
< № о о ? .< /

ъя
W e b E n a b l e d C o m m e r c i a l A p p l i c a t i o n s

D e v e l o p m e n t U s i n g . . .

H T M L , D H T M L ,

J a v a S c r i p t , P e r l C G I
3 r d R e v i s e d E d i t i o n

By Ivan Bayross

Toshkent Axborot Texnolofiiyalari UniversitetAxborot Texn0 i0 "i

n . 2 Z £ £
Axborot Resurs Markazi

ц^ВРВ PUBLICATIONS
« S i r 1 B-14, CONNAUGHT PLACE, NEW DELHI-1

F IR S T IN D IA N E D IT IO N 2 005

MICRO MEDIA
Shop No. 5, Mahendra Chambers, 150 D.N. Road,
Next to Capital Cinema V.T. (C.S.T.) Station,
MUMBAI-400001 Ph.: 22078296,22078297

BPB PUBLICATIONS
B-14, Connaught Place, NEW DELHI-110001
Phone: 23325760,23723393,23737742

INFO TECH
G-2, Sidhartha Building, 96 Nehru Place,
NEW DELHI-110019
Phone: 26438245,26415092,26234208

INFO TECH
Shop No. 2, F-38, South Extension Part-1
NEW DELHI-110049
Phone: 24691288,24641941

BPB BOOK CENTRE
376, Old Lajpat Rai Market,
DELHI-110006 PHONE: 23861747

NOTE: THE CD-ROM INCLUDED WITH THE
BOOK HAS N0 COMMERCIAL VALUE AND

CANNOT RE SOLD SEPARATELY.
Copyright © BPB PUBLICATIONS

All Righi.s Reserved. No part of this publication can be stored in any retrieval system or

reproduced in any form or by any means without the prior written permission of the publishers.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The Author and Publisher of this book have tried their best to ensure that the programmes, procedures

and functions described in the book are correct. However, the author and the publishers make no

warranty of any kind, expressed or implied, with regard to these programmes or the documentation

contained in the book. The author and publishers shall not be liable in any event of any damages,

incidental or consequential, in connection with, or arising out of the furnishing, performance or use

of these programmes, procedures and functions. Product name mentioned are used for identification

purposes only and may be trademarks of their respective companies.

All trademarks referred to in the book are acknowledged as properties of their respective owners.

D is tr ib u to rs :

MICRO BOOK CENTRE
2, City Centre, CG Road,
Near Swastic Char Rasta,
AHMEDABAD-380009 Phone: 26421611

COMPUTER BOOK CENTRE
12, Shrungar Shopping Centre, M.G. Road,
BANGALORE-560001 Phone: 5587923,5584641

MICRO BOOKS
Shanti Niketan Building, 8, Camac Street,
KOLKATTA-700017 Phone: 22826518,22826519

BUSINESS PROMOTION BUREAU
8/1, Ritchie Street, Mount Road,
CHENNAI-600002 Phone: 28410796,28550491

DECCAN AGENCIES
4-3-329, Bank Street,
HYDERABAD-500195 Phone: 24756400,24756967

Price : Rs. 390/-

ISBN 81-8333-008-8

Published by Manish Jain for BPB Publications, B-14, Connaught Place,

New Delhi-110 001 and Printed by him at Pressworks, New Delhi.

f t y i t W ' C n d

All programmers know that programming for the Internet is the place to be. This employment

window will be open for several years. Being a new and ever evolving environment to code in it

will retain its fascination for a long long time.

It really is a fairly traditional Client / Server programming environment. However, separate

programming environments are used for Client and Server side programming. This is a strange

break from the traditional Client / Server programming environments where both the Client and

Server side programming environments have been created by the same vendor.

This I believe is in keeping with the Internet. My perception of the Internet is a huge number of

heterogeneous computers with heterogeneous operating systems and programming

environments all working together in complete harmony. Hence, if the Client side-programming

environment is different from the Server side-programming environment, so be it.

The traditional Client side-programming environment for the Internet is HTML, DHTML, and

JavaScript. The traditional Server side-programming environment being CGI scripting using PERL.

Using this rather strange mix for programming environments interactive web sites can be created

and deployed on the Internet. There are many books written that cover these environments, so

what makes this book different?

Its written in such a way:

□ That you will gradually build a static web site using HTML

□ Move this skill upward by creating an interactive web site using JavaScript

□ Finally, shift to Server side data processing by creating CGI scripts written in PERL.

By the end of your studies and working through the examples in the book a lot of the skills you

require to create sound, User interactive Web Sites will be firmly in place. Growth beyond this is

by surfing the web and trying to figure out how specific functionality was brought to a website.

There are also a very large number of web sites on the Internet that give away excellent PERL

CGI scripts for free. Download these scripts, open them in any ASCII editor (Notepad is a good

one) and decipher how they work. Most of these freebies are very well documented using 'Rem'

statements in the code block or have complete 'Help' files in HTML or PDF (Acrobat Reader files)

format. This will really make you fly.

Every single programming technique using HTML, DHTML, JavaScript, PERL CGI has not been

covered. Indeed if I try to actually do that I would fail since I believe that I myself have not

encountered every single HTML, DHTML, JavaScript, PERL CGI programming problem. However,

I have chosen several key areas in commercial web site development and tried to address a set

of issues that most commercial web site developers require.

Concepts are built using simple language. Examples have easily understood logic. Once this is

grasped the skill gained must allow any commercial application developer to create an interactive

website very very quickly.

I've enclosed a CD-ROM with all the code examples used in the book. I've also added several

useful goodies to help you create your first few web sites. I've also added several web site

snippets, which would help give you a direction when you are creating you're a web site for the

first time.

Having said this I must add that the very best way to create a good, user interactive web site is

by surfing the Internet constantly and checking out web site's that interest you. Try and figure

how the web site was coded to provide the functionally that it actually has.

My approach, (where possible) right click on an interesting web page and 'View Source'. This will

give you an unparalleled insight into the coding techniques used by others to create the web site.

This foreword will not be complete without my thanking the many people who encouraged me

and put up with the many revisions and updations of the manuscript with patience and tolerance.

My sincere THANKS go to:

□ My publisher Mr. Manish Jain. He has brought enormous changes in my life. This is a debt

of gratitude I will never be able to pay in full.

□ Mr. Sharanam Shah, the Tech lead on this project, and a friend, you've done a really splendid

job, thanks for all the planning and effort that went into this.

□. To Jennifer Rodrigues, who traveled from Panvel each day, tested each example in this book

and formatted this book to my complete satisfaction. Jennifer, honestly this book would have

never made it without you and the tender, loving, care you gave it.

□ Mr. Austin Fernandes who criticized the flow of topics in this book and forced Jennifer and I

to rearrange chapter and chapter content several times.

□ Mrs. Vaishali Shah who tested the logic flow, grabbed the screens for much of the material.

Your attention to detail was superb, you've done a really terrific job.

□ Mr. Hansel Colaco who is in charge of quality control. Who personally took care that

everything in the manuscript was rigidly bound to the specifications of our quality manual.

You've done a really fine job.

□ The many programmers who read this material, without you all.I would not be an author. I

welcome both your brickbats and bouquets. You can contact me via BpB, New Delhi, else you

could check out my web site appropriately named ivanbayross.com. Regretfully it's forever in

a development stage.

□ Finally, my wife Cynthia who has always encouraged me whenever I thought that I'd never

get this manuscript ready for publishing. You have always helped to keep my feet firmly on

the ground, with you I am truly blessed.

I v a n N . B a y ro s s

T A B L E O F C O N T E N T S

SECTION - 1: Hyper Text Markup Language

1. INTERNET BASICS...1

BASIC CONCEPTS.... ... 1

COMMUNICATING ON THE INTERNET... 2

INTERNET DOMAINS........;............ ...4

INTERNET SERVER IDENTITIES.. 4

Registering A Virtual Domain With InterNIC...4
Domain Name Extension...5

ESTABLISHING CONNECTIVITY ON THE INTERNET...5

CLIENT IP ADDRESS...6

How Client IP Addresses Are Assigned.. 6
How ISP ’s Achieve The Task O f Assigning IP Addresses..6
Getting A Temporary IP Address... 6

HOW IP ADDRESSING CAME INTO EXISTENCE?-......................... .. 7

A BRIEF OVERVIEW OF TCP/IP AND ITS SERVICES...8

Internet Protocol...9
TRANSMISSION CONTROL PROTOCOL.. 10

World Wide Web...10
FTP :.. 10
TELNET.. II

SELF REVIEW QUESTIONS...11

2. INTRODUCTION TO H T M L..12

INFORMATION FILES CREATION.. 12

WEB SERVER... 12

WEB CLIENT / BROWSER..13

Understanding How A Browser Communicates With A Web Server...13

Establish Connection..13

Client Issues A Request And Server Sends A Response...14

Server Terminates The Connection... 15

HYPER TEXT MARKUP LANGUAGE (HTML)...15

HTML Tags... 15
Paired Tags.. 15
Singular Tags... 15

COMMONLY USED HTML COMMANDS... 19

The Structure O f An HTML program ..19
Document Head...19

Document Body..20

TITLES AND FOOTERS.. ,..21

Title................21

. Footer..21

TEXT FORMATTING..21

Paragraph breaks..21

Line Breaks.. 22

EMPHASIZING MATERIAL IN A WEB PAGE...................... ..24

Heading Styles... 24

Drawing Lines...24

TEXT STYLES... 25

Bold... >.....................25

Italics... 25

Underline... 25

OTHER TEXT EFFECTS...27

Centering (Text, Images etc.)....... ,..-27

Spacing (Indenting Text)..27
SELF REVIEW QUESTIONS..30

HANDS ON EXERCISES..31

3. LISTS...32

TYPES OF LISTS..32

Unordered List (Bullets).................... 32
Ordered Lists (Numbering)..32
Definition L ists.. 33

SELF REVIEW QUESTIONS..35

HANDS ON EXERCISE... 36

4. ADDING GRAPHICS TO HTML DOCUMENTS..37

USING THE BORDER ATTRIBUTE..37

USING THE WIDTH AND HEIGHT ATTRIBUTE..38

USING THE ALIGN ATTRIBUTE..38

USING THE ALT ATTRIBUTE..................................... ..39

SELF REVIEW QUESTIONS..42

HANDS ON EXERCISE................... ... 43

5. TABLES.. ...44

INTRODUCTION... .. 44

The Caption Tag .. 44
USING THE WIDTH AND BORDER ATTRIBUTE... 45

USING THE CELLPADDING ATTRIBUTE...46

USING THE CELLSPACING ATTRIBUTE......................... ...46

USING THE BGCOLOR ATTRIBUTE...47

USING THE COLSPAN AND ROWSPAN ATTRIBUTES... 47

SELF REVIEW QUESTIONS..51

HANDS ON EXERCISES.. 52

6. LINKING DOCUMENTS... 53

LINKS..53

External Document References..53
Internal document references..54
Hyper Linking To A HTML File (Starting At The Beginning O f The Document).................................55
Linking To A Particular Location In A Separate Document... 56

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, TQC

PAGfc 11 JAVASCRIPT, DHTML AND PERL

IMAGES AS HYPERLINKS.. 57

Image Maps..58
SELF REVIEW QUESTIONS...66

h a n d s o n e x e r c is e s ... «..66

7. FRAM ES............ .. 68

INTRODUCTION TO FRAMES.. 68

The <FRAMESET Tag........ *...68
The '-FRAME ■ Tag ...68
Targeting Named Frames ...69

SELF REVIEW QUESTIONS.. 77

HANDS ON EXERCISES...77

A - PROJECTS IN H T M L..79

Project Specifications For The First Project in HTML...79
Project Specifications For The Second Project In HTML...87
Project Specifications For The Third Project In HTML..93
Project Spécifications For The Fourth Project In HTML...98

ANSWERS TO SELF REVIEW QUESTIONS.. 110

SOLUTIONS TO HANDS ON EXERCISES...112

SECTION - II: JavaScript

8. INTRODUCTION TO JAVASCRIPT ...117

JAVASCRIPT IN WEB PAGES... 117

Netscape and JavaScript..1/8
Database Connectivity......... .. 118
Client side JavaScript...118
Capturing User Input... 118

JAVASCRIPT.. 119

The Advantages O f JavaScript..119
WRITING JAVASCRIPT INTO HTML.. 121

BASIC PROGRAMMING TECHNIQUES.. 121

Data Types And L iteral... :....................................... 122
Number... :...122

Boolean... 122

String...122

Null... 123

Type Casting... 123
Creating Variables............ 123
Incorporating Variables In A Script.. 124
The JavaScript Array..124

Dense Arrays.. 125

The Elements O f An Array...126

The JavaScript Array and its length Property............................... ... 126

TOC TABLE OF CONTENTS PAGE iii

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

OPERATORS AND EXPRESSIONS IN JAVASCRIPT....... ... 126

Arithmetic Operators... 127
Logical Operators..127
Comparison Operators..128
String Operators..128
Assignment Operators...128

The Conditional Expression Ternary Operator.. 128
Special Operators... *...129

The delete Operator...129

The new Operator..129

The void Operator..129

JAVASCRIPT PROGRAMMING CONSTRUCTS.. 129

CONDITIONAL CHECKING..130

The i f - then - else Statement.. 130
Immediate i f (Conditional expression).. 131

SUPER CONTROLLED - ENDLESS LOOPS.. 131

For Loop .. 131
While Loop... '...132

FUNCTIONS IN JAVASCRIPT... 132

Built-in Functions.. 132
USER DEFINED FUNCTIONS.... ... 133

Declaring Functions.................................. ... 133
Place O f Declaration... 133

Passing Parameters... 134
Variable Scope... 135
Return Values........ :......................... ...135
Recursive Functions... 136

PLACING TEXT IN A BROWSER...136

DIALOG BOXES.. 137

The Alert Dialog Box ... 137
The Prompt Dialog Box ...138

The Confirm Dialog Box.. 139
SELF REVIEW QUESTIONS..141

HANDS ON EXERCISES...... ... 142

9. THE JAVASCRIPT DOCUMENT OBJECT M ODEL.. 143

INTRODUCTION... ..143

Instance.................... ..144
Hierarchy.. 144

THE JAVASCRIPT ASSISTED STYLE SHEETS DOM [JSSS DOM]:..144

UNDERSTANDING OBJECTS IN HTML..145

Properties O f HTML Objects... 145
Methods O f HTML Objects.. 146

BROWSER OBJECTS.. 146

THE WEB PAGE HTML OBJECT HIERARCHY..148

Access To Elements O f A Web P age ... 148
How A Web Page Element Is Manipulated..,..149

HANDLING (WEB PAGE) EVENTS USING JAVASCRIPT... 149

Named JavaScript Event Handlers.. 150
SELF REVIEW QUESTIONS..151

HANDS ON EXERCISES.. 152

TOC TABLE OF CONTENTS PAGE v

10. FORMS USED BY A WEB SITE ...153

THE FORM OBJECT.. ... 153

The Form Object’s Methods..... ...158
Properties O f Form Elements..159

Methods of Form Elements... 160

The Text Element...161
The Password Element... 161
The Button Element.. 162
The Submit (Button) Element..¡64
The Reset (Button) Element..164
The Checkbox Element.. .. ¡66
The Radio Element..................... ¡68
The Text Area Element... ..¡70
The Select And Option Elements.. 170

''Multi Choice Select Lists...171

OTHER BUILT-IN OBJECTS IN JAVACRIPT.. 174

The String Object.. 174
The Math Object... 175
The Date Object.. 175

USER DEFINED OBJECTS..177

Creating A User Defined Object........ 177
Instances... 178

Objects Within Objects..'... 1..........178
SELF REVIEW QUESTIONS...182

HANDS ON EXERCISES...183

11. C O O K IE S ... 184

WHAT ARE COOKIES... ... 184

SETTING A COOKIE... 184

SELF REVIEW QUESTIONS.............................. 186

B - PROJECTS IN JAVASCRIPT..187

Project Specifications For The First Project In JavaScript - Guest B ook ..187
Project Specifications For The First Project In JavaScript - Pen P als..189
Project Specifications For The First Project In JavaScript - Registration Form193

ANSWERS TO SELF REVIEW QUESTIONS...199

SOLUTIONS TO HANDS ON EXERCISES... 200

SECTION - III: Dynamic Hyper Text Markup Language

12. DYNAMIC HTM L.................................... ...205

CASCADING STYLE SHEETS..205

Font Attributes.. 206
Use O f Font Attributes...206

Color And Background Attributes..206
Use O f Color And Background Attributes.. 207

Text Attributes.. 207
Use of Text Attributes..208

Border Attributes...209
Use O f Border Attributes.. ..209

Margin Related Attributes.... ..209
Use O f Margin Attributes..210

List Attributes..210
Use O f List Attributes..210

CLASS... 211

Use O f Class.. 211

USING THE ... TAG.. 212

EXTERNAL STYLE SHEETS... ...213

Use Of External Style Sheet... 213

w o r k in g W ith j a v a s c r ip t s t y le s h e e ts [jsss]..... , ... 214

USING THE <DIV>...</DIV> TAG............. ...215

Use O f DIVs.. 215

Use OfThe DIV Tag And Visibility Property.. 216

LAYERS........................... ..217

Layer Attributes............ .. 217
Layer Methods... 217
Layer Event Handlers..218

Use O f Layers.. 218

Inflow Layers................./... :................................. 219
Inflow Layers: Without Layers... 219

Inflow Layers: Use O f Layers.. 219

Use O f Drag And Drop..221

TO MOVE FORWARD.. 223

SELF REVIEW QUESTIONS..223

HANDS ON EXERCISES.................... ...224

ANSWERS TO SELF REVIEW QUESTIONS... 225

SOLUTIONS TO HANDS ON EXERCISES...226

SECTION - IV: CGI-PERL

13. COMMON GATEWAY INTERFACE CONCEPTS.. 228

WHAT IS THE COMMON GATEWAY INTERFACE?.. 228

Why is CGI used? .. 228
CGI - HOW IT WORKS.. ,..229

How information is transferred from the Web Browser to a CGI program ;.........229
The GET Method..:..229

The POST Method... 230

How a CGI URL is interpreted by the Web Server... 230
Environment Variables..................... .. 230
How A CGI Program Returns Information To The Server... 231
Processing HTML Form Information In A CGI Program .. 231
What Is A CGI Program?'..232

PROGRAMMING LANGUAGES........................,...232

Why PERL For CGI?... 232
SELF REVIEW QUESTIONS...,....... 232

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, -

JAVASCRIPT, DHTML AND PERL

TOC TABLE OF CONTENTS PAGE vii

14. THE PERL LANGUAGE..233

AN INTRODUCTION.. 233

INSTALLING AND SETTING UP PERL......................... ..233

Starting The Install Process OF PERL.. 233
Binding The PERL Installed With Apache2... 235
Registering The Changes Made In The httpd.confWith A pache2235
Testing the PERL Setup...,..235
Changes in the httpd.conf File For The Framework... 236

PERL BASICS... 236

PERL STRINGS... 236

Double Quoted Strings:.................................... _... :................236
Single Quoted Strings.. .. 237
Back Quoted Strings...237

THE NEED FOR DATA STORAGE.. 238

Variables.. 238
Scalar Variables.. 238

What is a Scalar Variable?..238

Defining Scalar Variables...238

Arrays...239

Indexed Arrays...239

Hash Arrays.. 240

ENVIRONMENT VARIABLES AND THE %ENV SPECIAL HASH ARRAY..................................242

SELF REVIEW QUESTIONS...!.......243

HANDS ON EXERCISES...243

15. PERFORMING OPERATIONS AND CONTROLLING PROGRAM FLO W244

BASIC ARITHMETIC OPERATIONS...244

A uto-Increment A nd A uto-Decrement Operators..244
OPERATOR SHORTCUTS...245

COMPARISON OPERATORS... .. 245

What Is True (Or False) According To PERL?... 245
Comparing Numbers and S tr in g s .. 245
Performing Numeric Comparisons...........................■...246
Relational Operators For Comparing Numbers... ,....................246
Performing String Comparisons.. 246
Relational Operators For Comparing Strings... 246

CONTROLLING PROGRAM FLOW IN PERL.. 247

Making Decisions In PERL ..247
Using The 'if Statement..247

Using The unless Statement..248

LOOPS... 249

Repeating A Task By Looping:...249
Using An while L oop ..249
Using An until Loop..249
Using A fo r L oop ..250
Using A foreach Loop ...251
Breaking Out O f A Loop...251
Skipping An Iteration O f A L oop ... 252

SELF REVIEW QUESTIONS............... :.. 253

HANDS ON EXERCISES.. 253

PAGE viü
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
TOC

16. PERL FUNCTIONS... 254

STRING FUNCTIONS.................. ..254

Chop The Last Character O f A String.. 254
Chomp A Newline Character...254
Concatenating Strings...255
Repeating Strings.......... ..255
Extracting A Substring...256
The Index Function..257
Finding The Length O f A String... 257
Splitting A String Into Several Parts... 258

ARRAY FUNCTIONS..258

Adding An Array Element..258
Removing an Array Elements... 258
Sorting An Array..260
Reversing Array Elements...260
Splicing An A rray..... (...260
Deleting an Associative Array Element.. 261

MATHEMATICAL FUNCTIONS..261

TIME FUNCTIONS.. 262

SELF REVIEW QUESTIONS..262

HANDS ON EXERCISES..263

17. FILEHANDLING.. ..264

UNDERSTANDING STD IN AND STDOUT... 264

The STDIN • Filehandle...................................... ...264
The <STDOUT> Filehandle..265
Using The printf Function ...265

This Is How It Works..265

Redirecting STDIN And STDOUT.. 266
UNDERSTANDING FILES AND DIRECTORIES.. 266

OPENING AND CLOSING FILES...266

Using The open Function...•... 266
Using The close Function ..267
File Open M odes... ..267
Reading From The F ile..267
Writing To The f i l e ...267
Reading From And Writing To A F i le .. 267
Reading And Writing Text Files.. 268
Reading And Writing Binary Files.. 268
Binary Mode File Access In MS-DOS.. 269

WORKING WITH DIRECTORIES..269

To Open A D irectory...269
To Close A Directory...269
Creating A directory.. 269
To Remove A directory ..270
To Go To The Beginning O f The Directory.. 270
Reading The Contents O f The directory270

TESTING FILES AND DIRECTORIES.. 270

SELF REVIEW QUESTIONS..271

HANDS ON EXERCISES..271

TOC TABLE OF CONTENTS PAGE ix

18. REGULAR EXPRESSIONS...

LEARNING BASIC REGULAR EXPRESSIONS.................

Understanding The Basic Form O f A Regular Expression...
Anchoring Patterns...

Matching The Start And End O f A Line..........................

Matching A Word Boundary...

Using Character Sets In Regular Expressions....................
Specifying A Range O f Characters......................................
Excluding Some Characters...

Matching A ny Character..
Repeating A Character S et...
Matching A Specific Number O f Character Sets.................
Matching One Fixed Sequence Or Another.........................
Matching Special Characters...
Finding Lines That Do Not Match.......................................

The while (o) File-Processing Code..............................

MATCHING PATTERNS IN ANY STRING..................

Modifying The Pattern-Matching Criteria..........................

Making The Pattern Match Case-Insensitive...................

Finding All Occurrences Of A Pattern............................

Replacing A Pattern ...

Referring To A Previous Match......................................

SELF REVIEW QUESTIONS...

HANDS ON EXERCISES...

19. CREATING STRUCTURED PROGRAM S.....................

PACKING CODE IN SUBROUTINES..................................

What Are Subroutines?...

Creating A Simple Subroutine..
Invoking A Simple Subroutine..

PASSING ARGUMENTS TO SUBROUTINES....................

Subroutine Arguments..
Initializing Variables From Arguments...............................
Declaring Local Variables...
Understanding Argument Passing.......................................

Modifying The Argument Value...
Passing A F ile handle To A Subroutine................................
Returning Values From Subroutines...................................
Returning The Last Expression...

Using The Return Function..

L IBRARIES...

Creating PERL Libraries..
CGI PROGRAMMING WITH THE CGI-LIB.PL LIBRARY

Obtaining cgi-lib.pl..
The cgi-lib.pl Includes The Following PERL Subroutines...
Using cgi-lib.pl...

IMPLEMENTING A FEEDBACK FORM.............................

Designing The Feedback F orm ..

Processing User F eedback ...

.272

.272

.272

.272

.272

.273

.273

.274

.274

.274

.275

.275

.275

.275

.276

.216

.276

.276

.276

.276

.277

.277

.277

.278

.279

.279

.279

.279

.279

.279

.279

.280

.280

.281

.281

.282

.283

.283

.284

.284

.284

.285

.285

.285

.286

.286

.286

.287

PAGE X
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
TOC

SELF REVIEW QUESTIONS... 288

Hands On Exercises ...289

20. GOING THE OBJECT WAY WITH PERL.. 290

UNDERSTANDING REFERENCES.. 290

Defining A Reference...290
Using The Arrow Operator To D eference.. 291
Understanding PERL Packages And Modules... 292
PERL P ackages ...292
PERL Modules...293
Using A Module...293

USING OBJECTS IN PERL...293

Understanding PERL Objects..294
CREATING AND ACCESSING PERL OBJECTS... 294

SELF REVIEW QUESTIONS...295

HANDS ON EXERCISES..295

21. DATABASE CONNECTIVITY...296

DATABASE ACCESS USING PERL..296

THE PERL WIN32::ODBC EXTENSION.. 296

Creating an ODBC Object...296
ODBC OBJECT METHODS.......................... ... 296

The new Method...296
The Connection Method...297
The Sql Method..297
The FetchRow Method...298
The Data Method...298

The DataHash Method... 298
The Close Method..299

Case Study - Training Information At Sct ...299

Requirements... 299
Implementation.. 300

Step I - Create The Table Structures For Oracle... 300

Step II Insert data into the PASSWD File and COURSF_DFTAII S File..................................300

Step III - Create an HTML page for User Authentication.. 300

Step IV - Create the check.cgi Script..301

SELF REVIEW QUESTIONS..302

22. DEBUGGING IN P E R L ...303

Loam-ng and leaving THE PERL DEBUGGER.......................... :..303

Listing the program code ...304

Using the I Command..304
Using The w Command..305
Using the // Command...306
Using The ?? Command..306
Using the S Command...306

USING THE DEBUGGER TO STEP THROUGH A PROGRAM... 307

Using the s Command..307
Using the n Command...308
Using the r Command..308

TOC TABLE OF CONTENTS PAGE xi

Pressing ENTER with the s and n Commands... 308
Using The X Command...309
Using The v Command...309

SETTING AND WORKING WITH BREAKPOINTS... 309

Using The b Command...310
Using The с Command...310
Using the L Command..310
Using the d and D Commands..311

DEBUGGING BY PROGRAM TRACING..311

DEBUGGING WITH LINE ACTIONS...311

Using The a And A Commands...311
Using The < And > Commands..312

MISCELLANEOUS DEBUGGING COMMANDS................ ...312

Using the R Command.. 312
Using The H Command..313
Using The ! Command.. 313
Using The p Command... 313
Using The T Command... 313

SELF REVIEW QUESTIONS...314

23. INSTALLING AND SETTING UP APACHE WEB SERVER.......................................315

THE BIRTH OF APACHE.. 315

AN INTRODUCTION TO APACHE................. 315

GETTING STARTED..................... .. 315

Download A pache2 .. 315
The Apache 2 Installation Process...316
Testing Apache2 ...318
DIRECTORY TREE STRUCTURE OF APACHE.. 318
CONFIG L'RA TION OF APACHE SERI ER.. 319
SETTINGS TO BE MADE IN THE HTTPD.CONF FILE ... 319

Understanding Some Important Entries In HTTPD.CONJ7 File..320

Global Settings....... -..320

VIRTUAL HOSTS...321

APACHE MODULES.. 323

Changes in the httpd.conf File For The Framework... 323
Sample O f The hosts File For The Framework... 324
Registering The Changes Made In The httpd.conf With Apache2 ...324

SELF REVIEW QUESTIONS..............................324

C. PROJECTS IN PERL ... 325

BUILDING A WEB SITE REGISTRATION SYSTEM............... ... 325

Web Site Registration... ...325
The User Interface.. ...325
Message O f Thanks...326
In Case O f An Erroneous Submission ...326
In Case O f Other Errors..„........ 326
The Data Stored.. 326

PAGE xi i
COMMERCIAL W EB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
TOC

WEB SITE LOG IN327

Server Side Processing In Brief.. :..................................327
Client Side Processing In Brief... 327
The User Interface...328
In Case O f An Erroneous Submission:... 328
In Case O f Other Errors.............................. ...328
The Welcome User HTML P age ..328

PENPALS..329

The User Interface... 329
Message O f Thanks..329
In Case O f An Erroneous Submission... ... 330
In Case O f Other Errors..330
Data Storage System..:...330
View Pen Pa! Information.. 331
Pen Pal Information Display Form at... 331
The User Interface...331

GUEST BOOK...331

Message O f Thanks..332
In Case O f An Erroneous Submission... 332
Data Storage System..332

UNDERSTANDING THE WEB SITE REGISTRATION SYSTEM.. 333

The Framework On Which A Web Site Registration System Is Built..333
Modules Under The Web Site Registration System... 333
A pproach... 333
Directory Structure..333
Files Created For The Web Site Registration System... 333

PERL Scripts... 333

HTML Files... 334

Image Files (.gif)... 334

Flat Files (Storage)..334

DATA STORAGE SYSTEM..334

For Web Site Registration.. .-..334
For Pen Pals Registration...334
For The Web Site Guest Book........ ...335

STARTING THE WEB SITE REGISTRATION SYSTEM.. 335

PROCESSING OF WEB SITE REGISTRATION... 335

PROJECT SOURCE CODE FOR THE INDEX PAGE........... ..339

Source Code For index.html..339

PROJECT SOURCE CODE FOR THE WEB SITE REGISTRATION SYSTEM................................340

Source Code For regstrgudis.html...340

Source Code For regstr.pl..344

PROJECT SOURCE CODE FOR THE WEB SITE LOGIN... 346

Source Code For login.html...................... ..346

Source Code For login.pl...347

PROJECT SOURCE CODE FOR PEN PALS... 349

Source Code For pnpls.html..349

Source Code For pnpls.pl..351

Source Code For vwchpnpls.pl..353

Source Code For vwpnpls.pl..353

TOC TABLE OF CONTENTS PAGE xiii

PROJECT SOURCE CODE FOR GUEST BOOK.!... 356

Source Code For gestbk.html.......................... »..356

Source Code For gestbk.pl.. ... 357

D. PROJECTS IN PERL USING A DATABASE...359

OBJECTIVE...359

Modules.. 359
System Study... 359
Problems And Solutions.:..360

Add Problem... 360

Add Solutions..360

View Problems And Solutions..361

Tips And Tricks.. 362

Add Tips................................-,.. 362

View Tips... 362

Employee Information................................... 363

Add..363

Edit............ .r.. 363

Delete And View..364

Validations To Be Considered..364
TABLE STRUCTURES...365

STARTING THE TIPS AND TRICKS SYSTEM.. 366

PROJECT SOURCE CODE FOR THE TIPS AND TRICKS..367

Source Code For Index.htm..367

Source Code For login-check.pl...367

Source Code For cgi-lib.pl...368

Source Code For menu.htm...?......................’....................................... 370

Source Code For style.css...371

Source Code For header.pl...371

Source Code For display.htm...371

Source Code For footer.htm...371

Source Code For ps.htm.. 372

Source Code For probsol.htm...372

Source Code For home.htm..372

Source Code For psabout.htm..373

Source Code For probadd.pl...373

Source Code For mylib.pl...374

Source Code For probadd_submit.pl... 375

Source Code For post_prob.cgi... 376

Source Code For plist_add.pl.. 377

Source Code For sol_add.pl............... ..378

Source Code For soladd_submit.pl...380

Source Code For post_sol.cgi...381

Source Code For plist_view.pl..................... ...382

Source Code For prob_det.pl... 383

Source Code For sol_det.pl... 384

Source Code For tip.htm.......... ..386

Source Code For tippg.htm... ;................386

Source Code For ttabout.htm... 387

Source Code For tipadd.pl... 387

Source Code For tipsubmit.pl.. 388

Source Code For post tip.cgi... ... 389

Source Code For tiplist.pl.. 390

Source Code Fortipinfo.pl.. 391

Source Code For ei.htm... 392

Source Code For employee.htm...392

Source Code For eiabout.htm.. 393

Source Code For eiadd.pl.. 393

Source Code For eiadd_submit.pl........... .. 395

Source Code For post eiadd.cgi..•.................................396

Source Code For eieditlist.pl... 397

Source Code For eiedit_info.pl... ,....... 398

Source Code For eiedit_submit.pl...400

Source Code For post_eiedit.cgi...:........................ 402

Source Code For eidel.pl... 402

Source Code For eidel_info.pl... 403

Source Code For eidel_submit.pl... 405

Source Code For post_eidel.cgi... 405

Source Code For eiview.pl.. . 406

Source Code For eiview_info.pl..407

ANSWERS TO SELF REVIEW QUESTIONS..410

SOLUTIONS TO HANDS ON EXERCISES..413

SECTION-V: Appendix

APPENDIX - A ... 419

HTML Color C odes... 419
Resource On World Wide Web..419
Resources On HTML Editors...420
Resources On HTML Document Development............................ ...420

APPENDIX - B ... 421

Resources On JavaScript... 421

APPENDIX C 421

HTTP... 421

PERL Error M essages... 423
Resources On CGI And PERL ... 427

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, „

XIV JAVASCRIPT, DHTML AND PERL

___________________ S 'E nriO iV - 1 :01TM L___________________

1. INTERNET BASICS
B A S IC C O N C E P T S

The Internet began in 1969, as an experimental four-computer network called ARPAnet, which was
designed by the U.S. Defense Department so that research scientists could communicate. In approximately
two years, ARPAnet grew to about two-dozen sites and by 1981, consisted o f more than two hundred sites.
In 1990, ARPAnet was officially disbanded and the network, which now consisted of hundreds of sites,
came to be known as the Internet.

t After a while, commercial organizations began to recognize the use of such a network which converted the
whole world into a Global Village and allowed almost instant access to business or commerce data and a
host o f other services such as E-Mail and E-Commerce. The rapid growth o f the Internet was due to
networking giants like British Telecom, Hyundai, AT&T and others setting up fast and reliable networks
that encircled the globe. The networking giants were very clear about their role. This was to setup and
maintain, monitor and expand existing networks. Hence another layer was formed above this layer called
ISP’s (Internet Service Providers). The networking giants gave access to the Internet via Gateways. Using
ISP gateways it is perfectly possible to route business or commerce data from one point of the globe to
another by using a heterogeneous mix o f networks owned by different networking giants who have worked
out an agreement between themselves on the costs o f usage.

ISP’s in turn offer clients’ access to the Internet via their gateways as paid for service. An ISP’s gateway
generally consists o f a server with a permanent connection to the Internet. The Server’s connection to the
Internet is called its Internet Pipeline. Special hardware is used as the pipeline to connect an ISP’s server to
the Internet. ISP pipeline bandwidths of 2GB to 10GB are quite common. Multiple pipelines can be
purchased by an ISP from a networking giant and used.

Clients that log into the Internet via an ISP commonly use only 33.6 Kilobyte of the ISP’s bandwidth.
Occasionally a client whose data traffic is very high will use special connectivity methods (ISDN) to an
ISP’s server and use between 64Kbps to 128Kbps o f the ISP’s bandwidth. If a client has huge data traffic
then a client could directly negotiate with a networking giant to have its own private Gateway to the
Internet and then make use o f the huge bandwidth for its data transfers. These types o f clients are not ISP’s
and as a general rule do not allow other clients access to their gateway. Even in such case physical access to
the Internet is a server. The diagram 1.1 illustrates what was said earlier:

The Internet consists o f two types o f computers Servers and Clients
□ Computers which offer information to be read are called Servers
□ Computers that read the information offered are called Clients

Servers run special software (Web Server software) that allows them to
□ Respond to Client requests for information.
□ Accept data from Clients

Some o f the most popular software which Servers run to allow them to respond to Client requests for
information are, Internet Information Server (IIS), A pache Web Server, M icrosoft P ersonal Web Server.

PAGE 2
C O M M E R C IA L W E B APPLICATION DEVELOPM ENT USING HTML,

JA V A SC R IPT , DHTML AND PERL

Clients run
special software
(Browser
software) that
allows them to
□ Locate the

appropriate
Server

□ Query the
Server for
the
information
to be read

Some of the
most popular
browser
software that
Clients run, to
allow them to
query Internet
Servers for
information are
N etscape
Communicator,
Internet
Explorer.

Diagram 1.1

C O M M U N IC A T IN G O N T H E IN T E R N E T

TCP/IP is the only protocol used to send data all around the Internet. TCP/IP is really two individual
sections, (TCP) a set o f communication protocols and (IP) a unique address. Every machine connected to
the Internet must have an address by which it can be located on the Internet. This is called the IP address o f
the machine. For the Internet to function smoothly, no two machines can have the same IP address. Hence
each machine connected to the Internet must have a unique IP address, which identifies that machine.

The Internet is a worldwide network of networks. As the Internet grew over the years it became
increasingly important to have a governing body, which allocated unique IP addresses to organizations
linked to the Internet. An international body called InterNIC, located in the USA, is responsible for
registering and assigning unique IP addresses to organizations wishing to manage networks, which will be
part of the Internet. A unique IP address therefore points to an actual com puter connected via a gateway to
the Internet. This computer is known as a Domain i.e. a place where information is.available. This is a
Physical Domain on the Internet.

CH AP 01 INTERNET BAS ICS PAGE 3

Conceptually, a Server, which has a permanent IP address (i.e. a Physical Domain), can provide
□ A gateway to other computers to access the Internet
And/Or
□ Provide information for Internet clients to read
And/Or
□ Provide a physical location on which several Virtual Domains can be Hosted

In many cases, when a Web Site provides Internet clients information to read, the site is mounted as a
Virtual Domain on an Internet Server, which is its (host) Physical Domain.

Virtual Domains are identified by a name (e.g. www.microsoft.com). Just like a Physical Domain needs to
have a unique IP address, so also Virtual Domain Names need to be unique on the Internet. All Virtual
Domain N ames must be registered with InterNIC. One Internet Server may host several virtual domains.

Virtual domains can be conceptualized as sub directories on an Internet server’s hard disk drive. The
information that Internet clients wish to read would be Files within the sub directory.

When an Internet client connects to an Internet server some software running on the Internet server must
respond to the Internet client’s request for information. The software that runs on an Internet server and
responds to an Internet client’s request for information is called Web Server software.

An Internet Web server responds to an Internet client’s request for information by going to a specific sub
directory on its hard disk and forwarding a pre-determ ined file to the Internet client for the first time. After
that the Web server will forward files to the client depending upon specific requests from the client.

Traditionally, this sub directory on the Internet server is 'w w w roof and the file automatically picked up
and passed to the Internet client the first time is traditionally called ‘index.htmP.

Mote.
However, web server software can be configured to go to any user defined sub directory and forward

any user defined file to the Internet client.

Multiple Virtual Domains hosted on a Single Physical Domain:

A single computer having a permanent IP address and connected to the Internet can host multiple virtual
dom ains on its hard disk drive. There are several Internet servers (i.e. physical domains) which do nothing
but Host multiple virtual domains.

Companies who wish to have an Internet presence without registering a physical domain with InterNIC and
then creating a virtual domain on the physical domain simply rent hard disk space on these H ost servers.
Most often host servers rent space on their hard disk drives in 25M B blocks.

Host servers offer several additional services such as multiple e-mail boxes, web site creation, web site
creation tools and so on. These services makes the prospect of renting hard disk space and creating a virtual
domain on someone else’s physical domain very attractive due to competitive pricing. The price o f hosting
a virtual domain on someone else’s Internet server is really a very tiny fraction o f the setup costs o f a
physical domain on the Internet.

This has given rise to a situation where the number of virtual domains outnumbers the physical domains on
the Internet./

http://www.microsoft.com

PAGE 4
CO M M E R C IA L W EB APPLICATION DEVELOPM ENT USING HTML, с н д р Q1

JAVASCRIPT , DHTML AND PERL

Internet clients will now not only need to connect to the correct physical domain but also to the correct
virtual domain hosted on the physical domain. Hence, the Web server software run on the physical domain
must perform Virtual D om ain N am e resolution as well (i.e. must b e ab le to connect Internet client to the
correct sub-directory on the h ard disk drive and fo rw ard the correct starting f i l e fro m this specific sub
directory).

Conceptually, a sub-directory is created on the Internet ‘H ost’ server. The company, which has purchased
hard disk space on the Internet host server, creates its web site within this sub directory. This sub directory
will hold the default startup file (e.g. Index.html) which the web server will send back to the client when the
client connects to the physical domain and points to a specific virtual domain hosted on the physical
domain.

When an Internet client requests for a connection to a virtual domain on the Internet, the request is routed
to the proper Internet Server using TCP/IP. The Web Server running on this Internet Server then handles
the request, resolves (maps) the Virtual Domain Name sent along with the request to an appropriate sub
directory on the Internet Server where the web site (i.e. virtual dom ain) is hosted.

IN T E R N E T D O M A IN S

Each computer that has a permanent IP address, runs Server software and offers information to clients, is
considered to be a Physical Domain i.e. a place (domain) where information is available.

The Physical Domain

All Internet Servers are connected to the Internet via an Internet Gateway. An Internet gateway is usually
provided by one o f the global networking giants that have setup these gateways. These networking giants
are the companies who have spent enormous sums of money to set up the physical networks that circle the
globe.

These physical networks are called the Internet Backbone. The Internet backbone is a heterogeneous mix
of networking technologies, which have been successfully implemented and currently fully operational.
The networking giants are companies like British Telecom, Hyundai, AT&T etc.

IN T E R N E T S E R V E R ID E N T IT IE S

InterNIC, a quasi government body in the U.S.A registers and issues Internet Servers their unique IP
addresses.

InterNIC also authorizes organizations in other countries to issue IP addresses. In India, NCST (National
Center o f Software Technology) a quasi government body is authorized to issue permanent IP addresses.
This really means that the Internet Server must be located within India.

R e g is te r in g A V ir tu a l D o m a in W ith In terN IC

Log onto an InterNIC Server. Fill up a registration form online. Pay the two-year registration fee to
InterNIC. This registers a virtual domain with InterNIC.

Detailed Registration will ask for information like Personal Details, Billing Contact Information, Technical
Contact Information, Administrative Contact Information and so on.

When a company registers a virtual domain name with InterNIC, InterNIC requires a unique IP address to
be specified. The unique IP address specified, is generally the IP address of the Internet server, which will
host the Virtual Domain.

InterNIC’s address is http://www.internic.net/regist.html

http://www.internic.net/regist.html

CH AP 01 INTERNET BASICS P A G E 5

□ InterNIC will scan its registered database to ensure that the domain name is unique
□ If the name is unique, InterNIC will inform the registering company or individual that its registration

has been accepted.
□ Once the Domain name is registered the registering company has 30 days within which payment has to

be made to InterNIC for the registration. Once registered, the Domain registration is valid for 2 years.
After a two year period the registration must be renewed or the registration lapses.

□ If the name is not unique, the registration is rejected and InterNIC will inform the company the
registration has been rejected due to the Domain name being duplicate.

M o te .

InterNIC allows a company registering a Domain name to scan through its domain name database
using a simple but elegant user interface. Hence, prior actual registration a company or individual
can find out whether the domain name being registered is unique or not.

As the number of Domain registrations grew by leaps and bounds InterNIC began segregating Domains
according to the services provided by the Domain being registered. This was done by adding an extension
to the Domain name. The extension to the domain name indicated the kind o f service being provided by
that domain.
. _ . o ,, InterNIC Root Servers

A Domain name extension structure is as follows:

Mote. .gov .m il .o rg .cam

Diagram 1.2

^ — — ■ .edu .gov .m il
InterNIC has spread its Root Servers
geographically across the United States to be able
to handle the large number of physical Domain Name Servers being registered and virtual domain
names being hosted on these servers.

D o m a in N a m e E x te n s io n

.edu Servers that provide Educational services.

.gov Servers that provide information about the government o f a country

.mil Servers that provide Military information
•org Servers that provide information about the Organizations in the world.
.com Servers providing commercial services on the Internet

Table 1.1

E S T A B L IS H IN G C O N N E C T IV IT Y O N T H E IN T E R N E T

The protocol used to setup communications between a Client and Server on the Internet is TCP/IP.
TCP/IP, expands to read Transmission Control Protocol / Internet Protocol. TCP/IP is a connection
independent protocol.

This means that TCP/IP works completely independent o f the physical media used to create the network.
The network can be a heterogeneous mix o f any o f the following networking technologies Ethernet, VSat,
Fiber Optics, Infrared, VHF/UHF radio frequencies and so on, TCP/IP will work across all quite
transparently. TCP/IP breaks up data into datagrams and guarantees that the data is correctly received at its
destination

PAGE 6
C O M M ERC IA L W E B APPLICATION DEVELOPM ENT U SING HTML,

JA V A SCR IPT , DHTML AND PERL

C L IE N T IP A D D R E S S

H o w C lie n t IP A d d r e s s e s A re A s s ig n e d

Computers that only read information offered, (i.e. Internet clients) need not necessarily have a permanent
IP address. However, when logged into the Internet, a client requires a unique IP address. This IP address
enables the Internet server called, to reply accurately.

The Internet S ervice Provider’s (ISP’s) Server via which the client connects to the Internet, temporarily
assigns a unique IP address to the client.

In India, for a very long time, the only ISP was Videsh Samachar Nigam Limited, (i.e. VSNL). Whenever a
client logs into the Internet via a VSNL Server, the VSNL Server temporarily (an d dynamically) assigns a
unique IP address to the computer that successfully logs in.

H ow IS P ’s A c h ie v e T he T a sk O f A s s ig n in g IP A d d re s s e s

ISP’s purchase a block o f unique IP addresses from internationally recognized networking bodies. Thus
whenever a client logs into the Internet via an ISP’s Server, one of these unique IP addresses is temporarily
assigned to the computer, which logs in.

N o ie

Each time the same Client logs into an ISP’s Server, the Client will be assigned a unique but
different IP address temporarily. This is the technique of Dynamically assigning an IP address to a
client when required.

The maximum number o f computers that can log into an ISP Server and access the Internet is therefore
limited to the block of unique IP addresses purchased by that ISP from the international networking body.

G e tt in g A T e m p o ra ry IP A d d r e s s

Assuming that the Client computer is a Windows machine, its TCP/IP stack is configured to Get an IP
address dynamically from the ISP’s DHNS S erver.

The Client computer logs into the ISP’s Server using a dial-up line and a modem. After a successful login
is accomplished, the ISP’s Server automatically passes one IP address from the block of IP addresses
purchased, to the computer logged in.

Once a computer is
logged on the
Internet and has a
unique IP address,
any other computer
on the Internet that is
aware of this IP
address can setup
communications with
it. i.e. a ll the Clients
becom e visible to a ll

C l i e n t M a c h in e

!■

Diagram 1.3

the other com puters on the Internet, via their unique IP address through the IS P ’s Server.

CHAP 01 INTERNET BA S ICS PA G E 7

H O W IP A D D R E S S IN G C A M E IN T O E X IS T E N C E ?

When the Internet was in its infancy, the US military, colleges and academics largely used it to exchange
data. One master Server (called Root) held the entire set o f computer IP addresses.

These IP addresses were held as pure text in a file called Hosts held in a sub-directory on the Root Server.

N o te , ------------

On an M.S. Windows computer, to locate the Hosts text file search in: C:\Windows.
(Replace C ' with an appropriate drive letter1

The contents of the Hosts file is as follows:
IP a d d r e s s D om ain Name
2 0 2 . 1 0 0 . 1 7 . 3 3 M i c r o s o f t

i.e. a unique IP address of the Internet Server, followed by a single Tab character, followed by a domain
name.

Resolving Domain Names

When any Client wishes to communicate with any Internet Server using browser software, the Client sends
out a broadcast using the Server’s Domain name as the identifier.

The ISP’s Internet Server intercepts this request first.

Should the Domain Name be unknown to the ISP’s Internet Server.

The ISP’s Internet Server will route this broadcast to an InterNIC Root Server.

In the InterNIC Root Server’s Hosts file the Domain Name will be mapped to an IP address.

This IP address will be returned to the ISP’s Server

The ISP’s server will now pass this IP address back to the Client’s browser

The Client’s browser will now broadcast a request to connect directly to the Internet Server using its IP
address.

As soon as this call is heard by the Internet Server it will respond and a link will be setup between the
Client and the Internet Server.

Web Server software running on the Internet Server takes care of connecting a Client to the virtual domain
as required.

Once a client is connected to the appropriate domain, the Web Server software delivers the Client the first
HTML page of that domain which is traditionally Index.html or Index.htm and browsing o f the specific
domain can begin.

N o te

Web Server software, can be configured to forward any HTML page (or run a CGI script) when a
Client connects.

In case some other Client has already connected to the same Internet Server via the same ISP then the
server’s IP address will be cached on the ISP’s Server.

CO M M E R C IA L W E B APPLICATION DEVELOPM EN T U SING HTML, г н д р - ,

JA V A SCR IPT , DHTML AND PERL

If this is true, the ISP’s Server already knows the Internet Server’s unique IP address. Hence when the
Client broadcasts a call to the Internet Server the ISP’s Server will directly route the call to the appropriate
Internet Server.

If a client already knows the IP address of the Internet Server, directly keying in the IP address into the
Browser’s search window will establish a connection between the Client and the Internet Server in the
shortest possible time. For example, 127.45.27.18, (i.e. the actual IP address o f the Internet Server).

The Structure Of An Internet Address

The structure of an Internet Server’s address keyed into a Client’s browser software is as follows:
http://www.microsoft.com

where; http is the communication protocol to be used,
www is the notation for World Wide Web,
microsoft is the registered Domain Name associated with the IP address o f an Internet server, and
com the Server provides commercial services to Clients who connect to it.

To help speed up access, its IP address can be directly used, i.e. 127.57.13.1 instead of the domain name,
miscrosoft.com. In this case no name resolution needs to take place.

M a te

http, www, com are all optional information that is built into the Domain address loaded in to the
Client’s browser.

microsoft.com is the compulsory segment of a domain address as it is ‘resolved’ into a specific and
unique IP address that points to a server.

■ Only the Domain Name (i.e. microsoft) will be resolved to an explicit IP address by looking up the
InterNIC Server. The period used in the Domain address is a parameter delimiter.

A B R IE F O V E R V IE W O F T C P / IP A N D IT S S E R V IC E S

TCP/IP is an acronym for Transmission Control P rotocol / Internet Protocol. TCP/IP is a collection of
protocols, applications and services. The protocols in TCP/IP move data from one network layer to another.
There are five layers within TCP/IP.
□ Application
□ Transport
□ Internet
□ Data Link
□ Physical

The Physical Layer

The physical layer is pure hardware in any network infrastructure. This includes the cable, satellite, or any
other connection medium, and the network interface card, which transmits electrical signals, and so on.

The Data Link Layer

This is the layer that is responsible for splitting data into packets to be sent across the connection medium
such as cables, satellites, and so on. Once the data is on the communication link, the Data Link Layer
handles any interference, which may arise due to noise, solar flares, and so on. The Data Link Layer works
hard to make sure that the physical link does not garble the electrical signals carrying the data.

http://www.microsoft.com

CHAP 01 INTERNET BAS ICS PAGE 9

This layer gets packets from the Data Link Layer and sends them to the correct network address. If more
than one possible route is available for the data to travel, the network layer figures out the best route. The
network layer determines that data is sent to the right address via the most convenient (n eed not be the
shortest) route.

The Transport Layer

Though the Network Layer routes data to its destination, it cannot guarantee that the packets holding data
will arrive in the correct order or that they won’t have picked up any errors during transmission. It is the
Transport Layer’s job to make sure that the packets have no errors and they are also received in the correct
order.

The Application Layer

This is the layer, which contains the application that the user uses to send or receive data. Without this layer
the computer and its user would never be able to send data and would not know what to do with data sent
by another user.

In te rn e t P ro to c o l

The Internet Protocol is responsible for basic network connectivity. When mapped to the TCP/IP layers, the
Internet Protocol or IP works with The Network Layer. In networking there has to be a physical location to
send data to or receive data from.

To make this happen, eveiy physical location must have a unique network address. This address is called its
IP address. Hence, every computer on a TCP/IP network must have an IP address, which is unique to that
computer.

This IP address can be compared to a postal address that identifies the exact location of a residence or
corporate house. Just as two residences cannot have the same postal address, so also no two computers on a
TCP/IP network can have the same IP address.

The Structure of an IP Address

The IP address-is a set o f numbers separated by periods. An IP address is a 32-bit number, divided into two
sections, the network number and the host number. Addresses are written as four fields, eight bits each
separated by a period. Each field can be a number ranging from 0 to 255. This method o f addressing is
called dotted decim al notation. An IP address looks like:

field Lfield2.fleld3.field4

All hosts/network interfaces (NIC cards) on the same network use the same network number. Each
host/network interface (NIC card) on the same network must have a unique host number.

The four fields o f an IP address are clubbed together into two sections, the network number and the host
number depending on the type o f network the host or the network interface belongs to.

There are three types o f networks on the Internet. Table 1.2 gives a classification o f the network types and
how the fields of an IP address are mapped to the Network section and the Host section o f the address.

T h e N e tw o rk L a y e r

Network Class Network Section of the IP Address Host Section of the IP Address
A Field 1 Field2.Field3.Field4
В Field l.Field2 Field3.Field4
С Field l.Field2.Field3 Field4

T a b le 1.2

C O M M E R C IA L W E B APPLICATION DEVELOPM EN T USING HTML, д р Q1

JA V A SCR IPT , DHTML AND P ERL

T R A N S M IS S IO N C O N T R O L P R O T O C O L

TCP/IP uses IP to deliver packets to the upper layer applications and provides a reliable stream of data
among computers on the network. Once the packets arrive at the correct IP address, TCP goes to work.
TCP’s main task is error checking to make sure that the right numbers o f packets are received and that they
are in proper order. Thus, TCP guarantees that the information received by a computer on a TCP/IP
network, is exactly the same information that was sent to it by another computer on the network.

TCP/IP consists o f protocols, applications, and services. Protocols enable a server application to offer
services, and the client application to use those services. It is possible to design a new protocol and add it to
TCP/IP.

The Internet is a large worldwide network of computers, which uses TCP/IP as the underlying
communication protocol. Since TCP/IP consists o f various services, the Internet is in a position to offer
those services to all computers connected to the Internet.

Following is a brief description o f some o f the commonly used services along with the protocols they use.

W o r ld W id e W e b

The World Wide Web is a worldwide information service on the Internet. The World Wide Web or the
Web, as it is popularly known, uses special software called a Browser (client) and TCP/IP, HTTP and a
Web Server to function.

TCP/IP is the communication protocol used by the Internet and is a must for the World Wide Web to
function. HyperText Transfer Protocol or HTTP is the protocol used by the W W W service to make
communication possible between a Web Server and a Web Browser. A Web Server is a special software,
which runs on a computer and responds to requests made by other computers on the network. A Web
Browser is simply an application program, which sends request to a Web Server and accepts a response to
that request from the Web Server.

FTP

File Transfer Protocol or FTP is not just a p rotoco l but also a service and an application. FTP is especially
useful for transferring files between different computers. FTP provides the facility to transfer files between
two computers running on different operating systems such as UNIX, MS-DOS and Windows.

FTP As An Application
For two computers to actually make use o f the FTP service, both computers require special application
software, which understands this service. FTP is an application for copying files. A client application can
be run on the local computer to contact the FTP server application on the remote computer. Depending
upon what the user wants to do, instructions can be given to the client application, which works with the
server application to execute those instructions.

CuteFTP and Reachout are two very popular FTP applications, which provide excellent user interfaces and
a wide range o f FTP commands and functions. CuteFTP permits the user to log onto a remote computer
offering the FTP service, upload or download files between the client computer and the server computer,
perform various operations on the files such as delete, rename, change file permissions, and so on and
logout from the remote computer when done.

FTP As A Service
FTP is a service for copying files from one computer to another. A connection can be made from one
computer (client) to another computer (server) offering this service and files can be sent or received.

FTP As A Protocol
FTP is a protocol for copying files between two computers. The client and the server applications both use
it for communication to ensure that the new copy of the file is identical to the original.

CHAP 01 INTERNET BASICS
*4

PAGE 11

T ELN ET

Telnet is both a TCP/IP application and a protocol for connecting a local computer to a remote computer.
The Telnet application acts as a terminal emulator. Whatever commands are typed into the local computer
are sent across the network for execution by the remote computer.

To use Telnet, the Telnet application must be given the IP address of the computer to connect to. Once the
connection is established with the remote computer, a username and a password must be supplied to access
the resources o f the remote computer.

In Conclusion

The Internet is a worldwide collection o f interconnected computer networks that use TCP/IP and its related
services. TCP/IP provides the flexibility to add new protocols and services to the already existing ones.
This led to the advent of protocols such as Hyper Text Transfer Protocol (HTTP) and its associated World
Wide Web (W W W) service, the File Transfer Protocol (FTP) and its associated FTP services, and so on.
The Internet gained popularity primarily due to the advent of the World Wide Web or the Web, as it is
popularly known.

Once the Internet’s addressing system is understood it is quite simple to link to an Internet Server anywhere
on the Internet. Once linked to the appropriate Internet Server, a Client can access all that the Server has to
offer with complete freedom.

The Internet really is a rich resource for information and data. Never ending, always changing and
completely dynamic.

S E L F R E V IE W Q U E S T IO N S

FILL IN THE BLANKS

1. A permanent connection to the Internet is obtained by the ISP through its_______ .

2. Servers run special software called _______ __________________ that allows them to respond to a
client’s request for information.

3. Each computer that has a permanent IP address, runs Server software and offers information to clients
is considered to be a _________________________ .

4. a quasi government body in the U.S.A registers and issues Internet servers their IP
addresses.

5. The protocol used to setup communications between a Client and Server on the Internet is

6. __ is the protocol used by the W W W service to establish a communication between a Web
server and a Web Browser.

7. The default HTML page that is delivered to a client connected to a Web Server is _______ .

TRUE OR FALSE

8. It is possible for a ‘Domain Name’ be unknown to an ISP’s Internet Server.

9. A single computer having a permanent IP address can host multiple virtual domains on its hard disk
drive.

10. TCP/IP is not a connection independent protocol.

2. INTRODUCTION TO HTML
The term Knowledge is Power really takes on a special dimension in software. This is one area where
information plays a vital and dynamic role. Tried and tested methods o f providing information to those who
need it, like printed documents bound together in the form o f manuals, books and so on, does not really
work for software information. This is because this information is very dynamic and it keeps changing and
re-changing all the time.

A change in information requires the contents of books, manuals, and so on, to change. This will in turn
require complete reprinting o f the books and manuals. Reprinting always results in time and cost
overheads. Reprinting also results in out dated books and manuals being held in inventory, unable to be
used.

To resolve this problem, information needs be stored in such a manner that whenever the information
changes, these changes can be incorporated with the least cost and time. A tried and tested method that
allows this is to store the information in the form o f computer based files. These files could be stored at a
central location. Once stored at a central location the files can be accessed when required for reference.

Since these files are stored at a central location on a computer, their access will also require a computer and
some sort of network that connects these two computers together.

Thus to provide information to the users:
□ Files holding information must be created.
□ These files must be stored at a central location on a computer.
□ When required the users should be allowed to access these files using their desktop computers.
□ A network link must be established between the desktop computer and the computer serving

information at a central location.

This introduces Client / Server terminology wherein
□ The desktop computer requesting for information is termed as the Client.
□ The computer serving information from a central location is termed as the Server.

IN F O R M A T IO N F IL E S C R E A T IO N

If information has to be stored on a central computer, it must be created first. While being created,
information can only be stored in the form of files on the computer. These files are created using special
software programs or programming environments.

Files that travel across the largest network in the world, the Internet, and carry information from a Server
to a Client that requested them are called Web Pages. The individual who develops these web pages is
called Web Developer.

W E B S E R V E R

Web Pages are created using HTML syntax. These pages must be organized and stored at a central
computer.

The organization o f web pages into directories and files stored on the HDD of a central computer is called
Web Site creation.

CHAP 02 INTRODUCTION TO HTML P A G E 13

Computers, which store web pages in the form o f directories and files and provide these files to be read, are
called Servers'. They act like service providers that service the need for information.

The Server Computer runs special software called Web Server software that allows:
□ Web Site Management.
□ Accept a client's request for information.
□ Respond to a client's request by providing the page with the required information.

Some o f the most popular software, which Servers run to allow them to respond to client request for
information, is Internet Information Server (IIS), Apache Web Server, Netscape Server, and Microsoft
Personal Web Server.

Web Server Software stores and manages web pages. When required, the Web Server accepts requests for
these Web Pages, retrieves these web pages from its HDD, and sends the page back to the client who
requested for it.

W E B C L IE N T I B R O W S E R

To access information stored in the form of web pages, users must connect to a Web Server. Once
connected, an interface that displays the contents o f the web page is required.

Computers that offer the facility to read information stored in web pages are called Web Clients.

Web Clients run special software called a Browser that allows them to:
□ Connect to an appropriate Server.
□ Query the Server for the information to be read.
□ Provides an interface to read the information returned by the Server.

Some of the most popular Browser software that clients run to allow them to query Web Servers for
information is Netscape Communicator, Internet Explorer.

U n d e rs tan d in g H ow A B row se r C o m m u n ic a te s W ith A W e b Server

As seen earlier, a Web Server is responsible for sending web pages to a Browser on a client. When a
Browser communicates with a Web Server,
it results into a four-step HTTP transaction.

As seen in diagram 2.1 , a client’s Browser
retrieves a web page from the server and
displays the web page in the Browser. The
communication steps between the client and
the server can be summarized as follows:

E s tab lish C o n n e c tio n

Before a client and server can exchange
information, they must first establish a connection. TCP/IP is used to let computers establish a link between
a Web Server and a Web Browser over the Internet.

To communicate with the Web Server, the client machine must be given the IP address of the server along
with the sub protocol that must be used i.e. HTTP, FTP etc. The client browser will attempt to locate the
server based on the IP address supplied and establish a connection.

A Web Server supports multiple protocols. For example, a Web Server may support two protocols viz.
HTTP, FTP.

B r o w s e r C l i e n t

3 . R e p ly

4 . C lo s e

Diagram 2.1
W eb S e r v e r

PAGE 14
C O M M E R C IA L W E B APPLICATION DEVELOPM ENT U SING HTML,

JA V A SC R IPT , DHTML AND PERL

In such cases, each o f the protocols (like HTTP, FTP) can be accessed by specifying protocol name and a
specific "port number". Common protocols like HTTP, FTP etc have "well known" port numbers. For
example the HTTP protocol by default works on port number 80. Similarly the FTP protocol by default
works on port number 21.

If the protocols are configured on default port numbers, the connection to a Web Server can be established
by:

Protocol://IP address

For example, if the IP address for the SCT Server is 131.100.2 .107 and communication must be established
using HTTP then any client attempting to connect would have to pass the IP address as: -
http://131.100.2.107 to the ISP whose gateway is being used to access the Internet.

Protocols can be configured to run on port numbers other than the default port number. Valid values are 0
to 9999. If a protocol is configured to run on any other port number then the client when trying to establish
a communication link with the Web Server must specify the port number along with the protocol name and
the IP address.

Thus the complete syntax to access and connect to any server would be:
Protocol://servemame:port number.

C lien t Is su e s A R e q u e s t A n d Server S e n d s A R e sp o n se

As seen earlier, each Web Server controls a web site. From amongst the collection o f several web pages
(i.e., the Web site), one page is treated as a 'Default Web Document'.

When a Browser connects to a Web Server using an appropriate protocol name, IP address and port
number, and the Web Server treats this connection to be a request for the 'Default Web Document'. The
Web Server then dispatches the 'Default Web Document' to the client who connected.

If the client requires viewing any other web page then the client can specify the web page name (i f known)
along with the connection information. Thus the complete connection and web page information will now
be specified as:

Protocol://servemame:port number/web page name.

A web page, apart from text and HTML tags, can also include references to external objects like G IF’s,
JP E G ’s, Audio files, Video files and so on.

Thus the request for a web page can be two-fold:
□ The web page itself.
□ The request for the objects referenced by the web page i.e. G IF’s, JPEG ’s, Audio Files, Video Files,

Executable programs and so on.

When an appropriately structured, HTTP request, is received from a Browser, the Web Server will try to
locate the web page requested. If the Web Page exists, the server responds by providing the page to the
browser.

If the Web Page is not found, an appropriate Error Message is sent as a response to the browser request.
After sending the web page the Web Server resets the connection with the browser.

After receiving the Web page, the Browser will identify the external objects that are specified in the web
page (i f any) and request the Server to deliver the external objects.

Such a request will result in a connection being re-established with the Web Server and a request being sent
by the browser. The Web Server responds to the request being sent by the browser.

http://131.100.2.107

CHAP 02 INTRODUCTION TO HTML PAGE 15

Server T erm ina tes The C o n n e c tio n

It is the Server's responsibility to terminate the TCP/IP connection with the Browser after it responds to the

Browser's request. However, both the Browser and the Web Server must manage an unexpected closing of

a connection as well. In other words, if the user clicks on the Browser's STOP button, the Browser must

close the connection.

Also a computer crash by either a Browser or a Web Server must be recognized by the surviving computer,

which, in turn, will close the connection.

H Y P E R T E X T M A R K U P L A N G U A G E (H T M L)

The language used to develop web pages is called HyperText Markup Language (HTML). HTML is the

language interpreted by a Browser. Web Pages are also called HTML documents. HTML is a set of special

codes that can be embedded in text to add formatting and linking information. HTML is specified as TAGS

in an HTML document (i.e. the Web page).

HTM L T ag s

Tags are instructions that are embedded directly into the text of the document. An HTML tag is a signal to

a browser that it should do something other than just throw text up on the screen. By convention all HTML

tags begin with an open angle bracket (<) and end with a close angle bracket (>).

HTML tags can be o f two types:

P a ire d T ag s

A tag is said to be a p a ir ed tag if it, along with a companion tag, flanks the text. For example the tag is

a paired tag. The tag with its companion tag causes the text contained between them to be

rendered in bold. The effect o f other paired tags is applied only to the text they contain.

In paired tags, the fir s t tag () is often called the opening tag and the secon d tag () is called the

closing tag.

The opening tag activates the effect and the closing tag turns the effect off.

S in g u la r T ags

The second type of tag is the singular or stand-alone tag. A stand-alone tag does not have a companion tag.

For example
 tag will insert a line break. This tag does not require any companion tag.

N o te

Some HTML tags require additional information to be supplied to them. For instance, when a picture

is placed on the screen, information like the height and width of the picture can be specified.

Additional information supplied to an HTML tag is known as Attributes of a tag. Attributes are

written immediately following the tag, separated by a space. Multiple attributes can be associated

with a tag, also separated by a space.

The skill in creating an HTML (web) page would lie in knowing the functionality o f all HTML tags and tag

attributes where applicable. This skill can then be used to format large quantities o f textual information as

required and have this ready to use on a web site.

PAGE 16
C O M M ERC IA L W E B APPLICATION DEVELOPM EN T USING HTML, с н д р --

JA V A SCR IPT , DHTML AND PERL

The simplest and quickest way to know the functionality of HTML tags would be to learn a few tags (and
their attributes w here applicable) and immediately use these tags in formatting textual information to be

used in a web page as part of a web site. Using this technique the HTML tag, its attributes where

applicable, and its functionality will immediately become apparent.

Our approach to learning HTML is to create a series of web pages for a fictitious company to be used on its

web site. Textual information will be viewed in a browser without the HTML tags in place and

subsequently with the HTML tags in place. The difference in presentation quality o f the textual

information will be very apparent.

FO CUS 1:

Delta Engineering Pvt. Ltd. is a Company, dealing with manufacture of products like Barbed Wire, Barbed

Tapes and so on. This Company is interested in publicity with the widest possible reach and modest

investment. The least expensive approach is through the Web! Delta is therefore looking at preparing a

Web Site to let the World know about itself and main lines of business.

Consider the preparation of a web site for this engineering company. The information being presented on

the site is categorized into:

□ The Company Profile

□ The Products manufactured in the Company

The Products manufactured by the Company primarily include:

□ Barbed Wire

□ Barbed Tape

□ Animal Fencing

Information in all these areas needs to be provided to anyone who requires it. The information provided is

segregated into four major heads:

□ The Company Profile

□ Barbed Wire

• Line Wire

• Barbed Wire

• Carrying Handles

□ Barbed Tape

• Short Blade Barbed Tape (SBBT)

• Medium Blade Barbed Tape (MBBT)

• Long Blade Barbed Tape (LBBT)

□ Animal Fencing

The creation o f the textual content of the Web Site is done in a simple ASCII editor such as Notepad and.

saved as filen am e.h tm l file. The file will contain the following textual material created as an ASCII file and

saved as indicated above.

After creating this text file, view its contents in a browser, either Internet Explorer or Netscape navigator.

The browser used for page testing purposes while creating this book has always been Netscape navigator.

After the text file created has been viewed in a browser a few HTML tags will be added to the material and

the file will be re-viewed to register the changes in its presentation. This is the standard learning technique

used with all the HTML tags and their attributes where applicable.

CHAP 02 INTRODUCTION TO HTML PA G E 17

DELTA ENGINEERING PVT. LTD.

PROFILE

D e lt a E n g in e e r in g P v t . L t d . i s a s p e c i a l i s t m a n u fa c tu r e r o f w ir e and

w ire p r o d u c t s . DEPL e s t a b l i s h e d i n MQmbai, I n d i a i s i d e a l l y l o c a t e d f o r

s h ip m e n ts t o a ny p a r t o f t h e w o r ld . The m a in i t e m s o f m a n u fa c tu r e , i n

c o l l a b o r a t i o n w i t h G u l f F e n c in g I n d u s t r y (G F I) i n c lu d e p r o t e c t o r

g a b io n s a n d p r o t e c t o r f e n c in g s y s te m s .

P r o t e c t o r f e n c in g sys tem s o f f e r a w ide ra n g e o f s o l u t i o n s f o r a l l

s e c u r i t y p ro b le m s on any t e r r a i n and u n d e r ex trem e c l i m a t i c c o n d i t i o n s .

The p r o t e c t o r f e n c in g sy s te m h as been u se d e x t e n s iv e ly i n E u ro p e ,

A m e r ic a a n d t h e F a r E a s t , and t h i s has h e lp e d fo r m u la t e a p a ck ag e

e s p e c i a l l y s u i t e d t o M id d le E a s t r e q u ir e m e n ts .

DEPL i s e g u ip p e d t o o f f e r c o m p re h e n s iv e p a c k a g e s i n c l u d i n g d e s ig n ,

m a t e r i a l a n d i n s t a l l a t i o n .

P ro d u c ts s t r i c t l y a d h e re t o BS, ASTM and DIN i n t e r n a t i o n a l

s p e c i f i c a t i o n s . Q u a l i t y c o n t r o l ’ i s g u a r a n te e d by in d e p e n d e n t l a b o r a t o r y

t e s t c e r t i f i c a t e s fro m I n d i a .

Q u a l i t y c o n t r o l i s im p le m e n te d w i t h o u t s a c r i f i c i n g econom y and

e f f i c i e n c y . DEPL i s d e d ic a t e d t o t e c h n i c a l s e r v ic e s and p ro b le m

s o l v i n g .

DEPL can p r o v id e p l a n n in g s u p p o r t by o f f e r i n g d e s ig n , t e c h n i c a l

s p e c i f i c a t i o n s , d r a w in g s , f o u n d a t io n p la n s and i n s t a l l a t i o n

i n s t r u c t i o n s , t o g e t h e r w i t h a p e r s o n a l i z e d s e r v ic e . The c o m p an y 's

t e c h n i c a l s a le s e n g in e e r s keep i n c o n s t a n t to u c h w i t h a l l c l i e n t s .

U tm o s t • im p o r ta n c e i s g iv e n t o op tim um d e s ig n , v e r s a t i l i t y , d u r a b i l i t y

and econom y b a c k e d by th e DEPL g u a r a n te e f o r w ork u n d e r ta k e n .

P le a s e fo rw a rd any i n q u i r i e s t o e n q _d e p l0 b o m 2 . v s n l . n e t . in

DELTA ENGINEERING PVT. LTD.

502, 5th F lo o r , T e ja s B u i l d in g

A n d h e r i (W), Mumbai

IN D IA

T e le p h o n e : 91-022-8210050

BARBED WIRE

C o n c e r t in a B a rb e d W ire i n r o l l fo rm i s u sed i n h ig h s e c u r i t y a r e a s t o

d e t e r t r e s p a s s in g men and a n im a ls . The e f f e c t i v e n e s s o f t h i s m a t e r i a l

i s p ro v e d as i t h a s been i n u se f o r more t h a n 7 5 y e a rs d u r in g war and

p e a c e .

Toshkerit ‘ “ ' iyahuri Universitet

Axborot Resurs Markazi

PAGE 18
C O M M ERC IA L W E B APPLICATION DEVELOPM EN T USING HTML, _ н д р

JA V A SC R IPT , DHTML AND PERL

L in e W ire :

T h is i s made up o f 3 .0 5 mm d ia m e te r h ig h c a r b o n s t e e l w ir e , w i t h a

t e n s i l e s t r e n g t h o f 170 t o 180 kg/mm2 . The w ire i s drawn, and d r e s s e d i n

su ch a m anner t h a t t h e c o i l s fo rm ed w i l l f a l l n a t u r a l l y i n t o th e

s p e c i f i e d d ia m e te r w i t h o u t fo rm in g a f i g u r e e i g h t . L in e w ir e i s heavy

h o t d ip p e d g a lv a n i z e d w i t h m in im um z in c c o a t in g o f 185 gm/mm2 .

B arbed W ire :

T h is i s 2.00mm o ia m e te r b r i g h t m i ld s t e e l w ire w i t h a t e n s i l e s t r e n g t h

o f 38 t o 55kg/m m 2 c o n fo rm in g t o BS 1052 . The w ir e i s h o t d ip p e d

g a lv a n iz e d w i t h a m in im um z in c c o a t in g o f 20 t o 50 gm/mm2 1 The b a rb s

a re fo rm ed w i t h f o u r p o i n t s . S p a c in g be tw een th e c e n te r s o f th e b a rb s

i s e v e ry 70mm a lo n g t h e le n g t h o f th e w ir e . The b a rb s a re f i r m ly

s e c u re d b y i n d e n t a t i o n s made on t h e w ir e .

C a r r y in g H a n d le s :

H an d le s a r e made o f m i ld s t e e l w ir e o f 3.55mm d ia m e te r and a re a t t a c h e d

t o th e o u te r t u r n o f t h e c o i l on e ach s id e .

BARBED TAPES

B arbed Tapes a re u se d as p s y c h o lo g ic a l and p h y s ic a l d e t e r r e n t a g a in s t

i n t r u s i o n by p e r s o n n e l and a n im a ls . B a rbed ta p e b a r r i e r sy s tem s a re

more v i c i o u s a n d d i f f i c u l t t o tam pe r w i t h , p r o v id i n g s u p e r io r p e r im e te r

s e c u r i t y . Some o f t h e u s e r s a r e m i l i t a r y i n s t a l l a t i o n s , n u c le a r e n e rg y

s i t e s , m a x im u m - s e cu r ity p r i s o n s , v a r io u s p e t r o le u m i n s t a l l a t i o n s , ta n k

fa rm s and o t h e r im p o r t a n t i n d u s t r i a l f a c i l i t i e s .

S h o r t B la d e B a rb e d Tape (SB B T):

To g iv e t h e maximum t e n s i l e s t r e n g t h a t th e t im e o f t h e b r e a c h h a rd

draw n s t e e l c o rd i s u s e d (E S I) . For c a m o u fla g e p u r p o s e s , a c o a l t a r

c o a t in g c an be a p p l ie d o v e r t h e e n t i r e s u r f a c e (E S - 1) , and t o a t t a i n

th e h ig h d e g re e o f r u s t r e s i s t a n c e , th e c o re w ir e i s made o f g a lv a n iz e d

s t e e l (E S - 2) . Any o f th e above t h r e e o p t io n s a re a v a i l a b l e t o m eet y o u r

s p e c i f i c r e q u ir e m e n ts . T he re a r e s e v e r a l v a r i a t i o n s i n s p i r a l d ia m e te r

i n a c c o rd a n c e w i t h t h e ne e d s o f t h e c u s to m e rs .

Medium B la d e B a rb e d Tape (MBBT):

The s p e c i f i c a t i o n o f th e " i v o r y " ta p e i s s im i l a r t o th o s e o f ES ty p e s .

However t h e b la d e s a re s h a r p e r and have a g r e a t e r p r i c k i n g c a p a c i t y .

T h is can be u s e d f o r b o th te m p o ra r y and p e rm an e n t s e c u r i t y . The l i f e o f

t h i s ta p e i s m ore t h a n t h r e e t im e s lo n g e r t h a n t h o s e o f ES ty p e s .

T h e re fo r e , " i v o r y " ta p e i s a more e f f e c t i v e c h o ic e i n t e r r a i n , w h ic h

has heavy r a i n o r i n c o a s t a l a r e a s .

CHAP 02 INTRODUCTION TO HTML PAGE 19

Long B la d e B a rb e d Tape (LBBT):

T h is i s t h e m ost e f f e c t i v e p s y c h o lo g ic a l and p h y s ic a l d e t e r r e n t , e v e r

made as a b a r r i e r o b s t a c le . I t i s a v a i l a b l e i n s t a i n l e s s s t e e l (SUS

430) and th e c o re w ir e can be f a b r i c a t e d fro m e i t h e r g a lv a n i z e d c a rb o n

s t e e l o r s t a i n l e s s s t e e l .

ANIMAL FENCING

D EPL 's a n im a l f e n c in g sy s tem i s m a in ly u sed as an a n t i - i n t r u s i o n

b a r r i e r a g a in s t a n y fa rm and o t h e r a n im a ls .

The m ost common u se i s on h ig h w ay s w here v a s t d is t a n c e s a re c o v e re d a t

a v e ry e c o n o m ic a l c o s t .

A n im a l f e n c in g c an a ls o be u se d t o e n c lo s e a re a s su ch as fa rm s , fo re s jt

a r e a s a n d n a t i o n a l

p a r k s , w here s e c u r i t y i s n o t c r u c i a l .

T h is sy s te m i s e a s y t o i n s t a l l a n d can be e r e c te d i n a c o m p a r a t iv e ly

s h o r t t im e .

The above textual material can be typed into a

file using any ASCII text editor and saved as

an HTML file. This HTML file can then be

opened in a Web Browser. This file when

opened in the Browser will display the output

as shown in diagram 2.2.

Output For Focus 1:

The output in diagram 2.2 lacks visual appeal.

To increase the presentability o f this textual

material, it should be well formatted. HTML

has a series of formatting tags. HTML tags

along with syntax on how to use them are

described in the following pages. Diagram 2.2

C O M M O N L Y U S E D H T M L C O M M A N D S

T he S tru c tu re O f A n HTM L p ro g ra m

Every HTML program has a rigid structure. The entire web page^k'enclosed within <HTML> </HTML>

tags. Within these tags two distinct sections are created usifig the <HEAD> </HEAD> tags and the

<BODY> </BODY> tags. These sections are described below.

D o cum e n t H ead

Information placed in this section is essential to the inner workings o f the document and has nothing to do

with the content o f the document. With the exception o f information contained within the <TITLE>

</TITLE> tags, all information placed within the <HEAD> </HEAD> tags is not displayed in the browser.

The HTML tags used to indicate the start and end o f the head section are:

<HEAD><TITLE> . . . </T ITLEX/HEAD>

DELTA ENGINEERING PVT. LID.------------------------------- ,.............................
.......... PROFILE----- ----------------- ---------
Delta Engineering Pvt Ltd is a specialist manufacturer of wire and wire products DEPL
established in Mumbai, India is ideally located for shipments to any part of the world The main
items of manufacture, in collaboration with Gulf Fencing Industry (GFI) include protector gabions
and protector fencing systems. Protector fencing systems offer a wide range of solutions for all
security problems on any terrain and under extreme climatic conditions. The protector fencing
system has been used extensively in Europe, America and the Far East, and this has helped
formulate a package especially suited to Middle East requirements DEPL is equipped to offer
comprehensive packages including design, material and installation. Products stnctly adhere to BS,
ASTM and DIN international specifications. Quality control is guaranteed by independent
laboratory test certificates from India. Quality control is implemented without sacrificing economy
and efficiency DEPL is dedicated to technical services and problem solving. DEPL can provide
planning support by offering design, technical specifications, drawings, foundation plans and
installation instructions, together with a personalized service The company's technical sales
engineers keep in constant touch with all clients. Utmost importance is given to optimum design,
versatility, durability and economy backed by the DEPL guarantee for work undertaken Please
forward any inquiries to enq_depl@bom2 vsnl.net.in DELTA ENGINEERING PVT LTD 502,'

D o c u m e n t B ody

The tags used to indicate the start and end of the main body of textual information are:

<BODY>

</BODY>

Page defaults like background color, text color, font size, font weight and so on can be specified as

attributes o f the <BODY> tag. The attributes that the <BODY> tag takes are:

C O M M E R C IA L W E B APPLICATION DEVELOPM EN T U SING HTML, ruAO n-

PAGE 20 JAV ASCRIPT , DHTML AND PERL CHAP 02

B G C O L O R Changes the default background color to whatever color is specified with this tag. The

user can specify a color by name or its equivalent hexadecimal number.

BACK GROU N D Specifies the name o f the G if file that will be used as the background o f the document.

This G if tiles up across the page to give a background.

TEXT Changes the body text color from its default value to the color specified with this

attribute.

Table 2.1

Example:

<BODY BACKGROUND = "starfield.gif' TEXT= red>

H a te

. The .gif file ''starfield.gif' should be present in the current working directory. If not, a Relative path

should be specified to where the .gif file exists.

Specifying a Relative File Path:

Wherever a file name needs to be specified (for instance, a .g if f i le needs to be specified with the
BACKGROUND attribute), the specified file must be present in the current working directory. If the

file is not in the current working directory, the specified file must include the file path. The file path

can be specified relative to the current directory. This is because, by default, the Browser searches for

the file only within the current directory.

For example, consider the following directory structure.

Consider working with the file try.htm. To use all the different .gif

files as backgrounds, the tag specifications will change as follows:

Use o f the file boxes.gif

<BODY BACKGROUND = "../boxes.gif’>

Use o f the file texturel .gif

<BODY BACKGROUND = "texturel.gif’>

C:\

• boxes.gif

Vaishali

• try.htm

■ texturel.gif

■ images

I— ----stars.gif

Use o f the file stars.gif

<BODY BACKGROUND = "images/stars.gif'>

T IT L E S A N D F O O T E R S

CHAP 02 INTRODUCTION TO HTML PA G E 21

Title

A web page could have a title that describes what the page is about without being too wordy. This can be
achieved by using the TITLE tag. Text included between the < T IT L E > ...< /T IT L E > tag shows up in the
title bar o f the browser window. .

<T IT L E > . . . </T IT L E >

Footer

Just as a title can be placed in the title bar o f the browser window, certain information is commonly placed
at the foot o f the web page. Copyright information, contact details of the creator o f the Web page and so on
are the type o f information traditionally placed at the foot o f the web page. The HTML tags are:

<A D D R ESS> . , . </A D D RESS>

This tag should ideally be placed im m ediately after the last line of the textual material of the web page.
However, it could also be placed anywhere in the body of the document. The text typed within these tags
always appears in Italics.

Exam ple:
<H EA D ><TITLE>T his is the title</TITLE></H EA D >
<B O D Y >

<AD D RESS>This is the footer </A D D RESS>
</B O D Y >

T E X T F O R M A T T IN G

P arag raph b reaks

A blank line always separates paragraphs in textual material. The tag that provides this functionality is
< P > . On encountering this tag the browser, moves onto a new line, skipping one line between the previous
line and the new line.

Exam ple:
A channel is a dedicated path for data to flow along. It doesn’t bother too much about error
correction on its own, merely reporting to the processor that the transfer failed. So a channel can
be very fast. < P > Fiber channel has the above attributes along with those of a network. It lets you
transfer data from a source buffer to another buffer at journey’s end. It does not care for the
contents or the data format.

Output:
A c h a n n e l i s a d e d ic a t e d p a t h f o r d a ta t o f lo w a lo n g . I t d o e s n ' t

b o t h e r t o o much a b o u t e r r o r c o r r e c t io n on i t s own, m e re ly r e p o r t i n g

t o t h e p r o c e s s o r t h a t t h e t r a n s f e r f a i l e d . So a c h a n n e l c an be v e ry

f a s t .

F ib e r c h a n n e l h a s t h e above a t t r i b u t e s a lo n g w i t h th o s e o f a

n e tw o rk . I t l e t s you t r a n s f e r d a ta from a s o u rc e b u f f e r t o a n o th e r

b u f f e r a t j o u r n e y 's e n d . I t does n o t c a r e f o r th e c o n te n t s o r t h e

d a ta f o r m a t .

PAGE 22
C O M M ERC IA L W E B APPLICATION DEVELOPM EN T U SING HTML,

JA V A SCR IPT , DHTML AND PERL

Line Breaks

When text needs to start from a new line and not continue on the same line (without skipping a blank line),
the
 tag should be used. This tag simply jumps to the start of the next line.

Example:
Silicon Chip Technologies,
 A/5, Jay Apartments,

Vile Parle (East),
 Mumbai - 400057.

Output:
S i l i c o n C h ip T e c h n o lo g ie s ,

A /5 , J a y A p a r tm e n ts ,

V i l e P a r le (E a s t) ,

Mumbai - 400057 .

M o te ,
Browsers ignore multiple consecutive <P> tags, but recognize multiple consecutive
 tags.

FOCUS 2:

Using appropriate text formatting and break tags to improve the presentability o f the DEPL Web Site.

Code Listing:
<HTML>

<HEAD><TITLE>Delta Engineering Pvt. Ltd.</TITLE></HEAD>

<BODY Background="images/pinkwhit.gif'>DELTA ENGINEERING PVT. LTD.<P>

—............................-...

PROFILE

...

Delta Engineering Pvt. Ltd. is a specialist manufacturer of wire and wire products. DEPL

established in Mumbai, India is ideally located for shipments to any part o f the world. The main

items o f manufacture, in collaboration with Gulf Fencing Industry (GFI) include protector gabions

and protector fencing systems. <P> Protector fencing systems offer a wide range o f solutions to all

security problems on any terrain and under extreme climatic conditions. Protector fencing system

has been used extensively in Europe, America and the Far East, .and this has helped formulate a

package especially suited to Middle East requirements. <P> DEPL is equipped to offer

comprehensive packages including design, material and installation. <P> Products strictly adhere

to BS, ASTM and DIN international specifications. Quality control is guaranteed by independent

laboratory test certificates from India. <P> Quality control is implemented without sacrificing

economy and efficiency. DEPL is dedicated to technical services and problem solving. <P> DEPL

can provide planning support by offering design, technical specifications, drawings, foundation

plans and installation instructions, together with personalized service. The company's technical

sales engineers keep in constant touch with all clients. Utmost importance is given to optimum

design, versatility, durability and economy backed by the DEPL guarantee for work undertaken.

<P> Please forward any inquiries to enq_depl@bom2.vsnl.net.in <P>

DELTA ENGINEERING PVT. LTD.

502, 5th Floor, Tejas Building,
 Andheri (W), Mumbai
 India

Telephone : 91-022-8210050

mailto:enq_depl@bom2.vsnl.net.in

CHAP 02 INTRODUCTION TO HTML PAGE 23

--

BARBED W IRE

Concertina Barbed Wire in roll form is used in high security areas to deter trespassing men and
animals. The effectiveness o f this material is proved as it has been in use for more than 75 years
during war and peace. <P>
Line Wire:
 This is made up of 3.05mm diameter high carbon steel wire, with a tensile
strength of 170 to 180 kg/mm2. The wire is drawn and dressed in such a manner that the coils
formed will fall naturally into the specified diameter without forming a figure eight. Line wire is
heavy hot dipped galvanized with minimum zinc coating of 185 gm/mm2. <P>
Barbed Wire:
 This is 2.00m m diameter bright mild steel wire with a tensile strength o f 38
to 55kg/mm2 conforming to BS 1052. The wire is hot dipped galvanized with a minimum zinc
coating of 20 to 50 gm/mm2. The barbs are formed with four points. Spacing between the centers
o f the barbs is every 70mm along the length of the wire. The barbs are firmly secured by
indentations made on the wire. <P>
Carrying Handles:
 Handles are made of mild steel wire of 3.55mm diameter and are
attached to the outer turn of the coil on each side. <P>

...

BARBED TAPES

...

Barbed Tapes are used as psychological and physical deterrent against intrusion by personnel and
animals. Barbed tape barrier systems are more vicious and difficult to tamper with, providing
superior perimeter security. Some of the users are military installations, nuclear energy sites,
maximum-security prisons, various petroleum installations, tank farms and other important
industrial facilities. <P>
Short Blade Barbed Tape (SB BT):
 To give the maximum tensile strength at the time of the
breach hard drawn steel cord is used (E S I). For camouflage purposes, a coaltar coating can be
applied over the entire surface (ES-1), and to attain the high degree of rust resistance, the core
wire is made of galvanized steel (ES-2). Any of the above three options are available to meet your
specific requirements. <P>
Medium Blade Barbed Tape (M BBT):
 The specification of the "ivory" tape is similar to
those of ES types. However the blades are sharper and have a greater pricking capacity. This can
be used for both temporary and permanent security. The life of this tape is more than three times
longer than those o f ES types. Therefore, "ivory" tape is a more effective choice in terrain, which,
has heavy rain or in coastal areas. <P>
Long Blade Barbed Tape (L B B T):
 This is the most effective psychological and physical
deterrent, ever made as a barrier obstacle. It is available in authentic stainless steel (SUS 430) and
the core wire can be fabricated from either galvanized carbon steel or stainless steel. <P>

...

ANIMAL FENCING

...

DEPL's animal fencing system is mainly used as an anti-intrusion barrier against any farm and
other animals. <P> The most common use is on highways where vast distances are covered at a
very economical cost. <P> Animal fencing can also be used to enclose areas such as farms, forest
areas and national parks, where security is not crucial. <P> This system is easy to install and can
be erected in a comparatively short time. <P>

</BO D Y>
</HTM L>

PAGE 24
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, сн д р » ,

JAVASCRIPT, DHTML AND PERL

Output For Focus 2:

When the web page is viewed in the
browser the output shows paragraphs
distinctly, but still is not visually attractive.
For instance, headings like Profile,
Products, Barbed Wire and so on are
emphasized by means o f two dashed lines,
one above and one below the Heading. This
is not a visually pleasing way o f laying
emphasis on headers. Headers should
preferably be displayed in Bold, Italics and
so on. Also, simple dashed lines drawn do
not have aesthetic appeal.

E M P H A S I Z I N G M A T E R I A L IN A

W E B P A G E

Document pages are usually divided into sections and subsections (i.e. pages could have headings and sub
headings), which need to be emphasized. HTML provides certain HEADING STY LES and
HORIZONTAL R U LES, which helps break text into logical sections with visual appeal.

Heading Styles

HTML supports six different levels o f headings. The highest-level header format is <H 1> and the lowest
level is <H 6>. All the styles appear in BO LD FA CE and the size o f the heading depends on the level
chosen, i.e. <H 1> to <H 6>

Example:
<H 3>The early years</H 3>

Output:
T h e e a r l y y e a r s

J / o i e .

As the number next to <H > (1 , 2 , . . .) increases, the font size actually decreases.

Drawing Lines

The tag <H R > draws lines and horizontal rules. This tag draws a horizontal line across the whole page,
wherever specified. The attributes to the <H R > tag are:__
Attributes Description
ALIGN Aligns the line on the Browser screen, which is by default, aligned to the center o f the screen.

ALIGN = LE FT will align the line to the left of the screen
ALIGN = RIGHT will align the line to the right o f the screen
ALIGN = CENTER will align the line to the center of the screen

SIZE Changes the size o f the rule.
WIDTH Sets the width o f the rule. It can be set to a fixed number o f pixels, or to a percentage of the

available screen width.

DELTA ENGINEERING PVT. LTD.

PROFILE
..z ...-

Delta Engineering Pvt. Ltd. is a specialist manufacturer of wire and wire products. DEPL
established in Mumbai, India is ideally located for shipments to any part of the world The mam /
items of manufacture, m collaboration with Gulf Fencing Industry (GFI) include protector gabions
and protector fencing systems.

Protector fencing systems offer a wide range o f solutions to all security problems on any terrain and
under extreme climatic conditions. Protector fencing system has been used extensively in Europe,
America and the Far East, and this has helped formulate a package especially suited to Middle East
requirements.

DEPL is equipped to offer comprehensive packages including design, material and installation

Products strictly adhere to BS, ASTM and D IN international specifications. Quality control is

Diagram 2.3

Table 2.2

CHAP 02 INTRODUCTION TO HTML PAGE 25

Example:
Welcome to our Web site.
<H R ALIGN= L EFT W IDTH=10 SIZ E=4>

Output:
m

T E X T S T Y L E S

Bold

Displays text in BO LD FA CE style. The tags used are < B > . . .< /B >

Example:
W elcom e to our home p age!

Output:
W e l c o m e to our home page!

Italics

Displays text in ITALICS. The tags used are between < I > . . .< /I>

Example:
< I> Welcome to our home page! </I>

Output:
W e l c o m e t o o u r h o m e p a g e !

Underline

Displays text as UNDERLINED, The tags used are < U >< /U >

Example:
< U > Welcome to our home page! </U >

Output:
W e l c o m e t o o u r h o m e p a g e !

FOCUS 3:
Emphasize the headings and sub-headings displayed on the DEPL web page.

Code Listing:
<H TM L>

<H EA D ><TITLE>D elta Engineering Pvt. Ltd .</TITLE></H EA D >
<B O D Y Background="images/pinkwhit.gif’><H 2><I>D elta Engineering Pvt. L td .< /I></H 2>

<H 3>P R O FILE</H 3>D elta Engineering Pvt. Ltd. is a specialist manufacturer of wire and wire
products. D EPL established in Mumbai, India is ideally located for shipments to any part of the
world. The main items o f manufacture, in collaboration with Gulf Fencing Industry (GFI) include
protector gabions and protector fencing systems. <P>Protector fencing systems offer a wide range
of solutions to all security problems on any terrain and under extreme climatic conditions. The
protector fencing system has been used extensively in Europe, America and the Far East, and this
has helped formulate a package especially suited to Middle East requirements. <P> DEPL is
equipped to offer comprehensive packages including design, material and installation.

PAGE

<P>Products strictly adhere to BS, ASTM and DIN international specifications. Quality control is
guaranteed by independent laboratory test certificates from India. <P> Quality control is
implemented without sacrificing economy and efficiency. DEPL is dedicated to technical services
and problem solving. <P> DEPL is following quality methods and is accredited with ISO 9002.
<P> DEPL can provide planning support by offering design, technical specifications, drawings,
foundation plans and installation instructions, together with a personalized service. The company's
technical sales engineers keep in constant touch with all clients. Utmost importance is given to
optimum design, versatility, durability and economy backed by the D EPL guarantee for work
undertaken. <P> Please forward any inquiries to enq_depl@bom2.vsnl.net.in
<P ><I>D E L T A ENGINEERING PVT. LTD.
 502, 5th Floor, Tejas Building
 Andheri
(W), Mumbai
 India
 Telephone: 9 1 -0 2 2 -8 2 1 0 0 5 0 < /I> < P > < H R >

<H 3>B A R B E D W IR E </H 3> Concertina Barbed Wire in roll form is used in high security areas
to deter trespassing men and animals. The effectiveness of this material is proved as it has been in
use for more than 75 years during war and peace.
<P><I> Line Wire: </I>
 This is made up o f 3.05mm diameter high carbon steel
wire, with a tensile strength o f 170 to 180 kg/mm2. The wire is drawn and dressed in such a
manner that the coils formed will fall naturally into the specified diameter without forming a
figure eight. Line wire is heavy hot dipped galvanized with minimum zinc coating of 185
gm/mm2.
<P><I> Barbed Wire: </I>
 This is 2.00mm diameter bright mild steel wire with a
tensile strength o f 38 to 55kg/mm2 conforming to BS 1052. The wire is hot dipped galvanized with
a minimum zinc coating o f 20 to 50 gm/mm2. The barbs are formed with four points. Spacing
between the centers o f the barbs is every 70mm along the length o f the wire. The barbs are firmly
secured by indentations made on the wire, so that the barbs do not rotate or slide along the wire.
The four points o f the barbs are formed at the right angles to one another and project outwards
approximately 12mm from the center of the wire.
< P > < B > < I > Carrying Handles: < /I > < /B > < B R > Handles are made o f mild steel wire of 3.55mm
diameter and are attached to the outer turn o f the coil on each sid e .<P ><H R >

<H 3>B A R B E D TAPES < /H 3 > Barbed Tapes are used as psychological and physical deterrent
against intrusion by personnel and animals. Barbed tape barrier systems are more vicious and
difficult to tamper with, providing superior perimeter security. Some o f the users are military
installations, nuclear energy sites, maximum-security prisons, various petroleum installations, tank
farms and other important industrial facilities.
<P><I> Short Blade Barbed Tape (S B B T): </I>
 To give the maximum tensile
strength at the time of the breach hard drawn steel cord is used (E S I). For camouflage purposes, a
coaltar coating can be applied over the entire surface (ES-1), and to attain the high degree o f rust
resistance, the core wire is made o f galvanized steel (ES-2). Any o f the above three options are
available to meet your specific requirements.
<P><I> Medium Blade Barbed Tape (M BBT): </I>
 The specification of the
"ivory" tape is similar to those of ES types. The blades are sharper and have a greater pricking
capacity. The life of this tape is more than three times longer than those o f ES types. Therefore,
"ivory" tape is a more effective choice in terrain which has heavy rain or in coastal areas. The
diameter will be similar to ES type.
<P><1> Long Blade Barbed Tape (LB B T): </I>
 This is the most effective
psychological and physical deterrent, ever made as a barrier obstacle. It is available in authentic
stainless steel (SUS 430) and the core wire can be fabricated from either galvanized carbon steel
or stainless steel.<P><HR> «

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, rHAp n2

JAVASCRIPT, DHTML AND PERL

mailto:enq_depl@bom2.vsnl.net.in

CHAP 02 INTRODUCTION TO HTML PAGE 27

<H 3>A N IM A L FEN CIN G </H 3> DEPL's animal fencing system is mainly used as an anti
intrusion barrier against any farm and other animals. <P> The most common use is on highways
where vast distances are covered at a very economical cost. <P> imal fencing can also be used to
enclose areas such as farms, forest areas and national parks, where security is not crucial. <P>
This system is easy to install and can be erected in a comparatively short time. < H R >

</B O D Y >
</HTML>

Output For Focus 3:_______________________________

Delta Engineering Pvt. Ltd.

PROFILE

Delta Engineering Pvt. Ltd. is a specialist manufacturer of wire and wire products. DEPL
established in Mumbai, India is ideally located for shipments to any part of the world The main
items of manufacture, in collaboration with Gulf Fencing Industry (GFI) include protector gabions
and protector fencing systems

Protector fencing systems offer a wide range of solutions to all security problems on any terrain and
under extreme climatic conditions The protector fencing system has been used extensively m
Europe, America and the Far East, and this has helped formulate a package especially suited to
Middle East requirements.

DEPL is equipped to offer comprehensive packages including design, malenal and installation

Products strictly adhere to BS, ASTM and DIN international specifications. Quality control is

BARBED WIRE

Concertina Barbed Wire in roll form is used in high secunty areas to deter trespassing men and
animals The effectiveness of this matenal is proved as it has been in use for more than 75 years
dunng war and peace.

Line Wire:
This is made up of 3.05mm diameter high carbon steel wire, with a tensile strength of 170 to 180
kg/mm2 The wire is drawn and dressed in' such a manner that the coils formed will fall naturally into
the specified diameter without forming a figure eight. Line wire is heavy hot dipped galvanized with
minimum zinc coating o fl 85 gm/mm2

Barbed Wire:
This is 2.00mm diameter bright mild steel wire with a tensile strength of 38 to 55kg/mm2 conforming
to BS 1052. The wire is hot dipped galvanized with a minimum nnc coating of 20 to 50 gm/mm2
The barbs are formed with four points. Spacing between the centers of the barbs is every 70mm
along the length of the wire. The barbs are firmly secured by indentations made on the wire, so that
the barbs do not rotate or slide along the wire. The four points of the barbs are formed at the nght

Diagram 2.4.1 Diagram 2.4.2

When a text file is formatted as above is viewed in a browser what is seen is visually pleasing. The visual
aesthetics of the web page can be further improved by introducing various Fonts, Colors, centering o f Text
and so on. The following sections illustrate how this Web page can be made visually, further attractive.

O T H E R T E X T E F F E C T S

Centering (Text, I m a g e s etc.)

< C E N T E R > </C EN T ER > tags are used to center everything found between them - text, lists,
images, rules, tables or any other page element.

Example:
<C EN T ER > Welcome to our home page! </C EN T ER >

Output:
W e l c o m e t o o u r h o m e p a g e !

S p acing (Indenting Text)

The tag used for inserting blank spaces in an HTML document is <SPA C ER >. Its attributes are:

TYPE To specify whether space has to be left horizontally or vertically.
TYPE = "HORIZONTAL" indicates that horizontal space has to be left.
TYPE = "V ER TIC A L" indicates that vertical space has to be left.

SIZE Indicates the amount o f space to be left. Size accepts any integer.
Table 2.3

PAGE 28
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

The SPACER command is understood only by the browser Netscape. There are several other
techniques that can be used to introduce space in the document (understood by all Browsers). These
will be covered in the later Chapters.

Example:
Welcome to my site <B R >
<SPA CER T Y P E = "HORIZONTAL" SIZE = 90>Hope you enjoy it

Output:
W e l c o m e t o m y s i t e

H o p e y o u e n j o y i t

Controlling Font Size and Color

All text specified within the tags <FO N T> and </FO N T> will appear in the font, size and color as specified
as attributes of the tag <FO N T>. The attributes are:

FACE Sets the font to the specified font name.
SIZE Sets the size o f the text.

SIZE can take values between 1 and 7. The default size used is 3.
SIZE can also be set relative to the default size. i.e. SIZE = +x, where x is any integer value
and will add up to the default size. For instance, SIZE = + 3 will display a size o f 6.

COLOR Sets the color of the text. COLOR can be set to an English language color name or to a
hexadecimal triplet.

Table 2.4

Example:
W elcome to our home page!

Output:
W elcom e to ou r home page!

G a u t ix w t . ii in

The FO NTFACE attribute can take the name of any font supported by Windows i.e. the font
H ijlj) should be present in the directory. C:\Windows\Font\........If the font used with this attribute is

not available on the computer, the browser uses its own default font. Therefore, it is a good
practice to use commonly used fonts, which have a high possibility o f being present on every
client computer.

FOCUS 4:

One method o f making a web site more readable and interesting, to be able to draw the viewer’s attention
to certain key areas in the page is by using different Fonts and Colors.

Code Listing:
<HTM L>

<H EA D ><T IT LE> Delta Engineering Pvt. Ltd. </T IT LE></H EA D >
<BO D Y Background="images/pinkwhit.gif'>

N o t e .

CHAP 02 INTRODUCTION TO HTML PAGE 29

 < I> D e lta Engineering Pvt.
Ltd. </I><HR>
<C E N T E R ><H 3>P R O F IL E </H 3>D elta Engineering Pvt. Ltd. is a
specialist manufacturer o f wire and wire products. DEPL established in Mumbai, India is ideally
located for shipments to any part o f the world. The main items o f manufacture, in collaboration
with Gulf Fencing Industry (G FI) include protector gabions and protector fencing systems. < P >
Protector fencing systems offer a wide range o f solutions to all security problems on any terrain
and under extreme climatic conditions. The protector fencing system has been used extensively in
Europe, America and the Far East, and this has helped formulate a package especially suited to
Middle East requirements. < P > D EPL is equipped to offer comprehensive packages including
design, material and installation. < P > Products strictly adhere to BS, ASTM and DIN international
specifications. Quality control is guaranteed by independent laboratory test certificates from India.
< P > Quality control is implemented without sacrificing economy and efficiency. DEPL is
dedicated to technical services and problem solving. <P > DEPL is following quality methods and
is accredited with ISO 9002. < P > D EPL can provide planning support by offering design,
technical specifications, drawings, foundation plans and installation instructions, together with a
personalized service. The company's technical sales engineers keep in constant touch with all
clients. Utmost importance is given to optimum design, versatility, durability and economy backed
by the DEPL guarantee for work undertaken.</CEN TER>
<P>Please forward any enquiries to enq_depl@bom2.vsnl.net.in
< P > < I> < B > D E L T A ENGINEERING PVT. L T D .< /B ><B R >502 , 5th Floor, Tejas Building <B R >
Andheri (W), Mumbai <B R > India <B R > Telephone : 91 -0 2 2 -8 2 1 0050</I><P ><H R >
< C E N T E R ><H 3>B A R B E D W IR £</H 3></C E N T E R > Concertina Barbed Wire in roll form is
used in high security areas to deter trespassing men and animals. The effectiveness of this material
is proved as it has been in use for more than 75 years during war and peace.
< P > <I>L in e W ire:</I><B R >T h is is made up o f 3.05m m diameter high carbon steel
wire, with a tensile strength o f 170 to 180 kg/mm2. The wire is drawn and dressed in such a
manner that the coils formed will fall naturally into the specified diameter without forming a
figure eight. Line wire is heavy hot dipped galvanized with minimum inc coating of 185 gm/mm2.
<P ><I>B arb ed W ire:</I><B R >T h is is 2.00mm diameter bright mild steel wire with a
tensile strength of 38 to 55kg/mm2 conforming to BS 1052. The wire is hot dipped galvanized with
a minimum zinc coating o f 20 to 50 gm/mm2. The barbs are formed with four points. Spacing
between the centers o f the barbs o f every 70mm along the length o f the wire. The barbs are firmly
secured by indentations made on the wire, so that the barbs do not rotate or slide along the wire.
The four points o f the barbs are formed at the right angles to one another and project outwards
approximately 12mm from the center of the wire.
<P ><I>C arryin g H an d les:</I></B »<B R >H an d les are made of mild steel wire o f 3.55mm
diameter and are attached to the outer turn of the coil on each side. <P ><H R >
<C E N T E R ><H 3>B A R B E D T A P E S </H 3></C E N T E R > Barbed Tapes are used as psychological
and physical deterrent against intrusion by personnel and animals. Barbed tape barrier systems are
more vicious and difficult to tamper with, providing superior perimeter security. Some o f the users
are military installations, nuclear energy sites, maximum-security prisons, various petroleum
installations, tank farms and other important industrial facilities.
<P ><I>S h o rt Blade Barbed Tape (S B B T):< /I> < /B > < B R > To give the maximum tensile
strength at the time of the breach hard drawn steel cord is used (E S I). For camouflage purposes, a
coaltar coating can be applied over the entire surface (ES-1), and to attain the high degree o f rust
resistance, the core wire is made o f galvanized steel (ES-2). Any o f the above three options are
available to meet your specific requirements.

mailto:enq_depl@bom2.vsnl.net.in

PAGE 30
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

<P ><I>M edium Blade Barbed Tape (M B B T):< /I>< /B ><B R > The specification o f the "ivory"
tape is similar to those o f ES types. The blades are sharper and have a greater pricking capacity.
The life o f this tape is more than three times longer than those of ES types. Therefore, "ivory" tape
is a more effective choice in terrain which has heavy rain or in coastal areas. The diameter will be
similar to ES type.
<P ><I>L o n g Blade Barbed Tape (L B B T):< /I> < /B > < B R > This is the most effective
psychological and physical deterrent, ever made as a barrier obstacle. It is available in authentic
stainless steel (SUS 430) and the core wire can be fabricated from either galvanized carbon steel
or stainless steel. <P ><H R >
<C E N T E R ><H 3>A N IM A L FEN C IN G </H 3></C EN T ER > DEPL's animal fencing system is
mainly used as an anti-intrusion barrier against any farm and other animals. < P > The most
common use is on highways where vast distances are covered at a very economical cost. <P >
Animal fencing can also be used to enclose areas such as farms, forest areas and national parks,
where security is not crucial. < P > This system is easy to install and can be erected in a
comparatively short tim e.<H R>

</FO N T>
</BODY>

</HTM L>

Output:

»

The visual aesthetics o f this page may be
improved upon by using common techniques
like HTML Lists, Bulleted, Numbered,
Unordered and Ordered and so on. The
technique (syntax) o f using HTML Lists is
given in the following chapters.

Diagram 2.5

S E L F R E V I E W Q U E S T I O N S

FILL IN THE BLANKS

1. HTML stands fo r_______________________ .

2. Files that travel across the largest network in the world, the Internet, and carry information from
_________ to a __________ that request them are called________________ . The person who develops them
is called a ________________ .

3. TCP/IP stands fo r____________ .

4. An HTML document is divided into_____________________ and the ‘___________________ sections.

5. tag starts text from a new line skipping one line in between.

TRUE OR FALSE

6. Some of the most popular software, which Servers run to allow them to respond to client request for
information, are Microsoft Internet Explorer, Netscape Navigator, Neo Planet etc.

D e l t a E n g i n e e r i n g P v t . L t d .

PROFILE

Delta Engineering Pvt. Ltd. is a specialist manufacturer ct wire and wire products DEPL
established in Mumbai, India is ideally located for shipments to any part of the world. The mam

items o f manufacture, in .collaboration with Gulf Fencing Industry (GFI) include protector gabions
and protector fencing systems —

Protector fencing,systems offer a wide range of solutions to all security problems on any terr ain and
under extreme climadc conditions The protector fencing system has been used extensively in

Europe. Amenca and the Far East, and this has helped formulate a package especially suited to
Middle East requirenietits

DEPL is equipped to offer comprehensive packages including design, material and installation

7. HTML supports 6 different levels of headings.

CHAP 02 INTRODUCTION TO HTML PAGE 31

8. H T M L tags are of two types are Paired Tags and Singular Tags.

9. SIZE can take values between 1 & 7.

10. The .gif files are specified with B G C O L O R attribute.

11. The tag used for inserting spaces in H T M L documents is < M A R K E R > .

H A N D S O N E X E R C I S E S

1. For the screen shown in diagram 2.7 write the H T M L code which makes use of:
□ The Italics tag
□ The Center tag
a The Paragraph tag
a The Break tag
a The Font tag and its attributes

Text Content
Beware of password hackers and crackers!

The threat of hackers and crackers is for real, and is alike for everything for everyone. If the security breach

at the Babha Atomic Research Center last year by the hacker group milworm didn't convince you of their

capabilities, then consider this: James Davis aka jdavis_4, a resident of

www.geocities.com/SiliconValley/Bit/2483 homestead community on the Internet, might just be reading

your e-mail in your mailbox right now, or using your account for some benign Internet surfing, or
exchanging it with someone else on the Net for more such accounts!

Surprised? Or scared?

Whatever it is, jdevis_4 claims in his home page Free V S N L passwords that he has got exactly 108

working passwords (and growing daily), 36 Satyam, 31 MTNL, 11 WimiNet and 23 online passwords.

Beware o f password hackers and crackers!

The threat of hackers and crackers is for real, and is alike for eveiyone. If the security
breach at the Bhabha Atomic Research Center last year by the hacker group milwOrm
didn’t convince you of their capabilities, then consider this: James Davis aka jdavis_4, a
resident of vww.geocities.com/5iliconVfllley/Bit/2483 homestead community on the
Internet, might just be reading your e-mail in your mailbox right now, or using your
account for some benign Internet surfing, or exchanging it with someone else on the Net
for more such accounts!
Surprised? Or scared?

Whatever it is, jdavis_4 claims in his home page-Free VSNL pas swords-that he has got
exactly 108 working VSNL passwords (and growing daily), 36Satyam, 31 MTNL, 11
WmiNet and 23 Mantra Online passwords.

D i a g r a m 2.6: Output of Hands on Exercise

http://www.geocities.com/SiliconValley/Bit/2483

3. L I S T S

T Y P E S O F L I S T S

U n o rdered List (Bullets)

An unordered list starts with the tag and ends with . Each list item starts with the tag .

The attributes that can be specified with are

TYPE Specifies the type of the bullet.

TYPE= FILLROUND will give a solid round black bullet
_____ TYPE= SQUARE will give a solid square black bullet

Table 3.1

Example:
Some of these products include:

< U L T Y P E = F I L L R O U N D >

 Floppies

 Hard Disks

 Monitors

Output:
S o m e o f t h e s e p r o d u c t s i n c l u d e :

• F l o p p i e s

• H a r d D i s k s

• M o n i t o r s

Ordered Lists (Numbering)

An ordered list start with the tag and ends with . Each list items start with the tag . The
attributes that can be specified with are:

TYPE Controls the numbering scheme to be used.
T Y P E = “1” will give counting numbers (1,2,......)

T Y P E = “A ” will give Uppercase letters (A, B)

T Y P E = “a” will give Lowercase letters (a, b,......)

T Y P E = “I” will give Uppercase Roman Numerals (I, II,......)

T Y P E = “i” will give Lowercase Roman Numerals (i, ii........)

START Alters the numbering sequence. Can be set to any numeric value.

VALUE Changes the numbering sequence in the middle of an ordered list. It is to be specified with the

 tag.

Table 3.2

Example:
Some of these products include:

< O L T Y P E = "1" START="3">

 Floppies

CHAP 03 LISTS PAGE 33

 Hard Disks

 Monitors

Output:
S o m e o f t h e s e p r o d u c t s i n c l u d e :

3 . F l o p p i e s

4 . H a r d D i s k s

5 . M o n i t o r s

Definition Lists

Definition list values appear within tags < D L > and </DL>. Definition lists consists of two parts:

Definition term appears after the tag <DT >

Definition description appears after the tag < D D >

Table 3.3

Example: *
< DL >

< D T > Keyboard

< D D > A n input device

< D T > Printer

< D D > A n output device
</DL>

Output:
K e y b o a r d

A n i n p u t d e v i c e

P r i n t e r

A n o u t p u t d e v i c e

FOCUS
When a manufacturing company publishes its information on the W e b it seeks to draw user attention to its

(list of) products. Creating such a list can be achieved through the use of Bullets or Numbering. These
techniques will be well applied to the Barbed Wires and Barbed Tapes lists on D E P L’s web page to
illustrate their use.

Code Listing:
< H T M L >

<HEAD><TITLE>Delta Engineering Pvt. Ltd.</TITLE></HEAD>

< B O D Y Background="images/pinkwhit.gif'>

< F O N T Face = "Brush Script M T " Size = 7 Color = "#008000"><I>Delta Engineering Pvt.
Ltd.</I><HR>

< F O N T Color = "#C)08000"><CENTER><H3>PROFILE</H3>Delta Engineering Pvt. Ltd. is a

specialist manufacturer of wire and wire products. D E P L established in Mumbai, India is ideally

located for shipments to any part of the world. The main items of manufacture, in collaboration

with Gulf Fencing Industry (GFI) include protector gabions and protector fencing

systems.<P>Protector fencing systems offer a wide range of solutions to all security problems on

any terrain and under extreme climatic conditions. The protector fencing system has been used

extensively in Europe, America and the Far East, and this has helped formulate a package
especially suited to Middle East requirements.

PAGE 34
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, сн д р „

JAVASCRIPT, DHTML AND PERL

< P >DEPL is equipped to offer comprehensive packages including design, material and

installation.<P>Products strictly adhere to BS, A S T M and DIN international specifications.

Quality control is guaranteed by independent laboratory test certificates from India.<P>Quality

control is implemented without sacrificing economy and efficiency. D E P L is dedicated to

technical services and problem solving.<P>DEPL is following quality methods and is accredited

with ISO 9002.<P>DEPL can provide planning support by offering design, technical

specifications, drawings, foundation plans and installation instructions, together with a

personalized service. The company's technical sales engineers keep in constant touch with all

clients. Utmost importance is given to optimum design, versatility, durability and economy backed

by the D E P L guarantee for work undertaken.</CF,NTF.R>

<P>Plea^e forward any enquiries to enq_ depl@bom2.vsnl.net.in

<P><I>DELTA E N G I N E E R I N G PVT. LTD.
502, 5th Floor, Tejas Building <B R >

Andheri (W), Mumbai < B R > India < B R > Telephone : 91 -022-8210050</I><P><HR>

< C E N T E R > < H 3 > B A R B E D WIRE</H3 > < / C E N T E R > Concertina Barbed Wire in roll form is

used in high security areas to deter trespassing men and animals. The effectiveness of this material

is proved as it has been in use for more than 75 years during war and peace.

<P><I>Line Wire:</I>
This is made up of 3.05mm diameter high

carbon steel wire, with a tensile strength of 170 to 180 kg/mm2. The wire is drawn and dressed in

such a manner that the coils formed will fall naturally into the specified diameter without forming

a figure eight. Line wire is heaivy hot dipped galvanized with minimum inc coating of 185

g m / m m 2.
<P><I>Barbed Wire:</I>
This is 2.00mm diameter bright mild steel wire

with a tensile strength of 38 to 55kg/mm2 conforming to BS 1052. The wire is hot dipped

galvanized with a minimum zinc coating of 20 to 50 g m / m m 2. The barbs are formed with four

points. Spacing between the centers of the barbs of every 7 0 m m along the length of the wire. The

barbs are firmly secured by indentations made on the wire, so that the barbs do not rotate or slide

along the wire. The four points of the barbs are formed at the right angles to one another and

project outwards approximately 12mm from the center of the wire.

<P><I>Carrying Handles:</I></B»
Handles are made of mild steel wire of

3.55mm diameter and are attached to the outer turn of the coil on each side.<P><HR>

< C E N T E R > < H 3 > B A R B E D T A P E S ,r/H3>< / C E N T E R > Barbed Tapes are used as psychological

and physical deterrent against intrusion by personnel and animals. Barbed tape barrier systems are

more vicious and difficult to tamper with, providing superior perimeter security. Some of the users

are military installations, nuclear energy sites, maximum-security prisons, various petroleum

installations, tank farms and other important industrial facilities.

<P><DT><I>Short Blade Barbed Tape (SBBT):</I>

< D D > T o give the maximum tensile strength at the time of the breach hard drawn steel cord is

used (ESI). For camouflage purposes, a coaltar coating can be applied over the entire surface

(ES-1), and to attain the high degree of rust resistance, the core wire is made of galvanized

steel (ES-2). Any of the above three options are available to meet your specific requirements.

<P><Ll><DT><I>Medium Blade Barbed Tape (MBBT):</I>

< D D>The specification of the "ivory" tape is similar to those of ES types. The blades are

sharper and have a greater pricking capacity. The life of this tape is more than three times

longer than those of ES types. Therefore, "ivory" tape is a more effective choice in terrain

which has heavy rain or in coastal areas. The diameter will be similar to ES type.

<P><DT><I>Long Blade Barbed Tape (LBBT):</I>

<DD>This is the most effective psychological and physical deterrent, ever made as a barrier

obstacle. It is available in authentic stainless steel (SUS 430) and the core wire can be

fabricated from either galvanized carbon steel or stainless steel.

<P><HR>

mailto:depl@bom2.vsnl.net.in

CHAP 03 LISTS PAGE 35

< C E N T E R > < H 3 > A N I M A L FENCING</H3></CENTER>DEPL's animal fencing system is

mainly used as an anti-intrusion barrier against any farm and other animals. <P> The most

common use is on highways where vast distances are covered at a very economical cost. <P>

Animal fencing can also be used to enclose areas such as farms, forest areas and national parks,

where security is not crucial. <P> This system is easy to install and can be erected in a
comparatively short time.<HR>

< / B O D Y >

</HTML>

Output For Focus:

The H T M L pages of D E P L’s site are fairly

well laid out, visually. However, it is a well
established fact that a large document with

vast textual content is not very interesting to

the viewer. O n the Web, such documents fail

to attract viewers. Pictures or images added

to web pages definitely serve to attract users.

At the same time, an image can be used very

effectively to give information to a user,

without having to read lengthy descriptions.

BARBED WIRE

Concertina Batted Wire in roll form is used in high security area? to -deter trespassing men and
arrimak Hie effectiveness of this marenal is proved as it has been in use for more'than 75 years
during war andpeace.

1. Line Wttv:
This is made up o f 5 05rnrn diameter high carbon steel wire, with a tensile strength of 170 to
ISO kg/mm-2. The wire is drawn arid dressed m such a manner that trie coils termed will fall
naturally ifito the specified diameter without forming a figure eight Line wife is heavy hot
dipped gaivtinned witli aamnam aic c oahng o f 185 gm/imir.

2. Barbed IVuv:
This is 2 00mm diameter bright mil i steel wire «nth a tensile strength o f 38 to SSkg/mm*
conforming to BS 105/1 The wire is hot elided galvanised with a maismiunzinc coating of
20 to 50.gm/rain2 The barbs are formed with four points Spacing between renters of
the barbs of every 70mrn along the length o f the wa r The barbs are family secured by
a-ientations made rb- v. r̂e, sc- thar die barbs do ,y-- rotate or slid:- alr.np tlie wire The

Diagram 3.1

Fortünately, H T M L provides techniques by which not only static, but also animated pictures can be placed

on a web page. In fact the power of H T M L lies in the fact that H T M L supports adding Multimedia to the
W e b Pages.

H o w Pictures can be added to the W e b Page is described in the following chapters.

S E L F R E V I E W Q U E S T I O N S

is the attribute specified with the tag which will give a solid round black

FILL IN THE BLANKS

1. T Y P E = ____________
bullet.

2. The__________attribute specified with the tag alters the numbering sequence for ordered lists.

3 . appears after the < D D > tag of the definition lists.

TRUE OR FALSE

4. Lists are of three types; Ordered lists, Unordered lists and Definition lists .

5. Ordered lists are used for Bullets.

6. S T A R T alters the numbering sequence in the middle of an Ordered list.

7. Definition lists consists of two parts; Definition Term and Definition Description

PAGE 36
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

H A N D S O N E X E R C I S E

1. Looking at the Screen given below write the H T M L code making use of following tags:

□ Unordered Lists

□ Ordered Lists

□ Definition Lists

Text Content:
9

//Example on Unordered List//

• Sportstar

• Business Week

• Time

//Example on Ordered List//

iv. Sportstar

v. Business Week

vi. Time

//Example on Definition List//

Sports Magazine

Sportstar

Business Magazine

Business Week

// Example on Unordered List //

• Sportstar
• BusinessWeek
• Time

// Example on Ordered List //

iv Sportstar
v. Business Week
vi. Time

// Example on Definition List //

Sports Magazine
Sportstar

Business Magazine
Business Week

Diagram 3.2: Output of Hands on Exercise

4. A D D I N G G R A P H I C S T O H T M L D O C U M E N T S

Other than text, H T M L allows placing of static and/or animated images in an H T M L page. H T M L accepts

two picture file formats .gif and .jpg. Using tools such as Gif Constructor or Adobe PhotoShop, images can
be created to suit the requirements of a web page and saved in these file formats.

Once an image is ready and stored in the above-mentioned formats, it can be inserted into a web page using

the tag , which takes the name of the image file {filename.gif filenam e.jpg or filename.jpeg) as an
attribute. In addition, H T M L also allows control of the height, width, border and so on, of every image

ALIGN Controls alignment of the text following the image

ALIGN = TOP indicates the text after the image to be written at the top, next to the image.
ALIGN = MIDDLE indicates the text after the image to be written at the middle, next to the
image.

ALIGN = BOTTOM indicates the text after the image to be written at the bottom, next to
the image.

Controls alignment of the image with respect to the V D U screen.

ALIGN = LEFT indicates the image is aligned to the left, with respect to the screen.
ALIGN = CENTER indicates the image is aligned to the center with respect to the screen.
ALIGN = RIGHT indicates the image is aligned to.the right with respect to the screen.

BORDER Specifies the size of the border to place around the image.

WIDTH Specifies the width of the image in pixels.

HEIGHT Specifies the height of the image in pixels.

HSPACE Indicates the amount of space to the left and right of the image.

VSPACE Indicates the amount of space to the top and bottom of the image.

ALT Indicates the text to be displayed in case the Browser is unable to display the image specified
in the S R C attribute.

SRC Specifies the location and name of the image file.

Table 4.1

Example:
< I M G Align=CENTER Border=0 Height=57 HSpace=0 Src="Imagel.GIF" Width=447 >

The attributes taken by the < 1 M G ... > tag are explained in the following examples.

U S I N G T H E B O R D E R A T T R I B U T E

Example 1: (Refer to diagram 4.1)
< H T M L >

< H E A D > < T ! T L E > Working with Images </TITLE></HEAD>

< B O D Y Background="images/texturel.gif>

Controlling Image Borders!<CENTER>

<I>Image Without a B O R D E R </I>

< I M G Src = "images/corp.gif'>

<I>Image With B O R D E R = 3</I>

< I M G Border=3 Src="images/corp.gif'>

</CENTER>

</BODY>

</HTML>

PAGE 38
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

Output For Example 1:

U S I N G T H E W I D T H

H E I G H T A T T R I B U T E

Example 2: (Refer to diagram 4.2)

A N D

< H T M L >

<H E A D > < T I T L E > Working with Images </TITLE></HEAD>

< B O D Y Background="images/texturel.gif">

Controlling Image Sizes!<CENTER>

<I>Normal Image Size</I>

< I M G Src="images/computer.gif'>

<I>Image With Size (Height And Width) Set To 200</I>

< I M G Height=200 Src="images/computer.gif' Width=200>

</CENTER>

</BODY>

</HTML>

Output For Example 2:

U S I N G T H E

A T T R I B U T E

A L I G N

Controlling Image Sizes!
Normal Image Size

¡mage With Sze (Height And Width) Set To 200

Example 3: (Refer to diagram 4.3)
Diagram 4.2

< H T M L >

<H E A D > < T I T L E > Working with Images </TITLE></HEAD>

< B O D Y Background="images/texturel.gif'>

<I> Image Aligned Left </I>

< I M G Align=Left Src="images/sctonly2.gif' >

Silicon Chip Technologies, < B R >
<I> W e Specialize In Corporate Training, Software Development And Placements. Our Training

Programs and Software Development include W e b Based Commercial Applications and

Commercial Application Development using Databases. </I>

<I>Image Aligned Right </I>
< I M G Align=Right Src="images/sctonly2.gif' >

Silicon Chip Technologies, < B R >

CHAP 04 ADDING GRAPHICS TO HTML DOCUMENTS PAGE 39

<I>We Specialize In Corporate Training, Software Development And Placements. Our Training

Programs and Software Development include W e b Based Commercial Applications and

Commercial Application Development using Databases</I>

< / B O D Y >

</HTML>

Output For Example 3:

U S I N G T H E A L T A T T R I B U T E

Example 4: (Refer to diagram 4.4)

< H T M L >

< H E A D > < T I T L E > Working with Images </TITLE></HEAD>

< B O D Y Background-'images/texturel.gif'>

Use of A L T attribute
<CENTER>

OAvaliable Image: javacup.gif</I>

< I M G Src="images/javacup.gif'>

<I>Unavaliable Image: javac.gif - Without the A L T Attribute </l>

< I M G Src="images/javac.gif'>

<I>Unavaliable Image: javac.gif - With the A L T Attribute set to "Java"</I>

< I M G Alt="The Java Cup" Src="images/javac.gif'>

</CENTER>

< / B O D Y >

</HTML>

M o t e ■■■■

The tag specifies a file
javac.gif as the source file. This file
is not present in the current work
directory.

Therefore, the browser will display
an icon indicating the unavailability
of the file. If the Alt attribute is
present along with the tag
then the text that is specified in the
Alt attribute is displayed in place of
the missing the icon.

Output For Example 4:

Uie of ALT attribute
Available Image.-javacup.gif

Unavailable Image:javac.gif - Without the ALT Attribute

[a

Unavailable Image: javac.gif - With the ALT Attribute at to "Java"

3 TheJevaCup
.: - • '

! ■ ! .. ■
Diagram 4.4

Image Aligned 2*eft

Silicon Chip Technologies,
We Specialize In Corporate Training, Software
Development And Placements, Our Training
Programs and Software Development include Web
Based Commercial Applications and Commercial

Application Development using Databases,

Image Aligned Right

Silicon Chip Technologies,
We Specialize In Corporate Training, Software
Development And Placements. Our Training
Programs and Software Development include Web
Based Commercial Applications and Commercial
Application Development using Databases

Diagram 4.3

PAGE 40
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

FOC U S : Increase the visual appeal of the web site by replacing or complementing the text with pictures

wherever possible. For instance, the Company’s Logo can be used at the start of the web page. Each

product description can be supplemented with an image.

Code Listing:

< H T M L >

<HEA D > < T I T L E > Delta Engineering Pvt. Ltd. </TITLE></HEAD>

< B O D Y Background="images/pinkwhit.gif">

< F O N T Face="Brush Script M T " Size=7 Color="#008000"><IMG Align=Bottom

Src="images/Iogo.gif'><I>Delta Engineering Pvt. Ltd.</I><HR>

< F O N T Color="#008000"><CENTER><H3>PROFILE</H3><IMG Height="57"

Src="images/intro.gif" Width="185">

Delta Engineering Pvt. Ltd. is a specialist

manufacturer of wire and wire products. D E P L established in Mumbai, India is ideally located for

shipments to any part of the world. The main items of manufacture, in collaboration with Gulf
Fencing Industry (GFI) include protector gabions and protector fencing systems.<P>Protector

fencing systems offer a wide range of solutions to all security problems on any terrain and under

extreme climatic conditions. The protector fencing system has been used extensively in Europe,

America and the Far East, and this has helped formulate a package especially suited to Middle

East requirements.<P>DEPL is equipped to offer comprehensive packages including design,

material and installation.<P>Products strictly adhere to BS, A S T M and DIN international

specifications. Quality control is guaranteed by independent laboratory test certificates from

India.<P>Quality control is implemented without sacrificing economy and efficiency. D E P L is

dedicated to technical services and problem solving.<P>DEPL is following quality methods and is

accredited with ISO 9002.<P><IMG Height="57" Src="images/planning.gif"

Width-11 8 4 " x B R > D E P L can provide planning support by offering design, technical

specifications, drawings, foundation plans and installation instructions, together with a
personalized service. The company's technical sales engineers keep in constant touch with all

clients. Utmost importance is given to optimum design, versatility, durability and economy backed

by the D E P L guarantee for work undertaken.</CENTER>

<P>Please forward any enquiries to enq_depl@bom2.vsnl.net.in

<P><I>DELTA E N G I N E E R I N G PVT. LTD.
502, 5th Floor, Tejas Building

Andheri (W), Mumbai < B R > India
 Telephone : 91-022-8210050</I><P><HR>

< C E N T E R > < H 3 > B A R B E D WIR£< / H 3 > < / C E N T E R > < I M G Align=Bottom Border=2

Height="130" Src="images/barbedl.jpg" Width=150">Concertina Barbed Wire in roll form is

used in high security areas to deter trespassing men and animals. The effectiveness of this material

is proved as it has been in use for more than 75 years during war and peace.

<P><I>Line Wire:</I></BxBR>This is made up of 3.05mm diameter high

carbon steel wire, with a tensile strength of 170 to 180 kg/mm2. The wire is drawn and dressed in

such a manner that the coils formed will fall naturally into the specified diameter without forming

a figure eight. Line wire is heavy hot dipped galvanized with minimum inc coating of 185

gm/mm2.
<P><I>Barbed Wire:</I>
This is 2.00mm diameter bright mild steel wire

with a tensile strength of 38 to 55kg/mm2 conforming to BS 1052. The wire is hot dipped
galvanized with a minimum zinc coating of 20 to 50 g m / m m 2. The barbs are formed with four

points. Spacing between the centers of the barbs of every 7 0 m m along the length of the wire. The

barbs are firmly secured by indentations made on the wire, so that the barbs do not rotate or slide

along the wire. The four points of the barbs are formed at the right angles to one another and

project outwards approximately 12mm from the center of the wire.
<PxBxIxLI>Carrying Handles:</l>xBR>Handles are made of mild steel wire of

3.55mm diameter and are attached to the outer turn of the coil on each side.<P><HR>

mailto:enq_depl@bom2.vsnl.net.in

CHAP 04 ADDING GRAPHICS TO HTML DOCUMENTS PAGE 41

< C E N T E R > < H 3 > B A R B E D TAPES</H3></CENTER><IMG Align=Bottom Border=3

Height="130" Src-'images/barbed.jpg" Width="l50">Barbed Tapes are used as psychological

and physical deterrent against intrusion by personnel and animals. Barbed tape barrier systems are

more vicious and difficult to tamper with, providing superior perimeter security. Some of the users

are military installations, nuclear energy sites, maximum-security prisons, various petroleum

installations, tank farms and other important industrial facilities.

<P><DT><I>Short Blade Barbed Tape (SBBT):</I>

< D D > T o give the maximum tensile strength at the time of the breach hard drawn steel cord is

used (ESI). For camouflage purposes, a coaltar coating can be applied over the entire surface

(ES-1), and to attain the high degree of rust resistance, the core wire is made of galvanized

steel (ES-2). Any of the above three options are available to meet your specific requirements.

<P><DT><I>Medium Blade Barbed Tape (MBBT):</I>

<DD>The specification of the "ivory" tape is similar to those of ES types. The blades are

sharper and have a greater pricking capacity. The life of this tape is more than three times

longer than those of ES types. Therefore, "ivory" tape is a more effective choice in terrain

which has heavy rain or in coastal areas. The diameter will be similar to ES type.

<P><DT><I>Long Blade Barbed Tape (LBBT):</I>

<DD>This is the most effective psychological and physical deterrent, ever made as a barrier
obstacle. It is available in authentic stainless steel (SUS 430) and the core wire can be

fabricated from either galvanized carbon steel or stainless steel.
<P><HR>

< C E N T E R > < H 3 > A N I M A L F E N C I N G < / H 3 > </CENTER><IMG Align=Bottom Border=3

Height="130" Src="images/fencel.jpg" Width-'150">DEPL's animal fencing system is mainly

used as an anti-intrusion barrier against any farm and other animals. <P> The most common use

is on highways where vast distances are covered at a very economical cost. <P> Animal fencing

can also be used to enclose areas such as farms, forest areas and national parks, where security is

not crucial. <P> This system is easy to install and can be erected in a comparatively short
time.<HR>

< / BODY>

< / HTML>

Output:

В « В Ы ! WIRE

Introduction
ffffitvw:: '.Г fe» r; ■: f-r̂ red С : js bier in ия? Гм tLai 7$ dang-« «ík rcact

Dei* Шфиевщî 4 Lcd t я speuitUмыей-яг? afwre « H vwe | s - c w f r D a ? !. • it . tH a fc ti к 'И к » « . h á » h
for ilф & ф »'• Ttif рлг «itk» v'rki Tht inan tous ofажзЬ-Зпе. n «ЯаЬтак« «ф íádfFenrng Ifcsaft? «̂ SFÎ?

я -Jüdí g.=-t?nr ndfxtfrctor fmuflgFjt’.îrsi

jFîcftvtorfcs^gïyîtœi oâa; »w. lf eft &á r-j » & юягцг ;*«Ыем -jo na? 1«кав .Ы « х к ä s e s t rStibe оа-ач
Tb? poasior fanqg «yitewbtf b f« u ííJ «•№*№•*:» ю s i : te e . Аяктажйяй* Far Eut: » t - iü i . :.it hripe-i: r i f t s

cs;< :*Dy ц, tÆdclf ¿.«i lequiranSfitt

, BB/L л eceraíd to -Лк с-.-яргеЬаиэт paçMgcs odadsy dtasn. KâttnalaùJ ойаггаог..

Та* и 1 iva» бйаск rtccl w with a of 'A »'îîkçaar coofc-nrecs M bS Jfl52 lb: tsx it
Lo? dswec wih j гьяимо ж ; ?j!xß 2ùï? % grJuzn?, leí bubs xefcoofd wkíi fô róoiiti
Учк'-г: -xnteis oí Ac bnrb '¡Vvtry Tfees iS-»r<g íht чюД oí i?, ve*. D-* wrbí x». Srafc srenre-i v/ mdratú«®*
tstdt bí vse. so dut Im tarés do no» rouie or «bit »t *st TI« fow f-ttnií of ±- birbs arc forniti astht ;¡gs
tt-ф-to ci* mvithnaniw w-Ätec-» рртоашг!? ""xaki’-m ihr r.ttfrt fîhnwf

Predict» tíndfr гДеге » t-S. ASTM and Г-ÎN ntet:;¿;vr.a¡ tfidficabo» Quasty coatoî goaiŵ ;: о bynfcpaidcs ¡¿>стА>г.- i. Carry uigffandUv ’•
HawiStj are ea<k r i ra¿d "it: w í of 3. Säszs 'lia it« and a t asachtd к fee очкг turs th; cos oa each r>.

Diagram 4.5.1 Diagram 4.5.2

PAGE 42
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, сн д р Q.

JAVASCRIPT, DHTML AND PERL

The output in diagram 4.5.1 and diagram 4.5 .2 displays the same web site, but now with pictures inserted
wherever possible. The first page displays the Company Logo and another small picture, which displays the
word Introduction. The second page shows the picture of a B a rb ed Wire. Similarly, there are pictures for
Barbed Tape, Animal Fencing and so on.

Displayed in the second page, the text following the picture starts at the bottom of the picture.

It would be nice to have the whole text about barbed tape appearing exactly besides the picture of barbed
tape. To have text aligned starting from the top o f the image. The IMG tag attributes can be rewritten as:

< I M G Align=Top Border=3 Height="130" Src="images/barbed.jpg" Width="150">

This would display in the browser as seen in
diagram 4.6.

This is because the image and the first line
of text are considered to be placed in o n e
line. To overcome this problem, HTML
allows the placement of tables on a web
page. Then place the image in one cell of
the table, and the text in the adjacent cell.
This will make the entire text to appear
aligned next to the image.

The width o f the table, the number of
columns in a table and so on, can be
controlled according to requirements. The
following chapter deals with how to create
tables and place them on a web page
together with all the attributes that the <T A B L E > tag takes.

S E L F R E V I E W Q U E S T I O N S

FILL IN T H E B L A N K S

1. HTML accep ts_____________ and_______ • ’ ' picture formats.

2. An Image can be inserted into the HTML page using_______ tag that takes the name o f the image file
as an attribute.

3 . and_________________attributes are used to control the size o f the image on the web page.

4. attribute is used to set a border around the image.

5. The amount o f space to the top and bottom o f the image is indicated b y ________________ .

6 . T h e _______________attribute takes text to be displayed in case the Browser is unable to display the
image specified in the SRC attribute.

T R U E O R F A L S E

7. HTML allows only static text to be displayed on the page.

8. GIF Constructors or Adobe Photoshop can be used to create .GIF and .JPG picture formats.

BARBED TAPES

? arbe-s Tape? are used a; pjvrh<4igjCfJ s&d physical aererrent igaaist tmtu&oa bv perwc

Barbed №(• t barrier : y&ass at ¡мчг vuaous and -Ь5сult«• titirtpci wife, brovkanx sugeíír p -rirjttiti security. Some e f fee usas arc
n ä ä a s f - ns. Ki'.Ufs • n'fgv ;ites. 1г-ахгш т-1еЛа’С7pn; -ns. yshvu:. petroie;in ím;Ni£afKrns. tañK farm? end ofeer
mdcEnsl йквЬег

• S h o r t B la d e B a rb e d Tape (S B B T):
Tv ave the ¡naxraure tensile strtugfe st the imc ■:•£ Ac breach hard drawn steei cord is used (ЕГ i) P\ r с arùoufiaçe

purposes. ñ :с.айгг .-oatcig ' ж Ъг appked dK erar: rafees (ES-1). md t< sítasn the Ægh iegree cfra-t reñíase«, ffcf
o.rr WEeuTnade<ígáh¡KEZirfste'rl(ES 2; Aay ifct? above Ú-r-r • -ра-жг* .ae дижЬЫе i mert v ;u jpebfc-rsqiafaseMf

• M e d iu m B U tíL- D a rb e d Tape ß lB B T) :
I Ьс урееззеаьлп ifef ‘¿vory" tape •_= similar to those r Ei' typei The ЫИез are sharper and Have a greater r r.ckc»g

щ -tciy Tfcs a!' THiîr tapf ti m -« than fitfc tcne< that tb>.-f of ES ry.ts Tfcitrsfere. *j«oty* tn:* is a newt cíeos»!-

¿к-« а: lena&^tâechbas hea«yr¿m i tu -»xial ¡utas l ie -iuteietîi v/й be tinalar t'- SS ry::к

• L o n g B la d e B a rb e d Т о р г (L l ' ß ’i) :
Thi: :s the ntost rffecfcv* psycM«£tcal aad physiCaJ deten eat. ever гпг-Je ci a banter vbstask Iris avadsbW к átfhecü;

sUj-Jti- re íl fSUS 430; ¡mô the e u t wir? :;a b» fabr-estei fre-n sàhtr salvamæd carbc* rfee: o-. jtaírJess stefl

Diagram 4.6

CHAP 04 ADDING GRAPHICS TO HTML DOCUMENTS PAGE 43

9. A L I G N - L E F T indicates the image is aligned to the left with respect to the screen.

10. S R C takes the name of an image file to be displayed as a parameter.

H A N D S O N E X E R C I S E

1. Design a web page using the image files House.gif, Javacup.gif, and C om pu te r.g if according to the
following specifications.

□ Use a Border for House.gif.
□ Resize the Height and W id th o fJavacu p .g if and C om pu te r.g if to 100 pixels each.
□ A lign the text with respect to the images so as to obtain the output displayed in the diagrams 4.7.1 and

4.7.2.

Text Content

The W o rld W ide Web
The World Wide W e b or simply the W e b has been a 'Killer App' of the Internet. Certainly its capabilities to

display text and graphics provide access to other pages and information has made the fastest growing

component of the Internet. Major online services are American Online, CompuServe and Prodigy.

Get Connected
A way to access is to get an account with an Internet Service Provider, or ISP. These accounts include

access to the World Wide W e b and other Internet resources, and often provide space to store Web pages
one will create. A very helpful feature of the web is the capability to move from page to page by selecting

specific highlighted words and phrases or images, which are called as links.

O utpu t For Hands O n Exercise:

Diagram 4.7: Output for Hands on Exercise.

5. T A B L E S

I N T R O D U C T I O N

A table is a two dimensional matrix, consisting of rows and columns. Tables are intended for displaying

data in columns on a web page. All table related tags are included between the <TABLE>...</TABLE>

tags. Each row of a table is described between the <TR>...</TR> tags. Each column of a table is described

between the <TD>...</TD> tags.

Table rows can be of two types:
□ Header Rows: A row that spans across columns of a table is called the Header Row. A table header

row is defined using <TH>...</TH> tags. The content of a table header row is automatically centered

and appears in boldface.
□ Data Rows: Individual data cells placed in the horizontal plane creates a data row. There could be a

single data cell (i.e. a single column table) or multiple data cells (i.e. a multi column table)

Data cells hold data that must be displayed in the table. A data row is defined using <TR>...</TR> tags.

Text matter displayed in a data row is left justified by default. Any special formatting like boldface or

italics is done by including appropriate formatting tags inside the <TR>...</TR> tags. An image can also

be displayed in a data cell.

The attributes that can be included in the < T A B L E > tag are:

ALIGN Horizontal alignment is controlled by the ALIGN attribute. It can be set to LEFT,

CENTER, or RIGHT.

VALIGN Controls the vertical alignment of cell contents. It accepts the values TOP, M I D D L E or

BO T T O M .

WIDTH Sets the W I D T H to a specific number of pixels or to a percentage of the available screen
width. If width is not specified, the data cell is adjusted based on the cel! data value.

BORDER Controls the border to be placed around the table. The border thickness is specified in
pixels.

CELLPADDING This attribute controls the distance between the data in a celHand the boundaries of the cell.

CELLSPACING Controls the spacing between adjacent cells.

COLSPAN The C O L S P A N attribute inside a <TH> or <TD> tag instructs the browser to make the cell
defined by the tag to take up more than one column. The C O L S P A N attribute can be set
equal to the number of columns the cell is to occupy. This attribute is useful when one row
of the table needs to be a certain number of columns wide.

ROWSPAN The R O W S P A N attribute works in the same way as the C O L S P A N attribute except that it
allows a cell to take up more than one row. The attribute can be set by giving a numeric

value. For example R O W S P A N = 3.

Table 5.1

T h e Caption T a g

Often tables need to be given a heading, which gives the reader a context for the information in the tables.

Table Headings are called Captions. Captions can be provided to a table by using the

<CAPTION>...</CAPTION> tags. This paired tag appears within the <TABLE>...</TABLE> tags. The

table caption can be made to appear above or below the table structure with the help of'the attribute

ALIGN, as explained in table 5.2.

CHAP 05 TABLES PAGE 45

A L I G N It controls placing of the caption with respect to the table.

A L I G N = B O T T O M will place the caption immediately below the table

A L I G N = T O P will place the caption immediately above the table.

Table 5.2

By passing a row's < T R > tag the V A L I G N and A L I G N attributes, vertical or the horizontal alignment can
be made identical for every cell in a given row.

By passing the < T H > and/or < T D > tags, V A L I G N or A L I G N attributes, vertical or horizontal alignments

in both header and data cells can be done. Any alignm ent sp e c if ied a t the c e l l lev e l ov errid es any d efau lt
alignm ents an d any alignm ents s p e c if ied in a <T R > tag.

M o t e . ■

□ Alignments specified in <TD> or <TH> apply only to the cell being defined.
□ Alignments specified in a <TR> tag apply to all cells in a row, unless overridden by an

alignment specification in a <TD> or <TH> tag.

U S I N G T H E W I D T H A N D B O R D E R A T T R I B U T E

Example 1: (Refer to diagram 5.1)

< H T M L >

<HEAD><TITLE>Table Attributes</TITLE></HEAD>
< B O D Y BGColor=LIGHTGREY>

Specifying the B O R D E R and W I D T H of the Table!

< C E N T E R > < T A B L E Border=5 Width=50%>

< C A P T I O N Align=Bottom>Personal Information</CAPTION>

< T R > < T H > N A M E < / T H > < T H > A G E < / T H > < / T R >

< T R Align=CENTER><TD>Shilpa</TD><TD>21 </TD></TR>

< T R Align=CENTER><TD>Vaishali</TD><TD>22</TD></TR>
< / T ABLE></CENTER>

< / BODY>

</HTML>

Output For Example 1:

M o t e — -

If the W I D T H attribute is
associated with the < T H > tag then
the width of an individual column
can be adjusted.

Specifying the BORDER and WIDTH of lie Table!

NAME AGE

Sfaüpa 21

VaisM 22

Personal In fo rm a tion

Diagram 5.1

PAGE 46
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 05

U S I N G T H E C E L L P A D D I N G A T T R I B U T E

Example 2: (Refer to diagram 5.2)

< H T M L >
<HEAD><TITLE>Working With Table</TITLE></HEAD>

< B O D Y BGColor=LIGHTGREY>
Specifying C E L L P A D D I N G ! < / B > < B R > < H R >

<I>Without Cellpadding</I>

< C E N T E R > < T A B L E Border=l Align=CENTER Width=25%>

< T R > < T H > N A M E < / T H > < T H > A G E < / T H > < / T R >

< T R Align=CENTER><TD>Shilpa</TD><TD>21 </TD></TR>

< T R ALIGN=CENTER><TD>Vaishali</TD><TD>22</TD></TR>

< / T A B LE></CENTER><HR>

<I>With Cellpadding of 10</I>
C E N T E R x T A B L E Align=CENTER Border=l Cellpadding=10 Width=25%>

< T R > < T H > N A M E < / T H > < T H > A G E < / T H > < / T R >

< T R Align=CENTER><TD>Shi lpa</TD><TD>21 </TD></TR>

< T R Align=CENTER><TD>Vaishali</TD><TD>22</TD></TR>

</TAB LE></CENTER>

< / BODY>

</HTML>

Output For Example 2:

U S I N G T H E C E L L S P A C I N G

A T T R I B U T E

Example 3: (Refer to diagram 5.3)

Specifying C E LLP A D D IN G !

W Ukout C ellpadding

N A M E 1 A G E

SHpa : 2 i

VauhaS ¡ 22

т С ф Ш х ё о / ! 0

N A M 1 A G E

Sbüpa 21

vasnan 22

Diagram 5.2

< H T M L >
<HEAD><TITLE>Working With

Table</TITLE></HEAD>

< B O D Y B G C O L O R = L I G H T G R E Y >

Controlling the space between Adjacent Cells!<BRxBR><HR>

<l>Without Cellspacing</I>
< C E N T E R > < T A B L E Align=CENTER Border=l Width=25%>

< T R > < T H > N A M E < / T H > < T H > A G E < / T H > < / T R >

< T R Align=CENTER><TD>Shilpa</TD><TD>21 </TD></TR>

< T R Align=CENTER><TD>Vaishali</TD><TD>22</TD></TR>

< / T A B L E></CENTER><HR>

<I>With Cellspacing of 10</I>
C E N T E R x T A B L E Align=CENTER Border=l Cellspacing = 10 Width=25%>

< T R > < T H > N A M E < / T H > < T H > A G E < / T H > < / T R >

< T R Align=CENTER><TD>Shilpa</TD><TD>21 </TD></TR>

< T R Align=CENTER><TD>Vaishali</TD><TD>22</TD></TR>

</T A B LE></CENTER>

< / B O D Y >

</HTML>

CHAP 05 TABLES PAGE 47

Output For Example 3:

U S I N G T H E B G C O L O R

A T T R I B U T E

Example 4: (Refer to diagram 5.4)

< H T M L >

<HEAD><TITLE>Working With

Tables</TITLE></HEAD>

< B O D Y BGColor=L,IGHTGREY>

Speciiying Coloured Table Cells!

< C E N T E R > < T A B L E Align=CENTER Border=l Width=50%>

< T R > < T H B G C o l o r = G R A Y > N A M E < / T H > < T H BGColor=GRAY>AGE</TH></TR>
< T R Align=CENTER>

< T D B G C o l o r = B L A C K > < F O N T Color=White>Shilpa</TD>

< T D B G C o l o r = V I O L E T > < F O N T Color=RED>21 </TD>
</TR><TR Align=CENTER>

< T D BGColor=BLUE><FONT.Color=WHlTE>Vaishali</TD>

< T D B G C o l o r = R E D > < F O N T Color=BLUE>22</TD>
</TR><CAPTION Align=Bottom>
Personal Information</CAPTION>

</TABLE></CENTER>

</ B O D Y >

</HTML>

Output For Example 4:

 ̂11 > If the entire table needs to be

V displayed using the same
BackGround Color, the attribute
BGColor can be passed to the
<TABLE> tag itself.

U S I N G T H E C O L S P A N A N D

R O W S P A N A T T R I B U T E S

Example 5: (Refer to diagram 5.5)

< H T M L >

<HEAD><TITLE>Working With Table</TITLE></HEAD>

< B O D Y B G C O L O R = L I G H T G R E Y >

Specifying R O W S P A N and C O L S P A N Attributes!

< C E N T E R X T A B L E Align=CENTER Border=l Width=50%><TR>

M l , « toured Table Cells!

KAMI AGE

E B S I S

Penonal Information

■

Diagram 5.4

Controlling the space between Adjacent Cells!

Hvfioul Cellspacing
NAME AGE

SMpa 21

: Vashali 22

Uvh Cellspacing oj 10

NAME AGE

SMpa 21

Vaishali 22

Diagram 5.3

PAGE 48
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

<TH Row Span=2>N A M E</TH ><TH C olSpan=3>M A R K S</TH >
</T R ><T R >

<TH >Pow erBuilder</TH ><TH >VisualBasic</TH ><TH >D eveloper2000</TH >
</T R ><T R ALIG N =CEN TER>

<T D >Shilpa</T D ><T D >21 </T D ><T D >45</T D ><T D >30</T D >
</T R ><T R A LIG N =CEN TER>

<T D >V aish ali</T D ><T D >26</T D ><T D >30</T D ><T D >40</T D >
c/T R xC A P T IO N ALIG N =bottom >
M ark Sheet</CAPTIO N >
</T A B L E ></C E N T E R >

</B O D Y >
</H TM L>

Output For Example 5:

FOCUS: The Management at DEPL has
decided that all their product images
should be displayed on the Web Site in
appropriate web pages. The textual
description of each product should come
up alongside the image and not below it. '

This can be done by the use o f tables on
the web page. Diagram 5.5

Code Listing:

<HTM L>
<H E A D ><T IT LE> Delta Engineering Pvt. Ltd. </T IT LE></H EA D >
<BO D Y Background="images/pinkwhit.gif'>

<FO NT Face="Brush Script MT" Size=7 C olor="#008000”><C E N T ER ><IM G Align=Bottom
Src="im ages/logo.gif'><I>D elta Engineering Pvt. L td .< /I x /C E N T E R x H R x /F O N T >
<FO NT C o lo r-"#008000"><C E N T E R ><H 3>P R O F IL E </H 3xlM G Height="57"
Src="images/intro.gif' W id th = "1 8 5 "x B R x B R > D e lta Engineering Pvt. Ltd. is a specialist
manufacturer of wire and wire products. DEPL established in Mumbai, India is ideally located for
shipments to any part o f the world. The main items of manufacture, in collaboration with Gulf
Fencing Industry (GFI) include protector gabions and protector fencing systems.<P>Protector
fencing systems offer a wide range o f solutions to all security problems on any terrain and under
extreme climatic conditions. The protector fencing system has been used extensively in Europe,
America and the Far East, and this has helped formulate a package especially suited to Middle
East requirements.<P>DEPL is equipped to offer comprehensive packages including design,
material and installation.<P>Products strictly adhere to BS, ASTM and DIN international
specifications. Quality control is guaranteed by independent laboratory test certificates from
India.<P>Quality control is implemented without sacrificing economy and efficiency. DEPL is
dedicated to technical services and problem solving.<P>DEPL is following quality methods and is
accredited with ISO 9002.<P ><IM G Height="57" Src="images/planning.gif'
W id th -'1 8 4 "x B R > D E P L can provide planning support by offering design, technical
specifications, drawings, foundation plans and installation instructions, together with a
personalized service. The company's technical sales engineers keep in constant touch with all
clients. Utmost importance is given to optimum design, versatility, durability and economy backed
by the DEPL guarantee for work undertaken.</CENTER>
<P>Please forward any enquiries to enq_depl@bom2.vsnl.net.in

Specifying ROWSPAN and COLSPAK Attributes!

Column Span

Row
NAME

MARES
Span PowerBuilderVuualBaiic jDereloper2000

Эфа 21 45 J 30

Vashá 26 30 j 40

Mark Sheet

mailto:enq_depl@bom2.vsnl.net.in

CHAP 05 TABLES PAGE 49

<P><I>DELTA E N G I N E E R I N G PVT. LTD.
502, 5th Floor, Tejas Building <B R >

Andheri (W), Mumbai
 India < B R > Telephone : 91-022-8210050</I><P><HR>

< C E N T E R > < H 3 > B A R B E D WIRE</H3></CENTER>

<TABLE Border=0><TR><TD>
< I M G Align=Bottom Border=2 Height="130" Src="images/barbedl.jpg" Width=150">

</TD><TD>
< F O N T Cqlor="#008000">Concertina Barbed Wire in roll form is used in high security areas

to deter trespassing men and animals. The effectiveness of this material is proved as it has

been in use for more than 75 years during war and peace.

</TDx/TR></TABLE>
<P><BxI>Line Wire:</I>
This is made up of 3.05mm diameter high

carbon steel wire, with a tensile strength of 170 to 180 kg/mm2. The wire is drawn and dressed in

such a manner that the coils formed will fall naturally into the specified diameter without forming

a figure eight. Line wire is heavy hot dipped galvanized with minimum inc coating of 185
gm/mm2.

<P><IxLI>Barbed Wire:</IxBR>This is 2.00mm diameter bright mild steel wire

with a tensile strength of 38 to 55kg/mm2 conforming to BS 1052. The wire is hot dipped

galvanized with a minimum zinc coating of 20 to 50 g m / m m 2. The barbs are formed with four

points. Spacing between the centers of the barbs of every 7 0 m m along the length of the wire. The

barbs are firmly secured by indentations made on the wire, so that the barbs do not rotate or slide

along the wire. The four points of the barbs are formed at the right angles to one another and

project outwards approximately 12mm from the center of the wire.

<P><I>Carrying Handles:</I></B»
Handles are made of mild steel wire of

3.55mm diameter and are attached to the outer turn of the coil on each side.<P><HR>

< C E N T E R > < H 3 > B A R B E D T A P E S < / H 3 > < / C E N T E R >

<TABLE Border=0xTR><TD >
< I M G Align=Bottom Border=3 Height="130" Src="images/barbed.jpg" Width="150">

</TD><TD>
< F O N T Color="#008000">Barbed Tapes are used as psychological and physical deterrent

against intrusion by personnel and animals. Barbed tape barrier systems are more vicious and

difficult to tamper with, providing superior perimeter security. Some of the users are military

installations, nuclear energy sites, maximum-security prisons, various petroleum installations,

tank farms and other important industrial facilities.

</TD></TRx/TABLE>
<ULxp><DT><I>Short Blade Barbed Tape (SBBT):</I>

< D D > T o give the maximum tensile strength at the time of the breach hard drawn steel cord is

used (ESI). For camouflage purposes, a coaltar coating can be applied over the entire surface

(ES-1), and to attain the high degree of rust resistance, the core wire is made of galvanized

steel (ES-2). Any of the above three options are available to meet your specific requirements.

<P><DTxB><I>Medium Blade Barbed Tape (MBBT):</I>

<DD>The specification of the "ivory" tape is similar to those of ES types. The blades are

sharper and have a greater pricking capacity. The life of this tape is more than three times

longer than those of ES types. Therefore, "ivory" tape is a more effective choice in terrain

which has heavy rain or in coastal areas. The diameter will be similar to ES type.

<P><DT><I>Long Blade Barbed Tape (LBBT):</I>

<DD>This is the most effective psychological and physical deterrent, ever made as a barrier

obstacle. It is available in authentic stainless steel (SUS 430) and the core wire can be

fabricated from either galvanized carbon steel or stainless steel.

PAGE 50
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 05

<P><HR>

< C E N T E R > < H 3 > A N I M A L FENCING</H3></CENTER>

< T A B L E Border=0><TR><TD>
< I M G Align=Bottom Border=3 Height="130" Src="images/fence 1.jpg" Width="150">

</TD><TD>

< F O N T Color="#008000">DEPL's animal fencing system is mainly used as an anti-intrusion

barrier against any farm and other animals. <P> The most common use is on highways where

vast distances are covered at a very economical cost. <P> Animal fencing can also be used to

enclose areas such as farms, forest areas and national parks, where security is not crucial.

<P> This system is easy to install and can be erected in a comparatively short time.

</TD></TR></T A B L E > < H R >

</BODY>

</HTML>

Output:

й

BARBED WIRE

Concertina Barbed Wire m foJ form is used n: high secunty areas.
to deter trespassing meR'asci animals Trie effectiveness of Shis
material is proved asit has been In use for more thair75 years
during war andpeace

Line Wire;
This is made up of 3.05nfa diarneter high carbon steel wire, with a tensile strength of
170 to 180kg/mm! Tne tare ¡3 drawn and dressed a sue h a manner that the coils
formed wifl £1 nanirally mro the specified diameterwithout foiyniuj a figure eight. Line
wire is heavy hot dipped gahraaized wifi; muaruirn inc coating o f 1S5 gm/mrn2.

Short Blade
Barbed Tape
(SBET):

[To ¿ve to maaniim tensile strengih at the time of the breach hard drawn
Steel cordis used (ESI). For camouflage purposes, a coaltar coaling can
foe applied oyer the entire surface (ES-1), and to attaa the Mgh degree of
¡rust resisöaee, She core tare is made of galvanized steel (ES-2). Any of •
the above three opitons are available to meet your specific requirement.

Medium
Blade Barbed
Tape
IШВТ):

ILBBT):

He speeiicahon of the Voiy‘ tape is similar to those of ES type? The
[blades are sharper and have a greater pricking ptfaetj The Sfo -Sf this
tape is more than three taes-ionger than those of ES types. Therefore,
'ivory' taps is » more effective choice in mm winch has heavy ram or a
[coastal areas He diameter wi be win to ES type
This is the most effective psychological and physical deterrent, ever made
as a barrier obstacle It is available m authentic stainless steel (SUS 430)
and the core wire can be râbncated from either galvanized carbon steel or
stainless sleet

Diagram 5.6 Diagram 5.7

Detailed information about the types of barbed tapes currently represented by means of bullets would now

be represented in a tabular format as shown in diagram 5.7.

The output in diagram 5.7 can be achieved by writing the following code.

Code Listing:

< P > < T A B L E Border="4"><TR>

< T D > < F O N T Color="#008000"><I>Short Blade Barbed Tape (SBBT):

</I></TD>
< T D > < F O N T Color="#008000">To give the maximum tensile strength at the time of the

breach hard drawn steel cord is used (ESI). For camouflage purposes, a coaltar coating

can be applied over the entire surface (ES-1), and to attain the high degree of rust

resistance, the core wire is made of galvanized steel (ES-2). Any of the above three

options are available to meet your specific requirements. </TD>

< / T R><TR>

< T D > < F O N T Color="#008000"xBxI>Medium Blade Barbed Tape

(MBBT):</I></Bx/FONT></TD>

CHAP 05 TABLES PAGE 51

< T D > < F O N T Color="#008000">The specification of the "ivory" tape is similar to those of

ES types. The blades are sharper and have a greater pricking capacity. The life of this

tape is more than three times longer than those of ES types. Therefore, "ivory" tape is a

more effective choice in terrain which has heavy rain or in coastal areas. The diameter
will be similar to ES type.</TD>

< / T R x T R >

<T D > < F O N T Color="#008000"><I>Long Blade Barbed Tape

(LBBT):</I></TD>

< T D > < F O N T Color="#008000">This is the most effective psychological and physical

deterrent, ever made as a barrier obstacle. It is available in authentic stainless steel

(SUS 430) and the core wire can be fabricated from either galvanized carbon steel or
stainless steel.</TD>

< / T R x / T A B L E > < P > < H R >

The above H T M L code display text in a much more presentable and attractive format. However, it still

suffers from a drawback. Consider a user wanting information only about barbed tapes. To reach the

required information, the user needs to scroll down the entire text and search for information concerned
with barbed tapes.

In other words, the user will have to read the introduction to the company, information about barbed wire

and then reach information about barbed tapes. The site is still not very user friendly. To increase

user-friendliness, an index would be preferred. The entries in this index would serve as shortcuts to specific
information, and would provide the option to access whatever information is relevant.

Such shortcuts are called Hyperlinks. Creation and Use of Hyperlinks are explained in detail in the
following chapter.

S E L F R E V I E W Q U E S T I O N S

FILL IN T H E B L A N K S

1. A Table is a two dimensional matrix consisting of____________and

2. Table related tags are included between the_________ and_________ tags.

3- _______________ controls the spacing between adjacent cells in the table.

4. Table rows can be of______________ and______________ types.

5. The horizontal alignment of the table on the page is controlled by the____________attribute.

6- The____________attribute is used to assign the width of the table.

7. The distance between the data in a cell and the boundaries of the cell is controlled by
 attribute.

8. The________ tag indicates a new row of a table.

T R U E O R F A L S E

9. The vertical or the horizontal alignment for every cell in a given row is controlled by using the
V A L I G N and A L I G N attributes in the row’s <TR> tag.

10. A table header row is defined with the < T D > and </TD> tag pair.

11. C E L L S P A C I N G controls the distance between the data in a cell and the boundaries of the cell.

12. A L I G N = T O P will place the caption immediately above the table.

PAGE 52
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

H A N D S O N E X E R C I S E S

1. Create a W e b page giving the following train details.

□ Train name

□ Starting Place

□ Destination

□ Arrival and Departure time

□ Fare

Place a border for the table and use cell padding to present the cell data with clarity. Align the table in the

center of the screen. Use a caption saying ‘Time Table and Fare list’. Let the output be as shown in the

diagram 5.8 below.

Text Content

N a m e of Train Place Destination
Time

Fare
Arrival Departure

Rajdhani Express Bombay Delhi 07.30 08.45 Rs. 989.00

Madras Mail Bombay Madras 09.00 10.15 Rs. 450.00

Konya Express Bombay Bangalore 11.30 12.25 Rs. 645.05

Konkan Express Bombay Mangalore 13.30 14.45 Rs. 756.00

Deccan Express Bombay Madras 13.30 14.45 Rs. 756.00

Table 5.3: Time Table And Fare List

■

Time Table And Fare List

Name of Train Place Destination

Time

Fare
Arrival Departure

RajdhauiExp¡ci¡> Bombay Deli Í 07.30 08.4? Rs 989 00

Madras Mail Bombay Madras 09.00. 10.15. Es 450.00

Konya Express Bombay Bandore 11.30 1225 Rs 645.00

Konkan Express Bombay Man^ore 13.30 14.45 Rs 756.00

Deccan Express Bombay
-

Pune
"■ in

16.00 17.30 Rs 345.00

Diagram 5.8: Output of Hands on Exercise

6. L I N K I N G D O C U M E N T S

L I N K S

H T M L allows linking to other H T M L documents as well as images. Clicking on a section of text or an
image in one web page will open an entire web page or an image. The text or an image that provides such

linkages is called Hypertext, a Hyperlink, or a Hotspot.

The browser distinguishes Hyperlinks from normal text. Every Hyperlink,

□ Appears blue in color

• The de fault color setting in a browser fo r Hyperlink text or image
• The color can be set dynamically via an HTML program if required

□ The hyperlink text / image is underlined
□ When the mouse cursor is placed over it, the standard arrow shaped mouse cursor changes to the shape

of a hand

The blue color, which appears by default, can be over-ridden. To change these link colors, there are three

attributes that can be specified with the < B O D Y > tag. These are:_____________________________________

L I N K Changes the default color of a Hyperlink to whatever color is specified with this tag. The user

can specify the color name or an equivalent hexadecimal number.

A L I N K Changes the default color of a Hyperlink that is activated to whatever color is specified with

this tag. The user can specify the color name or an equivalent hexadecimal number.

V L I N K Changes the default color of a Hyperlink that is already visited to whatever color is specified

with this tag. The user can specify the color name or an equivalent hexadecimal number.

Table 6.1

Links are created in a web page by using the < A > ... tags. Anything written between the < A >

tags becomes a hyperlink/hotspot. By clicking on the hyperlink navigation to a different web page or image'

takes place.

The document to be navigated needs to be specified. By using the H R E F attribute of the < A > tag the next

navigable web page or image can be specified.

Syntax:

< A HRef = "filename.htm">

Hyperlinks can be of two types:

□ Links to an external document

□ Links Gumps) to a specific place within the same document

Generally done in case o f a web page containing a large amount o f text

External D o c u m e n t References

Example:
< A HRef = "details.htm">Visit m y Home Page

Here, Visit my Home Page becomes a hyperlink, and links to another document, details.htm, which is
present in the current working directory. If the file is not present in the current directory, a relative or
absolute path can be specified.

By default, a hyperlink takes a user to the beginning of the new web page. At times, it might be necessary

to jump to a p art icu la r lo ca tion within the new web page. To enable a jump to a specific location on a web
page, n am ed an ch ors can be set up. Anchors target hyperlinks to a specific location point on a web page.

Jumping to a particular location on a web page can be summarized in two steps:

□ Step One:
Mark the location to be jumped to i.e. Identify the location in a web page to jump to by giving the location

a name.

Using the N A M E attribute of the < A > tag does this.

Syntax:
< A Name = " location _nam e">

Example:
< A Na m e = "p o in t /">

This identifies a location to be jumped to as p o in t ! .

□ Step Two:
While jumping to a specific web page and a specific location on the web page, in addition to the name of

the web page to be jumped to, the name of the location on the web page to go to is required.

Hence the web page to jump to, requires a fi len a m e, htm, together with the name of the location to jump to
in the H T M L file.

This is done as follows:

Syntax:
< A HRef = ''file_name.\\Xm # loca tion _ n am e" > . . .

Example:
< A HRef= "details.htm# pointl">Visit M y Home Page

Visit m y H om e P ag e becomes a Hotspot and leads to a location named p o in t 1 in the file details.htm .

Internal d o c u m e n t references

Sometimes, a jump is required to a different location in the same document. Since the jump has to be

targeted to a specific location, the same two steps need to be performed as before, i.e. identify a location

with a name and then jump to that location using the name. The only difference is that the f i le n a m e .htm
now will be the current/?/m7/??e.htm.

Syntax:
< A N a m z -' lo ca tion _ n am e" >
< A HRef="# lo ca tion nam e"> . . .

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, rHAD nR
JAVASCRIPT, DHTML AND PERL Ub

N o t e ,

The absence of the f i l e n a m e . before the # symbol indicates that a jump is required within the same
document.

Example:
< A N a m e - 'p o in t 1">
< A H R E F = “# p o in t/”> Visit M y Ho m e Page

Visit my Home Page becomes a Hotspot and leads to a location named pointl in the same document.

CHAP 06 LINKING DOCUMENTS PAGE 55

N o t e .

Ensure that the named location is specified in the HTML file where a jump is being made.

H y p e r Linking T o A H T M L File (Starting At T h e Beginning O f T h e D o c u m e n t)

Example 1:

The W e b Page shown in diagram 6.1

presents S C T as an institute for Corporate

Training. The subjects, undertaken for

Corporate Training are listed, each of which

is a Hyperlink, and clicking on the hyperlink

will lead to a different document, showing a

syllabus for the corresponding subject.

Clicking on HTML will show the syllabus of
H T M L , clicking on Javascript will show the
syllabus of Javascript, and so on.

The syllabus for each subject is coded within

separate files. The H T M L syllabus is within

a file called HTMLSyl.html. Thus, clicking

SILICON CHIP TECHNOLOGIES

— —

S C T Provides Corporate T ra in ing F o r The FoBowing P rodoctf:
• ' - * /. A' , .V:'
• HTML

• Javascnet
.cs

'
• PowgBtdfa
• Oracle Dcraloptr 2500

» Orade PBA

.
CSck fir more Delaäs!
-.— Ill - ‘

mm.

■■■■■■

y $ I
. ■ p M . -M

. .

Diagram 6.1

on the HTML hyperlink opens a file, HTMLSyl.htm! that gives a listing of the syllabus of HTML.

The file Index.htm is the one that displays the hyperlinks to the syllabi of various subjects.

Code for Index.html
< H T M L >

< B O D Y Background-1../images/texture 1 .gif''>

< C E N T E R > < F O N T Face="LatinoPalSH">

SILICON CHIP T E C H N O L O G I E S < / B > < B R >

< I M G Width=50 Height=50 Src="../images/traing3l.gif’>

</ F ONT></CENTER><HR>

<H 4 > S C T Provides Corporate Training For The Following Products:</H4>
<U L >

HTML

Javascript
CGI

Java
PowerBuilder

Oracle Developer 2000

Oracle DBA

< / UL><SPACER Size=275>Click for more Details!
< / BODY>

< / HTML>

Subsequently, when the ‘H T M L ’ hyperlink is clicked on the Htmlsyl.htm is navigated to.

PAGE 56
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

Code for HTMLSyl.html

< H T M L >

< B O D Y Background="../images/texture 1 .gif''>

< C E N T E R > < H 3 > W e Cover The Following Topics ... </H3><HR>
</CENTER>

<O L >

< S P A C E R Size = 200>Text Formatting

< S P A C E R Size = 200>Creation Of Lists

< S P A C E R Size = 200>Creation Of Tables

< S P A C E R Size = 200>Creation Of Graphics

< S P A C E R Size = 200>Creation Of Hyperlinks

< S P A C E R Size = 200>Creation Of Imagcmaps

< S P A C E R Size = 200>Creation Of Forms

</BODY>

</HTML>

Similarly, different files can be created for

each syllabus and called from the file

Index.html. The H T M L file names will have

to be the same as the ones specified in

Index.html.

Linking T o A Particular Location

In A Separate D o c u m e n t

Example 2:

The W e b page shown in diagram 6.2.1

informs a reader about guidelines should be

followed while developing web sites. This

information is grouped into sections.

Clicking on an appropriate section will

display specific information.

Information about individual sections is held

in one file called as sections.htm.

Depending upon the section that a reader

user clicks on, information about only that
particular section will be seen on the

reader’s VDU.

For instance, clicking on Section 2 will

display to the user, the output as shown in

diagram 6.2.2,

Code for Index.html

< H T M L >

<HEAD><TITLE>Links To A Particular Location In A Separate Document</TITLE></HEAD>

< B O D Y Background = "../images/texture 1.gif’>

< C E N T E R > < F O N T Face = "LatinoPalSH" Size=+2>

< B > W e b Guidelines

</ F O N T > < / C E N T E R > < F O N T F A C E = "LatinoPalSH">

W e b Guidelines

I t e e a rt several guidelines that canbe followed «Лео creating a id developing W eb Sies.
H e user needs to be fem ia r w ith the working oftbe Internet, several terms Bee W eb Sever,
W eb Pages and so on Information about hosting a W eb Site needs to be ucderstood. These
and more information has been segregated sito sections and listed below Clicking on any o f
these sections will lead to a detailed explanation o f the section.

.■ • - ■. -"V i

. / • . /
These are References a Section in Another Comment.

• Section 1
• Section 2
• Section 3

-....... -

Diagram 6.2.1

CHAP 06 LINKING DOCUMENTS PAGE 57

There are several guidelines that can be followed when creating and developing W e b Sites. The

user needs to be familiar with the working of the Internet, several terms like W e b Server, W e b

Pages and so on. Information about hosting a W e b Site needs to be understood. These and more

information has been segregated into sections and listed below. Clicking on any of these sections

will lead to a detailed explanation of the section.

These are References a Section

in Another Document.

<A H R E F = "Sections.html#SECTION 1 ">Section 1

<A H R E F = "Sections.html#SECTION2">Section 2

<A H R E F = "Sections.html#SECTION3">Section 3

< B O D Y >

</ H T M L >

Code for Sections.html

< H T M L >
<HEAD><TITLE>Document With Targets For Links To Particular Locations</TITLE></HEAD>

< B O D Y Background = "../images/texture 1.gif’>

< A N a m e = " S E C T I O N l " > < H 2 > S E C T I O N 1 - INTRODUCTION</H2>

<CENTER><IMG.Src="../images/intro.gif,x / C E N T E R > < B R >

Internet has a growing importance in today's life. It provides us with a vast variety of information

including educational stuff, Political comments, Current affairs, Technological Advancements,

Social and Cultural information etc. Besides it offers mailing facilities and also provides, with

facilities wherein a user can demand for anything and be sure that his requirements will be

met.<P>With so much to give, its importance is flashing and more and more people are attracted

towards this giant network.<P>Thus, developing information and hosting it on the W e b is of

prime importance in the current century.

< A N a m e = " S E C T J O N 2 " x H 2 > S E C T I O N 2 - VIEWERS</H2>

< C E N T E R > < I M G Height=100 Src="../images/computer.gif' Widht=100></CENTER>

Number of viewers isn't the only important criterion, however, so don't be swayed by thoughts of

tons of folks visiting your W e b page. The most important criterion is, who are these people who

are seeing your ad.

< A N a m e = " S E C T I O N 3 " x H 2 > S E C T I O N 3 - L A N G U A G E S < / H 2 > < / A >

C E N T E R X I M G Height =150 Src="../images/corp.gif' Width = 1 5 0 > < / C E N T E R x B R >

The Language That Is Used To Develop W e b Pages Is Called H T M L Which Stands For

<I>HyperText Markup Language</I> Which Is A Linking And Formatting Language,

which Is The Only Language That Is Understood By a Browser.

</ BODY>

</HTML>

I M A G E S A S H Y P E R L I N K S

Just as text can act as a hyperlink, so also images can act as hyperlinks. Anything included within
<A>... tags becomes a Hotspot. Thus, an image can be made a Hotspot by enclosing an < I M G > tag

within the <A>... tags. The < I M G > tag places the image on the screen, and because the < I M G > tag is

enclosed within the <A>... tags, it becomes a Hotspot.

Example:
< A HRef="details.htm"xIMG Src="mickey.gif'x/A>

Here, the picture mickey.gif acts as a Hotspot, and navigates to a file details.htm

PAGE 58
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 06

I m a g e M a p s

When a hyperlink is created on an image, clicking on any part of the image will lead to opening of the

document specified in the < A HRef ...> tag. If the image is a large image and there is a need to link

multiple documents to the same image, there has to be a technique that divides the image into multiple

sections and allows linking of each section to a different document.

The technique that is implemented to achieve this is an Image Map. Image maps can be created and

applied to an image so specific portions of the image can be linked to a different file/image.

Linked regions of an image map are called hot regions and each hot region is associated with a

filenam e.htm document that will be loaded into the browser (navigated to) when the hot region is clicked.

Creating an image map is a two-step process:

Step One:

Create an image map, i.e. divide the image into various areas. This is done using the < M A P > </MAP> tags.

The < M A P > tag takes an attribute, Name, via which the map can be referenced in an H T M L file.

Syntax:

< M A P Name="map name">

Within the < M A P > . . . < / M A P > tags the < A R E A > tag is specified. This tag defines the specific region

Shape The shape of a region can be one of the following: Rect, Circle, Polygon, Default

Coords Each of the above shapes takes different coordinate parameters.

A Rectangle will take four coordinates: xl, yl, x2, y2

A Circle will take three coordinates: centerx, centery and radius.

A Polygon will take three or more pairs of coordinates denoting a polygonal region.

A Default shape will not take any parameter and it indicates the portion of the image not

specified under any Area tag.

HRef Takes the name of the .htm file that is linked to the particular area on the image.

Table 6.2

If specific areas within an image have to be

linked to different documents, these areas will

have to be identified on the image and linked to

different documents. These areas can be in the

shape of a rectangle, circle or a polygon. For

each, coordinates need to be specific to mark an

appropriate area on the image. For instance, a

rectangle needs 2 points of specification, the

upper left comer and the lower right comer.

Consider the following image, which offers

(0,0)

(52 ,65)

(122 ,89)

Diagram 6.3

more knowledge about a company called S C T and provides two options.

Clicking on Yes will display information about S C T and clicking on

Thus, area on the image that displays the buttons Yes and

No

No

could lead back to a start page,

need to be mapped to two different

H T M L files. These areas are in the shape of a rectangle and will be identified by means of top/left and

bottom/right coordinates, i.e. Yes can be marked as (52,65,122,89).

Similarly, the coordinates of No can be obtained and marked.

CHAP 06 LINKING DOCUMENTS PAGE 59

Example:
< M A P Name="Sct_map">

< A R E A Shape="rect" Coords="52,65,122,89" HRefr="sct.htm">

< A R E A Shape="rect" Coords=" 148,65,217,89" HRef^"no.htm">
</MAP>

Step Two:

Deals with applying the image map to a particular image. For this purpose, the < IMG> tag takes an

attribute called UseMap that takes the name of the image map as a value, and applies the map

specifications to the respective image. The value is always preceded with the # sign.

Syntax:
< I M G UseMap = "#map_name">

Example:
< I M G Src="question.gif' UseMap="#Sct_map">

Example 3:
To create an H T M L web page that offers an

opportunity to get information about T ravel

& Tourism. Clicking on Yes will

rr' '<• ■ ' ■« " >- ; ' i'
1 -"v,-.'.-'-- /<f

display the required information. Clicking

on [No | displays another H T M L file.

The startup H T M L Page should be as shown
in diagram 6.4.1.

Kmne about tke Bestplaces o fth t W o iid fin m u h m y o u a n !'V.' »f., V 4 t f

Honu wÜ gjvt detaued »tfomatm about the best plaas tkroughout tkt fforid. Ott
all the rapered Information about the best StstamnU, Resorts, Foodn Drink,
And muck m on .■■№ I; [

toswer Click !

Clicking on Yes will displays the output

as shown in diagram 6.4.2.

Clicking on No will display to the user

Yes No

the output as shown in diagram 6.4.3. Diagram 6.4.1

u interested in?

L

t E a t ; Y »-•«'

. « North vY
k « •

t South
...... : - -

- -î.'iv • • ■ ■" ' >.
r>; ' .<•/-. ■■■
' ' ’’ --i--- --■ ■■ -

-

■ c-.l

Diagram 6.4.2

,,,

WM
rv-'-'f.' : 3

x.-A: Y- . -

" Y Y'- 1
____________Diagram 6.4.3

Code for ImgMap.html
< H T M L >

<HEAD><TITLE>Using Image Maps!!</TITLE></HEAD>

< B O D Y Background="../images/texture 1 .gif’>

PAGE 60
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

< M A P Name="Alert_Map">
< A R E A Shape-'Rect" Coords=" 102,74,164,96" HRef="Travel.html">

< A R E A Shape="Rect" Coords="209,74,272,96" HRef="Missing.html">

< / M A P > < B R >
<H2><I>Planning a Holiday?</I></H2>
<I>Know about the Best places of the World

from where you are!</I><P><I>My H om e Site will give detailed information about the best

places throughout the World. Get all the required information about the best Restaurants, Resorts,

Food n Drink,
And much more ... !!!</I>

C E N T E R x I M G Src="../images/alert.gif' UseMap="#Alert_Map"></CENTER>

</BODY>

</HTML>

Code for Travel.html

< H T M L >
<HEAD><TITLE>Using Image Maps!!</Title></HEAD>

< B O D Y BackGround = "../images/texturel.gif’>

<H2><I> Welcome to the World of Travel & Tourism ! </I></H2>

<I>Which Zone are you interested in?

 East

 North

 West

 South

</I>

</BODY>

</HTML>

Code for IYtissing.html

< H T M L >
< H E A D x T I T L E > U s i n g Image Maps!!</TITLE></HEAD>

< B O D Y Background="../images/texture 1.g i f ' x C E N T E R > < B R > < B R >

<H2><I>You are missing out on Valuable Information!</I></H2>

<H3><I>Anyway, Have A Nice Day!!!</I></H3>

< / C E N T E R x / B O D Y >

</HTML>

F O C U S
Make use of Hyperlinks to provide navigation through the D E P L W e b Site. Provide an index, each entry

of the index leads to different blocks of information.

This means that the D E P L site information needs to be separated into multiple filenam e.html files. A

startup file has to serve as the index. The D E P L is being broken up into five different H T M L files

described as follows: ___ _______________

File Na m e Functionality

Index.html The first (startup) file. This file has following 4 Hyperlinks which leads to specific

information:

□ Profile

□ Barbed Wire

□ Barbed Tape

□ Animal Fencing
Additionally, these hyperlinks are images, not text.

Table 6.3

CHAP 06 UNKING DOCUMENTS PAGE 61

File Name Functionality
Profile.html Holds the company profile.

BWire.html Holds a detailed description about the barbed wire products of the company.

BTape.html Holds a detailed description about one the barbed tape products of the company.

AniFenc.html Holds a detailed description about the animal fencing products of the company.

Table 6.3 (Continued)

Code for Index.html
< H T M L >

<HEAD><TITLE>Delta Engineering Pvt. Ltd.</TITLE></HEAD>

< B O D Y Background="../images/pinkwhit.gif'><CENTER>

< F O N T Color="#008000" Face="Brush Script M T " Size=7>

< I M G Align="Bottom" Src="../images/logo.gif'>

<I>Delta Engineering Pvt. Ltd.</I><HR>

< / F O N T > < F O N T Color="#008000" Size=3>

<I>Delta Engineering Pvt. Ltd. is a specialist manufacturer of wire and wire products.

D E P L established in Mumbai, India is ideally located for shipments to any part of the world.

The main items of manufacture, in collaboration with Gulf Fencing Industry (GFI) include

protector gabions and protector fencing systems.</I><P>

< T A B L E Width = 90%><TR>

< T D Align=CENTER><IMG Alt="Profile" Border=0
Height="35" Src="../images/profile.gif’ Width=" 101 "></TD>

< T D A l i g n = C E N T E R x A HRef="BWire.html"xIMG AIt="Barbed Wire" Border=0
Height="35" Src="../images/conwire.gif’ Width="101"></TD>

< T D A l i g n = C E N T E R x A HRef="BTape.html"xIMG Alt="Barbed Tapes" Border=0
Height="35" Src="../images/contape.gif' Width-' 101 "></Ax/TD>

< T D A L I G N = C E N T E R x A Href="AniFenc.html"xIMG Alt="Fencing" Border=0

Height="35" Src="../images/anifenc.gif' Width="101 "></TD>

</TR></TABLE>
</CENTE R > < / B O D Y >

</HTML>

Output For Index.html:

As seen in the output shown in diagram

6.5.1, there are four pictures at the end of the

screen. Each of these is actually a Hyperlink.

□ Clicking on Profile opens a file called Profile.html.
□ Clicking on Concertina Barbed Wire

opens a file called BWire.html.
□ Clicking on Concertina Barbed Tape

opens a file called BTape.html.
□ Clicking on Animal Fencing opens a

file called Anifenc.html.
The code for each of these H T M L files along with their what these files should look like when viewed in a

browser is given below.

m
w D e l t a E n g i n e e r i n g P v t . L t d .

Della Engineering PvL Ltd. ts a specialist manufacturer of wire and wiry products. DEPL established
in Mumbai, India is ideally located for shipments ta any part of the world. Tit. main items of

manufacture, in ôallabanuion with Gulf Fencing Industry (GFf) includeprotector gahions and
protectorfencing systems.

Prime
Concenln a

Sardid Uirc

Concerti»

Bitten Tims

Diagram 6.5.1

PAGE 62
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r p „

JAVASCRIPT, DHTML AND PERL

Code ForProfile.html
< H T M L >

< H E A D > < T I T L E > Delta Engineering Pvt. Ltd. </TITLE></HEAD>

< B O D Y Background="../images/pinkwhit.gif'>

< F O N T Face="Brush Script M T " Size=7 Color="#008000"><CENTER><IMG Align=Bottom

Src="../images/logo.gif'><I>Our Profile</I></CENTER>
<HR Size=3>
< F O N T Color="#008000" Face="Times Roman" Size=3><CENTER><IMG Height="57"

Src="../images/intro.gif' Width=" 185">

<P>Delta Engineering Pvt. Ltd. is a specialist manufacturer of wire and wire products.' DEP L

established in Mumbai, India is ideally located for shipments to any part of the world. The main

items of manufacture, in collaboration with Gulf Fencing Industry (GF1) include protector gabions

and protector fencing systems.<P>Protector fencing systems offer a wide range of solutions to all

security problems on any terrain and under extreme climatic conditions. The protector fencing

system has been used extensively in Europe, America and the Far East, and this has helped

formulate a package especially suited to Middle East requirements.<P>DEPL is equipped to offer

comprehensive packages including design, material and installation.<P>Products strictly adhere to

BS, A S T M and DIN international specifications. Quality control is guaranteed by independent

laboratory test certificates from India.<P>Quality control is implemented without sacrificing

economy and efficiency. D E P L is dedicated to technical services and problem solving.<P>DEPL

is following quality methods and is accredited with ISO 9002.<P><IMG Height="57"

Src="../images/planning.gif' Width-'184">,
DEPL can provide planning support by offering

design, technical specifications, drawings, foundation plans and installation instructions, together

with a personalized service. The company's technical sales engineers keep in constant touch with

all clients. Utmost importance is given to optimum design, versatility, durability and economy

backed by the D E P L guarantee for work undertaken.</CENTER>
<HR>

< F O N T Color="Green" Face="ZappedChancellorSH" Size="4">

< P > < S P A C E R Type="Horizontal" Size="20">

Please forward any enquiries to enq_depl@bom2.vsnl.net.in

<P><I>

< S P A C E R Type-'Horizontal" Size="120">

< B > D E L T A E N G I N E E R I N G PVT. LTD.

< S P A C E R Type-'Horizontal" Size="120">502, 5th Floor, Tejas Building,

< S P A C E R Type-'Horizontal" Size="120">Andheri (W), Mumbai

< S P A C E R Type-'Horizontal" Size="120">INDIA

< S P A C E R Type-'Horizontal" Size="120">Telephone : 91-022-8210050

</I><P>

<HR>

</BODY>

</HTML>

Output For Profile.html:

Vl»*

w O u r P r o f i l e

1 Introduction

Delia fcgmeerâig P*t. Ш is a speciabr rnaïuààciurer of wire and wire products. DEPL estabhshed m Mumbá,
India к ideally located tor sh-pmetirs к- щ pari c*f ise world The main iteras of manufacwre. m collaboration

with Gruí Fencing Industry (GFD include piotscte:’gabions andpfotectcr fbnafig systems

Proiecrc-r fencing systems offer awide range of solutions to all security problems on any rerram ;-nc under
extreme ciimat:c eon<tóc«s. Tne.protector fencing system ha? been wed extenssek m Europe. Ablenta and the

Far Hait. and this has helped formulae л package especially suited to Middle East requirement

Diagram 6.5.2

mailto:enq_depl@bom2.vsnl.net.in

CHAP 06 LINKING DOCUMENTS PAGE 63

Code for BWire.htm

< H T M L >

< H E A D > < T I T L E > Delta Engineering Pvt. Ltd. </TITLE></HEAD>

< B O D Y Background="../images/pinkwhit.gif'>

< F O N T Face="Brush Script M T " Size=7 Color="#008000"xCENTER><I>Barbed

W ires</I></CENTER>
<HR. Size=3>
< T A B L E CellPadding=20><TR>

< T D > < I M G Align=Bottom Border=2 Height="300" Src="../images/barbedl.jpg"
Width="250"></TD>

< T D > < F O N T Face="Comic Sans MS" Size=2 Color="#008000">Concertina Barbed

Wire in roll form is used in high security areas to deter trespassing men and animals.<P>The

effectiveness of this material is proved as it has been in use for more than 75 years during war

and peace.</TD>
</TR></TABLE>

< F O N T Face="Comic Sans MS" Size=2 Color="#008000"><C>L>

<P><I>Line Wire:</I>
This is made up of 3.05mm diameter high carbon

steel wire, with a tensile strength of 170 to 180 kg/mm2. The wire is drawn and dressed in

such a manner that the coils formed will fall naturally into the specified diameter without

forming a figure eight. Line wire is heavy hot dipped galvanized with minimum inc coating of

185 gm/mm2.

<P><I>Barbed Wire:</I>
This is 2.00mm diameter bright mild steel wire

with a tensile strength of 38 to 55kg/mm2 conforming to BS 1052. The wire is hot dipped

galvanized with a minimum zinc coating of 20 to 50 g m / m m 2. The barbs are formed with four

points. Spacing between the centers of the barbs of every 7 0 m m along the length of the wire.

The barbs are firmly secured by indentations made on the wire, so that the barbs do not rotate
or slide along the wire. The

four points of the barbs are

formed at the right angles to

one another and project

outwards approximately

1 2 m m from the center of the

wire.

<P><I> Carrying

Handles: </I></B»
Han

dies are made of mild steel

wire of 3.55mm diameter and

are attached to the outer turn

of the coil on each side.

<P><HR>

< /BODY>

< / H T M L > Diagram 6.5.3

Output For BWire.html:

Code for BTape.html

< H T M L >

< H E A D > < T I T L E > Delta Engineering Pvt. Ltd. </TITLE></HEAD>

< B O D Y Background="../images/pinkwhit.gif'>

< F O N T Face-'Brush Script M T " Size=7 Color="#008000"><CENTER><I>Barbed

Tapes</I></CENTERx/FONT>
<HRSize=3>

B a r b e d W i r e s

Concertina Borbad Wire in roil form is used in high
security areas to deter trespassing men oi)d
animals.
The effectiveness of this material is proved as it
hos been in use for more than 75 years during war
and peace.

Ui'.V ■: . I ' ' i

PAGE 64
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

< T A B L E CellPadding=20><TR>
< T D > < I M G Align=Bottom Border=2 Height="300" Src="../images/barbed.jpg"

Width="280"></TD>
< T D > < F O N T Face="Comic Sans MS" Size=2 CoIor="#008000">Barbed Tapes are used

as psychological and physical deterrent against intrusion by personnel and animals. Barbed

tape barrier systems are more vicious and difficult to tamper with, providing superior

perimeter security. Some of the users are military installations, nuclear energy sites,

maximum security, prisons, various petroleum installations, tank farms and other important

industrial facilitieS.</TD>

</TR></T A B LE>
< F O N T Face="Comic Sans M S " Size=2 Color="#008000"xUL>

<P><DT><I>Short Blade Barbed Tape (SBBT):</I>

< D D > T o give the maximum tensile strength at the time of the breach hard drawn steel cord is

used (ESI). For camouflage purposes, a coaltar coating can be applied over the entire surface

(ES-1), and to attain the high degree of rust resistance, the core wire is made of galvanized

steel (ES-2). Any of the above three options are available to meet your specific requirements.

< P > < L I x D T > < B x I > M e d i u m Blade Barbed Tape (M B B T) : < /Ix/BxBR>

<DD>The specification of the "ivory" tape is similar to those of ES types. The blades are

sharper and have a greater pricking capacity. The life of this tape is more than three times

longer than those of ES types. Therefore, "ivory" tape is a more effective choice in terrain

which has heavy rain or in coastal areas. The diameter will be similar to ES type.

<PxLl><DT><I>Long Blade Barbed Tape (LBBT):</I>

<DD>This is the most effective psychological and physical deterrent, ever made as a barrier

obstacle. It is available in authentic stainless steel (SUS 430) and the core wire can be

fabricated from either galvanized carbon steel or stainless steel.

<P><HR>

< / B O D Y >

</HTML>

Output For Btape.html:

Code for AniFenc.html

< H T M L >

< H E A D > < T I T L E > Delta Engineering

Pvt. Ltd. </TITLE></HEAD>

< B O D Y Background="../images/pinkwhit.gif'>
< F O N T Face="Brush Script MT" Size=7 Color="#008000"><CENTERxI>Animal

Fencing</I></CENTERx/FONT>
<HR Size=3>

< T A B L E CellPadding=20><TR>
< T D > < I M G Align=Bottom Border=2 Height="240" Src="../images/fence I.jpg"

Width="200"></TD>

B a r b e d T a p e s

.* ■ 'ГХ-ÿ \ W .

V: № % *
' V'‘?:

ж

Barbed i cpes are used as psychological »id
physical deterrent against intrusion by
personnel ond animals. Barbed tape borrier
systems ore more vicious and difficult to
tamper with, providing superior perimeter
security. Some of the users ere miiitory
installations, nuclear energy sites, maximum
security prisons, various p2troleum
installations, tank farms ond other importont
industrial facilities.

Diagram 6.5.4

CHAP 06 LINKING DOCUMENTS PAGE 65

< T D > < F O N T Face="Comic Sans MS" Size=2 Color="#008000">DEPL's animal fencing

system is mainly used as an anti-intrusion barrier against any farm and other animals.<P>The

most common use is on highways where vast distances are covered at a very economical

cost.<P>Animal fencing can also be used to enclose areas such as farms, forest areas and

national parks, where security is not crucial.<P>This system is easy to install and can be

erected in a comparatively short time.</TD>
</TR></TAB L E > < H R >

< / B O D Y >

</HTML>

Output For AniFenc.html:
The technique of using hyperlinks allows

navigation to specific information in a web

site. If this technique is incorporated into a

web site the facility of navigating to specific

information in the site is available. This

provides some 'Reader Control' over the site.

It is now possible for a reader to view only

selective information, without scanning

through a large amount of textual matter.

There is still one obvious drawback. Every

time a reader clicks on a hyperlink, a new document is opened over the current document. That is, the

document containing the Index is hidden, and the reader has to compulsorily click on the browser’s Back
button to reach the Index page.

For a single one level of navigation, it might be feasible to click on the Back button. But consider a
scenario where the index, opens Filel (via a hyperlink). Further, Filel consists of a hyperlink, which leads
to File2. Now, to go back to the Index, the Back button will have to be clicked twice. This complexity

will increase with the number 'drill down' nested hyperlinks, thereby the reader may lose sight of the index.

To overcome this problem, one approach would be to let the index file always be visible on one side of the

screen, no matter what hyperlink is clicked on. In such a case, the remaining part of the screen will display
the document asked for.

In other words, the browser screen itself needs to be divided two unique, recognizable sections, one always

showing the index, and the other changing its content dynamically, depending on the hyperlink clicked on.

When the browser screen is divided into more than one unique, (HTML) recognizable, section each such

section is called a Frame.
The following chapter explains how the browser screen can be divided into frames. H o w hyperlinks in one

frame can open different H T M L documents in another frame.

A n i m a l F e n c i n g

bEPL's animal fencing system is mainly used os an anti-
intrusion barrier against any farm and ether animals.
The most common use is on highways where vast distances
ore covered ot a wry economical cost.
>.nimol fencing con also be used to enclose areas such os
farms, forest areas ond national parks, where security is
not crucial.
This system is easy to install ond con be erected in o
comparatively short time.

Diagram 6.5.5

S E L F R E V I E W Q U E S T I O N S

FILL IN T H E B L A N K S

1. allows linking to other documents.

2. The__________color is the default color of a hyperlink.

3. Hyperlinks can be of two types: Links to an _________ document or an______________document.

4 . enable a jump to a particular location in a document.

5. The name of the location has to be preceded by a _________ -__symbol.

6. Linked regions of image map are called_______________ .

7. A n image map can take any of the following four shapes : _____ ____________ , _______ &

cc COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, rHAp nR

PAGE 66 JAVASCRIPT, DHTML AND PERL CHAP 06

T R U E O R F A L S E

8. Anchors target links to the beginning of the document.

9. The color of the links can be changed in the <Body> tag.

10. A filename always has to be mentioned before the # symbol in the H R E F attribute of a link.

H A N D S O N E X E R C I S E S

1. Create a document with two links to an external document. The first link should lead to the beginning

of the external document. The second link should lead to a particular section in the external document.

In the external document specify a link that will lead to a particular section within it.

Text Content:
W e l c o m e t o o u r h o m e p a g e

T h i s p a g e h a s l i n k s t o t h e w e b s i t e o f ABC. Lever Inc.

F o r f u r t h e r i n f o r m a t i o n c l i c k o n a n y o f t h e f o l l o w i n g :

• About ABC Lever I n c .

• Contact information

A b o u t u s

ABC L e v e r i n c . i s a c o n g l o m e r a t e t h a t h a s i n t e r e s t s r a n g i n g f r o m b o d y c a r e

p r o d u c t s t o t o i l e t s o a p s .

A c o u p l e o f y e a r s a g o w e e n t e r e d t h e f r o z e n f o o d i n d u s t r y t h r o u g h m e r g e r s

a n d a c q u i s i t i o n s .

L a s t y e a r w e s t a r t e d o u r p l a n t t o m a n u f a c t u r e s a l t a n d t h i s y e a r i t i s

w h e a t f l o u r .

' O u r c u r r e n t t u r n o v e r i s a b o u t R s . 7 5 0 0 c r a n d b y t h e n e x t d e c a d e w e a r e

l o o k i n g a t a t a r g e t o f 1 5 0 0 0 c r .

CHAP 06 LINKING DOCUMENTS PAGE 67

C o n t a c t U s

Y o u c a n c o n t a c t u s a t t h e f o l l o w i n g a d d r e s s :

A B C L e v e r I n c .

1 0 1 M a k e r C h a m b e r s I I I ,

N a r i m a n P o i n t ,

M u m b a i - 2 1

T e l . 2 1 0 2 0 1 1

Y o u c a n a l s o e m a i l u s a t c u s t o m e r s s e r v i c e 0 a b c l e v e r . c o m

Welcome to ourhornepage
This page has links to the website of ABC Lever Inc.

For further information click on any one of the following.

• About ABC Lever Inc.

• Contact information

Diagram 6.6.1: Screen 1 of Hands on Exercise.

¡ f a

A B C L ev er In c.
Contact us

Contact Us

You can contact us 2i f e Mowing address

ABC Lever Inc.
101 Maker Chambers III,
Nariman Point,
Mumbai-21
Tel 2012011

You can also email us at customerservice@ abclever.com

ABC Lever Inc. is a conglomerate tha t has Interests ranging from bodycare
products to to ile t soaps.
A couple o f years ago we entered the frozen food industry through mergers
and acquistions.
Last year we started our firs t p lant to manufacture salt and this year it is
wheat flour.
Our current turnover is about Rs. 7500 cr and by the next decade we are
looking at a target o f 15000 cr.

Diagram 6.6.2: Screen 2 of the Hands on Exercise. Diagram 6.6.3: Screen 3 of the Hands on Exercise.

mailto:customerservice@abclever.com

7. F R A M E S

I N T R O D U C T I O N T O F R A M E S

Until now each web page when opened takes over the entire browser screen. The browser screen could not

be split into separate (unique) sections, showing different but related information.

The H T M L tags that divide a browser screen into two or more H T M L recognizable unique regions is the

< F R A M E S E T > < / F R A M E S E T > tags. Each unique region is called a frame. Each frame can be loaded with

a different document and hence, allow multiple H T M L documents to be seen concurrently.

The H T M L frame is a powerful feature that enables a web page to be broken into different unique sections

that, although related, operate independently of each other.

T h e < F R A M E S E T > T a g

The splitting of a browser screen into frames is accomplished w'ith the < F R A M E S E T > and

</F R A M E S E T > tags embedded into the H T M L document. The < F R A M E S E T > ... < / F R A M E S T > tags

require one of the following two attributes depending on whether the screen has to be divided into rows or

columns.

Rows This attribute is used to divide the screen into multiple rows. It can be set equal to a list of

values. Depending on the required size of each row. The values can be:

□ A number of pixels

□ Expressed as a percentage of the screen resolution

□ The symbol *, which indicates the remaining space._____________
Cols This attribute is used to divide the screen into multiple columns. It can be set equal to a list of

values. Depending on the required size of each column. The values can be:

□ A number of pixels

□ Expressed as a percentage of the screen resolution

□ The symbol *, which indicates the remaining space.______________________ ____________

Example:

< F R A M E S E T Rows="33%,33%,33%">

< F R A M E S E T Cols="50%,50%">

</F R A M E S E T >

< F R A M E S E T Cols="50%,50%">

< /F R A M E S E T >

< / F R AMESET>

Table 7.1

— Divides the browser screen into 3 equal Horizontal

sections.
— Splits the 1st Horizontal Section into 2 equal Vertical

sections.

— Splits the 2nd Horizontal section into 2 equal Vertical

sections

T h e < F R A M E > T a g

Once the browser screen is divided into rows (Horizontal Sections) and columns (Vertical Sections), each

unique section defined can be loaded with different H T M L documents. This is achieved by using the

< F R A M E > tag, which takes in the following attributes:

CHAP 07 FRAMES PAGE 69

SRC="url" Indicates the U R L of the document to be loaded into the frame.MarginHeight="n" Specifies the amount of white space to be left at the top and bottom of the frame.MarginWidth ="n" Specifies the amount of white space to be left along the sides of the frameName="name" Gives the frame a unique name so it can be targeted by other documents. The name

given must begin with an Alphanumeric characterNoresize Disables the frames resizing capability.Scrolling Controls the appearance of horizontal and vertical scrollbars in a frame. This takes

the values Y E S / N O /AUTO.

Table 7.2

Example 1:
< H T M L >

< F R A M E S E T Rows = "30%. *">

< F R A M E S E T Cols = "50%, 50%">

< F R A M E Src="Filel.html">

< F R A M E Src="File2.html">

< / F R A M E S E T >

< F R A M E S E T Cols="50%, 50%">

< F R A M E Src="File3.html">

< F R A M E Src="File4.html">

< / F R A M E S E T >
< / F R A M E S E T >

</HTML>

Output For Example 1:

Targeting N a m e d F r a m e s

Whenever a hyperlink, which loads a

document in a frame is created, the file

referenced in the hyperlink will be opened

and will replace the current document that is

in the frame.

■ Divides the screen into 2 rows, one occupying 30%of

the screen, and the other occupying the remaining

space, i.e. 7 0 % of the screen.

■ Divides the 1st row into 2 equal columns, each 50% of
the screen.

■ Loads the 1st frame with filel.html.
Loads the 2nd frame with file2.html.
Divides the 2nd row into 2 equal columns, 5 0 % of the
screen

Loads the 1st frame with file3.html.
Loads the 2nd frame with file4.html.

In a situation where the new document

needs to be opened in a different frame

Contents Of filel.html 1 Fill Be
Disvhved Here.

Contents OfFile2.html 1!ill Be
DispUned Here.

Contents OfFiki.html IFiU Be
DisvUived Here.

Contents OfFile4.html füll Be
DisvUned Here.

Diagram 7.1
while keeping the document from which the new document was navigated open in a different frame, a

simple H T M L coding technique must be used.

Since the hyperlink must open an H T M L file in another frame, the frame in which the H T M L file is to be

opened needs to be named. This is done by using the N A M E attribute of the <FRAME> . . . </FRAME>
tags. The N A M E takes one parameter, which is its frame name.
The hyperlink tag will have to be supplied with the following information

1. The filenam e, htm file that has to be opened (navigated to).
2. The name of the frame where the filename.htm file has to be opened.

PAGE 70
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, сн д р „

JAVASCRIPT, DHTML AND PERL

The attribute, via which the frame name is specified is the Target attribute, which is a part of the
<A>... tag. This information is given as:Target ="<Frame_Name>"
The attribute, via which the H T M L file name is specified is the HRef attribute which is a part of the
<A>... tag. This information is given as:Visit us
Example:
Frame Identification:

< F R A M E S E T Cols = 30%, 70%>

< F R A M E Name="Part">

< F R A M E Name="Main">
< /F R A M E S E T >

The above command will divide the browser screen into two vertical frames the first frame called Part that
will occupy 3 0 % of the browser area and the second frame called Main will occupy 7 0 % of the browser
area.

Hyperlink Specification:

< A HRef="Index.html" Target="Main">Visit us

Here, an H T M L file called Index.html is loaded into the frame named Main when the hyperlink Visit us is
clicked.

N ote
While specifying the name of the target frame in the T A R G E T attribute, the case must be same as specified in the NAME attribute of the <A> tag.

Example 2:
The following example divides the browser screen into 3 frames. The need is to give information about

SCT staff. The startup file is frames.html, which loads three different documents in the three different
frames. These documents are header.html, sctlamil.html and desc.htmL
Code Listing For frames.html
< H T M L >

< F R A M E S E T R O W S = "70, *">
< F R A M E Src-'header.html" MarginHeight=0 MarginWidth=0 N a m e="FRAMEl">

< F R A M E S E T Cols="35%, *">

< F R A M E Src="sctfamil.html" Name="FRAME2">

< F R A M E Src="desc.html" Name="FRAME3">

< / F R A M E S E T >

</F R A M E S E T >

</HTML>

J i o t e = = = a g ^ ^ = = = =

When < F R A M E S E T > is being coded within an H T M L document, the < B O D Y > </BODY> tags are

not used.

CHAP 07 FRAMES PAGE 71

Code Listing For header.html
< H T M L >

< B O D Y Background = "../images/texture l.gif'>

< F O N T Face = "Comic Sans M S " > < B R >

< C E N T E R > < H 2 > T h e SCT Family</H2></CENTER>
< / B O D Y >

</HTML>

Code Listing for sctfamil.html
< H T M L >

< B O D Y Background="../images/texturel .gif'>

< C E N T E R > < I M G Height=175 Src="../images/sctfamil.gif' Width=150></CENTER>
< / B O D Y >

</HTML>

Code Listing for desc.html
< H T M L >

< B O D Y Background="../images/texture 1 .gif’>< B R > < B R >
< B > < U L >

Mr Ivan Bayross (CEO)

Mrs Cynthia Bayross (MD)

Miss Mita Engineer (GMS)

Mrs Melba Mehta (Sr. Admin Executive)

Miss Vaishali Bhayani (Programmer)

Mr Ajay Lulia (Programmer)

Miss Shilpa Ratwani (Programmer)

Miss Jyoti V. (HR Manager)

Mr Milind Parab (Marketing Executive)

< / BODY>

</HTML>

Output For Example 2:

FOCUS
The D E P L site will now have a starting page as a brief introduction of the company, consisting of Logo,

Nam e and what the company does in a few words.

The starting page should provide hyperlinks, which give more detailed information about a topic. The

Company Logo, N a m e and the site index must always be visible when the site is navigated through.

£iSe V iew g o £om m ufticato i He*P

-¿i. '¿I fé <£&» -s ■ m
R e k -id Hoirie S earch G u id a ___ P iirä Security - _________ _ —

‘ Bookmans Locaüonrfi'e /7;j :.ü 3ER^.'s "t a FFA/A!SHî .LI/1MTERn Î î /HTMl^ 0 R K / "R A M S im P H IM j r j

• M r Ivan Bayross (CEO)
• Mrs Cynthia Bayross (MD)
• Miss M ita Engineer (GMS)
• Mrs Melba Mehta (Sr. Admin Executive)
• Miss Vaishali Bhayani (Programmer)
• M r Ajay Lulia (Programmer)
• Miss Shilpa Ratwani (Programmer)
• Miss Jyoti V. (Programmer)
• M r Milind Parab (Programmer)

D o cum en t O ooe a. -J3

Diagram 7.2

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

This is achieved by the use of frames. Various H T M L files required are as listed in table 7.3:

File N a m e Functionality

Frames.htm This file divides the screen into 3 frames as follows:

□ One frame on top, loaded with the file - Header.htm

□ Second frame on the left, loaded with the file - Index.htm
□ Third Frame occupying the remaining area on the screen, initially loaded with the file -

Intro.htm
Header.htm Displays Header Information like company name and logo.

Index.htm Provides an Index, consisting of the following 4 Im ag e H yperlinks :
□ Profile

□ Barbed Wire

□ Barbed Tape

□ Animal Fencing

These Hyperlinks, when clicked, open different files in the third frame on the screen.

Profile.htm Gives the company profile

BWire.htm Gives a description about the product - Barbed Wires

BTape.htm Gives a description about the product - Barbed Tapes

AniFenc.htm Gives a description about the product - Animal Fencing

Table 7.3

Code for Frames.htm
< H T M L > < F R A M E S E T Rows="30%, *" Framespacing="0">

< F R A M E Name="Header" Src="Header.html" FrameBorder="0" ScrolIing=NO>

< F R A M E S E T Cols="25%, *">
< F R A M E Name="Index" Src="Index.html" FrameBorder="0" Scrolling= N O >

< F R A M E Name="Details" Src="Intro.html" FrameBorder="0">

< / F R A M E S E T >

< / F R A M E S E T > < / H T M L >

Code listing for Header.html:
< H T M L > < B O D Y Background="../images/pinkwhit.gif>

< C E N T E R > < F O N T Color="#008000" Face="Brush Script M T " Size=6>

< 1 M G Align=Middle Src="../images/logo.gif><SPACER Size=30>

<I>Delta Engineering Pvt. Ltd.</I>

< / F O N T > < C E N T E R >

< / B O D Y > < / H T M L >

Code listing for Index.html:
< H T M L >

< B O D Y Background="../images/pinkwhit.gif'>

< A HRef="Profile.html" Target="Details"><IMG Alt="Profile" Borden=0 Height="35"

Src="../images/profile.gif' Width="101">

< A HRef="BWire.html" Target="Detai!s"><IMG Alt="Barbed Wire" Border=0 Height="35"

Src="../images/conwire.gif' Width=”101">

< A HRef="BTape.html" Target="Details"><IMG Alt="Barbed Tapes" Border=0 Height="35"

Src="../images/contape.gif' Width-' 101 ">

< A Href="AniFenc.html" Target="Details"><IMG Alt="Fencing" Border=0 Height="35"

Src="../images/anifenc.gif' Width="101">

</BODY>

</HTML>

CHAP 07 FRAMES PAGE 73

Code lis ting fo r In tro .h tm l:
< H T M L >

< B O D Y Background="../images/pinkwhit.gif'>

< F O N T Color="#008000" Face="Brush Script M T " Size=5>
<CENTER><I>

Delta Engineering Pvt. Ltd. is a specialist manufacturer of wire and wire products. D E P L

established in Mumbai, India is ideally located for shipments to any part of the world. The

main items of manufacture, in collaboration with Gulf Fencing Industry (GFI) include

protector gabions and protector fencing systems.

</I></CENTERx/FONT>
< / B O D Y >

< / HTML>

O utput For Fram e.htm l:

Code For P rofile .h tm l:
< H T M L >

< H E A D > < T I T L E > Delta Engineering

Pvt. Ltd. </TITLE></HEAD>

< B O D Y Background-'../images/pinkwhit.gif>
< F O N T Face="Brush Script M T " Size=7 Color="#008000"><l>0ur Profile</I>
< B R > < H R Size=3>

< F O N T Color="#008000" Face="Times Roman" S i z e = 3 x C E N T E R > < I M G Height="40"

Src="../images/intro.gif' Width=" 12 0 " x B R >

<P>Delta Engineering Pvt. Ltd. is a specialist manufacturer of wire and wire products. DE P L

established in Mumbai, India is ideally located for shipments to any part of the world. The main

items of manufacture, in collaboration with Gulf Fencing Industry (GFI) include protector gabions

and protector fencing systems.<P>Protector fencing systems offer a wide range of solutions to all

security problems on any terrain and under extreme climatic conditions. The protector fencing

system has been used extensively in Europe, America and the Far East, and this has helped

formulate a package especially suited to Middle East requirements.<P>DEPL is equipped to offer

comprehensive packages including design, material and installation.<P>Products strictly adhere to

BS, A S T M and DIN international specifications. Quality control is guaranteed by independent

laboratory test certificates from India.<P>Quality control is implemented without sacrificing

economy and efficiency. D E P L is dedicated to technical services and problem solving.<P>DEPL

is following quality methods and is accredited with ISO 9002.<PxIMG Height="40"

Src="../images/planning.gif' Width="120">
DEPL can provide planning support by offering

design, technical specifications, drawings, foundation plans and installation instructions, together

with a personalized service. The company's technical sales engineers keep in constant touch with

all clients. Utmost importance is given to optimum design, versatility, durability and economy

backed by the D E P L guarantee for work undertaken.</CENTER>
<HR>

< F O N T Color="Green" Face="ZappedChancellorSH" Size="4">

< P > < S P A C E R Type="Horizontal" Size="20">

Please forward any enquiries to enq_depl@bom2.vsnl.net.in

Diagram 7.3.1

mailto:enq_depl@bom2.vsnl.net.in

PAGE 74
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 07

< P > < I>
< S P A C E R Type="Horizontal" Size="120">

< B > D E L T A E N G I N E E R I N G PVT. LTD.

< S P A C E R Type="Horizontal" Size="120">502, 5th Floor, Tejas Building,

< S P A C E R Type="Horizontal" Size="120">Andheri (W), Mumbai

< S P A C E R Type="Horizontal" Size="120">INDlA

</I><P>

< /FONT><HR>

</BODY>

</HTML>

Output For Profile.html:

Code for BWire.htm
< H T M L >

<HEA D > < T I T L E > Delta Engineering

Pvt. Ltd. </TITLE></HEAD>
Diagram 7.3.2

< B O D Y Background="../images/pinkwhit.gif'>

< F O N T Face="Brush Script M T " Size=7 Color="#008000"><I>Barbed Wires</I></CENTER>

< / F O N T > < B R > < H R Size=3>

< T A B L E CellPadding= 10><TR>
< T D > < I M G Align=Bottom Border=2 Height="200" Src="../images/barbedl.jpg"

Width-' 160"></TD>
< T D > < F O N T Face="Comic Sans MS" Size=2 Color="#008000">Concertina Barbed

Wire in roll form is used in high security areas to deter trespassing men and animals.<P>The

effectiveness of this material is proved as it has been in use for more than 75 years during war

and peace.</TD>

</TR></TABLE>
< F O N T Face="Comic Sans MS" Size=2 Color="#008000"xOL>

<P><IxLI>Line Wire:</Ix/B>
This is made up of 3.05mm diameter high carbon

steel wire, with a tensile strength of 170 to 180 kg/mm2. The wire is drawn and dressed in

such a manner that the coils formed will fall naturally into the specified diameter without

forming a figure eight. Line wire is heavy hot dipped galvanized with minimum inc coating of

185 gm/mm2.
<P><I>Barbed Wire:</I>
This is 2.00mm diameter bright mild steel wire

with a tensile strength of 38 to 55kg/mm2 conforming to BS 1052. The wire is hot dipped

galvanized with a minimum zinc coating of 20 to 50 g m / m m 2. The barbs are formed with four

points. Spacing between the centers of the barbs of every 7 0 m m along the length of the wire.

The barbs are firmly secured by indentations made on the wire, so that the barbs do not rotate

or slide along the wire. The four points of the barbs are formed at the right angles to one

another and project outwards approximately 12mm from the center of the wire.

<P><I> Carrying Handles:</I></B»
Handles are made of mild steel wire of

3.55mm diameter and are attached to the outer turn of the coil on each side.

CHAP 07 FRAMES PAGE 75

<P><HR>
< / B O D Y >

< / H T M L > D e lta E n g in eerin g Pvt. Ltd.

Output For BWire.html

B a r b e d W i r e s
Concertina
Barbed Wire

Code for BTape.htm

< H T M L >

Concertina Borbed W h in roll form
is used in high security araos to
deter trespassing man ond animals.

Diagram 7.3.3

<HEAD><TITLE>Delta Engineering Pvt. Ltd.</TITLE></HEAD>

< B O D Y Background="../images/pinkwhit.gif'>

< F O N T Face="Brush Script M T " Size=7 Color="#008000"><I>Barbed Tapes</I>
< B R > < H R Size=3>

< T A B L E CellPadding=20><TR>

< T D > < I M G Align=Bottom Border=2 Height="350" Src="../images/barbed.jpg"
Width="200"></TD>

< T D > < F O N T Face="Comic Sans MS" Size=2 Color="#008000">Barbed Tapes are used

as psychological and physical deterrent against intrusion by personnel and animals. Barbed

tape barrier systems are more vicious and difficult to tamper with, providing superior

perimeter security. Some of the users are military installations, nuclear energy sites,

maximum security prisons, various petroleum installations, tank farms and other important
industrial facilities.</Bx/FONT></TD>

</TR></TABLE>

< F O N T Face="Comic Sans MS" Size=2 Color="#008000">

<P><DT><I>Short Blade Barbed Tape (SBBT):</I>

< D D > T o give the maximum tensile strength at the time of the breach hard drawn steel cord is
used (ESI). For camouflage purposes, a coaltar coating can be applied over the entire surface

(ES-1), and to attain the high degree of rust resistance, the core wire is made of galvanized

steel (ES-2). Any of the above three options are available to meet your specific requirements.

<P><DT><I>Medium Blade Barbed Tape (MBBT):</I>

< D D>The specification of the "ivory" tape is similar to those of ES types. The blades are

sharper and have a greater pricking capacity. The life of this tape is more than three times

longer than those of ES types. Therefore, "ivory" tape is a more effective choice in terrain

which has heavy rain or in coastal areas. The diameter will be similar to ES type.

<P><DT><I>Long Blade Barbed Tape (LBBT):</I>

<DD>This is the most effective psychological and physical deterrent, ever made as a barrier

obstacle. It is available in authentic stainless steel (SUS 430) and the core wire can be

fabricated from either galvanized carbon steel or stainless steel.

<P><H R>
</ B O D Y >

< / HTML>

PA G E 76

Output For BTape.html:

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 07

D e lta E n g in eerin g Pvt. Ltd.
set*

Gonccnina

В a riied Wire

B a r b e d T a p e s

Concertina

Barbed Taues

Animal Fencing
L i t ó ■

*$&

Barbed Topes o p« used
os psychological end
physical dctcrrcn'f
ogeinst intrusion by
personnel and onimols
Barbed tape barrier
systems ore more vicious
ond d iffic u lt to temper
with, providing superior jJ

Diagram 7.3.4

Src~"../images/fence 1 .jpg"

Code for Anifenc.htm

< H T M L >

<HEA D > < T I T L E > Delta Engineering

Pvt. Ltd. </TITLE></HEAD>
< B O D Y Background="../images/pinkwhit.gif'>

< F O N T Face="Brush Script M T " Size=7 Color="#008000">

<I>Animal Fencing</I>
<HR Size=3>

< T A B L E CellPadding=20><TR>

< T D > < I M G Align=Bottom Border=2 Height="240"

Width="200"></TD>
< T D > < F O N T Face="Comic Sans MS" Size=2 Color="#008000">DEPL's animal fencing

system is mainly used as an anti-intrusion barrier against any farm and other animals.<P>The

most common use is on highways where vast distances are covered at a very economical

cost.<P>Animal fencing can also be used to enclose areas such as farms, forest areas and

national parks, where security is not crucial.<P>This system is easy to install and can be

erected in a comparatively short time.</TD>

< / T R x / T A B L E > < H R >

</BODY>

</HTML>

Output:

Diagram 7.3.5

CHAP 07 FRAMES PAGE 77

S E L F R E V I E W Q U E S T I O N S

FILL IN T H E B L A N K S

1 • _______________ enable a W e b page to be broken into different sections.

2. The splitting of a page into frames can be accomplished by using the _____________tag.

3. Once the screen is divided into different sections, each section can be loaded with a different H T M L
document using the __________tag.

4. T h e ________ attribute of the < F R A M E > tag contains the U R L of the document to be loaded into the
frame.

5- T h e ________ attribute of the < F R A M E > tag disables the user's ability to resize the frame.

6. T h e ___________attribute controls the appearance of horizontal and vertical scrollbars in a frame.

7. A frame is identified using the________ attribute of the < F R A M E > tag.

T R U E O R F A L S E

8. The browser window cannot be split into separate little sections, showing different but related
information.

9. By default, a user cannot resize a frame.

10. The T A R G E T attribute in the <A>... tag specifies the name of the Target frame.

H A N D S O N E X E R C I S E S

1. Create a specimen of a corporate web page. Divide the browser screen into two frames. The frame on

the left will be a menu consisting of hyperlinks. Clicking on any one of these links will lead to a new

page, which must open in the target frame, which is on the right hand side.

2. Create two links, the first link that will open a page that displays the company profile, its business and

its products. The second link will display the contact address of the company.

Text Content:
W e l c o m e t o o u r h o m e p a g e

T h i s p a g e h a s l i n k s t o t h e w e b s i t e o f ABC Lever Inc.

F o r f u r t h e r i n f o r m a t i o n c l i c k o n a n y o f t h e f o l l o w i n g :

• About ABC Lever Inc.

• Contact information

A b o u t u s

A B C L e v e r i n c . i s a c o n g l o m e r a t e t h a t . h a s i n t e r e s t s r a n g i n g f r o m b o d y c a r e

p r o d u c t s t o t o i l e t s o a p s .

A c o u p l e o f y e a r s a g o w e e n t e r e d t h e f r o z e n f o o d i n d u s t r y t h r o u g h m e r g e r s

a n d a c q u i s i t i o n s .

L a s t y e a r w e s t a r t e d o u r p l a n t t o m a n u f a c t u r e s a l t a n d t h i s y e a r i t i s

w h e a t f l o u r .

PAGE 78
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, _ ндр fl7

JAVASCRIPT, DHTML AND PERL °

O u r c u r r e n t t u r n o v e r i s a b o u t R s . 7 5 0 0 c r a n d b y t h e n e x t d e c a d e w e a r e

l o o k i n g a t a t a ' r g e t o f 1 5 0 0 0 c r . '

C o n t a c t U s

Y o u c a n c o n t a c t u s a t t h e f o l l o w i n g a d d r e s s :

A B C L e v e r I n c .

1 0 1 M a k e r C h a m b e r s I I I ,

N a r i m a n P o i n t ,

M u m b a i - 2 1

T e l . 2 1 0 2 0 1 1

Y o u c a n a l s o e m a i l u s a t c u s t o m e r s s e r v i c e @ a b c l e v e r . c o m

Output:

Click on any one of the Welcome
following:

• About us
Thank you for visiting our v/ebsite

Click on any of the choices on the left
. Contact us

Diagram 7.4.1: Screen 1 of the Hands on Exercise.

Click on any one of Ste
Mowing.

. About us

. Contact us
A B C L ev er Inc.

ABC Lever Inc. is a conglomerate that has
interests ranging from bodycare products to

toilet soaps. A couple of years ago we entered
the frozen food industry through mergers and

acquisitions. Last year we started our first plant
to manufacture salt and this year it is wheat flour.
Our current turnover is about Rs. 7500 cr and by

the next decade we are looking at a target of
15000 cr.

Click on arr,' one of the
following:

• About us

• Contact us

Contact Us

You can cratact ui ar the Mc wiog a-Mrcss

ABC Lever Inc.
101 Maker Chambers III,
Nariman Point,
Mumbai-21
Tel 2012011

You can also email us at
customerservice@abdever.com

Diagram 7.4.2: Screen 2 of the Hands on Exercise. Diagram 7.4.3: Screen 3 of the Hands on Exercise.

mailto:customersservice@abclever.com
mailto:customerservice@abdever.com

A - P R O J E C T S I N H T M L

Project Specifications For T h e First Project In H T M L

Since the learning of H T M L is completed, it is time to consolidate this learning by building a small web

site. The structure of web site is given in the following pages. This is a description of how the pages of

this web site will be navigated through starting from the traditional first page, index.html.

Each web page called from index.html is described in complete detail.
□ Textual content
□ Simple visuals in the form of .gif or .jpeg files
□ The look and feel of each page

The files required to construct these pages is available on the accompanying C D - R O M for immediate use.

There are two unique sets of files:

□ One set of files, is the raw text files that can be used for formatting using appropriate H T M L tags. In
addition to the text files, there are .gif and .jpg (where necessary) that will help build the web site.

□ The other set of files, are H T M L files, which are a solution.

If required run the H T M L files first in a W e b Browser and get a look and feel of what the project could be

like. Once this is done code the web pages according to what you believe is appropriate.

Each H T M L file is reaily just a simple guideline to what the web page could look like.

Feel free to improvise and get a look and feel that satisfies you.

For your guidance:

A broad idea of the H T M L pages of the project is given in the diagrams below.

The images and links of each page have been explicitly indicated. Below each diagram is a table that

indicates the names of

both the Text files and . . o o ffl ® s 3 s a s s . -a
the Images used.
□ The image files that

are used in the
project are in the sub
directory named
GIFJPG.

□ The Text files, that
have to be formatted,
are in the sub
directory named
TEXTFILES.

O u tp u t F o r The
P ro je c t ’ s H om e Page
The H o m e page objects

and their corresponding

file names:

Pic2

Pic4

Picl

Pic3

Pic6

Pic8

Pic5

Pic7

Bg

Pic9

Adwest jaj H \Pro¡eo\web».g»t F- html

Linli o'BestatteWeb «'ChannelGuide « ‘CusUniieün^; •'Inte.ne'E'DfcreiHeiw » ' Interne*Start

Search

■What's New

Purchasing
Information

■| ►Education

h Busir
W Partn

1 ►Jobs

Business
Partners

InterNotes Web Navigator provides managed, secure
access to the Internet and Web!

InterNotes Web Navigator delivers 'Team Surfing” allowing users to share the experience of the
Internet within a workgroup or as individuals Web Navigator is much more than a browsing tool, it is
Internet access integrated into the core Notes environment, enabling teams of users to collaborate,
coordinate, and communicate Web content. Web Navigator database (WEB.NSF) features, such as Web
Tours, Recommended Pages, and views, uniquely transform the experience of an individual surfing the
web into a team experience of sharing valuable knowledge

By supplying this capability in the form of {©Junctions and LotusScript methods, Lotus gives the Notes
development community the opportunity to make every application a web application. Customers can
completely customize the look & feel of the Web by modifying the Web Navigator database

Customers are making the most of the Web Navigator by:

• Getting their favorite online newspaper delivered to their mailbox via server agents every
morning

• Fetching stock prices from free stock quote servers hourly, excluding weekends
• Worm web sites to "bulk fetch” web information via server agents during low traffic periods
• Monitoring online magazine and news services for timely automated information retrieval

-----IPkpplying Verity's powerful search engine to sift through the mountains of web information

g 1 Pore g».«,,

Diagram 1.1a: Pictures of the Ho m e page Webnvgtrl.html.

B e yellbanl.gif Picl le2 O.gif Pic2 ylotusl.gif Pic3 ysearch.gif Pic8 yjobs.gif

Pic4 ywhatnew.gif Pic5 ybuy.gif Picó yeducat.gif Pic7 ypartner.gif Pic9 white2.gif

„ . . г Qft COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pR n .
PAGE 80 JAVASCRIPT, DHTML AND PERL

Link2

Link4

Link6

' 3 L o tu s “ C o u n liy "

Linkl

L i n k 3

Link5

3SS
£rt« So

Page - Microsoft Internet Explore

Favorüsí tie to

О * Cl <2
Home

© а
Soarcii Favoritas

3 Ç
Hrs»-y Channel*

В
FuHscraen

A d d r e s s ! ^

Links #'Bep.c!fteWei> e ‘Char.r,olGuide ff'Custûmue Links einterne!Ejptorer News o'fttemei Start
û

Search

^Vhafs New

Purchasing
Information

Business
Partners

l)Oone
J.il

In te rN o tes W eb N a v ig a to r provides managed, secure
access to the In te rn e t and W eb! 1 Web Navigator
InterNotes Web Navigator delivers ’Team Surfing" allowing users to share the experience o f the
Internet within a workgroup or as individuals. Web Navigator is much more than a browsing tool, it is
Internet access integrated into the core Notes environment, enabling teams o f users to collaborate,
coordinate, and communicate Web content. Web Navigator database (WEB.NSF) features, such as Web
Tours. Recommended Pages, and views, uniquely transform the experience o f an individual surfing the
web into a team experience o f sharing valuable knowledge.

By supplying this capability in the form o f (©functions and LotusScript methods, Lotus gives the Notes
development community the opportunity to make every application a web application. Customers can
completely customize the look & feel o f the Web by modifying the Web Navigator database.

Customers are making the most o f the Web Navigator by:

• Getting their favorite online newspaper delivered to their mailbox via server agents every
morning

• Fetching stock prices from free stock quote servers hourly, excluding weekends
• Worm web sites to "bulk fetch" web information via server agents during low traffic periods
• Monitoring online magazine and news services for timely automated information retrieval
• Applying Verity’s powerful search engine to sift through the mountains o f web information

_________ ¡fen*» _________

Diagram 1 .lb: Links of the Hom e page Webnvgtrl.html.

The H o m e page links and their corresponding file names:

Linkl searchl.html Link2 whatsnewl.html Link3 buylotsl.html

Link4 laecl.html Link5 partnersl.html Link6 strategyl.html

Output F o r search l.h tm l called from the Home nagefSearchl

Bg

- 3 Search the Lolus Web Site - Microsoft Internet txplorer № B

E*e Edil i!iew Q o Favoritas tjelp H i ñ 1

. О Ш Ä @ и <3
Stop Refresh Home Search Favorites History

ç a
ChenneSe : FuSsaeen

¡ 3
Mail Pwrt

G 8
Ed«

Address je] H \Proied\searchlFi HTML d l
I Ur*» • ' Best ol»>e Wet •*Channel GwCe •'O.itcnure LrVs e'T*-i»«E»*4orerNe»s «l'irteriet Start *

£-bI3LnJ

Search our web site!

W here do you w a n t to search?

« Whole Site
r Business Partners Section
r Corporate Communications Section
r Lotus Education Section

Enter a word or two that we can search on:

How would you want to sort your search result?
I Score H
is Descending Order
r Ascending Order

Search j CLEAR j

*
10:34 AM

Diagram 1.1.1a: Pictures of the page searchl.html.

The searchl.html page objects and their corresponding file names:

Bg purpband.gif Picl plotusl.gif Pic2 pwhatnew.gif Pic3 pbuy.gif

Pic4 ppartner.gif Pic5 pjobs.gif_____ Pic6 phome.gif_______

PROJ- A PROJECTS IN HTML PAGE 81

Link2

Link4

Linkl —I What's New

.Purchase
inform ation

Link3

Link5 —I

Б1* E<íi Yi»«v До Favwrte« tíelp

О о
Stop Reiiesh Home Secieh Fevorte» Hiílory Channels Full »creen

Addta«» ¡0J м \Proiect\seetchtFr.HTML

Unks в 'Б вы öl ms Web Л^СЛвппа! Guiae o ' C u i'o m ia Ur.V s e'lr.iawe'ExpKuef News ^'WometStart

Business
Partners

Jobs

Lotus Home

Search our web site!

W here do you w a n t to search?

o Whole Site
c Business Partners Section

Corporate Communications Section
r Lotus Education Section

Enter a word or two that we can search on:

How would you want to sort your search result?
[Score ▼ |

Descending Order
Ascending Order

Search j C L E A R |

irtj j) /-Notepad j ijij WgbnvyrlZ . | .jj Exploring • H-j menr-Note.. j j] saaiy-Nota... j|gjSearch Ih. ,o

Diagram 1.1.1b: Links ofthe page searchl.html.

Linkl whatsnewl.html Link2 buylotsl.html Link3 partnersl.html |

Link4 strategyl.html Link5 webnvgtrl.html

O utput for w hatsnew l.htm l called from the Home nagelW hat’s Newl

s 0 § a с
Ззоп* Favorrins Hista-v Chonneto Fullîcreen Moi

& a

.inks • ' Internet Explorer biews e'lntemot3»ert

’ Bv " IijterNotes News 2.0 beta now available!

S nartSuite Developer Contest - vour chance to win a prize and become famous!

▼
GB3 l^ * D J The new Lotus Notes: Document Imaging (LN:DI) web site,

new ’*■ Lotus Responds to Microsoft Exchange Claims

titw - Watch this spot for the upcoming "Defining Workgroup and Enterprise Calendaring and
Scheduling” white paper!

'* * ■ ' Register to rcceive a tree Notes Mail demo CD

Put the web to work for you with cc:M ail for the World Wide Web and check out the
F R E E evaluation program

A ». The new Lotus Migration and Coexistence Web site consolidates all the Lotus
H IN U L C o infoimation regarding migration and coexistence programs for Lotus Notes. The Lotus

Migration Tools F R E E evaluation program includes all software & documentation
needed to migrate cc:M ail users to Lotus Notes Release 4.

¿jfl Local one________________

Diagram 1.1.2a: Pictures of the page whatsnewl.html.

j

B, puфband.gif Piel genrcnewl.gif Pic2 Lndinew.gif Pic3 newtxt.gif Pic4 plotusl.gif

Pic5 psearch.gif Picó pbuy.gif Pic7 yeducat.gif Pic8 ppartner.gif Pic9 pjobs.gif

PiclO phome.gif Picll ccwbsmal.gif Pic 12 notesnew.gif

PAGE 82
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

L i n k 4

L i n k 6

L i n k 8

Linkl

L i n k 2

Link3

■3 W hafs New at l.otinl - Microsoft Internet Explorer ЯЕЗЕЗ
£jte yi«V' So Favomes [je'p E l

. o D & © a
Stop Pefcesh Herm Search Favor»*!

c3 « a ® m
Hittorv Channels Fiflfscreen Mai! Prwt

Й£*
Addra»* jej H \ProiedVhatsn*wlFr HTML i l
Unies e' Ses; e!№» Web e 'Channel GusSe «»'Customize Links e 'Internet E*p!ore News r'internet Star

Link5

Link7

^Purchasing
Information

.Business
Partners

Jobs

Lotus Home

Dene

W H A T ' S N E W
on www.lotus.com

ww InterNotes News 2 0 beta now available!

SmartSuite Developer Contest - your chance to win a prize and become famous!

e u j j v j . £) | The new Lotus Notes: Document Imaging (LN:DI) web site,

mw Lotus Responds to M icrosoft Exchange Claims

m a Watch this spot for the upcoming "Defining Workgroup and Enterprise Calendaring and
Scheduling" white paper!

^-^-^ R cgister to receive a free Notes Mail dc-mo CD

Put the web to work for you with cc:M ail for the World Wide W eb and check out the
F R E E evaluation program

3Mnfpc’ The new Lotus Migration and Coexistence W eb site consolidates all the Lotus
I * J l O information regarding migration and coexistence programs for Lotus Notes. The Lotus _

—̂ • Migration T ools FR EE evaluation program includes all software & documentation
needed to migrate cc:M ail users to Lotus Notes Release 4.

Diagram 1.1.2b: Links of the page whatsnewl.html.

The w hatsnew l.h tm l page links and their corresponding file names:
Linkl searchl.html Link2 buylotsl.html Link3 laecl.html Link4 partnersl.html

Link5 strategyl.html Linkó webnvgtrl.html Link7 notesmail.html Link8 migregl.html

Output for notesniail.htm l called from Link7 on the w hatsnew l.htm l page

NntRGMnilCOOlfBr Netscape
£áe E<* y.ew Qq Communicator fc)“lp

£ y à f i t ¿i- 32 Л s i’ ?!
2Зоек r •¡r-1 Reload Home Seoich fJelscape Print Secuî y

Bookmarks Locafen b ie <//H|/t.OTUS/notesmail htm: ~|(i> What's Related
17 iS WebMait ® Co-Tod ï ï Feople в; YeHcw Pages 3 Downtoed Channelв 9

-------------------- ’--► L o t u s
—

Notes M all CD O ffer

Name: |

Address:

E-M ail Address: |

Company Nam e: [

Company Address: j

M ay w e contact you through your e-mail address? (via the Internet?)
<* Y es r No

Are you planning on upgrading or purchasing?

r Upgrading r Purchasing

Press the "Subm it" button when you have completed your form.

This process addresses and malls your form.

Submit | I
d*5*»!»*! Document Done :«• 13 .г - *

D iagram 1.1.2.1: Picture of the page notesm ail.htm l.

The notesm ail.htm l page object and it's corresponding file name:
Picl 4ae Q.gif

http://www.lotus.com

P R O J- A PROJECTS IN HTML PAGE 83

Output for m igregl.htm l called from
Link8 on the w hatsnew l.htm l page

£ • £•“ if— a-- №*>
•S 3 ,-rt * £ sT i \

8» tv*-* ¿too- mnzzo* PrH i.W/
_ i lac&r (i . /(/..Avt^-Wii -»-■

»i MtWI ^ C.XUC1 U P*coIt U Y<£» '4 :c~rUMi J o**<i

S 3
7) tfVVAef»

P a g e u n d e r d e v e l o p m e n t

V* -jo tv г . :

Output for buvoutsl.htm l called from the
Home page [Purchase Inform ation!

Diagram 1.1.2.2: The page migregl.html.

The buyoutsl.html page
objects and their

Piel plotusl.gif

Pic2 buytxt.gif

Pic3 psearch.gif

Pic4 pwhatnew.gif

Pic5 yeducat.gif

Picó ppartner.gif

Pic7 pjobs.gif

Pic8 phome.gif

Pic9 nobull.gif

purpband.gif

i Ette E* y«w £o "gyortes ЬеЬ Ш-Я
0 □ Ö @ S S § В & 3 Й
Sap RsStish Horn* SbOrch Pb-otIs: HisBiy Oie«»!» FuSraean l/aä Pr« Edil '

: AOdreK [«] H \Pioied\buyfcMtFt himl »ji
Links *.'Be«otfte'<Vefc *'Oonr№l Gmds «•'Cuctomue Unki EiJofer News #'Intern»« Start

Picl 1 BUY A
•LOTUS PRODUCTPic2

Pic3 1 ‘’Search

Pic4 Г>|' What's New Listed below are different places to buy or obtain information about Lotus Products.

Pic5 s ' A C A D EM IC

Pic6 - > ' Business
Lotus Academic Solution is a program to promote and further the immersion o f technology in the
academic market |

Pic7 W O R LD W ID E00Ü•HCh

• Lotus Home
1.0 tus International Information Kiosk (Updated weekly) is a directory of I .on is offices worldwide,
information about Lotus products that have been shipped, and a listing o f Lotus products sorted by
language.

Pic9 L._ *>w
Government Sales & Marketing’s objective is to provide ihe highest quality software products and
service to federal, state and local government.

Bg w The Lotus Selects catalog offers a full line of Lotus application upgrades plus carefully selected add
ins. templates, stand-alone software, and hardware products that deliver great results fast!

jiO Local Man« ron*

Diagram 1.1.3a: Pictures of the page buyoutsl.html.

The buyoutsl.html
page links and their

corresponding file

names:

Linkl searchl.html

Link2 whatsnewl.html

Link3 Iaecl.html

Link4 partnersl.html

Link5 strategyl.html

Link6 webnvgtrl.html

Link2

L i n k 4

Link 6

Щ ЯЕ
fi @ a a ç

Home Seafcft Favoritas Hiitory Channels FuSsaeen Май Pmt Etbt
eujej H \Fioieo\buyto’stFi himl

Unk» e'Bästo<>beV/eb в'СЛалпйGuide * ‘CUftonü»Unk* *' !Mem«€xpk)re<Start

Linkl

Link3

Link5

BUY A
LOTUS PROOUCT

Listed below are different places to buy or obtain information about Lotus Products!

' A C A D EM IC
Lotus Academic Solution is a program to promote and further the immersion o f technology in the
academic market

W O R L D W ID E
Lotus International Information Kiosk (Updated weekly) is a directory of Lotus offices worldwide,
information about Lotus products that have been shipped, and a listing o f Lotus products sorted by
language.

F E D E R A L
Government Sales & Marketing's objective is to provide the highest quality software products and
service to federal, stale and local government

C A TA LO G
The Lotus Selects catalog offers a full line of Lotus application upgrades plus carefully selected add
ins. templates, stand-alone software, and hardware products that deliver great results fast!

Diagram 1.1.3b: Links ofthe page buyoutsl.html.

PAGE 84
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
PROJ

Output for Iaecl.h tm l called from the Home page [Educationl

Pic2

Pic4

Pic6

Picl

Pic3

P ic 5

Pic7

Pic8

Bg

g education Home Paqe - Microsoft Internet Explorer

£iie ban vie * ¿ o Favwset eeic

• ; . O Q
. - ' Stop fte iresn

a @ a a ç s
Home 1 Seetó Fevorites Kisioiy Cfcannsis : FuHscresn

•Address: je] H.\Ptoiect\leeclFrhiml

Links « ' Beet oi she Web *»'Ci.6nne! Guide e'Cwttpmite Links «> ' Internet Бф1огег News .

Search

What’s New

Purchasing
Information

Business
Partners

albc-ne '

EDUCATION
Lotus Education programs, such as the Lotus Authorized Education Center (LAEC) and Certified
Lotus Professional (CLP) programs, and products, including classroom training and CBT, are
designed and developed to provide flexible solutions and learning choices for individuals as well as
businesses.

Lotus Education on the Web . . .
Course descriptions and schedules, LAEC locations, ceniticaiion options and exam descriptions are
included on the Web. Use this screen as your launching pad and explore what educational tools and
resources are available to YOU!!!

Certification Information
Class Schedules & LAEC Locations

• General Information
*■ Instructor-led Course Descriptions

-■ C B T Course Descriptions
N e w !N otes Release 4 Information
Desktop Courseware Information

: j g | local ír-хвпв) :one

Diagram 1.1.4a: Pictures ofthe page Iaecl.html.

B 8 purpband.gif Picl edutxtgif Pic2 plotusl.gif Pic3 psearch.gif Pic5 pbuy.gif 1

Pic4 pwhatnew.gif Pic6 ppartner.gif Pic7 pjobs.gif Pic8 nobull.gif

s Education Home Page - Microsoft Internet Explorer

Link2
L i n k l

Link3

Link 4

Link5

File £drt view До Fflyoritdi Help

o □
Refresh

. ©
Stop

© а
Search Fcvorttas

<3 « S
History Channels ; FuEscrsan

¡ a s a
Addres* Je] H \Proied\loeclFr hlml

LflJos «t'ÔesioltheV/ab e'Chennef.Quide e'CusibmeeUi*« e t̂nteroei E xp lo re r# '(n te m e tS te ii

►Search

•What's New

Purchasing
Information

.Business
Partners

EDUCATION
Lotus Education programs, such as the Lotus Authorized Education Center (LAEC) and Certified
Lotus Protessional (CLP) programs, and products, including classroom training and C BT, arc
designed and developed to provide flexible solutions and learning choices for individuals as well as
businesses.

Lotus Education on the Web . . .
Course descriptions and schedules, LAEC locations, certification options and exam descriptions are
included on the Web. Use this screen as your launching pad and explore what educational tools and
resources are available to YOU!!!

• Certification Information
v Class Schedules & LAEC Locations
> General Information
> Instructor-led Course Descriptions

C B T Course Descriptions
> N e w !N otes Release 4 Information

Desktop Courseware Information

Diagram 1.1.4b: Links ofthe page Iaecl.html.

The Iaecl.html page links and their corresponding file names:

Linkl searchl.html Link2 whatsnewl.html Link3 buylotsl.html

Link4 partnersl.html Link5 strategyl.html

Output fo r p artn ersl.h tm l called from the Home page [Business Partnersl

PROJ - A PROJECTS IN HTML PAGE 85

Pic2

Pic4

Pic6

P ic l

5 Lotus Business Partners - Microsoft Internet Explorer

I i 5le £** jía*’ ¿o Favorites üe!p S 3

. o n « E 3
S>op Rcstth Horn« Search Favor«» rtfWy Channels FuBscreen Mad

m m
Print Eci.1

I . Address jssj H \P'0|9ct\paitnerslFr.hlml •j
I i Unk* Best et the Web *>] Channel Guide o'Cussomiie L-nKt 0 ' .'rtornei Eypicnsi News o'Intamei Stan

Pic3

Pic5

Pic7

Pic8

Bg

Search

-What's N e w

Purchasing
Information

‘Education

Jobs

iUSINESS
PARTNERS

Discover the real power of Lotus: the power to build your business.

. Lotus Announces N e w W o rld w id e Business Partners Program
J N e w Program Details>: options, costs & what's included
. H o w to get started - request a Business Partner application o r brochure

,• G ain a competitive edge ... Jo in us at our next Lotus V isio n broadcast.
. Subscribe to T h e Lotus Connection and get sofiware, tools and technical information
> Business Partner Announcements by Date & Partner - U pdated!

. j Catalog o f Business Partners Products'& Services w ith alphabetical listings
— § ►./ Lotus Announces W inners o f the Second Annual Business Partners Beacon A w a rd s

y Business Partner M igration & Messaging Service Providers

g Lccei irire ri«! jotsb

Diagram 1.1.5a: Pictures of the page partnersl.html.

- purpband.gif I Pic I bptxt.gif Pic2 plotusl.gif Pic3 psearch.gif Pic5 pbuy.gif

Pic4 pwhatnew.gif | Picó yeducat.gif Pic7 pjobs.gif Pic8 nobull.gif

"3 Lotus Business Partners - Microsoft Internet Cxplorcr

£iie LdH yiew _ So F#/*we* fcfefc

. O F, S . e 0 « a ta
Far/orrtej Hwfeiy Channels Fuilscreen Med

Address ¡é] H ',PrO(ect\potiners!Fi Mml

link* e'BsnoitheWeb p]ChennaiGtiida e'Custom:» Lwkt *s''r.isrrtft Ex ôre;News e'iBtetnetSiart

BUSINESS
PARTNERS

Discover the real power of Lotus: the power to build your business. -

; Lotus Announces N e w W o rld w id e Business Partners Program
^ N e w Program D etails>: options, costs & what’s included
y H o w to get started - request a Business Partner application or brochure

j G ain a com petitive edge ... Join us at our next Lotus V isio n broadcast,
j Subscribe to Th e Lotus Connection and get software, tools and technical information
. Business Partner Announcements by Dale & Partner - U p da ted!
J Catalog o f Business Partners Products & Services w ith alphabetical listings
j Lotus Announces W inners o f the Second Annua] Business Partners Beacon Aw a rd s
_/ Business Partner M igration & Messaging Service Providers

loc-ü inti arel ¿one

Diagram 1.1.5b: Links of the page partnersl.html.

The partnersl.html page links and their corresponding file names:

Link I searchl.html Link2 whatsnewl.html Link3 buylotsl.html

Link4 laecl.html Link5 strategyl.html

PAGE 86
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

Output for strategyl.h tm l called from the Home page [Jobsl

' 3 Lotus Job Opportunities - Microsoft Internet Explorer

Ейе Edit View So Favorites И Ф

. о □ © S a 0 « H a
Stop Refresh Home Seercft Fawories History Channels FuHscreen Meil Print Edil

; Addraes je] H \FlO|ec1\stretegy1 ri.HTML 3

Pic2

Pic4

Pic6

PiclO

P ie l ü frllWHSi *Tj OB OPPORTUNITIES
I n n w w w lo t* к r n m

Pic3

Pic5

Pic7

Pic8

Pic9

Bg

Links e'Betiolit's Web e'Channel Guide с'Customize U-iks interne»Expióte;News *»’ we-net Start

Search

'What's N e w

Purchasing
Information

Business
Partners

Jobs

Lotus Home

on www.lotus.com
- B y Location
j B y Functional Area
,■ B y Business Unit/Group
. H o w to Respond

Recruiting Events
" - O v e rv ie w o f Com pany and Business Groups

, Culture
Benefits

'Coming to Lotus wjs the best career decision I've ever made During the interview and recruitment
process, it was clear that the organization possessed incredible vision, and had the leadership in place to
make the vision a reality It was also refreshing to see that Lotus really walks the walk when it comes to
diversity and preserving the rich culture that Lotus is known for Factor in working for the company that
set the standard for collaborative technology and it's pretty safe to say that I look forward to coming to

work each and every morning ’
Quote from Lotus' first web site hire

11 Dons Loca! m&cneuorcs

Diagram 1.1.6a: Pictures of the page strategyl.html.

The strategyl.html page objects and their corresponding file names:

Bg purpband.gif Picl jobtxt.gif Pic2 plotusl.gif Pic3 psearch.gif

Pic4 pwhatnew.gif Pic5 .pbLliJiif Picó nobull.gif Pic7 yeducat.gif

Pic8 ppartner.gif Pic9 pjobs.gif PiclO phome.gif

3 Lotus Job Opportunities - Microsoft Internet Cxplorcr и в а

I j Efe £<A: View fie Favorites tjelp E ä
. . © ' m û © a

1 i Stop Reeesfc Нот« Search Ponentes
0

Histoiy
« " a

Chonreis Fu Ua crean
В
Mes

S
fr,ni

aEi«
I -Address I.S] H.\Projed\slral0gy1 Fr HTML d
Ijlinfcs «'Ses^oitoWeb 0'Chôme! Guide e'Ojsiomùe Links *s"Interne!Explorer News «'internet Stert

1 " ---------- Г •• 1

¿Vo»»'

JOB OPPORTUNITIESon www.ioius.com
By Location

J By Functional Area
J B y Business Unit/Group
i How to Respond
J Recruiting Events
j Overview i f Company and Business Groups
3 Culture
£) Benefits

•Coming to Lotus was the best career decision I've ever made During the interview and recruitment
process, it was clear that the organization possessed incredible vision, and had the leadership in place to
make the vision a reality It was also refreshing to see that Lotus really walks the walk when it comes to
diversity and preserving the rich culture that Lotus is known for Factor in working for the company that
set the standard for collaborative technology aid it's pretty safe to say that I look forward to coming to

work each and every morning *
Quote from Lotu s ' first web site hire

a Loca} ¡«тле» гопе

Diagram 1.1.6b: Links of the page strategyl.html.

The strategyl.html page links and their corresponding file names:

Linkl searchl.html Link2 whatsnewl.html Link3 buylotsl.html Link4 laecl.html |

Link5 partnersl.html Link6 strategyl.html Link7 webnvgtrl.html

http://www.lotus.com
http://www.ioius.com

PROJ- A PROJECTS IN HTML PAGE 87

P ro je c t S p e c ifica tio n s F or T h e S eco nd P ro ject In H TM L

Since the learning of HTML is completed, it is time to consolidate this learning by building a small web

site. The structure of web site is given in the following pages. This is a description of how the pages of

this web site will be navigated through starting from the traditional first page, index.html.

Each web page called from index.html is described in complete detail.
□ Textual content

□ Simple visuals in the form of .gif or .jpeg files
□ The look and feel of each page

The files required to construct these pages is available on the accompanying CD-ROM for immediate use.

There are two unique sets of files:

□ One set of files, is the raw text files that can be used for formatting using appropriate HTML tags. In
addition to the text files, there are .gif and .jpg (where necessary) that will help build the web site.

□ The other set of files, are HTML files, which are a solution.

If required run the HTML files first in a Web Browser and get a look and feel of what the project could be

like. Once this is done code the web pages according to what you believe is appropriate.

Each HTML file is really just a simple guideline to what the web page could look like.

Feel free to improvise and get a look and feel that satisfies you.

For your guidance:
A broad idea of the HTML pages of the project is given in the diagrams below.

The images and links of each page have been explicitly indicated. Below each diagram is a table that

indicates the names of both the Text files and the Images used.
□ The image files that are used

in the project are in the sub
directory named IMAGES.

□ The Text files, that have to
be formatted, are in the sub
directory named
TEXTFILES.

Output F o r The P ro jec t’s
Home Page

The Home page objects and

their corresponding file names:

| Picl Book.gif

P ic l ¡âcctK RedifT ■(ViWfJr

The world has changed beyond our imaginings. Today, the main item of currency is an intangible •
and it’s called information. Information, though, has to be current to be any good. Yesterday's
news is to wrap your sandwiches in, is what we mean. And that is where we come in • by giving
information that touch of immediacy. Urgency. Currency, What we, through a country-wide
network of journalists, do is keep an eye on happenings. In politics. Government Industry.
Finance. Sports. Entertainment. The world, in fact No more waiting for the newspaper thrust
under the door. Or for the late evening newscast

Here’s where you learn what’s happening, even as it happens.

Rediflf, shall we say, is an ATM that deals with today's hottest currency * informatioa

RedifT has been on the Web for just about 90 days. Yet it has managed to log six million hits.
Come, sample what's so compulsive about it from a selection of pages bookmarked specially for
you.

Check us out at http://www.rediffco.in

Click here lor an exciting demo

Diagram 2.1.1a: Pictures of the Home page Intro.htm.

http://www.rediffco.in

PAGE 88
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRQJ

JAVASCRIPT, DHTML AND PERL

L ink l

RediffOiTWMfr

The world has changed beyond our imaginings. Today, the main item of currency is an intangible -
and ifs called information. Information, though, has to be current to be any good. Yesterday's
news is to wrap your sandwiches in, is what we mean. And that is where we come in - by giving
information that touch of immediacy. Urgency. Currency. What we, through a country-wide
network of journalists, do is keep an eye on happenings. In politics. Government. Industry.
Finance. Sports. Entertainment. The world, in fact. N o more waiting for the newspaper thrust
under the door. Or for the late evening newscast.

Here's where you leam whaf s happening, even as it happens.

Redifi^ shall we say, is an A T M that deals with today's hottest currency - informatioa

Rediff has been on the Web for just about 90 days. Yet it has managed to log six million hits.
Come, sample whal's so compulsive about it from a selection of pages bookmarked specially for
you.

Check us out at http://www.rediffco.in

C j ickhereforan exciting demoi

Diagram 2.1.1b: Links of the Home page Intro.htm.

The Home page link and it's corresponding file name:

I Linkl 2ndhome.htm |

Output F o r 2ndhom e.htm called from the Home pagelClick here for an exciting demol

Diagram 2.1.2a: Pictures of the page 2ndhome.htm,

The 2ndhome.htm page objects and their corresponding file names:

Picl whatsne2.gif |Pic2 business2.gif Pic3 archive2.gif

Pic4 travel2.gif |Pic5 kids2.gif |Pic6 logo 1 .gif

http://www.rediffco.in

P R O J- A PROJECTS IN HTML PAGE 89

Linkl malegam.htm Link3 finiabl2.htm Link5 ladakh.htm Link7 aquarium.htm

Link2 malegam.htm Link4 fintabl2.htm Link6 ladakh.htm Link8 aquarium.htm

Output F o r m alegam.htm called from the 2ndhome.htm page [Businessl

î Business Interview

We shoi Id not allow the mere provision of
foreign n oney to destabilise Indian industry”

E ZD IH V ALEGAM, managing partner, S B Billimoria and Company, is a warm, genial person, together with

d noted lawyer. Atihor o f the Malegam Committee Report on disclosures in offer documents, his recommendations have
Indian stock markets.

IVhat about ike mergers and acquisitions scenario In India ?
In India we are going to see a lot more ofacquisitions than mergers o f Indian units, as a fa ir amount offoreign
investment is coming in the country. I see that in the next two years, the rate ofacquisitions by both the multinational
and Indian companies will accelerate. Otven a choice between a greenfield project and an existing unit, an MNCwill
\prefer to acquire an existing unit.

7his is especially so in sectors like the consumer goods sector where companies rapidly want a market share. Any newcomer will have to
invest substantially in advertising, m campaigmngfor the products, in building up a marketing base and creating a market for itself.

Diagram 2.2.1a: Pictures of the page malegam.htm.

|Picl business2.gif |Pic2 malegama.jpg |Pic3 malegam.jpg |Pic4 logo 1 .gif |

PAGE 90
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRO . д

JAVASCRIPT, DHTML AND PERL

Linkl

У The Business Interview

“We should not allow the mere provision of
foreign money to destabilise Indian industry”

у
JL E ZD IH MALEGAM, managing partner, S В Billimoria and Company, is a warm, genial person, together with

being an astute and noted lawyer. Author o f the Malegam Committee Report on disclosures m offer documents, his recommendations have
revolutionised the Indian stock markets.

IVhat about the mergers and acquisitions scenario in India ?
In India we are going to see a lot more ofacquisitions than mergers o f Indian units, as a fair amount offoreign
investment is coming in the country. I see that in the next two years, the rate o f acquisitions by both the multinational
and Indian companies will accelerate. Given a choice between a greenfield project and an existing unit, an MNC vjiII

refer to acquire an existing unit.

This is especially so in sectors like the consumer goods sector where companies rapidly want a market share, firry newcomer will have to
invest substantially in advertising, in campaigning fo r the products, m budding up a marketing base and creating a market fo r itself.

Diagram 2.2.1b: Links of the page malegam.htm.

The malegam.htm page link and it's corresponding file name:

Linkl 2ndhome.htm |

Output F o r fintabl2.htm l called from the 2ndhom e.htm l page fData W arehouse]

P ic l Pic2

(^Company Financials

Associated Cem ent Companies

m i

Business Background Balance Sheet 1995 1994

Plant Oujsnt, Rqastaim. Mf Equity 789 25 52337

: Net Worth 78925 52337
Collaborator None :GB/W1P 789 25 .32337

Woriacg Capital 789 25 52337

Script Summary Share Data P & L Statement 1995 1994

Lirting !МИС»р/Е«Ь| |̂ Ci) 5.000 Net Sale j 78 25 52 37
Face Vtlut/Mia Lot : 10 j Bonus Comp/Bk Val 234 РВФТ 78 25 15337

MktPnc<Rs.) (1/1/96) 4333

jVohsne (1/1/96)
1 Average 3,000
High 7.500

Depreciation 7923 23 37

|P/E(tsMf) 30 : Eztiaocd Inc «925 ¡5237
152-Week Hi/Lo 3,035/4,900 EPS : 15 jCash Profit Î925 15237

Home

Diagram 2.2.2a: Pictures of the page fintabl2.htm.

The fintabl2.htm page objects and their corresponding file names:

Picl archive2.gif |Pic2 logol.gif

P R O J- A PROJECTS IN HTML PAGE 91

Linkl

(^Company Financials

Associated Cement Companies

Business Background Balance Sheet 1995 1994
Pl«nt : (Xnarai, RqssUhn, M Í iEqudy 789 25 52337

SikiVthu Rj 11.ООО er (Nit Worth 789 25 52337
CoUsbKstoi None ¡G3/WIP 78925 52337

WorbngCtpdsl 78925 523-37

Script Summary Share Data P & L Statement 1995 1994
Luting MktCtp/Dil£q(Ri Cf): 5,000 :N(t Sales 78 25 5237
F»ct V*hii/MktLoi !0 Bonus Comp/Bk V«1 23% iPBIDT 78 25 53 37

MU Pnê Rs) (1/1/96) <335

Volume (1/1/9$
Avenge 5.000
High 7 ДО

: Deprecation 7925 23 37

P/E(úmti) 30 bauord Inc «925 52.37
52-WtekHi/Lo 3.035/4ДЮ EPS 15 С esh Profit 89 25 5237

Home

Diagram 2.2.2b: Links of the page fintabl2.htm.

The fintabl2.htm page link and it's corresponding file name:

Linkl 2ndhome.htm

Output F o r ladakh.htm l called from the 2ndhom e.htm l page IData W arehousel

Ladakh

Pic2 Pic3

4
RedifT £
O-.TW-iOr V

Postcards from the Edge

Joolay, Joolay

The aircraft swooped into a valley perched on top of the world

Beautifully stark, the corrugated landscape stretches out as far as the eye can see Snow capped mountains
fold away from the verdant valleys like so many wrinkles of a rough burlap sack An invigorating breeze
whistles about your ears - the only sound that disturbs Lhe ringing stillness.

Where do you find a wee place located way up m the clouds where life has a celestial flow to it’

Disembark Left, Ladakh Ladakh is LiUle Tibet But a miniature, remote and free Tibet India's largest district, situated on a barren dry plateau, is
part of the troubled state of Kashmir Boundaries on a map is where the connection ends L

Ladakh A Paradise not lost There are no cockroaches in this Happy Valley. No beggars Or graffiti. Cholesterol is not found either Can
anything be better? In summer, life has the brisk pace of the gently gurgling greeny Indus And by winter life freezes up just like the good river
The towering snow-speckled mountains^ not cast mean shadows but only thick, velvety ones that are so reassuring And the wispy clouds roll
along in the brightest blue sky this side of the Khyber Pass

Farewell

Diagram 2.2.3a: Pictures of the page ladakh.htm.

The ladakh.htm page objects and their corresponding file names:

I Pic l travel2.gif |Pic2 Olladakh.jpg |Pic3 logol.gif

Output Foraqu ariu m .h tm called from the 2ndhome.html page [The Enchanting Kingdoml

p App 09 COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRQJ *
JAVASCRIPT, DHTML AND PERL

I P ic l II Pic2
L ^ J I ----

Bus ■ Buddies

Pic3 Pic4

Rcdifff
O flW iJr V

One of the most rewarding hobbies is keeping an Aquarium at home.

• Here's how we can make our own Aquarium:

1 Get a small glass container -- you can use a large glass jar, a goldfish bowl, or buy a rectangular fish tank from a pet shop (Once
to bring up fish, you can graduate to larger aid more elaborate Aquariums)

2 Gravel, shells, coloured rocks, etc, are easy to get, wash these before you place them in the glass container.Remember not
to put in too many things

3 If you are using tap water,it's good to allow it to remain open for a few hours,before putting the fish in This will allow thw
harmful gasses like chlorine to escape. Remember this also when you clean and refill the tank

4 Place your aquarium where there is a good supply of fresh air and light, but never in bright /direct sunlight

5 There are many types of fish to choose from your local pet shop. Some we have found easy to look after are kissing gurami,
langeline.angelfish, ¡etra, goldfish and many others Don’t forget to ask the dealer what and how often you should feed your fish It is
important not to overfeed them. Generally, it is best not to give more than they can finish in about 10 to 15 minutes.

Diagram 2.2.4a: Pictures of the page aquarium.htm.

The aquarium.htm page objects and their corresponding file names:

Ipicl kids2.gif |Pic2 aqual.jpg |Pic3 aqua2.jpg |Pic4 logol.gif |

Buddies RolilTi-

One of the most rewarding hobbies is keeping an Aquarium at home.

Here's how we can make our own Aquarium:

1. Get a small glass container -- you can use a large glass jar, a goldfish bowl, or buy a rectangular fish tank from a pet shop.(Once you know how
to bring up fish, you can graduate to larger and more elaborate Aquariums)

2. Gravel, shells, coloured rocks, etc., are easy to get, wash these before you place them in the glass container.Remember not
to put in too many things.

3 If you are using tap water,it's good to allow it to remain open for a few hours,before putting the fish in This will allow thw
harmful gasses like chlorine to escape. Remember this also when you clean and refill the tank

4. Place your aquarium where there is a good supply of fresh air and light, but never in bright /direct sunlight

5. There are many types of fish to choose from your local pet shop. Some we have found easy to look after are kissing gurami,
tangellne,angelfish, teln, goldfish and many others. Dont forget to ask the dealer what and how often you should feed your fish It is
important not tn overfeed them. Generally, it is best not to give more than they can finish in about 10 to 15 minutes

L ink l ►Home

Diagram 2.2.4b: Links of the page aqurium.htm.

The aquarium .htm page link and it's corresponding file name:

|Linkl 2ndhome.htm |

I

P R O J- A PROJECTS IN HTML PAGE 93

P ro je c t S p e c ifica tio n s F or T h e T h ird P ro jec t In H TM L

Since the learning of HTML is completed, it is time to consolidate this learning by building a small web

site. The structure of web site is given in the following pages. This is a description of how the pages of

this web site will be navigated through starting from the traditional first page, index.html.

Each web page called from index.html is described in complete detail.
□ Textual content

□ Simple visuals in the form of .gif or .jpeg files

□ The look and feel of each page

The files required to construct these pages is available on the accompanying CD-ROM for immediate use.

There are two unique sets of files:

□ One set of files, is the raw text files that can be used for formatting using appropriate HTML tags. In
addition to the text files, there are .gif and .jpg (w h e re n ecessary) that will help build the web site.

□ The other set of files, are HTML files, which are a solution.

If required run the HTML files first in a Web Browser and get a look and feel of what the project could be

like. Once this is done code the web pages according to what you believe is appropriate.

Each HTML file is really just a simple guideline to what the web page could look like.

Feel free to improvise and get a look and feel that satisfies you.

For your guidance:
A broad idea of the HTML pages of the project is given in the diagrams below.

The images and links of each page have been explicitly indicated. Below each diagram is a table that
indicates the names of both the [pIcTI . i

Text files and the Images used. ^ imw.-i.-J 1 r„jjj.
□ The image files that are used

in the project are in the sub
directory named IMAGES.

□ The Text files, that have to
be formatted, are in the sub
directory named
TEXTFILES.

Output F o r The P ro je c t’s
Home Page

The Home page objects and

their corresponding file names:

P ic l

Pic2 1 oil 3*p

Frame 1 welleft.htm

Frame2 welright.htm

Bgl pai 15 jpg •

Bg2 pa05.jpg

Picl rdglogo.jpg

Pic2 new.gif

Diagram 3.1a: Pictures of the Home page welfrm.htm.

Pic3 1tngbutn.gif |pic4 blueb.gif |

PAGE 94
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pROJ

JAVASCRIPT, DHTML AND PERL

Welcome to Radio

Design Group's Web

Service!

Quick Index!

| Use :ijf Quick lad® to go to any of on Web pages Ike Igtaagl (Actual tghtimg ml not be ustd, for

• Company Overview
-!► Wireless Resources & ?eaiure>

• How To Contact Us

Webmaster jvan@radiodesign.com

Diagram 3.1b: Link of the Home page welright.htm in the right side

frame for welfrm.htm.

The Home page link and it's corresponding file name:

I Link 1 hwitwrksl.htm

Output For hw itw rksl.htm called from the Home page IW ireless Resource & Features]

Pic4

Bgl

Bg2

Welcome to Radio
Design Group's Web
Service!

Pic2

How It Works...

Every lay we use radio and wireless products Most of us take the? operation
for gr; ited. but increasingly many wan: :c snow ‘How It Works * Wei, for those
of you who ve not sabsSed with the answer “Real well, thanks' we offer this
giade > 'How It Works'

9 Fmd out how cellular phones work, and what all those acronyms ike AMPS. GSM,
=J Cellular Phvar; jdma ̂ CDMAmean

m Pagers are simple, nghî Wrong1 Fmd out how they pick their own signal out of
* ■ .-MPÎ transmissions containing milboGS of other beeps

FRAME1 FRAME2
Webmaster ivan@radiodestgncom

Diagram 3.2a: Pictures of the page hwitwrksl.htm in the right side

frameforwelfrm.htm.

The hwitwrksl.htm page objects and their corresponding file names: _____

Framel welleft.htm Bgl pa05.jpg Picl rdglogo.jpg Pic3 gears.gif

Frame2 welright.htm Bg2 pa05.jpg Pic2 gearbutn.gif Pic4 house.gif

mailto:jvan@radiodesign.com

PROJ- A PROJECTS IN HTML PAGE 95

Linkl
Link2

Link3
Link4

Link5
Link6

Welcome to Radio
Design ()Гйир!ч Web
Service!--------------- -

Fmd out how cellular phones work, and what all those acronvms like AMPS. GSM.
jgafarPbaie; n ^ дщ* тж

S -
Pagers are sraple. ngjtt7 Wrong1 Fmd out how they pick their own signal out of
transmissions containing millions of other beeps

* f-gtmt to ba. Irai;; :л-:д ; Home Fa¿;

Diagram 3.2b: Links of the page hwitwrksl.htm in the right side frame
for welfrm.htm.

Linkl cellwrksl.htm Link3 pgrwrksl.htm Link5 welright.htm

Link2 cellwrksl.htm Link4 pgrwrksl.htm Link6 welright.htm

Output F o rce llw rk sl.h tm called from the hw itw rksl.htm page ICellular Phonesl

Bgl

Pic5

Bg2

Welcome to Kadio
Design Group's Web
Service!

FRAME1

Pic2

- T -

Pic3

RADIO DESIGN

«I1* GROUP

7

Pic4

® He w It Wcrksi Index Page
• Cellular Phone Design Service;

How It Works: Cellular Phones!

Tnere are two basic-types of ceDdar phones analog and digital By far. the phone that
most people (at least m the US) have been exposed to « the analog cellular phone
However, the digital phone is growing mterms of numbers m service, aid any discussion
of bow ceDuiar phones work would not be complete wahout covamg aS the bases.

Before we talk about bow cellular phones work m general, let's talk about the ¿fereact
between the types of cetlulai phones We'B cover the main types, and then move on to
how the cellular system works m general Tnu page в intended as a general overview, so
wel try not to get too technical here

R:tum to Radi;- Penan Огочр s Home Page FRAME2

Diagram 3.3a: Pictures of the page cellwrksl.htm in the right side

frame for welfrm.htm.

Frame 1 welleft.htm Bpl pa05.jpg Picl rdglogo.jpg Pic3 blueb.gif Pic5 house.gif
Frame2 welright.htm Bg2 pa05.jpg Pic2 redlogo.gif Pic4 mancell.jpg

How It Works...

Every day we use radio and wireless products Most of us take their operation
for granted, but increasing!? manv want to know “How It Works ’ WeD. for those
.of you who are not satisfied with the answer “Real well, thanks' we offer this
guide to ‘How It Works *

. _ _ ое COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pROJ

PAGE 96 JAVASCRIPT, DHTML AND PERL

W e lc o m e to R a d io
D e s ig n G r o u p 's W e b
S e rv ic e !

Ш — J GN
Linkl

i 'M ’1 GROUP * Link2

How It Works: Cellular Phones!

Tnere arc two baa: types of cellular phones analog and digital By far. the phone that
most people (at least in the US) have been exposed to is the analog cellular phone
However, the cfcgaal phene is growing m terras of numbers m service, and any discussion
of how ceBuar phones work would not be complete without covering aS die bases

Before we talk about how cellular phones work m general, let's talk about the difference
between the types of ceMar phones We.H cover the main types, and then move on to
how the cellular system works in general Tub page в intended as a general overview, so
well try not to get too technical here

ear:; i bat- Z'tsig: ■> - i - ' -tr- --i r'--̂

Li.nk.3

Link4

Diagram 3.3b: Links of the page cellwrksl.htm in the right side frame

for welfrm.htm.

1 Linkl hwitwrks 1 .htm | Link2 pagerl.htm |Link3 welright.htm | Link4 welright.htm |

Output For pgrw rksl.h tm called from the hw itw rksl.htm page [C ellular Phonesl

B g l

Pic5

Bg2

Welcome to Radio
Design Group's Web
Service!

FRAME1

Pic2

RADIO DESIGN

GROUP

How It Works: Pagers.

Pagen those ubiquitous 'beepers* that always seem to be going off
(faring meetings. Ever wonder how they can make them so snal?
How do they run for so long on just a pecight cell, when everything
else needs big batteries that have to be recharged every night7

"Die pager's secret is that inside that Me case is a single, yet
sophisticated recover. With the exception of two-way pagers (more
on that later), pagers don't hare a transmitits Since «is the
transmitter that consumes the Ion’s share of battery power o
portable communications devices, pagers have a real edge when k
comes to saving battenes No transmitter also means that the pager
can be made smaller than other communications devices too.

Enture to Radio Design Group s Home rage FRAME2

Diagram 3.4a: Pictures of the page pgrwrksl.htm in the right side

frame for welfrm.htm.

Frame 1 welleft.htm Bpl pa05.jpg Picl lrdglogo.jpg Pic3 blueb.gif Pic5 house.gif 1

Frame2 welright.htm Bg2 pa05.jpg Pic2 lredlogo.gif Pic4 pager.gif

P R O J- A PROJECTS IN HTML PAGE 97

Welcome to Radio
Design Group's Web
Service!

RADIO DESIGN

GROUP

• How I: Works I Index Page
• Pager I'esiar. Service; —

How It Works: Pagers.

Pagers those obiqutous "beepers' that always seem to be gomg off
dunng meetings. Ever wonder how they can make them so small’
How do they run for so long on just a penight cel, when everything
ebe needs bigbaBenes that have to be recharged every night7

The pager's secret is that mside that hale case is a simple, yet
sophisticated receiver' With the exception of two-way pageri (more
on ¡hat later), pagers don't have a transmitter Since i is the
transmitter that consumes the ion's share of battery power in
portable communications devices, pagers have a real edge when it
comes to saving baitenes No transmitter also means that the pager
can be made smaDsr than other communications devices too

4 Link3

Rîturü to Eadb Desasí Grcuc's Номе Pa« ̂
Link4

Linkl

Link2

Diagram 3.4b: Links of the page pgrwrksl.htm in the right side frame

for welfrm.htm.

Linkl hwitwrksl.htm |Link2 pagerl.htm I Link3 welright.htm | Link4 welright.htm j

Outout F o r p agerl.h tm called from the cellw rksl.htm page [Cellular Phones Design
Servicesl
OR
Output For p agerl.h tm called from the pgrw rksl.htm page fPagei Design Servicesl

PAGE UNDER CONSTRUCTION

Return to Radio Dcsgn Grcup Ноше Page

Welcome to Radio
Design Group's Web
Service!

B g l

FRAM El FRAME2

Diagram 3.5a: Pictures of the page pagerl.htm in the right side frame
for welfrm.htm.

The pagerl.htm page objects and their corresponding file names:

1 Frame 1 wellefthtm |Frame2 welright.htm |Bgl pa05.jpg 1 Pic 1 rdglogo.jpg |Pic2 house.gif |

PAGE 98
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRf, . .

JAVASCRIPT, DHTML AND PERL

L inkl
Link2

Welcome to Radio
Design Group's Web
Service!

Diagram 3.5b: Links of the page pagerl.htm in the right side frame for

welfrm.htm.

The pagerl.htm page links and their corresponding file names:

|Linkl]welright.htm |Link2 welright.htm

P ro ject S p e c ifica tio n s F or T h e Fourth P ro ject In H TM L
Since the learning of HTML is completed, it is time to consolidate this learning by building a small web

site. The structure of web site is given in the following pages. This is a description of how the pages of
this web site will be navigated through starting from the traditional first page, index.html.

Each web page called from index.html is described in complete detail.
□ Textual content
□ Simple visuals in the form of .gif or .jpeg files
□ The look and feel of each page

The files required to construct these pages is available on the accompanying CD-ROM for immediate use.

There are two unique sets of files:

□ One set of files, is the raw text files that can be used for formatting using appropriate HTML tags. In
addition to the text files, there are .gif and .jpg (where necessary) that will help build the web site.

□ The other set of files, are HTML files, which are a solution.

If required run the HTML files first in a Web Browser and get a look and feel of what the project could be

like. Once this is done code the web pages according to what you believe is appropriate.

Each HTML file is really just a simple guideline to what the web page could look like.

Feel free to improvise and get a look and feel that satisfies you.

For your guidance:

A broad idea of the HTML pages of the project is given in the diagrams below.

The images and links of each page have been explicitly indicated. Below each diagram is a table that

indicates the names of both the Text files and the Images used.
D The image files that are used in the project are in the sub directory named IMAGES.
□ The Text files, that have to be formatted, are in the sub directory named TEXTFILES.

PAGE UNDER CONSTRUCTION

P R O J- A PROJECTS IN HTML PAGE

O utput F or The P ro ject’s Home Page

Diagram 4.1a: Pictures of the Home page Frames.htm.

The Home page objects and their corresponding file names:

CD ст
о pinkwhit.gif Picl blueb.gif |Pic2 blueb.gif Pic3 house sp.gif

Bp2 pinkwhit.gif Frame 1 Head.htm |Frame2 lndex.htm Frame3 Home.htm

Bg2

Pic3

Welcome To DisneyLand !

Linkl ** Programs for the' Family

Programs for Kids

Programs for Adults

(c) Disney. AU rights reserved.

Diagram 4.1b: Links of the Home page Frames.htm.

1 Linkl indexl8.htm | Link2 indexl9.htm |Link3 lndex20.htm |

Output F o r ind exl8.htm called from the Home page [Program s for the Fam ilvl

C0MMERC1AL WEB APPLICATION DEVELOPMENT USING HTML,
100 JAVASCRIPT, DHTML AND PERL

• Avorilea

* Spellbinder

• House

Diagram 4.2a: Pictures of the indexl8.htm.

The H o m e page objects and their corresponding file names:

EH lpinkwhit.gif 1 Pic 1 [family r.jpg |

L inkl

L in k 2

Link3

Diagram 4.2b: Links of the indexl8.htm.

The H o m e page links and their corresponding file names:1 he Home page links and their corresponding tile names:

[Linkl av.htm |Link2~sb.htm |Link3 home.htm

- ► AvorJer;

—̂►Spellbinder

: ----- 11----- Hoysí

P R O J- A

Output F o r av.htm called from the indexl8.htm page [Avonlesl

PROJ - A PROJECTS IN HTML PAGE 101

Diagram 4.3a: Pictures of the av.htm.

The av.htm! page objects and their corresponding file names:

Diagram 4.3b: Links of the av.htm.

The av.html page links and their corresponding file names

Linkl home.htm | Link2 indexl8.htm

Linkl
Link2

Output F o r sb.htm called from the inde\18.htm page [Spellbinderl

PACF in ? COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL

Diagram 4.4a: Pictures of the sb.htm.

The sb.html page objects and their corresponding file names:

Picl sb2h.gif

P ic l

Diagram 4.4b: Links of the sb.htm.

The sb.htm page links and their corresponding file names:

Linkl home.htm | Link2 indexl8.htm |

L inkl

Link2

P R O J- A

Output F o r indexl9.htm called from the Index page [Program s for Kidsl

PROJ - A PROJECTS IN HTML PAGE 103

Bg

Adventure; inV/cn-derlanci

♦ MMC
/

. House'

Diagram 4.5a: Pictures of the indexl9.htm.

The indexl9.htm page objects and their corresponding file names:

lpinkwhit.gif | Picl | kids roo.jpg |

Diagram 4.5b: Links of the indexl9.htm.

The indexl9.htm page links and their corresponding file names:

|Linkl ad.htm lLink2~mm.htm | Link3 |home.htm

*'} 'i
Adventure? in Wonderland '

------- ^ * MMC

----------► • House

Output F o r ad.htm called from the indexl9.htm page [Adventures in W onderland]

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRn .
PAGE 104 JAVASCRIPT, DHTML AND PERL PR0J '

Diagram 4.6a: Pictures of the ad.htm.

The ad.html page objects and their corresponding file names:

Picl ad2h.gif

P ic l

9 House
• Programs for Kkls

(c) Disney. All lights reserved.

The^B^W p Channel

Linkl

Link2

Diagram 4.6b: Links of the ad.htm.

The ad.htm page links and their corresponding file names:

Linkl home.htm |Link2 indexl9.htm

House
^ * Programs for Kids

(c) Disney. All rights reserved.

T h e " ^ W ^ Channel

Output F o r mm.htm called from the indexl9.htm page [MMC1

PROJ - A PROJECTS IN HTML PAGE 105

The inm.html page objects and their corresponding file names:

| Pic l mm2h.gif

L inkl

Link2

• House

* Pngaaras frr & &

(c) Disney. AB rights reserved.

Diagram 4.7b: Links of the mm.htm.

The mm.htm page links and their corresponding file names:

I Linkl home.htm |Link2 indexl9.htm

Output F o r index20.htm called from the Index page [Program s for Adults!

PACE 10fi COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL

• The Best of Hollywood
• The American Legacy

• House

(c) Disney. All rights reserved.
Diagram 4.8a: Pictures of the index20.htm.

The index20.htm page objects and their corresponding file names:

[Bg pinkwhit.gif |Picl adult ro.jpg |

L ink l
Link2 --- -------- ------- ► • The American Legacy

Link3 --------------------- • House

(c) Disney. All rights reserved.
Diagram 4.8b: Links of the index20.htm.

The index20.htm page links and their corresponding file names:

ILinkl bh.htm |Link2~ al.htm |Link3 lhome.htm

PROJ- A

Output F o r bh.htm called from the index26.htm page [The Best o f HollvwoodI

PROJ-A PROJECTS IN HTML PAGE 107

P ic l

Pic2

Monday nights at 9 p.m. The Disney Channel brings you everyone's favorite Hollywood classics.

This month. The Best of Hollywood presents:

SAYONARA
[May 6J

Marlon Brando, James Gamer and Red Buttons star in tlus celebrated adaptation of James Michener’snovel, in
which a Korean War pilot falls m love with a Japanese entertain«

THE GREAT RACE
[May 13]

This toneless comedy stars Tony Curbs. Natalie Wopd, Jack Lemmon and Peter Falk as participants in an
automobile race from New York to Pans.

House Programs for Adults

(c) D isney. A l l rig h ts reserved.

Diagram 4.9a: Pictures of the bh.htm.

The bh.html page objects and their corresp

Picl bh2h.gif |Pic2 bhlines2h.gif |

L inkl —

L i n k 2 —

This timeless comedy stars Tony Curtis. Natalie AVood, Jack Lemmon and Peter Falk as participants in an
automobile race from New York to Paris.

House - " .'yi Htiui Cot AduUn

(e) D isM jr . A l l r ig h ts rrserved.
Diagram 4.9b: Links of the bh.htm.

The bh.htm page links and their corresponding file names:

■I Link 1 home.htm |Link2 index20.htm

Monday nights at 9 pan. The Disney Channel brings you everyoue’s favorite Holly'wood classics.

This ntontli, The Best of Hollywood presents:

Marlon Brando. James Garner and Red Buttons star in tjus celebrated adaptation of James Michener’snovel, i
which a Korean War pilot falls in love with a Japanese entertainer -

THE GREAT RACE
[May 13J

SAYONARA
[May 6]

Output F o r al.htm called from the inde\20.htm page [The Am erican Legacy]

oAoc .no COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, opn . .
PAGE 108 JAVASCRIPT, DHTML AND PERL

P ic l

Celebrate America's unique heritage
every Tuesday at 9:00 p.m.
with a special lineup of films,

specials and series.

T h is month. T h e A m erican L e g a cy features

pica

T H E R I G H T S T U E F
[M a y 7]

Sam S h ep ard lead s an all-star cas t in this epic adap ta tion o f T o m W o lfe ’s p a e a n to C h u ck
Y eag er and th e p ioneering astronau ts o f the M erc u ry P ro g ra m

(c)D is n e y . A l l r ig h ts reserved.

Diagram 4.10a: Pictures of the al.htm.

The aLhtml page objects and their corresponding file names:

Picl al2h.gif |Pic2 allines2h.gif

L ink l —

Link2 —
Diagram 4.10b: Links of the al.htm.

The al.htm page links and their corresponding file names

Linkl home.htm |Link2 index20.htm

Output F o r home.htm called from the all page [Program s for the Fam ilvl

PROJ-A - PROJECTS IN HTML PAGE 109

Diagram 4.11: Pictures of the home.htm.

The home.htm page objects and their corresponding file names:

|Bg pinkwhit.gif |Picl house sp.gif

A N S W E R S T O S E L F R E V IE W Q U E S T IO N S

1. IN T E R N E T B A S IC S

FILL IN THE BLANKS TRUE OR FALSE
1. Gateway 8. True

2. Web Server Software 9. True

3. Physical Domain 10. False

4. InterNIC

5. TCP/IP

6. HTTP

7. Index.html

2. IN T R O D U C T IO N T O H T M L

FILL IN THE BLANKS TRUE OR FALSE
1. Hyper Text Markup Language 6. False

2. Server, Client, Web Pages, Web Developer 7. True

3. Transmission Control Protocol/Internet Protocol 8. True

4. <HEAD> </HEAD>, <BODY> </BODY> 9. True

5. <P> 10. False

11. False

3. L ISTS

FILL IN 1 HE BLANKS TRUE OR FALSE
1. FILLROUND 4. True

2. START 5. False

3. Definition Description 6. False

7. True

4. A D D IN G G R A P H IC S T O H T M L D O C U M E N T S

FILL IN THE BLANKS TRUE OR FALSE
1. .GIF and .JPG 7. False

2. 8. True

3. WIDTH and HEIGHT 9. True

4. BORDER 10. True

5. VSPACE

6. ALT

ANS ANSWERS TO SELF REVIEW QUESTIONS PAGE 111

5. T A B LE S

FILL IN THE BLANKS TRUE OR FALSE
1. Rows, Columns 9 j rue

2. <Table>, </Table> i n Fake

3. CELLSPACING False
4. Header, Data 12 j rue
5. ALIGN

6. WIDTH

7. CELLPADDING
8. <TR>

6. L IN K IN G D O C U M E N T S

FILL IN THE BLANKS t r i i p o d p a i c r

1. Hyperlinks 8. False
2. Blue 9. True
3. External, Internal 10. False
4. Named Anchors
5. #

6. Hot regions
7. Rectangle, circle, polygon & default

7. F R A M E S

FILL IN THE BLANKS TRUE OR FALSE
1. Frames g pa]se

2. <FRAMESET> g False

3. <FRAME> 10 Tme
4. SRC

5. NORESIZE

6. SCROLLING
7. NAME

S O L U T IO N S T O H A N D S O N E X E R C IS E S

2. IN T R O D U C T IO N T O H T M L

<HTML>
<HEAD><TITLE>Password hackers and crackers !</TITLE></HEAD>

<BODY BGColor="Beige">
<H2><I><CENTER>Beware of password hackers and crackers!</CENTER></I></H2><HR>

<H4>The threat of hackers and crackers is for real, and is alike for everyone. If the security breach

at the Bhabha Atomic Research Center last year by the hacker group milwOrm didn’t convince

you of their capabilities, then consider this: James Davis aka jdavis_4, a resident of <FONT

Face="Comic Sans MS" Color=RED> www.geocities.com/SiliconValley/Bit/2483

homestead community on the Internet, might just be reading your e-mail in your mailbox right

now, or using your account for some benign Internet surfing, or exchanging it with someone else

on the Net for more such accounts!
 Surprised? Or scared? <P>Whatever it is, jdavis_4
claims in his home page-Free VSNL passwords-that he has got exactly 108 working VSNL

passwords (and growing daily), <I>36 Satyam, 31 MTNL, 11 WmiNet and 23 Mantra Online</I>

passwords.</H4>

</BODY>

</HTML>

3. L ISTS

<HTML>
<HEAD><TITLE>Lists</TITLE></HEAD>

<BODY>
/ / Example on Unordered L is t< /B > / /

<UL TYPE=FILLROUND>

Sportstar

Business Week

Time

/ / Example on Ordered L is t< /B > / /

<0L TYPE="i" START=4>
 Sportstar

 Business Week

 Time

/ / Example on D e f in i t io n L is t< /B > / /

<DL>
<DT>Sports Magazine<DD>Sportstar

<DT>Business Magazine<DD>Business Week

<DT>General Magazine<DD>Time

</DL>

</BODY>

</HTML>

http://www.geocities.com/SiliconValley/Bit/2483

SOL SOLUTIONS TO HANDS ON EXERCISES PAGE 113

4. A D D IN G G R A P H IC S TO H T M L D O C U M E N T S

<HTML>

<HEAD><TITLE>WORLD WIDE WEB</TITLE></HEAD>

<BODY BackGround-'../images/texturel.gif>

<CENTER><I>THE INTERCITY WEB</I>

<BRx/CENTER>

<I>THE WORLD WIDE WEB</I>

<I>The World Wide Web, or Simply the Web, has been a 'Killer App' of the Internet. Certainly its
capability to display text and graphics and provide access to other pages and information has made

it the fastest growing component of the Internet. Major online services are America Online,
CompuServe and Prodigy.</I>

<I>GET CONNECTED</I>

<I>A way to access the web is to get an account with Internet Service Provider, or ISP. These

accounts include accounts include access to the World Wide Web and other Internet resources,

and often provide space to store Web pages one will create. A very helpful feature of the web is

the capability to move from page to page by selecting specific highlighted words and prases or
images, which are called as links.</I>

</BODY>

</HTML>

5. T A BLES

<HTML>

<HE AD><TITLE>T able T est</TITLE></HE AD>

<BODY BackGround="../images/texture 1 .gif'>

<TABLE Align=CENTER Border=2 CeliPadding=3 >

<CAPTION>Time Table And Fare List<CAPTION><TR>

<TH RowSpan=2>Name of Train</TH>
<TH RowSpan =2>Place</TH>

<TH RowSpan =2>Destination</TH>

<TH ColSpan=2> Time</TH>

<TH RowSpan =2>Fare</TH>

</TR><TR><TH>Arrival</TH><TH>Departure</TH></TR><TR>
<TD>Rajdhani Express</TD>

<TD Align=CENTER>Bombay</TD>

<TD Align=CENTER>Delhi</TD>

<TD Align=CENTER>07.30</TD>

<TD Align=CENTER>08.45</TD>

<TD Align=RIGHT>Rs 989.00</TD>
</TR><TR>

<TD>Madras Mail</TD>

<TD Align=CENTER>Bomb^y</TD>
<TD A1 ign=CENTER> Madras</TD>

<TD Align=CENTER>09.00</TD>
<TD Align=CENTER> 10.15</TD>

<TD Align=RIGHT>Rs 450.00</TD>

</TR><TR>

<TD>Konya Express</TD>
<TD Align=CENTER>Bombäy</TD>
<TD Align=CENTER>Banglore</TD>

<TD Align=CENTER>l 1.30</TD>
<TD Align=CENTER>12.25</TD>

<TD Align=RIGHT>Rs 645.00</TD>
</TR><TR>

<TD>Konkan Express</TD>

<TD Align=CENTER>Bombay</TD>

<TD Align=CENTER>Manglore</TD>

<TD Align=CENTER>13.30</TD>

<TD Align=CENTER> 14.45</TD>

<TD Align=RIGHT>Rs 756.00</TD>
</TR><TR>

<TD>Deccan Express</TD>
<TD Align=CENTER>Bombay</TD>

<TD Align=CENTER>Pune</TD>

<TD Align=CENTER> 16.00</TD>

<TD Align=CENTER> 17.30</TD>

<TD Align=RIGHT>Rs 345.00</TD>

</TR></TABLE>

</BODY>

</HTML>

6. L IN K IN G D O C U M E N T S

Code For Menu.htm:

<HTML>

<BODY>
Welcome to our homepage.
This page has links to

the website of ABC

Lever Inc.

<P>

For further information click on any one of the following:
About ABC Lever Inc.

<P><L1>Contact information

</BODY>

</HTML>

Code for AboutUs.htm

<HTML>

<HEAD><TITLE> ABC Lever Inc. </TlTLE></HEAD>

<BODY>

<CENTERxFONT Color="Brown" Face="Brush Script MT" Size=6>
<I>ABC Lever Inc.</I>

</CENTER>
Contact us<HR>

PAPF 11/1 COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, SQ,
114 JAVASCRIP, DHTML AND PERL

SOL SOLUTIONS TO HANDS ON EXERCISES PAGE 115

ABC Lever Inc. is a conglomerate that has
interests ranging from bodycare products to toilet soaps.
A couple of years ago we entered

the frozen food industry through mergers and acquistions.
Last year we started our first plant

to manufacture salt and this year it is wheat flour.
Our current turnover is about Rs. 7500 cr

and by the next decade we are looking at a target of 15000 cr.<P><HR>
<P><AName-'SECTION 1"><F0NT SIZE=5 COLOR="Brown">

<I>Contact Us </I>
<HR>

You can contact us at the following address:
<P> ABC Lever Inc.

101 Maker Chambers III,
Nariman Point,
Mumbai-21
Tel 2012011
<P>You can also email us at customerservice@abclever.com</P></P>

</BODY>

</HTML>

7. F R A M E S

Code for Handsonframe.htm

<HTML>

<HEAD><TITLE> Hands on</TITLE></HEAD>

<FRAMESET Cols = "35%,*">

<FRAME Name="First" Src="Menu.html">

<FRAME Name="Second" Src="Desc.html">
</FRAMESET>

</HTML>

Code for Menu.htm

<HTML>

<BODY >Click on any one of the following:
About us

<P>Contact us

</BODY>
</HTML>

Code for Desc.htm

<HTML>

<HEAD><TITLE> Welcome</TITLE></HEAD>

<BODY><I>Welcome</I><HR>

Thank you for visiting our website.

<P>Click on any of the choices on the left.
</BODY>

</HTML>

Code for AboutUs.htm

<HTML>

<HEAD><TITLE>ABC Lever Inc.</TITLE></HEAD>
<BODY><CENTER>

<1MG Align=Bottom Src="../images/corp.gif'><I>ABC Lever Inc.</I>

<HR>

ABC Lever Inc. is a conglomerate that has interests ranging from bodycare products to

toilet soaps. A couple of years ago we entered the frozen food industry through mergers and

acquisitions. Last year we started our first plant to manufacture salt and this year it is wheat

flour. Our current turnover is about Rs. 7500 cr and by the next decade we are looking at a
target of 15000 cr.

</CENTER> </BODY>
</HTML>

Code for Contact.htm

<HTML>

<HEAD><TITLE>Contact Us </TITLE></HEAD>

<BODY><I>Contact Us </I><HR>
You can contact us at the following address:
<P>ABC Lever Inc.

I0l Maker Chambers III,
Nariman Point,
Mumbai-2l
Tel 2012011

<P>You can also email us at customerservice@abclever.com</P>
</BODY>

</HTML>

PACF 1-lfi COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIP, DHTML AND PERL * UL

S ‘E (yT l O C \ i - I I : ‘J a v a S c r i p t

8. IN T R O D U C T IO N T O J A V A S C R IP T
J A V A S C R IP T IN W E B P A G E S

*

Today’s web sites need to go much beyond HTML. There is a definite need to allow users, browsing
through a web site, to actually interact with the web site. The web site must be intelligent enough to accept

users input and dynamically structure web page content, tailor made, to a user’s requirements.

This may be as simple as ensuring a web page delivered to a user, having a background color that the user

is comfortable with or as complex as delivering a web page with special textual formatting for a user with
visual disabilities.

Users, who browse through a web site today, prefer to choose to view what interests them. Hence even the

content of a web page needs to be dynamic, based on what a user wishes to see.

This requires a web site development environment that will allow the creation of Interactive web pages.

These web pages will accept input from a user. Based on the input received return customized web pages,
both in content and presentation, to the user.

In the absence of any user input the web site must be intelligent enough to return a default web page

containing predetermined information and text formatting.

This calls for a web site development environment with coding techniques capable of accepting a client’s

requests and processing these requests. The result of the processing being passed back to the client via
standard HTML pages.

The need to return standard HTML pages, that map to a user’s input, is due to the fact that browsers use

HTTP to communicate with a web server and are designed to interpret and render HTML on a client’s
machine.

Capturing user requests is traditionally done via a Form. Hence the web site development environment
needs to have the facilities to create forms.

After a form captures user input, the form must have a built in technique for sending the information

captured back to the web server for processing. Processing user requests is generally done via scripts
(small programs) that are based on the server.

The web site development environment should also provide the facility for Validating user input. Invalid

user input, will either cause data to be sent back from the web server to the browser, which is not what the
user wants or give rise to an error message being sent back to the browser from the web server. Neither of

which would really attract repeat visits to the web site.

Hence, the web site development environment must also facilitate coding which runs in a browser at client

side for data validation. Most development environments offer standard constructs for data validation.

Standard programming constructs are:
□ Condition checking constructs
□ Case checking constructs
□ Super controlled Loop constructs

Additionally, all development environments provide syntax to create and use memory variables, constants,
and functions.

If the development environment is object oriented it will provide an object hierarchy to work with. An

Object Oriented Programming (OOP) environment always offers event driven programming. This means

that the programming environment will recognize object based events and allow the connection of code
snippets to these events. When an event occurs, the code snippets will execute.

All these facilities and more are available in JavaScript.

N etscape and J a va S c rip t

JavaScript is a scripting language (web site development environment) created by Netscape hence
JavaScript works best with the Netscape suite of Client and Server products.

The Netscape client browser product is called Netscape Communicator. The default scripting language
that Netscape Communicator understands is JavaScript.

One Netscape server product, from its suite of server products, is Netscape Commerce Server. The default
scripting language that Netscape Commerce Server understands is JavaScript.

D atabase C o n n e c tiv ity

Netscape has a product called Live Wire, which permits server side, JavaScript code, to connect to

Relational DataBase Management Systems (RDBMS). RDBMS such as Oracle, MS SQL Server, MySQL,

mSQL and a host of other widely used relational databases, which generally use ANSI SQL as their natural
language. Live Wire database drivers also support a number of non-relational databases.

C lien t s ide J a v a S c rip t

Client-side JavaScript is traditionally embedded into a standard HTML program. JavaScript is embedded
between the <SCRIPT> . . . </SCRIPT> HTML tags. These tags are embedded within the <HEAD> ..
. </HEAD> or <BODY> . . . </BODY> tags of the HTML program.

JavaScript is embedded into an HTML program because JavaScript uses the filename.html and the HTTP

protocol to transport itself from the web server to the client’s browser where the JavaSciipt executes and
processes client information.

Only a browser that is JavaScript enabled will be able to interpret JavaScript code. Netscape
Communicator does this best as JavaScript is the natural language of Netscape Communicator.

Microsoft’s Internet Explorer also interprets JavaScript. However, Internet Explorer latest releases support

an old version of JavaScript. Hence, the total functionality of the latest release of JavaScript as is available
in Netscape Communicator is not available in Internet Explorer.

РДГР 11Я COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, о u лd по
118 JAVASCRIPT, DHTML AND PERL CHAP 08

flo te .

The default scripting language of Internet Explorer is VB Script. Netscape Communicator does not
support VB Script.

C apturing U ser In p u t

Web site interactivity starts from being able to capture user input. The <FORM> . . . </FORM> HTML

tags can be used to create a user Request-form. Between these HTML tags the HTML <INPUT>

</INPUT> tags can be used to instantiate HTML objects in the HTML form to facilitate the capture of user
data.

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 119

The HTML objects used in HTML form creation are Text, TextArea, Radio Buttons, Push Buttons,
Check Boxes and so on. These will be passed as values to the TYPE attribute of the
<INPUT> . . . </INPUT> tags as will be seen in later chapters. Once the HTML form has been coded in

filename.html JavaScript can be embedded in the same HTML file to make it interactive and facilitate
client side data validation and/or processing.

The concept being that standard HTML form objects are used to capture user input while client side,

JavaScript (embedded in the HTML file) is used to validate and/or process such user input. The application
of validation rules to the data captured by HTML form objects and error handling is conveniently done
using JavaScript which executes in the client’s browser.

Once user input passes the validation tests applied, and/or has been processed appropriately by client side,

JavaScript, the form data captured will have to be passed backward to the web server from where the
HTML file originated.

At the web server an appropriate program (written in JavaScript, VB Script, CGI-PERL, Java and so on)

will accept this user input. Based on user input information will be assembled on the web server, converted

to an HTML file (page) and returned to the user. Such an HTML page is created on Demand.

An HTML file (page) created on demand, based on user input, is a dynamically created HTML page. This

then is a clear indication of a dynamic and interactive web site.

HTML itself is static. HTML allows a very minimum interaction with users by providing hyperlinks. Truly

interactive pages as described above, cannot be created using standard HTML Tags alone. Embedding
JavaScript in an HTML program does this

For instance, a Web Site can be created and hosted on a web server to take orders for products. Typically,

an HTML form is used to capture ' User orders for products'. At the same time, form data (the user
order’s) validation must be done. For example:
□ Orders should be accepted only for products which are available
□ Any quantity ordered should not exceed the quantity currently available
□ The order date should be set to the current date
□ The quantity required cannot be left blank
□ The place of delivery (address) cannot be left blank

HTML alone cannot do any of this. At the maximum, HTML can provide an elegant interface for capturing

Order information. HTML (as mentioned earlier) does not provide any techniques for validating user
entries. This makes it necessary to introduce client side JavaScript in the HTML (page) program, which

extends the functionality of the web page by introducing client side data processing.

J A V A S C R IP T
JavaScript is an object-oriented language that allows creation of interactive Web Pages. JavaScript allows
user entries, which are loaded into an HTML form to be processed as required. This empowers a web site
to return site information according to a user’s requests.

JavaScript offers several advantages to a Web developer such as a short development cycle, ease of

learning, small size scripts and so on. The strengths of JavaScript can be easily and quickly used to extend
the functionality of HTML pages, already on a web site.

The A d v a n tag es O f J a v a S c rip t
An Interpreted Language: JavaScript is an interpreted language, which requires no compilation steps.

This provides an easy development process. The syntax is completely interpreted by the browser just as it
interprets HTML tags.

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, гндр Q8
JAVASCRIPT, DHTML AND PERL

Embedded Within HTML: JavaScript does not require any special or separate editor for programs to be
written, edited or compiled. It can be written in any text editor like Notepad, along with appropriate HTML

tags, and saved as filename.html. HTML files with embedded JavaScript commands can then be read and

interpreted by any browser that is JavaScript enabled.

Minimal Syntax - Easy to Learn: By learning just a few commands and simple rules of syntax, complete

applications can be built using JavaScript.

Quick Development: Because JavaScript does not require time-consuming compilations, scripts can be

developed in a short period of time. This is enhanced by the fact that many GUI interface features, such as

alerts, prompts, confirm boxes, and other GUI elements, are handled by client side JavaScript, the browser

and HTML code.

Designed for Simple, Small Programs: It is well suited to implement simple, small programs (for

example, a unit conversion calculator between miles and kilometers, or pounds and kilograms). Such

programs can be easily written and executed at an acceptable speed using JavaScript. In addition, they can

be easily integrated into a web page.

Performance: JavaScript can be written such that the HTML files are fairly compact and quite small. This

minimizes storage requirements on the web server and download time for the client.

Additionally, because JavaScript programs are usually included in the same file as the HTML code for a

web page, they require fewer separate network accesses.

Procedural Capabilities: Every programming language needs to support facilities such as Condition
checking, Looping and Branching. JavaScript provides syntax, which can be used to add such procedural

capabilities to web page (filename.html) coding.

Designed for Programming User Events: JavaScript supports Object/Event based programming.

JavaScript recognizes when a form Button is pressed. This event can have suitable JavaScript code

attached, which will execute when the Button Pressed event occurs.

JavaScript can be used to implement context sensitive help. Whenever an HTML form’s Mouse cursor

Moves Over a button or a link on the page a helpful and informative message can be displayed in the status

bar at the bottom of the browser window.

Easy Debugging and Testing: Being an interpreted language, sciipts in JavaScript are tested line by line,

and the errors are also listed as they are encountered, i.e. an appropriate error message along with the line

number is listed for every error that is encountered. It is thus easy to locate errors, make changes, and test it

again without the overhead and delay of compiling.

Platform Independence / Architecture Neutral: JavaScript is a programming language that is completely

independent of the hardware on which it works. It is a language that is understood by any JavaScript

enabled browser. Thus, JavaScript applications work on any machine that has an appropriate JavaScript

enabled browser installed. This machine can be anywhere on the network.

Since each browser is for a specific platform, JavaScript interpretation will be with respect to the specific
platform. The browser will add whatever platform specific information is required to the JavaScript while it

interprets the code. Thus, JavaScript is truly platform independent. A JavaScript program developed on a

Unix machine will work perfectly well on a Windows machine.

The fact that a platform specific browser, maintained at the client end, does the interpretation of JavaScript,
relieves the developer of the responsibility of maintaining multiple source code files for multiple platforms.

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 121

W R IT IN G J A V A S C R IP T IN T O H T M L

JavaScript syntax is embedded into an HTML file. A browser reads HTML files and interprets HTML tags.

Since all JavaScripts need to be included as an integral part of an HTML document when required, the
browser needs to be informed that specific sections of HTML code is JavaScript. The browser will then use

its built-in JavaScript engine to interpret this code.

The browser is given this information using the HTML tags < S C R I P T > ... </SCRIPT>. The <SCRIPT>
tag marks the beginning of a snippet of scripting code. The paired </SCRIPT> marks the end of the snippet
of scripting code.

Like most other HTML tags, the <SCRIPT> tag takes in an optional attribute, as listed below:

Attributes Description

Language Indicates the scripting language used for writing the snippet of scripting code.

If left undefined Netscape Communicator will assume JavaScript.
If left undefined Internet Explorer will assume VB Script

Table 8.1

Syntax:

<SCRIPT LANGUAGE= "JavaScript”>
/ / J a v a s c r ip t code sn ip pe t w r it te n here

</SCRIPT>

B A S IC P R O G R A M M IN G T E C H N IQ U E S

JavaScript offers the very same programming capabilities found in most programming languages. Creating
variables, constants, programming constructs, user defined functions and so on.

All these programming techniques can be used in JavaScript embedded in any HTML program. These are

the techniques that make JavaScript an exciting programming language that extends the functionality of

HTML and makes web pages interactive.

The < H E A D > . .. < / H E A D > tags make an ideal place to create JavaScript variables and constants and so

on. This is because the head of an HTML document is always processed before the body. Placing

JavaScript memory variables, constants and user defined JavaScript functions in this section of an HTML

document will cause them to be defined (by the JavaScript interpreter) before being used. This is
important because any attempt to use a variable (or any other JavaScript object) before it is defined, results

in an error.

Variables are used to store values that can be used in other parts of a program. Variables always have a

name associated with them via which they can be referenced later. When naming variables, it is good

programming practice to structure a descriptive name.

Variable names can begin with an uppercase letter (A through Z), lowercase letter
(a through z), and underscore character (_) or dollar sign character ($). The remaining characters can

consist of letters, the underscore character, the dollar sign character or digits 0 to 9. Variable names are

case sensitive.

G a u iio + i

The dollar sign ($) character is reserved for machine generated code and should not be used in scripts.
In particular it should not be used in scripts that will be run by earlier browsers that are not fully
ECMAScript-compatible.

PAGE 122
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 08

If two words are used to name a variable then it is a programming convention to start the first letter of the

first word in lower case and the first letter of the second word in uppercase for example, variableName.

JavaScript does not allow the data type of the variable to be declared when a variable is created. The same
variable may be used to hold different types of data at different times when the JavaScript code snippet
runs.

D ata Types A nd L itera l

JavaScript supports four primitive types of values and supports complex types such as arrays and objects.
Primitive types are types that can be assigned a single literal value such as number, string or boolean value.

Literals are fixed values, which literally provide a value in a program.

The primitive data types that JavaScript supports are:

Num ber

Consists of integer and floating point numbers and the special NaN (not a number) value.

Integer literals can be represented in JavaScript in decimal, hexadecimal, and octal form.

Floating-point literals are used to represent numbers that require the use of a decimal point, or very large or

very small numbers that must be written using exponential notation. A floating-point number must consist
of either a number containing a decimal point or an integer followed by an exponent.

For example, 33, 12.10, -35.8, 2E3, 0x5F

Boolean
Consists of the logical value true and false.

JavaScript supports a pure Boolean type that consists of the two values true and false. Logical operators
can be used in Boolean expressions.

JavaScript automatically converts the Boolean values true and false into 1 and 0 when they are used in
numerical expressions.

String

Consists of string values that are enclosed in single or double quotes.

JavaScript provides built-in support for strings. A string is a sequence of zero or more characters that are

enclosed by double (“) or single (‘) quotes. If a string begins with a double quote it must end with a double

quote. If a string begins with a single quote it must end with a single quote.

flo te

Hexadecimal and octal integers are converted to decimal before they are displayed.

flo te

Values 1 and 0 are not considered Boolean values in JavaScript.

For example, "Rahul", '24, Sanjay Nagar, Bangalore'

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 123

flo te ,

If a string has to include quote character in the string the quote character must be preceded by the
backslash (\) escape character.

Null

Consists of a single value, null, which identifies a null, empty or nonexistent reference.

The null value is common to all JavaScript types. It is used to set a variable to an initial value that is

different from other valid values. Use of the null value prevents the sort of errors that result from using

un-initialized variables. The null value is automatically converted to default values of other types when
used in an expression.

T ype C asting

In JavaScript variables are loosely cast. The type of a JavaScript variable is implicitly defined based on the
literal values that are assigned to it from time to time.

For instance, combining the string literal "Total amount is " with the integer literal 1000 results in a string
with the value "Total amount is 1000". By contrast, adding together the numeric literal 10.5 and the string

"20" results in the floating point integer literal 30.5. This process is known as type casting.

C reating V a ria b le s

In order to make working with data types convenient, variables are created. In JavaScript variables can be
created that can hold any type of data.

In order to use a variable, it is good programming style to declare it. Declaring a variable tells JavaScript
that a variable of a given name exists so that the JavaScript interpreter can understand references to that
variable name throughout the rest of the script.

Although it is possible to declare variables by simply using them, declaring variables helps to ensure that
programs are well organized and helps keep track of the scope of the variables. Variables can be declared
using var command.

Syntax:
var <variable name> = value;

Examples:
var firstname;

var lastname = "Shah";

var phone = 6128879;

The equal sign (=) used in assigning a value to a variable is known as an assignment operator.

N o te ------ -- -.......

Like properties and method names in JavaScript, variable names are case sensitive.

Incorpora tin g V aria b le s In A S c rip t

Example 1:
The following illustrates incorporating variables in a script.

<HTML>

<HEAD>
<SCRIPT Language = JavaScript>

var name = prompt("Enter your name", "Name");

</SCRIPT>
</HEAD>
<BODY>

<SCRIPT Language = "JavaScript">
document.write("<H2> Hello " + name + "</H2>");

</SCRIPT>

</BODY>

</HTML>

The JavaScript promptO method picks up a string (i.e User Name) from the user which is then assigned to

the variable name. The JavaScript code document.writeO embedded in the <BODY> . . . </BODY> tags

writes the contents of the variable name to the client browser.

Since the <HEAD> . . . </HEAD> section of the HTML program is interpreted first a ‘User Name’ is

picked up first before anything is displayed in the client browser.

The J a v a S c rip t A rray
Arrays are JavaScript objects that are capable of storing a sequence of values. These values are stored in

indexed locations within the array. The length of an array is the number of elements that an array contains.

The individual elements of an array are accessed by using the name of the array followed by the index

value of the array element enclosed in square brackets.

n . r c . . . COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, p u ap na
PAGE 124 JAVASCRIPT, DHTML AND PERL CHAP 08

M o te

Ihe array element index starts with 0. Hence the last array element index number is one less that the
length of the array.

An array must be declared before it is used. An array can be declared using any one of the following

techniques.

arrayName = new Array(Array length)

arrayName = new Array()

In the first example the array size is explicitly specified. Hence this array will hold a pre-determined set of

values. The second example creates an array of the size 0.

M o te

JavaScript automatically extends the length of any array when new array elements are initialized.

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 125

Example:

custOrders = new Array()

cust_0rders[50] = "Lion Pencils"

cust_0rders[100] = "Steadier eraser"

When JavaScript encounters the reference to order [50], in the above example, it will extend the size of the

array cust Orders to 51 and initialize order[50]. When JavaScript encounters the reference to order [100],

in the above example, it will extend the size of the array custOrders to 101 and initializes order[l00].

Even if an array is initially created of a fixed length it may still be extended by referencing elements that

are outside the current size of the array. This is done in the same manner as with zero-length arrays.

Dense Arrays

A dense array is an array that has been created with each of its elements being assigned a specific value.

Dense arrays are used exactly in the same manner as other arrays. They are declared and initialized at the
same time.

Listing the values of the array elements in the array declaration creates dense arrays. For example a dense
array can be created as:

arrayName = new Array(valueO, valuel, . . . , valúen)

In this array, since the element count starts from 0 to n, the array length is n+\.

Since array is a JavaScript object, arrays have several methods associated with them via which the array
and its element content can be manipulated.

Join() returns all elements of the array joined together as a single string. This takes one argument; a string

to be used as a separator between each element of the array in the final string. If the argument is omitted,
join() uses a comma-space as the separator.

Reverse() reverses the order of the elements in the array.

Example 2:

An array is used with hard coded values. Displaying the values of the array elements in the browser makes
use of an array’s join() method to print the array elements in a single line..

<HTML>

<HEAD><TITLE>Viewing the array elements of a JavaScript Array</TlTLE></HEAD>
<BODY>

<SCRIPT language = "JavaScript">
< !— Begin H id ing Ja v a S c r ip t

friends = new Array(5);

friends[0] = "Ananth";

friends[l] = "Cedric";

friends[2] = "Ketan";

friends[3] = "Rohan";

friends[4] = "Leela";

document. write(friends[0] + "
");

document. write(friends[I] + "
");

document. write(friends[2] + "
");

document. write(friends[3] + "
");

document.write(friends[4] + "
");

PAGE 126
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL

joincrit = friends.join();

document. write(join_crit);
/ / End h id in g 'J a v a S c r ip t -->

</SCRIPT>
</BODY>

</HTML>

The Elements O f An Array
JavaScript does not place any restrictions on the values assigned to the elements of an array. These values

could be of different types or could refer to other arrays or objects.

Example:
multiTypeArray = new Array("Vail", "Val2", 1, 2, true, false, null, new array(3, 4))

The array named multiTypeArray has a length of eight and its elements are:

multiTypeArray[0] = "Vail"
multiTypeArray[l] = "Val2"
multiTypeArray[2] = 1

multiTypeArray[3] = 2

multiTypeArray [4] = true

multiTypeArray[5] = false

multiTypeArray [6] = null
multiTypeArray [7] = a new dense array consisting of the values of 3,4

The last element of the array, multiTypeArray, contains a dense array as its value. The two elements of this

array can be accessed using a second set of subscripts:
numl = multiTypeArray[7][0];

num2 = multiTypeArray[7][l];

The Ja va S c rip t A rra y and its length P roperty
JavaScript arrays are implemented as objects. Objects are named collections of data that have properties

and whose values may be accessed via methods. A property returns a value that identifies some aspect of

the state of an object. Methods are used to read or modify the data contained in an object’s property.

The length of an array is a property of an array. Access to any JavaScript object’s property is done by

using objectname.propertyname.

For example, to find out the length of the multiTypeArray:

myvar - multiTypeArray.length;

The length of the multiTypeArray will be assigned to the variable myvar. By accessing the contents of

myvar the length of (no. of elements in multiTypeArray) the multiTypeArray can be determined.

O P E R A T O R S A N D E X P R E S S IO N S IN J A V A S C R IP T

An operator is used to transform one or more values into a single resultant value. The values to which the

operator is applied is referred to as operands. A combination of an operator and its operands is referred to

as an expression.

Expressions are evaluated to determine the value of the expression. This is the value that results when an

operator is applied to its operands.

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 127

N o te

For some operators, such as multiplication (*) the order of the operands do not matter. For example,
A*Y = Y*A is true for all integers and floating point numbers.

Other operators such as string concatenation (+), the order of the operands matter. For example, "ab"
+ "cd" is not the same as "cd" + "ab".

A rith m e tic O p era to rs

Arithmetic operators are the most familiar operators because they are used every day to solve common

math calculations. The arithmetic operators that JavaScript supports are;
Oneratnr Descriniinn Onpratni* HpcrnnfiOperator Description
+ Addition
* Multiplication

% Modulus

-- Return the value then Decrement

Operator Description
- Subtraction or Unary negation

/ Division
++ Return the value then Increment

Table 8.2

N o te .

The % (modulus) operator calculates the remainder by dividing two integers. For example, 17 % 3 =
2 because 17/3 = 5 with a remainder of 2.

An operator requiring a single operand is referred to as a Unary operator and one that requires two
operands is a binary operator.

The above standard arithmetic operators are binary operators. In addition to these binary operators, there
are unary arithmetic operators. They are (++) and (--).

Both these increment and decrement operators can be used in two different ways. Before the operand or

after the operand. For example, ++x increments x by one and returns the result, while x++ returns x and

then increments the value of x by one. Similarly, — x decreases the value of x by one before returning a

result, while x— returns the value of x before decreasing its value by one.

Example:
X =3;
Y = ++X;

Z = X++;

In these lines of code, X is first assigned the value of 3, which is then increased to 4 and assigned to Y.

The new value of 4 is assigned to Z, and then the value of X is increased to 5. Finally, X is 5, Y is 4 and Z
is 4.

Log ica l O pera to rs

Logical operators are used to perform Boolean operators on Boolean operands AND, OR, NOT. The

Operator && i

Description Logical AND Logical OR Logical NOT

Table 8.3

PAGE 128
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 08

C om parison O p e ra to rs
Comparison operators are used to compare two values. The comparison operators supported by JavaScript

are:

Operator Description
== Equal
i= Not Equal
< Less than
> Greater than

Operator Description
=== Strictly Equal
! = Strictly Not Equal
<= Less than or equal to
>= Greater than or equal to

Table 8.4

A (o te

The equal (==) and not equal (!=) operators perform type conversions before testing for equality. For
example, "5" == 5 evaluate to true.

The strictly equal (===) and the strictly not equal (!==) do not perform type conversions before
testing for equality. For example, "5" = = 5 will return the value false.

S tring O pera to rs
String operators are those operators that are used to perform operations on strings. Currently JavaScript

supports only the string concatenation (+) operator.

This operator is used to join two strings. For example, "pq" + "ab" produces "pqab".

A s s ig n m en t O p e ra to rs
The assignment operator is used to update the value of a variable. Some assignment operators are
combined with other operators to perform a computation on the value contained in a variable and then

Operator Description
= Sets the variable on the left of the = operator to the value of the expression on its right

'+= Increments the variable on the left of the += operator by the value of the expression on its
right. When used with strings, the value to the right of the += operator is appended to the

value of the variable on the left of the += operator

- = Decrements the variable on the left of the - = operator by the value of the expression on the

right
* = Multiplies the variable on the left of the * = operator by the value of the expression on its

right

/ = Divides the variable on the left of the /= operator by the value of the expression on its right

% = Takes the modulus of the variable on the left of the % = operator using the value of the

expression on its right

Table 8.5

The C o n d itio n a l E xp ress io n T e rn a ry O p e ra to r
JavaScript supports the conditional expression operator. They are ? and : The conditional expression

operator is a ternary operator since it takes three operands, a condition to be evaluated and two alternative

values to be returned based on the truth or falsity of the condition.

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 129

Syntax:
condition ? value 1 : value2

The condition expressed must return a value true or false. If the condition is true, value 1 is the result of the
expression, otherwise value2 is the result of the expression.

S pec ia l O p era to rs

JavaScript supports a number of special operators that do not fit into the operator categories covered above.

The delete Operator

The delete operator is used to delete a property of an object or an element at an array index.

Example:
To delete the sixth element of my Array.

delete myArray[5]

The new Operator

The new operator is used to create an instance of an object type.

Example:
To create a new JavaScript object of the type array and assign this array to a context area in memory called
myArray.

my Array = new Array()

The void O perator

The void operator does not return a value. It is typically used in JavaScript to return a URL with no value.

J A V A S C R IP T P R O G R A M M IN G C O N S T R U C T S

Most programming languages support a common (core) set of constructs. Languages only differ in the
syntax used for structuring these constructs.

Languages may also differ in the degree to which they support programming features such as Object

Oriented Programming, abstract data definition, inference rules and list processing.

JavaScript provides a complete range of basic programming constructs. While it is not an object oriented
programming environment JavaScript is an object-based language.

The constructs provided by JavaScript are as follows:

Construct / Statement Purpose Example
Assignment Assigns the value of an expression to a variable. x = y + z

data declaration Declares a variable and optionally assigns a value to it. var myVar = 10

if Program execution depends upon the value of returned by the

condition. If the value returned is True the program executes

else the program does not execute.

if(x > y) {
z = X;

] _
while Repeatedly executes a set of statements until a condition

becomes false

while(x != 7) {

X %= n - n

}
Table 8.6

PAGE 130
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 08

Construct / Statement Purpose Example

switch Selects from a number of alternatives switch(val) {

case 1:
/ / F ir s t a lte r n a t iv e

break;

case 2:
/ / Second

a lt e r n a t iv e

break;

default
/ / D e fa u lt a c t io n

}
for Repeatedly executes a set of statements until a

condition becomes false

for(i = 0; i < 7; ++i) {
document.write(x[i]);

do while Repeatedly executes a set of statements while

a condition is true

do {
/ / S tatem ents

} while(i > 0)

label Associates a label with a statement LabelName:

Statement

break Immediately terminates a do while or for loop

construct

if(x > y) break

continue Immediately terminates the current iteration of
a do, while or for construct

if(x > y) continue

function call Invokes a function x = abs(y)

return Returns a value from a function call return x*y

with Identifies the default object with(Math) {

d = PI * 2 * r;

} '
delete Deletes an object property or an array element delete a[5]

Method invocation Invokes a method of an object document, write("Hello")

Table 8.6 (continued)

C O N D IT IO N A L C H E C K IN G

T h e if - then - e ls e S ta te m e n t
The conditional construct in JavaScript offers a simple way to make a decision in a JavaScript program.

The conditional construct in JavaScript will either return a True or a False depending upon how the

condition evaluated.

Using the if-else construct the flow of the JavaScript program can be altered i.e. the if condition determines

which section of the program code will be executed based on whether the condition evaluates to T R U E or

FALSE.

Syntax:

if(condition) {
/ / J a v a S c r ip t code

}

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 131

If the condition evaluation returns True the JavaScript code is executed if the evaluation returns False this
section of JavaScript code will be skipped.

Example:
var day = "Saturday"

if (day == "Saturday") {

document. writeln(“It’s the weekend);
alert(“It’s the weekend”);

}

Im m e d ia te if (C o n d itio n a l exp res s io n)

A conditional expression can evaluate to either True or False based on the evaluation of the condition.
The structure of a conditional expression is:

Syntax:
(condition) ? value 1: value2

where, condition is an expression that can be evaluated to a boolean value. Based on the result, the

whole expression evaluates to either valuel (true condition) or value2 (false condition).

Example:
var day = "Saturday"

(day == "Saturday") ? "Weekend!" : “Not Saturday"

This expression will evaluate to:

"W eekend!" where day holds Saturday! (Condition TRUE)

“Not Saturday!" if day holds any other string (Condition FALSE)

S U P E R C O N T R O L L E D - E N D L E S S L O O P S

Looping refers to the ability of a block of code to repeat itself. This repetition can be for a predefined

number of times or it can go until certain conditions are met. For instance, a block of code needs to be
executed till the value of a variable becomes 20 (Conditional Looping), or a block of code needs to be
repeated 7 times.

For this purpose, JavaScript offers 2 types of loop structures:

□ for Loops - These loops iterate a specific number of times as specified.

□ while Loops - These are Conditional Loops, which continue until a condition is met.

For Loop

The for loop is the most basic type of loop and resembles a for loop in most other programming languages,
including ANSI 'С'.

Syntax:
for(expressionl; condition; expression!) {
/ / J a v a S c r ip t commands

}

where, expression 1 sets up a counter variable and assigns the initial value. The declaration of the

counter variable can also be done here itself, condition specifies the final value for the loop to fire (i.e.
the loop fires till condition evaluates to true), expression2 specifies how the initial value in
expression! is incremented.

Example:
The following block prints numbers from 10 to 1 on the VDU screen (Reverse Order).

for (var num = 10; num >=1; num—) {

document, writeln(num);

}

W h ile Loop
The While loop provides a similar functionality. The basic structure of a while loop is:

Syntax:
while (condition) {
/ / J a v a S c r ip t commands

}

Where, the condition is a valid JavaScript expression that evaluates to a Boolean value. The JavaScript

commands execute as long as the condition is true.

Example:
The following block prints numbers from 1 to 10 on the screen.

var num = 1;

while (num <= 10) {
document, writeln(num);

num++;

}

F U N C T IO N S IN J A V A S C R IP T
Functions are blocks of JavaScript code that perform a specific task and often return a value. A JavaScript

function may take zero or more parameters. Parameters are a standard technique via which control data can

be passed to a function. Control data passed to a function, offers a means of controlling what a function

returns.

B uilt-in F u n ctions
JavaScript provides several built-in functions that can be used to perform explicit type conversions. Some

of them are eval(), parselnt() and parseFloat().

The eval() function can be used to convert a string expression to a numeric value.

Example:
The following results in the value 105 being assigned to the variable grand_Total.

var grand_Total = eval("10 * 10 + 5");

D o te . ~

Even if the string value passed as a parameter to eval() does represent a numeric value the use of
eval() results in an error being generated.

n s . c COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r „ 4p m

PAGE 132 JAVASCRIPT, DHTML AND PERL CHAP 08

The parselnt() function is used to convert a string value to an integer. The parselnt() function returns the

first integer contained in a string or 0 if the string does not begin with an integer.

Example:
The following results in the integer 123 being assigned to the variable string2Num.

var string2Num = parselnt("123xyz");

The following results in "NaN" (Not a Number) being assigned to the variable string2Num.

var string2Num = parselnt("xyz");

The parseFloatO function returns the first floating point number contained in a string or 0 if the string does

not begin with a valid floating point number.

Example:
The following results in the float 1.2 being assigned to the variable string2Num.

var string2Num = parseFloat("1.2xyz");

The following results in "NaN" (Not a Number) being assigned to the variable string2Num.

string2Num = parselnt("xyz");

U S E R D E F IN E D F U N C T IO N S

Functions offer the ability to group together JavaScript program code that performs a specific task into a

single unit that can be used repeatedly whenever required in a JavaScript program.

A user defined function first needs to be declared and coded. Once this is done the function can be invoked

by calling it using the name given to the function when it was declared.

Functions can accept information in the form of arguments and can return results.

Appropriate syntax needs to be followed for declaring functions, invoking them, passing them values and

accepting their return values.

D eclarin g Fu n ctio n s
Functions are declared and created using the function keyword. A function can comprise of the following:

□ A name for the function
□ A list of parameters (arguments) that will accept values passed to the function when called

□ A block of JavaScript code that defines what the function does

Syntax:
function fimction_name(parameterl, parameter2,. . .) {
/ / B lock o f Ja v a S c r ip t code

}

A function_name is case sensitive, can include underscores (_J , and has to start with a letter. The list of

parameters passed to the function appears in parentheses and commas separate members of the list.

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 133

H o ie .

Defining a function does not execute the JavaScript code that makes up the function.

P lace O f D ec lara tio n
Functions can be declared anywhere within an HTML file. Preferably, functions are created within the

<HEAD>...</HEAD> tags of the HTML file. This ensures that all functions will be parsed before they

are invoked or called. If the function is called before it is declared and parsed, it will lead to an error

condition, as the function has not been evaluated and the 'Browser' does not know that it exists.

РДГР 1-iA COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, _ UA_
JAVASCRIPT, DHTML AND PERL CHAP 08

D o te

The term parsed refers to the process by which the JavaScript interpreter evaluates each line of script
code and converts it into a pseudo-compiled bytecode, before attempting to execute it. At this time,
syntax errors and other programming mistakes that would prevent the script from running are trapped
and reported.

P assing P a ram eters

Values can be passed to function parameters when a ‘parameterized’ function is called. Values are passed
to the function by listing them in the parentheses following the function name. Multiple values can be

passed, separated by commas provided that the function has been coded to accept multiple parameters.

Both JavaScript built-in functions and user-defined functions can accept parameters, process them and

return values. During declaration, a function needs to be informed about the number of values that will be
passed.

Example:

Function Declaration:

function printName(user) {

document.write("<HR>Your Name is <I>”);
document, write(user);

document. write("</I><HR>");

}
where, printName is a function, which has a parameter called user. The parameter user can be passed

a value at the time of invoking the function. Within the function, reference to user will then refer to the
value passed to the function.

Function Call:

A static value passed:

printName("Bob");
A Variable Passed:

var user = "John";

printName(user);

D o te , ---

Both variables and literals can be passed as arguments when calling a function.
If a variable is passed to the function, changing the value of the parameter within the function
does not change the value of the variable passed to the function.
Parameters exist only for the life of the function.

Example 3:

Once an HTML page completes loading it greets a user with a message 'Welcome'. When a user leaves this

page, the 'Good-bye' alert dialog box is displayed.

<HTML>
<HEAD>

<TITLE>Creating and Using User Defined Functions</TITLE>

(will cause the string "Bob" to be assigned to the parameter user.)

(will cause the value "John" to be assigned to the parameter user.)

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 135

<SCRIPT Language="JavaScript">

var name =

function hello() {

name = prompt('Enter Your Name:', 'Name');

alert(’Greetings 1 + name + Welcome to my page!');

}
function goodbyeQ {

alert('Goodbye' + name + Sorry to see you go!');

}
</SCRIPT>

</HEAD>

<BODY onLoad="hello();" onUnload="goodbye();">

</BODY>

</HTML>

V aria b le S co p e
The parameters of a function are local to the function. They come into existence when the function is called

and cease to exist when the function ends. For instance, in the example printName(), user exists only

within the function printName() - it cannot be referred to. or manipulated outside the function.

Also, any variable declared using var variable-name within the function would have a scope limited to the
function.

If a variable is declared outside the body of the function, it is available to all statements within the

JavaScript.

If a local variable is declared within a function has the same name as an existing global variable, then

within the function code, that variable name will refer to the local variable and not the global variable. It

is as though the global variable does not exist with respect to the JavaScript code within the function.

R eturn V a lu es

As with some JavaScript built-in functions, user defined functions can return values. Such values can be

returned using the return statement. The return statement can be used to return any valid expression that

evaluates to a single value.

Example:
function cube(number) {

var cube = number * number * number;

return cube;

}
where, cube is a function, which accepts a parameter number, calculates its cube, assigns this

calculation to a variable cube and returns the value of cube.

This function can also be written as follows:
function cube(number) {

return number * number * number;

}

R ecurs ive Fu n ctio n s

Recursion refers to a situation, wherein functions call themselves. In other words, there is a call to a

specific function from within the same function. Such functions are known as Recursive Functions.

Example:

The following JavaScript function is an example of a Recursive Function that calculates the factorial of a
number. (A factorial is a mathematical function. For example, factorial 5 is equal to 5*4*3*2*1)

function factorial(number) {
if(number>l) {

return number * factorial(number-l);
}
else {

return number;

}

}

This function receives a number as an argument and relies on the fact that the factorial of a number is the
number multiplied by the factorial of one less than the number.

The function applies the formula and returns the number multiplied by the factorial of one less than the
number.

DArc „ ,c COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
PAGE 136 JAVASCRIPT, DHTML AND PERL CHAP 08

D o te ,

Recursive functions are powerful, but can lead to infinite recursions. Infinite recursions occur when
the function is designed in such a way as to call itself without being able to stop.

It is important to note that the function factorial) prevents infinite recursions because the if-else construct
ensures that eventually the function will stop calling itself once the number passed to the function is equal

to one. Additionally, if the function is initially called with a value less than two, no recursion will take
place at all.

P L A C IN G T E X T IN A B R O W S E R

Using JavaScript a string can be written to the browser from within an HTML file. The document object

in JavaScript has a method for placing text in a browser. This method is called write(). Methods are called

by combining the object name with the method name:
Object-name.Method-Name

The writeO method accepts a string value passed to it within its parentheses. The string value can then be

written to the browser. The write() method accepts this string and places it in the current browser window.
For example:

document. write("Test");

The string "Test" will be placed in the browser.

Example 4:
The following example illustrates how JavaScript code places text in the browser window using

document. write().

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 137

<HTML>

<HEAD><TITLE>Outputting Text </TITLE></HEAD>
<BODY><CENTER>

Silicon Chip Technologies.

<SCRIPT Language = "Javascript">

document. write("

");

document.write('');
document.write("Silicon Chip Technologies.
");

</SCRIPT> Outputting lex» - Netscape

m
Eáe Edit yiew fio Cofiwwiacdto! Help

V / 3 ^ áí- Í2 3 á
Reload Home Seaich Glide -Pfrt Securiy

^ {’ Sookr.-^s .4 o SE . . ,

Д Iruidrt Me»age 0 Irtfeinet (_j Lookup |_j NewüCool

Silicon C h ip Technologies

S ilic o n C h ip Te ch n o lo g ie s .

</CENTER></BODY>
</HTML>

Output For Example 4:
(Refer to diagram 8.1)

D IA L O G B O X E S

JavaScript provides the ability to pickup user

input or display small amounts of text to the

user by using dialog boxes. These dialog

boxes appear as separate windows and their

content depends on the information provided

by the user. This content is independent of

the text in the HTML page containing the

JavaScript script and does not affect the
content of the page in any way.

There are three types of dialog boxes provided by JavaScript:

The A le rt D ia log B ox

The simplest way to direct small amounts of textual output to a browser’s window is to use an alert dialog
box. The JavaScript alert() method takes a string as an argument and displays an alert dialog box in the
browser window when invoked by appropriate JavaScript.

Docurem Doth?

Diagram 8.1

OK button. TheThe alert dialog box displays the string passed to the alert() method, as well as an

JavaScript and the HTML program, in which this code snippet is held, will not continue processing until
the OK I button is clicked.

The alert dialog box can be used to display a cautionary message or display some information. For
instance:

□ A message is displayed to the user when incorrect information is keyed in a form
□ An invalid result is the output of a calculation
□ A warning that a service is not available on a given date/time

Syntax:
alert("<Message>");

Example:
alert("Click OK to continue");

Example 5:
The following example shows an alert dialog box, welcoming a user. As soon as the OK button is

clicked, an image is displayed in the browser. This illustrates that all background processing stops until an
alert has been responded to.

PAGE 138
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 08

<HTML>
<HEAD><TITLE>Example</TITLE></HEAD>

<BODY><SCRIPT Language="Javascript">

alert("Welcome To My Web Site!");
document.write('');

</SCRIPTX/BODY>

</HTML>

Output For Example 5:
(Refer to diagram 8.2)

The P ro m p t D ia log B ox
As seen, the alert dialog box simply displays

information in a browser and does not allow

any interaction. The addition of the OK

button provides some very minimal control

over form events i.e. program execution halts

completely until some user action takes place

(clicking on the OK button).

A 4s
Ciide Security 3!

&te £<S fit

'i ä Ï
Back

: 'Bookmaikt Д Location: ¡file ///HI/USERS/STAFFA^AISHALI/JSCRIPT/WORK/Fiel him

Д 1 retart Menage »rteinet Lookup _ j NewlCooi

£onv«unic*Ux Help

a
Reioed

m zsr.

A Welcome To My W eb Site !

An alert dialog box, cannot be used to Diagram 8.2
customize any web page output based on user input, which is what user interaction requires.

JavaScript provides a prompt dialog box for this. The prompt() method instantiates the prompt dialog box
which displays a specified message. In addition, the prompt dialog box also provides a single data entry

field, which accepts user input. Thus, a prompt dialog box:

□ Displays a predefined Message

□ Displays a textbox and accepts user input
о Can pass what the user keyed into the textbox back to the JavaScript

□ Displays the OK and the Cancel buttons

The prompt dialog box also causes program execution to halt until user action takes place. This could be
button being clicked, which causes the following actionthe OK button being clicked, or the Cancel

to take place.

□ Clicking on the OK button causes the text typed inside the textbox to be passed to the program

environment (i.e. JavaScript)

Clicking on the C ance l" button causes a NULL value to be passed to the environment.

When the promptO method is used to instantiate and use a dialog box the method requires two blocks of

information:
□ A message to be displayed as a prompt to the user

□ Any message to be displayed in the textbox (this is optional)

Syntax:
prompt("<Message>", "<Default value>");

Example:
prompt("Enter your favorite color:", "Blue");

The value that the user keys into the textbox on the prompt dialog box is accepted and can be stored in a

variable.

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 139

Example 6:
The following example shows a welcoming image on the screen. Asks the user for a name. Then displays
the name keyed into the prompt dialog box along with a Greeting message.

<HTML>

<HEAD><TITLE>Example 2.6 </TITLE></HEAD>
<BODY>

<SCRIPT LANGUAGE="JavaScript">

document.write('');
document.write("<H 1 >Greetings,");

document.write(prompt("Enter Your Name:", "Name"));

document.write("Welcome to My HomePage!</Hl>");
</SCRIPT>

</BODY>

</HTML>

Output For Example 6:
(Refer to diagram 8.3)

The C o n firm D ia log B ox

JavaScript provides a third type of a

dialog box, called the confirm dialog box.

As the name suggests, this dialog box

serves as a technique for confirming user
action. The confirm dialog box displays

the following information:

□ A pre-defmed message

□ Ok and Cancel button

£<Я ifev* Qo Communicator У dp

<pT i ^ Й - ^ c t i i D
Back Reload Horae Search Guide PrW Secuty Slop Ш.J Bookmark* Locaüc«|fie ///JHJSERS/STAFF/VAISHAU/JSCRIPT/WORK.DOC/Fiel him -1

Д Iratart Mettage [4} Internet _ j Lookup f j j NewiCod

G í t R - S

,N ?
T o u c h e p®

Ente* Your Name.

OK j Cancel

j S- lüoiiam
— аЛ

i -'¡it. - Д .

Diagram 8.3

The confirm dialog box, causes program execution to halt until user action takes place. User action can be
either the OK button being clicked, or the Cancel

OK

Cancel

button being clicked, which causes the following

button causes TRUE to be passed to the program which called the confirm

button causes FALSE to be passed to the program which called the

action to take place.

□ Clicking on the

dialog box.

□ Clicking on the

confirm dialog box.

Display of a confirm dialog box thus requires only one block of information:

A pre-defmed message to be displayed

Syntax:
confirm("<Message>");

Example:
confirm("Are you sure you want to exit out of the system");

Example 7:
The following JavaScript example asks a question and accepts an answer. The user is given three chances.

The second and third chance to provide an answer can be accepted or rejected, if accepted the program
prompts for an answer again.

PAGE 140
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 08

<HTML>

<HEAD>
<TITLE> Confirm Method </TITLE>

<SCRIPT LANGUAGE="JavaScript">

var question = "What is 10+10 ?";

var answer = 20;
var correct = '<’* G Src="images/man2.gif’>';

var incorrect ='';

var Response = prompt(question,"0");

for(count = 1; count < 3; count++) {

■ if(Response != answer) {
if(confirm("Wrong, Press OK For Another Chance")) {

Response = prompt(question,"0");

}
else {

alert("Better Luck Next Time");

count = 3;

}

}
else {

alert("Great!! Your Are Right");

count = 3;

}

}
var output = (Response == answer) ? correct: incorrect;

document. write("
");

document, write(output);
</SCRIPT>

</HEAD>
<BODY></BODY>

</HTML>

Output:

£dt View £jo £аптгвсгия Help

•i" »■' 9 Л л i ■ ¿* <£ 3DHome Search Gude Seamfr Stop
.Jf’Bookmark* Locaüotc|<ie7//mAJSERS/STAFF̂AtSHALI/JSCfllPTÆX_INrJS/J1.Wm ¿j
¿I Instant Mesíafie §jí Internet Cj Lookup Cj NewbCod _______

В

(JavaScript Apphcalion|

WhSkltMO?

■чт*'1»ахь*ф*.С-1-Vit -Л, áta-УЛ ;

I ^ C a n S e » Г . л г з в

fíe £d* Viw f^trUcí Xcob Нф K J

j ¿ i a ü J
I Sttp PiebeJh Home Seeth favciiet Hstay

í i - = > JÚ
Pnrí i-Ot , Decus:

] Aicen (¿ J a'H*weHMTUii«Viv«ciiy»-4i<«ii3f'C<>2eî,.ChâcevOii€i>? Mirl ^ Q o i • Lrfet n

Wícr£. Г1ЛЯ ÛKFw Anta* Ctenc*

Г № ' " 1 С « * 1

Ш ' ’ & й м « £ я

Diagram 8.4 Diagram 8.5

S E L F R E V IE W Q U E S T IO N S

FILL IN THE BLANKS

1. Capturing user requests is traditionally done via a _____ .

2. JavaScript is a scripting language created by_______ .

3. JavaScript is embedded between the_____________HTML tags.

4. A user request form can be created with the_____________ HTML tags.

CHAP 08 INTRODUCTION TO JAVASCRIPT PAGE 141

5. are used to store values that can be used in other parts of a program.

6. The___________ is reserved for machine generated code and should not be used in scripts.

7. In JavaScript, variable is__________________ based on the_________ value that is assigned to it.

8. A ________ is a sequence of zero or more characters that are enclosed by double (") or single (')
quotes.

9. are block of JavaScript code that perform a specific task and return a value.

10. _ _ _ _ _ are JavaScript objects that are capable of storing a sequence of values.

11. A _________array is an array that has been created with each of its elements being assigned a specific
value.

12. are named collections of data that have properties and may be accessed via methods.

13. The___________operator calculates the remainder by dividing two integers.

TRUE OR FALSE

14. JavaScript is not an interpreted language.

15. A JavaScript program developed on a Unix machine will work perfectly well on a Windows machine.

16. The <BODY></BODY>HTML tags make an ideal place to create JavaScript variables and constants
and so on.

17. JavaScript does not allow the data type of the variable to be declared when a variable is created.

18. If the quote character is to be included in the string, the quote character must be preceded by the
frontslash (/) escape character.

19. eval(), parselnt() and parseFloat() are three functions provided by JavaScript to perform explicit type
conversions.

20. Methods are used to read or modify the data contained in an object.

21. The combination of an operator and its operands is referred to as an expression.

22. If a variable is declared outside the body of the function, it is available throughout a script inside all
functions and elsewhere in the program.

H A N D S O N E X E R C IS E S

1. Write a JavaScript code block using arrays and generate the current date in words, this should include

the day, the month and the year. The output should be as follows, Saturday, January 01,2000.

2. Write a JavaScript code block, which checks the contents entered in a form’s Text element. If the text

entered is in the lower case, convert to upper case. Make use of function toUppercaseQ.

3. Write a JavaScript code block, which validates a username and password against hard coded values.

If either the name or password field is not entered display an error message showing:
"You forgot one of the required fields. Please try again."

In case, the fields entered do not match the hard coded values, display an error message showing:

"Please enter a valid username and password"

If the fields entered match, display the following message: "Welcome (username)"

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, ru4D n»
PAGE 142 JAVASCRIPT, DHTML AND PERL CHAP 08

9. T H E J A V A S C R IP T D O C U M E N T O B J E C T M O D E L

IN T R O D U C T IO N

An HTML page is rendered {painted) in a browser. The browser assembles all the elements (objects)

contained in the HTML page, downloaded from the web server, in its memory. Once done the browser then

renders {paints) these objects in the browser window. Once the HTML page is rendered {painted) in the

browser window, the browser can no longer recognize individual HTML elements (objects).

To create an interactive web page it is imperative that the browser continues to recognize individual HTML
Objects even after they are rendered in the browser window. This allows the browser to access the

properties of these objects using the built-in methods of the object. Once the properties of an object are

accessible then the functionality of the object can be controlled at will.

JavaScript enabled browsers are capable of recognizing individual objects in an HTML page, after the page

has been rendered in the browser, because the JavaScript enabled browser recognizes and uses the
Document Object Model (i.e the DOM).

Using the Document Object Model (DOM) JavaScript enabled browsers identify the collection of web page

objects (web page elements) that have to be dealt with while rendering an HTML based, web page in the
browser window.

The HTML objects (i.e. the collection of web page elements), which belong to the DOM, have a descending
relationship with each other.

The topmost object in the DOM is the Navigator (i.e. the browser) itself. The next level in the DOM is the

browser’s Window. The next level in the DOM is the Document displayed in the browser’s window.

Should the document displayed in the browser’s window have an HTML Form coded in it, then the next
level in the DOM is the Form itself.

The DOM hierarchy continues downward to encompass individual elements on a FORM, such as Text
boxes, Labels, Radio buttons, Check boxes, Push buttons and so on, which belong to the form.

JavaScript’s object hierarchy is mapped to the DOM, which in turn is mapped to the web page elements in
the browser window. Hence, when a web page is

rendered in a JavaScript enabled browser window,

JavaScript is capable of uniquely identifying each element
in the web page, because major elements of a web page
are bound to the DOM.

The DOM that JavaScript recognizes is described in
diagram 9.1.

JavaScript’s DOM is referred to as an instance hierarchy.

The Navigator - i.e. Netscape Navigator,

Internet Explorer, Opera, Mosaic and so on.

Window
|->Document

I-> Anchor
|-> Link
| -> Form

|-> textbox
I-> textarea
I-> radiabutton
|-> checkbox
I-> select
I->button

Diagram 9.1: JavaScript’s DOM.

Instance
No HTML object is registered in the DOM by a JavaScript enabled browser unless they are assembled in

memory prior being rendered in the browser window. What this means is, if a document does not have any

Anchors described in it the Anchors object will exist but it will be empty. If the document does not have

any Links described in it the Links object will exist but it will be empty.

H ierarchy
All objects on a web page are not created equal. Each exists in a set relationship with other objects on the

web page. From diagram 9.1 the navigator occupies the topmost slot in the DOM followed by the Window

object and so on.

Below the Window is the Document object. Below the document object three other objects exist. They are

the Anchor, Link and Form objects. Individual form elemehts are found under the Form object.

In addition to the DOM, other objects currently recognized by a JavaScript enabled browser are Plug-ins,

Applets and Images. Hence using a JavaScript enabled browser and JavaScript most of the major web page

objects are accessible.

However, every single element of a web page rendered in the browser window, is not part of the DOM.

For example, HTML tags such as < H E A D > ... < / H E A D > or < B O D Y > ... < / B O D Y > are not part of the

DOM. Presentation styles, headings, body text, HI to H6 and so on are not part of the DOM hence not

recognized by JavaScript.

Diagram 9.1 shows web page objects that are part of the DOM.

JavaScript however, recognizes presentation styles, headings, body text, HI to H6 and so on, when

JavaScript assisted Style Sheets [JSSS] are in a web page. JSSS is usually between the < H E A D > . . .

< / H E A D > HTML tags in a web page.

T H E J A V A S C R IP T A S S IS T E D S T Y L E S H E E T S D O M [J S S S D O M]

JSSS use JavaScript syntax to control a document’s presentation style. When a JSSS is embedded in an

HTML page within the < H E A D > . . . < / H E A D > tags, then the JavaScript DOM picks up a whole new set

of objects, which add to the standard DOM objects already recognized by JavaScript. The additional

objects brought into the DOM by JSSS are shown in diagram 9.2. _ , , , ,
J 6 y B Objects added to the D O M

By extending the DOM recognized by JavaScript by embedding JSSS by the use of JSSS are:

in a web page, developers of web pages can access every element of a

web page whether this element appears on the page when it is rendered
in a client browser or not.

r,Ar.c COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r u Ap net

PAGE 144 JAVASCRIPT, DHTML AND PERL CHAP 09

By accessing appropriate properties of the Navigator object, (i.e. the

Browser), the topmost object in the DOM, JavaScript can recognize the
browser type (i.e. • Netscape Navigator, Internet Explorer, Opera,

Mosaic and so on) and subsequently dispatch all HTML pages to the

browser from the web server, with a style based on this knowledge.

This is where the power of JavaScript really becomes visible in j) j a a ra m 9 2- JSSS’s DOM
providing finely tuned web page content to a client’s browser.

-> Document
-> Tags

|->P
I -> DIV
I -> SPAN
I —> HI through H6

->classes
I -> Tag Names

-> IDS

Since JavaScript understands the DOM and can extend the DOM with the use of JSSS in a web page

JavaScript understands Objects.

CHAP 09 THE JAVASCRIPT DOCUMENT OBJECT MODEL PAGE 145

All objects have:

□ Properties that determine the functionality of the object

□ Methods that allow access to these properties

□ Events that allow JavaScript code snippets to be connected to the object by being mapped to
appropriate JavaScript event handlers.

Hence when a pre-determined event occurs the code snippet will execute. This is the traditional Object,
Event driven, Code execution model of any object based programming environment.

Using appropriate JavaScript code snippets, which reference the properties of an object via its built-in
methods, developers of web pages can actually control the functionality of any HTML object in the DOM
(or extended DOM) while the HTML program executes (i.e. at run time).

JavaScript can access the methods of all objects belonging to the DOM and JSSS DOM. Hence using
JavaScript, truly interactive web pages can be created.

N a te

JavaScript is an object-based programming language it is not fully object oriented. It does not fully
support basic object oriented programming capabilities such as classification, inheritance,
encapsulation and information hiding.

JavaScript features are geared towards providing developers the capability to quickly generate scripts that
will execute in the context of a web page within a JavaScript enabled browser or on a web server that
understands JavaScript.

Although JavaScript does not provide all of the features of a full object oriented programming language, it

does provide a suite of object-based features that are especially tailored to Browser or Server side scripting.

These features include the recognition of a number of predefined browser and server objects. JavaScript has
the ability to control the behavior of these objects through their properties and methods.

In the following chapters the focus will be only on browser siae JavaScripting. The browser in which

JavaScript code snippets will always run correctly will be Netscape Communicator as JavaScript is a
Netscape product. JavaScript is the natural language of Netscape Communicator.

U N D E R S T A N D IN G O B J E C T S IN H T M L

HTML can be used to create a Graphical User Interface (GUI) in a web page. HTML is capable of

accessing and using a number of objects that actually belong to the operating system (i.e. Windows). One

such object is a textbox. A ‘textbox’ is used in an HTML form to accept user input.

The text box is an object, which belongs to the DOM. JavaScript recognizes a text box. JavaScript

facilitates access to all the methods of a textbox. One of the methods of the textbox permits access to the

contents of the text box. Hence, JavaScript can process the contents of any textbox in an HTML form.

P ro p erties O f H T M L O b je c ts

Just like real world objects, HTML objects have a number of properties that determine the behavior of that
object. An object’s properties can be referenced as:

ObjectName.PropertyName

For example, a textbox can ha^e properties like name, size and so on.

PAGE 146
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 09

M ethods O f H TM L O b je c ts
As seen, properties determine the state of an object. While building interactive web pages an object’s

properties need to be set dynamically, i.e. when the object is being used. Thus all object based
programming environments must have facilities to set or get the value of object properties. This allows

program code to control the state of the object at run time.

Methods of an object are used to set or get a value of an object’s property. Thus determining how an

object behaves. An object’s methods can be referenced as:

ObjectName.MethodName

Using JavaScript it is possible to use an object’s built-in methods and manipulate the object’s properties at

run time. This gives a great deal of creative control to web page developers when web pages have to be

created on demand.

Once JavaScript code accepts client side input and / or reads a client’s browser parameters, on demand web

pages can be structured and sent to the browser from a web server.

B R O W S E R O B J E C T S
When any JavaScript enabled browser loads a web page, the browser automatically creates a number of

JavaScript objects that map to the DOM (or JSSS DOM). It is the DOM, which provides JavaScript access

to the HTML objects that
are contained in the web

page.

The JavaScript code

snippets imbedded as

part of the web page

itself (i.e. embedded
within the <SCRIPT>

</SCRIPT> tags of

filename.html) makes use

of these objects to

interact with the HTML
objects in the web page.

The JavaScript objects created by [Netscape Communicator] are listed below:

A JavaScript
Enabled Browser
Mapping to the

DOM

The Navigator Object

The Screen O b j e c t I

The EVENT Object

The Window Object

The Document Object

The Location Object

The History Object

The event Object

The Web Page
loaded in the

browser window,
contain ing a l l

the HTML
elements to
which the

JavaScript code
requires access.

Common Context Area in computer memory (RAM)

Diagram 9.3

Object Na m e Its Use

navigator To access information about the browser that is executing the current script.

window

Tn access a browser window or a frame within the window. The window obiect is assumed

to exist and does not reauire the window prefix when referring to its properties and

methods.

document
To access the document currently loaded into a window. The document object refers to an

HTML document that provides content, that is, one that has HEAD and BODY tags.

location
To represent a URL. It can be used to create a URL object, access parts of a URL, or

modify an existing URL.

history To maintain a history of the URL’s accessed within a window.

event To access information about the occurrence of an event.

EVENT The EVENT (capitalized) object provides constants that are used to identify events.

screen
To access information about the size and color depth of a client computer’s screen in

which the current browser is running.

Table 9.1

CHAP 09 THE JAVASCRIPT DOCUMENT OBJECT MODEL PAGE 147

How A JavaScript Enabled Browser Handles The Document Object
Any document (i.e. the HTML page) can contain various H TM L objects such as:
a Images
a Image Maps
□ Hyperlinks
□ Frames
□ Anchors
□ Applets
□ M ultimedia objects such a audio files, streaming video files
□ A Form w ith various form elements
The browser creates one array in memory per HTM L object in the document, thus registering each o f these
H T M L objects.

I f these H T M L objects are actually contained in the H TM L page then these arrays w ill hold indexed
elements, which w ill point to the context area in memory where the H TM L object are. Otherwise the array
w ill exist, but w ill be empty (i.e. have no elements in it).

I f there are multiple, sim ilar H T M L objects in the document (i.e multiple images) each array w ill have
multip le (indexed) elements.

The array index value mapped to an H TM L object w ill correspond to where the HTM L object was
described in the document. The first image in the document w ill have the array index as [0] (i.e.
Images[0]), the next image in the document w ill have the array index o f [1] and so on.

JavaScript provides access to the arrays and their elements. The values o f any/all elements o f each array
can be identified, obtained. The values held in the elements o f these arrays point to the context area in
memory where the H TM L
objects actually are.

Once the context area in
memory o f an H T M L object
is known then using the Methods o f the object,
specific object Properties can
be set using JavaScript. Thus
the functionality o f an H TM L
object can be controlled while
the H TM L page is running in
the browser.

The JavaScript arrays [created by Netscape Communicator] are listed below:
Image/Images Array To access an image that is embedded in an H TM L document. The images array

is used to access all image objects in a document.
L ink / Links Array To access a text or image-based source anchor o f a hypertext link. The links array is used to access all link objects w ith in a document.
Area To access an area within a client-side image map.

Frame / Frames Array To access an H TM L frame. The frames array is used to access all frames w ith in
a window.

/ ----------------------N
The Images

A rra y
The A rea

(Image
Maps) A r ra y

The L in k s
(Hyper L in k s)

A rra y

The Fram es
A r r a y

The A n chors
A rra y

The A p p le t s
A rra y

The Embeds
(M u l t i Media

O b j e c t s) A r ra y

The Forms
E le m e n ts

A r ra y

The mimeTypes The p l u g i n s The Form
A rra y A r r a y A r ra y

^ C o m m o n C o n t e x t a r e a i n c o m p u t e r m e m o r y (R A M) ^

Diagram 9.4

Table 9.2

The JavaScript arrays [created bv Netscape Communicator] are listed below: (Continued)

PAPF 14R COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
A ü t 1 0 JAVASCRIPT, DHTML AND PERL

CHAP 09

Anchor/Anchors array To access the target o f a hyperlink. The anchors array is used to access all
anchor objects w ith in a document.

Applet/Applets array To Access a Java applet. The applets array being used to access all the applets
in a document.

Embed / Embeds array To access an embedded object. The embeds array provides access to all the
embedded objects in a document.

M im eType/
MimeTypes array

To access information about a particular M IM E type supported by a browser. The mimeTypes array is an array o f all the mimeType objects supported by a
browser.

Plugin / Plugins array To access information about a particular browser plug-in. The plugins array is
an array o f all plug-ins supported by a browser.

Form / Forms array To access an H T M L form. The forms array is used to access all forms w ith in a
document. Table 9.2 (Continued)

The JavaScript form elements array [created bv Netscape Communicator]:
elements Access to all the form elements in the form.
text To access a text fie ld o f a form.
textarea To access a te-xt area o f a form.

radio To access a set o f radio buttons on the form or to access an individual radio button w ith in the
set.

checkbox To access a checkbox on a form.
button To access a form button that is not a reset or submit button.
submit To access a submit button on a form.
reset To access a reset button on a form.
select To access a select list o f a form.
option The option object is used to access the elements o f a select list.
password To access a password fie ld on a form.
hidden To access a hidden object on a form.
fileupload To access a file upload element o f a form.

Table 9.3
T H E W E B P A G E H T M L O B J E C T H IE R A R C H Y

This is an instance hierarchy. This means i f a web page does not have a specific H T M L object defined in
it the array associated w ith that specific H T M L object w ill exist, but w ill have no elements.

A ccess To Elements O f A Web Page

Conceptually once a web page is rendered [painted) in a browser w indow it is completely static.

For any program code to be able to interact w ith the web page, each element o f the web page would have to
be held in memory, w ith a unique name. The unique name translates to a context area in memory where
the web page element resides.

Hence, while a web page is being assembled in memory (R A M) prior being rendered (made visible) in the
browser’ s window, a JavaScript enabled browser creates several arrays as described earlier. These arrays
hold references to individual web page objects in their (indexed) elements.

CHAP 09 THE JAVASCRIPT DOCUMENT OBJECT MODEL PAGE 149

Referencing an appropriate element in its associated array provides access to each element o f a web page.
Hence, using JavaScript web page elements can be updated or processed. Once processed, the web page
can be re-rendered in the browser. When re-rendered in the browser changes made to the web page
elements w ill be visible.

I f updation or processing o f any web page element is done, based on client input, the web page is then an
interactive web page.

How A Web Page Element Is Manipulated

H T M L tags are used to create (instantiate) objects in a web page. For example, <INPUT Type="TEXT''>
w ill instantiates a text box on the web page when encountered in H T M L code.

Each H T M L object instantiated in a web page has properties and methods that allow access to the object’ s
properties. Each H T M L object has an event or several events bound to the object when the object was created. Thus an H T M L object can recognize a specific event when it occurs.

Once the H T M L object recognizes that an event has occurred this knowledge has to be passed to JavaScript
so that JavaScript also recognizes that the ‘event’ occurred. To facilitate this JavaScript provides a number
o f named JavaScript ‘ Event Handlers’ . The names o f these event handlers are descriptively bound to an
H T M L object’ s event name.

Example:
A Change event is recognized by a text box when its contents change. JavaScript provides an event
handler called onChange that is internally bound to the Change event o f the text box. The Change event
o f the text box talks to the onChange event handler o f JavaScript. The onChange event handler o f
JavaScript can then execute an appropriate JavaScript code snippet. For example:

<INPUT Type="TEXT" onC hange="<m yFunction> ">

Here the JavaScript function myFunction is bound to the JavaScript event handler onChange. The
assignment operator (=) does this binding.

The JavaScript, onChange event handler, is bound to the H T M L object TEXT by being passed as one o f its
attributes.

Hence, as soon as the Change event o f the text box occurs the JavaScript event handler onChange is
invoked.

Since the JavaScript function myFunction is bound to the JavaScript event handler onChange, as soon as
the onChange event handler is invoked the JavaScript code in myFunction executes.

H A N D LIN G (W EB P A G E) E V E N T S USING J A V A S C R I P T

A web page event could be associated w ith the action o f the mouse cursor on the web page. Such as:
□ A mouse-click on an object in a web page
□ The movement o f the mouse cursor across a web page
□ The mouse cursor hovering at a specific place on a web page and so on
These w ill be events recognized by the W indow object o f the DOM.

Other web page events could be the opening or closing o f a W indow, the loading o f an image in a web page
and so on.

PAGE 150
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 09

JavaScript’s approach to working w ith web page elements is a multi step process:
□ Identify a web page object
□ Choose an appropriate event associated w ith the object
□ Have a standard method o f connecting an object’ s event and JavaScript code snippets. JavaScript

event handlers mapped to an object’ s events do this.

JavaScript has several named event handlers that are mapped to an H TM L object’ s events. To work w ith
JavaScript it is necessary to understand how to use JavaScript ‘ Event Handlers’ correctly.

JavaScript, event handlers, can be divided into two types Interactive and Non Interactive.
An interactive event handler depends on user interaction with an H TM L page. For example, the JavaScript onMouseOver event handler is an interactive event handler. This requires the user to move the mouse
cursor over a web page.

A JavaScript, non-interactive, event handler, does not need user interaction to be invoked. For example the
JavaScript ‘ onLoad’ event handler is a non-interactive event handler as it automatically executes whenever
a form is loaded into a web page.

Table 9.4 details JavaScript event handlers that descriptively bound to HTM L object events. As long as the
H T M L object has an associated event, JavaScript provides an associated, named, event handler.

Named JavaScript Event Handlers

JavaScript Event Handler Will Be Called When
onAbort The loading o f an image is aborted as a result o f user action
onBlur A document, window, frame set, or form element loses current input focus.

onChange A text field, text area, file-uploaded field or selection is modified and loses
the current input focus.

onClick A link, client-side image map area or document is clicked
onDblC lick A link, client-side image map area or document is double clicked
onDragDrop A dragged object is dropped in a w indow or frame
onError An error occurs during loading o f an image, w indow or frame

onFocus A document, window, frame set, or form element receives the current input
focus

onKeyDown The user presses a Key
onKey Press The user presses and releases a Key
onKeyUp The user releases a Key
onLoad An image, document or frame set is loaded
onMouseDown The user presses a mouse button
onMouseMove The user moves the mouse
onMouseOut The mouse is moved out o f a link or an area o f a client side image map
onMouseOver The mouse is moved over a link or an area o f a client side image map
on MouseUp The user releases a mouse button
on Reset The user resets a form by clicking on the form ’s reset button
onResize The user resizes a window or frame
onSelect Text is selected in a text field or a text area
onSubmit The user presses a form ’s submit button
onUnload The user exits a document or frame set

Table 9.4

CHAP 09 THE JAVASCRIPT DOCUMENT OBJECT MODEL PAGE 151

The naming convention followed by Java Script makes it easy to identify a JavaScript event handler. The

JavaScript, event handler’s name, simply has the string ‘o n’ added to the H T M L object’s event name (e.g.

on M ou seO ver).

Example:
< A HRef=http://www.sctindia.com on M ou scO v er-'< Jav aS cr ip t c o d e sn ippet itself> or <A c a l l to a

JavaScriptfm c t io n > " > T e x t associated with the Link

Here, the onMouseOver JavaScript event handler is bound to the hyperlink <A> .. . H T M L
tag. When the mouse cursor moves over the hyperlink its MouseOver event occurs. When MouseOver event occurs a call is made to the JavaScript event handler onMouseOver. When the
JavaScript onMouseOver event handler is invoked a JavaScript code snippet can execute directly or
a JavaScript function can be called.

M o te ,

If a JavaScript code snippet is directly passed as a value to an H T M L attribute and is enclosed in
double quotes ("), then double quotes (") cannot be used within the enclosed JavaScript code.

Replacing these double quotes with single quotes (') where necessary.

To use the JavaScript D O M and manipulate its objects properties will help in raising this basic
comfort level to a confidence level required for coding in JavaScript.

To achieve this several examples which use the H T M L <FORM> . . . </FORM> tags along with
their attributes mapped to JavaScript code will be used.

S E L F R EV IE W Q U E S T IO N S

FILL IN THE BLANKS

1. Using th e _________________________________JavaScript enabled browsers identify the collection o f
web page objects that have to be dealt with while rendering an H T M L based web page in the browser
window.

2 . _______ use JavaScript to control a document’ s presentation style

3. o f an object are used to set or get a value o f an object’ s property.

4. JavaScript event handlers can be divided into two types____________and______________ .

5. object is used to access information about the browser that is executing the current
script

TRUE OR FALSE

6. I f the document does not have any links described in it, the L ink object does not exist.

7. JavaScript ‘ onLoad’ event handler is an interactive event handler as it automatically executes
whenever a form is loaded into a web page.

8. The browser creates one array in memory per H TM L object in the document.

http://www.sctindia.com

H A N D S O N E X E R C I S E S

1. Create a Web page using two image files, which switch between one another as the mouse pointer
moves over the images. Use the onMouseOver and onMouseOut event handlers. The output is as
shown in the diagrams 9.5 and 9.6.

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, . u l o . .
PAGE 152 JAVASCRIPT, DHTML AND PERL CHAP 09

'3 CHANGING IMAGES.... Miciosoft Internet Explore! HÖE3I -3 CHANGING IMAGES.. - Miciosoft Internet Exploier №2 ElI fie £<£ '¿xw go FjjvoiHet ijeip o I fâe Edi View go Fjvoiei O l. J .•1 'X .a j § a m . J 3 ü m j § a b1 : - Slop Refresh Home Search Favorites Htslofy Osarmek Piitscrecn Mai Stop Refresh Home Search Favotfes H«t<yy Ovsrneäs FiÆie/ee'i Mai 1I Addie» jçj HAMaicofm\̂arcript2\handson\hand:on2test.himl jJ C<rks I Adàess ¡̂1 H:\Malcotm\iavascrvt2\handson\handson2lesthtml _rJ Irkt
IMAGES,, , IMAGES —

place y o u r mouse p o in te r on the p icture place y o u r mouse po in te r on the p icture

C à m
> $ àJ^ ix f l ¿I _____Ma] Dort« & L c c d ¡wane* zone £ 1 [it.t/M.M&dmJw : ¡$0, Local «Vianet lone

Diagram 9.5: Output fo r Hands on Exercise. Diagram 9.6: Output for Hands on Exercise.

1 0 . F O R M S U S E D B Y A W E B S I T E

An HTML form provides data gathering functionality' to a web page. This is very useful if the web site is
used to advertise and sell products. HTML forms provide a full range of GUI controls. Additionally,
HTML forms can automatically submit data collected in its controls to a web server.

The data submitted can be processed at the web server by CGI programs, server side JavaScripts, Java
Servlets and so on.

JavaScript allows the validation of data entered into a form at the client side. JavaScript can be used to
ensure that only valid data is returned to a web server for further processing.

This chapter focuses on:
□ The JavaScript FORM object created when the HTML <FORM> </FORM> tags are encountered in an

HTML program.
□ Describes how JavaScript can be associated with an HTML form's GUI controls.

After working through chapter examples the following will be understood:
□ The properties and methods of the JavaScript FORM object and it’s associated GUI controls.
□ How JavaScript is used to handle form related events and perform (clien t s id e - in the b row ser

w indow) local processing of form data.

T H E F O R M O B J E C T

When creating an interactive web site for the Internet it is necessary to capture user input and process this
input. Based on the result of this processing, appropriate information from a web site can be dispatched to
be viewed. Both the capturing of user input and the rendering of appropriate web pages takes place in the
client side, browser’s window.

Traditionally, user input is captured in a Form. HTML provides the <FORM> ... </FORM> tags with
which an HTML form can be created to capture user input.

As soon as the <FORM> ... </FORM> tags are encountered in an HTML program by a JavaScript enabled
browser, the browser creates a ‘'form s a rray ’’ in memory. This array tracks the number of form objects
described in the HTML program.

Each form object in the HTML page will be described between its own <FORM> ... </FORM> HTML
tags. Should there be multiple forms (i.e.'multiple occurrences of the <FORM> ... </FORM> tags)
described in the HTML page then the forms array will have multiple (indexed) elements, each holding a
reference to an HTML form object.

The first form object described in the HTML file being held as array index[0], the second form object
described in the HTML file being held in the array index[l] and so on. By referencing a specific index
number of the forms array a specific form object can be accessed. The JavaScript forms array also holds
information about each object used within the <FORM> ... </FORM> tags.

Common HTML objects used between the <FORM> ... </FORM> tags are Text, TextArea, Radio

Buttons, Buttons, Check Boxes and so on. An HTML form is used extensively in creating interactive web
pages. Using the associated arrays created by a JavaScript enabled browser and JavaScript code, all form
elements (ob jec ts c o n ta in ed in th e fo r m) are accessible. Once accessible their properties can be manipulated
so as to control the functionality of the form at run time.

PAGE 154
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP10

There are two forms in the HTML file; Forml and Form2. Refer to Forms O b j e c t ' s (Ar r a y)
diagram 10.1. These will be held in the first two elements of the
Forms array. Forml will be an address, which points to where the
Form elements array is located.

Forml in the Forms array, will be a reference to the context area
where the elements of Forml are located. Forml has three form
elements.

I n d e x V a lu e
0 Forml
1 Form2

F o r m l . E le m e n ts

Form2 in the Forms array, is a reference to the context area where
the elements of Form2 are located. Form2 has five form elements.

To understand this model, let us write a JavaScript procedure that
will read the elements of the Form object’s array, and return the
number of actual form objects held.

Once the reference to the form’s elements are known let us write a
JavaScript procedure that will read the each Form’s Element array
and return the names of the form elements held in the array. The
elements held in each of the arrays must be exactly the same as the
elements described between the <FORM>...</FORM> tags in the
HTML file running in the browser.

I n d ex V a lu e
0 F o r m l . E le m e n t 1
1 F o r m l . E le m e n t2
2 F o r m l . E le m e n t 3

F o r m 2 .E le m e n ts
In d ex V a lu e
0 Form 2. E le m e n t l
1 Form 2. E le m e n t2
2 F orm 2. E le m e n t3
3 F orm 2. E le m e n t 4
4 Form 2. E le m e n t5

Diagram 10.1: The Form
Element’s Array

Exercise 1:

Focus: Count the number of elements in a
Form’s, elements array. Check the number
returned against the number of form
elements described between the
<FORM>...</FORM> tags in the HTML
page that is running in the Browser.
Recognize that the number of elements in
the elements array match the number of
elements described between the
<FORM>...</FORM> tags in the HTML
page exactly.

The diagram 10.2.1 shows an Alert box that
displays a message indicating the number of
form elements of implemented by the First
Form in the HTML file. Refer to the HTML
and JavaScript code described in Exercise 1.

Pop up an Alert that displays the individual
form elements of the array and recognize
that these are the same as are specified
between the <FORM>...</FORM> tags in
the HTML program

The diagram 10.2.2 shows an Alert box
displaying a message that the Textbox
named T e x tl of the First Form is at position
0 in the Elements array.

IP*
I £*'

iVetoed
.* * Scokmsiks .<• LocetiorvjUe ///Fi/SExarnp/SIFormlnfol 7

J?, Instam Message 'rr- WebMeil ^ Comed 4 Psaple .•# VeltowPages ;

-2à
Search Netscape

Я © ' What's fteie

Cnennais

F IR S T FO R M : S urv e y F o rm 1

F irst Name : |

Fresher r Experienced

CSckI I
» ofFcrm elements ot Survey Foirn 1*4

SECO N D FO RM : S urvey F

Name : I

Passw ord : I

binployed • Studying

D s c u m s r ' D o n*

Diagram 10.2.1: First message for Exercise 1.

pK «i--,<
E3e Edit V ie w Q o Comm unicator £ e ip3. & ^ -Si >

F ts lcad H om o S earch N e tscap e Pnrtt

f-Jglü

ЖУЯ.it ’ BooWna-'kS & Location ji,ie ///H|/SE*amp/S' Foimblo! 7 him'
^ W ebK te il Contact '4 P e o p le . 4 V e»ow P ag es ;(Я; D ow n load _ j O o tn e ls

Tj ©jTVkHafs R

F IR S T FO RM : S u rve y F o rm J

First Name : |

r Fresher r Experienced

Qfckl I

SECO N D FO R M : S u rve y F o rm 2

Name : J

Text! is at position 0

!;~,~5Г ~]j

Passw ord : |

Г" Employed Г” Studying

■Doc-.iroem Done A i m
Diagram 10.2.2: Second message for Exercise 1.

CHAP 10 FORMS USED BY A WEB SITE PAGE 155

<HMTL>
<HEAD><TITLE>FORMS</TITLE>

< !— T h e code allows to access the Form objects E l e m e n t s A r r a y //-->

<SCRIPT Language="JavaScript">
function Ver(forml) {

v = form 1 .elements.length;
if (forml.elements[3].name = "Buttonl") {

alert(’First form name : ' + document.forms[0].name);
alert('No. of Form elements of ' + document.forms[0].name + ' = ' + v);

}
else if (forml.elements[4].name == "Button2") {

alert('Second form name : ' + document.forms[l].name);
alertCNo. of Form elements of ' + document.forms[l].name + 1 = ' + v);

}
for(i=0; i < v; i++)

alert(forml.elements[i].name + ' is at position' + i);
}

</SCRIPT></HEAD>
<BODY>

<FORM Name="Survey Form 1 ">
FIRST FORM: <I>Survey Form 1 </I>

First Name : <INPUT Name="Textl" Type="Text" Value="">

<INPUT Name="Radio 1" Type="Radio" Value=""> Fresher
<INPUT Name="Radio2" Type="Radio" Value=""> Experienced

<rNPUTName="Buttonl" onClick="Ver(form)" Type="Button" Value="Clickl">

</FORM>
<FORM Name="Survey Form 2">

SECOND FORM: <I> Survey Form 2 </I>

Name : <INPUT Name="Text2" Type="Text" Value="">

Password : <INPUT Name="Pass2" Type="Password" Value="">

<INPUTName="Checkl" Type="CheckBox" Value="" > Employed
<INPUT Name="Check2" Type="CheckBox" Value="" > Studying

<INPUT Name="Button2" onClick="Ver(form)" Type="Button" Value="Click2">

</FORM>
</BODY>

</HTML>

Exercise 2: Illustrates the use of a form object’s Elements array

Focus: The state of a Radio button and a Checkbox on the HTML form can be programmatically changed
using event based JavaScript, i.e. on the clicked event o f a command button.

When the JavaScript program runs an Alert draws attention to the fact that the Checkbox, checked property
has been set to true via JavaScript code.

The Code Listing For Exercise 1:

The diagram 10.3.1 shows an Alert box that displays a message indicating that the Checkbox is checked, on
clicking the | S e t E lem en t A rra y V alu e button.

PAGE 156 COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL CHAP10

FJe £da 5£sw £¡0 CommureceK» tletp

* ÿ à r íV
ReioesJ Коте Sa «ch Netscape fV¡M Seamy

r.±4

•if'Boc-ijnartw LocÄcn ¡5I0 ///Ht/SExemp/S32toiml 9 hïrt
g. WebMa-l g CcrtKt Щ Paopla Üf YaSowPagec ÿ Ро*тПоед -¿j Chwan

»] *72'Reieied

Client Name :-f~~

Client Address: |

Client E-mail Address :j

R Male r Female

г Employed

S»; Etemgf* Агга-/ Veki*

; \ ТЪеЧлзюеиЧоя-.-i

;
£íe í& Ve*. ¡Jo fjva<e; ¡j«*>

. © Oj Ö
5 Wo Ríümíi Неяв

ci je] N \SE»amo'E>*«»MiMrlv ►

r“i a 0 s a fa а
cb ? ehrtet Нашу Owmk FiAcmr мы Pu*

FrJt Name l*™«

AddftJ! I

Vef¡y i

Last Name |Shah

j \ Р1»я^я!^*о4>в-5:вЛо»/'?оЛо«е: Ad*en. FVcode.

jf'«f 1

Diagram 10.3.1: First message for Exercise 2. Diagram 10.3.2: Second message for Exercise 2.

On clicking the first Alert’s | OK | button, another Alert pops up that displays a message indicating that the
Radio button is checked, when the same ‘Set Element Array Value’ button was clicked.

Conceptually, without clicking on the HTML form objects their ‘Checked’ properties have been set. This
illustrates how JavaScript code can access a form’s element via the form elements array and manipulate an
element’s properties.

As soon as the elements properties change the Browser will display the object with its changed property in
the HTML page. Refer to the HTML and JavaScript code described in Exercise 2.

The Code Listing For Exercise 2:
<HMTL>

<HEAD><TITLE>FORMS</TITLE>
< !— The code allows to access the Fo r m objects Elements A r r a y //— >

<SCRIPT Language-JavaScript'>
function Chk(fl) {

fl .Check.checked=true;
alert("The Checkbox just got checked");
fl .Check.checked=false;
fl.Radio[0].checked=true;
fl.Radio[l].checked=false;
alert("The Radio button just got checked");

}
</SCRIPT></HEAD>
<BODY><FORM>

Client Name : <INPUT Name="Text" Type-'Text" Value-'">

Client Address : <INPUTName-’Textl" Type-'Text" Value="">

Client E-mail Address : <INPUTName="Text2" Type-'Text" Value="">

<INPUT Name="Radio" Type="radio" Value=""> Male
<INPUTName-'Radio" Type="radio" Value=""> Female

<INPUT Name="Check" Type="CheckBox" Value=""> Employed

CHAP 10 FORMS USED BY A WEB SITE PAGE 157

<INPUT Name="Bt" onClick="Chk(this.form)" Type="Button"
Value-'Set Element Array Value">

</FORM></BODY>
</HTML>

Exercise 3:
Focus: Create a HTML form that has a number of Textboxes. When the form runs in the Browser fill the
Textboxes with data. Write JavaScript code that verifies that all Textboxes have been filled. If a Textbox
has been left empty, popup an Alert indicating which Textbox has been left empty. When the Alert’s OK
button is clicked on, Set focus to that specific Textbox. If all the Textboxes are filled, display a Thank You
alert.

The diagram 10.4.1 shows an Alert box that displays a message indicating that the Address and the Pincode Textboxes were not filled in.

The diagram 10.4.2 shows an Alert box that displays a message indicating that all the Textboxes have been
filled.

mam
£<* £<W Y ie * S o Communicator Help

i ¿à -i
fts toad Horns Search Nascapa Prim

4-
Security

. . I ’ BooVmori'.» X- Ldcoùoo jid« ,ï/FVSE«smc. S lFow o-7 nmi 7] O'vVhoTi ReWed

!n««a.»ii Mat saga g i vs'aPMai j l Comae 3 Pacpis g : YeScv. Pages 3-1 Download O a nnaii_______________

rile £Bb Vi«»« Qp ¿ommur.ico'o! yelp

£ 3 . ai 4
Reload Horns Seazch Netscape Psir»

v# ' Oooronorfw ft Location, jh SE-3mp\Elvall9htmi
■ g WabMfcl g Contact g Paopte § YaBowPagw ^ DoMilood Channels

d
Securiy

»I 'Tf' IrttoTs ftiiœed

FIRST FORM: Survey F o rm 1

First Name : I

' t \ No. ofFom iBismariU oJSurvByFofm l •*
a c k i | y ?

SECOND FORM: Survey F
Ü 0 « I

Name : f

Password : [

r Employed r Studying

O k k 2 |

First Name pnTi Last Name |sh

Address : p Bunglows, A n d h e

Diagram 10.4.1: First message for Exercise 1. Diagram 10.4.2: Second message for Exercise 3.

This is a simple exercise, which illustrates how JavaScript code can be used to validate data that is entered
in a Form.

Based on this concept, business rules can be implemented in any HTML form using JavaScript.

Thus data being entered into an HTML form can be validated on the client’s machine before being
dispatched to a web server for further processing. Refer to the HTML and JavaScript code described in
Exercise 3.

The code listing for Exercise 3:
<HTML>

<HEAD><SCRIPT LANGUAGE="JAVASCRIPT"> function verifyData() {
a=0 ; r=""; for (i=0; i<=4; i++) {

if (document.forms[0].elements[i].value == "") {
a=l;

r = r + " " + document.forms[0].elements[i].name + ;
}
else if ((i > 3)&&(a==0)) {

alert("All Textboxes are filled in - Thank You !");
}

}
for (i=0; i<=4; i-H -) {

if (documenLiorms[0].elements[i].value == "") {
alert("Please fill in the following Textbox / Textboxes " + r);
document.forms[0].elements[i].focus();
break;

}

}

}
</SCRIPT></HEAD>
<BODY><FORM>

First Name : <INPUT Name="Firstname" Type-'Text" Size=20>
Last Name : <INPUT Name="Lastname" Type="Text" Size=20><P>
Address : <INPUT Name="Address" Type="Text" Size=60><P>
Pincode : <rNPUT Name="Pincode" Type="Text" Size=6><P>
<INPUT Name="act" onClick="verifyData()" Type="button"Value="Verify">

</F ORM></BOD Y >
<SCRIPT Language="JavaScript">

document.forms[0].Firstname.focus();
</SCRIPT>

</HTML>

The Form Object’s Methods

HTML forms can be made up of a variety of HTML elements that accept user input. The <FORM>
</FORM> HTML tags enclose the HTML elements that make up the form. Once a JavaScript enabled
browser encounters these tags in an HTML file the JavaScript enabled browser creates a form object in
memory, which is held as an element of the forms array. The form object has properties like Name,
Method and Action.

Method

The Method property of a form is used to specify the method used to send data captured by various form
elements back to the web server. The method used can be either Get or Post.

The Get method sends the data captured by form elements to the web server encoded into a URL, which
points to a web server. The data captured in form elements is appended to the URL.

This technique is used when there is a small amount of data being sent back to the web server. The
maximum amount of data that can be sent back to the web server using this method is 1024 bytes.

The Post method sends the data captured by form elements back to the web server as a separate bit-stream
of data. When there is a large amount of data to be sent back to the web server, this is the method used.

. COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, f'ui a di n
PAGE 158 JAVASCRIPT, DHTML AND PERL

If the method attribute is not specified within the <FORM> </FORM> tags, the default method used by the
browser to send data back to the web server is the Get method, i.e. as an encoded URL.

CHAP 10 FORMS USED BY A WEB SITE PAGE 159

Action

The Action attribute of the <FORM>...</FORM> tags points to the URL (address) of a program on the
web server that will process the form data captured and being sent back. The server side program that
processes this data can be written in any scripting language that the web server understands.

Commonly used web server side scripting languages are:
□ JavaScript - (used with the Netscape suite of web servers)
□ VB Script and ASP - (used with the Microsoft suite of web servers)
□ Perl, ANSI C - (used with the Unix based suite of web servers) and so on.

HTML elements used to capture form data are specified as attributes of the <INPUT>...</INPUT> tags
used within the <FORM>...</FORM> tags.

The HTML form elements that can be specified as attributes to the <INPUT> tag are:
Form Elements Description & Syntax
Text A text field (<INPUT Type="Text">)
Password A password text field in which each keystroke appears as an asterisk(*)

(<INPUT Type="Password">)
Button A new element that provides a button other than a submit or reset button

(<INPUT Type-'Button">)
Checkbox A checkbox (<INPUT Type="Checkbox">)
Radio A radio button (<INPUT Type="Radio">)
Reset A reset button (<INPUT Type="Reset">)
Submit A submit button (<INPUT Type-'Submit">)
Select A selection list (<SELECT><OPTION>optionl</OPTION>

<OPTION>option2</OPTION></SELECT>)
Text Area A multi line text entry field (<TEXTAREA>Default Text</TEXTAREA>)
Hidden A field that may contain a value but is not displayed within a form

(dNPUT Type="Hidden">)
Table 10.1

Each of these form elements can be named. Once named, their names can then be used for referencing them
in JavaScript. ‘Name’ is a property associated with every HTML object used in a form.

There are several other Properties and Methods associated with each of these form objects. These
Properties and Methods, along with the objects with which they are associated is summarized as follows:

Properties Of Form Elements

Form Element Name Property Name Description
Text
Password
Text Area
Button
Radio
CheckBox
Select
Submit
Reset
Hidden
Fileupload

Name Indicates the name of the object. This name can be used for
referencing the object in future, when required.

Table 10.2: Properties Of Form Elements

„ 4П г 1sn COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL CHAP10

Form Element Name Property Name Description
Text

Value Indicates the current value of the element.

Password
Text Area
Button
Radio
CheckBox
Submit
Reset
Hidden
Fileiipload
Select It contains any value indicated in the option tag.
Text

DefaultValue Indicates the default value of the object.Password
Text Area
Radio Button Checked Indicates the current status of the object, whether checked or

unchecked.Check Box
Radio Button DefaultChecked Indicates the default status-of the element.Check Box
Radio Length Indicates the number of radio buttons in a r̂oup.
Radio Button

Index
Indicates the index value of the currently selected radio button.

Select

Contains the index value in the current option of the options
array.

Text Contains the value of the text displayed in the menu for the
specific option

Selectedlndex Contains the index number of the currently selected option.

DefaultSelected Indicates whether the option is selected by default in the option
tag.

Selected Indicates the current status of the option.
Table 10.2: Properties Of Form Elements (Continued)

Methods of Form Elements

Form Element Name Method Name Description
Text

onFocus() Fires when the form cursor enters into an object. •Password
TextArea
Text

onBlur() Fires when the form cursor is moved away from an object.Password
TextArea
Text

onSelectQ Fires when text is selected in an object.Password
TextArea
Text

onChange() Fires when text is changed in an object.Password
TextArea

Tabic 10.3: Methods Of Form Elements

CHAP 10 FORMS USED BY A WEB SITE PAGE 161

Form Elem ent Name M ethod Name Description
Button

onClick() Fires when an object is clicked on.
Radio
Checkbox
Submit
Reset

Table 10.3: Methods Of Form Elements (Continued)

The Text Element

Text elements are data entry fields used in HTML forms. Text fields accept a single line of text entry.

P r o p e r t i e s
The text object has the following properties:
□ name
□ value

M e t h o d s
The text object has the following methods:
□ focus()
□ blur()
□ selectQ

(Selects the text in the data entry field, i.e. causes the text to be highlighted).

E v e n t s
□ Focus()
□ Blur()
□ Select()
□ Change()

JavaScript provides the following event handlers for the text object's events:
□ onFocus()
□ onBlur()
□ onSelect()
□ onChange()

Syntax:
<INPUT N a m e = "< N a m e O fT h e O b je c t> " Type="Text" V a lu e = "< D e fa u ltV a lu e > ">

Example:
<INPUT Name="txt_age" Type="Text" Value=" 18">

This places a Text field (i.e. a single line text edit area) within an HTML form, which can be referenced by
the name txt_age. The text field will immediately display the value 18.

The Password Element

The password element is a unique type of text entry field. All keystrokes for this field are displayed as an
asterisk [*]. This makes the password element ideal for accepting input of confidential information, such as
a password, bank account number or a personal identification number.

P r o p e r t i e s
The password object has the following properties:
□ defaultValue
□ name
□ value

M e t h o d s
The password object has the following methods:
□ focus()
□ blur()
□ select()

(Selects text in the password element, i.e. causes selected text to be highlighted).

E v e n t s
The password object has the following methods:
□ Focus()
□ Blur()
□ Select()
□ Change()

JavaScript provides the following event handlers for the password object’s events:
□ onFocus()
□ onBlur()
□ ohSelect()
□ onChange()

Syntax:<INPUT N a m e = "< N a m e O fT h e O b je c t> " Type="Password" V a Iu e = " < D e fa u ltV a lu e > ">

Example:
<INPUT Name="txt_usr_pswd" Type="Password" Value="">

This places a Password field within an HTML form, which can be referenced by the name txt_user_name.
The Button Element

An HTML button element is a commonly used form object. It is generally used to trigger appropriate form
level processing.

P r o p e r t i e s
□ name
□ value

M e t h o d
□ click()

E v e n t
□ clickQ

JavaScript provides the following event handler for the button object’s event:
□ onClick().

Syntax:<INPUT N am e="<N am eO fTheO bj e c t > " Type="Button" V a lu e = "< B u t to n L a b e l> ">

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r H 4 P i n
PAGE 162 JAVASCRIPT, DHTML AND PERL

CHAP 10 FORMS USED BY A WEB SITE PAGE 163

Example:

<INPUTName="btn_check" Type-'Button" Value="Verify...">

This places a Button on the HTML form named btn_check. The button will display the text Verify... on
its face as a label.

Exercise 4:

Focus: Develop a HTML Page, which accepts:
□ Any mathematical expression
□ Evaluates the expression
□ Displays the result of the evaluation

To achieve this a form is created which has two
Text objects and one Button object as shown in
diagram 10.5. The first Text object is used to
accept a mathematical expression for evaluation.
When the Button object Q C a l c u l a t e [) is

b u tto n E xam ple - N e ts c a p e
f ï e £<A Vlevf £ o £on*nur«cato ¡je to

£

clicked on, the second Text object will display the
output of the evaluation of the expression entered
into the first Text object. Refer to the HTML and
JavaScript code described in Exercise 4.

The Code listing for Exercise 4:

i
Ratead

AНогти Si aid ' 3. rf
N essc ip i P riri S e c u iy

^ ’ 8 о о к го *Ь Jh lo c a tio n j 'le ///JWSCRIPT/EXMF1SA;hAP5/Ex1 Mm T j (f j T w t W i Related

S i n t e r t M eeage ÿ W abM al Щ Contad 3 People 5] Yetow Pages Oownfead _ j O e n a to

Enter a Javascnpt Mathematical Expression j 10+10

The result of tbs expression is I20

Oocuneñí: Оспе

Diagram 10.5: Output for Exercise 4.

<HTML>
<HEAD><TITLE>Using Text and Button objects in an HTML Form</TITLE>
<SCRIPT Language="JavaScript">

function calculate(form) {
form.results. value = eval(form.entry. value);

}
</SCRIPT></HEAD>
<BODY><FORM>Enter a Javascript Mathematical Expression:

<INPUT Type-’Text" Name="entry" Value="">
<INPUTType="button" Value-'Calculate" onClick="calculate(this.form);">

The result of this expression is:
<INPUT Type="Text" Name="results" onFocus="this.blur();">

</FORM></BODY>
</HTML>

When this program is executed in a JavaScript enabled browser, the used defined JavaScript function
calculate() is registered by the browser first as it is written between the <HEAD>... </HEAD> tags.

The lines of code between the <FORM> </FORM> tags creates a form as seen in diagram 10.5. Enter an
expression in the first ‘Text’ object on the form for evaluation and with the mouse cursor click on the
button ‘Calculate’.

When the button C a l c u l a t e is clicked on its clickQ event fires. This in turn will activate the
JavaScript event handler onClick. This invokes the function calculate().

The function calculate() evaluates the expression entered in the first Text object and displays its output in
the second Text object on the form.

PAGE 164
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP10

The Submit (Button) Element

The submit button is a special purpose button. The submit button submits the current data held in each

data aware, form element to a W e b Sever for further processing.

P r o p e r t i e s
The submit button is associated with 2 properties:

□ name

□ value

M e t h o d
The submit button’s method is:

□ click()

E v e n t
The submit button’s event is:

□ click()

JavaScript provides the following event handler for the Submit button’s event:

□ onClick().

Example:
<INPUT Name="btn_submit" Type="Submit" Value="SUBMIT D A T A " >

This will .place a Submit button on an H T M L form, named btn_submit. The Submit button will display

SUBMIT DATA.. W hen this button is pressed the contents of each data aware, form element will be sent

back to a web server for further processing.

There is no example to the functionality of the H T M L submit button at this stage since this material
is only focused on client side JavaScript exclusively.

In subsequent chapters where PERL CGI programming is covered the G E T and P O S T methods of
the Form object will be covered with appropriate examples.

The Reset (Button) Element

P r o p e r t i e s
The reset button has 2 properties, (the sam e as the button)-.
□ name

□ v a lu e

M e t h o d s
The reset button has only one method associated with it:

□ click()

E v e n t s
The reset button has only one event associated with it:

□ click()

The reset button’s JavaScript event handler is:

□ onClick()

D o t e

CHAP 10 FORMS USED BY A WEB SITE PAGE 165

Example:
<INPUTName="btn_reset" Type="Reset" Value=" RESET FORM ">

This places a Reset button on the H T M L form, named btn_reset. When this button is pressed each data
aware form object w ill be reset to their default values. A ll user-input values w ill be initialized.

The Submit and Reset buttons are usually used together on an H T M L form. The Submit button w ill cause
the contents o f all the data aware form elements to be dispatched to the web server for further processing.
The Reset button w ill empty the contents o f the form objects so that the form is ready for reuse.

N o te .

It is good programming practice to simulate the reset button in a form’s unLoad() event.

This w ill ensure that whenever a form is closed its fields w ill be emptied so that the next time the
form is opened, its form elements w ill be empty, ready for reuse.

Exercise 5: To illustrate how the Reset button on a form functions.

Focus: Create a form having Textboxes, Radio buttons, a Checkbox and a Reset button as shown in
diagram 10.6.1. On clicking the Reset button, the entire form is reset (i.e. cleared). Refer to the H T M L and
JavaScript code described in Exercise 5.

When the Reset button is clicked the form w ill appear as in diagram 10.6.2.

The diagram 10.6.2 shows an A lert box that displays a message indicating that all the form elements have
been cleared.

///F iySE»n>p/S3ltom i19 fcrnl
W«fcMa> & Cortaa g P»aote 3 Dom»*x*S Oanwl*

B B S S *

s
Client Nam* : jA»it
Client Address: }*ndh*ri
• Male r Female
P Employed

i * a% rvausr. PMtood
QjttxtvjnobK» £}eäp

M
A UxaöOfr)tl» ///H/SE«.mp/S31lorm19 html

y. WrtW a Conac» ÿ PtoplB jÿ DowbM J
Client Name : |
Client Address: |
r Male r Female
r Employed A ThtFofmeleweraehavsb#enci*«i»£i

awrr.

Diagram 10.6.1: First message for Exercise 5.

The code lis ting fo r Exercise 5:

D iagram 10.6.2: Second message fo r Exercise 5.

<H M TL>
<H E A D ><TITLE>FO R M Sl< /T ITLE >

.<!— Us i n g Reset Button //-->

<SCRIPT>
function fu n c (fl) { alert("The Form Elements have been cleared");

</SCRIPT></HEAD>

<BODY><FORM onReset="func(this.form)">
Client Name : < IN P U TN am e="Textl" Type="Text" Value="">

Client Address : < INPUT Name=’Text2" Type="Text" Value="">

<INPUT Type="Radio" Name="Radio" Value="">Male
<1NPUT Type="Radio" Name="Radio" Value="">Female

<INPUT Type-'C heckBox" Name="Check" Value="">Employed

<INPUT N am e-'R st" Type="Reset" Value="Reset" >

</FORM ></BODY>
</HTM L>

The Checkbox Element

A checkbox is an H T M L form object that behaves as a toggle switch. This means a checkbox can be in
either one o f two states, either checked or unchecked. A checkbox is used to return a single-specific value
to a web server. Either T or F or 1 or 0 can be returned depending upon whether the checkbox is checked
or unchecked. Based on the value returned from the H T M L form, a web server script can decide what
further processing the web server should do.

P r o p e r t i e s
□ name
□ value
□ checked

M e t h o d
□ click()

E v e n t
□ click()

A checkbox’ s JavaScript event handler is:
□ onClick()

Syntax:

<IN PU T Name="<NameOfTheObject>" Type="checkbox" Value="<Yes/No>" CHLCK.LL»

Example:

<INPUTNam e="Em ployed" Type="Checkbox" V A L U E -'Y e s " CHECKED>

This places a Checkbox on an H T M L form, which can be referenced by the name Employed. The Value
attribute assigns a meaning to the checkbox. This is the value that is returned i f the check box is Checked.

The checkbox is checked on (i.e. m a rk ed ch ec k ed) by default. Hence, i f the check box is not unchecked
and the form is submitted to a web server this check box w ill automatically return the value Yes.

Exercise 6:

Focus: Develop a H T M L Page, which uses two text fields and a checkbox. The first text object accepts a
numeric value. Depending on the checked or unchecked state o f the checkbox, the second text object
displays:

DA. C 4ec COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r H APm
PAGE 166 JAVASCRIPT, DHTML AND PERL CHAP1°

Checkbox is not checked Double the numeric value entered
Checkbox is checked The square o f the numeric value entered

CHAP 10 FORMS USED BY A WEB SITE PAGE 167

I f the second text object is loaded w ith a numeric value depending on the checked or unchecked state o f

Checkbox is not checked H alf the numeric value entered
Checkbox is checked The square root o f the numeric value entered

Whenever the state o f the checkbox is changed,
recalculation and display o f values takes place
appropriately. The diagram 10.7 shows a form
created to perform mathematical calculations as
specified above. Refer to the H TM L and
JavaScript code described in Exercise 6.

The Code Listing for Exercise 6:

t f^ W o ik m g w ith C h ec k B ox c s - N e tscap e
F ie £ * ÿiev* g o Cofnmuricatoi y * b

? * i A > à
Reload Home Search Ne<«ace

* Boefcroatks Location ¡ I

в£ -SI
S e c u iy ■ ■

- T j Related

Д im ian i M e;sage j g W ebM af j g Contad g j People g i Y r fo w P a y ; jg i Dc-wntoaa J j Chaméis

Value: |«
Action(Default - Double) P ¡Square!

Result: ¡3 6

-- ia-
Diagram 10.7: Output for Exercise 6.

<H TM L>
<HEAD><TITLE>W orking w ith Check

Boxes</TITLE>
<SCRIPT>

function calculate(form, callingField) {
if (callingField == "result") {

if(form.square.checked) {
form.entry. value = Math.sqrt(form.result. value);

}
else { form.entry.value = form.result.value/2; }

}
else {

if(form.square.checked) {
form.result.value = form.entry.value * form.entry.value;

}
else { form.result.value = form.entry.value * 2; }

}

}
</SCRIPT></HEAD>
<BODY><FORM ><CENTER>

Value:
<INPUT Name="entry" onChange="calculate(this.form, this.name);" Type="Text" Value=0>

Action(Default - Double):
<INPUT Name="square" onClick="calculate(this.form, this.name);" Type="Checkbox">Square

Result:
<INPUT onChange="calculate(this.form, this.name);" Name="result" Type="Text" Value=0>

</CENTER></FORM></BODY>
</H TM L>

A n a l y s i s

This example illustrates the use o f the onClick event handler o f a check box. I f the check box is checked or
not passes an appropriate Boolean value back to the JavaScript, user defined, function calculate^).
Depending upon this value a decision is made.

A checkbox named square is placed on the H T M L form it can be checked or unchecked.

I f a value is placed in the f irs t text fie ld on the form and the checkbox is ch ec k ed , the sq u a r e o f the value in
the first text fie ld w ill be displayed in the second text field. I f the checkbox is unchecked d ou b le the
numeric value o f the first text fie ld w ill be displayed in the second text field.

I f a value is placed in the second text field on the form and the checkbox is checked, the h a l f the value held
in the second text fie ld w ill be displayed in the f irs t text field. I f the checkbox it is unchecked then the
sq u a r e roo t o f the value in the second text field w ill be displayed in the first text field.

The on C lick event handler o f the ch ec k b o x ensures that when checkbox is clicked, to change (tog g le) its
state, all values are recalculated.

The onChange event handler o f the text boxes ensures that when the values in the text fields change, the
form is recalculated.

The Radio Element

The radio button element has two states and can toggle between them. The one special exception is that
when several radio buttons are combined into a radio (button) group only a single radio button can be
selected at any given time. G iving the same name to all the radio buttons places them in the same radio
group.

P r o p e r t i e s
□ checked
□ index
□ length
□ name

M e t h o d
□ clicked()

E v e n t
□ clicked()

A radio button’s JavaScript event handler is:
□ onC licked()

Syntax:
< IN PU T T ype = "R ad io " N a m e= "< R ad ioG xoupN am e> " V a lu e = " < l /0 > " CHECKED>

Example:
<INPUTType="Radio" Name="Numbers" V a lue= "l" CHECKED> 1

<INPUT Type="Radio" Name="Numbers" Value="2" >2

<INPUT Type="Radio" Name="Numbers" Value="3" >3
.

This places three r a d io buttons on the H T M L form, belonging to the same radio group called 'Numbers'.
The first radio button w ill be set as activ e as soon as the H TM L page is visible.

Exercise 7:

Focus: An HTM L form displays two text boxes and two radio buttons. The first text box accepts a numeric
value. I f the firs t radio button i f active, double the number entered in the firs t text field w ill be displayed in
the second text field. I f the second radio button is active the square o f the number entered in the first field
w ill be displayed in the second text field.

p a p f irr COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL CHAP10

Whenever the radio buttons are toggled, recalculation takes place and the output is displayed appropriately.

CHAP 10 FORMS USED BY A WEB SITE PAGE 169

The diagram 10.8 show a form created to perform
mathematical calculations as specified above.
Refer to the H TM L and JavaScript code described
in Exercise 7.

The Code L is ting fo r Exercise 7:

<HTM L>
<H EAD ><TITLE> W orking w ith Radio

Buttons < /T ITLE>
<SCRIPT>

function calculate(form) {
if(form .elements[l].checked) {

form.result.value =
form.entry.value *
2;

}
else {

form.result.value = form.entry.value * form.entry.value;
}

}
</SCRIPT></HEAD>
<BOD Y x F O R M x C E N T E R x B R>

Value:
< IN P U TN am e-'en try" Type="Text" V a lue= 0> < B R xB R xS P A C E R Size=l90>
A ction :<B xB R ><S P A C E R Size=225>
<INPUT Nam e="actionl" onC lick="calculate(this.form);" Type="Radio" Value="twice">Double

<SPACER Size = 225>
<INPUT Nam e="action l" onC lick="calculate(this.form);" Type="Radio" Value="square">
Square
<B R>
Result:
<INPUT Name="result" onFocus="this.blur();" Type="Text">

</CENTERx /FORM ></BO DY>
</H TM L>

A n a l y s i s

This example illustrates the use o f the onC.lick and onChange event handlers.

Two radio buttons are displayed. These radio buttons belong to the same radio group because each o f the
radio buttons has been given the same name as specified in the <INPUT> tag. Each radio button is named
square.

In the above example, i f the first radio button is checked, the program w ill double the numeric value held in
the first text field. On checking the second radio button, the program w ill square the value held in the first
text box. In either case the results o f this processing w ill be displayed in the second text box.

The onClick event handler in the radio button ensures that when radio buttons are toggled, the recalculation
takes place.

The onChange event handler in the text boxes ensures that when changes to values in the text boxes takes
place, recalculation is done.

W ork ing w ith R a d io Buttons - N e tscap e B R Ö
E?« £ds S o ¿orMHtfocetM iJei?

1 4 > 3 a 4L â • * I f
• lo a d M om . S w d i N N c e p i P rir t S * o r ty » ¡ 2

- , f BooKnxxK* A Locator., ¡ f I . / //H l/E .om ol« C od *i/c t.o c^3/t< i5 fn p i«3 f<ml
■j § | g Contact 3 ! Psopte 51 Vnaow Pag** & J Otmeit

V a lu e : |3

A c t io n :
D o a b le

r S q u a re

R e m i t : (6

D iagram 10.8: Output fo r Exercise 7.

The TextArea Element

The textArea form element provides a way to create a custom sized, multip lé line, text entry object, which
can be placed on an H T M L form.

P r o p e r t i e s
□ defaultChecked
□ name
□ value

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r u APin
PAGE 170 JAVASCRIPT, DHTML AND PERL CHAP1°

M e t h o d s :
□ Focus()
□ B lur()
□ Select()

E v e n t s :
□ Focus()
□ BlurO
□ Select()

The Javacript eventhandlers o f a TextArea are:
□ onFocusO
□ onBlur()
□ onSelect()

Syntax:
< IN P U T TY P E =TextA rea N a m e = "< M y T e x tA re a > " Row=10 Cols=25>

<H2>Enter Data Here</H 2></TEXTAR EA>

This w ill place a textArea object on a form. It can be referenced by the name MyTextArea. The textarea
can accommodate 25 characters per line and 10 such lines inside its user defined boundaries. The
boundaries are set by the values passed to the ROW and COLS attributes o f the TextArea object.

The Select And Option Elements

A Select object on an H T M L form appears as drop-down list or a scrollable list o f selectable items. To
conserve form space, the scrollable lis t o f selectable items is used.

The list o f items to choose from is described between the <SE LEC T>...< /SELEC T> tags using the
<O P TIO N > tag. The <OPTION> tag is not a paired tag.

Example:
<SELECT Name="Items">

O P T IO N SELECTED> French Fries
<OPTION>Hamburgers
<OPTION>Hot Dogs

</SELECT>

This w ill place a Select object on an H T M L form. The select object can be referenced by the name
“ Items” . There w ill be three choices French Fries, Hamburgers, and Hot Dogs available in the select
object. Using the <SIZE> attributes the number o f items visible in a select list can be controlled.

CHAP 10 FORMS USED BY A WEB SITE PAGE 171

I f the <SIZE> attribute is set to a value less than the actual choices available in the select list a scrollable
list w ill be created.

The fo llow ing code snippet w ill display a drop down list on an H T M L form, which displays 2 items and
has a vertical scrollbar.

Example:
<SELECT Name = "Items" Size=2>

O P T IO N SELECTED>French Fries
<OPTION>Hamburgers
<OPTION>Hot Dogs
<OPTION>Ice Cream Cones
<OPTION>Salads

</SELECT>

Using a Select object, only one item can be chosen, from the list o f items.

Multi Choice Select Lists

To use a Select object, from which m ultip le choices can be made from w ith in the list the M U L T IP L E
attribute must be set in the select object.

<SELECT Name = "Items" Size = 2 M U L T IP L E >
O P T IO N SELECTED>French Fries
O PTIO N>Ham burgers
O P T IO N > H o t Dogs
O P T IO N > Ice Cream Cones
O P T IO N >Salads

</SELECT>

Selection lists are accessible in JavaScript through the Select object. When the <SELECT> </SELECT>
H T M L tags is encountered in an H T M L page a JavaScript enabled browser’ s creates an array in memory
that holds the items available in the list.

In each o f the sample code snippets an array o f the name Items is created in memory. This array has an
array index which starts w ith ‘0 ’ (i.e. zero). The value o f any element in the array can be obtained in
JavaScript by using:

memvamame-'arrayname.indexvalue"

P r o p e r t i e s
□ selectedlndex
□ defaultSelected
□ index
□ selected
□ text
□ value

M e t h o d s
□ Blur
□ Focus
□ Change

PAGE 172
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP10

E v e n t s
□ Blur()
□ Focus()
□ - Change()

JavaScript Event handlers bound to these events:
□ onBlur()
□ onFocus()
□ onChange()

Exercise 8: Illustrate the use o f Select and Option elements on a H TM L form.

Focus: The form consists o f a two M ultip le choice lists and one single choice list.
□ The first M ultip le choice list displays the Major dishes available.
□ The second M ultip le choice list displays the Starters available.
□ The single choice list displays the Miscellaneous (Milkshakes, Soft drinks, Softy) available.

£<« VS** f io 20BtraoB«ceScr &ip
i * à

- • - R a is » Н « т»

Th« items selected form the Menu are :

The selected items from all the lists should be
captured and displayed in a Text Area along with
their respective costs. On clicking the ‘Total Cost ’
button, the total cost o f all the selected items is
calculated and displayed at the end in the Text
Area. A ‘Clear’ button is provided to clear the
Text Area.

The diagram 10.9 shows a form that displays the
basic form elements required to capture data in a
commercial application as specified above.

The code lis ting fo r Exercise 8:

<HTM L>
<HEAD><TITLE>M cDonalds</TITLE>
<SCRIPT Language="JavaScript">

var m;
function p ic k (F l) {

var z = " ";
fo r(j= 0 ; j< 3 ; j+ +) {

fo r(i= 0 ; i<Fl.elements[j].length; i++) {
i f (Fhelements[j][i].selected) {

var y=F 1 ,elements[j].options[i]. value;
z=z + "\n" + y;
Fl.elements[3].value=z;

л a <* a * is
Searc* Nee cep* Prói Swwäy ЯШ

| ^'8ос*лч>Л» ¿ to c rtw jíle ///0|/SEuimp/MectisiPnTa£iMmi jfttíated
i ШУпШЯ i C&atea PeQpft *4 OwM load J i Cfrswafa

Welcome to the World Famous Fast Food Center

McDonalds !

Select the Menu Items o f your choice •

Major d ishes: Starters: Miscellaneous:

|Rs£r̂6ts
V e g B urger

I M ilkshakes

Ic Burg*r->80 :hick«n Burg«r->60 ranch Pn**->40
Ic Aloo TikIci->65 lilkshak«a->3Sotal co«t of th* ■•laclad itaa*"280

Him
Diagram 10.9: Output fo r Exercise 8.

}

}

m=z;
}
function cal(FI) {

var d=0;

CHAP 10 FORMS USED BY A WEB SITE PAGE 173

fo r(j= 0 ; j< 3 ; j+ +) {
fo r(i= 0 ; i<Fl.elements[j].length; >++) {

i f (Fl.elements[j][i].selected) {
var y=Fl.elements[j].options[i].value;
s=new String(y);
var a=s.indexOf(">");
var b=s.substring(a+l,a+3);
c=parselnt(b);
d=d+c;

}

}

}
p="Total cost o f the selected item s-' + d;
m=m + "\n" + p;
Fl.elements[3].value=m;

}
function c lr (F l) {

Fl.elements[3].value="
}

</SCRIPT></HEAD>
<BODY>

<H2><CENTER>
W elcome to the W orld Famous Fast Food Center
 McDonalds !

</CENTER></H2>
<FORM Nam e="Fl ">Select the Menu Items o f your choice -

<TABLE><TR VAlign=Top><TD >

M ajor dishes :

<SE LEC TN am e="sl" M U LT IP LE onBlur="pick(th is.form)">

<OPTION V a lu e - 'M c Burger->80" SELECTED> Me Burger
<OPTION V a lue-'F ish Fillets->70"> Fish Fillets
<OPTION Va lue-'C hicken Burger->60"> Chicken Burger
<OPTION Value="Veg. Burger->45"> Veg. Burger

</SELECT>

</TD><TD></TD><TD></TD><TD>

Starters :

<SELECT Name="s2" M U LTIPLE onB lur="pick(this.form)">

<OPTION Value="French Fries->40"> French Fries
<OPTI ON Va lue="N uggets->5 0 ">N uggets
<OPTION Value="Hash Browns->55">Hash Browns
<OPTION Value="M c A loo T ikk i->65">M c A loo T ikk i

</SELECT>

</TD><TD></TD><TD></TD><TD>

Miscellaneous :

<SELECT Name="s3" onB lur="pick(this.form)">

<OPTION V a lu e - ' ">'Check these out'
O P T IO N Value="Milkshakes->35">Milkshakes
O P T IO N V a lue -'S o ft drinks->20">Soft drinks
O P T IO N Value="Softy->25">Softy

</SELECT>

PAGE 174 COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL

CHAP10

</TD><TD></TD><TD></TD></TR></TABLE>

<TABLE><TR VAIign=Top><TD>

The items selected form the Menu are :
<TEXTAR EA N am e="T A l" Rows=10 Cols=50></TEXTAREA>

</TD><TD></TD><TD></TD><TD>
< B R x In p u t Type="button" Value="Total Cost" onCIick="cal(this.form)">
<Input Type="button" Value="Clear" onC lick="clr(this.form)">

< /T D > < /T R x /T A B L E >
</FORM></BODY>

</H TM L>

O T H E R BUILT-IN O B J E C T S IN JA V A C R IP T

JavaScript provides a few other objects that are not related to the current w indow or the document loaded in
the current window. These objects are used quite extensively for data processing in JavaScript.

The String Object

Every string in JavaScript is an object. The string object has a number o f properties, methods, which helps
perform a variety o f manipulations on a given string. These include methods for searching for a string,
extracting sub-strings from a string and applying various H T M L tags to string contents and so on.

P r o p e r t i e s

Property Description
Length A n integer value indicating the number o f characters in the string.

Table 10.4

M e t h o d s
The flex ib ility and power o f the string object rests in the wide variety o f methods available to manipulate
the contents o f the string. Some o f the methods available for string manipulation are as follows:
Method Description
b ig () Surrounds the string w ith the H TM L big tag
blink() Surrounds the string w ith the H TM L blink tag
bold() Surrounds the string w ith the H TM L bold tag
charat() G iven an index as an argument, returns the character at the Specified index
italics() Surrounds the string w ith the H T M L <I> tag.
tolowercase() Makes the entire string lowercase.
touppercase() Makes the entire string uppercase.
substring() G iven two indexes, returns the substring starting at the first index and ending w ith

the character before the last index. I f the second index is greater, the substring w ith
the second index and ends w ith the character before the first index; i f the two indexes
are equal, returns the empty string.'

Table 10.5

Example:

sample.substring(0,3) Hel
sample. toLowercase() returns hello
sample.CharAt(3) 1
sample.italicsQ Hello

sample.substring(2,4)
returns

11
sample.toUpperCase() HELLO
sample.boldQ Hello

CHAP 10 FORMS USED BY A WEB SITE PAGE 175

The math object provides methods and properties to move beyond simple arithmetic manipulations offered
by arithmetic operators.

T h e M a t h O b j e c t

Among the features offered by the math object are several special values such as pi, natural logarithms,
common square roots, trigonometric methods, rounding methods, an absolute value method, and more.

P r o p e r t i e s ___
Property Description
E Euler’ s constant - the base o f natural logarithms.
LN10 The natural logarithms o f 10(roughly 2.302).
LN2 The natural logarithms o f 2 (roughly 0.693).
PI The ratio o fthe circumference o f a circle to the diameter o f the same circle (roughly 3.1415).

Table 10.6

M e t h o d s
Method Description
abs() Calculates the absolute value o f a number.
ceil() Returns the next integer greater than or equal to a number.
Cüs() _ Calculates the cosine o f a number.
floor() Returns the next integer less than or equal to a number.
P°w() Calculates the value o f one number to the power o f a second number - takes two arguments.
random() Returns a random number between zero and one.
s in () Calculates the sine o f a number.
SqiK) Calculates the square root o f a number.
tan() Calculates the tangent o f a number.

Table 10.7

Example:_______________ _________
abs(-15) returns 15
tan(45) 1

The Date Object

cei 1(15.45)^ returns 16
pow(2,2) 4

The Date object enables JavaScript programmers to create an object that contains information about a
particular date and provides a set o f methods to work w ith that information. To create an instance o f the
date object, use the keyword new as follows:

var m yd a te = new Date(<parameters>);

The parameter, i f le ft empty, indicates today’ s date & time. The parameter could be any specific date
format.

M e t h o d s
The date object provides the fo llow ing methods:
Method Description
getDate() Returns the day o f the month as an integer from 1 to 31
setDate() Sets the day o f the month based on an integer argument from 1 to 31
getHours() Returns the hours as an integer from 0 and 23
setHours() Sets the hours based on an argument from 0 to 23

Table 10.8

PAGE 176
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP10

Method Description
getTime() Returns the number o f milliseconds since 1 January 1970 at 00:00:00.
setTime() Sets the time based on an argument representing the number o f milliseconds since 1 January

1970 at 00:00:00.
Table 10.8 (Continued)

Exercise 9:

Focus: Write JavaScript code to display the
current date and time in a Browser.

The diagram 10.10 shows a form created to
display the current date and time in a Browser as
specified above. Refer to the H TM L and
JavaScript code described in Exercise Nine.

The code lis ting fo r Exercise 9:

<HTM L>
<HEAD>

<TlTLE>Displaying the Date and time in
the Browser</TITLE>

</HEAD>
<BODY><SCRIPT Language="JavaScript">

function begin(form) {
form_name = form;
time_out=window.setTimeout(''display_date()",500)

}
function display_date() {

form_name.date.value=new Date();
time_out=window.setTimeout("display_date()",1000)

}
function display _clock() {

document.write('<CENTER><FORM Name=time_lorm>

 Current Date & Time :')

document.write('<lNPUT Name=date Size=19 Value=""</FORM></CENTER>')
begin(docum ent.tim eform);

}
display_clock();

</SCRIPT></BODY>
</HTM L>

O ther JavaScript ob jects can be summarized as follows:
Name Description
String The string object enables programs to work with and manipulate strings of text, including extracting

substrings and converting text to upper or lowercase characters

Math The math object provides methods to perform trigonometric functions (sine and tangent) as well as

general mathematical functions, such as square roots.

Date With the date object, programs can work with the current date or create instances for specific dates.
The object includes methods for calculating the difference between two dates and working with times.

Displaying lbs Dole and time in lt»e Browser - Nelscnpn

f r ? View Go 5ommur.)ca;or Hsip

'1 fií jt- âi Л w
Retond Home S ea n* Neiscepe Print Security Stop

í
Back

'Bookmarks f, Loce!ion:|ü= '//H|/E>ompleCode$/chapter3/ctod' htmi
-jW9CMftl Ч Сег.-лст jj. People *»: Vêitow Pages

d
“ 7] v .T iarj R e 'a iM I

Current Dale & t im e |“ * d N° v 24 15:39:38

Oocument Оспе

Diagram 10.10: Output for Exercise 9.

Table 10.9

U S E R D E F IN E D O B J E C T S

In addition to the wide range o f bu ilt-in objects, JavaScript permits the creation o f user defined objects. As
w ith every other object, a user-defined object w ill also be associated w ith properties and methods, which
belong to it. A fte r creation o f such an object, any number o f instances o f this object can be created and
used.

For example, i f the name, age, and marks obtained by a student needs to be stored and there are fifty such
students. It is completely possible in JavaScript to create and object named Student, which has three
properties name, age and marks.

This user-defined object would also require methods that w ill a llow the storage o f name, age and the marks
obtained by a student as properties o f the object.

Creating A User Defined Object

A user-defined object called student is to be created w ith three properties:
□ Name
□ Age
□ Marks

The object student also w ill include a method insert().

Just as variables are named containers o f data in traditional languages, sim ilarly properties are named
containers used to hold data, such as numbers or text in an object oriented approach.

P r o p e r t i e s
The properties o f the object student can be referenced as:
□ Student.Name
□ Student.Age
□ Student.Marks

M e t h o d s
The methods o f the object student can be referenced as:
□ Student. insert()

Example:
function student(name, age, marks) {

this.name = name;
this.age = age;
this.marks = marks;

}

This creates an object called student w ith three properties, name, age and marks.

J l o t e , — — - -

□ this: refers to the current object in focus. For example, this.name will refer to the name of the current object.□ Parent: refers to the parent of the current object.

CHAP 10 FORMS USED BY A WEB SITE PAGE 177

Instances

In object oriented programming, once an object is defined and created, any number o f copies o f the object
can be created and used to store information. I f there are fifty students whose data has to be maintained
then 50 copies o f the object student must be created to store the information o f the fifty students.

Every new copy o f the object is called an Instance o f the object. The process o f creating an instance o f an
object is termed as Instantiation o f the object.

Example:
studentl = new5iw<ie«i("Anil",lO,75);
student2 = new student("Ch\\aya'\9,82);

Objects Within Objects

Just as objects consist o f properties and methods, they can also consist o f other objects. For instance, the
marks o f a student w ill further depend on the marks o f individual subjects Science, Math and English.
Hence, another object can be created called as M arks, which has three properties:
□ English
□ Science
□ Math

This object can now be included in the student object, where marks is no more a singular property, but an object called Marks, which consists o f three individual properties English, Science and Math.

In such a case, a new instance o f the object Marks must be created first, and this new instance must be
included in the object student. The properties o f this compound object can now be referenced as:
□ Student.Name
□ Student.Age
□ Student.Marks.English
□ Student.Marks.Science
□ Student.Marks.Maths

Example:
Creating the Marks object:

function Marks(English, Science, Math) {
this.Math = Math;
this.English = English;
this.Science = Science;

}

Creating the Student object:function Student(name, age, marks) {
this.name = name;
this.age = age;
this.marks = marks;

}

The technique o f creating an object instance embedded in another object is as follows:
anilGrade = new marks(75, 80, 77);
chhayaGrade = new marks(82, 88, 75);
studentl = new student("Anil", 10, anilGrade);
student2 = new student("Chhaya", 9, chhayaGrade);

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r u 4 D l n
PAGE 178 JAVASCRIPT, DHTML AND PERL CHAP10

CHAP 10 FORMS USED BY A WEB SITE PAGE 179

Under these circumstances the property marks o f the object student actually holds another object
‘ anilGrade’ or ‘chhayaGrade’ which in turn hold marks for Math, English or Science.

To access the Math marks o f A n il the technique would be:
m yvar= studentl.anilGrade.Math

The variable myvar w ill now hold the Math marks obtained by Anil.

ExamplelO:
This example illustrates opening a new window when a link on a web page is clicked. The new window
opened, is closed by placing a button on the new window and w riting JavaScript code in the onC lick event
o f the button

<HTM L>
<HEAD><SCRIPT>

function makeNewWindow() {
var newwindow = prompt("Enter the document to go to".
i f (¡(newwindow == null || newwindow == " ")) {

window.open(newwindow , "status, menubar=yes,resizable=no, toolbar=no")
}else {

var b la n k w in d o w = w in d o w .o p e n ("""s ta tu s , menubar=yes,resizable=no, toolbar=no")
var w indowcontent="<HTM L><BODY BGColor=#FFFFFF><HI>New w indow < /H l> "
windowcontent +~ "<FORM ><INPUT Name=close onClick=window.close()"
windowcontent += " Type=Button Value=Close></FORM></BODY></HTM L>"
blankwindow.document.write(windowcontent)

}

}
</SCRIPT></HEAD>
<BODY><FORM >

<INPUT Name="open" onC lick="m akeNewW indow()" Typ2="button" Value="Open URL">
</FORM></BODY>

</H TM L>

Example 11:
This example illustrates an application with two frames. The top frame contains entry fields for the
background color, text color, link color, active link color and visited link color and a button to enable lisers
to test their color combinations. When the user presses the button, the script loads a simple document using
specified colors, into the lower frame.

The Parent Frameset for the Color Tester:
<H TM L>

<HEAD><TITLE>Exam ple 11 On Document O bject</T lTLE></HEAD>
<FRAMESET Rows="45% ,*">

<FRAME Src="pick.htm l">
< F R A M E N am e-'ou tpu t" Src="blank.html">

</FRAMESET>
</H TM L>

Pick.html file
<H TM L>

<HEAD><SCRIPT Language="JavaScript">

<!-- HIDE FROM THE BROWSERS

function display(form) {
doc = ope n ("" ,"output");
doc.document.write('<BODY BG Color= '" + form.bg.value + Text= '" + form.fg.value);
doc.document.write("' L in k = '" + form.link.value + A L in k = '"+ form.alink.value);
doc.document.write("' V L in k = " '+ form.vlink.value + '"> ');
doc.document.write("<Hl>This is a Test</H l>You Have Selected These Colors
");
doc.document.write('This is a Test L ink< /A ></BO D Y >');
doc.document.close();

}
// STOP H I D I N G SCRIPT — >

</SCRIPT></HEAD>
<BODY><CENTER><SCRIPT Language="JavaScript">
<!-- HIDE FROM O T H E R BROWSERS

document.write('<Hl>The Color P icker</H l><FORM Method=POST>');
document. write('Enter Colors:
');
document.write('Background: <INPUT N am e="bg" Type=Text Va lue="' + document.bgColor +

'"><B R > ');
document.write('Text: <IN PU T N am e="fg" Type=Text Value= '" + document.fgColor +

'"><B R > ');
document.write('Link: <1NPUT N am e="link" Type=Text Va lue="' + document.linkColor +

'"><B R > ');
document.write(Active L ink : <INPUT N am e="a link" Type=Text Va lue="' +

document.alinkColor + "'><B R > ');
document.write('Followed L ink: <INPUT N am e="v link" Type=Text Va lue="' +

document.vlinkColor + "'><B R > ');
document.write(’< INPUT onC lick="disp lay(th is.form);" Type=Button Va lue="Test"> ');
document. write('</FORM >');
display(document.forms[0]);

// STOP HIDING FROM O T H E R BROWSERS -->

</SCRIPT></CENTER></BODY>
</H TM L>

Example 12:
This example illustrates the use o f the History object. Using this object we can navigate through the
previous or next pages opened in the browser.

<H TM L>
<BODY><FORM >

< IN P U T N a m e -’back" onC lick="history.back()" Type="Button" Value="Back">
<INPUT N am e=" forward” onC lick="h istory.forward()" Type="Button" Value="Forwa.d">

</FORM ></BODY>
</H TM L>

Example 13:
Capture and displays the properties o f the browser using the navigator object.

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r u Ap ln
PAGE 180 JAVASCRIPT, DHTML AND PERL CHAP1°

<HTM L>
<HEAD><TITLE>D isplaying A Browser’s Attributes</TITLE>
<SCRIPT language="JavaScript">

<! —

function displayNavigatorProperties() {
// to avoid "document.write" every where b e l o w

with(document) {

write("appName:")
writeln(navigator.appName + “
")
write("appVersion:")
writeln(navigator.appVersion + "
")
write("appCodeName:")
writeln(navigator.appCodeName + "
")
write("p latform: ")
writeln(navigator.platform + "
")
write("useragent:")
writeln(navigator.useragent + "
")
write("language: ")
writeln(navigator.language + "
")
write("Number of mimeTypes: ")
writeln(navigator.mimeTypes.length + "
")
write("Number of plugins:")
writeln(navigator.plugins.length)

}

}
function displayExplorerProperties() {

with(document) {
write("appName:")
writeln(navigator.appName + "
")
write("appVersion:")
writeln(navigator.app Version + "
")
write("appMinorVersion:")
writeln(navigator.appMinorVersion + "
")
write("appCodeName:")
writeln(navigator.appCodeName + "
")
write("platform:")
writeln(navigator.platform + "
")
write("cpuClass:")
writeln(navigator.cpuClass + "
")
write("useragent:")
writeln(navigator.useragent + "
")
write("cookieEnabIed:")
writeln(navigator.cookieEnabled + "
")
write("browserLanguage:")
writeln(navigator.browserLanguage + "
")
write("userLanguage:")
writeln(navigator.userLanguage + "
")
write("systemLanguage:")
writeln(navigator.systemLanguage + "
")
write("onLine: ")
writeln(navigator.onLine + "
")
write("Number of mimeTypes: ^
writeln(navigator.mimeTypes. length + "
")

CHAP 10 FORMS USED BY A WEB SITE PAGE 181

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL

CHAP10

write("Num ber o f plugins:")
writeln(navigator.plugins. length)
write("userProfile: ")
writeln(navigator.userProfile)

}

}
function displayBrowserProperties() {

if(navigator.appName=="Netscape")
displayNavigatorPropertiesO

else

if(navigator.appName=="Microsoft Internet Explorer")
displayExpIorerPropertiesQ

}
disp!ayBrowserProperties()

</SCRIPT></HEAD>
</HTM L>

S E L F R EV IE W Q U E S T IO N S

F IL L IN TH E B L A N K S

1. H T M L provides__________and _________ tags w ith which an H T M L form can be created to capture
user input.

2. The form tag has two properties namely _ _ _______ and_____________ .
3. The method property is used to specify the method used to send data, which can b e _________ or

4. The _ _ _ _ _ _ attribute o f the < FORM> tag points to the U R L o f a program on the web server that
w ill process the form data.

5. Various form elements can be specified as attributes o f the____________tag.
6. T he_________ button sends the current information held in each fie ld o f the form to the web server

for further processing.
7. To have a select object from which multiple choices can be made from a list th e ________________

attribute must be set in the select object.
8. is the only property o f the string object.
9. The _________ object provides methods and properties to move beyond simple arithmetic

manipulations offered by arithmetic operators.
10. Information can be stored locally in the browser which can be sent to the server whenever required by

using_____________ .
11. Cookie information is shared between the client browser and the server using fields in th e ________

headers.
12. When the user requests a page for the first time a cookie can be stored in the browser by a ___________

entry in the header o f the response from the server.

CHAP 10 FORMS USED BY A WEB SITE PAGE 183

13. I f a matching cookie is found among all the stored cookies, the browser sends a cookie fie ld to the
server in a _______________ .

14. T he_________ attribute specifies that the cookie should be transmitted only over a secure link.

TR UE O R FALSE

15. As soon as the <FORM ></FORM > tags are encountered by the browser, the browser creates an array
called fo rm l in the absence o f a Form name being specified in the H T M L code.

16. The Post method sends data captured by the form elements to the web server, encoded as part o f the
URL that points to the web server.

17. Text fields accept a single line o f text entry.

18. The Select object allows multip le choices from a list o f choices that are offered.
19. Date object enables the creation o f an object that contains information about a particular date.
20. In addition to the wide range o f bu ilt-in objects, JavaScript permits the creation o f user defined objects.
21. The name Cookie has a special significance

w ith respect to object oriented programming
language.

22. The set-cookie field includes the information
to be stored in the cookie along w ith several
optional piece o f information.

H A N D S O N E X E R C I S E S

1. Create a web page, which accepts user
information and user comments on the web
site. Design the web page using form
elements and check i f all the Text fields have
being entered w ith data else display an alert.
Obtain an output as shown in the diagrams D iagram 10.11.1: Hands On Exercise output part 1.
10.11.1, 10.11.2 and 10.11.3.

f f e £dk View Q,o F $ v a i« rje fe И
•> . . j '¿1 ^ a i j 3

Back Slop fie ire th Nome S&Kch Favorit« Hato?
V

Cha r f x k ■F tJ s c te » Mai
■ A d d « * t | f l] H \MalcotmViavascipi2\h4ndson\handson3.htrri : j Link*

INFONET SERVICES -

First Name
Last Name
E-mail Address
Address

1 City
State 1 Postal Code j Country

P le a s e c h o o s e t h e m o s t a p p r o p r ia t e s ta te m e n t z J
| » l D o n * j f e loednb tn e tra n *

M ic io to ll In te rn e ! (x p lo te i
£s Favorit« Üdp

э a
S lop Rsireth-r

_ _ _
£2

Home
!Ш Ш

S ee c h Favcrie i
V =d

ChcnneJj F iJicteen

Ш
*

A c tte tt | |Ц H AM«icolm4evatcnp'2VKandion\Karybon3 hi
Beck

Addtots ¡ в] HAMaicolm\jav
Step

l2Reft «h a
Se«eh

a J
Favorite« Hutoy

tcnpl2VhendsorAhartdson3 h i -3 u«.
a3

F tftcreer.

P le a s e c h o o s e t h e m o s t a p p r o p r ia t e s ta te m e n t r I regularly purchase items online I have on occasion purchased items online *•1 have not purchased anything online, but I would consider it r I prefer to shop in real stores
I ' m i n te r e s te d i n (c h o o s e a l l t h a t a p p ly)
r M ik in gr Mountain Biking
r Camping F Rock Climbing r OfT-Road 4WD r Cross-country Skiing

I l e a r n e d a b o u t t h i s s i t e f r o m
| P rin t A d s 3

f“ Camping I- Rock Climbing r OfT-Road 4WD
I- Cross-country Skiing

(le a r n e d a b o u t t h i s s i t e f r o m
| P r in t A d s 3

P lease type "any eorrtnenta here

Submit I Start Over

Diagram 10.11.2: Hands On Exercise output part 2. Diagram 10.11.3: Hands On Exercise output part 3.

1 1 . C O O K I E S

W H A T A R E C O O K IE S

One of the challenges of writing applications for the World Wide Web has been inability of the web to
maintain state. That is, after a user sends a request to the server and a web page is returned, the server
forgets all about the user and the page that has been downloaded. If the user clicks on a link, the server
doesn’t have background information about what page the user is coming from, and more importantly, if
the user returns to the page at a later date, there is no information available to the server about the user’s
previous actions on the page.

Maintaining state can be important to developing complex interactive applications. However, browsers
address this problem with cookies, which is a method of storing information locally in the browser and
sending it to the server whenever the appropriate pages are requested by the user.

The term cookies has no special significance. It is just a name in the same way Java is just a name for Sun’s
object-oriented programming language.

When a user requests a page, an HTTP request is sent to the server. The request includes a header that
defines several pieces of information, including the page being requested.

The server returns an HTTP response that also includes a header. The header contains information about
the document being returned, including its MIME type. These headers all contain one or more fields of
information in a basic format.

FieldName: Information
Cookie information is shared between the client browser and a server using fields in the HTTP headers.
When the user requests a page for the first time, a cookie (or more than one cookie) can be stored in the
browser by a set-cookie entry in the header of the response from the server. The set-cookie field includes
the information to be stored in the cookie along with several optional pieces of information including an
expiry date, path, and server information and if the cookie requires security

Then, when the user requests a page in the future, if a matching cookie is found among all the stored
cookies, the browser sends a cookie field to the server in a request header. The header will contain the
information stored in that cookie.

The set-cookie and cookie fields use a syntax to transfer significant information between client and server.

S E T T IN G A C O O K IE

Syntax:Set-cookie: NAME=value ; EXPIRES=date; PATH=path; DOMAIN=domain; SECURE
The NAME=value is the only required piece of information that must be included in the set-cookie field.
All other entries are optional.

Name Description
NAME = value Specifies the name of the cookie.

PATH = path
Specifies the path portion of the URLs for which the cookie is-valid. If the URL matches both
the PATH and the DOMAIN, then the cookie is sent to the server in the request header. (If left
unset, the value of the PATH is the same as the document that set the cookie)

Table 11.1

CHAP 11 COOKIES PAGE 185

Name Description
EXPIRES = date

Specifies the expiry date of the cookie. After this date the cookie will no longer be stored
by the client or sent to the server (DATE takes the form Weekday, D D - M O N - Y Y
HH:MM:SS GMT- dates are only stored in Greenwich Mean Time). By default the value
of expires is set to the end of current Navigator session.

D O M A I N = domain
Specifies the domain portion of the URLs for which the cookie is valid. The default value
for this attribute is the domain of the current document setting the cookie.

SECURE .
Specifies that the coc)kie should only be transmitted over a secure link (i.e. to HTTP
servers using the SSL protocol-known as HTTPS servers)Table 11.1 (Continued)

Example:
This example illustrates the use of cookies. While the user traverses from page to page, the information

entered by the user in any page is stored in cookies at the client side and made available to the user

whenever the user returns to any page previously visited.

< H T M L >

< H E A D > < S C R I P T >function newcookie(cookiename, value) {
document.cookie = cookiename + "=" + value; } function getCookie(cookiename) {
var cookiefound = false;

var start = 0;

var end = 0;

var cstring = document.cookie;

var clength — 0;

while (clength <= cstring. length) {
start = clength;

end ̂ start + cookiename.length; if (cstring.substring(start, end) = = cookiename) {
cookiefound = true;

break;

}
clength++;

}
if (cookiefound) {

start = end + 1;

end = document.cookie.indexOf(";", start); if (end < start) {
end = document.cookie.length;

var contents = document.cookie.substring(start, end);

return contents;

}else {
var contents = document.cookie.substring(start, end);

return contents;

}
}

}
</SCRIPT></HEAD>

<BODY ><SCRIPT>
var thisCookie = ((document.cookie !== "") & & (document.cookie != null));
var e firs tnam e = (thisCookie) ? getCookie("first_name"):
var cm idd lenam e = (thisCookie) ? getCookie("m iddle_name"):
var clast_name = (thisCookie) ? getCookie("last_name"):
document. write('<FORM>');
document.write('<TABLE Border-'O '' Ce!IPadding="4" CellSpacing="4” W idth = 100%>');
document. write('<TR><TD ColSpan="2"> Personal Details (*

 indicates Required) </TD></TR>');
document. write('<TR>');
document. write('<TD W idth="25% "> First Name * </TD>’);
document. write('<TD W idth="75% "><INPUT Name="first_name"

onBlur="newcookie(this.name, this.value);" Size="20" Type="Text" Value="' +
e firs tn a m e + '"></TD></TR>');

document.write('<TR><TD W idth="25%"> Middle Name </TD>');
document. w rite(’<TD W idth="75% "><INPUT Name="middle_name"

onBlur="newcookie(this.name, this.value);" Size="20" Type="Text" V a lu e -" +
cm id d le n a m e + '"></TD></TR>');

document. write('<TR>');
document.write('<TD W idth="25% "> Last Name * </TD>');
document.write('<TD W idth="75% "><INPUT Name="last_name"

onBlur="newcookie(this.name, this.value);" Size="20" Type="Text" V a lu e -" +
c la s tn a m e + '"> < /T D >);

document. w rite('</TR></TABLE>
');
document. write('<CENTER>');
document.write('<INPUT Type="Submit" Value"="Done">');
document.write('<INPUT Type="Reset" Value="Reset">');
document. write('</CENTER>');
document. write('</FORM>');

</SCRIPT></BODY>
</HTM L>

S E L F R EV IE W Q U E S T IO N S

F IL L IN T H E B LA N K S
1. Information can be stored locally in the browser which can be sent to the server whenever required by

using_____________.
2. Cookie information is shared between the client browser and the server using fields in th e ________

headers.
3. When the user requests a page for the first time a cookie can be stored in the browser by a __________

entry in the header o f the response from the server.
4. I f a matching cookie is found among all the stored cookies, the browser sends a cookie fie ld to the

server in a _______________ .
5. The_________ attribute specifies that the cookie should be transmitted only over a secure link.

TRUE OR FALSE

d A rp m e COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, ~ u a o . 4
PAGE 186 JAVASCRIPT, DHTML AND PERL CHAP 11

6. The name Cookie has a special significance with respect to object oriented programming language.

7. The set-cookie field includes the information to be stored in the cookie along with several optional
piece of information.

B - P R O J E C T S I N J A V A S C R I P T

Project Specifications For The First Project In JavaScript - Guest Book

Since the learning o f Java Script has now been completed, it is time to consolidate this learning by building
a small guest book.

A Guest Book is used to store any comments that a visitor to the site may have regarding the site. The
comments (i f applicable) help improve the functionality o f the site.

The structure o f the guest book is given in the fo llow ing pages along w ith html source code. This is a
description o f how the guest book w ill be used by the person signing-in. The java script code working w ith
Html which provides for various client side data capture validations.

The guest book is a html document w ith:
□ Simple visuals in the form o f .g if or .jpeg files.
□ Java Script embedded H T M L code.

The files required to construct these pages is available on the accompanying CD-ROM for immediate use.

I f required run the H T M L files first in a web
browser and get a look and feel o f what the
project could be like. Once this is done, code
the web pages according to what you believe
is appropriate.

For a visitor to leave comments about the
site, or comments in general, the H TM L
form used in diagram 1.1 is used. This is the
guest book page.

This form captures the fo llow ing:
□ Visitors Name (Not compulsory)
□ Emailid (Mandatory)
□ A visitors Comments (Mandatory)

Feel free to improvise and get a look and
feel that satisfies you.

Each H T M L file is really just a simple guideline to what the web page could look like.
Java script is added to perform simple client side validations.

For your guidance:
□ The source code is provided in the document file.

C l i e n t S i d e V a l i d a t i o n s
The Client side validations to be coded in Java script are as follows
□ Emailid, General Comments, cannot be left empty
□ The Emailid needs to be scanned for the presence o f an ‘@ ’ and V symbol.
□ The length o f the Name and Emailid fields cannot exceed 30 characters.

Please take a few moments to let us know you were here today.
Please Give Us Your Name

Please Give Us Your Email Address

Bouquets Or Brickbats Are Welcome

Can we contact you with information about our products or services.Yes Thanks’
[Submft~| Rc»et | Abort |

Tliank You For Stopping By Our Web Site
Diagram 1.1: The User Interface For Guest book

<HTM L>
<HEAD><TITLE>SCT'S GUEST BO O K</TITLE>
<SCRIPT Language = "Javascript">
<!— The function v e r i f y () checks w h e t h e r app r o p r i a t e information

is filled in all the elèments. If any element is left empty, an
a l e r t () box is d i s p l a y e d informing the user to fill in the empty

element The code also scans the E m ailid for the p r e s e n c e of an

!@' and a symbol. — >

function verify(form) { for (i= l; i<=2; i++) {if (document.forms[0].elements[i].value = "") {
alert("Please f i l l in the " + document.forms[0].elements[i].name + " fie ld ");
document.forms[0].elements[i].focus();
return (false);

}
if(document.forms[0].elements[l].value != "") {

pass = document.forms[0].elements[l].value.index0f('@ ',0);
passl = document.forms[0].elements[l].value.index0f('.',0);
if((pass==-1) || (pass l== -l)) {

alert("Not a valid Email address");
document.forms[0].elements[l].focus();
return (false);

}

}

}
retum(true);

}
<!-- This function takes the user ba c k to the 'Home Page' fro m the

current page --> function abort(form) {
history.back();

}
< !— Sets the focus on the first element when the form is load e d — >

function set(form) {
document.forms[0].elements[0].focus();

}
< !— The function checklen() checks that the length of name and

email addresses does not exceed 30 characters -->

function checklen(form) {
for (i=0; i<= 1 ; i++) {

val=document.forms[0].elements[i].value;
len=val.length;
if (len > 30) {

alert ("Value exceeds 30 characters");
document.forms[0].elements[i]. v a lu e -1";
document.forms[0].elements[i].focus();

}

}

}
</SCRIPT></HEAD>

D. - c . . . COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, ORn . R
PAGE 188 JAVASCRIPT, DHTML AND PERL PROJ - B

P R O J - В PROJECTS IN JAVASCRIPT PAGE 189

<BO DY B ackground-'im ages/grid l.g if' T E X T-'g reen" onLoad="set(this.form)">
<CENTER><IM G Src="images/Gestbk.gif' A lt= "g es tb k .g if 'x /C E N T E R >
<P><P><CENTER>PIease take a few moments to let us know you were here today.
<P><P><FORM Action = "" Method="POST" onSubmit=" return verify(th is.form)">

<P><P>Please Give Us Your Name

<INPUT Type="text" Name="name" Size="40" onBlur="checklen(this.form)">

<P><P>Please Give Us Your Email Address

<1NPUT Type="text" Name="emailid" Size="40" onBlur="checkIen(this.form)">

<P><P>Bouquets Or Brickbats Are Welcome

<TEXTAR EA Name="request" Rows="8" Cols="65"></TEXTAREA>
<P><P>Can we contact you w ith information about our products or services.

<INPUT TYPE="radio" NAM E="m oreinfo" V A LU E ="y">
Yes
<INPUT TYPE="radio" NAM E="m oreinfo" V A LU E ="n" Checked="True">
No, Thanks!
<P><INPUT Type="Submit" Value="Submit"><INPUT Type="Reset" Value="Reset">
<INPUT Type="Button" Value=”Abort" onClick = "abort(th is.form)">

</FORM>
<P>Thank You For Stopping By Our Web Site</CENTER>
</BODY>

</H TM L>

Project Specifications For The First Project In JavaScript - Pen Pals

Since the learning o f Java Script has now been completed, it is time to consolidate this learning by building
a page, which offers free hosting o f pen pal information. Java Script w ill then be used to validate data
captured by this page.

Using this service, visitors can post their Name, Emailid, Sex, Date o f birth, Interests and Hobbies on the
Web Site. Other visitors who find compatible information in the Pen pals list would email the registrant.
This could become the start o f a lasting friendship.

The structure o f the pen pal page is given in
the fo llow ing pages along w ith the html
source code. This is a description o f how the
Pen Pal page is to be used by the person
visiting the page. The java code working
w ith in html provides fo r data capture
validations.

Other visitors can then refer to these pages
and email o f individuals who’s Age, Sex,
Interests and other criteria are interesting.
To post Pen Pal Information on a Web Site a
simple form needs to be filled in w ith details
as shown in diagram 2.1.

The Pen Pal page is a html document w ith:
□ Simple visuals in the form o f .g if or .jpeg files.
□ Java script embedded H T M L code.

The files required to construct these pages is available on the accompanying CD-ROM for immediate use.

S i l i c o n C h i D T e c h n o l o g i e s

i V t t P a l t n t a r m a t t a n
P le a s e e n t e r y o u r n a m e

.P l e a s e e n t e r y o u r K - M a i l a d d r e s s

P le a s e e n t e r y o u r О О Н as D O / M M / Y Y Y Yr y o u r U O I i n s
\ I— Г

T e l l u s a b o u t y o u » - h o b b i e s t u id i n t e r c a la i n t i l e T e x t - B o x ' b e l o w
W e ' l l k e e p y u u r P c u p u J i n t o p o x l e i l Г о г O n t » У и м г f r c n i i l o . l i i y

S u b m i t | R o n c i t J A b o r t |

I h n n k Y o u K o r S t o p p i n g : l * y O u r W o h S i t e

Diagram 2.1: The User Interface For Pen Pals

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRO . B
JAVASCRIPT, DHTML AND PERL

I f required run the H T M L files first in a web browser and get a look and feel o f what the project could be
like. Once this is done, code the web pages according to what you believe is appropriate.

Pen Pal information is hosted for free on our website to visitors to the website.

For a visitor to leave his/her information on a site. The H TM L form used in diagram 1 is used. This is the
Pen Pal page.

The form captures the fo llow ing:
□ Visitors Name (Mandatory)
□ Emailid (Mandatory)
□ The visitors D O B in D D /M M /Y Y Y Y (Mandatory)
□ Textbox to retrieve users hobbies and interests (Not Compulsory)

Feel free to improvise and get a look and feel that satisfies you.

Each H T M L file is really just a simple guideline to what the web page could look like. Java script is added
to perform simple client side validations.

For your guidance:
□ The source code is provided in the document file.

Client Side Validations:
The Client Side validations to be coded in Java script are as follows:
□ Name, Email id, Sex, DOB entries, cannot be left empty
□ The Email id needs to be scanned for the presence o f an and sign
□ The length o f the Name and Email id fields cannot exceed 30 characters
□ Ensure that the date is keyed in as "D D /M M /Y Y Y Y "

<HTM L>
<HEAD><TITLE>SCT's PEN PAL</T ITLE>
<SCRIPT Language = "Javascript">

< ! — The f u n c t i o n v e r i f y () c h e c k s w h e th e r a p p r o p r ia t e i n t e r v e n t i o n i s
f i l l e d i n a l l t h e fo r m e le m e n ts . I f a n y e le m e n t i s l e f t e m p ty an
a l e r t () b o x i s d i s p la y e d in f o r m in g th e u s e r t o f i l l i n a l l t h e
e m p ty e le m e n ts . T he co d e a ls o s e a rc h e s t h e e m a ile d f o r t h e
p re s e n c e o f an a n d a s y m b o l — >

function verify() {
for (i=0; i<=7; i++) {

if (document.forms[0].elements[i].value = "") {
alert("Please f i l l in the " + document.forms[0].elements[i].name + " fie ld ");
document.forms[0].elements[i].focus();
return (false);

}
if(document.forms[0].elements[l].value != "") {

pass = document.forms[0].elements[l]. value. index0f('@ ',0);
passl = document. forms[0].elements[l]. value. index0f('.',0);
if((pass==-1) || (passl ==-1)) {

alert("not a valid email address");
document.forms[0].elements[l].focus();

P R O J - В PROJECTS IN JAVASCRIPT PAGE 191

}

}

}

}
< ! — The f u n c t i o n c h e c k d a te () c h e c k s w h e th e r t h e d a te i s b e tw e e n

(1 -3 1) w h e th e r th e m o n th is . e n te r e d as a n u m b e r a n d i s b e tw e e n
(1 -1 2) w h e th e r th e y e a r e n t e r e d i s w i t h i n 1995 - - >

function checkdate() {
year=document.forms[0].elements[6].value;
i f (year>1995) {

alert("Enter proper year (t i l l 1995)");
document.forms[0].elements[6].focus();
retum(false);

}
monval=document.forms[0].elements[5].value;
dtval=document.forms[0].elements[4].value;
i f ((dtval > 31) || (dtval < 1)) {

alert("Enter proper date");
document.forms[0].elements[4].focusO;
retum(false);

}
i f (isNaN(monval) != true) {

i f ((monval > 12) || (monval < 1)) {
alert("Enter proper month");
document.forms[0].elements[5].focus();
retum(false);

}
}
else {

alert("Enter the month number");
document.forms[0].elements[5].focus();
retum(false);

}
return (true);

}
< ! — The f u n c t i o n c h e c k le n () c h e c k s w h e th e r t h e le n g t h o f name a n d

e m a il a d d re s s doe s n o t e k c e e d 30 c h a r a c t e r s — >
function checklen() {

fo r (i=0; i< = l; i++) {
val=document.forms[0].elements[i].value;
len=val.length;
i f (len > 30) {

alert ("Value exceeds 30 characters");
document.forms[0].elements[i].value="";
document.forms[0].elements[i].focus();

}

return (false);

retum(true);

}

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, n
JAVASCRIPT, DHTML AND PERL

< ! — The f u n c t i o n ta k e s t h e u s e r t o th e p r e v io u s p a g e - - >
function abort(form) {

history.back();
}

< ! — S e ts t h e fo c u s on t 'h e f i r s t f i e l d when t h e fo rm i s lo a d e d — >
function set(form) {

document.forms[0].elements[0].focus();
}

</SCRIPT></HEAD>
<BODY Background="im ages\Gridl.gif' onLoad="set(this.form)">

<CENTER><IM G SRC="images\Penpals.gif'></CENTER>
<P><P><CENTER>
<P><FORM A c tio n - '" M ethod-'PO ST" onSubmit="retum verify()">

<P>Please enter your name

<IN PU T Type="text" Name="name" Size="40" onBlur="checklen()" >

<P>Please enter your E-M ail address

<IN PU T Type="Text" Name="emailid" Size="40" onBlur="checklen()">

<P>Please indicate your Sex

<IN PU T Type-'R ad io" Name="sex" Value="m" checked>Male
< IM G Src="im ages/Shim .gif H e igh t= "l" W idth="5">
<IN PU T Type="Radio" Name="sex" Va lue="f' >Female

<P>Please enter your DOB as D D /M M /Y Y Y Y <B R >
< IN P U T T yp e -'T e x t" Name="day" Size="2" >
< IM G Src="images/Shim.gif' H e igh t= "l" W idth="2">
<1NPUT Type="Text" Name="month" Size="2">
< IM G Src="images/Shim.gif’ H e igh t= "l" W idth="2">
<IN PU T Type="Text" Name="year" Size="4" >
<P><P>Tell us about your hobbies and interests in the 'Text-Box' below

W e'll keep your Penpal info posted for One Year from today<p>
<TEX TAR EA NAME="request" ROWS="8" COLS="65" onFocus="checkdate()">
< /TEXTAREA>
<P><P>Can we contact you w ith information about our products or services.

<FNPUT Type="Radio" Name="moreinfo" Value="y">
Yes<IM G Src="im ages\shim .gif Width=20 Height=10
<IN PU T Type="Radio" Name="moreinfo" Value="n" Checked="True">
No, Thanks !
<P><CENTER><INPUT Type="Submit" Value="Submit" Name="Submit">
<IN PU T T y p e - ’Reset" Value="Reset" Name="Submit">
<IN PU T Type="Button" Value="Abort" Name="At" onClick = "abort(this.form)">

</CENTER> </FORM>
<P>Thank You For Stopping By Our Web Site</CENTER>

</BODY>
</HTM L>

P R O J - В PROJECTS IN JAVASCRIPT PAGE 193

Project Specifications For The First Project In JavaScript - Registration Form

Since the learning o f Java Script has now been completed, it is time to consolidate this learning by building
a Registration form page.

This Registration page is used to register visitors and provide access to a number o f services provided by
the Web Site. To register a simple form as show in diagram 3.1 is used.

The structure o f the registration page is given in the follow ing pages along w ith html source code. The Java
script code working w ith in html, which provides for various client side data capture validations.

This captures two different blocks o f information. The first block o f information is associated w ith the
visitors Login ID and Password that w ill be used when access to the sites services w ill be required in
future. The second block o f information captured, w ill be the services that the visitor wishes to sign up for.

The Registration page is a html document w ith:
□ Simple visuals in the form o f .g if or .jpeg files.
□ Java Script embedded H T M L code.

The files required to construct these pages is available on the accompanying CD-ROM for immediate use.

I f required run the H T M L files first in a web
browser and get a look and feel o f what the
project could be like. Once this is done, code
the web pages according to what you believe
is appropriate.

Feel free to improvise and get a look and
feel that satisfies you.

Each H T M L file is really just a simple
guideline to what the web page could look
like.
Java script is added to perform simple client
side validations.
For you r guidance: D iagram 3.1: The User Interface For Registration Form
□ The source code is provided in the

document file.

C li e n t S i d e V a l i d a t i o n s
The Client side validations to be coded in Java script are as follows
□ The Login name, Password, Confirm Password cannot be left empty.
□ The Emailid needs to be scanned for the presence o f an and V symbol.
□ The Password and the Confirm Password has to be the same.
□ The length o f the Name and Emailid fields cannot exceed 30 characters.
<HTM L>

<HEAD><TITLE>SCT'S GOODIES SIGN UP FORM</T!TLE>
<SCRIPT Language="JavaScript">
< ! — D e c la r a t io n o f V a r ia b le s — >

var va lueo fpass l-'";
var valueofpass2=m';
var whitespace = " \t\n \r";

Login Naine:j

E-Mail Address:)

Password:!

Confirm Password:]

PAVfiWORO B il l FA.

Select From The Spread Below
Pen Pals r News Letter f*

Subtttrt j Resat | Abort |

< ! - - F u n c t io n t o c h e c k w h e th e r th e v a lu e i n a T e x t F i e l d i s N u l l - - >
function isEmpty(s) {

return ((s = nu ll) || (s. length == 0))
}

< ! — F u n c t io n t o c h e c k w h e th e r t h e v a lu e i n a T e x t F i e l d i s a
W h ite S p a c e — >

function is Whitespace (s) {
var i;

< ! — I s e m p ty ? - - >
i f (isEmpty(s)) return true;

< ! — S e a rc h th r o u g h s t r i n g ' s c h a r a c t e r s one b y one u n t i l we f i n d
a n o n - w h ite s p a c e c h a r a c t e r . — >

for (i=0; i < s.length; i++) {
< — C h e ck t h a t c u r r e n t c h a r a c t e r i s n ' t w h i t e s p a c e . >

var currchar = s.charAt(i); if (whitespace.indexOf(currchar) == -1)
return false;

}
< - - A l l c h a r a c t e r s a r e w h ite s p a c e . - - >

return true;

< ! — F u n c t io n t o e n s u re t h a t t h e e m a il a d d re s s i s i n p r o p e r f o r m a t .
— >

function isEmail (eadd) { if (isEmpty(eadd))
< ! - - I s s w h ite s p a c e ? - - >

i f (isWhitespace(eadd)) return false;
< ! — T h e re m u s t be >= 1 c h a r a c t e r b e f o r e s o we s t a r t

lo o k in g a t c h a r a c t e r p o s i t i o n 1 (i . e . s e c o n d c h a r a c t e r)
— >

var i = 1;
var sLength = eadd. length;

< ! - - lo o k f o r 0 — >while ((i < sLength) & & (s.charAt(i) != "@ ")) {

_ anA COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, p R 0 J „
PAGE 194 JAVASCRIPT, DHTML AND PERL

if ((i >= sLength) || (s.charAt(i) != "@ "))
return false;else
i += 2;

< ! — lo o k f o r p e r io d - - >
while ((i < sLength) & & (s.charAt(i) != ".")) {

i++;
}

< ! - - T h e r e m u s t be a t l e a s t one c h a r a c t e r a f t e r t h e p e n o d - - >
if ((i >= sLength - 1) || (s.charAt(i) != "."))

return false;
else

return true;

}

P R O J - В PROJECTS IN JAVASCRIPT PAGE 195

< ! — F u n c t io n t o c h e c k w h e th e r th e v a lu e i n P a s s w o rd c o n t a in s
A lp h a b e ts a n d C h a r a c te r s — >

function isCharsInBag (string, bag) {
var i;

< ! — S e a rc h th r o u g h s t r i n g ' s c h a r a c t e r s one b y o n e . I f c h a r a c t e r
i s i n b a g , a p p e n d t o r e t u r n S t r i n g . — >

for (i=0; i < string.length; i++) {
var charval = s.charAt(i);
if (bag.indexOf(charval) == - l) return false;

}
return true;

}
< ! — F u n c t io n t o c h e c k w h e th e r t h e P a s s w o rd c o n t a in s a t l e a s t one

n u m b e r — >
function isNumberlnPass (string, bag) {

var i, flag;
flag=0;

< ! — S e a rc h th r o u g h s t r i n g ' s c h a r a c t e r s one b y o n e . I f c h a r a c t e r
i s i n b a g , a p p e n d t o r e t u r n S t r i n g . — >

for (i=0; i < string.length; i++) {
var charval = s.charAt(i);
if (bag.indexOf(charval) == -1) {

continue;
}
else {flag=l;

break;
}

}
if(flag == 1) { return true; }
else { return false; }
return false;

}
< ! — F u n c t io n t o c h e c k ' t h e v a lu e s e n te r e d i n . a l l t h e e le m e n ts o f t h e

f o r m C a l le d on th e c l i c k e d e v e n t o f t h e S u b m it b u t t o n - - >
function verifyO {

var flag =0;
< ! — C h eck t o se e i f a n y o f th e T e x t f i e l d s i s l e f t b la n k — >

for (i=0; i<=3; i++) {
if (document.forms[0].elements[i].value = "") {

alert("Please f i l l in the " + document.forms[0].elements[i].Name + "fie ld ");
document.forms[0].elements[i].focus();
flag =1;
break;

}

}
if (flag == 1) {

retum(false);
}

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRQJ „
JAVASCRIPT, DHTML AND PERL '

- - B e g in in g th e c h e c k f o r E m a il a d d re s s , P a s s w o rd a n d C o n f irm
P a s s w o rd — >

if (flag == 0) {
var email = documentforms[0].elements[l].value;

< ! - - V a l i d a t e th e e m a il a d d re s s — >
if (!isEmail(email)) {

alert("Please enter the Email address in the proper Format");
document.forms[0].elements[l].focus();
return false;

}
var passwd = document.forms[0].elements[2].value;

< — V a l i d a t e t h e P a s s w o rd — >
i f (! isCharsInBag(passwd,

abcdefghijklm nopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVW XY
Z0123456789")) {

alert("Password must only contain alphabets and number");
return false;

}
< — C h e ck t o e n s u re t h a t t h e P a s s w o rd i s n o t le s s th a n 5

c h a r a c t e r s - - >
else if (passwd.length < 5) {

alert("Password must be 5 or more characters.");
return false;

}
< - - C h e c k t o e n s u re t h a t t h e P a s s w o rd i s n o t g r e a t e r th a n 8

c h a r a c t e r s — >
else if (passwd.length > 8) {

alert("Password must be 8 or more characters.");
return false;

}
< — C h eck t o e n s u re t h a t t h e P a s s w o rd c o n t a in s a t l e a s t one

nu m b e r - - >
else if (!isNumberlnPass(passwd, "0123456789")) {

alert("Password must have atleast one number.");
return false;

}
< - - C h e ck t o e n s u re t h a t t h e P a s s w o rd f i e l d s h a v e th e same

v a lu e — >
else if (document.forms[0].elements[2].value != document.forms[0].elements[3].value) {

alert("Your passwords do not match. Please retype and try again.");
return false;

}

}
< - - C h eck t o e n s u re t h a t a t l e a s t one o f t h e C h e ck B o xes i s

c h e c k e d - - >
for (j=4; j< = 5 ; j+ +) {

if(document.forms[0].elements[j].checked) {
break;

P R O J - В PROJECTS IN JAVASCRIPT PAGE 197

else if (j>=5) {
alfert(" Atleast Check on One o f Our Services");
document.forms[0].elements[j].focus();
return (false);

}
}
retum(true);

}
< — F u n c t io n c a l l e d on th e C l ic k e d e v e n t o f t h e A b o r t b u t t o n — > function Abort() {

history.backO;
}

</SCRIPT></HEAD>

<B O D Y Background-’images/Grid 1 .g if ’>
<CENTER><IM G Src="im ages/RegGoodies.gif'x/CENTER>
<FORM Action="" Method="post" onSubmit="retum verify()">

<TABLE Align=center Border=0 CellPadding=0 CellSpacing=0 Size="800">
<TBODY><TR>

<TD A lign=right>Login Name:</TD>
<TD><INPU T Name=LoginName></TD>

</TR><TR>
<TD A lign=right>E-M ail Address: </TD>
<TD><INPU T Name=Email></TD>

</TR><TR>
<TD A 1 ign=right>Password: </TD>
<TD><INPU T Name=Passwdl Type=password></TD>

</TR><TR>

<TD Align=right>Confirm Password:</TD>
<TD><INPU T Name=Passwd2 Type=password></TD>

< / T R x / T B O D Y > < / T A B L E >

<P><TABLE Align=center Border=0 CellPadding=0 CellSpacing=0 Size="800">
<TBO DY><TR><TD>

P A S S W O R D RULES:
</TD></TR><TR><TD>

A Password's minimum length is five
characters

</TD></TR><TR><TD>

A Password's maximum length is eight
characters

</TD></TR><TR> <TD>
A Password should have at least one digit

included
< / T D x / T R > < T R > <T D >

Other than Alphabets and Digits no other
values are allowed

< / T D > < / T R x / T B O D Y></T A B L E >

<CENTER><IM G Height=25 Src="images\Shim .gif" W id th= l>
<1MG Src="images/SeleGoodies.gif'>

< IM G Height=30 Src="images\Shim.gif' W idth= 1 ></CENTER>

<TAB LE Align=center Border=0 CellPadding=0 CellSpacing=0 Size="800">
<TBO DY><TR>

<TD ><IM G Height=5 Src="images/Shim.gif' width=10></TD>
<TD>Pen Pals

<IN PU T type=checkbox Name=PenPals value="y"></TD>
<TD ><IM G Height=5 Src="images/Shim.gif' width=10></TD>
<TD>News Letter<IMG Height=l Src="images/Shim.gif' Width=:

<INPUT type=checkbox Name=NewsLtr value="y" ></TD>
<TD ><IM G Height=5 Src="images/Shim.gif' W idth=10></TD>

</TR></TBO D Y></TABLE>
<CENTER><IM G Height=30 Src="images/Shim.gif' W idth= 1 ></CENTER>
<P><P><CENTER>

<INPUT Type=submit Value=Submit>
<INPUT Type=reset Value=Reset>
<INPUT onC lick=Abort() Type=button Value=Abort>

</CENTER>
</FORM>

</BODY>
</H TM L>

. COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
198 JAVASCRIPT, DHTML AND PERL

PROJ -

A N S W E R S T O S E L F R E V I E W Q U E S T I O N S

8. INTRODUCTION TO JAVASCRIPT
FILL IN THE BLANKS TRUE OR FALSE
I . Form 14. False
2. Netscape 15. True
3. <SCRIPT></SCRIPT> 16. False
4. <FORM></FORM> 17. True
5. Variables 18. False
6. ($) character 19. True
7. im p lic itly defined, literal 20. True
8. string 21. True
9. Functions 22. True
10. Arrays
11. dense
12. Objects
13. %(modulus)

9. OBJECTS IN JAVASCRIPT
FILL IN THE BLANKS TRUE OR FALSE
1. Document Object Model 6. False
2. JavaScript Assisted Style Sheets 7. False
3. Method 8. True
4. Interactive, Non Interactive
5. Navigator

10. FORMS OF A W EB SITE
FILL IN THE BLANKS TRUE OR FALSE
1. <FORM> and </FORM> 10. True
2. Method and Action 11. False
3. Get or Post 12. True
4. Action 13. False
5. <INPUT> 14. True
6. Submit 15. True
7. <M U LTIPLE>
8. Length
9. Math

11. COOKIES
FILL IN THE BLANKS TRUE OR FALSE
1. Cookie 6. False
2. HTTP 7. True
3. set-cookie
4. Request header
5. SECURE

S O L U T I O N S T O H A N D S O N E X E R C I S E S

8. INTRODUCTION TO JAVASCRIPT

1. Creating a JavaScript code block using arrays to generate the current date in words, (in the
format: Saturday, January 01, 2000).

<HTM L>
<HEAD><TITLE> Date validations </TlTLE><SCRIPT>

var monthNames = new Array(12);
monthNames[0]= "January";
monthNames [1]= "February";
monthNames [2]= "March";
monthNames[3]= "A p ril" ;
monthNames[4]= "M ay";
monthNames[5]= "June";
monthNames[6]= "July";
monthNames[7]= "August";
monthNames[8]= "September";
monthNames[9]= "October";
monthNames[10]= "November";
m onthN am es[ll]= "December";
var dayNames = new A rra y (7);
dayNames[0]- "Sunday";
dayNam es[l]= "Monday";
dayNames[2]= "Tuesday";
dayNames[3]= "Wednesday";
dayNames[4]= "Thursday";
dayNames[5]= "Friday";
dayNames[6]= "Saturday";
function customDateString (m date) {

var daywords = dayNames[m_date.getDay()];
var theday = m_date.getDate();
var themonth = monthNames[m_date.getMonth()];
var theyear = m_date.getYear() + 1900;
return daywords + ", " + themonth + " " + theday + " , " + theyear;

}
</SCRIPT></HEAD>
<BOD Y><H 1 > W ELC O M E! </H 1 >

<SCRIPT>document.write(customDateString(new Date()))</SCRIPT>
</BODY>

</H TM L>

SOL SOLUTIONS TO HANDS ON EXERCISES PAGE 201

2. Creating a JavaScript code block, which checks the contents entered in a form’s Text element. If the text entered is in the lower case, convert to upper case.
<HTM L>

<HEAD><SCRIPT Language="JavaScript">
function checkData(column data) {

if (co lum ndata != "" & & column data.value != column_data.value.toUpperCase()) {
colum ndata. value = column_data.value.toUpperCase()

}

}
</SCRIPT></HEAD>
<BODY><FORM >FieId 1 :

< IN PU T TYPE="text" NAM E="collector" SIZE=10 onChange="checkData(this)">

Field 2: <IN PU T TYPE="text" NAM E="dum m y" SIZE=10>

</FORM ></BODY>
</H TM L>

3. Creating a JavaScript code block, which validates a username and password against hard coded values.
<HTM L>

<HEAD><TlTLE>Password Validation</TITLE>
<SCRIPT language="JavaScript">
<! —

var useфassword = new Array(4);
userpassword[0]= "A llw yn ";
userpassword[l]= "a llwyn";
userpassword[2]= "Rohan";
userpassword[3]= "rohan"; function checkOut() {

var flag =0;
var flag 1 =0;
var i =0;
var j =0;
for (x=0; x<document.survey.elements.length; x++) {

if (document.survey.elements[x].value = "") {
alert("You forgot one o f the required fields. Please try again");
return;

}

}
var user= document.survey.elements[0].value;
var password = document.survey.elements[l].value; while(i<=3) {

if(userpassword[i] == user) {
j = i;
j+ + ;
if(userpassword[j] == password) {

f la g = l; break;
}

}

¡+=2;

}
if(flag = 0) {

alert("Please enter a valid user name and password");
return;

}else {
alert("Welcome !!\n" + document.forms[0].Usemame.value);

}
return;

}
//— >
</SCRIPT></HEAD>
<BODY><FORM A c tio n - '" M ethod-'PO ST" onSubm it-'re tum checkOut(this.form)"

Name="survey" >
< INPUT Type="TEXT" Name="Usemame" Size="15" MaxLength="15">UserName

<INPUT Type="PASSW ORD" Name="Pasword" size="15">Password

<INPUT Type="SUBM IT" Value="Submit">
<INPUT Type="RESET" Value="Start Over">

</FORM></BODY>
</HTM L>

9. OBJECTS IN JAVASCRIPT

1. Creating a Web page using two image files, which switch between one another as the mouse
pointer moves over the images.

<HTM L>
<H EAD ><TITLE>C H AN G IN G IMAGES..,,</TITLE><SCRIPT>

if(document.images) rollover="yes"; else ro llover="no";
if(ro llo ve r= -'yes ") {

im g lon = new Image();
im g lo f f = new Image();
img 1 on.src="man 1 .g if ';
img 1 off.src="m an2.g if';

}function imageSwitchOn(imagename) {
if(ro llover=="yes") {

imageOn=eval(imagename + "on.src”);
document [imagename].src = imageOn;

}

}function imageSwitchOff(imagename) {
if (rollover=="yes") {

imageOff=eval(imagename + "off.src");
document [imagenamej.src = imageOff;

}

}
</SCRIPT></HEAD>

D . r c COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, SQ.
202 JAVASCRIP, DHTML AND PERL

SOL SOLUTIONS TO HANDS ON EXERCISES PAGE 203

<BODY><CENTER>
<H 1 > IM AG ES..... </H 1 >

<H3><I>plaee your mouse pointer on the picture</I></H3>

<IM G SRC="man2.gif' height=200 width=200 alt="space" nam e="im gl">
</CENTER> </BODY>

</H TM L>

10. FORMS OF A W EB SITE

1. Creating a Web page, which accepts user information and user comments on the web site to check if all the Text fields have being entered with data else display an alert.
<H TM L>

<HEAD><TITLE>Elements o f a Form</TITLE>
<SCRIPT language="JavaScript">
<! —

function checkOut() {
for (x=0; x<document.survey.elements.length; x++) { if (document.survey.elements[x].value == "") {

alert("Sorry, you forgot one o f the required fields. Please try again."); break;
}

}
return false;

}
//— >

</SCRIPT></HEAD>
<BO DY bgco lor="lightyeIlow"><H2><I>INFO NET SERVICES</I></H2>

<FORM NAM E="survey" onSubmit="retum checkOut(this.form)">
<INPUT Name="firstname" Size="30" Type="TEXT" MaxLength="30">
First Name

<INPUT Type="TEXT" Name="lastname" Size="30">Last Name

<INPUT Type="TEXT" Name="emailaddr" Size="30">E-mail Address

<INPUT Type="TEXT" Name="address" Size="30">Address

<INPUT TYPE="TEXT" N A M E ="c ity" SIZE=."30">City

<INPUT NAM E="state" SIZE="6">State
<IN PU T N A M E ="z ip" SIZE=" 10">Postal Code
<INPUT N AM E="country" SIZE="15">Country
<P><I>Please choose the most appropriate statement</I>

<INPUT Type="RAD IO " Name="buying" Value="regular">

I regularly purchase items online

<IN PU T Type="RAD IO " Name="buying" Value="sometimes">

I have on occasion purchased items online

<IN PU T Type="RAD IO " Name="buying" Value="m ight" CHECKED>

I have not purchased anything online, but I would consider it

<IN PU T Type="RAD IO " Name="buying" Value="wHlnot">

I prefer to shop in real stores
<P><I>I'm interested in (choose all that apply)</I>

<IN PU T TYPE="C HEC KBO X" N A M E ="h ik ing" VA LU E ="hik ing">H iking

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIP, DHTML AND PERL

SOL

<INPUT Type="CHECKBOX" Name="mbiking" Value="mbiking">
Mountain B iking

<INPUT Type="CHECKBOX" Name="camping" Value="camping">
Camping

<INPUT Type="CHECKBOX" NAM E="rock" Value="rock">
Rock C limbing

<INPUT Type="CHECKBOX" Name="4wd" Value="4wd">
Off-Road 4W D

<IN PU T Type="CHECKBOX" Name="ccskiing" Value="ccskiing">
Cross-country Skiing

<P><I>I learned about this site from</I>

<SELECT NAM E="re ferral">

<OPTION V A LU E ="prin t" SELECTED>Print Ads
<OPTION V A LU E ="v is it"> In-Store V is it
<OPTION VALUE="rec"> Friend's Recommendation
O P T IO N VALUE="intem et"> Sources on the Internet
O P T IO N VALUE="other"> Other

</SELECT>
<P><H4>Comments</H4><B R>
<TE X TA R £A Name="comments" Cols="40" Rows="5">

Please type any comments here</TEXTAREA>

cIN PU T Type="SUBM IT" Value="Submit">
<INPUT Type="RESET" Value="Start Over">

</FORM>
</BODY>

</HTM L>

S ‘E t t I O C \ f - I I I : (D y n a m ic ^ H y p e r T e x t M a r k u p L a n g u a g e

1 2 . D Y N A M I C H T M L

First Impression - D id the in itia l page grab attention?
Interface Design - Is the menu interface interactive enough and visually interesting?
Corporate Mildew - Is the site trapped in a web o f corporate look, feel and canned marketing speak?
Coriolis E ffec t - Does the site generate enough currents o f interest based on design and content for

the user to comeback?

The above points emphasize the requirements o f a good web site.

D H TM L is a new and emerging technology that has evolved to meet the increasing demand for eye
catching and mind-catching web sites.

D H TM L combines H T M L w ith Cascading Style Sheets (CSSs) and Scripting Languages. H T M L specifies
a web page's elements like table, frame, paragraph, bulleted list, etc. Cascading Style Sheets can be used to
determine an element's size, color, position and a number o f other features. Scripting Languages
(JavaScript and VBScript) can be used to manipulate the web page's elements so that styles assigned to
them can change in response to a user's input.

C A S C A D IN G S T Y L E S H E E T S

Style Sheets are powerful mechanism for adding styles (e.g. fonts, colors, spacing) to Web documents.
They enforce standards and uniform ity throughout a web site and provide numerous attributes to create
dynamic effects. W ith Style Sheets, text and image formatting properties can be predefined in a single list.
H TM L elements on a web page can then be bound to the style sheet. The advantages o f a Style Sheet
includes the ability to make global changes to all documents from a single location. Style Sheets are said to
Cascade when they combine to specify the appearance o f a page.

The Style assignment process is accomplished w ith the <STY LE>...< /S TYLE> tags. The syntax for
making the assignment is simple. Between the <STYLE>...</STYLE> H TM L tags, specific style attributes
are listed. The <STYLE>...</STYLE> tags are written w ith in the <HEAD>...</HEAD> tags.

Syntax:
<S TY LE Type="tex t/css">

tag {attribute:value; attribute:value...}

< /S TYLE>

/ / a t e -■

In the <STYLE> tag, the expression "Type = text/css" indicates that the style sheet conforms to
CSS syntax

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, г н д р . . .
JAVASCRIPT, DHTML AND PERL

The attributes that can be specified to the <STYLE> tag are Font Attributes, Color and Background
Attributes, Text Attributes, Border Attributes, Margin Attributes and List Attributes.

Font Attributes

Attributes Values
font-family A comma-delimited sequence o f font family names (serif, sans-serif, cursive)
font-sty le Normal, ita lic or oblique
font-weight Normal, bold, bolder, lighter, or one o f the nine numerical values (100, 200, 300, 400, 500,

600, 700, 800, 900)
font-size A term that denotes absolute size (xx-small, x-small, small, medium, large, x-large, xx-

large), relative size (larger, smaller), a number (o f pixels), percentage (o f the parent
element's size)

U s e O f F o n t A t t r i b u t e sExample 1: (Refer to diagram 12.1)

<HTM L>
<H EAD><TITLE> W orking w ith

Style Sheets using Font
Attributes </T ITLE>

<STYLE Type = "text/css">
H I {font-fam ily:arial, helvetica}
P{font-size: 12pt; font-style :italic}

</STYLE></HEAD>
<BODY>

<H l>S ilicon Chip
T echnologies</H 1 >

<P>Silicon Chip Technologies, a
private lim ited company, was
founded in December 1989.

<P->The vision o f this company is to provide any corporate client a single entity which addresses
all their Software Development, Tschnical and User Documentation, Training and Manpower
Recruitment needs.

</BODY>
</HTM L>

Color And Background Attributes

Attributes Values
color Sets an element's text-color. A color name or a color code
background-color Specifies the color in an element's background. A color name or a color code
background-image Sets the background image. A URL or none
background-repeat W ith a background image specified, sets up how the image repeats throughout the

page. repeat-x(repeats horizontally), repeat-y{repeats vertically), repeat{both),
no-repeat

Table 12.1
W o rk in g w ith S ty le S h e e ts u s in g F o n t A t t r ib u te s - N e ts c a p e

j f i le £ г й y ie w S o £ c n w u n ic s a / Ц э !Р

i 3 я
’i " BcoKmaifcs Loco5‘>n :j~ ieY //0 |/sc i-h tm l/N ew /css1 him ■» | W-ieTs Related
~j £. Inslant Massaga 3 WBbKtot S Coniod gi P ao p la V a lio w P a g a a gi download Q!anna;s __________

S ilico n C h ip T e c h n o lo g ie s
S ilic o n C h ip Technologies, a p r iv a te I m u ted com pany, w as fo u n d e d in Decem ber /989.

The v is ion o f th is com pany is to p ro v id e any co rpo ra te •client a s ing le en tity w hich address

a l l th e ir Software Development, T echn ical a n d User D ocum enta tion , T ra in ing a n d M an po w e r

Recru itm en t needs.

;DöCüment. D ane

Diagram 12.1

Table 12.2

CHAP 12 DYNAMIC HTML PAGE 207

U s e O f C o l o r A n d B a c k g r o u n d A t t r i b u t e s
Example 2: (Refer to diagram 12.2)

<HTM L>
<H E AD ><TITLE> W orking with Style

Sheets using Color and
Background
Attributes</TITLE>

<STYLE Type = "text/css">
H I {font-fam ily :arial, helvetica;

font-size:26pt; background-
image:url(images/sct-logo.gif)}

H2 {font-fam ily:arial, helvetica;
font-size:26pt; background-
image:url(images/sct-logo.gif);
background-repeat:no-repeat}

P {font-size:12pt; font-style:italic;
font-weight:bold;
color:#23238e; background-color:red; background-position:bottom-left}

< /STYLE></HEAD>
<BO DY>

<U>W ith background repeat</U>
<H1> Silicon Chip Technologies</Hl>
<P>A private lim ited company, which was founded in December 1989. The vision o f this
company is to provide any corporate client a single entity which addresses all their Software
Development, Technical and User Documentation, Training and Manpower Recruitment needs.
</P>

<U>W ith background no-repeat</U>
<H2> Silicon Chip Technologies</H2>

</BODY>
</H TM L>

Text Attributes

A ttribu tes Values
text-decoration Adds decoration to an element's text. None, underline, overline, line-through, blink
vertical-align Determines an element's vertical position, Basline, sub, super, top, text-top, middle,

bottom, text-bottom, also percentage o f the element's height
text-transform Applies a transformation to the text .Capitalize (puts the text into in itia l caps),

uppercase, lowercase or none
text-align Aligns text w ith in an element. Left, right, center, or justify
text-indent Indents the first line o f text. A percentage of the element's width, or a length

Table 12.3

. . .

(| | 'i Length values can be positive or negative, have a numerical value, and are followed by a unit
V o f measurement. Note that while length values can be either positive or negative, many

properties cannot have negative length units.

l i v i W o rk in g w ith S ty le S h e e ts u s in g C o lo r a n d B a c k g ro u n d A tt r ib u te s - N e ts c a p e B E C 3
£ ile E c ft y ie w £ o Comm unicator H e lp | |

j -fi’ - i à fA ä â i - ¡á -' I I
B eck R e lo a d H o m e Seorch N e tscape Print Security Я В И

4 B oo km a rks Л Location: (tile / / /D |/s d -M m l/N e w /c s s 2 h im ▼ ¡(T ^ 'W h e T s R e la te d 1
* Д Instant M e s s a g e 3 W eh M a il Э Contact 3 P e o p le 3 Y e llo w Pages Ü Dow n load _ j Channels ¡9

1 W i t h b a c k g r o u n d r e p e a t

S i H c o i r C h i p T e & h n o i o g i e s

1 т
W i t h b a c k g r o u n d n o - r e p e a t

Silicon C h i p T e c h n o l o g i e s
_ J

c3 ' H P - ¡Docum en t D one ш м ш ш m ш

Diagram 12.2

There are two basic kinds o f length unit, relative and absolute. As aril o f thumb, absolute units should be
used only when the physical characteristics o f the output device are known.

The units o f measurement are: • _______________________________

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, r H . p
PAGE 208 JAVASCRIPT, DHTML AND PERL CHAP 12

Unit Name Abbreviation Explanation Relative
Em Em the height o f a font yes
Ex Ex height o f the letter x in a font yes
Pica Pc 1 pica is 12 points no
Point Pt 1/72 o f an inch no
Pixel Px one dot on a screen yes
M illim eter Mm printing unit no
Centimeter Cm printing unit no
Inch In printing unit no

Table 12.4
U s e o f T e x t A t t r i b u t e s Example 3: (Refer to diagram 12.3)

<HTM L>
<H EAD ><TITLE> W orking w ith Style

Sheets using Text Attributes
< /T lTLE >

<STYLE Type = "text/css">
H I {font-fam ily :arial, helvetica;

font-size:26pt; text-
decoration:blink; co!or:red}

P {font-size:12pt; font-style:normal;
font-weight:bold;
color:#23238e;}

H6 {font-size:12pt; font-style: italic;
font-weight:bold;
color:#23238e; text-a lign:justify; text-indent:.5in}

</STYLE></HEAD>
<BODY>

< H l>S ilicon Chip Technologies</H l><U>W ithouttext align, first line indent</U>
<P>A private lim ited company, which was founded in December 1989. The vision o f this

company is to provide any corporate client a single entity which addresses all their Software
Development, Technical and User Documentation, Training and Manpower Recruitment
needs.</P>

<U>W ith text align (justify), first line indent</U>
<H6>A private lim ited company, which was founded in December 1989. The vision o f this

company is to provide any corporate client a single entity which addresses all their Software
Development, Technical and User Documentation, Training and Manpower Recruitment
needs.</H6>

</BODY>
</H TM L>

S ty le S h o o ts u s in g T e x t A t t r ib u to s - N e ts c a p o
E39 fcdit y is w ¡¿o Com m unicator fca lp

-v > at- â â 3 & - Il 55]
B ad '. R a le ad H o w » S ea rch N e tscap e Prin t S ecurity M i

' O ookm a/ks A Location-¡ule ///D |/s c H itm l/N e w /c s s 3 htm 'J?' W ha t'* R o 'o te ö
instant M essage 5 W eb M a il W Contact >51 P eo p le j j i Y e llo w P ag es & Down toad , £ j Cftanr>eis__________.

Silicon C h i p T e c h n o l o g i e s

Without text align, first line Indent
A private limited company, which w as founded in D ecem ber 1989. The vision o f this company
is to provide any corporate client a single entity w hich address all their Softw are Developm ent,
Technical and U ser Documentation. Training and M anpow er Recruitment needs.

With text align (justify), first line Indent
.■I p r iv a te l im i t e d co m p an y, w h ic h w a s fo u n d e d in D e c e m b e r 19X9. T ite v is io n o f th is

co m p a n y i s to p ro v id e a n y c o rp o ra te c l ie n t a s in g le e n t ity w h ic h add ress■ a l l t l t e i r S o jb v a re
D e v e lop m e n t, T e c h n ic a l a n d U s e r D o c u m e n ta t io n , T ra in in g a n d M a n p o w e r R e c ru itm e n t
needs.

a ï F ® " D o cum en t D one ' S-J €2 'Æ.
•o f i S ta r t ! E xp loring-N ev . j ! * y Microsoft W o id - ■ | | [^ | W o rk in g w ith .. s ¡5 P a in t S hop Pro

Diagram 12.3

CHAP 12 DYNAMIC HTML PAGE 209

B o r d e r A t t r i b u t e s

Attributes Values

border-style Solid, double, groove, ridge, inset, outset
border-color A color name or color code
border-width Thin, medium, think or length
border-top-width Thin, medium, think or length
border-bottom-width Thin, medium, think or length
border-left-width Thin, medium, think or length
border-right-width Thin, medium, think or length
border-top Specifies width, color and style
border-bottom Specifies width, color and style
border-left Specifies width, color and style
border-right Specifies width, color and style
border Sets all the properties at once

U s e O f B o r d e r A ttrib u t e sExample 4: (Refer to diagram 12.4)
<HTM L>

<H E AD ><TITLE>W orking w ith Si
Sheets using Bor
Attributes < /T ITLE>

<STYLE Type = "text/css">
H I {font-fam ily:arial, helvetica;

font-size:26pt; color:red}
P {font-size:12pt; font-sty le:itali

font-weight:bold;
• color:#23238e; border-

color:#23238e; border-
style:groove; border-
w idth:thick}

</STYLE></HEAD>
< B O D Y >< H l> Silicon Chip Technologies</Hl>

<P>A private lim ited company, which was founded in December 1989. The vision o f this
company is to provide any corporate client a single entity which addresses all their Software
Development, Technical and User Documentation, Training and Manpower Recruitment
needs.</P>

</BODY>
</H TM L>
Margin Related Attributes

Table 12.5

Ле
ier

& W o rk in g w ith S ty le S h e e ts u s in g T e x t A ttn b u te s - N e ts c a p e
E¡¡8 £d!t V ie w Qa Comm unicator He!p

¿ 3- Í& áá
D cck R e lo a d H om e S earch Netscape S ecurity

’ B oo k m a rks f ; Location [tï ië T //
.^ In s ta n t M es s ag e r ÿ W obM oH H

7] O ' - ’ V.Tia's R ela ted
i P eople '£■ V e to w F a g e i 'S Оо*ыос

S ilic o n C h ip T e c h n o lo g ie s

.*1 p r iv a te l im i t e d co m p an y, w h ic h h'a s f o u n d e d in D e c e m b e r J989 . The v is io n o f th is
c o m p a n y i s to p ro v id e a n y c o rp o ra te c l ie n t a s in g le e n t i t y w h ic h a dd re s s a l l th e i r
S o fh v a re D e v e lo p m e n t, T e c h n ic a l a n d U se r D o c u m e n ta t io n . T ra in in g a n d M a n po tve t
R e c ru itm e n t needs.

D o c u m e n t Qone

Diagram 12.4

Attributes Values

margin-top Percent, length or auto
margin-bottom Percent, length or auto
margin-left Percent, length or auto
margin-right Percent, length or auto
margin Percent, length or auto

Table 12.6

PAGE 210 COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL CHAP 12

U s e O f M a rg in A tt r ib u te s
Example 5: (Refer to diagram 12.5) 355 W o r k in g w ith S ty fe S h e e ts u s in g M a rg in A t t r ib u te s - N e ts c a p e

£a it V ie w S o Com m unia

4 J
B ack • R e lo ad

, , f 'B o o k m a rk s .1/. Locetion:fü"

rîi
H om e Netscape

'//D j/s c t-h tm l/N e w /cs s S hi
instant M essage 3 ! W ebK te il 3 C o n tad Ш P eo p le Y e llo w P ag es

VfttaÈÉ Rela ted
j Channeh

S ilic o n C h ip T e c h n o lo g ie s
p r iv a te l im i t e d com pany, w h ic h w a s fo u n d e d in D e c e m b e r 1989.

T h e v is io n o f t h i s c o m p a n y is to p ro v id e a n y c o rp o ra te c l ie n t a s in g le
e n t ity w h ic h a d d re s s a l l t h e i r S o ftw a re D e v e lo p m e n t, T e c h n ic a l a n d U s e r
D o c u m e n ta tio n , T ra in in g a n d M a n p o w e r R e c ru itm e n t needs.

<H TM L>
<HEAD><TITLE> W orking w ith Style

Sheets using Margin A ttributes</TITLE>
<STYLE Type = "text/css">

BODY {margin-top: 10%}
H I {font-fam ily:arial, helvetica;

font-size:26pt; coloured}
P {font-size:12pt; font-style:italic;

font-weight:bold;
color:#23238e; margin-
left: 15%; margin-right: 15%}

</STYLE> </HEAD>
<BO DY><H I>S ilicon Chip

Technologies</Hl>
<P>A private lim ited company, which was founded in December 1989. The vision o f this

company is to provide any corporate client a single entity which addresses all their Software
Development, Technical and User Documentation, Training and Manpower Recruitment
needs. </P>

</BODY> •
< /H TM L>

List Attributes

D o cum en t D one

Diagram 12.5

Attributes Values
list-style Disc, circle, square, decimal, lower-roman, upper-roman, lower-alpha, upper-alpha, none

Table 12.7
U s e O f L is t A tt r ib u te s
Example 6: (Refer to diagram 12.6)

<HTM L>
<HEAD><TITLE> W orking w ith Style

Sheets using L is t Attributes
< /T ITLE>

<STYLE Type = "text/css ">
BODY {margin-top:5%}
H I {font-fam ily:arial, helvetica;

font-size:26pt; coloured}
UL {list-style-type:lower-roman}

</STYLE></HEAD>
<BO D Y ><H l>S ilicon Chip _____

T echnologies</H 1 >
<H4>SCT Provides Corporate

Training For The Follow ing Products:</H4>

 H TM L

I ë ï W o rk in g w ith S ty le S h e e ts u s in g l i s t A tt r ib u te s - N e ts c a p e И Г Э П
File ¿dn V iew Q o Comm unicator t je tp

d & ¿ t- £
B ack R e lo ad Hem e S earch N e tscape Prin> * * н а

S ecurrV J H u l
• « J ^ á o o k n w k s ¿ Location. |t,ie ///p |/s c l-h tm l/N e w /c s s 6 htm| » j ‘Т У Wtoat’s R e la ted 11

..*3 Instant M essag ç ü W eb M ail Cornac) Ш P eo p le YeH aivP ogt¡3 Ы Dow n load Channels ;i

1 S ilic o n C h ip T e c h n o lo g ie s
H SCT Provides Corporate Training For The Following Products: ,

i. HTML
ii. Javascript

iii. CGI
iv. Java
v. PowerBuilder
vi. Oracle Developer 2000

vii. Oracle DBA

f : Document: D one . Ш Ш . 0 -г- i | |

Diagram 12.6

 Javascript
 CGI

CHAP 12 DYNAMIC HTML PAGE 211

 Java
 PowerBuilder
 Oracle Developer 2000
< L I> Oracle DBA

</U L>
</BO D Y>

</HTM L>

C L A S S

The control over page design that style sheet gives is exciting, but can be heavy handed. Its great to be able
to change every paragraph, but what i f only one paragraph, or a few paragraphs need to be changed?

A particular paragraph may need to look different from other paragraphs. It's probably because the content
o f the paragraph is in some way different from other paragraphs on the page. Think o f a question and
answer page. Questions in bold, while the answers are in plain text. The appearance o f a paragraph is a
function o f the content o f the paragraph.

Style sheets support classes or sets o f style changes for a document. A class can be defined to change the
style in a specific way for any element it is applied to, and classes can be used to identify logical sets o f
style changes that m ight be different for different HTM L elements. The style changes can be applied
directly to each H T M L element or applied to part o f a document w ith the tags. I f any
element is made a member o f a class by inserting Class = ClassName into its opening tab, it conforms to
that class specification.

In the example above, there are two classes o f paragraph - question and answer. So in the style sheet there
need to be two statements, one which affects only paragraphs o f class question, and one which only affects
paragraphs o f class answer.

In a style sheet, class is defined by a dot followed by the name o f the class i.e. .class-name.

U s e O f C la s s
Example 7: (Refer to diagram 12.7)

<HTM L>
<H EAD ><TITLE> W orking with

Class </T ITLE>
<STYLE Type = "text/css">

P {font-size:12pt; font-
weight:bold; text-align:justify;
margin-left: 10%; margin-
right: 10%}

.question {colonbrown; font-
style:italic}

.answer {color:#23238e}
</STYLE></HEAD>

<BODY>
<P class="question"> How to

/ create style sheet to alter an
H T M L element ? </P>

F il« £d<t V ie w Q o £om m unica 'o : H e lp

• t 3- si- i l
R e lo a d H o ir-e S e a ic h Ne tscape

<a£
S ecu ny

Î!

„ f " Bookmarks ^ Location.|iile /7 /D |/sc t-h im l/N e w /c s c 7 hirr^ "Ч У ?
Insten! M essage 3- W s b M s il j j i Contact S ' P e o p le 4 - Y e llo w P ag es i j i D o w n load ’̂ C h a n n e ls

-II
T] Rela ted

H tn v to e r ra te v ty /e s h ee t t o a l t e r w i П Т Л П . e le m e n t ?

Tin1 Stylo nssicnment process can l>c Accomplished with the •-STYLE--...
- ASTYLF.> tags. The syntax Гог making the assignment is simple. Between

<STYLE and </STYLE>, HTML tags to which styles are to be assigned
are to he listed and each tag with a pair of curly brackets in which specific
style atlribures are to be specified. This 'STYLF,> tag should be within
<HF.AD>... <TIF,AD>element.

IVbat a r e t h e a t t r i b u t e л t h a t can b e s p e c i f i e d ?

The attributes tluit cim be specified are. Font Attribute*. Color and

Background Attributes. Text Attributes. Border Attributes. Margin
Attributes and List Attributes.

1 Paint Shop P ro f

Diagram 12.7

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, с н д р 12
JAVASCRIPT, DHTML AND PERL

<P class="answer"> The Style assignment process can be accomplished w ith the
& lt;S T Y L E & g t;...& lt;/S T Y L E & g t; tags. The syntax for making the assignment is simple.
Between & It;S T Y L E & g t; and & It;/S T Y L E & g t;, H T M L tags to which styles are to be
assigned are to be listed and each tag with a pair o f curly brackets in which specific style
attributes are to be specified. This & lt;S T Y L E & g t; tag should be w ith in & lt;H E A D & g t;...
& lt;/H EA D >e lem ent.< /P >

<P class='question'> What are the attributes that can be specified ? </P>
<P class-answer’> The attributes that can be specified are, Font Attributes, Color and Background

Attributes, Text Attributes, Border Attributes, Margin Attributes and List Attributes.</P>
</BODY>

</HTM L>

USING T H E ... T A G

SPAN is an H T M L element that plays a prominent role in style sheets. In the body o f the document,
... is used to set the boundaries o f the rule's styling specifications.

Use O f SPAN Tags
Example 8: (Refer to diagram 12.8)

<HTM L>
<HEAD><TITLE>W orking w ith

SPAN</TITLE>
<STYLE Type = "text/css">

P {font-size:12pt;font-
weight:bold; text-align:justify}

.question {colonbrown; font-
sty le:italic}

.answer {color:#23238e}

.big {font-size:14pt; text-
decoration:underline; text-
transform:uppercase; coloi :red}

</STYLE></H E AD>
<BODY>

<P class="question"> How to create style sheet to alter an H TM L
element ?</P>

<P class="answer"> The Style assignment process can be accomplished w ith the
& lt;S T Y L E & g t;...& lt;/S T Y L E & g t; tags. The syntax for making the assignment is simple.
Between & lt;S T Y L E & g t; and & lt;/S T Y L E & g t;, H TM L tags to which styles are to be
assigned are to be listed and each tag w ith a pair o f curly brackets in which specific style
attributes are to be specified. This & lt;S T Y L E & g t; tag should be w ith in & lt;H E A D & g t;...
& lt;/H EA D >e lem ent.< /P >

<P class='question'> What are the attributes that can be
specified?</P>

<P class-answer'> The attributes that can be specified are, Font Attributes, Color and Background
Attributes, Text Attributes, Border Attributes, Margin Attributes and List Attributes.</P>

</BODY>
</HTM L>

|3 $ r W o r k in g w ith S P A N - N e ts c a p e
File £ a ¡ i V ie ,v f¿° £om m gr.ice tor fcielp

■ï 3 fit S -* at -21 ¡5?
B ack Re looS H o m e S sarch N e tscap e Print S ecurity • ШЯ

.¿ 'B o o k .T is r '-.s X L cc*5o n :|h !e y//D l/sc l- litm l/fJew /css8 .h tm 1 T] QJ V /n - f s RelaMÖ
^ In â ia n tM e s s o g e W eb M e ii 3 Contact S 1 P eo p le 3 V e lio w P a g e s g.' Dow n load Cr-.ame-.s

Htnv to create S T Y L E S H E E T t o a lte r an H TM L element ?

The Style assignment process can he accomplished with the <STYLE>... </STYIJC> tags.

The syntax for making the assignment is simple. Between 'STYLE and ''-/STYLE-'.
HTML tags to which styles are to be assigned are to be listed and each tag with a pair of
curly brackets In which specific style attributes are to be specified. This •-STYLE-- tag

should be within •-HEAD:'... </HEAD>element.

IV h a t a re th e A T T R 1 B U l l i S th a t r a n he s p e c if ie d ?

The attributes that can he specified are. Font. Attributes, Color and Background
Attributes, Text Attributes.-Border Attributes, Margin Attributes and lis t Attributes.

Docum ent: D one

Diagram 12.8

CHAP 12 DYNAMIC HTML PAGE 213

/
To protect browsers that do not support <STYLE> element, insert comment tags around the
declarations w ith in the style element.

< ST Y L E Type = "text/css">
< ! - -

/ * d e c l a r a t i o n * /
— >

</STYLE>

E X T E R N A L S T Y L E S H E E T S

External Style Sheets are composed o f standard text, which consists o f a series o f entries, each composed o f
a selector and a declaration. The selector indicates the HTM L element(s) affected by the properties in the
declaration. These external style sheets are then saved as a file w ith extension .css, which can be linked, to
a web page via the <LIN K> tag.

<LIN K Rel=stylesheet H R e f= "< S ty le S h e e t F i l e Nam e>">

U s e O f E x t e r n a l S t y le S h e e t
Example 9: (Refer to diagram 12.9)

Code for mystyle.css:
P {font-size:12pt;font-weight:bold; text-

align:justify}
.question {color:brown; font-style:italic}
.answer {color:#23238e}
.big {font-size:14pt; text-

decoration:underline; text-
transformation:uppercase; colonred}

I Ä W o r k in g w ith S P A N - N e ts c a p e
£dÄ yiew go
чА

Sommurvicelor t i e ip

•i J* ¿i
Re!ood H om e S earch Ne'.scope

. . t ' В о о к т а Л * .4 Locaíon: ¡file ///D |/s c 3 -h im i/N e w /c s s8 htm
Inwant M a t saga WabMai ¿ .C o n ta d P ao p la Ш y« lte w P a g e » ÿ Dow n load _ j Q ia n n t l t

of
Security g

W h a f i R e la te d

Ilm v to create S T Y L E S H E E T to a tte r an HTM1. element ?

The Style assignment process can be accomplished with the <STYLE>... <-'STYLE-- tags.

The syntax Гог making the assignment is simple. Between <STYLE> and *-'/STYLE>.
HTML tags to which styles are to be assigned are to be listed and each tag with a pair of
curly brackets in which specific style attributes are to be specified. This <STYLE' tag

should be wiLhin <HEAD>... </HE AD'-element.

11 h a t are the A 7 T R IB I /T E S that can he specified ?

The attributes that can be specified are, Font Attributes. Color and Background
Attributes. Text Attributes. Border Attributes. Margin Attributes and List Attributes.

D o cum en t Done

Diagram 12.9

Code for the H TM L page:
<HTM L>

<H EAD ><TITLE> W orking w ith
External Style Sheet
< /T ITLE>

< L IN K Rel=stylesheet HREF="mystyle.css"></HEAD>
<BODY>

<P class="question">How to create style sheet to alter an H TM L
element?</P>

<P class="answer"> The Style assignment process can be accomplished w ith the
& lt;S T Y L E & g t;...& lt;/S T Y L E & g t; tags. The syntax for making the assignment is* simple.
Between & lt;S T Y L E & g t; and & lt;/S T Y L E & g t;, H T M L tags to which styles are to be
assigned are to be listed and each tag w ith a pair o f curly brackets in which specific style
attributes are to be specified. This & lt;S T Y L E & g t; tag should be w ith in & lt;H E A D & g t;...
& It;/H EAD >e lem ent.< /P>

<P class-question’> What are the attributes that can be
specified?</P>

<P class-answer’> The attributes that can be specified are, Font Attributes, Color and Background
Attributes, Text Attributes, Border Attributes, Margin Attributes and L ist Attributes.</P>

</BODY>
</HTM L>

пд^сг COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
PAGE 214 JAVASCRIPT, DHTML AND PERL CHAP 12

i n ' ! Style information can be associated w ith the web page in several ways:
I V J □ By embedding the style information directly through a STYLE attribute

□ <H1 STYLE = text-align:center> Inline Style Sheet < /H l>
□ By embedding the style information directly through a <STYLE> header
□ By embedding the style information directly through < L IN K > element

W O R K IN G W ITH J A V A S C R I P T S T Y L E S H E E T S [JSSS]

In addition to supporting Cascading Style Sheets, Netscape Communicator also supports a JavaScript-based
approach to style sheets, referred to JavaScript Style Sheets or JSSS fo r short. JSSS support the styles
provided by CSS and has the advantage o f making these styles available as JavaScript properties. This
advantage enables style properties to be created, read and updated via JavaScript scripts.

A JavaScript Style Sheet code w ith the output shown in diagram 12.10 (a black-and-white representation)
is explained in Example 10. The <STYLE>
tags shown in the listing are surrounding
tags. They surround four JavaScript
statements that assign color values to
different sub properties o f the
document.tags property. The <STYLE>
tag uses the TYPE attribute to determine
what type o f style sheet is in effect. The
text/javascript value is used to identify a
JavaScript Style Sheet as shown in Example
10. The text/css value would be used to
identify a Cascading Style Sheet as shown
in Example 11.

Example 10:

< !— This pa g e only works in

Netscape — >

<HTM L>
<H E AD ><TITLE> W orking w ith JSSS Style Sheets </TITLE>
<STYLE Type = "text/javascript">

document.tags.BODY.backgroundColor = ’cyan’;
document.tags. H 1 .Color = ’red1;
document.tags.H2.Color = ’blue1;
document. tags.P.Color = ’green';

< /STYLE></HEAD>
<BODY>

<CENTER ><H l>S iIicon Chip Technologies</Hl><H2>Mumbai</H2></CENTER>
<P>Silicon Chip.Technologies, a private lim ited company, was founded in December 1989.</P>
<P>The vision o f this company is to provide any corporate client a single entity which address all

their Software Development, Technical and User Documentation, Training and Manpower
Recruitment needs.</P>

</BODY>
</HTM L>

1 FBe Ed4 VitM< ¿3
<£ 3 , 'TV s i i f t i

I Dae*. Raloac iiow* Piu-4
i ' £ L-̂ zxc-. jt:« //;vi/DHMT\/M*v»f*ld., .JSSS ntrr.r

H WobVo* O M K l s PskdI» H I'etkr* Pegvi % C c o a a fl ’_ j Oionna'i

s

Silicon Chip Technologies
Mumbai

S iliv m , <•>,■). IV fU iu lrv .ic » , H jm v mIi: Im ii ic d « » i r an> vv«x fn .okis.1 in Ik c c u .IS v t I W)

1 The v is io n o f th is c on ijiu iiv i> № p ro v id e a ny l iu -p e rm e t l i * m , i? iu ik - o m iry vptuc ii addri-5'. d ! ib . i
1 le c h n ic - i) hii>! i ! ' c r IV/ciuneotHsI./o. T ra iim ip m ul M tu q n a v /ir K i- f i i i i 'm t-n f ru-c if*

SoSvtart-

-O - Coeur«*. Don* » i S _ 'Z-
' iB s ltu I: J - w «iPobup 1 _jJfc<i.ii.im y-v\ou.L H f lg w n r liin o with -IS | g iQ J ■>■ 1Л9РЫ

Diagram 12.10

CHAP 12 DYNAMIC HTML PAGE 215

Example 11: (Refer to diagram 12.10)

<H TM L>
<H EAD ><TITLE> W orking w ith Cascading Style Sheets </T ITLE>
<STYLE Type="text/css">

BO D Y {background-Color: 'cyan';}
H I {Color: 'red';}
H2 {Color: 'blue';}
P {Color: 'green';}

< /STYLE></HEAD>
<BODY>

<CENTER ><H l>S ilicon Chip Technologies</Hl><H2>Mumbai</H2></CENTER>
<P>Silicon Chip Technologies, a private lim ited company, was founded in December 1989.</P>
<P>The vision o f this company is to provide any corporate client a single entity which address all

their Software Development, Technical and User Documentation, Training and Manpower
Recruitment needs.</P>

</BODY>
</H TM L>

USIN G T H E <DIV>...</DIV> T A G

A web page can be divided into segments or divisions called DIVs. Each segment starts with <D IV > and
ends w ith </D IV>. These segments can be
positioned anywhere on the page. The
<D IV > tag has a 'position' attribute that can
take one o f the two values, Absolute or
Relative. Absolute positions the segment
w ith respect to the top/left edge o f the
browser window. In contrast w ith Absolute,
Relative positions the segment in relation to
other elements on the page.

U s e O f D IV s
Example 12: (Refer to diagram 12.11)

<HTM L>
<HEAD><TITLE> W orking w ith D IVs

< /T ITLE></H EAD >
<BO DY>

<D IV ID =boxl Style="background-color:red; position:absolute; left:300; top: 150; width:50">
<IM G Src=images/SCT-LOGO.gif></DIV>

<D IV ID=box2 Style="background-color:red; position absolute; left:380; top: 150; width:50">
<IM G Src=images/SCT-LOGO.giP></DIV>

<D IV ID=box3 Style="background-color:red; position:absolute; Ieft:300; top: 190; width:50">
<IM G Src = images/SCT-LOGO.gif></DIV>

<D IV ID=box4 Style="background-color:red; position:absolute; left:380; top: 190; width:50">
<IM G Src=images/SCT-LOGO.gi£></DIV>

</BODY>
</H TM L>

A CSS code equivalent to the above program is explained in Example 11.

I i ? ; W o rk in q w ith D IV s - N e ts c a p e

И П П
1 £ ile Edit y ¡e w 2.0 vom inun i co lo r B etp

1 i d . - a ¿ i & i s t я E !
S e u ii ity ШR e load Ногю S earch N e tscap e Prim

.J B í-A /w k .» Loca*on jiT'e .7 /D (/*cW itr« 4/N ev ./o v HTM r | ^ * W h o r t Relate«!
. ..^ In s ta n tM es s ag e S W ebM eil “ Í Contact P ecp fe I!a

r Ш D o w n lo ad _ j Channels

- 4 ¡ t o

- - Ч M

eíP Í ; ^ » c u rn e n í D o n * “ B Æ J É U L г а '.я- j

Diagram 12.11

PAGE 216
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 12

| T , 4 1 ---= ш и п
1 í?» E * C« Гвизг»«» a « » ■ ■ ■ &

О D Æ i •■© G ; < 3 « E Ф *
Лир R *r rsk l l v . Г л к Л Май P f«

Щ U *» çJCharr«:З-шм çJO,<*wnu»Lri* :
F o r the P ic tu re b e lo w to d isap pe ar m ove the m ouse o v e r th is p ic tu re :

С М
F o r the above P ic tu re to d isup pe ur

.^Ь<р1озпа-У.\СКМ_ jja ju s in g П1У Tr

Diagram 12.12.1

These images are actually put in four
different segments.

This example showa when the mouse cursor
is placed on the firs t picture, the second
picture becomes invisible and viceversa. I f
the mouse is on neither o f the pictures both
the pictures are visible.

U s e O f T h e D IV T a p A n d V isibility
P r o p e r t yExample 13: (Refer to diagram 12.12.1)

<HTM L>
<HEAD><TITLE>Using D IV

T ag</TITLE></HEAD>
<BODY><SCRIPT Langauge="Javascript"> function computer_onmouseover() {

text 1.style, v is ib ility = "visible";
computer.style.visibility = "visible";
text2.style.visibility = "hidden";
balloon.style.visib ility = "hidden";

}function everyone_onmouseout() {
text 1.style, v is ib ility = "visible";
computer.style.visibility = "visible";
text2.style.visibility = "visible";
balloon.style.visib ility = "visible";

}function balloon_onmouseover() {
text 1.style, v is ib ility = "hidden";
computer.style.visibility - "hidden";
text2.style.visibility = "visible";
balloon.style.visib ility = "visible";

}
</SCRIPT>
<D IV S ty le="v is ib ility :v is ib le" onmouseover="computer_onmouseoverO;"

onmouseout="everyone_onmouseoutO;”><CENTER>
For the Picture below to disappear move the mouse

over this picture
<P></CENTER>

< /D IV ><D IV S ty le="vis ib ility:v is ib le" onmouseover="balloon_onmouseover();" onmouseout="everyone_onmouseout();"><CENTER>
For the above Picture to disappear move the mouse

over this picture
<P><IM G ID=balloon Src="Images/balloon.gif' Height=:200 W idth=200></CENTER></DIV>

</BODY>
</H TM L>

When the mouse is not on any o f the pictures, the output of above example is as shown in diagram 12.12.1

CHAP 12 DYNAMIC HTML PAGE 217

When the mouse is on the first picture, the output o f above example is as shown in diagram 12.12.2 and
when the mouse is on the second picture, the output is as shown in diagram 12.12.3.

8» E« № Du Fb-«*.* E J
Г З Uwoq DIV 1 uq Mactuvull Intranet Eiplufe# I ^ D

. o 0 Æ ® a о * a ^ ¡5 aÍX4 ft .» « . He.-» W . Н *в у O W < Ч**от «1 Ms* ГМ Ed*
i ¡ I I V u » *m \uamOAАОХЛОМаом w _l)

. o n a ® a o v e i a r nSop ft.'tr*». n m S«K » = D « -« n t t J / Pwhtxi- Mtrt f>-* Et*

I W »JSm i «■•.O'-ntMlOrfe» f

For Uie above Picture lo d tsiq jpciir move the ию ш с over ifai> picture

>>¿1 ftpm- f j l w w î w «

j. For the Picture be low lo disappear move liie moufc over thi< picture

t

^ e * * » * - v y » a i In r« a « - O » v ^ .o . g #]u .« , ix v -T .,. - ._ 9 . 0 ?

D iagram 12.12.2 D iagram 12.12.3

L A Y E R S

To segment a Web page, there is also another pair o f D H TM L tags, <LA Y E R > ...< /LA Y E R > . These tags
are designed to behave like a piece o f transparent paper laid on top o f a web page. Between
<LAYER>...< /LAYER>, H T M L elements are inserted and the user is given precise control over the
placement o f these objects. Each <LAYER> is provided w ith an ID and w ith attributes and values that
specify its appearance and position. JavaScript can be used to dynamically change these values in response
to user events. A change to one o f the layer's attributes affects all the content in the layer

Layer Attributes

A ttribu tes Values
ID /NAM E The name o f the layer
Left and Top The horizontal and vertical posiitons o f the layer in pixels with the top-left corner oj

the screen being (0,0)
Pagex and Pagey The horizontal and vertical positions o f the layer relative to the document's window
Src The pathname o f a file that contains HTML formatted content
z-index, above,
below

The stacking order o f a layer. These three parameters are mutually exclusive. Only one
is valid at any given time

W idth The width o f the layer's display
Height The height o f a layer's display
Clip The viewable area o f a layer
V is ib ility Whether a layer is visible or not. Valid values are SHOW and H ID E
Bgcolor The background color to be used by the layer
Background An image to be used as the background for the layer

Table 12.8

Layer Methods

Method Description
CaptureEvents(eventType) Allows the layer to capture all events o f the specified type.
HandleEvents(event) Invokes the event handler for the specified event
MoveAbove(layer) Moves the layer above the identified layer

Table 12.9

P A P F ? 1 Я COMMERCIAL W EB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL ЬНАН

Method Description
MoveBelow(layer) Moves the layer below the identified layer
M oveBy(x, y) Moves the layer by the specified x and y pixel increments
M o ve T o (x^) Moves the layer to the specified position within the container
ReleaseEvents(eventType) Ends the capturing of the specified event type

Table 12.9: (Continued)

Layer Event Handlers

Event Handler Description
onMouseOver, onMouseOut Event handler to use when the mouse enters or leaves the layer
onfocus, onBlur Event handler to use when the layer receives or loses keyboard focus
onLoad Event handler to use when the layer is first loaded

Table 12.10
U s e O f L a v e r sExample 14: (Refer to diagrams 12.13.1 and' 12.13.2)

<HTM L>
<HEAD><TITLE>W orking w ith Layers</TITLE></HEAD>
<BODY>

< LA Y E R ID =boxl Left=150 Top=150>
<1MG Src=images/fencel.jpg Height=100 W idth=170>Animal Fencing</LAYER>

<LA Y E R ID=box2 Left=50 Top=200>
<IM G Src=images/barbed.jpg Height=100 Width=140>Barbed Tapes</LAYER>

This text is before layers.<HR>
This text is after layers. Notice how the layers are positioned absolutely, independent o f the order
they appear in the document.

</BODY>
</H TM L>
' Wiiilmq *ilh LuyoiK • I

p e Í0* "¿¡ел Д о £ojWHi5ice:o.- tje-P

f 5 ..i*" a & .л :ä s
BacJ: Ratoed Home Seaich Ne>scep9 Print

' cJ:*6o<*m ert.s £ Locafon \ e ///G|/sci-him i/N:e~/io>-eri

£■
SecurSy s

T] (fë 'W h a r« Relatedf, SI W aW o J S Conlao 9 P acpia 3 Y«H!cw Pages f Download J CnawaH_______________

£¡*t Sq Comnwiwcatof iáeip

ï * i Л ^ ¿d
Raised Home Saœch Netscape

Л i-ecass." ;■ г- • : . ; n-html/N*w/leye»1 hi
S eevfiy £

T j Î J ' WhorjReiaœd

,£ ln tta n lM a s taq a 5 ' Webfctoa в ContaC 3 Pao pía g l YaEowPa^es g i Download ÜJ Cher.nels_______________

This text is before layers.

This texl is after layers. Notice how the layers are positioned absolutely, independent o f the

order they appear in the document

Animal Fencing

This text is before layers.

This text is afier layers. Notice how the layers are positioned absolutely, independent of the

order they appear in the document.

Animal Fencing

Diagram 12.13.1 Diagram 12.13.2

In the above output, the second layer is on top o f the first layer. The stacking order o f a layer is controlled
by its Z-INDEX attribute. The higher the Z -IN D EX, the higher the layer w ill be stacked.

CHAP 12 DYNAMIC HTML PAGE 219

In the above example, set the Z -IN D E X as follows:
<LAY ER ID=box l Left=150 Top=l50 Z-INDEX=2>

<IM G Src=images/fencel.jpg Height=l00 W idth=170>Animal Fencing</LAYER>
< LA Y E R ID=box2 Left=50 Top=200 Z-INDEX=1>

, < IM G Src=images/barbed.jpg Height= l00 W idth=l40>Barbed Tapes</LAYER>

Inflow Layers

To create a layer that occurs in its "natural" place in a document, an in flow layer w ith the
< ILAYE R >...< /ILAY ER > tag is used. This creates a layer that is positioned relatively in the document,
much like a graphic is positioned using the <SRC> tag. The layer can be nudged into position by using the
LEFT and TOP attributes. In an in flow layer, values passed to its LEFT and TOP attributes w ill move the
layer away from its natural position in the document.

In flo w L a v e r s : W ith o u t L a v e r s
Example 15: (Refer to diagram 12.14.1)

<HTM L>
<HEAD><TITLE> W ithout Layers < /T ITLE></HEAD>
<BODY>

<IM G Src=images/fencel.jpg Height=100 W idth=170>Animal Fencing
< IM G Src=images/barbed.jpg Height= 100 Width=140>Barbed Tapes

</BODY>
</H TM L>

In flo w L a v e r s : U s e O f L a v e r s
Example 16: (Refer to diagram 12.14.2)

<HTM L>
<H E AD ><TITLE>W ith Layers</TITLE></HEAD>
<BODY>

< ILA Y E R ID =boxl Left=0 Top=50>
<IM G Src=images/fence 1 .jpg Height=100 W idth=170>Animal Fencing</ILAYER>

< ILA Y E R ID=box2 Left=50 Top=100>
<IM G Src=images/barbed.jpg Height=100 Width=140>Barbed Tapes</ILAYER>

</BODY>
</H TM L>

Edrt y i * * Qo Qomnunhaaor tje lp

i * • ' 3 -T t j i j t l ! 1 * 7
Bock Ralood Horns Seo.cn Newcoo« Pn»l Sacvrty

rüri Еда View S o Communicetcr tje lo

i * л - f t ^ a * й j : г ч
веек Reload Hcm» Seaich fJeucope Pñn) Securty Я Й В

J BooHnaikt . (Loca(on.|ii‘e ///D |/iO-Mm !/Ne»./l«ye'2a Mfr -r | <&' ftekMad
i M - O M M e n a g i J) w » n * * S C o n s a a '3 * Yellow Peg®» '■* Dowtfoad _3 Channsli '

, ..f Bockmmte loceáon |i,ie ///D l/sd-h lm l/N ew /leyB ra h«n , | iJ / 'V A c /tR a lo io o
j¡k. Intien! Message äfi WahWn.l У Coniod Í? People ÿ YeBowPagft» *4 Ос-аШэоЯ _J Charneh

i .

• — ¿ S S S r P 1 A n im a l F e n c in g 4 B a rb e d T a p e s

» A n im a l F e n c in g

É B a r b e d T a p es

Do cum« nt Done £ ^ f-g ^ Л Document Done V - j w q a .g.

Diagram 12.14.1 Diagram 12.14.2

PAGE 220
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 12

*7^2.
R:e ,Y ® * Q p £cmrr.wii=etor Help

Since <LAYER > tags are not supported by Internet Explorer, defining the layers in
the <STYLE> tags and then
displaying them and their
content w ith or <D IV>
tags works much like
<LAYER> tag.

Example 17: (Refer to diagram 12.15)
Focus: Create a page w ith dynamic effects.
W rite the code to include layers and basic Diagram 12.15
animation.
<HTM L>

<HEAD><TITLE> W orking w ith Layers </TITLE>
<SCRIPT Langauge="Javascript">

var glbfwdtimer, glbbacktimer, glbcounter;
glbcounter = 0; function windowload() {■

function fmgermovement() {
documentlayers["fm gerl"].offset(2,0);
glbcounter = glbcounter + 1 ; if (glbcounter == 50) {

glbcounter = 0;
clearlnterval(glbfwdtimer) ;
glbbacktimer = setlnterval("backmovement()",100);

}

}function backmovement() {
document.layers["fingerl"].offset(-2,0);
glbcounter = glbcounter + 1 ;
if (glbcounter == 50) {

glbcounter = 0;
clearlnterval(glbbacktimer);
glbfwdtim er = setlnterval("fmgermovement()",100);

}

}
</SCRIPT></HEAD>
<BODY onLoad="w indo\vIoad()">

<LAY ER ID =fm gerl Left=10 Top=60></LAYER>
<LAY ER ID=amconfus Left=150 Top=50 V isibility=show

onMouseOver="amconfus.visibility=!hide'; am idea.visib ility-show ';
amvictor.moveTo(350,50)">

glbfwdtim er = setInterval("fingermovement()", 200);

CHAP 12 DYNAMIC HTML PAGE 221

<IM G Src=images/confus.gif Height=100 W idth=75> </LAYER>
<LA Y E R ID=amidea Left=150 Top=50 V isib ility=hide onMouseOut="amidea.visibility=’hide';

amconfus.visibility='show'; amvictor.moveTo(250,50)">
<IM G Src=images/idea.gif Height=100 W idth=75></LAYER>

<LA Y E R ID=amvictor Left=250 Top=50 V isibility= 'show '>
<IM G Src=images/victor.gif Height=100 W idth=75></LAYER>

</BO D Y>
</H TM L>

In the above example when the mouse cursor is over the 'confuse' image, the original image changes to
another image 'idea' and the other image 'victor' moves forward. When the mouse cursor is moved out o f
the 'idea' image it changes back to the 'confuse' image and the 'victor' image moves back to its original
position.

Additionally, animation has been introduced through the movement o f the hand via JavaScript.

U s e O f D ra a A n d D r o p ¡ p S S B H H B S H H i H H S H S H H H H H i H ?
£¡*8 £3h ^iew fio Ccmfnuntcaioi £Je-p

Example 18: (Refer to diagram 12.16) y ,• 3 -a * a ..* *■ a isi
Hcrr.fi Seerc* Neiscepe Pan Seamy

p T , . , - _ i ' BoofcmwM A Loca8on.jt.ie ///Dl/»ci^>w/Nev./drag-dropi him VvTksTi Bs.a»*dFocus: in is program demonstrates the Drag \ >«»». jfl Comae* ^ People YeiiowPcqe» Si Download ¿j Ottnrei»________________ I
and Drop feature using Layers. This code Dragging and Dropping
gets the position o f the mouse cursor when -------- --------------------------- ,--------
it is clicked and checks whether the mouse Iselected object : releasedi t i i i i * target : undefined
cursor is over a drag-and-droppable object. ¡¡¡S3iir. = o 1
I f so, the new position o f the mouse cursor ¡SJ.ixTS«’ ■>
is recorded as and when the selected object n a g « X : € 6 9P*9«¥ : 205 .
moves from one position to another. The y ^
entire information o f the location o f the ~
selected object is displayed in the text area ®
<H TM L> iOMummtOoiw : l 7 r i U- .W "3 j

<HEAD><SCRIPT ------------------------------- Diagram 12.16-------------------------------
Langauge="Javascript">

var glbSelectedObject = null;
glbCurrentX = 0;
glbCurrentY = 0;
document.captureEvents(Event.MOUSEDOWN | Event.MOUSEMOVE | Event.MOUSEUP);
document.onmousedown = selectTheObject;
document.onmousemove = dragTheObject;
documenLonmouseup = dropTheObject; function selectTheObject(e) {

var workObject;
cursorX = e.pageX;
cursorY = e.pageY;
for (i=0; i<document.layers.length; i++) {

workObject = document.layers[i];
if(w o rkO b je c t.id .in d e xO f("D n D ")= = -l) { continue }if ((cursorX > workObject.left) & & (cursorX < (workObject. left +

workObject.clip.w idth)) & & (cursorY > workObject.top) & & (cursorY <
(workObject.top + workObject.clip.height))) {

glbSelectedObject=workObject; }
}

^ N e ts c a p e Н И И
H f i l e E d it ¥ ¡e w f i o S om tn ijn lcam i r t i e Ip

1 : * ■*- . 3 & S
■; R e lo ad H e m e S e eren N e tscap e Prfru

a
S e c u n y

%
m —

■ 1 B ookm w K« A Ц с а й и ф е ///C I/sc t-h 'm i/N e v./d re gH drop i him ^ .i 'v V T ia re R e la te d 1
I ^ in s te m M essag e Э л у э Ь М »: C o n ia d ü ? P e o p le 3 Y e ito w P eg es ■.Щ Downioec1 Cj Channels 1

Dragging and Dropping

selected object : releasedtarget : undefinedwhich : 1modifiers : 0type : mouseupscreen* : 669screenY : 346pageX : 669pageY : 205
. 3

Á¿.

;D o a ¡m e rit Dona a V pa л.2
Diagram 12.16

COMMERCIAL W EB APPLICATION DEVELOPMENT USING HTML, _ HAP 12
JAVASCRIPT, DHTML AND PERL

if (glbSelectedObject = null) { . return }
glbCurrentX = e.pageX;
glbCurrentY = e.pageY;
in fo (e);
document.captureEvents(Event.MOUSEMOVE);
document.onmousemove = dragTheObject;

}function dragTheObject(e) {if (glbSelectedObject == null) { return }
distanceX = (e.pageX - glbCurrentX);
distanceY = (e.pageY - glbCurrentY);
glbCurrentX = e.pageX;
glbCurrentY = e.pageY;
lbSelectedObject.moveBy(distanceX, d istanceY);
info(e);

}function dropTheObject(e) {
glbSelectedObject = null;
info(e);
releaseEvents(Event.MOUSEMOVE);

}function info(event) {
var selection;if (glbSelectedObject != null) { selection = glbSelectedObject.id }
else { selection = "released" }
textArea = document.forms[0].elements["textareaEventInfo"];
textArea. value = "selected ob je c t: " + selection + "\n" + "which : " + event.which + "\n".

+ "modifiers : " + event.modifiers + "\n" + "type : " + event.type + "\n"
+ "screenX : " + event.screenX + "\n" + "screenY : " + event.screenY + "\n"
+ "pageX : " + event.pageX + "\n" + "pageY : " + event.pageY,;

}
</SCRIPT></HEAD>

< B O D Y >< H l> Dragging and Dropping </H 1><HR>
<FORM Name=frmText><CENTER>

<TEXTAR EA Name=textareaEventInfo Rows=9 Cols=35></TEXTAREA>
</CENTER></FORM>
<LA Y E R ID="layerPhoneDnD" Top=350 Left=125 Height=50 W idth=50>

<IM G Src="im ages/javacup.gif></LAYER>
<LA Y E R ID="layerBallDnD" Top=350 Left=275 Height=50 W idth=50>

<IM G Src-'im ages/com puter.gif' Width=50 Height=50></LAYER>
<LAY ER ID="layerBookDnD" Top=350 Left=425 Height=50 W idth=50>

<1MG Src="im ages/corp.gif'></LAYER>
</BODY>

</H TM L>

CHAP 12 DYNAMIC HTML PAGE 223

T O M O V E F O R W A R D

In the topics discussed so far, information flows only in one direction from the web server to the browser.
Web pages can be created w ith well-formatted page contents, which would attract visitors to the web site.
This would s till be incomplete i f a Web site cannot process the feedback form and store the information in
a Database or some text file for some future reference. Feedback on a web site leads to constant
improvement o f the site. Based on the data stored, dynamic Web pages can be created by reading the data
that is stored in the Database, which also enhances the Web site.

The next chapters describes how to create interactive web pages that obtain information from viewers
through forms, validate this using JavaScript and then store it in Database or a File using Server side code.
The Server side code can be developed using languages like PERL, ASP, JavaScript, Java and so on.
Further chapters are going to take a long interesting look at Common Gateway Interface (CG I) scripting
using PERL.

S E L F R EV IE W Q U E S T IO N S

F IL L IN T H E B LA N K S

1 . . are powerful mechanism for adding styles (e.g. fonts, colors, spacing etc) to web
documents.

2. The advantages o f style sheets include the ability to m ake________ changes to all documents from a
single location.

3. The Style assignment process can be accomplished w ith the_________ and_________ tag.

4. The <STYLE> tag should be w ith in the____________and__________ element.

5. attribute sets an element’s text-color.

6. attribute aligns the text w ith in an element to the right.

7. In the body o f a docum ent,______ a n d ________ tags are used to set the boundaries o f the rule’ s
styling specifications.

8. _ attribute is used to set the color o f the border.

9. External Style Sheets can be saved as file using_______ extensions, which can be linked to web pages
by th e _________ tag.

10. Style Sheets support_________ , which are sets o f style changes for a document.

11. tag is used to create an Inflow layer.

12. The layer’ s v is ib ility can be controlled using the______________attribute. ^

TRUE OR FALSE

13. BACKGROUND-REPEAT: repeat-x w ill repeat the image specified vertically.

14. Text-indent is used to indent the first line o f text encountered.

15. <D IV>...< /D IV> are used to divide a web page into segments which can be positioned anywhere on
the page.

PAGE 224 COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL CHAP 12

H A N D S O N E X E R C IS E S

• 3 D y n a m ic L a y e rs ’! - M ic ro s o f t In te rn a l E x p lo r e r И 0 Е З
Eile E d il y ie riv G o Favorites ц 0 |р В

. 3 a
S top Re fresh H o m e

Ш J J
S earch Fevo irtes

-JS ^
H is tory Chere ie i*

= ! - i
Fu llscreen Meal

A dd ress f e j L \M a lc o lm \T e s l\O ip 8 h o n d s ! html Б
Links ¿JB e3 *o O he W e b Э] Channel G uide £ J C u s to m iîe L inks a jh te r n e i E x p lo re r N ews «s jlrf le m e t Start

W e lc o m e to C Y B E R S H O P I N C

th e o n ly o n l in e C v b e r M a l l !

□

At C Y B E R S H O P IN C , we are proud of our

Clients who avail our services, and every personnel of
the incorporation. Here are few the services we offer

• E-Commerce Applications
• Virtual Reality Module Developments
• Cyberengineering

Design a web page for CYBERSHOP
INC, using style sheets w ith the
fo llow ing specifications:
Define a style class '.Maxx' w ith the
fo llow ing attributes:
{font-size:120%; co lor:’ green’ ;
font-weight:bold; font-fam ily :cursive}
Use the defined Style class wherever
the text ‘CYBERSHOP IN C ’ appears
on the web document.
Use unordered listing giving the list o f
services offered by CYBERSHOP
INC.
Define three segments using
<D IV>...< /D IV > tags w ith background Diagram 12.17: Output o f Hands on Exercise 1.
colors Blue, Green and Goldenrod positioned accordingly w ith the given text. Obtain an output as
shown in the diagram 12.17.

T l« - O y W r
M a l i on t h e

W E B

C Y B E R S H O P I N C Products and services are known virtually ail over the world

g~)O o.-te . ; ; i |V | L o ca l ¡roa ne t to n e ____________

2. Design a web page for CYBERSHOP INC, using layers and layer attributes w ith the fo llow ing
specifications:

□ Layer 1 w ill display the Name CYBERSHOP INC which w ill be visible.
□ Layer 2 w ill display the services provided by CYBERSHOP INC. This layer w ill in itia lly not be

visible.
□ Layer 3 w ill contain two buttons Show and Reset, clicking on Show w ill make Layer 1 disappear and

show Layer 2. C licking on the Reset button w ill return to back first Layer.
□ Obtain an output as shown in the diagram 12.18.1 and 12.18.2 below.
^ D yn am ic la y e rs ? - N e tscap e "" "" 1 D y n am ic La yers2 - N e tscap e ШШШI Ейе td i! i f ie * Qo Communicata h e lp I £йе £ai: v iew £jc Qw.minicaJor fc!»lp

Г í »’ 3 ift ' л Д| Л1 Bsck Reload Home Se ere#) Netscape Pnni
■s)

Security
i i г» л . a -i лI Sac* Releed Home Search fv íK c ec » Print Securt,

я Щ
Г J BootanaAs Л Lecefton Jiiie///L|/M elcolm /7e«i/l>c>ehendsî hcrt T] \ f „ ! ‘ Whet's Selatsa I i З оо кпагк* 1 Locabon г ̂ гц /и в 1 « и тгте « 1 /г> р ^ в п < и ;м т1 » 1 tfjl What’s R e id ed I
1 Щ W eíjM aí Ц Contact Щ People H YeOowPages 4 Dcw rtoéd , j CJiernel* I I ' 3 WeEMei! Ц Conrsa People Э Yeäow Pages ’3 f O cwnoac Channels

C Y B E R S H O P IN C C Y B E R S H O P IN C

CYBERSHOP INC Provides The Following Services
• E-Commerce Applications
• Virtual Reality Module Development
• Cyberengineering and ...many more!

S te w j Resei | —1 Av»8 nur S:»lisf«W : i t « W f- ¿ U J t i i n t C i H Î S to Y r j Reset 1 —
g ±

Jt Document Done ~ . ■ rfrO - üoeumer.r Oone -*-» Л& Ей sZ,

Diagram 12.18 .1 : Hands on Exercise 2 screen 1. Diagram 12.18.2 : Hands on Exercise 2 screen 2.

A N S W E R S T O S E L F R E V I E W Q U E S T I O N S

12. D Y N A M I C D H T M L

F IL L IN T H E B L A N K S
1. Style Sheets
2. Global
3. <STYLE> and </STYLE>
4. <HEAD> and < /H EA D >
5. Color
6. Text-Align:R ight
7. and
8. Border-color
9. .CSS extension and < L IN K > tag
10. Classes
11. < ILAYER >
12. V IS IB IL IT Y

TR U E OR FALSF.
13. False
14. True
15. True

S O L U T I O N S T O H A N D S O N E X E R C I S E S

12. D Y N A M I C D H T M L

1. Designing a web page fo r C YBER SH O P INC using style sheets:
<HTM L>

<HEAD><STYLE Type="text/css">
.Maxx{font-size:120%;color:'green';font-weight:bold;font-fam ily :cursive}

</STYLE><TITLE>Dynam ic Layers 1 </T ITLE></HEAD>
<BO DY Style="background-color:#ffffcc">

<H1 Style="text-align:center">Welcome to CYBERSHOP INC
the
only online Cyber M all!< /H1><HR>

<P Style = "m argin-right:40% ">At CYBERSHOP INC, we are proud o f
our Clients who avail our services, and every personnel o f the incorporation. Here are few the
services we offer:
<Ll>E-Commerce Applications
V irtua l Reality M odule Developments
Cyberengineering

</P>
CYBERSHOP INC
Products and services are known virtually all over the world.
<D IV Style="position:absolute;top:40%;left:65%;background-color:'blue';

color:'white ';w idth:120;height:l 10;z-index:0">
<P Style="font-weight:bold;font-size:20;text-align:center">Virtual Developments</P>

< /D lV >
<D IV Style="position:absolute;top:60%;left:73%;background-

color:'green';color:'white';width:120;height: 110;z-index:l">
<P Style="font-weight:bold;font-size:20;text-align:center">Number one since 1994</P>

< /D IV >
<D IV Style="position:absolute;top:80%;left:81%;background-

color:'goldenrod';color:'white';w idth:120;height:90;z-index:2">
<P style="font-weight:bold;font-size:20;text-align:center">The Cyber M all on the WEB</P>

< /D IV >
</BODY>
</H TM L>

2. Designing a web page fo r C YBER SH O P INC, using layers and layer attribu tes:
<HTM L>

<H EAD ><TITLE> Dynamic Layers 2</TITLE></HEAD>
<BO DY BGColor="Lavender">

<LAY ER Name=layerHeader Left=5% Top=10% V is ib ility="show ">
<CENTER><H 1 >CYBERSHOP INC</H 1 ></CENTER><HR>

</LAYER>

SOL SOLUTIONS TO HANDS ON EXERCISES PAGE 227

<LA Y E R Name=layerMessage Left=5% Top=10% V is ib ility="h ide">
<CENTER><H 1 Style="color:'Crimson' ">CYBERSHOP INC</H1></CENTER><HR>
<P Style="color:’Blue';font-size:35px;font-weight:bold">CYBERSHOP INC Provides The

Follow ing Services<UL Style="color:'B lue';font-size:25px;font-weight:bold">
E-Commerce Applications
V irtua l Reality Module Development
Cyberengineering and ... many more!

</P>
<P Style="color:'Corar;font-fam ily:cursive;font-weight:bold;font-size:15pt">Avail our

Satisfaction Guaranteed Services.</P>
</LAYER >
<LA Y E R Name=layerButton Left=80% Top=90%><FORM>

<INPUT onCIick="layerMessage.visibility='show';layerHeader.visibility='hide"'
Type=Button Value="Show" >

<INPUT onClick="layerMessage.visibility='hide';layerHeader.visibility='show"'
Type=Button Value="Reset">

</FORM ></LAYER>
</BODY>

</H TM L>

S ‘E C 7 T l O ï \ f - 1 * 1 / : U n d e r s t a n d i n g 7 7 l e fP L (R L L a n g u a g e

1 3 . C O M M O N G A T E W A Y I N T E R F A C E C O N C E P T S

W H A T IS T H E C O M M O N G A T E W A Y IN T E R F A C E ?

The Common Gateway Interface (CGI) is a specification defined by the W orld Wide Web Consortium
(W3C), defining how a program interacts w ith a Hyper Text Transfer Protocol (HTTP) server. The
Common Gateway Interface (CG I) provides the middleware between W W W servers and external databases
and information sources. CGI applications perform specific information processing, retrieval, and
formatting tasks on behalf o f W W W servers.

Why is CGI used?

An interesting aspect o f a CGI enabled Web server is that computer programs can be created and deployed
that can accept user input and create a Web page on the fly. Unlike static Web pages that display some
preset information, these interactive web pages enable a client to send information to the Web server and
get back a response that depends on the input.

A Web search engine is a good example o f an interactive web page. The client enters one or more
keywords, and the Web index returns a list o f Web pages that satisfy the search criteria entered. The Web
page returned by the Web index is also dynamic, because the content o f that page depends on what the
client types in as search words - it's not a predefined static document.

To create an interactive Web page, H T M L elements are used to display a form that accepts a client's input
and passes this to special computer programs on the Web server. These computer programs process a
client's input and return requested information, usually ill the fum i u f a web page cuiisüueled un the fly by
the computer program. These programs are known as gateways because they typ ica lly act as a medium
between the Web server and an external source o f information, such as a database. Gateway programs
exchange information w ith the Web server using a standard known as The Common Gateway Interface.
This is the reason C G I programming is used to describe the task o f w riting computer programs that handle
client requests for information.

The term gateway describes the relationship between the W W W server and external applications that
handle data access and manipulation chores on its behalf. A gateway interface handles information requests
in an orderly fashion, and then returns an appropriate response. For example, an H T M L document
generated on the fly , which contains the results o f a query, applied against an external database.

In other words, CGI allows a W W W server to provide information to W W W clients that would otherwise
not be available to those clients. This could, for example, allow a W W W client to issue a query to a
database and receive an appropriate response in the form o f a custom bu ilt Web document.

Some common uses o f CGI include:
□ Gathering user feedback about a product line through an H T M L form
□ Querying a database and rendering the result as an H T M L document

CHAP 13 COMMON GATEWAY INTERFACE CONCEPTS PAGE 229

C G I - H O W IT W O R K S
Web

Browser HTTP Web
Server CGI C G I

< ----Progra

Documents in File
System

Disk Files

Database

As shown in diagram 13.1, a Web
browser running on a client machine
exchanges information w ith a Web server using
the Hyper Text Transfer Protocol or HTTP. The
Web server and the CGI program, normally run
on the same computer, on which the web server
resides. Depending on the type o f request from the
browser, the web server either provides a
document from a directory in the file system or
executes a CG l program. Diagram 13.1
The purpose o f the CGI program (or CGI script as it is often called) is the creation o f dynamic H T M L on
demand from a client browser. The sequence o f events for creating a dynamic H T M L document on the fly
through CGI scripting is as follows:
□ A client makes an HTTP request by means o f a URL. This URL could be typed into the Location window

o f a browser, be a hyperlink or be specified in the Action attribute o f an HTM L <form> tag
□ From the URL, the Web server determines that it should activate the CGI script referenced in the URL and

send any parameters passed via the URL to that script
□ The CGI script processes the parameters passed, then based on these parameters, returns HTML to the Web

server. The web server, in turn, adds a M IM E header and returns the HTM L text to the Web browser.
Hence fu lfilling the concept o f dynamic HTM L being returned on demand from a Web browser

□ The Web browser then renders and displays the HTML document received from the Web server

How information is transferred from the Web Browser to a CGI program

The Web browser lises value coded w ith the method attribute o f the <form> tag to determine how to send
the H T M L form ’s data to the Web server. There are two values that can be passed to the method attribute,

The GET Method

The GET method is so called because the browser uses the HTTP GET command to submit the data to the
Web Server. The GET command sends a URL to the Web server. I f the H T M L form ’s data is sent to the
Web server using the HTTP GET command, the browser must encode a ll the forms data into the URL.

The key features o f the GET method o f data submission are as follows:
□ The values o f all the fields are concatenated and passed to the URL specified in the action attribute o f

the <form> tag. Each fie ld ’ s values appear in the name-value format.
□ Any character w ith a special meaning in the form ’s data is encoded using a special encoding scheme

commonly referred to as URL encoding. In this encoding scheme a space is replaced by a plus sign (+), fields are separated by an ampersand (&), and any non-alphanumeric character is replaced by a %xx code (where xx is a hexadecimal representation o f the character).

Since data is returned to the Web server using an encoded URL the amount o f data that can be streamed to
the Web Server is lim ited to only 2Kbtytes

The POST Method

In the POST method o f data submission, the Web browser uses the POST command to submit the data to
the server and includes the form ’s data in the body o f that command. The POST method can handle any amount of data, because the browser sends the data as a separate text data stream to the Web Server. The
POST method must be used to send potentially large amounts o f data to a Web server.

- , ,n COMMERICAL W EB APPLICATION DEVELOPMENT USING HTML, r u i D 1 ,
PAGE 230 JAVASCRIPT, DHTML AND PERL CHAP 13

It is probably a good idea to standardize on the POST method to submit data to a Web Server. This
w ill make Server side CGI coding a lot simpler.

How a CGI U R L is interpreted by the Web Server

The Web server must be configured to recognize an HTTP request for a CGI program. In short, configuring
the web server involves inform ing it o f the directory where the CGI programs reside. The URL specifying a
CGI program looks like any other URL, but the Web server is intelligent enough to examine the directory
name and determine whether the URL references a normal H T M L document or a CGI program.
The Web server expects the CGI program’ s name to appear immediately fo llow ing the CGI directory (e.g.
/cgi-bin/).
A URL can also include additional path information, which can be used by the CGI program. This path
information needs to be included in the U R L immediately fo llow ing the CGI program name.

Environment Variables

In the case o f CGI, environment variables are known to the server. CGI is used to pass data about an HTTP
request from the Web server to a specific CGI program. These variables are accessible to both the Web
server and any CGI program invoked. These variables may also be set or assigned their values when the
web server actually executes a CGI program.
To communicate w ith the CGI program, the Web Server sets up a number o f environment variables with
useful information, e.g. the REQUEST M ETH O D environment variable indicates the data submission method used by the browser - whether it was GET or POST.
Thus, environment variables provide a convenient mechanism to transfer information to a CGI program
received from a browser. The requirement o f a specific Web server controls how CGI programs access
variables. I f a variable does not have a value, this indicates a zero-length value (N U LL). I f the variable is
not defined in the server’ s systems, it is assumed to have a zero-length value and hence, it is also assumed
to be N U LL. A lis t o f environment variables is described in table 13.1 below.

Variable Name What it is used for
AU TH TYPE Access Authentication Type
CONTENT LENG TH Size in decimal number o f octets o f any attached entity
CONTENT TYPE The M IM E type o f an attached entity
G ATEW AY INTERFACE Server’ s CGI spec version
HTTP (string) Client header data
PATH INFO Path to be interpreted by CGI application
PATH TR ANSLATED V irtua l to physical mapping o f file in system
QUERY STRING URL-encoded search string
REMOTE A D D R IP address o f agent making request
REMOTE HOST Fully qualified domain name o f agent making request

Table 13.1

CHAP 13 COMMON GATEWAY INTERFACE CONCEPTS PAGE 231

Variable Name What it is used for
REMOTE IDENT Identify data reported about agent connection to server
REMOTE USER User ID sent by client
REQUEST M ETHOD Request method by client
SCRIPT N A M E URL path identifying a CGI application
SERVER N A M E Server name; host part o f URL; DNS alias
SERVER PORT Server port where request was received
SERVER PROTOCOL Name and version o f request protocol
SERVER SOFTWARE Name and version o f server software

Table 13.1 (Continued)

How A CGI Program Returns Information To The Server

Regardless o f how a Web server passes information to the CGI program, the CGI program always returns information to the Web server by writing to standard output. In other words, i f a CGI program wants to
return an H T M L document, the program must w rite that document to standard output. The Web server then
processes that output and sends the data back to the browser that had originally submitted the request. The
CGI program adds appropriate header information to its output and sends this to the Web server so that
the Web sever knows what kind o f data its streaming back to a browser.

A f o ie

In the case o f a CGI program, the standard output device is the Web Server software running in the
computer's memory. This is because the PERL program requires a PERL environment to run in, and
PERL determines Standard Output.
Hence the output o f a CGI program is always passed to a Web Server, which is active in the
computer’ s memory. Without a Web server being active in the computers memory a CGI program
w ill not run.

Standard Output is a default device, to which a program sends its output. The environment in which a
program is being run defines standard Output.
For example, the standard output device for a PERL program running in Windows is the command
window. Here it is the O/s (i.e. Windows) that determines Standard Output.

Processing HTML Form Information In A CGI Program

A CGI program, (written in PERL) needs to be able to access data returned by the browser, then process it
some way before generating any meaningful output. When a browser submits data via the GET method,
the CGI program obtains its information through the QUERY_STRING environment variable.
I f the browser submits data via the POST method, the CGI program obtains information through Standard
Input.
The basic steps followed by a CGI program designed to handle data sent in by a browser either by the GET
or POST methods are:
□ Check the REQUEST METHOD environment variable to determine whether the request is GET or POST
□ I f the method is GET, use the value o f the QUERY STRING environment variable as the input. Also, check

for any path information in the PATH INFO environment variable
□ I f the method is POST, get the length o f the input (in number o f bytes) from the CONTENTLENGTH

environment variable. Then read that many bytes from Standard Input
□ Extract the name-value pairs for various fields by splitting the input data at the ampersand (&) character,

which separates the name from the value

□ In each name-value pair convert all + signs to spaces
□ In each name-value pair, convert all %xx sequences to ASCII characters (xx, denotes a pair o f hexadecimal

digits)
□ Save the name-value pairs o f specific fields for use later

What Is A CGI Program?

A CGI program is a computer program that is started and run by a Web server in response to an HTTP
request.
A CGI program is generally used to process data submitted to the Web server by a browser. The H TM L
<FO R M > tag's action attribute specifies the name o f the CGI program (including the TCP/ip address
server where the program resides).
For example, the fo llow ing <FORM> tag specifies a program named query.cgi in the /cgi-bin directory on
the Web server digital.com

<FO R M method = GET action = http://www.digital.com/cgi-bin/query.cgi>

P R O G R A M M IN G L A N G U A G E S

CGI programs have been developed in C, C++, Visual Basic Script (VB Script), PERL, TCL, REXX,
Python, Icon, AppleScript, U n ix shell script, and even Dos Batch files.

Why PER L For CGI?

A CGI program can be written in any o f the above-mentioned languages, but PERL is especially suited for
this because PERL programs are easy to learn and write. PERL has great text-processing capabilities (CGI
programs have to process the URL-enclosed text data and print H T M L text to standard output), which is
why it was a natural choice for some o f the first CGI sample programs provided by NCSA.
PERL can often accomplish the same task as a C or C++ program w ith far fewer lines o f code, it has
become the most w idely used option for custom CGI scripts.
Besides this PERL is a scripting language, which means it does not have to be compiled. Instead, an
interpreter executes the PERL script, this makes it easy to w rite and test PERL scripts, because they do not
have to go through the typical edit-compile-link cycle or compiler based programs

S E L F R E V IE W Q U E S T IO N S

F IL L IN T H E B L A N K S
1. CGI stands fo r __.
2. A _____________acts as a conduit between a Web Server and an external source o f information.
3. HTTP stands fo r___________________________________ .__________.
4. The________ method o f submission submits the form data as part o f a URL.
5. are used to pass data about an HTTP request from a server to the CGI programs.
6. When a form submits data via the GET method the CGI program receives information through the

 environment variable.
7. T h e ___________________ environment variable specifies the M IM E type o f data being sent to the

CGI program.
TR UE O R FALSE

p a p f 9 T > C O M M E R I C A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , p u a d
J A V A S C R I P T , D H T M L A N D P E R L O M A r u

8. CGI programs always return information to the server by w riting to standard output.
9. The REMOTE HOST environment variable indicates the data submission method.
10. PERL programs need to go through the edit-compile-link cycles before they are executed.

http://www.digital.com/cgi-bin/query.cgi

1 4 . T H E P E R L L A N G U A G E

A N IN TR O D U CTIO N

P E R L (Practical Extraction Report Language) was originally created to extract information from text files
and then use that information to prepare reports. PERL is a scripting language, which means the
programmer does not have to compile and link a PERL script. Instead, a PERL interpreter executes the
PERL script.

PERL’s popularity can be attributed to many things, one o f which is the ease w ith which programs can be
built. Because PERL is interpreted, it greatly reduces development time. This allows the programmer to
build larger and more complex programs in a shorter period o f time when compared to compiler based
program creation.

Unfortunately, some programmers do not give themselves enough time to get to know the language, which
leads to inferior and inefficient code. The more complex the programs become, the more important it is to
understand the syntax and semantics o f the language. An intimate knowledge o f the syntax and semantics
o f any language empowers a programmer to write programs that run effic iently and consume the least CPU
resources to get the job done.

IN STA LLIN G A N D S E T T IN G U P P E R L

Download the latest stable version o f PERL from http://www.activestate.com/Protlucts/ActivePerl/
The file chosen for download was ActivePerl-5.8.4.810-MSWin32-x86,
Starting The Install Process O F PER L

Follow these steps to install PERL on a windows box:
1. Execute the downloaded file by double clicking it
2. A screen as seen in diagram 14.1 pops up
3. C lick Next to proceed. This w ill bring up the next screen as seen in diagram 14.2

Го A t lm * r - ? « l 5 .< M ß u it « j &1V S

S T A T E

A c t i v e P e r l

teww-ActíveStMta.e*

W elcom e to the ActivePerl 5 .S .- Suild 810
Se tup w izard

The S e tup W izard will install ActivePerl
5 .8 .4 Build 810 on y o u r co m pu te r . C lick
Next to con tinue O ' C ance l to exit the S e tup
W izard .

16* A c t iv e P e r l 5 . 8 . 4 B u i ld 8 1 0 L ic e n s e A g r e e m e n t

End-User и селве A greem ent

Please read the follow ing license ag reem en t

ActiveState Community License
Preamble:

The in te n t o f th is docu m e n t is to s ta te th e cond itions under
w h ich the Package (A c tive P e rl) may be copied and d is trib u te d ,
such th a t A c tiv e S ta te m ain ta ins co n tro l over th e deve lopm en t
and d is tr ib u tio n o f the Package, while a llowing the users o f the
Package to use the Package in a v a rie ty o f w ays. T h e Package
may co n ta in s o ftw a re covered by the A rtis tic L icense. The

(*) I accept th e te rm s in th e L icense A greem ent

0 1 do not accep t the te rm s in th e License A greem ent

[< Back |[Next > | | C are

Diagram 14.1: Welcome Screen O f ActivePerl Diagram 14.2: End-User License Agreement
Install

4. Accept the End-User License Agreement and click Next

http://www.activestate.com/Protlucts/ActivePerl/

P A G E 2 3 4
C O M M E R C I A L W E B A P P L I C A T IO N D E V E L O P M E N T U S I N G H T M L ,

J A V A S C R I P T , D H T M L A N D P E R L
C H A P 1 4

5. This w ill proceed to the screen as seen in diagram 14.3
6. Keep all the selections i.e. let all the products be installed. C lick Next
7. This w ill display a screen as seen in diagram 14.4. Since PPM3 support is not required. Don’ t enable

it. Just click Next
I® ActivePerl 5.8.4 Build 810 Setup

C ustom Setup

Select the way you w an t fea tu res tc be и

C lick on the icons in the tree below tc ch ang e the w ay fea tu res will be installed.

Perl

PPM 3 .0

Exam ples

ActiveState ActivePerl is a
quality-assured distribution cf
Peri.

This fea ture requ ires OKS on
yo ur hard drive . It has 3 c f 3
sub fea tu res se lected. The
subfea tu res requ ire — M5 cn
your ha-'d drive.

Location : С : \Perl\

I Reset I [D isk U s a g e } [< З а е к || Next > | . | C á rc e l |

¡W ActivePerl 5.8.4 Build 810 Setup

This "e leasa o f Active Peri in d u d e s P r o g r a m m e r 's P a c k a g e M a n a g e r
v e r s io n 3 , which includes a new facility fc^ k eep ing t ’-ack c f installed packages.
A SPN ’s "PPM Profile" fea ture com m un ic a tes y o u r package installs a r d updates
secure ly and transparen tly tc y o u r ASPN Profile . S aved profiles allow you to
easily m igra te , reinstall, upg rade or restore 3 PM packages in cne c ' mc-e
locations.

Using the profile functionality -equi-es installing a license fo r ASDM Perl. You
ca r always disable o r enable the Profile featu-e late=" w ithin ~PM3.

For m ore in fo rm ation abo u t AS^T-l, p lease see

1 I E nable PPM3 to send profile tnfo tc ASPN Privacy Policy

I < 5ac.< [I Next > | ¡ C ance l |

Diagram 14.3: The Custom Setup

This release o f ActivePerl includes Programmer’s
Package Manager version 3, which includes a new
facility for keeping track o f installed packages.
ASPN’s "PPM Profile" feature communicates the
package installs and updates securely and
transparently to the ASPN Profile. Saved profiles
allow the user to easily migrate, reinstall, upgrade
or restore PPM packages in one or more locations.

Diagram 14.4: The PPM3 support

iS* ActivePerl 5.8.1 Build 810 Setup
. C hoose Setup Cpticr.s

C hoose optional setup ac tions.

* J

[3 Add Perl to the PATH en v iron m en t variab le

[vj c r e a te Perl file ex tension association.

8. This w ill now proceed to the setup options
available as seen in diagram 14.5 such as:
a. Add Perl to the path environment

variable
b. Create Perl file extension association

The last two w ill only appear i f M icrosoft's IIS is
installed.

9. Select both the options and click Next
10. This w ill fina lly display the Ready To Install

screen as seen in diagram 6.6. C lick Install to
start the actual install process

The Install process progresses as shown in diagram
14.7

c

Diagram 14.5: The setup options
10. ActivePerl 5.8.4 Build 810 Setup

R eady to Install

The Setup W izard s -eadv to begin the C us to m
installa tion

C lick Insta ll tc begin the installa tion . I f you w an t tc rev iew o r ch ang e any
o f y o ur installa tion se ttings, click Back . C lick C ance l tc ex it the w izard .

I < S ac k jj. In s ta ll | [C ance l |

11. Click Finish to complete the Perl Installation Diagram 14.6: The Ready to Install screen

C H A P 1 4 T H E P E R L L A N G U A G E P A G E 2 3 5

l!? ActivePerl 5,8.4 Build 810 Setup

Installing ActivePerl 5.8.4 Build 810

Please wait while the S e tup »Vizard installs ActivePerl 5 .S .4 Build 810
This m ay ta k e several m inu tes.

mu»»

1ч? ActivePerl 5.8.4 Build 810 Setup О

|> a c < w e]

A c t i v e P e r l

wwwJlctlveState.com

C om ple ting the ActivePerl S .S .- B u ild 810
Se tup W izard

Serious about Programming in Perl?

G e t A S P N P e r l , th e e s s e n t ia : a a c k a g e fo r P e r;
p ro g ra m m e rs A S P M P e r l c o m b in e s e v e ty tr ite g y o u
n & e a a a s in g te r - ig h -v a a je t u n a ie rdaoing asvancM
P e 'i p rc s ro m m m g te c h r -c '- c g e s a n a in -o c p th re s o u rc e
OTfCrmaJior.

r-r.3 C v ! m e re

0 D isp lay the 'e le ase notes

Diagram 14.7: The Install process in progress Diagram 14.8: The Install process completed

Binding The PER L Installed With Apache2

The only thing left to do is to edit Apache’s httpd.conf file and make an entry for the cgi-bin directory in
the ScriptAlias tag o f the virtual host created earlier as:

ServerName 172.16.9.66 (Here enter the actual IP o f the host computer this IP is the one we used-)
NameVirtualHost 172.16.9.66

<VirtualHost 1 7 2 .16.9.66>

ServerAdmin w e b m a s t e r 0 s c t . c o m
DocumentRoot c : \ s c t \ p e r l t r a i n i n g

ServerName s c t . p e r l t r a i n i n g . c o m

S c r i p t A l i a s / c g i - b i n / " c : \ s c t \ p e r l t r a i n i n g \ c g i - b i n \ "

</VirtualHost>

Registering The Changes Made In The httpd.conf With Apache2

After making any changes to the httpd.conf ensure that Apache is
restarted to apply the new changes. This can be done by using the icon on
the task bar: (Refer Diagram 14.9)

Testing the PER L Setup

To test whether Perl has been successfully setup and intergrated w ith Apache2 create a simple script named testperl.pl that contains the fo llow ing code:

#!c:/perl/bin/perl.exe
Print the Header

print "Content-type: text/htm l\n\n";
Printing HTML Page

print "<H TM L><H E AD >";
print "<TITLE>Testing PERL Setup and Integration W ith Apache2</TITLE></HEAD>";
print "<B O D y BGColor=FFFFF><TABLE Width='100%' BGColor='#ffcb32'><TR><TD><H2>Hello

W orld! < /H 2 > < /T D > < /T R x /T A B„L E>";
print "< /BO D Y ></H TM L>” ;
exit(O);

Stop

R e s ta r t | -) |> A p a c h e 2 ►

Diagram 14.9: Restarting
Apache2

Place this file under a directory named cgi-bin in the Web server’s virtual dom ain created earlier under c:\sct\perltraining directory. Examine the output
of this script in a Web browser by pointing to http://sct.perltraining.com/cgi-bin/testperl.pl. If

Perl setup was successful then a screen similar to
that shown in diagram 14.10.

Changes in the httpd.conf File For
The Framework

The following entries should be exists in the

httpd.conf file available under C:\Program Diagram 14.10: The testperl.pl file in I.E.Files\Apache Group\Apache2\conf directory:
ServerName 172.16.9.66 (Here enter the actual IP of the host computer this IP is the one we used)

Na meVirtualHost 172.16.9.66

<VirtualHost 172.16.9.66>
ServerAdmin w e b m a s t e r 0 s c t . c o m

DocumentRoot c : \ s c t\perltraining

ServerName s c t . p e r l t r a i n i n g . c o m

S c r i p t A l i a s / c g i - b i n / " c : \ s c t \ p e r l t r a i n i n g \ c g i - b i n \ "

</VirtualHost>

P E R L B A S IC S

Like any computer program, a P E R L program starts out as a file containing commands or statements - in

this case, they are P E R L commands or statements.

PER L is:
□ Case sensitive
□ Free form; there are no constraints on the placement of any keyword. There are no rules for the exact

number of spaces or lines
□ A semi-colon must terminate each PERL statement (;)
□ Comments begin with a hash mark (#)
□ A group of PERL statements can be treated as a block by enclosing them in curly braces ({...})

P E R L S TR IN G S

PER L has three types of strings, namely:

1. Double Quoted Strings
2. Single Quoted Strings
3. Back Quoted Strings
Each of these strings behave differently from the other and provide special functionality to the PER L

language.

Double Quoted Strings

Double-quoted strings are commonly used because of the following features:
□ Scalar and array variables embedded in double-quoted strings are replaced by their values. Thus, PERL

will treat the string "Total = Stotal" as "Total = 10" where Stotal is assum ed to have a value 10.
□ In double-quoted strings, characters with a backslash prefix are replaced with a single special character.

For example, \n becomes a newline and \t becomes a tab character.

C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , r w 4 B 1 ,
P A G E 2 3 6 J A V A S C R I P T , D H T M L A N D P E R L C H A P 1 4

http://sct.perltraining.com/cgi-bin/testperl.pl

C H A P 1 4 T H E P E R L L A N G U A G E P A G E 2 3 7

N o t e .

A single backslash followed by one or more characters is called an escape sequence.

Single Quoted Strings

PE R L displays a single quoted string without replacing variable names with their corresponding values.
Single quoted strings also do not recognize escape sequences. Single quoted strings are simply treated as ordinary text.
Back Quoted Strings

Strings are enclosed in backquotes(') to display the output of some operating system command.
For example, the following block of code prints the directory listing of the directory from where it is
executed.

Example 1:#!c:/perl/bin/perl.exe -w
Print the Header if output

print "Content-type: text/html\n\n";

Sdirout = 'dir';
print "Directory Listing:\n";
print "Sdirout";

is req u i r e d via a b rowser

Э h t lp ; / / s c t .W d m p p tr a in in g .c o m /c g i- b in /d ir l is t . p l - M i. . .
Ftfe Edit View Favorites Tools Help

Q - - ¡a ; - e

Address http : //set. wampp training. com/cgi -bin/dir (is t. pi

% -

ê 3=°

Directory Listing: Volume in drive C is W indow sX P Volume

Serial N um ber is 8096- D B 9D D irectors o f C : sc tw am pp cgi-

b in 09 13 2004 04:31 P M

09 13 2004 04:31 P M

04 03 2004 11 49 A M 5 ,005 cgi-Eb pi

09 13 2004 04:2S P M 155 dirlist.pl 09 12 2004

05:5“ P M 0 N ew Text Dociunent.tx t 09 13 2004

04-31 P M 330 testperl.pl 09 13 2004 09:06 A M

32T testperl.pl.bak 5 File(s) 5 ,8 1T bytes 2 Dir(s)

6rSS6 ,096rS96 bytes free

Done

g C:\WlNDOWS\system32lcmd.exe ■ O K

C:\sct\wampp\cgi-bin>perl d i r l i s t . p l

Content-type: te x t / h t n l

D irector]; L is t in g :

Uoluroe in d riv e C is UindowsXP

Uolume S e r ia l Humber is 8096—DB9D

D irec to ry of G:\sct\wanppNcgi-bin

09/13/2004 04:31 PH <DIR>

09/13/2004 04:31 PM <DIR>

04/03/2004 11:49 AH 5,005 c g i- l i b .p l
09/13/2004 04:28 Ph 155 d i r l i s t . p l

39/12/2004 05:57 PH 0 New Text Document.txt

09/13/2004 04:31 PH 330 t e s t p e r l .p l

09/13/2004 09:06 AH 327 te s tp e r l .p l .b a k

5 F ile < s) 5 ,817 bytes

2 D ir(s> 6 ,886,096,896 bytes fre e

С: \sс t \wanpp\cgi- b in >

<1
A

i f
Diagram 14.11.1: The dirlist.pl output in I.E. Diagram 14.11.2: The dirlist.pl output in cmd window

The output can be viewed via command window or a web browser i.e. Internet Explorer as seen in
diagram 14.11.1 and diagram 14.11.2. However for the code to provide output in a web browser the content
type has to be set. Refer the third line in the Codespec above.

" l i f t ■.

When running any MySQL/mSQL Perl programs, the -w command line argument should always be
included. With this present, DB1 will redirect all M y S Q L and m S Q L specific error messages to
STD E R R so that you can see any database errors without checking for them explicitly in the program.

P A G E 2 3 8
C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L ,

J A V A S C R I P T , D H T M L A N D P E R L
C H A P 1 4

achieve this, the programming environment should be able to store that data for use on demand.

Variables

In PERL programs data is stored in variables. Each variable has a name and can store any type o f data.
Each variable name in a PERL program begins w ith a special character:
□ A dollar (S) sign
□ A at the rate o f (@) sign
□ A percent (%) sign
The special character denotes the variable type. The three types o f variables are:
□ Scalar Variables
□ Indexed Array Variables
□ Associative Array Variables

Scalar Variables

W hat is a S c a l a r V a r ia b le ?

Scalar Variables are the most basic form o f data containers in PERL. A scalar variable can reference a
string value or a numeric value. Even though PERL treats strings and numbers w ith almost the same regard,
there is a definite visible difference between the two. .

Example 2:
$num_pages = 256;
Stitle = "Good M orn ing";

In the above example, the s tring is enclosed in double quotes.

D e fin in g S c a l a r V a r ia b le s

When a scalar variable is assigned a value, the syntax o f the assignment assists the PERL interpreter in
deciding the variable type. I f the value o f the variable is surrounded in single or double quotes, then PERL
treats the variable as a string. I f there are no quotes, then PERL has to decide i f the value is a string or a
numeric value.

Example 3:
SFirstName = Rajesh;
SMiddleName = 'Rao';
SLastName = "Guruswamy";

I f the above script were run, the first scalar variable assignment (SFirstName = Rajesh) would give a
warning that the bare word Rajesh may be a future reserved word like a function name, which w ill change
the context o f the assignment i f a function named Rajesh is ever added to PERL.
The assignment o f $Age uses quotes, which means that PERL w ill treat this scalar variable as a string value
instead o f a numeric value.

H o t e
In PERL, there is no data type for a variable. The sex or data type o f the variable is dependent on
the context in which it is used.

$Age = "3"ÿ

C H A P 1 4 T H E P E R L L A N G U A G E P A G E 2 3 9

Arrays

For single values, such as the name o f an employee or the travel expense o f an employee, a scalar variable
can be used. Sometimes m ultip le values (e.g. 30 employee names, 30 expense reports, or 20 e-mail
addresses) need to be stored. In such a case an array can be used. An Array is a collection o f scalars, e.g.
An array o f names, or array o f marks and so on. In PERL, there are two types o f arrays - Indexed Arrays &
Associative/Hash Arrays.

I n d e x e d A rra y s

PERL has a data structure that is strictly known as an array o f scalars. This structure is more commonly
known as a list. PERL’s arrays can be used either as a simple list, a stack, or even the skeleton o f a complex
data structure. These arrays are known as IND EXED ARRAYS and are denoted by the (@) symbol.
PERL’s array o f scalars can be defined by a number o f methods.

C re a tin g A n I n d e x e d A rra y

The example, mentioned below, w ill create an array named myList with no array elements. In other words
an empty array.

@ myList = () ;

P o p u la tin g A n I n d e x e d A rra y

@months = ("Jan", "Feb", "M ar", "A pr", "M ay", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec");
@months = qw (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

The above two examples describe a common method o f using an array as an indexed list. The values o f the
array are assigned all at once. Arrays start at index 0, so in the above example, $months[0] w ill have a
value Jan, $m onths[l] w ill have a value Feb and so on.

The qw keyword is a shortened form used to extract individual words from a string. In the above case, the
individual words are the names o f the months, and the result o f running qw on them is stored in the array @months.
I f the array elements cannot be assigned a ll at once, the same can be assigned on an individual basis.

For example, the elements for the @months array could be assigned in the fo llow ing fashion:
$months[0] = "Jan";
$months[l] = "Feb";
$months[2] = "Mar";

Notice that in the above examples, when the array elements are directly assigned, the $ character is used
and not the @ character. Thef? character at the beginning o f an array tells PERL that one individual
element o f the array, not the complete array, is to be assigned.

E x tra c t in g In fo rm a tio n F ro m A n I n d e x e d A rra y

The most common method o f extracting information from an array is to index the array elements directly.
Example 4: (Refer diagram 14.12)#!c:/perl/bin/perl.exe -w
@months = qw(Jan Feb M ar A pr May Jun Jul Aug Sep Oct Nov Dec); for ($x = 0; $x <= $#months; $x++) {

print "Index[$x] = $m onths[$x]\n";
}

P A G E 2 4 0
C O M M E R C I A L W E B A P P L IC A T I O N D E V E L O P M E N T U S I N G H T M L , _ н д р . .

J A V A S C R I P T , D H T M L A N D P E R L

B B S S
^ : 4 s c t 4 » a n p p \ c a r i - b i r T > p e r l e x t r a c t a r r a y . p l
C o n t e n t - t y p e : t e x t / h t m l ¡

z Æ

I n d e x t 0] =
I n d e x t l] =
I n d e x C 2] =
I n d e x [3] =
I n d e x [4] =
I n d e x [5] =
I n d e x t 6] =
I n d e x C ?] «
I n d e x C 8] =
I n d e x C 9] =
I n d e x C 1 0]
I n d e x C l l 3

J a n
F e b
M a r
A p r
M a y
J u n
J a l
f iu g
S e p
O c t

= N o v
= D e c

C : \ s c t \ w a m p p \ c g i - b i n >

Diagram 14.12: The extractarray.pl output in
command window

In the above example, the statement '@months = qw(Jan Feb Mar Apr May Jun Jul Aug Sep OctNov Dec):', creates an array called @months and
assigns the names o f the months as elements o f the
array.
The next statement block, is a loop structure which
iterates through each and every element o f the
array, printing the element’ s index number and it ’ s
corresponding value. The word $#months is
actually a PERL convention which returns the value
o f the largest subscript o f the array. I f SUmonths
returns a value -1 , the array is empty.

H a sh A rra y s

Hash Arrays or Associative Arrays, are arrays that
are indexed by string values instead o f integer index values. Associative arrays, unlike scalar arrays, do not have a sense o f order, there is no true first addressable element. This is because the indexes o f the associative array are strings and the information is
not stored in a predictable manner.
In PERL, the % special character at the head o f the variable name identifies an associative array.
C rea tin g A n A s s o c ia t iv e A rra y

The fo llow ing example creates an empty associative array named cities:
%cities = () ;

P o p u la tin g A n A s s o c ia t iv e A rra y

Just like a normal array o f scalars, an associative array can have all its values assigned at once.

Example 5:
%cities = ("Chennai'->"East", "Nagpur"=>"Central", "Mumbai1->"W est");
%cities = ("Chennai", "East"," Nagpur", "Central", "Mumbai", "West");

As seen in the two examples above, => is equivalent to a comma. Its main purpose is to create a visual
association between pairs.
Similar to a standard array o f scalars, the associative array can be populated by individual elements as well.
The above example can be rewritten as:

$cities{'Chennai'} = "East";
$cities{'Nagpur'} = "West";
Scities {'Mumbai'} = "Central";

E x tra ctin g In fo rm a tio n F ro m A n A s s o c ia t iv e A rra y

The contents o f an associative array can be accessed using one o f the fo llow ing PERL functions:
□ keys
□ values
□ each

The keys Function

The keys function returns a list o f the keys o f the given associative array when used in a list context and
the number o f keys when used in a scalar context.

C H A P 1 4 T H E P E R L L A N G U A G E P A G E 2 4 1

or
@keyList=keys %hash

@keyList=keys(%hash)

Since the keys function returns a list that can be stored into an array for later use, such as printing. For
example, the statement 'print @kevList:’ w ill print the array in list format.

Usually, the list returned by the keys function is processed in some type o f loop and never stored in array.

The fo llow ing example gives an idea o f retrieving the keys value by scalar Context: foreach $index (keys(%myhash)) {
print "The keys value is $myhash{$index} \n " ;

}

N o t e .

Scalar Context means that a function is being called and the return value of the function is a scalar
variable.

Array Context means that a function is being called and the return value of the function is an array.
The keys returned from the keys function are merely indexes in the associative array. The keys function is
the most common function used to extract information from an associative array.

Example 6: (Refer diagram 14.13) #!c:/perl/bin/perl.exe -w
%cities=("Chennai"=>"East", "Nagpur"=>"Central",

"Mumbai"=>"West"); for $key(keys %cities) {
print "Key = $key Value = $cities{$key}\n";

}

s i - - ж
—:—I— I

C:\sct\wanpp\ccfi-bin>pevl k e y s . p l >.1
Key = M u m b a i Ual u e = West — -
Key = N a g p u r Ual u e = C e n t r a l
Key = C h e n n a i Ua l u e = East

In the above example, the first statement, creates an
associative array named %cities and initializes it
w ith three pairs o f elements, namely:

Chennai=>East, Nagpur=>Central and Mumbai=>West

С : 4sct\wampp\ccf i—bin >

<1 !

Diagram 14.13: The keys.pl output in
command window

The next block o f code uses the keys function on the associative array %cities. Each o f the keys in the
%cities array is stored in the scalar variable Skey. By using the value contained in this variable, each and
every key and its corresponding value in the array are printed by the print().
T h e values F u n ction

In a scenario where the keys o f an associative array
are not required, the values function can be used to
directly access the values in an associative array.

Example 7: (Refer diagram 14.14)
#!c:/perl/bin/perl.exe -w
%cities=("Chennai"=>"East", "Nagpur"=>"Central",

"Mumbai"=>"West");
fo r $value(values %cities)

{ print "Value = $value\n"; }

C:\sctSuanpp\cgi-bin>perl ualues.pi
Llalue = liest
Llalue = Central
Ualue = East

С :\sctNwampp\cgi-bin>

<i I

Diagram 14.14: The values.pl output in
command window

P A G E 2 4 2

T he e a ch F u n ction

C O M M E R C I A L W E B A P P L IC A T I O N D E V E L O P M E N T U S IN G H T M L ,
J A V A S C R IP T , D H T M L A N D P E R L

C H A P 1 4

The each function returns a key-value pair from the
associative array.

Example 8: (Refer diagram 14.15) #!c:/perl/bin/perl.exe -w
%cities = ("Chennai"=>"East", "Nagpur"=>"Central",

"Mumbai "=>" West"); while (($key,$value) = each %cities) {
print "Key = $key Value = Svalue \n";

}

S3 C:\WINDOWS\system32\cmd.exe □ t X

C :\ s c t \uampp\ c g i - b i n >per 1 e a c h .pi
Key = M u m b a i Ualue = West
Key = Na g p u r Ualue = C e ntral
K e y = C h e n n a i Ualue = East

C : \ s c t \ w a m p p 4 c g i - b i n >

<1 I

Diagram 14.15: The each.pl output in
command windowExample 9: (Refer diagram 14.16)

To accept a name from the user and give a Welcome message i f the name is in the array.

::\W!NDOWS\system32\cmd.exe El
C :\sct\wampp\cgi-bin >per1 msg.pi
Sharanam

Welcome
C:\sct\wampp\cgi-bin>perl nsg.pl
Hanse 1

The name entered is not in the array
C :Ssct\wampp\cgi-bin >

Diagram 14.16: The msg.pl output in
command window

#!c:/perl/bin/perl.exe -w
%names=("Name 1 "=>"Chhaya",

"Name2"=>"Vaishali",
"Name3"=>"Sharanam");

$new=<STDIN>;
chomp $new;
$a=0;
$x= 0 ;
foreach $ni(keys%names) {

$a=$a+l;
if($new eq $names{$ni}) {

$ x= l;
print "\n Welcome";

}elsif(($x!=l)&& ($a==3)).{
print "\n The name entered is not in the array";

}

}

EN V IR O N M EN T V A R I A B L E S A N D T H E % ENV S P E C I A L H A S H A R R A Y

Environment variables are entities that exist w ith in a specific computer's environment. Many o f these
variables attain their values whenever a user logs onto a computer.

Because environment variables persist even as execution threads come and go, environment variables
sometimes function as placeholders, to pass data from one application to another within the same user session.
The environment variables are common in operating systems such as U N IX , Linux, Windows N T , and so
on and f it the model o f an associative array. An environment variable has a name and a value. Because
each environment variable is a name-value pair, these can be easily stored in an associative array w ith the
name o f the variable as the key.
PERL automatically defines the %ENV associative array, which holds all the currently defined
environment variables. Use the environment variable name as an index to access any environment variable
from % ENV.

C H A P 1 4 T H E P E R L L A N G U A G E P A G E 2 4 3

Example 10: (Refer diagram 14.17)
#!c :/perl/b in /perl.exe -w
foreach Sname (keys % EN V) {

Svalue = SENV{$name};
print "Sname = $value\n";

}

In the above example, the keys function
accepts the % E N V associative array as an
argument and returns all the keys in that
array. Each key from % EN V returned by the
keys function is stored in Sname. Sname is
then used to pick up the associated value o f
that key in the % EN V associative array.

S E L F R E V IE W Q U E S T IO N S Diagram 14.17: The envvars.pl output in
command window

F IL L IN T H E B L A N K S

1. PERL stands fo r ___ .
2. Scalar and array variables embedded in _____________strings are replaced by their values.
3. An array is a collection o f ______________.
4. are indexed by string values.
5. The____________function is the most common function used to extract information from a hash array.
6. Environment variables are stored in the array __________ .

TR UE OR FALSE

7. Perl is not case sensitive.
8. In double-quoted strings, characters w ith a backslash prefix are replaced w ith a single special

character.
9. Indexed arrays are denoted by the symbol %.
10. $#array returns a value -1 i f the array is not empty.

H A N D S O N E X E R C I S E S

1. Assign string values and numeric values to scalar variables.

2. Create an indexed array @week and populate it with the days o f the week. Print the elements o f the array
@week.

3. Create an associative array %expenses for the following persons:
John, Mary, Ed & Jane with their expenses respectively as $250.50, $195.00, $345.25 and $225.99
Print the name and the expenses o f each element o f the %expenses array w ith the help o f the keys
function using: a) a fo i loop b) a foreach loop c) a while loop

4. Create an indexed array @names by assigning individual elements o f that array as follows:
$names[01="Namel

Populate the array w ith 10 elements. Then print the value o f each element using a fo r loop.

C:\WINOOWS\syitem32kmd.exe

\Docui»ents and Settings\Sharanam Shah HOhEDRIUE ' C:¡TEMP = I:\Tenp SVSTEMDRIUE = C:PROCESSORJEUISION - 0b01 SVSTEHROOT - -C:\UIND0USCOMMONPROGRAMFILES * C:\Prograr- PilesSConnon Piles COMSPEC * C:\WINDOUS\systen32\cnd.exe SESSIONNAME = Console LOGONSERUER = wSHARANAMSAPPDATA = C:\Docunents and SettingsNSharanan ShahNApplicatian DataUINDIR = C:\WIND0WS¡PROGRflMFILES - C:\Progra». FilesOS * Uindows_NTPROCESSOR_LEU EL * 6PATHEXT - .COM;.EXE;.BAT;.CMD;.UBS;.UBE;.JS;.JSE;.USP;.WSH USERNAME = Sharar.an ShahPrompt =■ pg NUMBER_OP_PROCESSORS * 1 PP_N0_H0ST_CH£CK « NOHOMEPATH = \Docunents and Settings\Shat*anan ShahPATH - C:\Perl\bin\;C:\UINDOUS\syster»32;C:\WINDOWS;C:\WINDOWS\Systen32\Wbem;c:*>ysql\bin PROCESSOR_IDENTIPIER = x86 Fanily 6 Model 11 Stepping 1, Genuinclntel USERDOMflIN = SHARflNAMS COMPUTERNAME * SHARANAMSALLUSERSPROPII.E * C:\Docunents and Settings\All Users PROCESSORJIRCHITECIURE = x86 |TMP - l:\Tenp
C:\sct\wa»ipp\cgi-bin>

1 5 . P E R F O R M I N G O P E R A T I O N S A N D C O N T R O L L I N G
P R O G R A M F L O W

Commercial Applications revolve around giving business manager information, which has integrity so that
informed business decisions can be made. This involves capturing data and storing this data in temporary
storage. Once done, this data is processed to ensure its integrity. Often done by the application o f business
rules to the data in temporary storage, then moving this data to permanent storage i f it passes the business
rules o f the application.
The processing o f this data could involve formulae, arithmetic operators as well as dealing w ith and
manipulating text. Manipulating text may mean comparing strings, concatenation and so on. This chapter
deals w ith various ways to process numerical and text data in PERL.

B A S IC A R ITH M ETIC O P E R A T IO N S

Operator Name Example
Addition Samount = Sprice + Ssalestax;
Subtraction $over_payment = Spayment - Sbalance;
M ultip lica tion $sales_tax = Sprice * Stax_rate;
D ivision Saverage = Stotalamount / S num bero fitem s;

Example 1:
Sprice = 66.80;
Ssales_tax = Sprice * 0.05;
Samount = Sprice + Ssalestax;
Spayment = 100;
Schange = Spayment - Samount;

N o tz
When an arithmetic operation is performed and the result is a real number, that number is printed with
4 digits after the decimal point instead of the regular 2 digits. To print a value with a specified
number of digits after the decimal point, the PERL printf function can be used.

Auto-Increment And Auto-Decrement Operators

Incrementing or reducing the value o f a variable by 1 is a common operation required in many commercial
applications. PERL provides a shortcut to perform these tasks.
□ The Auto-Increment operator denoted by double plus sign (++) increments the value o f a variable by 1.
□ The Auto-Decrement operator denoted by double minus sign (--) decrements the value of a variable by 1.
Post-Increment

The value of the variable is incremented after the variable has been used in the current
expression

n++

Pre-Increment
The value of the variable is incremented before the variable is used in the current
expression

++n

Post-Decrement
The value of the variable is decremented after the variable has been used in the
current expression

n—

Pre-Decrement
The value of the variable is decremented before the variable is used in the current

expression
—n

C H A P 1 5 P E R F O R M I N G O P E R A T I O N S A N D C O N T R O L L I N G P R O G R A M F L O W P A G E 2 4 5

Example 2: (Refer diagram 15.1) #!c:/perl/bin/perl.exe -w
$count=100;

$count_now = $count++;

print "count_now = $count_now\n Count = $count\n";
Scount = 100;
Scountnow = ++$count;

print "count_now = $count_now\n Count ~ $count\n";

O P E R A T O R S H O R T C U T S

G : \ s c t N w a m p p \ c g i—bi n > p e r l opr . p i
count_now = 100
Count = 101
count JlO W = 101
Count = 101

C : \ s c t \ w a m p p \ c g i—b i n >

4 A
Diagram 15.1: The opr.pl output in

command window
Sometimes, it is necessary to perform an arithmetic
operation on the same variable. For example, while

calculating an Accounts Receivable cumulative total, it might be necessary to write the following PERL code:
Stotal = Stotal + Sreceivable;

PERL provides shortcut operators to perform an operation with a variable and then save the result in the same
variable. Using these shortcut operators, the above code can be implemented in the following manner:

Stotal += Sreceivable;

Following is a summary of commonly used shortcut operatorsOperator Example Description
+= $x += $y Adds $y to $x and stores the result in $x
-= $x -= $y Subtracts $y from $x and stores the result in $x
•k — $x *= $y Multiplies $y and $x and stores the result in $x
/= $x /= $y »Divides $x by $y and stores the result in $x

C O M P A R IS O N O P E R A T O R S

PERL includes two separate sets of relational operators. One set for comparing numbers and the other for
comparing text strings.

What Is True (Or False) According To P ER L?

PERL’s numeric and string comparison operators return a true or false value. Also conditional statements test
the value of an expression to see whether it is true or false. Essentially, in a PERL program, any nonzero number
is considered true. All text strings are also true. Except for an empty string (defined as'"') and the zero string "0",
which are false. Any undefined variable is false (a variable is undefined if a value is not assigned to the variable).

Comparing Numbers and Strings

Conditional statements, such as the if statement, checks the value of an expression and executes a block of
statements if the expression is true.

Most of the time, the expression being tested in a conditional statement is a comparison that involves a relational
operator. For example, an if statement might be used to print a message if the number of errors exceeds a preset
threshold. Here’s how to write such an if statement:#!c:/perl/bin/perl.exe -w

Serrorcount = 30; if ($error_count > 25) {
print "Too many errors!\n";

}

The expression $error_count > 25 is an example of a comparison of two numbers, the value of the variable
$error_count and 25. The greater-than sign (>) is one of the relational operators in PERL.

The expression $error_count > 25 means $error_count is greater than 25. The expression is true (that means the
expression’s value is nonzero), i f Serror count exceeds 25, otherwise the expression is false (the expression’ s
value is zero).

Performing Numeric Com parisons

The greater than operator (>) is one o f the relational operators used to compare numbers in a PERL program.
Other numeric comparisons include checking i f two numbers are equal or i f one number is less than another. The
following table lists PERL’s relational operators for numeric comparison.

Relational Operators For Comparing Numbers

C O M M E R C I A L W E B A P P L I C A T IO N D E V E L O P M E N T U S IN G H T M L ,
P A G E 2 4 6 J A V A S C R I P T , D H T M L A N D P E R L C H A P 1 5

Operator Example Description
== IIIIX&

Equal to operator; value is true i f $x equals $y, else false.
!= $x != $y N ot equal to operator; value is true i f $x and $y are unequal, else false.
< $x < $y Less than operator; value is true i f $x is less than $y, else false.

<= $x <= $y Less than or equal to operator; value is true i f $x is less than or equal to $y, else
false.

> $x > $y Greater than operator; value is true i f $x is greater than $y, else false.
>= $x >= $y Greater than or equal to operator; value is true i f $x is greater than or equal to

$y, else false.
< = > $x <=> $y Three-way comparison operator; value is -1 i f $x is less than $y, 0 i f $x equals

$y, and 1 i f Sx is greater than $y.

Performing String Com parisons

In some programming languages, such as C and C++, the relational operators for comparing numbers are
the same ones used to compare text strings. Not so in PERL. PERL has a complete set o f relational
operators that must be used when comparing strings.

For example, in a PERL program, == operator cannot be used to find out whether two strings match. The
= operator works only w ith numbers. To test the equality o f strings, PERL includes the 'eq' operator.

Example 3: (Refer diagram 15.2) #!c:/perl/bin/perl.exe -w
Sname = "Sharanam"; if (Sname eq "Sharanam") {

print "Sname"; }

V ' i C : \W IN D O W S \s y s te m 3 2 \c m d .e x e

je : N s C t N w a m p p N c g i —b i n > p e s t r e n p . p 1
¡ S h a r a n a m
C : \ s c t \ w a n p p S c g i —b i n >

jzi

PERL includes other operators that can compare two strings
in a variety o f ways. The fo llow ing table summarizes the string comparison operators.

Diagram 15.2: The strcmp.pl output in
command window

Relational Operators For Comparing Strings

Operator Example Description
eq Sx eq $y Value is true i f the strings Sx and $y are equal, else false.
ne $x ne $y Value is true i f the strings $x and Sy are not equal, else false.
gt $x gt $y Value is true i f $x is greater than $y, else false.
ge $x ge $y Value is true i f $x is greater than or equal to $y, else false.
It $x It $y Value is true i f $x is less than $y, else false.
le $x le $y Value is true i f $x is less than or equal to $y, else false.
cmp $x cmp $y Value is -1 i f $x is less than $y, 0 i f the strings are equal, and 1 i f $x is greater than Sy.

C H A P 1 5 P E R F O R M I N G O P E R A T I O N S A N D C O N T R O L L I N G P R O G R A M F L O W P A G E 2 4 7

A ll string comparisons are done by comparing the numeric value o f the characters. For example, the
numeric value o f uppercase A is 65 and that o f uppercase B is 66. That means, in string comparison, A is
less than B.

H a t e

The numeric values o f the characters come from the American Standard Code for Information
Interchange (ASCII) code. In fact, the numeric value o f a character is referred to as the ASCII code o f
that character.

C O N T R O L L IN G P R O G R A M F L O W IN P E R L

Flow o f execution, or program flow , refers to the sequence in which the PERL interpreter executes PERL
script statements. The PERL interpreter always executes the statements sequentially, in the order o f their
appearance in a PERL program. In most PERL programs, however, the program needs to execute one set o f
statements i f a specific condition is true and, possibly, another set o f statements i f the condition is false.

Suppose a PERL program is written to processes a text file containing expense reports and prints out only
those entries that exceed a specified amount. In such a program, one o f PERL’ s conditional statements,
the if statement, m ight be used, statements that are executed only when certain conditions are true.

Making Decisions In PER L

A PERL program makes decisions by conditional processing. Based on the value o f an expression, the
program executes a block o f statements that are enclosed in a pair o f curly braces ({. . .}).

Syntax:keyword (expression) { ... block o f statements }

Here, keyword is a special word (such as if and unless) that denotes the type o f decision the program
makes. The expression w ith in parentheses is tested before the block o f statements w ith in curly braces is
executed.

Using The 'if Statement

The most common type o f conditional statement is the if statement. The if statement executes a block o f
statements i f a condition is true. The condition is usually an expression that compares numbers or strings.

Syntax:if (expression) { ... statements to execute i f expression is true ...; } else { ... statements to execute i f expression is false . . . ; }

Suppose a congratulatory message is to be printed i f a student’s test score is greater than or equal to 90. I f
the score is less than 90, however, a message needs to be printed urging the student to try harder the next
time.

Example 4:#!c:/perl/bin/perl.exe -w
Assume $ s c o re h a s th e t e s t s c o re
Sscore = 95; if (Sscore >= 90) {

print "Congratulations! You got an A in this test.\n"; } else { print "W ork harder for the next test!\n"; }

Output:
C o n g r a t u la t io n s ! You g o t an A i n t h i s t e s t .

The if-else pair enables the handling o f both the true and false cases o f a test.

Example 5:
#!c:/perl/bin/perl.exe -w

Assum e t h a t $ v e r s io n c o n t a in s v e r s io n num ber $ v e r s io n = 5 ;
C heck v e r s io n num be r a n d ta k e a p p r o p r ia t e a c t io n
if ($version >= 10) {

print "No upgrade necessary\n"; }
elsif ($version>= 6 & & $ version < 10) {

print "Reinstall software\n"; }
else { print "Sorry, cannot upgrade\n"; }

Output:
S o r r y , c a n n o t u p g ra d e

n A ^ c o ^ o C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , r u » D «
P A G E 2 4 8 J A V A S C R I P T , D H T M L A N D P E R L C H A P 1 5

't i p .

To write an i f statement that executes a single PERL statement when an expression is true, the
following shorthand form can be used:

Example:
$a = 10;
print "$a" if ($a = 10);

In this case, the PERL interpreter executes the statement only when the expression is true.

Using The unless Statement

Sometimes a block o f statements needs to be executed i f a condition is false. For example, instead o f
writing:

"if the user is not admin, don’ t run this program"
it maybe easier to write

"unless the user is admin, don’t run this program"

PERL includes the unless statement precisely for this purpose.

The statement can be expressed as unless the user is root, don’t run this program w ith the fo llow ing PERL
code:

unless ($user eq "admin") {
print "you must be \"adm in\" to run this program.\n";
exit;

}

In this case, unless the variable Suser contains the string root, the program exits.

<7//t2 . ------ -------- ------ —

’ | | A common use o f unless is to test whether a file has been opened successfully.

C H A P 1 5 P E R F O R M I N G O P E R A T I O N S A N D C O N T R O L L I N G P R O G R A M F L O W P A G E 2 4 9

N ote.
The unless statement has the same form as if, including the use of elsif and else clauses. The
difference is that unless executes its statement block only if the condition is false.

As with the i f statement, the unless statement can be used in the following form:
I V] statement unless (expression);

which executes the statement when the expression is false. For example, if a PERL program needs to
be exited unless the variable Susername is equal to “root”, you could write:

exit unless (Susername eq "root");

L O O P S

Repeating A Task By Looping

Sometimes it is necessary to execute a block o f statements repeatedly until same condition becomes false.
The operation o f repeating a block o f statements is called looping.

Using An while Loop

Diagram 15.3 illustrates the flow control o f a loop which might be
implemented w ith the while statement.

Syntaxwhile (expression) {... statements for execution as long as expression is true; }
The expression could be anything the value o f a variable or the
comparison o f two strings or numbers. I f an array is used as a condition,
for example, the while loop (mentioned below) executes until the array
has no elements left.

Example 6: (Refer diagram 15.4)
#!c:/perl/bin/perl.exe -w
@names = qw(Chhaya Hansel Sharanam); while (@names) {

Sname = shift @names;
print "SnameVn";

}

%
C ondition N o

True?

I
Yes

Code to be executed as long
as cond ition is true

Diagram 15.3

In the above example, each time through the loop, an array
element is extracted into the variable Sname using shift
function.

«.■y C :\W INDO W S\systBm 32\cm d.exe

jC : \ s c t \ w a m p p \ c g i - b i n > p e i* 1 w h i l e l o o p
C h h a y a
H a n s e l
S h a r a n a m

¡ C : \ s c t \ w a m p p \ c g i - b i n >

Diagram 15.4: The whileloop.pl output in
command window

Using An until Loop

The until statement is just like while statement, but it repeats a block o f statements until a specified
condition becomes true. In other words, the until statement executes the block as long as that condition is
false. The until statement w ill be used whenever it is found most natural to think o f repeating a loop until
an expression becomes true.

P A G E 2 5 0
C O M M E R C I A L W E B A P P L IC A T I O N D E V E L O P M E N T U S I N G H T M L ,

J A V A S C R I P T , D H T M L A N D P E R L
C H A P 1 5

Syntax:until (expression)
{ ... block o f statements to execute as long as expression is false;}

Example 7: (Refer diagram 15.5) #!c:/perl/bin/perl.exe -w$n = 1;
until ($n = 10) {

print "$n \n";
$n = $n + 1 ;

}

Diagram 15.5: The untilloop
command window

.pi output in

true and the

The above example prints the numbers 1 to 9. Statements in
the block get executed as long as the condition is false i.e.,
first it prints $n and then increments it by 1. Once $n gets the value 10, the condition becomes
execution o f the block stops.

Using A for Loop

The for statement is another way that a PERL program can execute a block o f statements any number o f
times, based on the value o f an expression. The syntax o f a for loop is quite a different from that o f while
and until loops.

Syntax:for (expr_ l; expr_2; expr_3) {... statement block; }

The first expression expr_l is evaluated once, at the beginning o f the loop, and the statement block is
executed as long as the second expression expr_2 is true. The third expression expr_3 is evaluated after
each execution o f the statement block. Any o f these expressions can be omitted, but the semicolons must be
included. Also, the braces around the statement block are required.

Example 8: (Refer diagram 15.6)
Here is a loop to add the numbeis from 1 to 10: #!c:/perl/bin/perl.exe -w
fo r ($ i= l; $i<= 10; $i++) {

$sum += $ i; }
print "$sum";

C' C :\W INDO W S\system 32\cm d.exe

C:\sct\wampp\cgi-bin>perl forloop.pl ж]
55 z d
C:\sct\wampp\cgi-bin> ,

Diagram 15.6: The forloop.pl output in
command window

In this example, the actual work o f adding the numbers is done in the statement controlled by the for loop
the statement that appears w ith in curly braces ({ }) . The fo llow ing steps describe what this for loop does:
1. $i is in itialized to 1 before the loop starts.
2. The loop runs as long as, $i is less than or equal to 10.
3. Each time through the loop, $i is added to $sum.
4. A fter each iteration o f the loop, $i is incremented.

N a te .

This is the most common form o f fo r loop. The variable $i is used as a counter. It is initialized to a
value at the beginning o f the loop, incremented each time through the loop, and tested to determine
when to end the loop. The $i variable is also known as the loop variable.

C H A P 1 5 P E R F O R M I N G O P E R A T I O N S A N D C O N T R O L L I N G P R O G R A M F L O W P A G E 2 5 1

Using A foreach Loop

Besides while, until, and for, PERL provides the foreach statement to execute a block o f code for each
element in an array. O f course, a for loop could be used to access each element o f an array by its index, but
it ’s much simpler to access each array element w ith the foreach statement.

Syntax:foreach SVariable (@ Array) {
... statement block; }

This foreach loop can be read as follows: for each variable in the array, execute the statement block. The
foreach statement assigns to SVariable an element from the @Array and executes the statement block. The
foreach statement repeats this procedure until no array elements are left.

Example 9: (Refer diagram 15.7)
The goal is to find the largest number in an array o f
numbers. Here’ s how such a program might be
written using a foreach loop.

#!c:/perl/bin/perl.exe -w
D e f in e an a r r a y o f n u m b e rs
@scores = (65,49, 76, 69, 85, 82, 64, 70, 72);
$max = 0;
L o o p th r o u g h a r r a y a n d f i n d h ig h e s t s c o re foreach Sscore (@scores) {if (Sscore > Smax) { Smax = Sscore; }
}
P r i n t th e h ig h e s t s c o r e
print "Highest score = $max\n";

I f the foreach loop is compared w ith the for loop for processing elements o f an array, it w ill be seen that
the foreach loop looks simpler because no array index has to be used to access the elements o f the array.
This eliminates all occurrences o f expressions such as SscoresfSi],

Breaking Out Of A Loop

Sometimes a loop needs to be broken cut o f before it has gone through all o f its iterations. For example, a
name in an array o f names is searched for and the loop needs end as soon as a match is found.

Example 10: (Refer diagram 15.8)
#!c:/perl/bin/perl.exe -w
@names = qw (Chhaya Hansel Sharanam);
Scustomer = "Hansel"; foreach Sname (@names) {
B re a k th e lo o p i f $ c u s to m e r i s
fo u n d

print "Sname \n"; last if(Sname eq Scustomer);
}

I
In the above example, customer names are stored in the @names array. The program looks fo r the name
stored in the variable Scustomer. Once the match is found, the loop is broken using the last command.

To end the foreach loop, the last command has to be put in the statement block o f the foreach loop.

C:\WINDOWS\system32\cmd.exe

i : \ s c t \ v ; a n p p \ c g i - b i n > p e i ' l b r e a k f o r e a c h . p l *.|
C h h a y a
H a n s e l

j ’\ s c t \ w a m p p \ c g i - b i n >

Diagram 15.8: The breakforeach.pl output in
command window

c' C:\WINDOWS\system32\cmd.exe BBC
i:\sct\uanpp\cgi-bin>pei'l foreachloop.pl
lighest score = 85

: \sc t:\wanpp\cgi-bin >

A
Diagram 15.7: The foreachloop.pl output in

command window

C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , _ н д р
J A V A S C R IP T , D H T M L A N D P E R L

Last can be used in all types o f loops: while, until, for, and foreach.

It’ s not unusual to have one loop embedded inside another. For example, there m ight be a foreach loop
inside a while loop and the while loop needs end when Sline matches one o f the items in the @names
array.

Example 11: (Refer diagram 15.9)#!c:/perl/bin/perl.exe -w
@names = qw (Chhaya Hansel Sharanam);
@locations = qw (Bangalore Delhi Mumbai);
while (@names) {

$name = shift @names;
print "$name \n"; foreach $loc ((allocations) {

print "Sloe \n"; } last if($name eq 'Hansel');
Ends th e w h i le lo o p
}

Skipping An Iteration Of A Loop

When loops are used in a PERL program, it may not be necessary to perform computations for all iterations
o f the loop. Typically some iterations o f the loop may require to be skipped. For example, a PERL program
might be written that generates a message i f a user has used more than 2500KB o f disk space.

The user names and the corresponding disk usage are stored in an associative array. In this case, an
iteration o f the loop needs to be skipped whenever a user’ s disk usage is less than 2500KB.

The follow ing program shows how to skip an iteration o f a loop by using the next command.

Example 12: (Refer diagram 15.10)
#!c:/perl/bin/perl.exe -w
D e f in e an a s s o c ia t i v e a r r a y o f u s e rn a m e s and d i s k u s a g e
%disk_usage = ("prasad" => 3500, "alex" => 4800, "john" => 1950, "sunita" =>3100, "susan" =>2100);
Slimit = 2500; # U sage m u s t be le s s th a n t h i s
P ro c e s s t h e d i s k u s a g e lo g and l i s t t h e u s e rs
who e x c e e d t h e c u r r e n t l i m i t
print "More than $ { lim it}K B disk space used by:\n"; foreach Suser (keys(%disk_usage)) {
S k ip t h i s i t e r a t i o n i f d i s k u se i s b e lo w l i m i t

next if ($disk_usage{$user} < Slim it);
O th e rw is e , p r i n t t h e u se rn a m e

p r in t" $user\n";
}

ç> C :\W IN D O W S\system 3 2\cm d.exe Н Е Е
j c : \ s c t \ w a r a p p \ c g i - b i n > p e r 1 s k i p i t e r a t i o n . p l - ~ i
M o r e t h a n 2 5 0 0 K B d i s k s p a c e u s e d b y :

p r a s a d
a l e x
s u n i t a

C : \ s c t \ w a m p p \ c g i - b i n . >

2 Í

M E 1C :\W IN D O W S \s y s te m 3 2 \c m d .e x e
C:\sct\wampp\cgi-bin >perl breaknestedloop.pl ■». 1
Chhaya Ẑj
Bangalore
Delhi
Munbai
Hansel
Bangalore
Delhi
lumbai

\sct\wanipp\cgi-bin>

< ! .»Г?

Diagram 15.9: The breaknestedloop.pl output in
command window

Diagram 15.10: The skipiteration.pl output in
command window

C H A P 1 5 P E R F O R M I N G O P E R A T I O N S A N D C O N T R O L L I N G P R O G R A M F L O W P A G E 2 5 3

S E L F R E V IE W Q U E S T IO N S

F IL L IN T H E BLA N K S

1. The auto-increment operator is denoted by the s ign__________

2. A n ___ statement is a Conditional statement.

3. T he________ operator is an operator for three-way comparison o f numbers in PERL.

4. A l l string comparisons are done by comparing th e________ values o f the characters.

5. The i f statement executes a block o f statements i f a condition is _____ .

6. To execute a block o f statements repeatedly a ______ is used.

7. T h e ______ keyword is used to break out o f a loop.

TR U E O R FALSE

8. The (—) operator is an auto-decrement operator.

9. The (+=) operator adds the value o f the variable on the right hand side to that on the left hand side and
stores the result in the variable on the right hand side.

10. The (= =) string can be used to compare two strings.

11. The numeric value o f a character is nothing but the ASCII code o f that character.

12. The unless statement executes its block only i f the condition is true.

H A N D S O N E X E R C IS E S

1. I f $ctr= 10, print the value of:
□ $ctr2 where $ctr2=$ctr+1
□ $ctr3 where $ctr3=$ctr++
□ $ctr4 where $ctr4=++$ctr

2. I f $a=10 and $b=2 then print the value o f$ a after each o fthe fo llow ing operations:
□ $a+=$b
□ $a-=$b
□ $a*=$b

. □ $a/=$b

3. W rite a loop to add numbers from 50 to 75.

4. Use the if ... else statement to categorize the marks o f a student as Distinction, First Class, Second
Class, Pass Class or Fail.

5. @numbers=(78, 87, 34,45, 56, 23,64, 12, 32,21, 54,43);
Write a foreach loop to print the lowest number in the above array.

1 6 . P E R L F U N C T I O N S

A significant part o f PERL's capability is its bu ilt-in functions. These functions are nothing but subroutines
that are predefined and are available for use anywhere in a PERL program. The creators o f PERL
recognized that there were certain common tasks, which every programmer implementing PERL, would
have to perform. PERL developers wrote the code to perform these tasks and embedded them into the
PERL language using functions.

STR IN G F U N C T IO N S

String functions are used to manipulate text. The fo llow ing are a few o f PERL's string functions.

Chop The Last Character Of A String

Many PERL programs process the contents o f a text file one line at a time. When a PERL program reads a
line o f text into a scalar variable, that text string includes all the characters on the line plus a newline
character at the very end o f each line.

PERL provides the chop() function, to remove the last character from the string.

Syntax:
chop(<variable name>);

Example 1: (Refer diagram 16.1)#!c:/perl/bin/perl.exe -w
Sline = "I Like PERL.";
chop(Sline);
print "Sline";
In the above example, the chop(Sline) function, w ill remove the fu ll stop contained at the end o f the
statement in the scalar variable Sline. So now, the contents o f Sline w ill be 1 Like PEKL without the period
at the end.

Chomp A Newline Character

Typically, the last character in a string needs to be taken out only i f it were a newline character. The chop()
function, w ill remove any character which is at the end o f the string.

To overcome this, PERL provides the chompO function. The chompO function w ill remove the last
character o f the string only i f it is a newline character.

Syntax:
chomp(<variable name>);

Example 2: (Refer diagram 16.2)#!c:/perl/bin/perl.exe -w
Sline = "I Like PERLAn";
chomp(Sline);
print "Sline";

£i- C:\WINDOWS\system32\cmd.

C :SsctSwamppScgi-bin>perl chopl.pl ж
I Like PERL. H
C:\sct\wanpp\cgi-bin>

i l J j

Diagram 16.2: The chopl.pl output in
command window

□ ! X

С:\s с t \wampp\c g i-b in >pe r 1 chop.pl
I Like PERL
С:\s сt SwamppScg i-b in >

Diagram 16.1: The chop.pl output in
command window

C H A P 1 6 P E R L F U N C T I O N S PAGE 255

In the above example, the chomp($line) function, w ill remove the newline character from the variable
Sline. So now, the contents o f Sline w ill be I Like PERL. Notice the existence o f the period at the end o f
the line in this case.

Concatenating Strings

A common text-processing step is to concatenate, or jo in , strings. Suppose the first and last names o f a
customer are stored in two separate scalar variables (Sfirstname and Slastname) the two parts need to be
joined into a fu ll name. The string concatenation operator can be used to accomplish this task, as illustrated
by the fo llow ing PERL code.

Example 3: (Refer diagram 16.3)#!c:/perl/bin/perl.exe -w
Sfirstname = "Vaishali";
Slastname = "Shah";

C o n c a te n a te t h e tw o s t r i n g s
Sfullname = Sfirstname . " ". Slastname;
print "Sfullname\n";

The contents the variable Sfullname is the result o f concatenating three strings:
□ Sfirstname

□ A blank space (written as a blank space enclosed in double quotes)
□ Slastname

As seen from this example, the string concatenation operator is represented by a period (.). Concatenation
o f two or more strings can be accomplished by simply putting a period in-between the strings.

..... ' ■ '

’ 11 The assignment form o f the concatenation operator (.=) can be used to concatenate two strings and
store the result back in the first string.

For example, i f ing needs to be appended to
a string, the following should be written:

Sstr = "load";
Sstr .= "ing";

Now $ s t r i s " lo a d in g "

Repeating Strings

A useful operator is the repetition operator, denoted by x. The x operator can be used to repeat a string a
specified number o f times. Suppose a string needs to be initialized to 15 asterisks (*) and then use that line
o f asterisks as a separator in a text file (or the output printed by the PERL program).

Example 4: (Refer diagram 16.4)
The string can be initialized w ith a repeated number o f asterisks by using the x operator. #!c:/perl/bin/perl.exe -w
D e f in e $ m a rk e r as a s t r i n g o f 15 a s t e r i s k s
Smarker = "* " x 15;
print Smarker;

The same result can be achieved by repeating a string o f 3 asterisks 5 times, as follows:
Smarker = " * * * " x .5;

C:\WINDOWS\system32\cmd.exe

С : S s c t S w a n p p S c g i - b i n >pei*l ma r k e r .pi;

j d

j J A
С : 4sct4wainppScgi-bin >
< I I

Diagram 16.4: The m arker.pl output in
commanrl w indow

c ' C:\WlNDOWS\system32\cmd.exe □ x
;:Ssct\wamppScgi-bin>perl concat.pl a
Jaishali Shah —1

; :\sct\wampp\cgi-bin >

Diagram 16.3: The concat.pl output in
command window

P A G E 2 5 6
C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L ,

J A V A S C R I P T , D H T M L A N D P E R L
C H A P 1 6

The string repetition operator can be actually used in many useful programs. Suppose that a simple text plot
o f some data needs to be generated, replicating asterisks where the number o f asterisks is proportional to
the value being plotted.
Example 5: (Refer diagram 16.5)
The follow ing PERL program illustrates the creation o f a simple plot showing the relative costs for a
number o f cars:
#!c:/perl/bin/perl.exe -w
I n i t i a l i z e an a s s o c ia t i v e a r r a y o f c o s ts
%costs = ("Mercedes" => 90000, "Esteem" => 82000, "Toyota" => 37500);
foreach $car (keys (%costs)) {
I n i t i a l i z e th e m a rk e r

Smarker = " *
R e t r ie v e th e c o s t f o r t h i s c a r

Samount = $costs{$car};
C om pute how m any th o u s a n d s (d iv i d e b y 10000)

Samount /= 10000;
•# S e t up t h a t m any a s t e r i s k s

Smarker x= Samount;
print "Scar: \t$marker\n";

}
Smarker = x 40;
print "Smarker\nNote: * = \$10,000\n";
This program’s output is quite usable, at least as a
way to compare the costs o f these cars.

- |nfx|

C : \ s c t \ w a m p p \ c g i - b i n > p e r l p l o t . p i
¡T o y o ta : * * *
jM e rc e d e s : * * * * * * * *
fe s te e n : * * * * * * * *

±J

*

N o t e : * = $ 1 0 , 0 0 0

С : \ s c t \ w a m p p \ c g i - b i n >

M 1

Diagram 16.5: The plot.pl output in
command windowI f this program is studied, it w ill be noticed that the

string o f asterisks is prepared in the variable named Smarker in the fo llow ing manner:
Smarker is set to a single asterisk.

The cost o f the car is divided by 10000 to convert it to the number o f 10000 blocks that exist in the cost o f
the car.
Smarker is repeated by the cost o f the car divided into leu thousand blocks by using the x= operator (this is
the assignment form o f the x operator) w ith the fo llow ing statement:

Smarker x= Samount;
Extracting A Substring

Another type o f text manipulation is to extract a part o f a string. The substr() function can be used to
extract a substring from a string.
Syntax:

substr(string, offset, length);
Example 6: (Refer diagram 16.6)#!c:/perl/bin/perl.exe -\v
Slinel = " I like PERL";
Sline2 = "From: Ivan Bayross";
Spart = substr($linel, 7 ,4);
Sfrom = substr($line2, 6);
print "Spart \n";
print "Sfrom \n";

C:\WINDOWS\system32\cmd.exe

C : S s c t S u a n p p S c g i - b i n > p e r l s u b s t r . p l 1]
P E R L Z D
Ivan Bayross

С:\sct4wampp\cgi-bin >

Diagram 16.6: The plot.pl output in
command window

C H A P 1 6 P E R L F U N C T I O N S P A G E 2 5 7

The first substr() call in this example skips the first 7 characters o f Sline l and return the next 4 characters.
The second substr() call skips the first 6 characters o f $line2 and returns the remainder o f that text string.

The Index Function

I f the word PERL needs to be extracted from the sentence I like PERL., without counting the number o f
characters to be skipped, the index() function can be used. Typically indexes are used to find the start
position o f a string w ith in a string. This can be achieved as follows:

Sline = "I like PERL.";
$pos = index (Sline, "PERL"); # $pos = 7
Spart = substr(Sline, Spos, 4); # Spart = "PERL"

Finding The Length Of A String

In many situations, it is necessary to find the length o f a string. The length o f a string is the number o f
characters in the string.

Consider a situation where the length function can be used. Suppose a text needs to be printed and then
print another line w ith a number o f dashes that essentially underlines the text. The fo llow ing example
shows how the length function can be used to solve this problem:

Example 7: (Refer diagram 16.7)#!c:/perl/bin/perl.exe -w
Stitle = "The PERL Zone";
F in d t h e le n g t h o f $ t i t l e
Slength = length(Stitle);
P r i n t th e t i t l e
print "$title \n";
P re p a re a l i n e o f d a s h e s and

p r i n t i t
Suline = x Slength;
print "$uline\n";

Consider another problem o f extracting a substring from a line o f text. Suppose a variable named Sfind
contains the substring which is required to be extracted from a string named Sline. The index() can be used
to find the start o f the substring. Then use substr() to extract the substring. However, to use substr(), the
number o f characters in Sfind need to be specified. This is a situation where the length() has to be used.

Following example shows how the length function can be used when locating and extracting a substring:
I xample 8: (Refer diagram 16.8) —

Sline I like PERL 9 ^
S find= "PERL"; C : \s c t\w a m p p \c g i-b in > p e r l in d e x .p l
F in d s t a r t o f $ f i n d . • . • N. C :\s c t\w a m p p \c g i-b in >Spos = index(Slme, Sfind);
L e n g th o f $ f i n d
Snchar = length(Sfind); ' i ' ■ ■ I - i l ^ ;
E x t r a c t s u b s t r in g b y c a l l i n g Diagram 16.8: The index.pl output in

s u b s t r command window
Spart = substr(Sline, Spos, Snchar);
print Spart;

- □ X

С:4sct\uampp\cgi-bin >per 1 i n d e x .
PERL
1C : \sct\wampp\cgi-bin >

*L.............. 1

ж
pi —

Diagram 16.8: The index.pl output in
command window

G:\sct\wanipp\cg i-bin >per 1 lengtb.pl
Ihe PERL Zone 1
С:\sct\wampp\cgi-bin >

< I i A
Diagram 16.7: The length.pl output in

command window

Splitting A String Into Several Parts

The split() is mainly used to split a string into several parts. For example, a string having multiple fields
separated by a comma (,) can be split into several parts.

Example 9: (Refer diagram 16.9)#!c:/perl/bin/perl.exe -w
Srecordl = "Ivan,Bayross,Mumbai,India";
@fields = split(",", Srecordl); while (@fields) {

Sfield = shift @fields;
print "Sfield \n";

}

A R R A Y F U N C T IO N S Diagram 16.9 : The split.pl output in
command window

PERL includes a number o f bu ilt-in functions that
enable the manipulation o f arrays.

Adding An Array Element

To add an array element PERL provides few built-in functions.

The push() function adds one or more elements to the end o f an array.

Example 10: (Refer diagram 16.10)#!c:/perl/bin/perl.exe -w
@names = qw (Ivan Nelson Bayross);
push(@names, "Sharanam", "Hansel");
print "@names";

Now, the @names array contains five elements in
the fo llow ing order.
("Ivan", "Nelson", "Bayross", "Sharanam",
"Hansel")

The unshift() adds one or more elements to the beginning o f an array.

Example 11: (Refer diagram 16.11)#!c:/perl/bin/perl.exe -w
@names = qw (Ivan Nelson Bayross);
unshift(@names, "Sharanam", "Hansel");
print "@names";

Now, the @names array contains five elements in
the follow ing order.
("Sharanam", "Hansel", "Ivan", "Nelson",
"Bayross")

Removing an Array Elements

To remove an array element PERL provides few built-in functions.

The p o p () returns the last element o f an array and removes the same from the array and decreases the size
o f the array by one.

o c o C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , r H . p l B
P A G E 2 5 8 J A V A S C R I P T , D H T M L A N D P E R L C H A P 1 6

j n j « !

C:\sct\wamppScgi-bin>perl unshift.pl
Sharanam Hansel Ivan Nelson Bayross
C:\sct\wampp\cgi-bin> i

Z l
1____________ I i f j A

Diagram 16.11: The unshift.pl output in
command window

C:\WINDOWS\system32\cmd.exe

C :\sct\wampp\cgi-bin>per1 p u s h .pi
Ivan Nelson Bayross Sharanam Hansel
C :Ssct\uampp\cgi-bin >

1

A
±1

Diagram 16.10: The push.pl output in
command window

| c j C:\WINDOWS\system32\emd.exe j*|
1 3

C:\sct\wampp\cgi-bin>perl split.pi “J
Juan rd
¡Bayross
flumbai
India * 1

C:\sct\wampp\cgi-bin> 1

<1 1
n

C H A P 1 6 PERL FUNCTIONS P A G E 2 5 9

Example 12: (Refer diagram 16.12) #!c:/perl/bin/perl.exe -w
@names = qw (Ivan Nelson Bayross);
pop(@names);
print "@names";

Now, the @names array contains only two elements
in the fo llow ing order.
("Ivan", "Nelson")

C:\WINDOWS\system32\cmd.exe □ X

C:\sct\vjanpp\cgi-bin>perl p o p . p l —
Iuan Nel s o n
С:S s c t \ u a n p p \ c g i - b i n >

l i

Diagram 16.12: The pop.pl output in
command window

The sh ift() function returns the first element o f an
array and removes the same from the array and decreases the size o f the array by one.

Example 13: (Refer diagram 16.13)
#!c:/perl/bin/perl.exe -w
@names = qw (Ivan Nelson Bayross);
shift(@names);
print "@names";

Now, the @names array contains only two elements
in the fo llow ing order.
("Nelson", "Bayross")

Example 14: (Refer diagram 16.14)

C:\WINDOWS\system32\cmd.exe □ IX

C : \ s c t \ w a m p p \ c g i - b i n > p e r l s h i f t . p i
Me Ison B a y r o s s
C : S s c t N w a m p p \ c g i - b i n > ,

J ________________________ ! j f i

Diagram 16.13: The shift.pl output in.
command window

C:\WiNtfQWS\system32\cmd.exe

iC:\sct\wampp\cgi-bin>perl stack.pl
jThe array elements are:

i Hello
World

jEnter any options below to do the required function

! 1. Push
| 2. Pop
3. Quit

i Entered number is :1

The fo llow ing example describes implementing a stack using a menu w ith options to Push, Pop and Quit. #!c:/perl/bin/perl.exe -w
@ mylist = qw(Hello W orld H i);
prin t "The array elements are: \n \n ";
for($i=0:$i<=$#m ylist;$i++) {

print "$m ylist[$ i]\n"; }
print "Enter any options below to do the required
function\n";
print "#" x 50;
p r in t" \n";
p r in t" 1. Push \n";
p r in t" 2. Pop \n";
p r in t" 3. Q uit\n";
print "=" x 50;
print "\n Entered number is :";
$x=<STDIN>;
print x 50; if ($ x = l) {

push(@mylist, "Sharanam");
print "\n On pushing an element the output is :\n

\n";
for($i=0;$i<=$#mylist;$i++) {

print "$mylist[$i]\n"; }
}elsif ($ x = 2) {

pop(@mylist);
print "\n On popping an element the output

is :\n \n";

i On pushing an element the output is :

Hello
World
hi
■Sharanam

fc:\sct\wampp\cgi-bin>perl stack.pl
fThe array elements are:

Hello
World
Hi
Enter any options below to do the required function

! 1. Push
i 2. Pop
3. Quit

Entered number is :2

On popping an element the output is :

I le lio lorld

¡C : Ssc t \wampp\c g i-b in >

Ы__________ !________ i
.d

D iagram 16.14: The stack.pl output in
command window

P A G E 2 6 0
C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S IN G H T M L ,

J A V A S C R I P T , D H T M L A N D P E R L
C H A P 1 6

for($i=0;$i<=$#mylist;$i-H-) {
print "$mylist[$i]\n"; }

}elsif ($x==3) {
exit; }

С : N s c t \ « a m p p \ c g i - b i n > p e r X s o r t . p i
C h a r a c t e r
C h a r a c t e r
C h a r a c t e r
C h a r a c t e r
C h a r a c t e r
C h a r a c t e r
C h a r a c t e r
C h a r a c t e r

Й
В
С
D
E
F
G
H

C : \ s c t S u a n p p N c g i — b i n >

Sorting An Array

An array can be sorted by using the PERL sort()
function. The sort() function returns a sorted array but does not alter the contents of the original array.
Example 15: (Refer diagram 16.15)#!c:/perl/bin/perl.exe -w
@chars = qw(D G C H A F E B);
@sorted_chars = sort(@chars); for ($x=0; $x <= $#sorted_chars; $x++) {

print "Character $x = $sorted_chars[$x]\n";

}

The following example reads a Password file (passwordl.txt) and prints all the user names and passwords

in a sorted manner.Example 16: (Refer diagram 16.16)
#!c:/perl/bin/perl.exe -w
unless(open("passwd","password.txt")) {

C:\WI N DOWS V s y s t e m 3 2 \ c m d . exè

Diagram 16.15: The sort.pl output in
command window

print "cannot open file\n";
while(($line=<passwd>)) {

{ @users=split(":",$line);
@sort_users=sort@users;

}foreach $user(@sort_users) {
print "$user\n"; }

close("passwd");

}

Ш Ш Ш
C : S s c t \ w a m p p \ c g i- b i n > p e r 1 s o r t p a s s . p i

s h a r a n a n
s s h a h

u a i s h a l i
у s h a h

С : \ s c t \ w a m p p \ c g i- b i n >

Diagram 16.16: The sortpass.pl output in
command window

Reversing Array Elements

The PERL reverse() function can be used to reverse the order of elements in an array. The reverse() does not alter the
contents of the original array in any way. The reverse() can be used to change the order of a sorted index from
ascending to descending or to simply reverse thé order of elements in an array.

Example 17: (Refer diagram 16.17)
#!c:/perl/bin/perl.exe -w
@chars = qw(T E N);
@reverse_chars = reverse(@chars);
print "@reverse_chars";

Splicing An Array

с V C:\WINDOWS\system32\cmd.exe H E И
C:\sct\wampp\cgi-bin>perl reverse.pi
N E T
С : \sct\warnppScgi~bin >

Diagram 16.17: The reverse.pl output in
command window

The P E R L spliceO function can be used to either
append one array to another or to replace a portion of one array with another array

Syntax:
splice(@oldarray, offset, length, @newarray);

C H A P 1 6 P E R L F U N C T IO N S P A G E 2 6 1

The spliceO function first removes length items from the @oldarray starting w ith the item specified by offset. splice() then inserts the @newarray array in place o f the elements that were removed.

Example 18: (Refer diagram 16.18)#!c:/perl/bin/perl.exe -w
@names = qw(Ivan Chhaya Sharanam Vaishali Hansel);
@new = qw (A n il Rocky);
splice(@names, $#names+l, 0, @new);
print "@names\n";

In the above example, spiice() w ill add the elements
from the @new array to the @names array. Thus,
@names w ill now contain the fo llow ing elements:

:\sct\wanpp\cgi-bin>perl splice.pi Tj
iluan Chhaya Sharanam Uaishali Hansel Anil Rocky

! :\sc t:\wampp\cgi-bin >

JLi_________________I

Diagram 16.18: The splice.pl output in
command window

Deleting an Associative Array Element

PERL provides the delete() function for removing an entry from an associative array.

Example 19: (Refer diagram 16.19) #!c:/perl/bin/perl.exe -w
%cities = ("Chennai"=>"East",

"Nagpur"=>"Central",
"Mumbai"=>"W est");

delete($cities { Chennai});
@names = keys %cities;
print "@names \n";

M A T H E M A T IC A L FU N C T IO N S

PERL’s some o f the built-in math functions are:

H j C:\WINDO'
mm— — i iimi ii i

C:\sctSwampp\cgi-bin>perl delete.pl +
Mumbai Nagpur

C :\sct\wampp\cgi-bin >

Diagram 16.19: The delete.pl output in
command window

Function Call Description
Abs(value) Returns the absolute value o f the argument
Atan2(Y,X) Returns the arctangent o f Y/X
Cos(expr) Returns the cosine o f the angle expr (radians)
Exp(expr) Returns e raised to the power expr
log(expr) Returns the logarithm (to base e) o f expr
Rand(expr) Returns random value between 0 and expr
Sqrt(expr) Returns the square root o f expr
sin(expr) Returns the sine o f the angle specified by expr (in radians)
srand(expr) Sets the seed for random number generation

The problem is to measure the height o f some object, in this case, a lamppost. Suppose a person is standing
at a distance L from the post. Angle A is the angle o f elevation o f the lamp from the perspective o f the
person. I f the height o f the person is h, then the height o f the lamppost H is given by the following
expression:

H = h + L x (sin(A)/cos(A))
Assuming the person is 6ft tall at distance o f 100 feet, w ith an angle o f elevation o f 12 degrees.

The following block o f PERL code, illustrates the use o f the sin() and cos() functions to calculate the
height o f the lamppost:

Example 20: (Refer diagram 16.20)
#!c:/perl/b in/perl.exe -w
$A = 12;

$h = 6;
$L = 100;

C o n v e r t A i n t o r a d ia n s
$A *=3.14159/180;
Compute th e h e ig h t o f th e lam p

p o s t
$H = $h + $L * sin(SA) / cos($A);

print "Height = $H feet. \n";

TIME FU N C T IO N S

PERL provides the following time() functions.

When time() is called, it returns the seconds elapsed since 00:00:00 hours GMT on January 1, 1970. The gmtime and localtime functions then convert this to the binary time as required.

Greenwich Mean Time (GMT) is a standard reference time that all computers use. GMT refers to the local time in

Greenwich, England).

Local time refers to the time at a specific locality, e.g. when its 10 a.m. in Washington D.C., it is already 10 p.m. in

India.Example 21:
$gmt = gmtime(time);
$local = localtime(time);

Thus Sgmt contains the G M T time and Slocal contains the local time.

S E L F R EV IEW Q U E S T IO N S

F IL L IN TH E B LA N K S

1. are subroutines that are predefined and are available for use anywhere in PFRT program

2. PERL provides the___________ function to remove the last character from a string.

3. The assignment form o f the concatenation operator that appends a new string to the left operand is

C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , r w . p
P A G E 2 6 2 J A V A S C R I P T , D H T M L A N D P E R L

4. The__________ operator can be used to repeat a string a specified number o f times.

5. The_________ function can be used to extract a part o f the string.

6. The PERL function_______ is used to either append one array to another or to replace a portion o f one
array w ith another array.

TR UE OR FALSE

7. The chompO function w ill remove the last character only i f it is not a new line character.

8. The pop() function is used to append an array element to the beginning o f the array.

9. The shiftQ function removes the first element from an array.

C:\WINDOWS\system32\cmd.exe

C : \ s c t \ w a m p p \ c g i - b i n > p e r l n ath.pl
Height = 27.255 6 3 7 6 7 7 1 3 7 9 feet.

C :\sct\wampp\cgi-bin >

Diagram 16.20: The math.pl output in
command window

Task Functions
Get current date and time in a binary form Time

Convert time to GMT Gmtime

Convert time to Local time Localtime

CHAP 16 P E R L F U N C T I O N S P A G E 2 6 3

H A N D S O N E X E R C IS E S

1. Sline = "Keep Your C ity Clean.";
W rite a program to remove the last character using chop() function and store it in the variable. Then
print the value o f Sline and the variable.

2. Sline = "Keep Your C ity CleanAn.";
W rite a program using chomp() function to remove the newline character.

3. W rite a PERL program to concatenate two strings w ith space between them and append the th ird string
using the concatenation operator storing the result in the same string.
□ "Jodie"
□ "Foster"
□ "is blonde. "

4. Use the substr function to extract first five characters o f the string "Play Light Music". Then print
those five characters.

5. W rite a program to print the total length o f the string given below, then extract a string and count its
length. Example: "Jodie Foster is blonde." Extract "Foster" and count its length.

6. W rite the program to add elements to the beginning o f the array and sort it.

1 7 . F I L E H A N D L I N G

PERL programs are usually designed to read input or get their input from the standard input and print or
send their output to standard output. By default, standard input is the keyboard and standard output is the VDU.
PERL programs often access and use information held in files, which means often a PERL script needs to
read data from a file and write data to a file. For example, a Web page that accepts reader feedback might
use a CGI program that saves reader feedback in a text file. The PERL script has to open the file, store the
reader’ s comments in the file and close the file. This material shows describes to work w ith standard input,
standard output, files and directories.

U N D E R S T A N D IN G STD IN A N D S T D O U T

PERL programs get their input from the standard input and send their output to the standard output. In
PERL programs, files are referenced through identifiers known as filehandles. A filehandle is a pointer to a
location in memory where the file is currently opened. To obtain a valid filehandle, open() has to be used
w ith a filename. To use standard input and standard output a file does not have to be explicitly opened.
Instead, PERL automatically defines and opens STDIN and STDOUT as filehandles for standard input and
standard output, respectively.

By default, STDIN is tied to the keyboard and STDOUT is tied to the VDU. That means when a PERL
program reads from STDIN, it receives its input from the keyboard. Sim ilarly, when PERL sends its output
using print(), the output appears on the VDU.

The <STDIN> Filehandle

<STDIN> is PERL defined filehandle, which points to the Standard Input device for the program.
<STDIN> can be used to read either single lines o f text or multiple lines o f text from standard input.
To read a single line o f text and assign it to a variable:

Syntax: # S c a la r C o n te x t (1 l i n e re a d)
$var = <STDIN>;

where, Svar is the scalar variable.
Example 1: (Refer diagram 17.1)
#!c:/perl/bin/perl.exe -w while (Sline = <STDIN>) {

print "Sline";
last if($line eq "quit\n"); }

When the above program is run, it echoes back each
line o f text that has been typed and exits when quit is
typed in and the Enter key is pressed.

Here, the expression Sline = <STDIN> reads a line from the standard input (keyboard) into the variable
Sline. The printO sends its output to the standard output, which is the VDU.
I f the line read from STDIN is not assigned to a specific variable, then PERL assigns that line to a special
variable called $.

--------------- ---------------------------

;:Ssct\wampp\cgi-bin>perl stdin.pl
Ii? I an Uaishali Shah
lit I an Uaishali Shah

II L ike PERL
|l L ike PERL
juit
juit

;:\sctSwampp\ccfi-bin> .

L l L _______________________I j D ,

Diagram 17.1: The stdin.pl output in
command window

CHAP 17 F I L E H A N D L I N G PAGE 265

Example 2:
#!c:/perl/bin/perl.exe -w while (<STDIN>) {

print }

To read m ultip le lines o f text into an array:
Syntax: # L i s t C o n te x t (m any l i n e s re a d)

@array = <STDIN>;
where, @array is an indexed array to store the lines read. In this case, <STDfN> returns a lis t consisting o f
all the remaining lines from standard input upto the end o f the file.
Example 3:

@lines = <STDIN>;
The <STDOUT> Filehandle

<STDOUT> is a PERL defined filehandle, which points to Standard Output for all PERL programs. This
could be the V D U or at times the printer. <STDOUT> can be used to w rite output from a program.
To send output to STDOUT:
Syntax:

print STDOUT " < W h a te v e r yo u w a n t t o p r i n t > " ;
«Example 4:

print "Good M orning , Jack!\n";or
print STDOUT "Good Morning , Jack!\n";

Using The printf Function

The C programming language includes a function called printf that serves as an all-purpose output
function. PERL also includes a p r in tf function that's similar to its namesake in C. The p r in tf function is
more complex than print. It offers greater control over how the output w ill be formatted.
Consider the fo llow ing printf function:

p r in t f" % - 12s %1 Os % 12s %8s\n", "Item", "Pounds", "Price/lb", "Total";
Output:

I te m P ounds P r i c e / l b T o t a l
This Is How It Works

The first argument o f the prin tf() is a string which describes the format o f the output. In this case, the
format string is:

"%-12s %8s %8s %8s\n"
Each % sign in the format string marks the beginning o f a format specification. prin tf() expects a format
specification for each argument fo llow ing the format string. In this case, there are four specifications:
□ The first format specification (%-12s) is. applied to the first string ("Item"),
□ the second one (%8s) to ("Pounds") and so on.
Each format specification begins w ith a percent sign followed by some optional numbers and a letter. That
letter determines the type o f data being printed. For example, the %- 12s format specification letter s, which
specifies format for strings.
The -12 part says that the string should occupy 12 spaces and the string should be left justified. The minus
sign (-) specifies left justification.

Besides the format specifications, prin tf() prints all the other characters verbatim such as any spaces or text
added in the format string (i.e. the first argument to printf()).
Redirecting STDIN And STDOUT

By using redirection operators (<, >) in the command line STDIN and STDOUT can be bound to files
instead o f the default keyboard and VDU.
Suppose a PERL program prog.pl has been written that reads input from STDIN and prints output to
STDOUT. This program can be run w ith its input being taken from a file named infile and output going to
a file named outfile. The fo llow ing syntax must be used at command line:

<System Prompt> peri prog.pl < i n f i l e > o u t f i l e
The less-than sign (<) is the input redirection operator. The greater-than sign (>) is the output redirection
operator.

U N D E R S T A N D IN G F IL E S A N D D IR E C T O R IE S

Files and directories on a computer are for storing information in an organized manner, just like filing
cabinet. Operating systems such as Linux, Windows N T and so on organize files and directories sim ilar to a
filing cabinet. O f course, in this case the storage medium is not paper, but a device such as a hard disk
drive, floppy disk drive, Pen drive, or a CD-ROM drive. A computer file system has a hierarchical structure
w ith individual files stored in directories. A directory, in turn, may contain other directories.

O P EN IN G A N D C L O S IN G F ILES

Using the open function

PERL provides the op en () function, to open a file in memory.
Syntax:

open(FILEHANDLE, " < f i le n a m e > ") ;
The first argument is an identifier called a filehandle. The second argument is the filename, which may be
a scalar variable or a string in double-quotes.
Example 5:

open(STORAGE, "data.txt");
When a filename such as data.txt is used, the PERL interpreter expects the file to be in the current
directory. However, a path name can always be specified to any directory on the hard disk.
The syntax for the path name would depend on the operating system. For example, to open the file
c:\passwd in W indow:

open(PASSWD, "c:\passwd");
When using the o p e n () function always check whether the open() function succeeded before using other
PERL functions to perform other input/output operations on the file. A common technique is to use the
logical OR (denoted by ||) and combine the open function call w ith a call to the PERL keyword die as
follows:

open(FILEHANDLE, "filenam e") || die "Error opening file !";
I f open() succeeds it returns a value true and the die keyword is never called. When the open() fails, the
die keyword is called and it exits the program w ith the error message being displayed. The same objective
can be achieved by using the unless keyword as follows:

die "Error opening a file !" unless open(FILEHANDLE, "filename");
The program quits w ith an error message unless open() function returns a value true.

. . . C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , r H A p 1 7
P A G E 2 6 6 J A V A S C R I P T , D H T M L A N D P E R L

C H A P 1 7 F IL E H A N D L I N G P A G E 2 6 7

Its not absolutely necessary to quit a program when open() fails. Simply check the return value o f open()
then call and perform some tasks, such as reading from the file , i f the return value is true, as follows: if (open(FILEHANDLE, "filename")) {

Open s u c c e e d e d , p e r f o r m r e a d / w r i t e o p e r a t io n s
C lo s e f i l e

close F ILEH AN D LE;
}

Using The close Function

When the filehandle is no longer needed, the file can be closed by calling the close() function as follows: close FILEH AN D LE;
Example 6:

close STORAGE;
File Open Modes

When a file is opened in a PERL program, the user has to decide what is to be done w ith the file :
□ Read from the file (input)
□ W rite to the file (output)
□ Read from and write to the file (input and output).
Intent can be indicated by the way that the file's name is specified when the file is opened.
Reading From The File

Suppose a PERL program needs to work w ith a file named error-log.txt that presumably contains a log o f
any errors that may have occurred. When the error log needs to be read, the file can be opened w ith open()
as shown below:

Serrfile = "error-log.txt";
open(ERROR_LOG, "Serrfile") || die("Cannot open Serrfile");

The open() function expects an existing file w ith specified filename and it opens that file for reading only.
Afte r opening a file , it can be read as follows:

Sline = <ERROR_LOG>;

Writing To The file

I f an error message is to be written to the error log, the file has to be opened such that it can be written to.
In this case, open() takes the fo llow ing form:

open(ERROR LOG, ">Serrfile") [| die("Cannot open Serrfile");

As it is seen from this example, simply adding a greater-than sign (>) prefix to the filename opens the file
in write mode. When a greater-than sign (>) is used, the open() function creates the file, i f it does not
already exist. I f the file exists, it deletes everything in the file and then writes to the file.

To keep the existing data intact and append new information to a file, two greater-than signs (») are used
as shown below:

open (ERROR_LOG, "» S e rrf ile ") || die ("Cannot open Serrfile");

Reading from and Writing to a File

There are two types o f data files:
□ Text Files: They contain data that is organized into lines o f characters. The characters are printable

characters. For example, W orld Wide Web documents in H T M L and system configuration files in
Windows.

C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S IN G H T M L , г н д р 1 7
J A V A S C R I P T , D H T M L A N D P E R L

□ Binary Files: They contain data that does not have lines ending w ith the newline character, nor does
the data consist o f printable characters. For example, GIF (Graphics Interchange Format) images used
in H TM L documents, spreadsheets and so on.

Reading And Writing Text Files

To read a line o f text from an open file :
Sline = <F ILEH AN D LE>; #Read a line o f text
@lines = <FILEH AN D LE>; #Read multiple lines

where, F ILEH AN D LE is thejilehandle used when the file was opened w ith open().

To write a line o f text to a file, use print() w ith the F ILEH AN D LE as the argument followed by the list o f
scalar variables or quoted strings as follows:

print F ILEH AN D LE "The result is : Sresult, \n";

Reading and Writing Binary Files

Binary files are read and written to in chunks, which are bigger than the typical lines o f text. Each chunk
can typically contain around 80 characters. The functions for binary read are:

The read and sysread functions read a specific number o f bytes from a file.

Syntax:
$bytes_read = read(FILEHANDLE, Sbuffer, Slength, Soffset);
Sbytesread = sysread(FILEHANDLE, Sbuffer, Slength, Soffset);

The syntax used is identical. The arguments and return values have the same meaning:
□ FILEHANDLE is the filehandle o f an open file from which data is read
□ Sbuffer is the string into which the data is read
□ Slength is an integer value that specifies how many bytes o f data are to be read from FILEHANDLE
□ Soffset is an integer values that specifies where in the Sbuffer variable to put the bytes (thus, you can

read into the middle o f a string). The Soffset can be omitted i f the data is to be put at the beginning o f
Sbuffer

□ Sbytes_read w ill be the number o f bytes actually read from FILEHANDLE

Example 7:
$len = read(IMAGE, Sbuf, 8192);

or
Slen = sysread(IMAGE, Sbuf, 8192);

The read operation calls read / sysread function and reads the image data into the Sbuf variable. The Slen
variable holds the actual number o f bytes. The syswrite() function writes a specific number o f bytes to a
file which has a syntax sim ilar to that o f sysread (and read).

Syntax:
$bytes_written = syswrite(FILEHANDLE, Sbuffer, Slength, Soffset);

Thus, this function writes Slength bytes from the string Sbuffer to FILEHANDLE. To begin w riting from a
place other than the beginning o f the Sbuffer string, use the Soffset variable.

Example 8:
Swrite = sysw rite(IM AG E l, Sbuf, Slen);

In this case, the syswrite function writes Slen bytes o f data from Sbuf to STDOUT.

Binary Mode File A ccess In MS-DOS

To set the file access to b ina ry mode call the
binmodeO function as follows:

b inm ode(F lLEH AN D LE);
where F ILE H A N D LE is the filehandle o f the open
file.

The fo llow ing example reads from a file and directs
it to Standard Output.

Example 9: (Refer diagram 17.2)
#!c:/perl/bin/perl.exe -w
unless(open(IMAGE,"javacup.g if')) {

exit; }
binmode IM AG E;
print" Content-type: image\gif\n\n";
while($len=sysread(IMAGE, Sbuf, 8192)) {

syswrite(STDOUT, Sbuf, $len); }
close IM A G E ; , , , _
e x j t . Diagram 1 7 . 2 : The gifread.pl output in

command window
W O R K IN G W ITH D IR E C T O R IE S

Directories are special files that contain information about the other directories and files. PERL provides
several functions to access and use information in a directory

To Open A Directory

Just as filehandle is initialized to open a file, similarly, directory handle is set up to open a directory using
opendir() function.

Syntax:
opendir(D IR H A N D LE, "< d irn a m e > ") || die("Cannot open directory");

In this case, D IR H AN D LE is the directory handle and dimame is the name o f the directory to be opened. I f
the directory is not opened successfully then an error message w ill be displayed.

Example 10:
opendir(NEW DIR, "dept") || die("Cannot open directory");

To C lose A Directory

The close() can be called to close the directory when it is no longer in use.
Syntax:

close(DIRHANDLE);

Example 11:
close(NEW DIR);

Creating a directory

To create a directory call the m k d ir () w ith an argument. It can also include file permissions as can be seen
from the example given below.

C H A P 1 7 F IL E H A N D L I N G P A G E 2 6 9

C:\W INDOW S\system 3 2\cm d.exe

C:\sct\wanpp\cgi-bin>perl g i f r e a d .p i
Content-type: im a g e /g if

BIPB9»C »Vs •" {! iJt+l>I0N : B u i l t w ith an UNREGISTERED copy o f GIF Mouie Gear 2
p ro duc tio n s <h t t p : / /www. gam an i. co n>. *-♦0 «• ,

£xbk<«YnAM'/D̂ iq\ppP̂ fiJ !M[~] fẐ pGad̂ gtYv£:
jtti4f̂ -FQ±>-p̂ RuuH oM1>«~lie03dnrhYU5i:91-r<?TolJiifl/>n':

SttCL0*n§o |-¥ |P± KJe< [1.5pSx~5eU*oP

e q 9 Iira tM o -9 € ± c o /§ !! ¿ a a> » |6 h > iO A ’ in ? T
■ | € tn a< §2' R! !0D C «*X > 0 H T >T [$ OT N^IQUC >J J

li ♦£5f64,,¥licnii8^r

. ni\-\‘-aiiTr/’,-E c>Hvt.wvii30 |—w |i ± HJe<tl :5pSx'̂ eû oPli0j,r>c=
k<**<oD ŷ«--|-e=oEuTL f«*w>T2*. ♦&fiL&>Q7ta§$ur-Ao
N HEiUPttlsnljl+S Tsxle J»>oen||cC|-
CK§X U*nrll^^fi*5DULJiq9nr8tt"o-9'
f; ||ob§Pe§0|!<W:i«6u.|€ t-.a<§2 * R!!0lKDC
|9 ■̂xAiNa/'̂ 11!!£>r'iŵ
UsRSftO J$ -W"o ?m80¥M?s<*-l [«y4=?&-.* a]L#*0a.-2 ! ±/€>utrdC: P-a*
b,,sS»e~n~i!!Aff‘In «iRylini7rinH2>oâ .J&xn8*>dttDN>Sni4J|ffloiTe. [
il&w6TMe-»<£jjLg9i|ee O^D^BIrZosV11!}'10̂ 9 [R3-<̂ aOU ±T
» I b e 6 L̂-»-3-H M InU bRS i; U ? RT ♦ | d TL̂ QU 11 c-»43 e < a*-®: f e J IT ItH
.-0rrCM+Zj|nHilesoR«-U.(Tt!!ZU><<v=*\2hHb:3-<iiiE!Di iiHlH-*b*iyP
I ?SekK-*=a uRu !!/»“£ ~U ^

:-.6oa«sT^ »i2Jj0t*tF6Ni.___
.♦e£l* eHkiiQauQQpCFPieO-Hil-.,...$erP H ♦̂ Q̂ ? b) lqnc tSZ4rr I flAffV«AF6 u n: j«0s n>Pafif' u“aONT

7ajS

j :\sct\wampp\cgi-bin >

http://www.gamani.con

Syntax:
mkdir("<directory name>");

Example 12:
To create a directory named temp that is accessible to all only for reading, but only the valid user can read
& write, call mkdir as follows:

mkdir("temp");

To remove a directory

To remove a directory call the rmdir() with an argument. The rmdir() does not remove the directory i f it
contains any files.

Syntax
rmdir("<directory name>");

Example 13:
rmdir("test");

To Go To The Beginning Of The Directory

Sometimes, one needs to go back to the beginning o f the directory after having read some o f the entries. To
do so, call the rewinddir()
Syntax:rewinddir(DIRHANDLE);
Example 14:

rewinddir (N EW D IR);

Reading the contents of the directory

After the directory is open, its contents can be read by using the readdir(). For example, to read all the
directory entries into an array w ith a single call to the readdir function:

Syntax:@filelist = readdir(DIRHANDLE);
%Example 15:

@deptfiles = readdir(NEW DIR);
where the array @deptfiles contains the directory entries o f the directory NEW DIR.

T ES TIN G F IL E S A N D D IR E C T O R IE S

Sometimes its necessary to check whether a file or directory exists before trying to access it. Even i f a file
exists, a check may be made whether the file can be read, written to or executed. PERL includes a handy
set o f file operators to test files and directories.

To test whether a file named data.txt exists.

This is how the -e operator is used: if (-e "data.txt") {
print "F ile exists. \n "; }

C O M M E R C I A L W E B A P P L I C A T IO N D E V E L O P M E N T U S I N G H T M L , r u A p 17
P A G E 2 7 0 J A V A S C R I P T , D H T M L A N D P E R L C H A P 1 7

A ll the other file and directory test operators have sim ilar syntax. Each operator is denoted by a single letter
w ith a hyphen (-) prefix. To test a f ile or a directory, use the operator w ith an if statement, as follows.

CHAP 17 FILEHANDLING PAGE 271

Syntax:
if(-0 Sname) { # Test succeeded }

where, -0 represents the operator and Sname is the name o f the file or directory.

The following table lists file operators in PERL
Operator Returns
-r $ filename True if file is readable.
-x Sfilename True if file is executable.
-z Sfilename True if file has zero size.
-f Sfilename. True if file is a plain file.

-1 Sfilename
True if file is a symbolic link (applies
to UNIX). A symbolic link is a file
that refers to another file.

-S Sfilename True if file is a socket.

Operator Returns
-w Sfilename True if file is writable.
-e Sfilename True if file is exists.
-s Sfilename True if file has non-zero size.
-d Sfilename True if file is a directory.
-p Sfilename True if file is a named pipe.

-B Sfilename True if file is a binary file (opposite
of-T).

-T Sfilename True if file is a text file.

S E L F R E V I E W Q U E S T I O N S

F IL L IN TH E BLAN KS

1. and__________are used for storing the information in an organized manner.

2. A file is opened in memory using th e__________ function.

3. To open a file in output mode________prefix is used.

4. The two types o f data files are_________ and__________.

5. T he_________ and________ functions read a specific number o f bytes from a file.

6. function is used to create the directory.

7. function is used to open the directory.

8. After the directory is open it can be read by using th e_________ function.

9. To test whether the file exists or not_____ operator is used.

TR U E O R FA LSE

10. To close the file, the following command must be given: close(FILEHANDLE).

11. Binary files contain data that do not have lines ending with newline character, nor does the data consist
o f printable characters.

12. To remove the directory remdir() function is used.

13. To read the directory' back from the beginning call the rewinddir(DIRHANDLE) function.

H A N D S O N E X E R C I S E S

1. Write a PERL program to open the file test-filel.txt. If the file is opened successfully then print the
message ("You are Successful in opening file") otherwise show an error message("cannot find file") if
the file is not found.

2. Write a PERL program to write to the text file opened above. The tetft is "This is good progress".
3. Write a PERL program to create a file test-file2.txt. Write and append to it accepting input from the

user.
4. Write a PERL program to create a directory called "Student Dir".

1 8 . R E G U L A R E X P R E S S I O N S

Many programming tasks involve processing text data. For example, locating lines that contain a specific
text pattern, replacing one string with another, and so on. Regular expression is a term for a text pattern.

It is a sequence of characters that use concise syntax to describe a large number o f fixed patterns. For
example, A.E indicates any 3-character sequence that begins with A and ends with E. Thus, A.E matches
ACE, AcE, APE and ALE. A word processing search-and-replace operation is analogous to pattern
matching.

L E A R N IN G B A S I C R E G U L A R E X P R E S S I O N S

U n d e r s ta n d in g T h e B a s i c F o rm O f A R e g u la r E x p r e s s io n

A pattern is a sequence o f characters such as s i o n. The exact sequence o f characters is all that is needed
to find a fixed pattern. Often, however, there is need to specify a set o f patterns, such as all words ending
with the character sequence o f s i o n.

A Regular expression enables describing such pattern sets in concise manner. Special characters (such as *
. and \) are used to extend the meaning of a pattern. These characters are also called Meta-characters
because they modify the meaning of other characters.

To define a pattern that matches words ending with s i o n, the following components have to be
concatenated:
□ The \b sequence that matches beginning of a word
□ The \w sequence that denotes any word character (in PERL, a word character is any alphanumeric character

and the underscore)
□ A (*) to specify that the pattern has one or more word characters
□ The sequence s i o n , which must be matched exactly
□ Another \b sequence that matches the end o f a word (\b matches any word boundary - both the beginning

and the end of a word)

Thus \b\w*sion\b is the regular expression that represents all words that end with the sequence s i o n. To
use the regular expression, one must enclose the regular expression inside a pair o f slashes. A regular
expression is used as follows:

Ab\w*sion\b/

As can be seen from the above example, a typical regular expression has three types o f elements:
□ Anchors that specify the location of the pattern in a line of text. e.g. the caret (A) is an anchor that matches

the beginning of a line
□ Character sets that match one or more characters e.g. The is a character set that matches the exact sequence

of characters T, h and e
□ Modifiers that specify how many times the preceding character (or character sets) are repeated e.g. the

asterisk (*) is a modifier that indicates that the preceding character should be repeated zero or more times

A n c h o r in g P a t t e r n s

M atch ing T h e S ta r t A nd E nd O f A L ine

The caret (A) is the starting anchor and the dollar sign ($) is the end anchor.

CHAP 18 REGULAR EXPRESSIONS PAGE 273

A regular expression, such as AThe, matches any line that begins with the sequence The.
Therefore AThe matches any o f the following lines:

The book you want is Using Open Source Products On Windows.
Then you should buy the book.
Therefore, I recommend Using Open Source Products On Windows.

It matches because all the three lines have the first three characters = The.
On, the other hand, if one wants to search for Using Open Source Products On Windows, at the end o f a
line. It takes the following form:

/ V'Using Open Source Products On Windows \ A" $ /
In this case,
□ The first and the last slashes are the delimiters for the pattern match
□ The dollar sign ($) at the end anchors the pattern to the end of a line
□ The rest of the pattern is simply the text pattern. It looks complicated because backslashes are added in

front of characters that have special meaning. This is why the period and the double quote are preceded by
backslashes

fio te

. The A and $ act as anchors only when they occur at the proper end of a regular expression, i.e. A is an
anchor only if it is the first character of a regular expression. Similarly, $ is an anchor marking the
end of a line only when it is the last character of the expression.

If the A or $ appear elsewhere in the regular expression, these characters have the same meanings as
when they appear in a double-quoted string. Thus, the $ is treated as a prefix for a scalar variable's
name and A means a control character (viz. Aa is Ctrl+A, and so on).

*7 /^2 ,, —

I § 'j If the characters A and $ must be matched without interpreting then in any special way (even when
V they occur at the proper ends o f a pattern), add a backslash (\) prefix to the characters. Thus to match

A, use \A and to match a $ use \$.

M a tc h in g A W o rd B o u n d a ry

In, addition to anchoring patterns at the end of a line, one can specify patterns that begin at a word
boundary i.e. at the beginning or end o f a word. In PERL, word boundaries have the following meaning:
□ A word begins when a word character occurs. In PERL, a word character is any alphanumeric character or

an underscore
□ A word ends when a non-word character appears following the word. A non-word character is anything but

an alphanumeric character or an underscore

Thus, to look for the word able (but not words such as capable and reliable) the following expression can
be used.

/ \b able \b /

U sin g C h a r a c t e r S e t s In R e g u la r E x p r e s s io n s

The simplest character set is a single character. For example, the regular expression /The/ contains three
character sets, T, h and e. This pattern will match any occurrence o f these three characters in a line o f text.
Thus, it matches lines containing the words, The, There and Therefore. To limit the match to the word The,
add the word boundary anchor (\b) in the following manner:

AbThe\b/

PAGE 274
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 18

S p e c ify in g A R a n g e O f C h a r a c t e r s

In addition, to single characters, meta-characters can be used to specify a more complex character set. One
such character set is a range o f characters, such as the set o f all lowercase letter, from a to z. Indicate this as
follows:
□ Place a hyphen between the first and the last characters to write the range. Thus lowercase letters become

a-z. 1
□ Place this range of characters inside a pair of square brackets. Thus the character set of lowercase letters is

[a-z|.

To match any letter regardless o f case, simply concatenate the two character ranges in square brackets as
follows:

|a-zA-Z]

Another range o f characters is [0-9], which denotes a single digit.

Inside, the square brackets, ranges o f characters can be intermixed with explicit characters.

For example, PERL's word characters belong to the set [A-Za-z0-9_|, which means a letter, a digit or an
underscore.

The following are some examples o f regular expressions that use character sets.
Regular Expression Matches
/а-zA-Z/ Any letter
/biaeioulg/ Any o f the sequences bag, beg, big, bog and bug
/[A-Z] [A-Z]/ Any two uppercase letters next to each other
/[a-z]*/ Zero or more lowercase letters
/[567]/ One of the numbers 5,6 or 7

E x c lu d in g S o m e C h a r a c t e r s

So far, character sets have been specified with characters to be matched. Character sets that exclude certain
characters can also be defined. All characters will be matched except those inside the square brackets by
putting a caret (A) as the first character after the left bracket. For example, to match any character other
than a digit, one can use the following regular expression:

/|A0-9|/

Thus, to pick out lines o f text that do not contain any digits, use this pattern:
/A|A0-9|*$/

Here, the first caret (A) matches the beginning of the line. Then, [A0-9]* matches zero or more non-numeric
characters. Finally, the dollar sign ($) matches the end o f a line. The net effect is that the pattern matches
any line that does not contain a digit.

The caret (A) has a different meaning when it appears as the first character inside a square bracket,
as opposed to when it appears as the first character of a regular expression.

Atote

One can use the dot or the period (.), to match any single character. For example, a pattern such as /A ./
matches A followed by any character.

M a t c h i n g A n y C h a r a c t e r

CHAP 18 REGULAR EXPRESSIONS PAGE 275

After anchors and character sets in regular expressions, the third type o f element is the modifier. The
asterisk (*) is a modifier that means zero or more copies o f the preceding characters. For example to match
zero or more occurrences o f the letter x the regular expression is as follows: l* l

Similarly, to match one or more occurrences o f a character set there is a modifier the plus sign (+). For
example to match one or more digits the regular expression is as follows:

/[0-9]+/

M a tc h in g A S p e c i f i c N u m b e r O f C h a r a c t e r S e t s

Sometimes specific number o f characters needs to be matched. For example, to match a pin code in India
exactly six digits must be matched. The * modifier cannot be used since it cannot specify a maximum
number o f characters. In this case, use another special pattern that allows the specification o f the minimum
and maximum number o f characters to match. To do this, the pattern takes the form o f two comma
separated numbers enclosed in curly braces. For example, to match at least five and at most nine digits, the
expression is as follows:

Ab[0-9|{5,9}\b/
The {5,9} sequence means that the digit must occur at least 5 times but no more than 9 times.

Match exactly 5 digits in the following manner:
/[0-9] {5}/

M a tc h in g O n e F ix e d S e q u e n c e O r A n o th e r

Sometimes, one o f several fixed text sequences may have to be matched, To do this simply list the text
sequences separated by vertical bars (|). The following regular expression matches any of the U.S. state
abbreviations MA, MD, VA or CA:

/MA|MD|VA|CA/

M a tc h in g S p e c ia l C h a r a c t e r s

In addition to matching specific characters and character sets, special characters such as tab or whitespace
may have to be matched. PERL considers space, tab, newline, carriage return and form feed whitespace
characters.

Following is the list o f backslashed letters with special meaning in regular expressions

R e p e a t i n g A C h a r a c t e r S e t

Character Meaning
\d Any digit
\t Tab
\e Escape
\w Word character
\s A white space character (space, tab,

newline, carriage return or form feed)

Character Meaning
\D Anything other than a digit
\f Form feed
\cX Ctrl+X, where X is any character
\w Anything but a word character
\S Anything but a white space character

Example 1: (Refer diagram 18.1)
To find the number o f times the word PERL exists in a
file then prints this as output. First create a text file
with the word PERL mentioned in it a couple of times.

#!c:/perl/bin/perl.exe -w
unless(open(passwd 1,"PERLwd.txt")) {

print"Cannot open file \n"; }
while(($line=<passwdl>)) {

@users=split(" ",$line); }

C:\WINDOWS\system32\cmtf.exe 5 3 3

' “ II C : \ s c t \ w a n > p p \ c g i - b i n > p e r l t im e s . p i
P E R L i s a g r e a t la n g u a g e P ER L i s a g r e a t la n g u a
u a g e N o . o f t i n e s t h e w o r d P ER L o c c u r s i s 5

C : N s c t \ w a m p p \ c g i - b i n >

,zl

Diagram 18.1: The times.pl output in
command window

print "@users";
$cnt=0;
for($x=0; $x<=$#users; $x++) {

if(($users[$x] eq "PERL") || ($users[$x] eq "PERL ") || ($users[$x] eq "PERL.")) {
$cnt=$cnt+1; }

}

print "No. o f times the word PERL occurs is $cnt\n";

F in d in g L in e s T h a t D o N ot M a tc h

To print lines that do not contain a pattern, all that is required is to add the logical NOT operator (denoted by !)
as follows:

w h ile (< >) {

print if !/[Jj]ava/; }
J

T h e w h ile (<>) F ile -P r o c e s s in g C o d e

The simple syntax for processing your command-line variables as a file list is: W h ile (o)

This code opens, reads, and closes files. It works like this:
□ The @ARGV array is shifted one element at a time into the $ARGV variable
□ The $ARGV variable is used to open the file handle ARGV
□ Each line of the file associated with ARGV is read, one line at a time, into the special variable $_
□ When the entire file has been read, the ARGV file handle is closed and the first step is repeated.

M A T C H IN G P A T T E R N S IN A N Y S T R IN G

When a regular expression is placed inside a pair o f forward slashes (/ . . ./) , PERL matches the pattern
with the current contents o f the special variable $_. Sometimes however, a match has to looked for in
another string variable. For this PERL provides the pattern binding operators =~ and !~

Example 2:
To look for a match, write the following:

if (Sstring =~ /regex/) {
print" Valid Id \n"; # P a t t e r n m atch }

where regex is the regular expression for the pattern and Sstring is the variable in which PERL should look
for the match of the pattern

Similarly, a variable can be checked whether it does not match a pattern, use the !~ operator, as follows:
if($string !~ /regex/) {

print " Invalid id \n"; # No p a t t e r n match }

M o d ify in g T h e P a tte r n -M a tc h in g C rite r ia

M aking T h e P a tte rn M atch C a s e - In s e n s it iv e

Often, a string maybe searched for without regard to case. This can be done by appending the i modifier to
the pattern as follows;

Ab image \b/i

This pattern will match all variations o f the word image e.g image, IMAGE or even iMaGe.

F ind ing All O c c u r r e n c e s O f A P a tte rn

r,A/-i= , 7C COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, rHAp 1R
PAGE 276 JAVASCRIPT, DHTML AND PERL CHAP 18

Just as by appending i to make a pattern match makes it case-insensitive, a pattern match can be made
global i.e. the match finds all occurrences, by appending a g to the pattern matching expression.

CHAP 18 REGULAR EXPRESSIONS PAGE 277

Thus to match all occurrences o f the word Java or java the expression is as follows:
/ \b[J j |ava\b /g

Haie.

To count all the matches in each line, one can use the global pattern matching expression occurrences
Ab[Jj]ava\b/g in a list context. Simply assign the pattern to an array variable as follows:

@matches = / \b[Jj]ava\b /g;

Then the array @matches will contain all substrings matched by the pattern. To count the
occurrences, all that is to be done is to add to Scount the number of items in @matches as follows:

Scount += @matches;

R e p la c in g A P a tte rn

Sometimes, after searching for a pattern, it must be replaced with a different string. PERL provides a
pattern substitution operator that performs this task.

R e fe rr in g T o A P re v io u s M atch

Sometimes, when substituting a pattern, there is a need to refer to the exact substring that had just matched a
pattern specified. This need arises specifically when writing PERL programs to handle form input on the Web.
When the PERL program receives information, many special characters are provided in an encoded form. For
example, a tilde ~ appears as %7e and a space is encoded as %20. Each special character is replaced with a
percent sign (%) followed by a two digit hexadecimal number representing the ASCII for that symbol.

The PERL program has to locate each occurrence of % followed by a two digit hexadecimal digits and replace
those three characters with a single character whose ASCII code matches the hexadecimal digits. Given the
hexadecimal digits, the character can be found by
using packQ, This is done as foliows: •

Example 3: (Refer diagram 18.2)
#!c:/perl/bin/perl.exe -w
Shexdigits = "7e";
$char = pack("c", hex(Shexdigits));
print "ASCII code Shexdigits correspond to $char\n";

To find two hexadecimal digits that follow the % and
use them in the argument of pack(). Do the following:

s/% (. .)/pack("c", h e x ($ l))/ g e ;

As can be seen the pattern to match is written as. % (..), which means % followed by two digits. Because this
pattern is in parenthesis, after a match one can refer to the two digits with the special variable $1. Then the
substitution string uses the pack function within which $1 appears.

S E L F R E V IE W Q U E S T I O N S

F IL L IN TH E BLANKS

1. A ____________________________is used to match a sequence o f characters.

2. The three types o f elements o f a regular expression are________, ___________ and____________ .

C:\WIN DOWS\sy stem 3 2\cmd.exe □ x

: : V s c t\ w a m p p \ c g f i - b i n > p e r 1 p a c k . p i
iS C I I c o d e 7 e c o r r e s p o n d t o ~

Î : \ s c t \ w a m p p \ c g i - b i n >

Diagram 18.2: The pack.pl output in
command window

3. The____symbol matches the start of a line.

4. The___ character is added before characters that have special meaning.

5. To match one or more occurrences o f a character set th e___ modifier is used.

6. To match a list of fixed text sequences, they must be separated by a __symbol.

7. The logical NOT operator is represented by th e___ symbol.

8. is known as the pattern-binding operator.

9. The___ character matches any single character.

TRUE OR FALSE

10. To match the characters A and $ one must add the 7" prefix to these characters.

11. To make a global substitution one must append a "g" to the pattern.

12. The "\w" character means any white space character.

13. The "*" modifier means one or more copies o f the preceding characters.

14. "\b" is known as a word boundary.

H A N D S O N E X E R C I S E S

1. Write a program, which will take in a string and check for the pattern ‘Hello’ . I f found display an
appropriate message for Uppercase, Lowercase or Proper case and also an appropriate message when
match not found.

2. Define a variable containing a string. Match the pattern, print a message when there is a:
□ Case sensitive match
□ Case insensitive match

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, ruAO
PAGE 278 JAVASCRIPT, DHTML AND PERL CHAP 18

1 9 . C R E A T I N G S T R U C T U R E D P R O G R A M S

P A C K IN G C O D E IN S U B R O U T I N E S

W h a t A re S u b r o u t in e s ?

A subroutine is a block o f PERL statements with a name. A subroutine groups together PERL statements
to perform a specific task. That task can then be performed anywhere in a PERL program by invoking the
subroutine by its name.

C r e a t in g A S im p le S u b r o u t in e

The structure o f a subroutine is simple. The sub keyword has to be used to define a subroutine. The name
o f the subroutine comes after the sub. The body o f the subroutine is a block o f PERL statements enclosed
in curly braces ({ . . . }) .

<*■

Syntax:
sub < su b ro u t in e _n am e > {

. . . b l o c k of s t a t e m e n t s . . . ; }

For example, the following is a subroutine that prints a message:
sub message { print "Hello, there. \n"; }

In v o k in g A S im p le S u b r o u t in e

To invoke the message subroutine, the subroutine's name has to be written with an ampersand (&) prefixed
to it.

¿¿message;

This causes the subroutine's statement block to execute, and the resultant output is:
Hello, t h e r e .

P A S S I N G A R G U M E N T S T O S U B R O U T I N E S

S u b r o u t in e A r g u m e n ts

When a subroutine is invoked, a list of values can be placed inside the parentheses following the
subroutine's name. These are the subroutine's arguments.

Most subroutines accept arguments and produce a result based on the argument provided. In most
programming languages, the syntax for subroutine definition requires the specification o f arguments that a
subroutine accepts. In PERL, the arguments are not defined in the subroutine. Instead, PERL passes
arguments to a special array variable named @ _.

For example, call the message subroutine as follows:
&message ("Ivan", "Bayross");

The result is still the same "Hello, there." because the message subroutine is not written to handle
arguments.

PAGE 280
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 19

When a subroutine is called with an argument list, PERL places this list in a special array named Thus,
arguments can be handled in a subroutine by accessing and using the contents o f the @ _ array. To use the

array, the message subroutine must be re-written as follows:
sub message { print "Hello, there, @_.\n"; }

The print statement now includes the @_array as a parameter and the resulting output will be the
following:

Hello, t h e r e . Ivan Bayross .

In itia liz in g V a r ia b le s F ro m A r g u m e n ts

Instead of working with the elements of the @ _ array, it's more readable if variables can be defined with
meaningful names and initialized from an argument, then used in a subroutine. Suppose a subroutine
expects a single argument a scalar variable with the web server's name. A variable can then be declared and
initialized from the @ _ array as follows:

my(Shostname) = H i C:\WINDOWS\system32\cmd.exe

This initializes the Shostname variable with the first
element in the array @ _ .

Example 1: (Refer diagram 19.1)
#!c:/perl/bin/perl.exe -w
sub MakeLink {

С : 4 s с t S w a m p p N c g i - b i n > p e r 1 c a l l f u n c . p l

< a h r e f = h t t p : / / w u w . i u a n b a y r o s s . c o n / " > H o n e < / a >

С : S s c t \ w a m p p 4 c g i - b i n >

«I I

Expects hostname of s e r v e r
my($hostname) =
print "Home\n";

Diagram 19.1: The callfunc.pl output
command window

in
#

}

Sample c a l l
M akeLink ("www.ivanbayross.com");

If the subroutine expects several scalar values, they can be initialized in a similar manner. Suppose a
subroutine is written that expects two arguments, a last name and an identifier, the variables might then be
declared and initialized as follows:

my(Slastname, Sid) =

D e c la r in g L o c a l V a r ia b le s

As variables are global in PERL, whatever is done to a variable inside a subroutine affects the variable with
the same name anywhere else in the program. To prevent this, a local variable should be used inside a
subroutine.

As illustrated in the above example, my() enables the declaration o f variable names local to the subroutine.
Such local variables can be used inside the subroutine without worrying whether the name conflicts with
other variables already in use outside the subroutine with the same name.

PERL had one way to declare a local variable i.e. using localO as shown below:
local($arg);

The net effect o f local() is the same as my(). The Sarg variable becomes local to the subroutine, and
anything done to the variable inside the subroutine does not affect any variable named Sarg that exists
outside the subroutine.

http://wuw.iuanbayross.con/%22%3eHone%3c/a
http://$hostnameA%22%3eHome%3c/A%3e/n
http://www.ivanbayross.com

CHAP 19 CREATING STRUCTURED PROGRAMS PAGE 281

U n d e r s ta n d in g A rg u m e n t P a s s in g

PERL passes arguments to a special array. PERL subroutines can by design, accept any number of
arguments. It's up to the subroutine to use these arguments appropriately. For example, if a subroutine does
not expect arguments, it simply ignores any argument one provides when the subroutine is called. One
should know what a subroutine does and what arguments it expects before one calls it in the program.

Example 2: (Refer diagram 19.2)
#!c:/perl/bin/perl.exe -w
sub printarg {
Declare a v a r i a b l e l o c a l t o the
subroutine using m y fu n ct io n

my ($arg);
i f (@ _> {

print "Here are the arguments:\n";
foreach $arg (@ _) {

print "$arg\n"; }
}

else {
print "No arguments'^"; }

print"__________ \n";
}

C a l l the subrout ine with v ar io u s
&printarg;
&printarg(l, 2, 3);
&printarg("Chhaya", "Hansel", "Mamta", "Sharaman");
I f the subroutine i s def in ed above,
the subroutine can be c a l l without the &
printarg "price", 24.99;
printarg 100,200, 300;

In above example, the printarg subroutine prints the contents o f the array that contains the arguments
passed to the subroutine.

M o d ify in g T h e A r g u m e n t V a lu e

If the @_array is directly manipulated inside the subroutine, any changes made to the values in do
affect the arguments passed during the subroutine call. Sometimes this may be a desirable way to
implement a subroutine. An example might be a subroutine that converts its arguments into lowercase. The
conversion is performed in-place, which means, the subroutine makes the change directly in the @_array.

Example 3: (Refer diagram 19.3)
The M akeLC subroutine in the following program
demonstrates how this can be done:
#!c:/perl/bin/perl.exe -w
sub MakeLC {

foreach (@ _) {
Converts $_ i n t o lowercase

tr/A-Z/a-z/; }

} ,
Sstring = "I WANT THIS IN LOWERCASE!";

C : \ s c t \ w a m p p \ c g i - b i n > p e r l m a k e l c . p l “
i w a n t t h i s i n lo w e r c a s e ?

G : \ s c t \ w a in p p S c g i- b in > _

<1 I A
Diagram 19.3: The makelc.pl output in

command window

[c - C : \W IN D O W S \s y s te m 3 2 \c n id .e x e

C : \ s c t \ w a n p p \ c g i - b i n > p e r l p r i n t a r g u n e n t s . p i
N o a r g u m e n t s
■ le re a r c t h e a r g u m e n t s -
1
2
3
H e r e a r e t h e a r g u m e n t s s
C h h a y a
H a n s e 1
f i a n t a
S h a r a m a n

H e r e a r e t h e a r g u m e n t s :
p r i c e24.99
H e r e a r e t h e a r g u m e n t s :
100
200
3 0 0

C : \ s c t \ w a m p p \ c g i ~ b i n >

± 1___________________ I

Diagram 19.2: The printarguments.pl output in
command window

arguments

пдлг оя, COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, _ uAD „Q
JAVASCRIPT, DHTML AND PERL CHAP 19

&MakeLC($string);
print "$string\n";

The M akeLC subroutine modifies the argument that
was passed to it.

С : \ s c t 4 w a n p p S c g i - b i n > p e r 1 l c . p l
c h a n g e t h i s t o l o w e r c a s e ?

jC : \ sct\ w aiT ipp\ cgi—b i n >

Diagram 19.4: The lc.pl output in
command window

Example 4: (Refer diagram 19.4)
Using a special type o f local variable called
typeglob with the M akeL C N ew subroutine.
#!c:/perl/bin/perl.exe -w
sub M akeLCNew {
Use a s p e c i a l form of l o c a l v a r i a b l e c a l l e d " typeglob"

local(*input) =
$input =~ tr/A-Z/a-z/;

}

$newstring = "CHANGE THIS TO LOW ERCASE!";
&MakeLC_New(*newstring);
print '£newstring\n";

The revised subroutine MakeLC_New converts its argument to lowercase. This version, however, has the
following key differences from the preceding subroutine, which directly manipulated the @ _ array.
□ The local variable is declared with a * prefix, as: local (*input) = ;

This variable is known as a typeglob and it works only with locaI(). The net effect of the typeglob is that
this local variable matches whatever actual variables are passed in an argument, be it a scalar, an index array
or an associative array.

□ Inside the subroutine, the local variables have to be used in its expected form. Thus, if the subroutine
expects a scalar variable typeglob *input is used, it has to be referred to with the symbol Sinput.

□ When the subroutine is called, pass the argument in typeglob form. Replace the letter at the beginning of the
variable name (such as $, @ , or %) with an asterisk (*), like: & MakeLC_New(*newstring);
Here, Snewstring is the variable actually passed to the subroutine.

When any subroutine call is seen with arguments that have an asterisk prefix, it means the subroutine
directly modifies the argument that's being passed.

P a s s in g A F ile h a n d le T o A S u b r o u t in e

Another interesting use for the typeglob variable format is to pass a filehandle to a subroutine. In fact
filehandles cannot be passed to PERL subroutines without using this special approach, because PERL
treats filehandles differently from other variables.

C : 4 s c t \ u a m p p S c g i- b in > p e r l f l h n d l e . p i
¿ENTER in p u t :U A I S H A L I
liou e n t e r e d = U filS H ftL I

C :\ s c t \ w a m p p \ c g i- b in >

< I I

Suppose a filehandle needs to be passed to a
subroutine, which will read from the file (or write
to it). Here is a very simple program that passes the
STDIN filehandle to a subroutine, and the
subroutine reads a line from its filehandle
argument:

Example 5: (Refer diagram 19.5)
#!c:/perl/bin/perl.exe -w
sub readline {
Use typeglob t o g e t the f i l e h a n d l e , where $ _ [0] i s
the f i r s t element of the @_array t h a t co n ta in s the

local(*FHANDLE) = $_[0];
local $line;

j J À

Diagram 19.5: The flhndle.pl output in
command window

simply
arguments

CHAP 19 CREATING STRUCTURED PROGRAMS PAGE 283

Read a l i n e from the f i l e h a n d l e assuming i t d o n ' t have any
s p e c i a l c h a r a c t e r s such as $ or @ as p r e f i x

Sline = <FHANDLE>;
} *
print "ENTER input:";
Sline = &readIine(*STDIN);
print "You entered = Sline";

Note the * p r e f i x

The key features o f the readline subroutine and how it's used:
□ The local filehandle is declared as a typeglob consisting of an asterisk followed by the name:

Iocal(*FHANDLE) = SJO];
□ To use the filehandle in the subroutine, use the plain name without any special character prefix, as follows:

Sline = <FHANDLE>;
□ In the subroutine call, pass the filehandle argument with an asterisk prefix. Thus, to pass STDIN to the

subroutine, write:
Sline = readline(*STDIN);

This program also returns a value by placing the return value as the last expression in the subroutine's body. The
next section covers the subject o f returning values from subroutines.

In the following example, the subroutine conic converts the contents of a text file from Uppercase to Lowercase.
A text file (passwordl.txt) is created with contents in Uppercase and then passed to the subroutine for
conversion.

Example 6: (Refer diagram 19.6)
#!c:/perl/bin/perl.exe -w
sub readline {

local (*FHND)=S_[0];
local Sline;
Sline=<FHND>;

y

C : S s c t \ w a m p p S c g i - b i n > p e r l f l c n u r t . p l

T h e t e x t b e f o r e c o n v e r s i o n t o l o w e r c a s e i s :

U f t l S H A L I I S T E S T IN G T H I S P R O G R A M U S I N G P E R L

T h e t e x t o n c o n v e r s i o n t o l o w e r c a s e i s :

u a i s h a l i i s t e s t i n g t h i s p r o g r a m u s i n g p e r i

C : \ s c t \ w a m p p S c g i - b i n >

. d

i f

Diagram 19.6: The flcnvrt.pl output in
command window

sub conic {
foreach (@ _) {

tr/A-Z/a-z/; . }
}

unless (open(FILE,"password.txt")) {
exit; }

Sstring= &readline(*FILE);
print "The text before conversion to lowercase is :\n Sstring\n";
&conlc(Sstring);
print "The text on conversion to lowercase is :\n SstringVn";

R e tu rn in g V a lu e s F ro m S u b r o u t in e s

PERL has a simple scheme for returning values from a subroutine. PERL returns the value o f the last expression
in the subroutine. To explicitly return a value from a PERL subroutine the returnQ function can be used.

R e tu rn in g T h e L a s t E x p r e s s io n

PERL subroutines return values by making the last expression in the subroutine as a return value.

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, rulÄD
PAGE 284 JAVASCRIPT, DHTML AND PERL CHAP 19

Example 7: (Refer diagram 19.7)

#!c:/perl/bin/perl.exe -w
sub doubleit {
Returns 2 times the argument

my ($x) = $_[0];
$x *= 2;

}

$y = doubleit (2);
print "Result = $y\n";

The last line in doubleit() simply computes the value.
This becomes the return value o f the subroutine.

U sin g T h e R e tu rn F u n c t io n

PERL includes a built-in function called return() that explicitly returns a value from any subroutine.
Program code in C, C++, or Java uses the return() statement extensively.

Syntax:
return(EXPRESSlON);

where, EXPRESSION is a PERL expression containing the value to be returned. As in all PERL function
calls, the parentheses are optional.

Example 8:
#!c:/perl/bin/perl.exe -w
sub doubleit {

my ($x) = $ [0];
Sx *=2;
return ($x); # Return the r e s u l t

}

L I B R A R I E S

A library is nothing but a collection o f subroutines, each responsible for performing tasks. The work that
has to be done by these tasks is packaged into the subroutines code, which is then stored in a file. When
required, those subroutines can be used in any PERL program by referring to the file where the subroutines
are stored within the PERL program. This encourages (re-useable) modular programming.

C re a tin g P E R L L ib r a r ie s

To create a library in PERL there are simple guidelines to follow. Assume that a date is required formatted
in a specific manner. A get_date() will return the date as a string in the required format. This subroutine
can then be stored in a library to be called in any PERL program that may need the date and time in the
format specified. For which, simply call the require function with the library filename as an argument.
Following is the method to write the subroutine and then save it in a PERL Library named date.pl:
F i l e : d a t e . p l
Return c u r r e n t d a ta and time as a s t r i n g . Uses the l o c a l t i m e funct io n
Usage: r e q u i r e " d a t e . p l " ;
#!c:/perl/bin/perl.exe -w
sub get date {

local ($mday, $mon, $year, $wday) = (localtime)[3,4,5,6];
local $day = (Sun, Mon, Tue, Wed, Thu, Fri, Sat)[$wday];
local Smonth = (Jan, Feb, Mar, Apr, May, June, Jul, Aug, Sept, Oct, Nov, Dec)[$mon];

ST C :\W IN D O W S\system 32 \cm d.exe - D lx j

1 3C:\sct\wanpp\cgi-bin>perl r e s u lt .p i
Result = 4
С: \s с t\uanppScg i —bin >

Diagram 19.7: The result.pl output in .
command window

CHAP 19 CREATING STRUCTURED PROGRAMS PAGE 285

$year+= 1900; #, l o c a l t i m e s u b t r a c t s 1900 from the year
$day, Smonth, $mday, Syear;

}

1; # E n d t h e f i l e w i t h a 1 a s t h e l a s t e x p r e s s i o n

H o t e .

The only key point is that 1 must be included as the last expression in the subroutine file. The file can
have more than one subroutine and may include other variables. Just place all the subroutine
definitions one after another and make sure a 1 is at the very end of the file. The PERL interpreter
uses the value of the last expression in the file as an indicator o f success or failure. By making 1 the
last expression, indicates that the subroutines in the file were successfully included.

C G I P R O G R A M M IN G W IT H T H E C G I - L I B .P L L I B R A R Y

Each CGI program is designed to handle information submitted by a user, by filling in a form. All form
based data returned by a Web browser requires similar processing at the Web server to extract the fields
and their values returned. To do this, a common set o f subroutines can be used at the Web server. Since
PERL is a popular programming environment, there is already a PERL library that does just this, called cgi-
lib.pl created by Steven Brenner.

* 7 ^ 2 . — - ------- —

f' 11 'I Just as PERL is the accepted programming language, for CGI programs, cgi-lib.pl is the accepted
v library for parsing the CGI query string that the Web browser sends to the Web server. By using

the cgi-lib.pl library, PERL programs can be quickly created to handle HTML based form input.

O b ta in in g c g i- l ib .p l

The latest version of cgi-lib.pl can be downloaded from the official cgi-lib.pl homepage at the following
URL:

http: //www.bio.cam.ac.uk/cgi-lib/

Since cgi-lib.pl is a library o f PERL subroutines in a text file, there is nothing much to install. All that
needs to be done is to download the latest version of the file cgi-lib.pl and place it in the /cgi-bin/
directory o f the Web server.

T h e c g i- l ib .p l In c lu d e s T h e F o llo w in g P E R L S u b r o u t in e s

Name Description
ReadParse Reads and parses the CGI query for both GET and POST methods. Places parsed result in

associative array that you provide as an argument. Returns TRUE if there is a query,
otherwise, returns FALSE.

PrintHeader Prints the MIME header (Content-type:text/html) with an extra blank line indicating
end-of-header

HtmlTop Prints the top o f the HTML document, including a title that you provide as argument
HtmlBot Prints the bottom of the HTML document with the ending </BODY> and </HTML> tags.
MethGet Returns true if the CGI query came as a GET request
MethPost Returns true if the CGI query came as a POST request
MyURL Returns a complete HTTP URL for your script (such as:

http://www.someplace.com:8000/cgi-bin/dbquery.pl)

http://www.bio.cam.ac.uk/cgi-lib/
http://www.someplace.com:8000/cgi-bin/dbquery.pl

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, гыдв , Q
PAGE 286 JAVASCRIPT, DHTML AND PERL

Name Description
CgiError Prints an HTML document with an error message. If you provide an array of strings as an

argument, the first string is used as a title and the rest are displayed in the body of the
HTML document. If you do not provide any arguments, a generic error message is used as
the body o f the HTML document.

CgiDie Calls CgiError and then the script quits with a call to the die function
PrintVariables Prints the variables in the associative array that are passed as arguments (use this subroutine

to print the fields and their values).

U s in g c g i- l ib .p l

It's straightforward to use subroutines from the cgi-lib.pl library. The general sequence o f subroutine calls
is as follows:
1. Call the ReadParse() subroutine to process the CGI query.
2. If ReadParse() returns TRUE, process the user information returned by a Web browser is now available in

an associative array.
3. Output the desired HTML document by calling PrintHeader, HtmlTop, and HtmlBot.
4. Call CgiDie or CgiError to report any error conditions through an HTML page.

IM P L E M E N T IN G A F E E D B A C K F O R M

A common use o f CGI programming is to solicit and
accept feedback from users about the functionality o f
the website. The next few sections present a simple
CGI program to handle user data, collected via a
feedback form, served by the Web server to the user’s
Web browser. Once the form reaches the users Web
browser the users fills in the form and submits it back
to the Web server from where it came to be
processed.

feedback.cgi is a PERL program that illustrates the
use of the cgi-lib.pl library and cookies.

D e s ig n in g T h e F e e d b a c k F o r m

The first step is to create an HTML form through
which a user can submit comments. The HTML
source for the form could be as follows: (Refer diagram
<HTML>

<HEAD><TITLE>User Feedback Form</TITLE></HEAD>
<BODY BGColor="#FFFFFF" Text="#000000">

<H2>Thank You For Your Time </H2>
<FORM Action="/cgi-bin/feedback.cgi" Method="POST">
<P>Comments:<DL><DD>

<TEXTAREA Name="Comments'' Rows="5" Cols="42"></TEXTAREA>
</DD></DL></P>
<P>Tell us how to get in touch with you:<DL><DD><PRE>

Name <INPUT Type="text" Size="35" Maxlength="256" Name="UserName">
E-mail <INPUT Type="text" Size="35" Maxlength="256" Name="UserEmail">
Tel <INPUT Type="text" Size="35" Max!ength="256" Name="UserTel">
FAX <INPUT Type="text" Size="35" Maxlength="256" Name="UserFax">

Q b - ' * ■ --jr' J ' J í Q

I Че S K Vte Pavort« Tcab Heij

О * .’ ’ * ’ л

i f

J * * ¿ ~

i v; >/s- «яэрнrtr-s.ar-jfieeé-tó.hSf.; C l 00

T h a n k Y o u F o r Y o u r T i m e

I Cotnmenrs:

-h i s i * a ï s s ', : i fee-Äac*

: Tfll ns bow to set in touch \rirb you:

;;sae Vaishaii Shah

H c i. vaishah@sc:corr>

TsZ. 67S23S92

FAX- S5733423

, SubntfFoim][ClearFow .

1 CcpTrijh! Í [L»n5iaan Tfchn«logif5[. AU rlghtî rtsenfd.

<0 ÜWDR .

Diagram 19.8: The feedback.html output in I.E.

19.8)

CHAP 19 CREATING STRUCTURED PROGRAMS PAGE 287

</PRE></DD></DL></P><P>
<INPUTType="submit" Value-'Subm it Form">
<INPUT Type-'reset" Value="Clear Form">

</P></FORM><HR>
<H5>Copyright © [Lansmart Technologies], All rights reserved.
</H5>

- </BODY>

</HTML>

The action attribute o f the <form> tag points to a script named feedback.cgi at the Lansmart Technologies
web site.

The Web Server which services the Lansmart Technologies web site requires /cgi-bin/ as its script
directory, which is why the script's URL is ../../cgi-bin/feedback.cgi.

On most sites with NCSA and Apache Web servers, the PERL CGI scripts will reside in the /cgi-bin/
directory.

M o t e '
The /cgi-bin/ directory name is an a lias for a real directory on the Windows system, usually
c:\sct\wampp\cgi-bin\.

The method attribute o f the <form> tag specifies that the Web browser should send the form's data through
a POST request.

P r o c e s s in g U s e r F e e d b a c k

The feedback.cgi program that processes the data returned by the feedback form does the following:
□ Reads and parses the form data returned to the Web server
□ Writes (appends) user comments to a file called comments.txt
□ Returns a Thank-you note to the user in the form o f an HTML page_______________________________

Here are some points to help design the CGI
program in PERL:
□ Include cgi-lib.pl in the program to parse the

CGI input returned by the user’s Web browser
□ Call ReadParse() to parse the input
□ Open the comments.txt file and append data

appropriately into the file
□ Spawn the HTML code that is the thank-you

note returned to the user via PERL codespec

e - > // . ' ... - - , . j j a

F'ie Edit Vie* Favorites Too« Heip t?

O • . .*J -,s3 • , ^ - >•

A-- http://xt/A-8wpptr^>^.cow/CQi-br:/fee<ft>ack.cg Go

Thank you for your comments
Done £ Internet

Diagram 19.9: The feedback.cgi output in I.E.

The following is the complete
listing o f feedback.cgi that
handles input from a user’s Web
browser when it is retuned to the
Web server: (Refer diagram 19.9)

#!c:/perl/bin/perl.exe -w
require "cgi-lib.pl";
&ReadParse;
&PrintHeader;

3 Z’jlU !£ !t!Z - il' jlb y L -

File Edit Format View Help

¡comments : This is a test of feedback
Name : v a i s h a l i s h a h
E m a i l : v a is h a 1 i@ a o l . com
T e le p h o n e : 6 7 8 2 3 3 9 2
Fax : 39733423

B

Diagram 19.10: The comments.txt file created by feedback.cgi.

mailto:vaisha1i@aol.com

n ooo COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
PAGE 288 JAVASCRIPT, DHTML AND PERL CHAP 19

Scomments = $in{Comments};
Susername = $in{UserName};
Suseremail = $in{UserEmail};
Susertel = $in{UserTel};
Suserfax = $in{U serFax};
Spawning the Thank-you note as HTML
print "<HTML>";
print "<BODY BGCOLOR='#5F9f9f>";
Opening th e t e x t f i l e coiranents.txt and load ing i t a p p r o p r i a t e l y
open(COMMENTS,'»comments.txt')|| die print "<SCRIPT> alert('This file does not exist') </SCRIPT>";
print COMMENTS "Comments \: $comments\n";
print COMMENTS "Name\: $usemame\n";
print COMMENTS "Email \: $useremail\n";
print COMMENTS "Telephone \: $usertel\n";
print COMMENTS "Fax \: $userfax\n";
print COMMENTS "....................................... -....................................—\n\n";
Closing the t e x t f i l e comments. txt
close(COMMENTS);
HTML co ntinues
print "<CENTER>";
print "<H1> Thank you for your comments </Hl>";
print "</CENTER>";
print "</BODY>";
print "</HTML>";

S E L F R E V IE W Q U E S T I O N S

F IL L IN THE BLAN KS

1. A _______________ is a block of Perl statements with a name which are grouped together to perform a
s p e c if ic lask .

2. The_________ keyword has to be used to define a subroutine.

3. When a subroutine is invoked a list o f values can be placed in parentheses following the subroutine’s
name. These are the subroutine’s

4. and__________ can be used to declare variables local in a subroutine.

5. _ function can 6e explicitly used to return a value from a Perl subroutine.

6. is a collection o f subroutines that perform several tasks, which is stored in a file.

7. is the accepted library for passing the CGI query string that the Web server sends to
the CGI program.

8. prints the variables in the associative array that are passed as arguments.

9. reads and parses the CGI query for both GET and POST methods.

CHAP 19 CREATING STRUCTURED PROGRAMS PAGE 289

TRUE O R FALSE

10. To invoke a subroutine, the subroutine’s name has to be prefixed with a percentage (%) sign.

11. When argument values are copied from the @_array into a local variable, any changes made to the
local variable will affect the values in the @_array.

12. PrintHeader prints the MIME header with an extra blank line indicating end of header.

13. MethGet returns false if the CGI query came as a GET request.

14. MyURL returns a complete HTTP URL for the CGI script.

H A N D S O N E X E R C I S E S

1. Create a subroutine named 'message', which will print the greeting "Good Morning India". Then
invoke it.

2. Modify the subroutine named 'message'. Pass a name as an argument to the subroutine. The subroutine
should then print "Good Morning Name".

3. Create a subroutine to calculate the tax on income @ 30% o f income. Pass the income as an argument
to the subroutine. The subroutine should then return the tax liability on that income.

2 0 . G O I N G T H E O B J E C T W A Y W IT H P E R L

This material provides an introduction to new PERL features. In particular, the new preference variable
enables the creation of useful data structures. PERL supports object-oriented programming through its
modules.

U N D E R S T A N D IN G R E F E R E N C E S

In PERL, there was no way o f creating a variable that refers to another variable. Sometimes, however, it's
convenient to have a variable that simply points to another variable. This helps to create useful data
structures, such as a linked list. The diagram 20.1 given below illustrates how a linked list needs a variable
that points to the next item in the link.

As shown in diagram 20.1, a linked
list consists o f a number o f data
structures, where each structure has a
link to the next structure. For example,
in a PERL program, the structure may
be a simple list o f scalar variables
(think of an employee structure that
has fields such as name, social
security number, and so forth).

However, the variable that acts as the
link to the next structure needs to refer
to another structure. This is where a
variable is referenced. A reference is nothing more than a scalar value that refers to another variable.

With the introduction o f the reference type, PERL adds some new syntax to initialize a reference and to
access the variable that's referred to by the reference

D efin in g A R e f e r e n c e

A reference is a scalar variable. Therefore, a reference looks just like any other scalar variable. What's
new is the way a value is assigned to a reference.

The syntax for defining a reference variable is quite simple. Suppose there is a scalar variable named $x, a
reference variable can then be initialized that points to the $x variable, as follows:

Sx = 24.99;

$rx = \$x; # A b a ck s la s h p r e f i x i n d i c a t e s r e f e r e n c e

In this case, Srx is a reference variable that points to the variable $x. Any variable can be referred to by
adding a backslash prefix to the variable's name.

The value of $x can also he accessed through the reference variable Srx. This is known as dereferencing.
The syntax is:

$y = $$rx;

This statement sets $y to the value o f the variable being referred to by Srx. Thus, a reference variable can
be de-referenced by adding an extra $ prefix to the reference variable's name.

Each o f these could be a list

This variable has to refer to another list

Diagram 20.1: Linked lists need a reference variable type

CHAP 20 GOING THE OBJECT WAY WITH PERL PAGE 291

* 7 ^ 2 - ------------ ---- --- ------------- ------------------- ---------

f 11 '] Referencing and dereferencing can be done not only to scalar variables but also to other variables
V such as indexed array and associative array using the following syntax:

$r_array = \@array;
@y = @{$r_array};
$r_hash = \%hash;
%z = %{r_hash};

In addition to this, a reference can be made to a subroutine and also to another reference using
following syntax:

$r_proc = \$process_date;
&{$r_proc}("arg");
$r_ref = \$ref; # $ r e f i s a r e f e r e n c e

U sin g T h e A rro w O p e r a to r T o D e f e r e n c e

The arrow operator (a minus (-) sign followed by
the greater than (>) sign) is actually a way to de
reference a reference to an array or a hash. PERL
implements objects as a reference to a hash, that's
why an arrow operator has to be used to call a
subroutine in an object.

Example 1: (Refer diagram 20.2)
#!c:/perl/bin/perl.exe -w
C a l l in g su b rou ti n es v ia hash r e f e r e n c e , & d e f in in g some subroutines
sub start { print "Starting\n"; }
sub run { print "Running: @_\n"; }
sub stop { print "Stopping\n"; }
Define a hash with subroutine r e f e r e n c e s
% SUBS = ('Start' => \&start, 'Run' => \&run, 'Stop' => \&stop);
Define a r e f e r e n c e t o th e %SUpS hash
SObject = \%SUBS;
Now c a l l su brouti nes v ia the hash r e f e r e n c e
& {SO bject-> {Start}};
&{SObject -> {Run}} ("This", "and", "That");
&{$Object -> {Stop}};

Here are some points to understand the above program:
□ The program begins with the definition of three subroutines, start, run and stop that simply print

specific text messages.
□ Then it defines a hash (associative array) named % SU BS that associates text labels with references to

the subroutines, as follows: % SU B S = ('S tart' => \&start, 'Run' => \&run, 'Stop' => \&stop);
Thus a reference can be made to the start subroutine by writing $SU BS{Start}, and the subroutine can
be called with the syntax & {$SU B S{Start}}.

□ To show how to use the arrow operator to access a hash reference, a reference to % SU BS is defined as
follows: SObject = \%SUBS; (It is called as SObject, because a PERL object is a reference to a hash)

□ After the hash reference, SObject, is defined, it is used to access the subroutines by name and call
them. For example, the call to the start subroutine is as follows: & {$O bject -> {Start}};

0 * - p j x j

C:Ssct\wamppNcgi-bin>perl a rro w .p i — I
S ta r t in g
Running: This and That
Stopping

C:Nsct\uampp\cgi-bin>

Diagram 20.2: The arrow.pl output in
command window

To interpret this expression, first focus on SO bject ->{Start}. Here the arrow (->) operator de-references
SO bject (remember, it's a reference to the hash % SU BS) and accesses the item associated with the Start
key. The item accessed by SO bject->{Start} happens to be the reference to the start subroutine, which is
called by adding an ampersand prefix.

If a subroutine needs arguments, the argument list can be appended, as follows:
& ($O bject -> {R u n }}("T h is", "a n d ", and "T h a t");

For object-oriented programming, PERL provides a few additional features that result in a simpler syntax
for using subroutines defined in an object. In addition to use o f references, PERL objects rely on modules,
which are basically collections o f subroutines and variables.

U n d e r s ta n d in g P E R L P a c k a g e s A n d M o d u le s

A PERL package is a way to group together data and subroutines. Essentially, it's a way to use variable and
subroutine names without conflicting with any names used in other parts of a program.

The package provides a way to control a namespace, the collection of variable and subroutine names. When you
write a PERL program, it automatically belongs to a package named main. Besides main, there are other PERL
packages in the PERL library (that's in the lib subdirectory of the PERL5 installation directory).

P E R L P a c k a g e s

A PERL package is a convenient way to organize a set of ¡elated PERL subroutines. Another benefit is that
variable and subroutine names defined in a package do not conflict with names used elsewhere in the program.
Thus, a variable named Scount in one package remains unique to that package and does not conflict with a
Scount variable name used elsewhere in a PERL program.

A PERL package is in a single file. The package statement is used at the beginning of the file to declare the file
as a package and to give a package name. For example, the file timelocal.pl defines a number of subroutines and
variables in a package named timelocal.pl. The timelocal.pl file has the following package statement in various
places:

package timelocal;

This effect of this package declaration is that all subsequent variable and subroutine names are considered to be
in the amelocal package. Such a package statement can be put at the very beginning of the file that implements
the package.

PERL provides the following syntax for referring to a variable in another package:
SPackage: : Variable

where, Package is the name of the package and Variable is the name of the variable in that package. If the
package name is omitted, PERL assumes that a reference is being made to a variable in the main package.

To use a package in the program, simply call require() with the package filename as an argument. For instance,
there is a package named date defined in the file date.pl. That package includes the get_date() subroutine,
which converts a binary date into a string. Here is a simple program that uses the date package from the date.pl
file:
#!c:/perl/bin/perl.exe -w
Use the da te package defin ed in d a t e . p l f i l e
require "date.pl";
Cal l the g e t _ d a t e subrout in e

Smydate = date::get_date();
P r i n t the d ate s t r i n g

print "mydate";

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, p 9n
PAGE 292 JAVASCRIPT, DHTML AND PERL CHAP 20

CHAP 20 GOING THE OBJECT WAY WITH PERL PAGE 293

P E R L M o d u le s

PERL takes the concept o f package one step further and introduces a module, which is a package that
follows certain guidelines and is designed to be reusable. Each module is a package that is defined in a file
with the same name as the package, but with a .pm extension. Each PERL object is implemented as a
module. For example, the CGI object is implemented as the CGI module, stored in the file named CGI.pm.

U sin g A M o d u le

The subroutine requireO or use() is called to include a PERL module in the program. For example, there is
a PERL module named Cwd (defined, as expected, in the Cwd.pm file) that provides a getcwdO
subroutine that returns the current directory. requireO can be called to include the Cwd module. Then call
getcwdO as follows:

require Cwd; # No need f o r .pm e x te n s io n
$curdir = Cwd::getcwd () ;
print "Current directory = $curdir\n";

The first line brings the Cwd.pm file into this program. It is not required to specify the file extension
because require() automatically appends .pm to the module's name to figure out which file to include. The
second line shows how to call a subroutine from the Cwd module. When require() is used to include a
module, each subroutine needs to be invoked with the Module :: subroutine format.

If this sample program is rewritten with use() in place o f require(), it takes the following form:
use Cwd;
Scurdir = getcwd () ; # No need f o r Cwd: ¡ p r e f i x
print "Current directory = $curdir\n";

The most significant difference is that it is no longer required to qualify a subroutine name with the module
name prefix (such as Cwd::).

N o ta

The differences between require and use
□ When a module is included by calling require(), the module is included only when require()is

invoked as the program runs. The Module: : subroutine syntax must be used to invoke any
subroutines from a module included with the require function.

□ When a module is included by calling use(), the module is included in the program as soon as
the use statement is processed. Thus, subroutines and variables can be invoked from the module
if they were part o f the program. It is not necessary to qualify subroutine and variable names
with a Module: :prefix.

U S IN G O B J E C T S IN P E R L

An object is a data structure together with the functions that operate on that data. Each object is an instance
o f a class that defines the type o f the object.

For example, a rectangle class may have four corners o f the rectangle as data and functions, such as one
that computes the rectangle's area and another that draws the rectangle. Then each rectangle object can be
an instance o f the rectangle class with different coordinates for the four comers. It's in this sense that an
object is an instance o f a class.

The functions (or subroutines) that implement various operations on an object's data are known as its
methods.

Classes also have the notion o f inheritance. A new class o f objects can be created by extending the data or

methods (or both) o f an existing class. A common use o f inheritance is to express the IS A relationship
among various classes of objects. Consider, for example, the geometric shapes. Because a circle IS A shape
and a rectangle IS A shape, the circle and rectangle classes inherit from the shape class. In this case, the
shape class is called a parent class, or base class.

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, . p „
PAGE 294 JAVASCRIPT, DHTML AND PERL CHAP 20

H o t e .
The basic idea behind object-oriented programming is that the data and the associated methods
(subroutines) o f an object can be packaged as a black box. Programmers access the object only
through its advertised methods, without having to know the inner workings o f the methods. Typically,
a programmer çan create an object, invoke its methods to get or set attributes and destroy the object.

U n d e r s ta n d in g P E R L O b je c t s

PERL implements objects using modules, which package data and subroutines in a file. PERL presents the
following simple model o f objects:
□ An object is denoted by a reference (objects are implemented as references to a hash)
□ A class is a PERL module that provides the methods to work with the object
□ A method is a PERL subroutine that expects the object reference as the first argument

Programmers who implement objects have to follow certain rules and provide certain methods in a module
that represents a class.

C R E A T IN G A N D A C C E S S I N G P E R L O B J E C T S

As the name implies, the CGI object is meant for writing Common Gateway Interface applications for
World Wide Web Servers. A CGI program accepts queries submitted by a user and writes back an HTML
document in response.

When a CGI object is created, it automatically parses a query string submitted by the user via an HTML
form. The CGI object provides methods to access the parameters entered by the user on a form, creates
headers needed for Web pages, and generates HTML code for the Web page that will be sent back by the
CGI program.

To use the CGI object, the following steps need to be implemented:
1. Place the following line to include the CGI module in the program: use CGI;

This line must be included before you create a CGI object.
2. To create a CGI object, use the following syntax: Squery = new CGI;

Where Squery is the reference to the CGI object. In the case o f the CGI object, creating the object
automatically parses the query and sets up the internal variables o f the object.

3. Invoke methods from the CGI objects, as illustrated by the following examples:
print Squery->header; // Send the HTTP header
print Squery ->start_html("Title o f document");
print Squery ->end_html; / / End HTML document

Here, $query->header calls the header method of the Squery CGI object. Similarly, start_htm l() and
end_html() are methods in the CGI object. All o f these methods return strings, which is why they are
used as arguments to the print function.

The object's methods can be accessed by using the arrow operator and the object reference that is obtained
after creating the object.

S E L F R E V I E W Q U E S T I O N S

F IL L IN TH E BLANKS

1. A _________ is a variable that simply points to another variable.

2. A variable can be referred to by adding a _________ prefix to the variable's name.

3. A reference can be de-referenced by adding an extra___ prefix to the reference variable's name.

4. T h e____ operator is used to de-reference a reference.

5. A __________ in PERL is a way to group together data & subroutines.

6. Any program in PERL automatically belongs to the package named________.

7. The _______function is used to call a package in a program.

8. In addition to the require function th e ______ function can be used to include a PERL module in a
program.

9. A _________ is a PERL subroutine that expects the object reference as the first argument to implement
it.

TR U E O R FA LSE

10. Variables defined in a package are global by default.

11. A module is a package with certain guidelines and which is designed to be re-usable.

12. When a module is invoked using the use function, the Module : : subroutine syntax must be used.

13. The CGI object provides methods to access the parameters entered by the user on a form.

H A N D S O N E X E R C I S E S

1. Define a scalar variable named SscalarVar with a value. Create a reference named SscalarRef to
SscalarVar. Then print the contents o f the reference.

2. Create the array @ weeks as follows:
@weeks = qw (Sun Mon Tue Wed Thu Fri Sat);
Create a reference to this @week and print out the contents o f the array reference.

3. Create the array %who as follows:
%who = ('Name' => 'John', 'Age' => 25, 'Height' => '182 cm', 'Weight' => '80 kg');
Create a reference to an associative array %who and print out the contents o f the array reference.

4. Create a subroutine. Create a reference to that subroutine and then de-reference the reference to call the
subroutine.

5. Create a package with a subroutine. Call a subroutine o f that package in a program.

CHAP 20 GOING THE OBJECT WAY WITH PERL PAGE 295

2 1 . D A T A B A S E C O N N E C T I V I T Y

D A T A B A S E A C C E S S U S IN G P E R L

The true power o f the World Wide Web can be realized only through the development and deployment of
Commercial Applications on the web. Currently, the most popular method o f doing this is by using the
Common Gateway Interface to communicate with some data storage system, use the information stored in
that system and create HTML pages dynamically at run time.

The most popular language for CGI scripting purposes is PERL and the most popular data storage system
currently in use is Oracle. An intermediate platform is required for PERL to connect and communicate with
Oracle. In Windows environment this intermediate platform is found in the PERL W IN 32::ODBC
extension and Windows ODBC drivers. Using ODBC, PERL can communicate with any data storage
system o f choice.

T H E P E R L W I N 3 2 : :O D B C E X T E N S IO N

The W IN32::ODBC module is an extension to Perl, which permits connectivity to a data storage system
using ODBC drivers.

C re a tin g a n O D B C O b je c t

The following steps need to be performed to use W IN 32::O D BC in any Perl script:
use WIN32::ODBC;
Create a new d ata conn ec t io n t o the DSN
$Data = new W IN 32::ODBC("M yDSN");

MyDSN can e i t h e r be a DSN as def ined in the ODBC A d m in is t r a to r or a
Connect S t r i n g such as "DSN=Database Name; UID=User Id; PWD=Password;"

A f t e r p r o c e s s i n g i s done, the da ta conn ec t io n needs t o be c l o s e d
SData -> Close();

O D B C O B J E C T M E T H O D S

T h e n e w M eth o d .

Syntax:
new W in32::ODBC(<DSN >);

This method creates a new ODBC object for the given DSN. The parameter passed to this method can
either be an already defined DSN or a properly formatted Connect String.

CHAP 21 DATABASE CONNECTIVITY PAGE 297

If this method is successfully executed, it will return a new ODBC object. In the event o f an error, it will
return undef.

Example 1:

#!c:/perl/bin/perl.exe -w
require "cgi-lib.pl";
use W in32::ODBC;
if (!($Db = new Win32::ODBC("dsn=PerlOracle;UID=scott;PWD=tiger"))) {

print "Content-type: text/html\n\n";
print "<HTML><HEAD><TITLE>Database Test</TITLE></HEAD>";
print "<BODY BGColor=\"#FFFFFF\" Text=\"#088000\"><H2>Error Connecting to Database</H2>";
print "<P>Please Try Your Request at A Later Time</P></BODY></HTML>";
exit;

}

else { print "Content-type: text/html\n\n Connection OK"; }

T h e C o n n e c t io n M e th o d

Syntax:
Connection

This method will return the object’s ODBC connection number. The W IN32::ODBC extension for Perl,
permits multiple ODBC connections to be open at an given point o f time. Each o f these connections is
assigned a unique number for identification purposes. Specific active connections can be accessed in a Perl
script by using the Connection method.

Example 2:

#!c:/perl/bin/perl.exe -w
require "cgi-lib.pl'';
use W in32::ODBC;
if (($Db = new Win32::ODBC("dsn=PerlOracle;UID=scott;PWD=tiger"))) {

Scnumber = $Db->Connection;
print "ODBC Connection Number is: Scnumber"; }

else {
print "Could not Create ODBC Object"; }

T h e S q l M eth o d

Syntax:
Sql (<SQL Statements)

This method executes the SQL command. On successful execution, this method returns undef. I f the
execution fails, it returns an SQL error code.

Example:

Svalue = "SalesGroup";
if (! $Db->Sql("SELECT * FROM Passwd WHERE LOGIN = VSvalueV")) {

print "Content-type: text/html\n\n Successfully Executed the SELECT statement \n";
}

else {
print "Content-type: text/html\n\n Failed to execute the SELECT statement \n"; }

T h e F e tc h R o w M eth o d

This method fetches the next row of data from the specified SQL sentence. This method returns TRUE if
successfully executed and undef if there is an error. FetchRow should be used in conjunction with either
Data or DataHash to actually retrieve the individual elements o f data.

Example:

if ($Db->FetchRow()) {
undef %Data;
%Data = $Db->DataHash();
print "$Data{'LOGIN'} \n"; # A ll fieldname's are in Uppercase

}

else {
print "Could not execute FetchRow. Please check to see if data exists in the table \n";

}

T h e D ata M eth o d

Syntax:
Data
Data <Lis t>

This method retrieves data from a fetch (FetchRow method) for a list o f fieldnames. If no field names are
given, all fields are returned in an unspecified order. In a scalar context, the Data method returns all o f the
specified field values concatenated together. In an array context, it returns an array of the values, in the
specified order.

Example:

if ($Db->FetchRow()) {
@data = $Db->Data();
print "User Name is : $login \n";
print "assword is : $passwd \n";

}

or

if ($Db->FetchRow()) {
Slogin = $Db->Data('LOGIN _ID ’);
print "@data \n";

}

T h e D a ta H a s h M eth o d

Syntax:

DataHash
DataHash <L is t>

DArc OQO COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, . U. D1.
PAGE 298 JAVASCRIPT, DHTML AND PERL CHAP 21

Similar to the Data method, this method retrieves data from a fetch (FetchRow method) for a list o f
fieldnames. If no field names are given, all fields are returned in an unspecified order. This method returns
a hash or associative array, where the field name is the key.

CHAP 21 DATABASE CONNECTIVITY PAGE 299

Example:

if ($Db->FetchRow()) {
undef %Data;
%Data = $Db->DataHash();
foreach $key (keys %Data) {

print "$icey : $Data{$key} \n";
}

}

T h e C lo s e M eth o d

Syntax:
Close

This method closes the ODBC connection for the object. The return value o f this method is always undef

Example:

$Db->CloseQ;

Example:
print "Set-cookie: Cname = Sname";

Cookies can be accessed using an environment variable, $ENV{'HTTP_COOKIE'}

Example:
Svar cookie = $ENV{‘HTTP COOKIE’}

SCT is implementing an Intranet at its premises. A part o f this Intranet will be required to maintain and
display information about the courses conducted at SCT. The Intranet will have to maintain data about the
following:
□ Course Title
□ Course Duration
□ Course Content
□ Course Fees

The Intranet will have to permit the user to:
□ Create New Courses
□ Edit existing Courses
□ Delete existing Courses
□ View existing Courses

In Perl, Cookies can be set using the following syntax:
Set-cookie: NAME=<Value>; EXPIRES=<Date>; PATH=<Path>;

DOMAIN=<Domain>; SECURE

C A S E S T U D Y - T R A IN IN G IN F O R M A T IO N A T S C T

R e q u ir e m e n ts

For editing and deleting existing courses, the user requires an interface, which permits the selection of any
one course, which is to be edited or deleted. The list o f existing courses, which get displayed need to be
generated at run time depending on the data available in the database.

The Intranet should also provide security by means o f a login consisting of a Username and Password
combination.

Im p le m e n ta t io n

This Intranet will be implemented using Oracle as the data storage system. The interface between the
browser and Oracle will be via the CGI specification. CGI scripting will be done using Perl 5.0 and the Perl
W IN32::ODBC extension will be used for communicating with Oracle.

S te p I - C re a te T h e T a b le S tr u c tu r e s F o r O racle .

From the Requirements section o f the case study it is clear that the system will need two database tables:
□ Password file
□ Course Details file'

Create The. Password File:
CREATE TABLE passwd(UserName VarChar2(25) NOT NULL, Login VarChar2(10) NOT NULL,

Passwd VarChar2(10) Not Null);

Create the Course Details File:
CREATE TABLE course_details(Course Title VarChar2(25) NOT NULL,

Course_Subjects VarChar2(60) NOT NULL, Duration Number(4) NOT NULL,
Cost Number(9,2) NOT NULL);

S te p II - In se rt d a ta in to th e P A S S W D F ile and C O U R S E D ET A IL S F ile

Insert data into PASSWD File:
fNSERT INTO passwd VALUES(’John Ferguson’, 'John', 'J020');
INSERT INTO passwd VALUES('Mary Poppins', 'Mary', ’M021');

Insert data into course details File:
INSERT INTO course details

VALUES(’Oracle Programming’, 'Oracle 8.0, D2k Rel 2.0, DBA', 120, 16000);
INSERT INTO COURSE DETAILS

VALUES('Internet Programming', 'Oracle 8.0, HTML, JavaScript, CGI-Perl, Java', 260, 25000);

S te p III - C re a te an HTML p a g e fo r U se r A u th e n tica tio n

<HTML>
<HEAD><TITLE>SCT - User Authentication </TITLE></HEAD>
<Body Bgcolor="#FFFFFF" Text="#008000">

<TABLE Border=l Width=100%><TR><TH BGColor=”#000000">
User Authentication

</TH></TR></TABLE>
<DIV><Form Action="/cgi-bin/check.cgi" Method="POST">

<Table Align-'Center" BGColor="#FFDAB9" Border=l Width=50%><TR>
<TD>User Name</TD>
<TD><P><INPUT Name="Login" Size=10 Type="text" >
</TD>

</TR><TR>

D. r , COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
0 JAVASCRIPT, DHTML AND PERL C

CHAP 21 DATABASE CONNECTIVITY PAGE 301

<TD>Password</TD>
<TD><INPUT Name="Passwd" Size=l0 Type="password"></TD>

</TR></TABLE>
<CENTER><INPUT value="Submit" name="Bl" Type="submit"x/CENTER>

</FORM></DIV>
</BODY>

</HTML>

As can be seen from the HTML code above, when the user submits this form, the Web Server will invoke
the check.cgi CGI script. The purpose o f the check.cgi script is to validate the login and password entered
by the user and either allow or deny access to the Intranet.

S te p IV - C re a te th e c h e c k .c g i S c r ip t

#!c:/perl/bin/perl.exe -w
require "cgi-Iib.pl";
Set Up Database Connection
use W in32::ODBC;
if (!($Db = new Win32::ODBC("dsn=PerlOracle;UID=scott;PWD=tiger"))) {

print "Content-type: text/html\n\n";

print "<HTML><HEAD><TITLE>Database Test</TITLE></HEAD>";
print "<BODY BGColor=\"#FFFFFF\" Text=\"#088000\"><H2>Error Connecting to Database</H2>";
print "<P>Please Try Your Request at A Later Time</P></BODY></HTML>";
exit;

}

Ca ll ReadParse from c g i - l i b . p l to decode form inform ation
&ReadParse;
Svalue = $in{'Login'};
if (! $Db->Sql("SELECT * FROM Passwd where LOGIN = \'$value\'")) {

if ($Db->FetchRow()) {
undef %Data;
%Data = $Db->DataHash();

}

}

else {
print "Content-type: text/html\n\n";
print "<HTML><HEAD><TITLE>Database Test</TITLE></HEAD>";
print "<BODY BGColor=\"#FFFFFF\" Text=\"#088000\">";
print "There has been an Unknown Error!!</BODY></HTML>";
exit;

}

if(($D ata{’LOGIN'} eq $in{'Login'}) && ($Data{'PASSW D'} eq Sin { ’Passwd’})) {
print "Content-type: text/html\n";
print "Set-cookie: Name=$Data{'LOGIN’}; expires=Wednesday, Ol-Jan-99 12:00:00 GMT\n\n";
&LoginPage;

}

else {
print "Content-type: text/html\n\n"; <
print "<HTML><HEAD><TITLE>Database Test</TITLE></HEAD>";
print "<BODY BGColor=\"#FFFFFF\" Text=\"#088000\">";

print "<P>Access Denied. Please Check your Login and Password!!</P></BODY></HTML>";
}

close(Sdb);
exit;

sub LoginPage {
print « "R E S P O N S E ";

<HTML>

<HEAD><TITLE>Welcome to the SCT Intranet</TITLE><Base Target="rbottom"></HEAD>
<BODY BGColor="#FFFFFF" Text="#088000">

<TABLE BGColor="#000000" Border=l Width=lOO%><TR>
<TD BGColor="#000000" Colspan="3"><P Align="Center">

SCT Intranet</TD>
</TR><TR>

<TD BGColor="#FFDAB9">
Leave Module</TD>

<TD BGColor="#FFDAB9">
Users Module</TD>

<TD BGColor="#FFDAB9">
Enquiry Module</TD>

</TR></TABLE>

<TABLE BGColor="#FFDAB9" Border=0 Width=lOO%><TR>

<Td>The Admin Department at SCT Welcomes $Data{'USERNAME'}</TD>
</TR></TABLE>

</BODY>
</HTML>

RESPONSE
}

S E L F R E V IE W Q U E S T I O N S

FILL IN THE BLANKS

1. Using ______ PERL can communicate with any data storage system.
2. T h e__________________ module in PERL permits connectivity to a data storage system using ODBC

drivers.
3. A _______________________ must be created in order to use the W in32::ODBC module.
4. The______________method creates a new ODBC object for a given DSN.
5. The___________ method fetches the next row of data specified by the SOL statement.

6. The________ method closes the ODBC connection for the object.
7. The______________method returns a hash array, where the field.name is the key.

TRUE OR FALSE

8. If the "new" method is unsuccessfully executed it returns undef.
9. The Win32: :ODBC extension for PERL permits only one ODBC connection at a given point of time.
10. If the "Sql" method is successfully executed it returns undef.
11. The Close method always returns undef.
12. The Data method returns a hash or associative array.

n . „ c . . . COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, . U. D , .
PAGE 302 JAVASCRIPT, DHTML AND PERL CHAP 21

2 2 . D E B U G G I N G IN P E R L

It is natural that PERL programs may not run perfectly the first time they run. PERL being an interpreted
language unless an attempt is made to run the PERL script errors will never surface.

Error handling code needs to be embedded in the PERL program using techniques such as the || operator
and the die keyword. Such error handling code spec attempts to let the user know what went wrong when
the PERL script executes within the PERL interpreter.

Errors could occur because of syntax mistakes in the code that prevents it from running. Tracking down
and fixing bugs is a process known as debugging.

PERL contains a multifunction debugger that allows the use o f several techniques to find and fix syntax or
semantic errors in the PERL code. Quite apart from syntax or semantic errors, errors in program logic also
ensure that the throughput o f a PERL program could be erroneous.

The following material shows how to use the PERL debugger to do things such as:
□ List parts o f a program
□ Set breakpoints
□ Trace the program’s execution
□ Execute the program one statement at a time
And so on thus allowing a PERL programmer to pinpoint exactly what is going wrong in the PERL
program and hopefully set it right.

L O A D IN G A N D L E A V IN G T H E P E R L D E B U G G E R

Load the PERL debugger by specifying the -d switch when running a PERL script. For example the
program named marker.pl can be run through the debugger by typing the following at the command
prompt.

<Command Prompt> peri -d marker.pl J

The following is the code for m arker.pl, which is used as reference through this material.

#!c:/perl/bin/perl.exe -w
%costs = ("Mercedes" => 90000, "BMW " => 82000,

"Toyota" => 37500);
foreach Scar (keys (%costs)) {

Smarker = " * ";
Samount = $costs{$car};
$amount/= 10000;
Smarker x= Samount;
print "Scar: $marker\n";

}

Smarker = x 40;
print "Smarker\nNote: * = \$10,000\n";

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, сндр „
JAVASCRIPT, DHTML AND PERL

When the -d command is issued, the PERL debugger loads immediately and displays a multi line message.
The message looks similar to:

Stack dump during d ie enabled outs ide of e v a l s .
Loading DB r o u t i n e s from PERL5DB.pl patch l e v e l 0 . 9 5
Emacs support a v a i l a b l e
Enter h or 'h h' f o r help .

main: : (marker. p i : 2) : %costs = ("Mercedes" => 90000, "BMW" => 82000,
m a i n : : (m a r k e r . p l : 3) : "Toyota" => 3 7 5 0 0) ;

DB<1>_

The first three lines displayed by the debugger are system messages. The fourth line says that typing the
letter h provides help on using the debugger.

The next line displays the first executable line of the program loaded with the debugger. When the
debugger finds an executable line, it displays the following information about the line:
□ The Package the line is part o f (in this case package main)

□ The name o f the program currently executing (in this case marker.pl)

□ The line number o f the program statement

After these lines are displayed, the debugger’s command prompt is displayed indicating that the debugger
is waiting to accept a command.

The number in the angular brackets is the command number o f the debugging session. Each command is
numbered so that if the command entered needs to be referenced later in the debugging session it can be
done by using its command number.

Once the debugging session is over, the debugger can be closed using the command q at the debugger
command prompt.

L IS T IN G T H E P R O G R A M C O D E

A basic debugging technique is-listing program code. The PERL debugger has several ways to list program
code. The following sections cover the listing commands provided by the debugger.

U sin g th e I C o m m a n d

The I command lists the next 10 lines of program code. When the I command is typed at the prompt, the
next ten program statements from the current listing point will be printed on the screen.

The following is the example o f issuing the I command on the marker.pl program:
DB<1> I

2:==> %costs = ("Mercedes" => 90000, "BMW" => 82000,
3: "Toyota" => 3 7 5 0 0) ;
4 : fo re a ch $ c a r (keys (%costs)) {
5 : $marker =
6: $amount = $ c o s t s { $ c a r } ;
7 : $amount /= 10000;
8: $marker x= $amount;
9: p r i n t " $ c a r : $marker\n";
1 0 : }

11: $marker = x 40;

CHAP 22 DEBUGGING IN PERL PAGE 305

Entering the I command again will result in the next 10 statements being listed and so on till the last line o f
the program code is listed. In the case of marker.pl giving the I command will list the remaining line o f
code as shown below:

12: p r i n t "$marker\nNote: * = \$10 ,000\ n " ;

Specifying the line number after the I command lists the specified line. The following example lists just
line 11 o f the marker.pl:

DB<1> I 11 J
10: $marker = x 40;

The prompt now is:
DB<2>

One can also specify the range of line numbers to list by including the range after the I command. The
following example lists the lines 5-10 o f marker.pl.

DB<2> I 5-10 J
5
6

7
8

9:
1 0 :

$marker =
$amount = $ c o s t s { $ c a r } ;
$amount /= 10000;
$marker x= $amount;
p r i n t " $ c a r : $marker\n";

To list a certain number o f lines from a specified number o f lines, specify the line number to be listed, a
plus sign (+), and the number o f lines to be listed following the specified line number. For example:

DB<3> I 5+5 J
5
6

7
8

9:
1 0 :

$marker =
$amount = $ c o s t s { $ c a r } ;
$amount /= 10000;
$marker x= $amount;
p r i n t " $ c a r : $marker\n";

Finally if the PERL script contains a subroutine, list that subroutine by specifying the subroutine name after
the I command. For example if marker.pl had a subroutine called starm ark then, the subroutine can be
listed as follows:

DB<4> I starmark J

U s in g T h e w C o m m a n d

The w command displays the line specified, three lines preceding it and several lines after it, filling the
rest o f the debugger window.

DB<5> w 5 J

9:
10-:

Dcosts = ("Mercedes" => 90000, "BMW" => 82000,
"Toyota" => 3 7 5 0 0) ;

fo r e a ch $ ca r (keys (% c o s t s)) {
$marker =
$amount = $ c o s t s { $ c a r } ;
$amount /= 10000;
$marker x= $aipount;
p r i n t " $ c a r : $marker\n";

N

PAGE 306
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 22

11: $marker = x 40;
12: p r i n t "$marker\nNote: * = \$ 10 ,000\n";

U sin g th e II C o m m a n d

The debugger, can be used to search for a pattern in program code by surrounding the pattern between
slashes (/ /). To search for the keyword print in marker.pl use the following command:

DB<6> /print/ J
9: p r i n t " $ c a r : $marker\n";

Issuing this command will display the first instance of print, if the pattern is found. If the pattern is not
found then the debugger will display the following:

DB<7> /max/ J

To search for the same pattern a multiple times, leave out the final slash. The command looks as follows:
DB<8> /print J

In this case, the debugger will look for the next instance of the pattern print. When the pattern is found,
subsequent searches will be made from the line number of where the pattern was found right to the end of
the file.

U s in g T h e ? ? C o m m a n d

To search a program from the bottom upwards to find a pattern, surround the pattern with question marks.
If, for example, to search for print through the marker.pl from the bottom up use the following:

DB<9> ?print? J
12: p r i n t "$marker\nNote: * = \$ 10 ,000\n";

Like the // command, if searches for a pattern with ?? cannot be found by the debugger, the debugger will
display a not found message. Leave out the trailing question mark when wanting to search for a pattern
from the bottom o f the file to the top.

U s in g th e S C o m m a n d

The S command lists all the subroutine names found in the current file. This command displays not only the
subroutines defined in a program but also the subroutines used by PERL. For example:

DB<9> S J

DB : : fake : : a t e x i t
Term : ReadLine : BEGIN
Term : ReadLine : Stub :A t t r i b s
Term : ReadLine : Stub : Featur es
Term. : ReadLine : Stub : IN
Term : ReadLine : Stub :MinLine
Term : ReadLine : Stub : OUT
Term : ReadLine : Stub : ReadLine
Term : ReadLine : Stub : add history
Term : ReadLine : Stub : findConsole
Term : ReadLine : Stub : new
Term : ReadLine : Stub : newTTY
Term : ReadLine : Stub : re a d l i n è
Term : ReadLine :TermCap::LoadTermCap
Term : ReadLine :TermCap:¡ornaments
Term : ReadLine :T k : :T k loop

CHAP 22 DEBUGGING IN PERL PAGE 307

Term : ReadLine: Tk: : get c
Term : ReadLine: Tk: : g e t l i n e
Term : ReadLine: Tk: : handle
Term : ReadLine: Tk: : r e g i s t e r Tk
Term : ReadLine: Tk: : tkRunning
main : BEGIN

All the subroutines listed are used by PERL internally. I f for example starmark was a subroutine defined in
the marker.pl file then that subroutine would also be listed after main::BEGIN as

m a i n ; : BEGIN
m a i n : : starmark

U S IN G T H E D E B U G G E R T O S T E P T H R O U G H A P R O G R A M

A commonly used debugging technique is to step through a program line by line in order to understand
what is happening in the program as each line is executed. The PERL debugger provides several commands
that do exactly this.

U s in g t h e s C o m m a n d

The s command is used to execute the current statement of the program. When the command is issued the
current line is executed and the next line to be executed is displayed. Any input or output operations are
performed before the next line is displayed, so if the program is looking for an input from the user, the
debugger will pause until the input is entered before displaying the next line. If the execution of the
statement causes the output, the debugger will display the output before displaying the next line of code.
The following example executes the first several lines o f marker.pl:

DB<1> s J
m a i n : : (m a r k e r . p i : 4) : foreach $ c a r (keys (% c o s t s)) {
DB<1> s J
main: : (marker. p i : 5) : $marker = ;
DB<1> s J
main: : (marker. p i : 6) : $amount = $ c o s t s { $ c a r } ;
DB<1> s J
m a i n : : (m a r k e r . p i : 7) : Samount /= 10000;
DB<1> s J
m a i n : : (m a r k e r . p i : 8) : $marker x= $amount;
DB<1> s J
main: : (marker .pi.: 9) : p r i n t " $ c a r : $marker\n";
DB<1> s J
Toyota: * * * * - * * * * * * .
main: : (marker. p i : 5) : $marker =
D B<I> s J
main: : (marker. p i : 6) : $amount = $ c o s t s { $ c a r } ;
DB<1> s J
main: : (marker. p i : 7) : $amount /= 10000;
DB<1> s J
m a i n : : (m a r k e r . p i : 8) : $marker x= $amount;
DB<1> s J
main: : (marker. p i : 9) : p r i n t " $ c a r : $marker\n";

PAGE 308
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 22

DB<1> s J
Mercedes: * * * * * * * * *
m a i n : : (m a r k e r . p i : 5) :
DB<1> s J
main: : (marker. p i : 6) :
DB<1> s J
m a i n : : (m a r k e r . p i : 7) :
DB<1> s J
main: : (m a r k e r . p i :8) :
DB<1> s J
main: : (marker. p i :9) :
DB<1> s J
BMW * ' k ' k - k - k - k - k ' k - k ' k - k

p r i n t " $ c a r : $marker\n";

$marker = " * " ;

$amount = $ c o s t s { $ c a r } ;

$amount / = 1000 0;

$marker x= $amount;

m a i n : : (m a r k e r . p l : 1 1) :
DB<1> s J
m a i n : : (m a r k e r . p l : 1 2) :

$marker = x 40;

p r i n t "$marker\nNote: * = \$1 0 ,000\ n " ;
DB<1> s J

Note: * = $ 1 0 , 0 0 0

When a subroutine is encountered when using the s command, the debugger treats it just like the other parts
o f the program and assumes that it also needs to be debugged. However the debugger will not execute the
first statement in the subroutine, instead it waits for a s command and then proceeds to execute the
statement.

U s in g t h e n C o m m a n d

The n command works similarly to the s command, which executes a statement and displays the next
statement to be executed. It differs from the s command, as it will not step through a subroutine. Instead it
will execute the whole subroutine and then display the first statement after the call to the subroutine.

For example, if the current line as displayed by the debugger is:
main : : (marker . p i : 18) ; Sstarma.rk (\ % star_rcf \ % st ar_f r e f 1) ;

When the n command is executed, the subroutine will be executed and the next line o f the program is
displayed. None o f the subroutines lines are displayed, and the subroutine cannot be debugged using the n
command.

U s in g th e r C o m m a n d

The r command can be used when stepping through a subroutine and not executing the subroutine line by
line anymore. Issuing the r command executes the remainder o f the subroutine and displays the first line of
code following the subroutine.

P r e s s in g E N T E R w ith th e s a n d n C o m m a n d s

When using the debugger with the s or n commands, use the EN TER key to execute either the s or n
command, entered last. The above works just like typing either an s or an n again,
using the debugger to view variable values

When debugging a program, often values o f different variables must be checked while the program is being
executed. The PERL debugger offers two commands to use to view variable values. These commands are
discussed in the following section.

CHAP 22 DEBUGGING IN PERL PAGE 309

The X command displays the value of any variable that is part of the current package. If no other package is
specified, the X command will grab the values o f variables from the package main.

The X command can either be issued by itself, in which case every variable o f the current package and its
value will be displayed, or can be issued with a variable name, which will display the value o f the variable
specified. This is shown in the following example:

U s i n g T h e X C o m m a n d

DB<10> s J
m a i n : : (m arke r .p l : : 4) : fo reach $ c a r (keys (%costs)) ,{
DB<10> s J
main : : (marker. p i :: 5) : $marker _ H * 1» .

DB<10> s J
m a i n : : (m arke r .p l : : 6) : $amount = $ c o s t s { $ c a r } ;
DB<11> X m arker J
$marker = " * "
D B < ll> s J
main: : (marker. p i :: 7) : $ amount /= 10000;
DB<11> X amount J
$amount = 37500
DB<11> s J
m a i n : : (m arke r .p l : : 8) : $marker x= $amount;
DB<11> s J
m a i n : : (marker .p l : : 9) : p r i n t " $ c a r : SmarkerXn";
DB<11> X car J
$ c a r = 'Toyo ta '

In the example, the first few statements in the marker.pl are executed so that the variables o f the program
can obtain values. Once these variables have obtained values, the X command was issued with the variable
name. Notice that the variables were entered without the $ prefix. Had the variables been entered as
Smarker, Samount no values would have been displayed because the debugger assumes the S prefix.

Issuing the X command without an argument displays every variable value pertinent to the current program
environment, which includes values for all the environment variables, special variables if any and PERL’s
internal variables.

U s in g T h e v C o m m a n d

To display the value o f a variable in a package other than Main, use the v command. For example if there is
a package titled Domarks in the program marker.pl, display the values o f the variables in the package as
follows:

DB<12> v Domark varl var2 J

$ v a r l = "<Some Value>"
$var2 = "<Some Value>"

S E T T I N G A N D W O R K IN G W IT H B R E A K P O I N T Se' I

Another common and powerful debugging technique is the setting of breakpoints. A breakpoint is a place
in a program where its execution stops. Normally, breakpoints are set at certain key spots in a program, to
examine the value o f variables or check to see if the logic o f the program is working as it was supposed to
work. The following section will deal with setting breakpoints.

PAGE 310 COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL

CHAP 22

U sin g T h e b C o m m a n d

The b command is used to set a breakpoint in a PERL program. To execute a program only till line 10 use
the following command:

DB<12> b 10 J

By issuing the above command the debugger will execute all the statements- in the program up to but not
including line 10.

Use the b command with a conditional expression, so that its program execution will halt only if the
expression evaluates to true. Set breakpoints at a subroutine. When this is done the debugger will break the
program before the first statement o f the subroutine is executed. Once a breakpoint is set, it remains until
removed as described below.

U sin g T h e c C o m m a n d

Once breakpoints have been set in a program, use the c command to execute the program until it reaches a
breakpoint or the end o f the program. The following example shows how this works:

DB<13> b 5 J
DB<13> c J
main : : (marker . p i : 5) : $marker = " * " ;

In this example a breakpoint was set at line 5. Then the program was executed using the c command.
Execution o f the program stops at line 5, the breakpoint set.

Use the c command to set temporary breakpoints. Temporary breakpoints are convenient because once the
program has executed and the breakpoint is reached, the debugger deletes it automatically.

DB<14> c 13 J
Mercedes: * * * * * * * * *
m a i n : : (marker . p i : 5) : $marker =

I f c command is issued next, the program will not break at the line 15 because the temporary breakpoint is
deleted as soon as it is reached.

U sin g th e L C o m m a n d

Occasionally, in the course o f a debugging session, breakpoints may be set and their position in the
program forgotten. The L command lists the line number and the statements where the breakpoints are
applied along with the message that the program will break at this line. This is shown in the following
example:

DB<15> L J
m ar ker .p l
9 : $rr

break i f (l)
1 0 :

15:
break i f (1)

$marker = " * " ;

$ amount = $ c o s t s { $ c a r } ;
$ marker = x 40;

The statement break if(l) simply means that a break will always occur at this line since (1) always
evaluates to true.

CHAP 22 DEBUGGING IN PERL PAGE 311

The d command passed along with a line number having a breakpoint deletes single breakpoints. In the
next example, the breakpoint at line 5 o f marker.pl is deleted.

DB<16> d 5 J
DB<17>

There is no breakpoint delete confirmation demanded, the breakpoint is simply deleted. I f all the
breakpoints previously set must be deleted, use the D command. Again no breakpoint delete confirmation is
demanded, but all previously set breakpoints are deleted.

D E B U G G IN G B Y P R O G R A M T R A C IN G

Program tracing is a debugging technique in which each line o f a program is displayed as it is executed.
This technique is particularly useful when trying to debug loops and conditional expressions. This section
discusses how to use program tracing to help debug PERL programs.

Issuing the t command turns on program tracing. When this command is issued the debugger is said to be
in the trace mode.

DB<18> t J
Trace = on

Use trace with other debugging commands to help debug PERL programs effectively. For example the
following command uses trace mode with a breakpoint to display the execution o f a program up to a
temporary breakpoint:

DB<18> t J
Trace = on
DB<18> c 8 J
main: : (m a r k e r . p i :4)
m a i n : : (marker. p i :5)
main: : (marker. p i :6)
main: : (marker. p i :7}
main: : (marker. p i :8)
DB<19>

U s i n g t h e d a n d D C o m m a n d s

forea ch $ ca r (keys (%cos ts)) {
$marker = " * " ;
$amount = $ c o s t s { $ c a r } ;
$amount /= 10000;
$marker x= $amount;

Each statement in the program is displayed and executed, up to line 10, which is displayed but not
executed. To turn o ff trace mode, simply reissue the trace (t) command, which turns o ff program tracing.

D E B U G G IN G W IT H L IN E A C T IO N S

During a debugging session, as the lines o f the program are displayed maybe the value o f a variable has to
be displayed or changed. The PERL debugger provides several commands for performing such line

actions. The following section covers these commands.

U s in g T h e a A n d A C o m m a n d s

If a particular action must be performed before a line o f code executes, use the a command. The a
command takes a line number and an action as its arguments. This is shown in the following example:

DB<20> a 5 print "this is where marker is made *" J
DB<21>

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, гндр „
JAVASCRIPT, DHTML AND PERL

In this example, the a command is used to tell the debugger to print the statement in quotes before line 5 is
executed. When the program is executed the following statement appears after the current line is displayed,
but before the next debugger command.

t h i s i s where marker i s made *

If more than one action needs to be performed, simply separate the statements as done with regular PERL
statements. This is as follows:

DB<1> a 5 print "this is where marker is made *";\ J
cont: Smarker = J
DB<2>

The example shows how to have more than one action per command and how to continue a line when the
first line is too long. When a line needs to be broken, enter a backslash (\) and press ENTER. The debugger
will then display cont: continue typing on this line. Notice that the first statement ends with a semicolon.

When finished with line actions for a debugging session, issue the A command at the debugger prompt
which deletes all the line actions currently defined.

U sin g T h e < A n d > C o m m a n d s

These commands are used to perform line actions at certain times in the debugging session. The >
command is used to perform an action before any other statements are executed, and the < command is
used to perform actions after all other statements are executed.

, These commands are useful when there is a variable, which has a bad value but it cannot be determined
which statement in the code is assigning the bad value to the variable. For example, to print the value o f a
variable before a line is executed, issue the > command as follows:

DB<24> > print "the value o f marker is Smarker" J

To display the value after a line o f code executes issue the < command as given below:
DB<24> < print "the value of marker is Smarker" J

If during the debugging session the lines have, < or > commands associated with them need to be seen, use
the L command to display this information

M IS C E L L A N E O U S D E B U G G IN G C O M M A N D S

The following are some of the other debugging commands, which can be used through a debugging
session.

U sin g th e R C o m m a n d

The R command is used to restart the debugger without actually quitting debugger mode. If the R
command is issued new breakpoints, line actions, and so on may have to be set. This is because the old
ones are often lost during debugger restart.

CHAP 22 DEBUGGING IN PERL PAGE 313

The H command is used to display the previous debugging command entered during the current debugging
session, as shown in the following example:

DB<25> H J
3: b 11
2: b 10
1: b 9
DB<25>

Previous debugger commands are listed from the most recent to the least recent (i.e. in reverse order in
which they were set.

U s in g T h e ! C o m m a n d

The ! command is used to repeat a previously issued debugger command. The commands only argument is
the line number of the debugger command, which can be found by issuing the H command.

This command is used if all breakpoints have been accidentally deleted and need to be reset again. Use the
H command together with the ! command to reset them again. As shown in the following example:

DB<25> H J
3: b 11
2: b 10
1: b 9
DB<25> D J
Deleting a l l breakpoints
D B < 25> ! 1 J
b 9
D B < 25> ! 2 J
b 10

As seen in the example the ! command simply reissues the command. This command is very handy if there
are long debugging commands that are inconvenient to retype.

U s in g T h e p C o m m a n d

Many a times in a debugging session a quick calculation may need to be done, perhaps to determine what
the value o f a variable should be. PERL’s debugger provides the p command for evaluating the value o f an
expression while in the debugger. For example:

DB<25> p (52+56)/12 J

U s in g T h e T C o m m a n d

The T command is used to do a stack trace, which is useful for determining which subroutines are in
progress and where they were called. The following is a sample stack trace-that shows how several
subroutines are called in a program:

DB<26> T J
$. = &main : : d o u b le ($ v a r l) from f i l e DoubleNum l i n e 3

. $ = &main .: : s g r t ($ v a r l) from f i l e DoubleNum l i n e 6

This stack trace is working with a program called DoubleNum.pl. The first line that is displayed after the T
command is issued shows that the subroutine double, which is within the package Main, has been called
with a scalar argument (Svarl) and is supposed to return a scalar variable.

U s i n g T h e H C o m m a n d

p a p p C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , _ H A p
-5 1 4 J A V A S C R I P T , D H T M L A N D P E R L “

The second line o f the stack trace shows that the subroutine double was called from another subroutine,
sqrt. This subroutine was also called with a scalar argument and is supposed to return a scalar variable.

S E L F R E V I E W Q U E S T I O N S

FILL IN THE BLANKS

1. The process o f tracing and fixing bugs in an program is known a s___________ .

2. The PERL debugger is loaded by specifying th e_________switch.

3. One can exit the debugger by simply entering the______ command.

4. T h e ________ command is used to display a window of lines that surround a specific line in the
program.

5. T h e _______command is used to search for a pattern in the program.

6. The S command lists all th e___________ names found in the current program file.

7. The . command displays the value o f any variable that is part o f the current package.

8. Breakpoints in a Program can be set using th e________command.

9. When the t command is issued the debugger is said to be in th e_________ mode

TRUE OR FALSE

10. When the PERL debugger is loaded using the -d switch the first three lines display the first three lines
o f the program code that is to be debugged.

11. The 1 command lists all the lines o f the program code.

12. The ?? command is used to do a backward pattern search in the program code.

13. The S command is used to execute the current statement o f the program.

14. The R command is used to restart the debugger without actually quitting it.

2 3 . I N S T A L L I N G A N D S E T T IN G U P A P A C H E W E B S E R V E R

T H E B IR T H O F A P A C H E

When Rob McCool, who had developed NCSA HTTPd, left NCSA in 1994, the project fizzled out. Since
the source code was publicly available, many people using it had developed their own bug fixes and
additional features that they needed for their own sites. The patches were shared via Usenet, without any
centralized place for collecting and distributing these patches.

Brian Behlendorf and C liff Skolnick had put up a mailing list and Brain set up a CVS (Concurrent
Versioning System) tree, now anyone who wanted to could contribute new features and bug fixes. This led
to place where a group o f developers could collect and distribute the. patches and bug fixes. Thus came into
existence - Apache.

A N IN T R O D U C T IO N T O A P A C H E

Since it was a patchy Web server, the name APACHE got from A PAtCHy sErver. The Apache version
0.6.2 was released in April 1995. Currently there are two versions o f Apache available the first is
1.3.X .XX -X the most popular and tried and test and completely stable. Apache.org, the Apache website
indicates that there will be no enhancements made to 1.3.X .XX -X on bug fixes done. The second is
2.O.X.XX, which is the latest version of Apache, which is being constantly being bug fixed and enhanced
(when creating this material). Either version can be use as a full-fledged production Web Server when
required.

Apache is the hottest Web server for the Internet. Apache is the world's largest used Web server. Apache
is a freely available Web server. It can be downloaded from http://www.apache.org.

G E T T IN G S T A R T E D

D o w n lo a d A p a c h e 2

Download Apache2 from http://httpd.apache.org/download.cgi. In the Downloads section choose the
latest stable version of Apache available for download. At the time o f creating this material the latest
stable version o f Apache was apache_2.0.50-win32-x86-no_ssl.msi.

Apache 2.0.50 Is The Best Available Version

This, release fixes security problems described in CAN-2004-0493 and CAN-2004-0488. It also contains
bug fixes and some new features. For details see the Official Announcement and the CHANGES 2.0 list

Apache 2.0 add-in modules are not compatible with Apache 1.3 modules. If third party add-in modules are
currently being run using Apache 1.3, obtain new modules written for Apache 2.0 from that third party
before attempting to upgrade from Apache 1.3 to Apache 2.0.
□ Unix Source: httpd-2.0.50.tar.gz [PGP] [MD5]
□ Unix Source: httpd-2.0.50.tar.Z [PGP] [MD5]
□ Win32 Source: httpd-2.0.50-win32-src.zip [PGP] [MD5]
□ Win32 Binary (MSI Installer): apache 2.0.50-win32-x86-no ssl.msi [PGP] [MD5]
□ Other files

http://www.apache.org
http://httpd.apache.org/download.cgi

PAGE 316
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
CHAP 23

T h e A p a c h e 2 In s ta lla t io n P r o c e s s

Double click the apache_2.0.50-win32-x86-no_ssl.msi file

The Dialog box as seen in diagram 23.1 appears. Click I— Next > to proceed

A License Agreement o f Apache appears as seen in diagram 23.2. Select the option I accept the terms

in the license agreement and the click I __I to proceed further

¡W A pache HTTP Server 2 .0 - In s ta lla t io n W izard

License A g reem ent

Please read the foüownç license agreement carefully.

Apache License
Version 2.0, January 2004

http:-'Avww.apache.org/iicensesi

TERMS AND CONDITIONS FOR USE. REPRODUCTION AND DISTRIBUTION

License shall mean the terms and conditions for use. reproauction, and
distribution as defined by Sections 1 through 9 of this document.

<* I accept the te-ms in the license agreement

I do not accept the terms in the ícense agreement

Diagram 23.1: Welcome Screen oi Installing Apache Diagram 23.2: License Agreement Screen of Apache

4. A brief information about Apache HTTP Server is displayed as shown in the diagram 23.3. Click
N e x t > ~ |

5. The installation wizard prompts for server details such as the domain name, server name and the email

address o f administrator as seen in diagram 23.4. Fill in the appropriate details and click N e x t >

B S E
Read This First

Read this Before Running Apache on Windows.

Apache HTTP Server

What is it?
The Apache HTTP Server is a powerful and flexible HTTP/1 1 compliant web server ~
Originally designed as a replacement for the NCSA HTTP Server it has crown to be
the most popular web server on the Internet, As a project of the Apache Software
Foundation, the developers aim to collabor3tively develop 3nd maintain 3 robust,
commercial-grade. standards-based server with freely available source code.

Details of the latest version can be found on the Apache HTTP server project page
under:

http -Vhttpd apache org/

с Back Next >

A pad «* ИГЛ» S erver 2JD Xasbtiialton Wizard
Server In fo rm a tion

pieese enter vour server's information.

Network ßomain (e.g. somenet.com)

jsCTHome

Server Name (e.g. .

jvv'ivw iv a nba ■ ros s com

Administrator’s Email Address (e.g. webmaster©somenet.com):

jadmin^iv 3nfca. ross.com

Install Apache HTTP Server 2.0 orograms and shortcuts for:

<• for All Users, on Port SO, as a Service •- Recommended.

o ri'i for the Current User, on Port 3030, when started Manually.

< Back I Next > Cancel j

Diagram 23.3: The Screen showing the details of
Apache HTTP Server

Diagram 23.4: Server Information

If either o f this information is left blank the wizard will popup errors as seen in diagram 23.5.1 - diagram
23.5.3.

6. If no errors are encountered the wizard proceeds by prompting the setup type as seen in diagram 23.6.

Select the setup type as Typical and click I Nex* to proceed

CHAP 23 INSTALLING AND SETTING UP APACHE WEB SERVER PAGE 317

Ж -
Validation Error

You must fix the problem described below :o continue the ins taxation.

Dom ain H am e

The Domain Name entry cannot be left blank. Please ckk OK. ffl in the Domain
Name entry, and vou can then proceed with mstaflation.

: A p m h e HTTP Server 2.0 - inst dßatxm Wuanl

Validation Error

You must fix íhe problem described below to contnue the mstaOabon.

S e r v e r N a m e

The Server Name entry cannot be left blank. Please dick OK, fill in the Server

Name entry, and you can then proceed with installation.

Diagram 23.5.1: Validation error for Domain name Diagram 23.5.2: Validation error for Server name
Ш

Validation Error

You must fix the problem described be'=ow -to continue the installation. _

A dm in istrato r 's Email Address

The Administrator's Email Address entry cannot be left blank. Please dick OK, f8! m

the Administrator's Email Address entry, and you can then proceed with
instate toon.

jP'ApKfce HTTP Server 2.0 Instafebon Wizard

Setup Type

Choose the setup type that best suits your needs.

Please select a setup type.

Typical
Typical program features will be -retailed. (Headers and Libraries
for compiling modules w f not be installed.)

Choose which program features you want installed and where they

wiB be installed. Recommended for advanced users.

Diagram 23.5.3: Validation error for Email Address Diagram 23.6: Setup Type

7. The wizard will now prompt for the destination folder as seen in the diagram 23.7. Change the path if

required and click N e x t > to proceed

8. Finally the wizard displays the screen as shown in the diagram 23.8. Click
actual installation process

In sta ll to start the

A p a c h e HTTP S e r v e r 2 .0 - In s ta l l a t io n W iz a r d
Destination Folder

С be* Charge to T-staH to a different fo-ce-

m
Ire tail Apache rfTTP Server 2.0 to the folder:

C: -Program Res'Aoache Grouo'., Change... ~)

I < toe*. J 1 Car-:«

Ready to Insta ll th e Program

The wizard в read / to begin installation.

Click Instaï to begin the installation.

If you want to review or change any o f your tnstaBation settings, dick Bade. Click Cancel to
exit the wizard.

Diagram 23.7: Destination folder Diagram 23.8: Ready to Install

C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L ,

P A G E 3 1 8 J A V A S C R I P T , D H T M L A N D P E R L

9. The installation progresses as seen in diagram 23.9

10. riip k l Finish ltr , complete the installation as seen in diagram 23.10

Installing Apache HTTP S erver 2.0.50

The program features you selected are being installed.

Please wait while the installation wizard installs Apache HTTP Serve'
2.0.50. This may take several minutes.

Status:

updating component registration

i i i i i i i H i E s i a i t j i i i i i i i t i i c i s i E i s i i B

I n s t a l l a t i o n W iz a r d C o m p le te d

The Installation Wizard has successfully installed Apache HTTP
Server 2.0.50. Cbck finish to exit the ■.•vizard.

-.Bad- j{ Вгй Г i| Cancel |

Diagram 23.9: Installation in progress Diagram 23.10: Installation complete

This concludes the actual installation process on the computer’s
HDD. Apache now needs to be configured so that it knows each and
very virtual domain created under it. Diagram 23.11.1 : Apache2 Icon

T e s t in g A p a c h e 2

Once the installation is complete an icon as seen in
diagram 23.11.1 comes up showing the apache2
status. This icon allows starting, stopping and
restarting of apache server as and when required'
The web server can be tested by pointing the web
browser to the url http://l27.0.0.1 If a screen as
seen in diagram 23.11.2 is displayed then the
installation was successful.

D IR E C T O R Y T R E E S T R U C T U R E O F
A P A C H E.

Once Apache is installed, its installation process
creates several sub-directories under its root directory.

I f Apache is installed in C:\, the installation process would by
default place the Apache executables in C:\Program Files\Apache
Group\Apache2.

The sub-directories are as seen in diagram 23.12:

Once the Apache executables are installed and its directory tree
structure has been created and populated through its install process,
it is necessary to configure Apache to work on the computer on
which it is installed. There has to be specific entries made into
several Apache files to make Apache run successfully. Appropriate
entries should be made in its httpd.conf, access.conf, srm .conf
(conf-iguration) files.

Diagram 23.12: Directory Structure

B W’indovvsXP (C :)

S £ 3 P ro g ra m Files

6 A p ac h e G ro u p

0 ¿ 3 A p a c h e 2

00 (¿2) bin

I t " ! cg i-b in

¿ 3) c o n f

S3 e rror

i c 3 h td o c s

SB ¿ 3 icon s

¡ ¿ 3 include

£ 3 lib

l£j| toQS

ffi m an u a l

lr^*l m o d u le s

-¿I Test Page for Apache Installation Microsoft In u rnot Explorer

Ffc Ей! Vie-v ravnnte*

-j - . *• ; ■i. :• : :
Ь £ í r

Q.So

S e e in g t h i s in s t e a d o f t h e w e b s i t e y o u e x p e c te d ?

This page is here because die site administrator has changed die configuration of this web server

Please contact the person responsible for m aintain ing this server with questions. The

Apache Software Foundation, which wrote die web server software this site administrator ii

using, hns nodiingjo do tvrtli maintaining diis site and cannot help resolve configuration issues

The Apache documentation has been induded with this distribution

'l'on are fiee to use ihe anftge below on an Apache-pow ered web server Thanks for using

Apache'

Diagram 23.11.2: Apache Testing Via I.E. 6

http://l27.0.0.1

CHAP 23 INSTALLING AND SETTING UP APACHE WEB SERVER PAGE 319

y|lo ie —

In previous versions of Apache for example Apache l.3.3 entries have to be made in all the three
configuration files i.e. httpd.conf. access.conf and srm.conf. But since the later versions for
example Apache 1.3.6 onwards, entries have has to be made in only one configuration file, i.e.
http.conf. This file includes the data of all the other files i.e. access.conf and srm.conf.

All these files will be available in the conf sub-directory located under:
C:\Program Files\Apache Group\Apache2

C O N FIG U R A T IO N O F A P A C H E S E R V E R

When learning web page creation very often Apache server is loaded on the very same Windows XP
computer on which the web pages are designed, for testing them. This enables the web page creators to
physically check to see what the web pages would look like and behave before being mounted on an
Internet based server.

With this in mind, the following must be done
on the computer.

Locate the Hosts file available under
C:\WINDOWS\system32\drivers\etc. This
file is a pure ASCII file. This file will be used
to hold the IP address and name o f the local
machine.

Open the Hosts file in NotePad and make the
following entries: (Refer diagram 23.13)

i p . A d d r e s s H o s t n a m e
(A Tab s e p a r a t e s . these two e n t r i es)

1 2 7 . 0 . 0 . 1 w w w . i v a n b a y r o s s . c o m
(This can be any name of choice)

From now on, if Apache is passed the ip address 12 7 .0 .0 .1, (the name localhost) or www.ivanbayross.com
Apache will understand that a reference is being made to the same computer on which it is installed, which
has a virtual domain named ivanbayross.com hosted on it.

S E T T I N G S T O B E M A D E IN T H E H T T P D .C O N F F IL E

The main configuration file o f Apache is httpd.conf, which contains directives written in plain text. The
location o f this file is set at compile-time.

Any directive may be placed in any of these configuration files. Apache is pretty flexible like that. Changes
made to the main configuration files are only recognized by Apache when it is started or restarted. If any
configuration file is actually a directory, Apache will enter that directory and parse any files (and sub
directories) found there as configuration files.

Apache works best if there is only one configuration file used and all its directives are placed in that file
(i.e. httpd.conf). Apache also reads'a file containing document mime types. This filename is set by the
TypesConfig directive, and is mime.types by default.

Apache configuration files contain one directive per line. If a directive must continue onto the next line use
back-slash ‘V as the last character on the previous line.

Í hosts Notepad . | w lj6 ;SR|

file Ecfct Fair-at view Hes>
3 Copyright •/c) 199S-1999 Microsoft Corp.

=• This is 5 sample host? f i ls used by r-’icrosoft tcp ip for .%irdo.s.

= "his f i ls contains the mappings of IP addresses to host naires. Each
- entry should be kept on an individual line. The IP address should
=• be placed in the first colun-r followed bv the corresponding host
name.
= The ip address and the host r?*e should be separated by at least
one
* space.

» Additionally, consents Csuch as these' may be inserted on
indi' idual
* lines or folio» ing the caching na-re denoted by 5 = sy’bojl.

= For example:

102.5-.9-.9~ rhino.acme.corr = source server
3S.2S.6S; 10 x. acre, co ̂ = x client host

12".0.0.1 localhost12". 0.0.1 iv<v.. i vanbayross. cor

Diagram 23.13: hosts file

http://http.conf
http://www.ivanbayross.com
http://www.ivanbayross.com

Directives in configuration files are case-insensitive, but arguments to directives are often case-sensitive.
Any line beginning with a hash (#) character is ignored. Blank lines and white spaces before a directive are
ignored. Configuration files can be checked for syntax errors without starting the server by using
apachectl configtest or the - t command line option.

U n d ersta n d in g S o m e Im p o rtan t E n tr ie s In H TTPD .CO N F F ile

G lo b a l S e t t in g s

ServerRoot C:/Program Files/Apache Group/Apache2
This sets the absolute path to the server directory. Generally, the argument o f ServerRoot should be the
path to where Apache is installed.

ErrorLog logs/error.log
CustomLog logs/access.log common
The various directives that end in Log control indicate whether log files exist at all. These directives also
indicate exactly where the log files exist on the file system.

PidFile logs/httpd.pid
It is a file in which the server should record its process identification number when it starts.

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, n u . D
PAGE 320 JAVASCRIPT. DHTML AND PERL CHAP 23

ScoreBoardFile logs/apache runtime status
It is a file used to store internal server process information. Not all architectures require this. But if local
architecture does (This will be known because this file will be created when Apache is run) then ensure
that no two invocations o f Apache share the same Scoreboard file.

Timeout 300
Indicates the number o f seconds before Apache receives and sends a time out.

KeepAIive On
Indicates whether or not to allow persistent connections (more than one request per connection). Set it to
O ff to deactivate.

MaxKeepAli veReq uests 100
Indicates the maximum number o f requests to allow during a persistent connection. Set it to 0 to allow
an unlimited amount. It is recommended that this number is set high, for maximum performance.

KeepAliveTimeout 15
Indicates the number o f seconds to wait for the next request from the same client on the same connection.

ServerAdmin admin@ivanbayross.com (As specified during the install process)
Accepts the Email address, where problems with the server should be e-mailed. This address appears on
some server-generated pages, such as error documents.

ServerName www.ivanbayross.com:80 (As specified during the install process)
This sets the hostname the server will return. Set the name of the server using the ServerName directive.
This is especially useful when the computer has multiple names or IP addresses.

D ocum entRoot C:/Program Files/Apache Group/Apache2/htdocs
This indicates the absolute path o f the document tree, which is the top directory from which Apache will
serve files. The DocumentRoot is the root o f the Web tree and it defaults to C:/Program Files/Apache
Group/Apache2/htdocs. Assuming that Apache is installed in C:/Program Files/Apache
Group/Apache2/, this can be changed if required.

mailto:admin@ivanbayross.com
http://www.ivanbayross.com:80

CHAP 23 INSTALLING AND SETTING UP APACHE WEB SERVER PAGE 321

D irectorylndex index.html ¡ndex.htm index.shtml index.php index.php4 index.php3
index.phtml index.cgi

Specifies the name o f the file or files to use as a pre-written HTML. Separate multiple entries with spaces.

Alias /icons/ "C:/Program Files/Apache Group/Apache2/icons/"
ScriptAlias /cgi-bin/" C:/Program Files/Apache Group/Apache2/cgi-bin/"
These both map a URL path to a directory on the server.

Additional options can be added to directories using <Directory> and Options directives. <Directory> is a
container directive. Container directives enclose multiple lines in the config file. They require a closing
directive o f the form </Directive>.

Aspects o f Apache’s behavior can be controlled on a per-directory or per-filename basis using <Directory>
and related <FiIes> and <FilesM atch> directives. Directives placed between <Directory></Directory>
apply to sub-directories as well. What options are allowed in a directory can be controlled using the
Options directive. Possible values to an Options directive are given below with brief descriptions:

Option Brief Explanation
ExecCGI CGI scripts can be run from this directory tree
FollowSymLinks The server will follow symbolic links in this directory
Includes Server-side includes are permitted
IncludesNoEXEC Server-side includes are permitted, but the #exec command and #include of CGI

scripts are disabled
Indexes If a URL. which maps to a directory is requested, and there is no Directorylndex

(e.g, index.html) in that directory, then the server will return a formatted listing of
the directory

MuItiViews Content negotiated MuItiViews are allowed
SymLinksIfOwnerMatch The server will only follow symbolic links for which the target file or directory is

owned by the same user id as the link
All Everything except for MuItiViews. This is the default value

Apache allows for decentralized management o f configuration via special files placed inside the web tree.
The special files are usually called .htaccess. but any name can be specified in the AccessFileName
directive.

Directives placed in .htaccess files apply to the directory where the file is placed, and all sub-directories,
.htaccess files follow the same syntax as main configuration files. Since .htaccess files are read on every
request, changes made in these files take immediate effect. What directives may be placed in .htaccess
files can be controlled by configuring the AllowOverride directive in the main configuration file
httpd.conf.

These were the some o f the default settings provided by Apache2. No changes are made in this file vet.

V IR T U A L H O S T S

The VirtualHost directive in the httpd.conf configuration file is used to set the values of ServerName,
DocumentRoot, ErrorLog and TransferLog or CustomLog configuration directives to different values
for each virtual host.

Multiple websites can be served from one computer, when they have different hostnames. Each host name
that is served from the single computer (that hosts them all), is referred to as a virtual host. There are two
ways provided by Apache for setting up virtual hosts on a single computer, IP basedand Name based.

IP based virtual hosts use the IP address of the connection to determine the correct virtual host. Hence, a
unique IP address is required for each host.

With name based virtual hosting, Apache Web server relies on the client to deliver the hostname as part of
the HTTP headers sent to Apache. Using this technique, many different virtual hosts can share the same IP
address. Apache will do its own name resolution from the HTTP headers sent by the client’s Browser.

DA„ , , , COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, _ HAp „
PAbt 322 JAVASCRIPT. DHTML AND PERL

C aution,

(J j)
Older browsers do not support delivering a hostname with their HTTP headers. This is not part
of their H TTP 1.1 header encoding. Hence these browsers will only work with IP based virtual
hosts.

Apache can be configured to support multiple virtual hosts either by running a separate httpd daemon for
each hostname, or by running a single httpd daemon, which supports all the virtual hosts.

If separate httpd daemons must be run for each host, separate installations o f Apache for each virtual host
have to be created. For each installation, use the Listen directive in the httpd.conf configuration file to
select which IP address or virtual host that daemon services

For example, Listen 192.168.0.1:80.

A single http daemon can also be used to service to the main server and all its virtual hosts.

Name Based Virtual Hosts

Using the new name based virtual hosts is quite easy, and superficially looks like the old method. The
notable difference between IP-based and Nam e-based virtual host configuration is the
NameVirtualHost directive, which specifies a single IP address that should be used as a target for name-
based virtual hosts.

For example, suppose that both sct.perlproj.com and sct.phpproj.com point to the IP address 172.16.9.66.
Then simply add the following to the Apache's httpd.conf:

NameVirtualHost 172.16.9.66
<VirtualHost 172.16.9.66>

DocumentRoot c:\sct\perlproj
ScrvcrNamc sct.perlproj.com

</VirtualHost>
<VirtualHost 172.16.9.66>

DocumentRoot c:\sct\phpproj
ServerName sct.phpproj.com

</VirtualHost>

The Following entries should be appended to
the hosts file available under
C :\W IN DO WS\sy stem 3 2\dr i vers\etc
directory:

172.16.9.66 scLperlproj.com
172.16.9.66 sct.phpproj.com

To test the name based virtual host settings create an index file in the root o f each host as:

Index.html at c:\sct\perlproj\
<H T M L >

<H E A D ><TTT LE >S C T PERL P ro je c t< /T IT L E > < /H E A D >
<B O D Y > T h is is PERL P ro je c t< /B O D Y >

< /H T M L >

Eat Pomwt v *v. "«ip

= T he f i r s t v i r t u a l host : s e c t i o n i s u s e d f o r r e q u e s t s

«virtualHost • :80>
s e r v e r A d m in k ve b rp as te r^d um m y - b o s t . e x a m p le , c o p

Do c u m e n tR o o t . v.\, d o c s d u n m v - b o s t . e x a m p le , com

See - erN am e d u m m y - h o s t ,e x a m p le .c o n

host.example, -e-'or_log
customLog logs dur*y-host. example.coir-access_Tog

e virtualHost >

¿dded By vaisbali si-an For Name Based virtual Host
NameVirtualHost i~Z.16. 9. 66
■cvirtualHost 1 "1.16.9.66'-

D o c u m e n tR o o t c : . s c t p e r l p r o i

S e n . e r N a r e s e t . p e r l p r o i . com '< virtualHost*

•virtual Host 1~:.16.9.66>
D o c u m e n tR o o t c : s e t p h p p r o i

serv-erN aw e s e t . p b p p r o j .c o m

< virtualHost>

i t b o u t a k no w n a.

Diagram 23.14: hosts file with name based virtual hosting

CHAP 23 INSTALLING AND SETTING UP APACHE WEB SERVER PAGE 323

Index.html at c:\sct\phpproj\

<H T M L>
< H E A D > < T IT L E > S C T PHP P ro je c t< /T T T L E > < /H E A D >
< B O D Y > T h is is PHP P ro je c t< /B O D Y >

< /H T M L >

Point the browser to both the URLs, i.e. one at a time as seen in diagram 23.15.1 and diagram 23.15.2

' Э S C T P E R L P ro je c t - M ic ro s o f t In te r... a i a i a

File Ed it View Favorite s Tools Help

o : & - a æ ; , e

A d d re s s h t tp : / / s c t . p e r lp r o j . c o fn / v G o

»

L m ss

This is PERL Project

P H P P ro je c t - M ic r o s o f t In te r... j - jf j o y k j ;

-‘A 0

A d d re s s I h t t p : / / s c t . p h p p r o j . c o m / ,v a G o ¡ J r f c

This is PHP Project

D one

Diagram 23.15.1: Testing PERL project

A P A C H E M O D U L E S

Diagram 23.15.2: Testing PHP project

Apache modules are code segments that are written to work with Apache because they are written using
Apache’s API specifications. They can be loaded statically into the Apache Web server executable by
being added using appropriate instructions 'when compiling the Apache source files on Linux. The tool
called apxs (APache extension) tool, allows the building and installation o f an Apache extension module
during source compile time.

Alternatively Apache modules can be dynamically loaded via Apache‘s httpd.conf configuration file, also
known as DSO (Dynamic Shared Object) loading, which is a fine feature o f Apache.

DSO allows the extension of the features and capabilities o f Apache by adding specific modules on
demand, without recompiling Apache’s binary executable. Use the LoadModule directive placed within
Apache’s httpd.conf file to load a Dynamic Shared Object into the Apache Web Server namespace at
startup time.

For all this to work properly the O/s platform on which Apache is installed has to support DSO features and
the Apache httpd binary has to be built (i.e. compiled from source) along with the mod_so module.

C h a n g e s in th e h t tp d .c o n f F ile F o r T h e F ra m e w o rk

Create a directory called wampp under C:\sct.

The following entries should exist in the httpd.conf file, found in, conf directory:

Serv erN am e 1 7 2 . 1 6 . 9 . 6 6 (Here enter the actual IP o f the host computer this IP is the one we used)
NameVirtualHost 1 7 2 . 1 6 . 9 . 6 6
<VirtualHost 1 7 2 . 1 6 . 9 . 6 6 >

ServerAdmin webmaster@sct .com
DocumentRoot c:\sct\wampp
ServerName sc t .wampptraning.com

</Vir tualH ost>

http://sct.perlproj.cofn/
http://sct.phpproj.com/
mailto:webmaster@sct.com

C O M M E R C I A L W E B A P P L I C A T I O N D E V E L O P M E N T U S I N G H T M L , r u / , D „

P A G E 3 2 4 J A V A S C R I P T , D H T M L A N D P E R L C H A P 2 3

S a m p le O f T h e h o s t s F ile F o r T h e F ra m e w o rk

The Following entry should be appended to the hosts file, found in, /etc directory:

172.16.9.66 sct.wampptraning.com

R e g is te r in g T h e C h a n g e s M ad e In T h e h ttp d .c o n f W ith A p a c h e 2

<i) A p a c h e 2 ►

After making any changes to the httpd.conf ensure that Apache is
restarted to apply the new changes. This can be done by using the icon
on the task bar: (Refer Diagram 23.16)

Diagram 23.16: Restarting
S E L F R E V IE W Q U E S T I O N S Apache2

FILL IN THE BLANKS

1. Configuration files can be checked for syntax errors without starting the server by using
 . or the____________ command line option.

2. The______________and __ ________________ directives map a URL path to a directory on the server.

3. <Directory> is a ______ _________directive.

4. Apache modules are code segments are written using_________________________ specifications.

5. T h e_______________ and____________________ directives indicate the Server-pool size regulation.

6. The_____________________indicates the absolute path of the document tree.

7. Apache 2.0.50 fixes security problems described in ________________ and____________ ;_______ .

8. T h e______________________ directive indicates the number o f seconds to wait for the next request from
the same client on the same connection.

9. T h e ____________________tool allows the building and installation of an Apache extension module
during source compile time.

TRUE OR FALSE

10. Apache and either MySQL are from the open source domain.

11. The latest version o f Apache is 1.3.X.XX-X,

12. Apache 2.0 add-in modules are compatible with Apache 1.3 modules.

13. The various directives that end in Log control indicate whether log files exist at all.

14. Apache disallows decentralized management of configuration via special files placed inside the web
tree.

15. Multiple websites can be served from one computer, even if they have different hostnames.

16. A unique IP address is required for each host.

17. The ServerAdmin directive sets the hostname the server will return.

18. The ServerName accepts the Email address, where problems with the server should be e-mailed.

19. A Web server (Apache2) cannot communicate directly with a database management system (MySQL).

С . P R O J E C T S IN P E R L

B U IL D IN G A W E B S I T E R E G IS T R A T IO N S Y S T E M

Since the learning o f PERL is now completed, it is time to consolidate this learning by building a few
utilities that would be excellent additions for any web site. Such as:
□ A Web Site Registration system

■ A Login Page, mapped to challenge and reply sub-system
□ A Pen Pals system
□ A Guest Book

W e b S i t e R e g is t r a t io n

Many web sites require a site visitor to register with the site before being given access to all the sites
resources. Being able to create a web site registration system to handle this will strengthen the PERL skills
acquired earlier.

A registration form is used to capture,
validate and store required visitor data at
the Web site. The same storage system will
be used to validate a user, when the user
tries to login again to access the Web site’s
resources. To register, the HTML form
show in diagram C. 1.1 is used.

This form captures two blocks of
information.
□ A visitor’s Login ID and Password used

to access web site services in future
□ The services that the visitor wishes to

sign up for

There is some data validation done at the client’s browser. This is handled by Java Script embedded within
the HTML page run on the client. Valid data received from the client browser is processed at the Web
Server using PERL codebase contained in a file.

After this information is processed at the Web server it is stored on the Web server’s hard disk for future
reference in a Text file in PERL.

T h e U s e r In te r fa c e

Has three buttons, they are:
Submit Submits form data to the Web server for further processing
Reset Clears the data keyed in form
Abort Moves the user back to the web sites Home page from the current form

SiJicon.Cbip Technologies , , . .
K e g i w v F u r O u r

Login Nam e:'

E-M ail A ddressrf

Password:)'

Confirm Password:!

PA5SW O «(l run Fr-

S e l e c t Frouci T h e S p r e a d B e l o w

Peu Pals P News Letter P

Submit | Reset j Ahort j

Diagram C. 1.1: The Registration User Interface

PAGE 326
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT. DHTML AND PERL

M e s s a g e O f T h a n k s

A HTML page, which is a message of
THANKS, is returned to the client browser
when the Goodies Registration information
is successfully received, processed and
stored at the Web Server as shown in
diagram C.1.2.

This form has a Home button, which takes
the user back to the web sites Home page.

In C a s e O f A n E r r o n e o u s

S u b m is s io n Diagram C.1.2: Message O f Thanks HTML Page

If a client submits registration data, and an
error occurs, such as a duplicate data being
submitted, this error is trapped and a
suitable E rror message HTML page is
dispatched back to the client's browser as
shown in diagram C.1.3.

This form has a Back button, which takes
the user back to the registration form, from
where the data was submitted.

Diagram C.1.3: The Duplicate Data Entered HTML page
In C a s e O f O th e r E r r o r s

In case of any other type of error, the HTML
page, as shown in diagram C. 1.4. is
displayed.

T h e D ata S to r e d

The data captured by the User Interface is
stored in a simple text file on the Server’s
HDD by PERL codebase.

The text file stores details such as:

The data captured by the user interface must be
stored in a Text file table on the Web server’s
hard disk.

name Name o f the visitor who has registered
email id The Email Id o f the visitor
password The password of the visitor
newsletter A service for w'hich the user has registered
penpals A service for which the user has registered

t icon.Chip Technolqojes ^ i*
egi&tér У or a w

C u r r e n t l y th e re is a p r o b le m w i t h th e s e r v e r

P le a s e re s e n d y o u r m e s s a g e in a n h o u r

Diagram C.1.4: Non duplicate Entry Error Message

Silicon,Chip T̂Hnoloqies ̂ ,,
K p p tm C ita

The I.fjgin ID and Password submitted is already registered with this Web Site.

This is a duplicate entry and hence not accepted.

l h a n k Y o u !

Y o u r in fo r m a t io n h a s b e e n re g is te re d !

E nter Pen Pals
-■ 'rr-'i = V. iil * -•'u; s&cnth. m shftrarmms {-• hotmaa co in

Hom e |

PROJ- С PROJECTS IN PERL PAGE 327

W E B S I T E L O G IN

Whenever a user attempts to log into the web site and use any of its services for which prior registration is
required, a login, challenge / response, system goes into action. This starts by a login page being sent to the
user’s browser by the Web server.

The Login form, another very commonly found HTML form on an interactive Web site, is used to allow
registered users (i.e. users registered via the Register Form dealt with earlier) to login and access the
services provided by the Web Site.

Once the Login name and Password of a registered user is validated, instant access to the site’s services is
available.

M o t e

The Login form also allows an unregistered visitor to immediately register for the services that the
web site provides.

This form captures the visitors Login ID and Password and returns this to the Web server for further
processing at the Web server end.

Server side PERL code is required to
process the data returned by the Login form.

S e r v e r S id e P r o c e s s in g In B r ie f

Essentially, the Server side, PERL code, for
the login page will compare the form data
submitted against data already stored in a
Text file thus validating the data submitted.
The Text file is where the Login IDs and
Passwords o f all registered users are stored.

C lie n t S id e P r o c e s s in g In B r ie f

Client side data validation is done via Java
Script embedded in the HTML page. The
Java Script ensures that the user leaves none
of the mandatory text boxes empty. That the
Email ID entered contains at least one @
and one period (.)!

After this client side data validation the
Login form data is dispatched from the
user’s browser to the Web server for further
processing.

A Login form created captures:
□ The Login ID of a user
□ The Password o f a user

The Login form is as shown in diagram

C.2.1.

Silicon, Chio Technologies
login \ m m m

Your Login :

Your Password :

SUBMIT RESET |

Diagram C.2.1 : The Login User Interface

Sorn vour login and password does not exist.

Diagram C.2.2: The Error Message HTML page

PAGE 328
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
PROJ- С

T h e U s e r In te r fa c e

Has three buttons, they are:
Submit Submits Login form data to the

Web server for further
processing

Reset Clears the data keyed in the
Login form

Sign Up! Opens the registration form to
register with the Web site as
shown in diagram C.2.1

SiJicon.Chip Tecjinolaqes ^
H m s w m ö u v Q m i m

C u r r e n t l y t h e r e is ¡i p r o b le m w i t h th e s e rv e r

P le a se r e s e n d y o u r m e s s a g e in a n h o u r

Diagram C .2.3: The Error Message HTML page

The data captured by the Login form is
verified against data held in the registration
Text file. If the Login name is entered
correctly then the Password for the
corresponding Login name is checked.
Access to web site resources is allowed only if the combination is correct.

In C a s e O f A n E r r o n e o u s S u b m is s io n :

If the Login ID and password provided do not match with the ones present at the Web server (i.e. the Login
ID / Password has not been registered earlier) then an Error message HTML page is displayed as shown in
diagram C.2.2.

This form has a Back button, which takes the user back to the web site’s Login Page. As mentioned earlier
from the Login page New Registrations are accepted.

In C a s e O f O th e r E r r o r s

In case of any other type of error a form is displayed as shown in the diagram C.2.3. This is to indicate
some kind of error, other than the Login ID and Password not being registered with the Web site, has
occurred.

This form has a Home button, which takes the user back to the web site’s Home Page.

T h e W e lc o m e U s e r HTM L P a g e

After submitting the Login ID and Password
and if both are registered with the Web site
then the user is presented a Welcome page.

This page has links to Enter Pen Pals or
Sign Guestbook of the website. Via this
page a user can logout by clicking the
Logout button, which logs out a user and
takes the user back to the web site, Home
page.

Silicon.Chip Technoloqjes ^ ..Register FwauvGwKtes

W e lc o m e s h a r a n a m

Enter Pen Pals

Щ Ш Ш И

Logout

Diagram C.2.4: Welcome Message HTML page

PROJ - С PROJECTS IN PERL PAGE 329

P E N P A L S

Building an interactive Pen Pal service for a Web site is another exercise in strengthening PERL skills
learned earlier. Several PERL programs, placed on a Web server, are responsible for making the pen pal
service work properly. Using this service, visitors can post their Name, Email id, Sex, Date o f birth,
Interests and Hobbies on the Web Site.

Other site visitors can then refer to these pages and send emails to individuals whose Age, Sex, Interests
and other criteria either match up or are interesting.

There is some data validation done àt the client browser. Java Script embedded within the HTML page run
on the client handles this. Valid data dispatched from the client is then processed at the Web server through
PERL code spec. After processing the data returned by the visitor’s browser, it is stored either in a Text file
on the Web server’s hard disk for further reference.

Visitors to the site view pen pal information via PERL code spec. The PERL code spec first dispatches an
HTML page to a client browser that captures an Age range, Sex, Interests and other such information,
which will then be matched in the Text file.

If several matches are found they are properly formatted and returned back to the browser that requested for
such information as an HTML page. Site visitors then read through these pages and can send Emails
anyone whose Age, Sex, Interests and other
criteria are of interest.

To post Pen Pal Information on the Web Site
a simple HTML form needs to be filled in
with details as shown in diagram C.3.1.

T h e U s e r In te r fa c e

Has three buttons, they are:
□ Submit submits form data to the web

Server for further processing
□ Reset clears the data keyed in the form
□ Abort moves the user back to the Home

page from the current form

M e s s a g e O f T h a n k s Diagram C.3.1: The User Interface

A HTML page with message o f THANKS is
displayed when pen pal information is
successfully submitted as shown in diagram
C.3.2.

This form has a Home button, which takes
the user back to the Home page.

A (oie — — ----

This form has a View button via
which Pen Pal listing can be
viewed.

Silicon Chio Technologies ,
reu Pal taw m atiw

Thank You !

Y o u r i n f o r m a t i o n h a s b e e n r e g is t e r e d !

View Home

S i l i c o n C h i D T e c h n o l o g i e s .

F 4 ? t t Ï 4 M I I n t w m a t « * « *

Please enter your name

Please enter your Е -М аЗ address
I--------- ----------

P lease enter yenar D O B us D P М М Т П Г

Submit I I Abort |

T lia o k Y o u F o r S lo p p in g B> O ur W e b S il *

Diagram C.3.2: The HTML Thanks Page

In C a s e O f
S u b m is s io n

PAGE 330
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT, DHTML AND PERL
PROJ- С

A n E r r o n e o u s

If a duplicate entry into the Penpals list is
attempted, this is trapped and a suitable
E rror page is displayed as shown in the
diagram C.3.3. This form has a Back
button, which takes the user back to the
Penpals registration form, from where the
data was submitted.

In C a s e O f O th e r E r r o r s

In case of any other type of error, a suitable
Error page is displayed as shown in the
diagram C.3.4. This is to indicate some kind
of error other than the Duplicate Record
error.

D ata S t o r a g e S y s te m

The data captured by the User interface is
stored in a simple Text file on the Web
server’s HDD by PERL code base.

The Text file stores details such as:

Silicon Chic Tautologies ,

M m M

The Name and the Email address submitted is already registered ¡is a pen pals

entry. I'lm is a duplicate entry and hence not accepted

Diagram C.3.3: Duplicate Data Message

Silicon Chin Technologies
m h i law m atw

Currently there is a problem with the server
Please resend your message in an hour

Home

Diagram C.3.4: HTML Error Page

Memory Variable W hat it holds
postdate The Date on which the Peri Pal Information was posted
(Pen Pal Information is valid for one year from the first date o f placement)
name The Name of the visitor who has placed the Pen Pal Information
emailid The Email id to which replies must be sent
sex The Sex o f the visitor
Sex [Male / Femalel is captured by radio buttons hence no validation code required
dob The Date o f Birth o f the visitor
age The Age o f the visitor
dtls The Pen Pal Information entered by the visitor
moreinfo A flag storing information about visitor’s choice to subscribe

N o t e

PERL code base on the Web server actually calculates the Age of the visitor on the basis of data of
birth dynamically when required. _____________________________

PROJ- С PROJECTS IN PERL PAGE 331

V ie w P e n P a l In fo rm a tio n

After pen pal information has been
successfully added. View the data submitted
by clicking on the View button as shown in
diagram C.3.5. Prior viewing the contents of
the Pen pals, there is a filter page that allows
a viewer to filter Pen pal information
retrieved based on:

Sex A g e _

Using this filter a viewer can view the pen
pal information of choice.

P e n P a l
F o r m a t

In fo rm a tio n D isp la y

The Email ID o f the pen pal appears as a hot
spot on top o f the general comments

retrieved and displayed from the text file as
shown in diagram C.3.6. This makes it
convenient to write to a pen pal through the
pen pal Information page.

Pen pal Information remains on display for a
maximum period of one year. Hence, the
date on which the information was first
received must be stored.

T h e U s e r In te r fa c e

Has two buttons, which are:

Silicon Chip Technologies

Ы t o w w a t ö w

Stiert о Ptttpal of your choie*.
Sex: r M ole Fern a]«

Att: |2l-30 »j

Click on S ubm il I Jw

Diagram C.3.5: View Pen Pal Information HTML Page

Silicon Chio Technologies .

p e n C a t t o f a v n w t w n

•' ‘i 7 :гТаS’- * — ;fl
H: ‘ - ’■ и • ’ ifM 2 < ! -v--;

U ; jE t s « b a t f Ixtu ¡ i

•¿k-v

Skx : F candi -Vjft Oruup: 11 Mj

n w t з м -л ¿ . i frr \r. >. *■ b*¡-fv V.4& • i v w a r h e r a i seu s A * w o rk i

:-мщ!•«!. :ú? bsày anirâni? and\nt wüdmtzara*

Ч- î ' . îm v - : * « ■*•= * e r . . - . b i t ; ? ví* i y. i ' r ,y î:> » > b y I « r - t é i e fc* u> a u k * < m tu is w e h h m w warn l a r e

- T • -¿r : * i ir. r ás» 3 y ja r í i ¡ t* '■ Аr:r.'-rr a w r j t ft i с r t s * . m s p a s âw œ a s tгг. r n a i ж.

Diagram C.3.6: Display O f Pen Pals Information

Re-Search Takes back to the Search Form as seen in diagram C.3,5
Logout Logs out and takes to the index page o f the web site

G U E S T B O O K

A Guest Book is used to store comments that
a visitor may have regarding the web site.
The comments can help improve the
functionality o f a web site.

Since the HTML form captures user
information, there is a small amount of data
validation to be done on the client. Java
Script embedded within the HTML page, run
on the client’s browser, handles the data
validation. The data is then returned to the
Web server. This data is appropriately
processed at the Web server through PERL
code spec.

P le ase take a fe w m om ents to let us k n o w y o u w e re here today.

P lease G iv e Us Y o u r N a m e

I-------------------------

P lease G iv e U « Y u u i E iim il A d . l i c s .

I------------------ --- ----

Bouque ts O r B r ic k b a ts A re W e lc o m e ■ _ j

-d

('a n w e eontnct you w ith in fo rm a tion abo u t o u r p ro duc ts o r se rv ices .

r~ Y e s 1 «• N o . Thui»k=!

| Subm it | R ese t j Abort |

T h a n k Y o u F o r S to p p in g B y O u r W e b S ite

Diagram C.4.1: The User Interface

PAGE 332
COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT. DHTML AND PERL
PROJ- С

Server side PERL code accepts input from the client browser and writes (appends) this input to a Text file
on the Web server’s hard disk for future reference.

An HTML form is created which captures
the following:
□ Visitors Name
□ Email address
□ Visitors comments

M e s s a g e O f T h a n k s

T h e U s e r In te r fa c e

Has three buttons, which are:

A HTML page with a message of
'Thanks! Your comments have been
registered.' is displayed when Guest Book
information is successfully submitted as
shown in diagram C.4.2.

This form displays a Home button, which
takes the user back to the web site's Home
page.

Submit Transfers Form data to the Web Server for further
processing

Reset Clears the data keyed in the form
Abort Moves the user back to the Home page from the

current form and does not send anything back to
the Web server for processing

In C a s e O f A n
S u b m is s io n

E r r o n e o u s

I f while submitting the form an error occurs,
this error is trapped and a suitable Error
page is displayed. Refer to diagram C.4.3.

This also has a Home button, which takes
the user back to the Home page.

D ata S t o r a g e S y s te m

The data captured by the U.I (User Interface)
is appended and stored in a simple Text file
on the Server’s HDD by PERL code base.
When required by the website administrator,
the text file is downloaded from the Web
server using FTP, and its contents are read in
an ASCII editor and viewed. If there is
sound criticism the Web site is updated as
indicated. If major site errors were pointed
out, the visitor should get a message of
thanks.

The text file stores information such as:

Diagram C.4.2: Message of Thanks

Currently there is a problem with the server

Please resend your message in an hour

Diagram C .4.3: Error Message

Form Variable Name Purpose
postdate The date on which the visitor keyed in the comments
name The name o f the visitor who keyed in the comments
emailid The Email Id o f the visitor
comments The critique keyed in by the visitor
moreinfo A flag storing information about visitor’s choice to subscribe

P R O J - С PR O JE C T S IN PERL PAGE 333

U N D E R S T A N D IN G T H E W E B S IT E R E G IS T R A T IO N S Y S T E M

T he F ra m e w o rk O n W h ic h A W e b S ite R e g is t r a t io n S y s te m Is B u ilt

The Web Site Registration system is developed using HTML forms as its front-end. JAVASCRIPT as
the client side scripting language. PERL as a server side scripting language. Text files are demonstrated

as back-end storage systems o f choice. The system runs on an Intranet, composed of Windows based

clients and a Windows XP server. The Web site registration forms can be called from any Windows based

client on the Intranet. An Apache2 Web Server, running on the Server, services all the clients on the

Intranet. PERL scripts do all data processing at the Web server.

M o d u le s U nd e r T he W e b S ite R e g is tra t io n S y s te m

The system consists o f the following modules:

□ Web site registration module

□ Login challenge and response module

The following services are accessible via the above modules:

□ Pen Pals

□ Guest book

Described below is the directory tree structure, created under c:\sct\, which will hold the files used by each

module in the web site registration system.

A p p ro a c h

The web site registration system has been build using the PERL server side scripting languages and

FLAT/Text files as the type o f storage systems.

D irec to ry S tru c tu re

Diagram C.5.1 E Q s cx<r
describes the E3 !_ j oerlproj«
directory -,

3 C Q - O i n
structure

created, on the

Directory* under A pache h o ld in g Project F iles

H o ld s the W e b Site Registration System F iles

H o ld s Perl File? w h ich use text files for data storage

HDD, in which

the web site

registration

system was set

up.

□

. ~‘t data ^

htrvd

text

imaçes <■

H o ld s Flat F ile s where the data is actually stored

^ H o ld s H T M L F iles w hich call P E R L scripts w hich, use text files fo r data storage

H o ld s C o m m o n Im age s Required in a .g if file form at

Diagram C.5.1 : The directory structure for web site registration system

F ile s C re a te d F o r T he W e b S ite

R e g is tra t io n S y s te m

P E R L Scrip ts

□ c:\sct\perlproj\cgi-bin\text
These are the files, which do server side

processing for the text based storage system. They

are stored in c:\sct\perlproj\cgi-bin\text. They

store the processed data, in Text Files. These data

files are stored in the c:\sct\perlproj\cgi-
bin\text\data\. (Refer diagram C.5.2)

Fo'-ders

Э set

- pertproj

ir _ j cgi-bn

9 text

data

b: ¿h tm l

J D text

images

ID togs

Name a-

¿Ddata

0 cç-tib.pl
If] oestbk.pl
|T] logm.pl

ID prpls.pl
0 regstr.pl

ífO vwchpnpls.pl
0 vwpnpls.pl

D i a g r a m C .5 .2 : The location o f Perl Script Text files

PAGE 334

HTML Files

C O M M ERC IA L W E B APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT . DHTML AND PERL
P R O J - С

□ c:\sct\perlproj\html\text\
The HTML forms, that act as the front-end of the

Web site registration system are stored in

c:\sct\perlproj\html\text for the text based

storage system. They use JavaScript to do client

side processing before sending form data to the

Web server for final processing and storage. (Refer

diagram C.5.3)

Im age F iles (.gif)

□ c:\sct\perlproj\images\
These are .gif files, which are embedded in HTML

pages, which are used in the front end files for the

Text based system. These files are used to make

the HTML pages look attractive. (Refer diagram

C.5.4)

F lat F iles (S torage)

□ c:\sct\perIproj\cgi-bin\text\data\
These are <filename>.dat files, which actually

store the data processed by the PERL file on the

Web server. The files contained in this directory

should have read and write permissions set

correctly in order to allow the PERL script files to

store data in them. (Refer diagram C.5.5)

Folders X Name

5 set
:f£fgestbk.htm!

-■ _ j perlproj Hjindex.html

C l cgi-bin Л) login, html

0 D text pnpls.html

data ^|yregstrgud is.hW

-i £ 3 html

D text

Q images

logs

Diagram C.5.3: The location o f HTML Text files

FûWe.'

s e t

- perlpro}
ö i___ j c q i - Ы п

Ы ___ j t e x t

A data

fcb htrn*
H t e x t

triages
—3 kgs

N a m e

№ ¡ 3 g e s t b k . g » f

í ü g r i d l . g i f

Ó p g r i d 2 1 . g i f

l s B l i C K 3¡ n v a l . s i f

£ 0 c » n p i s . a i f

r e ç g o o d » c s . g p f

^gsct.gif
s e i e g o o d i e s , g i f

S p s q b . g i ? -

I s E a s h t m . g i f

В Ё З s i g n u p . g i f

{ ^ S j v g b . g i f

Diagram C.5.4: The location of the Image files

Folders x Name

- —) set

' periproj

- _ } cgi-bin

_ J q e s tb k .d a t

_>J pnpls.dat

;>] regstr.dat

- О text

_ / data

- html

О text

imaçes

b o s

Diagram C.5.5: The location o f the Flat filesD A T A S T O R A G E S Y S T E M

For W e b S ite R e g is tr a t io n

The data captured by the Registration Form (regstrgudis.html) and used by Login Form (login.html) for

reference, is stored in a simple text file on the Web Server's HDD by a PERL script.

The regstr.dat file stores details captured by the HTML form separated by a colon (:).

F or P e n P a ls R e g is t r a t io n

The data captured by the Pen Pals Form (pnpls.html) is stored in a simple text file on the Web Server's

HDD by a PERL script.

T h e pnpls.dat stores details captured by the H T M L form separated by a colon (:).

P R O J - С PR O JE C T S IN PERL PAGE 335

The data captured by the Guest Book Form (gestbk.html) is stored in a simple text file on the Web

server’s HDD by a PERL script.

The gestbk.dat file stores details captured by the HTML form separated by a colon (:).

S T A R T IN G T H E W E B S IT E R E G IS T R A T IO N S Y S T E M

To access the PERL based web site registration system a name based, virtual host entry is created under

Apache2, pointing to a directory. This is followed by an entry in the hosts
(c:\windows\systein32\drivers\etc\hosts) file as follows:

172.16.9.66 sct.perlproj.com (IP Address may differ on individual m achine bases)

The following entries are made in the httpd.conf file as follows:

NameVirtualHost 172.16.9.66

<VirtualHost 172.16.9.66>

ServerAdmin webmaster@sct.com »

DocumentRoot c:\sct\perlproj

ServerName sct.perlproj.com

ScriptAlias /cgi-bin/ "c:\sct\perlproj\cgi-bin\"

</VirtualHost> ‘

F o r T h e W e b S i t e G u e s t B o o k

N o t e
The default ScriptAlias tag of Apache2

should he disabled by commenting the line

in the httpd.conf. For example:

#ScriptAlias /cgi-bin/ "C:/Program

Files/Apache Cnoup/Apache2/cgi-bin/"

To start a session o f the Web site registration

system, follow these steps:

□ Open a browser

□ Type in the url:

http://sct.perlproj.com/html/tcxt

This opens the index.htnil page as seen in diagram

C.6.1 allowing a login to the website or

registration with the website.

Diagram C.6.1: The index.html page

P R O C E S S IN G O F W E B

R E G IS T R A T IO N

S IT E

This provides an overview of how the code base of

the Web Site Registration System is structured.

When Login To SCT option on the index page is

activated then a login screen as shown in diagram

C.6.2 appears prompting for a valid user name and

password, required to access system resources.

F o r m L a y o u t

(Refer to diagram C.6.2)

mailto:webmaster@sct.com
http://sct.perlproj.com/html/tcxt

P u rpo se

□ Authenticates the user attempting the login

□ Determines access to system resources like Pen Pals and Guest Book

P rocess ing

The visitor can choose to do any of the following:

Key in the Login ID and Password and:

□ Click Submit. This leads to validating the user name and the password provided. On submit a call is

made to login.pl. Processing is now handed over to this file.

□ Click Reset. This clears the field contents on the HTML Form

OR
Click Signup!. This opens up the Register For Our Goodies (regstrgudis.html) Form. This form will allow

a visitor to register with the website and then login with the Login ID and Password just registered.

When the login.pl file is called:

□ The CGI Library (cgi-Iib.pl) is loaded in memory

□ The text file (rgstr.dat) is loaded in memory for storing the data captured

o A connection to <rgstr.dat> is established via a File Handle

□ If connection is not successful then an error page is generated on the fly stating, Currently there is a
problem with the server. P lease resen d vour m essage in an hour

□ The Login ID and Password captured via the login.html form is stored in memory' variables

□ Records are fetched records from the Text File (regstr.dat)

□ The value held in the memory variables is compared with the data retrieved

□ I f a match is found then a welcome message is displayed by generating an html page on the fly. This

page will have a link to enter the Pen Pals and Guest Book Section.

□ I f the match is not found then an error page

stating Sorry vour login an d passw ord does
not exist, is dispatched to the client browser

I f a visitor clicks SignUp! on the Login Form

(login.html) then a Registration Form is invoked as

shown in diagram C.6.3, This prompts for the

details required for a valid registration.

F o rm L a y o u t

(Refer to diagram C.6.3)

C O M M ERC IA L W E B APPLICATION DEVELOPMENT USING HTML, DOn . r
PAGE 336 JAVASCRIPT . DHTML AND P ERL

SUicon.Chip Technologies
Y (a y iç M t t c tw ü

Login Name:|

E-Mail Address . f

Password:]

Confirm Password:!

S e le c t t ù 'o m T iw S p r e a d B e lo w

Pen Pals r* News Letter f

Sc broil I Reset j Aboit |

P u rp o se

□ Prompt and validates for details required for a
valid registration TU.

□ Stores the details captured in Text Files D,aSram C 6 -3: The ^g istrat.on screen
□ Provides access to system resources like Pen Pals and / or Newsletter i f opted for

P rocess ing

The visitor can choose to do any o f the following:

Key in the desired Login ID, Email Address and Password and:
□ Click Submit. This leads to registration o f the details provided

On submit a call is made to regstr.pl file. Server side processing is now handed over to the code spec in
either of these files

□ Click Reset. This clears the contents of all fields on the form
□ Click Abort. This takes the visitor back to the Login Form

P R O J - С P R O JE C T S IN PERL PAGE 337

When the regstr.pl file is called:

□ The CGI Library (cgi-lib.pl) is loaded in memory

□ The text file (rgstr.dat) is loaded in memory for storing the data captured

o A connection to <rgstr.dat> is established via a File Handle

□ If any connection is not successful then an error page is generated on the fly stating, Currently there is a
problem with the server. Please resend your message in an hour

□ The data captured in the form fields in regstrgudis.html is stored in memory variables

□ Data is fetched from <rgstr.dat>

□ Values held in the memory variables are compared with the data retrieved from the storage system (i.e.

either a text file or a database table)

□ If the values held in the variables for Login ID and Email address match the data retrieved from the storage

system then an error page stating The Login ID and Password submitted is already registered with this Web
Site. This is a duplicate entry and hence not accepted is dispatched to the user and the process of registration

is aborted. At this point of time the visitor can re-enter data and re-submit. This will again re-process the

data as described above

□ If no duplicate data is encountered then the data captured, held in variables is transferred to the storage

system. This is followed by a html page being sent back to the user with a message stating Thank You! Your
information has been registered!

□ The page rendered may or may not have an option to Enter Pen Pals section. This depends on the options

selected in the Registration Form. Similarly if Newsletter option was selected then a message stating

Newsletters will be sent shortly at <email address specified on the registration form>

□ The Enter Guest Book option will be available irrespective of what was selected

A visitor after logging in or signing up with the

website can use website resources like Pen Pals or

Guest Book or subscribe to its newsletters. If the

Pen Pals section was opted then the Pen Pals Form

is invoked as seen in diagram C.6.4 prompting for

details required for a valid Pen Pals Entry.

F o rm L a y o u t

(Refer to diagram C.6.4)

P u rp o se

□ Prompt and validates for details required for a valid entry in Pen Pals section

□ Stores the details captured in a Flat Text File

□ Calculates and Stores a visitor's age on the basis of the Date of birth provided

P rocess ing

The visitor can choose to do any of the following:

Key in the appropriate Name, Email Address, Sex, Date of birth and Hobbies and other interests and:

□ Click Submit. This leads to registration of the data captured

On submit a call is made to pnpls.pl file. Server side processing is now handed over to the code spec

o f either of these files

□ Click Reset. This clears the field contents on the Form

□ Click Abort. This takes the visitor back to the page from where the pen pals option was activated

S i l i c o n C h i p T e c h n o l o g i e s

я b M .u l od vbc i-

- Mole Fpn

c iuact ‘‘ou "ith information лкчмн oui products
< ' Yes N llauj.,*

Submit j ¡ Abort j

ТЬдпк You For Sionpio i; B> Our \\ el. Sin

Diagram C.6.4: The Pen Pal Information screen

When either the pnpls.pl file is called:

□ The CGI Library (cgi-lib.pl) is loaded in memory

□ The text file (pnpls.dat) is loaded in memory for storing the data captured

o A connection to <pnpls.dat> is established via a File Handle

□ If any connection is not successful then an error page is generated on the fly stating, Currently there is
a problem with the server. P lease resend your m essage in an hour

□ The data captured in the form fields via pnpls.html is stored in memory variables

□ The age o f the visitor is calculated on the basis o f the date o f birth provided and stored in a variable

□ Records are fetched from the Text File (pnpls.dat)

□ The value held in the memory variables is compared with the data retrieved storage

□ If the values held in the memory variables match the data retrieved from the storage system then an

error page stating The Name an d Email Address submitted is already reg istered as a Pen Pals Entry
with this Web Site. This is a duplicate entry and hence not accep ted is sent back to the client’s browser.

The process o f registration is aborted. At this point o f time a visitor can re-enter data and try re

submitting it. This will re-process the data as described above

□ If no duplicate data is encountered then the data captured, and held in memory variables is transferred

to the storage system. This is followed by an html page being dispatched to the visitor’s browsers

stating Thank You! Your information has been registered!

This page has two buttons i.e. View and Home.

□ View passes the control to the PERL script vwchpnpls.pl. This script is responsible for generating an

html page which allows viewing pen pals registered on basis o f some search criteria

□ Home takes the visitor back to the web site’s Home page

When eithervwchpnpls.pl is called:

□ The CGI Library (cgi-lib.pl) is loaded in memory

□ An html page dispatched to the visitors browser, which will allow the visitor to select search criteria

(i.e. sex and a specific age range) to scan the pen pals database for matches. This is done by radio

buttons to select sex and a list box showing age range to choose from

□ On submitting this criteria control is passed to either vwpnpls.pl. These scripts are responsible for

searching the storage system using the search criteria specified and displaying the data retrieved via a

neatly formatted HTML page

When vwpnpls.pl is called:

□ The CGI Library (cgi-lib.pl) is loaded in memory

□ The text file (pnpls.dat) for storing the data captured

o A connection to <pnpls.dat> is established via a File Handle

□ If any connection is not successful then an error page is generated on the fly stating, Currently there is
a problem with the server. P lease resen d your m essage in an hour and sent back to the visitors browser

□ The form fields data captured is stored in memory variables

The Email ID displayed in the HTML page is a HOTSPOT. This will invoke the visitors default Email

client with the email address already entered in the address bar. This permits sending an email to a pen pal

while viewing the data displayed. '

After viewing the data the visitor can move back to the previous page via the Back button to search for pen

pals based on some other criteria.

ooo CO M M E R C IA L W E B APPLICATION DEVELOPMENT USING HTML, D D r . . „

PAGE 338 JAVASCRIPT , DHTML AND PERL P R O J ' C

If the Guest Book section was opted then the Guest Book Form is invoked as seen in diagram C.6.5

prompting details required for a valid Guest Book Entry.

P R O J - С P R O JE C T S IN PERL PAGE 339

F o rm L a y o u t

(Refer to diagram C.6.5)

P u rpose

□ Prompt and validates the details required for a

valid entry in Guest Book section

□ Stores the details captured in a Text File

P ro ce ss in g

The visitor can choose to do any of the following:

Key in the appropriate Name, Email Address,
some comments and:

□ Click Submit. The data entered in saved to

the web site’s Guest book

On submit a call is made to either gestbk.pl file. Server side processing is now handed over to the code

spec o f either o f these files

□ Click Reset. This clears all the field contents of the form

□ Click Abort. This takes the visitor back to the page from where the guest book option was activated

When the gestbk.pl file is called:

□ The CGI Library (cgi-lib.pl) is loaded in memory

□ The text file (gestbk.dat) for storing the data captured

o A connection to <gestbk.dat> is established via a File Handle

□ I f any connection is not successful then an error page is generated on the fly stating, Currently there is
a problem with the server. P lease resen d vour m essage in an hour and sent back to the visitors browser

□ The data captured in the form fields via gestbk.html is stored in memory variables

□ The visitor’s age is calculated (on the basis o f Date of birth provided) and stored in a memory variable

□ The data captured and held in memory variables is transferred to the storage system. This is followed,

by an html page being dispatched to the visitors browsers stating Thank You! Your information has
been registered!

P R O J E C T S O U R C E C O D E F O R T H E IN D E X P A G E

S o u rce C o d e For in dex .h tm l

< ! — T h is HTML page w i l l a c c e p t a L o g in Name and P assw o rd . C l i c k i n g on

i t s S u b m it b u t t o n c au se s l o g i n p ag e d a ta t o be p a s s e d t o L o g in . c l a s s

f o r f u r t h e r p r o c e s s in g . — >

<HTML>

<HEAD><TITLE>Welcome to SCT's Web Site</TITLE></HEAD>

<BODY Background = "/images/gridl.gif’><CENTER>

<TABLE Border = "0"><TR>

<TD></TD>

<TD></TD>

<TD></TD>

</TRx/TABLE>

<TABLE Align = "Center" Border = "0" Width = "60%"><TR>

<TD Colspan = "1" Width = "40%">

Login To SCT

</TD>

Plcatfc lake h Jew moments lo lei us know you were here today.

Please (Jive Us Y our Name

Please G ive Us Y ou r Em ail Address

I------------------

Bouquets O r Brickbats Arc W clcom c

[Submit~| Reset j Abort j

Thank Y o u Far S topp ing B y O u r W eb Site

Diagram C.6.5: The Guest book screen

</TR><TR><TD Colspan = "2"> </TD></TR>

< ! — Row t o e n t e r th e P assw ord -->

<TR>

<TD Colspan = "1" Width = "40%">

Register

</TD>

</TR></TABLE>

</CENTER></BODY>

</HTML>

P R O J E C T S O U R C E C O D E F O R T H E W E B S IT E R E G IS T R A T IO N S Y S T E M

S o u rce C o d e For re q s trq u d is .h tm l

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEADxTITLE>SCT’S GOODIES SIGN UP FORM</TITLE>

<META content="text/html; charset=windows-1252" http-equiv=Content-Type>

<SCR1PT language=JavaScript>

/ / D e c la r a t i o n o f V a r ia b le s

var value_of_pass I

var vaiue_of_pass2="";

var whitespace = " \t\n\r";

/ / F u n c t io n t o check w h e th e r th e v a lu e i n a T ex t F i e l d i s N u l l

function isEmpty(s) {

return ((s == null) || (s.length == 0)) }

/ / F u n c t io n t o .c h e c k w h e th e r th e v a lu e i n a T ex t F i e ld

/ / i s a W h ite S p a ce

function isWhitespace (s) { '

var i;

J / I s s em pty?

if (isEmpty(s)) return true;

/ / S e a rc h t h r o u g h s t r i n g ' s c h a r a c t e r s one by one u n t i l we f i n d

/ / a n o n - w h ite s p a c e c h a r a c t e r . When we d o , r e t u r n f a l s e ;

/ / i f we d o n ' t , r e t u r n t r u e ,

for (i = 0; i < s.length; i++) {

/ / C heck t h a t - c u r r e n t c h a r a c t e r i s n ' t w h i te s p a c e ,

var c = s.charAt(i);

if (whitespace.indexOf(c) == -1) return false;

}
/ / A l l c h a r a c t e r s a re w h ite s p a c e ,

return true;

}
/ / F u n c t io n t o e n s u re t h a t t h e e m a il a d d re s s i s i n p r o p e r fo rm a t

function isEmail (s) {

if (isEmpty(s))

/ / I s s w h ite s p a c e ?

if (isWhitespace(s)) return false;

/ / T here m ust be >= 1 c h a r a c t e r b e fo r e @, so we s t a r t l o o k in g

/ / a t c h a r a c t e r p o s i t i o n 1, (i . e . se co n d c h a r a c t e r)

var i = 1;

C O M M ERC IA L W E B APPLICATION DEVELOPMENT USING HTML, P R O J C

PAGE JAVASCRIPT . DHTML AND P ERL

P R O J - С P R O JE C T S IN PERL PA G E 341

var sLength = s.length;

/ / Look f o r 0

while ((i < sLength) && (s.charAt(i) != "@")) {

i++ }

if ((i >= sLength) || (s.charAt(i) != "@")) return false;

else i += 2;

/ / Look f o r .

while ((i < sLength) && (s.charAt(i) != ".")) {

i++ }

/ / T here m ust be a t l e a s t one c h a r a c t e r a f t e r th e

if ((i >= sLength - l) || (s.charAt(i) != V)) return false;

else return true;

/ / F u n c t io n t o check w h e th e r th e v a lu e i n P assw ord

/ / c o n t a in s A lp h a b e t s and C h a r c te r s

function isCharslnBag (s. bag) {

var i;

/ / S e a rc h th r o u g h s t r i n g ' s c h a r a c t e r s one by o n e .

/ / I f c h a r a c t e r i s i n b a g , appe nd to r e t u r n S t r i n g .

for (i = 0; i < s.length; i++) {

var c = s.charAt(i);

if (bag.indexOf(c) == -1) return false;

}
return true;

}
/ / F u n c t io n t o check w h e th e r t h e Passw ord

/ / c o n t a in s a t l e a s t one num ber

function isNumberlnPass (s, bag) {
var i,flag;

flag=0;

/ / S e a rc h t h r o u g h s t r i n g ' s c h a r a c t e r s one by on e .

/ / I f c h a r a c t e r i s i n b a g , a ppe nd to r e t u r n S t r i n g .

for (i = 0; i < s.length; i++) {

var c = s.charAt(i);

if (bag.indexOf(c) = = - !){ continue; }

else {
flag=l;

break;

}

}
if(flag == l) {

return true; }

else {
return false; }

return false;

}
/ / F u n c t io n t o check th e v a lu e s e n te r e d i n a l l t h e e le m e n ts

/ / o f th e fo rm c a l l e d on th e c l i c k e d e v e n t o f t h e S u b m it b u t t o n

function verify() {
var flag =0;

PAGE 342
C O M M ERC IA L W E B APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT , DHTML AND PERL

/ / Check t o see i f any o f th e T ex t f i e l d s i s l e f t b la n k

f o r (i=0; i<=3; i++) {

i f (document.forms[0].elements[i].value == "") {

alert("Please fill in the " + document.forms[0].elements[i].name + " field");

document. forms[0].elements[i|.focus();

flag =1;

break;

}

}
if (flag == I) {

return(false); }

/ / B e g in n in g t h e check f o r E m a il a d d r e s s , P assw ord

/ / and C o n f irm Passw ord

if (flag == 0) {

var email = document.forms[0].elements[l].value;

/ / V a l i d a t e th e e m a i l a d d re s s

if (!isEmail(email)) {

alertf'Please enter the Email address in the proper Format");

document.forms[0].elements[1].focus();

return false;

}
var passwd = document.forms[0].elements[2].value;

/ / V a l i d a t e t h e P assw ord

if(!isCharslnBag(passwd,

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWX

YZO123456789")) {

alert("Password must only contain alphabets and number");

return false;

}
/ / Check t o e n s u re t h a t th e P assw ord i s n o t le s s

/ / th a n 5 c h a r a c t e r s

else if (passwd.length < 5) {

alert("Password must be 5 or more characters.");

return false;

}
/ / C heck t o e n s u re t h a t th e Passw ord i s n o t g r e a te r

/ / th a n 8 c h a r a c t e r s

else if (passwd. length > 8) {

a I ert(" Password cannot be more than 8 characters.");

return false;

}
/ /C h e c k t o e n s u re t h a t th e Passw ord

/ / c o n t a in s a t l e a s t one num ber

else if (!isNumberlnPass(passwd, "0123456789")) {

alert("Password must have atleast one number.");

return false;

}
/ /C h e c k t o e n s u re t h a t th e P assw ord f i e l d s have th e same v a lu e

else if (document.forms[0].elements[2].value != document.forms[0].elements[3].value) {

alert("Your passwords do not match. Please retype and try again.");

P R O J - С P R O JE C T S IN PERL PAGE 343

}

}
/ /C h e c k t o e n s u re t h a t a t l e a s t one o f t h e C heck Boxes i s checked

for (j=4; j<=5; j++) {

if(document.forms[0].elements[j].checked) {

break; }

else if (j>=5) {

alert("Atleast Check on One of Our Services");

document. forms[0].elements[j].focus();

return (false);

}

}
retum(true);

}
/ / F u n c t io n c a l l e d on th e C l ic k e d e v e n t o f t h e A b o r t b u t t o n

function abort() {

history.back(); }

</SCRIPT><META content="MSHTML 5.00.2014.210" name=GENERATOR></HEAD>

<BODY background="/images/grid 1 .g if’>

<CENTER><1MG src="/images/reggoodies.gif'> </CENTER>

<FORM action="/cgi-bin/text/regstr.pI" method="post" onsubmit="return verify()">

<TABLE align=center border=0 cellPadding=0 cellSpacing=0 Size="800">

<TBODY><TR>

<TD align=right>Login Name:</TD>

<TD><INPUT name=login></TD>

</TR><TR>

<TD align=right>E-Mail Address:</TD>

<TD><rNPUT name=email></TD>

</TR><TR>

<TD align=right>Password:</TD>

<TD><INPUT name=passwd 1 type=password></TD>

</TR><TR>

<TD align=right>Confirm Password:</TD>

<TD><INPUT name=passwd2 type=password></TD>

</TR></TBOD Y></T A B L E>

<P><TABLE align=center border=--0 cellPadding=0 cellSpacing=0 Size="800">

<TBODY><TR>

<TD>

PASSWORD RULES:</Bx/FONT></TD>

</TR><TR>

<TDx FONT color=red face=Verdana size=l>A Password's minimum length is five

characters</TD>

</TR><TR>

<TD>A Password's maximum length is eight

characters</TD>

</TR><TR>

<TD>A Password should have at least one digit

included</TD>

</TR><TR>

return false;

CO M M ERC IA L W E B APPLICATION DEVELOPMENT USING HTML, _

JAVASCRIPT , DHTML AND PERL

<TD>Other than Alphabets and Digits no other

values are allowed</TD>

</TR></TBOD Y x /T A BLE>

<CENTER> </CENTER>

<CEN TERx]M G src="/images/selegoodies.gif'> </CENTER>

<C EN T ERxIM G height=30 src=”/images/shim.gif' width=l> </CENTER>

<TABLE align=center border=0 cellPadding=0 cellSpacing=0 Size="800">

<TBODY><TR>

<TD>

<TD>Pen Pals</Bx|MG height=l src="/images/shim.gif' width=3>

<INPUT type=checkbox name=penpals value="y"x/TD>

<TD></TD>

<TD>Nevvs Letter<1MG height=l src="/images/shim.gif' width=3>

<INPUT type=checkbox name=newsltr value="y"></TD>

< T D x lM G height=:5 src="/images/shim.gif' width= 10></TD>

</TR><TR>

<T D x|M G height=30 src="/images/shim.gif width=l></TD>

</TRx/TBODY></TABLE>

<P><P><CENTER>

<INPUT type=submit value=Submit>

<INPUT type=reset value=Reset>

<INPUT onclick=abort() type=button value=Abort>

</CENTER>

</FORM>

</BODY>

</HTML>

S o u rce C o d e F or reqstr.p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";

P r i n t t h e HTTP c o n t e n t - t y p e h e a d e r

&PrintHeader;
A v a r i a b l e d e c l a r e d t o s t o r e t h e p a t h t o t h e t e x t f i l e #####

Sbasedir = "c:/sct/perlproj/cgi-bin/text/data/";

A v a r i a b l e d e c l a r e d t o s t o r e t h e t e x t f i l e

Sdatafile = "regstr.dat";

The c u r r e n t d a t e i s c a p t u r e d f r o m t h e s y s t e m

u s i n g f u n c t i o n ' l o c a l t i m e ' a n d n e c e s s a r y p r o c e s s i n g #####

i s c a r r i e d o u t t o e x t r a c t t h e d a t e f r o m t h e f u n c t i o n ####

$slsh="/";

$lcltim=localtime(time);

($cday, $cmonth, Sedate, $ctime,$cyear)=split(As+/,$Icltim);

%mon=("Jan"=>"01", "Feb"=>"02", "Mar"=>"03", "Apr"=>"04", "May"=>"05", "Jun"=>"06",

"Jul"=>"07", "Aug"=>"08", "Sep"=>"09". "Oct"=>"IO", "Nov"=>”l l " , "Dec"=>"12");

for $key(keys%mon) {

if (Scmonth eq $key) {

$cmon=$mon{$key}; }

}
$cdt=$eyear.$slsh.$cmon.$slsh.Sedate;

P R O J - С P R O JE C T S IN PERL PAGE 345

The R e ad P a rse s u b r o u t in e i s c a l l e d from C g i - l i b . p l

l i b r a r y t o decode fo rm in f o r m a t io n

&ReadParse;
A s s ig n s th e i n p u t from th e HTML fo rm

to th e s p e c i f i e d v a r i a b le s

$name=$in {'login'};

$emid=$in {'email'};

$passwd=$ in {'passwd 1'};

$pnpls=$in {'penpals'};

$nwltr=$in {'newsltr'};

if($pnpls ne "y") {

$pnpls="n"; }

if($nwltr ne "y") {

$nwltr="n"; }

A check f o r th e d u p l i c a t e v a lu e s i n th e t e x t f i l e i s d o n e . #####

I n c ase o f d u p l i c a t e v a lu e s o r an i n t e r n a l s e r v e r e r r o r #####

an e r r o r page i s re n d e re d and a f l a g i s s e t t o 1 #####

open(FHl,"<$basedir/$datafile");

@lines=<FHl>;

close(FHl);

foreach(@lines) {

chop();

@arr=(split(/:/));

if ($arr[1] eq Sname) {

if($arr[2] eq Semid) {

print "<HTML><HEAD><SCRIPT>";

print "function back(form) { history.back(); }";

print "</SCRIPT></HEAD>";

print "<BODY Background-/images/grid 1.g if text=green>";

print "<CENTER></CENTER>

";

print "<CENTER><Hl>The Login ID and Password submitted is already registered with this

Web Site. This is a duplicate entry and hence not accepted.</Hl>";

print "<FORM><INPUT Type=button Value=Back onClick-back(this.form)'></FORM>";

print "</CENTERx/BODY></HTML>";

$flag= I ;

}

}

}
A p p e n d in g th e ' p n p l s . t x t ' w i t h th e th r o u g h t h e f i l e h a n d l e

if (Sf1ag!=i) {

if (open(FH 1 ,"»$basedir/$datafile")) {

print FH1 "$cdt:Sname:$emid:$passwd:$pnpls:$nwltr\n";

print "<HTML><HEAD><SCR1PT>";

print "function home(form) { history.back();}";

print "</SCRIPT></HEAD>";

print "<BODY Background=/images/grid I .gif text=green>";

print "<CENTER><1MG Src='/images/reggoodies.gif></CENTER>

";

print "<CENTER><H 1 >Thank You !</Hl>
";

print "<H l>Your information has been registered !</H 1 >";

print "<FORM>";

if (Spnpls ne "n") {

print "
<IlVIG

Src-/images/epp.gif>

"; }

if($nwltr ne "n") {

print "

Newsletters will be sent shortly at ".Semid; }

print "
<A H RE F='/htm 1/text/gestb k. h tm l'x IM G Src=7images/sgb.gifx/A>

n;

print "<INPUT Type=button Value=Home onClick='home(this.form)'>";

print "</FORM x/CENTER></BODYx/HTM L>";

}
else {

print "<HTML><HEAD><SCRIPT>";

print "function home(form) { history.back();

print "</SCRIPT></HEAD>";

print "<BODY Background='/images/gridl.gif text=green>";

print "<CENTER></CENTER>

";

print "<CENTER><Hl>Currently there is a problem with the server</Hl>
";

print "<Hl>Please resend your message in an hour</H l><BRxBR>";

print "";

print "<INPUT Type=button Value=Home onClick='home(this.form)'x/CENTER>";

print "</FORM></BODY></HTML>";

}

. . . . C O M M E R C IA L W E B APPLICATION DEVELOPMENT USING HTML, D D r . . n
PAGE 346 JAVASCRIPT , DHTML AND P ERL P R O J ' C

P R O J E C T S O U R C E C O D E F O R T H E W E B S IT E L O G IN

S o u rce C o d e For lo q in .h tm l

< ! — T h is HTML page w i l l a c c e p t a L o g in Name and P as sw o rd . C l i c k i n g on

i t s S u b m it b u t t o n c a u se s l o g i n p age d a ta t o be p a s s e d t o L o g in . c la s s

f o r f u r t h e r p r o c e s s in g . -->

<HTML>

<HEADxTITLE>Welcome to SCT's Login Authentication</TITLE>

<SCRIPT Language = "JavaScript">

< ! — The f u n c t io n v e r i f y () c h e ck s w h e th e r d a ta i s f i l l e d i n a l l t h e

e le m e n ts . I f a ny e le m e n t i s l e f t em pty , an a l e r t () i s d is p la y e d

in f o r m in g t h e u s e r t o f i l l i n t h e em pty e le m e n t . — >

function verify(form) {
for(i = 0-; i <= 2; i++) {
< ! — C h e c k in g f o r an em pty f i e l d i n th e fo rm . -->

if(document.forms[0].elements[i].value == "") {

< ! — M essage i n d i c a t i n g an em pty f i e l d — >

alert("Please Fill In Y ou r" + document.forms[0].elements[i].name);

< !- - P la c in g t h e fo rm c u r s o r on th e a p p r o p r i a t e b la n k f i e l d

— >

document.fonns[0].elements[i].focus();

return(false);

} / / End o f i f c o n s t r u c t .

} / / End o f f o r i t e r a t i o n .

< ! — S e n d in g t h e d a ta c a p tu r e d by th e fo rm t o t h e s e r v e r . — >

document.forms[0].submit();

} / / End o f f u n c t i o n v e r i f y () .

P R O J - С P R O JE C T S IN PERL PAGE 347

</SCRIPT></HEAD>

<BODY Background = "/images/grid 1.gif'><CENTER>

<TABLE Border = "0"><TR>

<TD></TD>

<TD></TD>

<TD>

<TD></TD>

</TRx/TABLE>.<BRxBR>

<FORM Action = "/cgi-bin/text/login.pl" Method="POST">

<TABLE Align = "Center" Border = "0" Width = "60%">

< ! — Row t o e n t e r th e L o g in ID -->

<TR>

<TD Colspan = " 1" Width = n40%">

Your Login :

</TD><TD><INPUT Name = "login" Size = "35" Type = "Text"x/TD>

</TR><TR><TD Colspan = "2"> </TD><TR>

< ! — Row t o e n t e r th e P assw ord -->

<TR>

<TD Colspan = "1" Width = "40%''>

Your Password :

< /T D xT D x IN P U T Name = "passwd" Size = "35" Type = "Password"></TD>
< /T Rx/T A B LE><B RxB R>

<TABLE Align = "Center" Border = "0" Width = "40%">

< ! — Row f o r th e 'S u b m it ' a nd 'R e s e t ' b u t t o n s — >

<TR>

<TD Align = "Center" Width = "50%">

<INPUT Type = "Button" Value = "SUBMIT" onClick = "verify(this.form)">

</TD><TD Align = "Center" Width = "50%">

<INPUT Type = "Reset" Value = "RESET"x/TD>

</TR></TABLE>

</FORM>

</CENTERx/BODY>

</HTML>

S o u rce C o de For lo q in .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";

P r in t th e HTTP c o n te n t- ty p e h e a d e r ###### .

&PrintHeader;
A v a r i a b le d e c la r e d t o s t o r e t h e p a th t o t h e t e x t f i l e #####

Sbasedir = "c:/sct/perlproj/cgi-bin/text/data/";

Sdatafile = "regstr.dat";

The R e ad P a rse s u b r o u t in e i s c a l l e d from C g i - l i b . p l

l i b r a r y t o decode fo rm in f o r m a t io n

&ReadParse;
A s s ig n s t h e i n p u t fro m th e HTML fo rm

t o th e s p e c i f i e d v a r i a b le s

$name=$in{'login'};

$passwd=$in{'passwd'};

<HTML><HEAD><SCRIPT>";

function back(form) { history.back();

</SCRIPT></HEAD>";

<BODY Background='/images/gridl.gif text=green>";

<CENTER></CENTER>

".;

<CENTER><H1>Welcome ".$name."</Hl><FORM>
";

";

";

<INPUT Type=button Value=Logout onClick=window.location='/html/text'>";

</FORM></CENTERx/BODY></HTML>";

The s t o r i n g o f r e c o rd s i n t o th e t e x t f i l e i s done in c a s e #####

t h e r e i s no i n t e r n a l s e r v e r e r r o r and in c a s e o f f a i l u r e , #####

an HTML page in f o r m in g a b o u t th e f a i l u r e i s d is p la y e d #####

open(FH 1 ,"<$basedir/$datafile");

@Iines=<FHl>;
close(FHl);
foreach(@lines) { •

chop();
@arr=(split(/:/));

if ($arr[1] eq Sname) {

if($arr[3J eq Spasswd) {

print

print

print

print

print

print

print

print

print

print

$flag=l;

exit;

}

}

}
if (Sflag != 1) {

print "<HTML><HEAD><SCRIPT>";

print "function home(form) { history.back();

print "</SCRIPT></HEAD>";

print "<BODY Background=7images/gridl.gif text=green>";

print "<CENTERx IIV1G Src=7images/reggoodies.gif></CEN I E R x B R x B R x B R - ^ " ;

print "<CENTER><Hl>Sorry your login and password does not exist.</H lxBR>

";

print "";

print "<INPUT Type=button Value=Back onClick='home(this.form)'x/CENTER>”;

print "</FORM></BODY></HTML>";

exit;

}
print "<HTML><HEAD><SCRIPT>";

print "function home(form) { history.back(); }";

print "</SCRIPT></HEAD>";

print "<BODY Background=7images/gridl.gif text=green>";

print "<C EN T ERxIM G Src=7images/reggoodies.gif></CENTER>
<BRxBR>";

print "<CENTER><Hl>Currently there is a problem with the server</Hl>
";

print "<Hl>Please resend your message in an hour</Hl>

";

print "";

print "<FORM><INPUT Type=button Value=Home onClick='home(this.form)'x/FORlVl>";

print "< /C EN T ERx/B O D Yx/H T M L>";

C O M M ERC IA L W E B APPLICATION DEVELOPMENT USING HTML, BRO . r

PAGE 348 JAVASCRIPT , DHTML AND P ERL P R O J * C

P R O J - С P R O JE C T S IN PERL P A G E 349

P R O J E C T S O U R C E C O D E F O R P E N P A L S

S o u rce C o d e For p n p ls .h tm l

<HTML>

<HEAD><TITLE>SCT's PEN PAL </TITLE>

<SCRIPT Language = "Javascript”>

<! The f u n c t io n v e r i f y () checks w h e th e r a p p r o p r i a t e — >

< ! — in f o r m a t io n i s f i l l e d i n a l l th e e le m e n ts . -->•

function verify() {

for (i=0: i<=7; i++) {

if (document.forms[0].elements[i].value == "") {

alert("Please fill in the " + document.forms[0].elements[i].name + " field");

document.forms[0].elements[i].focus();

return (false);

}

if(document.forms[0].elements[l].value!-"') {

pass = document. forms[0].elements[1].value.index0f('@',0);

passl = document.forms[0].elements[1].value.index0f(',',0);

if((pass==-l) || (pass I ==-!)) {

a!ert("not a valid email address");

document.forms[0].elements[I].focus();

return (false);

}

}

}
return(true);

}

< ! — The f u n c t i o n checks w h e th e r th e d a te i s be tw een (1 - 3 1) , — >

< !- - w h e th e r t h e m onth e n te r e d as a num ber i s b e tw ee n (1-12) and --

< !- - w h e th e r t h e y e a r e n te r e d i s w i t h in 1995 . -->

function checkdate() {

year=document.forms[0].elements[6]. value;

if (year>2004) {

alert("Enter proper year (till 2004)");

document.forms[0].elements[6].focus();

retum(false);

}

monval=document.forms[0].elements[5]. value;

dtval=document.forms[0].elements[4]. value;

if ((dtval > 31) || (dtval < 1)) {

alert("Enter proper date");

document.forms[0].elements[4].focus();

return(false);

}
if (isNaN(monval) != true) {

if ((monval > 12)|| (monval < I)) {

alertf’Enter proper month");

document.forms[0].elements[5].focus();

return(false);

}

}
else {

alert("Enter the month number");

document. forms[0].elements[5].tbi:us();

retum(false);

}
return (true);

}
< ! — The f u n c t i o n c h e c k le n () ch ecks w h e th e r th e l e n g t h — >

< ! — o f name and e m a i l a d d re s s does n o t exceed 30 c h a r a c t e r s -->

function checklen() {

for (i=0;i<=l;i++) {
val=document.forms[0].elements[i]. value;

len=val. length;

if (len > 30) {

alert ("Value exceeds 30 characters");

document. forms[0].elements[i]. value-'";

document.forms[0].elements[i].focus();

}

}

}
< ! — The f u n c t i o n ta k e s th e u s e r t o th e p r e v io u s page — >

function abort(form) {

history.back(); }
< !-- S e ts t h e fo c u s on th e f i r s t f i e l d when t h e fo rm i s lo a d e d >

function set(form) {

document.forms[0].elements[0].focus();}

' </SCRIPT></HEAD>

<BODY Background-’/images/grid I .gif' onLoad=="set(this.form)">

cC E N T E R x iM G Src=7images/pnpls.gif'x/CENTER>

<P><P><CENTER><P>

<FORM Action="/cgi-bin/text/pnpls.pl" Method-'POST" onSubmit="retum verify()">

<P>Please enter your name

<INPUT Type="text" Name="name" Size="40" onBlur="checklen()" >

<P>Please enter your E-Mail address

<1NPUT Type="Text" Name="emailid" Size="40" onBlur="checklen()"xBR>

<P>Please indicate your Sex

<INPUTType="Radio" Name-'sex" Value="m" checked>Male

<IM G Src="/images/shim.gif' Height="l" Width="5">

<INPUT Type-'Radio" Name="sex" Value="f' >Female

<P>Please enter your DOB as DD/MM/YYYY

<INPUT Type='Text" Name="day" Size-'2" maxlength="2">

<INPUT Type-'Text" Name="month" Size="2" maxlength="2">

<INPUT Type="Text" Name-’year" Size="4" maxlength="4">

<P><P>Tell us about your hobbies and interests in the 'Text-Box' below

We'll keep your Penpal info posted for One Year from today

C 0 M M E R C IA L W E B APPL ICAT ,0N DEVEL0PM ENT USING HTML’ P R O J
350 JAVASCRIPT , DHTML AND PERL

P R O J - С P R O JE C T S IN PERL PAGE 351

<P><TEXTAREA Name="request" Rows="8" Cols="65"

onFocus="checkdate()"></TEXTAREA>

<P><P>Can we contact you with information about our products or services.

<INPUT Type="Radio" Name-'moreinfo" Value="y">Yes

<1MG Src="/images/shim.gif' Width=20 Height= 10 >

<INPUT Type="Radio" Name-'moreinfo" Value="n" Checked="True">

No. Thanks!

<P><CENTER>

<INPUT Type="Submit" Value="Submit" Name="Submit">

<INPUT Type="Reset" Value~-"Reset" Name="Submit">

<INPUT Type-'Button" Value="Abort" Name="At" onClick = "abort(this.form)">

' </CENTER>

</FORM><P><CENTER>Thank You For Stopping By Our Web Site</CENTER>

</BODY>

</HTML>

S o u rce C o d e For p n p ls .p l

#!c:/perl/bin/perl.e\e
require "cgi-lib.pl";

P r i n t t h e HTTP c o n te n t- ty p e h e a d e r

&PrintHeader;
A v a r i a b le d e c la r e d t o s t o r e th e p a th t o th e t e x t f i l e #####

$basedir = "c:/sct/perlproj/cgi-bin/text/data/";

A v a r i a b le d e c la r e d t o s t o r e t h e . t e x t f i l e

Sdatafile = "pnpls.dat";

The c u r r e n t d a te i s c a p tu r e d from th e sy s tem

u s in g f u n c t io n ' l o c a l t i m e ' and n e c e s s a ry p r o c e s s in g #####

i s c a r r ie d o u t t o e x t r a c t th e d a te fro m th e f u n c t i o n ####

$slsh="/";

$lcltim=localtime(time);

($cday ,$cmonth,Sedate,$ctime,$cyear)=split(As+/,$lcltim);

%mon=("Jan"=>"0l", "Feb"=>"02", "Mar"=>"03", "Apr"=>"04", "May"=>"05", "Jun"=>"06”,

"Jul"=>"07", "Aug"=>"08", "Sep"=>"09", "Oct"=>"lO", "Nov"=>"l l", "Dec"=>"12");

for $key(keys%mon) {

if (Scmontli eq $key) {

$cmon=$mon{$key}; }

}
$cdt=$cdate.$slsh.$cmon.$slsh.$cyear;

The R e ad P a rse s u b r o u t in e i s c a l l e d from C g i - l i b . p l #####

l i b r a r y t o decode fo rm in f o r m a t io n

&ReadParse;
A s s ig n s th e in p u t from th e HTML fo rm

.t o t h e s p e c i f i e d v a r i a b le s

$name=$in {'name'};

$emid=$in{'emailid'};

$sex=$in{'sex'};

$day=$in{'day'};

$month=$in {'month'};

$year=$in{'year'};

$dob=Syear.$slsh.$month.$slsh.$day;

PAGE 352
CO M M E R C IA L W E B APPLICATION DEVELOPMENT USING HTML, p R O . r

JAVASCRIPT , DHTML AND PERL

$dtls=$in {'request'};

$inflg=$in {'moreinfo'};

$age=$cyear - Syear;
A check fo r the d up lic a te values in the tex t f i l e i s done. #####
In case o f d up lic a te value or an in te rna l server error
an error page is rendered and a f l ag i s set to 1 #####
open(FHl,"<$basedir/$datafile");
@lines=<FHl>;
close(FHl);
foreach(@lines) {

chop();
@arr=(split(/:/)),
if ($arr[l] eq Sname) {

if($arr[2] eq Semid) {
print "<HTML><HEAD><SCRIPT>";
print "function back(form) { history.back();
print "</SCRIPT></HEAD>";
print "<BODY Background=/images/gridl.giftext=green>";
print "<CENTER></CENTER>

";
print "<CENTER><Hl>The Name and the Email address submitted is already registered as a

pen pals entry. This is a duplicate entry and hence not accepted</Hl>";
print "<FORM><INPUT Type=button Value=Back onClick-back(this.form)'></FORM>";
print "</CENTER></BODY></HTML>";
$flag=l;

}

}

Appending the ' p np ls .d a t ' with the values
being entered by the user #####
if ($flag!=l) {

if (open(FHl,"»$basedir/$datafile")) {
print FH1 "Scdt:$name:$emid:$sex:$dob:$age:$dtls:$inflg\n";
print ”<HTML><HEAD><SCRIPT>";
print "function home(form) { history.back(); history.back();}";
print "</SCRIPT></HEAD>";
print "<BODY Background=/images/gridl.giftext=green>";
print "<CENTER></CENTER>

";
print "<FORM Action='/cgi-bin/text/v\vchpnpls.pr Method=Post>";
print "<CENTER><Hl>Thank You !</Hl>
";
print "<Hl>Your information has been registered !</Hl>

";
print "<rNPUT Type=Submit Value=View>";
print "";
print "<INPUT Type=button Value=Back onClick='home(this.form)'>";
print "</CENTER></FORM></BODY></HTML>"; -

}
else {

print "<HTfviLxHEADxSCRIPT>";
print "function home(form) { history.back(); history.backO;
print "</SCRJPT></HEAD>";
print "<BODY Background='/images/gridl.gif text=green>";
print "<CEblTER></CENTER>

";

P R O J - С P R O JE C T S IN PERL PAGE 353

print "<CENTER><Hl>Currently there is a problem with the server</Hl>
";
print "<Hl>Please resend your message in an hour</Hl>

";
print "";
print "<FORM><INPUT Type=button Value=Home onClick='home(this.form)'></FORM>";
print "</CENTERx/BODY></HTML>";

}

}

S o u rce C o d e F or v w c h p n p ls .p l

#!c:/perl/bin/perl.exe
The program uses the c g i- l i b . p l l i b ra ry #####
require "cgi-lib.pl";
Pr in t the HTTP content-type header
&PrintHeader;
A subroutine defined to d isp lay an HTML page #####
sub srtn {

print« "DISP";
<HTML>

<HEAD><TITLE>VIEWED CH0ICE</T1TLE></HEAD>
<BODY Background='/images/grid 1 .gif text=green><CENTER>

<FORM Action=7cgi-bin/text/vwpnpls.pl" Method-'POST" onSubmit="retum checked()"
Name="One">

<P>

<H3><l>Select a Penpal of your choice.</I>

Sex:<INPUT Type=radio Name="sex" Value ="m">Male

<INPUT Type=radio Name="sex" Value="f' Checked="True">Female

Age: <SELECT Name="age">

OPTION Value = "0" Selected> 5 - 10
OPTION Value ="1"> 11-20
OPTION Value ="2"> 21 -30
OPTION Value ="3"> 31 -40
OPTION Value ="4">4I -50
OPTION Value ="5">51 - 60
OPTION Value ="6"> 61 - 70
OPTION Value ="7">71 - SO

</SELECT>
<B R><B R>
<1- Click on <INPUT Type^Submit Name-Submit' Value="Submit"> when done. </I></H3>
</FORM>

</CENTER></BODY>
</HTML>

DISP

}
The sub-routine is c a lle d
&srtn;

S o u rce C o d e F or v w p n p ls .p l

#!c:/perl/bin/perl.exe
The program uses the c g i- l i b . p l l i b ra ry #####
require "cgi-lib.pl";

P r in t t h e HTTP c o n te n t- ty p e h e a d e r

&PrintHeader;
A v a r i a b l e d e c la r e d t o s t o r e th e p a th t o t e x t f i l e #####

Sbasedir = "c:/sct/perlproj/cgi-bin/text/data/";
A v a r i a b l e d e c la r e d t o s t o r e th e t e x t f i l e

Sdatafile = "pnpls.dat";
The R e ad P a rse s u b r o u t in e i s c a l l e d fro m C g i - l i b . p l #####

l i b r a r y t o decode fo rm in f o r m a t io n

&ReadParse;
#.#### A s u b - r o u t in e d e f in e d t o d i p l a y an HTML page #####

sub srout {
$sex=$in{'sex'};
$age=$in{'age'};
if (Sage = "0") {

$rangel=5;
$range2=10;

}
elsif (Sage == "1") {

$rangel=ll;
Srange2=20;

}
elsif (Sage == "2") {

$rangel=21;
Srange2=30;

}
elsif (Sage = "3") {

$rangel=31;
Srange2=40;

}
elsif (Sage = "4") {

$rangel=41;
Srange2=50;

}
elsif (Sage == "5") {

$rangel=51;
Srange2=60;

}
elsif (Sage == "6") {

$rangel=61;
Srange2=70;

}
elsif (Sage == "7") {

$rangel=71;
Srange2=80;

}
print "<HTML><BODY Background-/images/grid 1.gif text=green>";
print "<CENTER>

";
print "Sex :";
if (Ssex ne "f’) {

Sdsex = "Male"; }

p . _ p . C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H TM L,
J A V A S C R | p T D H T M L A N D p E R L P R O J - C

P R O J - С P R O J E C T S IN P E R L P A G E 355

else {
Sdsex = "Female"; }

print "Sdsex";

print "";

print "Age Group:";

print "";

print "Srangel -\Srange2";

print "
<BRx/CENTER></BODY></HTML>";

A page d i s p a l y i n g th e e m a i l i d a n d p e n p a l i n f o r m a t io n

o f th e p e r s o n i s d is p la y e d b a se d on th e s e l e c t i o n

w h ic h i s done on th e b a s is o f a g e .

I n case o f any e r r o r s , an e r r o r p age i s d i s p l a y e d . #####

if (!open(FHl,"<$basedir/$datafile")) {

print "<HTML><HEAD><SCRIPT>";

print "function home(form) { history.go(-2); }";

print "</SCRIPT></HEAD>";

print "<BODY Background=7images/gridl.gif text=green>";

print "<CENTER></CENTER>

";

print "<CENTER><Hl>Currently there is a problem with the server</Hl>
";

print "<Hl>Please resend your message in an hour</Hl>

";

print "<IM G Src=7images/shim.gif Width=20 Height=20>";

print "<FORM><INPUT Type=button Value=Home onClick='home(this.form)'x/FORM>";

print "</CENTERx/BODY></HTML>";

}
else {

@lines=<FHl>;
close(FHl);
foreach(@lines) {

chop();

@arr=(split(/:/));

if ($arr[3] eq $sex) {

if($arr[5] >= Srangel && $arr[5] <= $range2) {

$ref=$arr[2];

$emid=$arr[2];

print "<HTML><HEAD><SCRIPT>";

print "function back(form) { history.back();}";

print "</SCRIPT></HEAD>";

print "<BODY Background=7images/gridl.gif text=green>";

print "C E N T E R X IM G Src=,7images/pnpls.gif'x/CENTER>

";

print "<TABLE><TR>";

print "<TD>Reply to : $ref</TD>";

print "</TR></TABLE><TABLE><TR><TD>";

print "$arr[6]";

print "</TDx/TRx/TABLE></BODY></HTM L>";

}

}

}

mailto:$emid%3eReply

print "<HTML><BODY><FORM><CENTER>";

print "<INPUT Type=button Value=Re-Search onClick=window.location='/cgi-

bin/text/vwchpnpls.pl'>";

print "<INPUT Type=button Value=Logout onClick=window.location='/html/text/index.htmr>";

print "</CENTER></FORM></BODY></HTML>";

}

}
The s u b - r o u t in e i s c a l l e d

&srout;

P R O J E C T S O U R C E C O D E F O R G U E S T B O O K

S o u rce C o d e For q e s tb k .h tm l

<HTML>

<HEAD><TITLE>SCT'S GUEST BOOK</TITLE>

<SCRIPT Language = "Javascript">

< ! — The f u n c t io n c h e ck s w h e th e r a p p r o p r i a t e i n f o r m a t io n i s — >

< ! — f i l l e d i n a l l t h e e le m e n ts . I f 'any e le m e n t i s l e f t em p ty , — >

< ! — an a l e r t () box i s d is p la y e d in f o r m in g t h e u s e r t o f i l l — >

< !- - i n th e em pty e le m e n t . The code a ls o s c an s th e E m a i l id f o r -->

.< !— th e p re s e n c e o f an '@ ! and a sy m b o l. — >

function verify(form) {

for (i= l; i<=2; i++) {

if (document.forms[0].elements[i].value == "") {

alert("Please fill in the " + document.forms[0].elements[i].name + " field");

document.forms[0].elements[i].focus();

return (false);

}
if(document.forms[0].elements[l].value!-'") {

pass = document.forms[0].elements[l].value.indexpf('@',0);

passl = document.forms[0].elements[l].value.index0f('.',0);

if((pass==-l) || (pass l=- l)) {

alert("Not a valid Email address");

document.forms[0].elements[l].focus();

return (false);

}

}

}
retum(true);

}
< ! — T h is f u n c t i o n t a k e s t h e u s e r b a c k t o t h e 'Home P ag e ' -->

< ! — fro m t h e c u r r e n t p age -->

function abort(form) {

history.back(); }

< ! — S e ts t h e fo c u s on t h e f i r s t e le m e n t when t h e fo rm i s lo a d e d — >

function set(form) {

document. forms[0] .elements [0] .focusQ; }

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L, p R n . r

P A G E 356 J A V A S C R IP T , D H T M L A N D P E R L P R O J '

P R O J - С P R O J E C T S IN P E R L P A G E 357

< ! — The f u n c t io n c h e c k le n () checks t h a t t h e le n g t h o f name -->

< ! — and e m a il a a d d r e s s does n o t ex ceed 30 c h a r a c t e r s . -->

function checklen(form) {

for (i=0;i<=l;i++) {

val=document.forms[0].elements[i].value;

len=val.length;

if (len > 30) {

alert ("Value exceeds 30 characters");

document. forms[0].elements[i]. value-’";

document.forms[0].elements[i].focus();

}

}

}
</SCRIPT></HEAD>

<BODY Background="/images/gridl.gif' TEXT="green" onLoad="set(this.form)">

<CENTER>

<P><P><CENTER>Please take a few moments to let us know you were here today.

<P><P><FORM Action = "/cgi-bin/text/gestbk.pl" Method-'POST" onSubmit=" return

verify(this.form)">

<P><P>Please Give Us Your Name

<INPUT Type="text" Name="name" Size="40" onBlur="checklen(this.form)">

<P><P>Please Give Us Your Email Address

<INPUT Type="text" Name="emailid" Size="40" onBlur="checklen(this.form)">

<P><P>Bouquets Or Brickbats Are Welcome

<TEXTAREA Name="request" Rows="8" Cols="65"></TEXTAREA>

<P><P>Can we contact you with information about our products or services.

<INPUT TYPE="radio" NAME="moreinfo" VALUE="y">

Yes

<INPUT Type="radio" Name="moreinfo" Value="n" Checked="True">

No, Thanks!

<P><INPUT Type="Submit" Value="Submit"><INPUT Type="Reset" Value="Reset">

<INPUT Type="Button" Value="Abort" onClick="abort(this.form)">

</FORM xp>Thank You For Stopping By Our Web Site</Bx/CENTER>

</BODY>

</HTML>

S o u rce C o d e For qes tbk .p l

#!c:/perl/bin/perl.exe
The p ro g ram u se s t h e c g i - l i b . p l l i b r a r y #####

require "cgi-lib.pl";

P r i n t th e HTTP c o n te n t- ty p e h e a d e r

APrintHeader;
The R e ad P a rse s u b r o u t in e i s c a l l e d from C g i - l i b . p l

l i b r a r y t o d ecod e fo rm in f o r m a t io n

&ReadParse;
A v a r i a b le d e c la r e d t o s t o r e th e p a th t o t h e t e x t f i l e #####

Sbasedir = "c:/sct/perlproj/cgi-bin/text/data/";

A v a r i a b le d e c la r e d t o s t o r e th e t e x t f i l e

Sdatafile = ”gestbk.dat";

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L, R Q J
J A V A S C R IP T , D H T M L A N D P E R L

The c u r r e n t d a te i s c a p tu r e d fro m th e sy s te m

u s in g f u n c t i o n ' l o c a l t i m e ' and n e c e s s a r y p r o c e s s in g #####

i s c a r r ie d o u t t o e x t r a c t t h e d a te fro m th e f u n c t io n ####

$slsh="/";
$lcltim=localtime(time);
(Scday ,$cmonth, Sedate, Sctime, $cyear)=split(As+/,$lcltim);
%mon=("Jan’->"01", "Feb"=>"02", "Mar"=>"03", "Apr"=>"04", "May"=>"05", "Jun"=>"06",

"Jul"=>"07", "Aug"=>"08", "Sep"=>"09", "0ct"=>"10", "Nov"=>”H", "Dec"=>"12");
for $key(keys%mon) {

if (Scmonth eq $key)‘ {
$cmon=$mon {$key};

}

}
$cdt=$cyear.$slsh.$cmon.$slsh.$cdate;
A s s ig n s t h e i n p u t fro m th e HTML fo rm t o th e v a r i a b le s #####_

$name=$in{'name'};
$emid=$in{'emailid'};
$inflg=$in{'moreinfo'};
$dtls=$in{'request'};
A p p e n d in g th e 'g e s t B k . t x t ' th r o u g h t h e f i l e h a n d l e

I n case o f any e r r o r s , an e r r o r page i s d i s p la y e d #####

if (open(FHD,"»$basedir/$datafile")) {
nt FHD "$cdt:$name:$emid:$dtls:$inflg \n";
nt "<HTML><HEAD><SCRIPT>";
nt "function home(form) { history.go(-2);
nt "</SCRIPT></HEAD>";
nt "<BODY Background=/images/gridl.giftext=green>";
nt "<CENTER></CENTER>

";
nt "<CENTER><H 1 >Thank You !</Hl>
";
nt "<Hl>Your information has been registered !</Hl>

";
nt "";
nt "<.FORM^INPUT Type=button Value-Home onClick-'huine(this.form)'x/FORM>";
nt "</CENTERx/BODY></HTML>";

pr
pr
pr
pr
pr
pr
pr
pr

pr
pr
pri

}
else {

print "<HTML><HEAD><SCRIP'r>";
print "function home(form) { history.go(-2);}";
print "</SCRIPT></HEAD>";
print "<BODY Background='/images/gridl.gif text=green>";
print "<CENTER></CENTER>

";
print "<CENTER><Hl>Currently there is a problem with the server</Hl>
";
print "<Hl>Please resend your message in an hour</HlxBR>
";
print "</FORM>";
print "<FORMx INPUT Type=button Value=Home onClick='home(this.form)'>";
print "</CENTER></BODY></HTML>";

}

D . P R O J E C T S IN P E R L U S I N G A D A T A B A S E

O B J E C T IV E

T ips & T ricks - Nets copo

i £ d f t y ie v .' 2 o C om m um ceio f fcje>P

J i
B c c k R e lo a d Hom e

„ jf * Bookmark»

-f
SeaicJi N e tscap e P iim

Si’

Insten!Message jj; WobMoil jÿ Contact Üji People Ш YallowPages ’3 Oownloori

¡r"] (f ji" W ho t'a Rele ted
j Channels

To develop a system, which keeps track of all Problem Areas, Errors and Techniques identified and implemented

during the course of software development.

Information stored in the system should be freely available to every programmer when required.

Additionally new techniques encountered by programmers, which may be useful to other programmers, need to

be specified and accessed when required.

The optimum method of achieving the above

is by implementing a web solution using

Oracle as a data storage system.

M o d u le s

The core modules of this system will be as

follows:

1. Managing Users / Employees (Add / Edit

/ Delete / View)

2. Data Storage of identified Problem Areas

and Errors

3. Data Storage of probable Solutions to

Problem Areas and Errors

4. Data Storage of Tips & Tricks

5. Data Retrieval

C O M P A N Y N A M E

Ir r ita tin g E rro rs ? H a ir T earing P rob le n is

“d u r in g S o ftw are Development ?
C heck th is o u t H

L O G IN fo r a s o lu tio n fo r y o u r p ro b le m o r h e lp y o u r

b re th ren by p o s tin g som e h e lp fu l T ips a n d T ricks.

L o g in j

З Р г - Щ р ' ¡D o cu m en t D one

SiE Start j ^ Ex .. I O’ j Ц У Mi.,, j f ig peri j : s] ir

> .у-» l 3 г-

а 00AW

Diagram D.l

h£ .
r a l

Ne isco pe

Using these, employees can post their queries/problems on the Intranet. All other employees can access these,

and any employee can post appropriate solutions on the Intranet, if they know the Solution. Besides, if an

employee comes across some information that might prove helpful to other employees, they can post it on the

Intranet as a Tip, where all other employees can access it.

S y s te m S tu d y

The user first needs to log in to the system. For this, the user’s identity (in terms of Login-Id and Password)

needs to be accepted and verified against the Information Base. To implement this, an interface is created which

includes a login screen with:

□ Two text fields to accept the Login-Id and

Password

□ One SUBMIT Button

After the user enters the Login-Id and

Password, and clicks on SUBMIT button, the

user is identified against the Information Base.

If recognized to be a Valid User, the user is led

to a Welcome Screen (home page), with five

options:

□ Problems and Solutions

□ Tips and Tricks

□ Employee Information

□ Home

□ Logout

ile Edit V ie w £ o £o m inum cato i K e lp

S a t* R e lo ad
B ookm arks & Lo c a tio n jhNp://wMM project com /cg i-b in /lcg m -che ck p i '■"j W he fs R e la te d

,5 ^ I n s t a n t j j W»bMa>i 3 Comae» j P e c p 'e j j P a g e t 4i- D o o fila a d _ j Chanr«!«_______________

W e lco m e D E M O U S E R !

Hmc -j Problem ?
Wish to post som e sniable Tips and Titcks ! Lootiimi lor som e Employee Information ?

Using !h « f i». y cu ra n p e f i yaw ¡Ti-Mtes i
aryioloyoa*. anil appntpnate 'n -ü ’ ions c%r. be
»■* WIM'W Pe5iM-i.il-iseit CÖÄI9S ас:
»m p lo y te * . t lw y с ï n ppsi u back *« э 'П

-, ar-ij dcn lrfk -i jn -:

wñw.h can M ac 'fis f.e t* hy lü e th n
»cl* by any лшрМуре. if ü'i» лгпрюулп k n o w

ateanaiion llía ! rcwjM ariwp ha iptiii ¡o o ilis i
w e а-l o !h * i em eleyee* can «cea?« il

4? Sfantlards la fc* n-A irta ined ir. the M w #

So po ahead and click on the required option

* ©Copyright 1999 by f.XniBS

D ocum en t Clone

D iagram D.2

PAGE 360
C O M M ERC IA L W E B APPLICATION DEVELOPMENT USING HTML,

JAVASCRIPT , DHTML AND PERL
P R O J - D

The five options on the left are Hyperlinks, and will lead the User to respective areas of information. The

options are explained in detail below.

P ro b le m s A n d S o lu t io n s

This is the main area of usage and deals with

the following:

□ Posting a Query

□ Replying to a Posted Query i.e. Posting

a Solution

□ Viewing Problems and its related

Solutions

Choosing different options under Problems

& Solutions displays suitable interfaces.

A d d P rob lem

The interface includes:

□ The name (first name and last name) of

the user posting the problem, which is

automatically displayed.

□ The date and time when the problem is

being posted also displayed

automatically.

□ A text box provided for the title o f the

problem.

□ A textarea for the description o f the

problem.

□ Two buttons, SUBMIT and RESET.

Upon entering the Problem Title and its

description in the textarea and clicking on

the SUBMIT button, the data gets stored in

the database.

A d d S o lu t io n s

The Interface will display:

□ A list of all the Posted Queries

(Problem Title an d Problem
Description).

Clicking on a Problem Title shows an

interface, which includes,

□ Problem Title automatically displayed.

□ Employee Name who has posted the

problem automatically displayed.

□ Date and time o f when the problem was

posted automatically displayed.

□ Problem description ¿ütomatically displayed.

□ A textarea is provided for the solution to be entered by the user.

^^^^ЗУ Ц В Н В^Н В В Ю ВВ В И
He £d rt V ie w 2 ° Com m unicator H e lp

•Í . 3 4 * St
Back Reload Home Search Netscape

' 6ookmo'ks £i. Locebon:

Insinr.i Messect

- i> aà’ Щ fSl
Security Stop 'ЛИГ

1ieCT.com/c9i-bin/ps.h'rn ~ Whnfs Related
ie 5) VVebMoil ÿ Contad jÿ People Щ Vello« Pegas 3 Download Çjj Chonnels___________

Fiv’ik jg & 3»1аШий.

« \U4 S»luU(UUL
Y fcM j

XolutiniK

Welcome DEMO USER!

H a ve a P ro b le m

W ish t i l pos» a s o lu t io n ? ?

... C lic k n n the requ ire« ! n p tim i
Has»

O Copyright 1999 by

i1 D o cum en t D o ne
i i f i Start j j !> V M t [8£ p e t i j (j% H J g o d j ¿ ^ O r . j ^ p it j V j s o j g j p r j ^

•ii- W -У>

Diagram D.3

^ N e ts c a p e ' Я Е 1 И
£;le £drt ¥*ew Qo Com m unicator H e lp 1

• S
8э с к

i л
R e lo a d H o m e

J * . i i l J -
Search N e ts c ap e Prim Security

m
S top

i ‘ B ookm arks

Instant M essage
Location- jh n p //w w w p 'o je c t c o m /c g i-b in /p s htm » | (f.> W h a fs R e la te d I

a- W ebM atl ÿ Contact !? P e o p le Ï ? Y e llo w P a g e s 3 D ow n load _ J Channels

W e l c o m e D E M O T T S F .R !

Г , л P ro b le m s (A D D) 4

® Add I ' l o i-Uim
: ® A lid Sulullom

йй H osted hy :

I » =

3 £ M 0 USER
1-S*P-19S9 53 Sat

« \ lee Ä a fe ke u L A ■ T it le ; |MA.Nffu.A lt*3 MAOes

l ira & l ii t 'K s

Неви-

La to iiL Щ

В

H&H TO MAKE MACES APPEAR АМЭ HSAPPEAft »

_ l

' Subm it j Reset j
À

Щ О Copyright 1999 by a ' IA IE S

D o cum en t D o ne 'Ш x t « v s г
1 З Я S ta r t] j g E x | U y W i - j f g p « r f | i { g \ Ni j p r . j « à O r..} pit- j s o . j pr... 3:38 PM

Diagram D.4
p M M H M i i J ттмкшшишмшп

File Ed« View Qo Communicator Help

i » а л j* a * a- » ¡2
Беек Reload Home Search Netscape Print Security Stop JSH I

J i ' Bookmarks /, -ocatiorrjhttp//wwwproieö com/cgt-bin/ps htm » j (Tß What's Related

, ¡̂ instent Massage ?? WebMail Contact P j People '.If Yellow Pages Э Downloed L j Channels

Pivhh-тд A 3«1ийвж>

1 ® A*M Prv'lltfnJ1-
; « -4xi.i ÿ.iuû.1» ' ¿

Welcome DEMO USER!

So lu tions (ADD)

Problem Title Problem Description

MAffИ I^ATIW tAAG” S H C V TO MAKE IMAC-ES APPEAR AND
» W » ГпЪ Ьм Л. . ’S
s«l«ifc»iis . ¡ ‘ Д

TwL&Jxithx. " jt

r p f l a ^ U h n m i a l . Я

II» IM.

LtXf4l

С Copyright 1999 by ^

M ' Document Done , 'A- Ù -1 u3

íBst«n| ü JE^I uyui. j igpo.illpH" ^ » л |Й 0 '1Ш р« ..|= }” -13р"'.| í <¿@*Q© зтерм

D ia g ra m D .5

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 361

□ The name of the user posting the
solution automatically displayed.

□ Date and time of solution posted is also
automatically displayed.

□ Two buttons, SUBMIT and RESET.

Upon entering the solution in the textarea
and clicking on the SUBMIT button, the
solution gets stored in the database.

V iew P ro b le m s A n d S o lu t io n s

Clicking on View Problems & Solution
provides an interface, which includes
□ A list of Problem Titles and their

description.

Clicking on the Problem Title takes the user
to a more detailed interface.

In this interface:
□ Problem Title automatically displayed.
□ Employee Name who has posted the

problem automatically displayed.
□ Date and time of when the problem was

posted automatically displayed.
□ Problem description automatically

displayed.
□ Solution/s for the problem is displayed.

£ jle £d it '¿кг* Q o Com m unicator H e lp

■W . 3 -VV '£*-
воск R e lo a d H o m e S ea rch N e tscap e
" D o okrr.a rk i t Location |мго ; / « w . p ro p e l co rn /cg i-bm /ps

i
Print

at U ГЧ
S ecurity S lo p Й Й Г

(Î 3 ’ W h e r* R e la te d
P e c p le IS Y e llo w P ag as Щ D o w n lo ad Channe ls_________________

P m b V m A S aln in i

T ille
Posted b y :
On :
Description :

Welcome DEMO USER!

S O L U T IO N S (A D D)

MANIPULATING IMAGES
DEMO USER
04-SEP-1999 15 3? 55
HOW TO M /Æ :MA(?ES APPEAR ANC1 OSAPPEA» .'

rfAKE USE OF MAO£ ARRAYS

Ы
OEMC USER oí г-Бер-1ЗД9 5 44:08 Sal

[S u b m it^ R cse l |

¿ f iS la r t j E x I Ц У Mt

e Copyright 1599 by '-.HAtFE

D o cum ew C-C'-.e

.g»

Diagram D.6.

S ie £dtt yiew 2 o Comm un:слизг Уе'-Р

i у Л '«i al S
Sacfc f te to a d H o m e S ea rch N e tscap e Prim

■Jf B ooK jnM cs 4 Location jhrto / / w w w .p ro jec tcom /cg i-b in /ps .h tm i^ 'W h e t 's R e la ie d
instant M essage .?■> V /e b M o il S i C o n ta d .4) P eop’a '3 Y e llo w P agas 3 D o w n load _ j C h arn e ls__________________

s?
S ecurity Stop

P r°b|>w f &

Welcome DEMO USER!

P ro b le m s & S o lu t io n s

P rob le m T itle

MANIPULATING IMAGES

P rob le m D e s crip t io n
HOW TO MAKE IMAGES APPEAR AND
CHSAPPEAft ?

© Copynght 1999 by /.W* : F?

Clicking on any of the available solutions
displays:
□ Name of the user who has posted the solution.
□ Date and time of when the solution was posted
□ Solution.

Diagram D.7

http://www.projectcom/cgi-bin/ps.htm

PAGE 362

Tips A nd t r ic k s

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L,
J A V A S C R IP T , D H T M L A N D P E R L

P R O J - D

This module deals with the following:

□ Posting a Tip

□ Viewing Tips and Tricks posted.

The options provided are explained in detail

below.

A d d T ips

Clicking on this link shows an interface,

which displays:

□ Name of the user who is posting the

Tip.

□ Date and time when the Tip is being

posted.

□ A text box for the Title o f the Tip

□ A TextArea for the description o f the

Tip.

□ A SUBMIT and RESET button.

Upon entering the Tip Title and its

description and clicking on SUBMIT

button, the data gets stored in the database.

V iew Tips

Clicking on this link shows a List o f all the

Tips and Tricks posted.

Clicking on the title o f the tip takes the user

to a more detailed interface, which includes:

□ Title of the Tip

□ Employee who posted the Tip

□ Date and Time when the Tip was posted

□ Tip Description

Netscape i S Q
I Eile Ed« View Qo !Communicator help

; ¿
. Back

3 1 ^ a :à " it '& - I I
Reload Home Search netscape Secwity Stop d

. > * Saoxmeiks 4' иосвкШ ьвр //www pioiect com/cgi4)m/lip htm Wheü's Belated I

1 : fk instant Massage 3> V/ebMeil §1 Contad 3 People 5 Ув'.кгм Pages S Download Lj Oannels

..............

Welcome DEMO USER!

lb s 4; Tricks
, ’ :1

■* ,Ш’11р
•* VlmrTtn

Looking fot some Tips t T iicks ??

Ejny'uyvr Ubi matin r; 1 Wisli to post some Tips 8 Tricks 77

Ifc a e . ^ "

l и * ч х -f2i
j

........ Click on the reqtiirari option

в Copynght 1999 by AKALEt

if -ii>- Dacurneni: Done -it- '*-* ui=* -г- 1

Diagram D.10

i!e Edit yie*. Qo £o.-nmunicatO' Help

■■£ V 3 ¿á
Sock Retoca Home Searcfi Netscape Prim

,Jf ' Bookmarks § Location jhrp //www proiei

aí
Secwiy

- '.'Pbtrn _ .
f in s te r n ; M es s ag e WefaM oii ^ ‘ Contact ^ P e o p l e ^ YeHow P ag es H D o v fiito ad :.Jj Channels

* a
<?ÿ~Whafs Related

Г га Ы .м f t SaT

Welcome DEMO USER!

Tips & Tricks (ADD)

• , w i ÿ ;
• N’wrfri

P osted b y :
On :
Tille :

DEMO USER

5-Sop-1999 '4:30 46 Sur.

(special variable calleo » . N PERÚ

THE LNE READ FROM STOfJ IS NOT ASSIGNED TO A S P E C F 1 C Z 1
VARIABLE. THEN PERL ASSIGNS THAT L IC TO A SPECAL VARIABLE -----
CALLED S_

Submit I RbSel j

О Copyright 1999 by AMALEE

- Docum ent: D o ne _ -r- - - - , v . c a -z - .
SC S ta r t j È Ê o e r t j ^ jE > p L , j jp g N e t . . . ^ O r n c i . j (2 } .e ra - .j [JJ /M ic ro , j JO '“P*0 j vî ,-iâCÏ . ♦ O ® 2 21 PM

Diagram D .ll

Se ¿of ije* 2o ¿omnwnicaar Help

f 3 'íjt rä
Bocx Raloed Home S een* t»9Kcepe

*' BooW.eiк» Д Lcceton:|*i3 h
Заолиу

a
Sip

a com/cgiHîin/iip htm

& insumí Ma ssaga M Wsbv-eB -SU Cortag Pyopte if Yallo* Раза'.

t f J ’ W hK 'sRetel
j ChanneU

£<i.l yaw Qo Sommai!

i 3
Back Pöoed
£ " 8ookmsfks fj. Locaior,: [r-.r- //«« . pioieci com/cg>-b.n/t'p

^In rta iüM fessaga

s»- =á -li
Saoreti Netscape fr-гл Saojny Slop Ê Ê T

7] tf^'WhoisRelates
V.'&r.M&d 3 Contaa Pgooie Va3ûw Pages 'jj- Download Channel«_____________

WcIconic D E M O USER'

|>г«ы»мс X.

T t i i l r i ih ¿ - Tip Till«

J
j CCopyngM 1999 by

■Document O cre___ * CS Д
3D Start] g pel j -4J ÜPÏÏN»

Tip fille :

Posted by :

Wclcomc D EM O U SER1

Tips & Tricks

SPfcC-AL VARIABLE CALlfO t. N PEPl

DEMO *яея

05-SEP--393 14 24 !»

IF THE UNE READ FROM STON IS NOT ASS-GNEÜ to A
SPECIFIC VARIABLE. THEN PEPl ASS «MS THAT LINE TO A
SPECIAL VaPíablE CALLED i

©Copynght l»9 by f.lt- ~f.
ü íH ^ r ~ ¡Document Den*

iSi£Slartj ggpeil (^Sj£>p jjjiftNo j ’¿y Mic j g) ftpa. j np*i <С- 259 PW

D iagram D.12 D iagram D .13

P R O J - D P R O JE C T S IN PERL USING A DATABASE PAGE 363

E m p lo yee In fo rm a tio n

This module deals with the following:
□ Adding Employee Details
□ Editing Employee Details
□ Deleting Employee Details
□ Viewing Employee Details

The options provided are explained in detail
below.

A d d

Clicking on this link displays an interface,
which includes:
□ Employee Number that is generated and

displayed automatically.
□ Employee Name (First and Last Name)
□ Designation
□ Joining Date
□ Confirmation Date
□ Login Id
□ Password
□ Two buttons, SUBMIT and RESET.

Upon filling the form and clicking on the
SUBMIT button, employee information gets
stored in the database.

E d it

Clicking on this link provides an interface
with:
□ A list of all employees displayed in a

drop down list box
□ Two buttons, DETAILS and RESET.

Selecting a user from the Drop down list and
clicking on DETAILS button provides the
user with an interface, which gives all
details about the employee. This interface
includes
□ Employee No
□ Employee Name (First and Last Name)
□ Designation
□ Joining Date
□ Confirmation Date
□ Login Id
□ Password

This interface also provides a facility to
change the password with additional fields:
□ Old password
□ New password

^ 3 & G*- S
B ack R e lo a d H o m e S earch N e tscap e

s V
S ecurity S top a

B ookm arks Lo ceS o n :[- 'p / / i m m p ro je c t c o m /c y o m /e i h»m ■r I t f jT W ha t's Related

:!' ^ In s ta n tM e s s a g e Sfl W efcM a jf 3 ¡ C o m a s & P e o p le 5 ¡ Y e llo w Parses §1 D ow n load _ J Channels

Etle Edit Y ie w f i o Com m unica to r h e lp

Wc Iconic DEMO USER!

tmfUjrc In£»nn»rUn

' L V lftt
' Sol .

L o o k in g fo r hooir In fo rm a t io n ? ?

W n n l in A il cl o r m ake s o m e г.Ьлицик ??

...C lic k on th e re q u ire d o p tio n

в Copynght 1999 by A) Г А Ш

D o c u m e n t C one

Diagram D.14

Secuniy S3
D ie £ « • V ia w C o £o m m u n ic « o r H e 'p

^ -r
B ock R e lo a d H o m e S ea rch N e tscape

'3ook.-na .-ks t Locason jhttp / /w w * p ro je c t com /c g i-b m /e i him v] (£ 0 ’ W ha t's R e !a :ed
I__& A slant M a s ta g a W ab M a il 3 C o ntac t jg i P op p le 31 Y e ito w P & ce s g ; D o w n lo ed 'Js C h an na it__________________

Welcome DEMO USER! :

E m p lo y e e In fo r m a t io n (A D D)

Employe« No

FksI Name

Last Name

0eS:JJt!9li0ri

Jsm Dite (DL1-MO N-У Vi

Login ID

Confirm ü a te (0 0 -MON-Y Y) J-

Pas «.wort . Г ~

Subm i! j R ese i j

e Copyright 1999 b y AKAS-SE

D o c u m e n t D one ■ w -jo гя г ■
Diagram D.15

E 'ie Eclii V ie w Q o C om m unicator t i e ip

J' / л a
B a c k R e lo ad H om e

OÍ
Security

II
Slop

.Jr B oo km a /ks £ Location. (ht!p_//www proiect com/cgi-tun/ei him

^ ins tan; M es s ag e i f f i W eb M a it ^ C ontact ~^S P e o p le ^ Y e -low P ag es M D o w n lo ad _Ji
• r j <Tf W h a r t R e la te d

Channels_______

Welcome DEMO USER!

E m p lo y e e In fo r m a t io n (E D IT)

Em ployee Name lo be adrteti •

DEMO

■ V i . J . ' m / .

D ia g ra m D.16

P A G E 364
C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H TM L,

J A V A S C R IP T , D H T M L A N D P E R L
P R O J - D

Two buttons SUBMIT and RESET.

Making required changes and clicking on

SUBMIT button updates the employee

information.

D e le te A n d V ie w

Clicking on these links provides the user

with a similar interface as with the Edit

option, a list o f all employees in a drop

down list with two buttons Details and Reset

for View and a Delete button for Delete

□ The Password Field, when entered,

should be displayed as Asterisks. There

should also be a Confirm Password Field

(also displayed as Asterisks), and the

£ile Edit Vie*. Qp Communicator Help

■S 3 A
Beck P.elcad Home

"SookiriRiks Sj. Location jhltp //www proi«

Instant Massage WebMsii .-jjjl Contact

¿2-
Search Netscape SecunJ/

i com/cgi-bin/ei him

•- People jj) Yellow Pages

l-[s|x|

и 23
S lo p j e w

(f jÿ ’ W h a fs R e la ted

Welcome DE-MO USER!

E m p lo y e « In fo r m a t io n (E D IT)

Is ŝsssss. -,

Err.plc-yiä No

Designation jvKiTOB
Jom Lisie (DO-MOH-YV; ¡0I-JAN.97

Í egm 10 (loc-n

Enter old Password j

e CopyngM 1999 by / К/

Confirm Date (DD-МОЙ-Y T
Password ..

Enter New Passera

Sutmii I Reset j

D ocum en t D o ne

Diagram D.17

values of these two fields should match when the user tries to save the record.

V a lid a t io n s T o B e C o n s id e re d

1. When the user logs in for the first time and clicks on the Submit Button, his validity as a User (Login Id and

Password) needs to be verified and only then he should be able to proceed further.

2. On every page that the user traverses, the first name and the last name of the user needs to be displayed on

top of the page as a header. Hint: Use Cookies.

3. In the Add Problem Interface,

□ Name (First name and last name) of the user posting a query must be displayed automatically.

□ Date and Time of posting the Query must also be displayed automatically.

□ The Problem Title and Problem Description should not be left blank.

□ As soon as a User Posts (Submits) a Query, the Screen displaying a list of all the queries must be

updated to include the most recent Query.

4. In the Add Solution Interface,

□ Problem Title must be displayed automatically.

□ Employee Name who has posted the problem must be displayed automatically.

□ Date and time of when the problem was posted must be displayed automatically.

□ Problem description must be displayed automatically.

□ The name of the user posting the solution must be displayed automatically.

□ Date and time of solution posted must be displayed automatically.

□ Solution Description should not be left blank.

□ As soon as a User Posts (Submits) a Solution, the Screen displaying a list of all the Solutions must be

updated to include the most recent Solution.

5. In the View Problems & Solution Interface,

□ Problem Title must be displayed automatically.

□ Employee Name who has posted the problem must be displayed automatically.

□ Date and time of when the problem was posted must be displayed automatically.

□ Problem description must be displayed automatically.

□ List of all solutions related to that problem must be displayed.

□ Once the user clicks on any one solution listed, the next interface should display automatically Name of

the employee who posted the solution along with Date and Time of Solution posted and its description.

6. In the Add Tip Interface,

□ Employee Name who is posting the Tip must be displayed automatically.

□ Date and time of when the Tip is posted must be displayed automatically.

□ Tip Title and Tip Description should not be left blank.

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 365

□ As soon as a User Posts (Submits) a Tip, the Screen displaying a list of all the Tips must be updated to

include the most recent Tip.

7. In the View Tip Interface,

□ List of all Tips and Tricks must be displayed.

□ Once the user clicks on any Tip Title listed, the next interface should display automatically Name of the

employee who posted the Tip along with Date and Time of Tip posted and its description.

8. In the Add Employee Interface,

□ Employee Number must be generated automatically and the user should not be allowed to modify the
same.

□ None of the fields should be left blank.
□ Date of Joining and Date of Confirmation should be in specified format only i.e. DD-MON-YY

□ The Password Field, when entered, should be displayed as Asterisks.

□ After the user Submits, an alert has to be displayed with a message that the information has been added

successfully.

9. In the Edit Employee Interface, -

□ User should not be allowed to modify the Employee Number.

□ None of the fields should be left blank.
□ Date of Joining and Date of Confirmation should be in specified format only i.e. DD-MON-YY

□ The Password Field, when entered, should be displayed as Asterisks.

□ The Old Password and New Password Field, when entered should also be displayed as Asterisks.

□ After the user Submits, an alert has to be displayed with a message that the information has been

updated successfully.

10. In the Delete Employee Interface,

□ User should not be allowed to modify any of the fields.

□ The Password Field should be displayed as Asterisks.

□ After the user Submits, an alert has to be displayed with a message that the information has been

deleted successfully.

11. In the View Employee Interface,

□ User should not be allowed to modify any of the fields.

□ The Password Field should be displayed as Asterisks.

T A B L E S T R U C T U R E S

Table Name : Employee lnfo

Column Definition:
Name Datatype/Size Remarks
Employee No varchar2(8) Primary Key

First Name varchar2(60)

Last Name varchar2(60)

Designation varchar2(60)

Date of Joining date

Date o f Confirmation date

Login Id varchar2(20)
Combination has to be Unique

Password varchar2(10)

Insert a record as shown below, to login successfully from the login screen:

INSERT INTO em p lo y eeJn fo
VALUES (T>r, ’DEMO', 'USER', 'VISITOR', '01-JAN-97', '01-FEB-97', 'LOGIN', 'PASSWORD');

Table Name : LU_ENO

Column Definition:
Name Datatype/Size Remarks
Employee No varchar2(8) Holds a unique number of a new employee

PAGE 366
C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H TM L,

J A V A S C R IP T , D H T M L A N D P E R L
P R O J - D

Insert a record as shown below:

INSERT INTO L U J N O VALUES ('E2');

Table Name : Problem Defmition

This table stores not only the solutions to the Queries, but also Tips and Tricks

Column Definition:
Name Datatype/Size Remarks

Problem_Date_Time date Primary Key (Automatically Populated, taking the Date and Time

from the Server, at the time when the user saves the Query.)

Employ ee_No varchar2(8) Foreign Key (Automatically Populated, depending on the Current

User’s Login Id and Password)

Problem Title varchar2(60)

Problem Description varchar2(2000)

Problem Status varchar2(6)

Table Name : ProbableSolutions

Column Definition:
Name Datatype/Size Remarks
SolutionDateT im e date Primary Key (Automatically Populated, taking the Date and Time

from the Server, at the time when the user saves the Solution)

Problem DateT ime date Foreign Key to Problem_Definition (Automatically Populated,

depending on the Query that the user is trying to provide the

Solution to)

EmployeeNo varchar2(8) Foreign Key to Employee lnfo (Automatically Populated,

depending on the Current User’s Login Id and Password)

Solution_Title varchar2(60) Populated automatically with the Problem Title, if the current

record is a solution to an existing Query.

Null, if the current record is a Tip or a Trick.

Solution Description varchar2(2000)

The SOL queries for the above tables are available within the book CD-ROM and are located at:

\ChaDtcrWiseCo(le&Projeets\Part 4 CGl\Proiect\Tins Tricks\SOL\TipsNTricks.txt

S T A R T IN G T H E T IP S A N D T R IC K S S Y S T E M

To access the PERL based web site on Tips and Tricks, a name based, virtual host entry is created under

Apache2, pointing to a directory. This is followed by an entry in the hosts

(c:\windows\system32\drivers\etc\hosts) file as follows:

172.16.9.66 sct.tipsntricks.com (IP Address may differ on individual m achine bases)

The following entries are made in the httpd.conf file as follows:

NameVirtualHost 172.16.9.66 ,
<VirtualHost 172.16.9.66> N o t e '"= = = =

ServerAdmin webmaster@sct.com » * " 1 The default ScriptAlias tag of Apache2 should be

DocumentRoot c:\sct\tipsntricks disabled by commenting the line in the httpd.conf.

ServerName sct.tipsntricks.com For example: #ScriptAlias /cgi-bin/ "C:/Program

ScriptAlias /cgi-bin/ "c:\sct\tipsntricks\cgi-bin\" Files/Apache Group/Apache2/cgi-bin/"

</VirtuaIHost>

To start a session o f the Tips And Tricks system, follow these steps:

□ Open a browser

□ Type in the url:

http://sct.tipsntricks.com/

mailto:webmaster@sct.com
http://sct.tipsntricks.com/

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 367

P R O J E C T S O U R C E C O D E F O R T H E T IP S A N D T R IC K S

S o u rce C o d e For lndex .h tm

<HTML>

<HEAD><TITLE> Tips & Tricks </Title>

<META Name = "build" Content = "Mar 29 1999">

<META Name = "version" Content = "Version 1">

<META Name = "author" Content = "Silicon Chip Technologies'^

</HEAD><BODY><CENTER><H2>COMPANY NAME</H2><HR NoShade>

<TABLE Align=CENTER BGColor=#23238E CellPadding=5 Width=100%><TR>

<TD Align=CENTER Width=80% ><I>

Irritating Errors? Hair Tearing Problems?
during Software

Development?
Check this out!!
LOGIN for a solution for your problem or

help your
brethren by posting some helpful Tips and Tricks.</I></TD>

<TD BGColor=WHITE></TD>

<TD Width=20%><TD>

</TRx/TABLE>

<FORM Action='7cgi-bin/login-check.pl" Method="POST"><TABLE><TR>

<TD>Login

<INPUT Name="login_id" onBlur="this.value=this.value.toUpperCase(); Type="Text"

Size=10"> Password

<INPUT Name="password" onBlur="this.value=this.value.toUpperCase();"

Type="Password" Size=10>

<INPUT Type="Submit" Value="Submit"></TD>

</TR></TABLE></FORM>

</CENTERx/BODY>

</HTML>

S o u rce C o d e For loq in-check .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;
Slogin = $in{'login_id'};

$pw = $in{’password'};

use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32::ODBC::Error();

print "Content-type: text/html\n\n<HTML><BODY><P> $a </P></BODY></HTML>";

exit;

}

if(!$Db->sql("SELECT * FROM employeeinfo WHERE login_id=\'$login\' AND password=\'$pw\'")) {

if ($Db->FetchRow()) {

undef%Data;

%Data = $Db->DataHash();

print "Content-type: text/html\n";

print "Set-cookie: friame=$Data{,FIRST_NAME'}\n";

print "Set-cookie: lname=$Data{'LAST_NAME'}\n";

print "Set-cookie: loginid=SData{'LOGIN_ID'}\n";

print "Set-cookie: passwd=$Data{'PASSWORD'}\n\n";

&LoginPage;
close(SDb);

exit;

}

}
print "Content-type: text/html\n\n";

print "<HTML>"<BODY><SCRIPT Language-JavaScript’>";

print "alert('ACCESS DENIED'); history.back();";

print "</SCRIPT></BODY></HTML>";

close(SDb);

exit;
sub LoginPage {

print "<HTML><FRAMESET Cols=21%,* FrameSpacing=NO>";

print "<FRAME BGColor=YELLOW FrameBorder=NO Name=list Src=../menu.htm>";
print "<FRAMESET Rows=10%,80%,* FrameSpacing='NO>";

print "<FRAME FrameBorder=NO Name=head Src=header.pl>";
print "<FRAME FrameBorder=NO Name=show Src=../display.htm>";
print "<FRAME FrameBorder=NO Name=foot Src=../footer.htm>";
print "</FRAMESET></FRAMESET></HTML>";

}

S ou rce C ode For cqi- lib .p l

#!/perl/bin/perl.exe
R eadP arse - Reads i n GET o r POST d a t a , c o n v e r ts i t t o u n e sc a p e d t e x t ,

and p u ts one k e y = v a lu e i n e ach member o f th e l i s t g i n . A ls o c r e a te s

k e y /v a lu e p a i r s i n % in , u s in g 1\0 1 t o s e p a r a te m u l t i p l e s e l e c t i o n s .

R e tu rn s TRUE i f t h e r e was i n p u t , FALSE i f t h e r e was no i n p u t .

UNDEF may be u se d i n th e f u t u r e t o i n d i c a t e some f a i l u r e .

Now t h a t c g i s c r i p t s c an be p u t i n th e n o rm a l f i l e s p a c e ,

i t i s u s e f u l t o com b ine b o th th e fo rm and th e s c r i p t i n one p l a c e .

I f no p a r a m e te r s a re g iv e n (i . e . , R ead P a rse r e t u r n s FALSE),

th e n a fo rm c o u ld be o u t p u t .

I f a v a r ia b le - g lo b p a r a m e te r (e . g . , * c g i _ i n p u t) i s p a s s e d

t o R e ad P a rse , i n f o r m a t io n i s s t o r e d t h e r e ,

r a t h e r t h a n i n $ i n , 0 i n , and % in .

sub ReadParse {
local (*in) = @ _ if @_;

local (Si. Skey, Sval);

Read i n t e x t

if (&MethGet) { Sin = $ENV{’QUERY_STRING'}; }

elsif (&MethPost) { read(STDIN,$in,$ENV{’CONTENT_LENGTH'}); }

@in = split(/[&;]/,Sin);

foreach $i (0 .. $#in) {

C o n v e r t p l u s ' s t o sp ace s

$in[$i] =~ sA+/ /g;

S p l i t i n t o key and v a lu e .

(Skey, $val) = split(/=/,$in[$i],2); # s p l i t s on th e f i r s t = .

C o n v e r t %XX fro m hex num bers t o a lp h a n u m e r ic

Skey =~ s/%(..)/pack("c",hex($l))/ge;

Sval =~ s/%(..)/pack("c",hex($l))/ge;

0 * 0 ^ C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L , D R n . n
P A G E 368 J A V A S C R IP T , D H T M L A N D P E R L P R O J - D

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 369

A s s o c ia t e key and v a lu e

in{$key} .= "\0" if(defined($in{$key})); \0 i s th e m u l t i p l e s e p a r a to r

in{Skey} .= Sval;

}
return scalar(@in);

}

P r in tH e a d e r - R e tu rn s t h e a l i n e w h ich t e l l s WWW t h a t t h e in f o r m a t io n

t o f o l l o w s h o u ld be t r e a t e d as an HTML d o cu m e n t,

sub PrintHeader {
print "Content-type: text/html\n\n";

return 1;

}

#' M e thG e t - R e tu r n t r u e i f t h i s c g i c a l l was u s in g t h e GET r e q u e s t ,

f a l s e o th e r w is e

sub MethGet {
return ($ENV{'REQUEST_METHOD'} eq "GET");

}

M e th P o s t - R e tu r n t r u e i f t h i s c g i c a l l was u s in g th e POST r e q u e s t ,

f a l s e o th e r w is e

sub MethPost {
return (SENV{'REQUEST_METHOD'} eq "POST");

}

Form Encoded - R e tu r n t r u e i f t h i s CGI c a l l was h a v in g CONTENT_TYPE

" a p p l i c a t i o

sub FormEncoded {
return ($ENV{'CONTENT_TYPE'} eq "application/x-www-form-urlencoded");

}

MyURL - R e tu r n s a URL t o th e s c r i p t

subMyURL {
local (Sport);

Sport = . $ENV{'SERVER_PORT'} if SENV{'SERVER_PORT'} != 80;

return 'http://'. $ENV{'SERVER_NAME'} . Sport. $ENV{’SCRIPT_NAME'};

}

C g iE r r o r - P r i n t s o u t an e r r o r m essage ,

w h ic h c o n t a in s a p p r o p r i a t e h e a d e r s , m arkup , e t c e t e r a . .

P a r a m e te rs : I f no p a r a m e te r s , g iv e s a g e n e r ic e r r o r m essage .

O th e r w is e , t h e f i r s t p a ra m e te r w i l l be th e t i t l e

a n d th e r e s t w i l l be g iv e n as d i f f e r e n t p a r a g r a p h s o f t h e body

sub CgiError {
local (@msg) =

local ($i,$name);

if (!@msg) {

Sname = &MyURL;

@msg = ("Error: script Sname encountered fatal error");

};
print &PrintHeader;

print "<HTML><HEAD><TITLE>Smsg|0|</TITLE></HEAD>\n";

http://'

print "<BODY><H1>$msg|0|</Hl>\n";

foreach $i (1 .. $#msg) { print "<P>Smsg|$i|</P>\n"; }

print "</BODY></HTML>\n";

}

C g iD ie - I d e n t i c a l t o C g iE r r o r , b u t a ls o q u i t s

w i th th e p a s s e d e r r o r m essage ,

sub CgiDie {
local (@msg) =

&CgiError (@msg);

die @msg;

}

P r in tV a r ia b le s - N ic e ly fo rm a ts v a r i a b le s i n an a s s o c i a t i v e a r r a y

p a s s e d as a p a r a m e te r and r e t u r n s t h e HTML s t r i n g .

sub PrintVariables {
local (%in) =

local (Sold, $out, Soutput);

Sold = $*;

$*=1;

Soutput .= "\n<DL Com pactin '1;

foreach Skey (sort keys(%in)) {

foreach (split("\0", Sin{$key})) {

(Sout = $_) =~ sAn/
\n/g;

Soutput .= "<DT>Skey\n <DD><l>Sout</I>
\n";

}

}
Soutput .= "</DL>\n";

S* = Sold;

return Soutput;

}

P r in tV a r ia b le s S h o r t - Now o b s o le t e ; j u s t c a l l s P r in t V a r i a b le s

sub PrintVariablesShort {
return &PrintVariables(@_);

}

1; f r e t u r n t r u e

S o u rce C ode For m e n u .h tm

<HTML><HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY Background=fade_bg.jpg LeftMargin=0 RightMargin=0>

Problems & Solutions

.

Tips & Tricks

Employee Information

<FONT Color=#23238e Face=Times New Roman

Size=l>Home

 Logout

</BODY>’</HTML>

D A „ C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L , D D n . n
PAt3E 370 J A V A S C R IP T , D H T M L A N D P E R L P K U J ' U

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 371

S ou rce C o d e For s ty le .c ss

body { font-family: Arial; color: 23238E; font-size: 8pt)

h4 { font-family: Arial; color: 23238e; font-size: 9pt}

h5 { font-family: Arial; color: 000000; font-size: 6pt}

vlink { color: rgb(153,102,0)}

alink { color: rgb(255,0,0)}

S ou rce C o d e For heade r.p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;
&PrintHeader;
Scookiel = SENV{'HTTP_COOK.IE'};

(Sfname, Slname, Slogin, Spswd) = split(/;/,$cookiel);

(Sfriamel, $fname2) = split(/=/,Sfname);

(Slnamel, Slname2) = sp!it(/=/,Slname);

(Slogin 1, Slogin2) = split(/=/,$login);

(Spswdl, Spswd2) = split(/=/,Spswd);

print "<HTML><BODY><CENTER>Welcome Sfname2 Slname2!";

print "</CENTER></BODY></HTML>";

S o u rce C o d e For d is p la y .h tm

<HTML>

<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY>

<I>Have a Problem?
Wish to post some suitable Tips and

Tricks !
Looking for some Employee Inforination?</I>

<MULTICOL Cols=l Width=150>This system allows you to keep track o f all problem areas,

errors and techniques identified and implemented during the course o f software

projects.<P>Using these, you can post your Queries on the Intranet which can be accessed

by all other employees, and appropriate solutions can be posted back by any employee, if

the employee knows the solution. Besides, if users comes across some information that

might prove helpful to other employees, they can post it back as a Tip/Trick, where all

other employees can access it.<P>Further, any of these solutions or Tips can be used as

Standards to be maintained in the future.

<P><H4><I>So go ahead and click on the required option</I></H4>

</MULTICOL>

</BODY>

</HTML>

S o u rce C o d e For fo o te r .h tm

<HTML><BODY>

@ Copright 2004 by

<U><I>Silicon Chip Technologies</I></U>

</BODY></HTML>

S ou rce C o d e For p s .h tm

<HTML>
<FRAMESET Cols="21%,*" FrameSpacing=NO>

<FRAME BGColor=Yellow FrameBorder=NO Name="list" Src="probsol.htm">
<FRAMESET FrameSpacing=NO Rows="10%,80%, *">

<FRAME FrameBorder=NO Name="head" Src="/cgi-bin/header.pl">
<FRAME FrameBorder=NO Name-'show" Src="psabout.htm">
<FRAME FrameBorder=NO Name="foot" Src="footer.htm">

</FRAMESET>
</FRAMESET>

</HTML>

S ou rce C o d e For p ro b so l.h tm

<HTML>
<HEAD><LINK HRef="styles.css" ReI=STYLESHEET Type="text/css"></HEAD>
<BODY Background=Image/fade_bg.jpg LeftMargin=0 RightMargin=0>

<FONT Color=#23238E Face=Times New Roman
Size=l>Problems & SoIutions

<FONT Color=#23238E

Face=Times New Roman Size=l>Add
Problems

<FONT Color=#23238E

Face=Times New Roman Size=l>Add
Solutions

<FONT Color=#23238E

Face=Times New Roman Size=l>View Problems &
Solulions

<FONT Color=#23238E Face=Times New Roman
Size=l>Tips & Tricks

<FONT Color=#23238E Face=Times New Roman
Size=l>Employee Information

<FONT Color=#23238E Face=Times New Roman
Size=l>Home

<FONT Color=#23238E Face=Times New Roman
Size=l>Logout

</BODY>
</HTML>

S ou rce C o d e For h o m e .h tm

<HTML>
<FRAMESET CoIs="21%,*" FrameSpacing=NO >

<FRAME BGColor=Yellow FrameBorder=NO Name="list" Src="menu.htm">
<FRAMESET FrameSpacing=NO Rows="10%,80%,*">

<FRAME FraTTreBorder=NO Name="head" Src="/cgi-bin/header.pl">
<FRAME FrameBorder=NO Name="show" Src="display.htm">

C O M M ERC IA L W E B APPLICATION DEVELOPMENT USING HTML, p R Q J

H-Abfc H i JAVASCRIPT , DHTML AND PERL

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 373

<FRAME FrameBorder=NO Name="foot" Src="footer.htm">

</FRAMESET>

</FRAMESET>

</HTML>

S o u rce C o d e For p s a b o u t.h tm

<HTML>

<HEAD><LINK HRef="styles.css" ReNSTYLESHEET Type="text/css"></HEAD>

<BODY>

<IM G Src=Images/blu-Iine.gif Width= 100%>

<CENTER> Have a Problem ??

or

Wish to post a solution ??

</CENTER>

 Click on the required option

<IM G Src=Images/blu-line.gif Width=100%>

</BODY>

</HTML>

S o u rce C o d e For p ro b ad d .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;

&PrintHeader;

Scookiel =$EN V {’HTTP_COOKIE'};

(Sftiame, Slname, Slogin, Spswd) = split(/;/, Scookiel);

(Sfname 1, $fname2) = split(/=/,Sfname);

(Slname 1, Slname2) = split(/=/,Slname);

(Slogin 1, Slogin2) = split(/=/,Slogin);

(Spswdl, Spswd2) = split(/=/, Spswd);

$date=localtime(time);

@dt = split("", Sdate);

Sdatel = $dt[2]. . Sdt[l]. . Sdt[4]. " " . $dt[3]. " " . $dt[0];

use Win32::ODBC;

if (!(SDb=new Win32: :ODBC("dsn=PerIOracle;UID=project;PWD=project"))) {

Sa = Win32:: ODBC ::Error();

print "<HTML><BODY><P> Sa </P></BODY></HTML>";

exit;

}
print « " H D " ;

<HTML><HEAD><LINK HRef^"styles.css" Rel=STYLESHEET Type="text/css" ></HEAD>

<BODY><FORM Action=/cgi-bin/probadd_submit.pl Method=GET>

<CENTER><H4>Problems (ADD)</H4></CENTER>

<TABLE Align=Center Width=95%><TR>

<TD Align=Left Width=20%>Posted

by : </TD>

<TD Align=Left> Sfriame2 Slname2

</TD>

</TR><TR>

P A G E 374
C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L,

J A V A S C R IP T , D H T M L A N D P E R L
P R O J - D

<TD Align=Left Width=20%><F01MT Color=#23238E Face=Arial Size=l>On :

</TD>

<TD Align=Left> Sdatel </TD>

</TR><TR>

<TD Align=Left Width=20%>Title :

</TD>

<TD Align=Left><INPUT Name=title

MaxLenght=60 onBlur="this.value=this.value.toUpperCase();" Size=25

Tу pe=T ext></TD>

</TR><TR>

<TD Align=Left Width=20%><FONT Color=#23238E Face=Arial

Size=l>Description : </TD>

<TD Align=Left><TEXTAREA Cols=35

Name=prob_description onBlur="this.value=this.value.toUpperCase();" Rows=6>

</TEXTAREA></TD>

</TR></TABLE>

<CENTER><1NPUT Name="save" Type=Submit Value="Submit">

<1NPUT Name="cancel" Type=Reset Value="Reset"x/CENTER> ■

</FORM><BODY>

</HTML>

HD

close(SDb);

exit; к

S o u rce C o de F or m v lib .p l

f i l e : m y l ib .

require "cgi-lib.pl";
sub month {

my($a) =

if (Sa eq "01") {

clsif ($a eq "02")

elsif ($a eq "03")

elsif ($a eq "04")

elsif ($a eq "05")

elsif (Sa eq "06")

elsif (Sa eq "07")

elsif ($a eq "08")

elsif ($a eq "09")

elsif (Sa eq "10")

elsif (Sa eq "11")

elsif (Sa eq "12")

return(Sa);

}

P i

= "JAN"; }

Sa - "FEB";

Sa = "MAR";

Sa = "APR";

Sa = "M AY";

Sa = "JUN";

Sa = "JUL";

Sa = "AUG";

Sa = "SEP";

Sa = "OCT";

Sa = "NOV";

Sa = "DEC";

sub encrypt {

my($pw) =

my(Spcount) = length(Spw);

my(Spass);

for ($ i= l; Si <= Spcount; $i++) {

Spass = substr($pass, 1);

Spass = Spass . . substr($pw, Si-1, 1); }

my(@pwd) = split(",", Spass);

my(@rev_pwd) = reverse(@pwd);

my(Sep);

for ($i=0; $i<$pcount; $i++) { $ep = $ep . ord($rev_pwd[$i]) - 7 . ord(",");}

Sep = $ep/8;

return(Sep);

}

sub decrypt {

my($epw) = @_;

$epw = $epw * 8;

@spw = split("44", Sepw);

$len = @spw;

@rpw = reverse(@spw);

for ($i = 0; $i < $len; $i++) { $pw = $pw . chr($rpw[$i]+7); }

retum(Spw);

}

l;

S o u rce C o d e For p ro b ad d s u b m it .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;

&PrintHeader;

Stitle = Sin {title};

Spdesc = $in{prob_description};

Stlen = length(Stitle);

Stdesc = length(Spdesc);

if (Stlen eq ”0") {

print "<SCRIPT Language-JavaScript'> alert('Problem Title cannot be left empty');";

print "history.back(); </SCRIPT>";

exit;

}
else {

if (Stdesc eq "1" or Stdesc eq "0") {

print "<SCRIPT Language-JavaScript’> alert('Problem Description cannot be left empty');";

print "history.back(); </SCRIPT>";

exit;

}

}
Scookiel = $ENV{'HTTP_COOKIE'} ;

(Sfname, Slname, Slogin, Spswd) = split(/;/, Scookiel);

(Sftiamel, Sfname2) = split(/=/,Sfname);

(Slnamel, Slname2) = split(/=/,Slname);

(Slogin 1, Slogin2) = split(/=/,Slogin);

(Spswd 1, Spswd2) = spl it(/=/, Spswd);

Sdate = localtime(time);

use Win32::ODBC;

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 375

if (!($Db=new W in32::ODBC("dsn=Per!Oracle;UID=project;PWD=project"))) {

print "<HTML><HEAD><TITLE>Database Test</TITLE></HEAD>";

print "<BODY><H2>Error Connecting to Database</H2>";

print "<P>Please Try Your Request at A Later Time</P></BODY></HTML>";

exit;

}
if (!$Db->Sql("SELECT EM PLOYEEJNO FROM EMPLOYEE INFO WHERE LOGIN_ID = V$Iogin2V

AND PASSWORD=\'$pswd2\"')) {

if ($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();

Sempno=SData{ 'EMPLO Y E E N O ’};

$Db->sql("INSERT INTO PROBLEM_DEFINITION(EMPLOYEE_NO,

P R O B L E M D ATET I ME, PROBLEM TITLE, PROBLEM DESCRIPT ION)

VALUES('$empno', to_date('Sdate,,,DY MON DD HH24:MI:SS Y Y Y Y ’), 'Stitle’,

’Spdesc’)");

$Db->sql("COMMIT");

print "<SCRIPT Language-JavaScript’> aIert(’SuccessfuIly Added’); </SCRIPT>";

exec("perl", "postprob .cg i’’);

close(SDb);

exit;

}

}

S ou rce C o de For p o s t p ro b .cq i

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;

&PrintHeader;

Scookiel = SEN V{'H 1 TP^COOKIE1};

(Sfriame, Slname, Slogin, Spswd) = split(/;/, Scookiel);

(Sfnamel, Sfname2) = split(/=/,Sfname);

(Slname 1, SIname2) = split(/=/,Slname);

(Slogin 1, Slogin2) = split(/=/,Slogin);

(Spswdl, Spswd2) = split(/=/, Spswd);

$date=localtime(time);

@dt = split("", Sdate);

Sdatel = Sdt[2]. . $dt[l]. . Sdt[4]. " " . Sdt[3]. " " . $dt[0];

use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

Sa = Win32: :ODBC::Error();

print "<HTML><BODY><P> Sa </P></BODY></HTML>";

exit;

}
print « " H D " ;

<HTML><HEAD><LINK HRef^"styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY><FORM Action="/cgi-bin/probadd.pl" Method="GET">

<CENTER><H4> Problems (ADD) </H4></CENTER>

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L, D e n . n
P A G E 3 /6 J A V A S C R IP T , D H T M L A N D P E R L P R O J - D

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 377

<TABLE Align=Center Width=95%><TR>

<TD Align=Left Width=20%>

Posted by : </TD>

<TD Align=Left> $fViame2 $lname2

</TD>

</TR><TR>

<TD Align=Left Width=20%><FC)NT Color="#23238E" Face="Arial Size=l> On

</TD>

<TD Align=Left> Sdatel

</TD>

</TR><TR>

<TD Align=Left Width=20%>

Title : </TD>

<TD Align=Left><lNPUT

Name="title" MaxLenght=60 onBlur="this.value=this.value.toUpperCase();"

Size=25 Type="Text"></TD>

</TR><TR>

<TD Align=Left Width=20%>

Description : </TD>

<TD A lign=LeftxFONT Color="#23238E" Face="Arial" Size= 1 ><TEXTAREA

Cols=35 Name="prob_description" onBlur="this.value=this.value.toUpperCaseO;

Row s=6x/T EXT A REA x/FON T x/T D >

</TR></T ABLE><B R>

<CENTERxFNPUTName-'save" Type="Submit" Value="Submit">

<INPUT Name ="cancel" Type="Reset" value="Oops"x/CENTER>

</FORM></BODY>

</HTML>

HD

close(SDb);

exit;

S ou rce C o d e For p lis t a d d .p l

#!c:/perl/bin/perl.exe
require "cgi-Iib.pl";
require "mylib.pl";
&ReadParse;

&PrintHeader;

use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

Sa = Win32::ODBC::Error();

print "<HTML><BODY><P> $a </P></BODYx/HTML>";

exit;

}
if (!$Db->Sql("SELECT PROBLEM TITLE , EM PLOYEEN O , PROBLEM DATE TIME,

PROBLEM DESCRIPTION FROM PROBLEM DEFINITION ORDER BY

PROBLEM TITLE")) {

print "<HTML><HEAD><LINK HRef=styles.css Rel=STYLESHEET Type=text/css></HEAD>";

print "<BODY><CENTER><H4>Solutions (ADD)</H4></CENTER>";

print "<TABLE Align=Center Width=100%><TR>";

print "<TD>Problem Title</TD>";

P A G E 378
C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L,

J A V A S C R IP T , D H T M L A N D P E R L

print "<TD>Problem Description</TD>"

print "</TR>";

while($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();
$pd = SData{'PROBLEM_DESCRIPTION'};

Spdt = $Data{'PROBLEM_DATE_TIME'};

@pdtm = split(" ", Spdt);

$pt = SData{'PROBLEM_TITLE'};

Ssend = $pdtm[0].$pdtm[lj;

print "<TR><TD Width=45%><FONT Color=#23238E

Face=Arial Size=l> $pt </TD><TD><FONT Color=#23238E Face=Arial

Size= 1 > $pd </TD></TR>";

}
print "</TABLE></BODY></HTML>";

}
close ($Db);

exit;

S ou rce C o d e For s o l a d d .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;

&PrintHeader;

Sprobdt = $in{'go'};

Scookiel = SENVj'HTTPCOOKIE '};

(Sfname, Slname, Slogin, Spswd) = split(/;/, Scookiel);

(Sfname 1, $fname2) = split(/=/,Sfname);

(Slname 1, $lname2) = split(/=/,Slname);

(Slogin 1, Slogin2) = split(/=/,Slogin);

(Spswdl, Spswd2) = split(/=/, Spswd);

Sdate = localtime(time);

@dt = split("", Sdate);

Sdate 1 = $dt[2]. . Sdt[l]. . Sdt[4]. " " . Sdt[3]. . $dt[0];

use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UlD=project;PWD=project"))) {

Sa = Win32: :ODBC::Error();

print "<HTML><BODY><P> Sa </P></BODY></HTML>";

exit;

}
if (!$Db->Sql("SELECT EMPLOYEE NO, PROBLEM DATE TIME, PROBLEM TITLE,

PROBLEM_DESCRIPTION FROM PROBLEM DEFIN IT ION WHERE

to_char(PROBLEM_DATE_TIME, 'yyyy-mm-ddHH24:MI:SS') = VSprobdtV")) {

if ($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();
if (! $Db->Sql("SELECT FIRST_NAME,LAST_NAME FROM EMPLOYEE INFO WHERE

EMPLOYEE NO = V$Data{EMPLOYEE_NO}V")) {

if ($Db->FetchRow()) {

undef%Datal;

%Datal = $Db->DataHash();

$ftiame=$Datal {'F IRSTNAM E'};

$lname=$Datal {'LASTNAM E'};

$name=$friame." ".$lname;

}

}

$Data{PROBLEM_DESCRIPTION}=~s/;An/g;

$dt = $Data{PROBLEM_DATE_TIME};

$d = substr($dt, 0,10);

@dd = split $d);

$dd[1] = &month($dd[1]);

$d = $dd[2]. . $dd[l]. . $dd[0];

$t = substr($dt, 11);

$dt = $d . " " . $t;

@pdtm = split(" ", $dt);

$send = $pdtm[0].$pdtm[l];

print « " H D " ;

<HTML>

<HEAD><LINK HRef="styIes.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY><FORM Action=soladd_submit.pl Method=GET >

<CENTER><H4>PROBLEMS (VIEW)</H4></CENTER>

<TABLE Align=center Width=95%><TR>

<TD Align=Left Width=25%>

Title :</TD>

<TD Align=Left><FONT Color=#23238E Face=Arial

Size= 1 >$Data {PROBLEM TITLE} </TD>

<INPUT Name=pt Type=Hidden Value=$Data{PROBLEM_TITLE}>

</TR><TR>

<Td Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=lxB>Posted by :</TD>

<TD A lign=LeftxFONT Color=#23238E Face=Arial Size=l> Sname

</TD>

</TR><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>On :</Bx/FONT></Td>

<TD Align=LeftxFONTColor=#23238E Face=Arial Size=l> $dt

</TD>

<INPUT Name=ptm Type=Hidden Value=$send>

</TR><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size= 1 xß>Description :</TD>

<TD A lign=LeftxFONT Color=#23238E Face=Arial Size=l>

$Data{PROBLEM DESCRIPTION} </TD>

</TR><TR>

<TD Align=Left Width=20%><FONT Color=#23238E Face=Arial

Size=l>Solution :</Bx/FONT></TD>

<TD Align=Left><TEXTAREA

Cols=35 onBlur="this.value=this.value.toUpperCase();" Name=solution

Rows=4></TEXTAREA></TD>

- D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 379

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L , p R Q J Q

J A V A S C R IP T , D H T M L A N D P E R L '

</TR><TR>
<TD Align=Left Width=20%><FONT Color=#23238E Face=Arial

Size=l>Posted By : </TD>

<TD Align=Left Width=20%>

Sfhame2 \ $lname2 on Sdatel </TD>

</TR></TABLE>

<CENTER><INPUT Name="save" Type=Submit Value="Submit">

<INPUT Name-'cancel" Type=Reset VaIue="Reset"></CENTER>

</FORM></BODY>

</HTML>

HD

}

}

Sou rce C o d e For s o la d d s u b m it.p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;

&PrintHeader;

$sol = $in{soIution};

$pt=$in{pt};

$pdt = $in{ptm};'

if ($sol eq " 1 " or Ssol eq "0") {

print "<SCRIPT Language-JavaScript’> alert('Problem Description cannot be left empty');";

print "history.back();</SCRIPT>";

exit;

}
Scookiel = $ENV{'HTTP_COOKIE'};

(Sfhame, Slname. Slogin, $pswd) = split(/;/, Scookiel);

(Sfhame 1, $fname2) = split(/=/,$friame);

(Slname 1, $lname2) = split(/=/,Slname);

(Sloginl, Slogin2) = split(/=/,Slogin);

(Spswdl, Spswd2) = split(/=/, Spswd);

Sdate = localtime(time);

use Win32: :ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

print "Content-type: text/html\n\n";

print "<HTML><HEAD><TITLE>Database Test</TITLE></HEAD>";

print "<BODY><H2>Error Connecting to Database</H2>";

print "<P>Please Try Your Request at A Later Time</P></BODY></HTML>";

exit;

if (!SDb->Sql("SELECT EMPLOYEE NO FROM EM PLOYEEJN FO WHERE LO G1N JD = V$login2V

AND PASSWORD=\'$pswd2V")) {

if ($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();
$empno=$Data {’EMPLO Y E E N O '} ;

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 381

$Db->sqI("INSERT INTO PROBLEM_SOLUTIONS(EMPLOYEE_NO,

PROBLEM DATE TIME, SOLUTION DATE TIME,

SOLUTIONDESCRIPTION) VALUES('$empno', to_date('$pdt', 'DD-MON-

YYYYHH24:M I:SS'), to_date('$date', 'DY MON DD HH24:MI:SS Y Y Y Y ’), 'Ssol')");

if ($Db->Error()) {

$a = Win32: :ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;

}

print "<SCRIPT Language='JavaScript'> aIert('Successfully Added'); </SCRIPT>";

exec("perl", "postsol.cgi");
close(SDb);

exit;

}

}

S o u rce C o d e For p o s t s o l.c a i

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;

use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32: :ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;

}

if (!$Db->SqI("SELECT PROBLEM TITLE, EM PLO YEEN O , PROBLEM DATE TIME,

PROBLEM DESCRIPTION FROM PROBLEM DEFINITION ORDER BY

PROBLEM TITLE")) {

print "<HTML><HEAD><LINK HRef=styles.css Rel=STYLESHEET Type=text/css></HEAD>";

print "<BODY><CENTER><H4>SoIutions (ADD)</H4></CENTER>";

print "<TABLE Align=Center Width=lOO%><TR>";

print "<TD>Problem Title</TD>";

print "<TD>Problem Description</TD>";

print "</TR>";

whiIe($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();

$pd = $Data{'PROBLEM_DESCRIPTION'};

Spdt = $Data{'PROBLEM_DATE_TIME'};

@pdtm = sp lit("", $pdt);

Spt = $Data{'PROBLEM_TITLE'};

Ssend = $pdtm[0].$pdtm[I];

print "<TR><TD Width=45%><FONT Color=#23238E

Face=Arial Size=l> $pt </TD><TD><FONT Color=#23238E Face=AriaI

Size=l> $pd </TD></TR>";

print "</TABLE></BODY></HTML>";

}
close (SDb);

exit;

п а ^ гг C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L, D D n . n
P A G E 382 J A V A S C R IP T , D H T M L A N D P E R L P R O J ' D

S ou rce C o d e For p lis t v iew .p l

#!c:/perl/bin/perl.exe
require "cgi-Iib.pl";
require "mylib.pl";
&ReadParse;

&PrintHeader;

use Win32::ODBC;

if (!($Db=new W in32::ODBC("dsn=PerlOracle;UlD=project;PWD=project"))) {

$a = Win32::ODBC::Error();

print "Content-type: text/html\n\n";

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;

}
if (!$Db->Sql("SELECT PROBLEM TITLE, PROBLEM DESCRIPT ION , PROBLEM DATE TIME

FROM PROBLEM DEFINITION ORDER BY PROBLEM TITLE")) {

print « " H D " ;

<HTML><HEAD><LINK HRe£="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY><FORM Action=prob_det.pl Method=GET>

<CENTER><H4>Problems & Solutions</H4></CENTER>

<TABLE Align=Center Width=I00%><TR>

<TD>Problem

Title</TD>

<TD>Problem

Description</TD>

</TR>

HD

while($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();
$pd = $Data{'PROBLEM_DESCRIPTION'};

$pdt = $Data{'PROBLEM_DATE_TIME'};

@pdtm = sp lit("", $pdt);

$pt = $Data{'PROBLEM_TITLE'};

Ssend = $pdtm[0].$pdtm[l];

print "<TR><TD Width=45%><FONT Color=#23238E

Face=Arial Size=l> $pt </TD><TD><FONT Color=#23238E Face=Arial

Size=l> $pd </TD></TR>";

}
print "</TABLE></FORM></BODY></HTML>";

}
close ($Db);

exit;

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 383

S o u rc e C o d e For p rob de t.p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;

&PrintHeader;

Sprobdt = $in{'go'};

use W in32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32::ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;

}

if (!$Db->Sql("SELECT E M PLO Y E EN O , PROBLEM_DATE_TIME, PROBLEM TITLE,

PROBLEM DESCRIPTION FROM PROBLEM DEFINITION WHERE

to_char(PROBLEM_DATE_TIME, 'yyyy-mm-ddHH24:MI:SS') = V$probdt\"')) {
if ($Db->FetchRow()) {

undef%Data;

%Data = $Db->DataHashO;
if (! $Db->Sql("SELECT FIRST_NAME,LAST_NAME FROM EMPLOYEE INFO WHERE

EMPLOYEE NO = Y$Data{EMPLOYEE_NO}\'")) {

if ($Db->FetchRow()) {

undef %Datal;

%Datal = $Db->DataHashO;
$fhame=$Datal {'FIRSTJNAME'};

$lname=$Datal {'LAST_NAME'};

$name=$fhame." ".Slname;

}

}

$Data{PROBLEM_DESCRlPTION}=~s/;An/g;

$dt = $Data{PROBLEM_DATE_TIME};

$d = substr($dt, 0,10);

@dd = split $d);

Sdd[l] = &month($dd[l]);

$d = $dd[2]. . $dd[1] . . $dd[0];

$t = substr($dt, 11);

$dt = $ d . " " . $t;

@pdtm = sp lit("", $dt);

Ssendpt = $pdtm[0].$pdtm[l];

print « " H D " ;

<HTML>

<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY><CENTER><H4>Problem & Solutions (VIEW)</H4></CENTER>

<TABLE Align=Center Width=95%><TR>

’ <TD Align=Left Width =25%><FONT Color=#23238E Face=Arial

Size=l> Problem Title :</TD>

<TD Align=Left>

$Data{PROBLEM_TITLE} </TD>

</TR><TR>

PAGE 384
C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L, p R Q J D

J A V A S C R IP T , D H T M L A N D P E R L '

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>Posted by : </TD>

<TD Align=Left> $name

</TD>

</TR><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>On : </TD>

<TD Align=Left> $dt

</TD>

</TR><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>Description : </TD>

<TD Align=Left>

$Data{ PROBLEM DESCRIPT ION } </TD>

</TR><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>Solution/s: </TD>

HD

if (!$Db->SqI("SELECT * FROM problemsolutions WHERE

to_char(PROBLEM_DATE_TIME, ,yyyy-mm-ddHH24:MI:SS') = V$probdtV")) {

$no = 1;

while ($Db->FetchRow()) {

undef%Datal;

%Datal = $Db->DataHash();
Ssdt = SDatal {SOLUTION_DATE_TIME};

$sd = substr(Ssdt, 0,10);

@sdd = split $sd);

$sdd[I] = &month($sdd[1]);

$sd = $sdd[2]. . $sdd[l]. . $sdd[0];

$st = substr($sdt, 11);

Ssdt = $sd . " " . $st;

@sdtm = split("", Ssdt);

Ssendst = $sdtm[0].$sdtm[1];

Ssolno = "Solution". $no;

Sgodata = Ssolno . . Ssendpt. . Ssendst;

print "<TD> $solno\n </TD>";

print "</TR><TR><TD></TD>";

$no = Sno + 1;

}

}
print "</TR></TABLE></FORM></BODY></HTML>";

}

}

S ou rce C o d e For s o l de t.p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E PAGE 385

&PrintHeader;

Sdata = $in{'sd'};

@datas = split("::", Sdata);

Spddtt = $datas[l];

Ssddtt = $datas[2];

Ssno = substr($datas[0], 8);

use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32: :ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;

}

if (!$Db->Sql("SELECT EMPLOYEE_NO, PROBLEM DATE TIME, SOLUTION DATE TIME,

SOLUTION DESCRIPTION FROM PROBLEM SOLUTIONS WHERE

to_char(PROBLEM_DATE_TIME, 'DD-MON-YYYYHH24:MI:SS') = VSpddttV AND

to_char(SOLUTION_DATE_TIME, 'DD-MON-YYYYHH24:MI:SS') = VSsddttV")) {

if ($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();

if (! $Db->Sql("SELECT FIRST_NAME,LAST_NAME FROM EMPLOYEE INFO WHERE

EMPLOYEE NO = V$Data{EMPLOYEE_NO}\"’)) {

if ($Db->FetchRow()) {

undef %Data 1;

%Datal = $Db->DataHash();
$fhame=$Datal {'FIRST_NAME'};

$Iname=$Datal {'LAST NAME'};

Sname=$fhame." ".Slname;

}

}
Sdt = $Data{ S O L U T IO N S ATET I M E};

$d = substr($dt, 0,10);

@dd = split $d);

Sdd[1] = &month($dd[l]);

$d = $dd[2]. . $dd[1] . . $dd[0];

$t = substr($dt, 11);

$dt = $ d . " " . $t;

print « " H D " ;

<HTML>

<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY><CENTER><H4>Solutions (VIEW)</H4></CENTER>

<TABLE Align=Center Width=95%><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

H Size=l>Posted by : </TD>

<TD Align=Left> $name

</TD>

</TR><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>On : </TD>

<TD Align=Left> $dt

</TD>

</TR><TR>

<TD Align=Left Width=25%><FONT Coloi=#23238E Face=Arial

Size=l>Solution : </TD>

<TD Align=Left>

$Data{SOLUTION_DESCRIPTION} </TD>

</TR></TABLE>

<CENTER><INPUT Name=btnBack onClick="history.back();" Type=Button

Value="Retum To Previous List"></CENTER>

</BODY>

</HTML>

HD

}

}

S o u rc e C o de F o r t ip .h tm

ooc C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L , D D n . n
P A G E 386 J A V A S C R IP T , D H T M L A N D P E R L P K U J ' U

<HTML>

<FRAMESET Cols="21%,*" FrameSpacing=NO>

<FRAME BGColor=Yellow FrameBorder=NO Name="list" Src="tippg.htm">

<FRAMESET FrameSpacing=NO Rows="10%, 80%, *">

<FRAME FrameBorder=NO Name="head" Src="/cgi-bin/header.pl">

<FRAME FrameBorder=NO Name="show" Src="ttabout.htm">
<FRAME FrameBorder=NOName-'foot" Src="footer.htm">

</FRAMESET>

</FRAMESET>

</HTML>

S o u rce C o de For t ip p q .h tm

<HTML>

<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY Background=Image/fade_bg.jpg LeftMargin=0 RightMargin=0>

<FONT Color=#23?38F Face=Times New Roman

Size=l>Problems & Solutions

<FONT Color=#23238E Face=Times New Roman

Size=l>Tips & Tricks

<FONT Color=#23238E

Face=Times New Roman Size=I>Add Tips

<FONT Color=#23238E

Face=Times New Roman Size=l>View

Tips

<FONT Color=#23238E Face=Times New Roman

Size=l>Employee Information

<FONT Coloi-=#23238E Face=Times New Roman

Size=l>Home

<FONT Color=#23238E Face=Times New Roman

Size= 1 >Logout

</BODY>

</HTML>

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 387

S o u rce C o d e For tta b o u t.h tm

<HTML>

<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY>

<CENTER> Looking for some Tips & Tricks ??

or

 Wish to post some Tips & Tricks ??

</CENTER>

 Click on the required option

</BODY>

</HTML>

S o u rce C o d e For t ip a d d .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;

&PrintHeader; .

Scookiel = $ENV{'HTTP_COOKIE'};

(Sfname, Slname, Slogin, $pswd) = split(/;/, Scookiel);

(Sfriamel, $fname2) = split(/=/,Sfname);

(Slnamel, $lname2) = split(/=/,Slname);

(Slogin 1, Slogin2) = split(/=/,Slogin);

(Spswdl, Spswd2) = split(/=/, Spswd);

Sdate = localtime(time);

@dt = split("", Sdate);

Sdate = $dt[2]. . $dt[l]. . $dt[4]. " " . $dt[3]. " " . SdtfO];

print « " H D " ;

<HTML><HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY><FORM Action=tipsubmit.pl Method=GET>

<CENTER><H4>Tips & Tricks (ADD)</H4></CENTER>

<TABLE Align=Center Width=95%><TR>

<TD Align=Left Width=20%>Posted

by : </TD>

<TD Align=Left> $fname2 Slname2

</TD>

</TR><TR>

<TD Align=Left Width=20%>On :

</TD>

<TD Align=Left> Sdate </TD>

</TR><TR>

<TD Align=Left Width =20%>T itle

:</FONTx/TD>

<TD Align=Left><INPUT Name=title

onBlur="this.value=this.value.toUpperCase();" Type=Text

Size=25></TD>

</TR><TR>

<TD Align=Left Width =20%><FONT Color=#23238E Face=Arial

Size=lxb>Description :</TD>

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L , p R Q J Q
J A V A S C R IP T , D H T M L A N D P E R L

<TD Align=Lefii><TEXTAREA Cols=35

Name=tip_description onBlur="this.value=this.valüe.toUpperCaseO;"

Rows=6></TEXTAREA></F ONT></TD>

</TR><TABLE>

cCEN T ERxIN PU T Name="cancel" Type="Submit" Value="Submit">

<INPUT Name="cancel" Type="Reset" Value="Reset"x/CENTER>

</FORM></BODY>

</HTML>

HD

close(SDb);

exit;

S ou rce C o d e F or t ip s u b m it .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;

&PrintHeader;

Stitle = $in{title};

Sdesc = $in{tip_description};

Stlen = length(Stitle);

Stdesc = length(Sdesc);

if (Stlen eq "0") {

print "<SCRIPT Language-JavaScript’> alert('Problem Title cannot be left empty1);";

print "history.back(); </SCRIPT>";
exit;

}
else {

if (Stdesc eq "1" or Stdesc eq "0") {

print "<SCRIPT Language-JavaScript'> alert('Problem Description cannot be left empty');";

print "history.back();</SCRIPT>";

exit;

}

}
Scookiel = SENV {'HTTP_COOKIE'} ;

(Sfname, Slname, Slogin, Spswd) = split(/;/, Scookiel);

(Sfnamel, Sfname2) = split(/=/,Sfname);

(Slnamel, $lname2) = split(/=/,Slname);

(Slogin 1, Slogin2) = split(/=/,Slogin);

(Spswd 1, Spswd2) = split(/=/, Spswd);

Sdate = localtime(time);

use Win32::ODBC;

if (!($Db=new Win32: :ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

print "Content-type: text/html\n\n";

print "<HTML><HEAD><TITLE>Database Test</TITLE></HEAD>";

print "<BODY><H2>Error Connecting to Database</H2>";

print "<P>Please Try Your Request at A Later Time</P></BODY></HTML>";

exit;

}

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 389

if (!$Db->Sql("SELECT EMPLOYEE NO FROM EM PLO YEEJN FO WHERE L O G IN JD = V$login2V

AND PASSWORD=Y$pswd2\'")) {

if ($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();

$empno=SData{'EMPLOYEE_NO'};

$Db->sql("INSERT INTO PROBLEM_SOLUTIONS(EMPLOYEE_NO,

SOLUTION_DATE TIME, SOLUTION_TITLE, SOLUTION_DESCRIPTION)

VALUES('$empno', to_date('$date', ’DY MON DD HH24:MI:SS YYYY '), 'Stitle',

'Sdesc')");

$Db->sql("COMMIT");

print "<SCRIPT Language='JavaScript'> alert(’Successfully Added'); </SCRIPT>";

exec("perl", "post_tip.cgi");
close(SDb);

exit;

}

}

S o u rce C o d e For p o s t t ip .cq i

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;

Scookiel = $ENV{'HTTP_COOKIE'};

(Sfname, Slname, Slogin, Spswd) = split(/;/, Scookiel);

(Sfnamel, Sfname2) = split(/=/,Sfname);

(Slnamel, Slname2) = split(/=/,Slname);

(Slogin 1, Slogin2) = split(/=/,Slogin);

(Spswd 1, Spswd2) = split(/=/, Spswd);

Sdate = localtime(time);

@dt = split("", Sdate);

Sdate = $dt[2]. . $dt[l]. . Sdt[4]. " " . $dt[3]. " " . Sdt[0];

print « " H D " ;

<HTML><HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY><FORM Action=tipsubmit.p! Method=GET>

<CENTER><H4>Tips & Tricks (ADD)</H4></CENTER>

<TABLE Align=Center Width=95%><TR>

<TD Align=Left Width=20%>Posted

by : </TD>

<TD Align=Left> Sfhame2 Slname2

</TD>

</TR><TR>

<TD Align=Left Width=20%>On :

</TD>

<TD Align=Left> Sdate </TD>

</TR><TR>

<TD Align=Left Width =20%>Title

:</TD>

<TD Align=Left><INPUT Name=title

onBlur="this.value=this.value.toUpperCase();" Type=Text

Size=25></TD>

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L , p R O J D
J A V A S C R IP T , D H T M L A N D P E R L '

</T RxT R>

<TD AIign=Left Width =20%><FONT Color=#23238E Face=Arial

Size= 1 >Description : </TD>

<TD Align=Left><TEXTAREA Cols=35

Name=tip_description onBlur="this.vaIue=this.value.toUpperCase();"

Row s=6x/T EXT A REA x/FON T x/T D >

</TR><TABLE>

<CENTER><INPUT Name="cancel" Type="Submit" Value="Submit">

<INPUT Name="cancel" Type=Reset Value="Reset"x/CENTER>

</FORM></BODY>

</HTML>

HD

close(SDb);

exit;

S o u rce C o d e F o r t ip lis t .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;

&PrintHeader;

use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32: :ODBC::Error();

print "<H T M L><B0D YXP> $a </P></BODY></HTML>";

exit;

}
if (!$Db->Sql("SELECT SOLUTION_DATE_TIME, SOLUTION TITLE, SOLUTION_DESCRIPTION

FROM PROBLEM SOLUTIONS ORDER BY S0LUTI0N_T1TLE")) {

print "<HTML>";

print " ^H E A D ^L IN K HRef^styles.css Rel=STYLF,SHFF,T Type=text/css></HEAD>";

print "< B O D Y x F O R M Action=tipinfo.pl Method=GET>";

print "<CENTER><H4>Tips & Tricks</H4></CENTER>";

print "Tip Title

";

print "<TABLE Align=Center Width=100%>";

while($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();
$sdt = $Data{'S0LUT10N_DATE_TIME'};

@sdtm = split("", $sdt);

$st = $Data{'SOLUTION_TITLE'};

Ssend = $sdtm[0].$sdtm[l];

print "<T RxT D >

$st </TD><TD></TDx/TR>";

}
print "</TABLE></FORM></BODY></HTML>";

}
close ($Db);

exit;

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 391

S o u rce C o d e For t ip in fo .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;

&PrintHeader;

Ssoldt = $in{'go'};

use W in32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32: :ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;

}
if (!$Db->Sql("SELECT EMPLOYEE NO, SOLUTION_DATE_TIME, SOLUTION JTITLE,

SOLUTION DESCRIPTION FROM PROBLEM SOLUTIONS WHERE

to_char(SOLUTION_DATE_TIME, ,yyyy-mm-ddHH24:MI:SS') = V$soldtY")) {

if ($Db->FetchRow()) {

undef %Data;

%Data = $Db->DataHash();
if (! $Db->Sql("SELECT FIRST_NAME,LAST_NAME FROM EM PLOYEEJN FO WHERE

EMPLOYEE_NO = V$Data{EMPLOYEE_NO}\"')) {

if ($Db->FetchRow()) {

undef %Datal;

%Datal = $Db->DataHashO;
$fhame=$Datal {'FIRST_NAME'};

$lname=.$Datal {'LASTNAM E'};

$name=$fhame." ".$lname;

}

}
$Data{SOLUTION_DESCRIPTION}=~s/;An/g;

$dt = SData{SOLUTION_DATETIME};

$d = substr($dt, 0,10);

@dd = split $d);

$dd[l] = &month($dd[l]);

$d = $dd[2]. . $dd[l]. . Sdd[0];

$t = substr($dt, 11);

$dt = Sd . " " . $t;

print « " H D " ;

<HTML>

<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY><CENTER><H4>Tips & Tricks</H4></CENTER>

<TABLE Align=Center Width=95%><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>Tip Title :</TD>

<TD Align=Left>

$Data{SOLUTION_TITLE} </TD>

</TR><TR>

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L, p R Q J D
J A V A S C R IP T , D H T M L A N D P E R L '

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>Posted by :</TD>

<TD Align=Left> $name

</TD>

</TR><TR>

<TD Align=Lefl Width=25%><FONT Color=#23238E Face=AriaI

Size=l>On : </TD>

<TD Align=Left> $dt

</TD>

</TR><TR>

<TD Align=Left Width=25%><FONT Color=#23238E Face=Arial

Size=l>Description :</TD>

<TD Align=Left>

$Data{SOLUTION_DESCRIPTION} </TD>

</TR></TABLE>

<CENTER><INPUTName=btnBack onClick="history.back();" Type=Button

Value="Retum To Previous List"></CENTER>

</BODY>

</HTML>
HD

}

}

S ou rce C o de For e i.h tm

<HTML>

<FRAMESET Cols="21%,*" FrameSpacing=NO>

<FRAME BGColor=Yellow FrameBorder=NO Name="!ist" Src="empIoyee.htm">
<FRAMESET FrameSpacing=NO Rows="10%, 80%, *">

<FRAME FrameBorder=NO Name="head" Src="/cgi-bin/header.pl">

<FRAME FrameBorder=NO Name="show" Src="eiabout.htm">
<FR\ME FrameBorder=NO Name-'foot" Src="footer,htm">

</FRAMESET>

</FRAMESET>

</HTML>

S ou rce C o d e For em p lo v e e .h tm

<HTML>

<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY Background=Images/fade_bg.jpg LeftMargin=0 RightMargin=0><B.R>

<FONT Color=#23238E Face=Times New Roman

Size=l>Problems & Solutions

<FONT Color=#23238E Face=Times New Roman

Size=l>Tips & Tricks

<FONT Color=#23238E Face=Times New Roman

Size=l>Employee Information

<FONT Color=#23238E

Face=Times New Roman Size=l>Add

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E PAGE 393

<IM G Src=Images/tball.gif>

<FONT CoIor=#23238E

Face=Times New Roman Size=l>Edit

<IM G Src=Images/tball.gif>

<FONT Color=#23238E Face=Times

New Roman Size=l>DeIete

<IM G Src=Images/tball.gif>

<FONT Color=#23238E

Face=Times New Roman Size=l>View

<FONT Color=#23238E Face=Times New Roman

Size= 1 >Home

<FONT Color=#23238E Face=Times New Roman

Size= 1 >Logout

</BODY>

</HTML>

S o u rc e C o d e For e ia b o u t .h tm

<HTML>

<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

<BODY>

<CENTER>Looking for some information ??

or

Want to Add or make some changes ??

</CENTER>

 Click on the required option

<1MG Src=Images/blu-line.gif Width=100%>

</BODY>

</HTML>

S o u rc e C o de For e ia d d .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;
&PrintHeader;
use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

Sa = Win32::ODBC::Error();

print "Content-type: text/html\n\n";

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;

}
if(!$Db->sql("select employeeno from lu eno")) {

if ($Db->FetchRow()) {

undef%Data;

%Data = $Db->DataHash();
$lu_eno = $Data{'EMPLOYEE_NO'};

}

}

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L, p R n . D
J A V A S C R IP T , D H T M L A N D P E R L

print « "H D " ;

<HTML>

<HEAD><LINK Rel=STYLESHEET Type="text/css" HRef="styles.css"></HEAD>

<BODY><FORM Action=eiadd_submit.pl Method=GET>

<CENTER><H4>Employee Information (ADD) </H4></CENTER>

<TABLE><TR>

<TD>Employee No.</TD>

<TD>

<INPUT Name="employee_no" onFocus="blur();" Type=Text Size=8

Val ue=" $ l uen o "></TD>

</TR><TR>

<TD>First Name</TD>

<TD>

<INPUT Name="first_name" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=20></TD>

</TR><TR>

<TD>Last Name</TD>

<TD>

<INPUT Name="last_name" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=20></TD>

</TR><TR>

<TD>Designation</TD>

<TD>

<INPUT Name="designation" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=20></TD>

</TR><TR>

<TD>Join Date (DD-MON-YY)

</TD>

<TD>

<INPUT Name="date_ofJoining" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=9>

 < < Confirm Date (DD-MON-YY)

<INPUT Name="date_of_confirmation"

onBlur="this.value=this.value.toUpperCaseO;" Type=Text

Size=9></TD>

</TR><TR>

<TD>Login ID</TD>

<TD>

<INPUT Name="login_id" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=10>

Password

<INPUT Name="password" onBlur="this.value=this.value.tol)pperCase();"

Type=Password Size=l Ox/FONT></TD>

</TR></TABLE>

<CENTER><INPUT Name="save" Type=submit Value="Submit">

<INPUT Name-'cancel" Type=Reset Value="Reset"></CENTER>

</FORM></BODY>

</HTML>

HD

S o u rc e C o d e F o r e ia d d s u b m it .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;
&PrintHeader;
use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {
$a= Win32::ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";
exit;

}
Sempno = $in{'employee_no'};
Sfname = $in{'first_name'};

Slname = $in{'last_name'};

Sdesg = $in{'designation'};

Sdoj = $in{'date_ofJoining'};

$doc = $in{'date_of_confirmation'};
Slogin = $in{'login_id'};

Spasswd = Sin {'password'};

$no = substr($empno, 1);
$no = $no + 1;

Slueno = "E" . $no;

if (length($fname) eq "0") {
print "<SCRIPT Language='JavaScript'> alert('First Name cannot be left empty');";
print "history.back(); </SCRIPT>";
exit;

}
if (length($lname) eq "0") {

print "<SCRIPT Language='JavaScript'> alert('Last Name cannot be left empty');";
print ”history.back(); </SCRIPT>";
exit;

}
if (length(Sdoj) eq "0") {

print "<SCRIPT Language-JavaScript'> alert('Date Of Joining cannot be left empty');";
print "history.back(); </SCRIPT>";
exit;

}
if (length($doc) eq "0") {

print "<SCRIPT Language='JavaScript'> alert('Date Of Confirmation cannot be left empty');";
print "history.back(); </SCRlPT>";
exit;

}
if (length(SIogin) eq "0") {

print "<SCRIPT Language-JavaScript'> alert('Login Name cannot be left empty');";
print "history.back(); </SCRIPT>";
exit;

PROJ - D PROJECTS IN PERL USING A DATABASE PAGE 395

if (length(Spasswd) eq "0") {
print "<SCRIPT Language-JavaScript'> alert('Password cannot be left empty');";

print "history!back(); </SCRIPT>";

exit;

}
$Db->sql("INSERT INTO employee info VALUES('$empno', 'Sfname', 'Slname', 'Sdesg', ’$doj', '$doc',

'$login', ’Spasswd')");

if ($Db->Error()) {
Sa = Win32: :ODBC::Error();

if ($a = "[1858] [1] \"[Oracle][ODBC Oracle Driver][Oracle OCI]ORA-O1858: a non-numeric

character was found where a numeric was expected.V") {
print "<SCRIPT Language='JavaScript'> alert('Please ReEnter the date in the specified format');";

print " history.back0; </SCRIPT>";

close($Db);

exit;
}

}
else {

print "<SCRIPT Language='JavaScript’> alert('Successfully Added'); </SCRIPT>";

$Db->sql("UPDATE lu_eno SET employee_no=\'$lueno\'");

exec("perl", "posteiadd.cgi");
close(SDb);

exit;
}

S o u rc e C o d e F o r p o s t e ia d d .c q i

#!e:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;
use Win32::ODBC;
if(!($Db-uew Win32::ODBC("dsn=PerlOraclc;UID-project;PWD-project"))) {

$a = Win32: :ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
if(!$Db->sql("select employeeno from lu eno")) {

if ($Db->FetchRow()) {

undef%Data;

%Data = $Db->DataHash();
$lu_eno = $Data{'EMPLOYEE_NO'};

}

}
print «"H D ";

<HTML>
<HEAD><LINK Rel=STYLESHEET Type="text/css" HRef="styles.css"></HEAD>
<BODY><FORM Action=eiadd_submit.pl Method=GET>

<CENTER><H4>Employee Information (ADD) </H4></CENTER>

<TABLE><TR>
<TD>Employee No.</TD>

, oe COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, DRO , n
PAGE 396 JAVASCRIPT, DHTML AND PERL PROJ ' D

PROJ-D PROJECTS IN PERL USING A DATABASE PAGE 397

<TD>

<INPUT Name="employee_no" onFocus="blur();" Type=Text Size=8
Value="$lu_eno"></TD>

</TR><TR>

<TD>First Name</TD>
<TD><FONTColor=#23238E Face=Arial Size=l>

<INPUT Name="first_name” onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=20></TD>
</TR><TR>

<TD>Last Name</TD>

<TD>

<INPUT Name="last_name" onBlur="this.value=this.value.toUpperCase();"
Type=Text Size=20></TD>

</TR><TR>

<TD>Designation</TD>
<TD>

<INPUT Name="designation" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=20></TD>
</TR><TR>

<TD>Join Date (DD-MON-YY)
</TD>

<TD>

<INPUT Name="date_ofJoining" onBlur="this.value=this.value.toUpperCaseO;"
Type=Text Size=9> Confirm Date (DD-MON-YY)

<INPUT Name="date_of_confirmation"

onBlur="this.value=this.value.toUpperCaseO;" Type=Text
S i ze=9></TD>

</TR><TR>

<TD>Login ID</TD>

<TD>

<INPUT Name="login_id" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=10>

Password

<1NPUT Name="password" onBlur="this.value=this.value.toUpperCase();"

Type=Password Size= 1 Ox/FONT></TD>
</TRx/TABLE>

<CENTERxINPUT Name-'save" Type=submit Value="Submit">

<INPUT Name="cancel" Type=Reset Value="Reset"x/CENTER>
</FORM></BODY>

</HTML>

HD

S o u rc e C o d e F o r e ie d it lis t .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;
&PrintHeader;
use Win32::ODBC;

if (!(SDb=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {
$a = Win32::ODBC::Error();

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pROJ
JAVASCRIPT, DHTML AND PERL

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
print «"H D ";

<HTML>
<HEAD><LINK Rel=STYLESHEET Type="text/css" HRef^"styles.css"></HEAD>

<BODY><FORM Action=eiedit_info.pl Method=GET>
<CENTER><H4>Employee Information (EDIT)</H4></CENTER>

Employee Name to be edited :

<SELECT Name="emp_name" Size="7">

HD
if(!$Db->sql("SELECT firstname FROM employee info ORDER BY first_name"))_{

while ($Db->FetchRow()) {

undef%Data;

%Data = $Db->DataHashO;
$name = $Data{'FiRST_NAME'};

print "<OPTION Value='$name'> Sname </OPTION>";

}

}
print «"H DD";

</SELECT>

<CENTER><INPUT Name="save" Type=SUBMIT Value="Details">

<INPUT Name ="cancel" Type=RESET Value="Reset"></CENTER>

</FORM></BODY>

</HTML>

HDD

close(SDb);

exit;

S o u rc e C o d e F o r e ie d it in fo .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;
&PrintHeader;
use Win32::ODBC;
if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD—project"))) {

$a= Win32: :ODBC::Error();
print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
Sename = $in{emp_name};

Slen = length($ename);

if ($len eq "0") {
print "<SCRIPT Language='JavaScript'> alert('PIease Select Employee Name to be Edited');";

print "history.back(); </SCRIPT>";

}
print «"H D ";

<HTML>
<HEAD><LINK HRef="styles.css" Rel=STYLESHEET Type="text/css"></HEAD>

PROJ-D PROJECTS IN PERL USING A DATABASE PAGE 399

<BODY><FORM Action=eiedit_submit.pl Method=GET>

<CENTER><H4>Employee Information (EDIT)</H4></CENTER>
HD

i f (!$Db->sql("SELECT * FROM employeejnfo WHERE FIRST NAME = VSenameV")) {
i f ($Db->FetchRow()) {

undeP/oData;

%Data = $Db->DataHash();
$doj = $Data{'DATE_OF_JOINING'};
Sdoj = substr($doj, 0,10);

@dojj = split("-", Sdoj);

Sdojj [1] = &month($dojj[l]);

Sdoc = $Data{'DATE_OF_CONFIRMATION'};
$doc = substr($doc, 0,10);

@docc = split("-", Sdoc);

$docc[l] = &month($docc[l]);
Syearj = (substr($dojj[0], 2, 2));

Syearc = (substr($docc[0], 2, 2));

Sdoj = Sdojj[2]. . $dojj[l]. . Syearj;

Sdoc = $docc[2]. . $docc[l]. . Syearc;

print «"H DD";

<TABLE><TR>

<TD>Employee No.</TD>

<TD>

<INPUT Name="employee_no" onFocus=blur(); Type=Text Size=6

Value=$Data {'EMPLO YEE_NO' }></TD>
</TR><TR>

<TD>First Name</TD>

<TD>

<INPUT Name="first_name" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=20 Value=$Data{'FIRST NAME'}></TD>
</TR><TR>

<TD>Last Name</TD>
<TD>

<INPUT Name="Iast_name" onBlur="this.value=this.value.toUpperCase();"
Type=Text Size=20 Value=SData{'LASTNAME'}></TD>

</TR><TR>

<TD>Designation</TD>

<TD>

<INPUT Name="designation" onBlur="this.value=this.value.toUpperCaseO;"
Type=Text Size=20 Value=$Data{'DESIGNATION’}></TD>

</TR><TR>

<TD>Join Date (DD-MON-YY)

</TD>

<TD> .

<INPUT Name="date_ofJoining" onBlur="this.value=this.value.toUpperCaseO;"
Type=Text Size=9 Value=Sdoj>

 Confirm Date (DD-MON-YY)

<INPUT Name="date_of_confirmation"

onBIur="this.value=this.value.toUpperCase();" Type=Text Size=9

Value=Sdoc></TD>

</TR><TR>
<TD>Login lD </TD>

<TD>
<INPUT Name="login_id" onBlur="this.value=this.value.toUpperCase();"

Type=Text Size=10 VaIue=$Data{'LOGIN_ID'}>
 Password

<INPUT Name=''opassword" onFocus="blur();" Type=Password Size=6
Value=$Data{'PASSWORD'}></TD>

</TR><TR>
<TD>Enter old Password </TD>

<TD>
<INPUT Name="npassword" onBlur="this.value=this.value.tolipperCase();"

Type=Password Size=6>

Enter New Password
<INPUT Name="cpassword" onBlur="this.value=this.value.toUpperCase();"

Type=Password Size=6></TD>

</TR></TABLE>

<CENTERxINPUT TYPE=SUBMIT Name="save" Value="Submit">

<INPUT Type=RESET Name="cancel" Value="Reset"></CENTER>

</FORM></BODY>

</HTML>

HDD

}

}
else { print "Not Found"; }

close(SDb);

exit;

S o u rc e C o d e F o r e ie d it s u b m it .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;
&PrintHeader; ,
use Win32::ODBC;
if (!($Db=new Win32: :ODBC("dsn=PerlOracIe;UID=project;PWD=project"))) {

$a = Win32::ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
$empno = $in{'employee_no'};

Sfname = $in{'flrst_name'};
Slname = $in{'last_name'};

$desg= $in{'designation'};

Sdoj = Sin{'date_ofJoining'};

Sdoc = $in{’date_of_confirmation'};

Slogin = $in{'login id'};

$opasswd= $in{'opassword'};

Snpasswd = $in{'npassword'};

Scpasswd = $in{'cpassword'};

r,A^r COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRn . n
PAGE 400 JAVASCRIPT, DHTML AND PERL PR0J ' D

P R O J - D P R O JE C T S IN P E R L U S IN G A D A T A B A S E P A G E 401
•

Snlen = length(Snpasswd);

Sclen = length(Scpasswd);

if (length($fname) eq "0") {

print "<SCRIPT Language-JavaScript'> alert(’First Name cannot be left empty');";

print "history.backO; </SCRIPT>";
exit;

}
if (length($lname) eq "0") {

print "<SCRIPT Language—JavaScript'> alert('Last Name cannot be left empty');";
print "history.backO; </SCRIPT>";
exit;

}
if (length(Sdoj) eq "0") {

print "<SCRIPT Language='JavaScript’> alert('Date Of Joining cannot be left empty');";

print "history.backO; </SCRIPT>";
exit;

}
if (length(Sdoc) eq "0") {

print "<SCRIPT Language-JavaScript'> alert('Date Of Confirmation cannot be left empty');";

print "history.backO; </SCRIPT>";
exit;

}
if (length($login) eq "0") {

print "<SCRIPT Language-JavaScript'> alert('Login Name cannot be left empty');";

print "history.backO; </SCRlPT>";
exit;

}
if (!($nlen == 0 && Sclen = 0)) {

if (Snpasswd eq Scpasswd) { $opasswd= Snpasswd ; }
else {

print "<SCRIPT Language-JavaScript'> alert('Confirm the new password');";

print "history.backO; </SCRIPT>";
exit;

}

}
$Db->sql("UPDATE employeeinfo SET first_name='$fhame', last_name='$lname', designation='$desg\

DA TE_OF_ J OINING='$doj', DATE_OF_CONFIRMATION=’$doc', LOGIN_ID='$login',

PASSWORD='$opasswd' WHERE employeeno = \'$empno\'");

if ($Db->ErrorO) {
$a = Win32::ODBC::Error();

if ($a = "[1858] [1] \"[Oracle][ODBC Oracle Driver][Oracle OCI]ORA-O1858: a non-numeric

character was found where a numeric was expected.Y"') {

print "<SCRIPT Language-JavaScript'>";

print "alert('Please ReEnter the date in the specified format'); history.back();</SCRIPT>";
close(SDb);

exit;
}

}
else {

print "<SCRIPT Language='JavaScript’> alert('Successfully Edited'); </SCRlPT>";

exec("perl", "post_eiedit.cgi");

}
close(SDb);

exit;

S o u rc e C o d e F o r p o s t e ie d it .c q i

#!c:/perl/bin/perl.exe
require "cgi-Iib.pl";
&ReadParse;
use Win32::ODBC;
if (!($Db=new Win32::ODBC(’’dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32: :ODBC::Error();
print "<HTML><BODY><P> $a </P></BODY></HTML>”;

exit;

}
print «"H D ";

<HTML>
<HEAD><LINK Rel=STYLESHEET Type="text/css" HRef^"styIes.css"></HEAD>

<BODY><FORM Action=eiedit_info.pl Method=GET>
<CENTER><H4>Employee Information (EDIT)</H4></CENTER>

Employee Name to be edited :

<SELECT Name—’empname" Size="7">

HD
if(!$Db->sql("SELECT firstname FROM employeeinfo ORDER BY first_name")) {

while ($Db->FetchRow()) {

undef%Data;

%Data = $Db->DataHash();
Sname = $Data{'FIRST_NAME'};

print "<OPTION Value='$name'> Sname </OPTION>";

}
}

print « "H D D ”;

</SELECT>

<CENTER><INPUT Name="save" Type=SUBMIT Value="Details">

<INPUT Name ="cancel" Type=RESET Value="Reset"></CENTER>

</FORM></BODY>

</HTML>

HDD

close(SDb);

exit;

S o u rc e C o d e F o r e id e l.p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl”;
&ReadParse;
&PrintHeader;
use Win32::ODBC;
if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32::ODBC::Error();

C0MMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
PAfcb WZ JAVASCRIPT, DHTML AND PERL

PROJ-D

PROJ-D PROJECTS IN PERL USING A DATABASE PAGE 403

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
print « "H D ";

<HTML>

<HEAD><LINK Rel=STYLESHEET Type="text/css" HRef="styles.css"> </HEAD>

<BODY><FORM Action=eidel_info.pl Method=GET>

<CENTER><H4>Employee Information (DELETE)</H4></CENTER>

Employee Name to be Deleted :

<SELECT Name="emp_name" Size="7">
HD

if(!$Db->sql("SELECT first name FROM employee info ORDER BY first name")) {

while ($Db->FetchRow()) {

undeP/oData;

%Data = $Db->DataHash();
$name = $Data{'FIRST_NAME'};

print "OPTION VaIue='$name’>$name</OPTION>";

}

}
print «"H DD";

</SELECT>

<CENTER><INPUT Name="save" Type=SUBMIT Value="Details">

<INPUT Name="cancel" Type=RESET Value="Reset"></CENTER>

</FORM></BODY>

</HTML>
HDD

close($Db);

exit;

S o u rc e C o d e F o r e id e l in fo .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;
&PrintHeader;
use Win32::ODBC;
if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32: :ODBC::Error();
print "Content-type: text/html\n\n<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
Sename = $in{emp_name};

$len = length(Sename);

if (Slen eq "0") {
print "<SCRIPT Language-JavaScript’> alert('Please Select Employee Name to be Deleted');";

print "history.back(); </SCRIPT>";

close(SDb);

exit;
}

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pRQJ
JAVASCRIPT, DHTML AND PERL

print «"H D ";
<HTML>

<HEAD><LINK Rel=STYLESHEET Type="text/css" HRef="styles.css"x/HEAD>

<Body><Form Action=eidel_submit.pI Method=GET>
<CENTER><H3><U>Employee Information (DELETE)</U></H3></CENTER>

HD
Sename = $in{emp_name};
if (!$Db->sql("SELECT * FROM employeejnfo WHERE FIRST_NAME = \'$enameV")) {

if ($Db->FetchRow()) {

undef%Data;
%Data = $Db->DataHash();
$doj = $Data {'D ATEOFJOINING'};

$doj = substr($doj, 0,10);

@dojj = split("-", $doj);

Sdojjf 1] = &month($dojj[l]);
$doc = $Data{'DATE_OF_CONFIRMATION'};

$doc = substr($doc, 0,10);
@docc = split("-", Sdoc);

$docc[l] = &month($docc[l]);

$doj = $dojj[2]. . $dojj[l]. . $dojj[0];

Sdoc = $docc[2]. . $docc[l]. . $docc[0];

Syearj = (substr($dojj[0], 2, 2));
Syearc = (substr($docc[0], 2, 2));

$doj = $dojj[2]. . $dojj[l]. . Syearj;
Sdoc = $docc[2]. . $docc[l]. . Syearc;

print «"H DD";

<TABLE><TR>
<TD>Employee No.</TD>

<TD>

<INPUT Name="employee_no" onFocus=blur(); Type=Text Size=6

Value=$Data{'EMPLOYEE_NO,}></TD>

</TR><TR>

<TD>FirstName</TD>

<TDxFONT Color=#23238E Face=AriaI Size=l>
<INPUT Name-'firstname" onFocus=blur(); Type=Text Size=20

Value=$Data{'FIRST_NAME'}></TD>

</TR><TR>
<TD>Last Name</TD>

<TD>

<INPUT Name="last_name" onFocus = blur(); Type=Text Size=20
Value=$Data{ 'LASTN AME' }></TD>

</TR><TR>
<TDxFONT Color=#23238E Face=Arial Size=l>Designation</TD>

<TD>

<INPUT Name="designation" onFocus = blur(); Type=Text Size=20
Value=$Data{'DESIGNATION'}x/FONTx/TD>

</TR><TR>
<TD>Join Date (DD-MON-YY)

</TD>

P R O J - D P R O J E C T S IN P E R L U S IN G A D A T A B A S E P A G E 405

<TD>

<INPUT Name="date_ofJoining" onFocus=blur(); Type=Text Size=9 VaIue=$doj>

 Confirm Date (DD-MON-YY)

<INPUTName="date_of_confirmation" onFocus=blur(); Type=Text Size=9

Value=$doc></TD>
</TR><TR>

<TD>Login ID</TD>

<TD>
<INPUT Name="login_id" onFocus=blur(); Type=Text Size=IO

Value=$Data {'LOG IN _ID'} ></TD>
</TR></TABLE>

<CENTER><INPUT Type=SUBMIT Name="save" Value="Delete"></CENTER>

</FORM></BODY>
</HTML>

HDD

}
}
else { print "Not Found"; }

close(SDb);

exit;

S o u rc e C o d e F o r e id e l s u b m it .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;
&PrintHeader;
use Win32::ODBC;

if (!($Db=new Win32: :ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

Sa = Win32::ODBC::Error();
print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
$empno = $in{'empIoyee_no'};
SDb->sql("DELETE FROM employee info WHERE employeeno = \'Sempno\'");

if ($Db->Error()) {

$a = Win32::ODBC::Error();
print "<SCRIPT Language='JavaScript’> alert(’$a'); </SCRIPT>";

}
else {

print "<SCRIPT Language='JavaScript’> aIert('Successfully Deleted1); </SCRIPT>";

exec("perl", "post_eidel.cgi");

}
close($Db);

exit;

S o u rc e C o d e F o r p o s t e id e l.c q i

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;

use Win32::ODBC;
if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {

$a = Win32::ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
print «"H D ";

<HTML>
<HEAD><LINK Rel=STYLESHEET Type="text/css" HRef="styles.css"> </HEAD>

<BODY><FORM Action=eidel_info.pl Method=GET>
<CENTER><H4>Employee Information (DELETE)</H4></CENTER>

Employee Name to be Deleted :

<SELECT Name="emp_name" Size="7">

HD
if(!$Db->sql("SELECT first name FROM employee info ORDER BY first_name")) {

while ($Db->FetchRow()) {

undef%Data;
%Data = $Db->DataHash();
Sname = $Data{'FIRST_NAME'};

print "<OPTION VaIue='$name'>$name</OPTION>";

}

}
print «"H DD";

</SELECT>

CENTERxINPUT Name="save" Type=SUBMIT Value="Details">

<INPUT Name="cancel" Type=RESET Value="Reset"></CENTER>

</FORM></BODY>

</HTML>

HDD

close($Db);

exit;

S o u rc e C o d e F o r e iv ie w .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
&ReadParse;
&PrintHeader;
use Win32::ODBC;
if (!($Db=new Win32::ODBC("dsn=PerlOracle;UiD=project;PWD=project"))) {

$a = Win32: :ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";

exit;
}
print «"H D ";

<HTML><HEAD><LINK Rel=STYLESHEET Type="text/css" HRef="styles.css"></HEAD>

<BODY><FORM Action=eiview_info.pI Method=GET>

<CENTER><H4>Employee Information (VIEW)</H4></CENTER>

Employee Name to be Viewed :

<SELECT Name="emp_name" Size="7">

HD

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H T M L , D c n .
P A G E 406 J A V A S C R IP T , D H T M L A N D P E R L P R O J '

PROJ-D PROJECTS IN PERL USING A DATABASE PAGE 407

if(!$Db->sql("SELECT first name FROM employee info ORDER BY firstname")) {
while ($Db->FetchRow()) {

undef%Data;

%Data = $Db->DataHash();
Sname = $Data{'FIRST_NAME'};

print "OPTION Value='$name'>$name</OPTION>";

}

}
print «"H DD";

</SELECT>

OENTERxlNPUT Name="save" Type=SUBMIT Value="DetaiIs">
<INPUT Name="cancel" Type=RESET Value="Reset"x/CENTER>

</FORM></BODY>
</HTML>

HDD

close(SDb);
exit;

S o u rc e C o d e F o r e iv ie w ¡n fo .p l

#!c:/perl/bin/perl.exe
require "cgi-lib.pl";
require "mylib.pl";
&ReadParse;
&PrintHeader;
use Win32::ODBC;

if (!($Db=new Win32::ODBC("dsn=PerlOracle;UID=project;PWD=project"))) {
$a = Win32: :ODBC::Error();

print "<HTML><BODY><P> $a </P></BODY></HTML>";
exit;

}
Sename = $in{emp_name};

$len = length($ename);

if ($len eq "0") {

print "<SCRIPT Language='JavaScript'> alert('Please Select Employee Name to be Viewed');";
print "history.back(); </SCRIPT>";

}
print «"H D "; •

<HTML><HEAD><LINK Rel=STYLESHEET Type="text/css" HRef="styles.css"x/HEAD>
<BODY><FORM Method=GET>

OENTER><H3><U>Employee Information (VIEW)</U></H3></CENTER>
HD

Sename = $in{emp_name};

if (!$Db->sql("SELECT * FROM employeeJnfo WHERE FIRST NAME = YSenameV")) {
if ($Db->FetchRow()) {

undef%Data;

%Data = $Db->DataHashO;
Sdoj = $Data {'D ATEOFJOINING'};

$doj = substr($doj, 0,10);

@dojj = split("-", Sdoj);

$dojj [1] = &month($dojj[l]);
$doc = $Data{'DATE_OF_CONFIRMATION'};

Sdoc = substr($doc, 0,10);

@docc = split("-", $doc);
$docc[l] = &month($docc[l]);

$doj = $dojj[2]. . Sdojj[1]. . $dojj[0];
$doc = $docc[2]. . $docc[l]. . $docc[0];

Syearj = (substr($dojj[0], 2, 2));

Syearc = (substr($docc[0], 2, 2));
Sdoj = Sdojj[2]. . Sdojj [1]. . Syearj;

Sdoc = Sdocc[2]. . Sdocc[I]. . Syearc;

print «"H DD";
<TABLE><TR>

<TD>Employee No.</TD>

<TD>
<INPUT Name="ernployee_no" onFocus=blur(); Type=Text Size=6

Value=$Data{'EMPLOYEE_NO'}></TD> -

</TR><TR>
<TD>First Name</TD>

<TD>

<INPUT Name="first_name" onFocus=blur(); Type=Text Size=20
Value=$Data{'FIRST_NAME'}></TD>

</TR><TR>
<TD>Last Name</TD>

<TD>
<INPUT Name="last_name" onFocus=blur(); Type=Text Size=20

Value=SData{'LAST_NAME'}></TD>

</TR><TR>
<TD>Designation</TD>

<TD>
<INPUT Name="designation" onFocus=blur(); Type=Text Size=20

Value=$Data{'DESIGNATION'}></TD>

</TR><TR>
<TD>Join Date (DD-MON-YY)

</TD>
<TD>

<INPUT Name="date_ofJoining" onFocus=blur(); Type=Text Size=9

Value=$doj> Confirm Date (DD-MON-YY)

<INPUT Name="date_of_confirmation" onFocus=blur(); Type=Text Size=9

Value=$doc></TD>

</TR><TR>
<TD>Login ID</TD>

<TD>

<INPUT Name="login_id" onFocus=blur(); Type=Text Size=10

Value=$Data{’LOGIN_ID}>
 Password «

<INPUT Name="opassword" onFocus=blur(); Type=Password Size=3
Value=$Data{'PASSWORD'}></TD>

</TR></TABLE>

. , Л1: . . . COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, pan . n
PAGE 408 JAVASCRIPT, DHTML AND PERL PR0J ' D

PROJ-D PROJECTS IN PERL USING A DATABASE PAGE 409

<CENTER><INPUT Name=btnBack onClick="history.back();" Type=Button

Value="Done"></CENTER>
</FORM></BODY>

</HTML>
HDD

}

}
close($Db);
exit;

A N S W E R S T O S E L F R E V IE W Q U E S T IO N S

13. COMMON GATEWAY INTERFACE CONCEPTS
FILL IN THE BLANKS TRUE OR FALSE
1. Common Gateway Interface 8. True

2. Gateway 9. False

3. Hyper Text Transfer Protocol 10. False

4. GET
5. Environment Variables

6. QUERY STRING
7. CONTENTTYPE

14. THE PERL LANGUAGE
FILL IN THE BLANKS TRUE OR FALSE
1. Practical Extraction and Report Language 7. False

2. Double-quoted strings 8. True

3. Scalars 9. False

4. Associative Arrays 10. False

5. Keys

6. %ENV

15. PERFORMING OPERATIONS AND CONTROLLING PROGRAM Flow
FILL IN THE BLANKS TRUE OR FALSE
1. ++ 8. True

2. if 9. False

3. <=> 10. False
*

4. Numeric 11. True

5. True 12. False

6. Loop

7. last

16. PERL FUNCTIONS
FILL IN THE BLANKS TRUE OR FALSE
1. Function 7. False

2. chop() 8. False

3. .= 9. True

4. x

5. substr()

6. spliceQ

ANS ANSWERS TO SELF REVIEW QUESTIONS PAGE 411

17. FILEHANDLING
FILL IN THE BLANKS

18. REGULAR EXPRESSIONS
FILL IN THE BLANKS
1.
2.

3.
4.

5.
6.

7.

Regular Expression

Anchors, Characters & Modifiers
A

Backslash
+

i

9. . (dot)

19. CREATING STRUCTURED PROGRAMS
FILL IN THE BLANKS

TRUE OR FALSE
1. Files, Directories 10. True
2. open() 11. True
3. > 12. False
4. Text, Binary 13. True
5. read(), sysread()
6. mkdir()

7. opendir()
8. readdir()
9. (-e)

TRUE OR FALSE
10. False
11. True

12. False
13. True

14. True

TRUE OR FALSE
1. Subroutine 10. False
2. sub 11. False
3. Arguments 12. True
4. my and local 13. False
5. retum() 14. True
6. Library

7. Cgi-lib.pl

8. PrintVariables
9. ReadParse

20. GOING THE O BJECT WAY WITH PERL
FILL IN THE BLANKS TRUE OR FALSE
1. Reference 10. False
2. Backslash 11. True
3. $ 12. False
4. Arrow 13. True
5. Package
6. main

7. require

8. use

9. Method

. COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, ANS
PAGE 412 JAVASCRIPT, DHTML AND PERL

21. DATABASE CONNECTIVITY
FILL IN THE BLANKS TRUE OR FALSE
1. ODBC 8. True

2. Win32::ODBC 9. False

3. Data Connection 10. True

4. new 11. True

5. FetchRow 12. False

6. Close

7. DataHash

22. DEBUGGING IN PERL
FILL IN THE BLANKS TRUE OR FALSE
1. Debugging 10. False

2. -d 11. False

3. q 12. True

4. w 13. False

5. // 14. True

6. Subroutine

7. X

8. b
9. Trace mode

23. INSTALLING AND SETTING UP APACHE W EB SERVER
FILL IN THE BLANKS TRUE OR FALSE
1. apachectl configtest, -t 10. True

2. Alias, ScriptAlias 11. False

3. container 12. False

4. Apache’s API 13. True

5. MinSpareServers, MaxSpareServers 14. False

6. DocumentRoot 15. True

7. CAN-2004-0493, CAN-2004-0488 16. Irue

8. KeepAliveTimeout 17. False

9. apxs (APache extension) 18. False

19. True

S O L U T IO N S T O H A N D S O N E X E R C I S E S

14. THE PERL LANGUAGE

1. Assign string values and numeric values to scalar variables:
#!c:/perl/bin/perl.exe -w
$num_days_in_year = 365;

Sbooktitle = "Programming Using Open Source Products On Windows";

print "$num_days_in_year";
print "Sbook title";

2. Creating an indexed array named @week to populate it with the days of the week and print the
elements of the array:

#!c:/perl/bin/perl.exe -w
@week=("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday");
for($i=0; $i<=$#week; $i++) {

print "lndex[$i]=$week[$i] \n";

}

3. Creating an associative array %expenses containing information for John, Mary, Ed & Jane with
their expenses respectively as $250.50, SI 95.00, $345.25 and $225.99 and printing the name and the
expenses of each element using a for loop, a foreach loop and a while loop:

#!c:/perl/bin/perl.exe -w
%expenses=("John"=>"250.50", "Mary"=>" 195.00", "Ed"=>"345.25", "Jane"=>"225.99");
print "\n Printing the array \n\n";

print "\nUsing the for loop\n\n";

for $key(keys %expenses) {

print "Name=$key Expenses=$expenses{$key} \n";

}
print "\nUsing the foreach loop\n\n";

foreach $name(keys %expenses) {

print "$name=$expenses{$name} \n";

}
print"\nusing the while loop\n\n";

while (($key,$value)=each(%expenses)) {

print "Name:$key Expenses:$value \n";

}

4. Creating an indexed array @names by assigning individual elements of that array and then print the
value of each element using a for loop:

#!c:/perl/bin/perl.exe -w
print"\ncreated array\n\n";
$name[0]="lvan";

$name[1]="Cynthia";

$name[2]="Chriselle";

$name[3]="Chhaya";
$name[4]="Sharanam";
$name[5]="Hansel";
Sname[6]="Anil";
$name[7]="Alex";
$name[8]="Mamta";
$name[9]="Ashwini";
for ($i=0; $i<=$#name; $i++) {

print "Name [$i]=$name[$i] \n";
}

15. PERFORMING OPERATIONS AND CONTROLLING PROGRAM FLOW

1. P r in t in g th e v a lu e o f S c tr2 , S c tr3 a n d $ c t r4 w h e n $ c tr= 1 0 :

$ctr=10;
$ctr2=$ctr+l;
$ctr3=$ctr++;
$ctr4=++$ctr;
print "ctr2=$ctr2 \n";
print "ctr3=$ctr3 \n";
print "ctr4=$ctr4 \n";

2. P r in t in g th e v a lu e o f $a w h e n $ a = 1 0 a n d $ b = 2 :

$a=10;
$b=2;
$a+=$b;
print "a=$a \n";
$a-=$b;
print "a=$a \n";
$a*=$b;
print "a=$a \n";
Sa/=$b;
print "a=$a \n";

3. A lo o p to a d d n u m b e rs f r o m 50 to 7 5 :

for($i=50; $i<=75; $i++) {
$sum+=$i; }

print "sum=$sum \n";

4. U s in g th e i f . . . e lse s ta te m e n t to c a te g o r iz e th e m a rk s o f a s tu d e n t:

i f ($marks>75) {
print "Congratulations, you have secured a Distinction \n"; }

e ls if ($marks>=60 && $marks<75) {
print "Congratulations, you have secured a First Class \n"; }

e ls if ($marks>=45 && $marks<60) {
print "Well done you have secured a Second Class \n"; }

elsif ($marks>=35 && $marks<45) {
print "You have secured a Pass Class \n"; }

else {
print "Sorry, you have failed \n"; }

PArP COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, SQ,
JAVASCRIPT, DHTML AND PERL

SOL SOLUTIONS TO HANDS ON EXERCISES PAGE 415

5. A fo re a c h lo o p f o r p r in t in g th e lo w e s t n u m b e r in a set:

@numbers = (78, 87, 34,45, 23, 64, 12, 32, 21, 54,43);
$num = 0;

fo re a c h $n 1 (@numbers) {
i f ($nl > $num) {

$num = $nl; }

}
fo re a c h $n2 (@numbers) {

i f ($n2 < $num) '{
$num = $n2; }

}
print "The lowest number is $num";

16. PERL FUNCTIONS

1. A p ro g ra m to re m o v e th e la s t c h a ra c te r f r o m a s t r in g v a r ia b le u s in g c h o p () fu n c t io n a n d s to re i t
in th e v a r ia b le . T h e n p r in t th e v a lu e o f o r ig in a l a n d n e w v a r ia b le s :

Sline = "Keep Your City Clean.";

Schopjine = chop(Sline);
print "Sline \n";

print "$chop_line\n";

2. A p ro g ra m u s in g c h o m p () f u n c t io n to re m o v e the n e w lin e c h a ra c te r :

Sline = "Keep Your City CleanAn";

chomp(Sline);

print "Sline";

3 . A P E R L p ro g ra m to c o n c a te n a te tw o s tr in g s w i th space b e tw e e n th e m a n d a p p e n d th e t h i r d
s t r in g u s in g th e c o n c a te n a t io n o p e r a to r s to r in g th e re s u lt in th e sam e s t r in g :

Sfirstname = "Jodie";

Ssecondname = "Foster";
Concatenate the two s tr in g s

Sfullname = Sfirstname ." " . Ssecondname;
C oncatena tion u s ing co nca te na tio n opera to r

Sstr = " is blonde.";

Sfullname .= "Sstr"; *
print "Sfullname";

4. U s in g th e s u b s tr fu n c t io n to e x t r a c t f i r s t f iv e c h a ra c te rs o f a s t r in g a n d th e n p r in t in g tho se f iv e
c h a ra c te rs :

D efine a s t r in g

Sline = "Play Light Music";
E x trac t the p a r t th a t fo llo w s "P lay "

Sextract = substr($line,0,5);

print "$extract\n";

5. A p ro g ra m to p r i n t th e to ta l le n g th o f a g iv e n s t r in g a n d th e n e x t ra c t a s t r in g a n d c o u n t its
le n g th :

Sline = '!Jodie Foster is blonde.";

Scount = length(Sline);
print "Length of the string \: $count\n";

$pos = index($line, "Foster");
Spart = substr($line, $pos ,6);

print "Extracted string \: $part\n";
$len = length("$part");

print "Length of the extracted string \: Slen";

6. A p ro g ra m to a d d e le m e n ts to th e b e g in n in g o f th e a r r a y a n d s o r t i t :

@games = ("Golf', "Snooker", "Cricket", "Hockey");

unshift(@games, "Soccer", "Kabaddi");
print "@games\n";

@sorted_names = sort(@games);
print "@sorted_names";

17. FILEHANDLING

1. A P E R L p ro g ra m to o p e n th e f i le te s t -F i le l. tx t a n d d is p la y a p p r o p r ia te m essage on success o r
fa i lu re :

i f (open(TESTl, "test-filel.txt")) {
print ("You are Successful in opening file"); }

else {
print ("Cannot find file"); }

2. A P E R L p ro g ra m to w r i t e to th e te x t f i le :

open(TESTl, ">test-filel.txt") || die("cannot open file");

print TEST1 "This is good progress\n";

3. A P E R L p r o g r a m to c re a te a f i le te s t - f i le 2 . tx t a n d th e n w r i t e a n d a p p e n d to i t a c c e p t in g in p u t
f r o m th e u s e r:

open(TEST2, "»test-fi le2.txt");

Scommand = <STDIN>; {

print TEST2 "Scommand"; }

4. A P E R L p ro g ra m to c re a te a d ir e c to r y c a lle d " S tu d e n t D i r " :

mkdir("Student_Dir", 840);

18. REGULAR EXPRESSIONS

1. A p ro g ra m , w h ic h w i l l ta k e in a s t r in g a n d c h e c k f o r th e p a t te r n ‘ H e l lo ’ . I f fo u n d d is p la y an
a p p ro p r ia te m essage f o r U p p e rc a s e , L o w e rc a s e o r P ro p e r case a n d a lso an a p p r o p r ia te m essage
w h e n m a tc h n o t fo u n d :

print "Enter a String containing hello:\n";
Sstr = <stdin>;

i f (Sstr = ~ /Hello/) {
print "ProperCase Match! \n"; }

D. . c . . . COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, cril
AGE 416 JAVASCRIPT, DHTML AND PERL SOL

SOL SOLUTIONS TO HANDS ON EXERCISES PAGE 417

e ls i f (Sstr = ~ /hello/) {
print "LowerCase Match!\n"; }

e ls i f (Sstr =~ /HELLO/) {
print "Uppercase Match!\n"; }

else {
print "Hello not encountured or Mixed case match"; }

2. A p r o g ra m w h ic h d e f in e s a v a r ia b le c o n ta in in g a s t r in g a n d m a tc h e s a p a t te r n to p r in t an
a p p ro p r ia te m essage:

Sstr = "Hello World";

i f (Sstr = ~ /Hello World/) {
print"Case Match\n"; }

i f (Sstr =~/he!lo World/i) {
print "Case Insensitive Match"; }

19. CREATING STRUCTURED PROGRAMS

1. C re a t in g a s u b ro u t in e , w h ic h w i l l p r in t th e g re e t in g a n d th e n in v o k in g i t :

s u b message {

print "Good Morning India! \n"; }

& m e ss a g e ;

2. C re a t in g a s u b ro u t in e , w h ic h a n a m e ca n be passed as an a rg u m e n t . T h e s u b ro u t in e th e n p r in ts
a g re e t in g :

s u b message {
print "Good Morning @_ \n"; }

& m e s s a g e ("R o g e r") ;

3 . C re a te a s u b ro u t in e to c a lc u la te th e ta x on in c o m e @ 3 0 % o f in c o m e . Pass th e in c o m e as a n
a rg u m e n t to th e s u b ro u t in e . T h e s u b ro u t in e s h o u ld th e n r e tu r n th e ta x l ia b i l i t y on t h a t in c o m e .

$tax=0;

$income=5000;

Stax = &computetax($ income);

print "Your tax liability is :". Stax . "\n";
su b computetax {

my(Sarg) =

Stax = (Sarg * 0.30);

return (Stax);

}

20. GOING THE O BJECT W AY WITH PERL

1. A p ro g ra m d e fin e s a s c a la r v a r ia b le w i th a v a lu e a n d th e n c re a te s a re fe re n c e to s c a la r v a r ia b le
to p r in t th e c o n te n ts o f th e re fe re n c e :

!c : /p e r l/b in /p e r l.e x e -w
my SscalarVar = "Good Morning";

my SscalarRef = \SscalarVar;

print" Var : SscalarVar \n";

print "Ref: SSscalarRef \n";

2. A program to c re a te th e a r r a y o f d a ys o f th e w e e k a n d th e n c re a te a re fe re n c e to th is a r r a y a n d
p r in t o u t th e c o n te n ts o f th e a r r a y re fe re n c e :

!c : /p e r l/b in /p e r l.e x e -w
@weeks = qw (Sun Mon Tue Wed Thu Fri Sat);

SarrayRef= \@weeks;
f o r Smonth (@$arrayRef) {

print" Month : Smonth \n"; } t

3 . A p ro g ra m to c re a te a n a s s o c ia tiv e a r r a y a n d a re fe re n c e th e a r r a y to p r in t its :

!c : /p e r l/b in /p e r l.e x e -w
%who = CName’ => 'John', 'Age' => 25, 'Height' => 'l 82 cm’, 'Weight' => '80 kg');

ShashRef = \%who;
f o r Skey (sort keys %$hashRef) {

Svalue = ShashRef->{$key};

print" Key : Skey, Value : Svalue \n"; }

4. C re a te a s u b ro u t in e . C re a te a re fe re n c e to th a t s u b ro u t in e a n d th e n d e -re fe re n c e th e re fe re n c e to
c a ll th e s u b ro u t in e :

!c : /p e r l/b in /p e r l.e x e -w
s u b callBack {

my (Smesg) =
print "$mesg\n";

}
ScodeRef = \& c a l lB a c k ;
&ScodeRef ("Hi, Mike!");

&ScodeRef ("How are you?");

5. C re a te a p a c k a g e w i th a s u b ro u t in e :

p a c k a g e packl;

s u b callback {
my(Smesg) =

print "Smesg \n";

}
l;

C a ll a s u b ro u t in e o f t h a t p a c k a g e in a p ro g ra m :

!c : /p e r l/b in /p e r l.e x e -w
require "mylib.pl";

Svar = "Good Morning India!";

packl ::callBack($var);

D A . C C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G H TM L, S O L
P A G E 418 J A V A S C R IP T , D H T M L A N D P E R L

S I L O T I O N - V : Я -p-pencCix

A P P E N D I X - А

H T M L C o lo r C o d e s

C o lo r R R G G B B C o lo r R R G G B B C o lo r R R G G B B
White FFFFFF Red FFOOOO Green 00FF00

Blue 0000FF Magenta FFOOFF Cyan 00FFFF

Yellow FFFFOO Black 000000 Aliceblue F0F8FF

Aquamarine 70DB93 Baker’s chocolate 5C3317 Blue violet 9F5F9F

Brass B5A642 Bright gold D9D919 Brown A62AA2

Bronze 8C7853 Bronze II A67D3D Cadet blue 5F9F9F

Cool bopper D98719 Copper B87333 Coral FF7F00

Cornflower blue 42426F Dark brown 5C4033 Dark green 2F4F2F

Dark green copper 4A766E Dark olive green 4F4F2F Dark orchid 9932CD

Dark purple 871F78 Dark slate blue 6B238E Dark slate grey 2F4F4F

Dark tan 97694F Dark turquoise 7093DB Dark wood 855E42

Dim grey 545454 Dusty rose 856363 Feldspar D 19275

Firebrick 8E2323 Forest green 238E23 Gold CD7F32

Goldenrod DBDB70 Gray COCOCO Green copper 527F76

Green yellow 93DB70 Hunter green 215E21 Indian red 4E2F2F

Khaki 9F9F5F Light blue C0D9D9 Light gray A8A8A8

Light steel blue 8F8FBD Light wood E9C2A6 Light green 32CD32

Mandarin orange E47833 Maroon 8E236B Medium aquamarine 32CD99

Medium blue 3232CD Medium forest green 6B8E23 Medium goldenrod EAEAAE

Medium orchid 9370DB Medium sea green 426F42 Medium slate blue 7FOOFF

Medium turquoise 70DBDB Medium violet red DB7093 Medium wood A68064

Midnight blue 2F2F4F Navy blue 23238E Neon blue 4D4DFF

Neon pink FF6EC7 New midnight blue 00009C New tan EBC79E

Old gold CFB53B Orange FF7F00 Orange red FF2400

Orchid DB70DB Pale green 8FBC8F Pink BC8F8F

Plum EAADEA Quartz D9D9F3 Rich blue 5959AB

Salmon 6F4242 Scarlet 8C1717 Sea green 238E68

Semi sweet chocolate 6B42226 Sienna 8E6B23 Silver E6E8FA

Sky blue 3299CC Slate blue 007FFF Spicy pink FF1CAE

Spring green 00FF7F Steel blue 236B8E Summer sky 38BODE

Tan DB9370 Thistle D8BFD8 Turquoise ADEAEA

Very dark brown 5C4033 Very light gray CDCDCD Violet 4F2F4F

Violet red CC3299 Wheat D8D8BF Yellow green 99CC32

R e s o u r c e O n W o r ld W id e W e b

T h e w o r ld w id e w e b (w 3) c o n s to r iu m http://www.w3.org/

Home to general information on the World Wide Web and links to all areas of WWW and HTML.

http://www.w3.org/

^on COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, . oklnY
PAGE 420 JAVASCRIPT, DHTML AND PERL APNDX

T h e W W W S e c tio n o f Y a h o o ! http://www.yahoo.com/Computers/World Wide Web

Links to hundreds of pages regarding WWW and HTML.

O p e n T e x t http://www.opentext.com/

An extensive database of Web sites.

R e s o u r c e s O n H T M L E d ito r s

F ro n tP a g e http://www.microsoft.com/msoffice/frontpage/default.html

Microsoft’s Web page and site development application.

G N N P re s s http://www.tools.gnn.com/press/index.html

A multiplatform Web page design tool.

H o m e S ite http://www.dexnet.com/homesite.html

A full-featured shareware Web page designer.

H T M L A s s is ta n t P ro http ://www .brooknorht.com/istar.html

A commercial HTML editor based on popular shareware editor.

H T M L W r i t e r http://www.lal.cs.byu.edu/people/nosack/index.html

An HTML editor that allows to edit more than one document at a time.

In C o n te x t S p id e r http://www.incontext.ca/products/spider 1 .html

A commercial Web page tool that supports advanced HTML features.

S y m p o s ia http ://www.grif. fr/prod/sympro.htm 1

A web design application for UNIX and Windows.

W e b b e r http://www.csdcorp.com/webber.htm

An HTML editor that includes a validator program to look for invalid HTML markup.

W e b M e d ia P u b l is h e r http://www.wbmedia.com/publisher/

A web page tool that supports the latest Microsoft and Netscape HTML extensions.

W e b W iz a r d http://www.halcyon.com/webwizard/index.html

An HTML editor available in 16-bit and 32-bit versions

R e s o u r c e s O n H T M L D o c u m e n t D e v e lo p m e n t

H T M L 2 .0 S p e c if ic a t io n http://www.w3.org/hypertext/www/MarkUp/html-spec/index.html

A full description of the final draft of HTML 2.

H T M L 3 .2 D r a f t S p e c if ic a t io n http://www.w3.org/pub/www/MarkUp/

A full description of the current draft of HTML 3.2.

H T M L S ty le G u id e http://www.w3.org/hypertext/www/Provider/Style/Overview.html

Tim Berners-Lee’s excellent guide to designing WWW documents.

N e tS p a ce G u id e f o r H T M L D e v e lo p e rs http://netspace.org/netspace/wwwdoc.html

Lots of links to documents on creating effective HTML documents.

U R L D e s c r ip t io n s http: //www.w3.org/hypertext/www/Addressing/Addressing.html

Definations of the various types of URLs, as well as discussion of URNs and URIs.

http://www.yahoo.com/Computers/World
http://www.opentext.com/
http://www.microsoft.com/msoffice/frontpage/default.html
http://www.tools.gnn.com/press/index.html
http://www.dexnet.com/homesite.html
http://www.lal.cs.byu.edu/people/nosack/index.html
http://www.incontext.ca/products/spider
http://www.grif
http://www.csdcorp.com/webber.htm
http://www.wbmedia.com/publisher/
http://www.halcyon.com/webwizard/index.html
http://www.w3.org/hypertext/www/MarkUp/html-spec/index.html
http://www.w3.org/pub/www/MarkUp/
http://www.w3.org/hypertext/www/Provider/Style/Overview.html
http://netspace.org/netspace/wwwdoc.html
http://www.w3.org/hypertext/www/Addressing/Addressing.html

APNDX APPENDIX PAGE 421

W W W D e v e lo p m e n t P age (V i r t u a l L ib r a r y) http://www.charm.net/web/Vlib/

Links to a wide range of HTML development documents.

N e t T ip s f o r W r i t e r s a n d D e s ig n e rs http://www.dsiegel.com/tips/

Design tips for effective Web pages from a leading designer.

F ra m e s T u to r ia l http://www.newbie.net/frames/

A step by step tutorial for creating pages using frames.

A P P E N D IX - В

R e s o u r c e s O n J a v a S c r ip t

N e ts ca p e J a v a S c r ip t In fo r m a t io n http://home.netscape.com/eng/mozilla/Gold/handbook/iavascript/

JavaScript information from the company that brought it to the Web.

G a m e la n J a v a S c r ip t S c r ip ts http://www.gamelan.com/

A repository of many JavaScript scripts.

J a v a S c r ip t S c r ip ts http://www.geocities.com/SiliconValley/9000/

A set of useful JavaScript scripts by the same set of authors.

J a v a S c r ip t T ip o f th e W e e k http://www.webreference.com/javascript

Numerous tips and tricks on using JavaScript.

B a b y a k ’ s J a v a S c r ip t R e so u rce s http://www.epix.com/~mbabyak/

Links to JavaScript resources across the Web

J a v a S c r ip t O v e rv ie w http://home.netscape.eom/comprod/products/navigator/version2.0/script/index.html

J a v a S c r ip t D o c u m e n ta t io n http://home.netscape.com/eng/mozilla/Gold/handbook/javascript/index.html

J a v a S c r ip t In d e x http://www.c2.org/~andreww/javascript/

J a v a S c r ip t L ib r a r y http://www.c2.org/~andreww/javascript/lib/

L e a rn in g J a v a S c r ip t w i th W in d o w s H e lp http://www.webconn.com/javahelp/javahelp.htm

A P P E N D IX C

HTTP

HTTP replies and requests both consist of a header and a body. Scripts that want to return HTTP directly to

a client must create their own header. This header starts on a line distinguishing it as HTTP and expresses

the status of the HTTP request. This line has the form:

H T T P /v e rs io n s ta tu s cod e m essage

The message is often OK or an error message. This error message can be used by the client to tell the user

what happened. The status code is an integer between 200 and 599. It should be one of the status code

listed in the HTTP specification. The valid codes are listed in the table below.

C o d e M e a n in g
200 The request was successful
201 The POST request was successful

http://www.charm.net/web/Vlib/
http://www.dsiegel.com/tips/
http://www.newbie.net/frames/
http://home.netscape.com/eng/mozilla/Gold/handbook/iavascript/
http://www.gamelan.com/
http://www.geocities.com/SiliconValley/9000/
http://www.webreference.com/javascript
http://www.epix.com/~mbabyak/
http://home.netscape.eom/comprod/products/navigator/version2.0/script/index.html
http://home.netscape.com/eng/mozilla/Gold/handbook/javascript/index.html
http://www.c2.org/~andreww/javascript/
http://www.c2.org/~andreww/javascript/lib/
http://www.webconn.com/javahelp/javahelp.htm

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL

C ode M e a n in g
202 The request was received but the result was unknow n
203 The G E T request was accepted, but o n ly p a rtia lly fu lf i l le d
204 The request was successfu l, there is no body in fo rm a tion to update the c lien t

300 The request can be p rov id ed fro m m u ltip le loca tions at the c lie n t’ s choice, the loca tion fie lds should be
used to m ake th is cho ice

301 The requested resource has m oved and can be found at the U R L in the loca tion : f ie ld o f the header. The
brow ser should re trive the new U R L autom atica lly

302 The requested resource is not at the specified loca tion and can be fou nd at the U R L in the location : f ie ld
o f the header. The b row ser should re trieve the new U R L autom a tica lly

304 The resource requested w ith a G E T request and an If-M o d ifie d -S in ce f ie ld is n o t m o d ifie d and w i l l not
be returned

400 The request has a w ro n g syntax

401 The requested resource requires authentication. The header should con ta in W W W -a u the n tica te d fie lds to
a llo w the user to negotiate w ith the server fo r authentication

402 The requested resource has a cost and the c lie n t d id not send a va lid C ha rg e to :fie ld in the request header
403 The requested resource is fo rb idden
404 The requested resource cou ld n o t be found
405 The requested resource does not support the type o f request made
406 The requested resource is not one o f the c lie n t’ s accepted types or encod ing
410 The requested resource was ava ilab le , b u t is not any longer
500 There was a server e rro r
501 The sever does n o t support the type o f request tha t was made
502 The request requ ire d that the server re trieve in fo rm a tio n fro m another server and th is re trie va l
503 The requested service is n o t ava ilab le at th is tim e
504 Same as 502, b u t the re trie va l tim ed o u t instead o f fa iled

A f te r the f ir s t lin e , th e hea de r can co n ta in a n u m b e r o f line s , in c lu d in g the c o n te n t typ e o f the H T T P b od y.
F o llo w in g the heade r is a b la n k lin e and the b o d y , H T M L fo r a re p ly w ith the co n te n t typ e te x t /H T M L . A
lis t o f the s tandard H T T P response heade r fie ld s is p ro v id e d in the ta b le b e lo w .

F ie ld M e a n in g

A llo w :m e th o d _ lis t

A com m a-de lim ited lis t o t the H T T P request m ethods supported by the
requested resource. These methods can be any o f G E T , H E A D , PO ST, P U T ,
D E L E T E , L IN K and U N L IN K . A s one w o u ld expect, C G I scripts usually
a llo w G E T and/or PO ST

C on ten t-E ncod ing :encod ing

The encod ing used on the message body. C u rre n tly th is can be e ither
compress or gzip . O n ly one o f these fie ld s is a llow ed . I f supported by the
brow ser, th is a llow s data to be compressed d u rin g trans fe r and a u tom a tica lly
decompressed by the b row ser w ith o u t the user k n o w in g

C ontent-length : leng th The leng th in bytes o f the message

C ontent-T ra ns fe r-E ncod ing :type The encod ing m ethod used by the m ethod, th is is uncom m on in H T T P
requests, but is used in M IM E

C on ten t-type :genera l/spec ific The M IM E type fo r the message, o ften te x t/H T M L

Date:date

The date and tim e tha t the message is sent. The fo rm a t fo r th is f ie ld is week
day, day m onth year hours:m inutes:seconds tim e zone. T he tim e zone should
be G reenw ich M ean T im e (G M T) fo r c o m p a tib ility . F o r exam ple , th is f ie ld
cou ld be W E D , 01 A p r 1995 13:13 :13 : G M T

D e r i v e d -F ro m : v e rs io n T h e v e rs io n o f the in fo rm a tio n fro m w h ic h th e re so u rce cam e
E xp ires : date T h e date and t im e th a t th is re p ly s h o u ld becom e in v a lid . C lie n ts sho u ld

use th is in fo rm a t io n to re fre sh a page i f necessary

APNDX APPENDIX PAGE 423

Field Meaning

F o rw a rd e d : b y u r l fo r d o m a in U sed by p ro x y W e b serve rs to te ll the c lie n t th a t a p ro x y w as used. I f
m u lt ip le p ro x ie s are used, th is f ie ld w i l l be p resent m u lt ip le tim es

L a s t-m o d if ie d :d a te T h e date and t im e w h e n th is resou rce w as las t m o d if ie d . T h is va lu e
s h o u ld be in G M T

L in k : th e lin k S im ila r to the H T M L l in k tag

L o c a t io n : u r l T h e U R L fo r a resource tha t the W e b se rve r s h o u ld re tu rn instead o f
th is one.

M IM E -v e rs io n :v e rs io n T h e ve rs io n o f the M IM E p ro to c o l tha t is suppo rted
P u b lic :m e th o d s A lis t o f non s tandard m e thods sup po rte d b y th is resou rce

R e try -a fte r:d a te
I f a resource is u n a va ila b le , the sta tus code 503 sh o u ld be re tu rn e d and
th is f ie ld sho u ld have th e date and t im e o r n u m b e r o f seconds th a t the
c lie n t sh o u ld w a it b e fo re re try in g

S e rve r:a p p /ve rs io n T h e W e b se rve r a p p lic a tio n nam e and ve rs io n
T it le : t i t ie T h e t i t le o f the resource

U R L :u r l T h e U n ifo rm R esource Id e n t if ie r fo r a resou rce th a t s h o u ld be re tu rned
instead o f the requested one. T h is f ie ld is re p la c in g L o c a t io n :

V e rs io n :v e rs io n T h e v e rs io n o f the resource i ts e lf
W W W - A th e n tic a t io n : schem e
m essage T h is f ie ld is used to sup po rt user a u th e n tica tio n

P E R L E r r o r M e s s a g e s

T h e re are seven c la s s ific a tio n s o f e rro r messages tha't P erl can generate. These c la s s ific a tio n s are lis te d
b e lo w .

E r r o r C lass M e a n in g
W A n op tiona l w a rn in g
D A n op tiona l deprecation
S A m andatory severe w arn in g
F A fata l e rro r

E r r o r C lass M e a n in g
P A n internal e rro r
X A very fa ta l error

A A n a lien e rro r message in d ica tin g an error
n o t generated by Perl

T h e s tr in g * * * * * in the e rro r m essages b e lo w means th a t an o b je c t fro m th e code in q ue s tio n w i l l rep lace
* * * * * , w h ile th e s tr in g N N N N N in the e rro r m essage m eans th a t a n u m e ric o b je c t fro m the code in
q ue s tio n w i l l re p lace N N N N N .

T h e fo l lo w in g a b b re v ia tio n s are a lso used in the messages b e lo w :
□ SV S ca la r v a r ia b le
□ HV H ash v a r ia b le
□ AV A rra y v a r ia b le

T h e fo l lo w in g ta b le d is p la y s the va r io u s E rro r messages w ith the typ e o f E rro r c lass th e y b e lo n g to and
w h a t these e rro r m essages m ean.

E r r o r Message M e a n in g
"m y " variab le * * * * * can ’ t be in a
package(F)

Occurs when one tries to declare a le x ic a lly scoped va riab le w ith in a
package. T o loca lize a package variab le , use loca l.

"n o " not a llow ed in expression (F) Perl d isp lays th is message w hen the no keyw ord is recognized by the
c o m p ile r but does not re turn a m ean ing fu l value.

"u se " n o t a llo w e d in e xp re ss io n (F) Perl d isp la ys th is message w h e n the use k e y w o rd is re c o g n iz e d by
the c o m p ile r b u t does n o t re tu rn a m e a n in g fu l va lu e .

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, лdmhy

PAGE 424 JAVASCRIPT, DHTML AND PERL APNDX

E r r o r Message M e a n in g
* * * * * argum ent is n o t a H A S H
e lem ent (F)

Perl d isp lays th is e rro r message w hen the argum ent is n o t a hash element.

* * * * * d id not re turn a true va lue
(F)

T h is appears when the f i le loaded w ith the requ ire o r use doesn’t load
prope rly .

* * * * * found w here operator
expected (S)

Occurs when the Perl lexer expects an operator but gets som eth ing else
instead.

* * * * * had com p ila tio n errors (F) T h is message is d isp layed as the sum m ary message w hen Perl - c fa ils .
* * * * * had too m any errors (F) Issued when the parser g ives up try in g to parse a program . T h is occurs a fte r

ten tries.
* * * * * matches n u ll s tr ing many
tim es (W)

Issued when the pattern one tries to m atch ends up in an in f in ite loop.

* * * * * syntax O K (F) Appears as a sum m ary message w hen Perl - c is sucessful
500 Server E rro r Ind icates a C G I e rro r and n o t a P E R L error.
? +* fo llo w s n o th in g in regexp (F) Perl issues th is when a regu ler expression is used w ith a Q ua n tifie r.
A m b iguous use o f * * * * * resolved
as * * * * * (W) (S)

Issued when Perl in terprets an expression in a w ay one m ig h t not have
intended.

A rgum en t * * * * * is n ’ t num eric (W) Perl issues th is message w hen i t expected a num eric argum ent to an
opera to r b u t found a s tring instead.

A rra y @ * * * * * m iss ing in the @ in
argum ent * * * * * 0f ♦ * * * * () (p)

T h is message is d isp layed when one leaves the @ o f f o f an array variab le
name.

A ssignm ent to bo th a lis t and
scalar (F)

Perl d isp lays th is message when the second and th ird argum ents to a
con d itio na l operator are e ither both lis ts o r both scalars.

A tte m p t to free unreferenced scalar
(W)

T h is message occurs w hen Perl tries to decrem ent the reference count o f a
scalar and finds the reference count is a lready at 0.

Bad associative array (P) T h is message is d isp layed when a n u ll H V p o in te r is passed to one o f P e rl’ s
in te rna l hash routines.

Bad f i le h a n d le :* * * * * (F) Perl issues th is message when a sym bo l was passed to som ething tha t
w anted a filehand le .

Bad name a f te r * * * * * : : (F) T h is message is d isp layed w hen a sym bo l tha t is named by a package
p re fix isn ’t fin ished

Bad sym bol fo r array (P) Perl d isp lays th is message th is message w hen an in te rna l request tr ie d to
add an array entry to an ob ject tha t w a sn 't a sym bo l tab le entry.

Bad sym bo l fo r a file h a n d le (P) Perl d isp lays th is e rro r message w hen an in te rna l request tr ie d to add a
filehan d le entry to an ob ject that w asn ’ t a sym bo l tab le entry.

Bad sym bo l fo r hash (P) Perl d isp lays th is e rro r when an in te rna l request tr ie d to add a hash entry to
an ob ject tha t w asn ’ t a sym bo l tab le entry.

C a llback called e x it (F) T h is message is d isp layed w hen a subroutine invoked fro m an externa l
package exited by ca llin g the e x it func tion

C an’ t "las t" outside a b lo c k (F) T h is message is caused by try in g to break o u t o f the current b lo c k by
issu ing the last statement outside o f the curren t b lock.

C an ’ t "next" outs ide a b lo c k (F) T h is message is caused by try in g to re iterate the current b lo ck w ith the next
statement outs ide the current b lock.

C an ’ t break at tha t lin e (S) T h is debugger w arn ing message ind icates tha t the lin e num ber specified
contains a statement tha t can ’ t be stopped.

C an ’ t ca ll m ethod " * * * * * " in
em pty package " ♦ * * * * " (F)

T h is message is d isp layed when one trie s to ca ll a m ethod in a package tha t
doesn ’t have a ny th ing in it.

C an ’ t ca ll m ethod ' ' * * * * * " on
unblessed reference (F)

T h is message is d isp layed when one trie s to ca ll a m ethod w ith o u t
sup p ly in g an ob ject reference.

C an ’ t ca ll m ethod " * * * * * ' ' w ith o u t
a package or ob ject re ference (F)

T h is message cou ld be disp layed w hen try in g to ca ll a m ethod by sup p ly ing
an expression that doesn’t evaluate to a package o r an ob ject reference.

APNDX APPENDIX PAGE 425

E r r o r M essage M e a n in g
C an’ t c h d ir to * * * * * (F) Perl d isp lays th is message when one specifies a d irec to ry that can not be

g o t w ith the c h d ir com m and.
Can’ t coerce * * * * * to in teger in
* * * * * (F)

Th is message w i l l be d isp layed w hen one trie s to force certa in scalar values
to be an integer.

C an ’ t coerce * * * * * to num ber in
* * * * * (p)

Th is message w i l l be d isp layed when one tries to fo rce certa in scalar values
to be an num ber.

Can’ t do inp lace e d it on
* * * * * . * * * * *

T h is message is d isp layed w hen creation o f a new f i le fa ils because it can ’ t
be editted in place.

C an ’ t em ulate - * * * * * O n #! L ine
(F)

Th is message is d isp layed w hen the #! L in e specifies a sw itch tha t doesn’ t
make sense in the current context.

C an ’ t loca lize a re ference (F) Th is message is d isp layed w hen one tries to m ake a reference variab le loca l
C an ’ t locate o b je c t method
" * * * * * ' ' v ia package " * * * * * " (F)

Perl d isp lays th is message w hen one tries to ca ll a m ethod tha t doesn’ t exis t
in the package.

C an ’t m o d ify * * * * * in * * * * * Perl d isp lays th is message w hen one tries to m ake an assignm ent to the
item * * * * * .

C an ’ t m o d ify non-exis ten t
substring (P)

T h is message is d isp layed when P e rl’ s in te rna l routine that does
assignm ent to a substr was handed a n u ll po in te r.

C an ’ t take log o f N N N N N (F) T h is message is d isp layed w hen one tries to take the loga rithm o f a num ber
tha t is e ithe r n o t pos itive , o r real, o r both.

C an ’ t take sqrt o f N N N N N (F) T h is message is d isp layed when one tries to take the square roo t o f a
negative num ber.

Can’ t u nd e f a c tive subroutine (F) Perl d isp lays th is message when one tries to undefine a subroutine that is
cu rren tly runn ing .

Can’ t u nsh ift (F) T h is message occurs when try in g to u n sh ift on array tha t can’ t be unshifted
C an’ t use "m y * * * * * " in sort
com parison (F)

Perl d isp lays th is message when the variab les $a and $b are used in a
com parison a fte r they have been declared as le x ica l variab les w ith my.

C an ’ t use * * * * * fo r loop variab le
(F)

T h is message occurs w hen try in g to use som eth ing o ther than a s im ple
scalar as a loop variab le on a foreach.

Can’ t use * * * * * re f as * * * * * re f
(F)

T h is message is d isp layed when one m ixes up the reference types.

C an ’t use \1 to m ean $1 in
expression (W)

T h is message is d isp layed w hen one tries to use the \1 back reference to a
matched substring outs ide a regu lar expression.

C an ’ t use g lobal * * * * * in "m y " (F) T h is message is d isp layed when one tries to declare a special variab le as a
lex ica l variab le .

C lose on unopened f i le * * * * * (W) Perl issues th is message when try in g to close a f i le tha t was never opened.
Deep recursion on subroutine
* * * * * (YV)

T h is message is d isp layed when a subroutine ca lls its e lf m ore than 100
tim es m ore than it has returned.

D id you mean & * ♦ * * * instead?
(W) '

T h is message is d isp layed when one refers to a subroutine w ith a d o lla r
sign, as in $sub w hen one meant & sub .

D id you mean $ o r @ instead o f
% ? (W)

Perl issues th is message when re fe rrin g to an in d iv id u a l hash item w ith % ,
as in % h a sh {$ ke y }.

D o you need to p re d e c la re * * * * * ?
(S) '

T h is message occurs w hen a subroutine o r m odu le name is referenced
w hen it hasn’ t ye t been declared.

E ls if should be e ls i f (S) T h is message occurs when one uses E ls i f instead o f e ls if
F ilehand le * * * * * never opened
(W)

T h is message occurs when I/O opera tion is a ttem pted on a filehan d le tha t
was never in it ia lize d .

F ilehand le * * * * * o n ly opened fo r
inp u t (W)

T h is message occurs when one attem pts to w rite to a read-only filehand le .

F ina l $ should be \$ or Sname (F) Perl d isp lays th is message when a $ comes at the end o f a s tr ing and Perl
cannot decide i f w ha t to fo llo w should be a re ference o r a scalar.

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML,
JAVASCRIPT, DHTML AND PERL

E r r o r Message M e a n in g
F ina l @ should be \@ o r @ name
(F)

Perl d isp lays th is message w hen a $ comes at the end o f a s tring and Perl
cannot decide i f w ha t to fo llo w should be an array or an array name.

Found = in co n d itio na l, should be
= = (W)

Th is message is d isp layed when one assigns and m eant test fo r equa lity .

Illeg a l d iv is io n by zero (F) Perl d isp lays th is message when try in g to d iv id e a num ber by 0.
Illeg a l m odulus zero (F) Perl d isp lays th is message when try in g to d iv id e a num ber by 0 to get the

rem ainder.
Illeg a l octa l d ig it (F) T h is message occurs when one uses an 8 o r 9 in an octa l number.
Illeg a l octa l d ig it igno red (W) T h is w a rn in g message occurs w hen Perl fin d s an 8 o r 9 in an octa l num ber

and in te rp re ta tion o f the num ber stops before 8 o r 9.
In terna l disaster in regexp (P) T h is message occurs w hen som eth ing goes w ro n g w ith the regular

expression parser.
Junk on the end o f regexp (P) T h is message occurs when the regu lar expression parser is m ixed up.
Label not fou nd fo r (F) T h is message is d isp layed w hen try in g to break ou t o f a loop by name but

are not cu rre n tly in the named loop.
Label not fou nd fo r " n e x t * * * * * "
(F)

T h is message is d isp layed when try in g to con tinue in a loop one is not
c u rre n tly in.

Label not found fo r " r e d o * * * * * "
(F)

T h is message is d isp layed when try in g to restart a loop one is no t cu rren tly
in.

M iss ing $ on lo o p variab le (F) T h is message occurs when a loop va riab le is in troduced w ith o u t a $.
M iss ing r ig h t b racket (F) Th is message appears when the Perl lexer counts m ore opening cu rly

braces than c los ing cu rly braces.
M o d ific a tio n on read-on ly va lue
attempted (F)

Perl issues th is message w hen try in g to m o d ify a constant.

N o t a G L O B reference (F) T h is message is issued because Perl was lo o k in g fo r a reference to a
typ e g lo b b u t g o t som ething else instead

N o t a H A S H reference (F) T h is message is issued because Perl was lo o k in g fo r a reference to a hash
but got som ething else instead.

oops:oopsA V (S) A n in te rna l Perl w arn ing that ind icates the g ram m ar is messed up.
p an ic :ck_ sp lit (P) T h is message is d isp layed when an in te rna l consistency check fa ils w h ile

try in g to com p ile a sp lit.
pan ic:do sp lit (P) T h is message occurs when a sp lit is not set up p rop e rly .
p an ic :pp_ ite r (P) Perl issues th is message when the foreach ite ra to r is ca lled in a non loop

context.
Parens m iss ing around " * * * * * " lis t
(W)

T h is w a rn in g indicates to do assignm ent w ith parentheses instead o f
w ith o u t them .

Precedence p rob lem : open * * * * *
should be o p e n (* * * * *) (S)

T h is message indicates that one has used open ...|| d ie, when o p e n (...) || die
should have been used.

p rin t on closed f i le h a n d le * * * * *
(W)

T h is w a rn in g indicates tha t one has tr ie d to p r in t on a closed filehan d le .

p r in t f on closed f i le h a n d le * * * * *
(W)

T h is w a rn in g indicates that one has trie d to p r in t on a closed filehand le .

R ecom pile Perl w ith
-D D E B U G G IN G to use -D sw itch

T h is message indicates tha t one needs to recom p ile Perl w ith
-D D E B U G G IN G inorder to use the -D sw itch in the code.

Sem ico lon seems to be m iss ing
(W)

T h is w a rn in g is issued when a syntax e rro r was caused by leav ing o f f a
sem ico lon .

Send on closed socket (W) T h is w a rn in g is issued when try in g to send a file h a n d le tha t is closed.
Sequence (? # ... n o t te rm ina ted (F) Perl generates th is error when a regu lar expression com m ent is n ’t closed

w ith a parenthesis.
Sever error A ls o k n o w n as "500 Server e rro r", th is is a C G I e rro r and not a Perl e rror.

APNDX APPENDIX PAGE 427

E r r o r Message M e a n in g
substr outs ide o f s tring (W) T h is w a rn in g is issued when try in g to reference a substr tha t is outside o f a

string .
S ysw rite on closed fileh and le (W) T h is w arn ing is generated when the fileh a n d le one is t ry in g to w rite is

closed.
U nde fined sort subroutine " * * * * * ' '
called (F)

Perl generates th is e rro r when i t can ’t f in d the sort subroutine called.

U nde fined subroutine & * * * * *
called (F)

Perl generates this e rro r w hen i t can ’ t fin d the subroutine ca lled because the
subroutine e ither w asn ’ t de fined in it ia lly o r was undefined.

U nrecognized sw itch : - * * * * * (F) T h is e rro r is issued when one g ives Perl an ille g a l op tion sw itch .
Use o f im p lic it sp lit to is
deprecated (D)

T h is message is d isp layed w hen one should have e x p lic it ly assigned the
results o f a s p lit to an array.

W a rn in g : use o f " * * * * * ' ' w ith o u t
parens is am bigous (S)

T h is message indicates tha t one has fo rgo tten to enclose an argument to a
fu n c tio n in parentheses.

R e s o u r c e s O n C G I A n d P E R L

C G I D o c u m e n ta t io n http://www.yahoo.ncsa.uiuc.edu/cgi/

Information on the Common Gateway Interface, Including CGI scripts in the programs.

C G I P ro g ra m s (P e r l) http://www.seas.upenn.edu/~mengwong/perIhtml.html

A library of commonly used CGI routines, written in Perl.

S p e c if ic a tio n f o r C G I http://www.yahQQ.ncsa.uiuc.edu/cgi/

The NCSA site also provides a set of tutorials and a page with numerous links to HTTP-specific

specifications. These pages are available at; http://www.yahoo.ncsa.uiuc.edu/docs/tutorials/ and

http://www.yahoo.ncsa.uiuc.edu/docs/Library.html__

C G I E x a m p le s http://www.eff.org/~erict/Scripts/

P e r l H o m e Page http://www.perl.com

W in 3 2 D is t r ib u t io n o f P e r l http://www.activestate.com

http://www.yahoo.ncsa.uiuc.edu/cgi/
http://www.seas.upenn.edu/~mengwong/perIhtml.html
http://www.yahQQ.ncsa.uiuc.edu/cgi/
http://www.yahoo.ncsa.uiuc.edu/docs/tutorials/
http://www.yahoo.ncsa.uiuc.edu/docs/Library.html
http://www.eff.org/~erict/Scripts/
http://www.perl.com
http://www.activestate.com

IN D EX

$

$ _ .. .̂..2 6 4

<

< a n d > C o m m a n d s.................. ... 3 1 2
< D I V > . . . < / D I V > 2 1 5
< IL A Y E R > ...< /1 L A Y E R > .. 2 1 9
< L A Y E R > ... < /L A Y E R > ... 2/7
< L I N K > ... 2 1 3
< S P A N > ... < /S P A N > .. 2 1 2
< S T Y L E > . . . < /S T Y L E > ..2 0 5

Type=text/css205

A

a a n d A C o m m an d s...3 1 1
A c t io n 15 8
A c tio n a ttr ib u te .. 159
A L I G N ... 24 , 37, 44 , 4 5
A L IG N = B O T T O M ..57
A L IG N = C E N T E R .. 37
A L IG N = L E F T . . . ,.. 37
A L IG N = M I D D L E .. 3 7
A L IG N = R IG H T ... 37
A L IG N = T O P .. 37
A L IN K 53
A L T"... 3 7
A L T a t t r ib u te ..;....... 39
a n c h o rs .. 54
A n c h o rs .. ;...2 7 2
A p a c h e 2 .. 5/5

.htaccess.......... ...321
h ttp d .co n f..................................»...319

< D ire c to ry > ... 321
< F ile s > ...321
< F ile sM a tch > ...321
A l ia s321
C u s to m L o g320, 321
D ire c to ry ln d e x 321
D ocum en tR oo t...320, 321
E rro rL o g ... 320, 321
K e e p A liv e ...;...320
K e ’e p A liv e T im e o u t.. .̂....... ..320
L o a d M o d u le323

M a xK ee p A live R eq u e s ts ...320
N a m e V irtu a lH o s t... 322
P idF ile ... 320
S coreB oardF ile ..320
S c rip tA lia s ...321
S erverA dm in .. 320

S erverN am e.. 320, 321
S erverR oot.. 320
T im e o u t.. 320
T ra n s fe rL o g ..321
V ir tu a lH o s t... 321

In s ta lla tio n 316
m ine.types...319

Apache Modules
apxs... 323, 412

arithmetic operations..244
Arithmetic Operators.. 127
ARP A net...1
Array..239, 258, 260, 261
array methods..125
arrays..258
Arrays.. 124
arrow operator..291
Assignment Operators..128
Associative Arrays..240
asterisk (*).. 275
Auto-Decrement... 244
Auto-Increment..244

B

b Command... ..310
BACKGROUND..20
Backward Pattern Search (??) Command..306
BGCOLOR.. 20
BGCOLOR attribute...47
Binary files...268
binding operators...276
BODY..35
Bold... 25
BORDER.. 37, 44
BORDER attribute..37
button.. ¡59
button element... 162

C

c Command.. 310
Caption... 44
caret (A) ...272
Cascading Style Sheets (CSSs).. 205

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, nx
11 JAVASCRIPT, DHTML AND PERL

IDX INDEX PAGE iii

CELLPADDING..
CELLPADDING attribute...
CELLSPACING...
CELLSPACING attribute...
Centering................
CGI..
CGI object...
CgiDie.......................
CgiError...
cgi-l ib.pl................. ..
Character...
checkbox...
checkBox...
chomp...
chop...
class...
Client / Server..
Client IP Address...
Close..
Close Method...
COLOR...
COLSPAN...
COLSPAN and ROWSPAN attributes ..
communicating on the Internet..
Comparison Operators...128,
concatenate.. „...
Conditional statements..
Connect String...
Connection Method..
CONTENTLENG TH...
cookies...

D

d and D Commands...
data connection.. ...
Data Method..
Data Rows...
data storage system................................. ..
DataHash Method..
Date object..
DD..
debugging...................................... ...
Declaring functions..
Defining a Reference...
Definition description..
Definition Lists......................... ...
Definition term...
dense array.. •..................
dereferencing...
directories... 266, 269,

...44

...46

...44

...46

...27

.228

.294

.286

.286

.285

.272

.166

.159

. See

.254

.293

...12

. . . . 6

.267

.299

...28

...44

...47

. . . . 2

245
.255
.245
.296
.297
.231
.184-

.311

.296

.298

...44
296
298
.175
.33
303
133
290
.33
.33
.33
125
290
270

DIRHANDLE... 269, 270
DL... 33
Document Body.. ..20
Document Head.. 19
Document Object Model(DOM)... 143
dollar sign (S)..272
Domain Name Extension..5
dot... 274
Double-quoted strings..236
Drawing Lines...24

DSN... 296
Dynamic Shared Object (DSO)... 323

E

each function.................242
Environment Variables..230
Establishing connectivity on the internet.. 5
eval() function...132
Event handlers...150
excludes..274
Expressions..126

F

FetchRow Method.. 298
filehandle.. 264
Filehandle... 282
FILEHANDLE.. 266, 267, 268, 269
Files... 266
FONT..33, 40, 48, 62, 63, 64, 73, 74, 75, 76
Font Attributes...206
FONTFACE...-........28
Footer...21
for Loop.. ..250
FOR loop.. 131
foreach Loop..251
Forms.. 153
Frames..68
FRAMESET...68
FTP.. 10
functions.. ,................................. 254, 258, 261, 262. See
Functions........ i... 132

G

gateway.. ...228
Get..158

H

H Command... 313
Header Rows..........................;... ...44

COMMERCIAL WEB APPLICATION DEVELOPMENT USING HTML, |DX
HAC,b ,V JAVASCRIPT, DHTML AND PERL

HEIGHT..37
hidden object... ..159
Hierarchy.. 144
HREF.. 53
HSPACE..37
HTML.. 15, 35
HTML Command

G E T 229
P O S T 229

HtmlBot.............. .. 285
HtmlTop..285
HTTP.. 14
HTTP...229
Hyperlinks... 53

I

If - then - else..130
if statement... ...245
Image maps...;...58
IMG...............................:..37
Immediate if (Conditional expression).. 131
Index... 257
Indexed Arrays.. 239
inheritance... ..294
Initializing Local Variables..280
Instance..144, 178
Instance Hierarchy..143
Instantiation... 178
Interactive event handlers...150
Internet... I
Internet Address..8
Internet Domains...4
INTERNET PROTOCOL.. 9
InterNIC...2
Interpreted language...119
IP Addressing.. 7
ISP..1,6
Italics.. 25

J

JSSSDOM..144

К

keys function...241

L

I Command.. 304
L Command... 310
Layers

ID X IN D E X P A G E v

Z - IN D E X .. 218

Length ...2 5 7
Length p ro p e rty ... 1 2 6
L I ... :... 32
lib ra ry 284
L ine B re a k s ... 22
Live W ire ..118
L o g ica l O p e ra to rs ... 127
Loops ...249

M

m ath o b ject..175
M e ta -c h a ra c te rs .. 272
M e th G et ... 28 5
M e th o d ... :..158
m ethods ...293
M ethods 146
m k d ir ... 269, 27 0
M o d ifie rs .. , .. 272
M o d ify ing the A rgum ent Value ...281
M o du les ... 293
M u ltip le V irtua l D om ains ..3
M y S Q L ...324
M y U R L ..28 5

N

n C om m and ...30 8
N A M E ...69
N A M E = v a lu e ...184
N etw ork C las s ...9
N on In teractive event handlers ... 150
N u ll123

O

object..2 9 3
O D B C2 9 6
O L, ...■... 32
O nC hange f) ..160
o n S e le c tf) :... ■......... 160
open ..264, 266, 267, 268, 269, 2 7 0
Open Source D o m a in ..32 4
o p e n d ir ... 26 9
o p erato rs126
O rd ered Lists..32

P

P ...3 3 ,4 0 ,4 8 ,6 2 ,7 3
p C o m m an d ..31 3
p a c k a g e2 9 2
package d e c la ra tio n ...2 9 2

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G HTML,
Vl JA V A SC R IP T , D H TM L A N D P E R L

paired... 15
Paragraph breaks.....................:...21
parseFloat() function....................... !.........133
parse Int() function... 132
Passing parameters.. 134
password..159
password element... 161
pattern.. 272
Pattern Searchf //) Command.. ..306
period (.)...>.....274
Perl... 233
Perl -d.. 303
Post... 158
printf.. 265, 266
PrintHeader... 285
Print Variables..286
Processing Form Information..231
Programming Statements..129
Properties..145

R

r Command.. 308
R Command... 312
radio... 159
radio button... 168
readdir...270
ReadParse... 285
Recursive Functions... 136
redirection operators...266
reference..290
Registering A Virtual Domain...................... ..4
Regular expression... 272
Repeating Strings...255
REQUEST METHOD...231
require......284, 292
reset.. 159
reset button..164
Resolving Domain Names... 7
Return Function.. 284
Return values..135
rewinddir...270
rmdir.. :..270
ROWSPAN... ..44

S

s Command.. 307
S Command.. 306
scalar variable..238
select... 159
select object... 171

IDX INDEX PAGE vii

C O M M E R C IA L W E B A P P L IC A T IO N D E V E L O P M E N T U S IN G HTML,
J A V A SC R IP T , D H TM L A N D P E R L

Servers....................................... !..13
Servers and Clients.. 1
set-cookie...184
shift...254
shortcut operators..245
Single quoted strings..237
singular..................15
SIZE...24, 27
sort...260
Spacing..27
Special Operators.. 129
splice.. 260, 261
standard input...264
standard output...264
STANDARD OUTPUT... 231
START...32
stdin...264
STD1N... 264, 265
stdout...264
STDOUT...265
String...122
String Comparisons..246
string object.. 174
String Operators.. 128
strings..236
Styles.. ..24
submit... :..159
submit button.. 164
Subroutine Arguments... :.......................... 279
Subroutines............................ .. 279
substring...256
Super Controlled - endless loops...131
sysread... 268
syswrite.. ..268

T

T Command..313
TABLE.. ...44
TARGET...70
TCP/IP...2,8
TD.. 44
TELNET...11
text...159
TEXT.. 20
Text fields... 161
Text files... 267
textarea...170
text Are a ..159
The World Wide Web...10
time... 254, 262

IDX INDEX PAGE ix

TR.. ... 44

Trace(t) command.. ..311
TRASMISSION CONTROL PROTOCOL... ... 10

...27,32

Typeglob.....................282

U

UL.. ... 32
..297

Underline... ... 25
UNIX... ..271
unless statement.. ..248
Unordered List.. ... 32

Until Loop.. ..249

use function.. ..293
USEMAP... 59
Using / Command... ..313

V

v Command.. ..309
VALIGN.. ... 44
VALUE.. ... 32

..241
variable... ..238
Variable.. ..121
Variable Scope.. ..135
Virtual Domain... ... 3
VLINK... ... 53
VSNL... ... 6
VSPACE.. ... 37

W

w Command... ..305
Web Server... T.. ... /

WHILE loop... ..132
WIDTH... 24, 37, 44
WIN32

ODBC.. ... 296
word boundary.. ..273

X
X Command 309

