the Web. It consists on a collection of schemes that are
extended or proposed through an open community process. The schemes are
a set of’types’ that have associated a set of properties. There are 26 versions
of schema.org registered in LOV.

– PROV-O5 is a W3C recommendation to represent and interchange provenance
information generated in different systems and under different contexts. It can
also be specialized to cover particular applications and domains. This ontology
implements the PROV Data Model6. There are 8 versions of PROV-O registered
in LOV.

3 http://dbpedia.org/ontology/.
4 http://schema.org/.
5 http://www.w3.org/ns/prov.
6 https://www.w3.org/TR/prov-dm/.

http://dbpedia.org/ontology/
http://schema.org/
http://www.w3.org/ns/prov
https://www.w3.org/TR/prov-dm/

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 101

– FOAF7, which stands for “Friend of a Friend”, is devoted to describe people
and their relations on the Web. The core part describes characteristics of
people and social groups and the social web part includes information about
web accounts, address books and other web-based activities. FOAF is one of
the most reused ontologies. There are 10 versions of FOAF registered in LOV.

Figure 2 shows the number of classes and properties of the latest of version
of the four ontologies that were studied in this paper. As it can be seen from
the chart, the four ontologies vary a lot in size. The DBpedia ontology is the
largest when it comes to the number of classes and properties while Schema.org
has a comparable number of classes. Nevertheless, Schema.org has considerably
smaller number of properties compared to DBpedia. For example, the class to
property ratio in DBpedia is 1:3.78 while in Schema.org it is 1:1.52. PROV-O
and FOAF are relatively small in size compared to the other two.

3.2 Data Extraction Process

This section describes how this analysis was implemented. For discovering and
extracting the versions of the different ontologies, we used LOV. LOV stores
information about more than 500 vocabularies and several versions for each of
them. We used the SPARQL querying facility in LOV to discover the versions
of a given vocabulary and also to extract them.

For the analysis itself, we used, the Loupe [15] tool, a java-based online
tool for inspecting RDF datasets that extracts statistics and data patterns in
a given dataset. Loupe allows to easily analyze datasets by creating virtual
SPARQL endpoints via a Dockerized Virtuoso instance and a set of parameter-
ized SPARQL queries. In this paper, we used Loupe for extracting all the infor-
mation about classes, properties, and also subclass and subproperty relations in
each of the vocabulary versions and also for comparing subsequent versions to
identify classes and properties that are added or removed.

4 Analysis

This section presents the results obtained from the study carried out over the
four ontologies. In order to provide more context about the collaborative aspect
of the development of each ontology, Sect. 4.1 discusses the ontology development
process, Sect. 4.1 provides some notions about how the community was involved
in the development, Sect. 4.3 analyses the changes of each ontology in detail and,
finally, Sect. 4.4 compares the overall trends of the evolution of both classes and
properties of the four ontologies studied.

7 http://xmlns.com/foaf/0.1/.

http://xmlns.com/foaf/0.1/

102 N. Mihindukulasooriya et al.

4.1 Ontology Development Process

– The DBpedia community uses a wiki-based approach for developing the
ontology. The DBpedia mappings wiki8 provides guidance and templates for
editing the DBpedia ontology mainly focusing on how to add classes and
properties. Any community member with sufficient privileges can make mod-
ifications to the ontology. DBpedia provides some tool support for exploring
the ontology and validating it after a modification. Until recently (February,
2015), it seems that DBpedia ontology issues have been tracked in an ad-hoc
manner. But currently DBpedia uses an issue tracker9 to raise and follow the
progress of the DBpedia ontology issues.

– Schema.org allows two types of extensions to be made by the community
collaboratively, namely ‘hosted’ and ‘external’ extensions. In both cases typ-
ically subclasses and properties are added to the core schema. While hosted
extensions are managed and reviewed as part of the Schema.org project, the
external ones are managed and reviewed by other groups.

– PROV-O was developed in accordance to the process10 defined in the W3C
for developing W3C recommendations. The W3C working group discussed
the details of the ontology during the weekly teleconferences and also during
the face-to-face meetings. Technical decisions are solved using consensus or a
voting-based process. Any member can raise issues which are recorded in the
issue tracker and discussed in the group to come up with resolutions.

– FOAF has been built by a collaborative effort of the users registered in the
mailing list.11 The vocabulary intends to be pragmatic and simple and to
allow particular extensions. FOAF considers the stability of individual vocab-
ulary terms, instead of the specification as a whole. Terms progress through
the categories ‘unstable’, ‘testing’ and ‘stable’. Older terms might be consid-
ered’archaic’ which also allows them to become modern again.

4.2 Community

– The DBpedia community is the largest of the four communities that devel-
oped the selected ontologies in this study. It is also important to note that
the DBpedia community is clustered into several sub-communities, i.e., DBpe-
dia language chapters, and has members from more than over 20 countries.
In 2014, the DBpedia Association was founded to support DBpedia and the
DBpedia community. As of November 2016, there are 488 members of the
DBpedia community with write access to the ontology wiki so that they can
introduce changes to the ontology. Out of those members, 14 have been active
within the month of November 2016. The majority of the active members of
the DBpedia ontology editors come from academia.

8 http://mappings.dbpedia.org/index.php/How to edit the DBpedia Ontology.
9 https://github.com/dbpedia/ontology-tracker/.

10 https://www.w3.org/2015/Process-20150901/.
11 foaf-dev@lists.foaf-project.org.

http://mappings.dbpedia.org/index.php/How_to_edit_the_DBpedia_Ontology
https://github.com/dbpedia/ontology-tracker/
https://www.w3.org/2015/Process-20150901/
http://lists.foaf-project.org/mailman/listinfo

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 103

– The Schema.org community is reasonably large with 48 contributors with
commits to the Git repository where the ontology is maintained as of Novem-
ber 2016. In addition, many have indirectly contributed through the mailing
list discussions, issue tracker, etc. Most of them are industrial practition-
ers coming from the sponsoring companies, i.e., Google, Microsoft, Yahoo
and Yandex. In April 2015, the Schema.org community has formed the W3C
Schema.org Community Group. Schema.org also has a steering group that
consists of representatives of the sponsor companies, a representative of the
W3C and a small number of individuals who have contributed substantially
to Schema.org.

– The PROV-O ontology was developed by the W3C Provenance Working
Group which consists of 59 working group members. The working group had a
mix of both academic and industrial participants. The “PROV-O: The PROV
Ontology” W3C Recommendation lists three editors and 7 contributors who
have directly contributed to developing the ontology.

– The FOAF ontology is developed by Dan Brickley and Libby Miller with
the contributions from the members of the FOAF mailing list and the W3C
Semantic Web Interest Group.

4.3 Ontology Change Analysis

In the following, an analysis of the results obtained for each of the observed
ontologies is provided. For each ontology, we provide a summary of changes in a
table which illustrates the number (#) of classes and properties in each version
of the ontology along with structural changes such as addition (+) or removal
(−) of classes and properties compared to the previous version. Further, we also
provide what is the effective change of both additions and removals, i.e., the
difference (Δ) compared to the previous version.

More information about the ontology changes such as which classes and prop-
erties are added in each version of the ontology is available in an external wiki
page12.

– The DBpedia ontology changes from version 3.2 (2008) until version 2016-04
(2016) are shown in Table 1. The ontology is gradually growing with respect
to the number of classes and properties. However, when we look in detail, for
instance, how many terms are added and removed, it can be seen that a large
number of classes and properties are removed as well.
When we analyze the classes removed, we could find classes that do not follow
the proper naming convention such as dbo:bibo:Book, or dbo:Bullfighter
or duplicates of existing classes such as dbo:Pornstar (which is a duplicate of
dbo:AdultActor that already exists). The same happens with the properties
that are removed. In version 3.5, we can see that 1,198 properties (approx-
imately half) are removed. This is because of a change in the convention of
URI generation. For instance, before version 3.5, there were a lot of properties

12 https://github.com/nandana/loupe/wiki/Ontology-Changes.

https://github.com/nandana/loupe/wiki/Ontology-Changes

104 N. Mihindukulasooriya et al.

Table 1. DBpedia - evolution of classes and properties

OWL Class RDF Property Object Prop. Datatype Prop.
Version

Δ (-) (+) # Δ (-) (+) # (-) (+) # (-) (+)

3.2/3 174 720 384 336

3.4 204 30 -2 32 2168 1448 -271 1719 1144 -139 899 1024 -132 820

3.5 255 51 -6 57 1274 -894 -1198 304 601 -673 130 673 -525 174

3.6 272 17 0 17 1335 61 -37 98 629 -26 54 706 -11 44

3.7 319 47 -1 48 1643 308 -17 325 750 -6 127 893 -11 198

3.8 359 40 -1 41 1775 132 -3 135 800 -1 51 975 -2 84

3.9 529 170 -1 171 2333 558 -8 566 927 -6 133 1406 -2 433

2014 683 154 -5 159 2795 462 -46 508 1079 -9 161 1716 -37 347

2015-04 735 52 -5 57 2819 24 -103 127 1098 -23 42 1721 -80 85

2015-10 739 4 -5 9 2833 14 -9 23 1099 -3 4 1734 -6 19

2016-04 754 15 0 15 2849 16 -2 18 1103 -1 5 1746 -1 13

Table 2. DBpedia - Triples of removed properties

Property Last Version Triples in DBpedia Triples in DBpedia

ES 2016-04 IT 2016-04

dbo:buriedPlace 2014 4519 0

dbo:diseasesdb 2014 4346 0

dbo:emedicineTopic 2014 1977 0

dbo:foundingPerson 2015-04 2158 0

dbo:medlineplus 2014 3300 0

dbo:coordinates 2015-10 0 180

dbo:score 2015-10 0 26873

in the form (http://dbpedia.org/ontology/Athlete/formerTeam) which were
changed to (http://dbpedia.org/ontology/formerTeam). However, the reasons
for removal or any other provenance metadata are not documented in any
place. Furthermore, we can see that from the 754 classes added to the ontol-
ogy 514 classes (72%) are only used by less than 5 datasets13. With respect
to data quality, we analyzed if the instances of removed classes or triples con-
taining some of the removed properties were introduced to data after their
removal. For this purpose, we analyzed the LOD Cache14 dataset and the
different language-specific datasets of DBpedia. We could find examples for
both cases as illustrated in Tables 2 and 3. Further, we noticed several classes
and properties that have been added and removed several times within the
period we analyzed. Since these classes and properties are unstable, it makes
it difficult to the users of the ontology to decide whether or not to use them
to annotate their data. Unlike FOAF or Schema.org, the DBpedia ontology

13 http://nandana.github.io/dbpedia/2015-10/class-langs.html.
14 https://datahub.io/dataset/openlink-lod-cache.

http://dbpedia.org/ontology/Athlete/formerTeam
http://dbpedia.org/ontology/formerTeam
http://nandana.github.io/dbpedia/2015-10/class-langs.html
https://datahub.io/dataset/openlink-lod-cache

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 105

does not annotate the status or the maturity of its terms. Few examples of
unstable classes and properties (i.e., the ones that are removed and introduced
several times) are illustrated in Fig. 3. We could also find that when classes
and properties were added, some duplicates were also introduced, i.e, classes
referring to the same concept and also properties referring to the same rela-
tionship. Some examples are classes such as dbo:AdultActor and dbo:PornStar
classes and properties such as dbo:color and dbo:colour or dbo:foundingDate
and dbo:formationDate.
There are several key issues in the DBpedia ontology. First, being quite a
large ontology, it is not sufficiently modular; its large monolithic nature hin-
ders the proper reuse of it. As a consequence, the ontology editors introduce
duplicate classes and properties for the same concepts and relations because
they are not aware of or could not find the appropriate existing term. Another
factor that contributes to the same problem is the minimum documentation
in some classes or properties. Out of 2,849 properties, only 556 properties
have a comment or description associated with them. Most of these problems
exist because of the rather relaxed editorial process in minimal review and
governance.

Fig. 3. An excerpt of unstable DBpdia ontology classes and properties

106 N. Mihindukulasooriya et al.

Table 3. Instances of removed classes

Class Latest Version instances in instances in DBpedia

LOD Cache IT 2016-04

dbo:Bullfighter 2015-04 2 -

dbo:Comics 2014 256 2241

dbo:Imdb 2015-04 3 -

dbo:Installment 2015-04 601 -

dbo:Pornstar 3.9 2 -

– Schema.org is also a fairly large vocabulary that releases versions of the
ontology frequently. Table 4 shows the ontology changes of 25 different versions
of Schema.org since 2012. Similar to the DBpedia ontology, the Schema.org
ontology is also gradually growing. However, in contrast to the DBpedia
ontology we can notice a lower number of removals of concepts or proper-
ties. The only class that was removed schema:OnSitePickup was later rein-
troduced into the ontology. The four properties that have been removed
schema:oponent15, schema:supercedes16, schema:numberofEmployees17,
and schema:isAcccessibleForFree18 are all because of typos and the rea-
sons for removing them are documented either in the issue tracker or the
mailing list.
However, it is not the same when we analyze the subclass and subprop-
erty relationships. As the new classes and properties are introduced and
the hierarchy grows, the relations are changed frequently in the recent ver-
sions of Schema.org. For instance, in the version “2015-05-12”, the relation-
ship schema:BookSeries is a subclass of schema:Series is removed. This
is because a new hierarchy is introduced as schema:CreativeWorkSeries
which is a subclass of schema:CreativeWork and schema:BookSeries is
moved to be a subclass of schema:CreativeWorkSeries. This type of changes
could have implications on the applications which are not aware of the
change and expect the instances of schema:BookSeries to be a subclass of
schema:Series.

– PROV-O is a fairly small-sized ontology compared to DBpedia or
Schema.org. It has a very focused scope and has been developed following
the W3C process with close interactions between the working group members.
Table 5 shows the ontology changes of seven versions of the PROV-O ontology
from 2012 until 2015. In the case of PROV-O, we can see a lot of changes both
as additions and removals in the initial phase of the process but less changes
in the later phases of the development. In fact, the last two versions of the
ontology do not have additions or removals of concepts or properties and only
improvements to the metadata.

15 https://lists.w3.org/Archives/Public/public-vocabs/2014Apr/0289.html.
16 https://github.com/schemaorg/schemaorg/issues/101.
17 https://github.com/schemaorg/schemaorg/issues/252.
18 https://github.com/schemaorg/schemaorg/issues/508.

https://lists.w3.org/Archives/Public/public-vocabs/2014Apr/0289.html
https://github.com/schemaorg/schemaorg/issues/101
https://github.com/schemaorg/schemaorg/issues/252
https://github.com/schemaorg/schemaorg/issues/508

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 107

Table 4. Schema.org - evolution of classes and properties

Version RDFS Class RDF Property Subclass Subprop.

Date # V. Δ (-) (+) # Δ (-) (+) # (-) (+) # (-) (+)

2012-04-27 0.91 302 286 317 0

2012-06-26 0.95 391 89 0 89 465 179 0 179 413 0 96 0 0 0

2012-07-26 0.97 393 2 0 2 466 1 0 1 415 0 2 0 0 0

2012-11-08 0.99 416 23 0 23 544 78 0 78 438 0 23 0 0 0

2013-04-05 1.0a 428 12 0 12 581 37 0 37 451 0 13 0 0 0

2013-07-24 1.0b 428 0 0 0 582 1 0 1 451 0 0 0 0 0

2013-08-07 1.0c 531 103 0 103 627 45 0 45 554 0 103 0 0 0

2013-11-19 1.0d 552 21 0 21 675 48 0 48 577 -1 24 0 0 0

2013-12-04 1.0e 558 6 0 6 711 36 0 36 583 0 6 0 0 0

2014-02-05 1.0f 558 0 0 0 711 0 0 0 583 0 0 0 0 0

2014-04-04 1.1 582 24 -1 25 777 66 0 66 607 1 25 1 0 1

2014-04-16 1.2 585 3 0 3 792 15 0 15 610 0 3 1 0 0

2014-05-16 1.4 585 0 0 0 794 2 -1 3 627 0 17 1 0 0

2014-05-27 1.5 585 0 0 0 798 4 0 4 627 0 0 1 0 0

2014-06-16 1.6 588 3 0 3 803 5 0 5 632 -2 7 36 -1 36

2014-07-08 1.7 589 1 0 1 806 3 0 3 633 0 1 36 0 0

2014-07-28 1.8 590 1 0 1 806 0 0 0 634 0 1 36 0 0

2014-08-19 1.9 593 3 0 3 816 10 0 10 636 -1 3 42 0 6

2014-09-12 1.91 593 0 0 0 816 0 -1 1 637 0 1 44 0 2

2014-12-11 1.92 618 25 0 25 878 62 0 62 663 -3 29 55 0 11

2015-02-04 1.93 620 2 0 2 891 13 -1 14 665 0 2 55 0 0

2015-05-12 2.0 638 18 0 18 965 74 0 74 676 -17 28 62 0 7

2015-08-06 2.1 645 7 0 7 976 11 -1 12 683 -2 9 63 0 1

2015-11-05 2.2 652 7 0 7 992 16 0 16 682 -10 9 69 0 6

When analyzing the classes added and removed in different versions, is seems
they were done depending on the scope of the ontology agreed by the group.
For example, there are several classes which are removed in the version
“2012-07-24” such as prov:Dictionary or prov:Insertion are re-added in
the version “2013-04-30”. An expansion of scope can be seen in the version
“2012-07-24” where one can find several concepts related to influence such as
prov:Influence, prov:AgentInfluence, prov:ActivityInfluence, and
prov:EntityInfluence.

– FOAF is the smallest and the oldest among the ontologies that have been
analyzed. Table 6 shows the ontology changes of ten versions of the FOAF
ontology since 2005 until 2014. Notably the FOAF vocabulary has not
removed any classes or properties from the previous versions. Though it
seems that two object properties were removed, those refer to object prop-
erties which were transformed into datatype or annotation properties (namely
foaf:membershipClass in v2007-01-14 and foaf:myersBriggs in v2009-12-
15v2005-06-03) (Fig. 6).

108 N. Mihindukulasooriya et al.

Fig. 4. Issue tracking in Schema.org

Fig. 5. Evolution of FOAF classes

With respect to subclass relationships, there are some relations that have
been removed. These are mainly subclass relations to external ontologies. For
instance, in “2007-01-14” and “2009-12-15” the subclass relations to classes
from “http://xmlns.com/wordnet/1.6/” were removed. In version “2014-01-
14”, the subclass relation to pim:Person was removed.

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 109

Fig. 6. Evolution of FOAF properties

FOAF uses the term status property from the SemWeb Vocab Status ontol-
ogy19 to annotate the level of stability of a class or a property into four cate-
gories, i.e., Unstable, Testing, Stable, Archaic. As the FOAF ontology evolved
through different versions, it has moved the status of the vocabulary terms
from Unstable to Testing, and from Testing to Stable. Further, when a vocabu-
lary term becomes obsolete, the FOAF ontology has labeled them as Archaic.
Figure 5 shows how the status of the classes of the FOAF ontology has evolved
during its last three versions and Fig. 6 illustrates the evolution of the status
of the FOAF properties during its last nine versions.

Table 5. PROV-O - evolution of classes and properties

OWL Class RDF Property
Object
Prop.

Datatype
Prop.

Version
Δ (-) (+) # Δ (-) (+) # (-) (+) # (-) (+)

2012-05-03 38 60 55 5

2012-07-24 30 -8 -16 8 52 -8 -22 14 46 -20 11 6 -2 3

2012-12-11 30 0 -1 1 50 -2 -3 1 44 -3 1 6 0 0

2013-03-12 30 0 0 0 50 0 0 0 44 0 0 6 0 0

2013-04-30 50 20 0 20 68 18 0 18 59 0 15 9 0 3

2014-06-07 50 0 0 0 68 0 0 0 59 0 0 9 0 0

2015-01-11 50 0 0 0 68 0 0 0 59 0 0 9 0 0

19 https://www.w3.org/2003/06/sw-vocab-status/.

https://www.w3.org/2003/06/sw-vocab-status/

110 N. Mihindukulasooriya et al.

Table 6. FOAF - evolution of classes and properties

Version
OWL
Class

RDF
Property

Object
Property

Datatype
Property

Subclass Subprop.

Date # (+) # (+) # (-) (+) # (+) # (-) (+) # (-) (+)

2005-04-03 12 52 0 0 15 10

2005-05-19 12 0 52 0 0 0 0 0 0 15 0 0 10 0 0

2005-06-03 12 0 53 1 32 0 32 19 19 15 0 0 11 -1 2

2007-01-14 12 0 53 0 31 -1 0 20 1 16 -3 4 11 0 0

2007-05-24 0.9 12 0 53 0 31 0 0 20 0 16 0 0 11 0 0

2007-10-02 0.91 12 0 54 1 32 0 1 20 0 16 0 0 12 0 1

2009-12-15 0.96 12 0 58 4 32 -1 1 24 4 9 -7 0 12 0 0

2010-01-01 0.97 12 0 58 0 32 0 0 24 0 9 0 0 12 0 0

2010-08-09 0.98 13 1 62 4 33 0 1 27 3 10 0 1 13 0 1

2014-01-14 0.99 13 0 62 0 33 0 0 27 0 9 -1 0 13 0 0

4.4 Comparison of the Evolution of Four Ontologies

When comparing the evolution of the ontology classes (see Fig. 7), it is clear that
the number of classes has grown gradually in all the four ontologies and removals
have been minimal. During 2013–2014, there is a steep growth in the DBpedia
ontology while similar activity can be seen in Schema.org around its 1.0c release.

Fig. 7. Comparison of evolution of classes

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 111

Fig. 8. Comparison of evolution of properties

PROV-O has one big change before becoming a Candidate Recommendation and
FOAF, being the smallest of the four, has not suffered from big changes to its
classes.

When comparing the evolution of the ontology properties (see Fig. 8), it can
be seen that there are a lot of changes in properties both in additions as well
as in removals compared to the changes in classes. Specially in DBpedia we can
see a large number of property removals. Nevertheless, the more recent versions
seem to have lesser changes in both additions and removals. In Schema.org,
the number of properties has gradually grown through versions with a minimal
number of removals. Similar to the changes in classes, in PROV-O there are
several changes before it becomes a Candidate Recommendation and then it
becomes stable. There are a small number of additions in the FOAF properties
in the last few versions.

5 Conclusions and Future Work

Ontology changes are inevitable; the knowledge of a domain of interest changes
and ontology evolution is needed for making sure that those changes are adapted
by the ontology. We have observed that these changes depend also on the char-
acteristics of the ontology development process and on the community involved.
For instance, the DBpedia ontology follows a bottom-up approach by trying to

112 N. Mihindukulasooriya et al.

fit the ontology to the infoboxes from Wikipedia; on the other hand, Schema.org
and PROV follow a top-down approach by expanding its scope to different areas
while studying the domain and including the most relevant concepts and rela-
tions. It’s also important to note that the level of manual curation involved
in each process varies a lot and it’s evident that a single ontology evolution
methodology does not fit all different processes and communities. The analysis
shows that in communities such as Schema.org, where industrial participation is
dominant and there is a strong commercial interest, the community tends to fol-
low more rigorous editorial processes and governance procedures. Furthermore,
it shows that the tools used by such communities, for instance, version control
systems, issue trackers, implementation reviews, etc., are largely influenced by
the software development tools and processes (Fig. 4).

Furthermore, during the study we noted that it is hard to find practical
guidelines and best practices for ontology evolution. Even though some guide-
lines such as “Principles of Good Practice for Managing RDF Vocabularies and
OWL Ontologies” [16] exist, they do not provide practical guidance for managing
ontology changes in different scenarios (e.g., top-down vs bottom-up) or recipes
on how to implement those guidelines in such scenarios. If more guidelines were
provided on how to manage ontology changes, that would help to reduce the
quality issues introduced by the changes while evolving an ontology. Further-
more, it is evident from the study that even though there are several theoretical
frameworks available for ontology evolution in the literature, none of the studied
ontologies seems to follow such frameworks.

From the analysis carried out we can draw as a suggestion that there is
a necessity of incorporation of a rigorous editorial process and governance to
DBpedia as well as a set of tools to facilitate the proper evolution of the ontology.
As DBpedia makes use of crowdsourcing at many different stages and includes
people from different levels and areas of knowledge about the ontology, having
a proper editorial process becomes very important.

During the analysis, we have noticed that ontology evolution becomes more
challenging when the ontology becomes larger and the development is performed
in a collaborative manner. This is apparent in the DBpedia ontology; in this
case, modularizing the ontology would help, so that it is easier to understand
and extend it. For instance, in the DBpedia ontology there are more than 2,800
properties and a DBpedia member adding a new property needs to know all of
them to avoid duplicates. However, if those were in a more modular manner it
would help to avoid these problems.

In the same line, it would be helpful to have tools that could help in the
process of ontology evolution. At the moment, there are tools that verify the
consistency of an ontology after a change [17]. However, other functionalities
and techniques such as autocompletion ones, which look for similar existing
terms in the ontology both using lexical or semantic similarity, can be used to
avoid duplicate terms.

Furthermore, in evolving ontologies it is important to have provenance infor-
mation about how the terms have evolved. Thus, in addition to the generic

Collaborative Ontology Evolution and Data Quality - An Empirical Analysis 113

metadata, such as the label or description, it would be useful to add information
such as when the term was added, who was the editor who added it, why a
term was deleted, etc. and references to any discussions about the reasons for
the change.

As future work, we plan to extend our analysis to more change operations
in ontologies including modifications to axioms, such as restrictions, and their
impact on data quality. We also plan to produce a set of best practices for
minimizing the data quality issues caused by ontology evolution based on the
lessons learned.

Furthermore, we plan to do an extended analysis of the impact of the evolu-
tion of the ontologies discussed in this study using the datasets available in the
Linked Open Data cloud that use such ontologies.

Acknowledgments. This work was funded by the BES-2014-068449 grant under the
4V project (TIN2013-46238-C4-2-R).

References

1. Gruber, T.R., et al.: A translation approach to portable ontology specifications.
Knowl. Acquisition 5(2), 199–220 (1993)

2. Noy, F.N., Klein, M.: Ontology evolution: not the same as schema evolution. Knowl.
Inf. Syst. 6(4), 428–440 (2004)

3. Stojanovic, L.: Methods and tools for ontology evolution. Master’s thesis, Karlsruhe
Institute of Technology, Karlsruhe, Germany (2004)

4. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven ontology evo-
lution management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 285–300. Springer, Heidelberg (2002). doi:10.1007/
3-540-45810-7 27

5. Palma, R.: Ontology metadata management in distributed environments (2009)
6. Zablith, F.: Evolva: a comprehensive approach to ontology evolution. In: Aroyo,

L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi,
R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp.
944–948. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02121-3 87

7. Haase, P., Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for
handling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer,
Heidelberg (2005). doi:10.1007/11574620 27

8. Pinto, H.S., Staab, S., Tempich, C.: DILIGENT: towards a fine-grained methodol-
ogy for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies.
In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI
2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia,
Spain, 22–27 August 2004, pp. 393–397 (2004)

9. Dragoni, M., Ghidini, C.: Evaluating the impact of ontology evolution patterns on
the effectiveness of resources retrieval. In: Proceedings of the 2nd Joint Workshop
on Knowledge Evolution and Ontology Dynamics (EvoDyn-2012), vol. 890 (2012)

10. Abgaz, Y.M., Javed, M., Pahl, C.: Analyzing impacts of change operations in
evolving ontologies. In: Proceedings of the 2nd Joint Workshop on Knowledge
Evolution and Ontology Dynamics (EvoDyn-2012), vol. 890 (2012). CEUR-WS.org

http://dx.doi.org/10.1007/3-540-45810-7_27
http://dx.doi.org/10.1007/3-540-45810-7_27
http://dx.doi.org/10.1007/978-3-642-02121-3_87
http://dx.doi.org/10.1007/11574620_27
http://ceur-ws.org/

114 N. Mihindukulasooriya et al.

11. Noy, N.F., Musen, M.A., et al.: PROMPTDIFF: a fixed-point algorithm for com-
paring ontology versions. In: Proceedings of the Eighteenth National Conference
on Artificial Intelligence vol. 2002, pp. 744–750 (2002)

12. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology evo-
lution over the semantic web. Inform. Softw. Technol. 51(1), 83–97 (2009)

13. Mihindukulasooriya, N., Rico, M., Garćıa-Castro, R., Gómez-Pérez, A.: An analysis
of the quality issues of the properties available in the Spanish DBpedia. In: Puerta,
J.M., Gámez, J.A., Dorronsoro, B., Barrenechea, E., Troncoso, A., Baruque, B.,
Galar, M. (eds.) CAEPIA 2015. LNCS (LNAI), vol. 9422, pp. 198–209. Springer,
Cham (2015). doi:10.1007/978-3-319-24598-0 18

14. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked
Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the
web. Semantic Web J. 8(3), 437–452 (2016)

15. Mihindukulasooriya, N., Poveda-Villalón, M., Garćıa-Castro, R., Gómez-Pérez, A.:
Loupe-an online tool for inspecting datasets in the linked data cloud. In: Demo at
the 14th International Semantic Web Conference, Bethlehem, USA (2015)

16. Kendall, E., Novacek, V.: Principles of Good Practice for Managing RDF Vocab-
ularies and OWL Ontologies, March 2008

17. Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-
Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer,
Heidelberg (2005). doi:10.1007/11431053 13

http://dx.doi.org/10.1007/978-3-319-24598-0_18
http://dx.doi.org/10.1007/11431053_13

Towards Ontology-Based Event Processing

Riccardo Tommasini1,2, Pieter Bonte1,2(B), Emanuele Della Valle1,2,
Erik Mannens1,2, Filip De Turck1, and Femke Ongenae1,2

1 imec, Ghent University, Ghent, Belgium
{pieter.bonte,erik.mannens,filip.deturck,femke.ongenae}@ugent.be

2 DEIB, Politecnico di Milano, Milan, Italy
{riccardo.tommasini,emanuele.dellavalle}@polimi.it

Abstract. The rapid change and heterogeneity of today’s generated
data calls for real-time decision making systems that can cope with the
presented heterogeneity. In this paper, we present an Ontology Based
Event Processing system that bridges the gap between ontology-based
reasoning and event processing. We propose both a language and an
architecture to perform event processing over abstract ontology concepts.
This allows to perform efficient temporal reasoning, while the high-level
ontological definitions reduce the need for knowledge of the underlying
data structure in complex domains.

Keywords: Stream Processing · Semantic Web · Stream Reasoning ·
Complex Event Processing

1 Introduction

In domains like Social Media, Financial Markets and Internet of Things
(IoT), information is traditionally represented as data streams, i.e. unbounded
sequences of data, or events, i.e. notifications about happened facts. Stream
Reasoning (SR) [5] investigates how Semantic Web and Stream Processing tech-
nologies can be combined to make decision making systems work in real-time,
across multiple data sources. SR investigates how to exploit the time ordering
of data streams to perform deductive and temporal reasoning on the fly.

In order to clarify this domain, consider the following example: We are inter-
ested to identify the presence of fire in a room, but there is no way to detect it
directly. Instead, the room contains sensors to detect the presence of smoke and
measure the temperature. In this case, a data stream is a timestamped sequence
of numbers representing the average temperature in the room; while an event
is a notification about the detection of smoke. The data and events arise from
different types of sensors. This heterogeneity impedes to perform queries across
these data sources. Another obstacle comes from the domain complexity. In pres-
ence of fire the temperature will be higher, but how can we distinguish abnormal
temperatures from normal ones? And, what if we had different rooms? This kind
of information represent background knowledge that our decision making system
has to combine with live data, in order to obtain an answer. Finally, assuming
c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 115–127, 2017.
DOI: 10.1007/978-3-319-54627-8 9

116 R. Tommasini et al.

that we finally detect both smoke and abnormal temperature events, we have to
relate them in time.

The presented example calls for an approach that solves data variety, that
combines data with background knowledge, that deducts related information and
operates temporal reasoning combining data streams from sensors and events.
We name this approach Ontology-Based Event Processing (OBEP). For the best
of our knowledge, there is no approach in the SR state of the art that tries to do
so. Temporal extensions of deductive reasoning extends the ontological language
with time relations and, thus, easily diverges into intractability. Semantic Com-
plex Event Processing is limited to a semantic description of events and does
not focus on the processing.

In this paper, we propose an approach for OBEP that operates the event
processing a-posteriori above high level concepts deduced through deductive
reasoning, but without including time relations at ontological level. The con-
tribution of this work are: (i) a requirement analysis for an OBEP system to
satisfy; (ii) a syntax named DELP, i.e. Description Logic Event Processing, to
express information needs as the one presented in the example; (iii) an architec-
ture that bridges the gap between event processing to capture temporal relations
and event descriptions based on Semantic Web technologies and; (iv) a prototype
that proves the feasibility of the approach.

The rest of the paper is structured as follows: Sect. 2 describes the related
works. Section 3 describes the use case that is used throughout the paper.
Section 4 introduces the Description Logic Event Processing (DELP) language
we constructed, while Sect. 5 describes our OBEP system that implements the
abstracted event processing. Section 6 concludes the paper and elaborates on the
future research directions.

2 Background and Related Work

In this section we present the background knowledge required to understand the
content of the paper and the relevant related work.

Stream Processing engines are systems capable to process potentially infinite
sequences of data. Two main approaches exits to this extent:

– Data Stream Management Systems (DSMS) extend Data Base Management
Systems by introducing stream-to-relation operators, e.g. Windows, that allow
the transition between streaming and static data. Queries are continuously
evaluated over finite portions of the data streams selected by the means of
these operators.

– Complex Event Processing (CEP) engines exploit time-aware operators to
detect patterns over infinite sequences of incoming events. The user specifies
reaction rules that are concerned with the invocation of actions in response
to events and actionable situations. These rules specify a pattern over the
incoming data, e.g. A followed-by B, by using a declarative query language.
Such a pattern is usually validated with a finite state machine. Therefore, the
final complexity is at most polynomial in time and space.

Towards Ontology-Based Event Processing 117

Some stream processing engines offer declarative query language to operate
with data streams. The event processing language (EPL)1 is the most relevant
one and it allows to (i) write window-based continuous queries to process data
streams; (ii) define simple events or compositions of them (i.e. complex events)
(iii) treat events as first class citizens, i.e. the operators have direct influence on
the events.

Semantic technologies such as RDF, OWL and SPARQL have been used for
data integration in the IoT domain [2] and Semantic Complex Event Processing
(SCEP) [9].

An example of the former is MASSIF [4], i.e. an event-based semantic-enabled
IoT platform consisting of multiple semantic reasoning services each fulfilling a
distinct reasoning task. These services can collaborate on a high level by sub-
scribing to the Semantic Communication Bus (SCB) and indicating the high
level concepts they are interested in. The platform follows the notion of high
level events, however, it does not support any temporal reasoning between these
events.

An example of the SCEP is the work of Taylor et al. [9], i.e. an ontology
and a system for complex event specification that, in combination with reason-
ing techniques, simplify the rule definitions of a target complex event processing
language (e.g. EPL), eliminating the need of address manually the domain com-
plexity. To this extent, the ontology contains language constructs and operators,
e.g., seq, as properties and classes. This approach generalizes the query definition
task enabling interoperability between different event processing engines, but it
does not extend the semantics of the target query language nor does it propose
a unified syntax for it.

In the SR state-of-the-art, RDF Stream Processing (RSP) engines com-
bines semantic technologies and stream processing to perform continuous query-
ing or complex event processing [1] over streams encoded into time-annotated
RDF. EP-SPARQL [1] is the most relevant work w.r.t. ours, because it extends
SPARQL 1.0 with event processing operators, i.e., seq, equals, optionalseq, and
equalsoptional2. Event processing and SR is enabled over RDF Basic Graph Pat-
tern (BGP). Complex events are defined as BGPs combined with event process-
ing operators. As this is similar to the UNION or OPTIONAL operators in
SPARQL, events are not first class citizens. Since the events are defined through
BGPs, it can be devious to construct advanced event processing patterns.

Finally, temporal extension of deductive reasoning approaches such as
Description Logics are worth to mention. They include time relations at onto-
logical level, but this easily diverges into intractability and limiting the possible
entailments [6].

In summary, state-of-the-art solutions in the stream processing context suc-
cessfully model time relations but lack to address the data variety and the domain
complexity. Semantic technologies can be used to describe these extents, but

1 https://docs.oracle.com/cd/E13157 01/wlevs/docs30/epl guide/overview.html.
2 The semantics of these operators is similar to a left, right or full -join but their

selectivity depends on how the constituents are temporally related.

https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

118 R. Tommasini et al.

existing approaches either lack to provide an unified syntax to model the full
processing [9] or have limited expressiveness and do not treat events as first class
citizens [1]. Finally, temporal logics are limited due to the hurdle of including
time within the reasoning algorithms.

3 Use Case

In this section we introduce a simple use case that we will use in the reminder
of the paper to explain our contributions.

A company wants to deploy an intelligent system to detect dangerous situa-
tions. Internally, they distinguish between three classes of conditions:

– Hazardous, i.e., situations that are dangerous for the company assets, e.g., fire
or floods,

– Risky, i.e., situations that are dangerous for the complete business, e.g., infor-
mation leaks or unauthorized access to restricted areas, and

– Unsafe, i.e., situations that are directly dangerous for people, e.g., fire or gas
leaks.

For each dangerous situation class, different alarms are defined (e.g., sound
and lights), alternative escape plans are organized and different authorities are
responsible for handling the situation.

The company is interested in monitoring Unsafe situations within their build-
ings and the surrounding areas. To this extent, sensors for smoke detection,
temperature, humidity and air quality monitoring are deployed within the build-
ing into a wireless sensor network. To monitor the surrounding areas, a public
infrastructure provided by the local government is available through web APIs.

For the remainder of the paper, we will provide examples of the Unsafe
situation Fire Detection. As explained in the Sect. 1, there is no direct way
to sense fire, but we can assume its presence through the detection of smoke
and abnormal temperature measurements within the same time interval. Many
challenges arise to define such a simple rule:

(i) Data Integration: How can the proprietary data and those coming from
external APIs be combined?

(ii) Domain Complexity : How can we decide if the detected temperature is
abnormal?

(iii) Temporal Relation: How do we model the temporal relation between smoke
events and abnormal temperature so we can infer the presence of fire?

4 Ontology-Based Event Processing Language

In this section, we introduce our first contribution: DELP, a syntax for Descrip-
tion Logic Event Processing. DELP is designed based on the definition of the
following requirements elicited on the challenges presented in Sect. 3.

Towards Ontology-Based Event Processing 119

(R1) Semantic Event Representation [9]: this allows the integration of multiple
heterogeneous sources (a) and derivation of implicit data in combination
with background knowledge (b).

(R2) Event Processing [1]: this allows to combine high level ontological concepts
capturing the temporal dependencies and build complex events.

(R3) First Class Citizens Events, i.e., creation and direct manipulation with
language operators (e.g. pattern matching) should be possible.

(R4) Filtering and Joining: The former allows to remove irrelevant events, while
the latter allows to combine events over multiple event streams to achieve
intelligent decision making.

In Sect. 4.2, we show each challenge should be tackled for an OBEP system,
finally in Sect. 4.3 we present the grammar of DELP and how it fulfills the
requirements above.

4.1 Semantic Event Representations

In our running example, we want to derive abnormal temperature and measure-
ments and combine them with smoke detection events. These needs are captured
by challenges (i) and (ii), and call for a semantic representation of events. This
need becomes clear when we analyze the domain complexity, e.g. temperature
normality is different in different building areas, e.g., elevator are colder than
server rooms.

Static Information Integration systems such as Ontology Based Data Access
systems solve these circumstances by the means of an integrated conceptual
model (ICM). The ICM enables query answering across heterogeneous data
sources by the means of a common vocabulary formally specified with an onto-
logical language, e.g. DL or OWL. The ICM of our example currently contains
axioms from (1) to (5).

SmokeDetectionEvent ≡ ∃hasContext.(∃observedProperty.Smoke) (1)

TemperatureEvent ≡ Observation

� (∃observedProperty.Temperature) (2)

AbnormalTemperatureEvent � TemperatureEvent (3)

ElevatorAbnormalTemperatureEvent � AbnormalTemperatureEvent

� (∃observationResult.[hasV alue>40])
� (∃hasLocation.Elevator) (4)

ServerRoomTemperatureEvent � AbnormalTemperatureEvent

� (∃observationResult.[hasV alue>20)
� (∃hasLocation.ServerRoom) (5)

120 R. Tommasini et al.

Data integration requires a generic data model. RDF is commonly used by
the Semantic Web community to overcome the heterogeneity of static data. In
our case, RDF is enough to represent the background knowledge but not to
represent streams, which require RDF Streams (see Sect. 2).

Last but not least, the ICM, if combined with a reasoners, allows to exploit
background knowledge to derive information that is only implicit described in
the data, as the axioms (4) and (5) show.

Deciding the entailment to use for representing the ICM is a domain specific
problem and a trade-off with the final system complexity. One may argue the
need of a very expressive ontological language such as OWL 2 DL, that allows
us to define events in a generic and concise manner and it enables to create a
truly abstracted view over the events by the means of DL reasoning. Fragments
like OWL RL, DL-lite, or EL++ have been shown to be interesting for Stream
Reasoning use cases. At this stage, we do not discuss which restriction DELP
should include. In order to express meaningful examples w.r.t. our use case we
opted for OWL 2 DL3, postponing a deep complexity study for future work.

4.2 Capturing Time Relations

In our running example, the central part represent the time relation between
abnormal temperature and smoke. This need is captured by challenge (iii), that
calls for event processing operators. In practice, we need to explain simple tem-
poral pattern such as seq, combined with modifiers that provide enough expres-
siveness to capture the entire domain complexity, e.g. not.

Regarding time, we assume a point-based time semantics [3] for events; an
event e as a pair (G, t), where G is an RDF graph containing the event state-
ments and t is the associated timestamps. A partial ordering is established
among events, i.e. events can occur at the same timestamps. Regarding the
event processing, we consider the following time-aware operators:

– seq : (G1, t1) and (G2, t2), returns true iff the events occur and t1 > t2;
– and : (G1, t1) and (G2, t2), returns true when both the events occur regardless

their ordering;
– or : (G1, t1) or (G2, t2), returns true iff at least one of the events occur;

and the following modifiers:

– every, forces the re-evaluation of the pattern according to its positive evalua-
tion;

– within, limits the validity of the pattern by constraining its evaluation into
time boundaries; and

– not, negates the truth value of a pattern4.

Notably, in the state of the art, none of the existing solution implements all
these operators.
3 https://www.w3.org/TR/owl2-direct-semantics/.
4 Not can be used only as a combination of other patterns.

https://www.w3.org/TR/owl2-direct-semantics/

Towards Ontology-Based Event Processing 121

4.3 Description Logic Event Processing

In this section, we finally explain how the event processing operators (see
Sect. 4.2) are used in combination with ontological concepts.

In our example, we are interested in abnormal temperature and smoke sensor
readings to detect fire. We saw in Sect. 4.2 that semantic event representation
(R1) is possible in the ICM. Alternatively, high level events can be specified
within a DELP query, by the means of the EventDecl clause (see Listing 1.4).
Listing 1.1 is an example of event declaration in DELP. The Manchester syntax5

is chosen for two reasons: it is conciser than RDF and highlights the idea of spec-
ifying events using high level abstractions. Moreover, it was combined already
with SPARQL in the past [8].

EVENT : OfficeAbnormalTemperaturEvent subClassOf
AbnormalTemperaturEvent

and (ob s e r v a t i o n r e s u l t some (hasValue (hasDataValue >= 40)))
and (hasLocat ion some Of f i c e))

Listing 1.1. Event Declaration for office abnormal temperature in DELP

Events defined through this clause are added to the TBox of ontology the
reasoner uses for the inference process. Each of the defined events in DELP are
translated to OWL class expressions. The translation is straight forward, since
the event definition is based on the DL Manchester syntax. For example, the
Office Abnormal Temperature definition in Listing 1.1 is translated to:

OfficeAbnormalTemperaturEvent � AbnormalTemperatureEvent

� (∃observationResult.[hasV alue>40])
� (∃hasLocation.Office) (6)

DELP exploits the time-aware operators as explained in Sect. 4.2. Listing 1.2
shows how Fire detection can be defined exploiting the temporal relation between
a SmokeDetectionEvent and AbnormalTemperaturEvent.

Event processing over high level concepts (R2), an example of which is avail-
able in Listing 1.2, is enabled by the sub-clause PatternExpr of the Pattern-
Decl clause. The definition of event patterns relies on user-defined ontological
concepts or those already existing in an ontology.

NAMED EVENT : FireEvent {
MATCH : AbnormalTemperaturEvent SEQ : SmokeDetectionEvent WITHIN (5m)

}

Listing 1.2. Event Declaration for fire, based on temperature and smoke, in DELP.

5 https://www.w3.org/TR/owl2-manchester-syntax/.

https://www.w3.org/TR/owl2-manchester-syntax/

122 R. Tommasini et al.

NAMED EVENT : FireEvent {
MATCH : AbnormalTemperaturEvent SEQ : SmokeDetectionEventa WITHIN (5m)

IF {
EVENT : AbnormalTemperaturEvent { ?tmpSnsLoc : hasValue ?v}
EVENT : SmokeDetectionEvent { ?smkSnsLoc : hasValue ?v ;

?smokeObs ssn : obse rvat i onResu l t ; : hasValue ? smokeLevel

FILTER (? smokeLevel == ”3”ˆˆxsd : i n t e g e r)

}
}

}

Listing 1.3. Example of event pattern with filters (R4). aWe assume this event is
already defined in the ontology.

Last but not least, the IFDecl clause enables to express filters and joins over
RDF Streams. Using a SPARQL-like syntax, the user can specify a basic graph
pattern to match for each event, e.g., EVENT :AbnormalTemperaturEvent in
Listing 1.3, and joins that exploit a name-based notation, i.e., variables with
the same name obtain the same binding (e.g., variable ?v in Listing 1.3). Filters
are specified using the SPARQL 1.1 Filter clause e.g., variable ?smokeLevel in
Listing 1.3.

Finally, Listing 1.4 describes a sub-portion of the DELP grammar, the full
one is available at http://bit.ly/2bURXUt. Due to the lack of space, we omitted
those parts that relies on other grammars, in particular: The EventDecl clause
allows definition of events as first class citizens; it relies on the classes formulation
typical of Manchester Syntax. An example of this is available in Listing 1.1. The
Constraint clause allows the specification of filters; it relies on the SPARQL 1.1
grammar; an example of this is available in Listing 1.3. The user can specify time
relations over semantic event declarations using the MATCH clause. Notably,
the optional keyword NAMED works differently from SPARQL 1.1. It indicates
which events the user is interested to select for the retrieval of the underlying
RDF graph.

EventClause −> [NAMED] ’EVENT’ EventIRI (EventDecl | PatternDecl)
EventDecl −> Fol lows Manchester Syntax Grammara

PatternDecl −> ’WHEN’ PatternExpr [IFDecl] PatternExpr −> ’MATCH’
FollowedByExpr [WITHIN TimePeriod] TimePeriod −> ’INTEGER’ (ms | s
| m | h | d | w) FollowedByExpr −> OrExpr (([’NOT’] ’SEQ’) OrExpr)∗
OrExpr −> AndExpr (’OR’ AndExpr)∗ AndExpr −> EveryOrNotExpr (’AND’
EveryOrNotExpr)∗ EveryOrNotExpr −> [’EVERY’ | ’NOT’] (EventIRI
[’AS’ EventAl t I r i]

| (PatternExpr))∗
IFDecl −> IF ’{ ’ ’EVENT’ (EventIRI | Var) F i l t e rExpr ’} ’
F i l t e rExpr −> ’{ ’ (BGP | ’FILTER’ Constra int)∗ ’} ’

Constra int −> Fol lows the SPARQL 1.1 Grammarb

Listing 1.4. Ontology-Based Event Processing Language Grammar. ahttps://www.
w3.org/TR/owl2-manchester-syntax/#description. bhttps://www.w3.org/TR/rdf-
sparql-query/\#rConstraint.

http://bit.ly/2bURXUt
https://www.w3.org/TR/owl2-manchester-syntax/#description
https://www.w3.org/TR/owl2-manchester-syntax/#description
https://www.w3.org/TR/rdf-sparql-query/#rConstraint
https://www.w3.org/TR/rdf-sparql-query/#rConstraint

Towards Ontology-Based Event Processing 123

5 Ontology-Based Event Processing Architecture

In this section, we describe a system architecture for an OBEP system that
supports the DELP syntax.

Figure 1 shows three different layers, each of which addresses a specific part
of the processing to go from RDF Streams to the results of a DELP query. As
anticipated in Sect. 4.3, we assume incoming events as a pair (G, t) where G is
an RDF Graph and t is a timestamp (RDF Stream in Fig. 1).

Building on this assumption, Layer (a) is responsible for inferring high level
concepts by applying reasoning over the incoming events; Layer (b) is responsible
for identifying and extracting, from the underlying RDF graph, those properties
that are relevant for filtering and joining, as specified in the query; last, but not
least, Layer (c) applies event processing over the abstracted events as well as
filtering and joining using the extracted properties. In the following paragraphs,
each layer is described in detail.

To better understand how each layer behaves, we continue our running exam-
ple. We want to capture the temporal relation between abnormal temperature
and smoke in order to detect fire, but we need to ensure that the smoke detection
and the abnormal temperature measure belong to the same room. In Listing 1.5,
this requirements are translated into a time relation and a join condition: the
variable ?v is used for the AbnormalTemperaturEvent and the SmokeDetection-
Event.

Fig. 1. Overview of the ontology-based event processing architecture

NAMEDEVENT : FireEvent {
MATCH : AbnormalTemperaturEvent −> : SmokeDetectionEvent WITHIN (5m)
IF {

EVENT : AbnormalTemperaturEvent { ?tmpSnsLoc a : Locat ion .
?tmpSnsLoc : hasValue ?v}

EVENT : SmokeDetectionEvent { ?smkSnsLoc a : Locat ion .
?smkSnsLoc : hasValue ?v}

}
}

Listing 1.5. Event Declaration for fire, if the smoke and temperature are sensed in
the same location.

124 R. Tommasini et al.

The incoming RDF graphs are added to the ABox, processed by the reasoner,
and then removed. This process is show in Fig. 1a. DL reasoning is utilized,
together with ontological definition of events, to materialize the incoming RDF
graphs. When the reasoner, after a realization step, infers one of the defined
high level events, these are forwarded to the next layer that can perform event
processing over high level abstractions.

DELP allows the specification of filters and joins over the defined events.
However, performing joins or filters requires to compare the values of those
variables expressed in the DELP query. Which means access to the underlying
RDF graph of high level ontological concepts that DELP targets. An additional
SPARQL-querying layer, shown in Fig. 1b, is added in order to reach the under-
lying RDF graph that the high level event definition implies and extract the
variables required for joining or filtering.

The translation from DELP filters to SPARQL queries is again straight for-
ward. Listing 1.6 shows one of the required queries for the property extraction
of the SmokeDectectionEvent in our example. For joins, the variable value must
be the same for all the events sharing a variable; filters should positively validate
a given conditional expression (e.g. lower than a specified threshold). Once the
query is executed, the variable bindings are added to the event as properties,
maintaining the naming convention. If no properties need to be extracted and
no additional filtering is required, this step can be omitted.

SELECT ?tmpSnsLoc ?v
WHERE { ?tmpSnsLoc a : Locat ion ; : hasValue ?v }

Listing 1.6. Translated SPARQL query for the property extraction based on the
definition in Listing 1.5 for the SmokeDetectionEvent

The last layer in our proposed architecture is responsible for the actual event
processing; it corresponds to Fig. 1c.

In our example, SmokeDetectionEvent and AbnormalTemperatureEvent are
matched. Figure 2 zooms in Fig. 1c and shows the structure of the events once
they reach the event processing layer for our running example: (Fig. 2I) the
materialized events that therefore contain both explicit data (Blue) and those
which have been inferred (Green); (Fig. 2II) the previously extracted values for
variables involved in filters or, in this very case, joins; (Fig. 2III) the high level
event definition, represented as an RDF graph to maintain a coherent notation.

Assuming such a layered data structure, the pattern matching can be trans-
lated into a target CEP language that provides filtering and joining using a
name-based notation such as EPL. Listing 1.7 shows an example of this transla-
tion related to the fire detection example.

select ∗ from pattern
[every a=AbnormalTemperaturEvent −> b=SmokeDetectionEvent (v=a . v)
where t imer : with in (5 min)]

Listing 1.7. Event Declaration for fire, translated to EPL

Towards Ontology-Based Event Processing 125

Fig. 2. Event processing over high level events. (Color figure online)

Building complex event structure is the goal of both CEP and SCEP systems.
Therefore, it is worth discussing how complex events are provided to the user in
case of positive pattern matching. At current stage, DELP does not include the
specification of composed events explicitly. This is because it is hard to combine
high level event description with their low level construction and we leave this
as future work. Since event composition is crucial in event processing, we opt
for a conservative solution and we define the complex event as the union of the
underlying RDF graphs. The union is used since the event processor will only
return values when the operator turned true. For example if E1 has been detected
and E2 not, then E1 OR E2 will return true with E2 as an empty collection.

Last but not least, we implemented an OBEP proof-of-concept system6 con-
taining the following technologies: the HermiT reasoner [7] for event abstraction
in the first layer; Jena ARQ7 for the property extraction of the underlying RDF
graph in the second layer and the Esper engine8 to perform the event processing
on the high level events in the third layer.

6 Discussion and Conclusion

In this paper, we presented a first step towards ontology-based event process-
ing. We designed an approach that contributes to the state-of-the-art of stream

6 The code is part of the new version of MASSIF platform which is not yet available
as open source. A stand alone version will be published at https://github.com/
IBCNServices/OBEP.

7 https://jena.apache.org/documentation/query/.
8 http://www.espertech.com/.

https://github.com/IBCNServices/OBEP
https://github.com/IBCNServices/OBEP
https://jena.apache.org/documentation/query/
http://www.espertech.com/

126 R. Tommasini et al.

Table 1. Differences and similarities between (S)CEP and OBEP approaches against
Sect. 4 requirements. ⊗, i.e. SPARQL-like; �, i.e. seq, and, or, not, every, within.

R1.a R1.b R2 R3 R4 (filters) R4 (joins)

EPL Relational / � � � �
EP-SPARQL [1] RDF BGP RDFS seq, opt seq eq opt seq / �⊗ �⊗

Taylor et al. [9] OWL Boha seq, or, and � / /

MASSIF [4] DL Axioms OWL 2 DL / / � /

OBEP DL Axioms OWL 2 DL � � �⊗ �⊗
aRiccardo: find.

reasoning with a requirement analysis; a syntax for Description Logic Event
Processing, i.e. DELP; a three-layered architecture for an OBEP system that
supports the proposed DELP syntax and fulfills our requirements; and a proof-
of-concept implementation of a system.

Table 1 summarizes the differences and similarities between the related works
mentioned in Sect. 2 and our approach for OBEP. This table highlights the
novelty of the proposed system through the requirements that we presented
in Sect. 4. Our approach combines semantic event declaration (R1.a) and event
processing (R2). It also allows to compute temporal inference over the high-
level concepts outputted by a deductive reasoning process. This is different from
approaches that extend the ontological language to perform temporal inference,
because they have to choose between either small entailments or intractability.
DELP implements all the typical event processing operator (R3), while the other
approaches focus on a subset. In particular, we include the not, which allows the
definition of more expressive patterns. The final system complexity is composed
by two layers, i.e. deductive reasoning and event processing. The second one is
known to be polynomial in time, therefore the final complexity is bounded by
the complexity of the ontological language used to describe the events.

In our future work, we will focus on the full language specification, i.e. full
complexity description and the analysis under different DL fragments. We will
investigate how to add the underlying definition of the events defined as RDF
graphs. Integrating this in the language facilitates the creation of a more com-
plete system that allows the processing of data on different levels. We aim at
introducing explicit complex event construction semantics and also important
time-aware operators, such as the ones of Allen’s algebra. Finally, we plan to
combine our approach with static knowledge for advanced inference and to thor-
oughly compare the performance of a prototype with state-of-the-art solutions,
such as EP-SPARQL.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning, pp. 635–644 (2011)

2. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the Internet of
Things: early progress and back to the future. Int. J. Semant. Web Inf. Syst.
(IJSWIS) 8, 1–21 (2012)

Towards Ontology-Based Event Processing 127

3. Bohlen, M.H., Busatto, R., Jensen, C.S.: Point-versus interval-based temporaldata
models. In: Proceedings of the Fourteenth International Conference on Data Engi-
neering, pp. 192–200 (1998)

4. Bonte, P., Ongenae, F., De Backere, F., Schaballie, J., Arndt, D., Verstichel, S.,
Mannens, E., Van de Walle, R., De Turck, F.: The MASSIF platform: a modular
and semantic platform for the development of flexible IoT services. KAIS, 1–38
(2016)

5. Della Valle, E., Ceri, S., Harmelen, F.V., Fensel, D.: It’s a streaming world! Rea-
soning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)

6. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In:
15th International Symposium on Temporal Representation and Reasoning, TIME
2008, Université du Québec à Montréal, pp. 3–14, 16–18 June 2008

7. Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly-efficient owl reasoner. In:
OWLED, vol. 432, p. 91 (2008)

8. Sirin, E., Bulka, B., Smith, M.: Terp: Syntax for owl-friendly SPARQL queries. In:
Proceedings of the 7th International Workshop on OWL: Experiences and Directions
(OWLED 2010), San Francisco, 21–22 June 2010

9. Taylor, K., Leidinger, L.: Ontology-driven complex event processing in heteroge-
neous sensor networks. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B.,
Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp.
285–299. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21064-8 20

http://dx.doi.org/10.1007/978-3-642-21064-8_20

Minimal Coverage for Ontology Signatures

David Geleta, Terry R. Payne(B), and Valentina Tamma

Department of Computer Science, University of Liverpool, Liverpool, UK
{d.geleta,t.r.payne,v.tamma}@liverpool.ac.uk

Abstract. An ontology signature (set of entities) can express more
than its constituent concept, role and individual names, since rewriting
permits defined entities to be replaced by syntactically different, albeit
semantically equivalent definitions. Identifying whether a given signature
permits the definition of a particular entity is a well-understood prob-
lem, while determining the smallest (minimal) signature that covers a set
of entities (i.e. a task signature) poses a challenge: the complete set of
alternative definitions, or even just their signature, needs to be obtained,
and all combinations of such definition signatures need to be explored,
for each of the entities under consideration. In this paper, we present
and empirically evaluate our novel approach for efficiently computing an
approximation of minimal signature cover sets.

1 Introduction

An ontology provides a reference vocabulary for a given domain of interest, where
the meaning of the terms in the vocabulary (entities) is defined inductively
in terms of other entities [1]. Beth definability [2,6] is a well-known property
from classical logic that has also been studied in the context of Description
Logics (DLs); it relates the notion of implicit definability to the one of explicit
definability, by stating that every implicitly defined concept is also explicitly
definable [11]. In definitorially complete DLs ontologies (i.e. those modelled in a
dialect where the Beth definability property holds), defined ontological entities
can be rewritten into syntactically different, albeit semantically equivalent forms,
thus it is possible to convey the meaning of an entity without using its actual
name [11].

For example, in the ontology O = {C ≡ A � B,C ≡ D,A � ¬B,E � ∃r.�},
the concept C is defined explicitly, i.e. C ≡ A � B. Additionally, the con-
cept A is implicitly defined in O by the set of general concept inclu-
sions {C ≡ A � B,A � ¬B}. Thus, A can be explicitly defined by the axiom
A ≡ C � ¬B, where Σ = {C,B} is a definition signature (DS) of A.

A concept or role can either be defined explicitly or implicitly in an ontology,
or it could be undefined (and hence not rewritable, e.g. E, r). For instance,
apart from the concept E, Σ provides coverage for all concept names of O, as in
addition to the asserted entities, both A and D are definable by an axiom whose
signature is in Σ. Therefore, a signature potentially enables the expression of not
only its asserted concept, role and individual names, but also of those defined
entities whose definition is permitted with the given signature.
c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 128–140, 2017.
DOI: 10.1007/978-3-319-54627-8 10

Minimal Coverage for Ontology Signatures 129

Semantic interoperability between individually designed ontologies is typ-
ically hindered by heterogeneity, as distinct ontologies typically differ in their
vocabularies and in the meaning they associate with particular entities [3]. Ontol-
ogy matching (alignment) resolves heterogeneity between different ontologies by
producing an alignment, i.e. a set of correspondences that describe relationships
between semantically related entities of distinct ontologies. Ontology alignment
negotiation has become an established and active research area that is concerned
with supporting opportunistic communication within open environments [9,10].
In order to be able to carry out meaningful communication, different systems
must cooperatively establish a mutually acceptable alignment, whilst adhering to
internal preferences, without compromising confidential knowledge, and prevent
alignment-based conservativity violations to occur [8]. The mutual alignment
emerges as a result of a bilateral negotiation between two systems, whereby it
is clearly beneficial to minimise the considered correspondences (i.e. the aligned
part of an ontology signature), in order to reduce the overall cost of the process,
and to support privacy and conservativity constraints of the interacting parties.

Van Harmelen and colleagues [12] have shown that semantic interoperability
tasks can be characterised (amongst other parameters) by their signature, thus
the prerequisite for performing a knowledge-based task is that the tasks’s sig-
nature must be covered by the terms available to the party that performs the
given task. In order to determine whether a given task signature (e.g. a query
signature) is covered by a given ontology signature, each entity of the task sig-
nature must be individually examined; an entity is covered either if it appears
in the ontology signature, or if it is rewritable using only the members of the
ontology signature. Although task coverage is trivial to establish, determining
the minimal signature that covers a given task signature poses a challenge, as the
complete set of rewriting forms (definitions) needs to be known, and all combina-
tions of such definition signatures (the sets of entities that permit the rewriting
of a defined entity) are required to be explored, for each entity in question.

In our previous work, we have presented a pragmatic approach to computing
the complete set of Definition Signatures for a given ontology [4]. In this paper
we introduce the signature coverage problem and a novel algorithm that can
efficiently compute an approximation of the smallest set of entities that covers
a given task signature, starting from a previously obtained complete set of DSs.
The paper casts the signature coverage problem as a set coverage problem, which
is in Sect. 2, whilst Sect. 3 introduces the signature coverage problem. Section 4
presents our approach to approximate minimal cover sets. The approach is empir-
ically evaluated in Sect. 5, that describes the experimental framework and the
results. Finally, Sect. 6 outlines future work and concludes the paper.

2 Background

In this section we review two classical problems that address the issue of cov-
erage: the set coverage problem and the minimal functional dependency cover.
The set coverage problem (or minimal set cover problem) is a classic problem in

130 D. Geleta et al.

combinatorics, complexity theory and computer science, in general [14]. Let U be
a set of elements (referred to as the universe) and S a collection of subsets of U ,
whose union equals the universe. The set cover problem identifies the smallest,
minimal sub-collection C ⊆ S, called the cover set, such that the union of sets
in C covers U (∀x{x ∈ U|x ∈ C}).

Example 1 (Minimal set cover problem). Consider the set U = {1, 2, 3, 4, 5},
and let S be the collection {S1,S2,S3,S4}, where S1 = {1, 2, 3}, S2 = {1, 2},
S3 = {3, 4} and S4 = {4, 5}. The union of subsets of S contains all members of
U , thus U can be covered by an S′ ⊆ S. Although there are a number of possible
solutions, there is only one minimal cover set, {S1, S4}.

Finding the minimal cover set is an NP-complete problem, however, there is a
greedy algorithm that is able to find approximations (i.e. not necessarily minimal,
but small cover sets) in polynomial time [14]. In the weighted set cover problem,
each set Si ∈ S is assigned a weight w(S) ≥ 0, and in this case, the goal is to
find a cover set C with the minimal total weight

∑
S∈C w(S) (where the weight

of a set does not correspond to its cardinality but emerges from the particular
context where the set is used).

Another classical problem that has influenced the approach presented in this
paper comes from relational database theory, and concerns finding the mini-
mal functional dependency cover. A functional dependency (FD) is a constraint
between two sets of attributes in a relation from a database [13]. For instance,
given two attribute sets X and Y , then the FD X → Y means that the values
of the attribute set Y are determined by the values of X, or in other words, two
tuples in a database sharing the same values of X would also share the same
values for Y . The closure of a set of attributes X with respect to a set of FDs
F is the set X+ of all attributes that are functionally determined by X using
the closure of F , denoted by F+. Before computing the closure, a set of FDs F
is usually normalised by exhaustively applying inference rules (e.g. reflexivity,
transitivity and augmentation) [13], as illustrated by the following example:

Example 2 (FD set attribute closures). Let us consider a set of FDs F such that

F = {(1) A → B, (2) C → E, (3) E → F, (4) A,C → D}

F is already normalised (in third normal form), i.e. each FD contains exactly
one attribute on the right-hand side (RHS), and each FDs’ left-hand side (LHS)
is irreducible. The closure of all attributes in F is given as follows:

1. A+ : A,B (A by reflexivity, B by (1))
2. B+ : B (B by reflexivity)
3. C+ : C,E, F (C by reflexivity, E by (2), F by transitivity and (2, 3))
4. D+ : D (D by reflexivity)
5. F+ : F (F by reflexivity)
6. (A,C)+ : A,B,C,D,E, F (A,C by reflexivity, B by (1), D by (4), E by (2),

F by transitivity and (2, 3))

Minimal Coverage for Ontology Signatures 131

The closure of a set of attributes with respect to a set of FDs allows us to deter-
mine the minimal cover for a set of functional dependencies. A set of functional
dependencies F covers another set of FDs G if every functional dependency in
G can be inferred from F , i.e. if G+ ⊆ F+. F is a minimal cover of G if F is
the smallest set of functional dependencies that covers G. It can be proven that
every set of functional dependencies has a minimal cover, however this is not
unique, as there may be more than one minimal cover.

3 The Signature Coverage Problem

The signature coverage problem determines whether a given task signature (S)
is covered by a restricted signature (R), where both are subsets of the same
vocabulary, i.e. the ontology signature (R,S ⊆ Sig(O)). The restricted signature
R could be obtained by considering only those entities in O) that are mapped
in an alignment. A task signature is said to be covered if all of its constituent
entities are covered; by default, i.e. considering explicit coverage, this requires
that S ⊆ R. Beth definability supports implicit coverage, where a task signature
entity is replaceable by a definition axiom, if, given its signature Σ, Σ ⊆ R. In
order to achieve implicit coverage, the complete set of DSs needs to be obtained,
where the number of possible rewritings (thus the number of unique DSs) of
a defined concept or role is potentially exponential in the size of the ontology.
Definition signatures may contain redundant elements, and could be as large as
the ontology signature, thus we introduce the notion of signature minimality, that
aims at minimising the size of a signature, by eliminating superfluous entities.

Definition 1 (Minimal Definition Signature (MDS)). A signature Σ is
a minimal definition signature of a defined entity e under a TBox T , if none of
its proper subsets are definition signatures of e.

In previous work we have presented a pragmatic approach to compute in
practice all Minimal Definition Signatures (MDSs). The approach focusses on the
feasible defined entities (where given pre-defined complexity bounds all MDSs
are computable) described using a DL language for which the Beth definability
property holds [4]. Individual names can only be covered explicitly by an asserted
entity, however, definable signature entities (concepts and roles) can also be
covered implicitly as follows:

Definition 2 (Explicitly or implicitly covered entity). Given an ontology
O, a task signature S, and a restricted signature R such that S,R ⊆ Sig(O), an
entity e ∈ S is covered explicitly by R iff e ∈ R; or covered implicitly by R, if
there exists a DS Σe, such that Σ ⊆ R; otherwise e is uncovered.

A defined concept or role can simultaneously be covered explicitly and implicitly,
thus a task signature entity e ∈ S may assume one of the four different coverage
status w.r.t. a restricted signature R, as shown in Table 1. Determining whether
a given task signature is coverable by a particular, restricted signature is the

132 D. Geleta et al.

Table 1. Entity coverage status

Coverability Required Coverage

uncoverable e �∈ R ∧ Σ �⊆ R explicit coverage: e ∈? R
coverable explicitly only e ∈ R ∧ Σ �⊆ R

explicitly and implicitly e ∈ R ∧ Σ ⊆ R explicit and implicit coverage: e ∈? R+

implicitly only e �∈ R ∧ Σ ⊆ R

trivial process of identifying the coverage status of each task signature entity;
i.e. for each entity e ∈ S, we search for an MDS Σe such that Σe ⊆ R. The set
of entities covering all members of a task signature S is defined as follows:

Definition 3 (Cover set). Given an ontology O, a task signature S, and a
restricted signature R such that S,R ⊆ Sig(O), C is a cover set of S with respect
to R, if and only if C ⊆ R and ∀e{e ∈ S|e ∈ C ∨ ∃Σe|Σe ⊆ C}.
In other words, a cover set is a DS of all entities of the task signature. As an
ontology signature can cover more than its constituent entities, due to the fact
that a given signature may permits some defined entities to be implicitly covered,
we adopt the notion of closure from FD computation, to provide a representation
which describes the set of all entities covered by a given signature:

Definition 4 (Signature closure). Given an ontology O, and a signature X
such that X ⊆ Sig(O), the signature closure X+ contains all explicitly and implic-
itly covered entities of Sig(O) by X , i.e. ∀e{e ∈ Sig(O)|e ∈ X ∨ ∃Σe|Σe ⊆ X}.
This permits a more succinct definition of coverage: a task signature S is covered
by a set C iff S ⊆ C+. Once it has been established, that the S is coverable by
R, the problem is to identify the smallest subset C ⊆ R which covers S. This is
referred to as the minimal cover set and defined as follows:

Definition 5 (Minimal cover set). Given an ontology O, a task signature S,
a restricted signature R such that S,R ⊆ Sig(O), and the set C which covers S
with respect to R, C is minimal if and only if there is no other cover set C′ ⊆ R
such that |C′| < |C|.
There can be more than one, unique minimal cover set, i.e. two sets with the same
cardinality whose complement is not an empty set. Finding a minimal cover set
is an non-polynomial problem, because it requires all cover sets to be identified,
by exhaustively testing each subset of the power set of the ontology signature,
in order to find all valid covers and select the one with the minimum cardinal-
ity. Approximation algorithms are commonly used for problems with NP time
complexity, such as the set cover problem, to provide sub-optimal solutions in
polynomial-time. The greedy algorithm design is one of the standard techniques
for approximation algorithms [14]. The next example illustrates the signature
cover problem, and outlines a cover set approximation approach.

Minimal Coverage for Ontology Signatures 133

Example 3 (Signature Coverage). Let O be an ontology, S a task signature, R
a restricted signature, and M the complete set of MDSs of each defined entity
of S (an MDS m ∈ M is represented as the tuple 〈e,Σ〉, where e is the defined
concept or role name, and Σ denotes the MDS), where S,R ⊆ Sig(O), such that

– Sig(O) = {A,B,C,D,E,F, r, s, q}
– M = {〈C, {A,B}〉 , 〈C, {E, r}〉 , 〈C, {q}〉 , 〈B, {D}〉 , 〈D, {B}〉 , 〈s, {r}〉}
– S = {B,C,D,E, s, q}
– R = {A,B,C,D,E, r, q}
Without accounting for definability, i.e. by only considering explicit coverage,
the R does not cover the task signature because S\R �= ∅. However, considering
implicit coverage shows that the closure of the restricted signature is R+ =
{A,B,C,D,E, r, s, q}, thus S can be covered by R, because S ⊆ R+. Following a
naive, greedy approach, one may select those entities that appear both in S and
R as these entities can be covered explicitly, i.e. C1 = S ∩R = {C,D,E, q}; then
attempt to cover the remaining task signature entities, by adding a corresponding
MDSs for each uncovered task signature entity; in this case covering s by adding
r to C1, as there is an MDS 〈s, {r}〉 thus s is implicitly definable by the signature
{r}. As a result C1 = {B,C,D,E, r, q} covers S. However, the smallest cover set
is C2 = {B,E, r, q}, because C+

2 = {B,C,D,E, r, s, q}, S ⊆ C+
2 , and |C1| > |C2|.

In Example 3, a naive, greedy approach (Greedy #1) has produced a non-
minimal cover set C1, which was an approximation of the minimal cover C2.
The cover set C1 can be improved by removing redundant entities (resulting in
the set C ′

1 = C2), i.e. producing a non-redundant cover set:

Definition 6 (Non-redundant cover set). Given an ontology O, a task sig-
nature S, a restricted signature R such that S,R ⊆ Sig(O), and C which covers
S w.r.t. R, C is non-redundant iff none of its proper subsets cover S.

Non-redundant cover sets are typically small, however, as there can be more
than one non-redundant cover set with different cardinality, a non-redundant
cover set is not necessarily the minimal cover set. It is worth noting that every
minimal cover set is also a non-redundant set.

4 Approximating Minimal Cover Sets

In order to tackle the exponential time complexity of the minimal signature
cover problem, we introduce a greedy, approximation algorithm that provides a
sub-optimal solution in polynomial-time; where the resulting cover set is always
non-redundant. The basic idea behind the approach is that by starting from an
empty set, the cover set is built up incrementally until all task signature members
are covered, however, instead of selecting individual entities from the restricted
signature, at each iteration the approach selects an entity set. The entity sets
that are being considered are MDSs, because individual entities typically only
provide explicit coverage (for themselves or their synonyms), while MDSs can

134 D. Geleta et al.

cover defined entities implicitly (in addition to explicitly covering all those task
signature entities that appear in the MDS as well). The selection is made by
assigning a cost and value score to each MDS, and then picking the MDS which
provides the maximum value and the minimum cost with respect to the task
signature and the incomplete cover set, prioritising on the value score. The cost
quantifies the number of entities required to be added to the cover set (i.e. the set
difference of the cover set and the particular MDS), while the value represents
the number of entities that the given signature covers (an MDS can be a DS for
more than one defined entity, thus it can cover several task signature entities).
In case there are more than one MDSs with the same cost and value, a random
MDS is selected.

In order to evaluate the actual value of a given MDS, i.e. the set of all entities
of the task signature that the MDS covers either explicitly or implicitly, similarly
to FDs, its closure needs to be identified, thus we represent MDSs in the form of
FDs to facilitate this notion. There is a strong resemblance between the concept
of an FD and an MDS, meaning that an MDS can be thought of as a dependency
between entities of an ontology, where the relation between the signature of the
LHS and the entity on the RHS is implicit definability. For example, the MDS
ΣC = {A,B} which defines concept C using entities {A,B} may be represented as
m : (A,B → C); such an MDS is referred to as an fMDS, and defined as follows:

Definition 7 (fMDS). Given a defined entity e, and its minimal definition
signature Σ, where e ∈ Sig(O) and Σ ⊆ Sig(O), the corresponding fMDS is the
function m : (Σ → e), which, given the entity set Σ, implicitly covers e.

Analogously to functional dependencies, the closure of an fMDS is computed
from the set of all fMDSs, by identifying all relevant MDSs:

Definition 8 (fMDS closure). Given an fMDS mi : (Σ → e), and a set of
fMDSs M where mi ∈ M , the closure of mi is the function m+

i : (Σ → E) such
that

E = Σ ∪ {e} ∪ (
⋃

∀m+RHS
j {mj ∈ M |m+LHS

j ⊆ m+LHS
i })

where m+LHS denotes the signature Σ, and m+RHS refers to signature E.

The closure of a set of fMDSs M is the set M+, where each m+
i ∈ M+ is the

closure of the corresponding mi ∈ M ; this is illustrated by the next example:

Example 4 (fMDS set closure). Let M be a set of fMDS such that

– M = {m1 : (A,B → C),m2 : (B → D)}
– M+ = {m+

1 : (A,B → A,B,C,D),m+
2 : (B → B,D)}

The closure of fMDSs (M+) is computed as follows:

1. m+LHS
1 in addition to implicitly covering concept C, also explicitly covers

concepts A,B, hence m+RHS
1 = mRHS

1 ∪ {A,B};
2. m+

1 implicitly covers D as m+LHS
2 ⊆ m+RHS

1 thus D ∈ m+LHS
1 ;

Minimal Coverage for Ontology Signatures 135

Algorithm 1. ComputeMinimalSignatureCover(O,R,S,M)
Input : O: ontology; S: task signature; R: restricted signature;

M : the complete set of MDSs of each defined entity e ∈ O
Output: C: non-redundant cover set of S w.r.t. R if and only if S ⊆ R+

1 C ← C ∪ ∀e{e ∈ S ∩ R|e �∈ mRHS
i |mi ∈ M}

2 M+ ← Initialise(M)
3 C+ ← ComputeSignatureClosure(C,M+)

4 M+ ← M+\∀mi{mi ∈ M+|mLHS
i ⊆ C+}

5 while (S\C+) �= ∅ do
6 V ← ComputeValueCostVector(M+,S, C+)

7 m′ ← select an m ∈ M+ according to V, with max v(m), and min c(m)

8 C ← C ∪ m′LHS

9 C+ ← ComputeSignatureClosure(C,M)

10 M+ ← M+\({m′} ∪ ∀mi{mi ∈ M+|mLHS
i ⊆ C+})

11 end
12 return C

3. m2 explicitly covers concepts B, hence m+RHS
2 = mRHS

2 ∪ {B};
4. no more MDSs apply, thus the closure is complete.

The cost and value calculation of an fMDS is formalised as follows:

Definition 9 (fMDS value and cost). Given an fMDS m, an ontology O,
a task signature S, a cover set C, and M the complete set of fMDSs in O, where
m,S ⊆ O, the value and cost of m with respect to S and C is given by the value
function v(m) = |R\C+ ∩ m+RHS |, and the cost function c(m) = |C+\mLHS |,
where both v(m) and c(m) assign a natural number i ∈ N0 to m.

Algorithm 1 formalises the approximation approach, which employs two sub-
routines for computing the closure of signatures, and the closure of fMDSs. The
algorithm first applies an optimisation heuristic, which reduces the search space
by initialising cover C with the only explicitly coverable entities of S (line 1).
Next M , which is used as the search space, is initialised with the complete set
of fMDSs. In addition, the process generates an ‘artificial’ MDS and stores it
in M+, for each entity that can be covered both explicitly and implicitly. For
instance, given a concept A, the generated fMDSs is m : (A → A), i.e. the entity
can cover itself. By including such artificial fMDSs that do not originate from
actual MDSs, the algorithm ensures that the search space is complete, i.e. for
each e ∈ S the search space M+ includes all possible ways of cover. The ini-
tialisation is concluded by computing the fMDS set closure (line 2). Before the
process begins the search, C+, the cover closure is computed. This facilitates
the termination condition of the search process (line 5) that halts the algorithm
when S is covered (i.e. S\C+ = ∅). Then M+ is created as a copy of M+, the
former is the actual search space which is continuously pruned at each itera-
tion (to optimise the process, by reducing the search space and subsequently the

136 D. Geleta et al.

effort required to calculate the cost and value scores of fMDSs), while the latter
is left intact for the purpose of computing signature closures during the search.
M+ is pruned out by removing any fMDS whose value (and cost) w.r.t. C is
zero (line 4). During the search (line 5–11), the value and cost of each fMDS in
mi ∈ M+ is evaluated w.r.t. the cover (line 6), then the best fMDS is selected
(line 7) and the LHS of the fMDS (i.e. the MDS) is added to the cover (line 8).
The cover is then reevaluated by updating its closure (line 9), finally M+ is
pruned according to the updated cover set. These steps are repeated until S is
covered, at which point the algorithm returns the completed cover.

The algorithm always finds a non-redundant cover set, this is ensured by the
selection function, and the fact that the entities added to the cover are MDSs,
i.e. already minimal entity sets that are required to cover an other entity. At
the worst case, the process covers at least one entity at each iteration, thus the
maximum number of steps performed by the algorithm is n, where n = |S|. As
both subroutines employed by this algorithm have polynomial time computa-
tional complexity, it holds that the overall complexity is polynomial in the size
of the input as well. Moreover, as both of subroutines terminate, and the halting
condition (line 5) suspends the main loop of Algorithm1 when the cover set is
complete, it follows that the Algorithm 1 also terminates. A more exhaustive
description of the presented algorithms can be found in [5].

5 Empirical Evaluation

In this section, we empirically determine how effective our approximation app-
roach is in finding cover sets. The evaluation tested the hypothesis that the pre-
sented approach (Greedy #2), by considering both explicit and implicit coverage,
produces a cover set that, although not minimal, is still significantly smaller than
cover sets obtained by only explicit coverage. Thus approximations of minimal
cover sets are typically smaller than explicit covers, if the given task signature
contains defined entities w.r.t. a restricted signature (clearly, for a task signature
which lacks defined entities only explicit coverage is possible).

The evaluation corpus was assembled from several semantically rich OWL
ontologies that are commonly used for empirical evaluation in the ontology
matching and alignment negotiation literature. We have selected 7 small ontolo-
gies (average 114.57 concepts and roles, and 307.57 axioms per ontology) from
the Conference dataset1, which describes the conference organisation domain;
and 2 large (average 13397.00 entities, and 14663.00 axioms) ontologies from
the Large biomedical dataset2. For every concept and role in each ontology, we
have pre-computed the definability status and the complete set of MDSs. Table 2
presents a summary of the corpus, showing the DL expressivity, the number of
logical axioms, number of concept and roles (C ∪ R) in the ontology signature,
the ratio of defined entities to all entities (Def%), and the average number of
different MDSs per defined entity (M). Both datasets contain ontologies with
1 http://oaei.ontologymatching.org/2014/conference/index.html.
2 http://oaei.ontologymatching.org/2014/largebio/index.html.

http://oaei.ontologymatching.org/2014/conference/index.html
http://oaei.ontologymatching.org/2014/largebio/index.html

Minimal Coverage for Ontology Signatures 137

Table 2. Comparing ideal covers with approximations produced by approach #2, for
covering the entire ontology signature.

Ontology DL expressivity Axioms (C ∪ R) Def% M Ideal Cover Greedy #2

cov cov Time

Conference corpus

cmt ALCIN (D) 226 88 50.00% 1.09 50.00% 72.73% 3.62 ms

conference ALCHIF(D) 285 123 57.72% 1.54 42.28% 70.73% 11.79 ms

confOf SIN (D) 196 74 12.16% 3.33 87.84% 89.19% 0.43 ms

edas ALCOIN (D) 739 153 26.14% 2.80 73.86% 86.27% 8.70 ms

ekaw SHIN 233 106 28.30% 1.00 71.70% 85.85% 2.30 ms

iasted ALCIN (D) 358 181 17.68% 1.75 82.32% 87.85% 3.18 ms

sigkdd ALEI(D) 116 77 25.97% 1.55 74.03% 81.82% 1.12 ms

AVG. 307.57 114.57 31.14% 1.87 68.86% 82.06% 4.45 ms

LargeBio corpus

NCI fma ALC 9083 6551 29.98% 1.32 70.02% 70.02% 3.09 s

SNOMED fma ALER 20243 13430 21.47% 1.09 78.54% 78.56% 8.64 s

AVG. 14663.00 13397.00 25.72% 1.16 74.28% 74.29% 5.86 s

varying level of definability, as shown by the ratio of defined ontology signature
entities and the number of different MDSs per entity.

The experimental framework was implemented in Java; the OWL API [7]
was used for ontology manipulation; entity definability status, and MDSs were
computed using the OntoDef API [4]. In all experiments, for each task signature,
we have computed cover sets by using the approximation approach. We have
only considered coverable task signatures (i.e. S ⊆ R+), thus in all cases, the
restricted signature R was equivalent to the T-Box signature, while the task
signature S was allocated several differently sized T-Box signature subsets (i.e.
R = Sig(T), and S ⊆ Sig(T)). Varying the composition of only one of the
two signatures simplified both the experiment conduct and the result analysis
process. Experiments were conducted with 8 GB maximum memory allocated
for the JVM, running on a machine equipped with 16 GB RAM and a 4-core
2.9 GHz 64-bit processor architecture.

Experiment 1: Full signature. This experiment compares the size of the
approximated covers to the ideal cover. The only cover which is potentially min-
imal and can be computed efficiently, is obtainable when the task requires the
entire signature of an ontology to be covered (S = Sig(O)). This special case
provides the opportunity to evaluate the difference between an actual, and an
approximated minimal cover set. The ideal cover is obtained by removing all
non-redundant, defined entities from the ontology signature. Considering non-
redundancy in role removal is necessary in order to avoid removing those entities
that are both defined, and provide the only DS to another entity. For example,
the axiom r ≡ s implies that both roles r and s are defined, however removing
both entities from the ideal cover would make them both uncoverable. Table 2
presents the experiment results, showing the size of the cover set in relation to
the an explicit cover (which is always equivalent to the task signature hence
cov = |C|

|S|), while the RHS partition present the result obtained by the greedy

138 D. Geleta et al.

algorithm, in terms of the cover to task signature size ratio, and computation
time (wall time). The approach achieves considerable reduction in all ontologies,
on average the approximated cover is 82.06% of the explicit cover in the Confer-
ence, and 68.86% in the LargeBio corpus (which only falls short by 0.01% from
the optimal solution, i.e. the ideal cover).

Experiment 2: Varying signatures. The second experiment was carried out
using different task signature sizes, in order to assess the reduction provided by a
minimal cover in comparison with the baseline (explicit cover), and to evaluate the
computation time on a wider scale of possible tasks sizes. The experiment included
20 test cases for each ontology, where the task to ontology signature ratio ranged
between 100% and 5%. Due to the fact that cover computation includes a non-
deterministic part, where a random choice is made to select an MDS from a set of
equally good options (MDSs with the same value and cost scores), each test case
was repeated over 100 times (we have tested several different repetition counts,
and by comparing their relative standard deviation established that 100 repeti-
tions were sufficient for both datasets). Figure 1(a, b) presents the cover set cardi-
nality results, where the y-axis represents the approximated minimal cover to task

Fig. 1. Cover set sizes (a, b) and computation times (c, d) in the corpus.

Minimal Coverage for Ontology Signatures 139

signature ratio (|C|
|S|), and the x-axis shows the task signature to ontology signature

ratio (|S|
|Sig(O)|); for brevity, error bars are only shown for the ontologies with the

highest and lowest covers. The approach achieves varying level of reduction in all
ontologies, where the efficiency decreases with the size of the task signature (due
to the lower probability of the signature containing defined entities). Figure 1(c, d)
presents the computation time (wall time) results, where the y-axis shows the time
(either in milliseconds for the Conference, or in seconds for the LargeBio corpus),
and the x-axis shows the task to ontology signature size ratio. The results suggest
that the approach is in practice feasible for both small and large ontologies.

6 Conclusions and Future Work

In this paper, we have introduced and characterised the ontology signature cov-
erage problem, which is a non-polynomial time problem that concerns whether
an ontology signature can be covered by another signature, under a given ontol-
ogy. Furthermore, we have presented and empirically evaluated a novel approach
that, by exploiting the notion of Beth-definability in DL ontologies and using
the pre-computed, complete set of different MDSs, provides a sub-optimal solu-
tion to the minimal signature cover problem. The evaluation has confirmed that,
although the resulting covers are not necessarily minimal, the presented greedy
approximation approach provides significant reduction in cover set size than only
explicit coverage. The approach identifies a single cover, however, there can be
more than one minimal cover set, hence as future work we will explore identifying
multiple covers.

References

1. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

2. Beth, E.W.: On Padoa’s method in the theory of definition. Indagationes Mathe-
maticae 15, 330–339 (1953)

3. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)
4. Geleta, D., Payne, T.R., Tamma, V.: An investigation of definability in ontology

alignment. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW
2016. LNCS (LNAI), vol. 10024, pp. 255–271. Springer, Cham (2016). doi:10.1007/
978-3-319-49004-5 17

5. Geleta, D., Payne, T.R., Tamma, V.: Computing minimal signature coverage
for description logic ontologies. Technical report, ULCS-16-004, University of
Liverpool (2016)

6. Hoogland, E., et al.: Definability and interpolation: model-theoretic investigations.
Institute for Logic, Language and Computation (2001)

7. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

8. Jiménez-Ruiz, E., Payne, T.R., Solimando, A., Tamma, V.: Avoiding alignment-
based conservativity violations through dialogue. In: Proceedings of the OWLED,
vol. 15 (2015)

http://dx.doi.org/10.1007/978-3-319-49004-5_17
http://dx.doi.org/10.1007/978-3-319-49004-5_17

140 D. Geleta et al.

9. Payne, T.R., Tamma, V.: Using preferences in negotiations over ontological cor-
respondences. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.)
PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 319–334. Springer, Cham (2015).
doi:10.1007/978-3-319-25524-8 20

10. Santos, G., Tamma, V., Payne, T.R., Grasso, F.: Dialogue based meaning nego-
tiation. In: The 15th Workshop on Computational Models of Natural Argument
(CMNA 2015) (2015)

11. Ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description
logics. J. Artif. Intell. Res. (JAIR) 48, 347–414 (2013)

12. Van Harmelen, F., Ten Teije, A., Wache, H.: Knowledge engineering rediscovered:
towards reasoning patterns for the semantic web. In: Fensel, D. (ed.) Foundations
for the Web of Information and Services, pp. 57–75. Springer, Heidelberg (2011)

13. Vardi, M.Y.: Fundamentals of dependency theory. IBM Thomas J. Watson
Research Division (1985)

14. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-319-25524-8_20

OWL API for iOS: Early Implementation
and Results

Michele Ruta(B), Floriano Scioscia, Eugenio Di Sciascio, and Ivano Bilenchi

Politecnico di Bari, via E. Orabona 4, 70125 Bari, Italy
{michele.ruta,floriano.scioscia,eugenio.disciascio}@poliba.it,

ivanobilenchi@gmail.com

Abstract. Semantic Web and Internet of Things are progressively con-
verging, but the lack of reasoning tools for mobile devices on the iOS
platform may hinder the progress of this vision. The paper presents an
early redesign of OWL API for iOS. A partial port has been developed,
effective enough to support mobile reasoning engines in a moderately
expressive fragment of OWL 2. Both architecture and mobile-oriented
optimization are sketched and preliminary performance results are dis-
cussed.

1 Introduction and Motivation

Semantic Web technologies are a key enabler of interoperability and intelligent
information processing not only in the WWW, but also in the so-called Internet
of Things (IoT). Application scenarios include supply chain management [5],
(mobile) sensor networks [14], building automation [15] and more. The Semantic
Web and the IoT paradigms are progressively overlapping in the Semantic Web of
Things (SWoT) vision [14,17]. SWoT enables semantic-enhanced pervasive com-
puting by associating informative fragments to multiple heterogeneous micro-
devices in a given environment, each acting as a knowledge micro-repository.
Rather than the batch processing of large ontologies and complex inferences
prevalent in traditional Semantic Web scenarios, SWoT requires quick reason-
ing and query answering on sets of relatively elementary resources, in order
to provide mobile agents with on-the-fly autonomous decision capabilities. The
ever-increasing computing potentialities of mobile devices allow processing of
rich and formally structured information without resorting to centralized nodes
and support infrastructures. For a full accomplishment of this vision, reasoning
engines and library interfaces are needed on the most relevant mobile device
platforms.

iOS is the second largest mobile Operating System (OS) worldwide, with over
1 billion iPhone units sold (as of July 2016 [1]) as well as iPad and iPod Touch
devices. While Android has a larger active device count, iOS has been more
eagerly adopted in business [22]. Higher hardware and OS uniformity, a stricter
security model [12], enterprise IT (Information Technology) department support
tools and a stronger focus on usability are among the reasons. Business sectors

c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): OWLED-ORE 2016, LNCS 10161, pp. 141–152, 2017.
DOI: 10.1007/978-3-319-54627-8 11

142 M. Ruta et al.

ranging from healthcare to sales management and research exhibit a thriving
market of iOS software solutions. Nevertheless, a full adoption of Semantic Web
technologies has not been possible on iOS so far. A recent survey [11] found no
Web Ontology Language (OWL) [21] reasoners implemented in Objective-C or
Swift, the only two languages natively supported on iOS. In fact Java is by far
the most popular implementation language for that. Several reasoners originally
developed for Java Standard Edition have been ported to the Java-based Android
platform so as to run on mobile devices [3]; likewise Java-based reasoning engines
expressly designed for mobile devices also exist, including mTableau [19] and
Mini-ME [18], which work on Java Micro Edition and Android, respectively.
Similarly, all main OWL Knowledge Base (KB) management libraries are Java-
oriented. Among them the OWL API [7] is the most adopted one. Java code
requires a rewriting effort toward Objective-C or Swift in order to be adopted
on iOS (whereas C/C++ list can be reused in Objective-C projects by writing
proper wrappers).

The lack of iOS Semantic Web tools hampers the development of multi-
platform semantic-enabled mobile applications to follow the rapid pace of the
IoT (r)evolution, which may stifle the SWoT vision as a whole [6]. Although
toolkits (such as Oracle Mobile Application Framework1 and Codename One2)
allow cross-platform mobile development in Java language and deployment to
iOS devices, they are affected by various cost, efficiency and inconvenience issues.
Automatic source transpilers from Java to Objective-C (such as J2ObjC 3) also
exist, but they are primarily intended to allow multi-platform projects to share
as much business logic code as possible: transpiling existing software is signif-
icantly harder from a development point of view, especially considering that
library dependencies must be recursively translated, or suitable alternatives need
to be found or developed. Automatic translation is also not very flexible, as the
core architecture of the source project cannot be altered without a considerable
amount of work: this is an issue in this specific case, since significant architec-
tural changes to the OWL API internals are desirable in order to ensure high
performance (both in terms of time and memory) in SWoT scenarios.

In order to allow developing mobile reasoners for iOS, we present here the first
results of porting the OWL API to iOS. This approach was preferred over writing
a new application programming interface because the OWL API is a de facto
standard for manipulating DL KBs and has a large user community. A functional
subset of the OWL API was implemented, able to load and process KBs in an
OWL 2 fragment corresponding to the ALEN Description Logic (DL) –with
the addition of role hierarchies– in RDF/XML syntax. The ported library was
written in Objective-C, to be used by both Objective-C and Swift applications.
It runs on iOS and macOS without modification, as it does not use iOS-specific
APIs. Experimental tests verified the correctness of the implementation and
exhibit satisfactory results also in comparison with the original Java OWL API

1 http://www.oracle.com/technetwork/developer-tools/maf/overview/index.html.
2 https://www.codenameone.com/.
3 http://j2objc.org.

http://www.oracle.com/technetwork/developer-tools/maf/overview/index.html
https://www.codenameone.com/
http://j2objc.org

OWL API for iOS 143

on macOS. The library is released4 as open source under the Eclipse Public
License and can already support a future Mini-ME port for iOS.

The remainder of the paper is as follows: Sect. 2 provides background on the
OWL API and porting strategies, while Sect. 3 describes the developed library;
experimental results are in Sects. 4 and 5 closes the work.

2 Background

The OWL API [7] is the most commonly used front-end for OWL-based Knowl-
edge Base Management Systems (KBMS) [3,11]. Other interfaces include Jena5,
Protégé-OWL API [8] and OWLlink [10]. The Jena library provides ontol-
ogy manipulation APIs for Resource Description Framework (RDF) [16], RDF
Schema (RDFS) [4] and OWL models, and an inference API to support reason-
ing and rule engines. The Protégé-OWL API [8] leverages Jena on OWL and
is particularly effective for developing graphical applications. OWLlink [10] is a
client/server protocol on top of HTTP for KB management and reasoning. The
OWLlink API [13] implements OWLlink on top of the OWL API and therefore
could be also ported to iOS.

The OWL API is a Java library defining a set of interfaces to manipu-
late OWL 2 KBs. It supports loading and saving in several syntaxes, including
RDF/XML, Turtle, the Manchester Syntax and more. The implemented model
gives an abstract representation of concept, property, individual and axiom types
in OWL 2 through four interface hierarchies, all having OWLObject as a com-
mon ancestor. The model interfaces do not depend on any particular concrete
syntax. The OWLOntologyManager interface allows creating, loading, changing
and saving KBs, alleviating the burden of choosing the appropriate parsers and
renderers. Finally, OWLReasoner is the main interface for interacting with OWL
reasoners. It provides methods to check satisfiability of classes or ontologies, to
compute class and property hierarchies and to check whether axioms are entailed
by a KB.

The benefits of porting traditional Semantic Web reasoners like FaCT++ [20]
to mobile platforms should be questioned, as they were designed primarily to run
inference services such as classification and consistency check on large ontolo-
gies and/or expressive DLs. In ubiquitous contexts, ABox reasoning and non-
standard inference services are often more useful, because mobile agents must
provide on-the-fly answers to usually smaller problems in moderately expressive
KBs [18]. On the other hand, importing a C/C++ library for RDF parsing can
be a sensible choice to build an OWL manipulation library or a reasoner. Among
the many available tools, the Redland [2] suite stands out for functional com-
pleteness, standards compliance and code maturity. Other tools like owlcpp [9]
are less suitable for working in an OWL API port, as they only parse individual
RDF triples.

4 GitHub repository: https://github.com/sisinflab-swot/OWL-API-for-iOS.
5 Apache Jena project: https://jena.apache.org/.

https://github.com/sisinflab-swot/OWL-API-for-iOS
https://jena.apache.org/

144 M. Ruta et al.

3 Reasoning on iOS Devices: OWL API Porting

The proposed software is a port of the OWL API version 3.2.4. It was imple-
mented in Objective-C –deemed as more mature and stable than Swift– as an
iOS Framework, i.e., a library easily used by applications through dynamic link-
ing. The following subsections report on the general architecture and devised
performance optimization, respectively.

3.1 Models and Architecture

The OWL API entry point is the OWLManager class implementing the
OWLOntologyManager interface, which allows loading and manipulating a KB.
As shown in Fig. 1, the library architecture includes two basic components, the
OWL Model and the OWL Parser. Java interfaces were translated to the corre-
sponding Objective-C protocols, therefore the Model is interface-wise as the one
of the OWL API. The current version does not model the whole OWL 2 lan-
guage, but a fragment of it exhaustive enough to manage KBs in the ALEN
DL with role hierarchies. In more detail, classes; property restrictions; Boolean
class expressions; object properties; declaration, subclass, disjointness, equiva-
lence, domain, range, class assertion and object property assertion axioms are
modeled.

The Parser module uses the Raptor RDF parser from Redland to deserialize
RDF/XML documents (other syntaxes were not considered at this early stage)

Fig. 1. Main components of the ported library

OWL API for iOS 145

Fig. 2. Detail of the interaction between the Model and Parser modules

into streams of RDF statements. The OWLOntologyManager invokes Raptor
through an OWLRDFXMLParser wrapper, which further processes the RDF state-
ment stream in order to create an in-memory representation of the referenced
OWL constructs and returns a fully populated OWLOntology object. The inter-
action between the Model and Parser modules is detailed in Fig. 2.

OWL ontology parsing from RDF triples does not follow the original OWL
API approach. A simpler and leaner architecture was adopted, particularly fit for
small and medium sized KBs. The implementation of OWLOntology interface is
built through the OWLOntologyInternals class, which is populated incremen-
tally during the parsing. It contains data structures such as maps and sets. As
pictured in Fig. 3, OWLStatementHandlerMap associates each type of statement
to a proper handler, as allowed by the Raptor library. Handlers are implemented
as Objective-C blocks, which are similar to Java lambdas or C function point-
ers. Furthermore, the builder pattern was adopted to create instances within
the Model component incrementally, because OWL axioms can derive from a
variable number of RDF statements.

3.2 Optimization

Optimization effort basically focused on an efficient use of memory, which is the
most constrained resource on mobile devices. Execution time was also profiled
and optimized wherever possible. In what follows followed optimization direc-
tions are outlined.

Architectural optimization. The whole Model component is composed of
immutable objects. This allows having just one copy of every instance in mem-
ory, saving space and time; moreover, it makes the whole component thread-
safe. With immutable objects, object hashes can be cached to speed up the
very frequent accesses to associative data structures. As a further optimiza-
tion, if one guarantees that equal objects have the same memory address, the
address itself is a perfect hash and equality check becomes just a pointer com-
parison. In order to make this property true, the library uses the NSMapTable

146 M. Ruta et al.

Fig. 3. Main objects of the Parser module

class of the Objective-C Foundation framework as hash table, which supports
pointer identity for equality and hashing. NSMapTable was set up to use weak
references to allow de-allocation of unused objects. This approach, however, is
beneficial only in hash tables with low collision rates: this was not found out
to be true for all OWL API model classes. Therefore it was adopted just for
entities (classes, object properties, individuals) and some axioms considered as
performance-critical after profiling tests. These optimizations allowed to roughly
halve the measured parsing turnaround times w.r.t. the initial implementation.
Parsing optimization. During the parsing process, each RDF triple is wrapped
in a RDFStatement instance, which is discarded as soon as it is not used anymore.

OWL API for iOS 147

Furthermore, builders cache the objects they populated, saving both time and
memory (in case of similar but not identical instances). Finally, axiom builders
are de-allocated in groups: this reduced the observed memory usage peak during
parsing by about 30% in preliminary tests.

4 Experiments

The formal correctness and completeness of results provided by the iOS library
was evaluated on a set of 34 KBs, obtained from the 2012 OWL Reasoner Evalua-
tion Workshop reference dataset6 considering all the KBs in the supported AL ,
AL+ and ALE DLs. The original Java OWL API 3.2.4 was leveraged as a
test oracle. After parsing, the following tests were performed against each KB
as significant examples: (i) retrieval of all axioms; (ii) retrieval of all axioms of a
given kind; (iii) retrieval of all classes, individuals and properties; (iv) retrieval
of all disjoint, equivalent and subclass axioms. The iOS library correctly parsed
every KB in the test set, and the returned output of all retrieval tasks proved
to be equivalent to the Java OWL API.

Performance evaluation was carried out on a subset of the KBs used for
the correctness tests, reported in Table 1. They were selected because they are
representative of both traditional and SWoT scenarios, while allowing to sample
the performance of the iOS library when working with KBs of varying size. For
each KB, three tests were performed: (i) parsing turnaround time; (ii) memory
usage peak; (iii) query turnaround time. Each test was repeated five times: for
turnaround time tests, the average of all runs was taken. For memory tests, the
final result is the average of the last four runs, in order to consider a worst-case
scenario due to potential memory leaks. Test devices are listed in Table 2.

Table 1. Knowledge bases used in the performance tests.

Knowledge base DL Category Axioms Size (kB)

spider anatomy.owl ALE Small 1392 187

brenda.owl ALE Medium 14262 1515

mammalian phenotype.owl AL+ Large 46081 4289

teleost taxonomy.owl AL Large 195351 21878

Figure 4 shows the results of parsing turnaround time tests: times grow lin-
early with the size of the parsed ontologies, and small-to-medium ontologies are
parsed in about one second or less on devices more than two years old (iPhone
5s). This result is aligned with the performance goals of a mobile reasoner, espe-
cially considering that parsing only happens once per usage session, rather than
each time a query is submitted to the reasoner.

6 http://www.cs.ox.ac.uk/isg/conferences/ORE2012/.

http://www.cs.ox.ac.uk/isg/conferences/ORE2012/

148 M. Ruta et al.

Table 2. Devices used for performance evaluation.

Device OS CPU Arch. RAM

Retina MacBook OS X 10.11.5 Intel Core i7- 64 bit 16 GB DDR3@

Pro 2014 4870HQ@2.5 GHz 1600 MHz

iPhone 6s iOS 9.0.2 Apple A9@1.8 GHz 64 bit 2 GB LPDDR4

iPhone 5s iOS 9.3.2 Apple A7@1.3 GHz 64 bit 1 GB LPDDR3

iPhone 5 iOS 9.3.2 Apple A6@1.3 GHz 32 bit 1 GB LPDDR2E

Fig. 4. iOS API parsing turnaround time (ms).

Fig. 5. Comparison of the parsing turnaround time between the iOS API and OWL
API (ms).

Figure 5 compares parsing times provided by the iOS API with OWL API
on the MacBook Pro testbed. First-run results were considered in this test only,
in order to evaluate parsing performance in real usage, since a KB is usually
loaded once and queried multiple times. Subsequent runs would provide less
realistic results due to in-memory caching. The iOS API shows competitive per-
formance on every test KB, outperforming the OWL API when parsing the small
to medium-large ones.

Figure 6 reports on memory usage peak during parsing, which grows linearly
with the size of the parsed ontology. Measured values are roughly similar on
MacBook Pro, iPhone 6s and iPhone 5s, while they are about 40% lower on

OWL API for iOS 149

Fig. 6. Memory peak while parsing (MB).

Fig. 7. Memory usage (MB) as a function of time (s).

iPhone 5: this is likely due to it being the only 32-bit device among the four.
The results of this test were overall satisfactory, since the required memory is
consistent with RAM availability of modern iOS devices.

Figure 7 shows the memory usage trend while parsing and querying the
largest KB in the test set (teleost taxonomy.owl) on iPhone 6s. Four phases
can be pinpointed: memory usage raises and reaches its peak value during the
parsing phase; during the steady phase the KB is fully loaded and can be
queried; memory is released when the KB is de-allocated .

Figure 8 shows the turnaround times for the retrieval of all classes in the
ontology. This specific query is unrealistic, but it was chosen nonetheless as a
stress test for the library. As also seen in the previous tests, times grow linearly
with the size of the queried ontology. In order to contextualize the obtained
results, query times were compared to OWL API on the MacBook Pro testbed: as
reported in Fig. 9, the iOS API outperformed OWL API on every test ontology,
confirming its suitability to be used in mobile and pervasive scenarios.

150 M. Ruta et al.

Fig. 8. All classes retrieval query turnaround time (µs).

Fig. 9. Comparison of the turnaround time for all classes retrieval query between the
iOS API and OWL API (µs).

5 Conclusion and Future Work

The paper presented early results of porting the OWL API to Objective-C,
targeting mobile reasoning on the iOS platform. The developed library can run
unmodified also on macOS. Early experiments on a small set of ontologies showed
correctness of implementation and satisfactory performance in KB parsing and
manipulation.

In its current form, the proposed library is ready to support the port of the
Mini-ME mobile matchmaking and reasoning engine [18] to iOS, which was the
main motivation for the endeavor and is the first planned future work. As a
further hope, it will benefit the community as a whole and –possibly with the
help of other developers– will grow toward a complete port, aligned with latest
OWL API version.

Acknowledgment. The authors acknowledge partial support of Apulia region clus-
ter project PERSON (PERvasive game for perSOnalized treatment of cognitive and
functional deficits associated with chronic and Neurodegenerative diseases).

OWL API for iOS 151

References

1. Apple Inc.: Apple celebrates one billion iPhones. http://www.apple.com/
newsroom/2016/07/apple-celebrates-one-billion-iphones.html. Accessed 15 Sep
2016

2. Beckett, D.: The design and implementation of the Redland RDF application
framework. Comput. Netw. 39(5), 577–588 (2002)

3. Bobed, C., Yus, R., Bobillo, F., Mena, E.: Semantic reasoning on mobile devices:
do Androids dream of efficient reasoners? Web Semant. Sci. Serv. Agents World
Wide Web 35, 167–183 (2015)

4. Brickley, D., Guha, R.V.: RDF schema 1.1. W3C Recommendation 25, 2004–2014
(2014). https://www.w3.org/TR/rdf-schema/

5. Giannakis, M., Giannakis, M., Louis, M., Louis, M.: A multi-agent based system
with big data processing for enhanced supply chain agility. J. Enterp. Inf. Manage.
29(5), 706–727 (2016)

6. Hillerbrand, E.: Semantic web and business: reaching a tipping point? In: Work-
man, M. (ed.) Semantic Web: Implications for Technologies and Business Practices.
Springer, Heidelberg (2016)

7. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

8. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plu-
gin: an open development environment for semantic web applications. In: McIl-
raith, S.A., Plexousakis, D., Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
229–243. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30475-3 17

9. Levin, M.K., Cowell, L.G.: owlcpp: a C++ library for working with OWL ontolo-
gies. J. Biomed. Semant. 6(1), 1 (2015)

10. Liebig, T., Luther, M., Noppens, O., Wessel, M.: Owllink. Semant. Web 2(1), 23–32
(2011)

11. Matentzoglu, N., Leo, J., Hudhra, V., Sattler, U., Parsia, B.: A survey of cur-
rent, stand-alone OWL reasoners. In: Informal Proceedings of the 4th International
Workshop on OWL Reasoner Evaluation, vol. 1387 (2015)

12. Mohamed, I., Patel, D.: Android vs iOS security: a comparative study. In: 2015 12th
International Conference on Information Technology - New Generations (ITNG),
pp. 725–730 (2015). doi:10.1109/ITNG.2015.123

13. Noppens, O., Luther, M., Liebig, T., Wagner, M., Paolucci, M.: Ontology-
supported preference handling for mobile music selection. In: Proceedings of the
Multidisciplinary Workshop on Advances in Preference Handling, Riva del Garda,
Italy (2006)

14. Pfisterer, D., Römer, K., Bimschas, D., Kleine, O., Mietz, R., Truong, C., Hase-
mann, H., Kröller, A., Pagel, M., Hauswirth, M., et al.: SPITFIRE: toward a
semantic web of things. IEEE Commun. Magaz. 49(11), 40–48 (2011)

15. Ploennigs, J., Schumann, A., Lécué, F.: Adapting semantic sensor networks for
smart building diagnosis. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797,
pp. 308–323. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11915-1 20

16. Schreiber, G., Raimond, Y.: RDF 1.1 Primer. W3C Working Group Note (2014).
https://www.w3.org/TR/rdf11-primer/

17. Scioscia, F., Ruta, M.: Building a semantic web of things: issues and perspectives
in information compression. In: Semantic Web Information Management (SWIM
2009), Proceedings of the 3rd IEEE International Conference on Semantic Com-
puting (ICSC 2009), pp. 589–594. IEEE Computer Society (2009)

http://www.apple.com/newsroom/2016/07/apple-celebrates-one-billion-iphones.html
http://www.apple.com/newsroom/2016/07/apple-celebrates-one-billion-iphones.html
https://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1007/978-3-540-30475-3_17
http://dx.doi.org/10.1109/ITNG.2015.123
http://dx.doi.org/10.1007/978-3-319-11915-1_20
https://www.w3.org/TR/rdf11-primer/

152 M. Ruta et al.

18. Scioscia, F., Ruta, M., Loseto, G., Gramegna, F., Ieva, S., Pinto, A., Di Sciascio,
E.: A mobile matchmaker for the ubiquitous semantic web. Int. J. Semant. Web
Inf. Syst. (IJSWIS) 10(4), 77–100 (2014)

19. Steller, L., Krishnaswamy, S.: Pervasive service discovery: mTableaux mobile rea-
soning. In: International Conference on Semantic Systems (I-Semantics), Graz,
Austria (2008)

20. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006). doi:10.1007/11814771 26

21. W3C OWL Working Group: OWL 2 Web Ontology Language Document
Overview (Second Edition), W3C Recommendation (2012). https://www.w3.org/
TR/owl2-overview/

22. Weiß, F., Leimeister, J.M.: Why can’t i use my iphone at work?: managing con-
sumerization of IT at a multi-national organization. J. Inf. Technol. Teach. Cases
4(1), 11–19 (2014). doi:10.1057/jittc.2013.3

http://dx.doi.org/10.1007/11814771_26
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1057/jittc.2013.3

Author Index

Adlemo, Anders 82

Bailoni, Tania 15
Baset, Sohaila 1
Bilenchi, Ivano 141
Bonte, Pieter 115

De Turck, Filip 115
Della Valle, Emanuele 115
Di Sciascio, Eugenio 141
Dragoni, Mauro 15

Eccher, Claudio 15

García-Castro, Raúl 95
Geleta, David 128
Ghahremanlou, Lida 70
Gómez-Pérez, Asunción 95
Guerini, Marco 15

Ismail, Muhammad 82

Johansson, Mats 82

Keil, Jan Martin 40
Kurdi, Ghader 24

Magee, Liam 70
Maimone, Rosa 15
Mannens, Erik 115
Mihindukulasooriya, Nandana 95

Ongenae, Femke 115

Parsia, Bijan 24
Payne, Terry R. 128
Peroni, Silvio 55
Poveda-Villalón, María 95

Ruta, Michele 141

Sattler, Uli 24
Schindler, Sirko 40
Scioscia, Floriano 141
Steinberg, Markus D. 40
Stoffel, Kilian 1

Tamma, Valentina 128
Tan, He 82
Tarasov, Vladimir 82
Thom, James A. 70
Tommasini, Riccardo 115

	Preface
	Organization
	Contents
	OntoJIT: Parsing Native OWL DL into Executable Ontologies in an Object Oriented Paradigm
	1 Background and Motivation
	2 Preliminaries
	2.1 Executable Ontologies
	2.2 Meta Programming in Strongly Typed Languages

	3 OntoJIT Parser
	3.1 Parsing OWL Files
	3.2 OWL to OOP Mapping

	4 Demonstrations
	5 Limitations
	5.1 Multiple Inheritance
	5.2 Import Closure

	6 Related Work
	7 Conclusion and Future Work
	References

	Healthy Lifestyle Support: The PerKApp Ontology
	1 Introduction
	2 Related Work
	3 The PerKApp Project
	4 The PerKApp Ontology
	4.1 Diet-Oriented Concepts
	4.2 Rule-Support Concepts
	4.3 User Information

	5 The PerKApp Ontology in Action
	6 Conclusions and Future Work
	References

	An Experimental Evaluation of Automatically Generated Multiple Choice Questions from Ontologies
	1 Introduction
	2 Materials and Methods
	2.1 MCQ Generation
	2.2 Sample Selection
	2.3 Evaluation Criteria

	3 MCQ Evaluation: Results and Discussion
	3.1 Grammatical Correctness
	3.2 Syntactic Clues
	3.3 Syntactic Consistency
	3.4 Semantic Homogeneity
	3.5 Clustered Distractors
	3.6 Level of Repairs

	4 Conclusion
	A Question Categories
	B Example Questions
	References

	Use Cases and Suitability Metrics for Unit Ontologies
	1 Introduction
	2 Related Work
	3 Use Cases
	4 Methods
	5 Results
	6 Conclusion
	References

	A Simplified Agile Methodology for Ontology Development
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Step 1: Define a New Test Case
	3.2 Step 2: Merge the Current Model with the Modelet
	3.3 Step 3: Refactor the Current Model
	3.4 Output of an Iteration

	4 Experiment
	5 Related Works
	6 Conclusions
	References

	Using Ontology Design Patterns to Represent Sustainability Indicator Sets
	1 Introduction
	2 Related Work
	2.1 Ontologies and Taxonomies Used in Sustainability Indicator Sets
	2.2 Ontology Design Patterns

	3 Sustainability Indicator Sets Ontology Development
	3.1 Extracting Foundational Concepts
	3.2 Modelling Problems
	3.3 Ontology Design Patterns Solution

	4 Discussion
	5 Conclusion and Future Work
	References

	Application of Inference Rules to a Software Requirements Ontology to Generate Software Test Cases
	1 Introduction
	2 Approach to Test Case Generation
	2.1 Representation of Requirements with Requirements Specification Ontology
	2.2 OWL-to-Prolog Translation
	2.3 Deriving Test Cases from the Ontology with Inference Rules

	3 Experiment and Evaluation
	4 Related Work
	5 Conclusions
	References

	Collaborative Ontology Evolution and Data Quality - An Empirical Analysis
	1 Introduction
	2 Ontology Evolution
	2.1 Quality Issues Caused by Ontology Evolution

	3 Approach
	3.1 Ontology Selection
	3.2 Data Extraction Process

	4 Analysis
	4.1 Ontology Development Process
	4.2 Community
	4.3 Ontology Change Analysis
	4.4 Comparison of the Evolution of Four Ontologies

	5 Conclusions and Future Work
	References

	Towards Ontology-Based Event Processing
	1 Introduction
	2 Background and Related Work
	3 Use Case
	4 Ontology-Based Event Processing Language
	4.1 Semantic Event Representations
	4.2 Capturing Time Relations
	4.3 Description Logic Event Processing

	5 Ontology-Based Event Processing Architecture
	6 Discussion and Conclusion
	References

	Minimal Coverage for Ontology Signatures
	1 Introduction
	2 Background
	3 The Signature Coverage Problem
	4 Approximating Minimal Cover Sets
	5 Empirical Evaluation
	6 Conclusions and Future Work
	References

	OWL API for iOS: Early Implementation and Results
	1 Introduction and Motivation
	2 Background
	3 Reasoning on iOS Devices: OWL API Porting
	3.1 Models and Architecture
	3.2 Optimization

	4 Experiments
	5 Conclusion and Future Work
	References

	Author Index

