


Architecture of
Network Systems



This page intentionally left blank



Architecture of
Network Systems

Dimitrios Serpanos

Tilman Wolf

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SYDNEY • TOKYO
Morgan Kaufmann Publishers is an imprint of Elsevier



Acquiring Editor: Todd Green

Editorial Assistant: Robyn Day

Project Manager: Andre Cuello

Designer: Kristen Davis

Morgan Kaufmann is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

# 2011 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, recording, or any information storage and retrieval system,

without permission in writing from the publisher. Details on how to seek permission, further

information about the Publisher’s permissions policies and our arrangements with organizations

such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our

website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the

Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods or professional practices may become

necessary. Practitioners and researchers must always rely on their own experience and knowledge in

evaluating and using any information or methods described herein. In using such information or

methods they should be mindful of their own safety and the safety of others, including parties for

whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors assume

any liability for any injury and/or damage to persons or property as a matter of products liability,

negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas

contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Serpanos, Dimitrios Nikolaou.

Architecture of network systems / Dimitrios Serpanos, Tilman Wolf.

p. cm. – (The Morgan Kaufmann series in computer architecture and design)

Includes bibliographical references and index.

ISBN 978-0-12-374494-4 (pbk.)

1. Computer network architectures. I. Wolf, Tilman. II. Title.

TK5105.5.S4234 2011

004.6–dc22

2010045063

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-374494-4

Printed in the United States of America

11 12 13 14 10 9 8 7 6 5 4 3 2 1

For information on all MK publications visit our website at www.mkp.com



To the memory of my father Nikolaos. -DS
To Ana and our daughter Susana. -TW



This page intentionally left blank



Contents

Preface ................................................................................................................. xiii

About the Authors .............................................................................................. xvii

CHAPTER 1 Architecture of network systems overview............................. 1

Computer networks ...................................................................... 1

Embedded systems ....................................................................... 3

Protocols and network systems.................................................... 5

Organization of this book ............................................................ 6

CHAPTER 2 Network protocols and network systems.............................. 11

Introduction................................................................................. 11

The open systems interconnection reference model ................. 12

Protocol stacks and protocol elements ...................................... 13

Network systems: Definition and types..................................... 17

Structure of network systems..................................................... 21

Summary ..................................................................................... 24

CHAPTER 3 Requirements of network systems ....................................... 25

Introduction................................................................................. 25

Requirements of network applications and services ................. 26

Qualitative requirements .......................................................... 27

Quantitative requirements ........................................................ 27

Example requirements .............................................................. 28

The throughput preservation challenge ..................................... 29

Traffic models and benchmarks................................................. 32

Summary ..................................................................................... 33

CHAPTER 4 Interconnects and switching fabrics.................................... 35

Introduction................................................................................. 35

Crossbars and interconnection networks ................................... 38

Switch organization .................................................................... 40

Switch scheduling....................................................................... 43

Centralized scheduling ............................................................. 46

Distributed scheduling.............................................................. 49

Use of randomization ............................................................... 57

Real-time traffic ....................................................................... 61

Summary ..................................................................................... 61

vii



CHAPTER 5 Network adapters............................................................... 63

Introduction................................................................................. 63

Basic network adapter ................................................................ 64

Adapter operation analysis ......................................................... 66

Memory organization ................................................................. 70

Memory management unit with local memory ....................... 70

Memory management unit and processor with local memory ... 73

Intelligent DMA ......................................................................... 75

Multiprocessor processing element............................................ 77

Single SPE configuration ......................................................... 79

Multi-SPE configuration—protocol multiprocessing .............. 80

Multi-SPE configuration—spatial parallelism......................... 81

Memory management schemes .................................................. 84

Detached MMU........................................................................ 86

Distributed MMUs.................................................................... 87

Summary..................................................................................... 87

CHAPTER 6 Bridges and layer 2 switches ............................................. 89

Introduction................................................................................. 89

Types of bridges ......................................................................... 91

Transparent bridging and special-purpose subsystems ............. 92

High-performance transparent bridge architecture.................... 97

Transparent bridging support unit.......................................... 101

Network attachment unit design ............................................ 104

lnternal switching component operation................................ 107

Partitioned data memory organization................................... 109

Layer 2 switches..................................................................... 110

Summary................................................................................... 110

CHAPTER 7 Routers............................................................................ 111

Network layer ........................................................................... 111

Functionality of the network layer ........................................ 111

Systems requirements ............................................................. 112

Generic router design ............................................................. 115

Data plane................................................................................. 117

Route lookup .......................................................................... 118

Queuing and buffering management...................................... 126

Control plane ............................................................................ 129

Routing algorithms ................................................................. 129

Error handling......................................................................... 136

Example network layer systems .............................................. 139

Summary................................................................................... 140

viii Contents



CHAPTER 8 Transport layer systems ................................................... 141

Transport layer.......................................................................... 141

Functionality of the transport layer ....................................... 141

Network flows ........................................................................ 143

Packet classification ............................................................... 147

Transport layer systems.......................................................... 156

Summary ................................................................................... 160

CHAPTER 9 Application layer systems................................................. 161

Application layer ...................................................................... 161

Functionality of the application layer.................................... 162

Application layer protocols .................................................... 163

Network system support for application layer ........................ 172

Payload inspection.................................................................. 172

Load balancing ....................................................................... 180

Summary ................................................................................... 182

CHAPTER 10 Quality of service and security ......................................... 183

Cross-layer issues ..................................................................... 183

Quality of service ..................................................................... 183

Quality of service concepts.................................................... 184

Network support for QoS....................................................... 187

Link scheduling algorithms.................................................... 188

Quality of service summary................................................... 199

Security ..................................................................................... 199

Security concepts.................................................................... 199

Cryptography overview .......................................................... 200

Security in network protocols ................................................ 204

Denial-of-service attacks ........................................................ 207

Summary ................................................................................... 210

CHAPTER 11 Specialized hardware components .................................... 211

Hardware support for packet forwarding ................................ 211

General-purpose packet processors.......................................... 211

Performance vs flexibility ...................................................... 212

Systems-on-a-chip .................................................................. 213

Network processors ................................................................ 214

Design choices........................................................................ 220

Example systems .................................................................... 223

Special-purpose hardware accelerators .................................... 224

Trade-offs in use of accelerators ........................................... 224

Example accelerators.............................................................. 225

ixContents



Accelerator implementations.................................................. 226

Summary................................................................................... 227

CHAPTER 12 Power issues in network systems ..................................... 229

Introduction............................................................................... 229

Lookup engines ........................................................................ 230

Network processors .................................................................. 235

Summary................................................................................... 237

CHAPTER 13 Networks on chips ........................................................... 239

Introduction............................................................................... 239

Network-on-chip architectures ................................................. 240

Network-on-chip routing schemes ........................................... 241

Technology and circuit design................................................. 242

Bus delay model ..................................................................... 243

Crossbar delay model ............................................................. 244

Power issues ........................................................................... 247

Summary................................................................................... 248

CHAPTER 14 Run-time support systems................................................. 249

Software support for network systems .................................... 249

Network dynamics.................................................................. 250

Run-time components............................................................. 250

Software interfaces ................................................................. 252

Operating system support for networking ............................... 253

Networking software in operating systems ........................... 253

Software interactions .............................................................. 254

Performance considerations.................................................... 256

Specialized router software ...................................................... 259

Router operating systems ....................................................... 259

Packet processing software .................................................... 262

Summary................................................................................... 265

CHAPTER 15 Next-generation Internet architecture ................................ 267

Need for next-generation Internet............................................ 267

Networking trends .................................................................... 267

Limitations in the Internet ..................................................... 268

Extended reach of the Internet............................................... 269

New networking paradigms ................................................... 270

Implications ............................................................................ 273

Network virtualization.............................................................. 273

Diversity of protocols............................................................. 273

x Contents



Single infrastructure ............................................................... 274

Virtualized networks .............................................................. 275

Programmability ....................................................................... 277

Programmability in next-generation networks ...................... 277

Implementing programmability.............................................. 279

Experimental testbeds............................................................. 280

Commercial incentives ........................................................... 281

Summary ................................................................................... 281

APPENDIX The layered Internet architecture

and network protocols...................................................... 283

Layered Internet architecture ................................................... 283

Hourglass architecture ............................................................ 284

Protocol processing in network systems................................ 285

Example protocol stack .......................................................... 286

Link layer................................................................................ 287

Medium access control........................................................... 287

Ethernet ................................................................................... 290

Network layer ........................................................................... 292

Internet protocol suite ............................................................ 292

Internet protocol ..................................................................... 292

Transport layer.......................................................................... 294

Reliable data transfer ............................................................. 295

Transmission control protocol................................................ 297

Summary ................................................................................... 299

References .............................................................................................. 301

Index....................................................................................................... 313

xiContents



This page intentionally left blank



Preface

WHY WRITE THIS BOOK?
Data communication networks are widely used today and are an integral part of our

daily life. The Internet is a medium for business, personal, and government com-

munication, and it is difficult to envision today’s society without this essential

infrastructure. The continued success of the Internet is dependent on our ability

to maintain and improve the functionality, performance, and scalability of these

networks. As a basis for obtaining the necessary knowledge about networks, there

is a clear need for textbooks that provide an introduction to the foundations of this

topic as well as a detailed understanding of more advanced issues.

While many available books cover the design of network protocols and their

operation, there has been preciously little focus on the systems that implement

networks. Early data communication networks struggled with the scarcity of trans-

mission bandwidth, which led to significant efforts to improve management and

efficient use of this resource. Over the last three decades, advances in transmission

technology have led to the availability of vast amounts of bandwidth, thus shifting

the main bottleneck of networks from the transmission medium to the switching

and processing of transmitted data. As a result, modern networks and the Internet

are not only in need of appropriate protocols for the wide deployment of applica-

tions and services, but also in need of efficient systems that enable the timely

processing and forwarding of network traffic.

TARGET AUDIENCE
This book aims to serve as a textbook and reference for designers and implementers

of networking technology, networking students, and networking researchers. The

goal of the book is to present the systems issues of network systems, approaching

them from the architecture, design, and implementation point of view. Considering

that network systems are embedded systems that implement network protocols,

readers of the book would benefit from being familiar with the basic concepts of net-

working, embedded systems, and computer systems organization and architecture.

APPROACH
This book is about computing systems or, more specifically, about a class of

special-purpose embedded systems used in networking devices. As such, the main

thrust of the book is the promotion of systems architectures and designs. Therefore,

this book can be classified as a computing systems book.

xiii



In contrast to typical architecture and computing systems books, this book

follows a structure analogous to those of typical networking books. Following

the OSI reference model for network protocols, a model that has been proven

highly valuable from an education point of view, we classify and present network

systems and their designs. Later in the book, we also discuss specific components

of network systems, similarly to books on system architecture.

Since this book is the first systematic effort to present the architecture of the

complete range of network systems as a whole, we focus on promoting key con-

cepts for all types of network systems. We attempt to present the main architec-

tures and designs of systems and components that cover this area. Clearly, the

book does not and cannot cover all existing material in this area, which has

experienced fast growth in recent years. Instead, the book focuses on major con-

cepts. In addition to presenting state of the art, we have tried to demonstrate the

progress in the field during the last couple of decades through specific examples

that illustrate the improvements of technology and indicate the path of evolution

for network systems in the future.

COURSE USE
This book has been specifically developed for use in college courses at the upper

undergraduate level and graduate level. Much of the material presented in this

book has been used previously by the authors in a graduate and advanced under-

graduate course on network systems architecture of the Department of Electrical

and Computer Engineering at the University of Patras and in a graduate level net-

working course of the Department of Electrical and Computer Engineering at the

University of Massachusetts Amherst. It is expected that students taking a course

based on this book have some prior exposure to computer networks and computer

system organization. While the Appendix of the book provides a brief overview on

the network protocols used in the Internet, a more detailed course on this topic may

be of value.

It is not necessary to cover the entire book in a course. While there are some

dependencies between chapters, different courses can emphasize different charac-

teristics of network systems. For courses that address the networking aspects of

network systems, we suggest a focus on Chapters 4 through 10, while for courses

that address the embedded system aspects of network systems, we suggest a focus

on Chapters 11 through 14.

WE WANT TO HEAR FROM YOU
We would appreciate receiving any feedback you may have about the book. Tell us

if you find mistakes, if you have suggestions for improvements, what you like

about the book, how you have used it in a course, etc. You can contact the authors

via email at serpanos@upatras.gr (Dimitrios Serpanos) and wolf@ecs.umass.edu

(Tilman Wolf).

xiv Preface



ACKNOWLEDGMENTS
We thank the many individuals who have helped us in making this book a reality.

First and foremost, we thank our editor Todd Green and Nancy Hoffmann for guid-

ing us through the publication process and helping us meet our deadlines. We are

also grateful for the technical input and editorial comments by current and former

students, specifically C. Datsios, G. Keramidas, A. Papalambrou, and A. Voyiatzis.

In addition, we thank the anonymous reviewers of book chapters, whose valuable

comments enabled us to address and promote the appropriate technical concepts

and to deliver a more readable book. Any failure to achieve these goals is, of

course, the responsibility of the authors. Last, but definitely not least, we acknowl-

edge the support and patience demonstrated by our families during the long process

of developing this book. Without their understanding and extreme patience, this

book would never have been completed.

xvPreface



This page intentionally left blank



About the Authors

Dimitrios Serpanos is a Professor of Electrical and Computer Engineering at the

University of Patras, Greece, and the Director of the Industrial Systems Institute

(ISI/RC Athena). Currently, he is also the chairman of the governing board of

the newly founded University of Western Greece. His research interests include

embedded systems, with focus on network systems, security systems and multime-

dia systems, computer architecture, and parallel and distributed systems.

Serpanos holds Ph.D. and M.A. degrees in Computer Science from Princeton

University, Princeton, since 1988 and 1990, respectively. He received his diploma

in Computer Engineering and Informatics from the University of Patras in 1985.

Between 1990 and 1996 he was a research staff member at IBM Research,

T.J. Watson Research Center, New York. Since November 1996 he has been a fac-

ulty member in Greece. Between 1996 and 2000 he was with the Department of

Computer Science, University of Crete. Currently, he is with the Department of

Electrical and Computer Engineering, University of Patras, where he is a professor.

During his term in Crete he conducted research at ICS-FORTH; while in Patras he

has been conducting research at ISI. Professor Serpanos’ research has received

funding from the EU, the Greek government, and the private sector in Europe

and the United States.

Serpanos is a senior member of the IEEE, a member of the ACM, a member of

the New York Academy of Sciences, and an educational member of USENIX. He

is serving or has served as associate editor for technical journals, including ACM
Transactions on Embedded Computing Systems, IEEE Transactions on Industrial
Informatics, the Journal of Internet Engineering, and International Journal on
Computers and Their Applications. He has served as general chair and TPC chair

of several conferences and workshops, as well as a TPC member of more than

120 conferences and workshops. In addition, he has served as guest editor to spe-

cial issues of IBM Journal of Research and Development, IEEE Network, ACM
Transactions on Embedded Computing Systems, IEICE/IEEE joint issues, and

Telecommunication Systems.

Tilman Wolf is an Associate Professor in the Department of Electrical and Com-

puter Engineering at the University of Massachusetts Amherst. He is engaged in

research and teaching in the areas of computer networks, router design, embedded

systems, and network and system security. Wolf received a diploma in Informatics

from the University of Stuttgart, Germany, and holds a D.Sc. in Computer Science

and two M.S. degrees from Washington University in St. Louis.

Wolf started working in the area of router design and network processor design

in the late 1990s when commercial interest in routers with programmable data

paths started taking off. His worked focused on the design of high-performance

routers that use programmable port processors to provide dynamically changing

functionality, with an emphasis on performance modeling and benchmarking.

xvii



Since joining the University of Massachusetts in 2002, Wolf and his students in the

Network Systems Laboratory have designed and prototyped run-time systems for

workload management across multiple embedded processor cores in packet proces-

sors. Their work also addresses the question of how to redesign Internet architec-

ture to balance the need for custom networking functions with the need for

simplicity and manageability. More recently, he and his students have explored

security vulnerabilities in processing components of network systems that require

embedded protection mechanisms.

Wolf is a senior member of the IEEE and the ACM. He has served as associate

editor for the ACM/IEEE Transactions on Networking, as program committee

member and organizing committee member of numerous professional conferences,

including IEEE INFOCOM and ACM SIGCOMM, and as TPC chair and general

chair for ICCCN. He has served as treasurer for the ACM SIGCOMM society

for several years. He has received several recognitions for his educational activ-

ities, including a college outstanding teacher award.

xviii About the Authors



CHAPTER

Architecture of network
systems overview 1
Computer networks have become critical infrastructure on which we rely for

personal, business, and government use. Network systems are the hardware and

software components from which these networks are built. Network systems deter-

mine what functionality a computer network can provide and what performance

it can achieve. Due to this critical role, we believe it is important to study the

architecture and operation of these network systems.

Network systems draw from concepts and technologies in computer networks,

embedded systems, computer organization, and distributed computing. The conver-

gence of these very diverse technical areas makes the study of network systems

particularly exciting. This diversity also requires a thorough understanding of the

relationship between these areas and how they influence network system design.

We hope to provide these insights in this book.

COMPUTER NETWORKS
The advances of transmission technology for more than two decades have brought

significant changes in networking as well as computing. In the 1970s and 1980s,

standard networks provided limited connectivity, achieving bandwidth in the order

of kilobits per second (kbps) up to a few megabits per second (Mbps) for local area

networks, where the maximum speed reached 10 to 16 Mbps. From the middle of

the 1980s, the development and commercialization of high-speed links that

provided bandwidth of several Mbps for point-to-point connectivity enabled devel-

opment of a new generation of networks and protocols that enable communication

at very high speeds, reaching today hundreds of gigabits per second (Gbps).

In parallel with the dramatic progress in transmission technology, in the last

decade of the 20th century the Internet was commercialized, moving it from

research use to commercial use. The need to provide Internet connectivity to end

users at home and at work not only exploited the high-speed transmission technol-

ogy that had been developed, but also led to significant progress in access technol-

ogies. This trend led to development of a wide range of access protocols to connect

end users to the Internet through telephone lines, cable TV infrastructure, satellites,

and so forth.

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
1



The deployment of high-speed links and networks, as well as the Internet,

provided the infrastructure for the development of new computing paradigms,

mainly network-centric computing. In this paradigm, newly developed system

infrastructures are used to support computing and storage-intensive applications

and services. An early characteristic example is the development of networks

of workstations, a multiprocessor architecture that relies on high-speed connec-

tivity among workstations. This multiprocessor model is a natural advance of tra-

ditional distributed systems, which connected autonomous computing systems;

the single view of the network of workstations as one system, necessary for a

multiprocessor, was enabled by the high-speed networks that had become avail-

able. This abstraction enabled the efficient management of distributed resources

through appropriate computing models and enabled a unified view of the net-

worked workstations to the users. In a different direction, the ability to provide

access to data and computational resources over the Internet enabled a vast

number of new services for users and customers of commercial enterprises. These

services are based on the well-known client/server distributed computing model

and include examples ranging from banking to news feeds and from video

conferencing to digital libraries.

The provision of all these services and applications over networks, including

the Internet, requires technological advances at two fronts: protocols and network

systems. Network protocols define the methods and mechanisms necessary to

achieve reliable communication between two parties (or more than two in the

case of multicasting or broadcasting). For example, network protocols define

methods with which data units are encoded for transmission, mechanisms to detect

transmission errors, methods for retransmission of data in case they are lost or

transmitted with errors, and methods for regulating the flow of information between

communicating peers to ensure that the receiver is not flooded with incoming

data. Importantly, network protocols do not define any aspect of the systems that

execute these protocols in order to implement data communication. For example,

protocols do not define the type of processors, their speed, the size of memory,

or any other systemic characteristic of the devices that implement these protocols.

Network systems are the systems and subsystems that realize the implemen-

tation of network protocols. Network systems need to be designed to meet the func-

tional requirements specified by protocols. They also need to meet the performance

requirements determined by the ever-increasing speed of transmission links. This

relationship between network systems and related areas is illustrated in Figure 1-1.

The demands for executing protocols at high speed led to the need for advanced,

sophisticated system architectures, component designs, and implementations. These

network systems constitute the focus of this book.

Network systems represent a distinct area of embedded systems architecture.

Network systems are embedded systems because they are embedded in autono-

mous systems and devices that have specific purposes. For example, network sys-

tems are present in the infrastructure of networks, such as in switches, bridges,

routers, and modems. Importantly, network systems also include network adapters,

2 CHAPTER 1 Architecture of network systems overview



which are used in general-purpose computing systems, as well as in special-

purpose systems, such as mobile phones.

The importance of network systems is increasing continually, driven by the dra-

matic growth in network-centric services developed and deployed. The expansion

of broadband services has led to the continuing exponential growth of Internet

users and the increasing adoption of services on the go (e.g., mobile banking,

mobile TV), as well as the increasing deployment of large, networked sensing

and monitoring systems (e.g., transported goods containers, environment monitor-

ing systems). Importantly, these services are differentiated from traditional data

connectivity services because they also provide real-time communication for voice

and video services. Therefore, network systems have become critical components

of the overall network infrastructure.

The design of network systems is challenging not only due to the increasing

requirements to execute several complex protocols, but also because of the need

to achieve efficient protocol execution within the resource limitations of embedded

systems (i.e., size, power). Thus, the architecture of network systems constitutes a

significant area of embedded systems architecture.

EMBEDDED SYSTEMS
Embedded systems are special-purpose computing systems embedded in applica-

tion environments or in other computing systems and provide specialized support.

The decreasing cost of processing power, combined with the decreasing cost of

memory and the ability to design low-cost systems on chip, has led to the develop-

ment and deployment of embedded computing systems in a wide range of application

Network protocols

Network systems

Network traffic Embedded systems

Functional requirements

Implementation constraintsPerformance requirements

FIGURE 1-1

Requirements and constraints for network system design.

3Embedded systems



environments. Examples include network adapters for computing systems and

mobile phones, control systems for air conditioning, industrial systems, and cars,

and surveillance systems. Embedded systems for networking include two types of

systems required for end-to-end service provision: infrastructure (core network) sys-

tems and end systems. The first category includes all systems required for the core

network to operate, such as switches, bridges, and routers, while the second category

includes systems visible to the end users, such as mobile phones and modems.

The importance of embedded systems is continuously increasing considering

the breadth of application fields where they are used. For a long time, embedded

systems have been used in many critical application domains, such as avionics

and traffic management systems. Their broad use illustrates the importance of

embedded systems, especially when considering the potential effects of their fail-

ure. For example, a failure of an automatic pilot system or a failure of a car braking

system can lead to significant loss of life; failure of an electric power system

may lead to loss of life or, if not to that, to loss of quality of life; and failure of

a production control system in a factory may lead to a significant loss of revenue.

Our dependence on embedded systems requires development and adoption of

new architectural and design techniques in order to meet the necessary perfor-

mance requirements and to achieve the required dependability using their limited

resources in terms of processing, memory, and power.

The importance of embedded systems has led to the emergence of a strong

industry that develops and uses them. Their criticality for services on all fronts

and for technological and thus economic growth has led to significant efforts to

address the challenges placed by embedded systems development and deploy-

ment. One important effort is the ARTEMIS initiative of the European Commis-

sion [1]. This program started with a Strategic Research Agenda (SRA) [8] and

has grown to a significant activity, including a strong industrial association, named

ARTEMISIA, which conducts research and development in the area of embedded

systems. Figure 1-2, a figure from the ARTEMIS SRA [8], shows one view of the

embedded systems area organized by research domains and application contexts.

In Figure 1-2, horizontal bars constitute technological areas involved in embedded

systems development and vertical bars indicate application contexts where embed-

ded systems are used and are expected to penetrate applications in the future. Con-

sidering the differentiated requirements of embedded systems adoption in different

application areas, Figure 1-2 groups in application contexts the services and appli-

cations that have common characteristics; different application contexts have sig-

nificant differences among them. For example, the application context of private

spaces includes systems and services for the home environment, the car, and private

environments in general, where comfort and safety are the highest priority, while

the context of industrial systems focuses on safety-critical systems for industry,

avionics, and others. Clearly, the organization and semantics of application con-

texts change as time progresses and new applications and services are developed.

One can organize the vertical bars with different criteria, such as, for example,

the industrial sectors involved in the development of embedded systems.

4 CHAPTER 1 Architecture of network systems overview



PROTOCOLS AND NETWORK SYSTEMS
As noted earlier, the networking field has focused mostly on the development of

protocols for communication among network nodes. Considering the high bit error

rates of early transmission media and methodologies, as well as their low through-

put, special attention was paid to the development of communication mechanisms

that achieved efficient and reliable transmission. The need for voice services led

to development of a range of protocols for voice and real-time traffic, using a

centralized communication model where a single entity had centralized control.

This centralized network paradigm with its single point of failure led to reliability

problems, which is a significant drawback.

The non-real-time requirements of data traffic for computer-to-computer com-

munication enabled development of a noncentralized communication model where

data could follow alternate paths in order to avoid failed network systems. This

model, also employed by the Internet, leads to more robust networks in terms

of the ability to transmit data successfully between nodes, even in the presence

of intermediate network system failure.

These communication paradigms and requirements influence network proto-

cols as well as the systems that execute them. It is important to differentiate,

however, protocols from the systems that execute them, for several reasons.

Protocols define communication methods, as explained previously, while net-

work systems execute these protocols. In general, protocols include mechanisms

that accommodate systems with different performance and reliability characteris-

tics, with methods that regulate traffic flow among systems and mechanisms to

detect transmission errors and lead to data retransmission. Thus, the activity of

Application contexts

Nomadic
environ-
ments

Private
spaces

Public
infra-

structure

Common
objectives

Sustainability
Design efficiency
Ease of use
High added value
Time to market
Modularity
Safety/security
Robustness
Competitiveness
Innovation
Cost reduction
Interoperability

Industrial

Reference designs & architectures

Seamless connectivity, middleware

System design methods & tools

R
es

ea
rc

h 
do

m
ai

ns

M
ul

tid
om

ai
n,

 r
eu

sa
bl

e
in

no
va

tio
ns

 a
nd

 r
es

ea
rc

h 
re

su
lts

FIGURE 1-2

ARTEMIS research domains and application contexts.

5Protocols and network systems



protocol development and specification does not take into account any specifics

about the system that will execute a protocol and does not place any specific

requirements on it. This characteristic of protocols not only enables the definition

of communication methods independently of technology to a large degree, but

also enables the development of economically scalable network systems, where

manufacturers can develop systems that execute the same protocol on different

platforms with different performance, dependability characteristics, and cost.

Communication protocols have been developed to meet different goals and

requirements of different applications. For example, protocols exist that focus

on methods and mechanisms for efficient transmission over wireless links, while

others focus on the reliable transmission of data between computers. The vast

number of protocols developed for communication at different levels and for

meeting requirements of different environments led to the need to organize

protocols and their functionalities methodologically. In addition to this structur-

ing, the need to enable free competition in the development of network systems

that execute protocols led to development of a standardized reference model

for protocols.

As discussed in the following chapter and in the Appendix in more detail, the

functionality of most computer networks is structured using the layered protocol

stack as a reference model. This model was introduced as the Open System Inter-

connection (OSI) model [79] and is still at the core of today’s Internet architecture.

Each layer provides particular communication functionalities while drawing on the

functionalities provided by the layer below. The architectures of network systems

reflect this layered protocol architecture. The layer at which a network system

operates (i.e., its placement within the network architecture) determines what

functionalities need to be built into the system.

This book focuses on network systems that operate at the link layer, the net-

work layer, the transport layer, and the application layer. Specifically, we do not

consider any details of the lowest layer, the physical layer, which deals with the

coding and transmission of individual bits over a medium. Interested readers are

referred to the large body of work on wired and wireless communication.

ORGANIZATION OF THIS BOOK
This book discusses the architecture of network systems as a class of embedded

systems, that is, systems with limited resources. The book presents system struc-

tures and architectural techniques for all types of network systems, ranging from

network adapters to routers and gateways. Considering the synergy between

protocols and the systems that execute them, this book presents network system

architectures and design techniques where network protocols are part of the system

specifications. However, we do not present new protocol concepts or protocol

techniques since our focus is on systems. Instead, we consider standard protocols

and explore architectural space for the development of efficient network systems

6 CHAPTER 1 Architecture of network systems overview



that meet their performance requirements. The input to these systems is network

traffic that is consistent with the protocols stated in the system specification.

This book follows a systematic approach to network systems based on the pro-

tocols they implement. Considering the large number of existing and emerging

protocols defined for different purposes, we use the OSI reference model for our

presentation. The OSI reference model has well-defined and well-understood

layers, which match the popular Transmission Control Protocol (TCP)/Internet

Protocol (IP) protocol stack as a special case, and enables us to easily identify

the functionality and requirements of specific network systems. It must be stressed

that adoption and use of the OSI reference model in the book does not promote or

limit the presented architectures and systems to specific protocols. Rather, this

approach provides a basis for a systematic classification of network systems and

avoids the complexity of considering the wide landscape of protocols standardized

by several bodies and groups.

The book is organized in the following three parts:

• The first part of the book, constituted by Chapters 2 and 3, addresses the types

and general structure of network systems, as well as evaluation techniques for

the resulting architectures and designs. Chapter 2 presents and classifies net-

work systems on the basis of the OSI reference model and describes the general

architectural structure of network systems. Chapter 3 presents the requirements

placed on network systems, focusing on performance and the methods used for

the evaluation of developed systems.

• The second part of the book, composed of Chapters 4 through 9, presents archi-

tectures of the types of systems defined in Chapter 2. Each chapter addresses a

different class of systems, starting with link layer systems (switches) up to

application layer systems. We discuss different design alternatives within each

layer and how they impact the performance and functional requirements

established for network systems. We also present several algorithms and data

structures for the main performance-critical operations in network systems,

including packet forwarding, packet classification, and payload inspection.

• The third part of the book, Chapters 10 through 15, addresses special require-

ments and subsystems of network systems, such as security, low power, and

networks-on-chips. Chapter 10 addresses how requirements for quality of service

and network security are reflected in network system designs. Chapter 11

describes network processors and other special hardware components used

in network systems to achieve high-throughput performance. Chapter 12

describes architectures and techniques for subsystems of network systems,

which address power issues, that is, target the execution of specific network

operations, such as table lookups, optimizing for power consumption. Consider-

ing the rapid growth of networks-on-chips and the resulting inclusion of net-

work systems in these highly integrated components, Chapter 13 presents an

overview of system and technology issues that influence the design of network

systems in this technology. Chapter 14 discusses software considerations from

7Organization of this book



the perspective of software development for network systems and runtime man-

agement. Chapter 15 provides an outlook on emerging technologies, including

network virtualization.

In addition, the Appendix provides a brief overview on common protocols used

in the Internet. It focuses on Ethernet, IP, and TCP. Because many readers are

likely to be familiar with these protocols, discussion on their design and implemen-

tation details is limited to this Appendix.

The specific topics covered in each chapter of this book are as follows.

• Chapter 1 introduces the motivation for this book and discusses how network

systems are influenced by technologies from computer networks and embedded

systems.

• Chapter 2 presents the architectural structure of network systems. We discuss

how the layering of network functionality in protocol stacks relates to network

systems and what the key components of a network system are.

• Chapter 3 discusses functional and performance requirements in network sys-

tems. Throughput preservation is introduced as a design paradigm and techni-

ques for performance evaluation are presented.

• Chapter 4 introduces switching fabrics and interconnects, which are the center of

any switch and router system. Interconnects provide the ability to transfer network

traffic between ports of the network system. We discuss different designs and how

they are able to meet performance and scalability requirements.

• Chapter 5 presents network adapters, which provide the interface between trans-

mission medium and network system. We discuss how design alternatives for

memory management in network adaptors affect system performance.

• Chapter 6 introduces bridges and switches as the first complete network system

discussed in this book. This chapter focuses on system architecture, as well as

bridge operation within the network.

• Chapter 7 presents topics on router design and operation. We distinguish

between control path and data path and discuss different algorithms and data

structures for routing and forwarding.

• Chapter 8 looks at network systems that operate at the transport layer systems,

that is, those that consider individual connections and flows. We discuss algo-

rithms and data structures for packet classification and examples of network

systems that use them.

• Chapter 9 discusses network systems in the application layer. These systems

process the payload of packets to provide support for application-layer func-

tions. We discuss different content inspection algorithms that can be used to

provide security in high-performance network systems.

• Chapter 10 shows how performance guarantees and security issues need to be

addressed in all layers of a protocol stack and a network system. We show

how link-scheduling techniques can be used to ensure fair sharing of network-

ing resources. We also show how network protocols can be used to meet secu-

rity requirements in communication.

8 CHAPTER 1 Architecture of network systems overview



• Chapter 11 presents specialized hardware components that can be used in net-

work systems to meet performance requirements. The main focus of this chap-

ter is on programmable network processors and their use in network systems.

• Chapter 12 discusses how power consumption can be addressed in network sys-

tem design. We present this issue in the context of memory designs for lookups

and network processors.

• Chapter 13 presents networks-on-chip, a key technology component of embed-

ded networks systems. We discuss different design network-on-chip architec-

tures and designs.

• Chapter 14 addresses the software aspects of network systems. Specifically, we

focus on the issues of software development and run-time management.

• Chapter 15 concludes this book with an outlook on emerging network architec-

tures and their impact on network system design. In particular, we discuss the

need for programmability and how network virtualization can help in accom-

modating new protocols and communication paradigms.

• The Appendix provides a review of common network protocols used in the

Internet and can be used as an introduction for readers who are new to those

topics and as a reference for readers who are more experienced.

Overall, these topics cover the key aspects of architecture, design, implementation,

and operation of network systems.

9Organization of this book



This page intentionally left blank



CHAPTER

Network protocols and
network systems 2
INTRODUCTION
The technical area of telecommunications and networking is a mature area of

engineering that has experienced significant contributions for more than a century.

The continuous evolution of cost-effective media, communication protocols, network

designs, and network systems has led to dramatic changes in communications and

networking. The effects have been particularly remarkable during the last few decades,

when advances in fiber optics and high-speed transmission techniques in wire-based

and wireless networks have brought significant amounts of bandwidth to users at

the office, at home, or on the go, enabling a wide range of applications and services.

The technological progress of physical media, transmission methods, and com-

munication needs over a long period has led to a rich and complex landscape of

network architectures and network systems. The different engineering approaches

to the problem of networking, the diverse application areas, and the quest for pro-

prietary solutions have resulted in a large number of complex network designs

that differ significantly among them. In order to reduce complexity in network

design, most networks are organized in layers, where each layer represents a level

of abstraction focusing on the communication/networking services it provides.

In a layered network of communicating nodes, every protocol layer of a node

communicates with the equivalent protocol layer of another node. The set of rules

that specify the structure and semantics of the exchanged information at a given

layer is denoted as the corresponding communication (network) protocol. In an

effort to minimize proprietary solutions, to create an open market in network sys-

tems, and to enable management of communications complexity, the International

Organization for Standardization (ISO) has developed a reference model for open

communications [78]. This reference model, called the ISO Open Systems Inter-

connection (OSI) Reference Model, proposes an abstract and layered model of net-

working. Specifically, it defines seven layers of abstraction and the functionality of

each layer. However, it does not define specific protocols that must be used at

every layer, but gives the concepts of service and protocol that correspond to each

layer. ISO has published protocols and prototypes for every layer of the OSI

reference model but these are not parts of the reference model itself.

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
11



The abstract nature of the OSI reference model is the motivation for using it as

a basis in the presentation of systems in this book, although the Internet era has

established the dominance of the Transmission Control Protocol (TCP)/Internet

Protocol (IP) reference model. The OSI reference model is not oriented to a certain

protocol set, which makes it more generic. The TCP/IP reference model became a

de facto model after its protocols had been introduced. Interestingly, the TCP/IP

reference model has embraced the paradigm of the OSI model, using almost direct

analogies for the four lower layers and the highest layer of the OSI model and

discarding the other ones. Thus, it can be considered as a special case of the OSI

reference model. We discuss the TCP/IP reference model and specific details of

its protocols in the Appendix.

A network system, which is the basic building block of a network, executes a

protocol stack composed of protocols of a layered network architecture. Some

layers are implemented in hardware modules, whereas others are implemented in

software. This chapter describes the OSI reference model, gives the definition of

a network system, distinguishes its various types, and presents the basic structure

of a network system.

THE OPEN SYSTEMS INTERCONNECTION REFERENCE MODEL
Communicating systems execute protocols that implement the specific communi-

cation mechanisms used in the information exchange. As mentioned earlier, the

protocols are organized as stacks of protocol, following the OSI reference model

with up to seven layers, where each layer provides a different level of abstraction

and performs a set of well-defined functions. These seven layers are as follows.

1. Physical layer: These protocols employ methods for bit transmission over phys-

ical media and include such typical functions as signal processing, timing, and

encoding.

2. Data Link Control (DLC) layer: Its protocols establish point-to-point communi-

cation over a physical or logical link, performing such functions as organization

of bits in data units (frames) organization, error detection, and flow control.

3. Network layer: These protocols deliver data units over a network composed of

the links established through the DLC protocols of layer 2. Part of these pro-

tocols is identification of the route the data units will follow to reach their

target.

4. Transport layer: Transport protocols establish end-to-end communication bet-

ween end systems over the network defined by a layer 3 protocol. Often, transport

layer protocols provide reliability, which refers to complete and correct data

transfer between end systems. Reliability can be achieved through mechanisms

for end-to-end error detection, retransmissions, and flow control.

5. Session layer: This layer enables and manages sessions for complete data

exchange between end nodes. Sessions may consist of multiple transport layer

connections.

12 CHAPTER 2 Network protocols and network systems



6. Presentation layer: This layer is responsible for the presentation of exchanged

data in formats that can be consumed by the application layer.

7. Application layer: The application layer includes protocols that implement or

facilitate end-to-end distributed applications over the network.

Layer 1, the physical layer, is considered the lowest layer in the OSI reference

model, and layer 7, the application layer, is considered the highest layer. It is

important to note that layer 2 (DLC) of the reference model is usually considered

to be divided into two sublayers: the Media Access Control (MAC) sublayer above

the physical layer (layer 1) and the Logical Link Control (LLC) sublayer above

the MAC sublayer. This structure of layer 2 is influenced mostly by the IEEE stan-

dardization effort for local area network (LAN) technology [66], which has speci-

fied that all compliant LANs may differ at the physical layer and MAC sublayer,

but should operate under a specific protocol at the LLC sublayer; this protocol is

the 801.2 LLC protocol.

The purpose of the OSI reference model has been to specify layers of protocols

employed by network nodes to communicate successfully. Thus, two communicat-

ing end systems need to have implemented at least one common protocol per

corresponding layer. However, communicating systems do not need to implement

full seven-layer protocol stacks, as described later. The number of layers imple-

mented in communicating system stacks is influenced by the functionality of the

systems, that is, the level of abstraction they provide, depending on their goals.

For example, systems that target to deliver packets between two networks do not

need to implement end-to-end reliable transmission or application layer protocols

because of their specified and intended functionality.

PROTOCOL STACKS AND PROTOCOL ELEMENTS
In a complete configuration, compliant with the OSI Reference Model, two communi-

cating systems need to implement one protocol stack each, as shown in Figure 2-1.

Data that need to be transmitted between systems are provided by the transmitting

end system to the top protocol (layer 7 protocol) of its protocol stack. They are pro-

cessed by the seven protocols of the protocol stack and then transmitted over physical

media to the receiving system. The receiving system performs the protocol operations

in reverse order: transmitted data are received by the physical protocol (layer 1 proto-

col) of the receiving stack and are processed in turn by the seven protocols of the

receiving protocol stack. At the end of this process, data are delivered to the appropri-

ate process of the receiving end system.

Considering the properties of the stacks and the protocols, as defined in the OSI

Reference Model, it is easy to deduce that communication between the two sys-

tems requires both protocol stacks to have the same protocols at each layer,

enabling the node-to-node communication at all layers. Any violation of the proto-

cols, that is, any differentiation in the structure or the semantics of the exchanged

13Protocol stacks and protocol elements



information, at any layer renders the correct processing of that information impos-

sible and thus makes communication infeasible.

An important property of the OSI Reference Model is that it enables standardiza-

tion of the protocols used in the protocol stacks, leading to the specification of inter-

faces between layers. Furthermore, an important feature of the model is the

distinction it makes between specification (layers) and implementation (protocols),

thus leading to openness and flexibility. Openness is the ability to develop new pro-

tocols for a particular layer and independently of other layers as network technolo-

gies evolve. Openness enables competition, leading to low-cost products. Flexibility

is the ability to combine different protocols in stacks, enabling the interchange of

protocols in stacks as necessary. For example, consider the stack configurations

shown in Figure 2-2. Figure 2-2(a) shows a typical stack with four layers, includ-

ing Transmission Control Protocol at the transport layer, Internet Protocol at the

network layer, IEEE 802.2 LLC at the logical link sublayer and IEEE 802.3 (Ether-

net) MAC at the MAC sublayer of the data link control layer, and IEEE 802.3

(Ethernet) at the physical layer. This stack configuration is typical in conventional

enterprise end systems due to the wide adoption of Ethernet technology at end

Presentation layer

Session layer

Transport layer

Physical transmission medium

End system 1 End system 2

Process Process

Data

Application layer

Network layer

Data link layer

Physical layer

Presentation layer

Session layer

Transport layer

Application layer

Network layer

Data link layer

Physical layer

Data

FIGURE 2-1

Node-to-node communication using the OSI Reference Model.

14 CHAPTER 2 Network protocols and network systems



systems and local area networks, as well as the prevalence of the TCP/IP protocol

suite in the Internet. The openness of a layered reference model enables users to

develop alternative protocols to the ones mentioned previously and replace them

at the appropriate layer of the stack, assuming compliance of the interfaces. As the

example in Figure 2-2(b) indicates, one can replace the bottom two protocols of

the stack, that is, Ethernet protocols, with an alternative, for example, IEEE 802.5

Token Ring protocols, and create a functional, alternative stack.

A layered reference model for protocols enables the interconnection of hetero-

geneous networks, that is, end systems and networks that use different technology,

through network systems, as shown in Figure 2-3. As Figure 2-3 illustrates, reliable

end-to-end connectivity is typically achieved at the transport layer (layer 4), while

Transport

Network

Data Link
Control

Physical

Transport

Network

Data Link
Control

Physical

LLC

MAC

LLC

MAC

IP

TCP

IEEE 802.2

IP

TCP

IEEE 802.2

Token Ring

Token Ring

Ethernet

Ethernet

A B

FIGURE 2-2

Typical protocol stacks.

Presentation layer

Session layer

Transport layer

Network 1

End system 1 End system 2

Application layer

Network layer

Data link layer 1

Physical layer 1

Presentation layer

Session layer

Transport layer

Application layer

Network layer

Data link layer 2

Physical layer 2

Interconnecting system

Network layer

DLC 1

Physical layer 1

DLC 2

Physical layer 2

Network 2

FIGURE 2-3

Protocol stacks in a network with heterogeneous links.

15Protocol stacks and protocol elements



interconnection of networks can be established at lower layers. In Figure 2-3, an

end system transmits data packets to a receiving end system traversing two differ-

ent networks. The networks are interconnected through a system that implements

two protocol stacks, one per network, and delivers packets of lower layer protocols

between the networks. This is a typical configuration, following the layered OSI

Reference model where different DLC protocols are used to establish two logical

links and the network system enables the interconnection of the two links into a

single network at layer 3 (network layer).

Developments in recent decades have been led by standardization efforts in

communications as a follow-up of OSI models and needs of the market. Pro-

prietary protocols and network architectures have been reducing steadily due to

economic reasons, as well as the progress of LAN technology and the spread of

the Internet. As a result, most of the protocols used today have been standardized,

and a large number of companies build systems that provide these standardized

protocols. Protocols are being standardized by several organizations, such as ISO

[77], the Institute of Electrical and Electronics Engineers (IEEE) [67], and the

ATM Forum [23].

Considering the standardization process and the resulting specifications, which

have to be obeyed by networks and network systems, we need to specify the

options of network and network system designers, which enable product differen-

tiation and lead the definition of new network architectures and network protocols.

A systematic approach to network protocols enables us to identify that protocol

implementations are composed of three elements as shown in Figure 2-4 [118].

These three elements are:

1. Mechanisms

2. Syntax

3. System design and implementation

Protocol mechanisms are a protocol’s methods to perform its operations, as speci-

fied. Typical mechanisms include those for flow control, error control, etc. A large

System architecture
Memory management

System design
and implementation

Syntax

Mechanisms
Flow control
Error control
...

...

...

Headers
Fields

FIGURE 2-4

Protocol elements.

16 CHAPTER 2 Network protocols and network systems



body of networking and communications literature is dedicated to the study of pro-

tocol mechanisms in various protocols and environments in order to identify the

appropriate methods and the specification of their parameters, for example, flow

control window size, rate or credit-based flow control, and CRC polynomials for

error checking [35, 154]. Protocol syntax specifies the structure of packets (data

units), enabling the correct interpretation of each transmitted information bit. In

a packet protocol, for example, the syntax specifies the use of headers or trailers,

the fields in a header or trailer, the packet size, and so on. System design and

implementation refer to the structure of the system that executes the protocol itself

and implements communication as defined by the protocols of the protocol stack it

implements.

Standards typically define the first two protocol elements, that is, the mechan-

isms and the syntax of protocols. Standards do not specify the structure of the sys-

tems that implement protocols. Thus, a network system developer is able to

develop any architecture and implementation one considers appropriate and will

be standards-compliant as long as it implements the mechanisms defined for the

protocol and follows the syntax. This is a very important observation because it

enables a developer to implement any necessary function by any appropriate means

(hardware or software) and to specify any structure suitable for correct execution

of the protocols. Importantly, considering that network systems execute protocol

stacks, the developer’s ability to specify system structure is extremely valuable

because it enables the development of subsystems that execute protocols of differ-

ent layers and thus different levels of communication.

This systematic view of the elements enables us not only to identify the areas

where system designers can contribute, but also to research more efficient protocols

and network architectures. A clear direction for research is the development of new

mechanisms for protocols, which exploit the characteristics of new technologies as

they appear. The adoption of reliable fiber-optic media, for example, can be exploited

by protocols with new mechanisms that take into account the low bit error rates—

developing new error control mechanisms—and the high bandwidth (e.g., DWDM)

through use of new more efficient flow control mechanisms. Another direction is

development of a new protocol syntax that enables more efficient protocol processing

as, for example, proposed in the Xpress Transport Protocol (XTP) protocol [172],

which is designed to overcome some shortcomings in the widely used TCP.

Finally, a clear research direction is the development of new architectures and

designs for network systems, especially since they are not influenced by the protocol

standardization efforts, giving many options to network system developers.

NETWORK SYSTEMS: DEFINITION AND TYPES
Network systems are computational systems that implement connectivity among

networks or between a network and an end system. In general, a network system

is a system attached to two or more communication links, wired or wireless.

17Network systems: Definition and types



Each communication link is associated with a network architecture and thus with

a related protocol stack, as shown in Figure 2-5. As Figure 2-5 indicates, the goal

of such a network system is to deliver information from one communication link

to another, implementing connectivity among networks. In this view, a network

system executes a set of protocol stacks, one associated with each attached link,

and delivers data among appropriate stacks. Based on the discussion earlier,

we will employ the following definition: a network system is a computational

system that executes protocol stacks and switches data among the protocol stacks.

Clearly, this definition covers all network systems used to interconnect networks.

In addition, we include in our definition a computational system that executes a

single protocol stack; this boundary case for our generic definition covers the case

of end-system network adapters that deliver transmitted data between an end-user

system and a network.

Network systems are classified according to the size of the stacks they imple-

ment and switch data among. Before presenting this classification, two important

issues need to be clarified.

1. Protocol stacks in a network system can have any size (i.e., one up to seven

layers), but all stacks in a single system need to have the same size, as their

highest layer is the same.

2. The protocol of the highest layer needs to be the same for the stacks among

which data are switched.

The first issue is important to emphasize so that a network system architect knows

that networks can be interconnected at all available layers of the OSI Reference

Model. For example, Ethernet standards define a maximum length for the coaxial

cables that can be used; if one wants to connect two such cables to create a longer

network (basically, a longer cable), the standard allows that and a network system

needs to be used to interconnect the two cables. This network system will imple-

ment functionality defined in the physical protocol of Ethernet, that is, it will

implement a stack with size equal to one layer (to be precise, it will not even

implement the whole physical protocol but a subset of it; however, this is con-

sistent with our layer-based view and definitions). The decision to use such a

network system is feasible because the two cables are Ethernet networks, that is,

Ethernet

PHY

MAC MAC

PHY PHY

Token Ring

PHY

FIGURE 2-5

Layer 2 interconnection of different layer 1 networks.

18 CHAPTER 2 Network protocols and network systems



homogeneous networks. If they were heterogeneous networks, though, for exam-

ple, an Ethernet and a Token Ring, such a network system could not be designed

to interconnect the networks at the physical layer because their protocols are not

consistent. In that case, the network system would need to implement stacks with

more layers per stack (two or more), as shown in Figure 2-6.

When data are switched between two stacks, as shown in Figure 2-6, data

are produced by the protocol at the highest layer of one stack and consumed by

the highest layer of the receiving stack. These data must have semantics that is

understood by both protocols, leading to the requirement that these two protocols

have to be the same protocol. If the protocol is exactly the same, for example, IP

in an IP router, then data can be switched among stacks directly without any pro-

cessing related to protocol conversion. However, some network systems exist

where the highest layer protocols are not exactly the same in all stacks. In that

case, data conversion is necessary in order to make data meaningful to each stack.

This is achievable only for protocols of the same layer, although considering

the functionality of the layers and thus, data are switched among protocols of the

same stack layer, for example, routing protocols of layer 3, or MAC protocols

of layer 2, and so on. This leads to the consideration that all stacks in a network

system have the same size, that is, number of protocol layers; however, the hetero-

geneity of some protocol stacks, which do not have a one-to-one correspondence

to the OSI reference model, may lead to stack size differences. For simplicity,

we assume that all protocol stacks of a network system have the same size, unless

explicitly stated.

Network systems are classified and named according to the layer of the top pro-

tocol in the protocol stacks, that is, the layer of the protocol at which data are

Transport layer

Network layer

Data link layer

Physical layer

Link

...

Transport layer

Network layer

Data link layer

Physical layer

...

...

Transport layer

Network layer

Data link layer

Physical layer

...

Network system

Link Link

FIGURE 2-6

Switching of data between network stacks in network system.

19Network systems: Definition and types



switched among the stacks. Specifically, typical classification and naming of net-

work systems are as follows:

1. Physical network systems: systems that switch data among physical layer

protocols

2. Bridges: systems that switch data among stacks at the DLC layer

3. Routers: systems that switch data among stacks at the network layer

4. Gateways: systems that switch data among stacks at the transport layer or a

higher layer

Figure 2-7 illustrates the operation of network systems in reference to the OSI Ref-

erence Model stacks, using two stacks.

Physical network systems cover a wide range of devices, which transfer data

among physical layer protocols. Considering the rich set of media used, including

air, twisted copper wires, coaxial cables, and fiber links, as well as the transmission

methods employed by existing protocols, physical network devices implement a

variety of functions, ranging from signal amplification to bit encoding. Examples

of these systems include repeaters, amplifiers, multiplexers, and hubs.

Bridges are network systems that switch DLC layer data among stacks. Although

previous definitions led to the concept of a bridge switching packets among DLC

protocols, as defined by the OSI Reference Model, this is not the case in most exist-

ing bridges. Most conventional bridges actually switch packets over the MAC sub-

layer of the DLC layer due to the way LAN protocols have evolved, especially

through the IEEE standardization effort [66]. As mentioned previously, the Data

Link Control layer (layer 2) is divided into two sublayers: the Media Access Control

sublayer and the Logical Link Control sublayer. This division of layer 2 was intro-

duced and adopted by IEEE in an effort to provide a unified framework for the stan-

dardization of link layer protocols. Specifically, IEEE has standardized a protocol,

801.2 Logical Link Control, for the logical link sublayer, which is specified to oper-

ate above all MAC protocols defined in the 801.x family of protocols. This family

Network

Network Transport

Transport
DLC

DLC

LLC

LLCMAC

MAC
Physical

Physical

Physical
network
system

Link

Link

Bridge Router

...

...

Gateway

FIGURE 2-7

Network system classification.

20 CHAPTER 2 Network protocols and network systems



includes all popular MAC protocols, ranging from the traditional Ethernet and

Token Ring to wireless LAN (WLAN), hybrid fiber-coax (HFC), and Worldwide

Interoperability for Microwave Access (WiMAX). Because all such MAC protocols

are specified to operate under 801.2 LLC, they provide a normalized interface to

LLC and thus data can be switched easily and efficiently among MAC protocols

without making it necessary to switch layer 2 data over LLC. These bridges, known

as MAC bridges, constitute the main thrust of bridging architecture.

Routers are well-known network systems, especially due to the wide adoption

of the Internet. Clearly, the best-known concept is that of the IP router, as IP is

the protocol used by the Internet. Routers exist for several other protocols as well,

considering the legacy systems and networks that are deployed today. Importantly,

the main operation of routers is the same as in IP routers.

The term gateway is used to describe a large number of network systems, as it

refers to systems that switch data among protocols of layers 4 through 7.

In addition to the systems mentioned earlier, network systems exist that have

limited functionality and are denoted using different terminology. The most

widespread of these systems are layer 2 switches and IP switches. Layer 2 switches

switch MAC layer data units without a bridging protocol, as described in Chapter 6.

IP switches perform IP routing (layer 3) functions but switch data at a lower layer,

exploiting Asynchronous Transfer Mode (ATM) switching technology (correspond-

ing to layer 2). Furthermore, systems exist that provide combined functionality:

brouters (from bridge/routers) combine bridging and routing functionality in one

system.

Finally, network systems include network adapters, that is, network attachments

of end systems. Network adapters implement stacks so that end systems can con-

nect to networks and communicate with other end systems over the network(s).

STRUCTURE OF NETWORK SYSTEMS
Network systems implement protocol stacks and switch data units among them. As

such, network systems need to include memory for data storage, processing power

for protocol processing, and link interface(s) for attachment to network links. This

indicates that network systems are computational systems with subsystems analo-

gous to those of a typical computing system: processing element, memory, and

an input/output (I/O) subsystem for the link attachment.

The simplest network system is the network adapter, as it implements a single

protocol stack. Considering the requirements mentioned previously, the structure

of a typical network adapter is illustrated in Figure 2-8. The adapter includes a pro-

cessor, memory, and two I/O subsystems, one for attachment to the network link

and one for the appropriate bus of the end system. It is important to note here that

in typical adapters the link attachment subsystem is composed of circuitry that

implements the physical and the MAC sublayers of the corresponding DLC proto-

col. For example, if one builds an Ethernet adapter, the basic hardware component

21Structure of network systems



used as the link attachment implements the Ethernet physical and MAC protocols.

This is due to the fact that physical protocols require significant signal processing,

which is typically implemented in hardware that often integrates the analog com-

ponents required for signal transmission and reception. Furthermore, because

MAC protocols group data in meaningful data units for higher level processing

and often implement protocols with demanding performance requirements, they

are also implemented in hardware, providing to system designers a straightforward

byte-level or word-level interface, exchanging MAC data units with the remainder

of the system. Given that the requirements and functionality of physical and MAC

protocols differ significantly from higher layer protocol requirements and function-

ality, we always consider in our architectural descriptions and analyses that link

attachments are designed with components that implement physical and MAC

protocols at the I/O subsystem of adapters and network systems, similar to the

structure of Figure 2-8.

The adapter illustrated in Figure 2-8 constitutes a typical computational system,

which performs computations on data delivered to and from its two interfaces with

the end system and the network link. Its operation is simple in general. When

receiving data from the network, the I/O link subsystem executes the physical

and MAC protocols and produces packets that are delivered to the adapter’s mem-

ory. The packets are processed by the processor, which executes the remainder of

the protocol stack, and the resulting data are delivered to the end system. Data

transmitted to the network follow the reverse path, being delivered to the adapter

memory, processed by the protocol stack up to the point where MAC packets

(frames) are produced, and then delivered to the link attachment subsystem, which

executes the MAC and physical protocol and transmits data on the link. Appar-

ently, the architecture of the adapter can and should employ computer architecture

techniques and methods to result in an efficient, low-cost system; such techniques

include memory management units and direct memory access subsystems, as

discussed in subsequent chapters.

DMAMACPhysical

Adapter

Memory

End system
bus interface

Micro-
processor

Link

FIGURE 2-8

Typical network adapter structure.

22 CHAPTER 2 Network protocols and network systems



Considering the definition of network systems as systems that switch data units

among protocol stacks, one can easily develop a network system employing the

adapter architecture of Figure 2-8. Figure 2-9 illustrates a simple network system

structure, which employs one network adapter per protocol stack of the network

system. As Figure 2-9 shows, one can use a set of adapters, one per attached

network, and interconnect them through a backplane interconnection, providing a

system that is functional, flexible, and scalable if implemented appropriately.

Specifically, the structure of the network system maps directly to the system’s

functionality: an incoming packet is processed by the protocol stack of the receiv-

ing adapter and then is delivered over the backplane to the adapter of the transmit-

ting network where it is processed by the protocol stack of that adapter and placed

on the attached network link. Because of its simplicity, this simple architecture has

been a basic architecture of the first generation of network systems. A typical

router architecture, for example, has been developed using a personal computer

(PC) with several network adapters—one per connected network. In that archi-

tecture, adapters implement the lower layers of protocol stacks, while the main

processor of the PC executes the higher layers of the protocol stacks for all stacks

and performs data packet switching.

The backplane of the network system can be any appropriate interconnection

network: a bus, a crossbar switch, or a multistage interconnection network [190].

The decision is made based on performance requirements, scalability, and cost.

The architecture shown in Figure 2-9 is the architecture of a multiprocessing

system with multiple processing elements, distributed memory, and I/O subsystems

(the link attachments). More specifically, based on its structure and operation

description, the architecture can be classified as a message-passing multiprocessor,

where each processor has its own memory space and messages are the exchanged

packets. When viewing the network system as a multiprocessor, a system architect

Memory Switch Proc

Interconnection

DMA

MAC/
PHY

Link

Memory Switch Proc

DMA

MAC/
PHY

Link

Adapter 1 Adapter N

FIGURE 2-9

Simple network system architecture.

23Structure of network systems



can exploit multiprocessor architecture and design techniques to develop alterna-

tive structures, which may provide benefits in several configurations. Such an

alternative architecture is shown in Figure 2-10, where a shared memory multipro-

cessor architecture is employed.

Shared memory architecture employs a centralized memory, shared by all net-

work attachments to store packets and by all processors to execute protocols. This

architecture provides several benefits over the previous one. Data packets are

stored once in the system and are kept in place before transmission, while in the

distributed memory architecture each packet needs to be stored twice, once in

the receiving adapter and once in the transmitting adapter. This shared memory

architecture leads to more efficient use of memory and to lower packet delay in

the system. Clearly, one can develop several alternatives to these two architectures,

employing concepts and methods from multiprocessor architecture and design.

SUMMARY
This chapter reviewed the OSI reference model and related protocol stacks. Subse-

quently, we defined the functionality and the terminology of network systems. We

introduced the basic architecture of network systems, including adapters, establish-

ing their need and suitability for advanced computer architecture techniques. Our

view of network systems as multiprocessor systems, in general, establishes a basis

for the development of more sophisticated architectures, as described in following

chapters.

Switch

Interconnection

Adapter 1

Proc

Memory

DMA

MAC/
PHY

Link

Switch

Adapter N

Proc

DMA

MAC/
PHY

Link

...

FIGURE 2-10

Shared memory architecture for network systems.

24 CHAPTER 2 Network protocols and network systems



CHAPTER

Requirements of network
systems 3
INTRODUCTION
Network systems are embedded, special-purpose computational systems that imple-

ment one or more protocol stacks. The set of network systems in a network con-

figuration constitutes the infrastructure over which end systems communicate to

implement distributed applications. Thus, network systems need to meet the require-

ments set by these applications. Similarly, network systems may need to meet

requirements set forth by network operators. Due to the diverse needs of emerging

network applications and services and operational concerns, requirements for

network systems span a range of issues and parameters from performance to cost

and power consumption. In general, these requirements can be divided into func-

tional requirements and performance requirements.

To determine if network systems meet their requirements, it is necessary to

have suitable evaluation methods. To verify that functional requirements are met,

the operation of a network system can simply be compared to protocol standards

(e.g., using test cases). To verify that performance requirements are met, a variety

of performance evaluation techniques are used. Performance evaluation of network

systems requires specification of appropriate parameters to be measured, as well as

development of suitable evaluation methods. For example, in network systems,

when one measures performance at the application layer, one has to account for

bandwidth loss due to protocol overhead (packet headers, control packets, etc.)

as well as for protocol processing overhead.

Computational systems, in general, have several parameters that characterize

their performance and functionality. The general approach to evaluating a compu-

tational system is to evaluate either the parameters of its architecture, design, and

implementation, such as clock rates, memory sizes, and bus widths, or the opera-

tion and performance of the system for the execution of a typical application. This
latter approach provides more valuable information, considering that it captures

the characteristics and performance of all subsystems, including their overall inter-

action. In this direction, typical applications are considered either benchmarks

(real, synthetic, or combined code) or model-based operations, taking into account

models that are assumed to capture the operational characteristics of applications.

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
25



This chapter presents the different types of network applications, the require-

ments they place upon network systems, and how these requirements influence the

underlying protocol stacks. Additionally, we describe how protocol layers reduce

the provided physical link bandwidth. Finally, we describe methods for network

system performance evaluation and the tools used for that.

REQUIREMENTS OF NETWORK APPLICATIONS AND SERVICES
Network systems implement protocol stacks, as explained in detail in Chapter 2.

The functional specifications of network systems seem fairly easy to define, as network

systems implement protocol stacks: one needs to define the size of the stack(s),

the protocols of each stack, and the performance characteristics of the network links

used. Given our approach to consider standardized protocols, the specification of

stacks and protocols is easily deduced from the corresponding standards.

The performance specification of a network system is driven by the needs of

the parties involved in data communication: end-system applications, users, and

network operators. For example, network applications and services often deliver

data to a human interface (e.g., telephony, TV, and multimedia applications). In

these cases, special parameters have to be taken into account in order to enable

application and service delivery to humans with appropriate quality so that the ser-

vice is acceptable to the user.

Communications and networking have evolved in a (relatively) small number

of years from telephony to broadband services. Originally, telephone networks

dictated the development of circuit-switched networks, which establish end-to-end

connections (circuits) before voice communication takes place. These networks

require a significant amount of resources, for example, bandwidth and switching,

which are allocated per call (per connection). The high cost of the original approa-

ches to implement circuit switching was one of the main reasons that led to the

development of packet-based networks. Packet-switched networks transfer packets

independently through the networks and implement applications and services of all

types, including those that are traditionally connection oriented (e.g., voice and

video). An example of a packetized network is Asynchronous Transfer Mode

(ATM) technology, which uses packets as primary data units transmitted in the net-

work and can deliver all types of applications and services, real time or nonreal time

[39]. Considering the progress of packet switching technologies and the development

and adoption of Internet Protocol (IP)-based real-time applications, such as IP tele-

phony [64] and IP TV [167], we consider only packet switching networks for the

rest of this chapter, as we do for the whole book. Thus, when considering real-time

applications, such as telephone services, we assume a packet network.

The two facets of network systems, that is, the engineering side as well as the

quality of the delivered services, allow us to classify the requirements of network

applications and of network systems in two categories: functionality (qualitative)

and performance (quantitative).

26 CHAPTER 3 Requirements of network systems



Qualitative requirements
Qualitative parameters capture the characteristics of the network overall rather

than the network systems themselves, as they include clients, servers, switches,

and other network systems as well as links. Thus, they are considered as network

characteristics overall. Characteristic qualitative parameters include correct oper-

ation, work conservation, in-order packet delivery, graceful degradation, etc. Cor-

rect operation implies that the network behaves as expected and as specified by

the protocol of the application/service it executes; furthermore, it implies that

the network can handle any type of valid traffic data. The network needs to be

work conserving, avoiding loss of data or augmentation of work in the network.

In terms of human users, as well as applications, data packets may need to be

delivered to the receiver in order (i.e., without reordering the packet sequence

sent by the sender); this property is a critical characteristic of the vast majority

of applications and services. Finally, graceful degradation is an important

requirement that leads to systems and users perceiving gradual degradation of net-

work performance under load. That is, the network exhibits a gradual “slow

down,” as traffic increases or system components fail, but avoids a collapse of

services and systems; graceful degradation is an important characteristic to ensure

service acceptance and use.

Quantitative requirements
Qualitative characteristics of network applications and services can be described

with combinations of quantitative parameters, such as admission control (the

acceptance of connections or packets in the network), fault tolerance (the ability

to continue operation despite component or link failures), out-of-order statistics

(the number of packets that arrive in different order than the one sent), and so

forth. Clearly, these parameters are not sufficient and, although useful, do not pro-

vide a clear description of the characteristics of the network and its services.

In contrast, there are quantitative parameters of high interest and importance

because they influence services in a direct fashion and constitute fundamental

requirements of services in the sense that their lack leads to an inability to

provide the necessary services provisioning. These quantitative parameters include

throughput, delay, jitter, and packet loss.

Throughput is a parameter that measures completion rates of fundamental data

units and has been used in a wide range of measurements for various systems, for

example, bits per second in links, packets per second in interconnections, and

instructions per second in processors. The important issue related to throughput

is that it is analogous to bandwidth, with the only difference that it refers to effec-

tive bandwidth rather than aggregate. In the case of links, for example, bandwidth

is measured in bits per second counting all transmitted bits, while throughput may

be measured also in bits per second, but counting only the bits that are delivered

successfully to the application or a protocol at a specified layer; thus, throughput

measures the fraction of the bandwidth that is offered to the application or to a

27Requirements of network applications and services



layer of the protocol stack, as a fraction of the bandwidth is used by protocol

control information, etc.

Network delay is the time latency to deliver a unit of data over a link or a net-

work. Delay is composed of four components: (i) transmission delay, that is, the

delay to transmit (insert) the data unit in the network; (ii) propagation delay along

the path; (iii) switching delays by the network systems along the path; and

(iv) queuing delays at the intermediate network systems due to traffic load and des-

tination conflicts among the data units (packets) transmitted by different sources

over the network simultaneously. When considering network services and appli-

cations, though, it is important to note that application performance is affected

not only by network delay as defined previously, but by additional delay as well,

such as network control delays, necessary for network configuration or reconfigu-

ration in light of a change, and application execution delays at end systems [56].

Network jitter is the fluctuation (variation) of delay; typically, it is due to fluc-

tuations in queuing and scheduling delays at network systems across network

paths [56]. Finally, packet loss is the measurement of packets that are lost in

transmission, that is, they are transmitted but never received. There are several

causes for packet loss, mainly network congestion, transmission errors, and net-

work system failures [56].

Example requirements
Practical applications and services are affected by several parameters overall.

Table 3-1 lists a set of applications, including interactive and noninteractive, as well

as real-time and nonreal-time ones. Applications are listed as rows of the table, while

columns show quantitative parameters and their influence on each application.

Clearly, popular services are influenced by all parameters to a larger or smaller

degree.

Table 3-1 Network Services and Quantitative Parameters

Application Throughput Delay Jitter Packet loss

Internet
browsing

Low Large Insensitive Unacceptable

Scientific data
archiving

High Medium Indifferent Unacceptable

Telephony Low Minimal Sensitive Low

Internet TV High Minimal Sensitive Low

First-person
shooter game

Low Minimal Very sensitive Unacceptable

Real-time
surgery

High Minimal Very sensitive Unacceptable

Delay-tolerant
networking

Low Large Insensitive Acceptable

28 CHAPTER 3 Requirements of network systems



Qualitative and the quantitative parameters need to be supported by both proto-

cols and network system implementations. Often, the main target for the provision

of appropriate performance characteristics has been the development of appropriate

protocols that enable the delivery of appropriate applications. For example, tradi-

tionally, a significant problem targeted by the networking community has been

the provision of voice and video services over packet switching networks; this

major issue has been addressed in ATM networks, for example, in the last couple

of decades [120]. Additionally, one can meet these requirements through efficient

design and implementation of the network systems that execute protocols. Impor-

tantly, requirements at the network system must be met carefully by their architects

and designers. Consider, for example, a network supporting voice services, which

have strong real-time requirements in terms of delay, jitter, and data loss. Even if

protocols address all these parameters appropriately, the network needs to employ

network systems that are designed in such a way that the strict requirements are

supported and delivered to the application level. It is impossible, for example, to

execute a delay-bounding protocol on a system that does not or cannot provide

bounds on delays for processes and protocol execution.

THE THROUGHPUT PRESERVATION CHALLENGE
Ultimately, network systems enable the end-to-end delivery of application data,

that is, from one end system to another. Applications running atop network layers

define the requirements for an acceptable user experience: throughput, delay, jitter,

and packet loss can severely affect this experience. Importantly, protocols of the

stacks implemented in network systems add extra information to the application

data due to packet headers and trailers. The sum of application and protocol-related

data has to be transmitted over physical media, leaving a fraction of the link band-

width to actual application data, as Figure 3-1 depicts. Furthermore, additional

overhead is added due to protocol processing, packet queuing, and control inter-

action among protocols in a stack. Thus, the throughput preservation problem is

“to preserve the high bandwidth of a communication link through the various

protocols layers to an application” [118].

Throughput preservation is an important topic in network design. It is not suf-

ficient to address it in a specific layer but rather it involves engineering solutions in

all layers, including cross-layer system optimization in order to retain the high

speed of the communication link up to the application layer. It is important to note

that throughput preservation may involve meeting requirements of real-time and

non-real-time applications and service, both concurrently and independently. That

is, a network system may be engineered for meeting only real-time service require-

ments while another system may be engineered to satisfy requirements of mostly

non-real-time applications.

Advances in communication technologies in recent years demonstrate that the

speed of processors has not caught up with the speed of links and that the speed

29The throughput preservation challenge



increase rate of links is still higher than that of processors [97, 113, 118]. This means

that even a generous resource overprovisioning strategy cannot easily achieve scalabil-

ity and preserve throughput from high-speed links up to the applications. Thus, careful

system design and clever engineering approaches must be exploited to preserve the

throughputwith a fractional cost leading to high-performance network systems capable

of coping with high-speed network links.

Network throughput can be measured by two metrics: bits per second (or bytes

per second) and packets per second. The most appropriate metric in each scenario

depends on the nature of the application and the network layer under examination.

For example, a file transfer application usually measures throughput in average

bytes per second in order to derive how much time it takes a file to reach a destina-

tion. However, real-time applications, such as IP telephony, are mostly interested in

packets per second throughput, where each packet contains some milliseconds’

worth of voice. Such applications require a steady packet delivery rate in order to

present a continuous stream of human voice.

A network system consists of several internal components that need to interact

when handling network traffic. We briefly discuss the operation of an example net-

work system to illustrate how network system design can impact the throughput

needed to meet performance requirements. A generic model of a processing system

for networks includes at least four components, as Figure 3-2 depicts:

1. A link adapter, through which packets are sent and received to/from the

network.

2. A processor or microprocessor, executing a set of network protocols (and

possibly end-user applications).

3. A memory unit, for storing information, including network packets.

4. A Direct Memory Access (DMA) unit, responsible for transferring data to/

from the link adapter.

Data
Application layer

Transport layer

Network layer

Link layer

Physical layer

H

H H

H T

T

H

H H H

H

Data

Data
Application layer

Transport layer
H Data

Data

Data

Network layer

Routers

End system End system

Network

Physical layer

Processing and
queuing overhead

on routers

H THH Data

Network layer

Link layer

Physical layer

H H

H THH

Data

Data

H THH DataData

Link layer
H DataH

Transmission overhead
from packet headers (H)

and trailers (T)

FIGURE 3-1

Traffic flow through network systems and protocol layers.

30 CHAPTER 3 Requirements of network systems



The flow of events for packet reception from the network is as follows:

• A packet is received from the link adapter.

• An interrupt is issued to the processor, which results in a task switch.

• A DMA operation transfers the packet to the main memory.

• The processor performs a set of memory operations for queuing the packet for

later processing by the various network protocols.

• The processor switches back to the task it was executing before the interrupt

occurred.

Clearly, the sequential flow of events results in delays; the more network layers the

system implements, the more delays that are introduced. Memory management is

identified as the first and most significant bottleneck in a network system [118].

Two factors affect network protocol processing costs: per packet and per byte. The

first factor refers to costs for processing a packet independently of size; these are

mostly functions related to packet header processing, such as address lookup and

header checksum checks. The second factor refers to costs for processing each byte

of a packet; these are mostly related to memory operations, such as moving data

to/from the adapter and deep inspecting its contents (also see Chapter 5). These costs

differ among protocols, and the dominant factor may be either one of the aforemen-

tioned, depending on the operations and the packet size; for example, cyclic redun-

dancy check (CRC) operations on long packets are very expensive, leading to high

cost per byte, whereas packet costs are the dominating factor in networks with short,

fixed-size packets.

The sequence of events sets an upper limit on the number of packets and bytes the

system can process in a given amount of time. Smaller packets can reach the applica-

tion more quickly due to smaller per-byte costs. However, smaller packets result in

more packets per second for a specific amount of information. This can slow down

the system due to larger amounts of per-packet processing and thus introduce delays.

Bus

MemoryProcessor

Link adapter DMA unit

FIGURE 3-2

Generic adapter architecture.

31The throughput preservation challenge



An example of this behavior is the case of 1-Gbps Ethernet links. The typical

maximum transmission unit (MTU) for Ethernet frames is 1500 bytes. This means

that a system to preserve throughput must be able to fully process one frame every

12 ms; as we increase link bandwidth or add more links to the system, these

numbers become prohibitive for current processor capabilities. However, should

we allow the MTU to increase to 9000 bytes, as in the case of so-called “jumbo

frames,” then the same system must process one frame every 72 ms. The combi-

nation of per-byte and per-packet costs on each layer sets an interesting trade-off

that the network designer must address. The following chapters explore how

we can achieve higher performance in all layers, up to the application, and thus

preserve the throughput.

TRAFFIC MODELS AND BENCHMARKS
To determine if network systems meet qualitative and quantitative requirements,

several evaluation techniques are used. Evaluation of network systems is per-

formed with the typical methodologies for performance evaluation of computa-

tional systems at the corresponding level of abstraction. Analysis and simulation

are used for architectures and designs, whereas measurements are performed for

real, implemented systems. A significant question in all methods and at all levels

of abstraction is regarding the traffic or application used for the evaluation.

For example, when evaluating the architecture of a switch, what is the best traffic

to consider?

Evaluation in networking is often based on analytical techniques developed for

evaluating protocols and networks under various theoretical traffic scenarios.

In contrast, evaluation of networks and systems using real traffic traces is less com-

mon, as only few trace files are widely available (e.g., from National Laboratory

for Applied Network Research [115]). Drawing an analogy to classical evaluation

of computational systems, we deduce that, in networking, evaluation is performed

mostly with theoretical traffic models that have been developed in an effort to

capture generic characteristics of various applications; importantly, commonly used

benchmarks do not exist or at least are not widely available. Considering the

models that exist in the literature for capturing characteristics of real applications,

we do not discuss such models further. Architects and developers can choose

among several traffic models to evaluate their systems, identifying the model that

best approximates the targeted applications.

Importantly, developments in embedded computing systems and the need for

effective evaluation methods have led to significant steps in the establishment of

widely accepted, and hopefully standardized eventually, benchmarks. The Embed-

ded Microprocessor Benchmark Consortium (EEMBC) [49] leads an effort to

establish and promote benchmarks that enable system developers to choose the

appropriate embedded microprocessor for their designs. Considering the dramati-

cally different characteristics and requirements of network services, as shown also

32 CHAPTER 3 Requirements of network systems



in Table 3-1, EEMBC partitions the benchmarks and scores in application areas,

such as automotive, consumer, entertainment, telecom, networking, office auto-

mation, etc. Networking constitutes a significant component of the EEMBC bench-

mark suite. Specifically, it includes benchmarks for the most critical network

applications where embedded microprocessors are typically used: IP packet pro-

cessing, IP packet reassembly, IP network address translation, route lookup, OSPF

protocol, quality of service (traffic shaping), and Transmission Control Protocol

(TCP) execution [50]. The EEMBC efforts seem to be influenced by target envi-

ronments where Ethernet and TCP/IP technology prevail. Clearly, these technolo-

gies are so widespread that they cover a significant majority of network systems,

such as network adapters, routers, etc. However, they definitely do not cover all

network protocols and applications and they need to be augmented. Importantly

though, the telecom benchmarks of EEMBC enable evaluation of end network

systems, such as mobile phones, etc.

The focus of existing efforts on microprocessors is part of the work needed to

develop benchmarks for networking, as there is a need for benchmarks for other

components as well, such as memory managers, switching fabrics, schedulers,

etc. Benchmarking efforts are still in their first steps, but constitute a significant

direction for the future, where a wider range of real traffic data is necessary for

the development and evaluation of real network systems.

SUMMARY
Network systems are special-purpose embedded systems addressing requirements of

networks and related services and applications. The wide range of services developed

and envisioned for future networks include data transmissions, telephony, video

services, and so forth. These applications and services place significant requirements

on network systems, both quantitative and qualitative. Furthermore, these require-

ments must be satisfied in a demanding context with practical constraints that include

low cost, low power consumption, configurability, and manageability.

This chapter identified the requirements on network systems, which are placed for

a range of services, including real-time and non-real-time, human oriented, or auto-

mated. We have associated these parameters with the driving problem of perfor-

mance preservation through protocol layers, and we have discussed the need for

traffic models and benchmarks for evaluating the performance of current network

systems.

33Summary



This page intentionally left blank



CHAPTER

Interconnects and switching
fabrics 4
INTRODUCTION
Network systems and computing systems employ interconnections to deliver data

among their components. In computing systems, an interconnection is necessary

to enable data transfer among the processor, the memory system, and input and

output (I/O) subsystems. This use of interconnects is common for all computing

systems, including network systems. The design of interconnects has a big impact

on the performance and functionality of network systems. Therefore, interconnects

are an important aspect of network system architecture.

Themost typical interconnection for component communication is the well-known

bus, which is composed of a set of wires delivering data, address information, and

control information (e.g., timing, arbitration). Busses are shared interconnections

among a number of attached components, implementing a point-to-point communica-

tion path between any two components. The typical operation of a bus is as follows:

components that need to transmit information to another component request access

to the bus, an arbiter selects the component that will transmit (in case of several

requests), and then the selected component transmits its data. Considering the opera-

tion of the bus, it is clear that all data transmissions among the components of the sys-

tem are multiplexed over the bus. This multiplexing may delay some communications

over the bus and limits the aggregate system throughput to the peak throughput of

the bus. Despite these drawbacks, busses are quite simple and have significantly lower

cost relative to alternatives; this is the key to their success and wide adoption in sys-

tems to date. Furthermore, their peak throughput has increased significantly, reaching

gigabits per second in the last couple of decades, as conventional bus technologies

demonstrate (e.g., PCI [165], VME [80]).

The high peak throughput and low cost of busses make them good candidates

for the interconnection of components in low-cost systems and in systems that have

low data traffic requirements among their components. These characteristics consti-

tute the motivation that has made bus-based architectures also attractive in the first

generations of networks, especially the first generations of local area networks

(LANs) and metropolitan area networks (MANs). LAN architectures, such as

Ethernet [75], token ring [73], and token bus [68], as well as MAN architectures such

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
35



as FDDI [150] and DQDB [72], employ shared media, with low cost and high

peak performance analogous to system busses. They are useful and successful in

environments where traffic requirements are such that the multiplexing of all traffic

over the single medium leads to acceptable delays and throughput per connected

user or system. However, the increasing requirements for low latency point-to-point

communication and for high throughput lead to a need for multiple concurrent

interconnections among pairs of communicating components or systems.

Switches and networks of switches constitute alternative interconnections to

busses, implementing parallel, nonconflicting paths among communicating compo-

nents and systems. Figure 4-1(a) shows a switch with N inputs and N outputs,

employing a typical architecture to implement input-to-output connections dynami-

cally. This switch, able to implement any combination of N parallel, nonconflicting

input-to-output connections, is called a crossbar switch and constitutes the build-

ing block of several switch-based networks. Figure 4-1(b) shows a network of

switches, composed of crossbar switches and employing a mesh topology, which

is able to achieve several paths of communication in parallel and in contrast to

shared media networks.

Output N

(a)

......

(b)

Output 1

Input N

Input 1

FIGURE 4-1

Crossbar switch and mesh network of crossbar switches.

36 CHAPTER 4 Interconnects and switching fabrics



Crossbar switches can employ any transmission link technology and are thus

useful in several environments. An interesting and important use of crossbar

switches emerged soon after it was realized that shared media LANs were not

sufficient for emerging applications that require high point-to-point throughput

and low latency. In that case, crossbar switches emerged that used LANs as their

links. In environments with structured deployed cabling for specific LANs,

most commonly Ethernet, switches were inserted, reducing traffic conflicts and

enabling high-speed switching among systems, as shown in Figure 4-2; this

was the first generation of LAN switches. Also, new network technologies that

employ switches were developed for various environments and applications;

these technologies and related protocols include ATM [103], Fiber Channel

[89], and InfiniBand [164]. Importantly, switches emerged not only for networks

but for intersystem interconnection as well. For example, the evolution of multi-

core processors led to the employment of interconnection networks (multiple

data paths) of various types, such as switch interconnects, HyperTransport [179],

and multiple networks, such as the EiB of the Cell BE [27]. Furthermore,

switched backplanes are introduced for network systems, such as routers [31,

180, 181].

This chapter focuses on switches and analyzes their architecture, their require-

ments for scheduling, and their performance. We consider ATM as the driving

network technology for switches because it is an important switched network

technology employed in LANs, MANs, and WANs and because it captures the

characteristics of several switches in computing systems due to its cell-based

operation, where all cells have equal size. First, we describe switches and inter-

connection networks and then we present the main switch organizations. We focus

on structures with multiple input queues and analyze the scheduling problem that

Ethernet

Ethernet

Ethernet

LAN
switch

End
system

FIGURE 4-2

Local area network (layer-2) switches.

37Introduction



emerges. Finally, we address the issue of randomization in switch scheduling,

which is an important tool to not only achieve high performance, but to enable

analysis of switches and networks as well.

CROSSBARS AND INTERCONNECTION NETWORKS
Crossbar switches are designed to implement all permutations of connections among

inputs and outputs. Crossbars constitute an important component of emerging inter-

connections among system components and in networks of all types: local, metro-

politan, and wide area. Their ability to establish multiple parallel data paths makes

them attractive building blocks for high-performance interconnections and net-

works. However, the high design complexity of crossbars limits their scalability in

size, that is, the number of input and output terminals they interconnect. Thus, net-

works of crossbars are employed to interconnect a large number of terminals and

also when longer distances have to be accommodated.

The basic crossbar switch was originally developed for interconnection networks

of multiprocessors. It is a 2�2 buffer-less switch, which was named crossbar because

it could be in one of two states, cross or bar, as shown in Figure 4-3(a). The concept of

crossbar switching was extended to switches of larger sizes as well, where switches

implement any input-to-output permutation with more inputs and outputs. The design

of a crossbar switch is simple but expensive, in terms of resources, as it has to

Output 2

“Bar” configuration“Cross” configuration

(a)

(b)

Output 1

Output 2

Output 1

Output 2

Output 1 Input 1

Input 2

Input 1

Input 2

Control

Input 1

Input 2

FIGURE 4-3

(a) Crossbar switch states. (b) Typical design of crossbar switch.

38 CHAPTER 4 Interconnects and switching fabrics



implement all potential permutations of inputs to outputs. A typical design of a crossbar

switch is shown in Figure 4-3(b), which shows a Register Transfer Level design. This

crossbar design can be and has been implemented in various technologies, including

specialized VLSI implementations with Domino logic.

The high cost of crossbar switches, growing as O(N2), where N is the number

of switch terminals, as well as the need to interconnect physically separated sys-

tems over variable distances, has led to the development of networks of cross-

bar switches. These networks employ various topologies, each offering different

characteristics in terms of ease of routing, node connectivity, fault tolerance, etc.

Thus, these interconnection networks are efficient for different communication

patterns and thus are preferable for specific classes of applications and services.

Figure 4-4 shows two characteristic interconnection networks: a mesh and a

(a)

(b)

FIGURE 4-4

Interconnection networks: (a) mesh and (b) butterfly.

39Crossbars and interconnection networks



butterfly interconnection. Interconnection networks such as the butterfly, Omega,

and other similar networks are commonly used in multiprocessors and backplanes

of systems that are in physical proximity and enable uniformity in link lengths;

furthermore, their regular structure enables their efficient use in exploiting parallel-

ism of applications and thus are attractive for use in parallel processing systems in

general. The main characteristic of networks such as the ones shown in Figure 4-4

is their ability to establish and exploit parallel active paths between several pairs of

communicating parties. However, not all combinations of parallel active paths are

feasible, as in the case of the crossbar switch or a fully connected network.

Analysis of such interconnection networks is beyond the scope of this book and

thus we focus on switches in the remaining part of the chapter. The interested

reader can find several fairly complete presentations of interconnection networks

in the literature [37, 45].

Crossbar switches are attractive for a wide range of network systems because

many systems require a modest number of link attachments, either in switched net-

works or within network systems interconnecting components. Crossbar switches

with a modest number of inputs and outputs, for example, 8 to 64 inputs and out-

puts, have reasonable cost and enable all possible input-to-output connections in

parallel, enabling exploitation of parallelism in data transfers. The development

of high-speed, serial point-to-point connections that can be used as a basis for

intrasystem and intersystem switched networks leads to the expectation of crossbar

switches that accommodate more inputs and outputs in the future as technology

progresses. For these reasons, we focus on crossbar switches in the remainder of

the chapter; reference to a switch implies a crossbar switch.

SWITCH ORGANIZATION
Crossbar switches are characterized by a large number of parameters: (i) use of

memory or not, (ii) transmission of fixed- or variable-size packets, (iii) synchro-

nous or asynchronous operation, (iv) equal number of input and output (I/O) term-

inals, and (v) internal connectivity. Importantly, switches are classified according

to these parameters.

One of the most important parameters is the use of memory, that is, whether

switches are buffered or buffer-less. Buffer-less switches are typically employed

in synchronous, connection-oriented networks that implement their input–output

connections before any transmission of data, avoiding the need for buffering data

in the switch due to conflicts. However, in most communication systems where data

transmission is asynchronous and networks are composed of autonomous switches,

buffered switches are the norm. The main goal of memory in switches is to provide

temporary storage for incoming packets that need to wait for transmission due to

conflicts with other packets that contend for the same output link and high load.

Another important parameter in switches is the size of the packets they transfer.

There are two approaches: (i) fixed-size packets and (ii) variable-size packets. Switches

40 CHAPTER 4 Interconnects and switching fabrics



with fixed-size packets receive and transmit packets that have equal length. Network

traffic that consists of variable-size packets at higher layers in the protocol stack is

broken down into fixed-size packets within the switch. These fixed-size packets

are reassembled at the output port to recreate the original variable-size packets.

Not all fixed-size packet switches accommodate the same packet length, but their

operation requires a single packet size. In contrast, variable packet switches accom-

modate a wide range of packet lengths. Clearly, switches accommodating variable

packet sizes require more elaborate circuitry and need to take into account several net-

work parameters in order to enable networks to meet their goals; such parameters

include fairness, end-to-end delay requirements for short and long packets, and others.

The trends of networking technology, however, are focusing more on fixed-size

packets in switches, which enable multiplexing of higher level traffic, provide good

average performance in terms of packet delays, and enable more straightforward

and thus efficient switch designs. The trade-off between fixed-size switching and

variable-size switching has been addressed [129] and still provides a good source

of debate. However, as network technologies based on fixed-size packet transmis-

sion, such as ATM [103], are still progressing and being adopted into a wider net-

work base, we focus on fixed-size packet switching.

The structure and the placement of memory in switches enable a range of pos-

sible switch architectures, each with different requirements and performance char-

acteristics. In the following, we focus on N � N, synchronous, cell-based crossbar

switches with memory because they capture the characteristics of most widespread

technologies, such as ATM [103], and cover a wide range of switching technolo-

gies. In the synchronous model, we assume that all packets arrive simultaneously

(and synchronous to the global clock) and that their transmission time is equal to

the global clock cycle. Synchronous operation is widespread in such switches

because it leads to simpler circuits with lower cost and easier verification of correct

operation. The assumption of an equal number of input and output ports is also typ-

ical. Although N �M switches, with a different number of inputs and outputs, exist,

the difference of the number of input and output ports is not significant at the

architectural level. A switch with fewer outputs than inputs operates as a switching

multiplexer, whereas a switch with fewer inputs than outputs operates as a switch-

ing demultiplexer. In either case, the architectural principles are similar, as can be

deduced easily from Figure 4-3(b), as switch designs employ (de)multiplexers.

Figure 4-5 shows the main switch memory architectures. Figure 4-5(a) shows a

switch with one queue per input. Incoming packets to an input are inserted to the

queue corresponding to the incoming port. At every time interval, a scheduler

looks at the packets at the heads of all queues and chooses the packets that will

be served (delivered to their output) next; this scheduling is necessary because sev-

eral packets may be directed to the same output port and thus need to be

sequenced. Figure 4-6 plots the average delay of packets for an input queuing

switch, assuming a traffic pattern that is typical for switch analyses: incoming

packets are assumed to be generated by Bernoulli independent and identically

distributed (i.i.d.) processes and each packet arriving at the switch is assumed to

41Switch organization



be targeted to a specific output with a uniform probability distribution among all

outputs. As Figure 4-6 indicates clearly, input queuing switches cannot achieve

output throughput more than (almost) 60%, even under heavy load conditions. This

occurs because input queuing switches suffer from a blocking phenomenon, called

Head-of-Line (HoL) blocking, which limits switch performance. HoL blocking is

Output 1

Output N

Output 1

Output N

Output 1

Output queue 1

Output queue N

Output N

Output 1

Output N Input N

Input 1

...
......

...
...

...

...

... ...
...

Input N

Input 1

Input N

Input 1

Input N

(a) (b)

(c) (d)

Input 1

FIGURE 4-5

Input and output queuing switches.

1

10

100

1000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load

Input Queuing

Output Queuing

FIGURE 4-6

Average packet delay for input and output queuing switches.

42 CHAPTER 4 Interconnects and switching fabrics



due to the fact that a head packet that is not served blocks all packets in its queue,

even ones that are targeted toward outputs that may be idle [85].

The HoL blocking phenomenon is avoided with alternative memory architec-

tures. Figure 4-5(b) shows one such architecture where N queues are attached to

the outputs, one queue per output, rather than to the inputs. As Figure 4-6 shows,

this architecture avoids HoL and achieves 100% throughput under heavy load con-

ditions. It is important to realize, though, that this performance improvement is

achieved with increasing the cost of the switch because the internal fabric of the

switch needs to operate with a clock that is N times faster than the clock of

the overall switch. One can realize the need for this internal speedup, when consid-

ering the traffic scenario, when N incoming packets are targeted to the same out-

put; in this case, N packets must be inserted to one outgoing packet queue in one

switch clock cycle, requiring queue accesses that are N times faster than the switch

clock cycle in order to avoid loss of data. An alternative architecture that avoids

HoL blocking is the one shown in Figure 4-5(c), where input queues are divided

to N queues each; this enables the scheduler to choose any available queue for

transmission. This configuration, known as advanced input queuing or virtual out-

put queuing, avoids HoL blocking at the cost of using multiple (N2) input queues,

relatively to the N used in the simple input queuing scheme. However, each of

the N2 input queues has the same cost as each of the N simple input queuing

switch queues. Also, Figure 4-5(d) illustrates an alternative method that avoids

HoL blocking at a lower cost than that of output queuing: the combined input–

output (CIO) queue architecture combines input and output queues and employs

an internal fabric of small or no speedup.

SWITCH SCHEDULING
Scheduling is necessary in switches because high load and routing conflicts lead to

contention for resources. In switches that employ input queuing, scheduling is nec-

essary to choose the input queues that will be served at every clock cycle; in

switches that employ output queuing, packets contend for output queues and need

to be serialized for buffering and transmission over a link. The scheduling problem

in switches with input queuing is straightforward: there may be up to N requests in

an N � N switch, which may have conflicts on some outputs; because the selection

of any request to serve does not affect any other request or output in any way, the

scheduling problem can be solved easily by employing independent schedulers

at each output, which select a request—among candidates—independently with

any typical scheme, such as random selection, round robin, etc. [85].

Considering the resources that require scheduling, the most demanding sched-

uling requirements emerge in switches with multiple input queues (advanced

input queuing or virtual output queuing switches). In these switches, the sched-

uler needs to choose at most N input queues—as many as the outputs—among

N2 input queues, with the requirement that each input with N queues can forward

43Switch scheduling



at most one packet per cycle and each output can transmit at most one packet

per cycle. Thus, scheduler decisions need to satisfy restrictions per input and

output. In contrast, in switches with simple input queuing, the scheduling prob-

lem is straightforward because the input queues that contend for each output

are disjoint from any input queues that contend for any other output; this enables

independent scheduling per output without the need for any coordination as men-

tioned earlier, in contrast to switches with multiple input queues, which require

coordination. In the following, we focus on the scheduling problem for switches

with multiple input queues due to its complexity. The model of multiple input

queues per input of a switch fits well in network systems, considering their struc-

ture as described in Chapter 2. In a system configuration where the backplane is

a switch, multiple input queues can be organized and configured in the adapters,

in their packet memory, minimizing the cost of input queue establishment and

management.

We describe the scheduling problem in virtual output queuing switches con-

sidering a synchronous model of switch operation for a switch that receives and

transmits fixed size packets. The switch is considered to operate in clock cycles,

where the duration of the cycle is the transmission delay of one packet. The sched-

uler operates using the same clock, calculating a schedule in every cycle, that is,

choosing the input queues that will transfer packets to the corresponding output

links during the next cycle. In every cycle, the scheduler of an N � N switch

can choose up to N different transfers among all the requests, which can be

up to N2 overall. Because the number of potential choices of the scheduler in

every cycle can be up to N!, a large number of scheduling algorithms exists for

calculation of a schedule.

We need a model for switch scheduling, which represents the requests of inputs

for transmission through the switch and which enables us to express the restrictions

of the system. Typical models are suitable: (i) the request matrix and (ii) the bipar-

tite graph. Figure 4-7 shows these two models. Figure 4-7(a) shows a request

matrix, RM, which represents inputs as rows and outputs as columns. The model

originates from the well-known traffic matrix used in traffic engineering and has

binary values in its entries. A value of 1 at RM[i,j] represents the existence of a

packet at input In[i] requesting transfer to output Out[j]; a value of 0 indicates that

the corresponding queue is empty and thus there are no requests for packet transfer

from In[i] to Out[j]. The bipartite graph model, shown in Figure 4-7(b), represents

requests with a bipartite graph, where the two parts represent inputs and outputs

correspondingly. An edge from one part to the other represents the corresponding

request. Figure 4-7 shows models of the same requests with both models; thus, the

request RM[i,j] in the request matrix is represented with the edge going from node

In[i] to node Out[j]. Clearly, the two models are equivalent and one representation

leads to the other in a straightforward way. However, each model enables us to

conceptualize the requests differently and to develop and understand different

algorithms better. For this reason, we will use them both, each one to describe a

different scheduling algorithm.

44 CHAPTER 4 Interconnects and switching fabrics



The use of the two models, despite their equivalence, also originates from dif-

ferent approaches used to develop scheduling algorithms. In general, two different

categories of scheduling algorithms exist based on the decision method used to

choose the transfers that will be performed. The first category, central schedulers,

makes decisions centrally, using all available information, typically represented

with a data structure such as the Request Matrix. The second category, distributed

schedulers, uses a distributed algorithm that calculates matching based on local

input and output information and after exchange of messages between inputs and

outputs. Because message exchange follows the paths of the requests, as repre-

sented pictorially by the bipartite graph model, the bipartite graph is typically used

to illustrate the operation of distributed schedulers. An important characteristic of

distributed schedulers is that they are iterative, that is, they calculate a first match-

ing and then augment it through iterations that add new requests to outputs that

remain idle after the previous iteration(s).

Outputs

Inputs

In[0]

In[1]

In[2]

In[3]

Out[0]

Out[1]

Out[2]

Out[3]

(a)

(b)

0

1 0 0 1

0 1 1 0

0 1 0 1

1 1 1 0

0

1

2

3

1 2 3

FIGURE 4-7

Switch scheduling model.

45Switch scheduling



The potentially large population of choices a scheduler can make results in a

large number of candidate scheduling algorithms. Independently of the methods

used by the schedulers, the goals of all schedulers are basically the same:

1. High throughput: to maximize the number of requests per time unit

2. Low latency: to minimize the average packet latency

3. Fairness: to avoid starvation of requests and serve all input queues in a fair

manner

4. Low-cost implementation: to enable an efficient implementation that will cal-

culate an effective schedule within one cycle of the switch’s operation.

Among these goals, the first three are typical algorithmic goals. The fourth one,

though, is quite important in network systems as they have emerged through the

last decades. The increasing link speeds and the adoption of cell-based networks,

such as ATM, lead to very small transmission delay per cell (packet). Thus, the

scheduling cycle decreases as well, considering the synchronous operation of

switches, leading to a need for low-cost, efficient implementations of scheduling

algorithms that can complete a schedule within one switch cycle.

Centralized scheduling
Centralized schedulers model transfer requests with a single data structure, such as

the Request Matrix, and execute a sequential algorithm to calculate a schedule.

A schedule is a subset of the requests, which can be served in parallel; in reference

to the Request Matrix, the calculated schedule includes at most one request per row

(input) and at most one per column (output) in order to satisfy the requirement that

each input and each output can transfer one packet per cycle.

Several algorithms can be employed to calculate a correct schedule. Straight-

forward algorithms calculate the schedule in the following iterative fashion:

for (I ¼ 0; i < N; i++) {

Choose a row (different from the previous iterations)

Choose a column with a request

}

Use of any selection method for the steps given earlier leads to calculation of a

correct schedule; selection methods include random, round-robin, etc. Although all

these algorithms lead to a correct schedule, they are not efficient and are unable to

provide finite average packet delay as the switch load approximates 100%. It must

be noted that traffic considered for performance evaluation is generated by Bernoulli

i.i.d. processes with uniform distribution among outputs for each generated packet.

More sophisticated scheduling algorithms are necessary to achieve bounded

average packet delay under heavy load. Such algorithms maximize the average

number of requests served per cycle, while achieving fairness. One such algo-

rithm is the Two-Dimensional Round-Robin (2DRR) algorithm, which is a two-

dimensional generalization of the one-dimensional round-robin scheme used in

allocation problems with a single shared resource [95].

46 CHAPTER 4 Interconnects and switching fabrics



The 2DRR examines in parallel subsets of the N2 cells of the Request Matrix

RM that can be served in parallel, that is, cells that belong to different rows and

columns; such subsets include up to N different cells for an N � N switch. Looking

at RM as a two-dimensional structure, one clear such choice is a (geometric)

diagonal, such as cells labeled D0 in the 4�4 Request Matrix shown in Figure 4-

8(a). If one examines cells of a diagonal and there exist requests in them, one

can serve the requests in parallel and the schedule is calculated in a single step.

Examining the same diagonal in every cycle may lead to starvation of requests.

Furthermore, there may be no requests in the cells of RM for the examined diago-

nal. Because of this, 2DRR defines N different diagonals, which cover all cells in

RM, and in every cycle it examines the cells of a different diagonal. Figure 4-8(a)

shows four diagonals, D0, . . ., D3, for a 4 � 4 switch. All four diagonals cover all

16 (N2) cells. Diagonals D1, D2, and D3 are produced from D0 by shifting D0 to the

right by one, two, or three columns, respectively. In general, for an N � N switch,

the N � N Request Matrix is organized in N diagonals.

The 2DRR avoids starvation and provides fairness in the sense that it guarantees

to serve any input queue within N cycles, as each queue is examined by one of the

N diagonals and each of the N diagonals will be examined during a sequence of

N cycles. Using one diagonal per cycle, though, leads to low performance in many

traffic scenarios because the examined diagonal may have a few requests or even

0

0 1 2 3

1 3 0 2

2 0 3 1

3 2 1 0

0

1

2

3

1 2 3

Switch cycle

Diagonal
sequence

(a)

(b)

O
ut

[0
]

O
ut

[1
]

O
ut

[2
]

O
ut

[3
]

D0 D1 D2 D3

D3 D0 D1 D2

D2 D3 D0 D1

D1 D2 D3 D0

In[0]

In[1]

In[2]

In[3]

FIGURE 4-8

Two-Dimensional Round-Robin diagonals and Pattern Sequence Matrix.

47Switch scheduling



none, while there may be additional requests in RM that can be served. In order to

improve performance, we need to identify such additional requests. The 2DRR

achieves this in the following fashion: after examining (“applying”) the selected

diagonal as described earlier, if there are idle inputs and outputs, it “applies” the

remaining diagonals, one at a time and within the same cycle, in order to identify

additional requests to be served. The application sequence of the remaining

diagonals is critical for fairness: if they are applied in a fixed sequence, for example,

D0, . . .,DN � 1, requests that lie in the cells ofD0 are preferred over ones that belong to

the other diagonals D1 . . . DN � 1, the requests that lie in the cells of D1 are preferred

over the ones inD2 . . .DN � 1, and so on. This unfairness is alleviated by changing the

order in which the diagonals are applied in every cycle. In 2DRR, this order is defined

through a Pattern Sequence Matrix (PSM), which dictates the sequence in which the

N diagonals must be applied in a sequence of N cycles. The PSM for a 4� 4 switch is

shown in Figure 4-8(b). As the figure indicates, during the first cycle of operation the

diagonals will be applied with the sequence specified in the first column of PSM; in

the second cycle, they will be applied as specified in the second column; and so on.

After four cycles, PSM is reused starting from the first column, etc. The PSM of Fig-

ure 4-8(b) has two important properties that provide fairness among diagonals. These

properties are:

1. The maximum direct ordering of diagonals is 1, where maximum direct order-

ing is the maximum number one diagonal index follows another index.

2. The maximum row and column frequency is 1, that is, the maximum number a

diagonal index appears in a row or column of PSM is 1.

The two properties basically indicate that every diagonal is examined only once

per cycle, that its order is different in every cycle, and that, for any pair of diago-

nals, the number that one precedes the other one is exactly 1. This indicates clearly

that no diagonal is preferred over another one when examining requests; that is, all

requests are treated equally. These two properties result from the way that matrix

PSM is constructed. Specifically, PSM is calculated using the following algorithm:

for (j ¼ 0; j < N; j++) { /* sequence through N columns*/

offset ¼ j + 1;

v¼ � 1; /* setup to make j first pattern in sequence “/

for (i ¼ 0; i < N; i++) {

while (v � M) v¼(v + offset) mod M;

PSM[i,j] ¼ v

}

}

Taking into account everything just discussed, the 2DRR operates using three

matrices: (i) the Request Matrix (RM), which specifies the nonempty input queues

in every cycle; (ii) the Diagonal Matrix (DM), which partitions the set of N2 queues

to N diagonals, each with N matrix entries (cells); and (iii) the Pattern Sequence

Matrix (PSM), which specifies the sequence in which all N diagonals are examined

during each cycle of the switch’s operation. The result of execution of the 2DRR is

48 CHAPTER 4 Interconnects and switching fabrics



calculation of a matrix, called Allocation Matrix (AM), whose entries have binary

values with the “1” indicating that the corresponding queue is selected for service

(the value is “0” otherwise). The operation of 2DRR is described fully later,

considering the aforementioned four matrices. For the description we consider that

the switch cycles accommodate the examination of all N diagonals in one cycle,

that the switch cycles are numbered (indexed) starting from “0,” and that the

described operation is for a cycle with index k:

for (i ¼ 0; i < N; i++)

for (j ¼ 0; j < N; j++) AM[i,j] ¼ 0;

k ¼ k mod N;

for (i ¼ 0; i < N; i++) {

Dm ¼ PSM[i,k]

for(allAM[r,c]thatbelongtoDm,thatis,suchthatDM[r,c]¼Dm)do{

if (RM[r,c] ¼ 1 AND (input r and output c are available)

then AM[r,c] ¼ 1

}

}

Figure 4-9 shows an example from the original 2DRR description [95], which illus-

trates operation of the 2DRR. Figure 4-9 shows all the matrixes involved—

Request, Diagonal, and Pattern Sequence—and operation of the 2DRR for the

specific traffic scenario included in the specific Request Matrix.

The 2DRR achieves fairness and high performance. Figure 4-10 shows the

average packet delay for the 2DRR next to the delay achieved with output queuing.

Although inferior to the performance of output queuing, 2DRR achieves high per-

formance at all loads, with delay that is bounded for all loads up to 1.

It is important to note that the 2DRR is not a completely unbiased algorithm

despite all the properties and methods described earlier. Bias originates from the

choice of diagonals. The 2DRR uses N diagonals for an N � N switch, although

N! possible diagonals exist. A different choice of diagonals leads to different

service characteristics per input–output pair. To avoid this bias, one can extend

the 2DRR to change the set of used diagonals occasionally. Enhanced 2DRR

[95] is such an algorithm, which changes its set of diagonals every N cycles. Such

algorithms provide more fairness on the average for service per input queue, but it

results in relaxation of the service guarantee per input queue from N to 2N [95].

Distributed scheduling
An alternative way to model the scheduling problem is with a bipartite graph,

where one part corresponds to inputs and the other to outputs while edges corre-

spond to service requests, as shown in Figure 4-7. This model makes clear that

the scheduling problem is a graph matching problem; a matching in a graph is a

subset of its edges that have no common nodes. The graph matching problem has

drawn attention for a long time for general or bipartite graphs, weighted or not, in

efforts to calculate maximum size matchings or maximum weight matchings [176].

49Switch scheduling



0 1 2 3

0

1

2

3

0 1

3 1

32 0

2

0

0 1 2 3

3

2

1

Time slot index

Pattern 
sequence

Outputs

Inputs

0 1 2 3

0

1

2

3

1 1

1 1

11 0

0

0

1 0 0 1

0

0

1

Pattern 0

Time slot 0 Time slot 1

0 1 2 3

0

1

2

3

Pattern 1

0 1 2 3

0

1

2

3

3 0

0 1

12 0

2

3

0 1 2 3

1

2

3

1 1

1 1

11 0

0

0

1 0 0 1

0

0

1

0 1 2 3

0

1

2

3

1 1

1 1

11 0

0

0

1 0 0 1

0

0

1

Pattern 1

0 1 2 3

0

1

2

3

Pattern 3
1 1

1 1

11 0

0

0

1 0 0 1

0

0

1

0 1 2 3

0

1

2

3

1 1

1 1

11 0

0

0

1 0 0 1

0

0

1

Pattern 2

0 1 2 3

0

1

2

3

Pattern 0
1 1

1 1

11 0

0

0

1 0 0 1

0

0

1

0 1 2 3

0

1

2

3

1 1

1 1

11 0

0

0

1 0 0 1

0

0

1

Pattern 3

0 1 2 3

0

1

2

3

Pattern 2
1 1

1 1

11 0

0

0

1 0 0 1

0

0

1

FIGURE 4-9

The 2DRR example.

50 CHAPTER 4 Interconnects and switching fabrics



Because sequential algorithms that calculate maximum size matchings are expen-

sive, that is, slow, considering the need to meet performance requirements

of continuously increasing link speeds, which increase much faster than the speed of

the electronics that perform algorithmic operations, efforts have been made to

achieve higher scheduler speed through parallelized matching algorithms. These

algorithms consider switch ports as independent and capable to operate in parallel.

The first parallelized matching algorithm that appeared was PIM [3], which

introduces the main algorithmic method of a class of developed algorithms that

calculate effective schedules efficiently. PIM is an iterative algorithm that calculates

a good matching in an incremental fashion through iterations: the first iteration

calculates a matching, the second one adds edges to it, and so on. This approach is

followed by most existing distributed scheduling algorithms, which are iterative,

and in every step (iteration) they use a handshake protocol between inputs and

outputs to choose requests to serve. The generalized handshake protocol used in

every iteration was first introduced by PIM and performs the following operations:

1. Inputs broadcast their requests to the outputs,

2. Each output selects one request independently and issues a Grant to it, and

3. Each input chooses one Grant to accept, as it may receive several Grant signals.

In order to provide a basis for describing the algorithms, we use the following

notation. We consider an N � N switch with N inputs, In[0] . . . In[N � 1], and

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load

2DRR
Output

FIGURE 4-10

Performance of the 2DRR.

51Switch scheduling



N outputs, Out[0] . . . Out[N � 1]. Every input In[i] maintains the following state

information:

1. Table Ri[0] . . . Ri[N � 1], where Ri[k] ¼ 1, if In[i] has a request for Out[k]
(0, otherwise)

2. Table Gdi[0] . . .Gdi[N� 1], where Gdi[k]¼ 1, if In[i] receives a Grant from Out
[k], (0, otherwise)

3. Variable Ai, where Ai¼ k, if In[i] accepts the Grant fromOut[k], (�1, if no output

is accepted)

Analogously, each output Out[k] maintains the following state information:

1. Table Rdk[0] . . . Rdk[N � 1], where Rdk[i] ¼ 1, if Out[k] receives a request

from In[i] (0, otherwise)
2. Variable Gk, where Gk ¼ i, if Out[k] sends a Grant to In[i] (�1, if no input is

granted)

3. Variable Adk, where Adk ¼ 1, if the Grant from Out[k] is accepted (0, otherwise)

Functional differences among the various algorithms exist only in the way that out-

puts choose which input to issue the Grant to and in the way inputs choose which

Grant to accept. Because every choice to issue a Grant is made with a process that

examines candidate inputs in some fashion, we describe this process using two

variables per output: gk is a variable that shows which input will be examined first

(to issue a Grant) during a step, while g’k shows the input to be examined first in

the consecutive step. Similarly, the choice of which Grant to accept at an input is

made with an analogous process, which is described with the variables ai and a’i.
Functional differences in choosing which Grant to issue at outputs and which

Grant to accept at inputs result in significant performance differences. PIM uses

randomness, choosing among candidates with a uniform distribution. This decision

for PIM led to the use of log(N) iterations, as it was proven that log(N) iterations
with random decisions lead to the calculation of a maximal matching [3]. So, using

the introduced notation, in every step PIM executes the following operations for all

Out[k] and In[i]:

Rdk[i] ¼ Ri[k]

gk ¼ random (among Requests)

Gk ¼ gk

Gdi[k] ¼ 1, if Gk ¼ i

ai ¼ random (among Grant’s)

Ak ¼ ai

Figure 4-11 shows the performance of PIM, plotting the average packet delay

achievable for variable switch load for a 16 � 16 switch, with the scheduler

performing 4 (¼log(N)) iterations. As the plot shows, PIM performs well but can-

not serve high loads, as the average packet delay becomes unbounded well before

load 1. In addition to this limitation, PIM is expensive to implement for two main

reasons: (i) good random number generators are hard, and thus expensive, to

52 CHAPTER 4 Interconnects and switching fabrics



implement in either hardware or software and (ii) the clock cycle of the switch

needs to accommodate for 2�log(N) random number generations, which result in

a long cycle and, thus, limit the link speed supported by the switch.

An alternative to the high cost of PIM and its inability to serve high loads is to

replace the random decisions of PIM with deterministic ones, such as round-robin.

Employment of round-robin can be made in various ways, as shown later, and was

evaluated, leading to a class of algorithms, each providing a different contribution

and resulting in different performance characteristics. Round-Robin Matching

(RRM) [116], the first effort to replace random decisions with round-robin, leads

to blocking and does not achieve switch operation under high load [116]. RRM cal-

culates a matching with the same method as PIM, differing only in the way Grants

and Accepts are issued. Specifically, each iteration of RRM is as follows:

Rdk[i] ¼ Ri[k]

gk ¼ g’k

ai ¼ a’i

Gk ¼ i, if (Rdk[i] ¼ 1 AND gk ¼ i) OR (Rdk[i] ¼ 1 AND Rdk[j] ¼ 0, where

gk � j < i (mod N))

Gdi[k] ¼ 1, if Gk ¼ i

Ai ¼ k, if (Gdi[k] ¼ 1 AND ai ¼ k) OR (Gdi[k] ¼ 1 AND Gdi[j] ¼ 0, where

ai � j < k (mod N))

G’k ¼ Gk + 1 (mod N)

A’i ¼ Ai + 1 (mod N)

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load

PIM

Output

FIGURE 4-11

Performance of PIM.

53Switch scheduling



The iSlip algorithm [116] resolves the blocking problem of RRM and achieves

good performance under high load. iSlip changes the simple, direct round-robin

employment, so that it takes into account whether a Grant has been accepted. Spe-

cifically, if an issued Grant does not get accepted, iSlip moves the round-robin

pointer of the output that issued the Grant to its prior position, that is, it behaves

as if the Grant was never issued. This simple change alleviates RRM’s blocking

problem and leads to high performance, providing bounded average packet delay

at all loads, as Figure 4-12 shows for a 16 � 16 switch. Considering the introduced

notation, iSlip operates as follows, during every iteration:

Rdk[i] ¼ Ri[k]

gk ¼ g’k

ai ¼ a’i

Gk ¼ i, if (Rdk[i] ¼ 1 AND gk ¼ i) OR (Rdk[i] ¼ 1 AND Rdk[j] ¼ 0, where

gk � j < i (mod N))

Gdi[k] ¼ 1, if Gk ¼ i

Ai ¼ k, if (Gdi[k] ¼ 1 AND ai ¼ k) OR (Gdi[k] ¼ 1 AND Gdi[j] ¼ 0,where

ai � j < k (mod N))

if (Adk ¼ 1) g’k ¼ Gk + 1 (mod N)

else g’k ¼ gk

a’i ¼ Ai + 1 (mod N)

The FIRM algorithm [156] changes the way round-robin is implemented by iSlip

and leads to even higher performance, up to 50% at high load, as Figure 4-12 depicts.

FIRM handles the case differently when a Grant is not accepted. Specifically, when a

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load

iSLIP
FIRM

MP
Output

FIGURE 4-12

Performance of iSlip, FIRM, and MP.

54 CHAPTER 4 Interconnects and switching fabrics



Grant is not accepted, FIRM leaves the round-robin pointer at the position of the

Granted input so that the sameGrant is issued again during the next switch cycle. This

change over iSlip leads to improved fairness, as this “persistent” Grant mechanism

leads to service closer to first-come first-serve. In detail, each iteration of the FIRM

algorithm operates as follows:

Rdk[i] ¼ Ri[k]

gk ¼ g’k

ai ¼ a’i

Gk ¼ i, if (Rdk[i] ¼ 1 AND gk ¼ i) OR (Rdk[i] ¼ 1 AND Rdk[j] ¼ 0, where

gk � j < i (mod N))

Gdi[k] ¼ 1, if Gk ¼ i

Ai ¼ k, if (Gdi[k] ¼ 1 AND ai ¼ k) OR (Gdi[k] ¼ 1 AND Gdi[j] ¼ 0, where

ai � j < k (mod N))

if (Adk ¼ 1) g’k ¼ Gk + 1 (mod N)

else g’k ¼ Gk

a’i ¼ Ai + 1 (mod N)

Based on calculations of the algorithms, one can easily observe that after any number

of iterations the algorithms have calculated a (correct) matching. Thus, one can

employ any number of iterations in order to serve requests. This ability enables the

design of schedulers with a small number of iterations so that scheduler implementa-

tion meets the requirements of high-speed links, that is, short switch cycles. However,

a smaller number of iterations results in matchings with fewer edges, leading to lower

performance. Figure 4-13 shows the packet delay achieved by iSlip and FIRM with

different numbers of iterations per switch cycle, specifically with 1, 2, 3, or 4 iterations

for a 16 � 16 switch. Results show switch performance for up to 4 (¼log(N)) itera-
tions, similarly to PIM, although theoretical results do not exist that prove any specific

property of the resulting matchings, for example, achievement of a maximal matching

or similar; however, simulations and experiments show that a number of iterations

beyond log(N) provides little improvement.

Algorithms also exist that combine characteristics of centralized algorithms,

such as the 2DRR, and distributed ones. The class of Mutual Priority (MP) algorithms

[192] combines the PIM-based iterative approach with diagonals, sending Grants to

calculated inputs using the concept of diagonals, as introduced by the 2DRR. The con-

cept introduced by MP algorithms, the mutual priority concept, creates “pairings” of

inputs and outputs that have priority in each cycle; to avoid conflicts, these pairings

are made using diagonal information. In this fashion, these algorithms reduce conflicts

for the Grant and Accept phases significantly. The implementation of pairings is

straightforward when implemented through the calculation of a new location to start

each round-robin cycle, accordingly. The basic MP algorithm, for example, sends

Grant signals using the following calculation:

Rdk[i] ¼ Ri[k]

gk ¼ g’k

ai ¼ a’i

55Switch scheduling



Gk¼ i; if (Rdk[i]¼ 1 AND gk ¼ i) OR (Rdk[i]¼ 1 AND Rdk[j]¼ 0, where

gk� j< i (mod N))

Gdi [k] ¼ 1; if Gk ¼ i

Ai ¼ k; if (Gdi[k] ¼ 1 AND ai ¼ k) OR (Gdi[k] ¼ 1 AND Gdi[j] ¼ 0, where

ai � j < i (mod N))

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load(a)

1 iter.
2 iter.
4 iter.

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.70.80.9

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load(b)

1 iter.
2 iter.
4 iter.

FIGURE 4-13

iSlip and FIRM performance with a variable number of iterations.

56 CHAPTER 4 Interconnects and switching fabrics



cyc ¼ m (mod N)

g’k ¼ cyc + k (mod N)

a’i ¼ �cyc + i (mod N)

In the aforementioned calculation, variable cyc enables the change of pairings

between consecutive cycles. In general, the mutual priority concept leads to sched-

uling algorithms that have two benefits: (i) matchings are denser and (ii) large size

matchings are achieved with a small number of iterations, even with one. This

approach improves performance significantly, as shown in Figure 4-12.

Although results in the previous figures are all for 16� 16 switches, in order to enable

a direct comparison of schedulers for the same switch size, it is important to emphasize

that the results are analogous for all switch sizes. Furthermore, the qualitative character-

istics of the behavior of algorithms are the same, independently of the switch size. This is

depicted in Figure 4-14, which plots the average delay achievable with algorithms 2DRR

and iSlip for various switch sizes. As Figure 4-14 shows, the plots are similar for all

switch sizes, although performance improves as the switch size increases.

An important difference in the performance of these algorithms is their service

guarantee: the time between the arrival of a packet at the head of its queue—and

the resulting posting of the request—and the time it is served. Interestingly, all afore-

mentioned deterministic algorithms have different service guarantees and, as the ser-

vice guarantee becomes tighter (i.e., the time is reduced), the average packet delay is

reduced as well, leading to improved switch performance. Specifically, iSlip has a

service guarantee of N2 þ (N � 1)2 clock cycles, while FIRM provides a service

guarantee of N2 clock cycles and MP a service guarantee of N clock cycles, which

is the optimal, considering an N � N switch and high load.

Use of randomization
Deterministic scheduling algorithms are widespread in all problems where conflict

resolution is required because they achieve predictable behavior and lead to low-

cost implementations. However, the use of randomness provides advantages as

well. It enables mathematical analysis of several systems, whereas deterministic

algorithms often do not. In scheduling algorithms for virtual output queuing

switches, PIM introduced the use of randomness, but was soon replaced by deter-

ministic alternatives due to its resulting performance limitations and high cost.

Importantly, there are alternative ways to introduce and exploit randomness [55,

99, 157]. RRPM [99] is an iterative algorithm that calculates a matching using a

step where inputs forward one request per iteration—using round robin—and each

output chooses one request at random. LAURA [55] uses randomness to choose

which previously matched requests should participate in a consecutive matching.

Their adoption of randomness, though, is limited in that it complements determin-

istic methods. In contrast to these algorithms, Randomized On-Line Matching

(ROLM) uses randomness as its basis for the calculation of matchings [157].

Randomized On-Line Matching, a representative of a class of algorithms, is a

sequential algorithm that exploits a randomized efficient on-line matching algorithm

57Switch scheduling



that calculates maximal matchings in bipartite graphs, named the Ranking algorithm

[86], as its basis. The Ranking algorithm considers that the nodes of one part of the

bipartite graph arrive on-line, that is, one after the other, and calculates a matching

in an on-line fashion. Specifically, the algorithm calculates a random permutation

of the nodes in one part of the graph and then considers on-line arrival of the nodes

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load(a)

4×4
16×16
32×32

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load(b)

4×4
16×16
32×32

FIGURE 4-14

Performance of 2DRR and iSlip for variable switch sizes.

58 CHAPTER 4 Interconnects and switching fabrics



in the other part; each incoming node of the second graph part is matched with the

first appropriate node in the permutation of the first graph part. Ranking calculates

a maximal matching, as has been proved [86].

When applied to switching, the Ranking algorithmmakes a matching decision con-

sidering one output after the other. Specifically, during every switch cycle, theRanking

algorithm calculates the (maximal) matching, incrementally with the following steps:

S1: Calculate a random permutation p(In) (ordering) of inputs, which is the

same for all outputs

S2: Consider output Out[0] and identify the requests to it (i.e., the first input in

p(In) that has a request for Out[0]; the requests of the selected input are deleted

from the graph)

S3: Match Out[0] to the eligible input (if any) of highest rank

S4: Repeat Steps S2 and S3 for all remaining outputs

The Ranking algorithm is effective because of its first step, in which a random

permutation of inputs is performed. If a random selection were made in Step S3,

as for the PIM algorithm, and not a selection within the random permutation, the

algorithm would not calculate a maximal matching.

Although the Ranking algorithm is sequential, because of the sequential on-line

consideration of the outputs, a hardware implementation of the algorithm could

exploit parallelism: outputs can issue a Grant in parallel, but they can make their

final decision after receiving the match of the preceding output(s), using a method

analogous to the carry calculation of a carry-look-ahead adder. Thus, ROLM can

be considered a hybrid of centralized and distributed algorithms.

The Ranking algorithm solves the switch scheduling problem presented in each

switch cycle. Its adoption and employment in subsequent switch cycles enable

development of a class of switch scheduling algorithms, which prove to have dif-

ferent characteristics in terms of performance and implementation cost. These

scheduling algorithms are differentiated by two parameters of the Ranking algo-

rithm, as implemented in each cycle: (i) the random permutation of inputs (step S1)
and (ii) the online consideration of outputs. In regard to random permutation,

because the scheduler calculates a match in every cycle, one could change the fre-

quency with which step S1 is executed. One could calculate more often or more

sparsely the random permutation of inputs through switch cycles. Additionally,

one could calculate a different input ordering for each output. In regard to the

online sequence of outputs, one could change the order of outputs in every switch

cycle. This approach to employing randomness in scheduling algorithms is

effective, in contrast to the PIM approach. PIM is not suitable for analogous

variations, because, if random selections are done more rarely during execution

cycles, probable conflicts of Grant signals would hold until a new selection is

calculated, leading to lower performance.

The basic algorithm of this class, the ROLM algorithm, calculates a matching

with the following steps, where the first step, S1, is executed once every R switch

cycle (1 � R < 1):

59Switch scheduling



S1: If (i (mod R) ¼ 0), then calculate a random permutation p(In) of inputs
S2: Inputs broadcast their requests to outputs

S3: Output Out[0] issues a Grant to the eligible input (if any) of highest priority

(based on random ordering)

S4: Step S3 is repeated for all remaining outputs

The performance of the ROLM algorithm is presented in Figure 4-15 where the

average packet delay is plotted as a function of load for various values of R. As
the plots indicate, ROLM performs significantly better than PIM, FIRM, and MP,

achieving even 10-fold improvement in average delay over FIRM (with log(N)
iterations) for high loads.

Variations of ROLM based on the parameters mentioned previously are the

Dynamic Randomized On-Line Matching (DyROLM) algorithm and the Distri-

buted Dynamic Randomized On-Line Matching (D-DyROLM) algorithm [157]. In

DyROLM, the sequence with which the outputs calculate their match changes in a

round-robin fashion, that is, in every switch cycle the first considered output is the

one following the output that was considered first in the previous switch cycle. In

D-DyROLM, each output calculates its own random permutation p(In) once every
R cycles. Simulations of switches operating with these algorithms demonstrate

different behavior of the switches for variable R and, in general, comparable perfor-

mance with ROLM and improved performance over PIM and switches with deter-

ministic schedulers [157]. Importantly, ROLM algorithms target to reduce the

latency introduced in hardware implementations by calculation of the random

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Load

ROLM
FIRM

MP
Output

FIGURE 4-15

Performance of ROLM.

60 CHAPTER 4 Interconnects and switching fabrics



permutation. DyROLM algorithms provide improved fairness characteristics, in

terms of equal service time for all outputs, whereas D-DyROLM algorithms increase

the use of randomness further by making a different random ordering of inputs for

every output, without increasing the complexity of hardware implementations,

because random permutations can be calculated in parallel.

In regard to fairness, ROLM and all randomized algorithms do not provide a

service guarantee because of randomization. However, one can calculate the

average waiting time of a packet at the head of a queue, under conditions of high

load, that is, when the requests are N2, which is N, indicating that the average

waiting time is equal to the optimal guarantee of deterministic scheduling

algorithms.

Real-time traffic
The presented scheduling algorithms address requirements of nonreal-time data

traffic. Their bounded service guarantee—for the deterministic algorithms—enables

the provision of real-time characteristics, but additional mechanisms are necessary

in order to enable strict real-time guarantees required by various types of traffic,

such as multimedia. Such mechanisms, already used in real-time network protocols,

include:

1. Reservations: the ability to reserve a clock cycle to serve a pending request

2. Priorities/urgency: the ability to differentiate classes of traffic to express

urgency for the service of a specific pending request

3. Phases: the ability to serve a set of requests before examining newly posted

requests.

Importantly, several of the described algorithms can be extended to include such

mechanisms, enabling accommodation of real-time traffic. A characteristic exam-

ple is FIRM, which can be extended easily to accommodate reservations and

phases [159].

SUMMARY
This chapter presented the main issues of switches used as backplanes for network

systems and of switches in switched networks. We described the main

characteristics of switches and interconnection networks, as well as the main orga-

nizations of switches. Considering the effectiveness of switches with multiple input

queues in the application area of interest, that is, networks and network systems, we

described the related scheduling problem and presented a historical sequence of

practical scheduling algorithms that achieve high performance and can be imple-

mented efficiently. Furthermore, we evaluated the use of randomness in switch

schedulers in efforts to identify effective ways for its employment. The effective-

ness of all algorithms stems from their high performance, as well as their low-cost

implementation, which can be achieved in either hardware or software [159].

61Summary



This page intentionally left blank



CHAPTER

Network adapters 5
INTRODUCTION
Network adapters are used to enable connectivity on a single network link and typ-

ically implement a single protocol stack. Network adapters provide the system

implementation where that protocol stack is executed. The dependency of the

adapter on the physical medium of the attached network usually influences the

specification and naming of the adapter in the market. For example, off-the-shelf

adapters are known as Ethernet adapters, Wi-Fi adapters, etc. Importantly, because

adapters implement single protocol stacks, they are often considered and used as

building blocks for multistack systems, such as bridges, routers, and gateways,

implementing stacks of appropriate sizes, as described in Chapter 2. Despite the

use of adapters in both end systems and network systems, we focus on adapters

for end systems in this chapter, as typical end system adapters often implement

stacks with more layers. Thus, the architecture of end system adapters presents

more challenges and requires addressing of more issues than that of network

system adapters.

An end system, as the one shown in Figure 5-1, is a computational system with

a network attachment for a specific network technology. Thus, the end system

implements a full protocol stack, typically as part of its operating system. The pro-

tocol stack interacts with one or more applications, exchanging data between the

applications and the protocol stack. Considering the structure of typical end sys-

tems, network adapters constitute input/output (I/O) systems that deliver data

between the end system and the network. Clearly, the mapping of the end system’s

functionality, including the protocol stack, onto the end system structure can be

implemented in several ways, mapping one portion of the protocol stack on the

network adapter and another one on the remainder of the end system. The lower

layers of the stack, including the physical layer, which requires specialized hard-

ware, constitute the portion mapped on the adapter, while the higher layers may

be mapped on the end system. Consider, for example, the configuration of a typical

personal computer (PC) with an Ethernet adapter. In the general case, the PC with

the adapter implements at least a four-layer protocol stack with Ethernet physical

and Media Access Control (MAC) protocols as well as Logical Link Control

(LLC), Internet Protocol (IP), and Transmission Control Protocol (TCP), from

lower to higher layers. However, the protocol stack is implemented partly on the

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
63



adapter (e.g., the Ethernet physical and MAC) and partly on the PC (e.g., LLC, IP,

and TCP as part of the PC’s operating system). Clearly, partitioning of protocol

stack implementation between the adapter and the end system is influenced by

several factors, such as the support of several physical protocols in the same end

system, the availability of low-cost network adapters, etc. This partitioning influ-

ences the architecture of network adapters significantly, as it sets the specifications

of adapter development.

Independently of the partitioning of protocol stacks at end systems, network

adapters need to address specified performance requirements. The basic problem

that needs to be resolved is that of throughput preservation, that is, the problem

of preserving the link throughput through all layers of the protocol stack. In addi-

tion, other requirements may exist, such as real-time requirements, as described in

Chapter 3. This chapter focuses on the throughput preservation problem as the

basic problem, with the goal of developing architectures that achieve link through-

put preservation through protocol stacks. To achieve this goal, we follow a typical

approach: we start with a basic network adapter and analyze its operation, identi-

fying bottlenecks and proposing solutions that alleviate these bottlenecks and

achieve improved performance.

BASIC NETWORK ADAPTER
A simple, typical network adapter is an I/O subsystem of an end system. Thus, its

architecture is influenced by the typical decisions made for I/O subsystems, such

as the use of DMA, etc. The structure of such an adapter, for a local area network,

is shown in Figure 5-2 and is composed of five main components [118]:

Link
interface

DMA
Bus

Memory
Processing

element

End system
interface

FIGURE 5-2

Typical adapter structure.

Transmission
link

Network
adapter

End system

FIGURE 5-1

End system with network adapter.

64 CHAPTER 5 Network adapters



1. Link Interface: the subsystem that implements the physical layer and MAC sub-

layer of the data link layer

2. Processing Element (PE): the processing subsystem responsible for data man-

agement, data movement, and protocol processing

3. DMA unit: the component that handles fast data movement between the link

interface and the memory

4. Memory: the data storage unit of the adapter

5. End system interface: the interface between the adapter and the end system

The structure of the adapter in Figure 5-2 indicates that it attaches to a local area

network, considering the partitioning of the data link layer into its typical LAN sub-

layers: MAC and LLC. We use the model of a LAN adapter as an example because

these adapters represent a significant base of adapters in the market and are fairly

well known to network users. Importantly, the structure and the operation of this

adapter are typical, being analogous to most existing architectures and designs for

end system adapters [18, 168], including adapters employing special-purpose net-

work processors, such as the Intel IXP1200 [110].

Before analyzing the operation of the adapter in detail, we need to clarify two

important issues in the model adapter. First, we consider that the PE is assigned with

protocol processing according to the partitioning of the protocol stack between the

end system and the adapter; that is, the PE may be assigned with protocols ranging

from none to the full stack above the MAC sublayer. Second, we need to specify

how the memory is organized and managed. Clearly, an adapter needs a memory

component, which stores packets for two reasons: (i) for temporary storage of pack-

ets as they arrive from the network or from the end system, before they are for-

warded further to the end system or network, respectively, and (ii) for processing

by the PE, as the PE requires memory for storing its code as well as its data. In some

older adapters with simple PEs that do not execute any protocols, most of the mem-

ory component is composed of physical FIFOs, each one directed to a different sys-

tem resource (i.e., link, end system, or PE). However, this approach has proven to

have several disadvantages that have led to the use of random access memory

(RAM) as the main technology for the memory component. Disadvantages of phys-

ical FIFOs originate from their limited accessibility, which does not allow them to

be used efficiently by processing elements, and the partitioning of the memory

capacity to several modules, which may lead to poor utilization of the overall capac-

ity. For example, consider the case where one FIFO fills and starts dropping data,

while another FIFO still has available space. Nevertheless, FIFOs are useful in net-

work systems, as data packets arrive with their bits and bytes in FIFO order and

packets are sequenced in a FIFO order before they are delivered to a protocol or

to an adapter component. For this reason, most adapters employ a memory organiza-

tion and management where the physical memory is a RAM and where stored data

are organized in multiple logical queues, according to the system’s requirements.

The use of RAM not only enables use of the memory by the PE as well as all the

other components, but also the use of large-capacity, low-cost memories.

65Basic network adapter



For purposes of analysis, we consider a simple but effective memorymanagement

scheme that enables the organization of packet data in memory so that packets are

assembled correctly and logical queues are organized efficiently and effectively.

We consider that the adapter has a RAM memory, which is logically partitioned in

fixed-size buffers. Considering variable-size packets, a packet is stored in a set of

buffers, as its lengthmay exceed the size of a buffer; these buffers are logically linked

together in a queue, which establishes the correct ordering of packet data. Packets

can be linked together in queues as well, forming queues of packets for various

purposes. For example, one may want to organize a queue of packets that are ready

to be delivered to the end system or the link; in general, queues are used to organize

packets destined to a system resource, such as the link, the end system, or the PE.

ADAPTER OPERATION ANALYSIS
A network adapter, as the one shown in Figure 5-2, is a special-purpose computing

system with a structure similar to the one of conventional computing systems.

A network adapter includes its own processing element, memory, and I/O subsystems

(i.e., the link attachment and the end system interface component). Its operation

consists of receiving, processing, and transmitting packets in two directions, toward

and from the network link. The overall operation of the adapter is a complex process,

using all components, which influence performance in different ways. In order to

evaluate the effect of the different components on system performance and to address

the throughput preservation problem, we need to analyze the operation of the adapter

in detail. Considering that the adapter’s operation is packet reception from and

transmission to the network and taking into account that reception and transmission

are analogous, we will analyze the reception process in detail. Specifically, we pre-

sent the reception process of a packet by the adapter in order to identify the delays

involved and evaluate the adapter’s ability to process packets in addition to receiving

them. Transmission can be included easily in the analysis with a simple extension of

the approach. This analysis follows the one presented elsewhere [118].

Figure 5-3 illustrates delays involved in the reception of a packet by the adapter

shown in Figure 5-2. The axis of Figure 5-3 is time, showing two consecutive pack-

ets’ arrivals at times t1 and t2. Clearly, reception of the packet arriving at t1must finish

time

packet
arrival

tA tS tMM1 tMM2 tAtStDMA

tRD

N/D . tB

packet
arrival

FIGURE 5-3

Packet reception process.

66 CHAPTER 5 Network adapters



before t2 in order for the adapter to sustain the stream of arriving packets and avoid

loss of packet data. In a typical adapter reception process, the following operations

occur. When the packet arrives at the link interface, an interrupt is issued to the

processor to initiate the reception process. Responding to the interrupt, the pro-

cessor performs a task switch, saving the state of its current process and load-

ing the interrupt handler for reception; the delay for the task switch is denoted tTS.
Then, the interrupt handler performs the DMA setup to move incoming data to mem-

ory. In order to set up the DMA successfully, the processor needs to know the address

in memory where data must be stored. Considering that memory is organized as

described in the previous section, this implies that the processor needs to identify the

address of an empty buffer in memory. Thus, the overall delay to set up the

DMAwith the appropriate memory address is composed of two delays: (i) tMM1 to find

the address of a free memory buffer and (ii) tDMA to set up the DMA controller itself.

Because these delays are not insignificant, there is need for elastic buffers at the link

interface to store incoming data temporarily until the delivery to memory starts.

When data start flowing over the adapter bus from the link interface toward

the memory, the delay to store data in memory is influenced by several factors.

Specifically, the parameters of interest are the byte length of the packet, denoted N,
the width of the data bus in bytes, denoted D, and the clock cycle of the bus, denoted
tB. Assuming that the bus does not starve for data, the delay to move packet data to

the memory is N
D tB.

Assuming that the packet fits in one buffer, after storing all packet data in

memory, the processor reads the packet header in order to identify the logical

queue where the packet needs to be appended and then appends it appropriately.

This delay is denoted as tMM2. After packet data are stored and linked in the logical

queue, execution of the interrupt handler is complete and the processor performs

another task switch in order to return to its state before packet arrival; this task

switch again has a delay tTS.
We note that subscripts of the delays tMM1 and tMM2 originate from the fact that

these delays constitute delays of memory management. Because these delays are

relevant to the same general process, that is, memory management, we often group

them and refer to them as tMM. In the case mentioned earlier, tMM ¼ tMM1 þ tMM2.

Considering all the aforementioned, the packet reception delay, denoted tRD,
that is, the delay to receive the packet from time t1, when its first bit arrives, until

it is fully stored in memory and linked appropriately, is:

tRD ¼ 2� tTS þ tDMA þ tMM þ N

D
tB:

Clearly, this calculation holds even for packets that are longer than a single buffer,

assuming the tDMA and tMM include all relevant delays. When an arriving packet

needs more than one buffer to store its data in memory, the reception process

differs from the one described earlier only in that the DMA setup and the memory

management operations need to be repeated. Specifically, when a packet needs more

than one buffer, the memory management operation that identifies a free buffer

67Adapter operation analysis



must be repeated for every allocated buffer, the filled buffers need to be linked

together to form a packet, and the DMA setup has to be performed for every buffer.

Assuming tDMA includes the DMA setup for all used buffers and tMM includes delays

for identifying free buffers, linking them to form a packet and linking the packet to

the appropriate queue, the aforementioned calculation of tRD holds for any packet

size and any number of buffers used.

The packet reception process of the adapter is only part of the packet processing in

the adapter. Assuming that the PE executes at least one protocol above the MAC

layer, the next step in packet processing is protocol execution. In order to execute

the protocol(s), the PE needs to dequeue the packet from the logical packet queue

where it is linked, execute the protocol code, and then enqueue the packet to an appro-

priate logical packet queue again. Thus, it requires memory management operations,

enqueue, and dequeue, as well as code execution. Importantly, the delay for code exe-

cution has to account for several delays, depending on the type of processor used.

For example, assuming that the PE is a reduced instruction set computer (RISC)

processor and considering the lack of locality in header processing (among headers),

one has to account for cache misses, as well as for the delay to move data between

memory and the register files. In the following, we denote as tP the delay for packet

header processing, including the delay for enqueueing and dequeueing the packet.

The time available for packet processing by the PE is the time between the

end of a packet’s reception by the adapter and the time of arrival of the next

packet. This available time, denoted tA, is illustrated in Figure 5-3. Apparently,

tA � tP must hold in order to have the adapter preserve the reception throughput

of the network link. If the relation does not hold, the adapter is not able to receive

and process a packet before the next packet arrives, leading to loss of packet data

if the packet arrival rate is constant.

Considering everything just mentioned, we can calculate the effective throughput

TE of the adapter in packets per second as

TE ¼ min P;
1

tRD þ tP

� �
;

where P is the packet arrival rate on the network link, in packets per second.

It is important to note that this last equation takes into account that the PE can-

not perform any protocol processing during packet reception because it executes

the reception interrupt handler and it remains idle during data transfer over the

bus, because it does not have access to memory.

We evaluate the performance of the adapter architecture as well as the configura-

tions introduced later in the chapter with a simulator of the adapter [38]. The simula-

tor implements a model for the adapter shown in Figure 5-2 using CSIM19 [121] and

is programmable to employ different processor technologies. This programmability

enables analysis of different generations of adapters that employ different processors,

which, in turn, influence system performance significantly overall, as all adapter

components are designed based on the processor characteristics (bus cycle, DMA

setup, etc.). Such analysis illustrates the significant performance improvement

68 CHAPTER 5 Network adapters



achievable with modern processors in over a decade. This chapter analyzes two dif-

ferent generations of processors, one similar to an Intel 80386 operating at 20 MHz

and one for an ARM11 (ARM1136J-S) processor operating at 660 MHz; we refer

to the corresponding adapters as the x86-based adapter and the ARM-based adapter.

Figure 5-4 plots simulation results for TE for the two different generations

of processors. For the x86-based processor configuration, we used data found

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800

T
hr

ou
gh

pu
t (

M
bp

s)

Arrival rate (Mbps)(a)

1024-byte packets
256-byte packets

64-byte packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000

T
hr

ou
gh

pu
t (

M
bp

s)

Arrival rate (Mbps)(b)

1024-byte packets
256-byte packets

64-byte packets

FIGURE 5-4

Effective adapter throughput (a) x86 based and (b) ARM based.

69Adapter operation analysis



elsewhere [118]; simulation results are the same as in Meleis and Serpanos [118].

For ARM processor configuration, we consider use of the 64-bit AMBA High-

performance Bus (AHB), operating at 133 MHz [7]. Importantly, ARM11 has

a processing power of 660 MIPS [6] and a task-switching delay equal to 30 inst-

ructions [98], achieving low interrupt latency for interrupt-driven applications.

In regard to protocol processing at the PE, we assume that the PE executes the LLC

protocol with a critical path of 351 instructions as used elsewhere [118], based on

data provided in [174].

Figure 5-4 shows effective throughput of the adapter as a function of packet

arrival rate. Throughput is expressed in bytes per second, while the packet arrival

rate is expressed in packets per second. Every plot shows three curves, one for

a different scenario where fixed-size-length packets—different length for each

scenario—arrive at the adapter link. The three packet lengths considered are

64, 256, and 1024 bytes. As the plots illustrate, the adapter throughput increases

as packet arrival rate increases until it reaches a threshold value, after which per-

formance remains steady. This is the maximum throughput achievable with the

present adapter configuration.

MEMORY ORGANIZATION
Analysis of the reception process enables an architect to identify several limitations

that can be addressed. In the basic adapter, shown in Figure 5-2, the processor

executes all memory management operations in addition to protocol code execution.

Furthermore, the processor remains idle during packet data movement on the bus

because it cannot access memory and thus it can neither access data nor code, which

is also stored in the same memory used by the DMA. Architectural enhancements

are necessary to enable higher utilization of the processor, as well as off-loading of

memory management operations, so that the processor can be dedicated to protocol

execution. Taking into account architectural concepts from general-purpose pro-

cessors, one can employ a specialized memory management unit (MMU) for the

management of memory as well as a partitioned memory structure in order to enable

parallelism among data transfer, memory management, and protocol execution. The

following discussions describe and evaluate these architectural enhancements.

Memory management unit with local memory
Operation of the basic adapter requires that the processor performs at least four

memory management operations during packet reception and two more during

processing the packet header. These operations can be assigned to a specialized

hardware unit, the Memory Management Unit, which implements all memory

management operations. In principle, these operations can be executed in parallel

with data movement and/or protocol processing. For example, a new free buffer

address can be identified or buffer enqueueing (or dequeueing) can be performed in

parallel with data movement to memory. However, such concurrency is achievable

70 CHAPTER 5 Network adapters



only if the MMU has its own local memory that holds the necessary data structure

information. Specifically, the MMU needs to maintain pointers to memory buffers,

link information for the packets and the queues, etc. When the MMU performs

memory management operations, it needs to access and manipulate this data struc-

ture information. AnMMUwith its own local memory executes its operations with-

out interfering with the bus and the remaining packet memory. Thus, a partitioned

memory configuration is necessary for parallelism of memory management and the

remaining adapter operations.

Figure 5-5 shows an adapter configuration, based on the basic adapter, with a

specialized MMU and its own local memory. The specialized MMU can be imple-

mented either in hardware, as an ASIC, or in software using a separate general-

purpose processor, as described elsewhere [158]. Independently of its exact

implementation, the MMU presents a coprocessor instruction set to the remainder

of the system, which is specialized for the necessary memory management opera-

tions. This instruction set includes operations such as GetFree() and RetFree

(buffer) where a buffer is obtained from a Free List or is returned to Enqueue

(buffer, queue) and Dequeue(queue) where a buffer is enqueued to or dequeued

from a queue, ReadTop(queue) where the address of a queue is read, etc. The cost

of these operations is small, when using a specialized MMU, as Table 5-1 demon-

strates. Table 5-1 shows the cost of these operations for an ASIC implementation,

Bus

MMU
Local

memory

End system
interface

Link
interface

Processing
elementMemory

DMA

FIGURE 5-5

Adapter configuration with memory management unit.

Table 5-1 MMU Instruction Delays

Instruction ASIC implementation Software implementation

Get free Four cycles 34 assembly instructions

Return free Three cycles 28 assembly instructions

Enqueue Six cycles 29 assembly instructions

Dequeue Eight cycles 33 assembly instructions

Read top Five cycles 33 assembly instructions

71Memory organization



as well as for a software one [158]. In the former case, the cost is expressed in

clock cycles, while in the latter case it is expressed in assembly instructions per

operation.

The effect of inclusion of a specialized MMU with its own local memory is

illustrated in Figure 5-6, which plots the effective throughput of the two adapter con-

figurations. As the plots illustrate, in the adapter configuration with the ARM

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800

T
hr

ou
gh

pu
t (

M
bp

s)

Arrival rate (Mbps)(a)

1024-byte packets
256-byte packets

64-byte packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000

T
hr

ou
gh

pu
t (

M
bp

s)

Arrival rate (Mbps)(b)

1024-byte packets
256-byte packets

64-byte packets

FIGURE 5-6

Effective throughput of adapter configuration with MMU (a) x86 based and (b) ARM based.

72 CHAPTER 5 Network adapters



processor as PE, there is a 20% throughput improvement for short packets and a

10% improvement for long packets. In the case of the x86-based adapter, the

corresponding improvements are 7.5 and 4.25%, respectively. The higher than

double improvement of the adapter with the newer, faster processor is mainly due

to improvement of the data bus performance: AHB has double the width of that

used in the x86 processor [118] and a clock cycle that is 10 times shorter. The

improvement in processing power of the attached PE is not a key factor for the

performance improvement, considering that the packet transfer delay from

the incoming link to the memory is not dependent on the speed of the processor but

on the performance of the bus.

Memory management unit and processor with local memory
In the previous analysis of the reception process, we considered that the processor

does not have any attached local memory. This results in the processor being idle

during packet data movement between the network link and the adapter memory.

However, the processor can execute instructions and process packets if one attaches

a local memory to it containing protocol processing instructions and providing

working memory space. This occurs because the processor can store necessary data

in its own local memory and does not have to compete with other components for

memory access during protocol code execution.

The inclusion of local memory to the processor can lead to significant improve-

ment in performance due to the overlapping of protocol code execution with packet

data transfer. As calculated earlier, the data movement delay over the bus is N
D tB,

that is, it is proportional to the received packet length and thus significant for long

packets. For example, the delay to transfer a 1024-byte packet to memory is at

least 128 bus cycles, that is, at least 628 idle CPU cycles in the case of the

ARM processor and AHB bus, where one AHB bus cycle equals 4.9 CPU cycles.

Figure 5-7 illustrates the structure of the adapter adopting this partitioning of

the memory, splitting physical memory into three partitions: one local to the

Bus

MMU
Local

memory

Local
memory

End system
interface

Link
interface

Processing
element

Memory

DMA

FIGURE 5-7

Adapter configuration with MMU and processor local memory.

73Memory organization



MMU, one local to the processor, and one for packet storage. The effective

throughput for the system for the two analyzed adapters, with the two different pro-

cessors, is measured through simulation and is plotted in Figure 5-8.

As expected from the previous analysis, the throughput of this adapter con-

figuration is significantly improved over the adapter configuration without the

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800

T
hr

ou
gh

pu
t (

M
bp

s)

Arrival rate (Mbps)(a)

1024-byte packets
256-byte packets

64-byte packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000

T
hr

ou
gh

pu
t (

M
bp

s)

Arrival rate (Mbps)(b)

1024-byte packets
256-byte packets

64-byte packets

FIGURE 5-8

Effective throughput of adapter with partitioned memory configuration (a) x86 based and

(b) ARM based.

74 CHAPTER 5 Network adapters



processor local memory. In the case of long packets, the throughput increase is

45%. The origin of this improvement is the higher processor utilization due to over-

lapping header processing and data movement during packet reception. Improve-

ment for the case of short packets is smaller, specifically 10%, because, in this

traffic scenario, the throughput is dominated mostly by the protocol processing

delay tP rather than the shorter data movement delay N
D tB. When the packet is

long enough, the data movement delay becomes the dominant factor of system

throughput.

In addition to throughput results, simulation data confirm that adapter com-

ponents are utilized more efficiently in the case of partitioned adapter memory.

Table 5-2 summarizes the peak processor utilization, for the case of the ARM

processor, for various packet length traffic scenarios. Results show clearly that, for

longer packets (256 and 1024 bytes), processor utilization improves significantly

relative to the adapter configuration without the partitioned memory.

INTELLIGENT DMA
The effort to utilize the PE only for protocol code execution and offloading all

other common operations to other components in the adapter also requires reengi-

neering of the DMA component. A classical DMA controller requires that the sys-

tem processor initializes it before data transfer and terminates the data transfer, as

the DMA informs the processor upon completion of the data transfer. Adoption of

an intelligent DMA unit enables transfer of packets between link and memory with-

out the processor’s intervention. This leads to significant delay savings, not only

due to the relief of the processor from setting up the DMA transfer, but due to

the avoidance of task switching due to interrupts as well; this is a significant sav-

ing, considering the high cost of context switching required for interrupt handling.

Figure 5-9 shows the effect of the inclusion of intelligent DMA in the adapter

with the partitioned memory organization analyzed in the previous section. As

Figure 5-9 illustrates, adoption of intelligent DMA provides significant further

improvement, which reaches 20% for short packets and 10% for longer ones

in the case of ARM-based adapter configuration. This improvement originates

mainly from the elimination of processor context switching due to interrupts. In

Table 5-2 ARM11 Processor Utilization for Different Adapter Configurations

MMU local memory MMU and processor local memories

Packet length Processor utilization Packet length Processor utilization

64 0.738 64 0.794

256 0.590 256 0.784

1024 0.328 1024 0.483

75Intelligent DMA



the case of the older processor, the improvement is 50 and 30% for short and long

packets, respectively. The elimination of processor context switching delays is more

beneficial for older processor generations because of their high interrupt cost.

Specifically, one context switch on the x86-based adapter has a cost equal to 50 inst-

ructions [118, 155] (14% of the protocol processing delay), while the corresponding

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800

T
hr

ou
gh

pu
t (

M
bp

s)

Arrival rate (Mbps)(a)

1024-byte packets
256-byte packets

64-byte packets

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000

T
hr

ou
gh

pu
t (

M
bp

s)

Arrival rate (Mbps)(b)

1024-byte packets
256-byte packets

64-byte packets

FIGURE 5-9

Effective throughput of adapter with partitioned memory and intelligent DMA (a) x86 based

and (b) ARM based.

76 CHAPTER 5 Network adapters



cost is equal to 30 instructions [98] for the ARM-based adapter (8.5% of the protocol

processing delay).

Considering all the previous architectural enhancements of the adapter, the PE is

left only with the task of protocol processing, enabling it to be renamed as protocol
processor. Peak utilization of the protocol processor for the analyzed packet lengths
is shown in Table 5-3. Utilizations in the table, higher than those of the previous

adapter configurations, show that for short packets, the protocol processor’s utiliza-

tion reaches almost 100%. However, utilization is relatively low for the case of

long packets. This is due to several parameters, including the contention of the

protocol processor with the MMU and, most importantly, with the intelligent DMA

whose transfers occupy the bus for long intervals as the packet length increases.

Considering all of the aforementioned, an adapter employing a specialized

MMU, a distributed memory organization, and an intelligent DMA unit is clearly

the best solution in terms of throughput preservation. As simulation results indi-

cate, an ARM-based adapter preserves the bandwidth of an 8-Gbps link delivering

packets of 1024 bytes up to higher layers of the network protocol stack.

MULTIPROCESSOR PROCESSING ELEMENT
Adapter configuration analyzed up to this point attempts to achieve a balanced

design among data movement, memory management, and protocol processing,

demonstrating that a balanced design can exploit parallelism among operations

and improve performance significantly. Importantly, the final configuration dis-

cussed earlier indicates that the protocol processor (the PE) becomes the system

bottleneck with its utilization reaching 100% as packet sizes become smaller. Up

to this point, we have considered a single processor for protocol processing, focus-

ing on a modern RISC-type architecture, the ARM processor. The following eval-

uates use of a multiprocessor architecture for the protocol processor. Specifically,

we evaluate a network adapter with a Cell Broadband Engine (Cell BE) [27, 57].

The Cell BE is an effective multiprocessor architecture suitable for high-perfor-

mance network adapters due to its multiple high-performance processing elements

and fast internal interconnection. Considering the hardware resources of the Cell

BE, we analyze the effect of parallelizing protocol execution on its eight proces-

sing elements, as well as the configuration where multiple packets are processed

in parallel, each by a different processing element.

Table 5-3 Protocol Processor Utilization

Packet length Processor utilization

1024 0.519

256 0.921

64 0.968

77Multiprocessor processing element



The Cell BE is a product of collaboration among three major companies: IBM,

Sony, and Toshiba. Its architecture, shown in Figure 5-10, is heterogeneous and

includes several processing elements, specifically one Power processor and eight

synergistic processor elements (SPE), all operating at 3.2 GHz. The Power pro-

cessor element (PPE) employs a 64-bit, multithreaded Power processor with two

concurrent hardware threads, each running as a separate core that executes a

thread [57]. The PPE has a local memory subsystem composed of a two-level cache.

Each of the eight synergistic processor elements (SPE) employs processor architec-

ture with a local store unit and a local memory controller. Additionally, the Cell

BE is equipped with a memory interface controller and an I/O interface controller.

All the components of the Cell BE are interconnected through an internal

interconnection called the Element Interconnect Bus (EIB), which operates at

1.6 GHz. The EIB separates bus commands from data transfers; specifically, it

employs a star network for commands and four 16-byte-wide data rings for data

transfers, two of which run clockwise and the other two counterclockwise. Each

ring allows up to three parallel data transfers, when their paths do not overlap.

Each component attached to the EIB is enabled to send and receive 16 bytes of

data simultaneously during every bus cycle; thus, the maximum data bandwidth

of the EIB reaches 96 bytes per clock cycle [27].

Adoption of the Cell BE, or any similar architecture, in an adapter provides

several degrees of freedom for the mapping of functions on multiple processing

Local
memory

Local
memory

Local
memory

SPE

Element Interconnect Bus

. . .

SPE

PPE
I/O

interface
controller

Memory
interface
controller

2-level
cache Off-chip

memory
I/O

device

SPE

FIGURE 5-10

The Cell BE structure.

78 CHAPTER 5 Network adapters



elements of the multiprocessor. For the remainder of the chapter, we use the most

advanced adapter architecture as a basis, the one with partitioned memory, MMU,

and intelligent DMA and map its components to processing elements in various

configurations.

Single SPE configuration
Considering the organization of the Cell BE with heterogeneous elements, we

employ the Cell BE elements as shown in Figure 5-11. The Cell BE is used for

both the protocol processor and MMU functionalities. Specifically, the PPE is

assigned with the MMU functionality, while a single SPE is assigned with protocol

processing. The off-chip (off-Cell BE) packet memory is connected to the Cell BE

memory interface, while the Cell BE I/O interface is attached to the intelligent

DMA unit. Thus, the EIB interconnects all adapter components.

The case of the Cell BE offers significantly more advantages than just a set of

powerful processing elements. These advantages originate from the EIB and its

multiple data rings. The advantage of multiple data rings becomes apparent when

considering the contention on the single bus of the adapter analyzed earlier. In the

single bus adapter, it is often the case that two different resources compete for the

bus for two different operations; for example, consider the scenario where the pro-

tocol processor requests the bus for an MMU operation while the intelligent DMA

requests the bus for a data transfer. In the single bus adapter, these two requests are

serialized, whereas in a system such as the Cell BE this scenario leads to parallel

execution of the two requests. This parallelism is possible because the processor

and the intelligent DMA can use different rings to complete their operations with-

out conflict and thus conflict delays. The effect of multiple data rings of the EIB

can be observed in data of Table 5-4 where utilization of the SPE protocol proces-

sing element, as measured with the simulator, for the packet lengths analyzed is

presented A comparison with Table 5-3, which presents protocol processor utiliza-

tion for the single bus adapter, demonstrates significant improvement for long

packets (the utilization was approximately 52%), reaching almost the same utiliza-

tion as for the traffic of short packets, about 98%.

DMA
Link

interface

Off-chip
memory

memory
interconnection

Cell BE
chip

I/O inter-
connection

FIGURE 5-11

Adapter configuration with Cell BE.

79Multiprocessor processing element



The overall throughput of the on-chip Cell BE adapter configuration, as

provided by the simulator, is shown in Figure 5-12. As plots indicate, results are

improved significantly. Comparing the throughput with that of a conventional

processor, such as ARM11, there is an improvement of 400% in the case of short

packets; this improvement is analogous to the processing power increase. In the

case of long packets, the improvement is double, reaching 800%, as a result of bet-

ter processor utilization due to the faster and conflict-free element interconnection,

as mentioned earlier.

Multi-SPE configuration—protocol multiprocessing
Cell BE offers eight SPEs in the system, enabling parallelism in protocol execu-

tion. In an effort to use additional SPEs, one can assign them to packet processing,

exploiting parallelism in different ways. There are two main methods to exploit

Table 5-4 Protocol Processor Utilization in Cell BE

Packet length Processor utilization

1024 0.979

256 0.983

64 0.983

0

50

100

150

200

0 50 100 150 200

T
hr

ou
gh

pu
t (

G
bp

s)

Arrival rate (Gbps)

1024-byte packets
256-byte packets

64-byte packets

FIGURE 5-12

Adapter throughput in single-SPE configuration.

80 CHAPTER 5 Network adapters



parallelism at this level. The first is to parallelize the execution of the protocol

code to multiple SPEs, and the second is to have all SPEs execute protocol code

on different packets in parallel.

This subsection analyzes the first case. We parallelize protocol execution by

partitioning it into simpler functions [174] and assigning them to SPEs, retaining

the dependencies between these functions through appropriate synchronization.

In this case, protocol processing of a packet header is distributed to the eight

SPEs of the Cell BE. Functional decomposition of protocol processing and mapping

to eight execution elements results in a reduction of the critical path of LLC from

351 instructions to 208, according to the analysis of [174].

The performance of this adapter configuration is shown in Figure 5-13. As

results show, there is an overall improvement of 40% for all packet lengths, which

is in line with the reduction of the LLC critical path.

Multi-SPE configuration—spatial parallelism
An alternative approach for multi-SPE configuration is one exploiting spatial par-

allelism, where each SPE executes protocol processing on a different packet

header. In the Cell BE system, where there are eight SPEs, eight different packets

can be processed simultaneously. However, special attention must be paid to packet

sequencing after processing. In a multiprocessor environment, if packets are placed

immediately in an output queue after processing, they may be forwarded in a dif-

ferent order than they are received. This occurs for two reasons: (i) the processing

0

50

100

150

200

0 50 100 150 200

T
hr

ou
gh

pu
t (

G
bp

s)

Arrival rate (Gbps)

1024-byte packets
256-byte packets

64-byte packets

FIGURE 5-13

Adapter throughput in multi-SPE configuration exploiting spatial parallelism.

81Multiprocessor processing element



time of headers may differ, even if the same protocol code is executed on all head-

ers, and (ii) there may be postprocessing resource contention, which may lead to a

different order of packet header operation completion. Thus, a resequencing pro-

cess is necessary in an adapter that exploits spatial parallelism.

The problem of resequencing packets is a known problem, as it appears in

many protocols [140] and in multiprocessing environments [117]. The following

describes an effective resequencing algorithm, the Priority-Coupled resequencing

algorithm [13], which is executed by the processing elements rather than any

other adapter component, such as the memory management unit. Using this

approach, resequencing requires the use and management of two additional

types of queues. Although the algorithm has been developed to accommodate

multiple packet priorities, we consider only one priority for simplicity in the

description.

The resequencing algorithm maintains the following queues: one input queue

(Input_Queue) where incoming packets are enqueued, one output queue (Output_

Queue) where processed packets are enqueued in the right order, one wait queue

(Wait_Queue) per processing element where processed but out-of-sequence pack-

ets are enqueued, and, finally, one processor ID queue (IDProc_Queue), which

stores the order in which the processors fetch packet headers from the Input_

Queue. The concept of the resequencing algorithm is to have processors (SPEs)

process headers, when idle, and sequence outgoing packets to the Output_Queue

using the IDProc_Queue as the synchronizing, resequencing information.

An idle processor executes the algorithm shown in Figure 5-14, when the

Input_Queue is unlocked and nonempty. In that case, the processor locks and

Lock(head_of_Input_Queue)
Dequeue(Input_Queue)
from Input_Queue 
Enqueue(MpID, IDProc_Queue)
Unlock(head_of_Input_Queue)
Process_header()
Lock(head_of_IDProc_Queue)
if (MpID == first_ID_in_IDProc_Queue) {

// dequeues packet header and removes packet

// appends the Processor ID to IDProc_Queue

Dequeue(ID, IDProc_Queue)
Enqueue(packet, Output_Queue)
While (Wait_Queue(first_ID_in_IDProc_Queue != empty) {

Dequeue(ID, IDProc_Queue)
Dequeue(packet, Wait_Queue)
Enqueue(packet, Output_Queue)

}
}

else             Enqueue(packet, Wait Queue(MpID))
Unlock(head_of_IDProc_Queue)

FIGURE 5-14

Resequencing algorithm.

82 CHAPTER 5 Network adapters



accesses the head of the Input_Queue, obstructing any other processor from

accessing the Input_Queue at this time. Then, the processor fetches the header

of the packet at the head of the Input_Queue and removes the packet from the

Input_Queue. Subsequently, the processor enqueues its own ID to the tail of

the IDProc_Queue and unlocks the head of the Input_Queue; this enables the

next packet of the Input_Queue to become available for processing. The processor

executes the protocol code on the header and, when it completes processing,

locks the head of the IDProc_Queue and checks if the head ID in that queue

matches its own ID. If the IDs do not match, the processor enqueues the packet to

its Wait_Queue, unlocks the head of the IDProc_Queue, and becomes idle. If the

IDs match, the processor removes the ID from the IDProc_Queue, enqueues

the packet in the Output_Queue, and checks the Wait_Queue of the next pro-

cessor ID in the IDProc_Queue; this Wait_Queue is checked because already

processed out-of-sequence packets may be waiting for the packet that was just

enqueued in an Output_Queue. If this Wait_Queue is empty, the head of the

IDProc_Queue is unlocked and the processor becomes idle. Otherwise, the pro-

cessor dequeues the ID from the IDProc_Queue and transfers a packet from

that Wait_Queue to the Output_Queue. It repeats this process until it finds the

IDProc_ Queue empty or it encounters an empty Wait_Queue. When one of these

conditions is satisfied, the processor unlocks the head of the IDProc_Queue and

becomes idle.

Adoption of this resequencing method enables dynamic assignment of incom-

ing packets to available processors, leading to high processor utilization and load

balancing among the SPEs. The cost of resequencing is due to two sources of

delay: (i) the execution of 64 instructions, inserted to the critical path of the proto-

col processing process [13], and (ii) additional memory management requests to

the MMU.

The throughput of the Cell BE-based adapter exploiting spatial parallelism is

shown in Figure 5-15. In order to evaluate the effect of resequencing, the proces-

sing delay follows an exponential distribution with mean value equal to 351

instructions so that outgoing packets are delivered out of sequence and thus invoke

the resequencing overhead. In case of short packets, the adapter throughput is

5.5 times higher than that of the single SPE case. Considering the use of eight

SPEs, the maximum speedup would be eight. The inability to achieve this speed-

up is due to resequencing, which places additional load to the SPEs as well as to

the MMU. In the case of long packets, throughput is only 2.5 times higher than

that of the single SPE case. This occurs because the memory controller becomes

a bottleneck. As mentioned earlier, because each unit is connected to the EIB,

the memory controller can send and receive up to 16 bytes per bus cycle, that is,

204 Gbps; the maximum throughput of the adapter is 180 Gbps in this case, a

number that approximates the limit of data that can be transferred by the memory

controller. This demonstrates clearly that the addition of multiple processing ele-

ments is not beneficial unless it is accompanied by a sufficiently high-performance

memory system.

83Multiprocessor processing element



MEMORY MANAGEMENT SCHEMES
The effective throughput of a network adapter is affected by the performance of all

its components. Based on analyses given earlier and considering the simplicity of

designing intelligent DMAs, critical components in the adapter architecture are

the protocol processing element and the memory management unit. After analyzing

the effect of protocol processing on overall performance in the previous section,

we focus on the effect of the memory management unit in this section. We inves-

tigate alternative configurations of the basic, single bus adapter to overcome the

bottlenecks introduced by it.

The MMU affects adapter performance significantly. Consider, for example, the

reception process of a packet in the adapter shown in Figure 5-7. The packet is moved

to the packet memory and then it is enqueued to a queue. When a new packet arrives,

a free buffer pointer must be provided, but it may be unavailable before the enqueue-

ing process of the previous packet is finished by the MMU. Although caching and

pointer pre-fetching techniques can overcome such conflicts as the above, the delay

to obtain the necessary memory management information is unavoidable in several

traffic scenarios, such as short packets arriving in long bursts.

The problem becomes clear when we consider an adapter where packets arriv-

ing at the network interface are transferred directly to the end system without any

protocol processing. Assuming a packet interarrival delay equal to zero, the only

delays in the system are those of data transferring to/from packet memory and

0

50

100

150

200

0 50 100 150 200

T
hr

ou
gh

pu
t (

G
bp

s)

Arrival rate (Gbps)

1024-byte packets
256-byte packets

64-byte packets

FIGURE 5-15

Adapter throughput in multi-SPE configuration—spatial parallelism.

84 CHAPTER 5 Network adapters



those of memory management operations. This enables us to focus on the effect of

the memory management unit on adapter performance, as both link and end system

interfaces use MMU services to perform reception and transmission to the end sys-

tem. Simulation results for system throughput of the attached MMU, in packets per

second, are plotted in Figure 5-16 as a function of packet length along with other

adapter configurations described later.

As Figure 5-16 indicates, system throughput decreases as packet length in-

creases. This occurs because the delay of data movement increases and becomes

dominant as packet length increases. In the case of short packets, the limit on

system throughput is posed by the MMU performance limitation, originating from

the contention of all link interfaces on the MMU and because all MMU communi-

cation takes place over the bus. Figure 5-17, which plots MMU utilization as a

function of packet length, shows that attached MMU reaches 80%, its maximum

Local
memory

Local
memory

MMUMMU

DMA
Link

interface
End system

interface

Processing
element

Memory

Bus

FIGURE 5-17

Memory management unit utilization for various memory management schemes.

Local
memory

Memory

Local
memory

MMU

Bus
DMA

Link
interface

End system
interface

Processing
element

FIGURE 5-16

Adapter throughput for various memory management schemes.

85Memory management schemes



value, in the case of short packet traffic and decreases as packet length increases.

MMU utilization never reaches 100% due to contention on the adapter bus.

Detached MMU
Considering the limitations of the MMU and its conflicts on the single bus of

the adapter with the intelligent DMA and the resulting data transfers, an architec-

tural enhancement toward a better MMU performance is to detach the MMU

from the bus and provide an alternative path to it, as shown in Figure 5-18. This

allows interaction with the MMU to take place separately, without interference

from packet data movement. The overall system performance of the detached

MMU is plotted in Figure 5-16. The detachment of the MMU and the resulting

reduction of conflicts on the bus result in a throughput improvement, which

reaches 31% in the case of short packets. The improvement is due to better

MMU utilization, which reaches 90% for 128-byte packets and 100% for packets

up to 96 bytes long. Such utilization is significantly higher than that of previous

configuration, even for longer packets. As Figure 5-17 illustrates, utilization

of the detached MMU is higher than that of the attached MMU. The MMU

utilization of both configurations decreases as the packet length increases and,

when packet length equals to 1024 bytes, the two utilizations are approximately

the same.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

S
ys

te
m

 th
ro

ug
hp

ut
 (

kp
ps

)

Packet size (bytes)

attached
detached

distributed

FIGURE 5-18

Detached MMU adapter configuration.

86 CHAPTER 5 Network adapters



Distributed MMUs
Although detachment of the MMU from the adapter bus improves performance,

MMU utilization reaches 100% fairly quickly, at packet lengths over 128 bytes, indi-

cating that the MMU becomes the bottleneck of the system. One method to alleviate

this bottleneck is the use of a parallel or distributed MMU scheme. Figure 5-19

shows the design of the adapter with the distributed MMU approach, employing

two separate memory management units. The concept is to have the first MMU serve

the intelligent DMA unit and the second serve the end system interface, while the

processor can be served from either of the MMUs. For consistency and correct oper-

ation, MMUs share memory, which stores the MMU data structure information.

The distributed MMU approach can be used efficiently because the need for syn-

chronization among the MMU units, when accessing the shared memory, is limited.

Such an approach increases performance dramatically, as Figure 5-16 demonstrates.

The figure shows that the throughput is almost doubled for short packets. Perfor-

mance improvement is due to alleviation of the MMU bottleneck, as Figure 5-17

illustrates with plots of the aggregate utilization of the distributed MMU scheme.

SUMMARY
This chapter introduced the basic operation and architecture of network adapters.

We analyzed the operation of the adapter in a systematic way and identified bottle-

necks of the system. Starting with the structure of the memory subsystem of the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000

M
M

U
 U

til
iz

at
io

n

Packet length (bytes)

attached
detached

distributed

FIGURE 5-19

Distributed MMU configuration.

87Summary



adapter, we introduced a partitioned memory configuration that improves adapter

performance significantly. We considered the effect of adoption of intelligent

DMA techniques, which prove to be beneficial. We also analyzed the effect of

processor structure and performance, exploring multiprocessor structures for the

processing element and their effect on the performance of the adapter. Impor-

tantly, we analyzed the resequencing problem that emerges when spatial parallel-

ism is exploited at the protocol processing level. Finally, we identified the

memory management bottleneck of the adapter and evaluated alternative architec-

tures for further performance improvement. The presented analyses indicate that a

well-balanced design that balances the load of operation among all adapter compo-

nents leads to high component utilization, achieving the maximum achievable

performance for the network adapter.

88 CHAPTER 5 Network adapters



CHAPTER

Bridges and layer 2 switches 6
INTRODUCTION
Bridges and layer 2 switches are network systems that interconnect networks at the

Data Link layer of the OSI Reference Model. Considering the classification of net-

work systems presented in Chapter 2, bridges and layer 2 switches implement a

two-layer protocol stack for each network attachment, as shown in Figure 6-1,

and switch frames among these stacks.

Layer 2 switches can be considered a special implementation of bridges and

thus can be viewed as a subset of bridging systems. The following discussion uses

the term bridge to refer to all data link layer internetworking systems and describes

the specifics of layer 2 switches at the end of the chapter.

Figure 6-1 shows the route of a frame traversing two networks attached to the

bridge. In general, a data link layer frame arriving at the bridge is received and

examined to identify whether it should be forwarded to another network or not.

This examination is necessary considering the broadcasting nature of several

common local area network (LAN) technologies (e.g., Ethernet or Token Ring).

When using broadcasts, a bridge commonly receives frames that are targeted

for end systems on the same LAN segment as the transmitting end system. If a

frame is targeted for an end system on the same LAN segment, then the bridge

does not forward it, but rejects it; this process is commonly called filtering.
If the frame is targeted to an end system attached to another network, then the

bridge identifies the appropriate output port for the frame and transmits the frame

accordingly.

The operation and the structure of bridges are influenced by organization of the

data link protocol layer as defined by the IEEE standardization effort. As discussed

in Chapter 2, the evolution of local area networks has led to a standardization that

divides the data link layer in two sublayers: the Media Access Control (MAC) and

the Logical Link Control (LLC). IEEE has been leading a systematic standardiza-

tion of local area networks, and some networks classified as Metropolitan Area

Networks (MANs), in the following fashion: All standards are defined as part of

the 802 standard family, where 802.2 defines a standard LLC protocol operating

on top of all 802.x (x > 2) network standards. Each 802.x standard defines a

corresponding pair of protocols for the physical layer and MAC layer (i.e., lower

data link sublayer). This standardization approach is shown in Figure 6-2.

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
89



Considering the IEEE standardization effort, network systems operating at the

data link layer can switch frames at two levels: (i) MAC or (ii) LLC. The ability

to switch at the MAC level seems like a natural choice, as all MAC protocols of

the IEEE 802.x family—the predominant family of bridged networks—operate

under the same standard 802.2 protocol. However, standardized protocols of the

802.x family present significant differences between them in many parameters,

such as frame length, priorities, routing methods, etc. As a characteristic example,

Figure 6-3 illustrates the frame format of Ethernet (IEEE 802.3) and Token Ring

(IEEE 802.5) protocols. The structure and fields of the corresponding headers indi-

cate significant differences in the operation of the two networks, which make the

Data link layer

Logical link control

Medium access control

Physical layer

IEEE 802.2

IEEE 802.x

FIGURE 6-2

IEEE 802.x standardization.

Data
Frame check

sequence
Source
address

Destination
address

Frame
control

Start
delimiter

Preamble

Data
Frame check

sequence
Source
address

Destination
address

Length

Ethernet frame

Token Ring frame

Start
delimiter

Preamble

FIGURE 6-3

Ethernet and Token Ring frame format.

Network linkNetwork link

Data link layer Data link layer

Physical layerPhysical layer

Bridge/layer 2 switch

FIGURE 6-1

Bridge and layer 2 switch operation.

90 CHAPTER 6 Bridges and layer 2 switches



ability to switch frames directly at the MAC sublayer a challenging task. However,

if one assumes that the bridged networks are all the same, for example, Ethernet,

then frames can be switched at the MAC sublayer in a straightforward fashion.

Thus, data link layer network systems may switch frames at two different levels,

depending on the environment and the requirements.

Bridges are used as building blocks for large networks, interconnecting large

numbers of local area networks. Bridges enable network connectivity at a low

level and with less processing requirements per frame than other network systems,

such as routers.

TYPES OF BRIDGES
While the conceptual operation of bridges is simple, there are many specific issues

relating to the types of local area networks connected, as well as the methods used

to establish routing function between end systems. These details lead to complex

operation requirements, especially for bridges that interconnect heterogeneous local

area networks with significant differences in their protocols. Different types of

bridges have emerged based on bridge operation, associated link layer protocols,

and implementation parameters.

Various parameters are used to classify bridges. One parameter is the exact

protocol sublayer used for frame switching, that is, MAC or LLC. Although an

LLC-level bridge appears as a generic solution to bridge between heterogeneous

networks, significant differences between associated MAC protocols do not allow

for a generic solution. For example, a bridge between an Ethernet and a Token Ring

network is unable to translate priorities of Token Ring frames, simply because

Ethernet does not support priorities; this is independent of the fact that both Ether-

net and Token Ring networks operate under the IEEE 802.2 LLC protocol. In con-

trast, MAC bridges, which interconnect network segments of the same type (i.e.,

link layer protocol), can easily switch MAC frames between networks. However, it

is clear that MAC bridges are protocol dependent. For this reason, several MAC

bridges include LLC level switching, that is, LLC frame handling consistent with

the standards.

A second classification of bridges is based on their location relatively to net-

work segments, as depicted in Figure 6-4. In some network configurations, bridged

networks are separated geographically, with local area networks interconnecting

end systems in each location and a wide area network (WAN) interconnecting

bridges of the different locations. A local bridge is one that interconnects networks

at one location, while a remote bridge is one that interconnects one location with

another one, thus providing bridging services at the remote location [70, 71]. An

alternative view is to consider the two interconnected bridges of the locations

as a split bridge interconnecting the two locations, where the two portions of the

split bridge are separated geographically and interconnected through a wide area

network. This classification is interesting from an architectural point of view due

91Types of bridges



to the need for managing heterogeneous ports (LAN and WAN), which typically

have different requirements for performance and functionality.

The third and most widely used classification for bridges is the one based on the

routing method used by the bridges. The two routing methods used are transparent

bridging and source routing bridging. In transparent bridging, routing of frames

is performed using a routing table in every bridge, as shown in Figure 6-5(a). The

routing tables in interconnected bridges are populated using a learning method, as

is described in the following section; for this, transparent bridges are often called

learning bridges. In contrast, source routing bridges forward frames based on a route

specification that is included in the frames. Assume, for example, that end system

ES1, shown in Figure 6-5(b), transmits a frame to end system ES2, which resides in

a different network. Using source routing, ES1 attaches to the frame the specific

route that has to be followed in order to reach ES2. End systems, like ES1, calculate

the specific route for a target system by discovering available routes; this discovery

operation requires that origin systems transmit special frames, called explorer
packets, to discover routes and then choose among the candidate routes using various

criteria, such as first discovered route, shortest route, etc. Transparent bridging and

source routing bridging have been combined in source-route transparent bridging

(SRT), a methodology that has been included in the IEEE 802.1 standard, in addition

to transparent bridging. The goal of SRT is to provide a standardized solution that

accommodates transparent bridges, as well as source-route bridges.

TRANSPARENT BRIDGING AND SPECIAL-PURPOSE
SUBSYSTEMS
Transparent bridging is a popular bridging method that enables efficient routing

and management, as well as mobility of end systems. The term “transparent” orig-

inates from the fact that, with this method, end systems are oblivious to the exis-

tence and configuration of bridges inserted in the network. Transparent bridges

operate transparently, performing the necessary routing and management functions

without the involvement of end stations. The effectiveness of transparent bridging

led to its inclusion in the IEEE 802.x standard suite as part of standard IEEE 802.1.

Local
bridge

Local
bridgeWAN

Remote bridge/
split bridge

Local
network

Local
network

Local
network

Local
network

Location 1 Location 2

FIGURE 6-4

Local and remote bridge.

92 CHAPTER 6 Bridges and layer 2 switches



Port 3

Port 2

Port 1

Port 3

Port 2

Port 1Transparent 
bridge 1

End
system 

2

End
system 

1

End
system 

7

End
system 

3

End system Port

1 3
2 3
3 2
4 1
5 2

Routing table

Transparent 
bridge 2

End
system 

4

End
system 

6

End
system 

5

6 2
7 2

End system

(a)

Port

1 2
2 2
3 2
4 2
5 3

Routing table

6 3
7 1

FIGURE 6-5

Transparent and source routing bridges.

(Continued)

93Transparent bridging and special-purpose subsystems



There exist alternative architectures and methods to transparent bridging, as men-

tioned previously. Because transparent bridging is the most popular and common

bridging technology used in conventional networks, we focus on its characteristics

and implementation requirements.

Transparent bridging [69] defines three main operations for transparent bridges:

frame filtering (also called packet filtering) and forwarding, address learning, and

loop resolution. Frame filtering and forwarding are related functions in that an

incoming frame has to be examined by the bridge in order to decide whether

the frame is filtered by the bridge (i.e., dropped) or forwarded (i.e., routed toward

the receiving end system). The bridge drops frames for which the transmitting and

Port 3

Port 2

Port 1

Port 3

Port 2

Port 1Source routing 
bridge 1

End
system 

2

End
system 

1

End
system 

7

End
system 

3

Source routing 
bridge 2

End
system 

4

End
system 

6

End
system 

5

(b)

Example frame

Destination Source Routing information

ES 6 ES 2
Bridge 1 

port 2
Bridge 2 

port 3

FIGURE 6-5—CONT’D

94 CHAPTER 6 Bridges and layer 2 switches



receiving end systems are connected to the network segment(s) that are reachable

through the receiving port of the bridge; otherwise, the bridge forwards the receiv-

ing frame accordingly. The decision about whether to filter or forward, and through

which outgoing port, is made using a filtering database (FDB), which is maintained

by the transparent bridge and constitutes one of its main components.

Address learning is the process through which a transparent bridge inserts and

manages the filtering database in order to include current information about the

network and end systems. The goal of the address learning process is to enable

transparent bridges to be autonomous and learn routes to end systems without

explicit intervention of end systems or other bridges. The learning process is

straightforward: when a frame arrives at a port, the bridge extracts its source

address and then inserts in the filtering database an entry with the source address

and the bridge port at which the frame arrived; if an entry already exists, it is

updated accordingly; the port listed in the filtering database can be used to route

frames to this end system. Thus, a transparent bridge learns the ports through

which each end system is reachable by monitoring the source address of each

frame received by every bridge port. If the bridge needs to forward a frame for

which there is no entry in the filtering database, the frame is broadcast on all ports

(except the receiving port). Because there must be support for end system mobility

and network reconfiguration, learned routes to end systems are valid only for lim-

ited amounts of time. A set of timers, for example hello timer, topology change

notification timer, and aging timer, are employed by the transparent bridging

standard. Among them, aging timers are the most important ones from the bridge

design point of view because an aging timer is associated with each entry of the

filtering database and needs to be reset every time the entry is accessed due to

frame forwarding; when an aging timer expires, the corresponding entry of the

filtering database becomes invalid.

Frame forwarding and address learning processes are effective and lead to cor-

rect operation of the transparent bridging architecture as long as the overall net-

work does not contain any loops. However, this assumption is unrealistic for

real-world networks. For this reason, the transparent bridging standard includes a

loop resolution process. The concept of the loop resolution process is simple: mod-

eling the network as a graph with nodes being the bridges and the end systems and

with edges being the corresponding links; the transparent bridges calculate a

spanning tree of the network. A spanning tree, by definition, is a subset of the

graph that maintains connectivity of all nodes and does not contain loops. All

frame forwarding is performed over links that are part of the spanning tree. The

spanning tree is calculated using a spanning tree algorithm, implemented through

a bridge protocol running over the LLC-1 protocol [74], which is used to exchange

bridge control information. The spanning tree algorithm is described in detail

elsewhere [69, 139].

Transparent bridging places significant requirements on the architecture of

the bridge because of the functionality required and the operations performed on

a per-frame basis. The bridge has to perform several operations per frame, which

95Transparent bridging and special-purpose subsystems



include forwarding the frame and managing the filtering database, as required for

the learning process. In contrast, source-routing bridges do not require such signif-

icant number of operations per frames because the complexity of identifying routes

and routing frames across networks is placed at the end systems, which perform all

needed operations.

To identify the functional and performance requirements of transparent bridges,

we analyze the route of a frame through the bridge, focusing on operations required

for the filtering database. When a transparent bridge receives a frame, the bridge

examines the header to perform filtering and forwarding based on the filtering

database information. Specifically, the FDB is accessed twice per frame: (i) the

destination address is used to decide whether the frame is forwarded through

another bridge port or filtered (if it is targeted for a system on the same side of

the port through which it is received) and (ii) the source address is used to update

the location information of the transmitting system (the learning process is im-

plemented with the transparent bridge learning the ports through which a certain

system is reachable by monitoring the source addresses of incoming frames). In

addition to the aforementioned FDB accesses, the bridge needs to perform timer

operations on a per-frame basis. For example, the aging timer of an address needs

to be reset every time an incoming frame is received from a specific address.

In this way, if a system becomes silent for a long time, its associated FDB entry

becomes invalid after a certain interval; this is necessary in order to delete old

FDB entries, which may be wrong in case a system is moved to a different loca-

tion in the network. If no FDB entry exists for a destination address, then the

corresponding system is unknown to the network, that is, it has not transmitted

anything yet. In this case, the transparent bridging protocol requires that the bridge

broadcasts the frame to all ports except the source port, in expectation that the

destination system will respond and a route will be identified eventually.

Considering the operations performed in a transparent bridge during a frame’s

processing, it becomes clear that special attention has to be paid to implementation

of the subsystems that manage the filtering database and the timers. Management

of the database is critical to performance, as incoming frames, which may arrive

in parallel on different ports, may trigger multiple access requests. Because the

database is read and may be updated during frame processing, special attention

has to be paid to data consistency. Accommodation of parallel operations requires

the use of parallel/distributed processing methods, as well as database consistency

techniques. Importantly, the strict timing requirements of high-speed networks lead

to additional, important issues that need to be addressed (e.g., the use of hashing

mechanisms for the indexing of MAC addresses, determining appropriate data

structures for the database that enable real-time processing of frames).

In addition to management of the filtering database, critical operations include

management of the timers related to the database entries. Although the transparent

bridging standard employs several timers, the most critical one is the aging timer:

for every incoming frame, the corresponding timer associated with the source address

of the frame needs to be reset. If the timer is not reset, the corresponding entry expires

96 CHAPTER 6 Bridges and layer 2 switches



at some point in time and the entry needs to be erased from the filtering database.

Thus, management of the aging timers requires fast operations for timer reset as well

as entry deletion. These operations require special data structure designs so that they

can be performed efficiently, that is, in constant time independently of the size of

the database, and meet the performance requirements of the attached networks.

For example, the timing wheel data structure, a data structure used commonly for

timer management, helps achieve constant time deletion of several expiring timers.

However, it does not enable timer reset in constant time, considering that several

timers may have the same time value; a different data structure (e.g., a table) can

be employed to provide efficient reset. Thus, the nontrivial problem of achieving

several efficient operations requires development of complex combined data struc-

tures. An example of this approach is described in detail in the following section.

HIGH-PERFORMANCE TRANSPARENT BRIDGE ARCHITECTURE
High-Performance Transparent Bridge (HPTB) is an architecture of a transparent

bridge targeted to achieve scalability and connectivity of packet networks up to

800 Mbps and cell-based (ATM) networks up to 622 Mbps [9, 53]. This section

presents HPTB architecture in detail as an example of a sophisticated layer 2 net-

work system.

Figure 6-6 illustrates the structure of HPTB, which is analogous to the structure

of network systems, as presented in Chapter 2. HPTB includes four main subsystems:

(i) network attachment units, (ii) memory (buffering), (iii) internal interconnect, and

(iv) a protocol processing subsystem. The goal of network attachment units is to

enable network connectivity to the attached networks, executing physical and

MAC layer protocols. Incoming frames are processed and buffered. Buffering is

necessary, as there is no guarantee that a frame is forwarded to the outgoing port

immediately due to conflicts with other frames targeted to the same outgoing

port. The internal switching component provides connectivity among network

attachment units and the memory subsystem. The decision to use a switch as the

internal interconnection is due to the need to exploit parallelism in data frame pro-

cessing, transfer, and storage in order to meet the high-performance requirements

of the attached networks. In addition, one needs to accommodate processing of

frames that do not require forwarding (or filtering), but are destined to the bridge

itself. A protocol processing subsystem processes these frames. Because these

frames do not need to be forwarded to a network, but are absorbed by the bridge,

the protocol processing subsystem can be viewed as analogous to the network attach-

ment units: it constitutes the final destination of these frames within the bridge.

The main subsystems and their interaction are described in more detail here.

1. Internal Switching Component (ISC): The ISC implements data paths necessary

in HPTB for delivering frames (or cells) between the memory and the network

attachment units and the protocol processing subsystem. The ISC operates in

a synchronous fashion, using a system clock with two phases, each phase

97High-performance transparent bridge architecture



employing 50% of the clock cycle. During the first phase, called receiving
phase, data are transferred from the network attachment units (and the protocol

processing unit) to the buffering subsystem, while during the second phase,

called transmitting phase, data are transferred from the buffering subsystem

to the network attachment units (and the protocol processing unit). Data trans-

fers over the ISC are implemented using internal, fixed-size packets that

contain 64 bytes of data and 8 bytes of control information, denoted as the con-
trol word. The control word includes information necessary for memory man-

agement. The ISC is implemented using a crossbar fabric and a scheduler,

which schedules data transfers based on status information of data in the

buffering subsystem and the status of the network attachment units.

2. Network Attachment Unit (NAU): Network attachment units provide connec-

tivity to the attached networks, one unit per network. Each NAU implements

the corresponding protocol stack of the attached network, that is, physical

and MAC protocol. In addition, each NAU contains the necessary components

to perform the bridging functions necessary for every frame, that is, filtering

and forwarding, as well as learning. Thus, each NAU contains a copy of

the filtering database and the data structures necessary for management of the

corresponding timers. Inclusion of the local FDB copy and timer management

Buffering component

Internal switching component

Module 1

Data 
memory DMMU

Network attachment 
unit 1

Module N

Data 
memory DMMU

Network attachment 
unit N Central 

FDB 
manager

Network 1 Network N

...

...

FIGURE 6-6

Structure of the High-Performance Transparent Bridge.

98 CHAPTER 6 Bridges and layer 2 switches



is necessary to enable parallel processing of frames and to meet the high-

performance requirements placed by the attached network speeds.

3. Buffering Component: The buffering subsystem provides the necessary storage

area for frames that need to be queued in the bridge. Considering the scaling

goals of HPTB, the buffering component is structured as a set of parallel mem-

ory modules, each managed by a corresponding memory management unit,

called Data Memory Management Unit (DMMU). The number of memory

modules is equal to the number of NAUs plus one for the protocol processing

subsystem; as noted previously, the protocol processing subsystem is analogous

to the NAUs. The equal number of NAUs and memory modules enables the

parallel storing of frames in memories during the reception phase of the internal

switching components, thus enabling conflict-free operation of the frame recep-

tion by all active NAUs. Clearly, this modular approach to the design of the

buffering component may lead to low or unbalanced memory utilization, as

each memory module is used for storage by its corresponding NAU. However,

the parallel memory modules enable very high aggregate data transfer rates,

avoiding memory contention that would appear if the buffering component

was designed with a centralized single-port memory unit. Each memory mod-

ule is managed in a similar fashion as the adapter described in Chapter 5.

The memory is logically divided in fixed-size blocks, which are used to store

frame data. Blocks that store data of the same frame are linked together in a

logical queue, and frames directed to the same outgoing NAU are also linked

together in a logical queue. The DMMU is the subsystem that implements all

enqueue and dequeue operations for the logical queues and maintains all the

necessary control information for implementation of the queues. In the HPTB

design, each DMMU is implemented in hardware to meet the performance

requirements placed by the attached networks. The adoption of parallel

DMMUs, one per memory module, enables exploitation of parallelism in frame

data transfers, as well as in queue maintenance operations, such as parallel

enqueue and dequeue operations.

4. Protocol Processing Component: This component is responsible for the execution

of all bridge operations that relate to the bridge protocol itself, network manage-

ment, monitoring, etc. The transparent bridging standard requires that each bridge

executes certain protocols, such as the bridge protocol and the bridge manage-

ment protocol, for example, the loop resolution process. Furthermore, network

management requires that specific information is maintained and managed by

each network system. Finally, from an architectural point of view, it is necessary

that a subsystem exists that monitors the system’s operation and performs

maintenance, checking, and reconfiguration operations occasionally. The proto-

col processing components implements all these processes. Although these

operations do not place hard real-time performance requirements as frame for-

warding operations do, they still generate a processing load that should not

interfere with the strict, real-time processing of frame forwarding. The need to

provide additional processing power for these operations, as well as the structure

99High-performance transparent bridge architecture



of the HPTB, enables the development of a special-purpose protocol processing

component (subsystem) with a dedicated memory unit (and corresponding

DMMU) similar to the NAUs. Inclusion of a specialized protocol processing

component creates an appropriate architecture that meets the performance

requirements of the overall bridge. The protocol processing component can

be based on a general-purpose processor, a parallel processing system with

processors [200], or even special-purpose protocol processors.

Operation of the HPTB and its components can be explained when considering the

route of a frame through the system. An incoming frame arrives at the NAU

attached to its network. On arrival, it is stored in a small buffer within the NAU

and all time-critical operations are performed in the receiving NAU in real time;

these operations include accesses to the filtering database and a reset of the

corresponding aging timer. After this real-time processing of the frame, the frame

is forwarded to the corresponding memory module through the internal switching

component (ISC). The frame remains in this memory module until it is transferred

to the appropriate outgoing NAU. During its storage in the memory, the frame is

linked by the corresponding DMMU to the appropriate logical queue; typically,

there is one logical queue organized and maintained per outgoing NAU. As frames

are transmitted by the outgoing NAU, the frame eventually reaches the head of the

logical queue and then is forwarded through the ISC to the outgoing NAU. As the

frame is transmitted, it is stored only temporarily in a cut-through mode in a buffer

on the outgoing NAU. Thus, each incoming frame is stored only once in data

memory and traverses the internal switching component twice, once to be written

into memory and once to be read.

In addition to frames being switched by the bridge, frames exist that are

received and processed by the bridge, such as Bridge PDUs, as well as frames

created and transmitted by the bridge. Incoming frames destined to the bridge

are stored to the memory module that corresponds to the receiving NAU in exactly

the same way as incoming frames destined for transmission. The only difference to

regular frames is that these bridge frames are transmitted to the protocol processing

component instead of an outgoing NAU. Similarly, frames that the bridge needs to

create and transmit are generated by the protocol processing component. When the

protocol processing unit creates a frame, it stores it to its corresponding memory

module and the corresponding DMMU links it to the queue of the appropriate

outgoing NAU where the frame needs to be transmitted. Typically, a bridge gen-

erates or receives frames for the protocol processing unit only infrequently. Thus,

low-speed protocol processing components can meet the requirements of current

networks easily. However, the scalability of the HPTB enables it to adopt any tech-

nology for the protocol processing component, employing high-speed processors

and memories meeting the requirements of any attached network suite.

High-Performance Transparent Bridge Architecture constitutes a generic, scal-

able architecture, which can employ different technologies and accommodate

different parameters, such as network speeds, memory sizes, etc. The design

100 CHAPTER 6 Bridges and layer 2 switches



presented elsewhere [202] targets accommodation of network speeds up to 800

Mbps for variable size packet networks and 622 Mbps for cell-based ones. Using

this structure, employing the internal switching interconnect, modular buffering,

and independent network attachment units for the attached networks, the HPTB

architecture is modular, scalable, and provides a high degree of parallelism in its

operation.

Transparent bridging support unit
Management of the filtering database is one of the critical functions of a transpar-

ent bridge, as mentioned previously. Processing of an incoming frame to the bridge

requires two FDB lookup operations (one with the source address as key and one

with the destination address) and one timer operation. Assuming a continuous

stream of incoming frames, it becomes clear that it is necessary to perform lookups

and timer operations during a time interval equal to the duration of a frame

transmission. For example, a sequence of short 30-byte frames arriving at an

NAU over an 800-Mbps link leads to the requirement that all the aforementioned

operations be executed within 300 ns (i.e., the transmission time of one frame on

the link). The strict real-time requirements placed by high-speed networks lead

to strong performance requirements on all operations, which, in turn, lead to the

adoption of sophisticated architectures that exploit parallelism in order to meet

the targeted performance. This is manifested in the HPTB through the use of

replication for the FDB and the segmentation of the timer database, in addition

to the maintenance of a dual data structure for the timers, in order to provide

low complexity operations for all operations required on the timer data structure.

The details of these techniques, employed by HPTB, are presented next.

Replicated filtering database
In a bridge like HPTB, many frames may be arriving simultaneously through differ-

ent ports, all requiring access to the FDB in order to identify the port of exit and to

implement the learning process. Thus, several FDB accesses may be required simul-

taneously, resulting in the FDB being a potential performance bottleneck. HPTB

replicates the FDB to each network attachment unit, as shown in Figure 6-6, in order

to enable parallel FDB accesses from the different network attachments. With a com-

plete FDB copy, each NAU can perform fast read accesses, as required, in parallel

with any other NAU that can access its own local copy in parallel. This concurrency

is feasible and beneficial because the common case of an NAU access is that it is a

read access. However, write operations on the FDB are also necessary and need to

be accommodated appropriately so that consistency is guaranteed. For this purpose,

write operations are implemented through a centralized FDB manager, considering

that write operations are infrequent and thus noncritical in terms of performance.

The central FDB manager is responsible for management of the FDB overall,

controlling and synchronizing all operations on the FDB, that is, read, write, and

delete operations, which are performed by all NAUs. The main goals of the central

101High-performance transparent bridge architecture



FDB manager are coordination and synchronization of the update operations (write

and delete), which change the contents of the FDB. To achieve this, HPTB adopts

a master/slave scheme, where the central FDB manager maintains a local copy of

the FDB that serves as the reference copy of all FDB copies at the NAUs. The

operation is simple: all NAUs, including the protocol processing unit, maintain

their FDB copy and synchronize it with the central FDB manager’s copy as neces-

sary. For this purpose, HPTB implements one point-to-point connection per

NAU between the NAU and the central FDB manager, which serves as the data

path over which the NAU transmits to the manager requests for FDB update

operations; these requests are sent through special commands, which include sev-

eral parameters, such as the corresponding MAC address, port id, etc. Furthermore,

a broadcast bus transmits data from the central FDB manager to all NAU-local

FDB copies for synchronized updates. In this fashion, the update information is

transmitted for all NAU-local FDB copies simultaneously. Each NAU receives

information over the broadcast bus and updates its local FDB copy concurrently.

The only consideration in this process is synchronization of an update at a local

NAU FDB copy with any local read operation that may be in progress at the time

of the update. As database operations are atomic, a NAU may need to store the

update operation temporarily until a progressing read operation finishes first and

then perform the update subsequently. If the central FDB manager receives two

or more update operations from NAUs simultaneously, these operations are serial-

ized by the manager. Importantly, the protocol processing unit acts equivalent

to a NAU because the bridge protocols may also need to change FDB entries

(e.g., set maximum value of the aging timer or include some static entries in the

database).

Indexing of the FDB is an important issue since it affects system performance.

In the case of HPTB, identification of an FDB entry is implemented through use of

a simple hashing mechanism, taking advantage of the structure of IEEE universal

48-bit MAC addresses [184]. Considering that the 24 low-order bits of the MAC

address are likely different among nodes, as manufacturers are provided with con-

secutive MAC address blocks, and the lack of structure in these 24 bits, HPTB uses

these 24 low-order bits as the basis for a key for the identification of an FDB entry.

In this hashing approach, the probability of a hashing conflict is low [83]. More

specifically, HPTB uses the N low-order bits for the key when the FDB has a max-

imum size 2N. Such a hashing mechanism enables the use of low-cost RAM mem-

ory for the storage of an FDB entry identifier rather than the use of high-speed

CAM memories, which are typically used for lookup operations [47, 199]. Despite

the low probability of hashing conflict, the mechanism has to be prepared for the

case of conflicts as well. In that case, new entries are written in a hashing conflict

area of the memory and are linked to the basic entry corresponding to the hashing

key. In the HPTB implementation presented in [202], the architecture of HPTB can

perform a conflict-free FDB operation in 90 ns. The hashing scheme, as well as

details about the FDB data structure and the fields of each FDB entry, is described

in more detail elsewhere [202].

102 CHAPTER 6 Bridges and layer 2 switches



Distributed aging timer
Transparent bridging employs several timers for the management of FDB data, such

as the hello timer, the topology change notification timer, and the aging timer. Most

of the timers are related to (re)configuration operations, which seldom occur.

However, aging timers are used continuously during normal operation and constitute

a critical set of variables in the system, influencing performance significantly.

Every entry of the FDB is associated with a specific aging timer. When an

incoming frame arrives at the bridge, the source address is used for an FDB access

and the corresponding FDB entry is reset to a maximum value; the recommendation

of the transparent bridging standard is that this maximum value is 300 s [69]. Further-

more, every aging timer is decremented every second; if an entry is not reset within

the 300 s from the last time it was reset, the value of the aging timer expires, that

is, it becomes zero, and the entry is deleted from the FDB. Thus, two operations need

to be implemented efficiently with aging timers: (i) a reset (or restart) operation

(to the maximum value) that is used every time an entry is accessed and (ii) a delete

operation that is used once a second to remove all expired aging timers. Both

operations are critical to system performance: high-speed links with high frame

arrival rates require one reset operation per frame arrival; delete operations may

happen to a variable number of expired timers per second. Thus, an efficient data

structure for maintaining aging timers and their operations is necessary.

High-Performance Transparent Bridge architecture addresses the issue of effi-

cient aging timer management through partitioning of aging timer entries and the

adoption of two data structures, each achieving close to linear complexity for each

of the restart and delete operations. HPTB partitions aging timers for FDB entries

according to NAUs, as a restart operation to a specific timer is performed by a spe-

cific NAU. Specifically, because frames from a specific MAC address will always

arrive at the specific NAU through which the MAC address is reachable, this NAU

is the only one that performs reset operations on the aging timer of the entry for

this MAC address. Thus, the sets of aging timers reset by NAUs are disjoint,

enabling partitioning of the aging timer set among all NAUs.

The concept of aging data structure management is the following. Each NAU

implements a timing wheel and a timer table that enables direct access to a timer

entry in the timing wheel [183], as shown in Figure 6-7. The timing wheel, with

perimeter size equal to the maximum value of the aging timer, enables the orga-

nization of aging timers according to their value. This organization is achieved

through a doubly linked list, which links all timers with the same value. This structure

is useful for the deletion of expired entries from the FDB, as all expired aging timers

at every second are included in a single doubly linked list of the timing wheel—

the one that corresponds to timer value zero. When deletion of expired timers is

required, the double-linked list of expired timers is extracted from the timing wheel,

the list is traversed, and the corresponding FDB entries are deleted linearly.

At the same time, the timer table enables identification of a specific timer based

on the hashing method used for FDB entry identification. When an incoming

frame leads to the restart operation of an aging timer, the timer table leads to

103High-performance transparent bridge architecture



identification of the appropriate timer, with near-linear complexity, and then the

aging timer is deleted from the double-linked list where it belongs in the timing

wheel and appended to the double-linked list that corresponds to the new timer

value (300 s). Considering identification of the timer, deletion from the double-

linked list and insertion to the other double-linked list of the timing wheel are

operations that have linear complexity.

The data structure organization in HPTB enables efficient operations on aging

timers overall. The combination of the timer table with timing wheels enables fast

restart and expiration operations, avoiding highly complex algorithms, such as

sorting ones [19]. In the case of the original HPTB, data structures enable the pro-

cessing of only six pointers for the move of a timer entry during a restart operation,

leading to 11 accesses in the timer memory employed for the design presented

in Zitterbart and associates [202].

Network attachment unit design
Network attachment units implement all protocol functions required for filtering

and forwarding operations, as well as the update of the filtering database and

timers. Importantly, these units also support frame format conversion, as well as

frame segmentation and reassembly, as HPTB enables the interconnection of

heterogeneous networks, including cell-based and packet-based ones.

Timing 
wheel

Current time

T=MaxAgeTime

TimerID

NextTimer

PrvsTimer

N TimerID

NextTimer

PrvsTimer

N TimerID

NextTimer

PrvsTimer

N

Timer table

First timer

FIGURE 6-7

Aging timer data structures.

104 CHAPTER 6 Bridges and layer 2 switches



In order to perform operations that meet the strict performance requirements of

high-speed attached networks, NAUs include specialized support for each neces-

sary function. The core of bridging operations, that is, filtering and forwarding,

requires the use of the filtering database and timers. Thus, each NAU includes a

filtering database module as well as a timer management module, as described ear-

lier. In addition, each NAU includes three additional components (units) for the

remaining operations. These components are as follows.

1. Frame conversion unit: This unit implements the conversion of frames for

packet-based networks so that heterogeneous networks can be accommodated.

As mentioned in the beginning of the chapter, bridged networks, such as 802.x
local area networks, have significant differences among them, leading to different

frame formats, including different header syntax and maximum frame length

allowed. In order to enable support of heterogeneous networks, HPTB uses a

generic frame conversion method: every received and transmitted frame is con-

verted to a predefined normalized data unit (NDU) format [175] within the bridge.

Thus, all incoming frames are converted to the NDU format, and all outgoing

frames are converted from the NDU format to the format of the correspond-

ing network. This decision provides simplicity to the design of each NAU

and scalability to the system, as each NAU needs to accommodate only two

formats—the format of the attached network and the NDU format.

2. Frame handling unit: This unit is responsible for communication between the

NAU and the corresponding data memory management unit of the memory unit

that corresponds to the NAU. This communication is necessary for correct stor-

age and management of each frame. Specifically, note that each NAU is

responsible to perform all functions necessary for filtering and forwarding of

frames. Thus, for every incoming frame, the NAU identifies the outgoing port

out of which the frame must be transmitted. Considering that frames targeted to

a specific outgoing port are linked in a logical queue, the NAU needs to provide

the necessary information to the data memory management unit so that the

memory management unit can enqueue the frame to the appropriate queue.

The frame handling unit is responsible for managing this information and cre-

ating the necessary 8-byte word that is included in each 72-byte internal packet

that is transferred between the NAU and the buffering component. Importantly,

the frame handling unit needs to manage one such control word for every

packet that is being received; this may mean more than one packet in the case

of cell-based networks, which may be receiving several packets concurrently

due to cell interleaving.

3. Segment formatter: The segment formatter is a unit required only when the

attached network is cell based, for example, an ATM-based network. Its main

goal is to implement segmentation of frames that are transmitted over the cell-

based network. In order to achieve this goal, the segment formatter needs to for-

mat the cells, segmenting frames to the appropriate data units and calculating

the appropriate header fields, which include channel and message identifiers.

105High-performance transparent bridge architecture



Importantly, the segment formatter enables the avoidance of frame reassembly in

the case when two homogeneous cell-based networks are bridged; in that case,

the unit just translates the corresponding header fields appropriately. Impor-

tantly, the segment formatter supports interleaved reception and transmission

of frames as required by existing cell-based networks.

The structure of the HPTB network attachment unit is shown in Figure 6-8. When

an incoming frame arrives at an NAU, the frame is forwarded to the frame conver-

sion unit and the necessary header information is delivered to the transparent

bridging support unit; this information includes source and destination addresses,

priority, etc. The addresses are used for accesses in the FDB, as described earlier.

The resulting information about the outgoing NAU for the received frame is then

forwarded together with the priority to the frame handling unit. In addition, the

frame handling unit receives control information from the frame conversion unit

about the beginning or end of a frame, etc. Based on all this information, the frame

handling unit creates the necessary control words for the switch and the memory

modules in order to enable the memory modules to store and manage the frame

NAU module

From network

Switch I/F 
& FIFO

Switch I/F 
& FIFO

Frame 
conversion

Frame 
conversion

Timer 
manage-

ment

Header 
processing

FDB 
memory

FID/MID 
controller

FID/MID 
memory

Segmen-
tation 

controller

Segment 
buffers

MID/MID 
MID/VCI 
controller

MID/MID 
memory

MAC I/F 
& FIFO

MAC I/F 
& FIFO

To network

To switch From switchTo/from FDB
manager

ATM module

FIGURE 6-8

Structure of a network attachment unit.

106 CHAPTER 6 Bridges and layer 2 switches



data appropriately, organizing them in logical data structures. The NAUs of HPTB

provide the necessary support for management of all types of frames and cells of

the potential attached networks. For example, if two cell-based networks are

attached to HPTB and traffic is bridged between them, then there is no need for

frame conversion between the homogeneous cell-based networks. In contrast,

when bridging occurs between heterogeneous networks such as a packet-based

one and a cell-based one, the NAU is responsible for the segmentation of the

outgoing frame to cells. Because not all NAUs in a bridge need to be identical,

the generic structure of the NAUs (Figure 6-8) accommodates all cases. Once a

bridge is implemented and the attached network technologies are known, the cor-

responding NAUs include only the necessary modules for the handling of the

related frames or cells. A detailed description of all cases appears elsewhere [202].

lnternal switching component operation
The internal interconnect of HPTB is a crossbar switch interconnecting network

attachment units and memory modules, including memory management units. The

switch operates in a synchronous fashion with a global clock. The clock has two

phases, one per transfer direction: during the reception phase, data flow from NAUs

to the memory, while, during the transmission phase, data flow from the memory

to NAUs. The switch transfers fixed-size packets, called bursts, of 72 bytes com-

posed of 64 data (packet) bytes and 8 bytes of control information (a control word).

The 64-byte payload of the switch’s burst may contain up to 64 bytes of frame

data, depending on the size of the incoming/outgoing frame or cell. The control

word delivers information necessary for the memory management unit in order

to handle the corresponding packet data appropriately. There are several types of

control words that define the enqueuing requirements of a packet [201]. Specifi-

cally, as shown in Figure 6-9, the first byte of the control word contains a control

code and the number of queues where the corresponding packet needs to be

enqueued. A packet may need to be enqueued to one, multiple, or all queues,

depending on whether the frame is a unicast, multicast, or broadcast one. The sec-

ond byte specifies the length of data within the burst. The third byte specifies the

frame to which the cell belongs, in case of a cell-based (e.g., ATM) network NAU,

while the fourth one specifies the source port from which the frame has been

Source
port

QID
0

QID
1

QID
2

QID
3

Control word
(8 bytes)

Data (64 bytes)

Frame
identifier

Length
Number

of queues
Control
code

FIGURE 6-9

Format of the internal switch burst.

107High-performance transparent bridge architecture



received; this last information is necessary for the protocol processing unit, which

may need to send a response to the receiving NAU.

The last four bytes of the control word are queue identifiers with values that

depend on operation of the control word. Special consideration is given to the size

of the incoming frame. If the frame fits in a burst, that is, it is up to 64 bytes, then

the burst delivers a frame that needs to be enqueued to a logical queue of the sys-

tem directly. In contrast, if the incoming frame is longer than 64 bytes, then each

burst delivers a portion of a frame to memory and the enqueuing process of the

frame must be performed when the last portion of a frame is written to memory.

Thus, the control word needs to indicate whether a complete frame or a portion

of a frame is transferred over the switch in order to initiate the appropriate enqueu-

ing operation at the right time. Furthermore, as the bridge supports multicasting, in

this case, the control word indicates the group of queues where the packet must be

enqueued to. Considering that four words are available in the control word for the

specification of multiple queues in case of a multicast transmission, there are two

different multicast words defined: positive and negative. The positive multicasting

ones include in the control word the queues where the packet should be enqueued

to, while the negative multicasting ones include the queues where the packet

should not be enqueued to. For example, consider the case where the protocol pro-

cessing unit as a result of a received frame prepares a packet to broadcast to all

NAUs except the one where the frame was received through. In this case, the con-

trol word may specify a negative multicast indicating the ID of the source NAU as

the queue information where the packet should not be enqueued; this also illus-

trates the usefulness of keeping source port information in the control word and

subsequently in memory.

The HPTB switching fabric provides multicast support as well. Transmission of

multicast packets in HPTB occurs in a single cycle with parallel transmissions to all

appropriate NAUs. When the appropriate cycle is identified, the multicast packet is

delivered to all outgoing NAUs in a single cycle, avoiding bandwidth waste that would

occur if a multicast packet was allowed to be transmitted as a sequence of unicast

packets, one per outgoing NAU. Although the decision for a single cycle multicast

transmission saves bandwidth, it requires more sophisticated scheduling decisions,

increasing the complexity of the switch’s scheduler, which needs not only to schedule

outgoing packets appropriately, but take into account multicast cases as well.

Importantly, the switching component of HPTB supports the transmission of

real-time traffic in addition to regular nonreal-time unicast and multicast traffic.

For the case of real-time traffic, HPTB does not store the frames, but schedules them

directly for transmission with direct connections between the incoming NAU and

the outgoing NAU. This is feasible because of the two-phase switch operation:

during the reception phase, when isochronous packets arrive, outgoing connections

toward NAUs are silent and thus can be used for real-time traffic to deviate frames

to outgoing NAUs instead of toward memory modules. Clearly, this increases fab-

ric complexity significantly, but enables handling of an important class of traffic,

especially in the emerging multimedia world.

108 CHAPTER 6 Bridges and layer 2 switches



Considering the switch operation, it is clear that incoming frames, in general,

are delivered from incoming NAUs to the corresponding memory modules and

then are transferred to the appropriate outgoing NAUs. Frames in memory are

organized in logical queues, which may indicate different priorities among stored

frames. During every transmission phase, every memory module presents one

high-priority queue per outgoing NAU for service. This is the virtual output

queuing model, described in Chapter 4. A switch scheduler is used to schedule traf-

fic [96], taking into account parameters such as multicasting requests, outgoing

NAU availability, etc.

Performance requirements on the switch, fabric, and scheduler depend on the

attached networks. For example, in the case ofHPTB,whichwas designed to sustain full

wire traffic up to 800 Mbps, the fabric needs to provide throughput of 1.8 Gbps [202].

Partitioned data memory organization
The data memory modules store frames, which are managed by the data memory

management units, with one DMMU per memory module. Each DMM is organized

logically with a three-level hierarchy: blocks, frames, and queues. Memory is

organized as a sequence of fixed size blocks, which store frame data. Because

a frame may need more than one block to be stored, several blocks are used for a

frame and are organized logically with a linked list that indicates the sequence

of data bytes within the frame. Frames are organized in logical queues, depending

on several of their parameters, such as priority, multicast or unicast requirements,

outgoing NAU, etc.

Information required for management of linked lists constituting frames and the

queues is kept in tables in the DMMU. These tables hold information about each

block, frame, and queue, identifying the sequence of linked blocks, constituting

frames, and the sequence of linked frames, constituting queues. Unused blocks

are also organized in a linked list of empty blocks.

Each DMMU not only contains management information for the memory hier-

archy, but also manages the logical queues and provides the interface to the switch

scheduler, which, in turn, schedules the frames for transmission. The DMMU

operates as a special-purpose slave processor, implementing operations and

providing responses to instructions delivered by the control words of bursts. As a

control word is delivered over the switch, it is decoded and processed by the

DMMU, which identifies an empty buffer for the incoming burst data. The DMMU

enqueues the block to the appropriate frame and queue, in the case of a cell or the

case of the last burst of a variable size frame, etc. Furthermore, the DMMU

dequeues frames and blocks for transmission during transmission phases appropri-

ately. DMMUs also perform the necessary bookkeeping for multicast frames in

order to avoid dropping them from memory in case a multicast frame has not been

transmitted fully; this occurs only when some NAUs are not ready for transmission

when a multicast frame is selected—the frame is transmitted in a single cycle only

through the ready NAUs. Importantly, DMMUs are prepared for management of

109High-performance transparent bridge architecture



cell networks, whose frames may arrive interleaved; special attention is paid to the

reassembly process of frames, as frames need to be fully reassembled before being

transmitted to heterogeneous, variable-size packet networks.

Based on the aforementioned components and operations, the HPTA presents

an effective network system for implementing a data link layer bridge.

Layer 2 switches
Layer 2 switches are similar to bridges. They interconnect networks at layer 2,

most commonly at the MAC sublayer, and operate as bridges, building tables

for the transfer of frames among networks.

Historically, layer 2 switches emerged to alleviate the contention problem of

shared media LANs. As structured cabling emerged and star-based connectivity

to network centers was adopted, the exploitation of existing cabling and existing

network adapters led to the continuation of using typical LANs, such as Ethernet

and Token Ring, but enabled the development of layer 2 switches. The original

goal of these switches was to enable use of a single LAN segment, if feasible,

per attached end system, minimizing contention delays that existed in the older

shared segments. For example, with an Ethernet switch and a dedicated Ethernet

segment per attached system, collisions are avoided and delay is minimized.

Considering the need for autonomous operation and high performance, layer

2 switches perform all operations that typical bridges do. However, due to their

focus on performance for dedicated segments, they employ specialized hardware

for frame forwarding, and some of them even employ cut-through routing techni-

ques instead of the typical store-and-forward technique used in common bridges.

Thus, their main difference from bridges is typically the technology used to imple-

ment frame forwarding, which is mostly hardware-based, in contrast to typical

bridges, which generally are more programmable and accommodate a wider range

of heterogeneous LANs.

SUMMARY
This chapter introduced the concepts of bridges and layer 2 switches and presented

the various types of bridges. We described the operation of bridges, focusing on

transparent bridging, which is the latest bridging architecture that has been stan-

dardized. We identified the technical challenges of transparent bridges that need

to be addressed to achieve high performance. Finally, we described in detail the

architecture of HPTB, a specific high-performance transparent bridge architecture,

which achieves high-speed processing of frames in order to support high band-

width networks. Importantly, the scalability and modularity of the architecture

enable the adoption of its modules in a wide range of conventional bridges and

layer 2 switches.

110 CHAPTER 6 Bridges and layer 2 switches



CHAPTER

Routers 7
NETWORK LAYER
As discussed in the previous chapter, link layer systems can interconnect end systems

at the scale of a local area network. However, scaling a network built of bridges and

switches to global scale is not feasible. The filtering database would be very large,

broadcast storms would limit the operation efficiency, and routing would be ineffi-

cient due to the spanning tree algorithm. Therefore, it is necessary to use systems

that are specifically designed to achieve global connectivity. These network layers

systems (or “routers”) overcome the limitations of link layer systems. Routers

interconnect local area networks, and the resulting network of networks is an

Internet that spans the globe. Due to the size of the resulting network, it is important

to consider scalability as one of the key aspects of router design.

This chapter discusses the design and operation of routers. Specifically, we

address these questions:

• Functionality of the network layer: What functions need to be implemented in

the network layer? What are the performance requirements? What are the main

components of a router?

• Design of data plane: What operations are performed on every packet that is

forwarded? What data structures and algorithms are used to ensure correct

packet forwarding?

• Design of control plane: What control operations are necessary to ensure cor-

rect operation? What routing algorithms are used to determine least-cost paths?

What types of error handling are necessary?

• Example systems: What does a typical commercial router system look like?

What are the differences between low-performance edge routers and high-per-

formance network core routers?

Functionality of the network layer
The main functionality of the network layer is to provide end-to-end connectivity.

An end-system network interface should be able to reach another end-system net-

work interface by sending a network layer packet. This simple functionality is the

basis of the Internet design. As discussed in the Appendix, the Internet Protocol

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
111



(IP) is the one common protocol among all systems connected to the Internet.

Lower layers use different link and physical protocols; higher layers use different

transport and application protocols. The IP is the single common protocol of hour-

glass architecture and ensures that all systems can communicate with each other.

To achieve end-to-end connectivity, several important protocol features need to

be implemented in the network layer.

• Addressing: In order to reach a particular end-system interface, it needs to be

possible to uniquely identify it. Thus, global addressing is necessary. In IP,

all interfaces have a globally unique IP address. (With the deployment of Net-

work Address Translation (NAT), load-balancing switches, and so on, global

uniqueness is not true anymore for all systems. For the purpose of our discus-

sion, we can assume global uniqueness.) The way IP address assignments are

structured is important to simplify routing and forwarding as discussed later.

• Routing: This is the process of determining how to reach a particular network

interface. Any router in the Internet needs to determine which of its output

interfaces to use when directing traffic toward a particular destination. To do

that, routing protocols exchange information about destinations and how to

reach them. When doing a routing computation, a router determines the best

routes from its local perspective. We discuss different routing protocols and

their interactions later.

• Forwarding: There is an important distinction between routing and forwarding.

Routing determines the best path for a packet to take. Forwarding is the actual

process of receiving a packet on a router system and determining to which out-

put port to send it to achieve the path determined by routing. Additionally, there

are several processing steps that ensure the correct operation of the IP (e.g.,

checksum check, time-to-live decrement).

The following sections discuss in more detail what the requirements of these

systems are and how they are implemented.

Systems requirements
We distinguish between two types of requirements: the functional requirements

that dictate how the system operates and the performance requirements that state

quantitative goals for the system.

Functional requirements
Functional requirements for an IP router are determined by a standards document.

The Request for Comments (RFC) 1812 is the de-facto standard for network layer

systems in an IP network [10]. RFC 1812 lists a number of functions that the

system must perform, as well as suggestions of how it should operate to support

other optional features. The RFC contains many detailed (and carefully worded)

statements on functional requirements. Instead of repeating all of them here, we

focus on the most important ones.

112 CHAPTER 7 Routers



• Internet Protocol header checksum validation: The IP header contains a check-

sum that covers the header fields (including any options). To ensure that these

important fields have not been corrupted, a checksum is used. When receiving a

packet, any network layer system must verify that this checksum is still correct.

• Time-to-live (TTL) decrement: The TTL field in the IP header maintains a counter

that is decremented on every hop in the network.When a packet has been forwarded

so many times that this counter reaches zero, then it is discarded (assuming that

there is a routing loop). This feature ensures that packets that cannot reach their

destination do not travel through the network forever. Thus, a network layer system

must decrement the counter in the IP header accordingly. Because the TTL field is

covered by the IP header checksum, it is necessary to recompute the checksum.

• Destination address interpretation: A network layer system must determine how

to forward a packet based on the destination address in the header. There are

different types of addresses (unicast, broadcast, multicast), as well as a set of

reserved addresses (e.g., loopback). Also, strict or loose source routing needs

to be considered. In the most common case, a packet is simply forwarded to

a destination interface. A network system typically performs a destination

address lookup to determine which of its output interfaces leads toward that

destination. We discuss algorithms for this lookup process later.

• Other operations: A number of other operations may need to be performed.

These are not standard for all packets (unlike the ones listed earlier), but con-

stitute special cases. Examples of such operations are IP fragmentation, IP

options processing, and error conditions (e.g., TTL expiration). In practice, they

may occur never or only rarely. Network layer systems are usually not opti-

mized to handle these cases very efficiently.

To accomplish this type of processing, a typical router system (software based

or hardware based) implements three steps: input processing (handling of link layer

processing to receive IP packet), forwarding (implementation of RFC 1812 functions

including forwarding lookup), and output processing (queuing and scheduling of

packet and link layer processing for transmission). We discuss these data plane

functions in more detail later. In particular, we focus on lookup in this chapter and

on scheduling in Chapter 10.

Note that forwarding requirements do not specify anything about routing. What

specific routing algorithm is implemented does not matter to the forwarding pro-

cess. As long as packets get forwarded to the correct output ports, any possible

routing algorithm (including a statically configured table) is acceptable.

Performance requirements
The performance of network layer systems often determines the performance of the

overall network. Network layer functionality must be implemented by all systems

connected in the network. Therefore, it is crucial that these functions can be per-

formed efficiently. Lower layer functions also need to be implemented, but they

are typically comparably simple and can operate at high speeds.

113Network layer



The performance of a router can be expressed in many dimensions. Typical

performance metrics include:

• Link speed: The maximum data rate of a link that can be connected to a router

port determines an upper bound of how much data can be forwarded through

the system.

• Aggregate throughput: The aggregate data rate is the amount of data that can be

forwarded through the system when considering all ports. In some systems the

aggregate throughput is less than the number of ports times the link speed. In such

cases, the system cannot forward all packets under full load.

• Packet rate: The size of packets that need to be forwarded by the router has an

impact on the performance limits. Because most operations have to be per-

formed for each packet (e.g., lookup), small packets cause a higher workload

for the router for a given data rate. Therefore, packet rate is often used to

express router performance independent of packet size.

• Power consumption: The power consumption of the router system under load

(as well as during standby) is an important operational metric.

Examples of performance requirements for typical link speeds and packet sizes are

shown in Table 7-1, which shows packet rates for packet sizes of 64, 576, and 1514

bytes. These sizes represent the smallest typical packet (i.e., minimum Ethernet

packet size), the IP minimum maximum transfer unit, and the largest typical packet

(i.e., maximum Ethernet packet size including Ethernet header). For the lowest

data rate of 10 Mbps, a router system needs to forward between around 800 packets

per second if packets are large and 20,000 packets per second if packets are small.

As the data rate increases, the performance requirements for a network system can

become as large as 77 million packets per second for 40-Gbps links and small

packets. In a practical network, packet sizes vary due to the mix of applications

Table 7-1 Performance Requirements for Network Systemsa

Link speed Packet rate

Data rate Standard
64-Byte
packets

576-Byte
packets

1514-Byte
packets

10 Mbps 10Base-T 19.5 kpps 2.17 kpps 0.82 kpps

51.84
Mbps

OC-1 101 kpps 113 kpps 4.28 kpps

100 Mbps 100Base-T 195 kpps 21.7 kpps 8.26 kpps

622 Mbps OC-12 1.21 Mpps 135 kpps 51.3 kpps

1 Gbps 1000Base-T 1.95 Mpps 217 kpps 82.6 kpps

2.488 Gbps OC-48 4.86 Mpps 540 kpps 205 kpps

10 Gbps 10GBase-T 19.5 Mpps 2.17 Mpps 826 kpps

39.81 Gbps OC-768 77.8 Mpps 8.64 Mpps 3.29 Mpps

aPackets per second (pps) shown for different link rates and packet sizes.

114 CHAPTER 7 Routers



using the network. Thus, average packet rate demands are somewhere between

those for minimum and maximum packet sizes. However, to ensure stable perfor-

mance under load, network systems are often designed to handle the packet rate for

the worst case scenario, which is traffic only containing minimum size packets.

Generic router design
The functional and performance requirements determine the demands on router

designs. First, the router needs to perform packet forwarding correctly. Second,

packet forwarding needs to be done efficiently. Even under full load, where each

link receives short packets at the maximum data rate, the router should still be able

to handle all traffic. To achieve these goals, most typical router designs avoid

centralized components that could become bottlenecks. Instead of having a single

processing system to perform packet forwarding for packets received from all input

ports, each input port could use its own processing system. Similarly, packet

scheduling and other operations can be distributed.

An illustration of a generic router design is shown in Figure 7-1 where input

ports are shown on the left and output ports on the right. In a real implementation,

the left and right sides are folded together such that the input and output ports line

up as shown in Figure 7-2. However, for our discussion, it is simpler to consider

input and output separately and to assume traffic flows from left to right. Each

port of the router system is equipped with the necessary physical and link layer

sw
itc

h 
in

te
rf

ac
e

sw
itc

h 
in

te
rf

ac
e

sw
itc

h 
in

te
rf

ac
e

sw
itc

h 
in

te
rf

ac
e

local interconnect layer 3layer 3 layers 1 & 2layers 1 & 2

network
interface

scheduling

network
interface

network
interface

network
interface

IP
forwarding

IP
forwarding

input ports output portsswitch fabric

scheduling

...

...

FIGURE 7-1

Generic router design. Traffic traverses router from left to right. Input ports forward packets

to the output port determined during IP forwarding.

115Network layer



components. The main network layer function on the input port is IP forwarding.

This step includes the destination address lookup. Without this information, it

would not be possible to determine to which output port to send the packet. The

main component that connects all router ports is the switch fabric. As discussed

in Chapter 4, these switch fabrics can be scaled to a large number of ports and thus

can support large amounts of bandwidth to interconnect numerous ports. The out-

put port receives packets from all input ports and schedules them for transmission.

Scheduling is part of network layer processing. However, we defer the discussion

of scheduling to Chapter 10, where we discuss quality of service, which is based on

different scheduling mechanisms used on the output ports of routers.

One important aspect of router systems is that there is a distinction between the

data plane and the control plane. Figure 7-3 shows these two cases as well as the

control processor involved in the control plane. Most routers have a dedicated con-

trol processor that manages routing computations and error handling. This proces-

sor is connected to the switch fabric and thus can be reached by any port. The data

path is the data flow and the corresponding sequence of operations that are encoun-

tered by a “normal” packet that is simply forwarded from an input port to an output

port. The control plane handles the data flow and operations that are performed for

traffic that contains routing updates, triggers error handling, etc. Because the vast

majority of packets encountered by the system are conventional data packets,

router designs are optimized to handle these packets very efficiently. The control

plane is typically more complex and not as performance critical. When a port

encounters a packet that needs to be handled by the control processor, it simply

forwards it through the switch fabric to the dedicated control processor.

The control processor implements the routing algorithms that are associated

with the routing updates it receives. These routing algorithms determine which

output port to use when forwarding packets that go to a particular destination.

For packet forwarding, as it is implemented on the input ports of the router, it is

output port

input port

output port

output port

input port

input port

switch fabric

input port

output port

FIGURE 7-2

Physical router view. Input and output ports are combined on line cards. The switch fabric

connects all line cards.

116 CHAPTER 7 Routers



not necessary to know all the details of various routing metrics that have led to

particular forwarding paths. Instead, it is sufficient to know where packets with

particular destination addresses need to be sent. Thus, the routing information

can be condensed to a forwarding information base (FIB), which is distributed

by the control processor to all router ports. The FIB is used to perform forwarding

lookups as discussed later.

DATA PLANE
The data plane of a router implements a sequence of operations that are performed

for typical network traffic. As discussed earlier, these steps include IP processing

of the arriving packet, transmission through the switch fabric to the output port,

and scheduling for outgoing transmission. One of the key operations in the data

plane is to determine to which output port to send the packet. This process is

known as route lookup, which is described in detail later. We also discuss how

buffer management is handled on a router to ensure that packets can be stored

effectively.

sw
itc

h 
in

te
rf

ac
e

sw
itc

h 
in

te
rf

ac
e

sw
itc

h 
in

te
rf

ac
e

sw
itc

h 
in

te
rf

ac
e

Traffic in
data plane

switch fabricinput ports

IP
forwarding

schedulingnetwork
interface

IP
forwarding

network
interface

network
interface

scheduling

error
handling

routing

Control processor

network
interface

output ports

...

...

Traffic in
control plane

FIGURE 7-3

Data plane and control plane in routers. Data plane transmissions go directly from input to

output ports. Control plane interactions involve the control processor.

117Data plane



Route lookup
Route lookup algorithms in IP networks make use of the inherent structure of IP

addresses. Before presenting various lookup algorithms, we review IP addressing

and address prefixes.

Addressing
In network layer protocols, specifically in the IP, addresses identify network adap-

ters. It is important to note that a single end system may have multiple network inter-

faces. For example, a typical laptop today has one network interface that uses wired

Ethernet, one network interface that uses wireless Ethernet, and possibly another one

that uses a cellular data connection. Each interface uses its own IP address.

One of the requirements for addresses in the network layer is that they are

designed such that end-to-end connectivity—the main functionality of the network

layer—becomes possible. In the case of IP, addresses are globally unique. That

means that every network interface connected to the Internet must use a different

IP address. This global uniqueness of all IP addresses is no longer true due to Network

Address Translation, which is discussed in Chapter 8. However, for the purpose of

our discussion in this chapter, we assume that IP addresses are indeed unique.

With a globally unique IP address, an end-system interface can be unambiguously

identified. A sender who wants to transmit a packet to that interface can then simply

put the corresponding IP address into the destination address field. The network uses

this destination address then to determine how to forward the packet throughout the

network such that it reaches the receiver’s network interface in the end.

One important observation is that each router in the network needs to know

where to send packets for every possible IP address. End systems may decide to

send traffic to any possible destination at any time. A router needs to be able to

forward any packet and thus needs to know on which of its links to forward a

packet with any possible IP address. In the IP protocol, the address field is 32 bits

long. Ignoring that some addresses are reserved and cannot be used, there are 232 �
4 � 109 possible IP addresses. For each of these addresses the router needs to

maintain information on where to send a packet that is destined for them.

If IP addressing was done the same way as addressing is done for Ethernet, where

each interface gets an address assigned at manufacturing time, then there would be

no structure to the IP address space. In such a case, routers would have to maintain

a separate forwarding entry for each existing IP address. Such a forwarding table

would require around four billion entries and consume a large amount of memory.

To avoid this problem, IP uses structured address assignments that ensure that inter-

faces located on the same subnetwork have similar addresses. The similarity in

addresses can be used to condense the information that needs to be stored on routers.

Internet Protocol addresses can be divided logically into a network portion

and a host portion. The network portion identifies a network (i.e., a set of inter-

connected network interfaces that share the same network portion in their

addresses). The host portion identifies a particular interface within a network. With

this structure, a whole network of computers can be represented by a single

118 CHAPTER 7 Routers



network portion of an IP address. Because the network portion of the address is

stored in the most significant bits of the address field, it is also called a prefix.

Figure 7-4 shows an example of how addresses are allocated within a domain.

The 128.119/16 prefix applies to all interfaces within that domain. Additional

structure is achieved by assigning longer prefixes to subnetwork addresses (e.g.,

128.119.91/24). End systems (as well as router interfaces) within a subnetwork

use IP addresses that match the subnetwork’s prefix.

When assigning IP addresses to interfaces, an address block (i.e., a set of

addresses with the same prefix) needs to be obtained. The Internet Assigned Num-

bers Authority (IANA) is in charge of managing the IP address space. Address

blocks can be assigned by IANA or by someone who already has a block of IP

addresses. This allows for a hierarchical management of the address space.

Another benefit of the structure of IP address allocation is that it allows simpli-

fication in the routing table: instead of having to keep track of all possible

addresses, it is only necessary to keep track of all address prefixes. Once a packet

has reached the local network, where all machines have the same prefix, link layer

methods for local area networks can be used to determine the path to the final des-

tination (e.g., address resolution protocol (ARP)). As of May 2009, the number of

active prefixes in the Internet was around 240,000, which is nearly 18,000 times

less than the number of possible IP addresses.

One of the challenges with hierarchical address allocation is that it is difficult

to maintain an address assignment that ensures that all address prefixes are colo-

cated with all their neighboring prefixes. In the scenario shown in Figure 7-5,

the 128.119.13/24 prefix is not located within 128.119/16. This configuration can

128.119.240/24

128.119.100/24

128.119.91.124

128.119.240.18

128.119.91.53

128.119.91/24

...

128.119/16
Internet

FIGURE 7-4

Network addressing. The 128.119/16 prefix applies to all subnetworks in the shown

domain. Longer prefixes are used within each subnetwork and apply to the end systems

within that network.

119Data plane



occur when subnets are moved (either physically or logically). The problem is that

traffic destined for 128.119.13/24 matches the 128.119/16 prefix and may be

directed incorrectly. To avoid this problem, each network advertises its prefix

independently. Advertising of overlapping prefixes leads to ambiguity when for-

warding packets, as a destination address may match multiple prefixes. To resolve

this ambiguity, an order of precedence is defined, where longer prefixes take

priority over shorter prefixes. Thus, network traffic is always directed toward the

longest advertised prefix. In Figure 7-5, where the advertised prefixes are shown

as arrows, traffic for the 128.119.13/24 subnetwork is directed to the lower

network and all other traffic for 128.119/16 is directed to the upper network.

This process of determining where to send traffic is the route lookup process

implemented in the IP forwarding step on routers.

Route lookup algorithms
One of the most important operations in a router system is the lookup that deter-

mines where the packet needs to be forwarded. The packet’s IP destination address

is used to find the matching prefix and the associated forwarding information.

An example of a forwarding table is shown in Table 7-2. As discussed previously,

there may be multiple prefixes that match a particular address; in such a case, the

longest matching prefix needs to be found.

Prefix matching algorithms have been developed to pursue two goals: performing

the lookup quickly and requiring only a small amount of storage space to keep the for-

warding table. The metric used commonly to determine lookup speed is the (peak or

128.119/16 128.119.91/24

128.119.240/24

128.119.100/24

...

Internet

128.119.91.53

128.119.91.124

128.119.240.18

128.119.13/24
128.119.13.221

128.119/16

128.119.13/24

FIGURE 7-5

Prefix advertisements. The longest prefix takes precedence in case of overlapping prefixes.

120 CHAPTER 7 Routers



average) number of memory accesses necessary for one packet. Memory is often the

bottleneck in a lookup engine, as computations related to lookups are often very sim-

ple and thus do not cause as much delay as a memory access. The metric for storage

space is the size of the total data structure. If different types of memory are used, dis-

tinctions are made between expensive and fast memory (e.g., SRAM, TCAM) and

inexpensive and slow memory (e.g., DRAM). Note that all algorithms are designed

to always perform a correct lookup (i.e., they do not employ heuristics that may yield

incorrect forwarding information for some lookups).

We look at a few examples of prefix lookup algorithms, which range from a

straightforward, unoptimized approach to a solution that is tuned for very high per-

formance. An excellent review of many other algorithms is provided elsewhere

[151]. For our discussion, we use the example prefixes shown in Table 7-3. Each

prefix is named with a letter and noted in binary to simplify discussion. Further,

the prefixes used in our example are considerably shorter than the average prefix

encountered in real forwarding tables. Finally, output port information is omitted

because it has no impact on the lookup data structures. In practice, each prefix

in a data structure has a pointer to the associated port information.

Table 7-2 Example Routing Tablea

Prefix Output port

0/0 3

92.134.59.128/25 2

128.119/16 1

128.119.13/24 2

129.119.13.44/32 4

129.64/14 3

150.140.18/24 3

aThe output port specified for each prefix indicates where matching packets
should be forwarded.

Table 7-3 Prefixes Used for Route Lookup Examplesa

Prefix name Prefix

A 0/1

B 0000/4

C 01/2

D 0101/4

E 11/2

F 011/3

aPrefixes are named with letters to identify them in data structures and are
noted in binary.

121Data plane



Binary trees
Using a binary tree to represent the prefix information in the forwarding table is

the classic, straightforward solution to the prefix matching problem. The prefix

is represented in binary, and each bit is represented as an edge that connects nodes

in a tree. Starting from the root node, the first bit of any prefix is either a zero or a

one. Therefore, there are up to two edges from the root node connection to the next

level of the tree. This process continues until all prefixes are represented in the tree

as shown in Figure 7-6. Any node can only have between zero and two nodes.

By convention, edges that represent a 0 bit are drawn to the left and edges that

represent a 1 bit are drawn to the right. The actual prefixes are noted within the

nodes. Note that in this (or any other lookup algorithm), it is implied that finding

the prefix implies that the remaining information from the forwarding table (e.g.,

output port) can be found.

When looking up which prefix matches a destination address, the binary tree is

traversed starting from the root node. Based on the bit in the destination address,

the edge to the left or to the right is taken. Any prefix encountered while traversing

the binary tree matches the destination address. Because the longest matching

prefix needs to be found, the search process does not terminate when a prefix is

found, but continues until the end of the binary tree is reached. Because the last

node on the tree may not actually contain a prefix, it is important that the search

procedure remembers the last encountered prefix. This prefix is the longest match

and is used to forward the packet.

Figure 7-7 shows an example of the lookup process. Assume a packet has a des-

tination address of 01001111 (for simplicity, addresses are 8 bits long in our exam-

ple). Starting at the top node, the lookup traverses down the tree until the data

structure ends, which ensures that no matching prefix exists that is longer than

any that has already been encountered. In the fourth step, the search process “falls

off the tree” and cannot continue. At this point, the prefix corresponding to the

A

C

D

E

F

B

0

0

0

0

0 1

11

1

1

FIGURE 7-6

Binary tree data structure for prefixes from Table 7-3.

122 CHAPTER 7 Routers



local node is the best match. However, that node does not have any prefix asso-

ciated with itself. Therefore the search backtracks to the last found prefix. This

backtracking can be done by returning on the path of the search or by remembering

the last prefix encountered in the lookup process in a temporary variable.

While this algorithm clearly performs correctly, it exhibits poor performance

when implemented on a router system. In a typical implementation, a node is a

data structure stored in memory and an edge is a pointer to the corresponding node

data structure. When traversing the tree, each encountered node needs to be fetched

from memory to retrieve prefix information and the pointers to its children. Each

memory access is independent of the previous one, which incurs the full memory

access delay for each bit in the destination address. The total lookup time is there-

fore roughly the number of bits in the longest matching prefix times the access

delay. With a maximum of 32 bits in the prefix, the total lookup time can be in

the low microseconds, which is too much for most high-performance routers.

Several optimizations have been proposed to speed up the lookup process. For

example, to avoid backtracking, prefixes located inside the tree can be duplicated

and pushed into leaf nodes. This “leaf pushing” is shown in Figure 7-8, where

all prefixes are located on leaf nodes. During a search, the disjoint prefix tree is

simply traversed until a leaf node is found. The prefix at that node corresponds

to the longest matching prefix. Another optimization is “path compression.” In this

case, long paths that contain no branches are compressed into a single edge. The

example path-compressed tree is shown in Figure 7-9. The long sequence of nodes

to reach prefix B (0000/4) is reduced to a single edge beyond prefix A. Note that

internal nodes now require an annotation on which bit needs to be compared (as

long paths of internal nodes without branches would be compressed into a single

edge). When performing the lookup, the prefix in the final matching node needs

to be compared to the address that is searched. If there is no match, backtracking

A

B D

E

C F

1

1 1

0

0

0

0

0 1

matching
prefix: C

1

2nd step

3rd step

4th step

5th step

1st step

FIGURE 7-7

Lookup example in binary tree data structure. The sequence is shown for lookup of

01001111.

123Data plane



is necessary. This scenario occurs when looking up the previous example address

of 01001111. These optimizations improve the lookup performance over the

straightforward binary tree for sparse trees. However, they do not reduce the lookup

time in case of a dense tree created from a large number of prefixes. For such

cases, other data structures may be necessary.

Tries
A data structure that addresses the memory access problems of a binary tree is a trie

(pronounced “try”). In an n-bit trie, each node has either zero or 2n children. An

example trie with a stride length of n¼ 2 is shown in Figure 7-10. Prefixes may need

0

0

0

0

1

11

1

1

0

B

F

E

D

1

A

1

A

0

C

0

C

FIGURE 7-8

Disjoint prefix binary tree. All prefix matches are pushed to leaf nodes.

0

0

1

1

10

A

B

F

C

ED

1

2

3

FIGURE 7-9

Path-compressed binary tree. Paths without branches are compressed into a single edge.

124 CHAPTER 7 Routers



to be expanded such that their length is a multiple of n bits. Also, all internal prefixes
are pushed to leaves. When traversing the trie, conceptually the same process is used

as for the binary tree. The only difference is that each step covers n bits at a time.

Thus, the longest matching prefix can be found in fewer steps. A lookup in a trie

requires factor n fewer memory accesses than a lookup in a tree. However, each node

needs to store 2n pointers to children and is thus bigger than a node in a tree.

This data structure is an illustrative example of how system characteristics (i.e.,

memory access delay) are taken into consideration when designing an algorithm and

its associated data structure. A trie requires more space than a binary tree, but signifi-

cantly reduces the number of memory accesses required to find a matching prefix.

Ternary content-addressable memory
A completely different way of implementing prefix lookups is with the use of a ter-

nary content-addressable memory (TCAM). In a conventional memory, data are

accessed by providing the memory address that should be read. In a content-

addressable memory, a portion of data values are provided for memory accesses.

The memory then “searches” through all stored entries and returns one where this

data matches. This search process is implemented in hardware and can be per-

formed in parallel. The read time is comparable to that of normal memory, but

the power consumption is much higher, as all memory rows are activated in

parallel. In a TCAM, some bits of the search index can be set to “x” (don’t care).

To store a prefix in a TCAM, the bits of the prefix are stored as the search

word. Because the search word is typically of fixed length, but prefixes are not,

the unused bits are set to “x.” The remainder of the memory line contains forward-

ing information (or a pointer to it). When performing a lookup, the destination

address is provided as the word for which to search. The TCAM inspects all stored

prefixes and returns one. To ensure that the longest prefix is returned, TCAM-

specific priority rules need to be considered. Typically, the match with the lowest

physical address is returned. Thus, prefixes need to be stored in order of decreasing

length to ensure that the longest prefix match is returned. An example of a TCAM

system is shown in Figure 7-11.

The example of a TCAM shows that specialized hardware solutions can be used

to overcome performance bottlenecks that are difficult to solve in software. Prefix

E

F

ED

00

00

01

01

10

10

1100 01 10 11

CAAAB

11

FIGURE 7-10

Trie data structure with a stride length of 2.

125Data plane



lookups in particular lend themselves to such solutions, as they are necessary for

every packet and one of the more time-consuming operations.

Queuing and buffering management
Another important operation in the data plane of routers is the buffering of packets.

Due to statistical multiplexing, it is possible (and quite likely) that a router receives

packets on two different ports destined to the same output port. The outgoing

link limits the speed at which any of these packets can be transmitted. Therefore,

it is necessary to temporarily store one packet while the other is transmitted.

This queuing step is often done with a single first-in-first-out (FIFO) queue.

Chapter 10 shows more complex scheduling disciplines that require multiple queues

in the context of quality of service.

To implement a FIFO queue, convenient data structures have been developed.

We discuss briefly a solution that is used commonly in operating systems. We also

discuss how heterogeneous memory systems can be used to handle packet queues

most efficiently.

Single memory
There are a number of different ways of implementing a queue using a conven-

tional random access memory. The principal operation is to store packets in dedi-

cated memory spaces (e.g., buffer pool). The FIFO behavior can be emulated by

maintaining a logical order of the packets that are stored in memory. Two typical

approaches are a ring buffer and buffer chain.

Ring buffer
In a ring buffer, a fixed number of buffer slots are available (i.e., the size of the

queue). Two pointers (or indices) are used to indicate which slot in the ring repre-

sents the head of the queue and which slot represents the tail of the queue. When

0 x x x x x x x A

0 0 0 0 x x x x B

0 1 x x x x x x C

0 1 0 1 x x x x D

1 1 x x x x x x F

0 1 1 x x x x x E

search word

data word

TCAM entries

FIGURE 7-11

Ternary content-addressable memory.

126 CHAPTER 7 Routers



the ring buffer is empty, the head and tail pointers are the same. When a packet is

added to the queue, then the head pointer advances by one slot. The increment of

the head pointer occurs modulo the ring size. That is, when the end of the physical

buffer space is reached, the initial ring slots are reused. Removal of a packet

advances the tail pointer with the same modulo constraint. A ring buffer is illu-

strated in Figure 7-12.

Buffer chain
A more flexible approach to implementing queues, especially when using queues

with changing sizes, is a buffer chain. In a buffer chain, packets are stored in data

structures that contain control information on the logical chaining of buffers. Each

buffer points to the next buffer in the queue (or to nil at the end of the queue).

Packets are added at the end of the queue by chaining the newest buffer to the tail

of the queue. Packets are removed from the head of the queue.

A commonly used buffer chain data structure from the BSD operating system is

an mbuf. This data structure can implement the buffer chain as described earlier.

Several additional features are also useful for packet queues.

• Data offset within mbuf: The location of where packet data is stored within a

data structure can be shifted by an internal offset. This shift permits memory

space to be left available at the head and the tail of the packet data structure.

As packets traverse multiple protocol layers within a system, headers and trail-

ers (e.g., link layer header and CRC) can be added without copying the packet

content to another memory location. Such zero-copy operations improve system

performance significantly.

• Multiple buffers for single packet: As a packet is processed, it is possible to

change its size significantly. Therefore, multiple mbuf structures can be used

to store the packet. Thus, there is not only a chain of buffers among packets,

but also within a packet.

• Buffers of different size: There are different sizes of buffers. Small buffers can

be used to store packet headers and short control packets. Large buffers can be

used to store the packet payload (while keeping the packet header in a separate,

head of queue

tail of queue

queue memory

logical wrap-around

FIGURE 7-12

Queue implementation using a ring buffer.

127Data plane



small buffer). Providing buffers of different sizes improves the memory utiliza-

tion efficiency. Limiting the number of different sizes avoids the fragmentation

problem that can occur when arbitrary size buffers can be allocated.

Figure 7-13 shows an example of a buffer chain using mbuf data structures. The

first packet stores its headers in two mbuf data structures (which may have been

added before the payload as the packet traverses the protocol stack downward from

network layer to link layer). For larger packets, as shown in the second packet in

Figure 7-13, the packet payload can be stored in a cluster mbuf. More details on

the detailed implementation of these buffers can be found in [189].

Multiple memories
Router system design exhibits an interesting design problem related to memories

used for queuing. On one hand, routers need large memories to avoid link underflow

during Transmission Control Protocol oscillations. On the other hand, memories need

to be fast and inexpensive to meet performance and cost constraints. Dynamic Ran-

dom Access Memory (DRAM) provides large memory space inexpensively, but per-

forms less well when performing random memory accesses. Static Random Access

Memory (SRAM) is more expensive than DRAM and thus is only affordable in smal-

ler sizes, but performs much faster than DRAM. The difference in density (i.e., mem-

ory size per cost) and speed (i.e., random access time) is about one order of magnitude.

packet
header

packet
header

packet
header

packet
header

packet
payload

packet payload

head of queue

... ... ...

.........

next mbuf
next packet
data pointer

next mbuf
next packet
data pointer

next mbuf
next packet
data pointer

next mbuf
next packet
data pointer

next mbuf
next packet
data pointer

next mbuf
next packet
data pointer

mbuf
header

mbuf
data

FIGURE 7-13

Buffer chain using mbuf data structures.

128 CHAPTER 7 Routers



Thus, the problem is to decide how to use these memories to obtain a large and inex-

pensive packet queue.

One solution is to use both types of memory in a router system. The memory is

logically partitioned such that packet headers are stored in SRAM and packet pay-

loads are stored in DRAM. The motivation for this allocation is that read-and-write

accesses to packet headers are common during protocol processing. Accesses to

packet payload are less common (single write and single read unless transport or

application layer payload processing is performed as discussed in Chapters 8 and

9). Because packet payloads are typically much larger than packet headers, DRAM

is the ideal memory type. Packet headers, which are smaller, are stored in SRAM

to achieve the necessary performance.

When using buffer chaining with different buffers of different sizes, such a

separation can be implemented in a straightforward manner. Large buffers for

packet payloads are retrieved from the buffer pool in DRAM. Small buffers are

kept in SRAM. On a real router system, the software needs to explicitly distinguish

between the memory interfaces used for these memory accesses. Often, more than

one memory interface for each type of memory is available.

CONTROL PLANE
The control plane of a router handles functions that are not directly related to traf-

fic forwarding, but that are necessary to ensure correct operation. Typical control

plane operations include:

• Exchange of routing messages and routing algorithms

• Handling of error conditions

We discuss these topics in more detail.

Routing algorithms
Routing algorithms ensure that a router system can determine where to forward

traffic to reach a particular destination. The information necessary for route com-

putation is obtained by exchanging routing messages with other network systems.

Computation of routing algorithms occurs occasionally (typically triggered by

updates on the network state), but is much less frequent than forwarding lookups.

As mentioned earlier, the data plane uses the forwarding information base, which

contains the condensed routing information specific to a single port.

Routing metrics
When computing a path for traffic to a particular destination, a number of different

criteria can be chosen to select from different available paths. Frequently, the “best

path” is desired, but numerous different metrics can be used when optimizing the

path. The only fundamental criterion that needs to be met by any routing algorithm

129Control plane



is that some traffic eventually reaches the desired destination. This requirement is

typically easy to meet (e.g., even when forwarding traffic to a random output port,

there is a nonzero probability that some traffic reaches its destination). Note that it

is not necessary (but desirable) that all traffic reaches the destination since the net-

work layer is inherently unreliable. Of course, a good routing algorithm ensures

that all traffic is directed along a path toward the destination.

When choosing between paths that traffic can take, a number of optimization

metrics can be considered.

• Shortest path: This metric counts the number of hops between the source and

the destination. The optimal path is the path with the least number of hops. This

metric is easy to use in practice, as a hop is clearly defined and does not change

unless the network is physically reconfigured. However, the hop count metric

treats all hops equally, no matter if the hop is between two routers in the same

machine room or if the hop is a transoceanic link.

• Lowest delay: One of the main limitations to achieve high throughput on long-

distance connections is the propagation delay of signals. Therefore, delay is

also a widely used metric for routing. Each link cost is proportional to the prop-

agation delay on that link (which is related to the physical distance between the

transmitting and receiving interface and the propagation speed in the transmis-

sion medium). The optimal path has the least end-to-end delay between the

sending and the receiving end system.

• Highest available bandwidth: For some applications (e.g., remote backup, video

transmission) the amount of bandwidth available along a path is an important

metric. In such a case, the available bandwidth of each link can be considered.

The optimal path has the maximum available bandwidth. Note that bandwidth

is not added, but determined by the link with the least amount of bandwidth

(i.e., the bottleneck link).

• Lowest packet loss: Some applications require low packet loss (e.g., voice over

IP). For those applications, a good path metric is the overall packet loss proba-

bility. The optimal path has the highest probability for a successful transmission

(i.e., the highest product of successful transmission probability of all links in

the path).

A number of other metrics can be defined for routing in a network. The main cri-

teria by which metrics differ in the context of routing are how metrics are aggre-

gated and how dynamic they are. The aggregation is important, as many routing

algorithms (including the ones discussed later) assume that metrics are additive

(i.e., the cost of communication is added when adding a link to a path). However,

some metrics do not follow this principle (e.g., available bandwidth, which is a

minimum operation over all links). The dynamics of routing metrics are also

important. Some metrics do not change under traffic conditions (e.g., hop count

or delay if propagation delay dominates queuing delay). In these cases, routing

results do not change under load. Other metrics change with the traffic conditions

(e.g., available bandwidth) or environmental conditions (e.g., packet loss in

130 CHAPTER 7 Routers



wireless network). In such cases, the result of an optimal path computation may

change as the metrics change. This can lead to instability and needs to be consid-

ered in practical routing protocols.

A number of other constraints may also be imposed on a route computation due

to practical reasons. Examples of such constraints are as follows.

• Minimum bandwidth: A path may require a certain minimum available band-

width. If bandwidth information is available for the links of the network, a rout-

ing algorithm may need to identify a path that meets a minimum bandwidth

requirement.

• Load balancing: When using optimal paths for all network connections, certain

links may become overloaded since they provide better connectivity than others.

In some scenarios it may be desirable to intentionally direct some traffic over

suboptimal paths to balance the load of the network. Finding such alternative

paths is also important when trying to identify backup paths that have little or

no overlap with another path.

• Policies: Some routing protocols consider policies, which may potentially be

very complex (e.g., do not route traffic across nodes controlled by a competi-

tor). Routing decisions may be constrained by such policies.

In all these cases, a routing solution can be found by (virtually) removing links and

nodes that do not meet the requirements from the set of links and nodes considered

by the routing algorithm. This process ensures that the algorithm does not consider

them for optimal path computation and thus identifies a path that meets the con-

straints. Clearly, adhering to these constraints may lead to a path that is subopti-

mal compared to the path that considers the entire, unconstrained network. Also,

constraints may cause the path computation to fail if no valid path can be found.

Routing metrics and constraints are independent of any particular routing algo-

rithm. A variety of routing algorithms are now discussed. Each of them can be used

with some of the metrics and constraints discussed here.

Routing information exchange and computation
Routing algorithms can be distinguished by the way their two main operations are

performed: exchange of information on the state of the network and computation

of the shortest path between two nodes.

To be able to exchange any information about the network, some entity needs

to collect data related to the metrics used in the routing algorithm. This task is typ-

ically performed by routers because they can determine the local state of the net-

work. For example, to find out which links exist in the network, each router

determines which neighboring routers are connected to its ports. Most links inside

networks (except in local area networks (LANs) on the network edge) are point-

to-point links with only one router on each end, which allows for easy collection

of this information. Similarly, a router can determine the round-trip delay to these

neighboring systems or the available bandwidth on the link. Thus, a local view of

the network can be obtained. The next step then is to exchange this information

131Control plane



with neighbors so that it can propagate through the network and be used by all

routers that implement routing algorithms.

Once the state of the network is available, route computation can be performed

in a centralized or a distributed process. A centralized algorithm has complete

knowledge of all links in the network and their routing metrics. Based on this

global view, the algorithm can make a routing decision without a need for further

interaction with other nodes. In a distributed algorithm, the route computation is

performed jointly by all routers as no single node has a complete view of the net-

work. However, each node can obtain enough information through information

exchanges with its neighbors and by performing local computation to determine

optimal routing. We consider examples of each type of algorithm.

Centralized routing algorithms
A centralized routing algorithm maintains a data structure that represents the net-

work and its link information (i.e., “link state”). Based on this data structure,

it can compute the shortest path between two nodes. One of the most well-

known shortest path algorithms for this scenario is Dijkstra’s algorithm [43].

We describe this algorithm in general and then show how it works on an example

network.

Dijkstra’s shortest path algorithm computes not only the shortest path between

two specific nodes, but the shortest path between a source node and all other nodes

in the network. This shortest path tree can then be used to determine the optimal

path to any destination from the perspective of the source node. Dijkstra’s algo-

rithm computes this shortest path tree incrementally, adding one node per iteration.

To do this, the algorithm maintains a set of nodes for which the shortest path has

already been found and the complementary set, which contains nodes that still need

to be added to the shortest path tree. In each iteration, the node that is not yet part

of the shortest path tree and that is closest to the source is added. Once a node is

added, distances to its neighboring nodes are recomputed to consider any newly

discovered shorter paths.

To describe this algorithm, we use the following notation: V ¼ {v1,. . .,vn} is

the set of n nodes (vertices), v1 is the source node, cij is the cost of communi-

cation between nodes vi and vj (i.e., link cost), di is the communication cost

between the source and vi, pi is the previous node that is along the path from the

source to vi, and S is the set of all nodes for which the shortest path has not yet

been found.

for i from 1 to n do:

di: ¼ 1 // initialize distance of all nodes to infinity

pi: ¼ null // set previous node to undefined value

d1: ¼ 0 // source node has zero distance to itself

S: ¼ V // need to find shortest path for all nodes

while S is not empty:

i ¼ argminj {djjvj in S} //findindexofnodewithleastdistance

S: ¼ S – vi // remove node i from set S

132 CHAPTER 7 Routers



for j in {kjcik < 1}: // iterate over all neighbors of i

if (di + cij < dj): // check if path via i is lower cost than

existing path

dj ¼ di + cij // set distance to new lower distance via i

pj ¼ vi // record new path by setting previous node to i

When the algorithm terminates, the set of previous nodes, p1,. . .,pn, contains the

information on the shortest path tree from node 1.

An example of Dijkstra’s shortest path algorithm is illustrated in Figure 7-14.

The graph figures on the left show the progression of the shortest path tree. The

table on the right shows the distance and previous node for all nodes.

For this algorithm, it is necessary that the cost metric used for the path is addi-

tive (and nonnegative). This ensures that the triangle inequality can be applied.

Thus, the algorithm can be used with hop counts, delay, and so on but not with

the minimum operation used to determine maximum available bandwidth.

In practice, Dijkstra’s shortest path algorithm is used in the Open Shortest Path

First protocol (see later).

Distributed routing algorithms
Distributed routing algorithms involve computations performed on all partici-

pating nodes to obtain optimal path information. One of the most well-known

distributed routing algorithms is based on the Bellman–Ford algorithm [15].

Note that this distributed shortest-path algorithm can also be implemented as

a centralized algorithm. However, using multiple distributed nodes for proces-

sing reduces the overall data exchange and reduces the overhead on the network.

The core of the algorithm is the observation that to find the shortest path, a

node can take the shortest path information from its neighbors, add its cost

to reach those neighbors, and choose the least cost sum as its solution. This

process can be expressed as a dynamic programming problem. We denote dij as
the shortest-path cost between node i and node j and cik as the link cost between

i and k (assuming that a direct link exists). Then the Bellman–Ford equation can

be expressed as

dij ¼ mink fcik þ dkjg;
where k is taken from the set of all neighbors of i.

In a distributed implementation of this algorithm, each node (asynchronously)

advertises its knowledge about shortest paths to all its neighbors. The advertise-

ment is also called the distance vector, as it includes all dij values of a node. Ini-

tially, only information about destinations connected directly to a router is

known by observing link costs cik (similar to how link states are obtained in cen-

tralized routing). As information exchanges occur, more information becomes

available to routers in the network. Once all information has propagated through

the network once, the shortest path information is stable and the shortest paths

are known to all routers.

133Control plane



3

2

2

4 4

6

8

7

7

5

2

3

9

7

5v1

v2

v7

v5

v3

v6

v4

3

2

2

4 4

6

8

7

7

5

2

3

9

7

5v1

v2

v7

v5

v3

v6

v4

3

2

2

4 4

6

8

7

7

5

2

3

9

7

5v1

v2

v7

v5

v3

v6

v4

3

2

2

4 4

6

8

7

7

5

2

3

9

7

5v1

v2

v7

v5

v3

v6

v4

3

2

2

4 4

6

8

7

7

5

2

3

9

7

5v1

v2

v7

v5

v3

v6

v4

3

2

2

4 4

6

8

7

7

5

2

3

9

7

5v1

v2

v7

v5

v3

v6

v4

3

2

2

4 4

6

8

7

7

5

2

3

9

7

5v1

v2

v7

v5

v3

d1,p1 d2,p2 d3,p3 d4,p4 d5,p5 d6,p6 d7,p7

2,v1

v6

v4

�,- �,- �,-

�,-

�,-

�,-

�,-

�,-

�,- �,-0,-

7,v19,v13,v1

7,v16,v79,v1

7,v15,v29,v1

7,v18,v5

8,v5 9,v6

9,v6

10,v5

3,v1

FIGURE 7-14

Example of Dijkstra’s shortest path algorithm. The set of nodes, S, that has not been added

to the shortest path tree is shown shaded. The node that is added to the tree in each

iteration is marked in the table.

134 CHAPTER 7 Routers



Figure 7-15 shows an example of the distance vector exchange among nodes.

In the example, the initial state is shown as well as two updates by nodes. Fields

that are changed due to a distance vector exchange are shaded.

In practice, the distance vector algorithm based on the Bellman–Ford equation

is used in the Routing Information Protocol, which is discussed in more detail later.

3

1

21 3

2

4

3 21 3

2

4

1 3

2

4

d12=1

d13=2

d14=5

d21=1

d23=1

d41=4

d42=3

d24=3

d32=1

d31=2

d13=2

d34=2

d12=1

d14=�

d31=2

d32=1

d34=2

d41=�

d42=�

d43=2

d41=�

d42=�

d43=2

d21=1

d23=1

d24=�

d31=3

d32=1

d34=2

d21=1
d23=1

d24=�

d12=1

d13=3

d14=�

d43=2

initialization:

node 2 sends update:

node 3 sends update:

1

11

1

3

1

2

FIGURE 7-15

Distributed shortest-path algorithm based on distance vector. Distance vector fields

affected by an update are shaded.

135Control plane



Another example of a distributed routing algorithm is path vector routing. In

path vector routing, not only the distance to a destination is exchanged among

nodes, but also a list of nodes along the path. Knowing the nodes that are involved

in a path lets a node decide on the suitability of the advertised path using criteria

other than simply least cost. When network policies need to be considered, a

number of other concerns may arise (e.g., not to send traffic via a network that

is not trusted). With the exchange of full path information, such policies can be

implemented. However, because each node may implement different policies,

it is not guaranteed that the routing algorithm converges. An example of a path

vector algorithm in the Internet is the Border Gateway Protocol (BGP).

Hierarchical routing in the Internet
In the Internet, where millions of links make up the entire network, neither of the

two routing approaches just described would work very well. Scalability to support

such a large number of links cannot be achieved by these approaches for several

reasons. The sheer number of links requires a very large data structure on which

shortest-path computations need to be performed. In the centralized solution, up-

dates to any link in the Internet would require an update to all data structures on

all routers and trigger a routing computation. Clearly, it does not matter to most

paths if a link fails on a continent far, far away. However, a straightforward imple-

mentation of Disjkstra’s algorithm requires that the network graph is updated and

that the shortest path is recomputed. In the distance vector algorithm, updates

would propagate whenever a link cost change triggers a change in the vector.

The routing structure in the Internet is set up in a hierarchy of two layers. This

hierarchy is illustrated in Figure 7-16. The network is divided in autonomous sys-

tems (AS). Within an autonomous system, the local administrator may use any type

of routing algorithm (hence the name). Between autonomous systems, a common

routing protocol is used to ensure global connectivity. In the Internet, BGP is used

for this interdomain routing. The support for implementing policy-based routing

makes this path vector protocol a good practical choice. Within domains, a number

of different intradomain routing protocols can be used. A list of some of the proto-

cols used in the Internet is shown in Table 7-4. More details on their implementa-

tion can be found in their respective RFCs.

Error handling
In addition to routing, the control plane of a network layer system needs to handle

error conditions. In lower layers, errors are often handled by silent drops (e.g.,

when the link layer CRC fails due to bit errors). At the network layer, error

handling needs to be more extensive to support based network-layer control and

management functions.

The Internet Control Message Protocol (ICMP) defines how systems should

handle and respond to unusual conditions [143]. Examples for such conditions

include the following.

136 CHAPTER 7 Routers



• Expiration of Time-to-Live field (ICMP Time Exceeded): When a packet has

been forwarded too many times (e.g., due to a forwarding loop or a very low

starting TTL value) and the TTL value in the packet header reaches zero, it

must be dropped. Instead of dropping the packet silently, an ICMP response

is generated to inform the sender of the dropped packet. The motivation behind

this notification is that a sender may stop sending traffic that cannot reach its

destination and (in cases of persistent route loops) that an administrator may

be notified to remedy the problem.

Table 7-4 Routing Protocols Used in the Internet

Name Usage Type Details

Open Shortest Path First (OSPF) Intra-AS Link state
routing

RFC 2328 [128]

Routing Information Protocol (RIP) Intra-AS Distance
vector routing

RFC 1058 [62],
RFC 2453 [111]

Enhanced Interior Gateway
Routing Protocol (EIGRP)

Intra-AS Distance
vector routing

Proprietary

Border Gateway Protocol (BGP) Inter-AS Path vector
routing

RFC 4271 [148]

inter-AS
routing

Internet

intra-AS
routing

autonomous
system

autonomous
system

autonomous
system

autonomous
system

autonomous
system

autonomous
system

autonomous
system

FIGURE 7-16

Hierarchical routing used in the Internet.

137Control plane



• Explicit response request with ping packet (ICMP Echo Request/Echo Reply):

ICMP supports a special type of “echo request” that asks the receiver to

respond with another ICMP message (an “echo reply”). This process of request-

ing a response is often referred to as a “ping,” which seems to be a phrase bor-

rowed from underwater sonar. The main purpose of a ping is to determine if a

system responds to the request and thus can be assumed to be active and

connected to the network. As discussed in Chapter 10, ICMP requests may be

used to launch denial of service attacks and thus the echo response feature is

occasionally disabled in some network systems.

• Unreachable destination host or network (ICMP Destination Unreachable): In

some cases, the end system for which a packet is destined cannot be reached.

This can be caused by a wrongly configured router or an erroneous route com-

putation, which leads to a missing prefix in the forwarding data structure. If no

default route is configured, the router does not have any information on where

to send the packet. This condition is different from a routing loop (which would

cause an ICMP Time Exceeded message), as the router that generates the mes-

sage simply cannot forward the packet.

All control messages involving ICMP use the same general structure. Depending

on the condition or control operation, different header values are used. It is impor-

tant to note that ICMP operates in conjunction with IP. ICMP messages are

encapsulated within an IP header.

Using the ICMP control message protocol, a number of useful tools have been

developed that are widely used in practice. Examples of these tools are:

• ping—the ping program is a utility that sends an ICMP Echo Request to a spe-

cified destination and waits for the ICMP Echo Reply. Using this process

repeatedly, the tool reports if a destination is reachable and what the statistics

of the measured round-trip time are.

• traceroute—the traceroute program is a utility that attempts to determine the

path between a source and a destination. The key idea of traceroute is to inten-

tionally send traffic that causes an error message along the path and thus to

identify routers that respond with error messages. Using the time-to-live field

in the IP header, IP packets can be crafted that expire before reaching the

destination. The first packet uses a TTL value of 1 and thus expires on the first

hop, generating an ICMP response from the router. Then the TTL value is

incremented to identify the second router and so on until the destination

is reached. The assumption is that the path does not change during the measure-

ment and thus the results are consistent (even though different packets could

take different paths).

Not all network systems implement all error-handling features. Also, in some

cases, administrators decide to turn these features off because they may cause

increased load on the system (e.g., to generate response messages) or because they

may reveal information about the setup and policies used in a network (e.g.,

through traceroute).

138 CHAPTER 7 Routers



EXAMPLE NETWORK LAYER SYSTEMS
All routers in the Internet need to implement routing and packet forwarding func-

tionality. However, considerable differences exist in performance requirements

depending on where a router is located. Routers in a home network need to handle

much lower data rates than routers in the Internet core. Differences in requirements

lead to differences in the way these systems are implemented. We describe three

types of routers and discuss their implementation differences.

• Home router: Most home networks use a single (wired or wireless) LAN to

connect all end systems in the home. All traffic that is sent to or received from

the Internet traverses the home router. The router typically interfaces with a sin-

gle Internet uplink (e.g., DSL or cable modem). Because the bandwidth of net-

work access is often limited to a few megabits per second, the aggregate

throughput requirement for the router is equally low. Note that some routers

provide very high data rates on the LAN side (e.g., 100 Mbps or 1 Gbps). These

data rates are achieved only on LAN-to-LAN connections switched at the data

link layer. No network layer functions are performed on these connections.

Packet forwarding for traffic that uses the Internet uplink is straightforward

because there is only one link to choose from. Due to these low performance

requirements for network layer functions, home routers can typically use simple

shared memory switch architecture and a single processor core for data plane

forwarding and control functions. The typical cost of such a system is less than

one hundred dollars. Note that typical home routers are often combined with

transport layer features (e.g., firewalls and NAT) as discussed in Chapter 8.

• Edge router: These routers typically aggregate traffic from numerous network

access links (e.g., in an Internet service provider network) and connect to the

network core. In this domain, the number of ports in such a router is typically

in the order of tens (with each port supporting a large number of aggregated

access links). Routers typically support aggregate bandwidths of tens to low

hundreds of gigabits per second. To achieve the required data rates, routers

use more advanced switch fabrics (e.g., crossbar) and packet processors that

are replicated on each port. Dedicated control processors support routing as

well as advanced functions (e.g., traffic engineering, access control). The cost

of these systems is in the order of thousands to tens of thousands of dollars.

This big increase in cost over home gateways is due to the significant increase

in system performance, as well as the need for reliability and manageability.

• Core router: Routers in the core of the network need to support the highest data

rates. Single links may carry as much as 40 gigabits of data per second and

dozens to low hundreds of ports may be necessary. This leads to aggregate data

rate requirements in the order of terabits per second for the highest end of core

routers. These systems may use multistage switching fabrics to achieve the nec-

essary scalability. Also, each port may use high-performance custom logic or

dozens of embedded multicore processors to implement packet processing

functions. Core routers are the size of several racks and require considerable

139Example network layer systems



power and cooling. The cost of these systems is in the hundreds of thousands of

dollars due to their performance requirements and the low number of units

built.

These examples illustrate the range of router systems deployed in the Internet.

With increases in network traffic, specific performance requirements increase.

However, the relative gap in performance demands between these systems remains.

Therefore, it can be expected that there is always a need for routers with widely

varying cost/performance trade-offs.

SUMMARY
This chapter discussed the basic functionality of network layer systems. In the data

plane of these routers, packets need to be forwarded at high data rates. The main

operation in the forwarding process is to match the destination address against a

set of prefixes, which contain routing information. The data structures for lookup

algorithms can consist of simple binary trees and tries or can be implemented

in hardware-supported TCAMs. In the control plane, routing information is

exchanged to determine where packets should be forwarded. The control plane also

handles error conditions.

140 CHAPTER 7 Routers



CHAPTER

Transport layer systems 8
TRANSPORT LAYER
The transport layer is responsible for providing connectivity between end-system

applications. When looking at the transport layer, packets can be grouped into

“connections” or “flows” that are used by end-system applications. This grouping

is finer-grained than the grouping by IP prefixes that we have seen in the network

layer, as each end system may have numerous active connections in parallel. Using

this finer granularity, network systems can perform operations that are connection-

specific. For example, network address translation translates the address infor-

mation for a connection from a local network to the global Internet. In another

example, packet schedulers can provide different levels of quality of service to

packets that belong to different connections (as discussed in Chapter 10).

This chapter discusses design and implementation issues related to such trans-

port layer systems. Specifically, it focuses on these questions:

• Functionality of the transport layer: What functions are provided by the trans-

port layer? How do these functions affect the operation of transport layer

systems?

• Packet classification: How can packets be associated with connections? How

can packets be matched to policies?

• Example systems: How are transport layer systems used in practice?

Functionality of the transport layer
The main functionality of the transport layer is to provide a connection between

processes on end hosts. Communication between processes is the basis of any

distributed application.

Transport layer features
Unlike the Internet Protocol at the network layer, there is no single transport layer

protocol. Instead, several different protocols have been developed to meet different

application needs. The only functionality that is common among all protocols and

that is a requirement for any transport layer protocol is the ability to identify the

end-system process to which traffic is sent:

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
141



• Multiplexing/demultiplexing: When traffic is sent from different end-system

processes, their packets are multiplexed onto a single network interface and net-

work link. In the reverse direction, network packets for different processes arrive

on a single network interface and need to be demultiplexed accordingly. To facil-

itate the demultiplexing process, typical transport layer protocol headers contain

a field for an identifier representing the destination process (e.g., destination port

number). Using this identifier, the operating system on the receiving host can

distribute the packets. Typical protocols also contain a source process identifier

(e.g., source port number) to allow bidirectional communication.

Numerous other functions can be implemented in transport layer protocols:

• Explicit connection setup: In many connection-oriented protocols, the transfer

of data is initiated by an exchange of connection setup messages. This step

informs the receiver (and the network) of the impending stat transfer. During

the connection setup, system resources (e.g., packet buffers, link bandwidth)

can be allocated to ensure that the data transfer can be handled.

• Reliability: One of the key functions of the widely used Transport Control

Protocol (TCP) is to provide reliable data transfer over an unreliable network.

As discussed briefly in the Appendix, reliable data transfer can be achieved

by maintaining sequence numbers of packets and triggering retransmission on

packet loss.

• Congestion control and flow control: Congestions and flow control provide

feedback from the network and the receiver, respectively, on what data trans-

mission rate is acceptable. This feedback allows the sender to adjust the

transmission speed to ensure that the receiver can process the traffic. Similarly,

congestion control information is used to limit transmission speed to avoid an

overloaded network.

Transport layer protocols
Several different transport layer protocols exist to accommodate different application

layer needs. By combining different features (e.g., the ones discussed previously),

different types of transport layer protocols can be created. Despite the potential

diversity in transport layer protocols, two protocols dominate in the Internet.

• User Datagram Protocol (UDP): This connection-less protocol uses datagrams

to send messages from one end system to another. Because UDP operates in

a connection-less mode, no prior connection setup is necessary to transmit data.

UDP does not provide any services beyond multiplexing and demultiplexing.

Datagrams may be delayed, lost, and reordered. In addition, use of the check-

sum field present in the UDP header is optional. Therefore, UDP is considered

a “bare bones” transport layer protocol. UDP is often used for applications that

tolerate packet loss but need low delay (e.g., real-time voice or video). The full

details of UDP are specified in RFC 768 [142].

142 CHAPTER 8 Transport layer systems



• Transmission Control Protocol: The transmission control protocol operates

in connection-oriented mode. Data transmissions between end systems require

a connection setup step. Once the connection is established, TCP provides a

stream abstraction that provides reliable, in-order delivery of data. To imple-

ment this type of stream data transfer, TCP uses reliability, flow control, and

congestion control. TCP is widely used in the Internet, as reliable data transfers

are imperative for many applications. The initial ideas were published by

Cerf and Kahn [25]. (The authors of this paper received the highest honor in

computer science, the Turing Award, in 2004 in part for their work on TCP.)

More details on TCP implementation are available in several RFCs, including

RFC 793 [145].

An example of another, less commonly used transport layer protocol follows.

• Stream Control Transmission Protocol (SCTP): This transport layer protocol

combines some aspects of UDP and TCP. SCTP provides reliability similar

to TCP but maintains a separation between data transmissions (called “chunks”)

similar to datagrams in UDP. Further, SCTP supports multiple parallel streams

of chunks (for both data and control information). More information on SCTP

can be found in RFC 4960 [170].

Other transport layer protocols are used for media streaming, transport layer

multicast, improved TCP congestion control, high-bandwidth transmissions, etc.

Many of these protocols employ some variations of the basic functionalities of

the transport layer discussed earlier.

Network flows
The transport layer focuses on traffic that belongs to a network connection or a

“flow.” A connection is a sequence of packets that originate from the same end-

system process and are sent to the same receiving process. For some connections

(e.g., those using TCP), a formal connection setup process is used to initialize

the connection. When using UDP, packets are sent without a connection setup step.

In this connection-less mode, datagrams are sent independently from each other

with no implied relation among them. Nevertheless, both types of transport layer

communication between end-system processes are considered a flow.

End-system sockets
Many end-system application processes need to establish communication to ano-

ther end-system process. To hide the complexities of the transport layer, most

operating systems provide functionality for handling communication at this protocol

layer. The UNIX operating system provides an elegant network “socket” interface,

which is an abstraction used to send and to receive network traffic. A socket pro-

vides an interface that is as simple as reading from and writing to files and thus

can be used easily by applications.

143Transport layer



Sockets come in two different flavors: connection-based for use with the TCP

protocol and connection-less for use with UDP. Connection-less sockets do not

establish explicit connections and all datagrams are sent independently. The typical

set of functions used for connection-less sockets is the following:

• Socket() creates a new socket,

• Sendto() sends a datagram to the destination specified as an argument, and

• Recvfrom() receives a datagram (if available) from a sender specified in an argument.

When using TCP sockets, additional functions are used to establish the connection

before sending traffic. Typical functions used for connection-based sockets are:

• Socket() creates a new socket,

• Bind() associates a socket with a particular address,

• Listen() makes the server socket wait for a connection setup request,

• Connect() allows the client to initiate a connection to the server,

• Write() transmits data from one side of the connection to the other, and

• Read() allows the caller to read available data from the socket.

To ensure correct operation, these functions need to be called in the correct order.

For connection-based sockets, the following order is typically used:

1. Receiver establishes socket with socket(), binds the socket to the specified

local port with bind(), and begins to wait for connection at port with listen().

2. Sender establishes socket with socket() and initiates connections with connect().

3. Once connection setup phase has finished successfully, the sending socket and

the receiving socket can be used similarly to a file handle to read and write the

data stream.

4. Sender uses write() to send data into the socket.

5. Receiver uses read() to receive data from the socket.

A connection-based socket automatically establishes bidirectional communication.

Thus, it is also possible for the receiver to send data back to the sender (e.g., to

respond to a request).

One key difference between the connection-less socket and the connection-

based socket is how data are written to and read from the interface. In the connec-

tion-less socket, the application explicitly partitions data into datagrams, each of

which is sent via an explicit sendto() command. On the receiver side, the packets

are also received one by one. Thus, data partitioning used by the application layer

is maintained. In connection-based sockets, these barriers between individual

packets disappear and data are represented as a stream. The sender may write data

at the end of the stream with write() calls that may be completely different from

how the receiver uses the read() calls. For example, the sender may write data into

the socket with a few large blocks, and the receiver may read from the socket one

byte at a time.

Except for the explicit connection setup, the remaining functions of TCP (e.g.,

flow control and congestion control) remain hidden from the application that

144 CHAPTER 8 Transport layer systems



uses sockets. For example, if the receiving application is slow about reading data

from the socket, the buffer in the receiver’s operating system and then the buffer

in the sender’s operating system will fill up. Once they are full, the sender’s socket

can no longer accept any data and the write() call will block. This blocking will

stall the sender application and thus achieve flow control. Similarly, congestion

control may limit the rate at which data are transferred between the sockets. Addi-

tionally, the reliability feature of TCP, which ensures that lost packets are retrans-

mitted, is not visible to the application that uses a connection-based socket.

Flow 5-tuple
When establishing a connection, the port number on the receiver side is of critical

importance. The sender and the receiver need to agree upon which port number is

used for their communication, as it is the identifier used to demultiplex data to the

correct process. In case of a mismatch, the receiving operating system is not able to

deliver data to the correct process.

Applications can therefore use either a previously agreed upon socket number

or one that is “well known.” Well-known port numbers are associated with com-

monly used applications. Servers that provide a commonly used service listen for

connections at these port numbers to ensure that a client can connect. Examples

of well-known port numbers and the associated applications are:

• Port 80: Hypertext Transfer Protocol (HTTP) (i.e., Web server)

• Port 22: Secure Shell (SSH) protocol

• Port 53: Domain Name Service (DNS) protocol

The source port of a connection is typically not a predefined value. Instead it is

chosen randomly by the sender’s operating system, and no two active connections

use the same port. This selection process avoids problems when a connection setup

fails and needs to be repeated or when two connections are active between the

same hosts using the same destination port. Port numbers can typically be grouped

into numbers that are used for well-known services (ports 0 through 1023) and

numbers that are used for originating user connections (ports 1024 through 65535).

An example of IP addresses and port numbers used in a typical connection is

shown in Figure 8-1. In this example, the sender attempts to connect to a Web

server on the destination.

It is hypothetically possible that a connection-less socket uses the same IP

address and port pairs as a connection-based socket. The operating systems can

distinguish between these connections based on the layer 4 protocol used. Thus,

to uniquely identify any connection in the Internet, the following 5-tuple is used:

• Source IP address

• Destination IP address

• Source port number

• Destination port number

• Transport layer protocol identifier

145Transport layer



Note that the 5-tuple of a connection remains unchanged throughout the network

and for the entire duration of the connection. It is possible that a particular 5-tuple

can be reused. For example, the sender’s operating system may choose the same

source port number again when connecting to the same destination end system

and port. However, if the operating system attempts to avoid reuse of recent port

numbers, it takes thousands of connections before the same source port number

is reused. Thus, for all practical purposes, a 5-tuple can be considered unique.

Aggregates
A flow 5-tuple specifies traffic from a single end-system process to another. In the

core of the network, a link may carry traffic from tens to hundreds of thousands of

active connections. When managing network traffic, it may be infeasible to con-

sider each connection individually. In such cases, multiple individual connections

may be combined into aggregates. For example, an aggregate may encompass all

traffic that originates from one network as identified by an IP address prefix. To

specify any aggregate, it is necessary to use one or more “wildcards” in the 5-tuple.

Typical wildcards include:

sender
(client)

receiver
(server)

74.125.39.99128.119.91.53

source IP

destination IP

source port

destination port

protocol

128.119.91.53

74.125.39.99

35466

80

TCP

source IP

destination IP

source port

destination port

protocol

128.119.91.53

74.125.39.99

35466

80

TCP

FIGURE 8-1

Connection information in network and transport layer headers.

146 CHAPTER 8 Transport layer systems



• Arbitrary value: “*”

• IP address prefix: e.g., “128.252./16” or “128.252.*”

• Port number range: e.g., “[0-1023]”

The use of wildcards for specifying flow aggregates is also used when specifying

matching rules as discussed later.

Packet classification
Any transport layer system needs to be able to identify which packets belong to a

specific connection. Therefore, it is essential that packets can be classified by their

packet header information. There are two ways of classifying packets:

• Flow classification: Flow classification uses complete network and transport

layer information to determine to which connection a packet belongs. In parti-

cular, wildcards (i.e., undefined field values) or ranges are not allowed. Only

packets belonging to the same connection are classified as belonging to the

same flow.

• Matching: In matching, packets are matched up with a set of rules. These rules are

given a priori (e.g., as policies) and may contain wildcards and ranges. Multiple

flows may match a rule and a packet may match multiple rules.

We present commonly used flow classification and matching algorithms in more

detail.

Flow classification
Flow classification is widely used in transport layer systems. In many systems,

decisions are made based on individual flows. For example, the system may

maintain state information specific to each flow (e.g., number of packets or bytes

transmitted by a connection). In some other cases, forwarding decisions for packets

depend on the flow to which the packet belongs. Therefore, it is important to have

an efficient process for classifying packets into flows.

A flow is identified by its 5-tuple, which contains complete source and destina-

tion addresses, source and destination ports, and the transport layer protocol iden-

tifier. Because there can be a large number of possibly 5-tuples, it is not feasible to

maintain a data structure that has an entry for every possible flow. It is also not

possible to predict the 5-tuples that will be encountered in any particular system,

as port numbers are often chosen at random and user decisions determine to which

network interface a connection is directed. Instead, it is necessary to develop a data

structure where flows can be added (and removed) dynamically.

Because the data structure for maintaining active flows is smaller than the set of

all possibly 5-tuples, a many-to-one mapping of flows is necessary. For example, a

hash table uses a hash function that maps the flow 5-tuple to a hash index. Multiple

different flows may map to the same hash index. Therefore, conventional methods

for resolving hash collisions need to be used (e.g., chaining or open addressing).

An example of a flow classification data structure is shown in Figure 8-2.

147Transport layer



The flow record, which is maintained for each active 5-tuple, can be used

throughout the system to store flow-specific information. A challenging problem

is to determine when a connection has terminated (and thus no longer requires

the flow record). In TCP, FIN packets can indicate termination of a connection.

However, they are not always used. In addition, some other protocols (e.g., UDP)

do not provide any indication on when a connection has terminated. Thus, it is

typically necessary to maintain a timeout for each connection. Flow records from

expired connections can be removed and reused for other connections. The removal

of these records can be done opportunistically, as there is no harm in keeping

records beyond the timeout period.

General matching rules
When operating a network, it may be necessary to specify rules and policies about

the traffic that is carried in the network. For example, traffic that comes from

a particular IP prefix may be treated differently than other traffic. Thus, traffic

rules can be specified using the 5-tuple for the packet classification process.

However, the large number of possible 5-tuples makes it impractical to flow

classification and fully specified 5-tuples. Instead, rules can be expressed using

aggregates and wildcards in the 5-tuple specification.

An example of rules is shown in Table 8-1. For simplicity, we assume that sim-

ple deny/permit decisions are associated with each rule. In practice, more complex

information may be stored with each rule (e.g., forwarding information, quality of

service information).

Because a packet’s specific 5-tuple may match multiple rules, there needs to be

an ordering on rule priority. In general, rules higher in the list of rules take pre-

cedence over those lower in the list (i.e., a lower sequence number takes priority).

output port

packet count

next flow

5-tuple

3

1

output port

packet count

next flow

5-tuple

7

93

output port

packet count

next flow

5-tuple

2

755

output port

packet count

next flow

flow table

hash
function

-
-
-
-

-
-

-
-

flow 5-tuple

5-tuple

7

12

index

FIGURE 8-2

Flow classification with hash table and chaining for collision resolution. The flow record

contains forwarding information and other flow-specific information.

148 CHAPTER 8 Transport layer systems



The size of a rule set can vary drastically depending on the location in the

network and how the rules are used. Small configurations may only have a few

to a dozen rules. Large enterprise configuration may contain hundreds or thousands

of rules.

Matching algorithms
A transport layer network system that implements this type of general matching

needs to be able to determine to which rule(s) a packet belongs. A packet may

match multiple rules, as these rules may overlap in the space of all possible

5-tuples. The resulting matching problem is difficult to solve efficiently and

requires specialized matching algorithms. We discuss several of these algorithms

later. For a more extensive review of matching algorithms, see [59, 177].

For a discussion of these algorithms, we assume a two-dimensional rule space

and the example rules shown in Table 8-2. Figure 8-3 visualizes this rule set on a

plane, where each rule covers some prefixes of each dimension. As shown in Fig-

ure 8-3, rules may overlap (e.g., B overlaps with D). When using an example

packet, we assume it carries field values (1010/0111) for the two dimensions we

consider. This example packet’s location in Figure 8-3 is shown as a black dot.

When discussing the performance of different classification algorithms, we

need to consider how they scale as the number of rules, dimensions, and field sizes

increase. We use the Landau notation (“big-O” notation) to describe the upper

Table 8-1 Example Rule Set Requiring General Matching

Source IP
Destination
IP

Source
port

Destination
port Protocol Action

128.252.* * * * TCP Permit

* 128.252.* * 80 TCP Permit

128.252.* 129.69.8.* * 554 UDP Permit

150.140.129.* 128.252.* [1024-
65535]

* * Permit

* * * * * Deny

Table 8-2 Simplified Rule Set Used for Discussion of Matching Algorithms

Rule 1st field 2nd field

A 0* 00*

B 10* 00*

C 0* 01*

D 1* 0*

E * 1*

149Transport layer



bound on the growth of the metrics we consider. For notation, we assume there are

n rules with d dimensions each. The length of each field in each dimension is

assumed to be l bits.

Metrics
Similar to the performance requirements for prefix lookup algorithms in the network

layer, matching algorithms are typically evaluated based on the following metrics.

• Classification complexity: This metric measures how computationally expen-

sive the classification computation is based on the number of rules and their

characteristics.

• Space requirement: This metric reflects the amount of memory necessary to

store the data structure used in the classification process.

• Update complexity: Rules used for classification may change during operation of

the system. As a result, the classification data structure may need to be updated.

The update complexity characterizes the cost of modifying this data structure.

Classification complexity has a direct impact on the maximum packet rate that a

transport layer system can sustain. Space requirements have implications on themax-

imum number of rules that can be supported. For highly dynamic systems, where

rules get added and removed frequently, update complexity may have important

implications. However, in systems where the rule set remains unchanged for longer

periods of time, this metric can be ignored. In our discussion of classification

algorithms, we focus on classification complexity and space requirements.

Linear search
Linear search is a straightforward algorithm for matching a packet to a set of rules.

The classifier simply iterates over the set of rules and attempts to match each to the

packet. If a match is not possible, the next rule is considered. Once the first match

is found, the search is terminated and the matching rule is reported. Because rules

are ordered by priority, there is no need to search beyond the first match.

di
m

en
si

on
 2

dimension 1

11*

10*

01*

00*

00*

A

D

C

E

1010/
0111

01* 10* 11*

B

FIGURE 8-3

Visualization of rule set from Table 8-2.

150 CHAPTER 8 Transport layer systems



The classification complexity of linear search scales linearly with the number of

rules. It is also proportional to the number of dimensions of each rule (because each

field needs to be checked) and the number of bits in each field (because prefixes

need to be checked incrementally). The space requirement scales similarly. Thus,

linear search requires:

• Classification complexity: O(ndl) because each rule and field may need to be

considered and each prefix match may require l steps.
• Space requirement: O(ndl) because each rule and field are stored individually.

While linear search is very easy to implement, it is expensive for large numbers

of rules. In practice, it is only used for very small classification databases (a few

to a dozen rules).

Hierarchical trees
To avoid the cost of scanning each rule linearly, classification lookups can be

structured into trees similar to how it was done for prefixes in the network layer

(see Chapter 7). However, the challenge with such an approach is that longest prefix

matches in one dimensionmay not lead to a valid solution in the other dimension. For

example, when matching (1010/0111), the longest prefix match for 1010 in the first

dimension yields rule B. However, rule B does not match in the second dimension.

Similarly, the longest prefix match for 0111 in the second dimension results in rule

C. Again, this rule does not match in the other dimension. Thus, it is necessary to

use a matching approach that considers both dimensions in the process.

The hierarchical trees algorithm uses a prefix tree in each dimension as shown

in Figure 8-4. The classification prefixes of the first dimension are represented in

2nd dimension

1st dimension

A C B

E D

10

0

0

0 0

0

0 1

1

FIGURE 8-4

Hierarchical trees data structure for rule set from Table 8-2.

151Transport layer



the top tree. Because classification decisions cannot be made based on a single

dimension, there are no prefixes in the top tree. Instead, nodes in the top tree con-

tain pointers to prefix trees in the second dimension. Trees in the second dimension

contain prefixes from rules that match in the first dimension. For example, the sec-

ond dimension tree that is connected to 0* in the first dimension contains rules A

and C because these rules have 0* in their first field.

The lookup procedure for the hierarchical trees algorithm starts at the top node of

the tree in the first dimension as shown in Figure 8-5. All prefixes that match the field

in the first dimension need to be matched. The first possible match is the root node.

From there, the search transitions into the second dimension, where a match for

0111 is attempted. However, the search “falls off the tree” before reaching a node that

has an entry for a matching rule. Thus, no match is found, and the search transitions

back into the first dimension. From the root node in the first dimension, the search

continues to match 1010 (step 3). On each node along the way, the search in the

second dimension is repeated. In step 4, the search matches rule D. At this point, a

valid match has been found. However, the search cannot stop yet because there could

be multiple rules that match the packet. Because rules are no longer ordered (as

they were in linear search), it cannot be guaranteed that this match is the rule with

highest priority. Therefore, the search continues. In steps 5 and 6, no further matches

are found. The result of the classification process is rule D.

One problem with this algorithm is that it requires multiple prefix matches in

each dimension. For long prefixes, the number of steps necessary to find all match-

ing rules can become very time-consuming. The computational complexity and

space requirement of this algorithm is:

1st dimension

2nd dimension

1st step

3rd step

5th step

6th step

2nd step
4th step0

0

0

10

10

0 1

A

E

C

D

B

FIGURE 8-5

Lookup process on hierarchical trees data structure.

152 CHAPTER 8 Transport layer systems



• Classification complexity: O(ld) because up to l search steps are necessary in each
dimension and each search step triggers a full search in higher dimensions.

• Space requirement:O(ndl) because each rulemay require l nodes in each dimension.

Set-pruning trees
Set-pruning trees use the same ideas as hierarchical trees, but improve on the prob-

lem of having to traverse back and forth between dimensions. The main idea is that

trees in the second dimension should include all rules for shorter prefixes in the

first dimension. Using this approach, the lookup becomes simply a longest prefix

match in the first dimension followed by a longest prefix match in the second

dimension. Searches on shorter prefixes are not necessary since all matching rules

for shorter prefixes are included in the trees of longer prefixes.

Figure 8-6 shows the data structure used for set-pruning trees. Note that rule E

is replicated in the tree for prefix 0*, 1*, 10*. Rule D is replicated in the tree for

prefix 10*. These replications do not change the classification outcome, as they

only get added to prefixes that are longer (i.e., more specific) than the original rule.

To perform the classification for fields (1010/0111) with this data structure, a

longest prefix lookup is performed in the first dimension. This lookup yields 10*

as the longest match. Then, in the second dimension, another longest prefix match

is performed. This lookup yields rule D (since the search falls off the tree when

attempting to match 01*). Thus, the result is rule D.

The complexity of this matching algorithm and the space requirements of the

data structure are:

• Classification complexity: O(dl) because there are d longest prefix matches to

be performed and each takes up to l search steps.

A C

E

1st dimension

2nd dimension

E D

D

E

EB

0

0

0

0

0

0 0

11

1

1

1 1

FIGURE 8-6

Set-pruning trees data structure for rule set from Table 8-2.

153Transport layer



• Space requirement: O(nddl) because each rulemay have to be replicated n times in

each dimension and each rule may require l nodes in each dimension.

A possible improvement that reduces space requirements is the grid of trees, where

pointers are used to connect subtrees in the second dimension. This process avoids the

repeated storage of subtrees. However, it only can be used under certain conditions

and only for a two-dimensional rule space.

Area-based quadtree
The classification algorithms discussed previously have separated lookup in each

dimension into separate steps. A classification algorithm that performs lookups

in multiple dimensions at the same time is the area-based quadtree. We explain this

algorithm for a two-dimensional space. In practice, it can be extended to more

dimensions.

The quadtree divides the two-dimensional space into four areas as shown in

Figure 8-7. This cutting is applied recursively to each area until only one rule

remains in an area. The resulting quadtree data structure is shown in Figure 8-8.

When performing a lookup, the first bit of each dimension is used to traverse the

first step of the quadtree. In our example, the 1 from first dimension and the 0 from

01 11

00 10

0 1

1

0
A

11*

10*

01*

00*

11*10*01*00*

dimension 1

di
m

en
si

on
 2

C
D

B

E

quadtree subspace

recursive 
cutting

FIGURE 8-7

Division of classification space using area-based quadtrees.

E D E

00

00 01 10

00 01 10 11

BCACA

11

FIGURE 8-8

Area-based quadtree data structure for rule set from Table 8-2.

154 CHAPTER 8 Transport layer systems



the second dimension are concatenated and the 10 edge is traversed. Because there

are no further children on the node that is reached, the result of the classification

process is rule E.

The computation complexity and space requirements for area-based quadtrees are:

• Classification complexity: O(l) because the quad tree has a maximum of

l levels.
• Space requirement: O(nl) for two dimensions because n rules need to be stored

at possibly multiple levels in the tree.

Hierarchical intelligent cuttings
The HiCuts algorithm uses a heuristic approach to classifying packets. The algo-

rithm exploits the fundamental structure of typical classification rules to develop

a data structure that provides fast lookup times in most cases. HiCuts cuts the

search space into areas such that there are only a small number of rules remaining

in each area. A decision tree is built to traverse the cuttings. The set of remaining

rules is then searched using linear search.

A cutting for our example rule set is shown in Figure 8-9. In the first step, the

second dimension is cut into four areas. In the second step, the 00* child of the first

cut is cut into two areas. These cuttings are represented in the decision tree shown

in the same figure. Leaf nodes of the decision tree contain one or more rules that

need to be evaluated with linear search.

The key to HiCuts is to determine a suitable cutting heuristic. The goal is to

keep the number of cuts low because each cut introduces an additional node in

the decision tree. At the same time, the number of rules that need to be searched

linearly should also be kept low to avoid expensive linear searches. Because the

cutting heuristic depends on the rule set, it is not possible to provide a reasonable

bound on processing complexity or space requirements. Poor cuttings can lead to

very poor performance. However, good cuttings can provide a good trade-off

between cuttings and rules per node.

di
m

en
si

on
 2

dimension 1

00* 01* 10* 11*

11*

10*

01*

00*
cut

cut

cut X into 2

cut Y into 4

cut

cutE

C
D

A B

11100100

0 1

EEC
D

A B

D

FIGURE 8-9

Hierarchical intelligent cuttings of rule space and results data structure for rule set from

Table 8-2.

155Transport layer



Hardware-based algorithms
The aforementioned algorithms are designed for software implementations on

conventional general-purpose processors. However, there are also specialized hard-

ware solutions to flow classification. These are based on the same type of ternary

content-addressable memory discussed for hardware prefix lookups in the network

layer. Because the search word does not have to have contiguous blocks of don’t

care symbols, it is easy to split it into sections that are used by each dimension.

The TCAM configuration for our example rule set is shown in Figure 8-10.

Because rules are ordered by priority, they can simply be used in that order in

the TCAM. A lookup in the TCAM will return the highest priority rule that

matches the values of the packet fields.

A TCAM can achieve classification in a single memory access. However,

TCAMs consume much more power than conventional memories and thus can

only be used in systems with a sufficient power budget. In addition, there are limits

on the size of a TCAM. Recent research has explored a variety of solutions on how

to split large classifiers over multiple physical TCAMs.

Other classification algorithms
Packet classification is an important aspect of modern network systems, and

there is much ongoing research on how to improve classification algorithms

further. The survey by Taylor [177] presents several methods that go beyond the

ones discussed here.

Transport layer systems
To further illustrate the role of transport layer systems in the network, we present

several example systems used in today’s networks.

0 x x x 0 0 x x A

1 x x x 0 x x x D

1 0 x x 0 0 x x B

x x x x 1 x x x E

0 x x x 0 1 x x C

search word

data word

TCAM entries

1st dimension 2nd dimension

FIGURE 8-10

Packet matching with ternary content-addressable memory for rule set from Table 8-2.

156 CHAPTER 8 Transport layer systems



Firewalls
A firewall is a device typically used to protect a local subnetwork from malicious

attacks [125]. Security issues are discussed in more detail in Chapter 10. For this

discussion, we simply assume that an end system on the subnetwork should only

be able to receive traffic that belongs to a (bidirectional) connection that was

initiated by that end system. All other traffic should be dropped at the firewall.

This process is illustrated in Figure 8-11.

To accomplish this type of traffic filtering, a firewall needs to keep track of the

connections that have been initiated by any end system in the subnetwork, classify

each packet received, and determine if it may be forwarded or not:

• Connection tracking: To track active connections, the firewall simply identifies

all TCP SYN packets that originate from the subnetwork. These SYN packets

identify the 5-tuple of traffic directed from the subnetwork to the Internet.

Because most connections are bidirectional, traffic that matches the 5-tuple with

source and destination fields swapped is permitted to enter the subnetwork.

• Packet classification: Using a simple packet classification process as in this chap-

ter, the firewall attempts to match an incoming packet’s (reverse) 5-tuple to an

entry in the connection table. If a match is found, then the packet is considered

a response to a connection that was initiated from an end system in the subnetwork.

Internet

firewall

firewall

connection table

interface interface

forward?

new connection?

dest port protocol

TCP803546674.125.39.99

128.119.91.124

128.119.91.53

128.119.91.53

src portsource IP dest IP

check 5-tuple
add 5-tuple

FIGURE 8-11

Firewall operation used to identify packets that belong to connections initiated from within

the protected subnetwork.

157Transport layer



• Forwarding decision: If a packet is identified as belonging to an active connec-

tion, then it is forwarded into the subnetwork. All other traffic is discarded.

This packet dropping is typically done “silently,” that is, without generating a

control message to inform the sender.

Because connections typically only exist for a limited amount of time, entries in

the connection table eventually time out and get removed.

Overall, a firewall makes an end system unreachable from the Internet unless a

connection is initiated by that end system. However, in some cases an end system

should be reachable (e.g., a server). To accommodate such end systems in a sub-

network protected by a firewall, static rules can be added to the connection table.

These typically contain wildcards, as the source of the connection request is not

known a priori. On some end systems, firewall functionality is also implemented

in software in the operating system.

Network address translation
Closely related to firewalls, and often implemented in the same system, are net-

work address translators (NAT). These NAT systems address one of the main

problems in today’s Internet. The IP address space is limited to 32 bits due to

the size of the IP address field in the IP header. With the enormous growth in

the number of devices connecting to the Internet (desktop computers, servers, cell

phones, game consoles, set-top boxes, sensors, etc.), the roughly four billion avail-

able IP addresses are not sufficient to allocate one to each interface. To overcome

this shortage of IP addresses, a NAT system can multiplex the traffic of numerous

network interfaces onto a single IP address [48]. Similar to firewalls, the typical

use of a NAT system is at the edge of a subnetwork as shown in Figure 8-12. Only

locally routable IP addresses (e.g., 192.168/16 or 10/8) are used on the local net-

work. These addresses are never sent into the global Internet. On the Internet,

the NAT uses a single global IP address. The connection table maintains the infor-

mation of what connection on the local network matches with what connection on

the global Internet.

Figure 8-12 shows a space–time diagram of a typical connection that traverses a

NAT system. For each packet, the full 5-tuple is shown. The local IP address

(192.168.1.12) and port number (35466) are only used in the subnetwork. The

NAT system translates the IP address to its own global IP address (128.119.91.53)

and the port number to a locally unique port number (9387) that identifies this

connection. When a response is received, the port number is used to look up the

local IP address and port number and reverse the translation to the local end

system’s connection 5-tuple.

Because a NAT system performs operations very similar to those of a firewall,

both functionalities are typically integrated into a single transport layer system.

A common example is the home gateway used to connect multiple devices to a

single Internet connection. This device provides NAT, as the Internet service

provider typically only provides a single IP address. It also provides firewall

functionality to protect local devices from intrusion attempts.

158 CHAPTER 8 Transport layer systems



NAT

Internet

129.168.1.15

192.168.1.12

NAT

interface interface

connection table

local 
source IP

local 
src port

global
src port

global
dest port protocol

74.125.39.99192.168.1.12 TCP8035466

translate IP/port

128.119.91.53

global IP 
addresses

192.168.1.1

local IP 
addresses

global 
dest IP

9387

sender
(client)

receiver
(server)

source IP

destination IP

source port

destination port

protocol

192.168.1.12

74.125.39.99

35466

80

TCP

NAT

source IP

destination IP

source port

destination port

protocol

128.119.91.53

74.125.39.99

9387

80

TCP

source IP

destination IP

source port

destination port

protocol

128.119.91.53

74.125.39.99

9387

80

TCP

source IP

destination IP

source port

destination port

protocol

192.168.1.12

74.125.39.99

35466

80

TCP

FIGURE 8-12

Network address translation.

159Transport layer



Monitoring
Another typical application of transport layer packet classification is for traffic

monitoring. It is often desirable to monitor traffic at the flow level (rather than

examining link traffic as a whole). Flow level monitoring can track the number

of packets and the number of bytes sent by a connection. This information can

be used for security monitoring, billing, anomaly detection, etc.

A flow-based monitoring system uses flow classification similar to that shown

in Figure 8-2. Information that is tracked for each flow can include:

• Flow 5-tuple to identify the connection.

• Packet and byte count to track network usage by the connection.

• Timing information (e.g., start time, time of last packet observed) to determine

bandwidth consumption and to clear flow records that have expired.

Flow classification can be computationally expensive for high-bandwidth links due

to the large number of packets that have to be classified per second and due to the

large number of active flows that need to be tracked. Therefore, some monitoring

systems use sampling where only a subset of packets is recorded by the monitor.

Using statistical methods, an estimate of the original traffic composition can be

obtained.

A well-known commercial monitoring system is Cisco’s Netflow. Netflow

reports per-flow information at intervals of 5 min. Typical Netflow information

includes flow 5-tuples and packet and byte counts. Netflow can also be used in

a mode where sampling is used.

SUMMARY
This chapter discussed the basic functionality of transport layer systems. At the

transport layer, traffic consists of connections between end-system processes.

The flow 5-tuple uniquely identifies connections in the network. Transport layer

systems distinguish traffic by connections or connection aggregates. These systems

use flow classification and packet matching algorithms to identify individual pack-

ets. Examples of transport layer systems include firewalls, network address trans-

lators, and network monitoring devices.

160 CHAPTER 8 Transport layer systems



CHAPTER

Application layer systems 9
APPLICATION LAYER
The application layer is responsible for implementing distributed applications and

their protocols. This layer implements functionality accessed by end users. When

considering distributed applications that use the network for communication, numer-

ous examples come to mind: electronic mail, access to Web documents, interactive

audio, streaming video, real-time gaming, etc. Permitting such an incredible diversity

of applications at this layer is one of the main successes of layered Internet architec-

ture. With only a small number of protocols at the transport layer and only a single

protocol at the network layer, all these applications can be supported. As discussed

in the Appendix, the hourglass architecture of Internet protocol stack is at the core

of this design.

The application layer can be viewed as consisting of several sublayers: session

layer, presentation layer, and application layer. In the OSI layered protocol model,

these sublayers are numbered layers 5–7, respectively. However, in Internet archi-

tecture, they are combined into a single application layer. The reason that they are

not treated independently is that these layers often provide functionality that is

tuned to higher layers. For example, mechanisms implemented to maintain ses-

sions in layer 5 are often specific to the application used in layer 7. Therefore, it

can be justified that these three layers are treated as a single application layer.

Note that in some cases this combined application layer is referred to as layer 7,

layer 5, or layers 5–7.

This chapter discusses network system design and implementation issues related

to the application layer. In some cases, we discuss specific protocols as examples

of the application layer in general. However, there are also general functions (e.g.,

payload inspection) that are implemented on network systems independently of a

specific application layer protocol. The questions we address are:

• Functionality of the application layer: What functions are provided by sublayers

of the application layer?

• Payload inspection: How can a network system scan packet payloads efficiently

to identify certain content?

• Application layer functions in network systems: What are examples of network

systems supporting end-system applications?

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
161



Functionality of the application layer
The application layer uses end-to-end communication abstractions provided by the

transport layer to implement distributed applications. The application layer can be

structured into session, presentation, and application sublayers. However, many

applications do not formally distinguish these sublayers. Instead, features from

each layer may be implemented as part of the distributed communication of the

application.

Session layer
The session layer, which corresponds to OSI layer 5, handles connection aggre-

gates, called sessions. A session represents the information exchange that takes

place between end systems in the context of a specific distributed application.

A session encompasses possibly multiple (sequential or parallel) transport layer

connections. Typical examples of distributed applications with multiple transport

layer connections in a session are video conferencing (where multiple parallel

transport layer connections transmit voice, video, and control information) and

online shopping (where multiple sequential transport layer connections are used

to add items to a shopping cart followed by a purchase).

There are several services that the session layer implements that may be used

by higher sublayers of the application layer.

• Robust communication: The session layer needs to deal with coordination

between multiple parallel transport layer connections and recover from failures

in transport layer connections (e.g., disconnection due to mobile user moving

from one access point to another and thus changing IP addresses). By providing

a robust communication service, higher layers do not need to deal with the

mechanics of coordinating individual transport layer connections. The session

layer may use checkpointing and recovery mechanisms to achieve robustness.

• Authentication and access control: Verification of which end-system applica-

tions may communicate can be implemented at the session layer. The commu-

nicating end systems identify themselves to each other and validate access

control permissions. More detail on security protocols related to authentication

and access control can be found in Chapter 10.

Presentation layer
The presentation layer, which corresponds to OSI layer 6, handles the representa-

tion of information used in the communication between end-system applications.

Data can be encoded in a number of different ways, and the presentation layer

ensures that they are translated appropriately for transmission on the network

and to be useful to the end-system application.

Services provided by the presentation layer are:

• Translation: The translation service provided by the presentation layer is impor-

tant for end systems and end-system applications that use different representa-

tions for data. For example, text can be represented by a number of different

162 CHAPTER 9 Application layer systems



codes (e.g., ASCII, EBCDIC). If the two sides of a communication use a differ-

ent encoding, a translation is necessary to avoid corruption of data. Similarly,

different hardware architectures use varying representations for numbers (e.g.,

big-endian, little-endian), and translation is necessary to ensure correct interpre-

tation by the application. Note that translation services can also be implemented

for more complex data structures (e.g., strings, XML content).

• Encryption/compression: Encryption/decryption and compression/decompres-

sion can be seen as one form of translation. However, these functions do not

simply translate from one data format to another, but convert data into an inter-

mediate format (ciphertext or compressed data) for transmission over the net-

work. Note that encryption can also be performed in other layers of the

protocol stack (see Chapter 10).

Application layer
The application layer, in this case the sublayer corresponding to OSI layer 7,

performs all processing related to communication between distributed end-system

applications not handled in any of the other layers. The functionality implemented

at this layer is often very specific to a particular distributed application. Thus, no

general service is provided by this layer. Instead, application-specific protocols

are used. Some examples of such protocols are discussed in the following section.

Application layer protocols
There is a large diversity of application layer protocols, as any application may

define its own protocol for distributed communication. We discuss two examples

of widely used application layer protocols: Hypertext Transfer Protocol (HTTP),

which is used to transmit Web documents, and SIP, which is used to set up

multimedia communication. These examples are intended to only provide a small

insight in the design and operation of the application layer.

Domain name system
Many application layer protocols require that users identify specific end systems.

For example, to access Web documents using HTTP (see later), a user needs to

specify the Web server from which a document needs to be retrieved. As discussed

in Chapter 7, each network interface contains its own global interface address

(unless it is shared using a NAT system). Thus, a user could provide the IP address

of the server’s network interface. However, memorizing IP addresses is difficult

for humans. Instead, “domain names” are used to refer to networks (i.e., sets of

IP addresses with matching prefix) and specific interfaces within them. Domain

names typically use more intuitive names and thus are easier to remember (e.g.,

www.google.com or www.umass.edu). The Domain Name System (DNS) is an

application layer system that provides mapping between domain names and the

associated IP addresses. DNS is described in detail elsewhere [123, 124]. DNS is

widely used in the Internet, as practically all Web addresses and email addresses

contain domain names.

163Application layer



Domain names are structured hierarchically with each domain name belonging

to a top-level domain (e.g., “.edu” for educational institutions or “.de” for Ger-

many). Continuing from the top-level domain, domain names replicate some of

the hierarchical structure of IP prefix assignments. Domain names are structured

by zones (e.g., “umass.edu” for the University of Massachusetts Amherst). Domain

name zones can have subzones that manage part of the name space (e.g., ecs

.umass.edu is a subzone of umass.edu). Within each zone or subzone a name server

(“authoritative name server”) maintains the local mapping between IP addresses

and names. The IP address of the name server is known to the next higher zone

as well as all hosts within the zone.

To retrieve a DNS mapping for an application on an end system, the end-system

DNS resolver (typically part of the operating system) initiates communication with

name servers. Because the resolver does not know the address of the name server

that maintains the IP addresses for the domain name in question, a step-wise process

is necessary. The domain name can be resolved iteratively by parsing the domain

name in reverse order and querying the corresponding name server. First, the top-

level domain name server needs to be queried. To determine the IP address of the

top-level domain name server, one of the root name servers is contacted. The root

domain name server provides the IP address of the top-level domain name server,

which is contacted next. The top-level domain name server provides the address of

the name server of the next level domain. The resolver queries that name server and

continues this process until it reaches the authoritative name server that manages the

IP address of the domain name in question, where the IP address of the domain

name can be retrieved.

To make the query process more efficient and to avoid an overload on name

servers high up in the hierarchy, name servers can cache mappings. If a query for

a mapping is received that can be answered from information in the cache,

the name server responds with this information and no further queries are neces-

sary. To implement this caching process effectively, the resolver typically does

not directly contact the top-level domain server, etc., but has its local name

server do it. Thus, the local name server can learn the DNS mapping and pro-

vide a cached response to repeat queries on the same domain name. (The end-

system resolver also maintains a local cache to reduce DNS traffic.) Figure 9-1

illustrates the iterative query process when a domain cannot be resolved locally.

It is also possible to use recursive queries, where a queried name server auto-

matically sends more specific queries to other name servers before responding

(not shown).

The DNS queries are sent as UDP packets, as a query can typically fit into a

single packet. Also, the lossy operation of UDP has limited impact on DNS. If a

query or response is lost, retransmission can be triggered by the application (or

the resolver). The benefit of UDP is that no transport layer connection needs

to be established and thus less delay is incurred. Numerous additions have

been implemented for DNS, including security extensions (e.g., DNSSEC) and

extensions to support email (e.g., Mail Exchanger record).

164 CHAPTER 9 Application layer systems



The DNS system plays a critical role in operation of the Internet. Without DNS,

many application layer applications fail, as applications and users do not know the

IP addresses of the systems they need to communicate with. Therefore, there is

much concern about the protection of top-level name servers from denial of service

attacks (see Chapter 10). Also, there is ongoing debate on which national or inter-

national organization should manage (and thus have control over) this critical com-

ponent of Internet infrastructure.

Hypertext transfer protocol
One of the most widely used application layer protocols in the Internet is the

Hypertext Transfer Protocol. This protocol is used to communicate between clients

and servers to exchange World-Wide Web (WWW) documents. The most common

use of HTTP is for a client program (e.g., a Web browser) to fetch a document

from a server to display its information to a user. The HTTP protocol is defined

in RFC 2616 [52]. Protocol headers in HTTP use human-readable ASCII text

(rather than a binary representation) and thus can be interpreted more easily than

headers used in the transport and network layer. The HTTP protocol follows the

client–server design: client applications connect to the server to issue requests

for documents (or control information) and the server responds to these client

requests. A number of different types of requests can be issued in HTTP, but the

basic protocol steps and header formats follow the same principles.

The basic setup for aWeb client and server is shown in Figure 9-2, which illustrates

how the user agent (e.g., a Web browser) interacts with the server by sending requests

for documents. The document that is transmitted in response is then rendered by the

R(a.b.c)

DNS
server

DNS
resolver

(end system)

Authoritative
DNS server

Q(a.b.c)

Q(x) = query for DNS entry x
R(x) = response of DNS entry x

Q(a.b.c)

Q(b.c)

Q(c)

Root
DNS server

Top-level
domain

DNS server

R(a.b.c)

R(b.c)

R(c)

FIGURE 9-1

Iterative DNS queries for domain name a.b.c.

165Application layer



user agent to display. Documents can be of different formats [e.g., HTML for Web

documents (see RFC 1866 [17]) or JPEG encoding for images].While there is ongoing

competition between different browser software (e.g., Mozilla Firefox, Microsoft

Internet Explorer) on performance and functionality, all these user agents use the

same HTTP request and response mechanism. Their difference lies in how they

render the document and what additional functions they implement (e.g., security).

HTTP requests
An HTTP request consists of up to four components.

1. A request line: The request line indicates the type of operation that is to be per-

formed, the document to which the operation refers, and the HTTP protocol

version that is being used. Examples of operations are GET (to fetch a docu-

ment from the server), POST (to submit data, e.g., from a Web form), PUT

(to post a document to a server), and HEAD (to retrieve meta-information with-

out a document body).

2. HTTP headers: These headers contain more detailed information about the

request (e.g., the type of encoding to be used, preferred languages). There can

be multiple headers and each header uses its own line. Examples of HTTP head-

ers used in a request are Accept (indicating the types of encodings that can be

used, e.g., Accept: text/plain), Accept-Language (indicating the languages pre-

ferred for a document, e.g., Accept-Language: en), and User-Agent (indicating

the type of user agent used, e.g., User-Agent: Mozilla/5.0 (Linux; X11)).

3. An empty line (to indicate the end of the request header).

4. An (optional) message body: This message body may contain a document or

data for requests that transmit information to the server (e.g., a POST request).

An example of a complete HTTP request is shown in Figure 9-3.

HTTP responses
An HTTP response consists of the following.

1. Status code line: The status code line indicates the type of response the server

provides. The line consists of the HTTP version used by the server, the status

End system End system

Web serverUser agent
HTTP request for index.html

HTTP response (incl.index.html)

http://a.b.c/index.html

Internet

rendering of index.html

index.html

FIGURE 9-2

Exchange of request and response between user agent and Web server.

166 CHAPTER 9 Application layer systems



code, and a verbal description of the status code. Examples of status codes (and

their verbal description) are 200 (“OK”), 404 (“Not Found”), and 503 (“Service

Unavailable”).

2. HTTP headers: Similar to HTTP headers in the request, the response also uses

them to provide more additional information. Examples are Content-Language

(indicating the language of the document in the message body, e.g., Content-

Language: en), Content-Length [indicating the size of the document in the

message body (in bytes), e.g., Content-Length: 1793], and Last-Modified

(indicating the time the document was last modified, which is relevant for

caching, e.g., Last-Modified: Sat, 07 Jun 2003 18:43:00 GMT).

3. An empty line (to indicate the end of the response header).

4. An (optional) message body: The message body may contain a document that is

sent in response to the request.

An example of a complete HTTP response to the request shown in Figure 9-3 is

shown in Figure 9-4.

Persistent HTTP connections
The performance of an application layer protocol can be measured by how effi-

ciently the required communication can be completed. At first glance, the request

HTTP request

GET /index.html HTTP/1.1
Host: www.umass.edu
User-Agent: Mozilla/5.0 (Linux; X11)
Accept: text/plain
Accept-Language: en

FIGURE 9-3

Example HTTP request.

HTTP response

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Apache/2.0.41 (Unix)
Last-Modified: Fri, 11 Sep 2009 15:29:33 GMT
Content-Length: 3488
Content-Type: text/html; charset=UTF-8
Content-Language: en
Connection: close

(content of page)

FIGURE 9-4

Example HTTP response.

167Application layer



and response process of HTTP seems to leave little room for improvement.

However, interactions between the application layer protocol and the lower layers

in the protocol stack (the transport layer, in this case) show that there are potential

performance bottlenecks.

When issuing an HTTP request for a document, a connection to the server is set

up and the request is transmitted. HTTP uses TCP as the transport layer protocol,

as reliable data transfer is a paramount requirement. As discussed in Chapter 8,

setting up a TCP connection requires an exchange of messages between the sender

and the receiver before data can be transmitted. This setup takes roughly one

round-trip time between client and server. The actual data transfer (assuming a

small document that fits into a TCP segment) also takes one round-trip time. When

requesting subsequent documents from the same server, the same delay of two

round-trip times is incurred.

Persistent HTTP connections offer an improvement to reducing the delay caused

by transport layer connection setup. When HTTP uses a persistent connection, the

transport layer connection can be used for multiple requests and responses. Thus, at

the end of the initial document request, the TCP connection remains active and

subsequent requests are sent over the same connection. Thus, the delay for setting

up a transport layer connection is incurred only once (for the first document). All

subsequent documents can be retrieved in a single round-trip time. The operation

of persistent HTTP connections is illustrated in Figure 9-5.

Persistent connections are optional under HTTP/1.0, where clients and servers

can use the “connection: keep-alive” header to indicate that they want to support

this feature. In HTTP/1.1, persistent connections are used by default, but can be

client

TCP SYN

TCP SYN+ACK

TCP SYN+ACK, HTTP request 1

HTTP response

TCP SYN

TCP SYN+ACK

TCP SYN+ACK, HTTP request 2

HTTP response

request 
1

request 
2

TCP SYN

TCP SYN+ACK

TCP SYN+ACK, HTTP request 1

HTTP response

TCP SYN+ACK, HTTP request 2

HTTP response

request 
1

request 
2

persistent HTTP connectionnonpersistent HTTP connection

server client server

FIGURE 9-5

Comparison of two HTTP requests using nonpersistent and persistent HTTP connections.

168 CHAPTER 9 Application layer systems



overridden by the client or the server. If a “connection: close” header field is sent,

then the connection is terminated at the end of the transfer.

Caching in HTTP
The HTTP provides a great example of how devices inside the network (i.e., not on the

client or server side) can support application layer functionality. If multiple clients

from one subnetwork request the same pages on a server (e.g., multiple users retrieving

the same Web document from a news site), then transferring the same document mul-

tiple times is redundant. In particular, multiple transfers of the same document over

slow network links or over large distances waste network resources. To address

this problem, HTTP supports the use of caches (also called caching proxy).

An HTTP cache is a device that can store copies of HTTP documents and

respond to requests (similar to a server). By configuring the user agent to use the

cache, all requests for Web documents are redirected to the HTTP cache. There,

the cache checks its local storage if the document is available. If so, the cache

responds to the HTTP request. Operation of the HTTP cache is illustrated in

Figure 9-6. If the document is not available, the cache requests it from the server,

stores a local copy, and forwards it to the client. Thus, if a document is requested

by multiple users that use the same cache, only the first request triggers interaction

with the server. The second and all further requests are handled by the cache with-

out communication to the server. As a result, bandwidth is saved and the response

to the user agent is provided faster than when communicating with the server

directly.

There are several restrictions on the types of documents and circumstances

when caching is suitable.

Cache:
a.b.c/index.html

Cache:
a.b.c/index.html

Cache:
empty

client 1

client 2

cache server

HTTP request (a.b.c/index.html)

HTTP request (a.b.c/index.html)

HTTP request (a.b.c/index.html)

HTTP response (a.b.c/index.html)

HTTP response (a.b.c/index.html)

HTTP response (a.b.c/index.html)

FIGURE 9-6

An HTTP caching example with two clients requesting the same document.

169Application layer



• Document freshness: Many Web documents change over time. Therefore, the

cache should only provide copies of documents considered “fresh.” Freshness

can be specified by the server when transmitting the original copy (i.e., how

long the document may be cached before a new copy needs to be retrieved).

Also, the cache may actively check the freshness of a document by requesting

the HTTP control information (i.e., the HTTP header using the HEAD com-

mand). If the checksum or hash value of the original document matches the

checksum or hash value provided in response to the HEAD command, then

no update is necessary.

• Explicit cache control: End systems involved in an HTTP transfer may explic-

itly specify the functionality used by any cache that is encountered. A user

agent may specify to explicitly fetch the most recent document from the server

and bypass the cache. The server may specify that a response may not be

cached. The latter case may occur specifically in the context of dynamic Web

content. Some Web documents are created dynamically in response to specific

user requests (e.g., results from a database query, a personalized shopping

portal, or a Web-based email system). Because these documents are specific

to one user (or one instant in time), there is no value in caching them. Also,

some documents may contain information that the user may not want to have

cached (e.g., personal email).

The operation of HTTP caching is “transparent” to the end systems. A transparent

operation means that client and server applications do not need to be aware of

caching operations and do not see any difference in the requests and responses that

they send and receive. (Note that the only necessary change is to configure the user

agent to make transport layer connections to the caching proxy device rather than

the server. However, this change does not affect the operation of application layer

protocols.) HTTP also allows end systems to explicitly override the transparent

behavior of caches (e.g., by specifying a “no-cache” or “no-store” directive in

the HTTP header).

Session management in HTTP
The management of sessions (i.e., operation of the session sublayer) is an impor-

tant aspect of HTTP. A user typically accesses Web documents not independently

of one another, but as part of a session (e.g., reading of multiple emails, online

shopping with multiple items in the virtual cart). Thus, it is necessary that the

Web server can determine which Web requests belong to a particular session. By

default, HTTP requests each document independently and does not provide the

necessary context.

Hypertext Transfer Protocol cookies allow the server to store and retrieve a tiny

amount of state information in the client’s user agent, which permits the implemen-

tation of session management. The functionality of cookies is described in detail

elsewhere [93]. A cookie consists of a name-value pair and is associated with

the domain name of the Web server. The server can transmit the cookie in the

170 CHAPTER 9 Application layer systems



HTTP header of a response. The client stores the cookie and transmits it to the

server along with every subsequent request to the site. The process is illustrated

in Figure 9-7, where the client stores a cookie and sends it with later requests.

The server needs to maintain the session state (e.g., shopping basket) associated

with the identifier (not shown in Figure 9-7).

The server can use this mechanism to store a session identifier with the client’s

user agent when the first Web document is requested. All subsequent requests

carry the session identifier value and thus can be associated with the session by

the server. Clearly, the server needs to maintain the bulk of the session information

(e.g., the content of the shopping cart) since the cookie only stores an identifier and

no further content.

Cookies are optional and neither servers nor clients are required to support

them. In many cases, users may chose to disable or restrict the access to cookies

to avoid leaking information that could be used to track their Web activities.

Session initiation protocol
The Session Initiation Protocol (SIP) is an application layer control protocol that

coordinates multimedia communication sessions. The SIP implements the signal-

ing necessary to initiate communication between two or more parties, but it does

not implement the actual protocols for sending data. This design allows SIP to

be a general control protocol that can be adapted to different communication sce-

narios. Details of SIP are presented elsewhere [149].

The SIP uses uniform resource identifiers (i.e., the type of string used to iden-

tify Web documents in the Internet) to identify user agents, which are implemented

on end systems. SIP user agents can act both as clients to send requests and as ser-

vers to respond to requests. User agents interact with proxy servers, registrars, and

redirect servers to reach other user agents. The SIP operates with several different

transport layer protocols, including UDP, TCP, and Stream Control Transmission

GET /index.html HTTP/1.1
Host: a.b.c
Cookie: session=5f99

Cookie:
none

client server

Cookie:
a.b.c: session=5f99

Cookie:
a.b.c: session=5f99

GET /index.html HTTP/1.1
Host: a.b.c

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: session=5f99

(content of page)

FIGURE 9-7

An HTTP exchange with cookies to maintain session information.

171Application layer



Protocol. Signaling implemented by SIP is a superset of that used in the public

switched telephone network, and thus SIP can interact with telephony networks.

The SIP is an example of an application layer protocol that interacts with a

diverse set of applications (voice over IP clients, video conferencing, etc.), as well

as with several other protocols at the transport layer.

NETWORK SYSTEM SUPPORT FOR APPLICATION LAYER
The application layer protocols discussed in the previous section have very limited

interactions with devices inside the network. Most application layer protocols sim-

ply use TCP (or UDP) sockets to create a point-to-point connection to the other end

system. In such a scenario, network devices along the path of the communication

simply forward packets at the network layer. In some cases, application layer prox-

ies (e.g., HTTP, SIP) interact with some specific network traffic that is directed to

them. However, there are few application layer network devices that work broadly

on all network traffic. The reason for this situation is that very few functions can be

applied to any application layer traffic independently of what protocol is used.

This section discusses a few examples of general application layer functions

that are implemented on network devices. These examples are payload inspection,

which scans packet payload to find specific patterns, and load balancing, which

can redirect traffic based on application layer information.

Payload inspection
One function that can be applied to network traffic from any application is payload

inspection. Payload inspection parses the payloads of packets (i.e., application

layer headers and data) to classify traffic. We discuss the uses of payload inspec-

tion in the context of several scenarios. Because payload inspection requires access

to the entire packet (application layer headers and data), it is a function that is very

expensive to implement. Not only does it require considerable processing power to

perform all the necessary computations at line speed, but it also puts considerable

demands on the memory subsystem. Therefore, efficient scanning algorithms have

been developed to minimize the resource demand of payload inspection. We dis-

cuss a variety of algorithms and their implementation here.

Payload inspection scenarios
Payload inspection is a very general term for accessing the payload of a packet. It

is also referred to as deep packet inspection. Example scenarios where packet pay-

loads are inspected on a network device are as follows.

• Monitoring: Traffic monitoring is used to understand properties of the traffic

aggregate (e.g., distribution of application layer protocol use in aggregate) or

to track individual sources or connections (e.g., lawful interception of indi-

vidual’s digital communication). In the case of monitoring of aggregates,

172 CHAPTER 9 Application layer systems



payload inspection may be used to determine what application layer protocol is

used in a particular connection. In this case, the payload is scanned for particu-

lar strings that identify specific application layer protocols. In the case of lawful

intercept, packet payloads are recorded and reassembled for forensic purposes.

• Security: To protect end systems from malicious network traffic (e.g., hacking

attacks, worms, viruses), network security devices inspect the payload of pack-

ets to identify suspicious patterns. These patterns can consist of specific strings

(e.g., worm signature) or more general patterns (e.g., sequence of strings over

multiple packets indicating a hacking attack).

• Content blocking: Content blocking may be used by network providers to limit

the exchange of data that infringes copyright, violates local laws, or is consid-

ered obscene. Similar to payload scanning for security-related patterns, packet

payloads are inspected to determine if the packet content matches criteria of

the search.

• Quality of service: Certain types of network traffic may consume large amounts

of networking resources (e.g., peer-to-peer file sharing). Therefore, network

service providers may attempt to identify traffic from these sources and throttle

their bandwidth consumption in the network. Payload inspection can be used to

determine if packets belong to such traffic types.

Applications related to security and quality of service are discussed more in

Chapter 10. We now discuss how specific strings and patterns can be found

in packet payloads.

Search patterns
Different types of patterns can be considered for payload inspection. Patterns are

expressed with a notation that allows an unambiguous statement of what bit

sequences match. In principle, individual bits in the payload could be specified.

However, in practice, pattern matches are aligned with 8-bit bytes. Because many

protocols use regular text coding for protocol headers, patterns are typically

expressed with conventional characters (noncharacter bit sequences are expressed

in hexadecimal using an escape character). For the discussion of patterns in this

section, we assume a simple alphabet with only four characters: {a,c,k,t}.

In principle, two types of patterns need to be distinguished.

• Strings: Strings are a sequence of characters that need to be matched exactly.

For example, to match the string attack, the exact same sequence of characters

(i.e., a, t, t, a, c, k) needs to be encountered.

• Regular expressions: Regular expressions consist of a combination of strings,

alternatives, character sets, wildcards, and character repetitions. Alternatives

allow a choice of matching one subexpression or another [e.g., (acjct)]. Character
sets allow the choice of one character out of a set (e.g., [a,c,t]) matches if any

character out of the set (i.e., a, c, t) is encountered. Wildcards represented as a

period (.) match any character out of the alphabet (which is equivalent to a char-

acter set with all possible characters). Character repetition matches if the repeated

173Network system support for application layer



character is observed zero or more times (expressed by *, e.g., a*) or one or

more times (expressed by þ, e.g., aþ). An example of a regular expression is

a[c,t]aþ[k,c], for which acaaak and atac match, but attac does not.

Note that more complex patterns are possible (e.g., those expressed by context-free

or context-sensitive grammars). An example of a pattern generated by context-

free grammar is mathematical expressions where the number of opening paren-

theses is balanced with an equal number of closing parentheses. Expressions with

such a balancing constraint cannot be generated by regular expressions. To match

expressions that are generated by grammars, it is necessary to use a parser (and

even then, not all possible types of expressions can be matched). In the networking

domain, such complexity is typically limited to end-system applications and is

not implemented in network devices. Therefore, we limit our discussion to strings

and regular expressions.

There are different techniques to match packet payloads with search patterns.

The main distinction is between what kind of matching is necessary (i.e., exact

match of string or general matching of regular expression) and what type of hard-

ware is used for the match. We describe the most common matching algorithms

next. Payload inspection is an active area of research and new algorithms continue

to be developed.

Exact string matching algorithms
String (and regular expression) matches can be translated elegantly into finite state

automata (i.e., “state machines”). A finite state automaton consists of a set of states

(typically illustrated by circles) and a set of possible transition edges between states

(illustrated as arrows between states). As the automaton processes the input that

is provided to it, it transitions between states along the edges. Annotations on transi-

tion edges show on what input a transition can be taken. Some states are annotated

as “accepting states” (illustrated by double circles), which are reached when the

automaton has detected a pattern successfully. Differences between various types

of finite state automata are discussed. Performance trade-offs consider the size of

the automaton and how complex the state transition computations are.

In a practical scenario, the payload of packets is inspected for multiple patterns

in parallel (e.g., to find one or more possible signatures indicating a hacking

attack). In the examples discussed here, we aim to match one of the following four

strings: attack, act, aka, cat.

Nondeterministic finite automaton
The simplest translation between the set of strings that need to be matched and

finite state automaton can be accomplished using a nondeterministic finite autom-

aton (NFA). Each character in the string corresponds to a state. State transitions are

set up to “chain” the characters to create the strings. The final character of each

string is an accepting state to indicate a match. An NFA for the four strings used

in our example is shown in Figure 9-8.

174 CHAPTER 9 Application layer systems



The left most state in Figure 9-8, labeled as state 0, is the starting state of the

NFA. When one of the string patterns is input into the NFA, the state transitions

traverse the states that match up each character of the string. At the end of the

string, an accepting state is reached and the string match is reported. The main

problem with an NFA is that the automaton does not know a priori when an input

leads to a string match. For example, when observing an a on the input, the autom-

aton cannot know if this is the first character of attack (which would lead to a

match) or akkk (which would not lead to a match). Knowing this information

would defeat the purpose of the string matching automaton. However, because

the NFA is nondeterministic, it simply performs the correct transition.

To implement such nondeterministic behavior in practice, the automaton must

pursue all possible state transitions. Once it becomes clear which transition

was the correct choice, the other possibilities are discarded. For example, when

an a is observed in state 0, the automaton transitions into the set of states

{0,1,7,10}. If the next input is a c, then there are no valid transitions for states

1 and 10 and these options are discarded. Based on states 0 and 7, all possible

valid transitions are considered and the new set of states is {0,8,13}. This process

is repeated until an accepting state is in the set of valid states, at which point a

match is reported. Note that it is not possible that the set of valid states becomes

empty (i.e., the automaton becomes “stuck”), as state 0 transitions to itself for any

of the four possible input characters. To illustrate the operation of the NFA for a

complete example, Table 9-1 shows the progression of the set of states for the

input acaattack.

While it is easy to construct an NFA given the set of string patterns that need to

be matched, the computation to determine the set of active states is quite complex.

When processing an input character, each active state needs to be checked for pos-

sible transitions. Even for the simple example shown earlier, there can be a very

large number of active states at any given time. On conventional processors, this

processing can require considerable amounts of time. Thus, a nondeterministic

a

7

1

10

13

c

a

a
0

2 3 4 5
t t a c k

11
k a

8
c t

14
a t

6

9

12

15

a,c,k,t

FIGURE 9-8

Example of nondeterministic finite automaton for string matching.

175Network system support for application layer



finite automaton for string matching at high performance (as it is necessary for

payload scanning) is typically not the best choice.

Deterministic finite automaton
For payload scanning in network systems, where fast and deterministic perfor-

mance is important, string matching is typically performed by a deterministic finite

automaton (DFA). In a DFA, there is only one active state at any given time and

there is only one possible transition for each input character. While the pattern

matching steps for a DFA are straightforward, the construction of a DFA that

matches multiple strings is slightly more complex.

A DFA can be constructed from an NFA through a general process called “sub-

set construction.” In this process, all sets of states generated by an NFA for any

input are considered as states for the DFA. Subset construction is a process for con-

verting any NFA into a DFA and thus is applicable to string matching. There is

also a (possibly simpler) process for constructing a string matching DFA from

scratch, which is described here.

Because a DFA can only use a single state for representing parts of strings that

have already been matched by the automaton, it is necessary that strings sharing

common prefixes also share states that represent a match of these prefixes. In

our example, attack, act, and aka share a as a common prefix. Thus, there is a sin-

gle state that represents the match of an a at the input. With shared prefixes, we

obtain the (still incomplete) DFA shown in Figure 9-9.

The deterministic behavior of a DFA no longer allows “guessing” of the NFA

when any particular pattern starts. Thus, any input character sequence that matches

the prefix of a string needs to be treated as a potential match. When a partial match

fails because an incorrect character is observed, then the failed sequence may

already be a match for another string. For example, if attac is followed by an a

(and thus fails the matching of attack), the last two characters, ca, may already

Table 9-1 State Transition Table for NFA in Figure 9-8

Input Set of states Match?

� {0} No

a {0,1,7,10} No

c {0,8,13} No

a {0,1,7,10,14} No

a {0,1,7,10} No

t {0,2} No

t {0,3} No

a {0,1,4,7,10} No

c {0,5,8,13} No

k {0,6} Yes (“attack”)

176 CHAPTER 9 Application layer systems



be the first two characters of cat. These failure transitions require careful consider-

ation in construction of the DFA. (To determine systematically where to transition

to on each character that is not a match, the longest postfix of the failed pattern that

matches any prefix of a string needs to be found. In the example, attaca (which is

the longest postfix) is not matched with any prefix, ttaca (the next longest postfix)

is not matched with any prefix either, etc., until ca is matched with the prefix for

cat.) The complete DFA for our examples with all resulting transitions for failure

scenarios is shown in Figure 9-10.

11

0

2 3 4 5
t t a c k

9
a

7
t

12
a t

6

8

10

13

1

k

a

c

c

FIGURE 9-9

Example of deterministic finite automaton for string matching (without failure transitions).

11

0

2 3 4 5
t t a c k

9
a

7

c

t

12
a t

6

8

10

13

c

1

a

k

a k

a

c

k,t

c

t

k
t

a

k

k
c a

k,t
c

c
k

a

c
k,t

FIGURE 9-10

Example of complete deterministic finite automaton for string matching.

177Network system support for application layer



In this deterministic finite automaton, there is only a single transition valid for

any given input in any given state. Thus, the processing complexity is low enough

to perform matching at high data rates.

Regular expression matching algorithms
As discussed earlier, regular expression matches include alternatives, character

sets, wildcards, and character repetitions. By extending the NFA technique dis-

cussed for strings, these features can be implemented. Note that some of these

transformations require e-transitions, which can be taken without consuming a

character on the input. Once the construction is completed, these e-transitions
can be removed by determining the closure of any state (which is the set of states

that can be reached by traversing zero or more e-transitions).

• Alternative: An alternative allows the choice ofmatching one out of two (ormore)

subexpressions. To implement alternatives, both subexpressions are constructed

and e-transitions are added such that either subexpression can be traversed.

• Character set and wildcard: A character set simply provides between which char-

acters trigger a transition. Instead of listing identical transition for all the character

in the set, the character set simply allows an annotation of the transition that

includes all characters in the set. We have used such notation already (e.g., in

the DFA shown in Figure 9-8, where any character from set [k,t] transitions from

state 0 to state 0). To implement a character set, the state transition is simply

repeated for all characters in the set. A wildcard is a character set that consists

of the entire alphabet. Thus, on any input character, the transition takes place.

• Character repetitions: A character repetition permits the same character (or sub-

expression) to occur an arbitrary number of times. To represent zero or more

repetitions (i.e., a “star”), a “loop” transition back to the same state can be used.

To enforce one or more repetitions (i.e., a “plus”), a state is added to “count”

the first instance of the character. That state is followed by a state where a loop

for zero or more repetitions is placed.

The construction process for alternatives and character repetitions is shown in

Figure 9-11.

Once theNFA for the regular expression has been constructed, it can be transformed

into a DFA by determining the closure of all states and by performing subset construc-

tion to identify all possible sets of states used in the NFA. An example of a regular

expression in our example alphabet is ([a,t](ckjt)tþjc(ak)*c). The corresponding DFA

is shown in Figure 9-12. To simplify the figure, failure states are not shown.

Implementation of matching algorithms
The matching algorithms for strings and regular expressions can be expressed with

deterministic finite state automata. These DFA were illustrated in previous sec-

tions. However, for a practical implementation on network systems, these automata

need to be implemented on a real computer system. Different techniques are used

for DFA processing on different platforms.

178 CHAPTER 9 Application layer systems



• General-purpose processor: The DFA can be implemented by creating a data

structure that maintains state transitions in table format. All states are repre-

sented by a row in the table, and all possible inputs are represented by a col-

umn. The entry in the table indicates the next state that the DFA transitions

to for a given character input (column) and state (row). The table also maintains

an indicator if a particular state is an accepting state. To perform the matching,

the processor maintains a variable with the current state. When a character is

processed, the table entry at the row of the current state and the column of

the character is indexed. The processor updates the current state and repeats

A

B

ε

εε

ε

(A|B)

Aε

ε

A*
ε

Aε

ε

A+
ε

A ε ε

FIGURE 9-11

Construction process for alternatives and character repetitions in regular expressions.

75

6

1

0

2

3 4

t

t

t

kc

c
c

a k

a,t

FIGURE 9-12

Example deterministic finite automaton for regular expression matching (without failure

transitions).

179Network system support for application layer



the process until an accepting state is encountered. A number of software tools

(“scanner generators”) exist to automate the process of table construction and

parsing input files.

• Field-Programmable Gate Arrays (FPGA): Pattern matching with FPGA can be

accomplished by a straightforward translation of the DFA into sequential logic.

On-chip storage (e.g., flip-flops or register) is used to store the current state.

Combinational logic is used to implement state transition computation for given

input characters.

• Ternary Content-Addressable Memories (TCAM): TCAM are particularly use-

ful for matching strings (with wildcards). Assuming that the TCAM width is

sufficiently large, each string can be stored in one TCAM entry (with wildcards

and unused characters encoded with don’t care bits). To match strings, as many

characters as the TCAM is wide are input to the TCAM. If a TCAM entry

exists, then a match is found. If no match is found, the input window is shifted

by one character and the process is repeated. Longer patterns can be implemen-

ted by performing multiple TCAM lookups.

The techniques just described for string and regular expression matching have been

refined in a number of ways (lower storage requirements for state information,

faster matching speed, etc.). For an overview of some of these techniques,

see Becchi and Crowley [14].

Load balancing
Another example of application layer support in network systems appears in the

context of load balancing for an application-layer end system. A load balancer aims

to distribute workloads among multiple systems to avoid overloading a single system

and to make use of replicated resources. One example of load balancing is used on

largeWeb server systems. Many of the large Web sites in the Internet cannot be han-

dled by a single Web server. Instead, Web content is split and replicated among a

large number of Web servers, which are typically housed in large data centers. Each

Web server has its own network interface with a distinct IP address. Users who access

theWeb site do not (and should not have to) know about these IP addresses. To allow

users to access the Web site through a single, well-known IP address and to permit

distribution of work among multiple Web servers, a load balancer can be used as

the front end of aWeb site. Figure 9-13 shows a simple configuration, where the load

balancer distributes Web traffic between several Web servers.

For large Web sites, it is not possible that a single server hosts all content.

Thus, the Web content is often split between different servers. Figure 9-13 shows

subdirectories covered by a particular server. In this setup, the load balancer needs

to direct traffic for a particular subset of Web content to one server and that of

another subset to another server. Also, within servers that handle the same subset,

load balancing can be used to ensure that users get the best performance. Thus, the

main challenge is to make sure that each Web request received at the front end is

directed to the right server.

180 CHAPTER 9 Application layer systems



The problem in such a system is that HTTP requests are sent via TCP connections.

These TCP connections are initiated through a three-way handshake, where a con-

nection’s sequence numbers are chosen by the end systems. This setup takes place

before any HTTP information is sent and thus the load balancer does not know to

which server to direct the TCP traffic. To solve this problem, Apostolopoulos and

colleagues [5] have proposed an elegant solution that involves the following steps.

1. The load balancer receives the TCP handshake and responds to it without for-

warding it to any server. The load balancer chooses a sequence number for the

TCP connection.

2. After establishing the TCP connection with the load balancer, the end system

sends the HTTP request, which contains the information on which content is

requested. The load balancer identifies the Web server(s) that can handle the

request and chooses one of them. Using a new TCP connection, the load bal-

ancer sets up a connection between itself and that Web server. During the setup,

the Web server chooses a sequence number for the TCP connection.

3. The load balancer forwards the Web request from the end system on the con-

nection to the Web server.

4. For all further communication, the load balancer acts as a “middleman” and for-

wards all data between the two connections that have been set up. To improve the

performance of this process, the load balancer “slices” the two TCP connections

by simply adjusting the sequence numbers (and the TCP checksum). The adjust-

ment of the sequence number is simply addition or subtraction (depending on the

direction) of the difference between the sequence number chosen by the load

balancer and the sequence number chosen by the Web server (sl � sw).

A space–time diagram of an example exchange is shown in Figure 9-14. This type

of interaction shows how a network system uses application layer information

(i.e., HTTP request) to handle packet forwarding.

Web server farm

Web
server

Web
server

...

Web
server

Web server
front-end
and load
balancer

Internet
http://...

End system

User agent

partitioning of
Web documents

/products

/shopping

/support

FIGURE 9-13

System configuration of Web front-end and load balancer.

181Network system support for application layer



SUMMARY
This chapter discussed the functionality and structure of the application layer.

The application layer is highly diverse and a multitude of protocols exist. Many

protocols use some of the functions of the session and presentation sublayer.

We discussed the Domain Name System, the Hypertext Transfer Protocol, and

the Session Initial Protocol as examples of application layer protocols. Network

systems play a limited role in implementation of the application layer, but some

functions related to payload inspection are used. We discussed pattern matching

algorithms to identify particular payload content and load balancing to redirect

traffic at the application layer.

client
front-end

load balancer server

TCP SYN

TCP SYN(sl)+ACK

TCP SYN+ACK, HTTP request

HTTP response (+sl-sw)

TCP SYN

TCP SYN(sw)+ACK

TCP SYN+ACK, HTTP request

HTTP response (sw)

FIGURE 9-14

Space–time diagram of a load balancer operation.

182 CHAPTER 9 Application layer systems



CHAPTER

Quality of service and
security 10
CROSS-LAYER ISSUES
Previous chapters explored design issues that were tied to one particular layer in

the protocol stack. This chapter addresses issues that cross layer boundaries and

appear in several or all layers of the protocol stack.

• Performance: To achieve high-throughput performance in a network system, it

is important to avoid performance bottlenecks that limit the achievable data

rate. Therefore, all aspects of input/output, storage, and processing in all layers

of the protocol stack need to be designed for efficient operation.

• Performance guarantees: The goal of performance (noted in the previous bullet)

aims at achieving high throughput in a best-effort sense. Performance guaran-

tees provide quantifiable guarantees or bounds on certain metrics (e.g., mini-

mum bandwidth, maximum delay). To provide such guarantees, all layers in

the protocol stack need to support this functionality.

• Security: Security aims at ensuring certain properties (e.g., privacy) on packet

payloads and certain header fields. Depending on security requirements and

attack scenarios, security protocols can be employed at different (and even mul-

tiple) layers in the protocol stack.

Chapter 3 discussed general performance requirements for network systems. This

chapter focuses on the other two issues: performance guarantees (i.e., quality of

service) and security.

QUALITY OF SERVICE
The layered architecture of the protocol stack is designed to hide the complexities of

one layer from others. As a result, the network is agnostic to the specifics of any

application using the network. From the perspective of transport and network layers,

applications set up connections or send packets and there is no difference between

different types of applications. In practice, however, there are applications that have

specific requirements on the performance of the network. To accommodate such

applications, the network can be extended to provide “quality of service” (QoS). That

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
183



is, the network handles traffic in such a way that certain performance guarantees can

be provided. These guarantees can be hard guarantees or of a probabilistic nature.

Note that standard Internet architecture does not inherently provide QoSmechan-

isms. Several network architecture designs have been developed to support QoS, but

their deployment in the current Internet is limited. There are, however, some simple

mechanisms (e.g., link scheduling) that can be used to improve the current network’s

ability to support applications with QoS requirements.

Quality of service concepts
Quality of service is necessary to implement a number of applications. We discuss

examples of such applications here and explore their performance requirements.

Because the network inherently uses shared resources, it is often necessary to

explicitly set up connections that require QoS. In the context of reservations of

limited resources, the question of fairness arises. Fair allocation of resources is a

central issue for link scheduling algorithms discussed here.

Application requiring QoS
Quality of services is typically only required by applications that have some sort

of real-time constraint. If time is not an issue, reliable data transfer is the only

remaining concern. The Transmission Control Protocol provides such reliability

(see Appendix A) and no further QoS functionality is necessary. However, if time

is an issue, then an interesting problem needs to be solved: depending on the state

of the network, reliable data transfer (which involves retransmissions of packets

that have been lost or corrupted) may not be feasible within the timing con-

straints of the application. Thus, the network may need to provide additional

QoS support to accommodate such an application.

To illustrate what types of performance requirements can be found in different

applications, several examples are discussed.

• Internet telephony: Interactive voice communication in the Internet—also referred

to as Voice over IP—has very strict requirements on end-to-end packet delay and

loss rate. End-user perception of call quality degrades significantly with end-to-

end delays of more than 150ms or packet loss. Packet losses can be hidden through

the use of transport layer protocols that provide reliable data transfer. However,

notifying the sender of a packet loss and waiting for the retransmission incurs so

much additional delay that the delay bound cannot bemet inmany cases. Therefore,

many voice communication applications use unreliable data transfers and tolerate

packet losses. To support Internet telephony, the network needs to transmit packets

with as little delay as possible.

• Video conferencing: Video conferencing is similar to Internet telephony, but

consists of two data streams: one for audio and one for video. The delay and loss

requirements for the audio stream are similar to that of Internet telephony.

The delay requirements for the video stream are similar, as audio and

video need to be displayed in sync. Because video quality is perceived as less

184 CHAPTER 10 Quality of service and security



important than audio quality, more loss can be tolerated for that stream. Network

support for this application involves low delay. Because video requires consider-

ably more data than audio, it is also necessary that the network supports a higher

data rate for the connection.

• Video streaming: Video streaming is used for noninteractive video distribution

(e.g., video on demand). The real-time constraints are less demanding than in

video conferencing, as a user is likely willing to wait a few seconds for a video

stream to buffer before playback starts. In such a scenario, video quality is

more important. Thus, reliable data transfer protocols may be employed. To

ensure continuous playback, the network needs to provide sufficient bandwidth

(and limited packet loss).

• Cyber-physical control: Numerous physical systems are controlled remotely

through a network. Examples include factory control, remote-controlled unmanned

aerial vehicles, and, in the near future, telemedicine. Such control requires low

delay and very low (or no) packet losses. Some applications in this domain involve

high-quality video, which requires high bandwidth.

• Online gaming: Interactive games that involve multiple players require low

delay between the interacting parties to provide for a realistic gaming

experience. Networks need to support low delay communication with low

packet loss.

From these applications, we can see which quality of service metrics need to be

considered in a network.

Quality of service metrics
The following metrics are typically considered in the context of quality of service.

As discussed earlier, an application may not have requirements for all metrics, but

a specific subset.

• Bandwidth: The bandwidth metric captures the bandwidth required by an appli-

cation. This metric assumes that data are transmitted continuously (rather than

sending data in a best-effort fashion over an arbitrary interval of time). To

accommodate bandwidth requirements, all links along the path of a connection

need to have that much bandwidth available. (Note that “available bandwidth”

refers to the data rate that can actually be used for transmission rather than the

data rate of the physical (unloaded) link. With more traffic being transmitted

across a link, its available bandwidth decreases.)

• Delay: The delay metric specifies how long it can take for packets to reach their

destination. The metric is typically expressed as a bound that should not be

exceeded (because packets that arrive faster can be delayed artificially at the

receiver). In most cases, the delay is specified as the one-way delay (rather than

the round-trip delay).

• Jitter: The jitter metric measures the variation in delay that different packets of

the same connection experience. This metric can be expressed as a distribution

or by minimum and maximum bounds.

185Quality of service



• Loss: This metric expresses the fraction of packets that may be lost during

transmission (due to queue overflow under congestion, bit errors, etc.). Typi-

cally, packet loss is expressed as a percentage. The metric is computer at the

level of packets (and is therefore independent of packet size).

Other metrics that may be relevant to applications are out-of-order packet delivery,

end-to-end network reliability, etc.

Each QoSmetric can be defined strictly or probabilistically. For example, an appli-

cation may have a strict requirement for packet delay (e.g., all packets must arrive

within a certain delay limit (or are considered lost at that point)). Another application

may require that a certain percentage of packets arrive within a delay limit.

Quality of service techniques
Within a network, there are certain limits on what level of QoS can be achieved

for a connection. For example, the propagation delay of electromagnetic signals

within a network cable or fiber provides a lower bound for the end-to-end delay

of communication. No matter how the network handles traffic, it is not possible

to achieve a lower end-to-end delay. Similarly, the available end-to-end bandwidth

is limited by the data rate of the link layer at the bottleneck link. Within these

constraints, a number of techniques can be employed to achieve the quality of

service that is required by a particular connection.

• Routing: QoS routing is an extension to conventional shortest-path routing

where QoS metrics are considered. For example, available bandwidth informa-

tion can be used to identify links that can meet the requirements of a connec-

tion. To find a path that provides the minimum bandwidth requirements, all

links with lower available bandwidth can be ignored when solving shortest-path

routing.

• Queuing: QoS queuing (or QoS scheduling) is the process of determining

packet order on the outgoing link of a router. When multiple packets compete

for access to the outgoing link, the order of transmission has a direct impact

on the delay that is experienced by different connections. This delay directly

impacts the end-to-end delay experienced by a packet and thus may need to

be kept at a minimum.

Thus, QoS routing ensures that traffic traverses links in the network that can

provide the necessary QoS guarantees, and QoS queuing ensures that traffic is

handled appropriately on the links that have been chosen.

Reservations and connection setup
For a network to provide quality of service, it is necessary that connections specify

what their requirements are. Without knowledge of the existence of a connection

and its requirements, it is difficult, if not impossible, to provide the necessary

quality of service. Communicating the requirements of a connection (as well as

announcing its presence) can be done at time of connection setup. During the

connection setup, the end system can specify its requirements, the network can

186 CHAPTER 10 Quality of service and security



determine if and what QoS guarantees it can provide, and hardware resources can

be reserved to ensure availability once packets are transmitted.

A protocol widely used for this reservation and connection setup process is the

Resource Reservation Protocol (RSVP). Details of this protocol are described in

RFC 2205 [22]. RSVP reserves resources for a flow along a path. The sender initi-

ates a reservation request and propagates it through the network along a path. The

reservation request contains information on the requirements of the flow (flow

specification), as well as how to identify packets belonging to that flow (filter

specification). When the request reaches the receiving end system, a confirmation

is returned to the sender along the reverse path stating the reserved resources.

Using such a reservation mechanism, the sender can inform the network about

its requirements, the network can allocate the required resources, and the path of

the reservation can be established.

Network support for QoS
The support for quality of service in the network is based on the techniques

discussed earlier. The network needs to support QoS at the level of network archi-

tectures as well as the level of network systems.

Quality of service in network architecture
One of the key issues related to quality of service is that support for QoS needs to

be built into all components of the network. If there is single hop in the network

that causes long packet delays or limits the available bandwidth for a particular

connection, then QoS requirements may not be achievable—even though all other

hops support QoS. Thus, it is essential that QoS be considered at the level of the

overall network architecture, as well as at the system level.

At the network level, there are several options of how to realize quality of service.

• Overprovisioning: This “technique” does not change the network behavior to

explicitly support QoS, but relies on statistical properties. By implementing a

network that has significantly more available bandwidth than is necessary to carry

all traffic, delays on routers due to queuing rarely occur. Therefore, all traffic

appears to be forwarded without delay—similar to how it would be forwarded

in a network with explicit QoS support. The main benefit is that no modifications

to routers, end systems, or the protocols used are necessary. Overprovisioning

is by far the most widely used approach to providing quality of service for

Internet telephony, streaming video, gaming, and so on in today’s Internet.

• Integrated Services (IntServ): In integrated service architecture, all routers (and

end systems) support quality of service. Routers implement three fundamental

components for QoS: admission control (i.e., explicit setup of connections)

using RSVP, packet classification to identify to which flow packets belong,

and packet scheduling to determine the order of packets on the outgoing link.

Because all systems along any path implement this functionality, quality of

service metrics can be assured. More details on IntServ are described in RFC

187Quality of service



1633 [21]. The main drawback of this architecture is that it demands that all

systems support IntServ. Because most of today’s routers do not support quality

of service, most of the currently deployed network infrastructure would need to

be replaced.

• Differentiated Services (DiffServ): In differentiated service architecture, quality of

service is not provided at the fine-grained level of flows as in IntServ, but at a

coarse-grained level of classes. When entering a DiffServ domain, traffic is

classified and marked as belonging to a particular class of traffic. Routers inside

the DiffServ domain provide quality of service forwarding based on this marking.

The main advantage of such an approach is that it simplifies the implementation of

forwarding on routers inside the DiffServ domain. Classification and admission

control only needs to be performed at the edge of the domain. The DiffServ archi-

tecture is described in more detail in RFC 2475 [20].

There are also more advanced network architectures that use different paths for

connections with different QoS requirements (i.e., QoS routing) or send traffic

along multiple paths to achieve higher reliability.

Quality of service in network systems
Both integrated services and differentiated services require some fundamental QoS

functionality in their router systems. Typical functions for the control plane and

data plane of these systems are:

• Control plane: At the control plane, QoS requires admission control in the broadest

sense. If the network is unaware of what traffic to expect, it is difficult to provide

quality of service. Thus, connection setup (in IntServ) or admission control and traf-

fic conditioning at the network edge (for DiffServ) are necessary.

• Data plane: In the forwarding path of a router, two main functions are related to

QoS. Packet classification is used to determine how to handle a particular

packet, and link scheduling is used to determine when a particular packet is

transmitted. Traffic classification can be based on techniques discussed in

Chapter 8 or simpler approaches as discussed later. The problem of packet

scheduling is at the core of quality of service implementations as it ensures that

QoS requirements are met.

The main focus of the remaining discussion on quality of services focuses on different

link scheduling algorithms that can be used to implement quality of service.

Link scheduling algorithms
Link scheduling algorithms, also simply called scheduling algorithms or queuing

algorithms, determine the order of packets on the outgoing link. Because packet-

switched networks typically use statistical multiplexing, it is not uncommon that

packets that arrive (nearly) simultaneously on different input ports of a router need

to be transmitted on the same output port of that router. Scheduling algorithms

determine how this competition for the output link is resolved.

188 CHAPTER 10 Quality of service and security



The most basic link scheduling algorithm uses a single packet buffer. While

this approach is simple to implement, it fails to provide any level of quality of ser-

vice. Therefore, more complex link scheduling algorithms are necessary that sepa-

rate traffic into different queues and provide priority of fair scheduling among

them.

First-in-first-out queuing
The most basic link scheduling algorithm uses a single queue to store all packets.

Packets are entered into and retrieved from the queue in first-in-first-out (FIFO)

order. Thus, the only relevant metric to determine transmission order is the time-

stamp at which a packet was received on the router. The process for FIFO queuing

is illustrated in Figure 10-1.

To illustrate timing in operation of a FIFO queue, we show its operation in

Figure 10-2. Three input links are present, and the arrival times of packets from

each link are illustrated along three synchronized timelines. (It is assumed that

all packets are forwarded to the same outgoing link.) The order of outgoing packets

is shown on a fourth timeline, which represents the outgoing link after scheduling.

For simplicity, it is assumed that transmission of a packet of size B requires B time

units. The size of each packet is noted within each packet (and the illustrated size

of each packet is proportional to its size). Note that a packet cannot be transmitted

before it has arrived in its entirety. An arrival event is shown as an arrow pointing

into the queue and a departure event is shown as an arrow leaving the queue. If the

queue is empty, a packet does not get delayed (i.e., there is an arrival and departure

event at the same time).

Clearly, it is not possible to provide quality of service guarantees to traffic that

traverses a link with such a scheduler. Depending on the level of competing traffic,

a packet may be queued for a long time if it arrives shortly after a burst of packets

...

...

switch fabric output portsinput ports

protocol processing
link

scheduler

protocol processing
link

scheduler

FIGURE 10-1

Link scheduling with single FIFO queue.

189Quality of service



arrives from other links. With more inputs that compete for the outgoing link or

longer packet bursts, this delay can be increased considerably.

It is also possible that packets get dropped due to lack of buffer space. This scenario

is illustrated in Figure 10-3. The second packet from input 3 is dropped because the

queue is already full. (For simplicity, we assume that a queue has a fixed number of slots

independent of the size of the buffered packets.)When using a single queue, traffic from

one input can “crowd out” other packets and cause packet drops for inputs that send at

much lower rates.

output link t=0

t=60 t=120 t=160

t=140t=80

t=100

t=120 t=300

t=340

t=320 t=360

t=60

60 40 60

80

40 40

80

40 40

t=240 t=280 t=320 t=380 t=420 t=500 t=540

FIFO link
scheduler

input 3

input 2

input 1

FIGURE 10-2

Scheduling example for FIFO queuing.

t=60

60 40 60

80

40 40

80

40 40

t=120 t=300

t=340t=100

t=80

t=60

t=0

t=120 t=160 t=240 t=280 t=360 t=400 t=480 t=520

t=140

pkt
drop

idle

t=320 t=360

output link

FIFO link
scheduler

(short
queues)

input 3

input 2

input 1

FIGURE 10-3

Scheduling example for FIFO queuing with short queues.

190 CHAPTER 10 Quality of service and security



Thus, the main shortcoming of FIFO queuing is that there is no distinction of

packets from different connections. It is not possible to accommodate different

QoS requirements without separating packets by their requirements.

Traffic classification for QoS scheduling
The premise for any link scheduling algorithm (other than simple FIFO queuing)

is that the scheduler can distinguish between different types of traffic. Ways in

which traffic can be classified include the following.

• Quality of service bits in IP header: The Internet Protocol has 3 bits in its

header that can be used to identify quality of service requirements by a packet.

There is no commonly accepted standard for how to use these bits, and thus

they are not used commonly in link scheduling.

• Transport and/or application layer protocol. The transport layer protocol (and

application layer protocol if it can be identified) can provide some information

on the quality of service requirements of traffic. For example, Internet tele-

phony traffic using a UDP packet in the transport layer may require low packet

delay.

• Source address: The network layer source address of a packet can be used to

identify the end system (and thus the customer) that sent the packet. Based

on the service level agreement between the customer and the network provider,

packets can be treated differently. For example, traffic of customers with a

more expensive data plan may receive higher bandwidth.

• Destination address: Similar to the source address, the destination address iden-

tifies a customer. An online business may pay a premium to ensure that traffic

destined to its servers receives better performance, for example, experiences a

lower loss probability.

• End-to-end connection: Using 5-tuple classification, individual end-to-end con-

nections can be identified. This information can be used to provide more or less

network resources to any particular connection. For example, a secure tunnel

between corporate campuses (using virtual private networking as discussed

later) could be given a certain minimum bandwidth.

• Aggregates: Any traffic classification based on addresses can be aggregated

beyond individual sources and destinations. Instead, entire subnetworks can

be identified and their traffic scheduled according to requirements.

The basis for distinguishing traffic is that the router system can perform some level

of flow classification (ranging from very simple classification to generic 5-tuple

matching as discussed in Chapter 8).

Priority queuing
Based on the classification of traffic, packets can be categorized to receive differ-

ent levels of quality of service. One simple distinction is to separate packets

into different levels of priorities. For example, a router may support two different

categories of packets: those sent by paying customers (and thus should have higher

191Quality of service



priority in accessing network resources) and those sent by nonpaying customers

(and thus should only access network resources not needed by traffic in the other

category). Using the classification discussed earlier, packets are separated into dif-

ferent queues. When the link is available for transmission, the link scheduler de-

cides from which queue the next packet is chosen. Within each queue, the order

of packets is FIFO. Within each priority level, several queues can be maintained

to distinguish between different traffic (e.g., different connections, different cus-

tomers) with the same level of priority.

Priority queuing provides preferential link access to traffic that belongs to

higher priority classes. The scheduler determines which packet gets transmitted

by checking the queue of the highest priority class, then the next higher priority,

and so on. (Note that the relationship between priority and class number (e.g.,

“class 1”) is ambiguous. In some systems, lower numbers indicate higher priorities;

in some systems, higher numbers indicate higher priorities.) As long as packets are

ready for transmission in a higher priority class, any lower class may be “starved”

(i.e., does not get to transmit any packets).

An example of the operation of a priority link scheduler is shown in Figure 10-4.

Packets from input 3 are placed into the high-priority queue; packets from inputs

1 and 2 are placed into the low-priority queue. Whenever the link is empty, packets

are first drawn from the high-priority queue. Only if there are no high-priority

packets, then a low-priority packet is sent.

The same example of operation, but using short queues, is shown in Figure 10-5.

As expected, the packet drop happens for a low-priority packet as the low-priority

queue is more likely to fill up and trigger a packet loss.

Priority systems can operate in either a preemptive or a nonpreemptive way. If

preemption is used, transmission of a lower priority packet is terminated when a

input 1
(low priority)

low
priority
queue

high
priority
queue

input 2
(low priority)

input 3
(high priority)

priority link
scheduler

output link t=0

t=60 t=120 t=160 t=200 t=280 t=320 t=360

t=80 t=140 t=320 t=360

t=340

t=300t=120

t=100

t=60

t=400 t=460 t=540

60

80

40

4040

60

80

4040

FIGURE 10-4

Priority link scheduler operation.

192 CHAPTER 10 Quality of service and security



higher priority packet arrives. This kind of preemption is rarely used in networks

as the work committed to partially transmitting the lower-priority packet cannot

be recovered after the preemption (unlike preemptive processing where partial

computations can be stored and continued at a later point). Instead, most link

schedulers operate in a nonpreemptive fashion.

Fair queuing principles
In contrast to providing strict priorities, a scheduler may want to provide fair

sharing between different queues. Before discussing several fair queuing link

scheduling algorithms, we define “fair sharing” formally to augment our intuitive

understanding of what fairness implies.

Max–min fairness
A formal definition of fairness helps us in determining how access to a shared

resource can be divided among several parties. This definition can also be used

to verify that link scheduling algorithms indeed achieve fairness.

To simplify the discussion of fairness, we look at the scenario where multiple

connections need to be accommodated on a bottleneck link at the same time.

Assume n connections requests an amount of bandwidth R1,. . ., Rn. The bottleneck

link capacity C is the maximum bandwidth that can be allocated in total. The ques-

tion is what a fair allocation of bandwidth A1,. . .,An is for each connection.

(We assume Si ¼ 1. . .nRi> C, otherwise all requests can be accommodated: Ai ¼ Ri.)

There are several intuitive ways to allocate bandwidth to connection requests

that do not lead to a desirable outcome. Examples include the following.

• Equal share for all requests: One simple way to partition available bandwidth

is to allocate an equal amount to all requests (i.e., Ai ¼ C/n). Equal share

input 1
(low priority)

input 2
(low priority)

input 3
(high priority)

priority link
scheduler

(short
queues)

output link

low
priority
queue

high
priority
queue

t=0

t=60 t=120 t=160 t=200 t=280 t=360

t=80 t=140 t=320 t=360

t=340

t=300t=120

t=100

t=60

t=400 t=440 t=520

60

80

40

40

pkt
drop

idle

60

80

404040

FIGURE 10-5

Priority link scheduler operation with short queues.

193Quality of service



allocation is illustrated in Figure 10-6. The problem with this allocation is that

some connections may get assigned more bandwidth than they need. Because

C/n is independent of Ri, it may happen that Ri< C/n for some cases. Thus,

this allocation process does not provide enough bandwidth to those connections

that need it and too much for some other connections (i.e., the allocation is not

work-conserving as defined later).

request

allocation

Equal share allocation
bandwidth

Proportional share allocation

Max-min fair allocation

unused allocation

requests

FIGURE 10-6

Example of different allocation schemes.

194 CHAPTER 10 Quality of service and security



• Proportional share for all requests: Another simple way to partition available

bandwidth—while considering requests Ri—is to allocate an amount proportional

to the request, i.e., Ai ¼ Ri/(Sj ¼ 1. . .nRj). Proportional share allocation is also

illustrated in Figure 10-6. Because the sum of all requests exceeds the capacity,

the allocation does not allocate more than requested and thus solves the problem

of equal share allocation. However, this allocation process raises the problem

that the entity making the request can influence the amount that is allocated to it

by increasing its request Ri. Thus, if one tries to game the system, one could

always request as large amount as possible (Ri!1), knowing that thiswill increase

the allocation that is received. Of course, once this strategy is understood by all

requesting parties, all requests will increase and allocation approaches that of equal

share.

Because both of these simple allocation strategies have shortcomings, we need to

identify a different definition of fairness. One such definition used broadly in the

networking domain is max–min fairness. An allocation of rates is max–min fair

if an increase of any allocation must be at the cost of a decrease of some already

smaller allocation (all within allocations that do not exceed C). This definition

describes properties of a max–min fair allocation, but does not provide a constructive

process for obtaining it.

To construct a max–min fair allocation, the following iterative process can be used.

For simplicity, we assume that requests are sorted by increasing size (R1� R2�. . .
� Rn). The allocation process iteratively allocatesAi, i¼ 1..n, startingwith the smallest

request. Let Ci be the amount of unallocated available bandwidth in step i (i.e., Ci ¼
C�Sj ¼ 1. . .iAj). Then, themax–min fair allocation isAi¼min(Ri,Ci/(n� iþ 1). Thus,

the max–min fair allocation assigns the requested amount of bandwidth to small

requests and shares the remaining bandwidth equally among large requests.

An example of a max–min fair allocation is also shown in Figure 10-6. Note

that small requests receive exactly the requested amount. Larger requests share

the remaining bandwidth equally. These large requests receive more than the equal

share among all requests (C/n). Thus, the max–min fair allocation redistributed the

bandwidth that was not used by the smaller requests (and thus maintains the work-

conserving property).

Another important aspect of the allocation process is the use of weights.

In practice, scenarios exist where some categories of traffic should receive larger

shares of link bandwidth than others (e.g., paying customers vs nonpaying cus-

tomers). This bias toward more or less access to resources can be represented

by weight wi that is assigned to each category of traffic (i.e., to each request Ri).

A larger weight wi implies a larger allocation of link bandwidth.

Work-conserving property
One key property of (fair queuing and other) link schedulers is that they are work

conserving. This means that if any packets are queued for transmission, then the

scheduler will assign one to the transmitted. In particular, the outgoing link is

195Quality of service



never idle as long as packets are queued for transmission. This property ensures

that the scheduler does not let an opportunity pass to transmit a packet. (In con-

trast, time-division multiplexing (TDM) schedulers that assigned fixed slots to

each type of traffic are not work conserving, as they keep the outgoing link idle

if no packet is available for a particular type of traffic—even if other types of

traffic have packets queued.)

Fair queuing link schedulers
The scheduling algorithms discussed in this section aim at fair sharing of the

transmission link between several queues of equal priority. To simplify the

discussion, we assume that all queues are “back-logged,” that is, always have

packets available for transmission. The example setup and the scheduling

sequence for all fair queuing link schedulers are shown in Figure 10-7. The

packet sizes are noted in the queues, and the transmission rate is assumed to be

one bit per time unit.

link
scheduler

60

t=0

t=0 t=60

t=0 t=60 t=100

t=0

t=0 t=40 t=100

t=0 t=40 t=100

t=130 t=210 t=250 t=300

t=210t=180 t=250 t=300

t=360 t=440 t=480

t=360 t=440 t=480

t=60 t=100 t=140

t=140

t=180

t=180

t=220 t=250

t=220 t=250 t=300 t=360

t=310

t=220 t=300 t=330 t=390 t=440 t=480

t=390 t=440 t=480

t=440 t=480

queue 1

queue 2

queue 3

generalized
processor
sharing

round-robin
scheduler

deficit round-
robin scheduler
(quantum=100)

deficit round-
robin scheduler
(quantum=60)

weighted fair
queuing

worst-case fair
weighted fair

queuing

t=120 t=180 t=210 t=240 t=300 t=360 t=480

60 40

80

40 50 30 40

80

FIGURE 10-7

Fair queuing link scheduler examples.

196 CHAPTER 10 Quality of service and security



Generalized processor sharing
Generalized processor sharing (GPS) represents ideal sharing on a link assuming a

fluid model. In a fluid model of the link, all packets that compete for the link are

transmitted at the same time, each at a rate that is the fair share fraction for that

packet. Clearly, such a transmission process cannot be implemented on a realistic

network. However, GPS provides a basis to compare how well realistic algorithms

achieve the idealized scheduling by GPS. The GPS scheduling of the example

scenario is shown in Figure 10-7.

Round-robin scheduler
Following the idea of GPS, where all packets are transmitted in parallel, one can

attempt to make the fluid transmission discrete to allow its implementation on a

realistic system. To accomplish sharing among different packets, each packet gets

access to the link in turns (i.e., round-robin).

The key question is at what level of granularity scheduling should happen.

In computer systems, the smallest amount of information is a single bit. While it

is conceivable to implement bit-wise round-robin scheduling, it is impractical for

a network system. In networks, packets are the smallest entity of transmissions.

If a packet needs to be broken into smaller fragments, the control information

(i.e., packet header) needs to be replicated and attached to each fragment. For

bit-wise round-robin, this approach would not be feasible. Therefore, it is more

suitable to perform round-robin scheduling at the level of packets. Operation of a

packet-wise round-robin scheduler is shown in Figure 10-7.

To accommodate weights in a round-robin scheduler, a queue with weight wi

should receive, on average, wi/(S1..nwj) of the turns. Depending on the value of

weights wi, it may not be possible to achieve an exact value of wi/(Sj ¼ 1..nwj) over

any reasonable window of time. In such cases, the fraction of rounds assigned

to any queue may need to be approximated.

The main drawback of packet-wise operation of the link scheduler is that it may

introduce considerable unfairness. Because packet size can vary significantly

between connections, the amount of allocated bandwidth between connections

may differ considerably. A connection that attempted to gain the most bandwidth

would send packets with the largest possible packet size. With each round of the

scheduler, this connection would be able to send more data (or at least equal

amounts of data) than other connections.

Deficit round-robin scheduling
The shortcoming of systematic unfairness due to large packets in round-robin sched-

uling is addressed in deficit round-robin scheduling. This scheduling algorithm was

first described in Shreedhar and Varghese [166]. The main idea is to track the

amount of bandwidth consumed by each queue. The waiting time enforced between

the transmissions of packets increases with larger packets.

In deficit round-robin (DRR) scheduling, a “deficit counter” is associated with

each queue. This counter tracks the credit that each queue has with the link

197Quality of service



scheduler. Credit is accumulated when a packet is delayed in the queue, and credit

is used when a packet is transmitted. The round-robin operation is as follows:

Every time the scheduler visits a queue, the deficit counter for this queue is

increased by a fixed amount (i.e., “quantum size”). Then, the queue can use the

credit to transmit packets. A packet can be transmitted if the accumulated credit

is equal to or larger than the packet size. Once the packet is transmitted, the credit

of the queue is reduced by the size of the packet. While the remaining credit is

sufficient to send the next packet in the queue, the process continues. (Note that

the credit is incremented by the quantum size only once per round, but multiple

packet transmissions may be performed.) The process of DRR scheduling is

shown in Figure 10-7. There are two scheduling examples using quantum sizes

of 100 and 60.

The quantum size determines how fine-grained the scheduler operates. Larger

quantum sizes increase the (temporary) unfairness between connections. Smaller

quantum sizes provide better fairness, but also increase the computational require-

ments for the link scheduler as more rounds need to be computed before a packet

can be transmitted. Also, note that inactive queues (i.e., those without packets)

cannot accumulate credit. When using weights, the amount of credit allocated to

each queue can simply be scaled by the queue’s weight. Larger weights lead

to larger amounts of credit, which allow more use of the link.

Weighted fair queuing
While DRR achieves fairness and overcomes the problems of packet-wise round-

robin, it is still only an approximation to GPS at the granularity of the quantum

size. A link scheduling algorithm that tries emulating GPS more closely is

weighted fair queuing (WFQ). WFQ is described in detail elsewhere [171].

In weighted fair queuing, the link scheduler emulates bit-wise round-robin

to determine when each packet would have completed its transmission. Using the

finish times of all packets, the WFQ scheduler determines the order in which pack-

ets get transmitted on the outgoing link. Note that this process is equivalent to

using DRR with a quantum size of 1. The problem with emulating a round-robin

process with this fine level of granularity is that it is very expensive to compute.

For a transmission of a packet with B bits, B rounds of computation are necessary.

This processing overhead cannot be sustained for high link speeds.

For an explicit computation of the finish times of packets, the fluid model of

GPS can be used. For the ith packet of a traffic class, the start time of transmission,

Si, in GPS is either the finish time of the previous packet, Fi�1, or the arrival time

of the current packet, ti. Thus, Si ¼ max(Fi�1,ti). The transmission time of a packet

of size B requires B rounds with each round requiring as many bit times as there

are competing queues, n. Thus, the transmission time, Ti, is Ti ¼ B � n. The finish
time is the sum of the start time and the transmission time: Fi ¼ Si þ Ti. Using this

finish time, the order of packet transmissions can be determined.

The result of the WFQ link scheduler for our example is shown in Figure 10-7.

198 CHAPTER 10 Quality of service and security



Worst-case fair weighted fair queuing
One of the problems of WFQ is that of “run-ahead.” Queues with many short pack-

ets get many transmission opportunities before queues with longer packets get to

transmit. In our example in Figure 10-7, Queue 3 transmits its second packet

before Queue 2 transmits its first packet. In Bennett and Zhang [16], the authors

illustrate with an extensive example this potential unfairness of WFQ. To solve this

problem, a modification to WFQ can be made to ensure fairness in the worst case

as described [16].

Worst-case fair weighted fair queuing (which is typically abbreviated incor-

rectly as WF2Q) does not allow transmission of a packet before the time when

GPS would have started its transmission. The resulting schedule for our example

is shown in Figure 10-7. Note that the second packet of Queue 3 is delayed until

after t ¼ 120, which is the packet’s start time in GPS.

Quality of service summary
Quality of service is necessary for applications with various requirements for timing,

bandwidth, and reliability. To provide a quality of service path for these applications,

a network needs to support quality of service in its architecture and on its network

systems. Network systems need to perform some type of packet classification to

distinguish packets with different QoS requirements. The link scheduling algorithm

determines in which order packets are sent from different queues. Through link

scheduling, transmission priorities or fair sharing can be achieved.

SECURITY
Security is an important topic for the design for network architecture and systems

due to its considerable impact on many of the usage scenarios for which networks

were designed. Many data transfers for military, commercial, and even for personal

communication require the network to provide basic security features. We discuss

what security properties are necessary and how they can be provided. We also

present typical network protocols used to provide security in different layers of

the protocol stack.

Security concepts
Security is a very broad term and can mean a variety of things in different context.

In computer networks (and information systems in general), there are four key

aspects to data security:

• Confidentiality prevents the disclosure of information to unauthorized users.

One way of achieving confidentiality is to encrypt information in such a way

that only authorized users can successfully decrypt and access it.

199Security



• Authenticity ensures that the source of information is genuine. One way to

achieve authenticity is for the source to encrypt information in a way that it

can only be done by that source. All others can decrypt the information and ver-

ify its source in the process.

• Integrity is a property that ensures that information is not modified by unautho-

rized users. One way to achieve integrity is to compute a digest (i.e., compute

the results of a hash function over the information) that is then encrypted by the

source (as done for authenticity). The integrity property includes nonrepudia-

tion, which means that a source cannot deny having generated a particular piece

of information.

• Availability ensures that access to information (and the network in general) is

possible for authorized users. Unlike the other three properties, availability can-

not be solved through cryptographic operations. Instead, the system has to be

designed with the ability to distinguish accesses by authorized users from others

and deflect malicious traffic.

Before discussing how different layers in the network provide different types of

security, we briefly discuss the types of cryptographic functions used in this domain.

Cryptography overview
Cryptography is a field of mathematics and computer science that provides the the-

oretical foundations for hiding information. Cryptographic algorithms (“ciphers”)

are used to implement confidentiality, authenticity, and integrity. In the context

of confidentiality, cryptography provides the mechanism for translating informa-

tion from its “cleartext” representation into “ciphertext” (and back). This encoding

and decoding process typically uses a “secret key” that ensures that the ciphertext

can only be decoded by users who have access to that secret key. Two examples of

broadly used cryptographic algorithms are discussed briefly.

One important aspect of cryptography is that most practically used ciphers only

provide limited secrecy. Given sufficient computational resources and time, these

ciphers can be broken by an adversary through cryptanalysis. While cryptographers

aim to make the analysis of their ciphers as difficult and expensive as possible, the

progress in computing technology over the last decades has reached the point

where algorithms that were extremely costly to break 20 years ago can now be

broken with moderate effort. In response, new algorithms have been developed

and deployed. Additionally, larger secret keys are used for encryption to make

the analysis of an encrypted message more difficult. Thus, there is a trade-off

between the cost of encryption (larger keys require more computational effort)

and the level of secrecy that can be achieved.

One exception to this trade-off is encryption with “one-time pads,” which can

provide perfect secrecy. A one-time pad consists of a truly random sequence of bits

that is used for encryption and decryption (e.g., simply XORing each information

bit with a unique bit of the pad). The size of the pad needs to be at least as large as

the amount of data transmitted, and the pad needs to be available to both parties a

200 CHAPTER 10 Quality of service and security



priori. These constraints make it cumbersome and costly to use such an encryption

process in practice and thus one-time pads are not used in networking.

Symmetric key cryptography
Symmetric ciphers use the same secret key for the encryption and decryption of

information. Parties that want to use such a cipher need to agree on the same secret

key before using the cipher. For example, the secret can be shared by the parties

when they meet in person, or the key can be exchanged using a different security

protocol (e.g., using a trusted third party).

A very simple example of symmetric key cryptography is shown in Figure 10-8.

The sender shown on the left uses the encryption algorithm to convert the cleartext

information into ciphertext (shaded). The encrypted information is sent across the

network. On the receiver side on the right, the decryption algorithm uses the same

secret key to decrypt the ciphertext back into plaintext. This illustration does not

show practical considerations for secure network protocols (e.g., packets need a

cleartext IP header to be handled by the network).

A very important aspect of this (and any other) encryption and decryption pro-

cess is that the algorithm used for the process is not secret—only the keys are

secret. In fact, most practically used symmetric key algorithms are standardized

and well documented. Thus, anyone can program the same encryption and decryp-

tion algorithm. This approach to limiting secrecy to key material only is an impor-

tant principle of security engineering. Kerckhoffs’ principle summarizes this idea

by stating that a cryptosystem should be secure even if everything about the sys-

tem, with exception of the secret key, is publicly known. In contrast, developing

an encryption/decryption process that relies on secrecy for the algorithm has sev-

eral disadvantages. First, if any information about the algorithm is leaked, all

instances of the system become vulnerable. Second, the lack of public scrutiny

of the algorithm in the design phase makes it more likely that there are fundamen-

tal flaws in the system not detected by the designers.

Two symmetric key encryption algorithms are widely used in networks. These are:

• Data Encryption Standard (DES): The DES encryption algorithm is a “block

cipher” that encrypts information in blocks of 64 bits (8 bytes). Using a 56-

bit key, DES encrypts each block in 16 identical rounds. Each round operates

 

network

preshared secret key

Information
en-

cryption
algorithm

encrypted
information

encrypted
information

de-
cryption

algorithm Information

FIGURE 10-8

Symmetric key cryptography in network setting.

201Security



on alternating 32-bit halves of the block and uses different 48-bit subkeys

derived from the original key. The main operation in each round is the substi-

tution of input bits through 8 S-boxes, which perform a nonlinear transforma-

tion based on a lookup table. The final step of each round is a permutation of

the outputs of the S-boxes. The design of DES allows the same sequence of

operations to be used for encryption and decryption. The only difference is

that the sequence of subkeys needs to be reversed. DES was published as

a U.S. federal standard in 1977. Triple DES, an improvement to DES, was pub-

lished in 1999. Triple DES uses three encryption steps with different keys

to improve the better security. More details on the functionality of these

algorithms can be found elsewhere [130].

• Advanced Encryption Standard (AES): The AES encryption algorithm is also a

block cipher with 128-bit blocks. The block is arranged in a 4 � 4 grid of bytes.

There are three variants with key sizes of 128, 192, and 256 bits. Larger key

sizes increase the security of the algorithm but require more processing: 128-

bit keys use 10 rounds, 192-bit keys use 12 rounds, and 256-bit keys use 14

rounds. In each round, each byte is substituted with another based on a lookup

table. Then, the columns of the 4 � 4 grid are shifted cyclically. Next, each col-

umn is multiplied with a fixed polynomial. Finally, each byte is combined with

the key used in that round. AES was published as a U.S. federal standard in

2001. The algorithm was chosen among numerous competitors through an

extensive selection process. One of the concerns when selecting the algorithm

was to ensure that it can be implemented efficiently in software and in hard-

ware. The latter allows for high-throughput encryption in systems that need

to support high data rates (e.g., network devices). The details of AES are

described elsewhere [131].

Symmetric key encryption algorithms are widely used to encrypt data traffic in

networks. However, their main limitation lies in the need for a preshared key.

In a large-scale network it is impractical to assume that all pairs of end systems

have a secret key setup. Therefore, it is necessary to have an additional system for

the exchange of keys that can be used by symmetric key algorithms. Asymmetric

key cryptography can provide such a key exchange mechanism (as well as other

security functions).

Asymmetric key cryptography
Asymmetric key ciphers (also called public-key ciphers) use key pairs instead of a

single key. These key pairs consist of two different, but matching, keys (typically

called “public key” and “private key”). Asymmetric key ciphers are based on

mathematical “trapdoor” functions. These functions have the property that it is

easy to compute the function in one direction, but extremely difficult to compute

the function in the opposite direction. In the context of asymmetric cryptography,

the trapdoor function allows for computationally easy encryption from cleartext to

ciphertext with one of the keys. The interesting point is that even if that key is

202 CHAPTER 10 Quality of service and security



known, it is computationally difficult to extract the cleartext from the ciphertext.

When using sufficiently large keys, a brute force attempt to crack the computation-

ally difficult reverse direction would take a conventional computer longer than the

existence of the universe. However, if the matching key is used, a computationally

easy decryption is possible. This asymmetry of requiring one of the keys for encryp-

tion and the other for decryption leads to a number of interesting uses of such

ciphers. The mathematical foundations of asymmetric cryptography are described

elsewhere [42]. This work led to the widely used RSA cryptosystem, named after

the inventors Rivest, Shamir, and Adelman. The importance of this cryptographic

technique was recognized when the inventors received the prestigious Turing Award

in 2002.

There are numerous ways in which encryption and decryption using public or

private key on parts or all of the information can be applied. Some commonly used

examples are described here (in all cases, it is assumed that the public key is

publicly known and the private is only known to its owner).

• Confidentiality: To encrypt information such that only the receiver can decrypt

it, the public key of the receiver is used for the encryption process. This public

key is publicly known and thus is easily accessible to the sender. Due to the

asymmetry of the cryptographic system, only the receiver can decrypt the mes-

sage with its private key. Note that this process does not authenticate the

message or ensure its integrity.

• Digital signature: A digital signature attempts to emulate the characteristics of a

signature on a physical document. A signature achieves authentication and

integrity/nonrepudiation. Authentication could be achieved by having the source

sign the information with its private key—everyone could use the matching

public key to verify that only the source could have performed the encryption.

However, this process does not protect the information from being truncated

(i.e., integrity). To achieve all properties of a signature, the information is

condensed by a hash function attached to the original information. This hash

is encrypted using the source’s private key. To verify the correctness of the sig-

nature, the hash is recomputed and compared to the decrypted version attached

to the document. This process of using asymmetric cryptography to implement

digital signatures is illustrated in Figure 10-9. Note that this process does

not ensure confidentiality (but could be combined with confidentiality as described

earlier).

Asymmetric key encryption can also be used to establish keys for symmetric

key encryption. While asymmetric key encryption provides the ability to achieve

confidentiality, it does so at a very high computational cost. For most practical

data transfers it is more efficient to use asymmetric key encryption to verify the

identity of the communication partner (using digital signatures) and then establish

a temporary symmetric session key (that can be transmitted securely using confi-

dentiality in asymmetric cryptosystems). Once the session key is set up, symmetric

key algorithms are used for high-throughput secure transmission.

203Security



Security in network protocols
Network protocols can implement security features at different levels of the proto-

col stack. Depending on the layer, there are differences in the security guarantees

provided and the way keys are established. However, all layers use symmetric key

cryptography to ensure confidentiality in the data transfer. Figure 10-10 shows the

format of packets using security protocols at different layers in the protocol stack.

Shaded regions indicate encrypted fields.

Link layer security
At the link layer, security is used mainly in wireless networks. Due to the broadcast

nature of wireless transmissions, it is much simpler for an eavesdropper to access

transmissions than in a wired infrastructure. Thus, the use of encryption to achieve

confidentiality is much more important.

There are several standards for encryption in wireless Ethernet. Examples are

Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA and WPA2).

network
Information Information Information

hash
function

com-
parison

hash

decrypted
hash

de-
cryption

algorithm

en-
cryption

algorithm

encrypted
hash

encrypted
hash

hash
hash

function

private key

Information

public key
matching key pair

verified?

FIGURE 10-9

Asymmetric key cryptography used for digital signature.

wireless
Ethernet
header

wireless
Ethernet
header

wireless
Ethernet
header

wireless
Ethernet
header

IP header

AES-CCMP
header

IP header

IP header
(tunnel)

cleartext
packet

WPA2
link layer
security

IPSec
network layer

security

TLS
transport layer

security

TCP header

ESP header IP header TCP header

TCP header

payload

IP header TCP header payload
message

integrity check
fields

payloadTLS header

payload

frame check
fields

ESP trailer
ESP

authentication

FIGURE 10-10

Comparison of security protocols at different layers.

204 CHAPTER 10 Quality of service and security



The structure of encrypted frames is shown in Figure 10-10. The AES-CCMP header

contains information about the frame’s packet number and the key used for encryp-

tion. The IP header, TCP header, and payload are encrypted (e.g., using AES). There

are also fields that contain values for integrity checks. Because the packet is

encrypted at the IP layer and up, an eavesdropper cannot determine between which

hosts it is sent. The only information available in cleartext is which wireless hosts

are involved in the transmission. In cases where the wireless link connects to an

access point, this information is sufficient to determine the host that originates the

TCP/IP connection (since most end systems do not act as routers).

One major shortcoming of link layer security is that the packet headers and

payload are only protected on links that use security. Even ifmultiple consecutive links

use such security protocols, the packet still gets converted into cleartext on every node.

Network layer security
Network layer security is used to provide secure tunnels between subnetworks.

The general outline of a Virtual Private Network (VPN) that connects two net-

works through a secure tunnel is shown in Figure 10-11. All traffic between

networks 1 and 2 is protected through network layer encryption. It is also possible

to connect a single end system to a subnetwork through a VPN (as is commonly

done by business travelers who need to connect to their corporate networks).

Network layer security is achieved through the IPSec protocol. Figure 10-10

shows the header fields used for data transfers in IPSec. The packet headers

include a new IP header that is used by the tunnel. The IP source and destination

addresses correspond to the external interfaces of the VPN gateways that are the

end points of the tunnel. The ESP header contains information about the key mate-

rial used for encryption and the sequence number of the packet. The trailer con-

tains padding (to ensure alignment to a multiple of the block size of the cipher)

and a next protocol field to ensure correct handling of the embedded packet. There

is also an authentication trailer that verifies the source of the tunneled packet.

In IPSec, the encapsulated packet remains encrypted along the path between the

tunnel end points. Within networks connected by the tunnel, the packet is sent in

cleartext.

VPN router

VPN tunnel

network 2
network 1 Internet

FIGURE 10-11

Virtual Private Network providing network layer security between subnetworks.

205Security



Transport layer security
Transport layer security provides security between two end systems using the

Transport Layer Security (TLS) protocol. As shown in Figure 10-10, a TLS header

with information about the encrypted content is inserted between IP and TCP.

The TCP header and payload are encrypted by TLS.

Because encryption is performed in the protocol on one end system and decryption

in the protocol of the other end system, the packet payload remains encrypted along

the entire path. However, the IP header is transmitted in cleartext and thus it is possible

for an eavesdropper to determine the source and destination of the connection.

Public key infrastructure
In the discussion of security protocols in different layers of the network, it is

assumed that suitable keys are established between the entities that perform encryp-

tion and decryption. Shared secret keys are typically used for link layer security,

where the user needs to provide the secret key to use a wireless link. While this

approach is feasible for wireless links due to proximity between the communicating

entities, it is not feasible for network-scale communication.

To allow for secure communication between parties that have no prior shared

secret, the Public Key Infrastructure can be used. This system can be used to verify

the identity of entities by establishing a “chain of trust” to a trusted third party. To

use asymmetric key cryptography successfully to establish session keys, it is

important to have access to the correct public key of the entity at the other end

of a connection. In particular, it should not be possible for an attacker to pose as

the other entity and intercept communication (i.e., “man-in-the-middle attack”).

Therefore, it is important to correctly associate a public key with an identity. This

association can be achieved through the use of unforgeable public key certificates.

A public key certificate contains information on the identity of an entity and its

public key. The certificate is signed digitally by a certification authority (CA). This

authority certifies that the binding between identity and public key is correct. If the

communicating parties trust the certification authority, then they can trust that

the identities of the other party are correct (assuming the digital signature in the certi-

ficate can be verified correctly). To make this approach scalable to a large number of

identities, it is possible that the issuing of certificates can be delegated by the certifica-

tion authority. To verify a certificate issued by a sub-CA, the identity and public key of

that sub-CA are verified by a certificate from the original CA. Once this certificate has

been validated, the sub-CA’s certificate for the entity can be verified. Thus, a chain of

certificates can be established. An illustration of this process is shown in Figure 10-12.

The only requirement for successful verification of any certificate is that the

public key of the top level certification authority is known to the receiving end sys-

tem. To avoid tampering with this public key, it is typically distributed as part of

the end system’s operating system.

Using these security protocols, confidentiality, authenticity, and integrity can

be achieved. However, to provide the fourth aspect of security, availability, a

different approach is necessary.

206 CHAPTER 10 Quality of service and security



Denial-of-service attacks
Distributed applications are designed to use software components running on dif-

ferent computers connected through the network. If access to some of the end sys-

tems used by a distributed application is not possible, the application may fail.

Thus, the availability of networking resources (and thus access to end systems)

is an important aspect of security. Denial-of-service (DoS) attacks aim at making

certain resources unavailable to legitimate users.

Denial-of-service attack scenarios
Denial of service is typically achieved by overwhelming a system with apparently

legitimate traffic. For example, to make a Web server unavailable, an attacker

would send large numbers of connection requests to that Web server. The server,

which cannot distinguish between requests from attack traffic and those from

legitimate traffic, attempts to serve as many requests as possible. The larger the

proportion of attack requests to legitimate requests, the smaller the probability

that a legitimate request can be served. Similarly, attacks can aim at making other

end-system services unavailable or at using up buffer space on routers to trigger

packet drops.

document document documentsigned
document

network

signature
check

digital
signature

digital
signature

signed key signed key

signed keysigned key

signature
check

signature
check

validity of
document’s

digital
signature

validity of
public key of
end system

validity of
public key of

CA 2

digital
signature

end system

certification
authority 2

(CA 2)

public key for
certification
authority 1

certification
authority 1

digital
signature

certificate

legend:

private key

public key

CA 2 identity
and its public

key

CA 2 identity
and its public

key

digital
signature

end-system
identity and
its public key

end-system
identity and
its public key

FIGURE 10-12

Certification authority providing authenticity for public keys.

207Security



Challenges for an attacker are the following:

• An attacker needs to generate sufficiently large amounts of traffic to exceed

legitimate traffic by a considerable factor.

• Attack traffic needs to be sufficiently divers to avoid that a simple filter can

remove attack traffic from the network.

A single end system can typically not generate enough traffic to affect a commer-

cial server system. The limited access bandwidth and compute power of the system

limit the damage it can cause. Thus, most denial-of-service attacks use multiple

end systems. Such distributed denial-of-service (DDoS) attacks leverage the multi-

plying effect of using a large number of end systems that each send small amounts

of attack traffic.

An example of such a DDoS attack is shown in Figure 10-13. In this scenario, a

“botnet” is used to coordinate attack traffic. In a botnet, a large number of compro-

mised end systems (“zombies”) are controlled by a bot master. Such control can be

achieved through malicious software (viruses, Trojan horses, etc.). The bot master

can instruct these zombie machines to send small amounts of attack traffic toward

a single target. The attack traffic by each individual machine is typically small

enough to remain undistinguishable from legitimate traffic. Thus, a simple detec-

tion of such attacks is not possible.

It is also possible to use a few machines to send large amounts of attack traffic.

To avoid identification of the attack sources, the header fields of attack traffic may

DoS victim

zombies

bot master

FIGURE 10-13

DDoS attack through a botnet.

208 CHAPTER 10 Quality of service and security



contain incorrect values (e.g., spoofed IP source address). This technique of

address spoofing is widely used to hide the source of malicious traffic.

Mitigation techniques
There are a large number of techniques to identify and block malicious traffic in

the network. We discuss just a few of these approaches that illustrate possible

solutions.

• Overprovisioning: A straightforward way of reducing the impact of a denial-of-

service attack is to make enough resources available such that the attack does

not have any practical impact. Such overprovisioning is typically expensive

and may trigger an arms race where attackers try to use more sources to

increase traffic, etc.

• Packet marking to identify true source: If the true source of attack traffic can be

identified, it becomes easier to block its traffic (e.g., in the access network).

However, IP source address spoofing makes it easy for an attacker to disguise

the origin of traffic. To limit the effectiveness of address spoofing, it has been

proposed to augment the functionality of routers to add information about the

path of traffic in the network. For example, if every router was to add its iden-

tity to the packet, the complete path of the packet could be reconstructed and

the source could be identified. Recording the entire path in every packet incurs

a significant overhead. It has been observed that this overhead can be amortized

over several packets that belong to the same connection. If the route of a con-

nection through the network is stable, then all its packets traverse the same

routers. Thus, the path can be recorded progressively over numerous packets.

Packet marking techniques use just a few bits in the IP packet header (e.g.,

ToS bits that are typically not used) to store a very small amount of information

about the packet’s path. Marking techniques often operate probabilistically,

where a router uses the few available bits only with a small probability to avoid

overwriting the information that has been provided by another router earlier in

the path. While many of these techniques have been studied, they have not been

widely deployed in the Internet.

• Checkpoints throughout network: A very different approach to separating attack

traffic from legitimate traffic is to place explicit checkpoints into the network. At

these checkpoints, cryptographic techniques can be used to verify the identity of

the communicating end system (or user). Only if the identify can be verified pos-

itively and the access control policies confirm that access to network resources is

permitted, the traffic is forwarded. To avoid that such verification has to be per-

formed on every packet of a connection, a token can be provided to the source of

the connection. This token is included in every packet and the checkpoint is con-

figured to let packets with valid tokens pass. This technique is referred to as “net-

work capabilities.” The main challenges of this approach are the need for

verifiable identities and the complexities associated with obtaining and enforcing

capabilities.

209Security



• Anomaly detection: This technique uses data from traffic monitors to detect

unusual patterns. Typically the anomaly detection algorithm characterizes base-

line traffic (i.e., legitimate traffic) in order to be able to detect deviations that

indicate anomalies. If an anomaly is detected, an operator is notified to inter-

vene manually.

While there are a range of approaches to deal with denial of service attacks, there

is no single system that solves this problem satisfactorily. Therefore, there is much

current interest in developing new approaches to address this challenge.

SUMMARY
Security is an important aspect of any information system. In networks, security

protocols are used to ensure confidentiality, authenticity, and integrity of data

transfers. Most protocols use block-based ciphers with symmetric session keys.

These session keys are established through cryptographic techniques based on

asymmetric keys that do not require preshared keys. Additionally, availability of

access to network resources is an important consideration that cannot be addressed

by cryptographic protocols. To mitigate the impact of denial-of-service attacks,

additional functionality in network systems is necessary.

210 CHAPTER 10 Quality of service and security



CHAPTER

Specialized hardware
components 11
HARDWARE SUPPORT FOR PACKET FORWARDING
Correct functionality of network systems is critical for correct operation of the

Internet. In addition to correct functionality, it is nearly equally important that net-

work systems perform their operations efficiently. Optimization goals for network

systems include high throughput performance, low power consumption, and low

implementation cost. While software implementations of router functions on gen-

eral-purpose workstation processors can provide the necessary functionality, these

systems often lack in performance, power efficiency, and cost. Instead, specialized

components have been developed to improve the operation of network systems.

This chapter explores these specialized hardware components. Specifically, we

address the following topics:

• General-purpose hardware: multicore embedded network processor systems for

high-performance packet processing.

• Special-purpose hardware: hardware accelerators for specific functional tasks

(e.g., lookups, cryptographic operations).

These issues tie in closely with power issues discussed in Chapter 12 and run-

time support systems discussed in Chapter 14.

GENERAL-PURPOSE PACKET PROCESSORS
The functionality of a network is determined by the protocols implemented on the

end systems connected to the network and on the nodes inside the network. In the

case of the Internet, the Internet Protocol (IP) is one protocol that is common

among entities. Every Internet router implements the packet processing steps nec-

essary for IP, as discussed in Chapter 7. Figure 11-1 shows that the packet proces-

sing system is typically located on a router’s input port. Traffic on the output port

side typically also traverses the packet processing system for link scheduling.

Because the speed at which packet processing occurs determines to some extent

how fast the network can operate, it is important to develop network systems that

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
211



can achieve high packet processing throughput. More recently, it has also become

critical to be able to expand the functionality of routers after they are deployed

(e.g., introducing new features in the packet forwarding process). This need for

performance and flexibility exhibits an inherent tension with respect to the design

of the packet processing system.

Performance vs flexibility
In general, there is a trade-off between high performance and flexibility. If the

functionality of a system does not change over time (leading to low flexibility),

then its implementation can be optimized for this scenario (leading to high per-

formance). If the functionality changes during the lifetime of the system (i.e., high

flexibility), the optimization process should not be too specific, as future changes

need to be accommodated (leading to low performance).

In network systems, this trade-off can be observed when considering imple-

mentation of the packet processing steps in the data path of routers. The highest per-

formance implementations of IP forwarding are based on custom logic designs.

These implementations use an application-specific integrated circuit (ASIC) that

can perform packet forwarding functions at high data rates by employing specialized

logic functions and finely tuned optimizations. However, this circuit cannot do any

other processing. In particular, its functionality cannot be changed once it has been

manufactured. Thus, any changes to the packet processing functionality of the router

(to add new features, e.g., traffic management or security) would require the design

and manufacturing of an entirely new ASIC. This approach to deploying new func-

tions can only be used rarely, as typical ASIC development requires a large design

team, takes well over a year, and incurs considerable cost.

sw
itc

h 
in

te
rf

ac
e

network
interface

packet
processing

system

network
interface

packet
processing

system

network
interface

packet
processing

system

input ports output portsswitch fabric

network
interface

packet
processing

system sw
itc

h 
in

te
rf

ac
e

sw
itc

h 
in

te
rf

ac
e

sw
itc

h 
in

te
rf

ac
e

...

...

FIGURE 11-1

Packet processing system within router system.

212 CHAPTER 11 Specialized hardware components



In contrast, designs for a packet forwarding system that focus on flexibility

rather than performance are typically based on a general-purpose processor. This

processor can be programmed to perform packet forwarding functionality using

software. An example of such a system is the packet forwarding functionality

implemented in a general-purpose operating system. When new functions need to

be introduced into the system, the software can simply be modified. This approach

clearly provides flexibility. However, its drawback lies in the relatively lower per-

formance compared to an ASIC implementation. General-purpose processors do

not achieve processing rates as high as custom ASICs, as a processor is optimized

for the general case rather than specific networking functions.

From the perspective of a commercial router vendor, the use of ASIC-based

router systems provides a competitive advantage in terms of providing high

throughput performance (and low power consumption). However, the use of ASICs

limits the flexibility to customize the functionality of systems for specific cus-

tomers, adapt to new protocol standards, and support emerging packet processing

functions. Use of a general-purpose processor can provide this flexibility, but has

limitations in forwarding performance. To meet a balance of both requirements,

a programmable system with high throughput performance is necessary. Network

processors, which are based on system-on-a-chip design, are an example of such

a system. Figure 11-2 illustrates how network processors relate to ASICs and

workstation processors in terms of performance and flexibility.

Systems-on-a-chip
There is continued progress in integrating more and more logic functions onto a

single chip. Moore’s law [127], which has predicted and quantified this trend,

continues to apply, despite several fundamental and technological hurdles. As a

result, it is possible to implement processing systems that contain all the impor-

tant functions of computation, memory, and input/output on a single chip. These

performance

flexibility

ASIC

general-
purpose 
processor

network 
processor

FIGURE 11-2

Relationship of ASICs, workstation processors, and network processors in terms of

performance and flexibility to adapt to new functionality.

213General-purpose packet processors



“systems-on-a-chip” (SoC) can implement processing at higher speeds and/or

lower power consumption than multichip solutions, as the processor components

are integrated on a single chip. Interfaces can be clocked at higher data rates

because components are more closely colocated.

Since the first broad use of SoC in the late 1990s, the complexity and the level

of integration of SoC devices have continued to increase. A key trend for SoC

designs has been the integration of multiple processor cores on a single die. These

multiprocessor systems-on-a-chip (MPSoC) can contain processor configurations

ranging from two to four high-end processor cores to dozens of lower end cores.

This move toward parallel processing has significantly increased the overall

processing power that can be achieved by a single chip system. On single-core

systems, performance gains are typically tied closely to the increase in system

clock rate and the exploit of potential instruction-level parallelism. The limits of

this growth in performance lie in the super-linear increase in system cost when

increasing the processor clock rate. In addition, there are limits to the amount of

instruction-level parallelism that can be exploited in typical processing workloads.

When using multiple parallel processors, each processor core can be clocked at a

relatively lower rate (which allows for a simpler, more space-efficient imple-

mentation on the chip). By using a larger number of these simpler processors,

the total processing power of the MPSoC can exceed that of a single-core chip.

Network processors
One type of multiprocessor system-on-a-chip, which is specialized for packet

processing tasks, is the network processor. Network processors are MPSoC devices

optimized for the workloads encountered in the networking environment.

Processing workload
The characteristics of the workload that need to be processed by a system determine

greatly the overall system architecture, specific design choices, and optimizations.

The type of processing performed in the data path of a router is very different from

the workload on typical workstation computers. As a result, network processor archi-

tectures differ from those of workstation processors.

The processing that is performed on a router port to handle a packet is deter-

mined by the protocols implemented on that router. In practically all cases, a router

implements at least IP and the necessary link layer processing to receive and trans-

mit packets to neighboring routers. Note that the network layer also involves rout-

ing protocols and error handling. However, in many high-performance router

implementations, these functions are pushed to the slow path or the control plane,

where a conventional workstation-type processor handles these tasks. Thus, the

focus of a network processor is to handle common-case data path functions.

(As shown later, some network processor designs use a control processor on-chip

for slow path and control processing.) In addition, network processors may imple-

ment additional packet processing functions (e.g., firewall or intrusion detection

214 CHAPTER 11 Specialized hardware components



functions as discussed in Chapters 8 and 9 or next-generation network protocols as

discussed in Chapter 15).

The handling of each packet on the network processor can be seen as a separate

processing step. When considering the workload generated from processing a

single packet, the following observations can be made.

• Processing of a single packet requires a small amount of processing: Network

protocols are designed to require only small amounts of processing on routers.

For example, to implement fully compliant IP forwarding, only a few hundred

instructions are necessary (depending on the processor instruction set archi-

tecture). Because this code has very few—if any—loops, it can be executed in a

few hundred cycles. Protocols that require the processing of packet payloads

(e.g., TCP checksum computation, IPSec payload encryption) lead to processing

requirements in the tens of thousands of cycles.

• Processing of packets is very regular and repetitive: Practically all packets that

traverse a router require very similar processing. There may be some differ-

ences in systems where different flows receive different processing (e.g.,

forwarding and decryption for flows where VPN is terminated and plain

forwarding for other flows). However, all packets require basic link and net-

work layer processing. In most protocols, there are very few processing alterna-

tives (other than error handling, which is offloaded to the control processor).

Thus, the processing steps executed by the packet processing platform are

nearly identical for most packets. This regularity and repetitiveness help in

optimizing network processor systems for efficient processing.

• Processing of packets is performed with very simple computations: The types of

computations used for protocol processing are typically based on very simple com-

parisons, arithmetic, and logic operations. Practically no network protocol requires

floating-point operations or other complex computation or data manipulation

functions. Thus, processor cores used for network processor systems are typically

based on very simple reduced instruction set computer (RISC) architectures.

For a more comprehensive evaluation of processing characteristics of network

processing workloads, see Ramaswamy and colleagues [146].

The simplicity of packet processing has immediate implications for the input/output

system of the network processors. Because each packet spends very little time on the

processor, the relative amount of input/output bandwidth is much higher than in work-

station processors, where processing tasks have higher computational demands. This

increase in data input/output over computation also impacts the demand on the memory

system, which needs to handle read and write accesses when data are accessed. The

designs of network processor MPSoCs are based on these workload characteristics.

System architecture
The overall architecture of a generic network processor is shown in Figure 11-3,

which shows the main internal components of the network processors and the

external memory and input/output interfaces to which it connects. The specific

215General-purpose packet processors



architecture of network processors differs among models, but their main compo-

nents typically include the following.

• Multiple processor cores for data path processing. These processors are used

for the processing of network traffic and are typically simple RISC cores.

The number of cores can range from tens to several hundred. Processor cores

are typically very simple and not capable of running their own operating sys-

tem. Each processor core may have hardware support for multiple processing

threads.

• Single processor core for control operations. This processor is used for control

operations and slow-path handling of packets. It is often based on an embedded

RISC system that is capable enough to run a full-blown embedded operating

system.

• On-chip memory. On-chip memory consists of instruction and data memory for

data path processors and control processors. Often, some portions of the mem-

ory are shared among all processors and others are dedicated to individual pro-

cessors. More recently, some of these memories are built as caches similar to

those found on conventional workstation processors. In most cases, on-chip

memory uses SRAM technology, as a combination of DRAM and processing

logic within a single MPSoC is more difficult to manufacture.

• Several interfaces for off-chip memories. The amount of on-chip memory that

can reasonably be included on network processors usually does not provide

enough storage for packets that need to be buffered or for programs and

of
f-

ch
ip

 m
em

or
y

m
em

or
y 

in
te

rf
ac

e

m
em

or
y 

in
te

rf
ac

e

of
f-

ch
ip

 m
em

or
y

network processor

hardware
accelerator

memory

memory

memory

interconnect

I/O interface

network interface switch fabric interface

control
processor

processor
core

processor
core

processor
core

processor
core

FIGURE 11-3

System architecture of network processor.

216 CHAPTER 11 Specialized hardware components



program state. To expand the available memory space, off-chip memories are

used. Interfaces to access these memories are included in the network processor

chip. Typically, there are multiple interfaces to heterogeneous types of memory

(e.g., SRAM and SDRAM) to exploit the benefits of different memory tech-

nologies (e.g., access speed vs memory density).

• High-bandwidth interface for network interface(s). The router ports on which net-

work processors are located typically interface with one or more physical links on

one side and the router switching fabric on the other side. Because network links

use a wide variety of physical layer protocols (e.g., copper wiring, optical fiber),

network processors do not connect directly to the physical medium, but send net-

work traffic to separate physical interface components. The same interface is also

used to interface with the switching fabric of the router.

• High-bandwidth interconnect between internal components. The various compo-

nents inside the network processor (data path processor cores, control processor

core, memory interfaces, input/output interface) need to be connected to allow

for movement of data through the system. The bandwidth of this interconnect

needs to be sufficiently high to pass network traffic through at full bandwidth as

well as to accommodate memory accesses and other processing-related commu-

nication. There are various approaches on how to design such an interconnect.

In the simplest case, a bus can be used to fully connect all components. While this

approach is straightforward and allows any component to communicate with

any other, it may present a performance bottleneck. Other approaches include

arrangement of data path processors in a physical pipeline with local intercon-

nects or other hybrid topologies. The choice of interconnect has a considerable

impact on programming and run-time management of network processors, as it

may constrain which components can communicate with each other.

• Specialized hardware accelerators. Optional but very commonly used compo-

nents of network processors are hardware accelerators. These blocks implement

networking-specific processing tasks in custom logic and achieve much higher

performance than typical software implementations. Examples of common hard-

ware accelerators are lookup engines (using specialized logic and/or TCAM),

cryptographic coprocessors, content inspection engines, etc. Hardware accelera-

tors are typically shared among all data path processor cores and thus need to

be accessed via the on-chip interconnect.

These system components on a network processor interact closely with each other.

These interactions are illustrated here by considering the path of a packet through

the network processor. We also discuss the trade-offs that need to be considered

when designing a network processor.

Operation of network processor
The process of forwarding a packet through a network processor is shown in

Figure 11-4. Packets that are received on the network interface are stored in mem-

ory and control information is sent to one of the data path processors. The processor

217General-purpose packet processors



fetches some part of the packet (e.g., protocol header) and performs the processing

operations required by the protocols that are implemented on the router system.

During processing, the packet may be passed to another data path processor. If

the packet needs to be passed to the control plane or the slow path, the control pro-

cessor is notified (not shown in Figure 11-4). At the end of these processing steps,

the packet is queued and scheduled for transmission (e.g., into switch fabric or on

output interface). This scheduling process is typically also done in software.

The interconnect that provides communication between data path processors

determines the physical topology of the network processor. The software used on

the network processor determines the logical topology of the network processor.

Physical topologies with fewer constraints allow a broader range of logical topol-

ogies and thus are more flexible. Examples of physical and logical topologies of

network processors are shown in Figure 11-5.

The simplest topology to use is a full interconnect (e.g., using a bus as shown in

Figure 11-5). Any processor core can communicate with any other core. This

topology does not scale well to large numbers of processor cores because it is a sin-

gle centralized component that needs to handle all communication. A pipeline is

the opposite of a full interconnect. In the pipeline, each processor is only connected

to its neighbors. Each interconnect needs to handle at most the full data rate of the

system. The drawback of a pipeline is that the slowest element determines the

maximum performance of the system. In cases where processing bottlenecks occur

FIGURE 11-4

Flow of network traffic through a network processor.

218 CHAPTER 11 Specialized hardware components



(or where the workload is not split evenly among processors), the pipeline topol-

ogy performs poorly. The other two topologies, pool of pipelines and grid, present

a combination of the full interconnect and the pipeline topology. They are based

on local interconnects to ensure scalability, but provide multiple paths to avoid

bottlenecks. The pool of pipelines uses multiple pipelines in parallel and thus

can continue to operate efficiently even if there is a bottleneck in one pipeline.

The grid topology uses local interconnects to neighboring processors and provides

numerous paths in the 2-D processor space.

The software used on a particular network processor needs to be adapted to the

underlying hardware topology. In particular, the processing workload needs to be

partitioned among processor cores to allow effective operation of the network pro-

cessor. As long as the underlying hardware topology is less restrictive than the

software, an implementation is possible (e.g., software pipelining on top of a full

interconnect). More details on software for network processors can be found in

Chapter 14.

full inter-
connect

pipeline

grid

pool of
pipelines

FIGURE 11-5

Topologies for data path processors in network processors.

219General-purpose packet processors



Design choices
The cost of design and manufacturing of a chip is roughly dependent on its physi-

cal size. Larger chips contain more logic gates, which increases the design cost.

Larger chips are also more costly to produce, as fewer fit on a waver (and are more

likely to contain faults, which reduce the yield). Thus, there is a practical limit on

how large the physical implementation of a network processor can be. This limit

requires designers to make choices on how to use the silicon real estate available

to them.

System design parameters
As shown in Figure 11-3, a number of components are necessary for operation of

the network processor. Numerous parameters can be tuned in the design of a net-

work processor. The key parameters are:

• Number of data path processors: A larger number of data path processors can

perform more processing tasks to handle packets.

• Clock rate of data path processors: A higher clock rate implies that more pro-

cessing can be performed by data path processors.

• Amount of on-chip data and instruction memory: A larger number of instruc-

tion memory means that more complex packet processing applications (or more

of them) can be used by the system. A larger amount of data memory can store

more program state and packet data on-chip and reduces accesses to off-chip

memory. If data path processors use caches, then the access to instruction and

data memories becomes more efficient.

• Bandwidth and topology of internal interconnect: A higher bandwidth of the

interconnect can improve the amount of internal communication that can be

performed (e.g., to move packets between processors). In some cases, a higher

bandwidth can also reduce the delay for communication.

• Number and type of memory interfaces: More and faster memory interfaces

allow for faster access to off-chip memory and a higher amount of data transfer

into and out of memory.

• Number and type of hardware accelerators: More types of hardware accelera-

tors imply that more processing steps can be performed by high-performing

specialized logic. A larger number of hardware accelerators reduce the conten-

tion for this shared resource.

These design parameters need to be considered in context of each other to ensure

a balanced design that leads to an efficient operation of the network processor.

System design trade-offs
When choosing design parameters, a large numbers of devices, higher clock rates,

more memory, and bandwidth are desirable to achieve higher performance. How-

ever, it is also intuitively clear that such performance increases come at a cost.

Higher-performing versions of components typically require more chip area than

their lower-performing counterparts. For example, to increase the clock rate of a

220 CHAPTER 11 Specialized hardware components



processor, the number of pipeline stages needs to be increased. This increase in

processor complexity leads to a more complex logic design, which requires more

area on the chip.

Because the maximum chip area is limited by the cost of the system, increasing

the chip area for one component implies that other components need to fit into a

smaller area. This tension between integrating a higher-performance version of a

component and saving the chip area for other components on the network processor

leads to a number of important design trade-offs. While optimization of the afore-

mentioned parameters of a network processor system design is complex and involves

many details, several key design choices need to be considered by a designer.

• More processors vs faster processors: Given a limited amount of chip real estate, a

designer can choose to implement a larger number of slower (and thus smaller)

processor cores or a smaller number of faster processors. While faster processors

are able to process a single task more quickly, they typically do not achieve the

aggregate performance of a larger number of slower processors. Thus, this design

trade-off is equivalent to optimizing a processor system for throughput vs delay.

High throughput can be achieved with a large number of slow processors, but

the delay of any particular task is high. In workstation systems, processors are

typically optimized for fast processing of a single (or few) task(s). This design

optimization meets the needs of an impatient user waiting for their application

to execute. In network processing, where the system throughput is the main

optimization goal, the design choice typically falls toward more, but slower,

processors to achieve higher aggregate processing power.

• Higher processing power vs more memory: Another important trade-off relating

to the processing performance of a network processor is the choice between dedi-

cating chip area to processors and using the area for memories instead. All proces-

sing requires access to memory (for both instruction and data accesses). If the

memory system cannot supply data to processors fast enough to sustain effective

processing, then thememory becomes a performance bottleneck. To avoidmemory

bottlenecks, a designer can increase the size of on-chipmemories (cache or regular)

or addmore memory interfaces to reduce contention for off-chip memory accesses.

The right balance between processing and memory is highly dependent on the type

and complexity of the processing application. In network-processing scenarios,

the amount of on-chip memory is typically small (in the order of tens to hundreds

of kilobytes), as network processing applications are usually simple and do not

require much instruction store or complex data structures.

• General-purpose processors vs hardware accelerators: General-purpose proces-

sors can perform any packet processing function, but their processing speed is

slower than a hardware accelerator with the same functionality. However, a

hardware accelerator is limited to one (or a few) specific function and cannot

be used for anything else. Thus, an important design decision is to determine

how many hardware accelerators of what type should be used. These accelera-

tors can increase system performance, but also take away space that could be

221General-purpose packet processors



used for general-purpose processors. In many network processors, the number

of accelerators is limited to very few that implement functions that are com-

monly used on all packets (e.g., IP lookup).

• Higher interconnect bandwidth vs software complexity: The interconnect deter-

mines what types of software and hardware pipelining can be implemented on a

network processor. The most general type of interconnect is a full connec-

tion between all system components (e.g., bus). However, implementing a

high-performance interconnect that connects a large number of system compo-

nents requires a large amount of chip area. Using a larger number of high-

performance, point-to-point connections requires less chip area, but imposes

constraints on which components can communicate with each other. With a

constrained interconnect, the development of software becomes more challeng-

ing and run-time management of system resources becomes more difficult.

This issue is discussed further in Chapter 14. Many network processors use a

full interconnect or implement a simple pipeline architecture.

With all the aforementioned system components and their related design trade-offs,

an important question is how well each can be utilized during operation of

the network processor. A large number of data path processors is only useful if the

remaining system components can transfer enough data from the interfaces to

the processors and program and instruction data to and from memory. Similarly,

accelerators are only useful if the processing workload can utilize them.

Power constraints
In addition to performance considerations that aim at high throughput of the net-

work processor, the power consumption of the router system needs to be consid-

ered. As discussed in Chapter 12, lowering power consumption through system

design and implementation techniques is important.

In the context of the system design trade-offs discussed earlier, the focus on

throughput in network processor systems helps with the goal of lowering power

consumption. When using many processors clocked at a lower rate, less power is

dissipated than when using a few processors that run at a much higher clock rate.

Similarly, the use of on-chip memories and local interconnects can help reduce

system power consumption.

In addition to the goal of lowering power for economic and environmental rea-

sons, there is also a hard limit on the power consumption that is technically feasible

for a router (and thus for the system components inside the router). Many routers are

located within data centers that house racks and racks of equipment. These systems

require cooling through air conditioning to ensure that they remain within an

operating temperature where no damage occurs from overheating. Based on the

availability of air conditioning, there is a limit on how much heat can be dissipated

by any given device. This heat is directly correlated to the power consumed by the

device. Thus, peak power consumption needs to be limited accordingly. In a typical

data center, the available power is 5 kW per rack, which is about 120W per rack unit.

222 CHAPTER 11 Specialized hardware components



Due to this power limit for router system, the design constraint for network

processors has mostly focused on limiting the total power consumption while

achieving the necessary throughput rate. As energy efficiency becomes more

important, this design goal is expected to change toward minimizing power

consumption (possibly at the cost of reducing the overall system throughput).

Example systems
With a basic understanding of the design trade-offs in network processors, we

briefly review three specific systems that have been implemented and deployed.

These network processors differ in their system configuration, their interconnect

topology, and the software support that is available. Table 11-1 provides a com-

parison of the system characteristics of three network processors. The systems

compared are as follows.

Table 11-1 Comparison of Network Processor Configurations

Intel IXP2855 Cisco QuantumFlow Cavium CN5860

Maximum
throughput

10 Gbps 20 Gbps 20 Gbps

Data path
processors

16 32-bit RISC
processors, eight
threads per
processor, up to
1.5 GHz

40 32-bit RISC
processors, four
threads per processor,
up to 1.2 GHz

16 64-bit RISC
processors, up to 800
MHz

On-chip
memory

32-kB instruction and
32 kB data memory
per processor

16-kB cache per
processor, 256-kB
shared cache

32-kB instruction
cache and 8-kB data
cache per processor,
2 MB shared cache

Control
processor

32-bit XScale
RISC core, 32-kB
instruction cache,
32-kB data cache, up
to 750 MHz

Off-chip Off-chip

External
memory
interfaces

Three DRAM
interfaces, four
SRAM interfaces

DRAM, SRAM, and
TCAM interfaces

DRAM and TCAM
interfaces

Hardware
accelerators

Cryptographic
coprocessor

Classification, traffic
policing, etc.

Cryptographic
coprocessor, TCP
acceleration, regular
expression matching,
etc.

Maximum
power
dissipation

32 W 80 W 40 W

223General-purpose packet processors



• Intel IXP2855 [76]: The Intel IXP2855 network processor uses 16 processor

cores, called microengines, for data path operations. Each microengine supports

eight hardware threads and has its own local instruction and data memories.

The on-chip control processor can run an embedded operating system. Off-

chip memory interfaces provide access to different memory types. Hardware

acceleration is provided for cryptographic operations. The peak throughput of

this network processor system is 10 Gbps.

• Cisco QuantumFlow [32]: The Cisco QuantumFlow network processor uses

40 processor cores with four hardware threads each. Compared to the Intel

IXP2855, this is a larger number of processor cores, but a smaller number of hard-

ware threads per core. Each processor has its own local cache memory, but also

access to a larger, shared cache. There is no control processor on-chip. Memory

interfaces for DRAM and SRAM as well as TCAM are provided. Hardware

acceleration functions include packet classification and traffic policing. This

network processor is used in routers with a peak throughput of 20 Gbps.

• Cavium OCTEON Plus CN5860 [24]: The Cavium CN5860 multicore processor

uses 16RISC processors. The clock rate of the processors is considerably lower than

for the Intel and Cisco products, but the data path is 64 bits wide instead of 32 bits.

Each processor has 32 kB of instruction cache and 8 kB of data cache in addition to

a 2 MB shared cache. There is no on-chip control processor. Memory interfaces

for DRAM and TCAM are available. Hardware acceleration support includes

cryptographic functions, TCP processing, and regular expression matching.

While significant differences exist in the specific implementation details of these

systems, it can also be seen that there are many similarities. All systems support tens

of processor cores (with the number of hardware threads reaching into the low

hundreds). On-chip memory is in the order of tens of kilobytes per processor core.

There are also similarities in the memory interface and hardware acceleration

configuration.

As technology progresses, the specific configuration details will change. How-

ever, the overall system architecture of network processors, which is based on a

large number of simple, parallel processor cores, is expected to remain the same.

SPECIAL-PURPOSE HARDWARE ACCELERATORS
In contrast to general-purpose network processors, which can be programmed to

perform any packet processing function, special-purpose accelerators can only per-

form one or a few different functions.

Trade-offs in use of accelerators
Themain benefit of using special-purpose hardware is that these accelerators can per-

form certain functions faster than possible with conventional processors. In general,

reasons for using specialized accelerators or coprocessors include the following.

224 CHAPTER 11 Specialized hardware components



• Processing performance: As the name indicates, accelerators are designed to do

certain computations faster than general-purpose processors. Speedup can be

achieved through the use of custom logic functions that can implement the

desired functionality without having to follow the standardized instruction set

of a conventional processor. In addition, custom logic can utilize high levels

of parallel processing on workloads with inherent parallelism. Custom logic

circuits often can be clocked faster or accomplish more work per clock and thus

achieve a higher processing performance.

• Energy consumption: The amount of energy consumed to perform a particular

task may be lower in a specialized hardware implementation compared to a soft-

ware implementation on a general-purpose processor. General-purpose processors

have some inherent overhead due to their generality.

• Special functionality: Some coprocessors can provide functions that simply

cannot be implemented on a general-purpose processor. For example, a true

random number generator requires information from a physical process (e.g.,

decay of nuclear material). This process can be built into a coprocessor, but can-

not be emulated on a general-purpose processor. Another example is a trusted

platform module, where cryptographic keys are stored and cryptographic opera-

tions are performed. The secure storage of cryptographic keys cannot be provided

by a general-purpose processor, but requires dedicated logic.

A key concern when deciding on the use of accelerators in a router design is what

level of utilization can be achieved during operation. The cost of integrating an

accelerator into a router design needs to be offset by leveraging the aforementioned

benefits and processing as much traffic as possible on the accelerator component.

Fortunately, the highly repetitive nature of packet processing makes it easier to

achieve high utilization on these accelerators than is possible with general-purpose

workloads.

Example accelerators
Examples of hardware accelerators used in the networking domain include the

following.

• Cyclic redundancy checks (CRC)/checksum computation: Link layer protocols

such as Ethernet and AAL5 use CRC to detect bit errors that may have occurred

during transmission of a frame. CRC computation requires computation of

polynomials and can be slow when implemented on a conventional processor.

However, the streaming nature of CRCs lends itself to an efficient implementa-

tion in hardware. Typical CRC accelerators can operate at line speed and are

widely used to implement link layer processing.

• Prefix lookup: As discussed in Chapter 7, IP prefix lookup is one of the com-

putationally demanding functions in IP forwarding. Special lookup engines

can be used to accelerate the forwarding process. These accelerators can be

based on specialized data structures or TCAM implementations.

225Special-purpose hardware accelerators



• Pattern/regular expression matching: As discussed in Chapter 9, regular expres-

sion matching is used to inspect packet payloads. The process of scanning data

streams and matching a set of regular expressions can be accelerated with

accelerators that implement specialized matching algorithms.

• Cryptographic functions: Cryptographic computations are computationally com-

plex. Network systems that provide SSL termination or VPN termination (see

Chapter 10) need to provide this functionality at high data rates. Modern crypto-

graphic algorithms (e.g., AES) are optimized for fast operation in custom logic

implementations. Cryptographic coprocessors provide this basic encryption

and decryption functionality, as well asymmetric cryptographic operations, and

key generation and management.

• Instruction set extensions: A special case of hardware acceleration is the exten-

sion of instruction sets for network processing operations. Some network

processors (e.g., Intel IXP family) are equipped with special instructions that

are particularly useful for network protocol processing (e.g., bit selection and

modification operations). This type of specialization is becoming less common,

as the complexity of software development for custom instruction sets may

outweigh the performance gains.

As network processors move toward higher levels of integration, the size (and

implementation cost) of accelerators continues to decrease. This trend lowers

utilization threshold where the use of an accelerator breaks even with the cost of

integrating it into the system. Therefore, it can be expected that an increasing

number of accelerators for more specialized functions will be developed.

Accelerator implementations
Hardware accelerators can be integrated into the packet processing system in different

ways. If the accelerator is packaged as a separate chip, then it can be integrated with

other packet processing components on the router line card. If the accelerator is a logic

block, then it can be integrated within a network processor design. The latter approach

leads to higher system integration and thus better performance, but may not be

feasible in practice due to restrictions on intellectual property. It also limits the flexi-

bility of the system since the logic block gets locked into the system at design time.

Coprocessors and hardware accelerators can be implemented in a number of

different ways.

• Custom logic: Hardware accelerators can be based on a custom logic design

that implements the accelerator’s functionality. This custom logic block can

be used as a stand-alone chip or as an intellectual property core integrated in

another chip design. This approach has the benefit of imposing no constraints

on implementation of the accelerated functionality. In addition, custom logic

can be optimized to meet performance targets.

• Programmable logic: Hardware accelerators can also be based on program-

mable logic, e.g., field-programmable gate array (FPGA). The benefit of using

226 CHAPTER 11 Specialized hardware components



programmable logic rather than a custom design is that FPGAs are broadly avail-

able and do not require fabrication of a custom chip. Also, an FPGA integrated

into a network system design could be used for different accelerators and thus

allows a level of customization not possible with custom logic accelerators.

Many existing network processing systems use custom logic for their accelera-

tors since they provide better performance than FPGA-based implementations.

The need for flexibility may change this balance toward more programmable

logic implementations in future networks (see Chapter 15).

SUMMARY
This chapter explored some of the specialized hardware components used for

packet processing in router systems. Network processors use multiple parallel pro-

cessor cores to implement packet forwarding and more advanced functions. These

network processors provide a general-purpose platform, where the router operation

can be changed by updating software. In contrast, hardware accelerators provide a

fixed set of functions specialized for the networking domain. Hardware accelera-

tors typically use custom logic implementations that achieve higher performance

than software, but cannot be reprogrammed. Both general-purpose network proces-

sors and special purpose hardware accelerators are used in modern router designs.

227Summary



This page intentionally left blank



CHAPTER

Power issues in network
systems 12
INTRODUCTION
Power consumption constitutes a significant issue in the emerging green computing

environment. The effort for power optimization addresses computing systems at all

fronts, but is significantly more important for embedded systems. Power optimiza-

tion of embedded systems, especially handheld, battery-operated systems, is a

requirement that leads to practical and successful systems. Failure to reduce power

consumption below a threshold leads to systems that are costly, with short market

life, and practically difficult or impossible to use. The recent focus of the research

community on power optimization for embedded systems has led to a large number

of techniques and parameters that designers need to consider for power-efficient

embedded system designs [153].

The adoption of embedded systems in a range of heterogeneous applications

has led to several specialized methodologies for reducing power in common, wide-

spread application environments. For example, the effectiveness and usefulness of

wireless sensor networks have led to the development of network systems with

specialized processors, addressing the requirements of wireless sensor networks.

A designer focusing on this specific application area can take advantage of the

event-driven nature of many sensor network workloads and reduce power require-

ments of the employed processors equipping them with event-based, fine-grained

low power mechanisms [63].

Network systems are special-purpose embedded computing systems. The power

consumption of most network systems is constrained by their deployment environ-

ments. Many network systems are installed in densely utilized equipment racks.

Limits on cooling of this equipment put a bound on how much energy can be con-

sumed (and dissipated as heat). Some network systems are used in handheld,

battery-operated systems or in application areas that require battery-operated, and

thus power limited, systems. The current state of the art of low power embedded sys-

tem design does not enable the development of systematic approaches for power

efficient systems overall; importantly, several results have been developed for

embedded subsystems, such as processors and sensors. For network systems, the

major effort to date has been on the most power-consuming system components.

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
229



This chapter surveys the main results for low power network systems develop-

ment in the context of two specific system components: lookup engines and

network processors.

LOOKUP ENGINES
One of the important operations in network systems is determining how to handle

incoming packets. Routers need to determine how to forward a packet based on the

destination address (see Chapter 7). Similar operations are performed by transport

layer systems for packet classification (see Chapter 8). These types of lookups are

performed on every packet and thus are an important aspect of data plane proces-

sing in network systems.

As discussed in Chapter 7, lookup operations in Internet Protocol implementa-

tion are based on Longest Prefix Match. This IP lookup is an important and inter-

esting problem because it needs to be performed with increasingly faster links and

with an increasing number of address prefixes. Requirements for more efficient

lookups in larger configurations have led to several approaches in the design of

lookup data structures in order to reduce the average number of memory accesses

required for longest prefix matching [29, 133, 169, 173]. The complexity of data

structures, as well as the necessity for several memory accesses per search opera-

tion, has led to the development of several specialized memory architectures and

the adoption of several memory technologies for efficient IP lookup, such as Con-

tent Addressable Memory (CAM), reduced-latency DRAMs, etc. In all cases, the

proposed solution constitutes a trade-off among lookup delay, update speed, and

memory size. Importantly, because memory is a power-hungry component, special

attention has been paid to decrease the power consumption of table lookups. The

remainder of this section surveys techniques for power-efficient IP table lookups.

Considering the main approaches for IP lookup subsystem designs discussed in

Chapter 7, we classify the architectures into two categories: (i) Ternary CAM

(TCAM) based and (ii) SRAM based.

Ternary CAM-based IP lookup
Exploitation of parallelism is the typical technique adopted when performance

improvement is required. In the case of routing, as with IP table lookup, a straight-

forward employment of parallelism is to search all table routes simultaneously.

Content Addressable Memories are memories that enable such parallel search: the

target destination address is entered as input and the matching entries are extracted.

Considering the specific requirements of longest prefix matching, however, one

needs to extend the typical CAM operation to enable the use of wildcard or don’t
care bits. Ternary CAMs constitute a technology that enables the use of don’t care

bits. (TCAMs include one don’t care bit for every tag bit; when the don’t care bit is

set, the tag bit matches any value.) Figure 12-1 presents the logical view of

a classical TCAM, assuming, for simplicity, that prefixes have a maximum length

230 CHAPTER 12 Power issues in network systems



of 4. Each entry includes a matching pattern for a route, where “x” indicates

a don’t care bit. As Figure 12-1 shows, an incoming packet with destination

address 0011 arrives at the TCAM. The TCAM compares the destination address

of the incoming packet against all the prefixes in parallel. Two matches occur

and the priority encoder selects the first matching entry—the longest prefix match.

If the routing table is loaded sorted, the longest prefix match appears at the highest

hit in the TCAM (lower memory address).

Ternary CAMs were introduced as an important technology for IP-lookup opera-

tions [114], but they were immediately identified as an expensive, power-hungry

solution that provided significantly smaller density than conventional SRAM.

Furthermore, prefixes stored in TCAMs need to be sorted in order to enable identifi-

cation of the longest prefix matching easily. Sorting is also a time- and power-

consuming process. Since their introduction, several research efforts have focused

to solve the high power consumption problem of TCAMs. Their approaches can

be classified as optimizations at two levels: (i) algorithmic–architectural and

(ii) circuit. We describe briefly several of the promising contributions in this

direction.

One of the algorithmic optimizations is addressing the sorting and updating

problems of the routing table, which is stored in the TCAM. TCAMs automatically

report the topmost (lowest address) matching. Thus, the longest prefix matching is

guaranteed to be the TCAM response only if it appears first; thus, prefixes need to

be sorted so that longer prefixes appear before the shorter ones. This leads to sig-

nificant complexity and results in significant power consumption in the case of a

table update. One proposal to avoid sorting the table is to introduce priorities in

the table entries (the TCAM addresses) and use additional specialized hardware

to select the correct matching entry (with the highest priority) in case of multiple

matches [90]. This solution is effective in terms of avoiding sorting of prefixes,

but it reduces performance because it adds latency to the time-critical lookup

0 1 0 1

0 0 x x

0 0 1 1

0 0 1 x

miss

hit

hit

miss

P
riority encoder

Long 
prefixes

Short 
prefixes

Port 1

Port 3

Port 2

Port 4

SRAMTCAM

Next hopPrefix

Memory 
address

Example 
destination 
address: 

0011

Example 
lookup 
result: 
Port 2

FIGURE 12-1

Ternary CAM organization and operation.

231Lookup engines



operations. Alternatively, one can avoid sorting using a technique that keeps empty

spaces in the TCAM so that some of the table updates can be implemented fast,

with O(1) complexity, without the requirement for sorting [162]. A third solution

reduces the number of sorting operations by relaxing the requirement to sort the

complete set of prefixes in TCAM. Actually, one can observe that longest prefix

matching is possible even when sorting has not been performed completely on

the whole set but only partially on overlapping prefixes. For example, two prefixes

overlap if one is a subset of the other; for example, 01* overlaps with 0101*, but

not with 001*. This observation enables designers to reduce memory-swapping

operations during the insertion/deletion of new routes [162]. Apparently, these

approaches are useful to all operations that require some type of sorting, sequenc-

ing, and classifying. The last method, for example, has been shown to apply to

TCAM-based packet classifiers as well.

An alternative approach to reducing power consumption is that of compacting

prefix tables through removal of redundancy. An interesting technique that uses a

combination of pruning and logic minimization algorithms achieves reduction of

power consumption by 30–40%, depending on the performance of the logic minimi-

zation algorithm [102]. However, the method places significant overhead on the

table-updating process, making it unsuitable for environments with frequent routing

updates. Alternatively, others attack the problem by compacting the TCAM active

area [147]. Ravikumar and colleagues [147] combine several techniques, such as pre-

fix aggregation and expansion and a new paging scheme, to limit the number of

TCAM entries searched during an IP-lookup operation. More specifically, they pro-

pose a two-level memory architecture, with the first level composed of SRAMmem-

ory and the second level composed of TCAM memory. The use of SRAM at the

first level is based on the observation that the high order bits of the prefixes (8 in

the case of this specific technique), called page bits, do not contain wildcard bits in

the typical case; thus, an 8-bit-wide SRAM memory can be used for lookup at the

first level. The technique accommodates the case when page bits contain wildcards

as well, using a controlled prefix expansion technique. Use of the SRAM at the first

level reduces the number of the required TCAM bits, which are included in the sec-

ond level. If the used prefix bits for the first level are 8, the TCAMmemory array is 24

bits wide for the IP protocol, achieving significant reduction in power consumption.

An additional approach to power reduction is the use of parallel routing tables,

that is, parallel TCAM chips, where only one TCAM chip is selected for searching

at every time instant. In such an approach, one can power only the chip (part of the

table) that is being searched, reducing power consumption. Analogously, if all par-

titions are used in parallel, power consumption increases, but so does performance

due to the parallel searches that increase throughput. Several algorithms are used

for the partitioning of prefix tables [136, 196]. In an effort to develop techniques

that target to implement searching only where necessary, an alternative technique

targets to avoid searching for nonmatching packets by using a multilevel Bloom

filter to eliminate a fraction of the nonmatching packets before passing them to

the TCAM-based classifier [28].

232 CHAPTER 12 Power issues in network systems



Ternary CAM manufacturers have been addressing the issue of power consump-

tion as well. One of their major directions is the inclusion of mechanisms that enable

system designers to use only portions of a TCAM chip at a time for searching. In this

fashion, each TCAM chip does not consume power fully, only the portions that are

enabled at every time instant. Such TCAMs are called blocked TCAMs. Considering

the structure and functional characteristics of blocked TCAMs, it is important to

develop algorithms that map prefix table portions to the blocks of the TCAMs in

order to achieve efficient operation for the lookup operations overall. Several such

methods are feasible. For example, a bit selection algorithm (for selecting route

prefixes) is combined with a hashing function to direct (and limit) the lookup pro-

cess to a portion of the TCAM, reducing power consumption [195]. Alternatively,

a trie-based algorithm uses an index TCAM, a smaller TCAM, to select one or more

of the TCAM blocks for the searching operation [195]. Such efforts achieve signifi-

cant power savings. Furthermore, a designer can combine these techniques with the

page-based scheme described earlier [147] in order to achieve even further power

savings [105].

In a different approach, one can try to reduce the number of TCAM entries, reduc-

ing power consumption due to smaller memory size. Prefix inclusion coding (PIC)

[137] is a promising solution in this direction. PIC encodes address filters in code-

words of small size and replaces the conventional address lookup with codeword

lookup, which is equivalent to longest prefix matching operation. PIC is effective

by using appropriate coding of the filters and leads to 70% to over 90% smaller

memory sizes and thus to significant improvement in power consumption [137].

At the circuit level, there are two main optimizations. The first one targets the

design of a TCAM in such a way so that when a prefix mismatches, searching does

not proceed to any additional bits of the word with the mismatched prefix [126].

The developed VLSI design of the TCAM adds a new signal to every TCAM line.

During a search operation, bits are compared from higher order to lower; when a

mismatch occurs, this new signal stops the searching (comparison) of the remaining

TCAM bits of the same TCAM line, thus reducing power consumption significantly.

The second circuit level optimization targets the storage of don’t care bits. In a

typical TCAM design, the requirement to store three values (0, 1, and don’t care) at

every memory location leads to the use of 2 RAM bits per single TCAM ternary

value; that is, each single TCAM digit uses 2 RAM bits to store. Thus, if a TCAM

has a width of w digits, each TCAM entry uses 2w RAM bits. The optimization,

named Prefix TCAM (PCAM), introduces a different encoding scheme for storing

prefixes in the memory array that is very suitable for TCAM implementations [2]

and that reduces the 2w required RAM bits to (w þ 1) bits. The scheme takes

advantage of the fact that all the masked bits in a prefix are adjacent and located

at the low order bits of the route bits; for example, 1100110010* is a valid 10-

bit IP prefix shown in binary with the 22 lower bits masked, whereas 11x01*

(“x” denotes a don’t care bit) is not a valid prefix because it has a masked bit sur-

rounded by valid bits. Specifically, the scheme replaces low-order don’t care bits

with an equal number of 0 bits headed by a bit with value “1”, which functions

233Lookup engines



as a preamble. Figure 12-2 shows an example of PCAM, assuming a prefix length

of 8 bits. The encoding of each 8-digit TCAM entry leads to a 9-bit entry with the

rightmost “1” indicating the beginning of don’t care digits. The reduction of the 2w
RAM bits to (w þ 1) leads to significant reductions in memory usage and thus to

power consumption. For w ¼ 32, that means a 48.4% reduction in memory usage

[2]. Based on this observation, the inventors of the scheme offer a new VLSI

implementation dedicated for TCAMs in which the extra mask bits were removed,

reducing the number of transistors by 22% relative to a conventional TCAM.

SRAM-based IP lookup
The high power consumption of TCAM-based lookup subsystems has led to the

development of SRAM-based lookup solutions, which are characterized by lower

circuit complexity. As discussed in Chapter 7, special efforts have been made to

develop appropriate systems for efficient lookups when using SRAM memories

due to the specifics of the longest prefix matching algorithm. Several efforts have

been made to develop and implement ASIC designs that support trie-based, soft-

ware level IP-lookup algorithms [29, 133, 169, 173]. However, these solutions

do not provide the flexibility required by conventional IP-lookup search engines;

for example, they have no or limited capability for updating the prefix table entries

and, in general, require a significant number (typically more than 4) of dependent

(serialized) memory accesses, stressing conventional memory architectures to the

limit in their effort to meet conventional link speed requirements.

Caching has been exploited for the reduction of memory operations and thus

reduction of power consumption due to searches in smaller sets. In these configura-

tions, prefixes are stored in main system memory, usually using a trie-based data

structure, and a cache stores the portion of the most common prefixes. The use

of associative caching has been explored in this environment, proving to be a

PCAM entry (8+1 bits)Prefix (8 bits)

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 x

1 1 1 1 0 0 x x

1 1 1 1 0 x x x

1 1 1 1 x x x x

1 1 1 x x x x x

1 1 x x x x x x

1 x x x x x x x

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 1

1 1 1 1 0 0 1 0

1 1 1 1 0 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1

0

0

0

0

0

0

0

Prefix TCAM arrayTCAM array

FIGURE 12-2

Prefix TCAM for 8-bit routes.

234 CHAPTER 12 Power issues in network systems



useful technique that takes advantage of locality characteristics in IP traffic and

reaching miss rates less than 10% in configurations [33]. However, the update pro-

cess is complex in these environments due to requirements of the longest prefix

matching algorithm mentioned earlier. Importantly, the effectiveness of caching

in such environments improves significantly when the cache stores IP prefixes

rather than IP addresses [138]. The resulting caches, called supernode caches,

reduce the number of main memory accesses, leading to a fast IP lookup. In the

environment introduced for supernode caches, original results report avoidance

of up to 72% memory accesses using a 128-KB supernode cache, an achievement

of less than 4% miss ratio for the supernode cache, and a 77% energy reduction

relative to a TCAM of the same size [138].

Another category of solutions consists of SRAM-based lookups that use set-

associative memory structures to store prefix tables. The main difference between

this category and the previous one is that a cache holds a small part of the data set,

but the SRAM memory holds the entire prefix table. That is, the SRAM is the main

storage for the prefix table and not just a cache for it. A representative approach in

this category is IPStash [87, 88]. IPStash is a hash-based scheme that uses SRAM

hash tables to store prefixes. Unlike trees, hash tables are flat data structures that

have the desirable property of key length-independent latencies (i.e., O(1) lookup
complexity) and are easy to implement in hardware. Importantly, IPStash scales

well as table sizes increase and also overcomes many problems faced by TCAM

designs, such as the complexity to manage the prefix table (sorting and parti-

tioning), the high power consumption, the low density/bit, and the high cost. In

general, hashing schemes have two main drawbacks. First, hashing leads to colli-

sions and thus requires conflict resolution techniques that may lead to unpredict-

able lookup performance. Second, IP prefixes include don’t care bits, and these

bits may be used as hashing bits. In this case, one would need to expand all

affected IP prefixes to eliminate the don’t care bits or would simply give up hash

functions that depend on any of these bits. IPStash achieves good space utilization

and fewer expansions by classifying prefixes according to their lengths (e.g., � 16,

17 � 21, � 21) and using different hash indices for the prefixes of each class to a

single multihash table. As a result, wildcard bits are excluded from hashing, while

good hashing results are achieved. IPStash claims to be twice as fast as top-of-the-

line TCAMs while offering up to 64% power savings (for the same throughput)

over the best commercial TCAM of the same technology [87, 88]. Finally, an

advanced hashing scheme, combined with extra hardware for parallel hash table

lookup, can lead to improved performance [41].

NETWORK PROCESSORS
Network processors are another component of network systems, where techniques for

low power consumption have been explored and applied. Themotivation for this effort

is due to the fact that network processors constitute highly parallel and specialized

235Network processors



hardware components composed of functional blocks that may be active in parallel.

As discussed in Chapter 11, network processors typically contain several packet

processors, caches, memory interfaces, specialized hardware units, and I/O compo-

nents on a single die. These components address different functional requirements of

network systems and can be active in parallel, leading to high performance and high

power consumption. Trends toward increasing chip functionality and increasing

link bandwidth make power consumption of network processors a challenging issue.

Addressing the issue of low power network processors, methods have been

developed for design space exploration of typical network processor parameters,

including configuration of the processing elements and the memory subsystem

[54]. Interestingly, this research work includes an analytical power model suitable

for CMP network processors, which leads to proof that the greedy power consumer

is the system clock during stall cycles, that is, while a packet processor waits for

memory accesses to be served. To address this problem, a scheme has been devel-

oped to reduce the dynamic power consumption of components not in use [107,

108]. This method exploits the fact that in low traffic load, most processing ele-

ments in network processors are almost idle, although consuming dynamic power.

The scheme monitors the average number of idle threads during a time window

and calculates the number of processing elements necessary to process the incom-

ing traffic load. The remaining number of processing elements is gated off the

clock network and thus neither performance is sacrificed nor is dynamic power

consumed by idle processing elements. This method achieves significant power

consumption reduction (up to 30%) with little impact to the resulting throughput.

Memory references in network processors present high divergence in terms of

their locality characteristics. Based on this observation, a methodology to classify

the memory references of a packet stream has been developed [119]. Based on

results of the classification, data with high temporal locality are directed to a data

path with caches and branch prediction hardware, where high locality is exploited;

in contrast, data with low locality are directed to dedicated hardware engines. In

this fashion, the memory subsystem achieves higher utilization, improving system

power consumption, bus utilization, and performance overall.

Methods for reducing power consumption in highly parallel network proces-

sors do not focus only on systems with identical processing elements, but on

systems with heterogeneous processing elements as well. Such systems use multi-

ple arrays of processing elements with different processing cores in the different

arrays, with significant differences in terms of performance and power consump-

tion. Packet scheduling techniques can lead to significant power savings [109].

In addition to approaches that are specific to network systems, general techniques

for power reduction are being investigated. At the circuit level, voltage reduction in

cachememories, as well as adjustments of clock frequency, provides significant power

benefits without significant effect on system reliability [112]. At the architectural and

compiler level, optimizations in the resolution of the register allocation problem for

both interthread and intrathread register allocations lead to simultaneous performance

improvement, as well as power savings [198].

236 CHAPTER 12 Power issues in network systems



SUMMARY
Network systems are special-purpose embedded computing systems with low power

requirements. This chapter surveyed the main techniques that have been developed

to date for use in low power network systems. Considering the direction of research

and development in the field, we presented the main techniques for low power

lookup engines and low power network processors. In the case of lookup engines,

we focused on IP lookup systems, examining all proposed memory architectures,

including tri-state CAMs and SRAM-based designs.

237Summary



This page intentionally left blank



CHAPTER

Networks on chips 13
INTRODUCTION
Significant advances in very large-scale integration (VLSI) circuit technologies have

enabled the implementation of complete computing systems on a single chip. Such a

complete computing system is called system-on-chip (SoC), as discussed briefly in

Chapter 11. A typical SoC, as shown in Figure 13-1, is composed of several subsys-

tems, including a processing element, memory, interconnection, special-purpose

subsystems, and so on, although special-purpose SoCs may exist for specialized

applications. SoCs are used in products with space and power limitations such as

portable devices, in systems with increased security requirements, and as parts of

larger systems.

Many SoCs have more than one processing element, effectively being multipro-

cessor SoCs (MPSoCs). These multiple processing elements can either be homo-

geneous, with identical processing elements, or be heterogeneous, with differing

processing elements, depending on the need of the application. Typically, MPSoCs

employ homogeneous processing elements when more processing power is needed

(e.g., in a network processor), while heterogeneity is employed when special-

purpose computing operations are necessary (e.g., in a mobile phone). Indepen-

dently of the processing elements, though, the interconnection subsystem of the

system-on-chip must provide sufficient bandwidth to all connected subsystems.

Due to the large number and diverse functionality of components that need to be

connected within an SoC, this interconnect needs to take advantage of state-of-the-

art implementation technology to meet functional and performance requirements.

The important performance characteristics of an SoC interconnection subsystem

are its bandwidth, latency, power consumption, and area, analogous to those of

switches described in Chapter 3.

The SoC interconnect can be viewed as a generic interconnection network that con-

nects all system components within a single chip, hence the term Network-on-Chip

(NoC) [135]. This on-chip network can adopt architectural models, designs, and tech-

niques from parallel computer networks and local area networks (LAN), as well as

wide-area networks (WAN). However, the small scale of SoCs differentiates a net-

work-on-chip from these networks and presents new technical challenges that need

to be addressed. These challenges are mainly in three directions: (i) network archi-

tectures and topologies, (ii) routing schemes, and (iii) physical characteristics of the

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
239



chips and how the technology and circuit design affects network-on-chip design. This

chapter presents these challenges and identifies promising solutions.We also present a

framework for analysis of NoC architectures that enables the analysis of architectures

by capturing characteristics of the underlying implementation technology.

NETWORK-ON-CHIP ARCHITECTURES
Multiprocessor interconnection networks constitute attractive candidates for network-

on-chip designs because of their characteristics in terms of performance and reliabil-

ity. Multiprocessor interconnections are typically considered as a class of networks

with tightly coupled end systems that are colocated, with short latency, high band-

width, and extremely low bit error rates. These characteristics are different from those

of long-distance wide-area networks that emphasize providing high bandwidth rather

than low latency and that exhibit higher bit error rates. In addition, NoCs place con-

straints on power and area beyond the constraints and requirements of multiprocessor

interconnections.

Multiprocessor interconnection networks are typically classified into two

categories: point-to-point and switch-based networks [44]. Figure 13-2 shows

examples of both categories of networks. In point-to-point networks, processing

elements are connected directly to each other. In switch-based networks, proces-

sing elements are connected to switches that are organized in some topology.

Thus, in switch-based networks, processing elements communicate with each

other over a connection that includes one or more switches. In point-to-point net-

works, processing elements communicate with each other either directly (if they

are connected directly) or through a path that includes one or more processing

Input/
Output

Memory
subsystem

Processing
element

Special-
purpose

subsystem

Interconnection

FIGURE 13-1

Generic structure of a system-on-chip.

240 CHAPTER 13 Networks on chips



elements. In either case, each processing node requires an input/output (I/O) com-

ponent that enables communication with the connected processing element or the

connected switch.

Networks are characterized by a range of structural parameters, such as node degree

(the number of links per node), diameter (the maximum length of the shortest length

paths interconnecting any pair of nodes), etc. Each parameter influences one or more

of the physical parameters of the NoC circuit, that is, bandwidth, delay, power, and

area. Network topologies can be used for either point-to-point or switched-based

networks. A wide range of literature explores the implementation of various networks

as NoC, such as mesh and torus networks [36], octagon [84], and fat-tree [58]. Mesh,

torus, and octagon networks are examples of point-to-point networks, and the fat-tree

network is an example of a switch-based network because it is composed of switches

as internal nodes that connect processing elements at the leaves [58].

Despite the similarities of multiprocessor networks and NoC, there are also

important differences due to implementation technology characteristics. These dif-

ferences relate to wiring and buffering, which affect performance characteristics

such as bandwidth, delay, and power consumption. In typical multiprocessor net-

works with chip-to-chip and board-to-board connectivity, the width of the data path

has always been limited to a small number of wires, while the density of wires in

NoC is in the order of hundreds [194], thus increasing bandwidth significantly.

In multiprocessor networks and LAN and WAN networks, low wire density leads

to an extensive use of buffers, where data are stored temporarily in case of conten-

tion or congestion. In NoC, extensive use of buffers is prohibitive because buffers

introduce latency and on-chip memory is costly in terms of power and silicon area.

NETWORK-ON-CHIP ROUTING SCHEMES
The topology of communication networks, including NoCs, is associated with one

or more routing algorithms. The choice of routing algorithm, in turn, influences the

network design. Most NoC interconnects are based on transmissions of fixed-size

Core Core

Core Core

Core CoreCore Core

Core Core

Switch

Switch-based networkPoint-to-point network

Core Core

FIGURE 13-2

Point-to-point and switch-based networks.

241Network-on-chip routing schemes



basic data units, or packets. Communication of larger amounts of data may require

the transmission of these packets. The routing schemes of NoCs are similar to

those used in multiprocessor networks, LANs, and WANs: store-and-forward and

cut-through, with variations such as virtual cut-through and wormhole routing.

Store-and-forward networks require that each transmitted message (i.e., all the

fixed-size packets that make up the message) is buffered in its entirety at every

intermediate node (routing processing element or switch) before being forwarded

to the next node along the path toward the receiver. This leads to NoC designs that

require significant amounts of buffering per node and leads to long end-to-end

latency for data transmission. The large amount of buffering leads to high cost in

power consumption and circuit area. All these overheads of store-and-forward

networks make them inappropriate for NoC implementations.

Virtual cut-through provides an improved alternative to store-and-forward net-

working because virtual cut-through does not store a message fully at intermediate

nodes in the path; in this scheme, a packet is forwarded to the next node along the

route as soon as possible, without any requirement to receive any additional pack-

ets of the same message. However, when the next node is blocked, for example,

due to transmission of another message, the current message needs to be stored

at the node in full (the packet and subsequent ones need to be received and stored

completely). Thus, virtual cut-through still requires sufficient storage per node, but

achieves significantly improved latency. Wormhole routing [44], a virtual cut-

through-based scheme, is the best candidate for NoC implementation. In wormhole

routing networks, packets of messages are routed as soon as possible (as in the cut-

through case) and when the next node is blocked, the whole message is stopped

and stored at the nodes where the packets have arrived at that time, waiting for

the route to become available. The achieved low latency, in conjunction with the

achieved low storage requirements per node, makes the scheme very attractive

for NoC; an example is implementation in the SPIN network [4].

An important parameter of data transmission that relates to the routing scheme is

the length of the transmitted packets. The importance of the parameter is not only due

to performance but to power consumption as well. Power consumption is influenced

by three factors: (i) the number of packets in the network, (ii) the energy consumption

per packet per hop, and (iii) the number of hops per packet. Clearly, the length of

packets influences each of these factors differently [194]. Longer packets lead to

fewer packets in the network, while increasing power consumption per transmission.

Furthermore, longer packets lead to higher contention, reserving network resources

for longer periods, causing other packets to be rerouted through longer paths, etc.

TECHNOLOGY AND CIRCUIT DESIGN
The physical characteristics of the technology and design methods used for NoCs

influence several of their parameters, such as bandwidth, delay, and power con-

sumption. Clearly, the topology of an NoC influences its performance and power

242 CHAPTER 13 Networks on chips



consumption significantly because of physical system characteristics, as well as

architectural and traffic issues. Circuit characteristics play a more significant role

in NoC than in networks interconnecting chips, boards, or racks. Therefore, we

provide here delay models for two popular NoC interconnects: bus and crossbar

switch. These models enable NoC designers to evaluate their decisions before creat-

ing detailed NoC designs. These models take into account physical characteristics,

such as interconnect and device capacitance, and are parameterized by N, the number

of components connected to the NoC. The presented analysis originates from

Serpanos and Wolf [160] and assumes that each analyzed NoC supports the attach-

ment of N modules, each capable of I/O operations. That is, the number of inputs (ni)
to the interconnect is the same as the number of outputs (no) and ni ¼ no ¼ N.

Bus delay model
We consider a typical synchronous bus, composed of control, address, and data

lines, delivering data in clock cycles of length TB. Furthermore, we assume that

the bus has N attached devices and that the layout of the bus has equal spacing

among subsequent device interconnections; the spacing is normalized to 1, leading

to bus length Lb ¼ N. The control of the bus is determined by a bus arbiter.

Figure 13-3 shows the circuit model for the bus. The model considers a long bus

with short attachment-to-bus connections, rather than a short bus with long attach-

ment-to-bus connections, because of the typical practice in NoC system design.

Multiple long attachment-to-bus connections would lead to an area-inefficient

design; the depicted tri-state I/O buffers would be replaced with multiplexers/

demultiplexers.

Considering that (i) the main bus wires have length Lb, (ii) each input has its

own tri-state buffer/driver (B1) and a sequence of cascaded buffers to drive the

long bus wire (B2), (iii) each output has its own input tri-state buffer (B3) with

Core

Core

B1 B2

...

B3

Register
B4

FIGURE 13-3

Bus model.

243Technology and circuit design



capacitive load CL, and (iv) each output drives a register (B4) that stores the incom-

ing data, the total bus delay is the sum of three components:

db ¼ din þ dw þ dout;

where din is the delay to drive buffer B1 and the cascaded buffers B2, dw is the

latency on the bus wire, and dout is the delay of B3 driving register B4.

Considering that the sequence of buffers B1, B2, and B3 needs to be sized so

that the buffers constitute a cascade driving a load of N buffers B3, that is, N �
CL, and disregarding the delay of the long wire, the delay (din þ dout) � dB4, where
dB4 is the delay of the last buffer B4, is computed using the formula for exponen-

tially tapered buffers [187]:

ðdin þ doutÞ � dB4 ¼ k N
CL

Cg

� �1=N

tmin

In this equation, k is the number of stages in the cascaded buffers and tmin is the

delay to drive a minimum size load with capacitance Cg, that is, Cg and tmin are

constants that depend on the technology.

The wire delay dw is a function of the length Lb (Lb ¼ N) and is calculated as

the Elmore delay:

dw ¼ 1

2
RCNðN � 1Þ

Finally, delay dB4 is calculated using a simple t model by the load capacitance and

the delay of buffer B4:

dB4 ¼ 0:69ðRn þ RlÞCL

where Rn is the effective transistor resistance for the used technology and Rl is the

resistance of the gate connected directly to buffer B4. Disregarding delay dB4, for
simplicity, the aforementioned equation gives a total bus delay as

db ¼ ðdin þ doutÞ � dB4

¼ k N
CL

Cg

0
@

1
A

1=k

tmin þ 1

2
RCNðN � 1Þ

¼ k1C
1=k
L N1=k þ k2N þ k3N

2

Thus, delay db, that is, the bus cycle TB, is O(N2), where N is the number of

interconnected systems.

Crossbar delay model
For the crossbar switch, we consider an N � N switch that enables any-to-any con-

nectivity. Each connection through the switch is composed of data lines only, and

the switch is assumed synchronous, with a clock cycle Ts. The selection of the

244 CHAPTER 13 Networks on chips



transfers to be performed during a cycle is made by a scheduler. Importantly, data

transmission is unidirectional in switches, differentiating these designs from the bus

design significantly; unidirectional transmission enables us to insert buffers (repea-

ters) in the connections and thus obtain improved transmission times. Figure 13-4

shows the two most common crossbar models, the inverter-based model and the

multiplexer-based one.

In the case of the inverter-based switch, we note that a transmitting system is

attached to the switch with a buffer (B1) that drives N tri-state buffers B3 and each

tri-state buffer B3 drives a register B4 (similarly to the bus), which latches transmit-

ted data at the receiver. Transmission between B1 and B3 is performed through a

line with cascaded buffers, which is modeled as an RC transmission line with

inserted buffers; the collection of repeaters is mentioned in Figure 13-4 as one sin-

gle buffer, denoted B2.

The transmission delay (dc) through the crossbar is

dc ¼ dic þ dx þ doc

where dic is the crossbar input delay, dx is the transmission delay through the inter-

nal crossbar, and doc is the output delay through buffer B3 and to latch B4.

We disregard the delay of latch B4, as in the case of the bus, and consider that

the length of crossbar wires is N in both axes, x and y, and that connections through

the crossbar are unidirectional. Then we can calculate the total delay as the delay of

the longest path, which has a length equal to 2N, passing through 2N � 1 cross-

points, as the maximum length per axis is N, using Bakoglu’s formula [12]:

dc ¼ 2:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0C0R intC int

p ¼ 2:5
ffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0C0R intCL

p
Thus, the delay of the buffer-based switch is O(N1/2), resulting in a switch cycle

TS ¼ O(N1/2).

In the case of a multiplexer-based switch, a transmitting system is connected to

the switch with a buffer (B1) that drives a 1-to-N demultiplexer, which, in turn, is

connected to N N-to-1 multiplexers; the 1-to-N demultiplexers and the N-to-1 mul-

tiplexers are shown in Figure 13-4, implemented as trees of 1-to-2 demultiplexers

and 2-to-1 multiplexers, respectively. At each output there exists a buffer B3 that

drives a register B4, which latches the transmitted data at the receiver.

Considering that the crossbar’s vertical control lines have length that grows as a

function of NlogN [46] and the sequence of (de)multiplexers, which is 2logN in a path

through the switch, the transmission delay (dc) through the crossbar is the sum:

dc ¼ dic þ dx þ doc

where dic is the crossbar input delay, dx is the transmission delay through the inter-

nal crossbar (RC line with inserted buffers B2), and doc is the output delay through

buffer B3 and to latch B4.

Based on the equation for dB4 in the bus delaymodel, we can calculate delays dic as

dic ¼ 0:69ðRn þ RLÞCL

245Technology and circuit design



Out N mux

In 1 demux

In 1 demux

...

...

...

..................

B1

B2

B3

Register

B4

Register Register Register Register Register

In 1

In 2

In N

Inverter-based crossbar switch

1×2 
demux

S0

S1

0

1×2 
demux

S0

S1

0

1×2 
demux

S0

S1

0

1×2
demux

S0

S1

0

1×2 
demux

S0

S1

0...

...

......

...

1×2 
demux

S0

S1

0

1×2 
demux

S0

S1

0

1×2 
demux

S0

S1

0

1×2 
demux

1×2 
m

ux

S0

S1

0

S
1

S
0

0

1×2 
m

ux

S
1

S
0

0

1×2 
m

ux

S
1

S
0

0

1×2 
m

ux

S
1

S
0

0

1×2 
m

ux

S
1

S
0

0

1×2 
demux

S0

S1

0...

...

...

...

... ...

In 1

In N

Register

Out N

Register

Out 1

...

...

B3

B4

Multiplexer-based crossbar switch

Out NOut N-1Out 1 Out 2 Out 3 Out 4

FIGURE 13-4

Inverter-based and multiplexer-based crossbar switch.

246 CHAPTER 13 Networks on chips



while doc ¼ dout, as in the case of the bus.

Considering that the capacitance seen from the input of a transmission gate is

calculated as [11]:

Ctg ¼ CL þ Cox

2
þ Cox

2

� �
;

where the delay through the multiplexers is the sum of the transmission gate and

inverter latencies:

dc ¼ 0:7ðCL þ CoxÞ þ 0:69ðRn þ RLÞCL

dx is calculated as a delay through a demultiplexer tree and a multiplexer tree:

dx ¼ dmux logN þ dmux logðN � 1Þ
Considering that delays of input and output buffers are negligible compared to (de-)

multiplexer delays, the total crossbar delay is

dc � dx ¼ 2dmux logðN � 1Þ
Thus, the delay through a multiplexer-based crossbar switch is a logarithmic func-

tion of its size, leading to a crossbar cycle TS ¼ O(logN).
The analysis can be applied not only to busses and crossbars, which represent

the two ends of the interconnection spectrum in terms of connectivity, but also

to other significant classes of interconnections, such as multistage networks (e.g.,

shuffle/exchange, Omega, butterfly), which constitute a significant class of inter-

connects suitable for NoCs. Such analysis is presented elsewhere [160] and is

important not only because it takes account of the physical characteristics of the

used technology, but also because it provides improved intuition in new implemen-

tations. For example, the presented analysis of bus and crossbar implementations in

NoCs indicates that parallelism in data transfers is effective not only because of the

high performance of the multiple parallel transfers, but also because it achieves

higher clock rates that benefit interconnected subsystems as well since they can

exploit the faster clock.

Power issues
Power consumption is important in systems-on-chip and networks-on-chip because

SoCs and NoCs are widely used in portable embedded systems, which are battery

operated, and in larger systems, which have packaging and cooling limitations

[81]. Various analyses have shown that almost half of the energy consumed in a

VLSI chip is spent on its wiring system [100], which may include long, high-

capacity wires traversing the chip. As the degree of integration increases, more

components are integrated on a chip and more wires are necessary to interconnect

them. Thus, more power is consumed on on-chip interconnections.

Efforts to design low-power on-chip communication and related interconnects

have led to several techniques. Several designs reduce the voltage swing as a

247Technology and circuit design



method to reduce power consumption. This technique, although successful in terms

of transmission power, trades reliability for power, as it decreases a circuit’s noise

immunity and makes on-chip communication channels less reliable and lossier.

Considering that unreliable communication leads to data retransmissions that

may eventually require more power than the power saved, designers have come

up with a technique that trades transmission speed for power rather than reliability

[188]. In this case, the system uses a feedback scheme where voltage swing and

operating frequency are determined online (in real time) by monitoring the error

rate of transmitted data and the resulting data retransmissions. As the retransmis-

sion rate decreases at a given operating frequency, the voltage swing decreases

as well. In contrast, an increment in voltage swing occurs when the retransmission

rate increases.

An alternative innovative technology that leads to lower power consumption

and improved performance in NoC design is that of silicon photonics. Silicon pho-

tonics is the application of photonic systems with silicon as the optical medium.

Conventional efforts suggest that integration of an optical network can be a viable

solution that increases bandwidth, reduces latency, and reduces power consump-

tion of the on-chip network [161].

SUMMARY
Networks-on-chip constitute an emerging technology for systems-on-chip, which

can benefit significantly from the techniques of network systems architecture, more

specifically from switching architectures. Architectural and circuit design methods

are critical in the design and evaluation of NoC architectures, considering the

strong dependency of NoCs on implementation technology and the requirements

of NoC architectures for high performance in addition to low power consumption.

This chapter presented the main technological challenges of NoC architectures and

a circuit analysis of NoC architectures using VLSI models, taking into account the

interaction of network structure and implementation technology.

248 CHAPTER 13 Networks on chips



CHAPTER

Run-time support systems14
SOFTWARE SUPPORT FOR NETWORK SYSTEMS
Previous chapters explored the hardware design issues of network system com-

ponents. These components require supporting software to operate correctly and

efficiently. Important software components for network systems typically include

the following.

• Software development environment: The software components used in a net-

work system need to be developed by a programmer. The software development

environment used for the creation of such software is an important component of

network systems. The availability of useful programming abstractions, libraries,

and so on determines how easily, quickly, and correctly this software can be

developed, which in turn may have considerable implications on the acceptance

of a system for deployment in the Internet. There are numerous alternatives for

software development, but we do not discuss them in detail, as the concepts of

creating static software are covered sufficiently in software development litera-

ture. Instead, we focus on dynamic software management, which is essential for,

and specific to, the networking domain.

• Software for control plane management: The control plane handles system

resource management, route computations, error handling, etc. This software

component needs to handle the control of data plane processing operation. We

discuss the general operating system issues related to this software component.

• Software for data plane processing: The software used in the data plane handles

the processing of network traffic. In this domain, software is somewhat less

complex (due to the relative simplicity of packet processing tasks compared

to the complexity of control plane software), but highly performance oriented.

The management of data plane processing resources is essential to achieve high

system throughput. We discuss the run-time management issues that arise in

this domain.

Thus, the main focus of this chapter is software used during the run time of

the system (i.e., not during offline operations, such as software development for

new data plane processing steps).

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
249



Network dynamics
As discussed in Chapter 7, the operations that a router needs to perform to forward

packets are well defined in RFCs. These standard operations have not changed since

they were defined. Therefore, it would seem that functions performed by the software

on a router are fixed and do not change over time. However, in practice there are sev-

eral additional software components in router systems (beyond the standard packet

forwarding) that require additional functionality that does indeed change. Examples

of changes to software or software components in network systems are as follows.

• Changes to routing algorithms: Routing algorithms are still an active area of

research and development. It is challenging to achieve stability in complex

routing algorithms (e.g., path-vector algorithms, such as BGP). There is also

a need to improve the speed of rerouting in case of link failures. Thus, it can be

expected that software that implements routing algorithms may need to be

updated as improved versions become available.

• Changes to forwarding implementation: While the functional requirements of

packet forwarding in the Internet are fixed, there are no requirements on how

these operations are implemented. As more management functions are necessary

to maintain operational efficiency (e.g., access control, billing, heavy-hitter flow

identification, intrusion detection), the implementation of packet forwarding on a

specific network system needs to be updated. These updates may also improve the

implementation of route lookup algorithms or flow classification algorithms (as

discussed in Chapters 7 and 8).

• Security updates: When using intrusion detection systems (see Chapter 10), the

implementation of detecting malicious packets may change when detection

rules are updated in response to new attacks.

In addition to these changes, it is also important to note that the diversity of

protocols and communication paradigms in next-generation networks will lead to

more diverse processing requirements. As discussed in Chapter 15, programma-

bility in the data plane is an essential aspect of next-generation networks. This

programmability implies that new software functions need to be accommodated

in the network dynamically.

These dynamics require that software changes over time. Therefore, it is neces-

sary to consider how such software can be managed in network systems at run time.

Run-time components
Network systems need to manage software and resources at run time both in the

control plane and in the data plane. In a typical router system, each plane uses its

own processing resources: The control plane uses a control processor that is similar

to a workstation processor and typically runs an embedded or real-time operating

system. The data plane uses embedded multicore network processors or other

specialized hardware to implement packet processing functions (see Chapter 11).

The related software components are shown in Figure 14-1.

250 CHAPTER 14 Run-time support systems



The type of run-time system or operating system needed for each component

depends on the complexity of the resource management tasks (e.g., types of

resources, complexity of dynamics). In the control plane, the following system

components need to be managed:

• Processing resources (typically single-core control processor) for several

control or error handling applications.

• System memory for program state, routing tables, monitoring information, etc.

Because control plane processors are typically capable of running a full embedded

operating system, the resource management is straightforward to implement.

The system components that need to be managed in the data plane include the

following:

• Processing resources (typically multicore packet processing engines) for multi-

ple packet streams requiring possibly different processing applications.

• System memory for packets, program state, forwarding tables, etc.

sw
itch 

interface
sw

itch 
interface

network
interface

network
interface

network
processor

embedded processor

routing, error handling,
resource control, etc.

scheduler

Per-flow
queuing,

scheduling

network
interface

Per-flow
queuing,

scheduling

network
interface

Packet forwarding,
intrusion detection,

flow classification, etc.

network
processor

Packet forwarding,
intrusion detection,

flow classification, etc.

control plane
data plane

switch fabric output portsinput ports

control processor

sw
itch 

interface
sw

itch 
interface

... ...

hardware software

FIGURE 14-1

Processing resources and software components in control and data plane.

251Software support for network systems



• Access to shared resources (hardware accelerators at high level, memory and

input/output (I/O) at low level).

Because of the simplicity of processors used in the data plane, it is typically

not possible to run a complete operating system on a packet processor. Instead,

lightweight run-time systems are used.

Software interfaces
Software on a router system uses well-defined interfaces between the major com-

ponents. Themain interfaces are between the control plane and the data plane, as well

as between system administrators and the control plane. It is also possible for system

administrators to interface with the data plane, but this is done less commonly.

Instead, the control plane is used as an intermediary to control the data plane.

Control plane–data plane interface
The interface between the control plane and the data plane provides a mechanism

for software running on the control processor to interact with software running on

the network processor on each router port. As discussed later, the software func-

tionality on router ports is very limited and thus this interface is typically relatively

simple. Attempts to standardize this interface to enable the combination of data

plane components with control plane components from different vendors have

not been particularly successful. In practice, this interface is based on proprietary

specifications and implementations.

Typical interactions for the interfaces between the control plane and the data

plane include the following.

• Updates of forwarding tables: The control plane needs to update the forwarding

tables used on each router port when routing changes occur. The interface

between the control plane and the data plane allows for updates to be sent from

the control processor to the network processors that perform packet forwarding.

• Collection of traffic statistics: The data plane may collect information on traffic

statistics (e.g., network usage statistics, NetFlow data). This interface can be

used to transport this information from the router ports to the control processors

where it can be aggregated and processed further.

• Installation of new data plane functionality: The control plane typically can

control the processing that takes place in data plane processors. While it does

not perform low-level resource management (which is done by the run-time

system in the data plane), the control plane can install (and uninstall) proces-

sing tasks available in the data plane and thus change the overall functionality

of the router.

There are numerous other possible interactions across this interface where the

control processor needs to send or receive control and data to or from the data

plane (e.g., connection setup, updates to packet processing functions).

252 CHAPTER 14 Run-time support systems



System administrator–control plane interface
The interface exposed by the network system to the system administrator provides

a way for the system to be configured and to be set up initially. Typical interac-

tions across this interface include:

• Configuration of system (e.g., interface IP addresses, security policies, etc.)

• Manual setup of routes (in case automatic routing is not possible or desirable)

• Software updates (e.g., support for new protocols in data plane, new routing

protocol in control plane)

This interface is the one that most people who have interacted with network sys-

tems are most familiar with since even simple router systems require some initial

setup. This interface is typically implemented using a command line interface or

a graphic interface (e.g., using simple Web server functionality). Unlike with the

control plane–data plane interface, interactions across the administrator–control

plane interface occur only occasionally and are not necessary during operation of

the system (assuming the configuration is set up correctly).

With this broad overview on the software support for network systems in mind,

we discuss more details on different types of control plane and data plane software.

OPERATING SYSTEM SUPPORT FOR NETWORKING
Simple router systems that do not use high-performance dedicated data plane pro-

cessors are often based on conventional operating systems (e.g., embedded variation

of Unix). In many cases, a single processor is used to implement both control plane

and data plane processing (e.g., an embedded ARM or MIPS instruction set proces-

sor). The software in such a network system is often not too different from what can

be encountered on typical workstations. The use of widely used operating systems

simplifies the software development for these systems.

Networking software in operating systems
Practically all modern operating systems have built-in support for networking func-

tionality. This functionality not only includes the protocol processing necessary

to have a computer act as an end system (i.e., by implementing application and

transport layer processing), but also the functionality that is necessary for router

systems (i.e., packet forwarding).

Figure 14-2 shows the main software components related to networking in a

typical Unix-based operating system (e.g., NetBSD, Linux). Above the network

interface drivers, each layer in the protocol stack (link layer, network layer, trans-

port layer) has its own processing component in the operating system kernel.

If different protocol stack configurations are used (e.g., UDP instead of TCP or a

different link layer), these processing components can be combined differently.

For simplicity, we only show the TCP/IP stack in Figure 14-2. Applications, which

253Operating system support for networking



are located in user space, use the socket interface to interact with the networking

protocol stack. Also located in user space are some components of the control

plane software. Route daemons handle route update computations and update to

the forwarding table in the IP forwarding component. Other control plane software

components (e.g., error handling in network layer) are part of the kernel.

In addition to networking software built into the kernel, operating systems also

provide a set of command line tools for administrators to manage system configu-

ration. These tools can be used to configure IP addresses of network interfaces, set

up static routes, obtain monitoring information, etc. For a more detailed discussion

of network software implementation inside the NetBSD operating system, see the

excellent book by Wright and Stevens [189].

Software interactions
We illustrate the interactions among the various networking software components

in an operating system using two scenarios: packet forwarding and route updates.

network interface driver

link layer input 
processing

link layer 
output 

processing

IP input 
processing

TCP input 
processing

TCP ouput 
processing

IP output 
processing

IP forwarding

route daemon

user space

OS kernel

application ...

FIGURE 14-2

Networking support in an operating system.

254 CHAPTER 14 Run-time support systems



Data plane: Packet forwarding
Packet forwarding requires packet processing up to the network layer. Figure 14-3

shows the forwarding process on a router connected to two communicating end

systems. The network layer modules used for packet forwarding are IP input pro-

cessing, IP forwarding, and IP output processing. Packets are received from the

link layer and processed by the IP input processing module. During this step, the

IP header is verified and the destination address is extracted. If the packet is not

destined for an IP address that is associated with the network system, then it is

passed to the IP forwarding module. The forwarding module performs a destination

address lookup to determine via which outgoing network interface the packet

should be sent. The forwarding module also performs the processing that adjusts

the time-to-live field in the IP header. Then, the packet is passed to the IP output

processing module, where it is queued and scheduled for transmission.

On the end systems, the IP input and output processing modules are also used.

However, because applications interact using a socket interface, transport layer

input and output processing is also performed. For simplicity, only one direction

of the TCP connection is shown. The forwarding module is present on end systems,

but is typically not used, as traffic either originates from or terminates at the end

system.

Control plane: Route update
Interactions for a route update between two software-based routers are shown in

Figure 14-4. The route daemon on one router initiates the exchange of a route

update. Route information is passed through the protocol stack on the sending

router and the receiving router. Note that route exchanges typically use TCP and

require bidirectional communication. For simplicity, only one direction of commu-

nication is shown. Once the route update has been processed by the route daemon,

any potential update to the forwarding table is passed into the kernel.

Figure 14-4 also shows the conceptual separation between the data plane and the

control plane (which is different from the kernel/user-space separation). Because the

data plane is typically limited to forwarding at the network layer, TCP processing

on a router is considered part of the control plane. Control plane information is

network interface driver

link layer input
processing

link layer output
processing

IP input 
processing

TCP input 
processing

TCP output 
processing

IP output 
processingIP forwarding

application

network interface driver

link layer input
processing

link layer output
processing

IP input 
processing

IP output
processingIP forwarding

network interface driver

link layer input 
processing

link layer output
processing

IP input 
processing

TCP input 
processing

TCP output 
processing

IP output
processing

IP forwarding

application

end system end systemrouter

TCP input 
processing

TCP output
processing

route daemon

FIGURE 14-3

Packet forwarding in an operating system.

255Operating system support for networking



exchanged between routers via the data plane. There is typically no direct commu-

nication mechanism between control planes of different network systems.

Performance considerations
The use of general-purpose processors with operating system support for network-

ing functionality is a straightforward way to design and implement a network sys-

tem. However, the scalability of both hardware and software is limited. Therefore,

the aggregate data rates that can be achieved by such network system designs are

typically limited to a few gigabits per second. We briefly discuss some of the

performance issues that arise in network systems that use conventional operating

systems and how they can be addressed.

Hardware limitations
Use of a conventional workstation processor in networking devices typically implies

that the overall system architecture is also similar to that of workstations. While

workstation systems have experienced considerable performance improvements

over the years, their inherent architecture is optimized for handling processing-

intensive tasks rather than optimized for high-speed input/output operations.

Specific limitations of conventional computer system architectures when used for

networking are as follows.

• Processing resources: Typical workstations use a single processor core or, more

recently, two or four cores. These cores are optimized to handle a few computer-

intensive tasks with low processing delay. However, they are not optimized to

perform comparatively simple packet processing steps at very high data rates.

As alluded to in Chapter 11, highly parallel network processors with a large num-

ber of simple processor cores can achieve higher throughput than conventional

workstation processors. However, such network processors are typically not

able to run complex operating systems (see later). Therefore, general operating

router router

route daemonroute daemon

control plane

data plane

TCP input
processing

IP input
processing

link layer input
processing

TCP input
processing

IP input
processing

link layer input
processing

link layer output
processing

network interface driver

IP forwarding IP forwarding

TCP output
processing

IP output
processing

link layer output
processing

network interface driver

TCP output
processing

IP output
processing

FIGURE 14-4

Route update in an operation system.

256 CHAPTER 14 Run-time support systems



systems are used mostly on processing systems that have inherently limited

packet forwarding performance.

• Input/output interconnect: The interconnect used for input and output is one of

the key factors in determining the maximum data rate that can be achieved by

a network system. In the case of conventional workstation system architecture,

all I/O traffic traverses the system bus that connects the network interfaces to

the processor(s). Each packet needs to traverse this bus at least twice: once to

go from the input interface to the processor and once from the processor to the

output interface. Typically, the bus is based on Peripheral Component Intercon-

nect (PCI), PCI-X, or PCI Express technology, which can provide data rates

ranging from several hundreds of megabits per second to several gigabits per

second.

• Centralized design: The system architecture of a conventional workstation pro-

cessor system is focused on a single central processing unit, a single system

bus, etc. This centralized design leads to system bottlenecks (as discussed ear-

lier for processing and I/O) and does not scale to high data rates. As discussed

in Chapter 7, modern high-performance routers use designs where scalability

can be achieved by replicating processing (and I/O) resources for each port.

These inherent hardware constraints have limited the use of general operating sys-

tems in the networking domain to systems where aggregate throughput demands do

not exceed a few gigabits per second at most. But even in such systems, there are

some important aspects to the networking software that ensure efficient operation.

Zero-copy packet processing
When performing the packet processing steps illustrated in Figures 14-3 and 14-4,

packets are passed from module to module (e.g., input link layer processing to

input network layer processing). In a straightforward software implementation,

each processing module is implemented as an independent function that is called

as the packet traverses the protocol stack. Packet data may be passed as a param-

eter in each function call. Such an implementation would be functionally correct,

but would also lead to very low system performance.

When passing packet data as a function parameter, a copy of the packet is

created on the processing stack. The process of copying the packet requires a large

number of memory operations, as the entire packet needs to be read once and

written once. In comparison to the amount of processing that is performed in each

software module in the protocol stack, these memory operations can easily domi-

nate the overall processing time. In addition, copying packets frequently may cause

the memory interface to become a performance bottleneck as regular memory

accesses for packet processing have to compete with memory accesses due to

copying.

To counter this potential problem, most modern operating systems aim to mini-

mize the number of times packets are copied while being handled in the protocol

stack. In particular, two techniques are widely used.

257Operating system support for networking



• Direct Memory Access (DMA): In a straightforward implementation of packet

I/O in an operating system, a network interface notifies the central processing

unit when a packet is received. The CPU then reads the packet from the interface

and stores it in system memory. This process has two key drawbacks. First, the

central processing unit is involved in receiving the packet. During the time that

the packet is copied from the input interface to memory, the CPU cannot do other

useful processing (i.e., forward packets that have been received previously).

In extreme cases, this can lead to live-lock where high input data rates can trigger

so many system interrupts that the forwarding rate drops to zero. Second, packets

need to cross the system bus twice—once from the input interface to the processor

and once from the processor to memory. This step of indirection via the processor

is not really necessary, as receiving the packet does not involve any actual pro-

cessing. To tackle these issues, DMA can be used to transfer packets directly from

the input interface to memory. The processor assigns a dedicated memory space

to each input interface. The interface can manage this memory space and directly

copy incoming packets without involvement of the central processing unit.

Once a packet is completely received, a control signal is sent to the CPU to inform

it of the available packet. The process for packet reception without and with

DMA is shown in Figure 14-5.

• Zero-copy packet processing: Once a packet has been received by the operating

system, several protocol processing modules need to have access to it. Instead of

creating copies of the packet and passing it in function calls to these modules,

many operating systems implement a zero-copy strategy. The packet remains

in a fixed memory location, and only pointers to the packet data structure are

passed among function calls. This process requires a data structure that allows

headers to be removed from the packet (without copying the packet) as the pro-

tocol stack is traversed upward. On the downward traversal of the protocol stack,

headers need to be added to the packet. One way to ensure that headers can be

appended to the front of a packet without moving the actual packet data is to

use a buffer chain as discussed in Chapter 7.

network
interface

network
interface

memoryprocessormemoryprocessor

without DMA with DMA

FIGURE 14-5

Packet reception without and with Direct Memory Access.

258 CHAPTER 14 Run-time support systems



These two techniques of DMA and zero-copy processing support the efficient

processing of network traffic in the operating system kernel.

Kernel vs user-space processing
Operating systems clearly separate processing that takes place in the operating sys-

tem kernel and processing that takes place in user space. This separation is necessary

to ensure isolation of individual computational processes and to protect the system in

case of program failures. One important side effect of this separation is that data

structures in the kernel use a different memory space than data structures used in

user-space processes. Thus, when data move across the boundary between kernel

and user space (e.g., to reach an application after completing TCP input processing

as shown in Figure 14-3), it needs to be copied from one memory space to another.

A zero-copy implementation, as it is done inside the operating system kernel, is not

possible. Otherwise, a user-space process would have access to memory space that

is reserved for the kernel, leading to potential vulnerabilities.

This copying step has important implications on packet processing in user space.

Due to the overhead for traversing the kernel/user-space boundary, it is not practical

to implement high-performance packet processing functionality in user space. While

some networking functionality is placed in user space (e.g., route daemons), it is typ-

ically limited to slow-path and control plane processing. In contract, advanced packet

processing functions require modification in the operating system kernel. These

functions can be introduced either by recompiling the operating system kernel or

by using loadable kernel modules that can be added to the kernel at run time.

This need for pushing high-performance networking functionality into the operating

system kernel makes the development of advanced packet processing functions

a more complex effort.

SPECIALIZED ROUTER SOFTWARE
The use of general-purpose operating systems is a convenient way to implement

router functionality on a workstation computer. For high-performance routers, this

approach is not sufficient due to the performance limitations in the hardware and

software design as discussed previously. In particular, the distributed design of

high-performance routers with multiple independent ports with highly parallel

packet processors does not mesh well with conventional operating system design,

which is optimized for a single processing system (possibly with multiple proces-

sor cores). Therefore, specialized router operating systems have been developed.

Router operating systems
Router operating systems consist of software that handles control plane processing

as well as data plane forwarding. Router operating systems can be based on open

source operating systems or on proprietary implementations. In either case, the

259Specialized router software



functionality of the router OS focuses on networking operations. Thus, there is lit-

tle or no support for general-purpose processing tasks.

Software structure
The structure of a generic router operating system is shown in Figure 14-6. On the

control processor, the router operating system performs processing for one or more

routing protocols. These routing protocols have access to the routing information

base to determine forwarding rules. The forwarding information base is replicated

on each port of the router, where packet processing software performs the proces-

sing necessary to forward packets. Note that this software component is replicated

across all ports and runs independently and in parallel. The output packet proces-

sors perform processing to queue packets and schedule them for transmission on

control processor

routing 
protocol 

A

routing 
protocol 

B monitor-
ing

...

...

......

input packet 
processor

routing information base 
(RIB)

forwarding 
information 
base (FIB)

packet 
processing 

software

input packet 
processor

forwarding 
information 
base (FIB)

packet 
processing 

software

output 
packet 

processor

output 
packet 

processor

switching 
fabric

link 
sched-
uling

link 
sched-
uling

FIGURE 14-6

Structure of a router operating system.

260 CHAPTER 14 Run-time support systems



the outgoing link. The control processor also may implement additional monitoring

and management functions.

The key characteristic of router operating systems, by which they differ from

conventional operating systems, is that networking functionality is distributed

across multiple components. Conventional operating systems (Figure 14-2) imple-

ment control plane and data plane processing on a single processing system. In

contrast, router operating systems (Figure 14-6) can separate data plane processing

so that it can be implemented on processors on multiple parallel router ports. This

approach has several benefits.

• Support for scalability: Separation of the data plane from the control plane

allows data path processing to be replicated on multiple independent packet

processors. This support for parallelism in the data plane presents the founda-

tion for a scalable router design.

• Support for heterogeneity: Separation of the data plane from the control plane

also allows for a range of router designs, where data path processing is imple-

mented by a diverse set of packet processors. This flexibility to support hetero-

geneous processing platforms is useful for commercial routers, where a single

system design can be configured with different data plane processors (e.g.,

low-performance single-core processor or high-performance network proces-

sor) to target different market segments.

The control plane software in a router OS is conceptually similar to that in con-

ventional operating systems. In contrast, data plane software shows considerable

differences that aim at achieving higher performance, as discussed later.

Example router operating systems
Router operating systems have been developed in the commercial domain as well

as in the academic domain. Many of the commercial solutions are proprietary, and

internal details about design and implementation are not publicly available. In con-

trast, the user interface for administrators is typically well documented, as it is in a

router vendor’s best interest to have a broad base of users who are familiar with

their products. Academic solutions are often open source to allow other researchers

to learn about the design and implementation and to contribute to improvements of

the system. Examples from each domain include

• Cisco Internetwork Operating System (IOS): The IOS software is deployed in

most modern Cisco routers and switches. It provides control plane functionality

for routing and monitoring, as well as packet processing functions for the data

plane. Administrators interact with IOS through a command line interface.

More details on the Cisco IOS can be found elsewhere [30].

• eXtensible Open Router Platform (XORP): The XORP software is a Linux dis-

tribution that implements a router operating system, including several routing

protocols in the control plane. The data path processing is implemented with

Click modular router software, which is discussed later. More details on XORP

can be found elsewhere [60, 193].

261Specialized router software



Both router OS examples can be used with different hardware solutions to

implement packet processing functionality.

Packet processing software
Packet processing software is used in the data plane of the router to implement pac-

ket forwarding and any other processing steps necessary in the data plane. This soft-

ware is a key to achieving high-throughput performance on the network system.

As discussed in Chapter 11, different hardware platforms are used to provide the nec-

essary processing power (e.g., embedded multicore network processors). The packet

processing software needs to be able to exploit these available hardware resources.

Software abstractions
Performance in the data plane relies on parallel processing of packets. There are

two models for how to exploit parallelism on packet processors.

• Run-to-completion: In the run-to-completion model, the entire packet proces-

sing functionality is implemented on each of the parallel processor cores.

In Figure 14-7, this software model is shown for an example scenario with four

processing steps and four processors. Packets are distributed to all processors

(e.g., using round-robin). Once a packet is assigned to a processor, all proces-

sing steps are performed on that processor.

• Functional pipelining: In the pipelining model, different processing steps are

placed on different processors and packets are passed between processors, as

step 1

step 1

step 2

step 3

step 4

step 1

step 2

step 3

step 4

step 1

step 2

step 3

step 4

step 1

step 2

step 3

step 4

step 2 step 3 step 4

processor 4processor 3processor 2processor 1

processor 4processor 3processor 2processor 1

Pipelining

Run-to-completion

FIGURE 14-7

Comparison of run-to-completion and pipelining models for packet processing.

262 CHAPTER 14 Run-time support systems



shown in Figure 14-7. In most cases, the pipeline is functional rather than phys-

ical, as most network processors use more complex processor interconnects.

Note that when the number of processing steps does not match the number of

processors, multiple steps can be placed on a single processor or multiple par-

allel pipelines can be used.

Several trade-offs need to be considered when deciding between these two

processing models. The main benefit of run-to-completion is the simplicity of soft-

ware development. Because all processing steps are located on all processor cores,

the entire processing code can be developed as a monolithic application and

installed on each core. However, this approach also puts high demands on the

instruction store of the packet processing platform, as each core needs to have

the entire processing application available. In systems where instruction store can

be shared between processors, this problem can be alleviated. In the pipeline

model, each processing step exists only once, which reduces the demands for

instruction store. The main challenge with pipelining is that performance of a pipe-

line is determined by its slowest element. If processing steps are unbalanced, the

most processing-intensive step determines system performance. Another benefit

of having each processing step exist only once is that it simplifies the use of global

data structures. In run-to-completion, duplicates of processing steps need to coor-

dinate to ensure consistent use of data structures (e.g., when counting packets,

updating queue pointers).

Modular packet processing
Even when using the run-to-completion model, packet processing software is struct-

ured internally into multiple processing steps. This structuring allows easier software

development, as well as adjustment to new packet processing functions (e.g., for future

network architectures as discussed in Chapter 15).Modularization can be achieved sim-

ply by using separate function calls for different packet processing steps. A more

structured approach is to break packet processing into independent modules and pro-

vide a support system to combine different modules into a coherent packet processing

implementation.

An example of a modular configuration of data path processing elements is

shown in Figure 14-8. A packet processed in this configuration traverses one path

from the input link processing to output link processing (unless it is dropped along

the way). Note that different packets may traverse different paths (e.g., ARP

responses are handled differently than IP packets).

One example of a modularized implementation is the Click modular router

[91]. In Click, processing steps are implemented by modules implemented in

Cþþ. These modules are connected either directly or via queues, where packets

can be buffered. Click provides a library of modules that can be used to implement

standard protocols, but it is also possible to introduce new modules to extend the

router’s functionality. Once a click configuration is determined, the processing

code can be installed in the kernel of Linux-based routers. There are extensions

263Specialized router software



to Click to support symmetric multiprocessing [26] and specialized hardware (e.g.,

Intel IXP network processor) [163].

Run-time management
As discussed earlier in this chapter, dynamic changes in workload are a fundamen-

tal aspect of network processing. Therefore, it is important to have a run-time

management component in the data plane of routers. Because many specialized

packet processing systems do not support full operating systems, run-time support

is typically limited to a few target functions.

When considering modular router configurations as illustrated in Figure 14-8, it

becomes clear that placing processing tasks onto processor cores is slightly more

complex than illustrated in Figure 14-7. When using run-to-completion, all proces-

sing modules can be replicated on all cores, but the overhead for instruction store

may prevent such a solution—in particular in systems where a large number of

possible modules can be used by network traffic. Instead, it is more common to

place modules onto different processor cores. Run-time management systems han-

dle the assignment of modules to processor cores. For this assignment, several

goals and constraints need to be considered.

• Load balancing: Changes in the amounts of network traffic that traverse differ-

ent paths in the graph of packet processing modules cause changes in the

amount of processing resources required for each module. Thus, a run-time

management system needs to allocate processing tasks considering this load

factor. In particular, the goal of allocation is to balance the processing load

across processor cores such that there are no performance bottlenecks. Assum-

ing that the processing load for each module is known (e.g., by measuring the

amount of network traffic going into each module and by measuring the amount

of processing necessary for each packet), the run-time system can attempt to

balance the load evenly across cores. This balancing step can be trivial for some

configurations (e.g., when using run-to-completion), but it can be computation-

ally complex in other scenarios. In many cases, it is necessary to solve the

equivalent of the bin-packing problem, which is known to be NP complete.

ARP
response

link layer
receive

link layer
transmit

ICMP
error

handling

classifier
IP header

check

IP 
decrement

TTL

ARP
query

schedulerIP lookup

FIGURE 14-8

Example of packet processing modules in extensible router software.

264 CHAPTER 14 Run-time support systems



Thus, many run-time systems use a heuristic approach to balancing processing

load across processor cores.

• Interconnect load: Depending on the placement of processing tasks, a packet

may need to traverse the processor interconnect when moving from one proces-

sing step to the next. For example, pipelining as shown in Figure 14-7 requires

each packet to traverse the interconnect between processing steps. In contrast,

run-to-completion requires packets to be sent across the interconnect at the

beginning of the processing and at the end. In some packet processing systems,

the interconnect bandwidth is limited and thus the run-time system may need to

consider this constraint when allocating processing tasks.

• Access to shared memory: Processing modules may need access to certain local

and global data structures. Data structures shared between modules may require

complex memory accesses and locks to ensure consistency. Thus, the place-

ment of processing tasks that share such data structures may have an impact

on system performance. Some run-time systems can consider these effects

when making allocations of processing modules to processor cores.

Dynamic adaptation of module allocation is necessary to accommodate changes

in network traffic. Thus, any allocation determined by a run-time system is only

temporary. While the system operates, the run-time system continues to monitor

network traffic and changes the module allocation as necessary. There are several

example systems that implement dynamic run-time management for packet proces-

sors. In the system proposed by Kokku and colleagues [92], processing tasks can

be duplicated across multiple processor cores. As processing demands increase,

more processor cores are allocated to a module. While this system operates at a

very coarse scale, it is one of the first examples of a dynamically adapting run-time

system for network processors. A more fine-grained module allocation is proposed

by Wu and Wolf [191], where Click modules are replicated based on processing

demands. By achieving a balanced workload through replication of tasks, the

run-time system can achieve load balancing without having to solve a packing

problem where different-sized tasks need to be allocated evenly to the system’s

processors. This run-time system shows better performance than a Click imple-

mentation for symmetric multiprocessors.

SUMMARY
This chapter discussed the software that is used on network systems. This software

can be structured into the control plane software that implements routing protocols

and other control functions and the data plane software that implements packet for-

warding operations. Router systems, where ease of code development is more impor-

tant than high performance, may use conventional operating systems to implement

control and data plane functionality. Most modern operating systems have support

for efficient network processing. In high-performance routers, specialized router

265Summary



operating systems are used to provide support for scalable and heterogeneous router

platforms. Data path processing in these systems may use modular router software,

which permits dynamic configuration of data plane functionality. Run-time systems

for packet processing platforms manage the dynamic module allocation process in

response to changes in network traffic.

266 CHAPTER 14 Run-time support systems



CHAPTER

Next-generation Internet
architecture 15
NEED FOR NEXT-GENERATION INTERNET
Previous chapters discussed many system designs and technologies that are or

could be deployed today. These topics are important for understanding the needs

of today’s networks and for designing and implementing systems that can be

deployed in the Internet in the near future. However, it is also important to look

beyond this horizon and to be able to anticipate the developments in networking

that will shape the medium- to long-term future of the Internet.

This chapter discusses some of the fundamental issues in next-generation Internet

architecture. In particular, we focus on the following.

• Trends in networking: A number of ongoing and emerging trends change the way

networks are used, what devices are connected to networks, and what functions

are provided by the network infrastructure. These trends have considerable impact

on the design of next-generation network architecture.

• Network virtualization: A key feature likely to be at the core of next-generation

networks is virtualization. Using virtualization, multiple networks with differ-

ent functionalities and protocol stacks can share a single physical infrastructure.

This support for diversity in a single network infrastructure is essential to

accommodate the demands placed on the network.

• Programmability: To support virtualization and the associated diversity in

packet processing, programmability in the data path of routers is a necessary

support function. This programmability is exposed to end systems to allow

for a selection of packet processing functions at run time.

NETWORKING TRENDS
When Internet architecture was developed in the 1970s through the specification of

core protocols (i.e., TCP/IP), it was hard to envision the vast success it would

achieve in the 1990s and 2000s. It was an amazing feat to design a network archi-

tecture that could support a huge number of very diverse applications, ranging from

Web browsing to email, online banking, interactive gaming, video distribution,

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved.
267



voice communication, social networking, etc. The design principles that were the

basis for this architecture are described in more detail elsewhere [34].

Limitations in the Internet
Due to the widespread use of the Internet for diverse applications, it has become

clear that there are also a few limitations in the original Internet architecture. These

limitations are mostly founded in the way the Internet Protocol (IP) operates.

Because IP is the one protocol in the Internet that needs to be supported by every

system and that is used every time data are communicated, these limitations impact

the entire Internet. Examples of shortcomings in the Internet architecture include

the following.

• Lack of inherent security: Security in the current Internet relies on the use of

either end-system protocols (e.g., Transport Layer Security) or supplementary

network devices (e.g., firewalls or intrusion detection systems). There is no

inherent support for security, as IP addresses do not provide strong identities

(they can be spoofed easily) and routers forward packets without performing

any verification on traffic. As discussed in Chapter 10, this shortcoming of

security support in the network has led to a range of attacks, ranging from

denial of service (DoS) to phishing and end-system hacking.

• Lack of quality of service: While the IP contains a header field where packets

should be able to indicate their quality-of-service needs, most routers do not con-

sider these header values when making forwarding and scheduling decisions.

Instead, all traffic is treated equally, which leads to potential problems when

high-bandwidth connections share links with interactive traffic that has delay

deadlines as discussed in Chapter 10. These problems are typically circumvented

by overprovisioning networking resources. The network architecture itself does

not provide any support for explicitly handling quality of service.

• Limitations in scaling: The Internet connects billions of end systems and thus

has achieved a level of scalability that has been achieved by only few other

engineered systems (e.g., telephone network). However, the number of avail-

able addresses in the currently used version 4 of the IP is not sufficient to

provide a unique identifier to each end-system interface. This limitation has

led to problematic fixes (e.g., use of private networks with Network Address

Translation as discussed in Chapter 8) that violate the Internet architecture.

A new version of the IP protocol has been proposed (e.g., IP version 6), but

its global deployment would require a complete change in much of the physical

networking infrastructure, which may be prohibitively expensive.

• Limitations to support emerging networking paradigms: Asmore diverse end sys-

tems are connected through the Internet (e.g., cell phones, sensors), the network-

ing paradigms used shift away from classic connection-oriented client–server (or

even peer-to-peer) communication. Some of these emerging communication

paradigms, for example, content-centric networking, are difficult to implement

using the existing IP infrastructure.

268 CHAPTER 15 Next-generation Internet architecture



In particular, the lack of support for emerging networking paradigms is a problem

that cannot be tackled easily by employing existing techniques. We discuss this

issue further later.

Extended reach of the Internet
The number and types of end systems connected through networks and the Internet

have continued to change over time. In the 1970s and 1980s, the first data networks

connected a handful of large computers located at academic and industrial comput-

ing centers. The emergence of workstation computers extended the reach of the

Internet to desktops in the workplace and later at home. In the 2000s, mobile wire-

less phones with data capabilities stretched the reach of the Internet to the point

where an individual can be connected nearly at all times in nearly all places. This

expansion continues with a rising number of embedded systems using the Internet

for communication (e.g., home automation, sensor networks, cars).

The expansion of the Internet to a larger number of end systems stresses the

scalability of the network design and its components. As discussed throughout this

book, ensuring that network systems can achieve their maximum performance is an

important aspect for ensuring that the Internet continues to handle this increase in

systems and traffic. The types of systems used in the Internet have also increased

in diversity. The following list provides a few examples of end systems that have

been equipped with the ability to communicate via the Internet. Their introduction

to the network has changed the demands on the Internet in terms of functionality

and performance.

• Home entertainment: A large amount of entertainment media is available in

digital format and can be accessed via the Internet. Types of entertainment

media range from online radio stations to (free or subscription) downloads of

movies and media service. This shift from physical media (e.g., video cassettes,

DVD) to networked media has increased the demand on network bandwidth

significantly.

• Mobile wireless devices: Many wireless cell phones and PDAs are equipped

with data communication capabilities. Unlike conventional end systems, these

devices need to change their access to the network as they are being carried

around. This mobility implies that traffic needs to be routed differently as the

receiving device’s location changes. This functionality can be provided by

mobility protocols, which are important for next-generation networks.

• Sensor networks: Sensors measure properties of the physical world and commu-

nicate their information via the network. Typical applications for sensor net-

works include surveillance, home automation, traffic control, environment

monitoring, etc. Sensors are typically connected using a wireless ad-hoc net-

work that may be severely constrained in transmission range and available

power. Therefore, specific communication paradigms have been developed

(e.g., in-network information fusion) to operate such sensor networks. There

is a need for integrating such functionality into the Internet.

269Networking trends



Demands on the Internet continue to expand. These new systems not only demand

additional network resources, but also require changes in theway the network operates.

New networking paradigms
The trend toward heterogeneity in systems connected via the Internet has impacted

the diversities of networking paradigms used in the network. While traditional

communication principles based on client–server architecture still dominate the

Internet, there are several other approaches on how to distribute information across

the network. Some of them, for example, peer-to-peer networking, can be imple-

mented in the existing networking infrastructure. However, others require a fun-

damental change in the way the network operates. The latter requires changes in

the network that cannot be accommodated in the current Internet, but need to be

considered for future Internet architectures.

Examples of communication paradigms that differ from client–server architec-

tures are:

• Peer-to-peer networking: Peer-to-peer (P2P) networks combine the roles of the

client and the server in each of the peer nodes [134]. Figure 15-1 shows client–

server communication, and Figure 15-2 shows peer-to-peer communication in

contrast. Instead of distributing information from a single centralized server,

all peers participate in acting as servers to which other peers can connect. Using

appropriate control information, a peer can determine which other peer to con-

nect to in order to obtain a certain piece of information. This P2P communication

request

response
request

response

original
     data

FIGURE 15-1

Client–server communication in network.

270 CHAPTER 15 Next-generation Internet architecture



can be implemented using existing networking technology, as it simply requires

changes to the end-system application.

• Content delivery networks: Content delivery networks aim to push content from

the source (i.e., server) toward potential users (i.e., clients) instead of waiting

for clients to explicitly pull content. Figure 15-3 shows this process. The proactive

distribution of content allows clients to access copies of content located closer.

Thus, better access performance can be achieved thanwhen accessing the original

server. The use of content distribution requires that the network supports mecha-

nisms that allow redirection of a request to a local copy. In practice, this type of

anycast can be achieved bymanipulating DNS entries as described in Hardie [61].

• Information fusion in sensor networks: Many sensor networks consist of low-

power wireless sensors that monitor physical properties of the environment

[152]. These sensor networks communicate using wireless ad hoc networks that

do not provide continuous connectivity. Sensing results are transmitted between

neighbors for further relay, as illustrated in Figure 15-4. In applications where

data collected by multiple sensors can be aggregated, information fusion is

employed (e.g., to determine the maximum observed temperature, a node can

aggregate all the available thermal sensor results and compute the results of the

maximum function). In such networks, access to data is considerably different

from conventional client–server architectures, as direct access to the source of

data (i.e., the sensor) is not possible.

• Delay-tolerant networking: Delay-tolerant networks consist of network systems

that cannot provide continuous connectivity [51]. Application domains include

vehicular networks, where vehicles may be disconnected for some time, and

original
data

copy of
data

request
response

response

request

FIGURE 15-2

Peer-to-peer communication in network.

271Networking trends



mobile ad hoc networks in general. Protocols used in delay-tolerant networks

are typically based on a store-and-forward approach, as it cannot be assumed

that a complete end-to-end path can be established for conventional com-

munication. Figure 15-5 shows this type of communication. The requirement

for nodes to store data for potentially considerable amounts of time requires

fundamental changes in the functionality of network systems.

These new communication paradigms shift the fundamental requirements of the

network architecture.

original
data

copy of
data

copy of
data copy of

data

resp.
req.

request

response

proactive
distribution

FIGURE 15-3

Content delivery in network.

aggregate
sensor
data

aggregate
sensor
data

aggregate
sensor
data

aggregate
sensor
data

sensor
network

sensor
data

sensor
data

sensor
data

request
response

FIGURE 15-4

Information fusion in network.

272 CHAPTER 15 Next-generation Internet architecture



Implications
These networking trends clearly show that functional and performance demands on

the Internet are increasing. The requirements for increasing performance can be

met by higher link speeds and routers with higher aggregate throughput. However,

the expanded functional demands cannot be met by the current Internet. The cur-

rent version of the IP limits the functionality of the network to this one protocol.

Even when using newer versions of IP (e.g., IPv6 [40]), the basic communication

paradigms remain the same and some of the key issues in the network architecture

remain unresolved (e.g., security).

A comprehensive solution to the weaknesses in the current Internet requires

a fundamentally new network architecture. Many different proposals for such

architecture have emerged from industry and the networking research community.

However, there is no consensus on what the specific network architecture looks

like. However, among all proposed solutions, there seem to be two dominating

themes: network virtualization and programmability. We discuss each in more

detail. It is important to note, however, that these two principles alone do not

provide a complete network architecture. Many details need to be determined

before a new Internet comes into existence.

NETWORK VIRTUALIZATION
Network virtualization is technology that allows the coexistence of multiple paral-

lel network architectures on a single physical infrastructure. The support for mul-

tiple different networks ensures that the diversity in systems and communication

paradigms can be accommodated.

Diversity of protocols
When considering the expanding demands on the network, one key observation

crystallizes: It is very unlikely that a single network architecture fits all uses.

The diversity of network use is so large that there are too many conflicting

demands that cannot be brought into agreement in a single network. Consider

the following three examples of application domains with conflicting needs for

network support.

data carrier
(e.g., truck, bus)

data

data data

orbiting
satellite

dataresp. req.

FIGURE 15-5

Delay-tolerant communication in network.

273Network virtualization



• On-demand video distribution: Online video distribution has very clear quality

of service requirements for low delay and high bandwidth. This application

domain requires a network where such requirements can be provided either

through explicit QoS functionality or through overprovisioning. In some cases,

it may also be beneficial to have multicast support to distribute video to multi-

ple receivers in parallel.

• Secure banking: For secure banking (and many other security-related uses),

there is typically an acceptable trade-off toward higher security guarantees

at the cost of performance. This application domain may require heavy-

weight security protocols to provide authentication of end-system identities,

privacy of communication, and defenses against DoS or man-in-the-middle

attacks. The use of cryptographic functions in these protocols typically

implies that the throughput performance is considerably lower than in

conventional networks.

• Sensor network: Sensor networks are typically based on embedded nodes

with a limited battery lifetime. Protocols for such systems aim to minimize

the use of energy while providing near real-time access to sensor information.

Nodes may be put into a sleep state to conserve their energy. Thus, the net-

work protocols used in this domain are fundamentally different from the

ones used in the current Internet, where continuous end-to-end connectivity

is assumed.

These examples illustrate that it is extremely difficult, if not impossible, to

design a single network protocol that can provide the performance and QoS

needed for video distribution, as well as the security needed for online banking

and the energy conservation needed for sensor networks. Therefore, it is desir-

able that the future Internet support multiple different networks in parallel.

End-user applications can connect to the virtual network that is most suitable

for them.

Single infrastructure
Despite the need for diversity in the protocols used in the network, it is highly

desirable to use a single physical infrastructure to provide network connectivity.

A single infrastructure allows the amortization of system cost over all networks

deployed. This need for sharing cost becomes particularly apparent when consider-

ing that the alternative would require the deployment of separate sets of links and

routers for each individual network.

Sharing of network infrastructure has been a crucial aspect of the current Inter-

net. The use of statistical multiplexing for network traffic is at the core of the

Internet design and has allowed the Internet to grow to its current scale. However,

to support different network protocols, multiplexing has to happen at a different

level in the system. Hardware resources need to be shared among networks with

different protocols rather than packets within the same network. This kind of

resource sharing can be achieved with network virtualization.

274 CHAPTER 15 Next-generation Internet architecture



Virtualized networks
Network virtualization is a mechanism used to separate a single physical network

into multiple logical networks. Virtual networks are often referred to as “slices.”

Each slice can be configured with different protocols and thus can be optimized

for a different application domain. Figure 15-6 illustrates how two slices with

different protocol stacks share a single network infrastructure. The virtual topology

of each slice is also shown.

It is important to note that in the context of next-generation networks, virtualiza-

tion refers to logical network configurations that span the entire protocol stack from

the link layer to the application layer. This type of virtualization should not be con-

fused with virtualization technology used in local area networks (LANs). Virtual

LANs (VLANs) are used to configure logical subnets within a single physical local

area network [65]. In such VLANs, the protocol stack is typically the same for

all virtual networks. Thus, VLAN technology does not provide as comprehensive

a virtualization solution as is necessary for next-generation networks. However,

VLANs can be used as a partial solution for the link layer as discussed later.

virtual network 1

virtual network 2

FIGURE 15-6

Two virtual network slices with different protocol stacks on a single network infrastructure.

275Network virtualization



The use of network virtualization requires that the physical infrastructure is

able to split hardware resources among virtual networks and ensure isolation.

Resource virtualization and isolation
Virtualization in networks requires that multiple networks with different protocol

stacks can coexist on the same physical infrastructure. To accomplish that, all

resources used by the network need to be virtualized. These include link band-

width, processing capacity on routers, packet storage on routers, etc. Instead of

making these resources directly available to a particular network, they are managed

by an intermediary layer of software (or hardware) that allocates them to different

virtual networks. This process of platform virtualization is similar to what is done

in workstations where multiple operating systems can coexist on the same physical

computer. Virtualization software ensures that resources are shared among the

virtual operating systems and that operations of one operating system do not affect

another operating system.

When creatingmultiple network slices, it is essential to provide isolation between

slices with respect to the physical resources in the infrastructure. Each virtual net-

work has a certain amount of resources allocated and should not exceed its use (unless

no other slice requires them). Resource isolation ensures that accidental or malicious

attempts by one network slice to use resources from other slices can be contained. In

particular, there are three types of resources for which isolation needs to be ensured.

• Link bandwidth: Because physical links may carry traffic from multiple virtual

network slices, it is important to ensure that the amount of bandwidth available

to each slice can be controlled by the network. In the simplest case, a time-

division multiplexing approach may be used. It is also possible to use fair

queuing approaches discussed in Chapter 10. Virtual LANs are one possible

way to separate physical link resources into multiple virtual topologies.

• Processing resources: Each virtual slice requires some protocol operations (as

defined by each protocol stack). To implement these protocol operations, pro-

grammable packet processing platforms are used (as discussed later and in

Chapter 11). The processing resources of these systems need to be shared among

all slices and thus require isolation. On multicore processing systems, individual

processors can be dedicated to different slices. On single-core systems, operating

system techniques can be employed to implement processor sharing.

• Memory resources:Memory is necessary to store packets (e.g., queue on outgoing

interface) and program state for packet processing functions. Even in multicore

packet processing systems, there are only few different physical memories.

These memories need to be shared among virtual slices. Memory virtualization

techniques can be used to provide a layer of indirection between packet pro-

cessing functions and physical memories, where isolation can implemented.

Using isolation techniques, the physical infrastructure can ensure that separate

virtual network slices can operate without negative interactions. Thus, from the

276 CHAPTER 15 Next-generation Internet architecture



perspective of each virtual slice, the network consists of the virtual topology of

dedicated resources.

Dynamic network deployment
A key aspect of virtualization is the ability to deploy net virtual networks dynami-

cally. As new application domains emerge and additional network functionality is

necessary, a new virtual slice can be instantiated on the infrastructure during run

time. Thus, it is not necessary to stop the operation of other slices to instantiate

a new slice. Instead, each affected router and link reserves the necessary resources

for the new slice and installs the necessary protocol stack functionality.

One important research question for dynamic instantiation of virtual networks

is to determine how to map a virtual network’s requirements to the physical

infrastructure. Typically, requirements for the virtual network are given by

• The set of nodes that need to be connected by the virtual network

• The traffic requirements between nodes (e.g., as specified by a traffic matrix)

• The virtual topology providing the connectivity graph between nodes

For an example of the approaches that can be taken to solve the allocation problem,

see Zhu and Ammar [197], where several heuristics and optimization strategies are

discussed.

PROGRAMMABILITY
The use of virtualization to provide diverse network slices requires that the net-

work infrastructure can implement different network protocols within these slices.

Because slices may be deployed on-demand, it is not possible to know a priori

what protocol processing functions are necessary on a router system. Thus, it is

necessary for programmable packet processing systems to implement software-based

protocol processing in these virtual networks. As discussed in Chapter 11, the use of

programmable network processors provides a mechanism for dynamically chang-

ing protocol processing functions. Systems that are based on fixed function logic

(e.g., ASIC) cannot provide such flexibility. Thus, programmability in the data

path of routers is at the core of network virtualization.

Programmability in next-generation networks
The use of virtualization dictates that routers can be programmed to implement the

protocol functions of virtual network slices. Thus, programmability of data path pro-

cessing is a universal feature in virtualized networks. However, there are two funda-

mentally different ways of using this programmability in the network architecture:

• Programmability as a tool to realize virtualization: Programmability is neces-

sary to implement dynamically changing protocol processing on the physical

277Programmability



infrastructure. Thus, it serves as a tool to realize the functionality necessary to

implement virtualization. In this case, however, programmability itself is not

exposed within the network architecture of any particular slice. Thus, from

the perspective of a virtual slice, operations implemented within that slice are

as static as in the current Internet.

• Programmability as a networking function within a virtual slice: Because pro-

grammability is used in the infrastructure to implement virtualization, it is also

possible to use this programmability within a slice. In this case, entities within

the network slice can dynamically adapt network functionality by changing

processing instructions used for handling network traffic.

For the latter case, there are several different approaches on how to expose this

programmability toward end systems and applications. Many of these approaches

have been considered as stand-alone solutions (i.e., without the use of virtualiza-

tion) for next-generation networks. We briefly discuss several approaches to show

the range of uses of programmability in next-generation networks.

Active networks
In active networks, packet processing functions are dynamically injected into the

network [178]. Each packet may carry the processing code that routers apply to

the network when they perform forwarding functions. For example, packets may

carry information about when and how to duplicate them in case of multicast or

packets may carry information on how to implement queuing to ensure that packets

of high importance get dropped last. This approach to programming the network

makes it possible that every packet could be handled in a different manner—

although packets within one connection are likely to use the same processing.

There are optimizations to cache processing instructions to reduce the overhead

for carrying processing code.

While the active networks approach is very powerful, it is also extremely chal-

lenging to use in practice. The generality of the processing that may be performed

on the router presents numerous challenges to reason about correctness and safety

of processing code. It is also difficult to envision that end-system applications can

utilize this powerful functionality to program the network in order to improve

application functionality and performance.

Programmable router
A more moderate approach to programmability (compared to active networks)

is that of using programmable routers [185]. This very general term implies that

programmability is available in the data path, but is not controlled by end systems.

Instead, the administrator of a router can install new functionality. Thus, the

control path is used to change the functionality of the data path.

The programmable router approach is considerably more static than active

networks. However, it provides greater control over the functionality that may or

may not be provided by a router.

278 CHAPTER 15 Next-generation Internet architecture



Data path services
An intermediate approach between the generality of active networks and the controlla-

bility of programmable routers is the use of data path services. A data path service is a

well-defined function that is performed on packets (e.g., QoS scheduling, intrusion

detection, transcoding). End systems can select the type (and order) of data path

services that should be used on a particular connection, and routers in the network pro-

vide the requested service processing on demand [186]. As new networking functions

emerge, new services can be introduced via the control plane of the network.

The use of predefined services limits the type of processing that may be performed

by a router. Thus, it provides a level of controllability similar to programmable routers.

However, instead of requiring that the same processing steps are performed on all

packets, data path service architecture allows a differentiation by connection. Thus, a

level of generality can be achieved that is near that of active networks.

Implementing programmability
To implement programmability in the data path, several different packet pro-

cessing platforms can be used. As discussed in Chapter 11, these can range from

single-core workstation processors to embedded multicore network processors.

While next-generation network architectures rely on the functionality provided

by these systems, there are still several ongoing challenges that need to be

addressed before the widespread use of these systems becomes realistic.

• Performance: As more complex functions are implemented in the network, pro-

cessing demands on these systems continue to increase. While current network

processors can support aggregate throughputs of tens of gigabits per second, they

are mostly optimized for processing packet headers and leaving packet payloads

untouched. With more complex protocols, it is conceivable that more payload-

processing functions are used. In such a case, the performance requirements

would increase considerably, necessitating more advanced network processors.

• Programming abstractions: Current network processors use vendor-specific

development environments. It is unrealistic to assume that customers who need

a new virtual network slice would or could implement their specific protocol

stack on the numerous network processors that can be found throughout the

Internet. Therefore, it is necessary to develop new programming abstractions

that ensure that a single implementation of a protocol can be compiled to most

network processor systems.

While these challenges have not yet been fully resolved, it is clear that program-

mable packet processors provide a key piece of the next-generation network’s

infrastructure.

Deployment
When considering next-generation network architectures, it is important to take

into account issues related to deployment of this technology at an Internet scale.

Transition from the current Internet to the next-generation network cannot happen

279Programmability



overnight. Our dependence on the availability of data communication requires that

the current Internet continues to be available until users, end systems, and applica-

tions have transitioned to the next-generation network. Considering how many

legacy-computing systems are still used today, it is likely that the current Internet

will remain operational in its current form for a long time.

To introduce a next-generation network, it is likely that this network will be

built up in parallel to the current Internet. Some of the existing Internet infrastruc-

ture can be used for the initial deployment (e.g., to tunnel traffic). Over time, more

network traffic will shift to the new network and make the existing Internet

increasingly obsolete.

One important requirement for this transition is that there is a clear goal on

what the next-generation Internet architecture looks like. At this point, there is

no definite answer. Instead, industrial and academic research is still exploring

alternatives.

Experimental testbeds
Experimental validation of different design alternatives for the next-generation

Internet is essential to argue for the deployment of a particular network architec-

ture. However, experimentation with networks is challenging, especially when

testing the scalability of protocols and systems. While a small network con-

figuration with a few nodes can be simulated easily or set up in a laboratory envi-

ronment, it is much more difficult to explore networks with hundreds or thousands

of nodes. However, experimenting at this scale is often necessary to identify

bottlenecks, find glitches, or observe unusual dynamics.

The networking community has developed several network testbeds, where

experimentation at larger scales can be performed. These testbeds allow the dyna-

mic deployment of experiments similar to how virtual slices are deployed in virtua-

lized networks. Thus, these testbeds provide not only a basis for experimentation

with next-generation network protocols, but also a system to study the use of a vir-

tualized infrastructure. Examples of widely used experimental testbeds are as

follows.

• Emulab: The Emulab testbed uses a large number of dedicated workstations

and network links that are located at the University of Utah [182]. For experi-

mentation, users can request a set of processing nodes that are interconnected

with links according to users’ needs. Emulab implements network virtualiza-

tion, and thus the processing and link resources are shared. Emulab provides

a high level of control over the experiment configuration and thus can be used

to generate (mostly) reproducible results. However, this control also limits the

realism of experiments to whatever the user configures.

• Planetlab: Planetlab is a testbed where participating users provide link and pro-

cessing resources toward the shared infrastructure [141]. Experiments can be

instantiated on Planetlab nodes across the globe. The connections between

nodes are subject to the traffic conditions at the moment of the experiment.

280 CHAPTER 15 Next-generation Internet architecture



Thus, Planetlab experiments are not reproducible, but show more realistic

traffic behavior on links.

• Global Environment for Network Innovations (GENI): GENI is an initiative to

create a testbed that supports network experimentation at very large scales

[132]. The architecture of GENI is based on defining a single control infrastruc-

ture that allows the federation of existing testbeds (e.g., Emulab, Planetlab) as

well as new ones. GENI is in the process of being developed.

These testbeds promise to provide the platforms to test the technology developed

for next-generation networks.

Commercial incentives
In addition to technical concerns about correct and efficient operation of the net-

work, it is important to consider the commercial aspects of network deployment.

Deploying new infrastructure is a costly proposition and there need to be clear

incentives for the parties involved. At the highest level, the following opportunities

offer services and functionalities to other parties (and to be compensated for the

investments necessary to provide them):

• Provide infrastructure services to network providers: Operators who manage the

infrastructure of the network can offer virtualization services to network provi-

ders. These network providers can instantiate different virtual slices.

• Provide improved network functionality to application providers: Providers who

have access to virtual network slices can implement novel network functionality

that can be offered to application providers. It is also possible to offer general net-

work functionality to the user directly (e.g., Internet access).

• Provide improved applications to users: Application providers can provide

application functionality to users.

Using existing mechanisms for charging users (e.g., access fees, service subscrip-

tion), providers can recover the cost for providing their own service and for obtain-

ing services from other providers. Incentives for expending the costs for a new

network infrastructure lie in the ability to provide (and to charge for) more innova-

tive applications, services, and network functionality than possible in the current

Internet.

SUMMARY
This chapter discussed why ongoing trends in networking point toward the need for

a new network architecture to replace the current Internet. With more heteroge-

neous end systems and a new networking paradigm, new protocols need to be

introduced into the network. However, no single protocol stack is likely to accom-

modate the needs of all possible new applications. Instead, multiple networks with

different functionality are expected to coexist on a single infrastructure. Network

281Summary



virtualization is used to share resources among these virtual networks and to pro-

vide isolation. To implement virtualization, data path programmability is an essen-

tial functionality of next-generation routers. For testing of new network

functionality, several network testbeds have been developed by the research com-

munity. The ability to offer innovative new services and applications is expected to

present the incentives for providers to deploy the technology necessary for the

next-generation Internet.

282 CHAPTER 15 Next-generation Internet architecture



APPENDIX

The layered Internet
architecture and network
protocols

The success of the Internet is in large part due to its well-designed network archi-

tecture. Internet architecture is based on a layered protocol stack that clearly

isolates functionalities in different layers and allows for new protocols to be

introduced in one layer without affecting other layers. In Chapter 2, we brief-

ly introduced the International Organization for Standardization/Open Systems

Interconnection reference model as one example of a layered protocol stack.

For reference, this Appendix briefly reviews the main concepts of protocols used

commonly in this layered architecture. Specifically, we focus on the protocols

used in today’s Internet.

This Appendix only touches on the main concepts within each protocol. A more

thorough review of these protocols can be found in many computer networking

texts, for example, the excellent book by Kurose and Ross [94].

LAYERED INTERNET ARCHITECTURE
The Internet architecture is based on the principles of the layered protocol stack

described in Chapter 2. There are typically five protocol layers used in the Internet:

• The application layer uses application-specific protocols to implement distributed

applications. This layer includes the session layer and the presentation layer,

which are considered separate layers in other protocol stacks.

• The transport layer provides communication between different end-system pro-

cesses. In most cases, the transport layer protocol implements reliable end-to-

end communication.

• The network layer provides global connectivity between network interfaces. The

network layer does not provide reliability or any other guarantees.

• The link layer provides point-to-point connectivity between neighboring net-

work interfaces. This layer implements medium access control when the com-

munication medium is shared.

• The physical layer provides the ability to send individual bits on the medium.

The physical representation of bits depends on the type of medium (copper,

fiber, wireless) and the physical layer protocols.

Architecture of Network Systems.

© 2011 Elsevier, Inc. All rights reserved. 283



In this Appendix, we discuss more details on the operation and protocols of the

link layer, network layer, and transport layer. The application layer is discussed

in more detail in Chapter 9.

Hourglass architecture
An important aspect of this network architecture is that there is a single network

layer protocol. Internet Protocol version 4 (IPv4) is the only network protocol used

in the current Internet [with the exception of Internet Protocol version 6 (IPV6),

which is being deployed incrementally]. This “hourglass architecture” is shown

in Figure A-1, which shows the five protocol layers of the Internet and a selection

of protocols for each layer. In the network layer, there is only one protocol—the

Internet Protocol (IP). The restriction to IP at the network layer and the diversity

of protocols in other layers give the hourglass architecture its “shape.”

The restriction of using a single network protocol is necessary to ensure interop-

erability between all network systems in the network. With the layered protocol

stack, however, it is possible to support diversity at layers above and below the net-

work layer. For example, numerous different link layer protocols are in use to pro-

vide point-to-point connectivity between neighboring systems. Because the link

layer is limited to neighboring systems, it is easily possible to deploy novel link layer

protocols (e.g., wireless network access). As long as these systems are able to handle

network layer traffic correctly, they do not impact the operation of other systems in

the Internet. Similarly, different transport layer protocols use IP as the basis for their

operation. Because only the connecting end systems need to be able to understand a

specific transport layer protocol, new protocols can be deployed without problems.

Transmission of bits in
medium

Physical layer

Link layer

Network layer

Transport layer

Application layer
HTTP

TCP

IP

Ethernet

DSL FDDI

1000BASE-T RS-232
...

...

802.11a/b/g/n SONET/SDH

UDP

DNS BGP

SIPTLS/SSL
...

...

Point-to-point frame
transmission

Connectivity between
network interfaces

Process-to-process
communication

Application-specific
communication

Service providedLayered protocol
stack

Example protocols

FIGURE A-1

Hourglass architecture of the Internet.

284 APPENDIX The layered Internet architecture and network protocols



Protocol processing in network systems
The different types of network systems used in the Internet can be distinguished by the

level of protocol processing they perform. Figure A-2 illustrates these differences.

• End systems (or hosts) process all layers of the protocol stack because they

need to transform data sent from the application process all the way to physical

transmission.

• Switches are devices that process link layer protocols (but not network layer or

higher protocols). Switches are typically used to create local area networks

(LANs). Because their processing is limited to the link layer, they can only

handle communication between systems that are immediate (physical or virtual)

neighbors.

• Routers are devices that process network layer protocols (but not transport layer

or application layer protocols). Routers are the main components of the Internet

and provide global connectivity between end systems.

• Transport layer systems process protocols up to the transport layer (but not the

application layer). The transport layer focuses on connections. Transport layer

systems perform connection-specific operations and thus need to process trans-

port layer protocols.

As part of protocol processing, layers may use their own headers (and, in rare

cases, trailers). As traffic moves down the protocol stack, more headers are added.

As traffic moves up the stack, these headers are removed. Figure A-3 shows this

process. Headers are denoted with “H” and trailers with “T.”

The terminology for protocol data units at different layers in the protocol stack is

also shown. When transmitting from an end system, data sent by an application are

transformed into transport layer messages. These messages receive an additional

Router
Transport

layer system
Switch

End system/
host

End system/
host

End-system
application

Application layer

Transport layerTransport layer

Network layer

Link layer

Physical layer

Application layer

Transport layer

Network layer

Link layer

Physical layer

Network layer

Link layer

Physical layer

Network layer

Link layer

Physical layer

Link layer

Physical layer

End-system
application

FIGURE A-2

Level of protocol processing on different types of network systems.

285Layered Internet architecture



header in the network layer and become datagrams. At the link layer, datagrams are

transformed into frames that contain a link layer header and trailer. At the physical

layer, bits of the link layer frame are transmitted. In some cases, the term “packet” is

considered equivalent to “datagram.”

Example protocol stack
An example of an Internet protocol stack with specific protocols is shown in

Figure A-4. The protocols shown are typical and widely used representatives for

their layer.

• Hypertext Transfer Protocol (HTTP): HTTP is widely used to request transfers

of Web documents from servers. It is a typical example of client–server-style

communication.

• Transmission Control Protocol (TCP): TCP is a connection-oriented protocol

that provides reliable data transfer. TCP implements flow control and conges-

tion control to adjust the transmission rate to the capabilities of sender and

receiver and to network conditions.

Data

DataH T

Message

Segment

Datagram

Frame

BitPhysical layer

Link layer

Network layer

Transport layer

Application layer

HH

H H

H Data

Data

FIGURE A-3

Terminology of protocol data units.

Layer

Physical layer

Link layer

Network layer

Transport layer

Application layer

Example protocols

Hypertext Transfer
Protocol (HTTP)

Transmission Control
Protocol (TCP)

Internet Protocol (IP)

Ethernet

1000BASE-T

FIGURE A-4

Internet protocol stack with example protocols.

286 APPENDIX The layered Internet architecture and network protocols



• Internet Protocol: IP is the network protocol used in the Internet to provide

global datagram connectivity between network interfaces. IP requires routing

to determine how to forward datagrams to the network interface.

• Ethernet: Ethernet is a link layer protocol that allows transmission of frames

between two systems that are directly connected to each other. Ethernet handles

medium access control to ensure that multiple systems can access a shared

transmission medium.

• 1000BASE-T: This physical layer standard is used for gigabit Ethernet over

copper wiring and determines the coding of bits in electronic signals.

We discuss the functionality and key concepts of Ethernet, IP, and TCP in more

detail later.

Link layer
Link layer protocols assume that communication of individual bits is provided by

the physical layer. The service that the link layer provides is to implement a proto-

col that allows point-to-point communication of entire frames between network

systems that are directly connected to each other. That is, the link layer sends

frames along a single hop in the network.

There are numerous link layer protocols in use and their specific functionalities

differ. Some of the main services provided by link layer protocols include:

• Medium access control (MAC): Link layer protocols specify rules on how and

when a station is permitted to transmit on a shared transmission medium.

• Error detection: Link layer protocols often use error detection coding [e.g.,

cyclic redundancy check (CRC)] to identify bit errors in the transmissions of

frames.

In addition, some link layer protocols provide error correction (i.e., ability to

recover from a limited number of bit errors), flow control (i.e., throttling of sender

depending on receiver’s buffer capacity), and reliability (i.e., local retransmissions

of frames with errors).

Medium access control
The physical medium used for transmissions in the link layer can be a guided

medium (e.g., copper wire, optical fiber) or an unguided medium (e.g., wireless

spectrum). In many network deployment scenarios, multiple nodes share a single

medium (e.g., single shared coaxial cable in old Ethernet deployments, single spec-

trum in modern wireless Ethernet deployments). When multiple nodes can access

the same medium, it is necessary to have rules in place to avoid concurrent trans-

missions by multiple stations that lead to interference.

Medium access control protocol types
Medium access control protocols specify the rules for transmitting frames on a

link. There are two principal types of MAC protocols.

287Layered Internet architecture



• Channel partitioning protocols determine a priori how access to a link is parti-

tioned between potential transmitters. Examples of channel partitioning proto-

cols are time-division multiplexing, frequency-division multiplexing, and

code division multiple access. For each of these partitioning approaches, a

transmitter uses a specific time slot, frequency, or code to ensure that its trans-

mission does not interfere with others.

• Randomaccess protocols do not partition themedium. Transmitters can transmit (at

the full data rate) whenever they are eligible. The basic components of a random

access protocol are the ability to sense when one’s transmission interferes with

another transmitter’s and the use of random back-off periods. When a transmitter

determines that its transmission collided with another transmission, it determines

a random back-off delay. After this delay has expired, the transmission is repeated.

The use of randomization in this protocol ensures that repeated collisions by the

same transmitters are increasingly unlikely.

There are many variations on the specifics of each type of protocol. Ethernet uses

a random access protocol that is based on Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CD).

Carrier sense multiple access with collision avoidance
The CSMA/CD medium access protocol is a random access protocol, but uses sev-

eral improvements over the simplest type of random access. The key aspects of

CSMA/CD are:

• Carrier sensing: The transmittermonitors the link to determine if another transmitter

is currently active. A transmission is started only when the medium is idle.

• Collision detection: While transmitting, a transmitter continues to monitor the

link to determine if another transmission is interfering with its own. If such a

collision is detected, the current transmission is aborted.

Using these techniques, the operation of a CSMA/CD transmitter is as follows.

1. Wait until frame is received for transmission from network layer. Reset

retransmission counter.

2. Sense if link is idle. If link is in use, wait until it becomes idle.

3. Start transmission of frame.

4. Monitor link and determine if collision occurs (for duration of transmis-

sion). If collision occurs, go to step 6.

5. End transmission of frame and report successful transmission to network

layer. Go to step 1.

6. Send jam signal to ensure that all receivers are aware of collision.

7. Increment retransmission counter.

8. If maximum number of retransmissions is reached, abort transmission of

frame. Report unsuccessful transmission to network layer. Go to step 1.

9. Calculate random back-off period based on number of collisions.

10. Wait for duration of random back-off period. Go to step 2.

288 APPENDIX The layered Internet architecture and network protocols



The random back-off period in Ethernet is based on a truncated binary expo-

nential function. The back-off period is chosen randomly from an interval between

0 and 2i� 1, where i is the retransmission counter (i.e., the number of collisions

experienced by one frame) bound by a maximum value. In Ethernet, the maximum

number of transmission attempts is 16, but the value of i is limited to 10 to avoid

very long back-off times.

By increasing the back-off interval with each collision, CSMA/CD can auto-

matically adapt to the load on the link. If many transmitters want to use the

link, more collisions occur and back-off intervals increase. With longer back-off

intervals, the probability of collisions decreases and the probability of successful

transmissions increases.

Examples of CSMA/CD operation are shown in Figures A-5 and A-6. These

figures show space–time diagrams, where the link is shown horizontally and time

progresses vertically (top to bottom). In Figure A-5, a successful transmission of a

frame from station A is shown. The slope of the frame propagation through the link

corresponds to the propagation speed within the medium (e.g., approximately two-

thirds the speed of light when using copper wires).

Figure A-6 shows an example of a collision of two transmissions. Stations A

and B both adhere to the CSMA/CD protocol described earlier. Note that only

one transmission cycle is shown. Random back-off periods and retransmission

attempts are not shown. There are several interesting observations for this example.

• Even though both stations perform carrier sensing, a collision can still occur.

Because the propagation of a transmission takes some time, it is possible that a

station senses an idle medium after another station has already begun transmis-

sion (i.e., B senses idle medium after A has already started transmission).

A B

A senses idle medium,
begins transmission

A completes 
transmission

time

FIGURE A-5

Example of successful frame transmission in CSMA/CD.

289Layered Internet architecture



• The time at which interference is detected may differ by station. In our exam-

ple, B detects interference before A does. A transmits a large amount of data

before the interference caused by B propagates back to it. This delay is the

basis for the minimum frame length requirement in Ethernet (see later).

• After sending the jam signal, transmissions from other stations may still be

received. Because transmissions that have already been sent continue to propa-

gate, transmissions continue to be received after both stations have sent their

respective jam signals.

The example of a collision shown in Figure A-6 can be modified by moving the

stations and changing the starting times of the transmissions. However, the princi-

pal sequence of signals remains the same for all these examples.

Ethernet
Ethernet uses CSMA/CD as its medium access control protocol [122]. In addition,

there are a number of details specified within the IEEE 802.3 Ethernet standard to

ensure correct operation and interoperability. These details include specifications

for the physical layer as well as the link layer.

The structure of an Ethernet frame is shown in Figure A-7. The frame contains

the following important fields.

• Preamble and start of frame delimiter: These fields consist of a predefined bit

pattern and are used by the receiver to synchronize its clock to the transmission.

This process is necessary because sender and receiver use different clocks

(which may deviate slightly and be out of phase) and because transmissions

may start asynchronously.

A B

B senses idle medium,
begins transmission

B senses interference, 
stops transmission, 
sends jam signal

A’s transmission
B’s trans-

interference

B stops jam signal,
waits for clear medium

A senses idle medium,
begins transmission

A senses interference, 
stops transmission, 
sends jam signal

B stops jam signal,
waits for clear medium

jam signal

time

mission

FIGURE A-6

Example of collision during frame transmissions in CSMA/CD.

290 APPENDIX The layered Internet architecture and network protocols



• The MAC destination and source address: These 48-bit address fields identify

the transmitter and the receiver. Each Ethernet device has a globally unique

MAC address that is determined at manufacturing time. All receivers compare

the destination address of a frame to their own MAC address to determine if

they are the recipient. It is also possible to perform broadcasts to all receivers

on a link using a special broadcast address.

• The Ethertype field identifies what network layer protocol should be used to

process data in the frame. In a typical data transmission, IP is the recipient of

the datagram within the frame. However, other protocols are also commonly

used (e.g., Address Resolution Protocol (ARP) to associate IP addresses with

MAC addresses).

• The payload field contains the datagram carried inside the frame. There is a

requirement for a minimum payload size of 46 octets to ensure correct Ethernet

operation (see later). If a datagram is smaller than the minimum frame size,

padding is added to reach the minimum.

• The CRC32 field contains a 32-bit cyclic redundancy check code used to identify

bit errors during transmission. If bit errors are detected, the frame is discarded.

(For reliable transmissions, higher layer protocols, e.g., TCP, can detect this drop

and initiate a retransmission.)

• The interframe gap is a required idle period at the end of a frame transmission

to allow all receivers to reset before the next transmission starts.

One important aspect of the Ethernet standard is specification of a minimum frame

size. Ethernet determines that a frame was transmitted successfully (i.e., with-

out collisions) by monitoring for collisions during transmission. As shown in

Figure A-6, collisions that happen at a distance from the transmitter require some

time to propagate to the transmitter and be detected. If the frame transmission com-

pletes before the collision has propagated back, Ethernet would report (incorrectly)

that the frame was transmitted successfully. Therefore, Ethernet requires that the

transmission time for a frame exceeds twice the time it takes for a signal to propa-

gate the maximum distance between two transmitters. By requiring that transmis-

sions take at least this long, it can be ensured that collisions for any transmitter

placement and transmission timing can be detected.

There aremanymore details about Ethernet, especiallywhen considering higher data

rates (e.g., gigabit Ethernet) or wireless Ethernet (IEEE 802.11 a/b/g/n standards). The

reader is referred to the appropriate standards and textbooks that focus on these topics.

60-1518
octets

Interframe gap
(12 octets)

CRC32
(4 octets)

Payload
(46-1500 octets)

Ethertype
(2 octets)

MAC source
(6 octets)

Preamble
(7 octets)

MAC destination
(6 octets)

Start of frame
delimiter
(1 octet)

FIGURE A-7

Ethernet frame format.

291Layered Internet architecture



NETWORK LAYER
The network layer extends the ability of the link layer to send frames from one

node to the next to provide multihop transmissions from one end system to another.

The network layer requires a (possibly partial) global view of the network to make

correct routing decisions and forward datagrams toward their destination.

The most important aspects of the network layer are:

• Addressing: Network interfaces on end systems need global addresses that allow

other end systems to address traffic to them.

• Routing: Routing algorithms determine the paths that traffic takes through the net-

work. These algorithms use local and global information to compute routes.

• Forwarding: The forwarding of traffic in a router uses the forwarding informa-

tion base derived from routing to direct traffic from one router interface to

another.

These three topics are discussed in the context of the Internet Protocol in detail

in Chapter 7. Here, we discuss briefly how IP relates to other protocols in the

protocols suite as well as the format of IP datagrams.

Internet protocol suite
The IP plays a central role in Internet architecture. As discussed previously, it

represents the unifying aspect of the hourglass architecture and all network compo-

nents that operate at the network layer or higher use IP.

To illustrate this importance of the IP, Figure A-8 shows its relation to several

other protocols that are part of the IP suite. These protocols are:

• Address Resolution Protocol: ARP is used to associate the link layer MAC

addresses of a network interface with the IP address used by it.

• Internet Control Message Protocol (ICMP): ICMP is used to handle special

cases of IP traffic (e.g., TTL expiration or ping request).

• Routing protocols: These protocols (e.g., OSPF, RIP, BGP) are used to create

and update the forwarding information base used by IP for forwarding

datagrams.

• Domain Name System (DNS): DNS is used to associate host names (e.g., www.

google.com) with IP addresses.

This is not a comprehensive list of related protocols, but is meant to show the

influence of IP on other layers in the protocol stack.

Internet protocol
The Internet Protocol is specified in RFC 791 [144]. The IP is a datagram-oriented

network protocol and provides best-effort service for datagram delivery. The for-

mat of the IP header is shown in Figure A-9. The main fields are:

292 APPENDIX The layered Internet architecture and network protocols



• Version: The version field specifies how to interpret the protocol header. The

current version number is 4, with version 6 being deployed.

• Header length: The header length field specifies how long the IP header (as a

multiple of 32 bits) is. This field allows the use of options at the end of the

IP header.

• Type of service (TOS): The TOS field could be used to specify performance

requirements for the datagram that could help routers make improved schedul-

ing decisions. This field is ignored by most current routers and there is ongoing

debate about how to use these bits.

• Datagram length: The datagram length field specifies the length of the data-

gram, including header and data.

• Identifier, flags, fragment offset: These fields are used when a datagram needs

to be fragmented. Fragmentation occurs when the size of a datagram exceeds

the maximum size of the link layer on which it is to be transmitted. In practice,

fragmentation does not occur very frequently.

• Time to live: The time to live field specifies how many hops the datagram may

continue to be forwarded before it gets discarded.

Internet
Control

Message
Protocol
(ICMP)

Internet
Protocol

(IP)

Address
Resolution

Protocol (ARP)

Link layer

Physical layer

Network layer

Transport layer

Application layer

Forwarding
Information
Base (FIB)

Routing protocols
(OSPF, RIP,

BGP)

Domain Name
System (DNS)

FIGURE A-8

Relation of Internet Protocol to other protocols in network stack.

293Network layer



• Upper layer protocol: This field specifies the transport layer protocol used by

the datagram.

• Header checksum: The header checksum is computed over the packet header

and does not include packet data.

• Source address and destination address: These fields specify the interface add-

ress from where the packet was sent and to which interface it should be

forwarded.

• Options: The option fields may carry special option headers.

• Data: The data field contains the transport layer frame carried in the datagram.

For more details on the operation of IP, the reader is referred to Chapter 7 and

relevant literature.

TRANSPORT LAYER
The transport layer receives datagrams on the network interface of a system and

provides process-to-process communication services. Because there are typically

multiple end-system processes that may use a network interface, a transport layer

protocol must provide at least one service.

Version
Header
length

Type of service Datagram length

312928242321201615121187430

Identifier Flags Fragment offset

Time to live
Upper layer

protocol
Header checksum

Source address

Destination address

Options 

Data

FIGURE A-9

Internet Protocol header format.

294 APPENDIX The layered Internet architecture and network protocols



• Multiplexing/demultiplexing: Transport layer protocols multiplex/demultiplex

multiple connections to/from a single network interface. This functionality

ensures that datagrams can be associated correctly with end-system processes.

For more details, see Chapter 8.

In addition, a number of services may be provided by transport layer protocols:

• Error detection: Transport layer protocols can use checksums to verify the cor-

rect transmission of segments from one end system to another. This error detec-

tion covers the complete end-to-end path of a segment and thus is better at

detecting errors than hop-by-hop solutions in the link layer.

• Reliability: The transport layer may implement a mechanism that ensures that

lost or corrupt segments get retransmitted by the sender.

• Flow control: Flow control is used to communicate the available buffer space

between the receiver and the sender. Using this mechanism, a receiver can throttle

a sender to ensure that it does not get overwhelmed by the amount of data sent.

• Congestion control: This is used to throttle the transmission rate of a connection

when the network experiences higher loads. Congestion control requires a mecha-

nism for detecting or inferring congestion conditions, as well as an algorithm for

determining the sending rate based on the conditions of the network.

As discussed in Chapter 8, there are two widely used transport layer protocols in

the Internet, User Datagram Protocol (UDP) and TCP. UDP implements the bare

minimum set of services, which are multiplexing/demultiplexing and an optional

checksum. TCP implements multiplexing/demultiplexing, error detection, reliabil-

ity, flow control, and congestion control. We briefly discuss the operation of reli-

able data transfer in TCP to illustrate one of the main features of TCP. We do not

discuss the operation of congestion control in TCP, as this topic alone could be the

subject of an entire book.

Reliable data transfer
Use of a protocol to achieve reliable data transfer over an unreliable network is

a nice example of how one layer in the network stack can significantly augment

the functionality of layers below. Several different possible protocol designs can

achieve reliability under different assumptions about the network. Here, we focus

on the techniques used by TCP to achieve reliability. For a more detailed deriva-

tion, see Kurose and Ross [94].

To achieve reliable data transfer, the transport layer needs to be able to do the

following:

• Determine if a segment was transmitted correctly. TCP uses an error detection

checksum to detect bit errors.

• Identify a segment. A reliable protocol needs to determine if a segment carries

new data or a retransmission of previously lost data. TCP associates a sequence

number with every byte of data that is transmitted.

295Transport layer



• Notify the sender when retransmission is necessary. In order to recover from a

lost segment, a reliable protocol requires a mechanism to inform the sender if

segments have (or have not) arrived successfully. TCP uses an acknowledgment

message to inform the sender of how far the sequence of bytes has been

received correctly.

• Avoid deadlock from lost messages. Because the network layer provides unreli-

able service, any segment or request for retransmission (or acknowledgment)

may be lost. It is necessary to design a protocol in such a way that any message

can get lost without causing deadlock. TCP uses timers on the sender side to trig-

ger retransmissions automatically in case there is no response from the receiver.

Using these principles, TCP implements reliable data transfers. In addition, TCP

uses pipelined data transfers, where multiple unacknowledged segments may be

transmitted to the receiver (“sliding window” transfer). When multiple segments

can be transmitted in parallel, it is important that the receiver can acknowl-

edge accurately what data have been received correctly. TCP uses a cumulative

acknowledgment, where an acknowledgment of sequence number X implies that

all bytes prior to X have been received correctly (i.e., X specifies the next byte that

is expected by the receiver).

An example of a reliable data transfer based on the principles of TCP is shown

in Figure A-10. The space–time diagram shows the exchange of messages. For

Sent,
acknowledged

Sent, not yet
acknowledged

Ready,
not yet
sent

Received,
acknowledged,

sent to application

Received,
acknowledged,
not yet sent to

application

Received,
not yet

acknowledged

Free
buffer

data

acknowledgments

Free
buffer

receiversender

S=1

A=2

S=2
S=3

A=4

S=4

S=6
S=5

S=7

S=8
S=9

S=6
S=7

A=6

A=6

A=10

timer for S=6
timer for S=7

10987654321 10987654321

10987654321

10987654321

10987654321

10987654321

10987654321

10987654321

10987654321

10987654321

10987654321

10987654321

10987654321

10987654321

10987654321
10987654321

10987654321
10987654321

10987654321

10987654321
10987654321

Sequence numbers Acknowledgment numbers

FIGURE A-10

Example of reliable data transfer.

296 APPENDIX The layered Internet architecture and network protocols



simplicity, segments are assumed to carry a single byte (indentified by its sequence

number). The example shows a transfer of 9 bytes. Acknowledgments from the

receiver are cumulative and specify the next expected byte. Figure A-10 also

shows the sender’s and receiver’s buffer (including the status for each byte in

the transfer). Interpretation of the shading of a buffer cell is explained at the top

of Figure A-10, where the progression of sequence and acknowledgment numbers

are shown.

Initially, a single segment (S ¼ 1) is transmitted. Because it is received success-

fully, the receiver sends an acknowledgment indicating which byte it expects next

(A ¼ 2). At this point, the sender transmits the next two segments (S ¼ 2 and S ¼ 3).

The use of pipelined data transfers allows transmission of multiple segments

in parallel. The congestion control mechanism of TCP, which we do not discuss

here, controls the number of parallel segments allowed. When both segments are

received correctly, the receiver acknowledges them both with a single, cumulative

acknowledgment (A ¼ 4). This acknowledgment illustrates another feature of TCP,

which is the (intentional) delay of acknowledgments. By not acknowledging the

reception of S ¼ 2 right away with A ¼ 3, the receiver can receive S ¼ 3 and send

a single acknowledgment for both segments.

During the transmission of S ¼ 4 through S ¼ 7, two segments, S ¼ 6 and S ¼ 7,

get dropped (either due to congestion or due to bit errors). The receiver sends A ¼ 6

to indicate the correct reception of S ¼ 4 and S ¼ 5. Reception of this acknowledg-

ment advances the sliding window, and S ¼ 8 and S ¼ 9 are transmitted. The

receiver continues to wait for an acknowledgment of the other two segments. After

some time, the timers for S ¼ 6 and S ¼ 7 expire and trigger a retransmission of

these segments. (All other segments also have timers, but they are not shown

because they do not expire before the acknowledgment arrives.) When S ¼ 8 and

S ¼ 9 arrive at the receiver, S ¼ 6 and S ¼ 7 are still missing and thus the only

acknowledgment that can be sent is A ¼ 6. When A ¼ 6 and A ¼ 7 arrive shortly

after, then the complete sequence through S¼ 9 has been received and A¼ 10 is sent

to acknowledge all segments cumulatively.

Transmission control protocol
The Transmission Control Protocol is specified in RFC 793 [145]. There have been

several extensions to TCP relating to congestion control [82] and performance

improvements. However, the header format for TCP shown in Figure A-11 has

not changed. The fields in the TCP header are:

• Source and destination port: The 16-bit port number is used by end systems to

multiplex and demultiplex TCP traffic to end-system processes.

• Sequence number: The sequence number indicates the position of the first byte of

data in the segment within the stream of bytes transmitted from sender to receiver.

• Acknowledgment number: The acknowledgment number represents a cumula-

tive acknowledgment of received data and indicates which byte is expected

next by the receiver.

297Transport layer



• Data offset: The data offset indicates where in the data field the first valid byte

is. This field is nonzero when TCP options are used.

• Flags: Flags indicate if urgent pointer is valid (URG), if acknowledgment field

is valid (ACK), if data should be pushed to the receiving process (PSH), if con-

nection needs to be reset (RST), if segment is used for connection setup (SYN),

or if no more data will be sent from sender (FIN).

• Window: The window field indicates how many bytes can currently be received

by the receiver (based on flow control).

• Checksum: The checksum is computed over the TCP header and data.

• Urgent pointer: The urgent pointer specifies the offset of the last urgent byte in

data.

• Options: The option fields may carry special option headers.

• Data: The data field contains the application layer message carried in the

segment.

The TCP header allows for duplex operation of a connection. That is, a segment

may carry data for a connection in one direction as well as an acknowledgment for

the connection in the reverse direction. In such a case, the ACK flag is set and the

packet contains valid data. Note that sequence numbers used for the sequence num-

ber and acknowledgment numbers are unrelated because they refer to connections

Source port number

Data 
offset

Sequence number

Window

3129282423212016

U
R

G
A

C
K

P
S

H
R

S
T

S
Y

N
F

IN
15121187430

Destination port number

Acknowledgment number

Reserved

Checksum Urgent pointer

Options 

Data

FIGURE A-11

Transmission Control Protocol header format.

298 APPENDIX The layered Internet architecture and network protocols



in opposite directions and each end system chooses its own starting sequence

number.

There are many more details about TCP, especially relating to congestion con-

trol and various improvements (e.g., selective acknowledgments, window scaling

for high-speed TCP). The reader is referred to the research literature and textbooks

on this topic for more information.

SUMMARY
This Appendix briefly reviewed the layered protocol architecture of the Internet.

We discussed how the hourglass architecture of the Internet, with IP in the network

layer, ensures interoperability and the ability to introduce new protocols at physi-

cal, link, transport, and application layers. As examples of typical protocols in

the network stack, we reviewed the operation of Ethernet, IP, and TCP. We dis-

cussed medium access control in the context of Ethernet and reliable data transmis-

sion in the context of TCP.

299Summary



This page intentionally left blank



References

[1] Advanced Research & Technology for EMbedded Intelligence and Systems, ARTEMIS.

http://www.artemis.eu/.

[2] M.J. Akhbarizadeh, M. Nourani, D.S. Vijayasarathi, P.T. Balsara, PCAM: A ternary

CAM optimized for longest prefix matching tasks, in: Proceedings of the IEEE Interna-

tional Conference on Computer Design (ICCD), San Jose, CA, October 2004, pp. 6–11.

[3] T.E. Anderson, S.S. Owicki, J.B. Saxe, C.P. Thacker, High-speed switch scheduling for

local-area networks, ACM Transactions on Computer Systems 1 (4) (1993).

[4] A. Andriahantenaina, A. Greiner, Micro-network for SoC: Implementation of a 32-port

SPIN network, in: Proc. of Design, Automation and Test in Europe Conference and

Exposition (DATE), Munich, Germany, March 2003, pp. 11128–11129.

[5] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, D. Saha, Design, implementa-

tion and performance of a content-based switch, in: Proc. of IEEE INFOCOM 2000,

Tel Aviv, Israel, March 2000, pp. 1117–1126.

[6] ARM Ltd., ARM Processor Bus Reference. http://www.arm.com/.

[7] ARM Ltd., ARM1136 Processor. http://www.arm.com/.

[8] ARTEMIS Strategic Research Agenda Working Group, ARTEMIS Strategic Research

Agenda, first ed., March 2006. https://www.artemisia-association.org/downloads/

SRA_MARS_2006.pdf.

[9] The ATM Forum, ATM User-Network Interface Specification Version 3.0, July 1993.

[10] F. Baker, Requirements for IP version 4 routers. RFC 1812, Network Working Group,

June 1995.

[11] R.J. Baker, CMOS Circuit Design, Layout, and Simulation, second ed., Wiley-IEEE

Press, 2004.

[12] H.B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley,

January 1990.

[13] R.M. Batz, T.L. Sheu, F.Y. Lai, I. Viniotis, Y.C. Liu, D.N. Serpanos, Spatially-parallel

router architectures with priority support for multimedia traffic, in: Proc. of Second

IEEE International Conference on Computer Communications and Networks (ICCCN),

San Diego, CA, October 1993, pp. 229–236.

[14] M. Becchi, P. Crowley, Efficient regular expression evaluation: Theory to practice, in:

Proc. of ACM/IEEE Symposium on Architectures for Networking and Communication

Systems (ANCS), San Jose, CA, November 2008, pp. 50–59.

[15] R. Bellman, On a routing problem, Q. Appl. Math. 16 (1) (1958) 87–90.

[16] J.C.R. Bennett, H. Zhang, WF2Q: Worst-case fair weighted fair queueing, in: Proc. of

IEEE INFOCOM 96, San Francisco, CA, March 1996, pp. 120–128.

[17] T. Berners-Lee, Hypertext markup language –2.0. RFC 1866, Network Working Group,

November 1995.

[18] N.L. Binkert, A.G. Saidi, S.K. Reinhardt, Integrated network interfaces for high-bandwidth

TCP/IP, in: Proc. of the 12th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), San Jose, CA, October 2006,

pp. 315–324.

[19] M. Björkman, Designing hierarchical hardware for efficient timer handling, in: Proc. of

the Second IEEE Workshop on Future Trends of Distributed Computing Systems,

Cairo, Egypt, September 1990, pp. 149–152.

301



[20] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture for

differentiated services. RFC 2475, Network Working Group, December 1998.

[21] R. Braden, D. Clark, S. Shenker, Integrated services in the Internet architecture: An

overview. RFC 1633, Network Working Group, June 1994.

[22] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, Resource ReSerVation Proto-

col (RSVP)–version 1 functional specification. RFC 2205, Network Working Group,

September 1997.

[23] The Broadband Forum, Broadband Forum. http://www.broadband-forum.org/.

[24] CaviumNetworks, Mountain View, CA, OCTEON Plus CN58XX 4 to 16-CoreMIPS64-

Based SoCs (2008).

[25] V.G. Cerf, R.E. Kahn, A protocol for packet network intercommunication, IEEE

Trans. Commun. COM-22 (5) (1974) 637–648.

[26] B. Chen, R. Morris, Flexible control of parallelism in a multiprocessor PC router, in:

Proc. of the General Track: 2002 USENIX Annual Technical Conference, Monterey,

CA, June 2001, pp. 333–346.

[27] T. Chen, R. Raghavan, J.N. Dale, E. Iwata, Cell broadband engine architecture and its

first implementation: A performance view, IBM J. Res. Dev. 51 (5) (2007) 559–572.

[28] Y. Chen, O. Oguntoyinbo, Power efficient packet classification using cascaded Bloom

filter and off-the-shelf ternary CAM for WDM networks, Comput. Commun. 32 (2)

(2009) 349–356.

[29] G. Cheung, S. McCanne, Optimal routing table design for IP address lookups under

memory constraints, in: Proceedings of the Eighteenth Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM), vol. 3, New York,

NY, March 1999, pp. 1437–1444.

[30] Cisco, Inc., Cisco IOS. http://www.cisco.com.

[31] Cisco Systems, Inc., Cisco 12000 Series Internet Router Architecture: Switch Fabric,

July 2005. Document ID: 47240.

[32] Cisco Systems, Inc., San Jose, CA, The Cisco QuantumFlow Processor: Cisco’s Next

Generation Network Processor, February 2008.

[33] T. Chiueh, P. Pradham, Cache memory design for Internet processors, IEEE Micro 20

(1) (2000) 28–33.

[34] D.D. Clark, The design philosophy of the DARPA Internet protocols, in: Proc. of ACM

SIGCOMM 88, Stanford, CA, August 1988, pp. 106–114.

[35] D.E. Comer, Internetworking with TCP/IP–Vol. 1: Principles, Protocols, and Architec-

ture, fourth ed., Prentice Hall, 2000.

[36] W.J. Dally, B. Towles, Route packets, not wires: On-chip inteconnection networks, in:

Proceedings of the 38th annual Design Automation Conference (DAC), Las Vegas,

NV, June 2001, pp. 684–689.

[37] W.J. Dally, B.P. Towles, Principles and Practices of Interconnection Networks, first

ed., Morgan Kaufmann, January 2004.

[38] C. Datsios, Network adapter architectures analysis. Master’s thesis, University of

Patras, Greece, February 2009.

[39] M. de Prycker, Asynchronous Transfer Mode: Solution for Broadband ISDN, third ed.,

Prentice Hall, August 2005.

[40] S. Deering, R. Hinden, Internet Protocol, version 6 (IPv6). RFC 2460, Network Work-

ing Group, December 1998.

302 References



[41] S. Demetriades, M. Hanna, S. Cho, R. Melhem, An efficient hardware-based multi-

hash scheme for high speed IP lookup, in: Proceedings of the 16th Symposium on High

Performance Interconnects HOT Interconnects (HOT-I), Stanford, CA, August 2008,

pp. 103–110.

[42] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Transactions on Infor-

mation Theory 22 (6) (1976) 644–654.

[43] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1

(1959) 269–271.

[44] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: An Engineering Approach,

Morgan Kaufmann Publishers Inc., San Francisco, CA, 2002.

[45] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: An Engineering Approach,

IEEE Computer Society Press, January 1997.

[46] S. Dutta, K.J. O’Connor, A. Wolfe, High-performance crossbar interconnect for a

VLIW video signal processor, in: Proceedings of the Ninth Annual IEEE International

ASIC Conference and Exhibit, Rochester, NY, September 1996, pp. 45–49.

[47] R.J. Edell, M.T. Le, N. McKeown, The bay bridge: A high speed bridge/router, in: Pro-

ceedings of the IFIP WG6.1/WG6.4 Third International Workshop on Protocols for

High-Speed Networks III, Stockholm, Sweden, 1993, pp. 203–218.

[48] K.B. Egevang, P. Francis, The IP network address translator (NAT). RFC 1631, Net-

work Working Group, May 1994.

[49] Embedded Microprocessor Benchmark Consortium, EEMBC, http://www.eembc.org/.

[50] EmbeddedMicroprocessor Benchmark Consortium, Networking—Software Benchmark

Data Book. http://www.eembc.org/techlit/datasheets/networking_db.pdf.

[51] K. Fall, A delay-tolerant network architecture for challenged Internets, in: SIGCOMM ’03:

Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, Karlsruhe, Germany, August 2003, pp. 27–34.

[52] R.T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, et al., Hypertext

transfer protocol–HTTP/1.1. RFC 2616, Network Working Group, June 1999.

[53] R.L. Fink, F.E. Ross, Following the fiber distributed data interface, IEEE Network 6

(2) (1992) 50–55.

[54] M.A. Franklin, T. Wolf, Power considerations in network processor design, in:

M.A. Franklin, P. Crowley, H. Hadimioglu, P.Z. Onufryk (Eds.), Network Processor

Design: Issues and Practices, vol. 2, Morgan Kaufmann Publishers, November 2003,

pp. 29–50 (Chapter 3).

[55] P. Giaccone, B. Prabhakar, D. Shah, Randomized scheduling algorithms for high-

aggregate bandwidth switches, IEEE Journal on Selected Areas in Communications

21 (4) (2003) 546–559.

[56] J. Greengrass, J. Evans, A.C. Begen, Not all packets are equal, part i: Streaming video

coding and SLA requirements, IEEE Internet Computing 13 (1) (2009) 70–75.

[57] M. Gschwind, D. Erb, S. Manning, M. Nutter, An open source environment for cell

broadband engine system software, Computer 40 (6) (2007) 37–47.

[58] P. Guerrier, A. Greiner, A generic architecture for on-chip packet-switched intercon-

nections, in: Proceedings of the Conference on Design, Automation and Test in Europe

(DATE), Paris, France, 2000, pp. 250–256.

[59] P. Gupta, N. McKeown, Algorithms for packet classification, IEEE Network 15 (2)

(2001) 24–32.

303References



[60] M. Handley, E. Kohler, A. Ghosh, O. Hodson, P. Radoslavov, Designing extensible IP

router software, in: Proc. of the 2nd Conference on Symposium on Networked Systems

Design and Implementation (NSDI), Berkeley, CA, May 2005, pp. 189–202.

[61] T. Hardie, Distributing authoritative name servers via shared unicast addresses. RFC

3258, Network Working Group, April 2002.

[62] C. Hedrick, Routing information protocol. RFC 1058, Network Working Group, June 1988.

[63] M. Hempstead, N. Tripathi, P. Mauro, G.Y. Wei, D. Brooks, An ultra low power sys-

tem architecture for sensor network applications, SIGARCH Computer Architecture

News 33 (2) (2005) 208–219.

[64] O. Hersent, D. Gurle, J.P. Petit, IP Telephony, first ed., Addison-Wesley, December

1999.

[65] IEEE, IEEE Standards for Local and Metropolitan Area Networks: Virtual Bridged

Local Area Networks, December 1998.

[66] IEEE 802 LAN/MANStandards Committee, IEEE 802. http://grouper.ieee.org/groups/802/.

[67] IEEE Standards Association, IEEE-SA. http://standards.ieee.org/.

[68] Institute of Electrical and Electronics Engineers, ANSI/IEEE Standard 802.4-1990—

Information processing systems—Local area networks—Part 4: Token-passing bus

access method and physical layer specifications (1990).

[69] Institute of Electrical and Electronics Engineers, IEEE Standard 802.1 Part D—Media

access control (MAC) bridges, March 1991.

[70] Institute of Electrical and Electronics Engineers, IEEE Standard 802.1 Part G—Remote

MAC bridging, October 1992. Draft 6.

[71] Institute of Electrical and Electronics Engineers, IEEE Standard 802.6 Part I—Remote

LAN bridging of metropolitan area networks (MANs), 1993. Draft.

[72] Institute of Electrical and Electronics Engineers, IEEE Standard 802.6—Information

technology—Telecommunications and information exchange between systems—Local

and metropolitan area networks—Specific requirements—Part 6: Distributed Queue

Dual Bus (DQDB) access method and physical layer specifications (1994).

[73] Institute of Electrical and Electronics Engineers, ANSI/IEEE Standard 802.5-1998E—

Information technology—Telecommunications and information exchange between sys-

tems—Local and metropolitan area networks—Specific requirements—Part 5: Token

ring access method and Physical Layer specifications, 1998.

[74] Institute of Electrical and Electronics Engineers, ISO/IEC Standard 8802-2:1998—Infor-

mation technology—Telecommunications and information exchange between systems—

Local and metropolitan area networks—Specific requirements—Part 2: Logical Link

Control, 1998.

[75] Institute of Electrical and Electronics Engineers, IEEE Standard 802.3—Information

technology—Telecommunications and information exchange between systems—Local

and metropolitan area networks—Specific requirements—Part 3: Carrier Sense Multi-

ple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer

Specifications (2008).

[76] Intel Corporation, Santa Clara, CA, Intel IXP2855 Network Processor, 2005.

[77] International Organization for Standardization, ISO. http://www.iso.org/.

[78] International Organization for Standardization/International Electrotechnical Commission,

Geneva, Switzerland, International Standard ISO/IEC 10731—Information technology—

Open Systems Interconnection—Basic Reference Model: Conventions for the Definition

of OSI Services, first ed., December 1994.

304 References



[79] InternationalOrganization for Standardization/International Electrotechnical Commission,

Geneva, Switzerland, International Standard ISO/IEC 7498-1—Information technology—

Open Systems Interconnection—Basic Reference Model: The Basic Model, second ed.,

November 1994.

[80] International Organization for Standardization/International Electrotechnical Commis-

sion, Geneva, Switzerland, International Standard ISO/IEC 15776—VME64bus—

Specification, first ed., December 2001.

[81] M.J. Irwin, L. Benini, N. Vijaykrishman, M. Kandemir, Techniques for designing

energy-aware MPSoCs, in: A. Jerraya, W. Wolf (Eds.), Multiprocessor Systems-on-

Chips, Morgan Kaufman, 2004, pp. 21–47 (Chapter 2).

[82] V. Jacobson, Congestion avoidance and control, in: Proc. of ACM SIGCOMM 88,

Stanford, CA, August 1988, pp. 314–329.

[83] R. Jain, A comparison of hashing schemes for address lookup in computer networks,

IEEE Trans. Commun. 40 (10) (1992) 1570–1573.

[84] F. Karim, A. Nguyen, S. Dey, R. Rao, On-chip communication architecture for OC-768

network processors, in: Proceedings of the 38th annual Design Automation Conference

(DAC), Las Vegas, NV, June 2001, pp. 678–683.

[85] M.J. Karol, M.G. Hluchyj, S.P. Morgan, Input versus output queueing on a space-division

packet switch, IEEE Trans. Commun. 35 (12) (1987) 1347–1356.

[86] R.M. Karp, U.V. Vazirani, V.V. Vazirani, An optimal algorithm for on-line bipartite

matching, in: Proc. of the Twenty-Second Annual ACM Symposium on Theory of

Computing (STOC), Baltimore, MD, May 1990, pp. 352–358.

[87] S. Kaxiras, G. Keramidas, IPStash: A power-efficient memory architecture for IP-lookup,

in: Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), San Diego, CA, December 2003, pp. 361–372.

[88] S. Kaxiras, G. Keramidas, IPStash: A set-associative memory approach for efficient IP-

lookup, in: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), vol. 2, Phoenix, AZ, March 2005, pp. 992–1001.

[89] R.W. Kembel, Fibre Channel: A Comprehensive Introduction, Northwest Learning

Associates, December 2009.

[90] M. Kobayashi, T. Murase, A. Kuriyama, A longest prefix match search engine for

multi-gigabit IP processing, in: Proc. of IEEE International Conference on Communi-

cations (ICC), vol. 3, New Orleans, LA, June 2000, pp. 1360–1364.

[91] E. Kohler, R. Morris, B. Chen, J. Jannotti, M.F. Kaashoek, The Click modular router,

ACM Transactions on Computer Systems 18 (3) (2000) 263–297.

[92] R. Kokku, T. Riché, A. Kunze, J. Mudigonda, J. Jason, H. Vin, A case for run-time

adaptation in packet processing systems, in: Proc. of the 2nd Workshop on Hot Topics

in Networks (HOTNETS-II), Cambridge, MA, November 2003.

[93] D.M. Kristol, L. Montulli, HTTP state management mechanism. RFC 2965, Network

Working Group, October 2000.

[94] J.F. Kurose, K.W. Ross, Computer Networks, fifth ed., Addison Wesley, 2004.

[95] R.O. LaMaire, D.N. Serpanos, Two-dimensional round-robin schedulers for packet

switches with multiple input queues, IEEE/ACM Transactions on Networking 2 (5)

(1994) 471–482.

[96] R.O. LaMaire, D.N. Serpanos, A two-dimensional round-robin scheduling mecha-

nism for switches with multiple input queues, United States Patent 5,299,190, March

1994.

305References



[97] J. Lawrence, How do you measure performance? Communications Solutions, November

2001.

[98] M. Levy, MPF hosts premiere of ARM1136, Microprocessor Report 16 (2002) 26–29.

[99] C. Li, S.Q. Zheng, M. Yang, Scalable schedulers for high-performance switches, in:

Proc. of Workshop on High Performance Switching and Routing (HPSR), Phoenix,

AZ, April 2004, pp. 198–202.

[100] D. Liu, C. Svensson, Power consumption estimation in CMOS VLSI chips, IEEE

Journal of Solid-State Circuits 29 (6) (1994) 663–670.

[101] H. Liu, Routing prefix caching in network processor design, in: Proceedings of the

Tenth International Conference on Computer Communications and Networks (ICCCN),

Phoenix, AZ, October 2001, pp. 18–23.

[102] H. Liu, Routing table compaction in ternary CAM, IEEE Micro 22 (1) (2002) 58–64.

[103] P. Loshin, Essential ATM Standards: RFCs and Protocols Made Practical, John Wiley

& Sons, November 1999.

[104] H. Lu, Improved trie partitioning for cooler tcam, in: Proc. of IASTED International

Conference on Advances in Computer Science and Technology (ACST), USVI, St.

Thomas, November 2004.

[105] H. Lu, On a trie partitioning algorithm for power-efficient TCAMs, International

Journal of Communication Systems 21 (2) (2008) 115–133.

[106] W. Lu, S. Sahni, Low-power TCAMs for very large forwarding tables, IEEE/ACM

Transactions on Networking 18 (3) (2010) 948–959.

[107] Y. Luo, J. Yu, J. Yang, L. Bhuyan, Low power network processor design using clock

gating, in: Proceedings of the 42nd Design Automation Conference (DAC), Anaheim,

CA, June 2005, pp. 712–715.

[108] Y. Luo, J. Yu, J. Yang, L.N. Bhuyan, Conserving network processor power consump-

tion by exploiting traffic variability, ACM Transactions on Architecture and Code

Optimization 4 (1) (2007).

[109] Z. Ma, W. Zhang, Dynamic power aware packet processing with CMP. Technical

Report CS2006-0852, Department of Computer Science and Engineering, University

of California San Diego, March 2006.

[110] K. Mackenzie, W. Shi, A. McDonald, I. Ganev, An Intel IXP1200-based network

interface, in: Proc. of Workshop on Novel Uses of System Area Networks at HPCA

(SAN-2), Anaheim, CA, February 2003.

[111] G.S. Malkin, RIP version 2. RFC 2453, Network Working Group, November 1998.

[112] A. Mallik, G. Memik, A case for clumsy packet processors, in: Proceedings of the

37th annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

Portland, Oregon, December 2004, pp. 147–156.

[113] E.P. Markatos, Speeding up TCP/IP: Faster processors are not enough, in: Proc. of

21st IEEE International Performance, Computing, and Communications Conference,

Phoenix, AZ, April 2002, pp. 341–345.

[114] A.J. McAuley, P. Francis, Fast routing table lookup using CAMs, in: Proceedings of

the Twelfth Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM), San Francisco, CA, April 1993, pp. 1382–1391.

[115] T. McGregor, H.W. Braun, J. Brown, The NLANR network analysis infrastructure,

IEEE Commun. Mag. 38 (5) (2000) 122–128.

[116] N. McKeown, The iSLIP scheduling algorithm for input-queued switches, IEEE/

ACM Transactions on Networking 7 (2) (1999) 188–201.

306 References



[117] M. Meitinger, R. Ohlendorf, T. Wild, A. Herkersdorf, A hardware packet re-sequencer

unit for network processors, in: Proceedings of the 21st international conference onArchi-

tecture of computing systems (ARCS), Dresden, Germany, February 2008, pp. 85–97.

[118] H.E. Meleis, D.N. Serpanos, Designing communication subsystems for high-speed

networks, IEEE Network 6 (4) (1992) 40–46.

[119] G. Memik, W.H. Mangione-Smith, Increasing power efficiency of multi-core network

processors through data filtering, in: Proceedings of the International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES), Grenoble,

France, October 2002, pp. 108–116.

[120] G. Mercankosk, J.F. Siliquini, Z.L. Budrikis, Provision of real-time services over

ATM using AAL type 2, in: Proc. of the 1st ACM International Workshop on Wire-

less Mobile Multimedia (WOWMOM), Dallas, TX, October 1998, pp. 83–90.

[121] Mesquite Software, Inc, Getting Started: CSIM 20 Simulation Engine (C Version).

http://www.mesquite.com/.

[122] R.M. Metcalfe, D.R. Boggs, Ethernet: Distributed packet switching for local com-

puter networks, Commun. ACM 19 (7) (1976) 395–404.

[123] P. Mockapetris, Domain names—Concepts and facilities. RFC 1034, Network Work-

ing Group, November 1987.

[124] P. Mockapetris, Domain names—Implementation and specification. RFC 1035, Net-

work Working Group, November 1987.

[125] J.C. Mogul, Simple and flexible datagram access controls for UNIX-based gateways,

in: USENIX Conference Proceedings, Baltimore, MD, June 1989, pp. 203–221.

[126] N. Mohan, M. Sachdev, Low power dual matchline ternary content addressable mem-

ory, in: Proceedings of the International Symposium on Circuits and Systems (ISCAS),

vol. 2, Vancouver, BC, May 2004, pp. 633–636.

[127] G.E. Moore, Cramming more components onto integrated circuits, Electronics 38 (8)

(1965) 114–117, April.

[128] J. Moy, OSPF version 2. RFC 2328, Network Working Group, April 1998.

[129] M. Naghshineh, R. Guerin, Fixed versus variable packet sizes in fast packet-switched

networks, in: Proc. of the Twelfth Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM), March 1993, pp. 217–226.

[130] National Institute of Standards and Technology, Data Encryption Standard (DES),

October 1999. FIPS 46-3.

[131] National Institute of Standards and Technology, Advanced Encryption Standard (AES),

November 2001. FIPS 197.

[132] National Science Foundation, Global Environment for Network Innovation. http://

www.geni.net/.

[133] S. Nilsson, G. Karlsson, IP-address lookup using LC-tries, IEEE Journal on Selected

Areas in Communications 17 (6) (1999) 1083–1092.

[134] A. Oram (Ed.), Peer-to-Peer: Harnessing the Power of Disruptive Technologies,

O’Reilly & Associates, Inc., Sebastopol, CA, February 2001.

[135] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, P. Li-Shiuan, Research

challenges for on-chip interconnection networks, IEEE Micro 27 (5) (2007) 96–108.

[136] R. Panigrahy, S. Sharma, Reducing TCAM power consumption and increasing through-

put, in: Proceedings of the 10th Symposium on High Performance Interconnects HOT

Interconnects (HOT-I), Stanford, CA, August 2002, pp. 107–114.

307References



[137] D. Pao, Y.K. Li, P. Zhou, Efficient packet classification using TCAMs, Comput.

Netw. 50 (18) (2006) 3523–3535.

[138] L. Peng, W. Lu, L. Duan, Power efficient IP lookup with supernode caching, in: Proceed-

ings of the IEEE Global Telecommunications Conference (GLOBECOM), Washington,

DC, November 2007, pp. 215–219.

[139] R. Perlman, Interconnections: Bridges and Routers, Addison Wesley Longman Pub-

lishing Co., Inc., Redwood City, CA, 1992.

[140] N.M. Piratla, A.P. Jayasumana, Metrics for packet reordering—A comparative analy-

sis, International Journal of Communication Systems 21 (1) (2008) 99–113.

[141] Planetlab Consortium, An open platform for developing, deploying, and accessing

planetary-scale services. http://www.planet-lab.org/.

[142] J. Postel, User Datagram Protocol. RFC 768, Information Sciences Institute, August

1980.

[143] J. Postel, Internet Control Message Protocol. RFC 792, Network Working Group,

September 1981.

[144] J. Postel, Internet Protocol. RFC 791, Information Sciences Institute, September 1981.

[145] J. Postel, Transmission Control Protocol. RFC 793, Information Sciences Institute,

September 1981.

[146] R. Ramaswamy, N. Weng, T. Wolf, Analysis of network processing workloads, J.

Syst. Architect. 55 (10) (2009) 421–433.

[147] V.C. Ravikumar, R.N. Mahapatra, L.N. Bhuyan, EaseCAM: An energy and storage

efficient TCAM-based router architecture for IP lookup, IEEE Transactions on Com-

puters 54 (5) (2005) 521–533.

[148] Y. Rekhter, T. Li, S. Hares, A border gateway protocol 4 (BGP-4). RFC 4271, Net-

work Working Group, January 2006.

[149] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, et al.,

SIP: Session initiation protocol. RFC 3261, Network Working Group, June 2002.

[150] F.E. Ross, An overview of FDDI: the fiber distributed data interface, Selected Areas

in Communications, IEEE Journal on 7 (7) (1989) 1043–1051.

[151] M.Á. Ruiz-Sánchez, E.W. Biersack, W. Dabbous, Survey and taxonomy of IP address

lookup algorithms, IEEE Network 15 (2) (2001) 8–23.

[152] S. Saroiu, K.P. Gummadi, R.J. Dunn, S.D. Gribble, H.M. Levy, An analysis of Internet

content delivery systems, SIGOPS Operating System Review 36 (SI) (2002) 315–327.

[153] M. Sarrafzadeh, F. Dabiri, R. Jafari, T. Massey, A. Nahapetian, Low power light-

weight embedded systems, in: Proceedings of the 2006 international symposium on

Low power electronics and design (ISLPED), Tegernsee, Germany, October 2006,

pp. 207–212.

[154] M. Schwartz, Telecommunication Networks: Protocols, Modeling and Analysis, Pren-

tice Hall, January 1987.

[155] D.N. Serpanos, Protocol processing in communication subsystems for high speed net-

works, in: Proceedings of the IFIP TC6 Task Force/WG6.4 Fifth International Confer-

ence on Data Communication Systems and Their Performance, Raleigh, NC, October

1994, pp. 351–360.

[156] D.N. Serpanos, P.I. Antoniadis, Firm: A class of distributed scheduling algorithms for high-

speed ATM switches with multiple input queues, in: Proc. of the Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 2,

Tel Aviv, Israel, March 2000, pp. 548–555.

308 References



[157] D.N. Serpanos, M. Gamvrili, Randomized on-line matching (ROLM): Randomized

scheduling algorithms for high-speed cell-based switches, in: Proc. of the Fifth IEEE

International Symposium on Signal Processing and Information Technology (ISSPIT),

Athens, Greece, December 2005, pp. 239–244.

[158] D.N. Serpanos, P. Karakonstantis, Efficient memory management for high-speed

ATM systems, Design Automation for Embedded Systems 6 (2001) 207–235.

[159] D.N. Serpanos, P. Mountrouidou, M. Gamvrili, Evaluation of hardware and software

schedulers for embedded switches, ACM Transactions on Embedded Computing Sys-

tems 3 (4) (2004) 736–759.

[160] D.N. Serpanos, W. Wolf, VLSI models of network-on-chip interconnect, in: Proc. of

IFIP International Conference on Very Large Scale Integration (VLSI - SoC), Atlanta,

GA, October 2007, pp. 72–77.

[161] A. Shacham, K. Bergman, L.P. Carloni, On the design of a photonic network-on-chip,

in: Proceedings of the First International Symposium on Networks-on-Chip (NOCS),

Princeton, NJ, May 2007, pp. 53–64.

[162] D. Shah, P. Gupta, Fast updating algorithms for TCAMs, IEEE Micro 21 (1) (2001)

36–47.

[163] N. Shah, W. Plishker, K. Ravindran, K. Keutzer, NP-Click: A productive software

development approach for network processors, IEEE Micro 24 (5) (2004) 45–54.

[164] T. Shanley, InfiniBand Network Architecture, Addison-Wesley, November 2002.

[165] T. Shanley, D. Anderson, PCI System Architecture, fourth ed., Addison-Wesley, June

1999.

[166] M. Shreedhar, G. Varghese, Efficient fair queuing using deficit round robin, in: Proc.

of ACM SIGCOMM 95, Cambridge, MA, August 1995, pp. 231–242.

[167] W. Simpson, Video over IP, second ed., Focal Press, August 2008.

[168] J.M. Smith, C. Brendan, S. Traw, Giving applications access to Gb/s networking,

IEEE Network 7 (4) (1993) 44–52.

[169] V. Srinivasan, G. Varghese, Fast address lookups using controlled prefix expansion,

ACM Transactions on Computer Systems 17 (1) (1999) 1–40.

[170] R. Steward, Stream Control Transmission Protocol. RFC 4960, Network Working

Group, September 2007.

[171] D. Stiliadis, A. Varma, Rate proportional servers: A design methodology for fair

queuing algorithms, IEEE/ACM Trans. on Networking 6 (2) (1998) 164–174.

[172] W. Timothy Strayer, B.J. Dempsey, A.C. Weaver, XTP: The Xpress Transfer Proto-

col, Addison-Wesley, August 1992.

[173] B. Talbot, T. Sherwood, B. Lin, IP caching for terabit speed routers, in: Proceedings

of the IEEE Global Telecommunications Conference (GLOBECOM), vol. 2, Rio de

Janeireo, Brazil, December 1999, pp. 1565–1569.

[174] A.N. Tantawy, H. Meleis, A high speed data link control protocol, in: Proceedings of

the IFIP TC6/WG6.4 Fourth International Conference on High Performance Network-

ing IV, Liège, Belgium, December 1992, pp. 81–99.

[175] A.N. Tantawy, M. Zitterbart, Amethod for universal MAC frame encoding, IBMResearch

Report RC-17779, IBM, March 1992. Also in document IEEE 802.6-92/9, March 1992.

[176] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1983.

[177] D.E. Taylor, Survey and taxonomy of packet classification techniques, ACM Comput.

Surv. 37 (3) (2005) 238–275.

309References



[178] D.L. Tennenhouse, D.J. Wetherall, Towards an active network architecture, ACM

SIGCOMM Computer Communication Review 26 (2) (1996) 5–18.

[179] J. Trodden, D. Anderson, HyperTransport Network Architecture, Addison-Wesley,

February 2003.

[180] E.S.H. Tse, Switch fabric design for high performance IP routers: A survey, J. Syst.

Architect. 51 (10–11) (2005) 571–601.

[181] N.F. Tzeng, Multistage-based switching fabrics for scalable routers, IEEE Transac-

tions on Parallel and Distributed Systems 15 (4) (2004) 304–318.

[182] University of Utah, Network Emulation Testbed. http://www.emulab.net/.

[183] G. Varghese, T. Lauck, Hashed and hierarchical timing wheels: Data structures for

the efficient implementation of a timer facility, SIGOPS Operating System Review

21 (5) (1987) 25–38.

[184] G. White, Internetworking and Addressing, McGraw-Hill, Inc., New York, 1992.

[185] T. Wolf, Design and Performance of Scalable High-Performance Programmable

Routers, Ph.D. thesis, Department of Computer Science, Washington University, St.

Louis, MO, May 2002.

[186] T. Wolf, Service-centric end-to-end abstractions in next-generation networks, in:

Proc. of Fifteenth IEEE International Conference on Computer Communications

and Networks (ICCCN), Arlington, VA, October 2006, pp. 79–86.

[187] W. Wolf, Modern VLSI Design, third ed., Prentice Hall, 2002.

[188] F. Worm, P. Ienne, P. Thiran, G. De Micheli, On-chip self-calibrating communication

techniques robust to electrical parameter variations, IEEE Design and Test of Com-

puters 21 (6) (2004) 524–535.

[189] G.R. Wright, W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementa-

tion, Addison-Wesley Professional, February 1995.

[190] C.L. Wu, T.Y. Feng, Interconnection Networks for Parallel and Distributed Proces-

sing, IEEE Computer Society Press, 1984.

[191] Q. Wu, T. Wolf, On runtime management in multi-core packet processing systems,

in: Proc. of ACM/IEEE Symposium on Architectures for Networking and Communi-

cation Systems (ANCS), San Jose, CA, November 2008, pp. 69–78.

[192] C. Xithalis, M. Gamvrili, D.N. Serpanos, Mutual priority: A scheme for effective and

efficient distributed schedulers for high-speed cell-based switches, in: Proc. of Work-

shop on High Performance Switching and Routing (HPSR), Hong Kong, China,

March 2005, pp. 63–67.

[193] XORP, Inc., eXtensible Open Router Platform. http://www.xorp.org.

[194] T.T. Ye, L. Benini, G. De Micheli, Packetization and routing analysis of on-chip mul-

tiprocessor networks, Journal of Systems Architecture: the EUROMICRO Journal 50

(2–3) (2004) 81–104.

[195] F. Zane, G. Narlikar, A. Basu, CoolCAMs: Power-efficient TCAMs for forwarding

engines, in: Proc. of the Twenty-Second Annual Joint Conference of the IEEE Computer

and Communications (INFOCOM), vol. 1, San Francisco, CA, March 2003, pp. 42–52.

[196] K. Zheng, C. Hu, H. Liu, B. Liu. An ultra high throughput and power efficient

TCAM-based IP lookup engine, in: Proc. of the Twenty-Third Annual Joint Confer-

ence of the IEEE Computer and Communications Societies (INFOCOM), vol. 3,

Hong Kong, China, March 2004, pp. 1984–1994.

[197] Y. Zhu, M. Ammar, Algorithms for assigning substrate network resources to virtual

network components, in: Proc. of the Twenty-Fifth Annual Joint Conference of the

310 References



IEEE Computer and Communications Societies (INFOCOM 2006), Barcelona, Spain,

April 2006.

[198] X. Zhuang, Compiler Optimizations for Multithreaded Multicore Network Processors,

Ph.D. thesis, College of Computing, Georgia Institute of Technology, Atlanta, GA,

July 2006.

[199] K. Zielinski, M. Chopping, D. Milway, A. Hopper, B. Robertson, The Metrobridge: A

backbone network distributed switch, SIGCOMM Computer Communication Review

21 (3) (1991) 45–60.

[200] M. Zitterbart, Parallelism in communication subsystems, in: A.N. Tantawy (Ed.), High

Performance Networks: Frontiers and Experience, Kluwer Academic Publishers, 1994.

[201] M. Zitterbart, A.N. Tantawy, D.N. Serpanos, Architecture of the high performance

transparent bridge, IBM Research Report RC-17824, IBM, March 1992.

[202] M. Zitterbart, A.N. Tantawy, D.N. Serpanos, A high performance transparent bridge,

IEEE/ACM Transactions on Networking 2 (4) (1994) 352–362.

311References



This page intentionally left blank



Index

Note: Page numbers followed by f indicate figures and t indicate tables.

A
Accelerator, see Packet

ACK flag, 298

Adapters, network

effective throughput, 68, 69f

intelligent DMA unit, 75–77, 75t, 76f, 77t

memory organization

management schemes

detached configuration, 86, 86f

distributed configuration, 87, 87f

overview, 84–87, 85f

memory management unit and processor with

local memory, 73–75, 73f, 74f, 75t

memory management unit with local

memory, 70–73, 71f, 72f

multiprocessor processing element, see Cell

Broadband Engine

operation analysis, 66–70, 66f, 69f

overview, 63–64, 64f

packet reception, 66f

structure, 22f, 23, 64–66, 64f

Address Resolution Protocol (ARP), 292

Advanced Encryption Standard (AES), 202

AES, see Advanced Encryption Standard

Allocation Matrix (AM), 48–49

AM, see Allocation Matrix

Application layer

functions

application layer, 163

presentation layer, 162–163

session layer, 162

overview, 13, 161–172, 283

protocols

Domain Name System, 163–165

Hypertext Transfer Protocol, 165–171, 166f,

168f, 169f

Session Initiation Protocol, 171–172

support systems

exact string matching algorithms

deterministic finite automation, 176–178,

177f

nondeterministic finite automation,

174–176, 175f, 176t

implementation of matching algorithms,

178–180, 179f

load balancing, 180–181, 181f, 182f

payload inspection

scenarios, 172–173

search patterns, 173–174

regular expression matching algorithms,

178

Application-specific integrated circuit (ASIC),

212–213

Area-based quad tree, rule matching in network

layer, 154–155, 154f

ARM processor, adapter effective throughput, 68,

69f, 72f, 74f, 76f

ARP, see Address Resolution Protocol

ARTEMIS, 4, 5f

ASIC, see Application-specific integrated

circuit

Asymmetric key cryptography, 202–203, 204f

Asynchronous Transfer Mode (ATM), packet

switching, 26

ATM, see Asynchronous Transfer Mode

Authenticity, security, 200

Availability, security, 200

B
Bandwidth, quality of service, 185

Bellman–Ford equation, 133

BGP, see Border Gateway Protocol

Border Gateway Protocol (BGP), routing, 136,

137t, 250

Bridge

definition, 20

High-Performance Transparent Bridge

structure, 97–110, 98f

subsystems, 97–100

support unit

distributed aging timer, 103–104, 104f

internal switch, 107–109, 107f

network attachment unit, 104–107, 106f

partitioned memory data organization,

109–110

replicated filtering database, 101–102

transparent bridging, 92–97, 93f

types, 91–92, 92f

Buffer chain, see mbuf

Bus delay model, network-on-chip, 243–244,

243f

Butterfly network, 39–40, 39f

313



C
CAM, see Content Addressable Memory

Carrier sense multiple access with collision

avoidance (CSMA/CD), 288–289, 289f,

290f

Cell Broadband Engine

multi-SPE configuration

protocol multiprocessing, 80–81, 80f, 81f

spatial parallelism, 81–83, 82f, 84f

overview, 77–83

single SPE configuration, 79–80, 79f, 80t

structure, 78f

Confidentiality, security, 199, 203

Content Addressable Memory (CAM), 230

Content delivery network, 271, 272f

Core router, 139

CRC, see Cyclic redundancy check

Crossbar delay model, network-on-chip, 244–247,

246f

Crossbar switch, see also Switches

architecture, 36

design, 38–40, 38f

interconnection networks, 39–40, 39f

local area network, 37

states, 38f

Cryptography

asymmetric key cryptography, 202–203,

204f

overview, 200–203

symmetric key cryptography, 201–202, 201f

CSMA/CD, see Carrier sense multiple access with

collision avoidance

Cyclic redundancy check (CRC), 225

D
Data Encryption Standard (DES), 201

Data Link Control (DLC), 12, 13, 15–16, 20–21

Data Link layer, see Layer 2 switch

Data memory management unit (DMMU),

High-Performance Transparent Bridge, 99,

100, 109–110

Data plane, see Router

DDoS, see Distributed denial of service

Deficit round-robin scheduling (DRR),

197–198

Delay, quality of service, 185

Delay-tolerant networking, 271, 273f

Denial of service (DoS)

mitigation, 209–210

scenarios, 207–209, 208f

DES, see Data Encryption Standard

Deterministic finite automation (DFA), string

matching in application layer, 176–178, 177f

DFA, see Deterministic finite automation

Diagonal Matrix (DM), 48–49

Digital signature, cryptography, 203, 204f

Dijkstra’s shortest path algorithm, 132–133, 134f

Direct Memory Access (DMA)

adapter memory, 66–68

intelligent DMA unit, 75–77, 75t, 76f, 77t

packet processing, 258, 258f

Distributed aging timer, High-Performance

Transparent Bridge, 103–104, 104f

Distributed denial of service (DDoS), 207–209,

208f

DLC, see Data Link Control

DM, see Diagonal Matrix

DMA, see Direct Memory Access

DMMU, see Data memory management unit

DNS, see Domain Name System

Domain Name System (DNS), 163–165, 292

DoS, see Denial of service

DRAM, see Dynamic Random Access Memory

DRR, see Deficit round-robin scheduling

Dynamic Random Access Memory (DRAM),

routing, 128–129

Dynamic Randomized On-Line Matching

(DyROLM), 60

DyROLM, see Dynamic Randomized On-Line

Matching

E
Edge router, 139

EEMBC, see Embedded Microprocessor

Benchmark Consortium

Effective throughput, adapter, 68, 69f

EIGRP, see Enhanced Interior Gateway Routing

Protocol

Embedded Microprocessor Benchmark Consortium

(EEMBC), 32–33

Embedded system, overview, 3–4

Emulab, 280

Enhanced Interior Gateway Routing Protocol

(EIGRP), 137t

Ethernet

frame format, 90f, 290–291, 291f

Explorer packet, 92

F
FDB, see Filtering database

FIFO, adapter memory, 65

Filtering database (FDB), High-Performance

Transparent Bridge, 94–95, 96, 101–102

314 Index



Firewall, operation, 157–158, 157f

FIRM, 54–55, 54f, 56f

G
Gateway, definition, 20

Generalized processor sharing (GPS), 197

GPS, see Generalized processor sharing

H
Head-of-line (HoL) blocking, 41–43

HiCuts algorithm, 155, 155f

Hierarchical tree, rule matching in network layer,

151–153, 151f, 152f

High-Performance Transparent Bridge (HPTB)

structure, 97–110, 98f

subsystems, 97–100

support unit

distributed aging timer, 103–104, 104f

internal switch, 107–109, 107f

network attachment unit, 104–107, 106f

partitioned memory data organization,

109–110

replicated filtering database, 101–102

HoL blocking, see Head-of-line blocking

Hourglass architecture, Internet, 284f

HPTB, see High-Performance Transparent

Bridge

HTTP, see Hypertext Transfer Protocol

Hypertext Transfer Protocol (HTTP)

caching, 169–170, 169f

overview, 165–171, 166f

persistent connections, 167–169, 168f

protocol stack, 286

requests, 166, 167f

responses, 166–167, 167f

session management, 170–171, 171f

I
IANA, see Internet Assigned Numbers

Authority

ICMP, see Internet Control Message Protocol

IEEE, see Institute of Electrical and Electronics

Engineers

Information fusion, sensor network, 271, 272f

Institute of Electrical and Electronics Engineers

(IEEE), 16, 20–21, 89, 90f

Integrity, security, 200

Intelligent DMA unit, adapter, 75–77, 75t,

76f, 77t

Internal switching component (ISC), High-

Performance Transparent Bridge, 97,

107–109, 107f

International Organization for Standardization

(ISO), see Open System Interconnection

model

Internet Assigned Numbers Authority (IANA),

119

Internet Control Message Protocol (ICMP)

overview, 292

router error handling, 136–138

Internet Protocol (IP)

header format, 294f

overview, 284, 292–294

relation to other protocols in network stack,

293f

Internetwork Operating System (IOS), 261

IOS, see Internetwork Operating System

IP, see Internet Protocol

IPv4, 284

IPv6, 284

ISC, see Internal switching component

iSlip, 54, 54f, 56f, 58f

ISO, see International Organization for

Standardization

J
Jitter, quality of service, 185

L
LAN, see Local area network

Layer 2 switch

operations, 110

overview, 89–91

Learning bridge, 92

Link layer

Media Access Control, see Media Access

Control

overview, 283, 287

LLC, see Logical Link Control

Load balancing, application layer, 180–181, 181f,

182f, 264

Local area network (LAN), 13, 14–15, 35–36

adapter, 65

switches, 37, 37f

Logical Link Control (LLC), 13, 89, 91

Lookup engine

power efficiency, 230–235

Static Random Access Memory-based lookup

engine power efficiency, 234–235

ternary content-addressable memory-based

lookup

organization and operation, 230–234, 231f

power consumption, 233, 234f

Loss, quality of service, 186

315Index



M
MAC, see Media Access Control

MAN, see Metropolitan area network

Max–min fair allocation, 193–196, 194f

mbuf, 127–128, 128f

Media Access Control (MAC)

frame switching, 91

network architecture, 21–22

overview, 13, 14–15, 20–21, 89–91

Media Access Control

carrier sense multiple access with collision

avoidance, 288–289, 289f, 290f

protocol types, 287–289, 289f, 290f

Memory management unit (MMU), adapter

memory

instruction delays, 223t

local memory, 70–73, 71f, 72f

management schemes

detached configuration, 86, 86f

distributed configuration, 87, 87f

overview, 84–87, 85f

memory management unit and processor with

local memory, 73–75, 73f, 74f, 75t

Mesh network, 39–40, 39f

Metropolitan area network (MAN), 35–36

MMU, see Memory management unit

Moore’s law, 213–214

MP algorithm, see Mutual Priority algorithm

MPSoC, see Multiprocessor system-on-a-chip

Multiprocessor system-on-a-chip (MPSoC), 214,

239

Mutual Priority (MP) algorithm, 55–57

N
NAU, see Network Attachment Unit

Netflow, monitoring system, 160

Network address translator, 158–159, 159f

Network Attachment Unit (NAU), High-

Performance Transparent Bridge, 98, 100,

101–102, 104–107, 106f

Networking trends, next-generation Internet

content delivery network, 271, 272f

delay-tolerant networking, 271, 273f

expansion of uses, 269–270

implications, 273

information fusion, 271, 272f

limitations of original Internet architecture,

268–269

peer-to-peer networking, 270

Network layer, see also Router

example systems, 139–140

functionality, 111–112

overview, 12, 283, 292

packet processor, see Packet

security, 205, 205f

systems requirements

functional requirements, 112–113

performance requirements, 113–115, 114t

Network-on-chip (NoC)

architecture, 240–241, 241f

overview, 239–240

power issues, 247–248

routing schemes, 241–242

technology and circuit design

bus delay model, 243–244, 243f

crossbar delay model, 244–247, 246f

overview of models, 242–248

Network operating system

overview of support features, 253–259, 254f

performance considerations

hardware limitations, 256–257

kernel versus user-space processing, 259

zero-copy packet processing, 257–259,

258f

software interactions

packet forwarding, 255, 255f

route update, 255–256, 256f

Network processor

design

power constraints, 222–223

system design parameters, 220

system design trade-offs, 220–222

examples, 223–224, 223t

operation, 217–219, 218f, 219f

power efficiency, 235–236

system architecture, 215–217, 216f

workload, 214–215

Network protocol, see also specific protocols

elements, 13–17, 15f, 16f

overview, 2, 5–6

processing, 285–286, 285f, 286f

stacks, 13–17, 15f, 286–287, 286f

Network system

adapter, see Adapters, network

classification, 17–21, 19f, 20f

definition, 2, 17–18, 18f

design requirements and constraints, 3f

run-time support systems, see Network

operating system; Packet processing

software; Router software; Software

support

shared memory architecture, 24, 24f

simple architecture, 21–24, 23f

316 Index



Network virtualization, next-generation Internet

dynamic network deployment, 277

principles, 275–277, 275f

protocol diversity, 273–274

resource virtualization and isolation,

276–277

single infrastructure, 274

NFA, see Nondeterministic finite automation

NoC, see Network-on-chip

Nondeterministic finite automation (NFA), string

matching in application layer, 174–176,

175f, 176t

O
Open Shortest Path First (OSPF), routing, 137t

Open System Interconnection (OSI) model

layers, 12–13, 14f, 183

overview, 6, 7, 11–12

protocol stacks and elements, 13–17, 15f

OSI model, see Open System Interconnection

model

OSPF, see Open Shortest Path First

P
P2P, see Peer-to-peer networking

Packet

accelerators

examples, 225–226

implementations, 226–227

trade-offs, 224–225

classification in transport layer

flow classification, 147–148, 148f

general matching rules, 148–149, 149t

matching algorithms

area-based quad tree, 154–155, 154f

hardware-based algorithms, 156, 156f

HiCuts algorithm, 155, 155f

hierarchical trees, 151–153, 151f, 152f

linear search, 150–151

metrics, 150

overview, 149–156

rule set, 149t, 150f

set-pruning trees, 153–154, 153f

forwarding in network operating system, 255,

255f

general-purpose processors

design

power constraints, 222–223

system design parameters, 220

system design trade-offs, 220–222

network processors

examples, 223–224, 223t

operation, 217–219, 218f, 219f

power efficiency, 235–236

system architecture, 215–217, 216f

workload, 214–215

overview, 211–224, 212f

performance versus flexibility, 212–213

systems-on-a-chip, 213–214

marking in denial of service attack, 209

switching, see Crossbar switch; Switches

zero-copy packet processing, 257–259, 258f

Packet processing software

models, 262–263, 262f

modular packet processing, 263–264, 264f

run-time management, 264–265

Packet size, switch transfer, 40–41

Pattern Sequence Matrix (PSM), 47–48, 47f

Payload inspection, see Application layer

Peer-to-peer networking (P2P), 270

Physical layer, 12, 283

Physical network system, definition, 20

PIM, 51, 52, 53f, 59–60

Pipelining model, packet processing, 262–263, 262f

Planetlab, 280

Power consumption

lookup engine design, see Lookup engine

network processor, see Network processor

network-on-chip, see Network-on-chip

overview, 229–230

Presentation layer, 13

Processing element, 68, 72–73

Programmability, next-generation Internet

active networks, 278

commercial incentives, 281

data path services, 279

deployment, 279–280

experimental test beds, 280–281

overview, 277–279

programmable router, 278

Protocol, see Network protocol

PSM, see Pattern Sequence Matrix

Public key, infrastructure, 206, 207f

Q
QoS, see Quality of service

Quality of service (QoS)

link scheduling algorithms

fair queuing

deficit round-robin scheduling, 197–198

generalized processor sharing, 197

max–min fairness, 193–196, 194f

round-robin scheduler, 197

scheduler examples, 196–199, 196f

317Index



Quality of service (QoS) (Continued)

weighted fair queuing, 198

work-conserving property, 195–196

worst-case weighted fair queuing, 199

first-in-first-out queuing, 189–191, 189f, 190f

priority queuing, 191–193, 192f, 193f

traffic classification, 191

metrics, 185–186

network support, 187–188

overview, 183–199

performance requirements by application,

184–185

reservations and connection setup, 186–187

service techniques, 186

Queuing, see Quality of service; Router

R
RAM, see Random access memory

Random access memory (RAM), adapter memory,

65, 66

Randomized On-Line Matching (ROLM),

switching, 37, 57–60, 60f

Ranking algorithm, switching, 59

Reduced instruction set computer (RISC),

68, 215

Request for Comments (RFC), 250

Request matrix (RM), switch scheduling, 44, 45f,

48–49

Requirements, network system

applications and services

practical examples, 28–29, 28t

qualitative requirements, 27

quantitative requirements, 27–28

overview, 25–26

throughput preservation, 29–32, 30f, 31f

traffic models and benchmarks, 32–33

Resource Reservation Protocol (RSVP), 187

RFC, see Request for Comments

Ring buffer, routing, 126–127, 127f

RISC, see Reduced instruction set computer

RM, see Request matrix

ROLM, see Randomized On-Line Matching

Round-Robin Matching (RRM), switching, 53–54

Round-robin scheduler, 197

Router

control plane

error handling, 136–138

functions, 117f, 129–138

routing algorithms

centralized algorithms, 132–133

distributed algorithms, 133–136, 135f

hierarchical routing in Internet, 136, 137f

information exchange and computation,

131–132

metrics, 129–131

data plane

functions, 117–129, 117f

queuing and buffering management

buffer chain, 127–128, 128f

multiple memories, 128–129

ring buffer, 126–127, 127f

route lookup

addressing, 118–120, 119f, 120f

algorithms, 120–126, 121t

binary trees, 122–124, 122f, 123f, 124f

prefixes for route lookup, 121t

tertiary content-addressable memory,

125–126, 126f

tries, 124–125, 125f

definition, 20

example systems, 139–140

generic design, 115–117, 115f, 116f

network-on-chip routing schemes, 241–242

programmable router, 278

quality of service, 188

quality of service, 186

Router software

examples, 261–262

interfaces

control plane–data plane interface, 252

system administrator–control plane interface,

253

structure, 260f

Routing Information Protocol (RIP), 137t

RRM, see Round-Robin Matching

RSVP, see Resource Reservation Protocol

Run-time support systems, see Network operating

system; Packet processing software; Router

software; Software support

Run-to-completion model, packet processing,

262–263, 262f

S
SCTP, see Stream Control Transmission Protocol

Security

cryptography

asymmetric key cryptography, 202–203,

204f

overview, 200–203

symmetric key cryptography, 201–202,

201f

denial of service attack

mitigation, 209–210

scenarios, 207–209, 208f

318 Index



facets, 199–200

network protocol security

link layer security, 204–205

network layer security, 205, 205f

overview, 204–206, 204f

public key infrastructure, 206, 207f

transport layer security, 206

software updates, 250

Sensor network

information fusion, 271, 272f

prospects, 269

Session Initiation Protocol (SIP), 171–172

Session layer, 12

Set-pruning tree, rule matching in network layer,

153–154, 153f

SIP, see Session Initiation Protocol

SoC, see System-on-a-chip

Sockets, transport layer, 143–145

Software support, see also Network operating

system; Packet processing software; Router

software

components, 249–253

interfaces

control plane–data plane interface, 252

system administrator–control plane interface,

253

network dynamics, 250

run-time components, 250–252, 251f

Source-route transparent bridging (SRT),

92–97

SPIN network, 242

SRAM, see Static Random Access Memory

SRT, see Source-route transparent bridging

Static Random Access Memory (SRAM)

lookup engine power efficiency, 234–235

routing, 128–129

Stream Control Transmission Protocol (SCTP),

143

Switches, see also Crossbar switch; Layer 2

switch

input and output queuing switches, 42f

local area network, 37

organization, 40–43, 42f

overview, 35–38

scheduling

centralized scheduling, 46–49, 47f

distributed scheduling, 49–57, 53f, 54f, 56f,

58f

models, 43–49, 45f

randomization, 57–61, 60f

real-time traffic, 61

Symmetric key cryptography, 201–202, 201f

System-on-a-chip (SoC)

generic structure, 240f

interconnection network, see Network-on-chip

packet processing, 213–214

power issues, 247–248

T
TCAM, see Ternary content-addressable memory

TCP, see Transmission Control Protocol

TCP/IP, see Transmission Control Protocol/Internet

Protocol

Ternary content-addressable memory (TCAM)

lookup engine

organization and operation, 230–234,

231f

power consumption, 233, 234f

routing, 125–126, 126f

transport, 156

Throughput, preservation, 29–32, 30f, 31f

Token Ring, frame format, 90f

Transmission Control Protocol (TCP)

header format, 297–298, 298f

overview, 143, 195, 286

reliable data transfer, 295–297, 296f

Transmission Control Protocol/Internet Protocol

(TCP/IP), 11–12

Transport layer

functions, 141–142, 294–297

network flows

aggregates, 146–147

end-system sockets, 143–145

flow 5-tuple, 145–146, 146f

overview, 12, 141–160, 283

packet classification

flow classification, 147–148, 148f

general matching rules, 148–149, 149t

matching algorithms

area-based quad tree, 154–155, 154f

hardware-based algorithms, 156, 156f

HiCuts algorithm, 155, 155f

hierarchical trees, 151–153, 151f, 152f

linear search, 150–151

metrics, 150

overview, 149–156

rule set, 149t, 150f

set-pruning trees, 153–154, 153f

protocols

Stream Control Transmission Protocol,

143

Transmission Control Protocol, 143

User Datagram Protocol, 142

reliable data transfer, 295–297, 296f

319Index



Transport layer (Continued)

security, 206

systems

firewall, 157–158, 157f

monitoring system, 160

network address translator, 158–159, 159f

TTL, see Time-to-live

Two-Dimensional Round-Robin (2DRR)

diagonals, 47f

example, 50f

Pattern Sequence Matrix, 47–48, 47f

performance, 49, 51f, 58f

switch scheduling, 46, 47

2DRR, see Two-Dimensional Round-Robin

U
UDP, see User Datagram Protocol

User Datagram Protocol (UDP), 142, 295

V
Very large-scale integrated circuit (VLSI), 239

Virtual local area network (VLAN), 275

VLAN, see Virtual local area network

VLSI, see Very large-scale integrated circuit

W
Weighted fair queuing (WFQ), 198

WFQ, see Weighted fair queuing

Worst-case weighted fair queuing, 199

X
Xpress Transport Protocol (XTP), 17

XTP, see Xpress Transport Protocol

Z
Zero-copy packet processing, 257–259, 258f

320 Index


	Front Cover
	Architecture of Network Systems
	Copyright
	Dedication
	Contents
	Preface
	Why write this book?
	Target audience
	Approach
	Course use
	We want to hear from you
	Acknowledgments

	About the Authors
	Chapter 1: Architecture of network systems overview
	Computer networks
	Embedded systems
	Protocols and network systems
	Organization of this book

	Chapter 2: Network protocols and network systems
	Introduction
	The open systems interconnection reference model
	Protocol stacks and protocol elements
	Network systems: definition and types
	Structure of network systems
	Summary

	Chapter 3: Requirements of network systems
	Introduction
	Requirements of network applications and services
	Qualitative requirements
	Quantitative requirements
	Example requirements

	The throughput preservation challenge
	Traffic models and benchmarks
	Summary

	Chapter 4: Interconnects and switching fabrics
	Introduction
	Crossbars and interconnection networks
	Switch organization
	Switch scheduling
	Centralized scheduling
	Distributed scheduling
	Use of randomization
	Real-time traffic

	Summary

	Chapter 5: Network adapters
	Introduction
	Basic network adapter
	Adapter operation analysis
	Memory organization
	Memory management unit with local memory
	Memory management unit and processor with local memory

	Intelligent DMA
	Multiprocessor processing element
	Single SPE configuration
	Multi-SPE configuration—protocol multiprocessing
	Multi-SPE configuration—spatial parallelism

	Memory management schemes
	Detached MMU
	Distributed MMUs

	Summary

	Chapter 6: Bridges and layer 2 switches
	Introduction
	Types of bridges
	Transparent bridging and special-purpose subsystems
	High-performance transparent bridge architecture
	Transparent bridging support unit
	Network attachment unit design
	lnternal switching component operation
	Partitioned data memory organization
	Layer 2 switches

	Summary

	Chapter 7: Routers
	Network layer
	Functionality of the network layer
	Systems requirements
	Generic router design

	Data plane
	Route lookup
	Queuing and buffering management

	Control plane
	Routing algorithms
	Error handling

	Example network layer systems
	Summary

	Chapter 8: Transport layer systems
	Transport layer
	Functionality of the transport layer
	Network flows
	Packet classification
	Transport layer systems

	Summary

	Chapter 9: Application layer systems
	Application layer
	Functionality of the application layer
	Application layer protocols

	Network system support for application layer
	Payload inspection
	Load balancing

	Summary

	Chapter 10: Quality of service and security
	Cross-layer issues
	Quality of service
	Quality of service concepts
	Network support for QoS
	Link scheduling algorithms
	Quality of service summary

	Security
	Security concepts
	Cryptography overview
	Security in network protocols
	Denial-of-service attacks

	Summary

	Chapter 11: Specialized hardware components
	Hardware support for packet forwarding
	General-purpose packet processors
	Performance vs flexibility
	Systems-on-a-chip
	Network processors
	Design choices
	Example systems

	Special-purpose hardware accelerators
	Trade-offs in use of accelerators
	Example accelerators
	Accelerator implementations

	Summary

	Chapter 12: Power issues in network systems
	Introduction
	Lookup engines
	Network processors
	Summary

	Chapter 13: Networks on chips
	Introduction
	Network-on-chip architectures
	Network-on-chip routing schemes
	Technology and circuit design
	Bus delay model
	Crossbar delay model
	Power issues

	Summary

	Chapter 14: Run-time support systems
	Software support for network systems
	Network dynamics
	Run-time components
	Software interfaces

	Operating system support for networking
	Networking software in operating systems
	Software interactions
	Performance considerations

	Specialized router software
	Router operating systems
	Packet processing software

	Summary

	Chapter 15: Next-generation Internet architecture
	Need for next-generation internet
	Networking trends
	Limitations in the Internet
	Extended reach of the Internet
	New networking paradigms
	Implications

	Network virtualization
	Diversity of protocols
	Single infrastructure
	Virtualized networks

	Programmability
	Programmability in next-generation networks
	Implementing programmability
	Experimental testbeds
	Commercial incentives

	Summary

	Appendix: The layered Internet architecture and network protocols
	Layered internet architecture
	Hourglass architecture
	Protocol processing in network systems
	Example protocol stack
	Link layer
	Medium access control
	Ethernet

	Network layer
	Internet protocol suite
	Internet protocol

	Transport layer
	Reliable data transfer
	Transmission control protocol

	Summary

	References
	Index

