
LINUX
Network

Administrator's
Guide



Other Linux resources from O'Reilly

Related titles

O ’REILLY NETWORK

Safari'
Bookshelf.

A pache C ookbook  

D NS and  BIND C ookbook  

L inux Server C ookbook  

L inux Server H acks

L inux Server Security 

N etw ork  T roub leshoo ting  
T ools 

R unn ing  L inux 

U sing Sam ba

Linux Books 
Resource Center

0NLamp.com
LinUX • APACHE • MYSQL • PHP • PYTHON • PERL

Conferences

linux.oreilly.com  is a com plete cata log  o f O ’Reilly’s books on 
L inux an d  U nix and  related  technologies, includ ing  sam ple 
chap te rs and  code exam ples.

O N Lam p.com  is the  prem ier site for the  open  source w eb p lat­
form : L inux, A pache, M ySQL, and  e ither Peri, P ython, o r PHP.

O ’Reilly brings diverse innovators toge ther to  nu rtu re  the  ideas 
th a t sp ark  revolutionary  industries. W e specialize in d ocum en t­
ing the la test tools and  system s, transla ting  the inn o v a to r’s 
know ledge in to  useful skills for those in the trenches. Visit con­
fe r  ences.oreilly.com  for o u r upcom ing  events.

Safari B ookshelf (safari.oreilly.com ) is the p rem ier online refer­
ence library for p rogram m ers and  IT  professionals. C onduct 
searches across m ore th an  1,000 books. Subscribers can zero in 
on  answ ers to tim e-critical questions in  a m atte r o f seconds. 
R ead the books on  your B ookshelf from  cover to  cover o r sim ­
ply flip to  the page you need. T ry  it to d ay  w ith  a free trial.



LINUX
Network

Administrator's
Guide

THIRD EDITION

Tony Bautts, Terry Dawson, 
and Gregor N. Purdy

O REILLY®
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

SHROFF PUBLISHERS & DISTRIBUTORS PVT. LTD.
Mumbai Bangalore Chennai Kolkata M e w  Delhi



Linux Network Administrator's Guide, Third Edition
b y  L inux  N e tw o rk  A d m in is tra to r’s G u id e , T h ird  E d itio n

Copyright © 2005 O’Reilly Media, Inc. All rights reserved. ISBN: 0-596-00548-2
Copyright ©1995 Olaf Kirch. Copyright ©2000 Terry Dawson. Copyright on O’Reilly printed version
© 2000 O’Reilly Media, Inc. Rights to copy the O’Reilly printed version are reserved.

Originally Printed in the United States of America.

Published by O’Reilly M’edia Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online 
editions are also available for mast titles {safari.oreilfy.com). For more information, contact our 
corporate/institutional sales department: (800) 998-9938 or corpomte@oreiUy.com.

Editon Andy Oram

Production Editor: Adam Witwer 

Cover Designer: Edie Freedman 

Interior Designer: David Futato 

Printing History:
January 1995: First Edition.
June 2000: Second Edition.
February 2005:Third Edition.

First Indian Reprint: June 2005 

ISBN: A l -73bb-45S-4

Nutshell Handbook, the Nutshell Handbook logo ,and the O’Reilly logo are registered trade­
marks of O’Reilly Media, Inc. The L in u x  series designations, L in u x  N e tw o r k  A d m in is tr a to r 's  
Guide, Third Edition, images of the American West, and related trade dress are trademarks of 
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. 
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,the publisher and 
author assume no responsibility for errors or omissions, or for damages resulting from the use 
of the information contained herein.

For sale in  the Indian Subcontinent (India, Pakistan, Bangladesh, Sri Lanka, Nepal, 
Bhutan) and African Continent (excluding Morocco, Algeria, Tunisia, Libya, Egypt, 
and the Republic o f South Africa) only. Illegal for sale outside o f these countries

Authorized reprint of the original work published by O’Reilly Media, Inc. All rights reserved. 
No part of the material protected by this copyright notice may be reproduced or utilized in 
any form or by any means, electronic or mechanical, including photocopying, recording, or 
by any information storage and retrieval system, nor exported to any countries other than 
ones mentioned above without the written permission of the copyright owner.

Published by Shroff Publishers and Distributors Pvt. Ltd. C-103, MIDC, TTC Industrial Area, 
Pawane, Navi Mumbai 400 701, Tel: (91 22) 2763 4290, Fax: 2768 3337, 
e-mail: spdorders@shroffpublishers.com. Printed at Decora Printers Andheri, Mumbai.

mailto:corpomte@oreiUy.com
mailto:spdorders@shroffpublishers.com


Table of Contents

Preface ...................................................................................................................... ix 

1.... Introduction to Networking............................................................................ 1
H is to ry  1

T C P /IP  N e tw o rk s  2

L in u x  N e tw o rk in g  11

M a in ta in in g  Y our S ystem  13

2. Issues of TCP/IP Networking ........................................................................16
N etw o rk in g  In terfaces 16

IP A ddresses 17

T h e  In te rn e t C o n tro l M essage P ro to co l 26

3. Configuring the Serial Hardware.................................................................. 29
C o m m u n ica tio n s  S oftw are fo r M o d em  L inks 29

A ccessing Serial D evices 30

U sing  th e  C o n fig u ra tio n  U tilities 34

Serial D evices an d  th e  login: P ro m p t 38

4. Configuring TCP/IP Networking.................................................................... 42
U n d e rs ta n d in g  the  /p ro c  F ilesystem  43

5. Name Service and Configuration.................................................................. 66
T h e  R esolver L ib rary  67

H o w  D N S W o rk s  71

A lternatives to  B IN D  92



6. The Point-to-Point Protocol..........................................................................96
PPP on  L in u x  97

R u n n in g  p p p d  98

U sin g  O p tio n s  Files 99

U sin g  c h a t to  A u to m a te  D ia ling  100

IP C o n fig u ra tio n  O p tio n s  102

L in k  C o n tro l O p tio n s  105

G en e ra l S ecu rity  C o n s id e ra tio n s  107

A u th e n tic a tio n  w ith  PPP 108

D eb u g g in g  Y o u r PPP S e tup  112

M o re  A d v an ced  PPP C o n fig u ra tio n s  112

P P PoE  O p tio n s  in  L in u x  116

7. TCP/IP Firewall ............................................................................................ 119
M e th o d s  o f A tta c k  120

W h a t Is a F irew all? 122

W h a t Is IP F iltering? 124

N e tf ilte r  a n d  ip tab le s  125

ip  tab le s  C o n c e p ts  127

S e ttin g  U p  L in u x  fo r F irew alling  133

U sin g  ip tab le s  134

T h e  ip tab le s  S u b c o m m a n d s  136

B asic ip tab le s  M a tch es  137

A S am ple  F irew all C o n fig u ra tio n  141

R eferences 144

8. IP Accounting .............................................................................................. 146
C o n fig u rin g  th e  K ernel fo r IP A c c o u n tin g  146

C o n fig u rin g  IP A c c o u n tin g  146

U sin g  IP A cco u n tin g  R esu lts  151

R ese ttin g  th e  C o u n te rs  151

F lu sh in g  th e  R u le Set 152

Passive C o llec tio n  o f A cco u n tin g  D a ta  152

9. IP Masquerade and Network Address Translation..................................... 154
Side E ffects a n d  F ringe  B enefits 156

C o n fig u rin g  th e  K ernel fo r IP M a sq u e ra d e  157

C o n fig u rin g  IP M asq u e ra d e  157

H a n d lin g  N am ese rv e r L o o k u p s  158

M o re  A b o u t N e tw o rk  A d d ress  T ra n s la tio n  159

vi | Table of Contents



10. Important Network Features...................................................................... 160
T h e  in e td  S uper Server * 160

T h e  tc p d  A ccess C o n tro l F ac ility  163

T h e  x in e td  A lte rna tive  164

T h e  Services an d  P ro to co ls  F iles 167

R em o te  P ro ced u re  C all 169

C o n fig u rin g  R em ote  L ogin  a n d  E x ecu tio n  170

11. Administration Issues with Electronic M a il................................................179
W h a t Is a M ail M essage? 180

H o w  Is M ail D elivered? 182

E m ail A ddresses  183

H o w  D oes M ail R o u tin g  W o rk ?  184

M ail R o u tin g  o n  th e  In te rn e t 184

12. sendmail ......................................................................................................186
In s ta llin g  th e  sen d m ail D is tr ib u tio n  186

se n d m a il C o n fig u ra tio n  F iles 192

se n d m a il .c f C o n fig u ra tio n  L an g u ag e  198

C re a tin g  a sen d m ail C o n fig u ra tio n  203

sen d m a il D a tab ase s  2 1 0

T e s tin g  Y o u r C o n fig u ra tio n  222

R u n n in g  sen d m ail 22 7

T ip s  a n d  T rick s 22 8

M o re  In fo rm a tio n  231

13. Configuring IPv6 Networks ........................................................................ 233
T h e  IPv4 P ro b lem  a n d  P a tc h w o rk  S o lu tio n s  23 4

IPv6 as a S o lu tio n  235

14. Configuring the Apache Web Server...........................................................244
A p ach e  H T T P D  Server— A n In tro d u c tio n  2 4 4

C o n fig u rin g  a n d  B u ild ing  A p ach e  24 4

C o n fig u ra tio n  File O p tio n s  24 7

V irtu a lH o s t C o n fig u ra tio n  O p tio n s  250

A p ach e  a n d  O penSSL  252

T  ro u b le sh o o t ing  25 6

Table of Contents | vii



15. IMAP.............................................................................................................258
IM A P— A n In tro d u c tio n  258

C y ru s  IM AP 263

16. Samba ......................................................................................................... 266
S am b a— A n In tro d u c tio n  266

17. OpenLDAP....................................................................................................278
U n d e rs ta n d in g  LDAP 278

O b ta in in g  O penL D A P  280

18. Wireless Networking................................................................................... 294
H is to ry  294

T h e  S ta n d a rd s  295

802 .1  l b  S ecurity  C o n ce rn s  296

Appendix: Example Network: The Virtual Brewery.............................................. 309 

Index...................................................................................................................... 311

viii | Table of Contents



Preface

T h e  In te rn e t is n o w  a h o u se h o ld  te rm  in m a n y  c o u n tr ie s  a n d  h as b e c o m e  a p a r t  o f 
life fo r m o s t o f  th e  b u s in e ss  w o rld . W ith  m illio n s  o f  p e o p le  c o n n e c tin g  to  th e  W o r ld  
W id e  W e b , c o m p u te r  n e tw o rk in g  h a s  m o v ed  to  th e  s ta tu s  o f  T V  sets a n d  m ic ro w av e  
ovens. Y ou  can  p u rc h a s e  a n d  in s ta ll a w ire less  h u b  w ith  ju s t  a b o u t a n  e q u a l a m o u n t  
o f  e ffo rt. T h e  In te rn e t h a s  u n u su a l ly  h ig h  m e d ia  cov erag e , w ith  w e b lo g s  o ften  
“sc o o p in g ” tr a d it io n a l m e d ia  o u tle ts  ‘fo r n ew s s to r ie s , w h ile  v ir tu a l rea lity  e n v iro n ­
m e n ts  su c h  as o n lin e  g a m e s  a n d  th e  re s t h ave  d e v e lo p e d  in to  th e  “In te rn e t c u l tu r e .”

O f  co u rse , n e tw o rk in g  h a s  b een  a ro u n d  fo r a lo n g  tim e . C o n n e c tin g  c o m p u te rs  to  
fo rm  loca l a rea  n e tw o rk s  h a s  b e e n  c o m m o n  p ra c tic e , ev en  a t sm all in s ta lla t io n s , a n d  
so  hav e  lo n g -h a u l lin k s  u s in g  tra n sm is s io n  lines p ro v id e d  by  te le c o m m u n ic a tio n s  
c o m p a n ie s . A rap id ly  g ro w in g  c o n g lo m e ra te  o f  w o rld w id e  n e tw o rk s  h a s , h o w e v e r, 
m a d e  jo in in g  th e  g lo b a l v illage  a p e rfec tly  re a so n a b le  o p tio n  fo r n early  ev e ry o n e  w ith  
access  to  a c o m p u te r . S e ttin g  u p  a b ro a d b a n d  In te rn e t h o s t  w ith  fas t m a il a n d  w eb  
access  is b e c o m in g  m o re  a n d  m o re  a ffo rd ab le .

T a lk in g  a b o u t c o m p u te r  n e tw o rk s  o fte n  m e a n s  ta lk in g  a b o u t U nix . O f  c o u rs e , U n ix  
is n o t  th e  o n ly  o p e ra t in g  sy s te m  w ith  n e tw o rk  ca p a b ilitie s , n o r  w ill it re m a in  a 
f ro n tru n n e r  fo rever, b u t  it h a s  b e e n  in  th e  n e tw o rk in g  b u s in e ss  fo r a lo n g  tim e  a n d  
w ill su re ly  c o n tin u e  to  b e  fo r so m e  tim e  to  co m e . W h a t  m ak es U n ix  p a r tic u la r ly  
in te re s tin g  to  p riv a te  u se rs  is th a t  th e re  h as b e e n  m u c h  ac tiv ity  to  b rin g  free U n ix -lik e  
o p e ra t in g  sy s tem s to  th e  P C , su c h  as N etB S D , F reeB SD , a n d  L inux .

L in u x  is a freely  d is tr ib u ta b le  U n ix  c lo n e  fo r p e rso n a l c o m p u te rs  th a t  c u rre n tly  ru n s  
o n  a v a rie ty  o f  m a c h in e s  th a t  in c lu d e s  th e  In te l fam ily  o f  p ro ce sso rs , b u t  a lso  P o w ­
e rP C  a rc h ite c tu re s  su c h  as th e  A p p le .M a c in to sh ; it c an  a lso  ru n  o n  S un  SPA R C  a n d  
U ltra -S P A R C  m a c h in e s ; C o m p a q  A lp h as; M IPS; a n d  ev en  a n u m b e r  o f v id e o  g am e 
co n so le s , su ch  as th e  S o n y  P lay S ta tio n  2, th e  N in te n d o  G a m e c u b e , a n d  th e  M ic ro so f t 
X b o x . L in u x  h a s  a lso  b e e n  p o r te d  to  so m e  re la tive ly  o b sc u re  p la tfo rm s , su c h  as th e  
F u ji tsu  A P -1000  a n d  th e  IB M  S y stem  3 /9 0 . P o rts  to  o th e r  in te re s tin g  a rc h ite c tu re s  
a re  c u rre n tly  in  p ro g re ss  in  d e v e lo p e rs ’ lab s , a n d  th e  q u e s t  to  m ove L in u x  in to  th e  
e m b e d d e d  c o n tro lle r  sp a c e  p ro m ise s  success .



L in u x  w as  d ev e lo p e d  b y  a la rge  te a m  o f  v o lu n te e rs  a c ro ss  th e  In te rn e t. T h e  p ro je c t 
w as s ta r te d  in  1990  b y  L in u s  T o rv a ld s , a F in n ish  co llege  s tu d e n t,  as a n  o p e ra t in g  sy s­
tem s c o u rs e  p ro je c t. S ince  th a t  tim e , L in u x  h a s  sn o w b a lle d  in to  a fu ll-fe a tu re d  U n ix  
c lo n e  c a p a b le  o f  ru n n in g  a p p lic a tio n s  as d iv e rse  as s im u la tio n  a n d  m o d e lin g  p ro ­
g ram s, w o rd  p ro c e s so rs , sp e e c h -re c o g n itio n  sy s tem s , W o r ld  W id e  W e b  b ro w se rs , 
a n d  a h o rd e  o f  o th e r  so f tw a re , in c lu d in g  a v a rie ty  o f  ex ce llen t gam es. A  g re a t d e a l o f  
h a rd w a re  is s u p p o r te d , a n d  L in u x  c o n ta in s  a  c o m p le te  im p le m e n ta t io n  o f  T C P /IP  
n e tw o rk in g , in c lu d in g  PPP , firew alls , a n d  m a n y  fe a tu re s  a n d  p ro to c o ls  n o t  fo u n d  in  
an y  o th e r  o p e ra t in g  sy s tem . L in u x  is p o w e rfu l, fa s t, a n d  free , a n d  its  p o p u la r ity  in  
th e  w o rld  b e y o n d  th e  In te rn e t is g ro w in g  rap id ly .

T h e  L in u x  o p e ra t in g  sy s tem  itse lf is c o v e red  b y  th e  G N U  G e n e ra l P u b lic  L icense , th e  
sam e  c o p y r ig h t licen se  u se d  by  so f tw a re  d e v e lo p e d  b y  th e  F ree  S o ftw are  F o u n d a ­
tio n . T h is  lic en se  a llo w s a n y o n e  to  re d is tr ib u te  o r  m o d ify  th e  so ftw a re  (free o f  ch a rg e  
o r  fo r a  p ro fit)  as lo n g  as all m o d if ic a tio n s  a n d  d is tr ib u tio n s  a re  freely  d is tr ib u ta b le  
as w ell. T h e  te rm  “free  so f tw a re ” refers to  fre e d o m  o f  a p p lic a tio n , n o t  f re e d o m  o f  
co st.

Purpose and Audience for This Book
T h is  b o o k  w as  w r it te n  to  p ro v id e  a s ing le  re fe ren ce  fo r n e tw o rk  a d m in is tra t io n  in  a 
L in u x  e n v iro n m e n t. B eg in n e rs  a n d  e x p e rie n c e d  u se rs  a like  sh o u ld  fin d  th e  in fo rm a ­
tio n  th e y  n e e d  to  c o v e r  n ea rly  all im p o r ta n t  a d m in is tra t io n  ac tiv itie s  re q u ire d  to  
m a n a g e  a L in u x  n e tw o rk  c o n fig u ra tio n . T h e  p o ss ib le  ran g e  o f  to p ic s  to  co v e r is 
n ea rly  lim itle ss , so  o f  c o u rse  it h a s  b e e n  im p o ss ib le  to  in c lu d e  ev e ry th in g  th e re  is to  
say  o n  all su b jec ts . W e ’ve tr ie d  to  co v e r th e  m o s t im p o r ta n t  a n d  c o m m o n  o n es . 
B eg inners to  L in u x  n e tw o rk in g , even  th o s e  w ith  n o  p r io r  e x p o su re  to  U n ix -lik e  o p e r ­
a tin g  sy s tem s , h av e  fo u n d  ea rlie r  e d it io n s  o f  th is  b o o k  g o o d  e n o u g h  to  h e lp  th e m  
su ccessfu lly  g e t th e ir  L in u x  n e tw o rk  c o n f ig u ra tio n s  u p  a n d  ru n n in g  a n d  g e t th e m  
read y  to  le a rn  m o re .

T h e re  a re  m a n y  b o o k s  a n d  o th e r  so u rc e s  o f  in fo rm a tio n  fro m  w h ic h  y o u  c a n  le a rn  
an y  o f  th e  to p ic s  c o v e re d  in  th is  b o o k  in  g re a te r  d e p th . W e ’ve p ro v id e d  a b ib l io g ra ­
p h y  w h e n  y o u  a re  re a d y  to  ex p lo re  m o re .

Sources of Information
If y o u  a re  n e w  to  th e  w o r ld  o f  L in u x , th e re  a re  a n u m b e r  o f  re so u rc e s  to  e x p lo re  a n d  
b e c o m e  fam ilia r  w ith . H a v in g  access to  th e  In te rn e t is h e lp fu l, b u t  n o t e ssen tia l.



Linux Documentation Project Guides
T h e  L in u x  D o c u m e n ta tio n  P ro jec t is a g ro u p  o f  v o lu n te e rs  w h o  h av e  w o rk e d  to  p ro ­
d u c e  b o o k s  (gu ides), H O W T O  d o c u m e n ts , a n d  m a n p a g e s  o n  to p ic s  ran g in g  fro m  
in s ta lla t io n  to  k e rn e l p ro g ra m m in g .

Books
Linux Installation and Getting Started

By M a tt W e ls h , e t al. T h is  b o o k  d e sc rib e s  h o w  to  o b ta in , in s ta ll, a n d  u se  L in u x . 
It in c lu d e s  an  in tro d u c to ry  U n ix  tu to r ia l a n d  in fo rm a tio n  o n  sy s tem s a d m in is tra ­
tio n , th e  X  W in d o w  S y stem , a n d  n e tw o rk in g .

Linux System Administrators Guide
By L ars W irz e n iu s  a n d  J o a n n a  O ja . T h is  b o o k  is a g u id e  to  g en e ra l L in u x  sy s tem  
a d m in is tra t io n  a n d  co v e rs  to p ic s  su c h  as c re a tin g  a n d  c o n fig u rin g  u se rs , p e r ­
fo rm in g  sy s tem  b a c k u p s , c o n fig u rin g  o f  m a jo r  so f tw a re  p a c k a g e s , a n d  in s ta llin g  
a n d  u p g ra d in g  so ftw are .

Linux System Adminstration Made Easy
By S teve F ra m p to n . T h is  b o o k  d e sc r ib e s  d a y -to -d a y  a d m in is tra t io n  a n d  m a in te ­
n a n c e  issu es o f  re lev an ce  to  L in u x  u sers .

Linux Programmers Guide
By B. S co tt B u rk e tt, Sven G o ld t, J o h n  D . H a rp e r , Sven v a n  d e r  M eer, a n d  M a tt 
W e lsh . T h is  b o o k  co v ers  to p ic s  o f  in te re s t to  p e o p le  w h o  w ish  to  d e v e lo p  a p p li­
c a tio n  so f tw a re  fo r L inux .

The Linux Kernel
By D av id  A. R usling . T h is  b o o k  p ro v id e s  an  in t ro d u c t io n  to  th e  L in u x  k e rn e l, 
h o w  it is c o n s tru c te d , a n d  h o w  it w o rk s . T ak e  a to u r  o f  y o u r  k e rn e l.

The Linux Kernel Module Programming Guide
By O ri P o m e ra n tz . T h is  g u id e  e x p la in s  h o w  to  w rite  L in u x  k e rn e l m o d u le s . T h is  
b o o k  a lso  o rig in a te d  in  th e  L D P. T h e  te x t o f  th e  c u r r e n t v e rs io n  is re leased  u n d e r  
th e  C rea tiv e  C o m m o n s  A ttr ib u tio n -S h a re  A like L icense , so  it can  b e  freely  
a lte re d  a n d  d is tr ib u te d .

M o re  m a n u a ls  are  in  d e v e lo p m e n t. F o r  m o re  in fo rm a tio n  a b o u t th e  L D P , c o n su lt 
th e ir  se rv e r a t http://www.linuxdoc.org/ o r o n e  o f  its  m a n y  m irro rs .

HOWTO documents
T h e  L in u x  H O W T O s  are  a  c o m p re h e n s iv e  series o f  p a p e rs  d e ta ilin g  v a rio u s  a sp ec ts  
o f  th e  sy s tem — su c h  as h o w  to  in s ta ll a n d  co n fig u re  th e  X W in d o w  System  so ftw are , 
o r  w rite  in  a ssem b ly  lan g u ag e  p ro g ra m m in g  u n d e r  L inux . T h e se  a re  ava ilab le  o n lin e  
a t o n e  o f  th e  m a n y  L in u x  D o c u m e n ta tio n  P ro jec t m irro r  s ite s  (see n e x t sec tio n ). See 
th e  file H O W T O -IN D E X  fo r a lis t o f  w h a t’s availab le .

http://www.linuxdoc.org/


You might want to obtain the Installation HOW TO , which describes how to install 
Linux on your system; the Hardware Compatibility HOWTO , which contains a list of 
hardware known to work with Linux; and the Distribution HOWTO , which lists 
software vendors selling Linux on diskette and CD-ROM.

Linux Frequently Asked Questions
The Linux Frequently Asked Questions with Answers (FAQ) contains a wide assort­
ment of questions and answers about the system. It is a must-read for all newcomers.

Documentation Available via WWW
There are many Linux-based W W W  sites available. The home site for the Linux 
Documentation Project can be accessed at http:/)www.tldp.org/.

Any additional information can probably be foûnd with a quick Google search. It 
seems that almost everything has been tried and likely written up by someone in the 
Linux community.

Documentation Available Commercially
A number of publishing companies and software vendors publish the works of the 
Linux Documentation Project. Two such vendors are Specialized Systems Consult­
ants, Inc. (SSC) (http://www.ssc.com) and Linux Systems Labs (http://www.lsl.com). 
Both companies sell compendiums of Linux HOW TO documents and other Linux 
documentation in printed and bound form.

O ’Reilly Media publishes a series of Linux books. This one is a work of the Linux 
Documentation Project, but most have been authored independently:

Running Linux
An installation and user guide to the system describing how to get the most out 
of personal computing with Linux.

Linux Server Security
An excellent guide to configuring airtight Linux servers. Administrators who are 
building web servers or other bastion hosts should consider this book a great 
source of information.

Linux in a Nutshell
Another in the successful “in a Nutshell” series, this book focuses on providing a 
broad reference text for Linux.

Linux iptables Pocket Reference
A brief but complete compendium of features in the Linux firewall system.

http://www.tldp.org/
http://www.ssc.com
http://www.lsl.com


Linux Journal and Linux Magazine
Linux Journal and Linux Magazine are monthly magazines for the Linux commu­
nity, written and published by a number of Linux activists. They contain articles 
ranging from novice questions and answers to kernel programming internals. Even if 
you have Usenet access, these magazines are a good way to stay in touch with the 
Linux community.

Linux Journal is the oldest magazine and is published by SSC, for which details were 
listed in the previous section. You can also find the magazine at http://www. 
linuxjournal.com/.

LinuxMagazine is a newer, independent publication. The home web site for the mag­
azine is http://www.linuxmagazine.com/.

Linux Usenet Newsgroups
If you have access to Usenet news, the following Linux-related newsgroups are avail­
able:

comp.os.tinux.announce
A moderated newsgroup containing announcements of new software, distribu­
tions, bug reports, and goings-on in the Linux community. All Linux users 
should read this group.

comp. os. linux. help
General questions and answers about installing or using Linux.

comp. os. linux. admin
Discussions relating to systems administration under Linux.

comp. os. linux. networking
Discussions relating to networking with Linux.

comp.os.linux.development
Discussions about developing the Linux kernel and system itself.

comp.os. linux. mise
A catch-all newsgroup for miscellaneous discussions that don’t fall under the 
previous categories.

There are also several newsgroups devoted to Linux in languages other than English, 
such as fr.comp.os.linux in French and de.comp.os.linux in German.

Linux Mailing Lists
There are a large number of specialist Linux mailing lists on which you will find 
many people willing to help with your questions.

http://www
http://www.linuxmagazine.com/


The best-known of these is the Linux Kernel Mailing List. It’s a very busy and dense 
mailing list, with an enormous volume of information posted daily. For more infor­
mation, visit http://www.tux.org/lkml.

Linux User Groups
Many Linux User Groups around the world offer direct support to users, engaging in 
activities such as installation days, talks and seminars, demonstration nights, and 
other social events. Linux User Groups are a great way to meet other Linux users in 
your area. There are a number of published lists of Linux User Groups. One of the 
most comprehensive is Linux Users Groups Worldwide (http://lugww.counter.li.org/ 
index, cms).

Obtaining Linux
There is no single distribution of the Linux software; instead, there are many distri­
butions, such as Debian, Fedora, Red Hat, SUSE, Gentoo, and Slackware. Each dis­
tribution contains everything you need to run a complete Linux system: the kernel, 
basic utilities, libraries, support files, and applications software.

Linux distributions may be obtained via a number of online sources, such as the 
Internet. Each of the major distributions has its own FTP and web site. Some of these 
sites are as follows:

Debian
http://www.debian.org/

Gentoo
http://www.gentoo.org/

Red Hat
http://www. redhat.com/

Fedora
http://fedora, redhat. com/

Slackware
http://www.slackware.com/

SUSE
http://www.suse.com/

Many of the popular general W W W  archive sites also mirror various Linux distribu­
tions. The best-known of these sites is http://www.linuxiso.org.

Every major distribution can be downloaded directly from the Internet, but Linux 
may be purchased on CD-ROM from an increasing number of software vendors. If 
your local computer store doesn’t have it, perhaps you should ask them to stock it! 
Most of the popular distributions can be obtained on CD-ROM. Some vendors

xiv | Preface

http://www.tux.org/lkml
http://lugww.counter.li.org/
http://www.debian.org/
http://www.gentoo.org/
http://www
http://fedora
http://www.slackware.com/
http://www.suse.com/
http://www.linuxiso.org


produce products containing multiple CD-ROMs, each of which provides a different 
Linux distribution. This is an ideal way to try a number of different distributions 
before settling on your favorite.

Filesystem Standards
In the past, one of the problems that afflicted Linux distributions, as well as the 
packages of software running on Linux, was the lack of a single accepted filesystem 
layout. This resulted in incompatibilities between different packages, and con­
fronted users and administrators with the task of locating various files and programs.

To improve this situation, in August 1993, several people formed the Linux File Sys­
tem Standard Group (FSSTND). After six months of discussion, the group created a 
draft that presents a coherent filesystem structure and defines the location of the 
most essential programs and configuration files.

This standard was supposed to have been implemented by most major Linux distri­
butions and packages. It is a little unfortunate that, while most distributions have 
made some attemp.t to work toward the FSSTND, there is a very small number of 
distributions that has actually adopted it fully. Throughout this book, we will 
assume that any files discussed reside in the location specified by the standard; alter­
native locations will be mentioned only when there is a long tradition that conflicts 
with this specification.

The Linux FSSTND continued to develop, but was replaced by the Linux File Hierar­
chy Standard (FHS) in 1997. The FHS addresses the multi-architecture issues that 
the FSSTND did not. The FHS can be obtained from htty:!lwvovo.jreestandards.org.

Standard Linux Base
The vast number of different Linux distributions, while providing lots of healthy 
choices for Linux users, has created a problem for software developers— particularly 
developers of non-free software.

Each distribution packages and supplies certain base libraries, configuration tools, 
system applications, and configuration files. Unfortunately, differences in their ver­
sions, names, and locations make it very difficult to know what will exist on any dis­
tribution. This makes it hard to develop binary applications that will work reliably 
on all Linux distribution bases.

To help overcome this problem, a new project sprang up called the Linux Standard 
Base. It aims to describe a standard base distribution that complying distributions 
will use. If a developer designs an application to work with the standard base plat­
form, the application will work with, and be portable to, any complying Linux distri­
bution.

Preface | xv



You can find information on the status of the Linux Standard Base project at its 
home web site at http://www.linuxbase.org/.

If you’re concerned about interoperability, particularly of software from commercial 
vendors, you should ensure that your Linux distribution is making an effort to par­
ticipate in the standardization project.

About This Book
When Olaf Kirche joined the LDP in 1992, he wrote two small chapters on UUCP 
and smail, which he meant to contribute to the System Administrator’s Guide. 
Development of TCP/IP networking was just beginning, and when those “small 
chapters” started to grow, he wondered aloud whether it would be nice to have a 
Networking Guide. “Great!” everyone said. “Go for it!” So he went for it and wrote 
the first version of the Networking Guide, which was released in September 1993.

Olaf continued work on the Networking Guide and eventually produced a much 
enhanced version of the guide. Vince Skahan contributed the original sendmail mail 
chapter, which was completely replaced in that edition because of a new interface to 
the sendmail configuration.

In March of 2000, Terry Dawson updated O laf s original, adding several new chap­
ters and bringing it into the new millennium.

The version of the guide that you are reading now is a fairly large revision and update 
prompted by O ’Reilly Media and undertaken by Tony Bautts. Tony has been enthu­
siastic Linux user and information security consultant for longer than he would care 
to admit. He is coauthor of several other computer security-related books and likes 
to give talks on the subject as well. Tony is a big proponent of Linux in the commer­
cial environment and routinely attempts to convert people to Gentoo Linux. For this 
edition he has added a few new chapters describing features of Linux networking 
that have been developed since the second edition, plus a bunch of changes to bring 
the rest of the book up to date.

The three iptables chapters (Chapters 7, 8, and 9) were updated by Gregor Purdy for 
this edition.

The book is organized roughly along the sequence of steps that you have to take to 
configure your system for networking. It starts by discussing basic concepts of net­
works, and TCP/IP-based networks in particular. It then slowly works its way up 
from configuring TCP/IP at the device level to firewall, accounting, and masquerade 
configuration, to the setup of common applications such as SSH, Apache, and 
Samba. The email part features an introduction to the more intimate parts of mail 
transport and routing and the myriad of addressing schemes that you may be con­
fronted with. It describes the configuration and management of sendmail, the most 
common mail transport agent, and IMAP, used for delivery to individual mail users.

xvi | Preface

http://www.linuxbase.org/


Chapters on LDAP and wireless networking round out the infrastructure for modem  
network administration.

Of course, a book can never exhaustively answer all questions you might have. So if 
you follow the instructions in this book and something still does not work, please be 
patient. Some of your problems may be due to mistakes on our part (see “How to 
Contact U s,” later in this Preface), but they also may be caused by changes in the 
networking software. Therefore, you should check the listed information resources 
first. There’s a good chance that you are not alone with your problems, so a fix or at 
least a proposed workaround is likely to be known— this is where search engines are 
particularly handy! If you have the opportunity, you should also try to get the latest 
kernel and network release from http://www.kernel.org. Many problems are caused 
by software from different stages of development, which fail to work together prop­
erly. After all, Linux is a “work in progress.”

The Official Printed Version
In Autumn 1993, Andy Oram, who had been around the LDP mailing list from 
almost the very beginning, asked Olaf about publishing this book at O ’Reilly & 
Associates. He was excited about this book, but never imagined that it would 
become as successful as it has. He and Andy finally agreed that O ’Reilly would pro­
duce an enhanced Official Printed Version of the Networking Guide, while Olaf 
retained the original copyright so that the source of the book could be freely distrib­
uted. This means that you can choose freely: you can get the various free forms of the 
document from your nearest LDP mirror site and print it out, or you can purchase 
the official printed version from O ’Reilly.

Why, then, would you want to pay money for something you can get for free? Is Tim 
O ’Reilly out of his mind for publishing something everyone can print and even sell 
themselves?' Is there any difference between these versions?

The answers are “It depends,” “N o, definitely not,” and “Yes and no .” O ’Reilly 
Media does take a risk in publishing the Network Administrator’s Guide, but it 
seems to have paid off for them (since they’ve asked us to do it two more times). We 
believe this project serves as a fine example of how the free software world and com­
panies can cooperate to produce something both can benefit from. In our view, the 
great service O ’Reilly provides the Linux community (apart from the book becoming 
readily available in your local bookstore) is that it has helped Linux become recog­
nized as something to be taken seriously: a viable and useful alternative to other 
commercial operating systems. It’s a sad technical bookstore that doesn’t have at 
least one shelf stacked with O ’Reilly Linux books.

* Note that while you are allowed to print out the online version, you may not run the O ’Reilly book through 
a photocopier, much less sell any of its (hypothetical) copies.

Preface | xvii

http://www.kernel.org


W hy are they publishing it? They see it as their kind of book. It’s what they would  
hope to produce if they contracted with an author to write about Linux. The pace, 
level of detail, and style fit in well with their other offerings.

The point of the LDP license is to make sure no one gets shut out. Other people can 
print out copies of this book, and no one will blame you if you get one of these cop­
ies. But if you haven’t gotten a chance to see the O ’Reilly version, try to get to a 
bookstore or look at a friend’s copy. We think you’ll like what you see and will want 
to buy it for yourself.

So what about the differences between the printed and online versions? Andy Oram 
has made great efforts at transforming our ramblings into something actually worth 
printing. (He has also reviewed a few other books produced by the LDP, contribuf- 
ing whatever professional skills he can to the Linux community.)

Since Andy started reviewing the Networking Guide and editing the copies sent to 
him, the book has improved vastly from its original form, and with every round of 
submission and feedback, it improves again. The opportunity to take advantage of a 
professional editor’s skill is not to be wasted. In many ways, Andy’s contribution has 
been as important as that of the authors. The same is also true of the production 
staff, who got the book into the shape that you see now. All these edits have been fed 
back into the online version, so there is no difference in content.

Still, the O ’Reilly version will be different. It will be professionally bound, and while 
you may go to the trouble to print the free version, it is unlikely that you will get the 
same quality result. Secondly, our amateurish attempts at illustration will have been 
replaced with nicely redone figures by O ’Reilly’s professional artists. Indexers have 
generated an improved index, which makes locating information in the book a much 
simpler process. If this book is something you intend to read from start to finish, you 
should consider reading the official printed version.

Overview
Chapter 1, Introduction to Networking, discusses the history of Linux and covers 
basic networking information on UUCP, TCP/IP, various protocols, hardware, and 
security. The next few chapters deal with configuring Linux for TCP/IP networking 
and running some major applications.

Chapter 2, Issues of TCP/IP Networking, examines IP a little more closely before we 
get our hands dirty with file editing and the like. If you already know how IP routing 
works and how address resolution is performed, you can skip this chapter.

Chapter 3, Configuring the Serial Hardware, deals with the configuration of your 
serial ports.

Chapter 4, Configuring TCP/IP Networking, helps you set up your machine for TCP/ 
IP networking. It contains installation hints for standalone hosts and those

xviii | Preface



connected to a network. It also introduces you to a few useful tools you can use to 
test and debug your setup.

Chapter 5, Name Service and Configuration, discusses how to configure hostname 
resolution and explains how to set up a name server.

Chapter 6, The Point-to-Point Protocol, covers PPP and pppd, the PPP daemon.

Chapter 7, TCP/IP Firewall, extends our discussion on network security and 
describes the Linux TCP/IP firewall ip tables. IP firewalling provides a means of very 
precisely controlling who can access your network and hosts.

Chapter 8, IP Accounting, explains how to configure IP Accounting in Linux so that 
you can keep track of how much traffic is going where and who is generating it.

Chapter 9, IP Masquerade and Network Address Translation, covers a feature of the 
Linux networking software called IP masquerade, or NAT, which allows whole IP 
networks to connect to and use the Internet through a single IP address, hiding inter­
nal systems from outsiders in the process.

Chapter 10, Important Network Features, gives a short introduction to setting up 
some of the most important network infrastructure and applications, such as SSH. 
This chapter also covers how services are managed by the inetd superuser and how  
you may restrict certain security-relevant services to a set of trusted hosts.

Chapter 11, Administration Issues with Electronic Mail, introduces you to the central 
concepts of electronic mail, such as what a mail address looks like and how the mail 
handling system manages to get your message to the recipient.

Chapter 12, sendmail, covers the configuration of sendmail, a mail transport agent 
that you can use for Linux.

Chapter 13, Configuring IPv6 Networks, covers new ground by explaining how to 
configure IPv6 and connect to the IPv6 backbone.

Chapter 14, Configuring the Apache Web Server, describes the steps necessary to 
build an Apache web server and host basic web services.

Chapter 15, IMAP, explains the steps necessary to configure an IMAP mail server, 
and discusses its advantages over the traditional POP mail solution.

Chapter 16, Samba, helps you understand how to configure your Linux server to 
play nicely in the W indows networking world— so nicely, in fact, that your W in­
dows users might not be able to tell the difference.*

Chapter 17, OpenLDAP, introduces OpenLDAP and discusses the configuration and 
potential uses of this service

Chapter 18, Wireless Networking, finally, details the steps required to configure wire­
less networking and build a Wireless Access Point on a Linux server.

* The obvious joke here is left to the reader.

Preface | xix



Conventions Used in This Book
All examples presented in this book assume that you are using an sh-compatible 
shell. The bash shell is sh compatible and is the standard shell of all Linux distribu­
tions. If you happen to be a csh user, you will have to make appropriate adjustments.

The following is a list of the typographical conventions used in this book:

Italic
Used for file and directory names, program and command names, email 
addresses and pathnames, URLs, and for emphasizing new terms.

Boldface
Used for machine names, hostnames, site names, and for occasional emphasis. 

Constant Width
Used in examples to show the contents of code files or the output from com­
mands and to indicate environment variables and keywords that appear in code.

Constant Width Italic
Used to indicate variable options, keywords, or text that the user is to replace 
with an actual value.

Constant Width Bold
Used in examples to show commands or other text that should be typed literally 
by the user.

^  Indicates a tip, suggestion, or general note.

____ *

Text appearing in this manner offers a warning. You can make a mis­
take here that hurts your system or is hard to recover frofn.

Safari Enabled
C n f i i i i  W hen you see a Safari® Enabled icon on the cover of your favorite tech- 
w l W l I  nology book, that means the book is available online through the 
MTiViiliflS O ’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you 
easily search thousands of top tech books, cut and paste code samples, download 
chapters, and find quick answers when you need the most accurate, current informa­
tion. Try it for free at http://safari.oreilly.com.

xx | Preface

http://safari.oreilly.com


How to Contact Us
W e have tested and verified the information in this book to the best of our ability, 
but you may find that features have changed (or even that we have made mistakes!). 
Please let us know about any errors you find, as well as your suggestions for future 
editions, by writing to:

O ’Reilly Media, Inc.
1005 Gravenstein Highway North 
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

You can send us messages electronically. To be put on the mailing list or request a 
catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

W e have a web site for the book, where w e’ll list examples, errata, and any plans for 
future editions. You can access this page at:

http://www.oreilly.com/catalog/linag3

For more information about this book and others, see the O ’Reilly web site:

http://www.oreilly.com

Acknowledgments
This edition of the Networking Guide owes much to the outstanding work of Olaf, 
Vince, and Terry. It is difficult to appreciate the effort that goes into researching and 
writing a book of this nature until you’ve had a chance to work on one yourself. 
Updating the book was a challenging task, but with an excellent base to work from, 
it was an enjoyable one.

This book owes very much to the numerous people who took the time to proofread 
it and help iron out many mistakes. Phil Hughes, John Macdonald, and Kenneth 
Geisshirt all provided very helpful (and on the whole, quite consistent) feedback on 
the content of the third edition of this book. Andres Sepulveda, Wolfgang Michaelis, 
and Michael K. Johnson offered invaluable help on the second edition. Finally, the 
book would not have been possible without the support of Holger Grothe, who pro­
vided Olaf with the Internet connectivity he needed to make the original version hap­
pen.

mailto:info@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com/catalog/linag3
http://www.oreilly.com


Terry thanks his wife, Maggie, who patiently supported him throughout his partici­
pation in the project despite the challenges presented by the birth of their first child, 
Jack. Additionally, he thanks the many people of the Linux community who either 
nurtured or suffered him to the point at which he could actually take part and 
actively contribute. “I’ll help you if you promise to help someone else in return.”

Tony would like to thank Linux gurus Dan Ginsberg and Nicolas Lidzborski for their 
support and technical expertise in proofreading the new chapters. Additionally, he 
thanks Katherine for her input with each chapter, when all she really wanted to do 
was check her email. Thanks to Mick Bauer for getting me involved with this project 
and supporting me along the way. Finally, many thanks to the countless Linux users 
who have very helpfully documented their perils in getting things to work, not to 
mention the countless others who respond on a daily basis to questions posted on 
the mailing lists. W ithout this kind of community support, Linux would be nowhere.

xxii | Preface



__________ CHAPTER 1

introduction to 
Networking

History
The idea of networking is probably as old as telecommunications itself. Consider 
people living in the Stone Age, when drums may have been used to transmit mes­
sages between individuals. Suppose caveman A wants to invite caveman B over for a 
game of hurling rocks at each other, but they live too far apart for B to hear A bang­
ing his drum. What are A’s options? He could 1) walk over to B’s place, 2) get a big­
ger drum, or 3) ask C, who lives halfway between them, to forward the message. The 
last option is called networking.

Of course, we have come a long way from the primitive pursuits and devices of our 
forebears. Nowadays, we have computers talk to each other over vast assemblages of 
wires, fiber optics, microwaves, and the like, to make an appointment for Saturday’s 
soccer match.’ In the following description, we will deal with the means and ways by 
which this is accomplished, but leave out the wires, as well as the soccer part.

W e define a network as a collection of hosts that are able to communicate with each 
other, often by relying on the services of a number of dedicated hosts that relay data 
between the participants. Hosts are often computers, but need not be; one can also 
think of X terminals or intelligent printers as hosts. A collection of hosts is also called 
a site.

Communication is impossible without some sort of language or code. In computer 
networks, these languages are collectively referred to as protocols. However, you 
shouldn’t think of written protocols here, but rather of the highly formalized code of 
behavior observed when heads of state meet, for instance. In a very similar fashion, 
the protocols used in computer networks are nothing but very strict rules for the 
exchange of messages between two or more.hosts.

The original spirit of which (see above) still shows on some occasions in Europe.

1



TCP/IP Networks
M odem networking applications require a sophisticated approach to carry data from 
one machine to another. If you are managing a Linux machine that has many users, 
each of whom may wish to simultaneously connect to remote hosts on a network, 
you need a way of allowing them to share your network connection without interfer­
ing with each other. The approach that a large number of modem networking proto­
cols use is called packet switching. A packet is a small chunk of data that is 
transferred from one machine to another across the network. The switching occurs 
as the datagram is carried across each link in the network. A packet-switched net­
work shares a single network link among many users by alternately sending packets 
from one user to another across that link.

The solution that Unix systems, and subsequently many non-Unix systems, have 
adopted is known as TCP/IP. W hen learning about TCP/IP networks, you will hear 
the term datagram, which technically has a special meaning but is often used inter­
changeably with packet. In this section, we will have a look at underlying concepts of 
the TCP/IP protocols.

Introduction to TCP/IP Networks
TCP/IP traces its origins to a research project funded by the United States Defense 
Advanced Research Projects Agency (DARPA) in 1969. The ARPANET was an 
experimental network that was converted into an operational one in 1975 after it had 
proven to be a success.

In 1983, the new protocol suite TCP/IP was adopted as a standard, and all hosts on 
the network were required to use it. When ARPANET finally grew into the Internet 
(with ARPANET itself passing out of existence in 1990), the use of TCP/IP had 
spread to networks beyond the Internet itself. Many companies have now built cor­
porate TCP/IP networks, and the Internet has become a mainstream consumer tech­
nology. It is difficult to read a newspaper or magazine now without seeing references 
to the Internet; almost everyone can use it now.

For something concrete to look at as we discuss TCP/IP throughout the following 
sections, we will consider Groucho Marx University (GMU), situated somewhere in 
Freedonia, as an example. Most departments run their.own Local Area Networks, 
while some share one and others run several of them. They are all interconnected 
and hooked to the Internet through a single high-speed link.

Suppose your Linux box is connected to a LAN of Unix hosts at the mathematics 
department, and its name is erdos. To access a host at the physics department, say 
quark, you enter the following command:

$ ssh quark.school.edu
Enter password:

Last login: Wed Dec 3 18:21:25 2003 from 10.10.0.1 
quark$

2 | Chapter 1: Introduction to Networking



A t th e  p ro m p t,  y o u  e n te r  y o u r  p a ss w o rd . Y o u  are  th e n  g iven  a shell* o n  quark, to  
w h ic h  y o u  can  ty p e  as if y o u  w e re  s i tt in g  a t th e  sy s te m ’s co n so le . A fte r y o u  ex it th e  
sh e ll, y o u  are  r e tu rn e d  to  y o u r  o w n  m a c h in e ’s p ro m p t. Y ou  h av e  ju s t  u sed  o n e  o f  th e  
in s ta n ta n e o u s , in te rac tiv e  a p p lic a tio n s  th a t  u se s  T C P /IP : secu re  shell.

W h ile  b e in g  lo g g ed  in to  quark, y o u  m ig h t a lso  w a n t to  ru n  a g ra p h ic a l u se r  in te rfa ce  
a p p lic a tio n , like  a w o rd  p ro c e s s in g  p ro g ra m , a g ra p h ic s  d ra w in g  p ro g ra m , o r  even  a 
W o r ld  W id e  W e b  b ro w se r . T h e  X W in d o w s  S ystem  is a fu lly  n e tw o rk -a w a re  g ra p h i­
ca l u se r  e n v iro n m e n t, a n d  it is ava ilab le  fo r m a n y  d if fe re n t c o m p u tin g  sy s tem s . T o  
te ll th is  a p p lic a tio n  th a t  y o u  w a n t  to  h ave  its  w in d o w s  d isp la y e d  o n  y o u r  h o s t ’s 
sc reen , y o u  w ill n e e d  to  m ak e  su re  th a t  y o u ’re SSH  se rv e r a n d  d ie n t  are  c a p a b le  o f  
tu n n e l in g  X. T o  d o  th is , y o u  c a n  ch e c k  th e  ssh d _ co n fig  file o n  th e  sy s tem , w h ic h  
s h o u ld  c o n ta in  a line  like th is :

XllForwarding yes

If y o u  n o w  s ta r t y o u r  a p p lic a tio n , it w ill tu n n e l y o u r  X W in d o w  S ystem  a p p lic a tio n s  
so  th a t  th e y  w ill b e  d isp la y e d  o n  y o u r  X  se rv e r in s te a d  o f quark’s. O f c o u rse , th is  
re q u ire s  th a t  y o u  h av e  X I 1 ru n n n in g  o n  erdos. T h e  p o in t  h e re  is th a t  T C P /IP  a llo w s 
quark a n d  erdos to  se n d  X I 1 p a c k e ts  b a c k  a n d  fo r th  to  give y o u  th e  illu s io n  th a t  
y o u ’re o n  a s ing le  sy s tem . T h e  n e tw o rk  is a lm o s t t r a n s p a re n t h ere .

O f  co u rse , th e se  a re  o n ly  e x a m p le s  o f  w h a t y o u  c an  d o  w ith  T C P /IP  n e tw o rk s . T h e  
p o ss ib ilit ie s  a re  a lm o s t lim itle ss , a n d  w e ’ll in tro d u c e  y o u  to  m o re  as y o u  re a d  o n  
th ro u g h  th e  b o o k .

W e  w ill n o w  hav e  a  c lo se r lo o k  a t th e  w ay  T C P /IP  w o rk s . T h is  in fo rm a tio n  w ill h e lp  
y o u  u n d e rs ta n d  h o w  a n d  w h y  y o u  h ave  to  c o n fig u re  y o u r  m a c h in e . W e  w ill s ta r t  b y  
e x a m in in g  th e  h a rd w a re  a n d  s lo w ly  w o rk  o u r  w ay  u p .

Ethernets
T h e  m o s t c o m m o n  ty p e  o f  L A N  h a rd w a re  is k n o w n  as E th ern e t. In  its  s im p le s t fo rm , 
it co n s is ts  o f a s ing le  c ab le  w ith  h o s ts  a t ta c h e d  to  it th ro u g h  c o n n e c to rs , ta p s , o r  
tran sce iv e rs . S im p le  E th e rn e ts  a re  re la tive ly  in ex p en s iv e  to  in s ta ll, w h ich  to g e th e r  
w ith  a n e t tra n s fe r  ra te  o f  10, 100 , 1 ,000 , a n d  n o w  even  10 ,000  m eg ab its  p e r  s e c o n d  
(M b p s), a c c o u n ts  fo r m u c h  o f its  p o p u la r ity .

E th e rn e ts  co m e  in  m a n y  flavors: th ic k , th in , a n d  tw is ted  pa ir. O ld e r  E th e rn e t ty p es  
s u c h  as th in  a n d  th ic k  E th e rn e t, ra re ly  in  u se  to d a y , e a c h  u se  a co ax ia l cab le , d iffe r­
in g  in  d ia m e te r  a n d  th e  w ay  y o u  m a y  a tta c h  a h o s t  to  th is  cab le . T h in  E th e rn e t u ses a  
T -s h a p e d  “B N C ” c o n n e c to r , w h ic h  y o u  in se rt in to  th e  cab le  a n d  tw is t o n to  a  p lu g  o n  
th e  b a c k  o f  y o u r  c o m p u te r . T h ic k  E th e rn e t re q u ire s  th a t  y o u  d rill a sm all h o le  in to

* The shell is a command-line interface to the Unix operating system. It’s similar to the DOS prompt in a 
Microsoft Windows environment, albeit much more powerful.

TCP/IP Networks | 3



the cable and attach a transceiver using a “vampire tap.” One or more hosts can then 
be connected to the transceiver. Thin and thick Ethernet cable can run for a maxi­
mum of 200 and 500 meters, respectively, and are also called 10-base2 and 10-base5. 
The “base” refers to “baseband modulation” and simply means that the data is 
directly fed onto the cable without any modem. The number at the start refers to the 
speed in megabits per second, and the number at the end is the maximum length of 
the cable in hundreds of metres. Twisted pair uses a cable made of two pairs of cop­
per wires and usually requires additional hardware known as active hubs. Twisted 
pair is also known as 10-baseT, the “T ” meaning twisted pair. The 100 Mbps ver­
sion is known as 100-baseT, and not surprisingly, 1000 Mbps is called 1000-baseT or 
gigabit.

To add a host to a thin Ethernet installation, you have to disrupt network service for 
at least a few minutes because you have to cut the cable to insert the connector. 
Although adding a host to a thick Ethernet system is a little complicated, it does not 
typically bring down the network. Twisted pair Ethernet is even simpler. It uses a 
device called a hub or switch that serves as an interconnection point. You can insert 
and remove hosts from a hub or switch without interrupting any other users at all.

Thick and thin Ethernet deployments are somewhat difficult to find anymore 
because they have been mostly replaced by twisted pair deployments. This has likely 
become a standard because of the cheap networking cards and cables— not to men­
tion that it’s almost impossible to find an old BNC connector in a m odem laptop 
machine.

Wireless LANs are also very popular. These are based on the 802.11a/b/g specifica­
tion and provide Ethernet over radio transmission. Offering similar functionality to 
its wired counterpart, wireless Ethernet has been subject to a number of security 
issues, namely surrounding encryption. However, advances in the protocol specifica­
tion combined.with different encryption keying methods are quickly helping to alle­
viate some of the more serious security concerns. Wireless networking for Linux is 
discussed in detail in Chapter 18.

Ethernet works like a bus system, where a host may send packets (or frames) of up to 
1,500 bytes to another host on the same Ethernet. A host is addressed by a 6-byte 
address hardcoded into the firmware of its Ethernet network interface card (NIC). 
These addresses are usually written as a sequence of two-digit hex numbers sepa­
rated by colons, as in aa:bb:cc:dd:ee:ff.
A frame sent by one station is seen by all attached stations, but only the destination 
host actually picks it up and processes it. If two stations try to send at the same time, 
a collision occurs. Collisions on an Ethernet are detected very quickly by the electron­
ics of the interface cards and are resolved by the two stations aborting the send, each 
waiting a random interval and re-attempting the transmission. You’ll hear lots of sto­
ries about collisions on Ethernet being a problem and that utilization of Ethernets is 
only about 30 percent of the available bandwidth because of them. Collisions on

4 | Chapter 1: Introduction to Networking



Ethernet are a normal phenomenon, and on a very busy Ethernet network you 
shouldn’t be surprised to see collision rates of up to about 30 percent. Ethernet net­
works need to be more realistically limited to about 60 percent before you need to 
start worrying about it.’

Other Types of Hardware
In larger installations, or in legacy corporate environments, Ethernet is usually not 
the only type of equipment used. There are many other data communications proto­
cols available and in use. All of the protocols listed are supported by Linux, but due 
to space constraints w e’ll describe them briefly. Many of the protocols have 
HOW TO documents that describe them in detail, so you should refer to those if 
you’re interested in exploring those that we don’t describe in this book.

One older and quickly disappearing technology is IBM’s Token Ring network. 
Token Ring is used as an alternative to Ethernet in some LAN environments, and 
runs at lower speeds (4 Mbps or 16 Mbps). In Linux, Token Ring networking is con­
figured in almost precisely the same way as Ethernet, so we don’t cover it specifi­
cally.

Many national networks operated by telecommunications companies support 
packet-switching protocols. Previously, the most popular of these was a standard 
named X.25. It defines a set of networking protocols that describes how data termi­
nal equipment, such as a host, communicates with data communications equipment 
(an X.25 switch). X.25 requires a synchronous data link and therefore special syn­
chronous serial port hardware. It is possible to use X.25 with normal serial ports if 
you use a special device called a Packet Assembler Disassembler (PAD). The PAD is a 
standalone device that provides asynchronous serial ports and a synchronous serial 
port. It manages the X.25 protocol so that simple terminal devices can make and 
accept X.25 connections. X.25 is often used to carry other network protocols, such 
as TCP/IP. Since IP datagrams cannot simply be mapped onto X.25 (or vice versa), 
they are encapsulated in X.25 packets and sent over the network. There is an imple­
mentation of the X.25 protocol available for Linux, but it will not be discussed in 
depth here.

A protocol commonly used by telecommunications companies is called Frame Relay. 
The Frame Relay protocol shares a number of technical features with the X.25 proto­
col, but is much more like the IP protocol in behavior. Like X.25, Frame Relay 
requires special synchronous serial hardware. Because of their similarities, many 
cards support both of these protocols. An alternative is available that requires no

The Ethernet FAQ at http://www.faqs.org/faqs/LANs/ethernet-faq/ta\ks about this issue, and a wealth of 
detailed historical and technical information is available at Charles Spurgeon’s Ethernet web site at http:// 
www.ethermanage.com/ethernet/ethernet.htm/.

TCP/IP Networks | 5

http://www.faqs.org/faqs/LANs/ethernet-faq/ta/ks
http://www.ethermanage.com/ethernet/ethernet.htm/


special internal hardware, again relying on an external device called a Frame Relay 
Access Device (FRAD) to manage the encapsulation of Ethernet packets into Frame 
Relay packets for transmission across a network. Frame Relay is ideal for carrying 
TCP/IP between sites. Linux provides drivers that support some types of internal 
Frame Relay devices.

If you need higher-speed networking that can carry many different types of data, 
such as digitized voice and video, alongside your usual data, Asynchronous Transfer 
Mode (ATM) is probably what you’ll be interested in. ATM is a new network tech­
nology that has been specifically designed to provide a manageable, high-speed, low- 
latency means of carrying data and control over the Quality of Service (QoS). Many 
telecommunications companies are deploying ATM network infrastructure because 
it allows the convergence of a number of different network services into one plat­
form, in the hope of achieving savings in management and support costs. ATM is 
often used to carry TCP/IP. The Networking HOWTO  offers information on the 
Linux support available for ATM.

Frequently, radio amateurs use their radio equipment to network their computers; 
this is commonly called packet radio. One of the protocols used by amateur radio 
operators is called AX.25 and is loosely derived from X.25. Amateur radio operators 
use the AX.25 protocol to carry TCP/IP and other protocols, too. AX.25, like X.25, 
requires serial hardware capable of synchronous operation, or an external device 
called a Terminal Node Controller to convert packets transmitted via an asynchro­
nous serial link into packets transmitted synchronously. There are a variety of differ­
ent sorts of interface cards available to support packet radio operation; these cards 
are generally referred to as being “Z8530 SCC based,” named after the most popular 
type of communications controller used in the designs. Two of the other protocols 
that are commonly carried by AX.25 are the NetRom and Rose protocols, which are 
network layer protocols. Since these protocols run over AX.25, they have the same 
hardware requirements. Linux supports a fully featured implementation of the AX. 
25, NetRom, and Rose protocols. The AX25 HOWTO  is a good source of informa­
tion on the Linux implementation of these protocols.

Other types of Internet access involve dialing up a central system over slow but 
cheap serial lines (telephone, ISDN, and so on). These require yet another protocol 
for transmission of packets, such as SLIP or PPP, which will be described later.

The Internet Protocol
Of course, you wouldn’t want your networking to be limited to one Ethernet or one 
point-to-point data link. Ideally, you would want to be able to communicate with a 
host computer regardless of what type of physical network it is connected to. For 
example, in larger installations such as Groucho Marx University, you usually have a 
number of separate networks that have to be connected in some way. At GMU, the

6 | Chapter 1: Introduction to Networking



m a th  d e p a r tm e n t ru n s  tw o  E th e rn e ts : o n e  w ith  fas t m a c h in e s  fo r p ro fe sso rs  a n d  
g ra d u a te s , a n d  a n o th e r  w ith  s lo w  m a c h in e s  fo r s tu d e n ts .

T h is  c o n n e c t io n  is h a n d le d  b y  a d e d ic a te d  h o s t  ca lled  a g a tew a y  th a t  h a n d le s  in c o m ­
in g  a n d  o u tg o in g  p a c k e ts  b y  co p y in g  th e m  b e tw e e n  th e  tw o  E th e rn e ts  a n d  th e  F D D I 
fib e r o p tic  cab le . F o r  ex a m p le , if  y o u  a re  a t th e  m a th  d e p a r tm e n t a n d  w a n t to  access 
quark o n  th e  p h y sic s  d e p a r tm e n t’s L A N  fro m  y o u r  L in u x  b o x , th e  n e tw o rk in g  so f t­
w a re  w ill n o t  s e n d  p a c k e ts  to  quark d irec tly  b e c a u se  it is n o t o n  th e  sam e  E th e rn e t. 
T h e re fo re , it h a s  to  rely  o n  th e  g a te w a y  to  ac t as a fo rw a rd e r . T h e  g a tew ay  (n a m e d  
sophus) th e n  fo rw a rd s  th e se  p a c k e ts  to  its p e e r  g a te w a y  niels a t th e  p h y sics  d e p a r t ­
m e n t , u s in g  th e  b a c k b o n e  n e tw o rk , w ith  niels d e liv e rin g  it to  th e  d e s t in a t io n  
m a c h in e . D a ta  flow  b e tw e e n  erdos a n d  quark is sh o w n  in  F igu re  1-1.

FDDI Campus Backbone

©

sophus

Mathematics Ethernet

niels

Physics Ethernet

■ О

erdos quark

Figure 1-1. The three steps o f  sending a datagram from  erdos to quark

T h is  sch em e  o f  d ire c tin g  d a ta  to  a re m o te  h o s t  is c a lled  ro u tin g , a n d  p a c k e ts  a re  o fte n  
re fe rre d  to  as d a ta g ra m s  in  th is  c o n te x t. T o  fac ilita te  th in g s , d a ta g ra m  e x c h a n g e  is 
g o v e rn e d  b y  a s ing le  p ro to c o l th a t  is in d e p e n d e n t o f  th e  h a rd w a re  u sed : IP , o r  In te r ­
n e t P rotocol. In  C h a p te r  2 , w e  w ill co v er IP a n d  th e  is su es  o f  ro u tin g  in  g re a te r  de ta il.

T h e  m a in  b en e fit o f  IP is th a t  it tu rn s  p h y sica lly  d is s im ila r  n e tw o rk s  in to  o n e  a p p a r ­
e n tly  h o m o g e n e o u s  n e tw o rk . T h is  is ca lled  in te rn e tw o rk in g , a n d  th e  re su ltin g  “ m e ta ­
n e tw o rk ” is ca lled  a n  in terne t. N o te  th e  su b tle  d iffe ren ce  h e re  b e tw e e n  -an in te rn e t 
a n d  th e  In te rn e t. T h e  la t te r  is th e  offic ia l n a m e  o f  o n e  p a r t ic u la r  g lo b a l in te rn e t.

TCP/IP Networks | 7



Of course, IP also requires a hardware-independent addressing scheme. This is 
achieved by assigning each host a unique 32-bit number called the IP address. An IP 
address is usually written as four decimal numbers, one for each 8-bit portion, sepa­
rated by dots. For example, quark might have an IP address of 0x954C 0C 04, which 
would be written as 149.76.12.4. This format is also called dotted decimal notation 
and sometimes dotted quad notation. It is increasingly going under the name IPv4 (for 
Internet Protocol, Version 4) because a new standard called IPv6 offers much more 
flexible addressing, as well as other modern features. It will be at least a year after the 
release of this edition before IPv6 is in use.

You will notice that we now have three different types of addresses: first there is the 
host’s name, like quark, then there is an IP address, and finally, there is a hardware 
address, such as the 6-byte Ethernet address. All these addresses somehow have to 
match so that when you type ssh quark, the networking software can be given 
quark’s IP address; and when IP delivers any data to the physics department’s Ether­
net, it somehow has to find out what Ethernet address corresponds to the IP address.

We will deal with these situations in Chapter 2. For now, it’s enough to remember 
that these steps of finding addresses are called hostname resolution, for mapping 
hostnames onto IP addresses, and address resolution, for mapping the latter to hard­
ware addresses.

IP over Serial Lines
On serial lines, a “de facto” standard exists known as Serial Line IP (SLIP). A 
modification of SLIP known as Compressed SLIP (CSLIP), performs compression of 
IP headers to make better use of the relatively low bandwidth provided by most serial 
links. Another serial protocol is Point-to-Point Protocol (PPP). PPP is more modem  
than SLIP and includes a number of features that make it more attractive. Its main 
advantage over SLIP is that it isn’t limited to transporting IP datagrams, but is 
designed to allow just about any protocol to be carried across it. This book discusses 
PPP in Chapter 6.

The Transmission Control Protocol
Sending datagrams from one host to another is not the whole story. If you log in to 
quark, you want to have a reliable connection between your ssh process on erdos 
and the shell process on quark. Thus, the information sent to and fro must be split 
into packets by the sender and reassembled into a character stream by the receiver. 
Trivial as it seems, this involves a number of complicated tasks.

A very important thing to know about IP is that, by intent, it is not reliable. Assume 
that 10 people on your Ethernet started downloading the latest release of the Mozilla 
web browser source code from GMU’s FTP server. The amount of traffic generated 
might be too much for the gateway to handle because it’s too slow and it’s tight on

8 I Chapter 1: Introduction to Networking



m em o ry . N o w  if y o u  h a p p e n  to  s e n d  a p a c k e t to  q u a rk , s o p h u s  m ig h t b e  o u t o f 
b u ffe r sp ace  fo r a m o m e n t a n d  th e re fo re  u n a b le  to  fo rw a rd  it. IP so lves th is  p ro b le m  
b y  s im p ly  d is c a rd in g  it. T h e  p a c k e t is ir rev o cab ly  lo s t. It is th e re fo re  th e  re sp o n s ib il­
ity  o f  th e  c o m m u n ic a t in g  h o s ts  to  c h e c k  th e  in teg rity  a n d  c o m p le te n e s s  o f th e  d a ta  
a n d  re tra n sm it it in  case  o f  e rro r.

T h is  p ro c e ss  is p e rfo rm e d  by  y e t a n o th e r  p ro to c o l, T ran sm issio n  C on tro l P ro tocol 
(T C P ), w h ic h  b u ild s  a re liab le  se rv ice  o n  to p  o f  IP. T h e  e ssen tia l p ro p e r ty  o f  T C P  is 
th a t  it u ses  IP to  g ive y o u  th e  illu s io n  o f  a s im p le  c o n n e c tio n  b e tw e e n  th e  tw o  p ro ­
cesses o n  y o u r  h o s t a n d  th e  re m o te  m a c h in e  so  th a t  y o u  d o n ’t hav e  to  ca re  a b o u t 
h o w  a n d  a lo n g  w h ic h  ro u te  y o u r  d a ta  a c tu a lly  trave ls. A T C P  c o n n e c t io n  w o rk s  
e ssen tia lly  like a tw o -w ay  p ip e  th a t  b o th  p ro ce sse s  m ay  w rite  to  a n d  re a d  from . 
T h in k  o f it as a te le p h o n e  c o n v e rsa tio n .

T C P  id en tif ie s  th e  e n d  p o in ts  o f  su c h  a c o n n e c tio n  by th e  IP a d d re s se s  o f th e  tw o  
h o s ts  in v o lv ed  a n d  th e  n u m b e r  o f  a  p o r t  o n  each  h o s t. P o rts  m ay  be  v iew ed  as a tta c h ­
m e n t p o in ts  fo r n e tw o rk  c o n n e c tio n s . If w e a re  to  s tra in  th e  te le p h o n e  ex am p le  a lit­
tle  m o re , a n d  y o u  im ag in e  th a t  c itie s  a re  like h o s ts , o n e  m ig h t c o m p a re  IP ad d re sse s  
to  a rea  co d es  (w h ere  n u m b e rs  m a p  to  c ities), a n d  p o r t  n u m b e rs  to  lo ca l co d es  (w here  
n u m b e rs  m a p  to  in d iv id u a l p e o p le ’s te le p h o n e s) . A n  in d iv id u a l h o s t  m ay  s u p p o r t  
m a n y  d iffe ren t se rv ices, e a c h  d is tin g u ish e d  b y  its o w n  p o r t  n u m b e r .

In  th e  ssh  e x am p le , th e  c lien t a p p lic a tio n  (ssh) o p e n s  a p o r t  o n  e rd o s  a n d  c o n n e c ts  to  
p o r t  22  o n  q u a rk ,  to  w h ic h  th e  s s h d  se rv e r is k n o w n  to  lis ten . T h is  a c tio n  e s ta b ­
lishes a T C P  c o n n e c tio n . U sin g  th is  c o n n e c t io n , sshd  p e rfo rm s  th e  a u th o r iz a t io n  p ro ­
c e d u re  a n d  th e n  sp a w n s  th e  sh e ll. T h e  sh e ll’s s ta n d a rd  in p u t  a n d  o u tp u t  are 
re d ire c te d  to  th e  T C P  c o n n e c t io n  so  th a t  a n y th in g  y o u  ty p e  to  ssh  o n  y o u r  m a c h in e  
w ill b e  p a sse d  th ro u g h  th e  T C P  s tre a m  a n d  b e  g iven  to  th e  sh e ll as s ta n d a rd  in p u t.

The User Datagram Protocol
O f  co u rse , T C P  is n ’t th e  o n ly  u s e r  p ro to c o l in  T C P /IP  n e tw o rk in g . A lth o u g h  s u i t­
ab le  fo r a p p lic a tio n s  like ssh , th e  o v e rh e a d  in v o lved  is p ro h ib it iv e  fo r a p p lic a tio n s  
like  N F S , w h ic h  in s te a d  u ses a s ib lin g  p ro to c o l o f T C P  ca lled  U ser D a ta g ra m  P ro to ­
col (U D P). J u s t  like T C P , U D P  a llo w s  an  a p p lic a tio n  to  c o n ta c t  a serv ice  o n  a ce rta in  
p o r t  o f  th e  re m o te  m a c h in e , b u t  it d o e s n ’t e s ta b lish  a c o n n e c t io n  fo r th is. In s te a d , 
y o u  u se  it to  se n d  sing le  p a c k e ts  to  th e  d e s t in a t io n  serv ice— h en ce  its  n am e .

A ssu m e  th a t  y o u  w a n t to  re q u e s t a sm a ll a m o u n t  o f  d a ta  fro m  a d a ta b a se  server. It 
ta k e s  a t leas t th re e  d a ta g ra m s  to  e s ta b lish  a T C P  c o n n e c tio n , a n o th e r  th ree  to  sen d  
a n d  co n firm  a sm a ll a m o u n t  o f d a ta  e ach  w ay , a n d  a n o th e r  th re e  to  c lo se  th e  c o n n e c ­
t i o n . ‘U D P  p ro v id es  u s  w ith  a m e a n s  o f  u s in g  o n ly  tw o  d a ta g ra m s  to  ach ieve  a lm o st 
th e  sam e  re su lt. U D P  is sa id  to  b e  c o n n e c tio n le s s , a n d  it d o e s n ’t re q u ire  u s to  e s ta b ­
lish  a n d  c lose  a sess io n . W e  s im p ly  p u t  o u r  d a ta  in to  a d a ta g ra m  a n d  sen d  it to  th e  
se rv er; th e  se rv e r fo rm u la te s  its rep ly , p u ts  th e  d a ta  in to  a d a ta g ra m  ad d re s se d  b a c k

TCP/IP Networks | 9



to us, and transmits it back. While this is both faster and more efficient than TCP for 
simple transactions, UDP was not designed to deal with datagram loss. It is up to the 
application, a nameserver, for example, to take care of this.

More on Ports
Ports may be viewed as attachment points for network connections. If an applica­
tion wants to offer a certain service, it attaches itself to a port and waits for clients 
(this is also called listening on the port). A client who wants to use this service allo­
cates a port on its local host and connects to the server’s port on the remote host. 
The same port may be open on many different machines, but on each machine only 
one process can open a port at any one time.

An important property of ports is that once a connection has been established 
between the client and the server, another copy of the server may attach to the server 
port and listen for more clients. This property permits, for instance, several concur­
rent remote logins to the same host, all using the same port 513. TCP is able to tell 
these connections from one another because they all come from different ports or 
hosts. For example, if you log in twice to quark from erdos, the first ssh client may 
use the local port 6464, and the second one could use port 4235. Both, however, will 
connect to the same port 513 on quark. The two connections will be distinguished 
by use of the port numbers used at erdos.

This example shows the use of ports as rendezvous points, where a client contacts a 
specific port to obtain a specific service. In order for a client to know the proper port 
number, an agreement has to be reached between the administrators of both sys­
tems on the assignment of these numbers. For services that are widely used, such as 
ssh, these numbers have to be administered centrally. This is done by the Internet 
Engineering Task Force (IETF), which regularly releases an RFC titled Assigned 
Numbers (RFC-1700). It describes, among other things, the port numbers assigned to 
well-known services. Linux uses a file called I etc!services that maps service names to 
numbers.

It is worth noting that, although both TCP and UDP connections rely on ports, these 
numbers do not conflict. This means that TCP port 22, for example, is different from 
UDP port 22.

The Socket Library
In Unix operating systems, the software performing all the tasks and protocols 
described above is usually part of the kernel, and so it is in Linux. The programming 
interface most common in the Unix world is the Berkeley Socket Library. Its name 
derives from a popular analogy that views ports as sockets and connecting to a port 
as plugging in. It provides the bind call to specify a remote host, a transport proto­
col, and a service that a program can connect or listen to (using connect, listen, and

10 | Chapter 1: Introduction to Networking



accept). The socket library is somewhat more general in that it provides not only a 
class of TCP/IP-based sockets (the AF_INET sockets), but also a class that handles 
connections local to the machine (the AF_UNIX class). Some implementations can 
also handle other classes, like the Xerox Networking System (XNS) protocol or X.25.

In Linux, the socket library is part of the standard libc C library. It supports the 
AF_INET and AF_INET6 sockets for TCP/IP and AF_UNIX for Unix domain sock­
ets. It also supports AF_IPX for Novell’s network protocols, AF_ X25 for the X.25 
network protocol, AF_ATMPVC and AF_ATMSVC for the ATM network protocol 
and AF_AX25, AF_NETROM, and AF_ ROSE sockets for Amateur Radio protocol 
support. Other protocol families are being developed and will be added in’time.

Linux Networking
As it is the result of a concerted effort of programmers around the world, Linux 
wouldn’t have been possible without the global network. So it’s not surprising that 
in the early stages of development, several people started to work on providing it 
with network capabilities. A UUCP implementation was running on Linux almost 
from the very beginning, and work on TCP/IP-based networking started around 
autumn 1992, when Ross Biro and others created what has now become known as 
Net-1.

After Ross quit active development in May 1993, Fred van Kempen began to work on 
a new implementation, rewriting major parts of the code. This project was known as 
Net-2. The first public release, Net-2d, was made in the summer of 1993 (as part of 
the 0.99.10 kernel), and has since been maintained and expanded by several people, 
most notably Alan Cox. Alan’s original work was known as Net-2Debugged. After 
heavy debugging and numerous improvements to the code, he changed its name to 
Net-3 after Linux 1.0 was released. The Net-3 code was further developed for Linux 
1.2 and Linux 2.0. The 2.2 and later kernels use the Net-4 version network support, 
which remains the standard official offering today.

The Net-4 Linux Network code offers a wide variety of device drivers and advanced 
features. Standard Net-4 protocols include SLIP and PPP (for sending network traffic 
over serial lines), PLIP (for parallel lines), IPX (for Novell compatible networks), 
Appletalk (for Apple networks) and AX.25, NetRom, and Rose (for amateur radio 
networks). Other standard Net-4 features include IP firewalling (discussed in 
Chapter 7), IP accounting (Chapter 8), and IP Masquerade (Chapter 9). IP tunneling 
in a couple of different flavors and advanced policy routing are supported. A very 
large variety of Ethernet devices are supported, in addition to support for some 
FDDI, Token Ring, Frame Relay, and ISDN, and ATM cards.

Additionally, there are a number of other features that greatly enhance the flexibility 
of Linux. These features include interoperability with the Microsoft Windows

Linux Networking | 11



n e tw o rk  e n v iro n m e n t, in  a p ro je c t  ca lled  S am b a , d is c u sse d  in  C h a p te r  16, a n d  a n  
im p le m e n ta t io n  o f  th e  N o v e ll N C P  (N e tW a re  C o re  P ro to c o l) .’

Different Streaks of Development
T h e re  h av e  b een , a t v a rio u s  tim es , v a ry in g  n e tw o rk  d e v e lo p m e n t e ffo rts  ac tive  fo r  
L inux .

F red  c o n tin u e d  d e v e lo p m e n t a f te r  N e t-2 D e b u g g e d  w as m a d e  th e  officia l n e tw o rk  
im p le m e n ta t io n . T h is  d e v e lo p m e n t led  to  th e  N e t-2 e , w h ic h  fe a tu re d  a m u c h  rev ised  
d es ig n  o f  th e  n e tw o rk in g  layer. F re d  w as w o rk in g  to w a rd  a s ta n d a rd iz e d  D ev ice  
D riv e r In te rfa c e  (D D I), b u t  th e  N e t-2 e  w o rk  h a s  e n d e d  n o w .

Y et a n o th e r  im p le m e n ta t io n  o f  T C P /IP  n e tw o rk in g  cam e  fro m  M a tth ia s  U rlich s, w h o  
w ro te  a n  IS D N  d riv e r fo r L in u x  a n d  F reeB SD . F o r th is  d riv e r, h e  in te g ra te d  so m e  o f  
th e  BSD n e tw o rk in g  co d e  in  th e  L in u x  k e rn e l. T h a t p ro je c t, to o , is n o  lo n g e r b e in g  
w o rk e d  on .

T h e re  h a s  b e e n  a lo t o f ra p id  c h a n g e  in  th e  L in u x  k e rn e l n e tw o rk in g  im p le m e n ta ­
tio n , a n d  c h a n g e  is still th e  w a tc h w o rd  as d e v e lo p m e n t c o n tin u e s . S o m e tim es th is  
m e a n s  th a t  ch an g es  a lso  h av e  to  o c c u r  in  o th e r  so ftw a re , su c h  as th e  n e tw o rk  c o n fig ­
u ra t io n  to o ls . W h ile  th is  is n o  lo n g e r  as la rge  a p ro b le m  as it o n c e  w as , y o u  m ay  still 
f in d  th a t  u p g ra d in g  y o u r  k e rn e l to  a la te r  v e rs io n  m e a n s  th a t  y o u  m u s t u p g ra d e  y o u r  
n e tw o rk  c o n fig u ra tio n  to o ls , to o . F o r tu n a te ly , w ith  th e  large  n u m b e r  o f  L in u x  d is tr i­
b u tio n s  av a ilab le  to d ay , th is  is a q u ite  s im p le  task .

T h e  N e t-4  n e tw o rk  im p le m e n ta t io n  is n o w  a s ta n d a rd  a n d  is in  u se  a t a very  la rge  
n u m b e r  o f s ite s  a ro u n d  th e  w o rld . M u c h  w o rk  h a s  b e e n  d o n e  o n  im p ro v in g  th e  p e r ­
fo rm a n c e  o f  th e  N e t-4  im p le m e n ta t io n , a n d  it n o w  c o m p e te s  w ith  th e  b e s t im p le ­
m e n ta tio n s  ava ilab le  fo r th e  sam e  h a rd w a re  p la tfo rm s . L in u x  is p ro life ra tin g  in  th e  
In te rn e t Service P ro v id e r e n v iro n m e n t, a n d  is o ften  u se d  to  b u ild  c h e a p  a n d  re liab le  
W o r ld  W id e  W e b  servers , m a il se rv e rs , a n d  n ew s se rvers fo r th e se  so r ts  o f  o rg a n iz a ­
tio n s . T h e re  is n o w  su ffic ien t d e v e lo p m e n t in te re s t in  L in u x  th a t  it is m a n a g in g  to  
k eep  a b re a s t  o f  n e tw o rk in g  te c h n o lo g y  as it c h an g es , a n d  c u r r e n t re leases o f  th e  
L in u x  k e rn e l o ffe r th e  n e x t g e n e ra t io n  o f  th e  IP p ro to c o l, IPv6 , as a s ta n d a rd  o ffe r­
ing , w h ic h  w ill b e  d isc u sse d  a t g re a te r  d e ta il in  C h a p te r  13.

Where to Get the Code
It se e m s o d d  n o w  to  re m e m b e r  th a t  in  th e  early  d ay s  o f  th e  L in u x  n e tw o rk  co d e  
d e v e lo p m e n t, th e  s ta n d a rd  k e rn e l re q u ire d  a h u g e  p a tc h  k it to  a d d  th e  n e tw o rk in g  
s u p p o r t  to  it. T o d a y , n e tw o rk  d e v e lo p m e n t o c c u rs  as p a r t  o f  th e  m a in s tre a m  L in u x  
k e rn e l d e v e lo p m e n t p ro ce ss . T h e  la te s t s ta b le  L in u x  k e rn e ls  c a n  b e  fo u n d  o n  f tp : / / f tp .

* NCP is the protocol on which Novell file and print services are based.

12 | Chapter 1: Introduction to Networking

ftp://ftp


kernel.o rg  in  /p u b /lin u x /k e r n e l/v 2 .x /,  w h e re  x  is a n  even  n u m b e r . T h e  la te s t e x p e r i­
m e n ta l L in u x  k e rn e ls  can  be  fo u n d  o n  ftp ://f tp .k e rn e l.o rg  in  /p u b /lin u x /k e r n e l/v 2 .y /y 
w h e re  y is a n  o d d  n u m b e r . T h e  k e rn e l.o rg  d is tr ib u tio n s  can  a lso  be  acce ssed  via 
H T T P  a t h ttp : //w w w .k e rn e l.o rg . T h e re  are  L in u x  k e rn e l so u rce  m irro rs  all o v e r th e  
w o rld .

Maintaining Your System
T h ro u g h o u t  th is  b o o k , w e w ill m a in ly  d ea l w ith  in s ta lla t io n  a n d  c o n fig u ra tio n  issues. 
A d m in is tra tio n  is, h o w ev e r, m u c h  m o re  th a n  th a t— a fte r se ttin g  u p  a serv ice , y o u  
have  to  k eep  it ru n n in g , to o . F o r  m o s t serv ices, o n ly  a little  a tte n d a n c e  w ill b e  n e c e s ­
sa ry , w h ile  so m e , su c h  as m ail, re q u ire  th a t  y o u  p e rfo rm  ro u tin e  ta sk s  to  k e e p  y o u r  
sy s tem  u p  to  d a te . W e  w ill d isc u ss  th e se  ta sk s  in  la te r  c h a p te rs .

T h e  a b so lu te  m in im u m  in  m a in te n a n c e  is to  ch e c k  sy s tem  a n d  p e r-a p p lic a tio n  log- 
files reg u la rly  fo r e r ro r  c o n d it io n s  a n d  u n u s u a l even ts . O fte n , y o u  w ill w a n t to  d o  
th is  by  w ritin g  a c o u p le  o f  a d m in is tra tiv e  she ll sc r ip ts  a n d  p e rio d ica lly  ru n n in g  th e m  
fro m  cron. T h e  so u rc e  d is tr ib u tio n s  o f  so m e  m a jo r  a p p lic a tio n s  c o n ta in  su c h  sc r ip ts . 
Y ou  o n ly  h ave  to  ta ilo i th e m  to  s u i t  y o u r  n eed s  a n d  p re fe ren ces .

T h e  o u tp u t  fro m  an y  o f  y o u r  cron  jo b s  sh o u ld  b e  m a iled  to  a n  a d m in is tra tiv e  
a c c o u n t. By d e fa u lt, m a n y  a p p lic a tio n s  w ill s e n d  e rro r  re p o r ts , u sage  s ta tis tic s , o r 
logfile su m m a rie s  to  th e  ro o t a c c o u n t. T h is  m ak es  sen se  o n ly  if y o u  log  in  as ro o t  fre­
q u e n tly ; a m u c h  b e t te r  id ea  is to  fo rw a rd  ro o t's  m a il to  y o u r  p e rso n a l a c c o u n t by  s e t­
tin g  u p  a m ail a lias  as d e sc r ib e d  in  C h a p te rs  11 a n d  12.

H o w e v e r ca re fu lly  y o u  h av e  c o n fig u re d  y o u r  s ite , M u rp h y ’s L aw  g u a ra n te e s  th a t 
so m e  p ro b le m  w ill su rface  e v en tu a lly . T h e re fo re , m a in ta in in g  a  sy s tem  a lso  m e a n s  
b e in g  ava ilab le  fo r c o m p la in ts . U su a lly , p e o p le  ex p e c t th a t  th e  sy s tem  a d m in is tra to r  
c a n  a t leas t b e  re a c h e d  v ia  em a il as ro o t , b u t  th e re  a re  a lso  o th e r  ad d re sse s  th a t  are  
c o m m o n ly  u se d  to  re ach  th e  p e rs o n  re sp o n s ib le  fo r a spec ific  a sp ec t o f m a in te n e n c e . 
F o r  in s ta n c e , c o m p la in ts  a b o u t  a m a lfu n c tio n in g  m a il c o n fig u ra tio n  w ill u su a lly  be 
a d d re s se d  to  p o s tm a s te r , a n d  p ro b le m s  w ith  th e  n ew s sy s tem  m ay  be  re p o r te d  to  
n e w sm a ste r  o r  Usenet. M ail to  h o stm a s te r  s h o u ld  b e  re d ire c te d  to  th e  p e rs o n  in 
ch a rg e  o f  th e  h o s t ’s b as ic  n e tw o rk  serv ices, a n d  th e  D N S  n am e  serv ice if y o u  ru n  a 
nam ese rv e r.

System Security
A n o th e r  very  im p o r ta n t  a sp e c t o f  sy s tem  a d m in is tra t io n  in  a n e tw o rk  e n v iro n m e n t is 
p ro te c tin g  y o u r  sy s tem  a n d  u se rs  fro m  in tru d e rs . C are le ssly  m an ag e d  sy s tem s o ffer 
m a lic io u s  p e o p le  m a n y  ta rg e ts . A tta c k s  ran g e  fro m  p a s s w o rd  g u ess in g  to  E th e rn e t 
sn o o p in g , a n d  th e  d a m a g e  c a u se d  m ay  ran g e  fro m  fak ed  m ail m essag es to  d a ta  loss 
o r  v io la tio n  o f  y o u r  u se r s ’ p rivacy . W e  w ill m e n tio n  so m e  p a r t ic u la r  p ro b le m s  w h e n

Maintaining Your System | 13

ftp://ftp.kernel.org
http://www.kernel.org


d isc u ss in g  th e  c o n te x t in  w h ic h  th e y  m ay  o c c u r  a n d  so m e  c o m m o n  d e fen ses  ag a in s t 
th e m .

T h is  s e c tio n  w ill d iscu ss  a few  ex am p le s  a n d  b a s ic  te c h n iq u e s  fo r d ea lin g  w ith  sy s­
te m  secu rity . O f c o u rse , th e  to p ic s  c o v e red  c a n n o t tr e a t  all se c u r ity  issues in  d e ta il; 
th e y  m ere ly  serve  to  illu s tra te  th e  p ro b le m s  th a t  m ay  arise . T h e re fo re , re a d in g  a g o o d  
b o o k  o n  se c u r ity  is an  a b so lu te  m u s t, esp ec ia lly  in  a n e tw o rk e d  sy s tem .

S ystem  se c u r ity  s ta r ts  w ith  g o o d  sy s tem  a d m in is tra t io n . T h is  in c lu d e s  c h e c k in g  th e  
o w n e rsh ip  a n d  p e rm iss io n s  o f  all v ita l files a n d  d ire c to r ie s  a n d  m o n ito r in g  u se  o f 
p riv ileg ed  a c c o u n ts . T h e  C O P S  p ro g ra m , fo r in s ta n c e , w ill c h e c k  y o u r  filesy s tem  a n d  
c o m m o n  c o n f ig u ra tio n  files fo r u n u s u a l p e rm iss io n s  o r  o th e r  an o m a lie s . A n o th e r  
to o l, B astille  L in u x , d e v e lo p e d  by  Ja y  B eale a n d  fo u n d  a t h ttp ://w w w .b a s tille - lin u x . 
o rg , c o n ta in s  a n u m b e r  o f  sc r ip ts  a n d  p ro g ra m s  th a t  c a n  b e  u se d  to  lo c k  d o w n  a 
L in u x  sy s tem . It is a lso  w ise  to  u se  a p a s s w o rd  su ite  th a t  en fo rce s  c e r ta in  ru le s  o n  th e  
u s e r s ’ p a s s w o rd s  th a t  m a k e  th e m  h a rd  to  guess . T h e  s h a d o w  p a s s w o rd  su ite , n o w  a 
d e fa u lt, re q u ire s  a  p a s s w o rd  to  h av e  a t le a s t five le t te rs  a n d  to  c o n ta in  b o th  u p p e r-  
a n d  lo w e rc a se  n u m b e rs , as w ell as n o n a lp h a b e tic  c h a ra c te rs .

W h e n  m a k in g  a serv ice  access ib le  to  th e  n e tw o rk , m a k e  su re  to  g ive it “ leas t p riv i­
leg e” ; d o n ’t p e rm it  it to  d o  th in g s  th a t  a r e n ’t re q u ire d  fo r  it to  w o rk  as d e s ig n ed . F o r  
ex a m p le , y o u  s h o u ld  m a k e  p ro g ra m s  se tu id  to  root o r  so m e  o th e r  p riv ileg ed  a c c o u n t 
o n ly  w h e n  n ecessa ry . A lso , if y o u  w a n t to  u se  a serv ice  fo r o n ly  a very  lim ite d  a p p li­
c a tio n , d o n ’t h e s ita te  to  co n fig u re  it as re s tric tiv e ly  as y o u r  sp ec ia l a p p lic a tio n  
a llow s. F o r  in s ta n c e , if y o u  w a n t to  a llo w  d isk le ss  h o s ts  to  b o o t  fro m  y o u r  m a c h in e , 
y o u  m u s t p ro v id e  T riv ia l File T ra n s fe r  P ro tocol (T FT P) so  th a t  th e y  c a n  d o w n lo a d  
b a s ic  c o n f ig u ra tio n  files fro m  th e  /b o o t d ire c to ry . H o w e v e r, w h e n  u se d  u n re s tr ic -  
tively , T F T P  a llo w s u se rs  an y w h e re  in  th e  w o rld  to  d o w n lo a d  an y  w o rld - re a d a b le  file 
fro m  y o u r  sy s tem . If th is  is n o t  w h a t y o u  w a n t, re s tr ic t T F T P  serv ice  to  th e  /b o o t  
d ire c to ry  (w e ’ll co m e  b a c k  to  th is  in  C h a p te r  10). Y ou  m ig h t a lso  w a n t to  re s tr ic t c e r­
ta in  se rv ices to  u se rs  fro m  c e rta in  h o s ts , say  fro m  y o u r  lo ca l n e tw o rk . In  C h a p te r  10, 
w e in t ro d u c e  tc p d , w h ic h  d o es  th is  fo r a v a r ie ty  o f  n e tw o rk  a p p lic a tio n s . M o re  
so p h is tic a te d  m e th o d s  o f  re s tr ic tin g  access to  p a r t ic u la r  h o s ts  o r  serv ices w ill b e  
ex p lo re d  in  C h a p te r  7.

A n o th e r  im p o r ta n t  p o in t  is to  av o id  “d a n g e ro u s ” so ftw a re . O f  c o u rse , an y  so f tw a re  
y o u  u s e .c a n  b e  d a n g e ro u s  b e c a u se  so f tw a re  m ay  hav e  b u g s  th a t  c lever p e o p le  m ig h t 
e x p lo it to  g a in  access  to  y o u r  sy s tem . T h in g s  like  th is  h a p p e n , a n d  th e r e ’s n o  c o m ­
p le te  p ro te c tio n  a g a in s t it. T h is  p ro b le m  affec ts  free  so f tw a re  a n d  co m m e rc ia l p r o d ­
u c ts  alike.* H o w ev e r, p ro g ra m s  th a t  re q u ire  sp ec ia l p riv ileg e  are  in h e re n tly  m o re  
d a n g e ro u s  th a n  o th e r s  b e c a u se  an y  lo o p h o le  can  h av e  d ra s tic  c o n se q u e n c e s .1" If y o u

There have been commercial Unix systems (that you have to pay lots of money for) that came with a setuid 
root shell script, which allowed users to gain root privilege using a simple standard trick.

t  In 1988, the RTM worm brought much of the Internet to a grinding halt, partly by exploiting a gaping hole 
in some programs, including the sendmail program. This hole has long since been fixed.

14 | Chapter 1: Introduction to Networking

http://www.bastille-linux


install a setuid program for network purposes, be doubly careful to check the docu­
mentation so that you don’t create a security breach by accident.

Another source of concern should be programs that enable login or command execu­
tion with limited authentication. The rlogin, rsh, and rexec commands are all very 
useful, but offer very limited authentication of the calling party. Authentication is 
based on trust of the calling hostname obtained from a nameserver (we’ll talk about 
these later), which can be faked. Today it should be standard practice to disable the r 
commands completely and replace them with the ssh suite of tools. The ssh tools use 
a much more reliable authentication method and provide other services, such as 
encryption and compression, as well.

You can never rule out the possibility that your precautions might fail, regardless of 
how careful you have been. You should therefore make sure that you detect intrud­
ers early. Checking the system logfiles is a good starting point, but the intruder is 
probably clever enough to anticipate this action and will delete any obvious traces he 
or she left. However, there are tools like tripwire, written by Gene Kim and Gene 
Spafford, that allow you to check vital system files to see if their contents or permis­
sions have been changed, tripwire computes various strong checksums over these 
files and stores them in a database. During subsequent runs, the checksums are 
recomputed and compared to the stored ones to detect any modifications.

Finally, it’s always important to be proactive about security. Monitoring the mailing 
lists for updates and fixes to the applications that you use is critical in keeping cur­
rent with new releases. Failing to update something such as Apache or OpenSSL can 
lead directly to system compromise. One fairly recent example of this was found 
with the Linux Slapper worm, which propagated using an OpenSSL vulnerability. 
While keeping up to date can seem a daunting and time-consuming effort, adminis­
trators who were quick to react and upgrade their OpenSSL implementations ended 
up saving a great deal of time because they did not have to restore compromised sys­
tems!

Maintaining Your System | 15



CHAPTER 2

Issues of TCP/IP 
Networking

In this chapter we turn to the configuration decisions that you’ll need to make when 
connecting your Linux machine to a TCP/IP network, including dealing with IP 
addresses, hostnames, and routing issues. This chapter gives you the background 
you need in order to understand what your setup requires, while the next chapters 
cover the tools that you will use.

To learn more about TCP/IP and the reasons behind it, refer to the three-volume set 
Internetworking with TCP/IP (Prentice Hall) by Douglas R. Comer. For a more 
detailed guide to managing a TCP/IP network, see TCP/IP Network Administration 
(O’Reilly) by Craig Hunt.

Networking Interfaces
To hide the diversity of equipment that may be used in a networking environment, 
TCP/IP defines an abstract interface through which the hardware is accessed. This 
interface offers a set of operations that is the same for all types of hardware and basi­
cally deals with sending and receiving packets.

For each peripheral networking device, a corresponding interface has to be present in 
the kernel. For example, Ethernet interfaces in Linux are called by such names as 
ethO and e th l; PPP (discussed in Chapter 6) interfaces are named pppO and p p p l; and 
FDDI interfaces are given names such as fddiO and fddil. These interface names are 
used for configuration purposes when you want to specify a particular physical 
device in a configuration command, and they have no meaning beyond this use.

Before being used by TCP/IP networking, an interface must be assigned an IP 
address that serves as its identification when communicating with the rest of the 
world. This address is different from the interface name mentioned previously; if you 
compare an interface to a door, the address is like the nameplate pinned on it.

Other device parameters may be set, such as the maximum size of datagrams that 
can be processed by a particular piece of hardware, which is referred to as Maximum

16



Transfer Unit (MTU). Other attributes will be introduced later. Fortunately, most 
attributes have sensible defaults.

IP Addresses
As mentioned in Chapter 1, the IP networking protocol understands addresses as 32- 
bit numbers. Each machine must be assigned a number unique to the networking 
environment. If you are running a local network that does not have TCP/IP traffic 
with other networks, you may assign these numbers according to your personal pref­
erences. There are some IP address ranges that have been reserved for such private 
networks. These ranges are listed in Table 2-1. However, for sites on the Internet, 
numbers are assigned by a central authority, the Network Information Center (NIC).

IP addresses are split up into four 8-bit numbers called octets for readability. For 
example, quark.physics.groucho.edu has an IP address of 0x954C 0C 04, which is 
written as 149.76.12.4 . This format is often referred to as dotted quad notation.

Another reason for this notation is that IP addresses are split into a network number, 
which is contained in the leading octets, and a host number, which is the remainder. 
When applying to the NIC for IP addresses, you are not assigned an address for each 
single host you plan to use. Instead, you are given a network number and allowed to 
assign all valid IP addresses within this range to hosts on your network according to 
your preferences.

The size of the host partly depends on the size of the network. To accommodate dif­
ferent needs, several classes of networks have been defined, with different places to 
split IP addresses. The class networks are described here:

Class A
Class A comprises networks 1 .0.0.0 through 127.0.0.0. The network number is 
contained in the first octet. This class provides for a 24-bit host part, allowing 
roughly 1.6 million hosts per network.

Class B
Class B contains networks 128 .0 .0 .0  through 191.255.0.0; the network number 
is in the first two octets. This class allows for 16,320 nets with 65,024 hosts 
each.

Class C
Class C networks range from 192.0.0v0 through 223.255 .255 .0 , with the net­
work number contained in the first three octets. This class allows for nearly 2 
million networks with up to 254 hosts.

Classes D, E, and F
Addresses falling into the range of 2 24 .0 .0 .0  through 254.0 .0 .0  are either exper­
imental or are reserved for special purpose use and don’t specify any network. IP

T oshken t A xboro t T ex n o lo g iy ah m  U n iv e rs ite t1 

A x b o ro t R esurs M srknzi
P Addresses 1 17



Multicast, which is a service that allows material to be transmitted to many 
points on an internet at one time, has been assigned addresses from within this 
range.

If we go back to the example in Chapter 1, we find that 149.76.12.4 , the address of 
quark, refers to host 12.4 on the class B network 149.76.0.0.

You may have noticed that not all possible values in the previous list were allowed 
for each octet in the host part. This is because octets 0 and 255 are reserved for spe­
cial purposes. An address where all host part bits are 0 refers to the network, and an 
address where all bits of the host part are 1 is called a broadcast address. This refers 
to all hosts on the specified network simultaneously. Thus, 149.76.255.255 is not a 
valid host address, but refers to all hosts on network 149.76.0.0.

A number of network addresses are reserved for special purposes. 0 .0 .0 .0  and 127.0. 
0.0  are two such addresses. The first is called the default route, and the second is the 
loopback address. The default route is a place holder for the router your local area 
network uses to reach the outside world.

Network 127.0.0.0 is reserved for IP traffic local to your host. Usually, address 127. 
0.0.1 will be assigned to a special interface on your host, the loopback interface, 
wrhich acts like a closed circuit. Any IP packet handed to this interface from TCP or 
UDP will be returned as if it had just arrived from some network. This allows you to 
develop and test networking software without ever using a “real” network. The loop- 
back network also allows you to use networking software on a standalone host. This 
may not be as uncommon as it sounds; for instance, services such as MySQL, which 
may only be used by other applications resident on the server, can be bound to the 
local host interface to provide an added layer of security.

Some address ranges from each of the network classes have been set aside and desig­
nated “reserved” or “private” address ranges. Sometimes referred to as RFC-1918 
addresses, these are reserved for use by private networks and are not routed on the 
Internet. They are commonly used by organizations building their own intranet, but 
even small networks often find them useful. The reserved network addresses appear 
in Table 2-1.

Table 2-1. IP address ranges reserved fo r  private use

Class Networks

A 10.0.0.0 through 10.255.255.255

B 172.16.0.0 through 172.31.0.0

C 192.168.0.0 through 192.168.255.0

18 | Chapter 2: Issues of TCP/IP Networking



Classless Inter-Domain Routing
C lass less  In te r-D o m a in  ro u tin g  (C ID R ), d isc u sse d  m o re  in  C h a p te r  4 , is a n e w e r  a n d  
m o re  effic ien t m e th o d  o f a llo c a tin g  IP a d d re s se s . W ith  C ID R , n e tw o rk  
a d m in is tra to rs  c an  ass ign  n e tw o rk s  c o n ta in in g  as few  as tw o  IP ad d re sse s , ra th e r  
th a n  th e  p rev io u s  m e th o d  o f  a ss ig n in g  an  e n tire  2 5 4  a d d re s se s  w ith  a class C  b lo ck . 
C ID R  w as  d e s ig n ed  fo r a n u m b e r  o f  re a so n s , b u t  th e  p r im a ry  rea so n s  are th e  ra p id  
d e p le tio n  o f IP a d d re s se s  a n d  v a rio u s  cap a c ity  issu es w ith  th e  g lo b a l ro u tin g  ta b le s .

C ID R  a d d re sse s  are  w rit te n  u s in g  a n ew  n o ta t io n , n o t  su rp ris in g ly  ca lled  th e  C ID R  
b lo c k  n o ta t io n . A n e x a m p le  is 172.16.0 .0 /24, w h ic h  re p re se n ts  th e  ra n g e  o f  
ad d re s se s  fro m  172.16.0 .0  to  172.16.0 .255. T h e  24  in  th e  n o ta t io n  m ean s  th a t  th e re  
a re  2 4  a d d re s s  b its  se t, w h ic h  leaves u sab le  8 b its  o f  th e  3 2 -b it IP ad d ress . T o  re d u c e  
th e  n u m b e r  o f  ad d re s se s  in  th is  ran g e , w e c o u ld  a d d  th re e  to  th e  n u m b e r  o f  a d d re s s  
b its , g iv ing  u s a n e tw o rk  a d d re s s  o f  172.16.0 .0 /27. T h is  m e a n s  th a t  w e w o u ld  n o w  
h ave  o n ly  five u sab le  h o s t  b its , g iv in g  us a to ta l o f  32  ad d re sse s . C ID R  a d d re s se s  can  
a lso  b e  u se d  to  c rea te  ran g es  la rg e r th a n  a c lass C . F o r  ex a m p le , rem o v in g  tw o  b its  
fro m  th e  ab o v e  2 4 -b it n e tw o rk  e x a m p le  y ie ld s  172.16 .0 .0 /22 . T h is  p ro v id e s  a n e t­
w o rk  sp ace  a n e tw o rk  o f  1 ,024  ad d re s se s , fo u r  tim e s  th e  size o f  a tra d it io n a l c lass  C  
sp ace . S om e c o m m o n  C ID R  c o n f ig u ra tio n s  a re  sh o w n  in  T a b le  2-2.

Table 2-2. C om m on C ID R block notations

CIDR block prefix Host bits Number of addresses

/29 3 bits 8

/28 4 bits 16

/27 5 bits 32

/25 6 bits 128

/24 8 bits 256

/22 10 bits 1024

Address Resolution
N o w  th a t  y o u ’ve seen  h o w  IP a d d re s se s  a re  c o m p o s e d , y o u  m ay  be  w o n d e r in g  h o w  
th e y  a re  u se d  o n  an  E th e rn e t o r  T o k e n  R ing  n e tw o rk  to  a d d re s s  d iffe ren t h o s ts . A fte r 
a ll, th e se  p ro to c o ls  h ave  th e ir  o w n  a d d re sse s  to  id en tify  h o s ts  th a t  have a b so lu te ly  
n o th in g  in  c o m m o n  w ith  an  IP a d d re s s , d o n ’t they? R igh t.

A  m e c h a n ism  is n e e d e d  to  m a p  IP ad d re s se s  o n to  th e  a d d re sse s  o f th e  u n d e r ly in g  
n e tw o rk . T h e  m e c h a n ism  u se d  is th e  A ddress R eso lu tion  P ro tocol (ARP). In  fac t, A RP 
is n o t  c o n fin e d  to  E th e rn e t o r  T o k e n  R ing , b u t  is u se d  o n  o th e r  ty p es o f n e tw o rk s , 
su c h  as th e  a m a te u r  ra d io  A X .25  p ro to c o l. T h e  id ea  u n d e rly in g  A RP is ex ac tly  w h a t 
m o s t p e o p le  d o  w h e n  th e y  hav e  to  fin d  M r. X in  a th ro n g  o f  150 p eop le : th e  p e rs o n  
w h o  w a n ts  h im  calls o u t  lo u d ly  e n o u g h  th a t  ev e ry o n e  in  th e  ro o m  can  h e a r  h e r,

IP Addresses | 19



expecting him to respond if he is there. When he responds, she knows which person 
he is.

When ARP wants to find the Ethernet address corresponding to a given IP address, it 
uses an Ethernet feature called broadcasting, in which a datagram is addressed to all 
stations on the network simultaneously. The broadcast datagram sent by ARP con­
tains a query for the IP address. Each receiving host compares this query to its own 
IP address and if it matches, returns an ARP reply to the inquiring host. The inquir­
ing host can now extract the sender’s Ethernet address from the reply. A useful util­
ity to assist you in determining ARP addresses on your network is the arp utility. 
When run without any options, the command will return output similar to the fol­
lowing:

vbrew root # arp 

Address HWtype HWaddress Flags Mask Iface

172.16.0.155 ether 00:11:2F:53:4D:EF C etho

172.16.0.65 ether 00:90:4B:Cl:4A:E5 C etho

vlager.vbrew.com ether 00:10:67:00:C3:7B C ethl

172.16.0.207 ether 00:0B:DB:53:E7:D4 C etho

It is also possible to request specific ARP addresses from hosts on your network, and 
should it be necessary, network administrators can also modify, add, or remove ARP 
entries from their local cache.

Let’s talk a little more about ARP. Once a host has discovered an Ethernet address, it 
stores it in its ARP cache so that it doesn’t have to query for it again the next time it 
wants to send a datagram to the host in question. However, it is unwise to keep this 
information forever; the remote host’s Ethernet card may be replaced because of 
technical problems, so the ARP entry would become invalid. Therefore, entries in 
the ARP cache are discarded after some time to force another query for the IP 
address.

Sometimes it is also necessary to find the IP address associated with a given Ethernet 
address. This happens when a diskless machine wants to boot from a server on the 
network, which is a common situation on Local Area Networks. A diskless client, 
however, has virtually no information about itself— except for its Ethernet address! 
So it broadcasts a message containing a request asking a boot server to provide it 
with an IP address. There’s another protocol for this situation named Reverse 
Address Resolution Protocol (RARP). Along with the BOOTP protocol, it serves to 
define a procedure for bootstrapping diskless clients over the network.

IP Routing
We now take up the question of finding the host that datagrams go to based on the 
IP address. Different parts of the address are handled in different ways; it is your job 
to set up the files that indicate how to treat each part.

20 | Chapter 2: Issues of TCP/IP Networking



IP networks
When you write a letter to someone, you usually put a complete address on the enve­
lope specifying the country, state, and Zip Code. After you put it in the mailbox, the 
post office will deliver it to its destination: it will be sent to the country indicated, 
where the national service will dispatch it to the proper state and region. The advan­
tage of this hierarchical scheme is obvious: wherever you post the letter, the local 
postmaster knows roughly which direction to forward the letter, but the postmaster 
doesn’t care which way the letter will travel once it reaches its country of destination.

IP networks are structured similarly. The whole Internet consists of a number of 
proper networks, called autonomous systems. Each system performs routing between 
its member hosts internally so that the task of delivering a datagram is reduced to 
finding a path to the destination host’s network. As soon as the datagram is handed 
to any host on that particular network, further processing is done exclusively by the 
network itself.

Subnetworks

This structure is reflected by splitting IP addresses into a host and network part, as 
explained earlier in this chapter. By default, the destination network is derived from 
the network part of the IP address. Thus, hosts with identical IP network numbers 
should be found within the same network/

It makes sense to offer a similar scheme inside the network, too, since it may consist 
of a collection of hundreds of smaller networks, with the smallest units being physi­
cal networks like Ethernets. Therefore, IP allows you to subdivide an IP network into 
several subnets.

A subnet takes responsibility for delivering datagrams to a certain range of IP 
addresses. It is an extension of the concept of splitting bit fields, as in the A, B, and C 
classes. However, the network part is now extended to include some bits from the 
host part. The number of bits that are interpreted as the subnet number is given by 
the so-called subnet mask, or netmask. This is a 32-bit number too, which specifies 
the bit mask for the network part of the IP address.

The campus network of Groucho Marx University (GMU) is an example of such a 
network. It has a class B network number of 149.76.0.0, and its netmask is there­
fore 255.255 .0 .0 .

Internally, GMU’s campus network consists of several smaller networks, such as var­
ious departments’ LANs. So the range of IP addresses is broken up into 254 subnets,
149 .76 .1 .0  through 149.76.254.0 . For example, the department of Theoretical 
Physics has been assigned 149.76.12.0 . The campus backbone is a network in its

* Autonomous systems are slightly more general. They may comprise more than one IP network.

IP Addresses | 21



own right, and is given 149.76.1.0. These subnets share the same IP network num­
ber, while the third octet is used to distinguish between them. They will thus use a 
subnet mask of 255.255 .255 .0 .

Figure 2-1 shows how 149.76.12.4 , the address of quark, is interpreted differently 
when the address is taken as an ordinary class B network and when used with sub­
netting.

Class B
Network Part Host Part

12

Class B with Subnet
Network Part

___ /\___
Subnet Host Part

„_______ / X

149 76 12
Figure 2-1. Subnetting  a class B netw ork

It is worth noting that subnetting (the technique of generating subnets) is only an 
internal division of the network. Subnets are generated by the network owner (or the 
administrators). Frequently, subnets are created to reflect existing boundaries, be 
they physical (between two Ethernets), administrative (between two departments), 
or geographical (between two locations), and authority over each subnet is dele­
gated to some contact person. However, this structure affects only the network’s 
internal behavior and is completely invisible to the outside world.

Gateways
Subnetting is not only a benefit to the organization; it is frequently a natural conse­
quence o f hardware boundaries. The viewpoint of a host on a given physical net­
work, such as an Ethernet, is a very limited one: it can only talk to the host of the 
network it is on. All other hosts can be accessed only through special-purpose 
machines called gateways. A gateway is a host that is connected to two or more phys­
ical networks simultaneously and is configured to switch packets between them.

Figure 2-2 shows part of the network topology at GMU. Hosts that are on two sub­
nets at the same time are shown with both addresses.

Different physical networks have to belong to different IP networks for IP to be able 
to recognize if a host is on a local network. For example, the network number 149.
76.4 .0  is reserved for hosts on the mathematics LAN. W hen sending a datagram to 
quark, the network software on erdos immediately sees from the IP address 149.76.

22 | Chapter 2: Issues of TCP/IP Networking



12.4 that the destination host is on a different physical network, and therefore can be 
reached only through a gateway (sophus by default).

sophus itself is connected to two distinct subnets: the Mathematics department and 
the campus backbone. It accesses each through a different interface, ethO and fddiO, 
respectively. Now, what IP address do we assign it? Should we give it one on subnet
149.76.1 .0  or on 149.76.4.0?

The answer is: “both.” sophus has been assigned the address 149.76.1.1 for use on 
the 149.76.1 .0  network and address 149.76.4.1 for use on the 149.76.4 .0  network. 
A gateway must be assigned one IP address for each network it belongs to. These 
addresses— along with the corresponding netmask— are tied to the interface through 
which the subnet is accessed. Thus, the interface and address mapping for sophus 
would be as shown in Table 2-3.

IP Addresses | 23



Table 2-3. Sample interfaces and addresses

Interface Address Netmask

ethO 149.76.4.1 255.255.255.0

fddiO 149.76.1.1 255.255.255.0

lo 127.0.0.1 255.0.0.0

T h e  la s t e n try  d e sc r ib e s  th e  lo o p b a c k  in te rfa ce  lo , w h ic h  w e ta lk e d  a b o u t  e a rlie r  in  
th is  c h a p te r .

G en era lly , y o u  can  ig n o re  th e  su b tle  d iffe ren ce  b e tw e e n  a tta c h in g  a n  a d d re s s  to  a 
h o s t  o r  its in te rface . F o r  h o s ts  th a t  a re  o n  o n e  n e tw o rk  o n ly , su c h  as erdos, y o u  
w o u ld  g en e ra lly  re fe r to  th e  h o s t  as h av in g  th is -a n d - th a t IP a d d re s s , a lth o u g h  s tr ic tly  
sp e a k in g , i t ’s th e  E th e rn e t in te rfa ce  th a t  h a s  th is  IP a d d re s s . T h e  d is tin c tio n  is rea lly  
im p o r ta n t o n ly  w h e n  y o u  re fe r to  a g a tew ay .

The Routing Table
W e  n o w  fo cu s o u r  a tte n tio n  o n  h o w  IP ch o o se s  a g a te w a y  to  u se  to  d e liv e r a d a ta ­
g ra m  to  a re m o te  n e tw o rk .

W e  hav e  seen  th a t  erdos, w h e n  g iven  a d a ta g ra m  fo r quark, ch eck s  th e  d e s t in a t io n  
a d d re s s  a n d  fin d s th a t  it is n o t  o n  th e  loca l n e tw o rk , erdos th e re fo re  s e n d s  th e  d a ta ­
g ra m  to  th e  d e fa u lt g a te w a y  sophus, w h ic h  is n o w  faced  w ith  th e  sam e  ta sk , sophus 
reco g n izes th a t  quark is n o t  o n  an y  o f  th e  n e tw o rk s  it is c o n n e c te d  to  d irec tly , so  it 
h a s  to  f in d  y e t a n o th e r  g a te w a y  to  fo rw a rd  it th ro u g h . T h e  c o rre c t c h o ice  w o u ld  be  
niels, th e  g a tew ay  to  th e  p h y sic s  d e p a r tm e n t , sophus th u s  n e e d s  in fo rm a tio n  to  a sso ­
c ia te  a d e s t in a t io n  n e tw o rk  w ith  a su ita b le  g a tew ay .

IP u ses  a tab le  fo r th is  ta s k  th a t  a sso c ia te s  n e tw o rk s  w ith  th e  g a tew ay s  b y  w h ic h  th ey  
m ay  b e  reach ed . A c a tc h -a ll e n try  (th e  de fa u lt ro u te ) m u s t g en e ra lly  b e  su p p lie d  to o ; 
th is  is th e  g a tew ay  a sso c ia te d  w ith  n e tw o rk  O.O.O.O. A ll d e s t in a t io n  ad d re s se s  m a tc h  
th is  ro u te , s ince  n o n e  o f  th e  3 2  b its  a re  re q u ire d  to  m a tc h , a n d  th e re fo re  p a c k e ts  to  
an  u n k n o w n  n e tw o rk  a re  s e n t th ro u g h  th e  d e fa u lt ro u te . O n  sophus, th e  ta b le  m ig h t 
lo o k  as sh o w n  in  T a b le  2-4 .

Table 2-4. Sample routing table

Network Netmask Gateway Interface

149.76.1.0 255.255.255.0 - eth1

149.76.2.0 255.255.255.0 149.76.1.2 eth1

149.76.3.0 255.255.255.0 149.76.1.3 ethl

149.76.4.0 255.255.255.0 - ethO

149.76.5.0 255.255.255.0 149.76.1.5 ethl

O.O.O.O O.O.O.O 149.76.1.2 ethl

24 | Chapter 2: Issues of TCP/IP Networking



If  y o u  n e e d  to  u se  a ro u te  to  a n e tw o rk  th a t  sophus is d irec tly  c o n n e c te d  to , y o u  
d o n ’t n e e d  a g a tew ay ; th e  g a te w a y  c o lu m n  h e re  c o n ta in s  a h y p h e n .

It is p o ss ib le  to  d e te rm in e  th is  in fo rm a tio n  fro m  th e  ro u tin g  ta b le  by  u s in g  th e  rou te  
c o m m a n d  a n d  th e  -n o p tio n , w h ic h  w ill d isp lay  IP a d d re s se s , ra th e r  th a n  D N S  
n am es .

T h e  p ro c e s s  fo r id en tify in g  w h e th e r  a p a r t ic u la r  d e s t in a t io n  a d d re s s  m a tch es  a ro u te  
is a m a th e m a tic a l o p e ra tio n . T h e  p ro c e s s  is q u ite  s im p le , b u t  it req u ires  a n  u n d e r ­
s ta n d in g  o f  b in a ry  a r i th m e tic  a n d  log ic: a ro u te  m a tc h e s  a d e s t in a t io n  if th e  n e tw o rk  
a d d re s s  log ica lly  A N D e d  w ith  th e  n e tm a s k  p rec ise ly  e q u a ls  th e  d e s tin a tio n  a d d re s s  
log ica lly  A N D e d  w ith  th e  n e tm a sk .

T ra n s la tio n : a ro u te  m a tc h e s  if th e  n u m b e r  o f b its  o f  th e  n e tw o rk  ad d re ss  sp ec ified  
b y  th e  n e tm a sk  (s ta r tin g  fro m  th e  le f t-m o s t b it , th e  h ig h  o rd e r  b it o f  by te  o n e  o f  th e  
ad d re ss ) m a tc h  th a t  sam e  n u m b e r  o f  b its  in  th e  d e s t in a t io n  a d d re ss .

W h e n  th e  IP im p le m e n ta t io n  is se a rc h in g  fo r th e  b e s t ro u te  to  a d e s tin a tio n , it m ay  
fin d  a n u m b e r  o f  ro u t in g  e n tr ie s  th a t  m a tc h  th e  ta rg e t a d d re ss . F o r  e x am p le , w e 
k n o w  th a t  th e  d e fa u lt ro u te  m a tc h e s  every  d e s tin a tio n , b u t  d a ta g ra m s  d e s tin e d  fo r 
loca lly  a tta c h e d  n e tw o rk s  w ill m a tc h  th e ir  loca l ro u te , to o . H o w  d o es  IP k n o w  w h ic h  
ro u te  to  use? It is h e re  th a t  th e  n e tm a s k  p lay s an  im p o r ta n t  ro le . W h ile  b o th  ro u te s  
m a tc h  th e  d e s t in a t io n , o n e  o f  th e  ro u te s  h a s  a la rg e r n e tm a s k  th a n  th e  o th e r . W e  p re ­
v io u s ly  m e n tio n e d  th a t  th e  n e tm a s k  w as  u se d  to  b re a k  u p  o u r  ad d re ss  sp ace  in to  
sm a lle r  n e tw o rk s . T h e  la rg e r a n e tm a s k  is, th e  m o re  sp ec ifica lly  a ta rg e t a d d re s s  is 
m a tc h e d ; w h e n  ro u tin g  d a ta g ra m s , w e sh o u ld  a lw ays c h o o se  th e  ro u te  th a t  h as  th e  
la rg e s t n e tm a sk . T h e  d e fa u lt ro u te  h a s  a n e tm a sk  o f  z e ro  b its , a n d  in  th e  c o n fig u ra ­
t io n  p re s e n te d  ab o v e , th e  lo ca lly  a t ta c h e d  n e tw o rk s  hav e  a 2 4 -b it n e tm ask . If a d a ta ­
g ra m  m a tc h e s  a loca lly  a t ta c h e d  n e tw o rk , it w ill b e  ro u te d  to  th e  a p p ro p r ia te  dev ice  
in  p re fe ren ce  to  fo llo w in g  th e  d e fa u l t  ro u te  b ecau se  th e  loca l n e tw o rk  ro u te  m a tc h e s  
w ith  a g re a te r  n u m b e r  o f b its . T h e  o n ly  d a ta g ra m s  th a t  w ill b e  ro u te d  via th e  d e fa u lt 
ro u te  a re  th o s e  th a t  d o n ’t m a tc h  a n y  o th e r  ro u te .

Y ou  c a n  b u ild  ro u t in g  tab le s  by  a  v a rie ty  o f m ean s . F o r  sm a ll L A N s, it is u su a lly  m o s t 
e ffic ien t to  c o n s tru c t  th e m  b y  h a n d  a n d  feed  th e m  to  IP u s in g  th e  ro u te  c o m m a n d  a t 
b o o t tim e  (see C h a p te r  4). F o r la rg e r  n e tw o rk s , th ey  are  b u il t  a n d  ad ju s te d  a t r u n t­
im e  b y  ro u tin g  d a e m o n s ; th e se  d a e m o n s  ru n  o n  c e n tra l h o s ts  o f  th e  n e tw o rk  a n d  
e x c h a n g e  ro u tin g  in fo rm a tio n  to  c o m p u te  “o p tim a l” ro u te s  b e tw e e n  th e  m e m b e r  
n e tw o rk s .

D e p e n d in g  o n  th e  size o f th e  n e tw o rk , y o u ’ll n eed  to  u se  d if fe ren t ro u tin g  p ro to c o ls . 
F o r  ro u t in g  in s id e  a u to n o m o u s  sy s te m s  (su ch  as th e  G ro u c h o  M arx  cam p u s ) , th e  
in te rn a l rou tin g  p ro toco ls  a re  u se d . T h e  m o s t p ro m in e n t o n e  o f  th e se  is th e  R o u tin g  
In fo rm a tio n  P ro tocol (R IP), w h ic h  is im p le m e n te d  by  th e  BSD ro u te d  d a e m o n . F o r 
ro u t in g  b e tw e e n  a u to n o m o u s  sy s te m s , ex te rn a l ro u tin g  p ro toco ls  su ch  as E xtern a l

IP Addresses | 25



G a tew a y  P ro toco l (EG P) o r  B order G a tew a y  P ro toco l (BG P) h av e  to  b e  u sed ; th e se  
p ro to c o ls , in c lu d in g  R IP , h av e  b e e n  im p le m e n te d  in  th e  U n iv e rs ity  o f  C o rn e ll’s g a te d  
d a e m o n .

Metric Values
W e  d e p e n d  o n  d y n a m ic  ro u tin g  to  c h o o se  th e  b e s t ro u te  to  a d e s t in a t io n  h o s t o r  n e t­
w o rk  b a s e d  o n  th e  n u m b e r  o f  hops. H o p s  a re  th e  g a tew ay s  a d a ta g ra m  h as  to  p a ss  
b e fo re  re a c h in g  a  h o s t o r  n e tw o rk . T h e  sh o r te r  a ro u te  is, th e  b e tte r  RIP ra te s  it. V ery  
lo n g  ro u te s  w ith  16 o r  m o re  h o p s  are  re g a rd e d  as u n u sa b le  a n d  a re  d isc a rd e d .

R IP m a n a g e s  ro u tin g  in fo rm a tio n  in te rn a l to  y o u r  lo ca l n e tw o rk , b u t  y o u  h ave  to  ru n  
g a ted  o n  all h o s ts . A t b o o t tim e , g a te d  ch eck s  fo r a ll ac tiv e  n e tw o rk  in te rfa ces . If  
th e re  is m o re  th a n  o n e  ac tive  in te rfa ce  (n o t c o u n tin g  th e  lo o p b a c k  in te rfa ce ), it 
a ssu m e s  th a t  th e  h o s t is sw itc h in g  p a c k e ts  b e tw e e n  severa l n e tw o rk s  a n d  w ill ac tive ly  
e x c h a n g e  a n d  b ro a d c a s t  ro u t in g  in fo rm a tio n . O th e rw ise , it w ill o n ly  p ass ive ly  receive  
RIP u p d a te s  a n d  u p d a te  th e  lo ca l ro u t in g  tab le .

W h e n  b ro a d c a s tin g  in fo rm a tio n  fro m  th e  lo ca l ro u t in g  ta b le , g a ted  c o m p u te s  th e  
le n g th  o f  th e  ro u te  fro m  th e  so -ca lle d  m etric  va lue  a s so c ia te d  w ith  th e  ro u t in g  ta b le  
en try . T h is  m e tr ic  va lu e  is se t b y  th e  sy s tem  a d m in is tr a to r  w h e n  c o n fig u rin g  th e  
ro u te , a n d  s h o u ld  re flec t th e  a c tu a l ro u te  cost.* T h e re fo re , th e  m e tric  o f  a ro u te  to  a 
s u b n e t th a t  th e  h o s t  is d irec tly  c o n n e c te d  to  s h o u ld  a lw ay s b e  ze ro , w h ile  a ro u te  
g o in g  th r o u g h  tw o  g a tew ay s sh o u ld  hav e  a m e tric  o f  tw o . Y o u  d o n ’t have  to  b o th e r  
w ith  m e tr ic s  if y o u  d o n ’t u se  R IP o r  g a ted .

The Internet Control Message Protocol
IP h a s  a  c o m p a n io n  p ro to c o l th a t  w e h a v e n ’t ta lk e d  a b o u t  ye t. T h is  is th e  In te rn e t  
C on tro l M essage P ro tocol (IC M P ), u se d  b y  th e  k e rn e l n e tw o rk in g  co d e  to  c o m m u n i­
ca te  e r ro r  m essag es  to  o th e r  h o s ts . F o r  in s ta n c e , a s su m e  th a t  y o u  are  o n  e rd o s  ag a in  
a n d  w a n t  to  te ln e t to  p o r t  12345  o n  q u a rk ,  b u t  th e r e ’s n o  p ro c e s s  lis te n in g  o n  th a t  
p o r t . W h e n  th e  firs t T C P  p a c k e t fo r th is  p o r t  a rriv es  o n  q u a rk ,  th e  n e tw o rk in g  lay e r 
w ill re co g n ize  th is  a rriv a l a n d  im m e d ia te ly  re tu rn  a n  IC M P  m essag e  to  e rd o s  s ta tin g  
“P o rt U n re a c h a b le .”

T h e  IC M P  p ro to c o l p ro v id e s  severa l d iffe ren t m essag es , m a n y  o f  w h ic h  d ea l w ith  
e r ro r  c o n d it io n s . H o w ev e r, th e re  is o n e  very  in te re s tin g  m essag e  ca lled  th e  R e d ire c t 
m essage . It is g e n e ra te d  by  th e  ro u t in g  m o d u le  w h e n  it d e te c ts  th a t  a n o th e r  h o s t  is 
u s in g  it as a  g a tew ay , even  th o u g h  a m u c h  s h o r te r  ro u te  ex is ts . F o r ex a m p le , a f te r  
b o o tin g , th e  ro u t in g  ta b le  o f  s o p h u s  m ay  b e  in c o m p le te . It m ig h t c o n ta in  th e  ro u te s

* The cost of a route can be thought of, in a simple case, as the number of hops required to reach the destina­
tion. Proper calculation of route costs can be a fine art in complex network designs.

26 | Chapter 2: Issues of TCP/IP Networking



to  th e  m a th  d e p a r tm e n t’s n e tw o rk , to  th e  F D D I b a c k b o n e , a n d  th e  d e fa u lt ro u te  
p o in t in g  a t th e  G ro u c h o  C o m p u tin g  C e n te r ’s g a tew ay  (gccl). T h u s , p a c k e ts  fo r 
quark w o u ld  be sen t to  gccl ra th e r  th a n  to  niels, th e  g a tew ay  to  th e  p h y sic s  d e p a r t­
m e n t. W h e n  receiv ing  s u c h  a d a ta g ra m , gccl w ill n o tic e  th a t  th is  is a p o o r  c h o ice  o f  
ro u te  a n d  w ill fo rw a rd  th e  p a c k e t to  niels, m e a n w h ile  re tu rn in g  an  IC M P  R ed irec t 
m essag e  to  sophus te llin g  it o f  th e  s u p e r io r  ro u te .

T h is  seem s to  b e  a very  c leve r w ay  to  av o id  m a n u a lly  se ttin g  u p  an y  b u t  th e  m o s t 
b a s ic  ro u te s . H o w ev e r, b e  w a rn e d  th a t  re ly ing  o n  d y n a m ic  ro u tin g  sch em es , b e  it RIP 
o r  IC M P  R ed irec t m essag es , is n o t  a lw ays a g o o d  idea . IC M P  R ed irec t a n d  R IP  offer 
y o u  little  o r  n o  ch o ice  in  ve rify in g  th a t  so m e  ro u tin g  in fo rm a tio n  is in d e e d  a u th e n ­
tic . T h is  s i tu a tio n  a llo w s m a lic io u s  g o o d -fo r-n o th in g s  to  d is ru p t y o u r  e n tire  n e tw o rk  
tra ffic , o r  even  w o rse . C o n se q u e n tly , th e  L in u x  n e tw o rk in g  co d e  tre a ts  N e tw o rk  
R e d ire c t m essages as if th e y  w e re  H o s t R ed irec ts . T h is  m in im ize s  th e  d a m a g e  o f an  
a tta c k  by  re s tr ic tin g  it to  ju s t  o n e  h o s t , ra th e r  th a n  th e  w h o le  n e tw o rk . O n  th e  flip 
sid e , it m e a n s  th a t  a litt le  m o re  tra ffic  is g e n e ra te d  in  th e  ev en t o f  a le g itim a te  c o n d i­
t io n , as each  h o s t c au se s  th e  g e n e ra tio n  o f  a n  IC M P  R ed irec t m essage . It is g en e ra lly  
c o n s id e re d  b a d  p ra c tic e  to  re ly  o n  IC M P  red irec ts  fo r a n y th in g  th ese  days.

Resolving Hostnames
A s d e sc r ib e d  ea rlie r in  th is  c h a p te r , a d d re s s in g  in  T C P /IP  n e tw o rk in g , a t le a s t fo r IP 
V e rs io n  4 , revo lves a ro u n d  3 2 -b it n u m b e rs . H o w ev e r, y o u  w ill have  a h a rd  tim e 
re m e m b e r in g  m o re  th a n  a few  o f th e se  n u m b e rs . T h e re fo re , h o s ts  are  g en era lly  
k n o w n  b y  “o rd in a ry ” n a m e s , su c h  as gauss o r strange. It b eco m e s  th e  a p p lic a tio n ’s 
d u ty  to  fin d  th e  IP a d d re s s  c o rre sp o n d in g  to  th is  n am e . T h is  p ro c e s s  is c a lled  ho st­
n a m e  reso lu tion . W h e n  a n  a p p lic a tio n  n e e d s  to  fin d  th e  IP ad d re s s  o f  a g iven  h o s t, it 
re lies  o n  th e  lib ra ry  fu n c t io n s  g e th o s tb yn a m e(3 )  a n d  g e th o s tb ya d d r(3 ). T ra d it io n a lly , 
th e se  a n d  a n u m b e r  o f  re la te d  p ro c e d u re s  w ere  g ro u p e d  in  a se p a ra te  lib ra ry  ca lled  
th e  reso lverlibrary\ o n  L in u x , th e se  fu n c tio n s  a re  p a r t  o f  th e  s ta n d a rd  libc. C o llo q u i­
ally , th is  c o lle c tio n  o f  fu n c t io n s  is th e re fo re  re fe rred  to  as “ th e  re so lv e r .” R eso lver 
n a m e  c o n fig u ra tio n  is d e ta i le d  in  C h a p te r  5.

O n  a sm a ll n e tw o rk  like  a n  E th e rn e t o r  even  a c lu s te r  o f  E th e rn e ts , it is n o t very  d iffi­
c u lt  to  m a in ta in  tab le s  m a p p in g  h o s tn a m e s  to  a d d re sse s . T h is  in fo rm a tio n  is u su a lly  
k e p t  in  a file n a m e d  /e tc /h o sts . W h e n  a d d in g  o r  rem o v in g  h o s ts , o r  reass ig n in g  
a d d re s se s , all y o u  h av e  to  d o  is u p d a te  th e  hosts  file o n  all h o s ts . O b v io u s ly , th is  w ill 
b e c o m e  b u rd e n s o m e  w ith  n e tw o rk s  th a t  co m p rise  m o re  th a n  a h a n d fu l o f  m ach in e s .

O n  th e  In te rn e t, a d d re s s  in fo rm a tio n  w as in itia lly  s to re d  in  a sing le  H O S T S .T X T  
d a ta b a s e , to o . T h is  file w a s  m a in ta in e d  a t th e  N IC , a n d  h a d  to  b e  d o w n lo a d e d  an d  
in s ta lle d  by  all p a r t ic ip a tin g  s ites . W h e n  th e  n e tw o rk  g rew , several p ro b le m s  w ith  
th is  sch em e  aro se . B esides th e  a d m in is tra tiv e  o v e rh e a d  in v o lv ed  in  in s ta llin g  H O S T S . 
T X T  reg u la rly , th e  lo a d  o n  th e  se rv ers  th a t  d is tr ib u te d  it b ecam e  to o  h ig h . E ven  m o re

The Internet Control Message Protocol | 27



severe, all names had to be registered with the NIC, which made sure that no name 
was issued twice.

This is why a new name resolution scheme was adopted in 1994: the Domain Name 
System. DNS was designed by Paul Mockapetris and addresses both problems simul­
taneously. We discuss the Domain Name System in detail in Chapter 5.

28 | Chapter 2: Issues of TCP/IP Networking



. W -W U T -------------------------- ----------------- CHAPTER 3
Ü P  s Configuring the Serial 

Hardware

The Internet is growing at an incredible rate. Much of this growth is attributed to 
Internet users who have cheap and easy access to DSL, cable, and other high-speed 
permanent network connections and who use protocols such as PPP to dial in to a 
network provider to retrieve their daily dose of email and news.

This chapter is intended to help all people who rely on modems to maintain their 
link to the outside world. We won’t cover the mechanics of how to configure your 
modem, as you can find detailed documentation of this in many of the available 
modem HOWTO documents on the web. We will cover most of the Linux-specific 
aspects of managing devices that use serial ports. Topics include serial communica­
tions software, creating the serial device files, serial hardware, and configuring serial 
devices using the setseria\ and stty commands. Many other related topics are covered 
in the Serial HOWTO by David Lawyer.

Communications Software for Modem Links
There are a number of communications packages available for Linux. Many of these 
packages are terminal programs, which allow a user to dial in to another computer as 
if she were sitting in front of a simple terminal. The traditional terminal program for 
Unix-like environments is kermit. It is, however, ancient now, and would probably 
be considered difficult to use. There are more comfortable programs available that 
support features such as telephone-dialing dictionaries, script languages to automate 
dialing and logging in to remote computer systems, and a variety of file exchange 
protocols. One of these programs is minicom, which was modeled after some of the 
most popular DOS terminal programs. X I1 users are accommodated, too. seyon is a 
fully featured Xll-based communications program.

Terminal programs aren’t the only type of serial communication programs available. 
Other programs let you connect to a host and download email in a single bundle, to 
read and reply to later at your leisure. This can save a lot of time and is especially 
useful if you are unfortunate enough to live in an area where your connectivity is

29



time charged. All of the reading and replying time can be spent offline, and when you 
are ready, you can reconnect and upload your responses in a single bundle.

PPP is in-between, allowing both interactive and noninteractive use. Many people 
use PPP to dial in to their campus network or other Internet Service Provider to 
access the Internet. PPP (in the form of PPPoE) is also, however, commonly used 
over permanent or semipermanent connections like cable or DSL modems. W e’ll dis­
cuss PPPoE in Chapter 7.

Introduction to Serial Devices
The Unix kernel' provides devices for accessing serial hardware, typically called tty 
devices (pronounced as it is spelled: T-T-Y).

This is an abbreviation for Teletype device, which used to be one of the major manu­
facturers of terminal devices in the early days of Unix. The term is used now for any 
character-based data terminal. Throughout this chapter, we use the term to refer 
exclusively to the Linux device files rather than the physical terminal.

Linux provides three classes of tty devices: serial devices, virtual terminals (all of 
which you can access by pressing Alt-Fl through Alt-Fnn on the local console), and 
pseudo-terminals (similar to a two-way pipe, used by applications such as X I1). The 
former were called tty devices because the original character-based terminals were 
connected to the Unix machine by a serial cable or telephone line and modem. The 
latter two were named after the tty device because they were created to behave in a 
similar fashion from the programmer’s perspective.

PPP is most commonly implemented in the kernel. The kernel doesn’t really treat the 
tty device as a network device that you can manipulate like an Ethernet device, using 
commands such as ifconfig. However, it does treat tty devices as places where net­
work devices can be bound. To do this, the kernel changes what is called the “line 
discipline” of the tty device. PPP is a line discipline that may be enabled on tty 
devices. The general idea is that the serial driver handles data given to it differently, 
depending on the line discipline it is configured for. In its default line discipline, the 
driver simply transmits each character it is given in turn. When the PPP line disci­
pline is selected, the driver instead reads a block of data, wraps a special header 
around it that allows the remote end to identify that block of data in a stream, and 
transmits the new data block. It isn’t too important to understand this yet; we’ll 
cover PPP in a later chapter, and it all happens automatically anyway.

Accessing Serial Devices
Like all devices in a Unix system, serial ports are accessed through device special 
files, located in the /dev directory. There are two varieties of device files related to 
serial drivers, and there is one device file of each type for each port. The device will

30 I Chapter 3: Configuring the Serial Hardware



behave slightly differently, depending on which of its device files we open. We’ll 
cover the differences because it will help you understand some of the configurations 
and advice that you might see relating to serial devices, but in practice you need to 
use only one of these. At some point in the future, one of them may even disappear 
completely.

The most important of the two classes of serial device has a major number of 4, and 
its device special files are named ttySO, ttyS l, etc. The second variety has a major 
number of 5 and was designed for use when dialing out (calling out) through a port; 
its device special files are called cuaO, cu a l, etc. In the Unix world, counting gener­
ally starts at zero, while laypeople tend to start at one. This creates a small amount of 
confusion for people because COMl: is represented by /dev/ttySO, COM2: by !dev/ttyS l, 
etc. Anyone familiar with IBM PC-style hardware knows that COM3: and greater were 
never really standardized anyway.

The cua, or “callout,” devices were created to solve the problem of avoiding con­
flicts on serial devices for modems that have to support both incoming and outgoing 
connections. Unfortunately, they’ve created their own problems and are now likely 
to be discontinued. Let’s briefly look at the problem.

Linux, like Unix, allows a device, or any other file, to be opened by more than one 
process simultaneously. Unfortunately, this is rarely useful with tty devices, as the 
two processes will almost certainly interfere with each other. Luckily, a mechanism 
was devised to allow a process to check if a tty device had already been opened by 
another device. The mechanism uses what are called lock files. The idea was that 
when a process wanted to open a tty device, it would check for the existence of a file 
in a special location, named similarly to the device it intends to open. If the file did 
not exist, the process created it and opened the tty device. If the file did exist, the 
process assumed that another process already had the tty device open and took 
appropriate action. One last clever trick to make the lock file management system 
work was writing the process ID (pid) of the process that had created the lock file 
into the lock file itself; we’ll talk more about that in a moment.

The lock file mechanism works perfectly well in circumstances in which you have a 
defined location for the lock files and all programs know where to find them. Alas, 
this wasn’t always the case for Linux. It wasn’t until the Linux Filesystem Standard 
defined a standard location for lock files when tty lock files began to work correctly. 
At one time there were at least four, and possibly more, locations chosen by soft­
ware developers to store lock files: /usr/spool/locks/, /varI spool/locks/, /var Hock/, and 
/usr/lock/. Confusion caused chaos. Programs were opening lock files in different 
locations that were meant to control a single tty device; it was as if lock files weren’t 
being used at all.

The cua devices were created to provide a solution to this problem. Rather than rely­
ing on the use of lock files to prevent clashes between programs wanting to use the 
serial devices, it was decided that the kernel could provide a simple means of

Accessing Serial Devices | 31



arbitrating who should be given access. If the ttyS device were already opened, an 
attempt to open the cua would result in an error that a program could interpret to 
mean the device was already being used. If the cua device were already open and an 
attempt was made to open the ttyS, the request would block; that is, it would be put 
on hold and wait until the cua device was closed by the other process. This worked 
quite well if you had a single modem that you had configured for dial-in access and 
you occasionally wanted to dial out on the same device. But it did not work very well 
in environments where you had multiple programs wanting to call out on the same 
device. The only way to solve the contention problem was to use lock files! Back to 
square one.

Suffice it to say that the Linux Filesystem Standard came to the rescue and now man­
dates that lock files be stored in the /var/lock directory, and that by convention, the 
lock filename for the ttySl device, for instance, is LCK..ttySl. The cua lock files 
should also go in this directory, but use of cua devices is now discouraged.

The cua devices will probably still be around for some time to provide a period of 
backward compatibility, but in time they will be retired. If you are wondering what 
to use, stick to the ttyS device and make sure that your system is Linux FSSTND 
compliant, or at the very least that all programs using the serial devices agree on 
where the lock files are located. Most software dealing with serial tty devices pro­
vides a compile-time option to specify the location of the lock files. More often than 
not, this will appear as a variable called something like LOCKDIR in the Makefile or in 
a configuration header file. If you’re compiling the software yourself, it is best to 
change this to agree with the FSSTND-specified location. If you’re using a precom­
piled binary and you’re not sure where the program will write its lock files, you can 
use the following command to gain a hint:

strings binaryfile | grep lock

If the location found does not agree with the rest of your system, you can try creat­
ing a symbolic link from the lock directory that the foreign executable wants to use 
back to /var/lock/. This is ugly, but it will work.

The Serial Device Special Files
Minor numbers are identical for both types of serial devices. If you have your modem 
on one of the ports COMl: through COM4:, its minor number will be the COM port 
number plus 63. If you are using special serial hardware, such as a high-performance 
multiple port serial controller, you will probably need to create special device files for 
it; it probably won’t use the standard device driver. The Serial H O W TO  should be 
able to assist you in finding the appropriate details.

Assume your modem is on COM2:. Its minor number will be 65, and its major num­
ber will be 4 for normal use. There should be a device called ttySl that has these

32 I Chapter 3: Configuring the Serial Hardware



numbers. List the serial ttys in the /d e v / directory. The fifth and sixth columns show 
the major and minor numbers, respectively:

$ Is -1 /dev/ttyS*

0 crw-rw--- 1 uucp dialout 4, 64 Oct 13 1997 /dev/ttySO
0 crw-rw--- 1 uucp dialout 4, 65 Dan 26 21:55 /dev/ttySl
0 crw-rw--- 1 uucp dialout 4, 66 Oct 13 1997 /dev/ttyS2
0 crw-rw--- 1 uucp dialout 4> 67 Oct 13 1997 /dev/ttyS3

If there is no device with major number 4 and minor number 65, you will have to 
create one. Become the superuser and type:

# mknod -m 666 /dev/ttySl c 4 65
# chown uucp.dialout /dev/ttySl

The various Linux distributions use slightly differing strategies for who should own 
the serial devices. Sometimes they will be owned by root, and other times they will 
be owned by another user. Most distributions have a group specifically for dial-out 
devices, and any users who are allowed to use them are added to this group.

Some people suggest making /dev/modem  a symbolic link to your modem device so 
that casual users don’t have to remember the somewhat unintuitive ttyS l. However, 
you cannot use modem in one program and the real device filename in another. Their 
lock files would have different names and the locking mechanism wouldn’t work.

Serial Hardware
RS-232 is currently the most common standard for serial communications in the PC 
world. It uses a number of circuits for transmitting single bits, as well as for synchro­
nization. Additional lines may be used for signaling the presence of a carrier (used by 
modems) and for handshaking. Linux supports a wide variety of serial cards that use 
the RS-232 standard.

Hardware handshake is optional, but very useful. It allows either of the two stations 
to signal whether it is ready to receive more data, or if the other station should pause 
until the receiver is done processing the incoming data. The lines used for this are 
called Clear to Send (CTS) and Request to Send (RTS), respectively, which explains 
the colloquial name for hardware handshake: RTS/CTS.

The other type of handshake you might be familiar with is called XON/XOFF hand­
shaking. XON/XOFF uses two nominated characters, conventionally Ctrl-S and Ctrl- 
Q, to signal to the remote end that it should stop and start transmitting data, respec­
tively. While this method is simple to implement and okay for use by dumb termi­
nals, it causes great confusion when you are dealing with binary data, as you may 
want to transmit those characters as part of your data stream, and not have them 
interpreted as flow control characters. It is also somewhat slower to take effect than 
hardware handshake. Hardware handshake is clean, fast, and recommended in pref­
erence to XON/XOFF when you have a choice.

Accessing Serial Devices | 33



In the original IBM PC, the RS-232 interface was driven by a UART chip called the 
8250. PCs around the time of the 486 used a newer version of the UART called the 
16450. It was slightly faster than the 8250. Nearly all Pentium-based machines have 
been supplied with an even newer version of the UART called the 16550. Some 
brands (most notably internal modems equipped with the Rockwell chip set) use 
completely different chips that emulate the behavior of the 16550 and can be treated 
similarly. Linux supports all of these in its standard serial port driver.*

The 16550 was a significant improvement over the 8250 and the 16450 because it 
offered a 16-byte FIFO buffer. The 16550 is actually a family of UART devices, com­
prising the 16550, the 16550A, and the 16550AFN (later renamed PC16550DN). 
The differences relate to whether the FIFO actually works; the 16550AFN is the one 
that is sure to work. There was also an NS16550, but its FIFO never really worked 
either.

The 8250 and 16450 UARTs had a simple 1-byte buffer. This means that a 16450 
generates an interrupt for every character transmitted or received. Each interrupt 
takes a short period of time to service, and this small delay limits 16450s to a reli­
able maximum bit speed of about 9,600 bps in a typical ISA bus machine.

In the default configuration, the kernel checks the four standard serial ports, C0M1: 
through COM4:. The kernel is also able to automatically detect what UART is used for 
each of the standard serial ports and will make use of the enhanced FIFO buffer of 
the 16550, if it is available.

Using the Configuration Utilities
Now let’s spend some time looking at the two most useful serial device configura­
tion utilities: setserial and stty.

The setserial Command
The kernel will make its best effort to correctly determine how your serial hardware 
is configured, but the variations on serial device configuration makes this determina­
tion difficult to achieve 100 percent reliably in practice. A good example of where 
this is a problem is the internal modems we talked about earlier. The UART they use 
has a 16-byte FIFO buffer, but it looks like a 16450 UART to the kernel device 
driver: unless we specifically tell the driver that this port is a 16550 device, the ker­
nel will not make use of the extended buffer. Yet another example is that of the

* Note that we are not talking about W inModem™  here! W inModems have very simple hardware and rely 
completely on the main CPU of your computer instead of dedicated hardware to do all of the hard work. If 
you’re purchasing a modem, it is our strongest recommendation to not purchase such a modem; get a real 
modem, though if you’re stuck with a W inM odem, there's hope! Check out http://linmodems.org for drivers, 
instructions, and the LINMODEM H O W TO .

34 I Chapter 3: Configuring the Serial Hardware

http://linmodems.org


dumb 4-port cards that allow sharing of a single IRQ among a number of serial 
devices. We may have to specifically tell the kernel which IRQ port it’s supposed to 
use, and that IRQs may be shared.

setserial was created to configure the serial driver at runtime. The setserial command 
is most commonly executed at boot time from a script called rc.serial on some distri­
butions, though yours may very. This script is charged with the responsibility of ini­
tializing the serial driver to accommodate any nonstandard or unusual serial 
hardware in the machine.

The general syntax for the setserial command is:

s e t s e r i a l  device [parameters]

in which the device is one of the serial devices, such as ttySO.

The setserial command has a large number of parameters. The most common of 
these are described in Table 3-1. For information on the remainder of the parame­
ters, you should refer to the setserial manpage.

T able 3 -1 . se tseria l com m an d-lin e p a ra m e te rs

Parameter

p o rt  poitjnum bei 

i r q  num

u a rt  uart_type

fo u r p o r t

sp d_ h i

sp d _ vh i

spd_norm al

a u to _ irq

a u to c o n fig

s k ip _ t e s t

Description
Specify the I/O port address of the serial device. Port numbers should be specified in 
hexadecimal notation, e.g., 0 x 2 f8.

Specify the interrupt request line the serial device is using.

Specify the UART type of the serial device. Common values are 16450,16550, etc. 
Setting this value to none will disable this serial device.

Specifying this parameter instructs the kernel serial driver that this port is one port 
of an AST Fourport card.

Program the UART to use a speed of 57.6 kbps when a process requests 38.4 kbps.

Program the UART to use a speed of 115 kbps when a process requests 38.4 kbps.

Program the UART to use the default speed of 38.4 kbps when requested. This 
parameter is used to reverse the effect of a sp d _ h i or spd v h i  performed on the 
specified serial device.

This parameter will cause the kernel to attempt to automatically determine the IRQ 
of the specified device. This attempt may not be completely reliable, so it is probably 
better to think of this as a request for the kernel to guess the IRQ. If you know the 
IRQ of the device, you should specify that it use the i r q  parameter instead.

This parameter must be specified in conjunction with the p o r t  parameter. When 
this parameter is supplied, s e t s e r i a l  instructs the kernel to attempt to automat­
ically determine the UART type located at the supplied port address. If the a uto_  
i r q  parameter is also supplied, the kernel attempts to automatically determine the 
IRQ, too.

This parameter instructs the kernel not to bother performing the UART type test dur­
ing auto-configuration. This is necessary when the UART is incorrectly detected by 
the kernel.

Using the Configuration Utilities | 35



A typical and simple rc file to configure your serial ports at boot time might look 
something like that shown in Example 3-1. Most Linux distributions will include 
something slightly more sophisticated than this one.

E xam ple  3 -1 . rc .seria l se tseria l com m an ds

# /etc/rc.serial - serial line configuration script.
#
# Configure serial devices
/sbin/setserial /dev/ttySO auto_irq skip_test autoconfig 
/sbin/setserial /dev/ttySl auto_irq skip_test autoconfig 
/sbin/setserial /dev/ttyS2 auto_irq skip_test autoconfig 
/sbin/setserial /dev/ttyS3 auto_irq skip_test autoconfig
#
# Display serial device configuration 
/sbin/setserial -bg /dev/ttyS*

The -bg /dev/ttyS* argument in the last command will print a neatly formatted sum­
mary of the hardware configuration of all active serial devices. The output will look 
like that shown in Example 3-2.

E xam ple  3 -2 . O u tp u t o f  se tseria l -bg  / d ev /ttyS  co m m a n d

/dev/ttySO at 0x03f8 (irq = 4) is a 16550A 
/dev/ttySl at 0x02f8 (irq = 3) is a 16550A

The stty Command
The name stty  probably means “set tty,” but the stty command can also be used to 
display a terminal’s configuration. Perhaps even more so than setserial, the stty  com­
mand provides a bewildering number of characteristics that you can configure. W e’ll 
cover the most important of these in a moment. You can find the rest described in 
the stty manpage.

The stty command is most commonly used to configure terminal parameters, such as 
whether characters will be echoed or what key should generate a break signal. We 
explained earlier that serial devices are tty devices and the stty command is therefore 
equally applicable to them.

One of the more important uses of the stty for serial devices is to enable hardware 
handshaking on the device. We talked briefly about hardware handshaking earlier in 
this chapter. The default configuration for serial devices is for hardware handshak­
ing to be disabled. This setting allows “three wire” serial cables to work; they don’t 
support the necessary signals for hardware handshaking, and if it were enabled by 
default, they’d be unable to transmit any characters to change it.

Surprisingly, some serial communications programs don’t enable hardware hand­
shaking, so if your modem supports hardware handshaking, you should configure 
the modem to use it (check your modem manual for what command to use), and

36 I Chapter 3: Configuring the Serial Hardware



also configure your serial device to use it. The stty  command has a crtscts flag that 
enables hardware handshaking on a device; you’ll need to use this. The command is 
probably best issued from the rc.serial file (or equivalent) at boot time using com­
mands such as those shown in Example 3-3.

E xam ple  3 -3 . rc .seria l s t ty  com m an ds

#
stty crtscts < /dev/ttySO 
stty crtscts < /dev/ttySl 
stty crtscts < /dev/ttyS2 
stty crtscts < /dev/ttyS3
#

The stty  command works on the current terminal by default, but by using the input 
redirection (<) feature of the shell, we can have stty manipulate any tty device. It’s a 
common mistake to forget whether you are supposed to use < or >; modern versions 
of the stty command have a much cleaner syntax for doing this. To use the new syn­
tax, we’d rewrite our sample configuration to look like that shown in Example 3-4.

E xam ple  3 -4 . rc .seria l s t ty  com m an ds using m o d e m  sy n ta x

#
stty crtscts -F /dev/ttySO 
stty crtscts -F /dev/ttySl 
stty crtscts -F /dev/ttyS2 
stty crtscts -F /dev/ttyS3
#

We mentioned that the stty command can be used to display the terminal configura­
tion parameters of a tty device. To display all of the active settings on a tty device, 
use:

$ stty -a -F /dev/ttySl

The output of this command, shown in Example 3-5, gives you the status of all flags 
for that device; a flag shown with a preceding minus, as in -crtscts, means that the 
flag has been turned off.

E x am ple  3 -5 . O u tp u t o f  s t ty  -a co m m a n d  

speed 19200 baud; rows 0; columns 0; line = 0;
intr = AC; quit = A\; erase = A?; kill = AU; eof = AD; eol = <undef>;

eol2 = <undef>; start = A0; stop = AS; susp = AZ; rprnt = AR; 
werase = AW; lnext = AV; flush = A0; min = 1; time = 0;

-parenb -parodd cs8 hupcl -cstopb cread clocal -crtscts 
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr -icrnl -ixon 

-ixoff -iuclc -ixany -imaxbel 
-opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nlo crO tabO 

bsO vtO ffo
-isig -icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop 

-echoprt echoctl echoke

Using the Configuration Utilities | 37



A description of the most important of these flags is given in Table 3-2. Each of these 
flags is enabled by supplying it to stty and disabled by supplying it to stty with the - 
character in front of it. Thus, to disable hardware handshaking on the ttySO device, 
you would use:

$ stty -crtscts -F /dev/ttySO

T able 3 -2 . s t ty  flags m o st re levan t to configuring seria l devices

Flags Description

N Set the line speed to N bits per second.

c r t s d t s Enable/disable hardware handshaking.

ix o n Enable/disable XON/XOFF flow control.

c lo c a l Enable/disable modem control signals such as DTR/DTS and DCD. This is necessary if you 
are using a "three wire" serial cable because it does not supply these signals.

cs5 cs6 cs7 cs8 Set number of data bits to 5,6,7, or 8, respectively.

parodd Enable odd parity. Disabling this flag enables even parity.

parenb Enable parity checking. When this flag is negated, no parity is used.

c sto p b Enable use of two stop bits per character. When this flag is negated, one stop bit per 
character is used.

echo Enable/disable echoing of received characters back to sender.

The next example combines some of these flags and sets the ttySO device to 19,200 
bps, 8 data bits, no parity, and hardware handshaking with echo disabled:

$ stty 19200 cs8 -parenb crtscts -echo -F /dev/ttySO

Serial Devices and the login: Prompt
It was once very common that a Unix installation involved one server machine and 
many “dumb” character mode terminals or dial-up modems. Today that sort of 
installation is less common, which is good news for many people interested in oper­
ating this way, because the “dumb” terminals are now very cheap to acquire. Dial-up 
modem configurations are no less common, but these days they would probably be 
used to support a PPP login (discussed in Chapter 6) rather than a simple login. Nev­
ertheless, each of these configurations can make use of a simple program called a 
getty program.

The term getty is probably a contraction of “get tty.” A getty program opens a serial 
device, configures it appropriately, optionally configures a modem, and waits for a 
connection to be made. An active connection on a serial device is usually indicated 
by the Data Carrier Detect (DCD) pin on the serial device being raised. When a con­
nection is detected, the getty program issues a login: prompt, and then invokes the 
login program to handle the actual system login. Each of the virtual terminals (e.g., /  
dev/tty 1) in Linux has a getty  running against it.

38 I Chapter 3: Configuring the Serial Hardware



There are a number of different getty implementations, each designed to suit some 
configurations better than others. The getty that we’ll describe here is called mgetty, 
which is quite popular because it has all sorts of features that make it especially 
modem-friendly, including support for automatic fax programs and voice modems. 
W e’ll concentrate on configuring mgetty to answer conventional data calls and leave 
the rest for you to explore at your convenience.

Configuring the mgetty Daemon
The mgetty daemon is available in just about all Linux distributions in prepackaged 
form. The mgetty daemon differs from most other getty implementations in that it 
has been designed specifically for modems with the AT command set.

It still supports direct terminal connections but is best suited for dialup applications. 
Rather than using the DCD line to detect an incoming call, it listens for the RING mes­
sage generated by modern modems when they detect an incoming call and are not 
configured for auto-answer.

The main executable program is called /usr/sbin/mgetty, and its main configuration 
file is called /etc/mgetty/mgetty. config. There are a number of other binary programs 
and configuration files that cover other mgetty features.

For most installations, configuration is a matter of editing the /etc/mgetty/ mgetty. 
config file and adding appropriate entries to the /etc/inittab file to execute mgetty 
automatically.

Example 3-6 shows a very simple mgetty configuration file. This example configures 
two serial devices. The first, /dev/ttySO, supports a Hayes-compatible modem at 
38,400 bps. The second, /dev/ttySO, supports a directly connected VT100 terminal at 
19,200 bps.

E xam ple  3 -6 . S am ple /e tc /m g e tty /m g e tty .co n fig  file  

#
# mgetty configuration file
#
# this is a sample configuration file, see mgetty.info for details
#
# comment lines start with a empty lines are ignored
#
#   global section ----
#
# In this section, you put the global defaults, per-port stuff is below
#
# access the modem(s) with 38400 bps 
speed 38400
#
# set the global debug level to "4" (default from policy.h) 
debug 4
#

Serial Devices and the login: Prompt | 39



#   port specific section ----
#
# Here you can put things that are valid only for one line, not the others
#
#
# Hayes modem connected to ttySO: don't do fax, less logging
#
port ttySO 

debug 3 
data-only y

#
# direct connection of a VT100 terminal which doesn't like DTR drops
#
port ttySl 

direct y 
speed 19200 
toggle-dtr n

#

The configuration file supports global and port-specific options. In our example we 
used a global option to set the speed to 38,400 bps. This value is inherited by the 
ttySO port. Ports we apply mgetty to use this speed setting unless it is overwritten by 
a port-specific speed setting, as we have done in the ttySl configuration.

The debug keyword controls the verbosity of mgetty logging. The data-only keyword 
in the ttySO configuration causes mgetty to ignore any modem fax features, to oper­
ate just as a data modem. The direct keyword in the ttySl configuration instructs 
mgetty not to attempt any modem initialization on the port. Finally, the toggle-dtr 
keyword instructs mgetty not to attempt to hang up the line by dropping the Data  
Terminal Ready (DTR) pin on the serial interface; some terminals don’t like this to 
happen.

You can also choose to leave the mgetty.config file empty and use command-line 
arguments to specify most of the same parameters. The documentation accompany­
ing the application includes a complete description of the mgetty configuration file 
parameters and command-line arguments. See the following example.

We need to add two entries to the /etc/inittab file to activate this configuration. The 
inittab file is the configuration file of the Unix System V init command. The init com­
mand is responsible for system initialization; it provides a means of automatically 
executing programs at boot time and re-executing them when they terminate. This is 
ideal for the goals of running a getty program.

TO:23:respawn:/sbin/mgetty ttySO 
Tl:23:respawn:/sbin/mgetty ttySl

Each line of the /etc/inittab file contains four fields, separated by colons. The first 
field is an identifier that uniquely labels an entry in the file; traditionally it is two 
characters, but modern versions allow four. The second field is the list of run levels

Exam ple 3-6. Sample /etc/m getty/m getty.config file (continued)

40 I Chapter 3: Configuring the Serial Hardware



at which this entry should be active. A run level is a means of providing alternate 
machine configurations and is generally implemented using trees of startup scripts 
stored in directories called /etc/rcl.d , /etc/rcl.d , etc. This feature is typically imple­
mented very simply, and you should model your entries on others in the file or refer 
to your system documentation for more information. The third field describes when 
to take action. For the purposes of running a getty program, this field should be set 
to respawn, meaning that the command should be re-executed automatically when it 
dies. There are several other options, as well, but they are not useful for our pur­
poses here. The fourth field is the actual command to execute; this is where we spec­
ify the mgetty command and any arguments we wish to pass it. In our simple 
example we’re starting and restarting mgetty whenever the system is operating at 
either of run levels two or three, and are supplying as an argument just the name of 
the device we wish it to use. The mgetty command assumes the /dev/, so we don’t 
need to supply it.

This chapter was a quick introduction to mgetty and how to offer login prompts to 
serial devices. You can find more extensive information in the Serial HOW TO.

After you’ve edited the configuration files, you need to reload init to make the 
changes take effect. Simply send a hangup signal to the init process; it always has a 
process ID of one, so you can use the following command safely:

# kill -HUP 1

Serial Devices and the login: Prompt | 41



CHAPTER 4_______________

Configuring TCP/IP 
Networking

In this chapter, we walk you through all the necessary steps to set up TCP/IP net­
working on your machine. Starting with the assignment of IP addresses, we slowly 
work our way through the configuration of TCP/IP network interfaces and intro­
duce a few tools that come in handy when hunting down network installation prob­
lems.

Most of the tasks covered in this chapter will generally have to be done only once. 
Afterward, you have to touch most configuration files only when adding a new sys­
tem to your network or reconfiguring your system entirely. Some of the commands 
used to configure TCP/IP, however, have to be executed each time the system is 
booted. This is usually done by invoking them from the system /etc/rc scripts.

Commonly, the network-specific part of this procedure is contained in a script. The 
name of this script varies in different Linux distributions. In many older Linux distri­
butions, it is known as rc.net or rc.inet. Sometimes you will also see two scripts 
named rc.inet 1 and rc.inet2\ the former initializes the kernel part of networking and 
the latter starts basic networking services and applications. In modern distributions, 
the rc files are structured in a more sophisticated arrangement; here you may find 
scripts in the letclinit.dl (or /etc/rc.dJinit.d/) directory that create the network devices 
and other rc files that run the network application programs. This book’s examples 
are based on the latter arrangement.

This chapter discusses parts of the script that configure your network interfaces. 
After finishing this chapter, you should have established a sequence of commands 
that properly configure TCP/IP networking on your computer. You should then 
replace any sample commands in the configuration scripts with your commands, 
make sure the script is executed from the basic rc script at startup time, and reboot 
your machine. The networking rc scripts that come along with your favorite Linux 
distribution should provide a solid example from which to work.

42



Understanding the/proc Filesystem
Linux 2.4 distributions rely on the Iproc filesystem for communicating with the ker­
nel, 2.6 uses the new sysfs. Both interfaces permit access to kernel runtime informa­
tion through a filesystem-like mechanism. For purposes of this chapter, we’ll focus 
more on the Iproc filesystem, as it is currently more widely used. This filesystem, 
when mounted, can list files like any other filesystem, or display their contents. Typi­
cal items include the loadavg file, which contains the system load average, and mem- 
info, which shows current core memory and swap usage.

To this, the networking code adds the net directory. It contains a number of files that 
show things such as the kernel ARP tables, the state of TCP connections, and the 
routing tables. Most network administration tools get their information from these 
files.

The proc filesystem (or procfs, as it is also known) is usually mounted on Iproc at sys­
tem boot time. The best method is to add the following line to letc/fstab:

# procfs mount point: 
none /proc proc defaults

Then execute mount /proc from your letclrc script.

The procfs is now configured into most kernels by default.

Installing the Tools
Prepackaged Linux distributions contain the major networking applications and util­
ities along with a coherent set of sample files. The only case in which you might have 
to obtain and install new utilities is when you install a new kernel release. Because 
they occasionally involve changes in the kernel networking layer, you will need to 
update the basic configuration tools. This update at least involves recompiling, but 
sometimes you may also be required to obtain the latest set of binaries. These bina­
ries are available at their official home site at ftp://ftp.inka.de/pub/comp/Linux/ 
networking/NetTools/, packaged in an archive called net-tools-XXX.tar.gz, where 
XXX is the version number.

If you want to compile and install the standard TCP/IP network applications your­
self, you can obtain the sources from most Linux FTP servers. All modern Linux dis­
tributions include a fairly comprehensive range of TCP/IP network applications, 
such as World Wide Web browsers, Telnet and FTP programs, and other network 
applications such as talk. If you do find something that you need to compile your­
self, the chances are good that it will compile under Linux from source quite easily if 
you follow the instructions included in the source package.

Understanding the /proc Filesystem | 43

ftp://ftp.inka.de/pub/comp/Linux/


Setting the Hostname
Most, if not all, network applications rely on you to set the local host’s name to some 
reasonable value. This setting is usually made during the boot procedure by execut­
ing the hostname command. To set the hostname to name, enter:

# hostname name

It is common practice to use the unqualified hostname without specifying the 
domain name. For instance, if we had a site called the Virtual Brewery (an imaginary 
but typical small network used in several chapters of this book) a host might be 
called vale.vbrew.com or vlager.vbrew.com. These are their official fully qualified 
domain names (FQDNs). Their local hostnames would be the first component of the 
name, such as vale. However, because the local hostname is frequently used to look 
up the host’s IP address, you have to make sure that the resolver library is able to 
look up the host’s IP address. This usually means that you have to enter the name in 
/etc/hosts.

Some people suggest using the domainname command to set the kernel’s idea of a 
domain name to the remaining part of the FQDN. This way you could combine the 
output from hostname and domainname to get the FQDN again. However, this is at 
best only half correct, domainname is generally used to set the host’s NIS domain, 
which may be entirely different from the DNS domain to which your host belongs. 
Instead, to ensure that the short form of your hostname is resolvable with all recent 
versions of the hostname command, either add it as an entry in your local Domain 
Name Server or place the fully qualified domain name in the /etc/hosts file. You may 
then use the --fqdn argument to the hostname command, and it will print the fully 
qualified domain name.

Assigning IP Addresses
If you configure the networking software on your host for standalone operation, you 
can safely skip this section, because the only IP address you will need is for the loop- 
back interface, which is always 127.0.0.1.

Things are a little more complicated with real networks such as Ethernets. If you 
want to connect your host to an existing network, you have to ask its administrators 
to give you an IP address on this network, though this is not always the case. Many 
networks now have a system of dynamically assigned IPs called Dynamic Host Con­
figuration Protocol (DHCP), which we will discuss in the next section. When setting 
up a network all by yourself, you have to assign IP addresses by hand or by configur­
ing a DHCP server. If you have a machine connected directly to the Internet, you will 
need to obtain an IP address from your ISP, DSL provider, or cable network.

44 | Chapter 4: Configuring TCP/IP Networking



Hosts within a local network usually share addresses from the same logical IP net­
work, meaning that the first octets of their IP addresses are usually the same. If you 
have several physical networks, you have to either assign them different network 
numbers, or use subnetting to split your IP address range into several subnetworks. 
Subnetting will be revisited in the “Creating Subnets” section later in this chapter.

If your network is not connected to the Internet or will use network address transla­
tion to connect, you are free to choose any legal network address. Just make sure no 
packets from your internal network escape to the real Internet. To make sure no 
harm can be done even if packets do escape, you should use one of the network num­
bers reserved for private use. The Internet Assigned Numbers Authority (IANA) has 
set aside several network numbers from classes A, B, and C that you can use without 
registering. These addresses are valid only within your private network and are not 
routed between real Internet sites. The numbers are defined by RFC 1918 and are 
listed in Table 2-1 in Chapter 2. Note that the second and third blocks contain 16 
and 256 networks, respectively.

Picking your addresses from one of these network numbers is not only useful for net­
works completely unconnected to the Internet; you can still implement restricted 
access to the Internet using a single host as a gateway. To your local network, the 
gateway is accessible by its internal IP address, while the outside world knows it by 
an officially registered address (assigned to you by your provider). We come back to 
this concept in connection with the IP masquerade facility in Chapter 9.

Throughout the remainder of the book, we will assume that the brewery’s network 
manager uses a class B network number, say 172.16.0.0. Of course, a class C net­
work number would definitely suffice to accommodate both the brewery’s and the 
winery’s networks. W e’ll use a class B network here for the sake of simplicity; it will 
make the subnetting examples in the next section of this chapter a little more intui­
tive.

Using DHCP to Obtain an IP Address
Many networks now use the Dynamic Host Configuration Protocol (DHCP). This 
protocol runs on network layer two and listens for DHCP requests. The DHCP 
server has a predefined listing of IP address assigned by the network administrator, 
which can be assigned to users. When the DHCP receives a request for an IP address, 
it replies by issuing a DHCP lease. The lease means that the IP address is assigned to 
the requesting client for a predetermined amount of time. Busy networks often set 
the lease for a fixed number of hours to prevent the use of an address by an idle 
machine. Some networks set the threshold as low as two hours. Smaller networks 
may wish to set the DHCP lease times to a longer value, perhaps a day, or even a 
week. The value is entirely up to the network administrator and should be based on 
network usage.

Understanding the /proc Filesystem | 45



To request a DHCP lease on a network, you will need to have the dhcpcd software. 
The latest version of the software can be obtained by visiting its home site http:// 
www.phystech.com/download/dhcpcd.html. There you will find the latest versions of 
the software as well as supporting documentation. Many modern Linux distribu­
tions will come with this software preinstalled and will even allow you to configure 
your interfaces with DHCP during the initial setup and configuration of the system.

Obtaining an IP address via DHCP is simple and is accomplished by issuing the fol­
lowing command:

vlager# dhcpcd etho 
vlager#

The daemon will at this point, reconfigure your ethO interface, not only assigning an 
IP address, but also properly configuring the subnetting. Many DHCP servers will 
also provide default route and DNS information. In the case of the latter, your /etc/ 
resolv.conf file will be rewritten with the updated DNS server information. If for 
some reason you do not want the daemon to rewrite your resolv.conf file, you can 
specify -R on the command line. There are a number of additional command-line 
options available for dhcpcd, which may be needed in some environments. For a list 
of these, please contact the dhcpcd manpage. The resolv.conf file will be discussed in 
greater detail in the chapter on DNS.

Running a DHCP server

With larger, more dynamic networks, DHCP is essential. However, in order for this 
service to be offered, the clients must receive their IP address from a DHCP server. 
While a number of routers, firewalls, and other network devices will offer this func­
tionality, a network administrator may wish to consider using a Linux machine to 
provide it. Linux DHCP servers tend to provide a greater flexibility with their config­
uration options. There are a number of DHCP servers available, but one of the more 
popular and better recommended offerings comes from the ISC and can be found at 
ftp://ftp.isc.org/isc/dhcp/. The configuration and installation of this is very standard 
and uses the well-known automake configuration script. When the software has been 
compiled and installed, you are ready to begin configuration.

First, though, you need to make sure that your network interfaces are configured for 
multicast support. This is most easily checked by using the ifconfig command:

ticktock root # ifconfig
etho Link encap:Ethernet HWaddr CO:FF:EE:CO:FF:EE

inet addr:172.16.1.1 Beast:172.16.1.255 Mask:255.255.255.0 
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 
RX packets:80272 errors:0 dropped:0 overruns:0 frame:0 
TX packets:55339 errors:0 dropped:0 overruns:0 carrier:0 
collisions:0 txqueuelen:l00
RX bytes:8522502 (8.1 Mb) TX bytes:9203192 (8.7 Mb)
Interrupt:10 Base address:0x4000

46 | Chapter 4: Configuring TCP/IP Networking

http://www.phystech.com/download/dhcpcd.html
ftp://ftp.isc.org/isc/dhcp/


If you don’t see MULTICAST specified in the output, you need to reconfigure your ker­
nel to support network multicast. The likelihood of this is slim because most kernel 
configurations contain this as a default option.

Now you’re ready to write a dhcpd.conf file. A sample dhcpd.conf file looks like this:
# Sample DHCP Server Configuration 
option domain-name "vbrew.com";
option domain-name-servers nsl.vbrew.com, ns2.vbrew.com; 
default-lease-time 1600; 
max-lease-time 7200; 
log-facility local7;
# This is a very basic subnet declaration, 
subnet 172.16.1.0 netmask 255.255.255.0 {

range 172.16.1.10 172.16.1.50; 
option routers routerl.vbrew.com;

}
This configuration will create which will assign addresses on the 1 7 2 .1 6 .1 .0  net­
work. It can assign a total of 40 IP addresses from 1 7 2 .1 6 .1 .1 0  to 1 7 2 .1 6 .1 .5 0 . The 
option routers and domain-name-servers commands allow you to set the default 
router and DNS servers for the clients.

Here’s a brief listing of some of the more useful DHCP server configuration options:

option domain-name
Between quotes, you have the ability to specify the domain name for your net­
work. This isn’t necessary, but may be useful to speed up local name lookups.

option domain-name-servers
While considered optional, in most cases it is not. This is where the IP addresses 
or the FQDN domain name servers are listed.

default-lease-time
When a host asks for a lease and does not request a specific amount of time, this 
value, in seconds, is assigned.

max-lease-time
This option specifies the maximum amount of time that will be assigned as a 
lease.

fixed-address
The fixed address option lets you assign a fixed IP address to specific clients. 
This option is generally paired with the MAC address filtering options.

hardu/are Ethernet
With this option, network administrators can specify which MAC addresses will 
receive IP address allocations. This can be used to secure a DHCP range, or can 
be used to pair MAC addresses with specific IP addresses.

Understanding the /proc Filesystem | 47



The DHCP server can use the client MAC address as a method to restrict or assign IP 
addresses. This type of configuration might be necessary in higher security environ­
ments where only known machines are to be assigned addresses. The following 
example shows how the DHCP server can assign a specific address to a host based 
on its MAC address, also important to note is that the range directive can be used 
here as well:

host vale { 
hardware ethernet 0:0f:d0:ee:ag:4e; 

fixed-address 172.16.1.55;

}
Make sure that your DHCP address pool ranges do not contain statically assigned 
addresses, otherwise IP address conflict problems are sure to follow.

Creating Subnets
To operate several Ethernets, you have to split your network into subnets. Note that 
subnetting is required only if you have more than one broadcast network— point-to- 
point links don’t count. For instance, if you have one Ethernet, and one or more PPP 
links to the outside world, you don’t need to subnet your network. This is explained 
in more detail in Chapter 6.

To accommodate the two Ethernets, the brewery’s network manager decides to use 8 
bits of the host part as additional subnet bits. This leaves another 8 bits for the host 
part, allowing for 254 hosts on each of the subnets. She then assigns subnet number 
1 to the brewery and gives the winery number 2. Their respective network addresses 
are thus 172.16.1.0 and 172.16.2.0. The subnet mask is 255.255.255.0.

vlager, which is the gateway between the two networks, is assigned a host number of 
1 on both of them, which gives it the IP addresses 172.16.1.1 and 172.16.2.1, 
respectively.

Note that in this example we are using a class B network to keep things simple, but a 
class C network would be more realistic. With the new networking code, subnetting 
is not limited to byte boundaries, so even a class C network may be split into several 
subnets. For instance, you could use two bits of the host part for the netmask, giving 
you 4 possible subnets with 64 hosts on each.’

Writing Hosts and Networks Files
After you have subnetted your network, you should prepare for some simple sort of 
hostname resolution using the /etc/hosts file. If you are not going to use DNS or NIS 
for address resolution, you have to put all hosts in the hosts file.

* The first number on each subnet is the subnetwork address, and the last number on each subnet, is reserved 
as the broadcast address, so it’s actually 62 hosts per subnet.

48 | Chapter 4: Configuring TCP/IP Networking



Even if you want to run DNS during normal operation, you should have some sub­
set of all hostnames in /etc/hosts. You should have some sort of name resolution, 
even when no network interfaces are running, for example, during boot time. This is 
not only a matter of convenience, but it allows you to use symbolic hostnames in 
your network rc scripts. Thus, when changing IP addresses, you only have to copy an 
updated hosts file to all machines and reboot, rather than edit a large number of rc 
files separately. Usually you put all local hostnames and addresses in hosts, adding 
those of any gateways and NIS servers used.

You should make sure that your resolver uses information from the hosts file only 
during initial testing. Sample files that come with your DNS software may produce 
strange results. To make all applications use /etc/hosts exclusively when looking up 
the IP address of a host, you have to edit the /etc/host.conf file. Comment out any 
lines that begin with the keyword order by preceding them with a hash sign, and 
insert the line:

order hosts

The configuration of the resolver library is covered in detail in Chapter 6.

The hosts file contains one entry per line, consisting of an IP address, a hostname, 
and an optional list of aliases for the hostname. The fields are separated by spaces or 
tabs, and the address field must begin in the first column. Anything following a hash 
sign (#) is regarded as a comment and is ignored.

Hostnames can be either fully qualified or relative to the local domain. For vale, you 
would usually enter the fully qualified name, vale.vbrew.com, and vale by itself in 
the hosts file, so that it is known by both its official name and the shorter local name.

This is an example how a hosts file at the Virtual Brewery might look. Two special 
names are included, vlager-ifl and vlager-if2, which give the addresses for both 
interfaces used on vlager:

#
# Hosts file for Virtual Brewery/Virtual Winery
#
# IP FODN aliases
#
127.0.0.1 localhost
#
172.16.1.1 vlager.vbrew.com vlager vlager-ifl
172.16.1.2 vstout.vbrew.com vstout
172.16.1.3 vale.vbrew.com vale
#
1 7 2.1 6 .2 . 1 vlager-if2
172.16.2.2 vbeaujolais.vbrew.com vbeaujolais
172.16.2.3 vbardolino.vbrew.com vbardolino
172.16.2.4 vchianti.vbrew.com vchianti

Understanding the/proc Filesystem | 49



Just as with a host’s IP address, you should sometimes use a symbolic name for net­
work numbers, too. Therefore, the hosts file has a companion called /etc/networks 
that maps network names to network numbers, and vice versa. At the Virtual Brew­
ery, we might install a networks file as shown in the following.’

# /etc/networks for the Virtual Brewery 
brew-net 172.16.1.0 
wine-net 172.16.2.0

Interface Configuration for IP
After setting up your hardware as explained in Chapter 3, you have to make these 
devices known to the kernel networking software. A couple of commands are used to 
configure the network interfaces and initialize the routing table. These tasks are usu­
ally performed from the network initialization script each time you boot the system. 
The basic tools for this process are called ifconfig (where “if* stands for interface) 
and route.

ifconfig is used to make an interface accessible to the kernel networking layer. This 
involves the assignment of an IP address and other parameters, and activation of the 
interface, also known as “bringing up” the interface. Being active here means that the 
kernel will send and receive IP datagrams through the interface. The simplest way to 
invoke it is with:

ifconfig interface ip-address

This command assigns ip-address to in terface  and activates it. All other parameters 
are set to default values. For instance, the default network mask is derived from the 
network class of the IP address, such as 255.255.0.0 for a class B address, ifconfig is 
described in detail later in this chapter.

route allows you to add or remove routes from the kernel routing table. It can be 
invoked as:

route [add|del] [-net|-host] target [if]

The add and del arguments determine whether to add or delete the route to ta rget. 
The -net and -host arguments tell the route command whether the target is a net­
work or a host. The i f  argument is again optional, and allows you to specify to 
which network interface the route should be directed— the Linux kernel makes a 
sensible guess if you don’t supply this information. This topic will be explained in 
more detail in succeeding sections.

* N ote that names in networks must not collide with hostnames from the hosts file, or else some programs may 
produce strange results.

50 | Chapter 4: Configuring TCP/IP Networking



The Loopback Interface

# ifconfig lo 127.0.0.1

Occasionally, you will see the dummy hostname localhost being used instead of the 
IP address, ifconfig will look up the name in the hosts file, where an entry should 
declare it as the hostname for 127.0.0.1:

# Sample /etc/hosts entry for localhost 
localhost 127.0.0.1

To view the configuration of an interface, you invoke ifconfig, giving it only the 
interface name as argument:

$ ifconfig lo
lo Link encap:Local Loopback

inet addr:l27.0.0.1 Mask:255.0.0.0 
UP LOOPBACK RUNNING MTU:3924 Metric:1 
RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
Collisions:0

As you can see, the loopback interface has been assigned a netmask of 255.0.0.0, 
since 127.0.0.1 is a class A address.

Now you can almost start playing with your mini-network. What is still missing is an 
entry in the routing table that tells IP that it may use this interface as a route to desti­
nation 127.0.0.1, This is accomplished by using:

# route add 127.0.0.1

Again, you can use localhost instead of the IP address, provided you’ve entered it 
into your /etc/hosts.

Next, you should check that everything works fine, for example, by using ping, ping 
is the networking equivalent of a sonar device. The command is used to verify that a 
given address is actually reachable, and to measure the delay that occurs when send­
ing a datagram to it and back again. The time required for this process is often 
referred to as the “round-trip time”:

# ping localhost
PING localhost (127.0.0.1): 56 data bytes 
64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=0.4 ms 
64 bytes from 127.0.0.1: icmp_seq=l ttl=255 time=0.4 ms 
64 bytes from 127.0.0.1: icmp_seq=2 ttl=255 time=0.4 ms 
AC
--- localhost ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss 
round-trip min/avg/max = 0.4/0.4/0.4 ms
#

Almost always, the very first interface to be activated is the loopback interface:

Understanding the /proc Filesystem | 51



When you invoke ping as shown here, it will continue emitting packets forever, 
unless interrupted by the user. The AC marks the place where we pressed Ctrl-C.

The previous example shows that packets for 127.0.0.1 are properly delivered and a 
reply is returned to ping almost instantaneously. This shows that you have success­
fully set up your first network interface.

If the output you get from ping does not resemble that shown in the previous exam­
ple, you are in trouble. Check any errors if they indicate that some file hasn’t been 
installed properly. Check that the ifconfig and route binaries you use are compatible 
with the kernel release you run, and above all, that the kernel has been compiled 
with networking enabled (you see this from the presence of the /proc/net directory). 
If you get an error message saying “Network unreachable,” you probably got the 
route command wrong. Make sure you use the same address that you gave to ifcon- 
%
The steps previously described are enough to use networking applications on a stan­
dalone host. After adding the lines mentioned earlier to your network initialization 
script and making sure it will be executed at boot time, you may reboot your 
machine and try out various applications. For instance, ssh localhost should estab­
lish an ssh connection to your host, giving you an SSH login prompt.

However, the loopback interface is useful not only as an example in networking 
books, or as a test bed during development, but is actually used by some applica­
tions during normal operation.* Therefore, you always have to configure it, regard­
less of whether your machine is attached to a network or not.

Ethernet Interfaces
Configuring an Ethernet interface is pretty much the same as the loopback interface; 
it just requires a few more parameters when you are using subnetting.

At the Virtual Brewery, we have subnetted the IP network, which was originally a 
class B network, into class C subnetworks. To make the interface recognize this, the 
ifconfig incantation would look like this:

# ifconfig etho vstout netmask 255.255.255.0

This command assigns the ethO interface the IP address of vstout (172.16.1.2). If we 
omitted the netmask, ifconfig would deduce the netmask from the IP network class, 
which would result in an incorrect netmask of 255.255.0.0. Now a quick check 
shows:

# ifconfig etho
etho Link encap lOMps Ethernet HWaddr 00:00:C0:90:B3:42

* For example, all applications based on RPC use the loopback interface to register themselves with the port- 
mapper daemon at startup. These applications include NIS and NFS.

52 | Chapter 4: Configuring TCP/IP Networking



inet addr 172.16.1.2 Beast 172.16.1.255 Mask 255.255.255.0 
UP BROADCAST RUNNING MTU 1500 Metric 1 
RX packets 0 errors 0 dropped 0 overrun 0 
TX packets 0 errors 0 dropped 0 overrun 0

You can see that ifconfig automatically sets the broadcast address (the Beast field) to 
the usual value, which is the host’s network number with all the host bits set. Also, 
the maximum transmission unit (the maximum size of IP datagrams the kernel will 
generate for this interface) has been set to the maximum size of Ethernet packets: 
1,500 bytes. The defaults are usually what you will use, but all these values can be 
overidden if required, with special options that will be described under later in this 
chapter.

Just as for the loopback interface, you now have to install a routing entry that 
informs the kernel about the network that can be reached through ethO. For the Vir­
tual Brewery, you might invoke route as:

# route add -net 172.16.1.0

At first this looks a little like magic, because it’s not really clear how route detects 
which interface to route through. However, the trick is rather simple: the kernel 
checks all interfaces that have been configured so far and compares the destination 
address (172.16.1.0 in this case) to the network part of the interface address (that is, 
the bitwise AND of the interface address and the netmask). The only interface that 
matches is ethO.

Now, what’s that -net option for? This is used because route can handle both routes 
to networks and routes to single hosts (as you saw before with localhost). When 
given an address in dotted quad notation, route attempts to guess whether it is a net­
work or a hostname by looking at the host part bits. If the address’s host part is zero, 
route assumes it denotes a network; otherwise, route takes it as a host address. 
Therefore, route would think that 172.16.1.0 is a host address rather than a net­
work number because it cannot know that we use subnetting. We have to tell route 
explicitly that it denotes a network, so we give it the -net flag.

Of course, the route command is a little tedious to type, and it’s prone to spelling 
mistakes. A more convenient approach is to use the network names we defined in 
I etc! networks. This approach makes the command much more readable; even the 
-net flag can be omitted because route knows that 172.16.1.0 denotes a network:

# route add brew-net

Now that you’ve finished the basic configuration steps, we want to make sure that 
your Ethernet interface is indeed running happily. Choose a host from your Ether­
net, for instance vlager, and type:

# ping vlager
PING vlager: 64 byte packets
64 bytes from 172.16.1.1: icmp_seq=0. time=ll. ms
64 bytes from 172.16.1.1: icmp_seq=l. time=7. ms

Understanding the /proc Filesystem | 53



64 bytes from 172.16.1.1: icmp_seq=2. time=12. ms 
64 bytes from 172.16.1.1: icmp_seq=3. time=3. ms 
AC
--- vstout.vbrew.com PING Statistics----
4 packets transmitted, 4 packets received, 0 
round-trip (ms) min/avg/max = 3/8/12

If you don’t see similar output, something is broken. If you encounter unusual 
packet loss rates, this hints at a hardware problem, such as bad or missing termina­
tors. If you don’t receive any replies at all, you should check the interface configura­
tion with netstat, described later in the chapter. The packet statistics displayed by 
ifconfig should tell you whether any packets have been sent out on the interface at 
all. If you have access to the remote host too, you should go over to that machine 
and check the interface statistics. This way you can determine exactly where the 
packets got dropped. In addition, you should display the routing information with 
route to see whether both hosts have the correct routing entry, route prints out the 
complete kernel routing table when invoked without any arguments (-n just makes it 
print addresses as dotted quad instead of using the hostname):

# route -n
Kernel routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.1 * 255.255.255.255 UH 1 0 112 lo
172.16.1.0 * 255.255.255.0 U 1 0 10 ethO

The detailed meaning of these fields is explained later in the chapter. The Flags col­
umn contains a list of flags set for each interface. U is always set for active interfaces, 
and H says the destination address denotes a host. If the H flag is set for a route that 
you meant to be a network route, you have to reissue the route command with the 
-net option. To check whether a route you have entered is used at all, check to see if 
the Use field in the second to last column increases between two invocations of ping.

Routing Through a Gateway
In the previous section, we covered only the case of setting up a host on a single 
Ethernet. Quite frequently, however, one encounters networks connected to one 
another by gateways. These gateways may simply link two or more Ethernets but 
may also provide a link to the outside world, such as the Internet. In order to use a 
gateway, you have to provide additional routing information to the networking layer.

The Ethernets of the Virtual Brewery and the Virtual Winery are linked through such 
a gateway, namely the host vlager. Assuming that vlager has already been config­
ured, we just have to add another entry to vstout’s routing table that tells the kernel 
it can reach all hosts on the winery’s network through vlager. The appropriate incan­
tation of route is shown below; the gw keyword tells it that the next argument 
denotes a gateway:

# route add wine-net gw vlager

54 I Chapter 4: Configuring TCP/IP Networking



Of course, any host on the winery network you wish to talk to must have a routing 
entry for the brewery’s network. Otherwise you would only be able to send data to 
the winery network from the brewery network, but the hosts on the winery would be 
unable to reply.

This example describes only a gateway that switches packets between two isolated 
Ethernets. Now assume that vlager also has a connection to the Internet (say, 
through an additional SLIP link). Then we would want datagrams to any destination 
network other than the brewery to be handed to vlager. This action can be accom­
plished by making it the default gateway for vstout:

# route add default gw vlager

The network name default is shorthand for 0.0.0.0, which denotes the default route. 
The default route matches every destination and will be used if there is no more spe­
cific route that matches. You do not have to add this name to /etc/networks because 
it is built into route.

If you see high packet loss rates when pinging a host behind one or more gateways, 
this may hint at a very congested network. Packet loss is not so much due to techni­
cal deficiencies as to temporary excess loads on forwarding hosts, which makes them 
delay or even drop incoming datagrams.

Configuring a Gateway
Configuring a machine to switch packets between two Ethernets is pretty straightfor­
ward. Assume we’re back at vlager, which is equipped with two Ethernet cards, each 
connected to one of the two networks. All you have to do is configure both inter­
faces separately, giving them their respective IP addresses and matching routes, and 
that’s it.

It is quite useful to add information on the two interfaces to the hosts file as shown in 
the following example, so we have handy names for them, too:

172.16.1.1 vlager.vbrew.com vlager vlager-ifl
172.16.2.1 vlager-if2

The sequence of commands to set up the two interfaces is then:
# ifconfig etho vlager-ifl
# route add brew-net
# ifconfig ethl vlager-if2
# route add wine-net

If this sequence doesn’t work, make sure your kernel has been compiled with sup­
port for IP forwarding enabled. One good way to do this is to ensure that the first 
number on the second line of /proc/net/snmp is set to 1 .

Understanding the /proc Filesystem | 55



The Point-to-Point Interface
A PLIP link used to connect two machines is a little different from an Ethernet. PLIP 
links are an example of what are called point-to-point links, meaning that there is a 
single host at each end of the link. Networks like Ethernet are called broadcast net­
works. Configuration of point-to-point links is different because unlike broadcast 
networks, point-to-point links don’t support a network of their own.

PLIP provides very cheap and portable links between computers. As an example, 
we’ll consider the laptop computer of an employee at the Virtual Brewery that is con­
nected to vlager via PLIP. The laptop itself is called vlite and has only one parallel 
port. At boot time, this port will be registered as p lip l . To activate the link, you have 
to configure the plipl interface using the following commands:*

# ifconfig plipl vlite pointopoint vlager
# route add default gw vlager

The first command configures the interface, telling the kernel that this is a point-to- 
point link, with the remote side having the address of vlager. The second installs the 
default route, using vlager as gateway. On vlager, a similar ifconfig command is nec­
essary to activate the link (a route invocation is not needed):

# ifconfig plipl vlager pointopoint vlite

Note that the plipl interface on vlager does not need a separate IP address, but may 
also be given the address 172.16.1.1. Point-to-point networks don’t support a net­
work directly, so the interfaces don’t require an address on any supported network. 
The kernel uses the interface information in the routing table to avoid any possible 
confusion.f Now we have configured routing from the laptop to the brewery’s net­
work; what’s still missing is a way to route from any of the brewery’s hosts to vlite. 
One particularly cumbersome way is to add a specific route to every host’s routing 
table that names vlager as a gateway to vlite:

# route add vlite gw vlager

Dynamic routing offers a much better option for temporary routes. You could use 
gated , a routing daemon, which you would have to install on each host in the net­
work in order to distribute routing information dynamically. The easiest option, 
however, is to use proxy ARP (Address Resolution Protocol). With proxy ARP, 
vlager will respond to any ARP query for vlite by sending its own Ethernet address. 
All packets for vlite will wind up at vlager, which then forwards them to the laptop. 
We will come back to proxy ARP in the section “Checking the ARP Tables,” later in 
the chapter.

* Note that pointopoint is not a typo. It really is spelled like this.

t  As a matter of caution, you should configure a PLIP link only after you have completely set up the routing 
table entries for your Ethernets. With some older kernels, your network route might otherwise end up point­
ing at the point-to-point link.

56 | Chapter 4: Configuring TCP/IP Networking



Current net-tools releases contain a tool called plipconfig, which allows you to set cer­
tain PLIP timing parameters. The IRQ to be used for the printer port can be set using 
the ifconfig command.

The PPP Interface
Although PPP links are only simple point-to-point links like PLIP connections, there 
is much more to be said about them. We discuss PPP in detail in Chapter 6.

IP Alias
The Linux kernel supports a feature that completely replaces the old dummy inter­
face and serves other useful functions. IP Alias allows you to configure multiple IP 
addresses onto a physical device. In most cases, you could configure your host to 
look like many different hosts, each with its own IP address. This configuration is 
sometimes called virtual hosting, although technically it is also used for a variety of 
other techniques.’

To configure an alias for an interface, you must first ensure that your kernel has been 
compiled with support for IP Alias (check that you have a /proc/net/ip_alias file; if 
not, you will have to recompile your kernel). Configuration of an IP alias is virtually 
identical to configuring a real network device; you use a special name to indicate it’s 
an alias that you want. For example:

# ifconfig eth0:0 172.16.1.1

This command would produce an alias for the ethO interface with the address 172. 
16.1.1. IP aliases are referred to by appending :n to the actual network device, in 
which “n” is an integer. In our example, the network device we are creating the alias 
on is ethO, and we are creating an alias numbered zero for it. This way, a single physi­
cal device may support a number of aliases.

Each alias may be treated as though it is a separate device, and as far as the kernel IP 
software is concerned, it will be; however, it will be sharing its hardware with 
another interface.

All About ifconfig
There are many more parameters to ifconfig than we have described so far. Its nor­
mal invocation is this:

i f c o n f i g  in te r fa c e  [address [param eters]]

More correctly, using IP aliasing is known as network layer virtual hosting. It is more common in the W W W  
and STMP worlds to use application layer virtual hosting, in which the same IP address is used for each vir­
tual host, but a different hostname is passed with each application layer request.

Understanding the/proc Filesystem | 57



in terface  is the interface name, and address is the IP address to be assigned to the 
interface. This may be either an IP address in dotted quad notation or a name that 
ifconfig will look up in /etc/hosts.

If ifcon fig  is invoked with only the interface name, it displays that interface’s config­
uration. When invoked without any parameters, it displays all interfaces you have 
configured so far; a -a option forces it to show the inactive ones as well. A sample 
invocation for the Ethernet interface ethO may look like this:

# ifconfig etho
etho Link encap 10Mbps Ethernet HWaddr 00:00:C0:90:B3:42

inet addr 172.16.1.2 Beast 172.16.1.255 Mask 255.255.255.0 
UP BROADCAST RUNNING MTU 1500 Metric 0 
RX packets 3136 errors 217 dropped 7 overrun 26 
TX packets 1752 errors 25 dropped 0 overrun 0

The MTU and Metric fields show the current maximum transmission unit size and 
metric value for that interface. The metric value is traditionally used by some operat­
ing systems to compute the cost of a route.

The RX and TX lines show how many packets have been received or transmitted error 
free, how many errors occurred, how many packets were dropped (probably because 
of low memory), and how many were lost because of an overrun. Receiver overruns 
usually occur when packets come in faster than the kernel can service the last inter­
rupt. The flag values printed by ifconfig roughly correspond to the names of its com­
mand-line options; they will be explained later.

The following is a list of parameters recognized by ifconfig, with the corresponding 
flag names. Options that simply turn on a feature also allow it to be turned off again 
by preceding the option name by a dash (-).

up

This option makes an interface accessible to the IP layer. This option is implied 
when an address is given on the command line. It may also be used to reenable 
an interface that has been taken down temporarily using the down option.
This option corresponds to the flags UP and RUNNING.

down
This option marks an interface inaccessible to the IP layer. This effectively dis­
ables any IP traffic through the interface. Note that this option also automati­
cally deletes all routing entries that use this interface.

netmask mask
This option assigns a subnet mask to be used by the interface. It may be given as 
either a 32-bit hexadecimal number preceded by Ox, or as a dotted quad of deci­
mal numbers. While the dotted quad format is more common, the hexadecimal 
representation is often easier to work with. Netmasks are essentially binary, and 
it is easier to do binary-to-hexadecimal than binary-to-decimal conversion.

58 | Chapter 4: Configuring TCP/IP Networking



pointopoint address
This option is used for point-to-point IP links that involve only two hosts. This 
option is needed to configure SLIP or PLIP interfaces, for example. If a point-to- 
point address has been set, ifconfig displays the POINTOPOINT flag.

broadcast address
The broadcast address is usually made up from the network number by setting 
all bits of the host part. Some IP implementations (systems derived from BSD 4.2, 
for instance) use a different scheme in which all host part bits are cleared instead. 
The broadcast option adapts to these strange environments. If a broadcast 
address has been set, ifconfig displays the BROADCAST flag.

irq
This option allows you to set the IRQ line used by certain devices. This is espe­
cially useful for PLIP, but may also be useful for certain Ethernet cards.

metric number
This option may be used to assign a metric value to the routing table entry cre­
ated for the interface. This metric is used by the RIP to build routing tables for 
the network.* The default metric used by ifconfig is zero. If you don’t run a RIP 
daemon, you don’t need this option at all; if you do, you will rarely need to 
change the metric value.

mtu bytes
This sets the Maximum Transmission Unit, which is the maximum number of 
octets the interface is able to handle in one transaction. For Ethernets, the MTU 
defaults to 1,500 (the largest allowable size of an Ethernet packet); for SLIP 
interfaces, it is 296. (There is no constraint on the MTU of SLIP links; this value 
is a good compromise.)

arp
This is an option specific to broadcast networks such as Ethernets or packet 
radio. It enables the use of the ARP to detect the physical addresses of hosts 
attached to the network. For broadcast networks, it is on by default. If ARP is 
disabled, ifconfig displays the NOARP flag.

-arp
This option disables the use of ARP on this interface, 

promise
This option puts the interface in promiscuous mode. On a broadcast network, 
this makes the interface receive all packets, regardless of whether they were des­
tined for this host. This allows network traffic analysis using packet filters and

RIP chooses the optimal route to a given host based on the “length” of the path. It is computed by summing 
up the individual metric values of each host-to-host link. By default, a hop has length 1, but this may be any 
positive integer less than 16. (A route length of 16 is equal to infinity. Such routes are considered unusable.) 
The metric parameter sets this hop cost, which is then broadcast by the routing daemon.

Understanding the /proc Filesystem | 59



such, also called Ethernet snooping. Usually, this is a good technique for hunting 
down network problems that are otherwise hard to detect. Tools such as tcp- 
dump rely on this.
On the other hand, this option allows attackers to do nasty things, such as skim 
the traffic of your network for passwords. You can protect against this type of 
attack by prohibiting just anyone from plugging their computers into your Ether­
net. You could also use secure authentication protocols, such as Kerberos or the 
secure shell login suite.* This option corresponds to the PROMISC flag.

-promise
This option turns promiscuous mode off. 

allmulti
Multicast addresses are like Ethernet broadcast addresses, except that instead of 
automatically including everybody, the only people who receive packets sent to a 
multicast address are those programmed to listen to it. This is useful for applica­
tions such as Ethernet-based video conferencing or network audio, to which 
only those interested can listen. Multicast addressing is supported by most, but 
not all, Ethernet drivers. When this option is enabled, the interface receives and 
passes multicast packets for processing. This option corresponds to the ALLMULTI 
flag.

-allmulti
This option turns multicast addresses off.

The netstat Command
netstat is a useful tool for checking your network configuration and activity. It is in 
fact a collection of several tools lumped together. We discuss each of its functions in 
the following sections.

Displaying the routing table

When you invoke netstat with the -r flag, it displays the kernel routing table in the 
way we’ve been doing with route. On vstout, it produces:

# netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
127.0.0.1 * 255.255.255.255 UH 0 0 0 lo
172.16.1.0 * 255.255.255.0 U 0 0 0 etho
1 7 2.1 6.2.0 1 7 2 .1 6 .1 . 1  255.255.255.0 UG 0 0 0 etho

* OpenSSH can be obtained from ftp://ftp.openbsd.org/OpenBSD/OpenSSH/portable.

60 I Chapter* Configuring TCP/IP Networking

ftp://ftp.openbsd.org/OpenBSD/OpenSSH/portable


The -n option makes netstat print addresses as dotted quad IP numbers rather than 
the symbolic host and network names. This option is especially useful when you 
want to avoid address lookups over the network (e.g., to a DNS or NIS server).

The second column of netstat’s output shows the gateway to which the routing entry 
points. If no gateway is used, an asterisk is printed instead. The third column shows 
the “generality” of the route, i.e., the network mask for this route. When given an IP 
address to find a suitable route for, the kernel steps through each of the routing table 
entries, taking the bitwise AND of the address and the genmask before comparing it 
to the target of the route. The most specific match is used.

The fourth column displays the following flags that describe the route:

G The route uses a gateway.
U The interface to be used is up.
H Only a single host can be reached through the route. For example, this is the 

case for the loopback entry 127.0.0.1.
D This route is dynamically created. It is set if the table entry has been generated 

by a routing daemon such as gated or by an ICMP redirect message (see 
Chapter 2).

M This route is set if the table entry was modified by an ICMP redirect message.
! The route is a reject route and datagrams will be dropped.

The next three columns show the MSS, Window, and irtt that will be applied to TCP 
connections established via this route. The MSS is the Maximum Segment Size and is 
the size of the largest datagram the kernel will construct for transmission via this 
route. The Window is the maximum amount of data the system will accept in a sin­
gle burst from a remote host. The acronym irtt stands for “initial round trip time.” 
The TCP protocol ensures that data is reliably delivered between hosts by retransmit­
ting a datagram if it has been lost. The TCP protocol keeps a running count of how 
long it takes for a datagram to be delivered to the remote end and an acknowledge­
ment to be received, so that it knows how long to wait before assuming a datagram 
needs to retransmitted; this process is called the round-trip time. The initial round- 
trip time is the value that the TCP protocol uses when a connection is first estab­
lished. For most network types, the default value is okay, but for some slow net­
works, notably certain types of amateur packet radio networks, the time is too short 
and causes unnecessary retransmission. The irtt value can be set using the route com­
mand. Values of zero in these fields mean that the default is being used.

Finally, the last field displays the network interface that this route will use.

Understanding the/proc Filesystem | 61



When invoked with the - i  flag, netstat displays statistics for the network interfaces 
currently configured. If the -a option is also given, it prints all interfaces present in 
the kernel, not only those that have been configured currently. On vstout, the out­
put from netstat will look like this:

# netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flags 
lo 0 0 3185 0 0 0 3185 0 0 0 BLRU 
ethO 1500 0 972633 17 20 120 628711 217 0 0 BRU

The MTU and Met fields show the current MTU and metric values for that interface. 
The RX and TX columns show how many packets have been received or transmitted 
error-free (RX-OK/TX-OK) or damaged (RX-ERR/TX-ERR); how many were dropped (RX- 
DRP/TX-DRP); and how many were lost because of an overrun (RX-OVR/TX-OVR).

The last column shows the flags that have been set for this interface. These charac­
ters are one-character versions of the long flag names that are printed when you dis­
play the interface configuration with ifconfig:

B A broadcast address has been set.
L This interface is a loopback device.
M All packets are received (promiscuous mode).
0 ARP is turned off for this interface,
P This is a point-to-point connection.
R Interface is running.
U Interface is up.

Displaying connections

netstat supports a set of options to display active or passive sockets. The options -t, 
-u, -w, and -x show active TCP, UDP, RAW, and Unix socket connections. If you 
provide the -a flag in addition, sockets that are waiting for a connection (i.e., listen­
ing) are displayed as well. This display will give you a list of all servers that are cur­
rently running on your system.

Invoking netstat -ta on vlager produces this output:

$ netstat -ta

Displaying interface statistics

Active Internet connections (servers and established)
Proto Recv-0 Send-0 Local Address Foreign Address State
tcp 0 0 localhostimysql LISTEN
tcp 0 0 localhost:webcache LISTEN
tcp 0 0 *:www LISTEN
tcp 0 0 *:ssh LISTEN
tcp 0 0 * : https LISTEN

62 | Chapter 4: Configuring TCP/IP Networking



tcp 0 0 ::ffff:1.2.3.4:ssh ::ffff:4.5.6.:49152 ESTABLISHED
tcp 0 652 ::ffff:l.2.3-4:ssh ::ffff:4.5.6.:31996 ESTABLISHED

This output shows most servers simply waiting for an incoming connection. How­
ever, the fourth line shows an incoming SMTP connection from vstout, and the sixth 
line tells you there is an outgoing telnet connection to vbardolino.*

Using the -a flag by itself will display all sockets from all families.

Testing Connectivity with traceroute
A very simple way to test connectivity between hosts, and to verify routing paths is to 
use the traceroute tool, traceroute uses UDP datagrams (or ICMP if the -I option is 
specified) to determine the path which packets take over the network. The com­
mand can be invoked as follows:

# traceroute -n wvrfw.oreilly.com
traceroute to www.oreilly.com (208.201.239.37), 30 hops max, 40 byte packets
1 22.44.55.23 187.714 ms 178.548 ms 177.132 ms
2 206.171.134.130 186.730 ms 168.750 ms 150.769 ms
3 216.102.176.193 168.499 ms 209.232.130.82 194.629 ms 209.232.130.28 185.999 ms
4 151.164.243.121 212.852 ms 230.590 ms 132.040 ms
5 151.164.240.134 80.049 ms 71.191 ms 53.450 ms
6 151.164.40.150 45.320 ms 44.579 ms 176.651 ms
7 151.164.191.82 168.499 ms 194.864 ms 149.789 ms
8 151.164.248.90 80.065 ms 71.185 ms 88.922 ms
9 69.22.143.178 228.883 ms 222.204 ms 179.093 ms
10 69.22.143.6 131.573 ms 89.394 ms 71.180 ms

Checking the ARP Tables
On some occasions, it is useful to view or alter the contents of the kernel’s ARP 
tables, for example, when you suspect a duplicate Internet address is the cause for 
some intermittent network problem. The arp tool was made for situations like this. 
Its command-line options are:

arp [-v] [-t hwtype] -a [hostname] 
arp [-v] [-t hwtype] -s hostname hwaddr 
arp [-v] -d hostname [hostname]

All hostname arguments may be either symbolic hostnames or IP addresses in dotted 
quad notation.

* You can tell whether a connection is outgoing from the port numbers. The port number shown for the calling 
host will always be a simple integer. The host being called will use a well-known service port will be in use 
for which netstat uses the symbolic name such as smtp, found in I etc!services. Of course, it is possible to spec­
ify your source port in a number of applications these days, so this isn’t a guarantee!

Understanding the /proc Filesystem | 63

http://www.oreilly.com


The first invocation displays the ARP entry for the IP address or host specified, or all 
hosts known if no hostname is given. For example, invoking arp on vlager may yield 
something similar to:

# arp -e
Address HWtype HWaddress Flags Mask Iface
172.16.0.1 (incomplete) etho

172.16.0.155 ether 00:ll:2F:38:4E:4F C etho

172.16.0.69 ether 00:90:4B:FI:BA:B5 C etho
vale.vbrew.com ether 00:10:67:30:C5:7B C ethl

172.16.0.207 ether 00:0B:DB:lA:C7:E2 C etho

which shows the Ethernet addresses of several hosts.

The -s option is used to permanently add hostname's Ethernet address to the ARP 
tables. The hwaddr argument specifies the hardware address, which is by default 
expected to be an Ethernet address specified as six hexadecimal bytes separated by 
colons. You may also set the hardware address for other types of hardware, using the 
-t option.

For some reason, ARP queries for the remote host sometimes fail, for instance, when 
its ARP driver is buggy or there is another host in the network that erroneously iden­
tifies itself with that host’s IP address; this problem requires you to manually add an 
IP address to the ARP table. Hard-wiring IP addresses in the ARP table is also a (very 
drastic) measure to protect yourself from hosts on your Ethernet that pose as some­
one else.

Invoking arp using the -d switch deletes all ARP entries relating to the given host. 
This switch may be used to force the interface to reattempt obtaining the Ethernet 
address for the IP address in question. This is useful when a misconfigured system 
has broadcasted wrong ARP information (of course, you have to reconfigure the bro­
ken host first).

The -s option may also be used to implement proxy ARP. This is a special technique 
through which a host, say gate, acts as a gateway to another host named fhord by 
pretending that both addresses refer to the same host, namely gate. It does so by 
publishing an ARP entry for fhord that points to its own Ethernet interface. Now  
when a host sends out an ARP query for fhord, gate will return a reply containing its 
own Ethernet address. The querying host will then send all datagrams to gate, which 
dutifully forwards them to fnord.

These contortions may be necessary when you want to access fnord from a DOS 
machine with a broken TCP implementation that doesn’t understand routing too 
well. When you use proxy ARP, it will appear to the DOS machine as if fhord was on 
the local subnet, so it doesn’t have to know about how to route through a gateway.

Another useful application of proxy ARP is when one of your hosts acts as a gateway 
to some other host only temporarily, for instance, through a dial-up link. In a previ­
ous example, we encountered the laptop vlite, which was connected to vlager

64 | Chapter 4: Configuring TCP/IP Networking



through a PLIP link from time to time. Of course, this application will work only if 
the address of the host you want to provide proxy ARP for is on the same IP subnet 
as your gateway, vstout could proxy ARP for any host on the brewery subnet (172. 
16.1.0), but never for a host on the winery subnet (172.16.2.0).

The proper invocation to provide proxy ARP for fhord is given below; of course, the 
given Ethernet address must be that of gate:

# arp -s fnord 00:00:c0:al:42:e0 pub

The proxy ARP entry may be removed again by invoking:

# arp -d fnord



CHAPTER 5______________

Name Service and 
Configuration

As we discussed in Chapter 2, TCP/IP networking may rely on different schemes to 
convert names into addresses. The simplest way is to use a host table stored in letcl 
hosts. This is useful only for a small LAN that is run by a single administrator and no 
IP traffic with the outside world. The format of the hosts file has already been 
described in Chapter 4.

While a hosts file approach may be appropriate on a small network, most administra­
tors will need to investigate a DNS server. There are multiple services that you can 
use to resolve IP addresses. The most commonly used is the Berkeley Internet Name 
Domain service (BIND) Version 8.x. BIND v9.x has been available for some time 
now and seeks to add a variety of new features, as well as contend with security 
issues in BIND v8.x. The jump from BIND 8 to BIND 9 isn’t quite as significant as 
was the leap from BIND 4 to 8; many of the configuration files and options are the 
same. Configuring BIND can be a real chore, but once you’ve done it, you can easily 
make changes in the network topology. On Linux, as on many other Unix-ish sys­
tems, BIND service is provided through a program called named. At startup, it loads 
a set of master files into its internal cache and waits for queries from remote or local 
user processes. There are different ways to set up BIND, and not all require you to 
run a nameserver on every host.

We will also discuss a simpler and more secure option, djbdns, written by David J. 
Bernstein. This resolver was written from scratch with security in mind and simpli­
fies server setup in a number of ways, primarily by eliminating the need for multiple 
confusing zone files.

This chapter can do little more than give a rough sketch of how DNS works and how 
to operate a nameserver. It should be sufficient for readers with a small LAN and an 
Internet connection. For the most current information, you may want to check the 
documentation contained in the BIND or djbdns source packages, which supply 
manual pages, release notes, and in the BIND package, the BIND Operator's Guide 
(BOG). Don’t let this name scare you off; it’s actually a very useful document. For

66



more comprehensive coverage of DNS and associated issues, you may find DNS and 
BIND by Paul Albitz and Cricket Liu (O’Reilly) a useful reference. DNS questions 
may be answered in a newsgroup called comp.protocols, tcp-ip.domains. For technical 
details, the Domain Name System is defined by RFC numbers 1033, 1034, and 1035.

The Resolver Library
The term resolver refers not to a special application, but to the resolver library. This 
is a collection of functions that can be found in the standard C library and are 
invoked by a wide range of networking applications. The central routines are gethost- 
byname(2) and gethostbyaddr(2), which look up all IP addresses associated with a 
hostname, and vice versa. They may be configured to simply look up the informa­
tion in hosts, or to query a number of DNS nameservers.

The resolver functions read configuration files when they are invoked. From these 
configuration files, they determine what databases to query, in which order, and 
other details relevant to how you’ve configured your environment. The older Linux 
standard library, libc, used /etc/host.conf as its master configuration file, but since 
Version 2 of the GNU standard library, glibc, uses /etc/nsswitch.conf.

The nsswitch.conf File
The nsswitch.conf file allows the system administrator to configure a wide variety of 
different databases. W e’ll limit our discussion to options that relate to host and net­
work IP address resolution. You can easily find more information about the other 
features by reading the GNU standard library documentation.

Options in nsswitch.conf must appear on separate lines. Fields may be separated by 
whitespace (spaces or tabs). A hash sign (#) introduces a comment that extends to 
the next newline. Each line describes a particular service; hostname resolution is one 
of these. The first field in each line is the name of the database, ending with a colon. 
The database name associated with host address resolution is hosts. A related data­
base is networks, which is used for resolution of network names into network 
addresses. The remainder of each line stores options that determine the way lookups 
for that database are performed.

The following options are available:

dns

Use the DNS service to resolve the address. This makes sense only for host 
address resolution, not network address resolution. This mechanism uses the fs 
file that we’ll describe later in the chapter.

files

Search a local file for the host or network name and its corresponding address. 
This option uses the traditional /etc/hosts and /etc/networks files.

The Resolver Library | 67



The order in which the services to be queried are listed determines the order in 
which they are queried when attempting to resolve a name. The query-order list is in 
the service description in the /etc/nsswitch.conf file. The services are queried from left 
to right and by default searching stops when a resolution is successful.

A simple example of host and network database specification that would mimic our 
configuration using the older libc standard library is shown in Example 5-1.

E xam ple  5 -1 . S am ple n ssw itch .co n f file

# /etc/nsswitch.conf
#
ft Example configuration of GNU Name Service Switch functionality.
# Information about this file is available in the 'libc6-doc' package.

hosts: dns files
networks: files

This example causes the system to look up hosts first in the DNS and, if that can’t 
find them, the /etc/hosts file. Network name lookups would be attempted using only 
the /etc/networks file.

You are able to control the lookup behavior more precisely using “action items” that 
describe what action to take given the result of the previous lookup attempt. Action 
items appear between service specifications and are enclosed within square brackets, 
[ ]. The general syntax of the action statement is:

[ [!] status = action ... ]

There are two possible actions:

return

Controls returns to the program that attempted the name resolution. If a lookup 
attempt was successful, the resolver will return with the details; otherwise, it will 
return a zero result.

continue

The resolver will move on to the next service in the list and use it to attempt res­
olution.

The optional (!) character specifies that the status value should be inverted before 
testing; that is, it means “not.”

The available status values on which we can act are as follows: 

success
The requested entry was found without error. The default action for this status is 
return.

notfound

There was no error in the lookup, but the target host or network could not be 
found. The default action for this status is continue.

68 | Chapter 5: Name Service and Configuration



unavail
The service queried was unavailable. This could mean that the hosts or networks 
file was unreadable for the f i le s  service or that a nameserver or NIS server did 
not respond for the dns or nis services. The default action for this status is 
continue.

tryagain
This status means that the service is temporarily unavailable. For the files ser­
vice, this would usually indicate that the relevant file was locked by some pro­
cess. For other services, it may mean the server was temporarily unable to accept 
connections. The default action for this status is continue.

A simple example of how you might use this mechanism is shown in Example 5-2.

E x am ple  5 -2 . Sam ple n ssw itch .co n f f ile  using an action  sta tem en t

# /etc/nsswitch.conf
#
# Example configuration of GNU Name Service Switch functionality.
# Information about this file is available in the 'libc6-doc' package.

hosts: dns [!UNAVAIL=return] files
networks: files

This example attempts host resolution using DNS. If the return status is anything 
other than unavailable, the resolver returns whatever it has found. If, and only if, the 
DNS lookup attempt returns an unavailable status, the resolver attempts to use the 
local /etc/hosts. This means that we should use the hosts file only if our nameserver is 
unavailable for some reason.

Configuring Nameserver Lookups Using resolv.conf
When configuring the resolver library to use the DNS name service for host lookups, 
you also have to tell it which nameservers to use. There is a separate file for this 
called resolv.conf. If this file does not exist or is empty, the resolver assumes the 
nameserver is on your local host.

To run a nameserver on your local host, you have to set it up separately, as will be 
explained in the following section, “How DNS Works.” If you are on a local net­
work and have the opportunity to use an existing nameserver, this should always be 
preferred. If you use a dialup IP connection to the Internet, you would normally 
specify the nameserver of your service provider in the resolv.conf file.

The most important option in resolv.conf is nameserver, which gives the IP address of 
a nameserver to use. If you specify several nameservers by giving the nameserver 
option several times, they are tried in the order given. You should therefore put the 
most reliable server first. The current implementation allows you to have up to three

The Resolver Library | 69



nameserver statements in resolv.conf. If no nameserver option is given, the resolver 
attempts to connect to the nameserver on the local host.

Two other options, domain and search, let you use shortcut names for hosts in your 
local domain. Usually, when just contacting another host in your local domain, you 
don’t want to type in the fully qualified hostname, but use a name such as gauss on 
the command line and have the resolver tack on the mathematics.groucho.edu part.

This is just the domain statement’s purpose. It lets you specify a default domain name 
to be appended when DNS fails to look up a hostname. For instance, when given the 
name gauss, the resolver first tries to find gauss, in DNS and fails, because there is 
no such top-level domain. When given mathematics.groucho.edu as a default 
domain, the resolver repeats the query for gauss with the default domain appended, 
this time succeeding.

That’s just fine, you may think, but as soon you get out of the math department’s 
domain, you’re back to those fully qualified domain names. Of course, you would 
also want to have shorthands like quark.physics for hosts in the physics depart­
ment’s domain.

This is where the search list comes in. A search list can be specified using the search 
option, which is a generalization of the domain statement. Where the latter gives a 
single default domain, the former specifies a whole list of them, each to be tried in 
turn until a lookup succeeds. This list must be separated by blanks or tabs.

The search and domain statements are mutually exclusive and may not appear more 
than once. If neither option is given, the resolver will try to guess the default domain 
from the local hostname using the getdomainname(2) system call. If the local host­
name doesn’t have a domain part, the root domain is the default.

Assume you’re at the Virtual Brewery and want to log in to foot.groucho.edu. By a 
slip of your fingers, you mistype foot as foo, which doesn’t exist. GMU’s nameserver 
will therefore tell you that it knows no such host. Using older search methods, the 
resolver used to keep trying the name with vbrew.com and com appended. The lat­
ter is problematic because groucho.edu.com might actually be a valid domain name. 
Their nameserver might then even find foo in their domain, pointing you to one of 
their hosts, which is not what you’re looking for.

For some applications, these bogus host lookups can be a security problem. There­
fore, you should usually limit the domains on your search list to your local organiza­
tion or something comparable. At the mathematics department of Groucho Marx 
University, the search list would commonly be set to maths.groucho.edu and grou- 
cho.edu.

If default domains sound confusing to you, consider this sample resolv.conf file for 
the Virtual Brewery:

# /etc/resolv.conf
# Our domain

70 I Chapter 5: Name Service and Configuration



domain vbrew.com
#
# We use vlager as central name server: 
nameserver 172.16.1.1

When resolving the name vale, the resolver looks up vale, and, failing this, vale. 
vbrew.com.

Resolver Robustness
When running a LAN inside a larger network, you definitely should use central 
nameservers if they are available. The nameservers develop rich caches that speed up 
repeat queries, since all queries are forwarded to them. However, this scheme has a 
drawback: when a fire destroyed the backbone cable at one author’s university, no 
more work was possible on his department’s LAN because the resolver could no 
longer reach any of the nameservers. This situation caused difficulties with most net­
work services, such as X terminal logins and printing.

Although it is not very common for campus backbones to go down in flames, one 
might want to take precautions against such cases.

One option is to set up a local nameserver that resolves hostnames from your local 
domain and forwards all queries for other hostnames to the main servers. Of course, 
this is applicable only if you are running your own domain.

Alternatively, you can maintain a backup host table for your domain or LAN in le td  
hosts. This is very simple to do. You simply ensure that the resolver library queries 
DNS first and the hosts file next. In the /etc/nsswitch.conf file you’d use hosts: dns 
f i le s  to make the resolver fall back to the hosts file if the central nameserver is 
unreachable.

How DNS Works
DNS organizes hostnames in a domain hierarchy. A domain is a collection of sites that 
are related in some sense— because they form a proper network (e.g., all machines on 
a campus), because they all belong to a certain organization (e.g., the U.S. govern­
ment), or because they’re simply geographically close. For instance, universities are 
commonly grouped in the edu domain, with each university or college using a sepa­
rate subdomain, below which their hosts are subsumed. Groucho Marx University 
the groucho.edu domain, while the LAN of the mathematics department is assigned 
maths.groucho.edu. Hosts on the departmental network would have this domain 
name tacked onto their hostname, so erdos would be known as erdos.maths.grou- 
cho.edu, which would be the FQDN (see “Setting the Hostname” in Chapter 4).

Figure 5-1 shows a section of the namespace. The entry at the root of this tree, which 
is denoted by a single dot, is quite appropriately called the root domain and

How DNS Works | 71



encompasses all other domains. To indicate that a hostname is a FQDN, rather than 
a name relative to some (implicit) local domain, it is sometimes written with a trail­
ing dot. This dot signifies that the name’s last component is the root domain. 
Depending on its location in the name hierarchy, a domain may be called top-level, 
second-level, or third-level. More levels of subdivision occur, but they are rare. 
Table 5-1 lists several top-level domains that you may see frequently.

T able 5 -1 . C om m on  top -level dom ain s

Domain Description

edu (Mostly U.S.) educational institutions such as universities.

com Commercial organizations and companies.

org Noncommercial organizations.

net Originally for gateways and other administrative entities, now commercial organizations and companies as well.

mil U.S. military institutions.

gov U.S. government institutions.

biz For use by companies or commercial entities

name Designated for individuals to use for personal web sites

info Established for informational resource sites

Historically, the first four of these were assigned to the U.S., but changes in policy 
have meant that these domains, named global Top-Level Domains (gTLD), are now

72 | Chapter 5: Name Service and Configuration



considered global in nature. Recent negotiations to broaden the range of gTLDs 
resulted in the last three additions. However, these new options have so far proven to 
be quite unpopular.

Outside the U.S., each country generally uses a top-level domain of its own named 
after the two-letter country code defined in ISO-3166. Finland, for instance, uses the 
fi domain; fr is used by France, de by Germany, and aq by Antarctica. Below this 
top-level domain, each country’s NIC is free to organize hostnames in whatever way 
they want. Australia has second-level domains similar to the international top-level 
domains, named com.au and edu.au. Other countries, such as Germany, don’t use 
this extra level, but have slightly long names that refer directly to the organizations 
running a particular domain. It’s not uncommon to see hostnames such as ftp://ftp. 
informatik.uni-erlangen.de. Chalk that up to German efficiency.

Of course, these national domains do not necessarily mean that a host below that 
domain is actually located in that country; it means only that the host has been regis­
tered with that country’s NIC. A Swedish manufacturer might have a branch in Aus­
tralia and still have all its hosts registered with the se top-level domain.

This practice has become more popular in recent years, with countries such as 
Tuvalu (tv) and Togo (to) selling TLDs to enterprising agents who resell domain 
names such as go.to or watch.tv.

Organizing the namespace in a hierarchy of domain names nicely solves the problem 
of name uniqueness; with DNS, a hostname has to be unique only within its domain 
to give it a name different from all other hosts worldwide. Furthermore, fully quali­
fied names are easy to remember. Taken by themselves, these are already very good 
reasons to split up a large domain into several subdomains.

DNS does even more for you than this. It also allows you to delegate authority over a 
subdomain to its administrators. For example, the maintainers at the Groucho Com­
puting Center might create a subdomain for each department; we already encoun­
tered the math and physics subdomains above. When they find the network at the 
physics department too large and chaotic to manage from outside (after all, physi­
cists are known to be an unruly bunch), they may simply pass control of the physics. 
groucho.edu domain to the administrators of this network. These administrators are 
free to use whatever hostnames they like and assign them IP addresses from their net­
work in whatever fashion they desire, without outside interference.

To this end, the namespace is split up into zones, each rooted at a domain. Note the 
subtle difference between a zone and a domain: the domain groucho.edu encom­
passes all hosts at Groucho Marx University, while the zone groucho.edu includes 
only the hosts that are managed by the Computing Center directly— those at the 
mathematics department, for example. The hosts at the physics department belong 
to a different zone, namely physics.groucho.edu. In Figure 5-1, the start of a zone is 
marked by a small circle to the right of the domain name.

ftp://ftp


Name Lookups with DNS
At first glance, all this domain and zone fuss seems to make name resolution an 
awfully complicated business. After all, if no central authority controls what names 
are assigned to which hosts, how is a humble application supposed to know?

Now comes the really ingenious part about DNS. If you want to find the IP address 
of erdos, for example, DNS says, “Go ask the people who manage it, and they will 
tell you.”

In fact, DNS is a giant distributed database. It is implemented by so-called nameserv- 
ers that supply information on a given domain or set of domains. For each zone there 
are at least two, or at most a few, nameservers that hold all authoritative informa­
tion on hosts in that zone. To obtain the IP address of erdos, all you have to do is 
contact the nameserver for the groucho.edu zone, which will then return the desired 
data.

Easier said than done, you might think. So how do I know how to reach the 
nameserver at Groucho Marx University? In case your computer isn’t equipped with 
an address-resolving oracle, DNS provides for this, too. When your application 
wants to look up information on erdos, it contacts a local nameserver, which con­
ducts a so-called iterative query for it. It starts off by sending a query to a nameserver 
for the root domain, asking for the address of erdos.maths.groucho.edu. The root 
nameserver recognizes that this name does not belong to its zone of authority, but 
rather to one below the edu domain. Thus, it tells you to contact an edu zone 
nameserver for more information and encloses a list of all edu nameservers along 
with their addresses. Your local nameserver will then go on and query one of those—  
for instance, a.isi.edu. In a manner similar to the root nameserver, a.isi.edu knows 
that the groucho.edu people run a zone of their own and points you to their servers. 
The local nameserver will then present its query for erdos to one of these, which will 
finally recognize the name as belonging to its zone and return the corresponding IP 
address.

This looks like a lot of traffic for looking up a measly IP address, but it’s miniscule 
considering the speed of networking today. There’s still room for improvement with 
this scheme, however.

To improve response time during future queries, the nameserver stores the informa­
tion obtained in its local cache. So the next time anyone on your local network wants 
to look up the address of a host in the groucho.edu domain, your nameserver will go 
directly to the groucho.edu nameserver.*

* If information weren’t cached, DNS would be as inefficient as any other method because each query would 
involve the root name servers.

74 | Chapter 5: Name Service and Configuration



Of course, the nameserver will not keep this information forever; it will discard it 
after some time. The expiration interval is called the time to live (ttl). Each datum in 
the DNS database is assigned such a ttl by administrators of the responsible zone.

Types of Nameservers
Nameservers that hold all information on hosts within a zone are called authoritative 
for this zone. Any query for a host within this zone will end up at one of these 
nameservers.

Authoritative servers must be fairly well synchronized. Thus, the zone’s network 
administrator must make one the primary server, which loads its zone information 
from datafiles, and make the others secondary servers, which transfer the zone data 
from the primary server at regular intervals.

Having several nameservers distributes workload; it also provides backup. When one 
nameserver machine fails in a benign way, such as crashing or losing its network con­
nection, all queries fall back to the other servers. Of course, this scheme doesn’t pro­
tect you from server malfunctions that produce wrong replies to all DNS requests, 
such as from software bugs in the server program itself.

You can also run a nameserver that is not authoritative for any domain.* This is use­
ful since the nameserver will still be able to conduct DNS queries for the applica­
tions running on the local network and cache the information. Hence, it is called a 
caching-only server.

The DNS Database
We have seen that DNS not only deals with IP addresses of hosts, but also exchanges 
information on nameservers. DNS databases may have, in fact, many different types 
of entries.

A single piece of information from the DNS database is called a resource record (RR). 
Each record has a type associated with it describing the sort of data it represents, and 
a class specifying the type of network it applies to. The latter accommodates the 
needs of different addressing schemes, including IP addresses (the IN class), Hesiod 
addresses (used by MIT’s Kerberos system), and a few more. The prototypical 
resource record type is the A record, which associates a fully qualified domain name 
with an IP address.

A host may be known by more than one name. For example you might have a server 
that provides both FTP and World Wide Web servers, which you give two names: 
ftp.machine.org and www.machine.org. However, one of these names must be

* W ell, almost. A nameserver has to provide at least name service for localhost and reverse lookups of 127.0. 
0. 1.

How DNS Works | 75

ftp://ftp.machine.org
http://www.machine.org


identified as the official or canonical hostname, while the others are simply aliases 
referring to the official hostname. The difference is that the canonical hostname is 
the one with an associated A record, while the others only have a record of type 
CNAME that points to the canonical hostname.

We will not go through all record types here, but we will give you a brief example. 
Example 5-3 shows a part of the domain database that is loaded into the nameserv- 
ers for the physics.groucho.edu zone.

E x a m p le  5 -3 . A n  excerp t fro m  a B IN D  zo n e  f ile  fo r  the ph ysics d ep a r tm e n t

; Authoritative Information on physics.groucho.edu.
$TTL 3D
@ IN SOA niels.physics.groucho.edu. janet.niels.physics.groucho.edu. {

2004010200 ; serial no
8H ; refresh
2H ; retry
4W ; expire
ID ; default ttl

}
>
; Name servers

IN NS niels
IN NS gauss.maths.groucho.edu.

gauss.maths.groucho.edu. IN A 149.76.4.23 

i

; Theoretical Physics (subnet 12)
niels IN A 149.76.12.1

IN A 149.76.1.12
nameserver IN CNAME niels
otto IN A 149.76.12.2
quark IN A 149.76.12.4
down IN A 149.76.12.5
iowa IN AAAA 2001:30fa::3
strange IN A 149.76.12.6

; Collider Lab. (subnet 14)
boson IN A 149.76.14.1
muon IN A 149.76.14.7
bogon IN A 149.76.14.12

Apart from the A and CNAME records, you can see a special record at the top of the 
file, stretching several lines. This is the SOA resource record signaling the Start of 
Authority, which holds general information on the zone that the server is 
authoritative for. The SOA record comprises, for instance, the default time to live for 
all records.

Note that all names in the sample file that do not end with a dot should be inter­
preted relative to the physics.groucho.edu domain. The special name (@) used in 
the SOA record refers to the domain name by itself.

76 | Chapter 5: Name Service and Configuration



We have seen earlier that the nameservers for the groucho.edu domain somehow 
have to know about the physics zone so that they can point queries to their 
nameservers. This is usually achieved by a pair of records: the NS record that gives 
the server’s FQDN, and an A record that associates an address with that name. Since 
these records are what holds the namespace together, they are frequently called glue 
records. They are the only instances of records in which a parent zone actually holds 
information on hosts in the subordinate zone. The glue records pointing to the 
nameservers for physics.groucho.edu are shown in Example 5-4.

E xam ple  5-4 . A n  excerp t fro m  a zo n e  file  f o r  G M U  

; Zone data for the groucho.edu zone.

; Glue records for the physics.groucho.edu zone 
physics IN NS niels.physics.groucho.edu.

IN NS gauss.maths.groucho.edu.
niels.physics IN A 149.76.12.1
gauss.maths IN A 149.76.4.23

The BIND named.conf File
The primary configuration file of BIND is /etc/named.conf. This style of configura­
tion file has been in use by BIND since Version 8 replaced the old named.boot file.

The syntax is somewhat complex and supports a wide range of functions, but is 
fairly straightforward when configured to provide basic functionality. Example 5-5 
shows a simple configuration file for the vbrew domain.

E xam ple  5-5 . The B IN D  n a m ed .co n f file  f o r  vlager

II This is the primary configuration file for the BIND DNS server named.
//

options {
directory "/var/cache/bind"; 

allow-query { any; }; 
recursion no;

zone "localhost" { 
type master;
file "/etc/bind/db.local";

};

zone "I27.in-addr.arpa" { 
type master;

file "/etc/bind/db.12 7";
};

How DNS Works | 77



zone "vbrew.com" { 
type master; 

allow-transfer { 10.10.0.5;
172.16.90.4;
1.2.3.4;

};
file "/etc/bind/db.vbrew.com";

};

zone "0.168.192.in-addr.arpa" { 
type master;
file "/etc/bind/db.192.168.0";

};

If you take a close look, you will see that each of the statements is written similar to a 
C-like statement with attributes enclosed within { } characters in the named.conf file.

The comments, often indicated by a pound character (#) in Linux, are indicated by 
two forward slashes (//) instead.

One of the most important options in this configuration file is zone. This is how you 
tell BIND what it’s supposed to know. Beneath zone is another very important 
option, allow-transfer. This option allows you to set the IP addresses permitted to 
perform a zone transfer. It is important to restrict this to authorized entities only 
because it contains a lot of information that could be useful to potential attackers. In 
the example configuration files, we’ve restricted zone transfers to the three IP 
addresses listed.

In the option statement, we’ve also disabled DNS recursion. This allows us to sepa­
rate the DNS server functionality from the DNS cache functionality. For security rea­
sons it’s a good idea to do this. There have been many papers written on this subject, 
with one of the best explanations found at http://cr.yp.to/djbdns/separation.html. If 
you need recursive functionality, it is best to configure a caching-only server on an IP 
address separate from your DNS server. W e’ll discuss how to make a caching-only 
server with BIND a little bit later.

If you’ve decided that you can’t live without recursion on the same server, there are 
ways within the named.conf to restrict recursion to specified domains. By using the 
allow-recursion option in place of the recursion no, you can specify a range of IP 
addresses allowed to perform recursive queries.

You’ve probably noticed that in this file we’ve included quite a few other entries than 
just the vbrew.com domain. These are present to be compliant with the 
specifications established in RFC 1912, “Common DNS Operational and Configura­
tion Errors.” This specification requests that sites be authoritative for the localhost 
forward and reverse zones, and for broadcast zones.

Example 5-5. The BIND nam ed.conf file fo r vlager (continued)

78 | Chapter 5: Name Service and Configuration

http://cr.yp.to/djbdns/separation.html


The BIND configuration supports many more options that we haven’t covered here. 
If you’d like information all of the options, the best source of information is the doc­
umentation supplied with the BIND Version 8 or 9 source package.

The DNS Database Files
Master files included with named, zone files, always have a domain associated with 
them, which is called the origin. This is the domain name specified with the cache 
and primary options. Within a master file, you are allowed to specify domain and 
hostnames relative to this domain. A name given in a configuration file is considered 
absolute if it ends in a single dot; otherwise, it is considered relative to the origin. The 
origin by itself may be referred to using (@).

The data contained in a master file is split up in RRs, the smallest units of informa­
tion available through DNS. Each RR has a type. A records, for instance, map a host­
name to an IP address, and a CNAME record associates an alias for a host with its 
official hostname. Examples appear later in the chapter when a complete set of con- 
figuation and zone files are shown.

RR representations in master files share a common format:

[domain] [ t t l ]  [c lass ] type rd a ta

Fields are separated by spaces or tabs. An entry may be continued across several lines 
if an opening brace occurs before the first newline and the last field is followed by a 
closing brace. Anything between a semicolon and a newline is ignored. A description 
of the format terms follows:

domain
This term is the domain name to which the entry applies. If no domain name is 
given, the RR is assumed to apply to the domain of the previous RR.

t t l
In order to force resolvers to discard information after a certain time, each RR is 
associated a time to live (ttl). The ttl field specifies the time in seconds that the 
information is valid after it has been retrieved from the server. It is a decimal 
number with at most eight digits.
If no ttl value is given, the field value defaults to that of the minimum field of the 
preceding SOA record. 

class
This is an address class, such as IN for IP addresses or HS for objects in the 
Hesiod class. For TCP/IP networking, you have to specify IN.
If no class field is given, the class of the preceding RR is assumed.

How DNS Works | 79



type
This describes the type of the RR. The most common types are A, SOA, PTR, 
and NS. The following sections describe the various types of RRs.

rdata
This holds the data associated with the RR. The format of this field depends on 
the type of RR. In the following discussion, it will be described for each RR sepa­
rately.

The following is partial list of RRs to be used in DNS master files. There are a couple 
more of them that we will not explain; they are experimental and of little use, gener­
ally.

SOA
This RR describes a zone of authority. It signals that the records following the 
SOA RR contain authoritative information for the domain. Every master file 
included by a primary statement must contain an SOA record for this zone. The 
resource data contains the following fields:
origin

This field is the canonical hostname of the primary nameserver for this 
domain. It is usually given as an absolute name.

contact
This field is the email address of the person responsible for maintaining the 
domain, with the sign replaced by a dot. For instance, if the responsible 
person at the Virtual Brewery were janet, this field would contain janet. 
vbrew.com.

serial

This field is the version number of the zone file, expressed as a single deci­
mal number. Whenever data is changed in the zone file, this number should 
be incremented. A common convention is to use a number that reflects the 
date of the last update, with a version number appended to it to cover the 
case of multiple updates occurring on a single day, e.g., 2000012600 being 
update 00 that occurred on January 26, 2000.
The serial number is used by secondary nameservers to recognize zone infor­
mation changes. To stay up to date, secondary servers request the primary 
server’s SOA record at certain intervals and compare the serial number to 
that of the cached SOA record. If the number has changed, the secondary 
servers transfer the whole zone database from the primary server.

refresh

This field specifies the interval in seconds that the secondary servers should 
wait between checking the SOA record of the primary server. Again, this is a 
decimal number with at most eight digits.

80 | Chapter 5: Name Service and Configuration



Generally, the network topology doesn’t change too often, so this number 
should specify an interval of roughly a day for larger networks, and even 
more for smaller ones.

retry

This number determines the intervals at which a secondary server should 
retry contacting the primary server if a request or a zone refresh fails. It must 
not be too low, or a temporary failure of the server or a network problem 
could cause the secondary server to waste network resources. One hour, or 
perhaps one-half hour, might be a good choice.

expire

This field specifies the time in seconds after which a secondary server should 
finally discard all zone data if it hasn’t been able to contact the primary 
server. You should normally set this field to at least a week (604,800 sec­
onds), but increasing it to a month or more is also reasonable.

minimum

This field is the default time to live value for resource records that do not 
explicitly contain one. The ttl value specifies the maximum amount of time 
other nameservers may keep the RR in their cache. This time applies only to 
normal lookups, and has nothing to do with the time after which a second­
ary server should try to update the zone information.
If the topology of your network does not change frequently, a week or even 
more is probably a good choice. If single RRs change more frequently, you 
could still assign them smaller ttls individually. If your network changes fre­
quently, you may want to set minimum to one day (86,400 seconds).

A
This record associates an IP address with a hostname. The resource data field 
contains the address in dotted quad notation.
For each hostname, there must be only one A record. The hostname used in this 
A record is considered the canonical hostname. All other hostnames are aliases 
and must be mapped onto the canonical hostname using a CNAME record. If 
the canonical name of our host were vlager, we’d have an A record that associ­
ated that hostname with its IP address. Since we may also want another name 
associated with that address, say news, we’d create a CNAME record that asso­
ciates this alternate name with the canonical name. W e’ll talk more about 
CNAME records shortly.

AAAA
This record is exactly the same as the A record, but is used exclusively for IPv6 
addresses.



NS
NS records are used to specify a zone’s primary server and all its secondary serv­
ers. An NS record points to a master nameserver of the given zone, with the 
resource data field containing the hostname of the nameserver.
You will meet NS records in two situations: the first is when you delegate 
authority to a subordinate zone; the second is within the master zone database 
of the subordinate zone itself. The sets of servers specified in both the parent and 
delegated zones should match.
The NS record specifies the name of the primary and secondary nameservers for 
a zone. These names must be resolved to an address so they can be used. Some­
times the servers belong to the domain, they are serving, which causes a 
“chicken-and-egg” problem; we can’t resolve the address until the nameserver is 
reachable, but we can’t reach the nameserver until we resolve its address. To 
solve this dilemma, we can configure special A records directly into the 
nameserver of the parent zone. The A records allow the nameservers of the par­
ent domain to resolve the IP address of the delegated zone nameservers. These 
records are commonly called glue records because they provide the “glue” that 
binds a delegated zone to its parent. Refer to the “DNS Database” section earlier 
for an explanation of how this works.

CNAME
This record associates an alias with a host’s canonical hostname. It provides an 
alternate name by which users can refer to the host whose canonical name is 
supplied as a parameter. The canonical hostname is the one the master file pro­
vides an A record for; aliases are simply linked to that name by a CNAME 
record, but don’t have any other records of their own.

PTR
This type of record is used to associate names in the in-addr.arpa domain with 
hostnames. It is used for reverse mapping of IP addresses to hostnames. The 
hostname given must be the canonical hostname.

MX
This RR announces a mail exchanger for a domain. Mail exchangers are dis­
cussed in Chapter 11, “Mail Routing on the Internet.” The syntax of an MX 
record is

[domain] [ttJ] [class] MX preference host 

host names the MX for domain. Every MX has an integer preference associated 
with it. A mail transport agent that wants to deliver mail to domain tries all hosts 
that have an MX record for this domain until it succeeds. The one with the low­
est preference value is tried first, and then the others, in order of increasing pref­
erence value.

82 | Chapter 5: Name Service and Configuration



HINFO
This record provides information on the system’s hardware and software. Its 
syntax is:

[domain] [ttl] [class] HINFO hardware software 

The hardware field identifies the hardware used by this host. Special conventions 
are used to specify this. If the field contains any blanks, it must be enclosed in 
double quotes. The software field names the operating system software used by 
the system. However, for security reasons, it’s not a great idea to have this infor­
mation publicly available, as it provides potentially valuable information to 
attackers. It’s very uncommon to see it used lately, but some administrators like 
to use it to provide spurious or humorous information about their hosts.
Example HINFO records to describe machines look something like:

tao 36500 IN HINFO SEGA-DREAMCAST LINUX2.6 
cevad 36500 IN HINFO ATARI-104ST LINUX2.0 
jedd 36500 IN HINFO TIMEX-SINCLAIR LINUX2.6

Caching-Only named Configuration
There is a special type of named configuration that we’ll talk about before we explain 
how to build a full nameserver configuration. It is called a caching-only configura­
tion. It doesn’t really serve a domain, but acts as a relay for all DNS queries pro­
duced on your host. The advantage of this scheme is that it builds up a cache so that 
only the first query for a particular host is actually sent to the nameservers on the 
Internet. Any repeated request will be answered directly from the cache in your local 
nameserver. It’s also important to note here that a cache server should not be run 
from the same IP address as the DNS server.

A named.conf file for a caching-only server looks like this:

// Define networks to allow queries from.

acl allowednets { 192.168.99.0/24; 192.168.44.0/24; }; 
options {

directory "/etc/bind"; // Working directory
allow-query { allowednets; };

};

// Root server hints 
zone { type hint;

file "root.hint"; };

// Provide a reverse mapping for the loopback address 127.0.0.1 
zone "O.O.l27.in-addr.arpa" { 

type master; 
file "localhost.rev"; 
notify no;



In addition to this named.conf file, you must set up the root.hint file with a valid list 
of root nameservers. You could copy and use Example 6.10 for this purpose, or, bet­
ter yet, you could use a BIND tool called dig to get the most current version of this 
file. No other files are needed for a caching-only server configuration. W e’ll discuss 
dig in more detail later in this chapter, but for now, to obtain the information to cre­
ate the root.hint file, you can use the following command:

vbrew# dig at e.root-servers.net . ns

Writing the Master Files
Examples 5-6, 5-7, 5-8, and 5-9 give sample configuration and zone files for a 
nameserver at the brewery, located on vlager. Due to the nature of the network dis­
cussed (a single LAN), the example is pretty straightforward.

The root.hint cache file shown in Example 5-6 shows sample hint records for a root 
nameserver. A typical cache file usually describes about a dozen nameservers. You 
can obtain the current list of nameservers for the root domain using the dig tool as 
described above.

E xam ple  5-6. T he ro o t.h in t f ile

; « »  DiG 9.2.2 « »  at e.root-servers.net . ns 
;; global options: printcmd 
;; Got answer:
;; -»HEADER«- opcode: QUERY, status: N0ERR0R, id: 21972
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;at. IN A

;; AUTHORITY SECTION:

;; Query time: 54 msec
;; SERVER: 206.13.28.12#53(206.13.28.12)
;; WHEN: Sat Dan 31 11:28:44 2004
;; MSG SIZE rcvd: 83

;; Got answer:
;; -»HEADER«- opcode: QUERY, status: N0ERR0R, id: 8039
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 4

A

A 192.203.230.10

;; QUESTION SECTION:
;e .root-servers.net.

;; ANSWER SECTION:
e.root-servers.net.

;; AUTHORITY SECTION:
R00T-SERVERS.net.
R00T-SERVERS.net.

IN

566162 IN

134198 IN NS 
134198 IN NS

a.ROOT-SERVERS.net.
f.ROOT-SERVERS.net.

84 | Chapter 5: Name Service and Configuration



Example 5-6. The root, hint file (continued)

ROOT-SERVERS.net. 134198 IN NS j.ROOT-SERVERS.net.
R00T-SERVERS.net. 134198 IN NS k.ROOT-SERVERS.net.

;; ADDITIONAL SECTION:
a.ROOT-SERVERS.net. 566162 IN A 198.41.0.4
f.ROOT-SERVERS.net. 566162 IN A 192.5.5.241
j.ROOT-SERVERS.net. 566162 IN A 192.58.128.30
k.ROOT-SERVERS.net. 566162 IN A 193.0.14.129

;; Query time: 12 msec
;; SERVER: 206.13.28.12#53(206.13.28.12) 
;; WHEN: Sat Dan 31 11:28:44 2004
;; MSG SIZE rcvd: 196 

;; Got answer:
;; -»HEADER«- opcode: QUERY, status : NOERROR, id: 61551
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL:

;; QUESTION SECTION:
IN NS

;; ANSWER SECTION:
479762 IN NS F.ROOT-SERVERS.NET.
479762 IN NS B.ROOT-SERVERS.NET.
479762 IN NS D.ROOT-SERVERS.NET.
479762 IN NS K.ROOT-SERVERS.NET.
479762 IN NS L.ROOT-SERVERS.NET.
479762 IN NS M.ROOT-SERVERS.NET.
479762 IN NS I.ROOT-SERVERS.NET.
479762 IN NS E.ROOT-SERVERS.NET.
479762 IN NS D.ROOT-SERVERS.NET.
479762 IN NS A.ROOT-SERVERS.NET.
479762 IN NS H.ROOT-SERVERS.NET.
479762 IN NS C.ROOT-SERVERS.NET.
479762 IN NS G.ROOT-SERVERS.NET.

;; ADDITIONAL SECTION:
F.ROOT-SERVERS.NET. 566162 IN A 192.5.5.241
B.ROOT-SERVERS.NET. 566162 IN A 192.228.79.201
D.ROOT-SERVERS.NET. 566162 IN A 192.58.128.30
K.ROOT-SERVERS.NET. 566162 IN A 193.0.14.129
L.ROOT-SERVERS.NET. 566162 IN A 198.32.64.12
M.ROOT-SERVERS.NET. 566162 IN A 202.12.27.33
I.ROOT-SERVERS.NET. 566162 IN A 192.36.148.17
E.ROOT-SERVERS.NET. 566162 IN A 192.203.230.10
D.ROOT-SERVERS.NET. 566162 IN A 128.8.10.90
A.ROOT-SERVERS.NET. 566162 IN A 198.41.0.4
H.ROOT-SERVERS.NET. 566162 IN A 128.63.2.53
C.ROOT-SERVERS.NET. 566162 IN A 192.33.4.12
G.ROOT-SERVERS.NET. 566162 IN A 192.112.36.4

; ;  Query time: 17  msec



;; SERVER: 206.13.28.12#53(206.13.28.12) 
;; WHEN: Sat Dan 31 11:28:44 2004 
;; MSG SIZE rcvd: 436

E xam ple  5-7. The v b rew .co m  zo n e  f ile

Example 5-6. The root, hint file (continued)

Hosts at the brewery 
/etc/bind/zone/vbrew.com

Origin is vbrew.com

$TTL 3D
@ IN SOA vlager.vbrew.com. janet.vbrew.com. (

200401206 ; serial, date + todays serial #
8H ; refresh, seconds
2H ; retry, seconds
4W ; expire, seconds
ID ) ; minimum, seconds

IN NS vlager.vbrew.com.

; local mail is distributed on viager 
IN MX 10 viager

>
; loopback address
localhost. IN A 127.0.0.1

>
; Virtual Brewery Ethernet 
viager IN A 172.16.1.1
viager-if1 IN CNAME viager
; viager is also news server 
news IN CNAME viager
vstout IN A 172.16.1.2
vale IN A 172.16.1.3

>
; Virtual Winery Ethernet 
viager-if2 IN A 172.16.2.1
vbardolino IN A 172.16.2.2
vchianti IN A 172.16.2.3
vbeaujolais IN A 172.16.2.4 

*
; Virtual Spirits (subsidiary) Ethernet 
vbourbon IN A 172.16.3.1
vbourbon-ifl IN CNAME vbourbon

E xam ple  5 -8 . The loopback  zo n e  f ile

/etc/bind/zone/127.0.0 Reverse mapping of 127.0.0
Origin is O.O.l27.in-addr.arpa.

86 | Chapter 5: Name Service and Configuration



Exam ple 5-8. The loopback zone file (continued)

$TTL 3D 

0 IN SOA vlager.vbrew.com. joe.vbrew.com. (

IN
IN

NS
PTR

1
360000 
3600 
3600000 
360000 
)
vlager.vbrew.com
localhost.

serial
refresh:
retry:
expire:
minimum:

100 hrs 
one hour 
42 days 
100 hrs

E x am ple  5 -9 . The vb rew  reverse  looku p  f ile

$TTL 3D

/etc/bind/zones/16.172.in-addr.arpa

IN SOA

Origin is 16.172.in-addr.arpa

viager.vbrew. com. joe.vbrew.com. (
16 ; serial
86400 ; refresh: once per day
3600 ; retry: one hour
3600000 ; expire: 42 days
604800 ; minimum: l week

IN NS vlager.vbrew.com.
; brewery
l.l IN PTR vlager.vbrew.com.
2.1 IN PTR vstout.vbrew.com.

3.1 IN PTR vale.vbrew.com.
; winery
1.2 IN PTR viager-if2.vbrew.com.
2.2 IN PTR vbardolino.vbrew.com.
3.2 IN PTR vchianti.vbrew.com.
4.2 IN PTR vbeaujolais.vbrew.com.

Verifying the Nameserver Setup
dig is the current nameserver query tool of choice, replacing the commonly known 
nslookup. It is flexible, fast, and can be used to query almost anything from a DNS 
server. The syntax for dig is very straightforward.

vbrew# dig nameserver name type

The command-line parameters are defined as follows: 

nameserver
This is the name of the server that you are querying. It can be entered as a name 
or as an IP address. If you leave this blank, dig will use the DNS server listed in 
the resolv.conf file.

How DNS Works | 87



name
This is the name of the DNS record that you want to look up.

type
This is the type of query you want to execute. Common types are ANY, MX, and 
TXT. If left blank, dig will default to looking for an A record.

So, using this, if we wanted to see which servers handle mail for the Virtual Brewery, 
we would create the following dig query:

vbrew# dig vlager.vbrew.com MX

; <<>> DiG 9.2.2 « »  vlager.vbrew.com MX 
;; global options: printcmd 
;;-Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40590
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;vlager.vbrew.com. IN MX

;; AUTHORITY SECTION:
vbrew.com. 10794 IN SOA vlager.vbrew.com. vlager.vbrew.com.
2003080803 10800 3600 604800 86400

;; Query time: 14 msec
;; SERVER: 192.168.28.12#53(192.168.28.12)
;; WHEN: Sun Feb 1 12:19:06 2004 
;; MSG SIZE rcvd: 104

Another example of an interesting query type which can be useful is the BIND ver­
sion query. This is easily done with dig with the following syntax:

vlager# dig 0vlager.vbrew.com version.bind. CHAOS TXT

; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0 

;; QUESTION SECTION:
;version.bind. CH TXT

;; ANSWER SECTION:
VERSION.BIND. 0 CH TXT "BIND 8.2.2-P5"

Using nslookup
nslookup, while now deprecated, is still a good tool for checking the operation of 
your nameserver setup. It can be used both interactively with prompts and as a sin­
gle command with immediate output. In the latter case, you simply invoke it as:

$ nslookup hostname

88 | Chapter 5: Name Service and Configuration



nslookup queries the nameserver specified in resolv.conf for hostname. (If this file 
names more than one server, nslookup chooses one at random.)

The interactive mode, however, is much more exciting. Besides looking up individ­
ual hosts, you may query for any type of DNS record and transfer the entire zone 
information for a domain.

When invoked without an argument, nslookup displays the nameserver it uses and 
enters interactive mode. At the prompt, you may type any domain name that you 
want to query. By default, it asks for class A records— those containing the IP 
address relating to the domain name.

You can look for record types by issuing:

> set type*type

in which type  is one of the RRs names described earlier, or ANY.

For instance, you might have the following nslookup session:

$ nslookup
Default Server: tao.linux.org.au 
Address: 203.41.101.121

> netalab.unc.edu
Server: tao.linux.org.au 
Address: 203.41.101.121

Name: metalab.unc.edu 
Address: 152.2.254.81

>

The output first displays the DNS server being queried, and then the result of the 
query.

If you try to query for a name that has no IP address associated with it, but other 
records were found in the DNS database, nslookup returns with an error message say­
ing “No type A records found.” However, you can make it query for records other 
than type A by issuing the set type command. To get the SO A record of unc.edu, you 
would issue:

> unc.edu
Server: tao.linux.org.au 
Address: 203.41.101.121

*** No address (A) records available for unc.edu
> set type=S0A
> unc.edu
Server: tao.linux.org.au 
Address: 203.41.101.121

unc.edu
origin = ns.unc.edu



mail addr = host-reg.ns.unc.edu 

serial = 1998111011 

refresh = 14400 (4H) 

retry = 3600 (lH) 

expire = 1209600 (2W) 

minimum ttl = 86400 (lD) 

unc.edu name server = ns2.unc.edu 

unc.edu name server = ncnoc.ncren.net 

unc.edu name server = ns.unc.edu 

ns2.unc.edu internet address = 152.2.253.100 

ncnoc.ncren.net internet address = 192.101.21.1 

ncnoc.ncren.net internet address = 128.109.193.1 

ns.unc.edu internet address = 152.2.21.1

In a similar fashion, you can query for MX records:

> set type=MX
> unc.edu
Server: tao.linux.org.au 

Address: 203.41.101.121

unc.edu preference = 0, mail exchanger = conga.oit.unc.edu 

unc.edu preference = 10, mail exchanger = imsety.oit.unc.edu 

unc.edu name server = ns.unc.edu 

unc.edu name server = ns2.unc.edu 

unc.edu name server = ncnoc.ncren.net 

conga.oit.unc.edu internet address = 152.2.22.21

imsety.oit.unc.edu internet address = 152.2.21.99 

ns.unc.edu internet address = 152.2.21.1 

ns2.unc.edu internet address = 152.2.253.100 

ncnoc.ncren.net internet address = 192.101.21.1 

ncnoc.ncren.net internet address = 128.109.193.1

Using a type of ANY returns all resource records associated with a given name.

A practical application of nslookup, besides debugging, is to obtain the current list 
of root nameservers. You can obtain this list by querying for all NS records associ­
ated with the root domain:

> set type=NS
> .

Server: tao.linux.org.au 

Address: 203.41.101.121

Non-authoritative answer:

(root) name server = A.ROOT-SERVERS.NET

(root) name server = H.ROOT-SERVERS.NET

(root) name server = B.ROOT-SERVERS.NET

(root) name server = C.ROOT-SERVERS.NET

(root) name server = D.ROOT-SERVERS.NET

(root) name server = E.ROOT-SERVERS.NET

(root) name server = I.ROOT-SERVERS.NET

(root) name server = F.ROOT-SERVERS.NET

(root) name server = G.ROOT-SERVERS.NET

90 | Chapter 5: Name Service and Configuration



(root) name server = D.ROOT-SERVERS.NET

(root) name server = K.ROOT-SERVERS.NET

(root) name server = L.ROOT-SERVERS.NET

(root) name server = M.ROOT-SERVERS.NET

Authoritative answers can be found from:

A.ROOT-SERVERS.NET internet address = 198.41.0.4
H.R00T-SERVERS.NET internet address = 128.63.2.53
B.R00T-SERVERS.NET internet address = 128.9.0.107
C.ROOT-SERVERS.NET internet address = 192.33.4.12

D.ROOT-SERVERS.NET internet address = 128.8.10.90

E.ROOT-SERVERS.NET internet address = 192.203.230.10
I.ROOT-SERVERS.NET internet address = 192.36.148.17
F.ROOT-SERVERS.NET internet address = 192.5.5.241
G.R00T-SERVERS.NET internet address = 192.II2.36.4
D.ROOT-SERVERS.NET internet address = 198.41.0.10

K.ROOT-SERVERS.NET internet address = 193.O.14.129
L.ROOT-SERVERS. NET internet address = 198.32.64.12

M.ROOT-SERVERS. NET internet address = 202.12.27.33

To see the complete set of available commands, use the help command in nslookup.

Other Useful Tools
There are a few other tools that can help you with your tasks as a BIND administra­
tor. We will briefly describe two of them here. Please refer to the documentation that 
comes with these tools for more information on how to use them.

hostcvt helps you with your initial BIND configuration by converting your /etc/hosts 
file into master files for named. It generates both the forward (A) and reverse map­
ping (PTR) entries, and takes care of aliases. Of course, it won’t do the whole job for 
you, as you may still want to tune the timeout values in the SOA record, for exam­
ple, or add MX records. Still, it may save you a few aspirins, hostcvt is part of the 
BIND source, but can also be found as a standalone package.

After setting up your nameserver, you may want to test your configuration. Some 
good tools that make this job much simpler; the first is called dnswalk, which is a 
Perl-based package. The second is called nslint. They both examine your DNS data­
base for common mistakes and verify that the information is consistent. Two other 
useful tools are host, which is a general purpose DNS database query tool. You can 
use this tool to manually inspect and diagnose DNS database entries.

This tool is likely to be available in prepackaged form, dnswalk and nslint are avail­
able in source from http://www.visi.com/-barr/dnswalk/ and ftp:/'/ftp.ee.lbl.gov/ 
nslint.tar.Z. The host's source code can be found at ftp://ftp.nikhef.nl/pub/network/ 
and ftp://ftp.is.co.za/networking/ip/dns/dig/.

http://www.visi.com/-barr/dnswalk/
ftp://ftp.nikhef.nl/pub/network/
ftp://ftp.is.co.za/networking/ip/dns/dig/


Alternatives to BIND
Those who have been concerned with the number of security vulnerabilities found in 
the BIND server through the years, or who prefer an easier DNS solution, may wish 
to investigate an alternative, djbdns. This software, written from scratch by D.J. 
Bernstein, provides a much more robust, simplified and secure framework for DNS. 
djbdns is easy to install and configure, and is much less complex than BIND, essen­
tially the same functionality. In this next section, we’ll cover the basics of installing 
and configuring a DNS server using djbdns. It is important to note that a djbdns 
DNS server is designed to be just that, a DNS server, meaning that by default it won’t 
be resolving queries for machines outside of your authority. For that, you will need 
to build a separate caching server on a separate machine or IP address. As recom­
mended earlier, caches and DNS servers should be separated for security reasons. To 
read more about this topic, please refer to the djbdns web site at http://cr.yp.to/ 
djbdns.html.

Installing djbdns
To run djbdns, you first need to install another DJB program called daemontools, 
which is basically a collection of tools used to manage various Unix daemons. To 
view full documentation and source code for daemontools, visit its webpage at http:// 
cr.yp.to/daemontools.html. W hen you’ve successfully downloaded the software, 
extract it to a directory on your machine and compile the software, daemontools 
comes with a script that will automatically compile and install the software. It can be 
launched as follows:

vlager# mkdir software 
vlager# cd software
vlager# tar xzpf daemontools-0.76.tar.gz 
vlager# cd admin/daemontools-0.76 
vlager# package/install

When the script finishes, you can remove the installation directories, and begin 
installing the next dependency, ucspi-tcp, which is DJB’s very own TCP client-server 
handling program. It is also very easy to install:

vlager# mkdir software
vlager# cd software
vlager# tar xzpf ucspi-tcp-O.88.tar.gz
vlager# cd ucspi-tcp-O.88
vlager# make
vlager# make setup check

This will install the software to the /usr/local directory on your machine. You w on’t 
need to do anything else with the operation or configuration of this software for the 
moment.

92 | Chapter 5: Name Service and Configuration

http://cr.yp.to/


Once it is installed, you are ready to install the djbdns software. The djbdns installa­
tion is accomplished using the same steps documented above for ucspi-tcp. This 
process will also install djbdns to the lusr/local directory. You will need to make sure 
that the svscan process is running before configuring djbdns. svscan is part of the 
daemontools package and must be running for djbdns to function.

When you’ve verified that svscan is running, you can start the configuration of the 
DNS server. The first step is to create two user accounts, tinydns and dnslog. djbdns 
will use both of these to conduct its business, rather than run as root, as BIND instal­
lations often do.

Next, you will need to create a directory for your DNS server’s configuration files 
and logs, and then configure it as follows:

vlager# mkdir /etc/tinydns
vlager# tinydns-conf tinydns dnslog /etc/tinydns 172.16.0.2

The IP address 172.16.0.2 in the example should be replaced with your DNS server’s 
external IP address. Following this, svscan needs to be informed of the new service. 
This process accomplished with three commands:

vlager# In -s /etc/tinydns /service 
vlager# svstat /service/tinydns

This will complete the installation of your djbdns server; all that’s left is to do is con­
figure your hosts. Under BIND, this is where a majority of the complexity and confu­
sion exists; dbjdns, however, makes adding new DNS records much easier.

Adding Hosts
You will need to configure your host information so that your DNS server is provid­
ing a service. The first step in this process is to establish yourself as an authority over 
your domain. For our example, the Virtual Brewery, we will want to configure our 
DNS server to answer all queries for the vbrew.com domain. Rather than hassle with 
long zone files, this can be done with a few short steps.

vlager# cd /service/tinydns/root 
vlager# ./add-ns vlager.com 172.16.1.1 
vlager# ./add-ns 1.16.172.in-addr.arpa 172.16.1.1 
vlager# make

Now that the server will handle queries for our vbrew domain, we can use it to con­
figure individual hosts on our network. Fortuantely, this is just as easy as the previ­
ous step. To associate an address to our favorite host, vlager, and to our web server, 
we need to use the following commands:

vlager# cd /service/tinydns/root 
vlager# ./add-host vlager.vbrew.com 172.16.1.10 
vlager# ./add-host www.vlager.com 172.16.1.11 
vlager# ./add-alias mail.vbrew.com 172.16.1.10 
vlager# make

Alternatives to BIND | 93

http://www.vlager.com


Using the add-host command, we enter the FDQN followed by the IP addresss to cre­
ate our DNS records. You might have noticed the other command used in the exam­
ple, add-alias. This command adds an alias to an already assigned IP. In the example, 
we have our host vlager set to also answer to the name mail. This is useful if a server 
serves multiple purposes. Take special notice of the last command executed in the 
series, make. Things won’t work if you forget to execute this command, since it is 
responsible for compiling the raw configuration file, into one readable by the server. 
If you’re having problems with your installation, check this first.

The commands add-host, add-ns, and add-alias just edit the master djbdns configura­
tion file called data located in /service/tinydns/root. If you want to do this manually, 
you can just open the datafile in your browser and add the following lines:

=vlager.vbrew.com:172.16.1.10 

=www.vlager.com:172.16.1.11 

+mail.vbrew.com:172.16.1.10

You’ll notice that the host entry lines begin with = and the alias lines begin with a + 
character. While the manual method does work, it adds more complexity, since you 
will now be required to also manually check your datafile for duplicate entries. Most 
administrators will just want to stick with the automated tools to avoid complica­
tions.

Installing an External DNS Cache
When you’ve successfully created your DNS server and have everything functioning 
properly, you may want to craete an external DNS cache, so hosts on your network 
can resolve the IP addresses of external machines. This is done by installing a DNS 
cache, which again with djbdns is simple. Assuming that you have svscan running, 
you must first create (or verify the existance of) two system accounts, one for the 
cache program and one for the logging mechanism. Though it isn’t necessary to do 
so, it is a good idea to call them something meaningful, such as dnscache and dnslog, 
respectively.

Next, you’ll need to determine the IP address on which to run your DNS cache. 
Remember this should be a different IP address than you’re using for your DNS 
server. Now, as root, create a directory for the DNS service and configure it with the 
following commands:

vstout# mkdir /etc/dnscache
vstout# dnscache-conf dnscache dnslog /etc/dnscache <cache.ip.address>

Again, as root, you now need to inform svscan that you have a new service for it to 
run:

vstout# In -s /etc/dnscache /service

94 | Chapter 5: Name Service and Configuration



Now, to be certain that the new service is running, wait a few moments and issue the 
following command:

vstout# svstat /service/dnscache
/service/dnscache: up (pid 1139) 149 seconds

When you’ve made certain that the service is running, you need to tell it which IP 
addresses are authorized to access the cache. In the case of the Virtual Brewery, we 
want to authorize the entire 172.16 network, so we’ll enter the following command:

vstout# touch /etc/dnscache/root/ip/172.16

Of course, you’ll want to make sure that your /etc/resolv.conf knows about your new 
DNS cache. You can test to see whether or not your cache is working with nslookup, 
dig, or one of the included djbdns tools, dnsip:

vlager# dnsip wwM.google.com

216.239.57.104 216.239.57.99 
vlager#

Alternatives to BIND | 95



CHAPTER 6_____________

The Point-to-Point 
Protocol

Point-to-point protocol (PPP) is a protocol used to send datagrams across a serial 
connection. In this chapter, we briefly cover its basic building blocks. We will also 
cover PPP over Ethernet (PPPoE), which is now commonly used by telecom provid­
ers to establish DSL sessions. There is also a comprehensive O ’Reilly book on the 
topic, Using & Managing PPP, by Andrew Sun.

At the very bottom of PPP is the High-Level Data Link Control (HDLC) protocol, 
which defines the boundaries around the individual PPP frames and provides a 16-bit 
checksum.’ A PPP frame is capable of holding packets from protocols other than IP, 
such as Novell’s IPX or Appletalk. PPP achieves this by adding a protocol field to the 
basic HDLC frame that identifies the type of packet carried by the frame.

The Link Control Protocol (LCP) is used on top of HDLC to negotiate options per­
taining to the data link. For instance, the Maximum Receive Unit (MRU) states the 
maximum datagram size that one side of the link agrees to receive.

An important step at the configuration stage of a PPP link is client authorization. 
Although it is not mandatory, it is really a must for dial-up lines in order to keep out 
intruders. Usually the called host (the server) asks the client to authorize itself by 
proving it knows some secret key. If the caller fails to produce the correct secret, the 
connection is terminated. W ith PPP, authorization works both ways; the caller may 
also ask the server to authenticate itself. These authentication procedures are totally 
independent of each other. There are two protocols for different types of authoriza­
tion, which we will discuss further in this chapter: Password Authentication Protocol 
(PAP) and Challenge Handshake Authentication Protocol (CHAP).

Each network protocol that is routed across the data link (like IP and AppleTalk) is 
configured dynamically using a corresponding Network Control Protocol (NCP). To 
send IP datagrams across the link, both sides running PPP must first negotiate which

* In fact, HDLC is a much more general protocol devised by the International Standards Organization (ISO) 
and is also an essential component of the X.25 specification.

96



IP address each of them uses. The control protocol used for this negotiation is the 
Internet Protocol Control Protocol (IPCP).

Besides sending standard IP datagrams across the link, PPP also supports Van Jacob­
son header compression of IP datagrams. This technique shrinks the headers of TCP 
packets to as little as 3 bytes. It is more colloquially referred to as VJ header com­
pression. The use of compression may be negotiated at startup time through IPCP, as 
well.

PPP on Linux
On Linux, PPP functionality is split into two parts: a kernel component that handles 
the low-level protocols (HDLC, IPCP, IPXCP, etc.) and the user space pppd daemon 
that handles the various higher-level protocols, such as PAP and CHAP. The current 
release of the PPP software for Linux contains the PPP daemon pppd and a program 
named chat that automates the dialing of the remote system.

The PPP kernel driver was written by Michael Callahan and reworked by Paul Mack­
erras. pppd was derived from a free PPP implementation for Sun and 386BSD 
machines that was written by Drew Perkins and others, and is maintained by Paul 
Mackerras. It was ported to Linux by Al Longyear, chat was written by Karl Fox.

PPP is implemented by a special line discipline. To use a serial line as a PPP link, you 
first establish the connection over your modem as usual and subsequently convert 
the line to PPP mode. In this mode, all incoming data is passed to the PPP driver, 
which checks the incoming HDLC frames for validity (each HDLC frame carries a 
16-bit checksum), and unwraps and dispatches them. Currently, PPP is able to trans­
port both the IP protocol, optionally using Van Jacobson header compression, and 
the IPX protocol.

pppd aids the kernel driver, performing the initialization and authentication phase 
that is necessary before actual network traffic can be sent across the link, pppd's 
behavior may be fine-tuned using a number of options. As PPP is rather complex, it 
is impossible to explain all of them in a single chapter. This book therefore cannot 
cover all aspects of pppd, but only gives you an introduction. For more information, 
consult Using & Managing PPP or the pppd manpages, or READMEs in the pppd 
source distribution, which should help you sort out most questions this chapter fails 
to discuss. The.PPP HOWTO might also be of use.

Probably the greatest help you will find in configuring PPP will come from other 
users of the same Linux distribution. PPP configuration questions are very common, 
so try your local usergroup mailing list or the IRC Linux channel. If your problems 
persist even after reading the documentation, you could try the comp.protocols.ppp 
newsgroup. This is the place where you can find most of the people involved in pppd 
development.

PPP on Linux | 97



Running pppd
W hen you want to connect to the Internet through a PPP link, you have to set up 
basic networking capabilities, such as the loopback device and the resolver. Both 
have been covered in Chapters 4 and 5. You can simply configure the nameserver of 
your Internet Service Provider in the /etc/resolv.conf file, but this will mean that every 
DNS request is sent across your serial link. This situation is not optimal; the closer 
(network-wise) you are to your nameserver, the faster the name lookups will be. An 
alternative solution is to configure a caching-only nameserver at a host on your net­
work. This means that the first time you make a DNS query for a particular host, 
your request will be sent across your serial link, but every subsequent request will be 
answered directly by your local nameserver, and will be much faster. This configura­
tion is described in Chapter 5.

As an introductory example of how to establish a PPP connection with pppd, assume 
you are at vlager again. First, dial in to the PPP server c3po and log in to the ppp  
account. c3po will execute its PPP driver. After exiting the communications program 
you used for dialing, execute the following command, substituting the name of the 
serial device you used for the t ty  S3 shown here:

# pppd /dev/ttySB 38400 crtscts defaultroute

This command flips the serial line ttyS3 to the PPP line discipline and negotiates an 
IP link with c3po. The transfer speed used on the serial port will be 38,400 bps. The 
c r tsc ts  option turns on hardware handshake on the port, which is an absolute must 
at speeds above 9,600 bps.

The first thing pppd does after starting up is negotiate several link characteristics with 
the remote end using LCP. Usually, the default set of options pppd tries to negotiate 
will work, so we won’t go into this here, except to say that part of this negotiation 
involves requesting or assigning the IP addresses at each end of the link.

For the time being, we also assume that c3po doesn’t require any authentication 
from us, so the configuration phase is completed successfully.

pppd will then negotiate the IP parameters with its peer using IPCP, the IP control 
protocol. Since we didn’t specify any particular IP address to pppd earlier, it will try 
to use the address obtained by having the resolver look up the local hostname. Both 
will then announce their addresses to each other.

Usually, there’s nothing wrong with these defaults. Even if your machine is on an 
Ethernet, you can use the same IP address for both the Ethernet and the PPP inter­
face. Nevertheless, pppd allows you to use a different address, or even to ask your 
peer to use some specific address. These options are discussed in “Choosing IP 
Addresses,” later in this chapter.

98 | Chapter 6: The Point-to-Point Protocol



After going through the IPCP setup phase, pppd will prepare your host’s networking 
layer to use the PPP link. It first configures the PPP network interface as a point-to- 
point link, using pppO for the first PPP link that is active, ppp l for the second, and so 
on. Next, it sets up a routing table entry that points to the host at the other end of 
the link. In the previous example, pppd made the default network route point to 
c3po, because we gave it the d efau ltro u te  option.* The default route simplifies your 
routing by causing any IP datagram destined to a nonlocal host to be sent to c3po; 
this makes sense since it is the only way they can be reached. There are a number of 
different routing schemes pppd supports, which we will cover in detail later in this 
chapter.

Using Options Files
Before pppd parses its command-line arguments, it scans several files for default 
options. These files may contain any valid command-line arguments spread out 
across an arbitrary number of lines. Hash signs introduce comments.

The first options file is Ietclppploptions, which is always scanned when pppd starts 
up. Using it to set some global defaults is a good idea, because it allows you to keep 
your users from doing several things that may compromise security. For instance, to 
make pppd require some kind of authentication (either PAP or CHAP) from the peer, 
you add the auth option to this file. This option cannot be overridden by the user, so 
it becomes impossible to establish a PPP connection with any system that is not in 
your authentication databases. Note, however, that some options can be overridden; 
the connect string is a good example.

The other options file, which is read after /etdppp!options, is .ppprc in the user’s 
home directory. It allows each user to specify her own set of default options.

A sample !etdppp!options file might look like this:

# Global options for pppd running on vlager.vbrew.com 

lock # use UUCP-style device locking

auth # require authentication

usehostname # use local hostname for CHAP

domain vbrew.com # our domain name

The lock keyword makes pppd comply to the standard UUCP method of device lock­
ing. W ith this convention, each process that accesses a serial device, say /dev/ttyS3, 
creates a lock file with a name such as LCK..ttyS3 in a special lock-file directory to 
signal that the device is in use. This is necessary to prevent other programs, such as 
minicom or uucico, from opening the serial device while it is used by PPP.

* The default network route is installed only if none is already present.

Using Options Files | 99



The next three options relate to authentication and, therefore, to system security. 
The authentication options are best placed in the global configuration file because 
they are “privileged” and cannot be overridden by users’ -l.ppprc options files.

One of the things that may have struck you as inconvenient in the previous example 
is that you had to establish the connection manually before you could fire up pppd. 
pppd relies on an external program or shell script to log in and connect to the remote 
system. The command to be executed can be given to pppd with the connect com­
mand-line option, pppd will redirect the command’s standard input and output to 
the serial line.

The pppd software package is supplied with a very simple program called chat, which 
is capable of being used in this way to automate simple login sequences. W e’ll talk 
about this command in some detail.

If your login sequence is complex, you will need something more powerful than chat. 
One useful alternative you might consider is expect, written by Don Libes. It has a 
very powerful language based on Tel and was designed exactly for this sort of appli­
cation. Those of you whose login sequence requires, for example, challenge/response 
authentication involving calculator-like key generators will find expect powerful 
enough to handle the task. Since there are so many possible variations on this theme, 
we won’t describe how to develop an appropriate expect script in this book. Suffice it 
to say, you’d call your expect script by specifying its name using the pppd connect 
option. It’s also important to note that when the script is running, the standard input 
and output will be attached to the modem, not to the terminal that invoked pppd. If 
you require user interaction, you should manage it by opening a spare virtual termi­
nal, or arrange some other means.

The chat command lets you specify a chat script. Basically, a chat script consists of 
an alternating sequence of strings that we expect to receive from the remote system, 
and the answers we are to send. We will call them expect and send strings, respec­
tively. This is a typical excerpt from a chat script:

ogin: biff ssword: s3|<rlt

This script tells chat to wait for the remote system to send the login prompt and 
return the login name b if f .  We wait only for ogin: so that it doesn’t matter if the 
login prom pt starts with an uppercase or lowercase 1, or if it arrives garbled. The fol­
lowing string is another expect string that makes chat wait for the password prompt 
and send our response password.

This is basically what chat scripts are all about. A complete script to dial up a PPP 
server would, of course, also have to include the appropriate modem commands. 
Assume that your modem understands the Hayes command set, and the server’s

100 | Chapter 6: The Point-to-Point Protocol

Using chat to Automate Dialing



telephone number is 318714. The complete chat invocation to establish a connec­
tion with c3po would then be:

$ chat -v "  ATZ OK ATDT318714 CONNECT "  ogin: ppp word: GaGariN

By definition, the first string must be an expect string, but as the modem w on’t say 
anything before we have kicked it, we make chat skip the first expect by specifying 
an empty string. We then send ATZ, the reset command for Hayes-compatible 
modems and wait for its response (OK). The next string sends the dial command 
along with the phone number to chat and expects the CONNECT message in response. 
This is followed by an empty string again because we don’t want to send anything 
now, but rather wait for the login prompt. The remainder of the chat script works 
exactly as described previously. This description probably looks a bit confusing, but 
we’ll see in a moment that there is a way to make chat scripts a lot easier to under­
stand.

The -v option makes chat log all activities to the syslog daemon local2 facility.*

Specifying the chat script on the command line bears a certain risk because users can . 
view a process’s command line with the ps command. You can avoid this risk by put­
ting the chat script in a file such as dial-c3po. You make chat read the script from the 
file instead of the command line by giving it the - f  option, followed by the filename. 
This action has the added benefit of making our chat expect sequences easier to 
understand. To convert our example, our dial-c3po file would look like this:

ATZ

OK ATDT318714 
CONNECT "  

ogin: ppp 

word: GaGariN

When we use a chat script file in this way, the string we expect to receive is on the 
left and the response we will send is on the right. They are much easier to read and 
understand when presented this way.

The complete pppd incantation would now look like this:

# pppd connect "chat -f dial-c3po" /dev/ttyS3 38400 -detach \ 
crtscts modem defaultroute

Besides the connect option that specifies the dial-up script, we have added two more 
options to the command line: -detach, which tells pppd not to detach from the con­
sole and become a background process, and the modem keyword, which makes it per­
form modem-specific actions on the serial device, such as disconnecting the line 
before and after the call. If you don’t use this keyword, pppd will not monitor the

* If you edit syslog.conf to redirect these log messages to a file, make sure this file isn’t world readable, as chat 
also logs the entire chat script by default—including passwords.

Using chat to Automate Dialing | 101



port’s DCD line and will therefore not detect whether the remote end hangs up 
unexpectedly.

The examples we have shown are rather simple; chat allows for much more complex 
scripts. For instance, it can specify strings on which to abort the chat with an error. 
Typical abort strings are messages such as BUSY or NO CARRIER that your modem usu­
ally generates when the called number is busy or doesn’t answer. To make chat rec­
ognize these messages immediately rather than timing out, you can specify them at 
the beginning of the script using the ABORT keyword:

$ chat -v ABORT BUSY ABORT 'NO CARRIER' "  ATZ OK ...

Similarly, you can change the tim eout value for parts of the chat scripts by inserting 
TIMEOUT options.

Sometimes you also need to have conditional execution for parts of the chat script: 
when you don’t receive the remote end’s login prompt, you might want to send a 
BREAK or a carriage return. You can achieve this by appending a subscript to an 
expect string. The subscript consists of a sequence of send and expect strings, just 
like the overall script itself, which are separated by hyphens. The subscript is exe­
cuted whenever the expected string it is appended to is not received in time. In the 
example above, we would modify the chat script as follows:

ogin:-BREAK-ogin: ppp ssword: GaGariN

When chat doesn’t see the remote system send the login prompt, the subscript is exe­
cuted by first sending a BREAK and then waiting for the login prompt again. If the 
prompt now appears, the script continues as usual; otherwise, it will terminate with 
an error.

IP Configuration Options
IPCP is used to negotiate a number of IP parameters at link configuration time. Usu­
ally, each peer sends an IPCP configuration request packet, indicating which values it 
wants to change from the defaults and the new value. Upon receipt, the remote end 
inspects each option in turn and either acknowledges or rejects it.

pppd gives you a lot of control over which IPCP options it will try to negotiate. You 
can tune it through various command-line options that we will discuss in this sec­
tion.

Choosing IP Addresses
All IP interfaces require that IP addresses be assigned to them; a PPP device always 
has an IP address. The PPP suite of protocols provides a mechanism that allows the 
automatic assignment of IP addresses to PPP interfaces. It is possible for the PPP

102 | Chapter 6: The Point-to-Point Protocol



program at one end of a point-to-point link to assign an IP address for the remote 
end to use, or each may use its own.

Some PPP servers that handle a lot of client sites assign addresses dynamically; 
addresses are assigned to systems only when calling in and are reclaimed after they 
have logged off again. This allows the number of IP addresses required to be limited 
to the number of dial-up lines. While limitation is convenient for managers of the 
PPP dial-up server, it is often less convenient for users who are dialing in. We dis­
cussed the way that hostnames are mapped to IP addresses by use of a database in 
Chapter 5. In order for people to connect to your host, they must know your IP 
address or the hostname associated with it. If you are a user of a PPP service that 
assigns you an IP address dynamically, this knowledge is difficult without providing 
some means of allowing the DNS database to be updated after you are assigned an IP 
address. Such systems do exist, but we won’t cover them in detail here; instead, we 
will look at the preferable approach, which involves you being able to use the same 
IP address each time you establish a network connection/

In the previous example, we had pppd dial up c3po and establish an IP link. No pro­
visions were taken to choose a particular IP address on either end of the link. 
Instead, we let pppd take its default action. It attempts to resolve the local hostname, 
vlager in our example, to an IP address, which it uses for the local end, while letting 
the remote machine, c3po, provide its own. PPP supports several alternatives to this 
arrangement.

To ask for particular addresses, you generally provide pppd with the following 
option:

local_addr:remote_addr

local_addr and remote_addr may be specified either in dotted quad notation or as 
hostnames.^ This option makes pppd attempt to use the first address supplied as its 
own IP address, and the second as the peer’s. If the peer rejects either of the 
addresses during IPCP negotiation, no IP link will be established.*

If you are dialing in to a server and expect it to assign you an IP address, you should 
ensure that pppd does not attempt to negotiate one for itself. To do this, use the 
noipdefault option and leave the local_addi blank. The noipdefault option will stop 
pppd from trying to use the IP address associated with the hostname as the local 
address.

* More information on two dynamic host assignment mechanisms can be found at http://www.dynip.com/.
t Using hostnames in this option has consequences for CHAP authentication. Please refer to the section “The 

CHAP Secrets File” later in this chapter.
t  The ipcp-accept-local and ipcp-accept-remote options instruct your pppd to accept the local and remote IP 

addresses being offered by the remote PPP, even if you’ve supplied some in your configuration. If these 
options are not configured, your pppd will reject any attempt to negotiate the IP addresses used.

IP Configuration Options | 103

http://www.dynip.com/


If you want to set only the local address but accept any address the peer uses, simply 
leave out the remote_addr part. To make vlager use the IP address 130.83.4.27 
instead of its own, give it 130.83.4.27: on the command line. Similarly, to set the 
remote address only, leave the local_addr field blank. By default, pppd will then use 
the address associated with your hostname.

Routing Through a PPP Link
After setting up the network interface, pppd will usually set up a host route to its peer 
only. If the remote host is on a LAN, you certainly want to be able to connect to 
hosts “behind” your peer as well; in that case, a network route must be set up.

We have already seen that pppd can be asked to set the default route using the 
d efau ltro u te  option. This option is very useful if the PPP server you dialed up acts as 
your Internet gateway.

The reverse case, in which your system acts as a gateway for a single host, is also rela­
tively easy to accomplish. For example, take some employee at the Virtual Brewery 
whose home machine is called oneshot. Let’s also assume that we’ve configured 
vlager as a dial-in PPP server. If we’ve configured vlager to dynamically assign an IP 
address that belongs to the Brewery’s subnet, we can use the proxyarp option with 
pppd, which will install a proxy ARP entry for oneshot. This automatically makes 
oneshot accessible from all hosts at the brewery and the winery.

However, things aren’t always that simple. Linking two local area networks usually 
requires adding a specific network route because these networks may have their own 
default routes. Besides, having both peers use the PPP link as the default route would 
generate a loop, through which packets to unknown destinations would ping-pong 
between the peers until their time to live expired.

Suppose the Virtual Brewery opens a branch in another city. The subsidiary runs an 
Ethernet of its own using the IP network number 172.16.3.0, which is subnet 3 of 
the brewery’s class B network. The subsidiary wants to connect to the brewery’s net­
work via PPP to update customer databases. Again, vlager acts as the gateway for the 
brewery network and will support the PPP link; its peer at the new branch is called 
vbourbon and has an IP address of 172.16.3.1.

When vbourbon connects to vlager, it makes the default route point to vlager as 
usual. On vlager, however, we will have only the point-to-point route to vbourbon 
and will have to specially configure a network route for subnet 3 that uses vbourbon 
as its gateway. We could do this manually using the route command by hand after 
the PPP link is established, but this is not a very practical solution. Fortunately, we 
can configure the route automatically by using a feature of pppd that we haven’t dis­
cussed yet— the ip-up command. This command is a shell script or program located 
in /etdppp that is executed by pppd after the PPP interface has been configured. 
When present, it is invoked with the following parameters:

ip-up if ace device speed local_addr remote_addr

104 | Chapter 6: The Point-to-Point Protocol



Table 6-1 summarizes the meaning of each of the arguments (in the first column, we 
show the number used by the shell script to refer to each argument).

Table 6-1. ip-up argum ents

Name

iface

device

speed

Purpose

The network interface used, e.g., pppo
The pathname of the serial device file used (/dev/tty, if stdin/stdout are used)
The speed of the serial device in bits per second
The IP address of the link's remote end in dotted quad notation
The IP address of the remote end of the link in dotted quad notation

local_addr 

remote addr

In our case, the ip-up script may contain the following code fragment:*

#!/bin/sh 

case $5 in 

172.16.3.1) # this is vbourbon

route add -net 172.16.3.0 gw 172.16.3.1;;

esac

exit 0

Similarly, /etc/ppp/ip-down can be used to undo any actions of ip-up after the PPP 
link has been taken down again. So in cfur /etc/ppp/ip-down script we would have a 
route command that removed the route we created in the /etc/ppp/ip-up script.

However, the routing scheme is not yet complete. We have set up routing table 
entries on both PPP hosts, but so far none of the hosts on either network knows any­
thing about the PPP link. This is not a big problem if all hosts at the subsidiary have 
their default route pointing at vbourbon and all brewery hosts route to vlager by 
default.

We already encountered LCP, which is used to negotiate link characteristics and test 
the link.

The two most important options negotiated by LCP are the Asynchronous Control 
Character Map and the Maximum Receive Unit. There are a number of other LCP 
configuration options, but they are far too specialized to discuss here.

The Asynchronous Control Character Map, colloquially called the async map, is 
used on asynchronous links, such as telephone lines, to identify control characters 
that must be escaped (replaced by a specific two-character sequence) to avoid them

* If we wanted to have routes for other sites created when they dial in, we’d add appropriate case statements 
to cover those where the . . .  appears in the example.

Link Control Options

Link Control Options | 105



being interpreted by equipment used to establish the link. For instance, you may 
want to avoid the XON and XOFF characters used for software handshake because a 
misconfigured modem might choke upon receipt of an XOFF. Other candidates 
include Ctrl-1 (the telnet escape character). PPP allows you to escape any of the char­
acters with ASCII codes 0 through 31 by specifying them in the async map.

The async map is a 32-bit-wide bitmap expressed in hexadecimal. The least signifi­
cant bit corresponds to the ASCII NULL character, and the most significant bit cor­
responds to ASCII 31 decimal. These 32 ASCII characters are the control characters. 
If a bit is set in the bitmap, it signals that the corresponding character must be 
escaped before it is transmitted across the link.

To tell your peer that it doesn’t have to escape all control characters, but only a few 
of them, you can specify an async map to pppd using the asyncmap option. For exam­
ple, if only AS and A0 (ASCII 17 and 19, commonly used for XON and XOFF) must 
be escaped, use the following option:

asyncmap OxOOOAOOOO

The conversion is simple as long as you can convert binary to hex. Lay out 32 bits in 
front of you. The right-most bit corresponds to ASCII 00 (NULL), and the left-most 
bit corresponds to ASCII 32 decimal. Set the bits corresponding to the characters you 
want escaped to one, and all others to zero. To convert that into the hexadecimal 
number pppd expects, simply take each set of 4 bits and convert them into hex. You 
should end up with eight hexadecimal figures. String them all together and preprend 
“Ox” to signify it is a hexadecimal number, and you are done.

Initially, the async map is set to Oxffffffff— that is, all control characters will be 
escaped. This is a safe default, but is usually much more than you need. Each charac­
ter that appears in the async map results in two characters being transmitted across 
the link, so escaping comes at the cost of increased link utilization and a correspond­
ing performance reduction.

In most circumstances, an async map of 0x0 works fine. No escaping is performed.

The Maximum Receive Unit (MRU) signals to the peer the maximum size of HDLC 
frames that we want to receive. Although this may remind you of the Maximum 
Transfer Unit (MTU) value, these two have little in common. The MTU is a parame­
ter of the kernel networking device and describes the maximum frame size that the 
interface is able to transmit. The MRU is more of an advice to the remote end not to 
generate frames larger than the MRU; the interface must nevertheless be able to 
receive frames of up to 1,500 bytes.

Choosing an MRU is therefore not so much a question of what the link is capable of 
transferring, but of what gives you the best throughput. If you intend to run interac­
tive applications over the link, setting the MRU to values as low as 296 is a good 
idea, so that an occasional larger packet (say, from an FTP session) doesn’t make 
your cursor “jum p.” To tell pppd to request an MRU of 296, you give it the option

106 | Chapter 6: The Point-to-Point Protocol



mru 296. Small MRUs, however, make sense only if you have VJ header compression 
(it is enabled by default), because otherwise you’d waste a large amount of your 
bandwidth just carrying the IP header for each datagram.

pppd also understands a couple of LCP options that configure the overall behavior of 
the negotiation process, such as the maximum number of configuration requests that 
may be exchanged before the link is terminated. Unless you know exactly what you 
are doing, you should leave these options alone.

Finally, there are two options that apply to LCP echo messages. PPP defines two 
messages, Echo Request and Echo Response, pppd uses this feature to check whether a 
link is still operating. You can enable this by using the lcp -ech o -in terv a l option 
together with a time in seconds. If no frames are received from the remote host 
within this interval, pppd generates an Echo Request and expects the peer to return 
an Echo Response. If the peer does not produce a response, the link is terminated 
after a certain number of requests are sent. This number can be set using the lcp- 
ech o -fa ilu re  option. By default, this feature is disabled altogether.

General Security Considerations
A misconfigured PPP daemon can be a devastating security breach. It can be as bad 
as letting anyone plug their machine into your Ethernet (and that can be very bad). 
In this section, we discuss a few measures that should make your PPP configuration 
safe.

* «
' ' Root privilege is required to configure the network device and routing

table. You will usually solve this by running pppd setuid root. How-
lV ever, pppd allows users to set various security-relevant options.

To protect against any attacks a user may launch by manipulating p p p d  options, you 
should set a couple of default values in the global I etdppp!options file, like those 
shown in the sample file in “Using Options Files,” earlier in this chapter. Some of 
them, such as the authentication options, cannot be overridden by the user, and thus 
provide reasonable protection against manipulations. An important option to pro­
tect is the connect option. If you intend to allow non-root users to invoke pppd to 
connect to the Internet, you should always add the connect and noauth options to the 
global options file I etdppp!options. If you fail to do this, users will be able to execute 
arbitrary commands with root privileges by specifying the command as their con­
nect command on the pppd line or in their personal options file.

Another good idea is to restrict which users may execute pppd by creating a group in 
/etc/group and adding only those users who you wish to have the ability to execute 
the PPP daemon. You should then change group ownership of the pppd daemon to

General Security Considerations | 107



that group and remove the world execute privileges. To do this, assuming you’ve 
called your group dialout, you could use something like:

# chown root /usr/sbin/pppd
# chgrp dialout /usr/sbin/pppd
# chmod 4750 /usr/sbin/pppd

Of course, you have to protect yourself from the systems you speak PPP with, too. 
To fend off hosts posing as someone else, you should always require some sort of 
authentication from your peer. Additionally, you should not allow foreign hosts to 
use any IP address they choose, but restrict them to at most a few. The following sec­
tion will deal with these topics in detail.

Authentication with PPP
W ith PPP, each system may require its peer to authenticate itself using one of two 
authentication protocols: the Password Authentication Protocol (PAP) or the Chal­
lenge Handshake Authentication Protocol (CHAP). When a connection is established, 
each end can request the other to authenticate itself, regardless of whether it is the 
caller or the callee. In the description that follows, we will loosely talk of “client” and 
“server” when we want to distinguish between the system sending authentication 
requests and the system responding to them. A PPP daemon can ask its peer for 
authentication by sending yet another LCP configuration request identifying the 
desired authentication protocol.

PAP Versus CHAP
PAP, which is offered by many Internet Service Providers, works basically the same 
way as the normal login procedure. The client authenticates itself by sending a user­
name and a (optionally encrypted) password to the server, which the server com­
pares to its secrets database. This technique is vulnerable to eavesdroppers, who may 
try to obtain the password by listening in on the serial line, and to repeated trial and 
error attacks.

CHAP does not have these deficiencies. W ith CHAP, the server sends a randomly 
generated “challenge” string to the client along with its hostname. The client uses the 
hostname to look up the appropriate secret, combines it with the challenge, and 
encrypts the string using a one-way hashing function. The result is returned to the 
server along with the client’s hostname. The server now performs the same computa­
tion and acknowledges the client if it arrives at the same result.

CHAP also doesn’t require the client to authenticate itself only at startup time, but 
sends challenges at regular intervals to make sure that the client hasn’t been replaced 
by an intruder, for instance, by switching phone lines or because of a modem config­
uration error that causes the PPP daemon not to notice that the original phone call 
has dropped out and someone else has dialed in.

108 | Chapter 6: The Point-to-Point Protocol



pppd keeps the ’secret keys for PAP and CHAP in two separate files called /etc/ppp/ 
pap-secrets and letclppp I chap-secrets. By entering a remote host in one or the other 
file, you have fine control over whether PAP or CHAP is used to authenticate your­
self with your peer, and vice versa.

By default, pppd doesn’t require authentication from the remote host, but it will 
agree to authenticate itself when requested by the remote host. Since CHAP is so 
much stronger than PAP, pppd tries to use the former whenever possible. If the peer 
does not support it, or if pppd can’t find a CHAP secret for the remote system in its 
chap-secrets file, it reverts to PAP. If it doesn’t have a PAP secret for its peer either, it 
refuses to authenticate altogether. As a consequence, the connection is shut down.

You can modify this behavior in several ways. When given the auth keyword, pppd 
requires the peer to authenticate itself, pppd agrees to use either CHAP or PAP as 
long as it has a secret for the peer in its CHAP or PAP database. There are o th er. 
options to turn a particular authentication protocol on or off, but I won’t describe 
them here.

If all systems you talk to with PPP agree to authenticate themselves with you, you 
should put the auth option in the global I etc!ppp/options file and define passwords for 
each system in the chap-secrets file. If a system doesn’t support CHAP, add an entry 
for it to the pap-secrets file. That way, you can make sure no unauthenticated system 
connects to your host.

The next two sections discuss the two PPP secrets files, pap-secrets and chap-secrets. 
They are located in /etc/ppp and contain triplets of clients, servers, and passwords, 
optionally followed by a list of IP addresses. The interpretation of the client and 
server fields is different for CHAP and PAP, and also depends on whether we authen­
ticate ourselves with the peer or whether we require the server to authenticate itself 
with us.

The CHAP Secrets File
W hen it has to authenticate itself with a server using CHAP, pppd searches the chap- 
secrets file for an entry with the client field equal to the local hostname, and the 
server field equal to the remote hostname sent in the CHAP challenge. W hen requir­
ing the peer to authenticate itself, the roles are simply reversed: pppd then looks for 
an entry with the client field equal to the remote hostname (sent in the client’s CHAP 
response), and the server field equal to the local hostname.

The following is a sample chap-secrets file for vlager:'

# CHAP secrets for vlager.vbrew.com

#

* The double quotes are not part of the secret; they merely serve to protect the whitespace within it.

Authentication with PPP | 109



# client server secret addrs

 # ------------------------------- -------- ---------------------------
vlager.vbrew.com c3po.lucas.com "Use The Source Luke" vlager.vbrew.com 

c3po.lucas.com vlager.vbrew.com "arttoo! arttoo!" c3po.lucas.com

* vlager.vbrew.com "TuXdrinksVicBitter" pub.vbrew.com

When vlager establishes a PPP connection with c3po, c3po asks vlager to authenti­
cate itself by sending a CHAP challenge, pppd on vlager then scans chap-secrets for 
an entry with the client field equal to vlager.vbrew.com and the server field equal to 
c3po.lucas.com, and finds the first line shown in the example/ It then produces the 
CHAP response from the challenge string and the secret (Use The Source Luke), and 
sends it off to c3po.
pppd also composes a CHAP challenge for c3po containing a unique challenge string 
and its fully qualified hostname, vlager.vbrew.com. c3po constructs a CHAP 
response in the way we discussed, and returns it to vlager. pppd then extracts the cli­
ent hostname (c3po.vbrew.com) from the response and searches the chap-secrets file 
for a line matching c3po as a client and vlager as the server. The second line does 
this, so pppd combines the CHAP challenge and the secret arttoo! a r tto o !, encrypts 
them, and compares the result to c3po’s CHAP response.

The optional fourth field lists the IP addresses that are acceptable for the client 
named in the first field. The addresses can be given in dotted quad notation or as 
hostnames that are looked up with the resolver. For instance, if c3po asks to use an 
IP address during IPCP negotiation that is not in this list, the request is rejected and 
IPCP is shut down. In the sample file shown above, c3po is therefore limited to using 
its own IP address: If the address field is empty, any addresses are allowed; a value of 

prevents the use of IP with that client altogether.

The third line of the sample chap-secrets file allows any host to establish a PPP link 
with vlager because a client or server field of * is a wildcard matching any hostname. 
The only requirements are that the connecting host must know the secret and that it 
must use the IP address associated with pub.vbrew.com. Entries with wildcard host­
names may appear anywhere in the secrets file, since pppd will always use the best 
match it can find for the server/client pair.

pppd may need some help forming hostnames. As explained before, the remote host­
name is always provided by the peer in the CHAP challenge or response packet. The 
local hostname is obtained by calling the gethostname(2) function by default. If you 
have set the system name to your unqualified hostname, you also have to provide 
pppd with the domain name using the domain option:

# pppd domain vbrew.com

* This hostname is taken from the CHAP challenge.

110 | Chapter 6: The Point-to-Point Protocol



This provision appends the Brewery’s domain name to vlager for all authentication 
related activities. Other options that modify pppd's idea of the local hostname are 
usehostname and name. When you give the local IP address on the command line 
using local'.iemote and local as a name instead of a dotted quad, pppd uses this as 
the local hostname.

The PAP Secrets File
The PAP secrets file is very similar to CHAP’s. The first two fields always contain a 
username and a server name; the third holds the PAP secret. When the remote host 
sends its authentication information, pppd uses the entry that has a server field equal 
to the local hostname, and a user field equal to the username sent in the request. 
When it is necessary for us to send our credentials to the peer, pppd uses the secret 
that has a user field equal to the local username and the server field equal to the 
remote hostname.

A sample PAP secrets file might look like this:

# /etc/ppp/pap-secrets

#
# user server secret addrs 

vlager-pap c3po cresspahl vlager.vbrew.com 

c3po vlager DonaldGNUth c3po.lucas.com

The first line is used to authenticate ourselves when talking to c3po. The second line 
describes how a user named c3po has to authenticate itself with us.

The name vlager-pap in the first column is the username that we send to c3po. By 
default, pppd picks the local hostname as the username, but you can also specify a 
different name by giving the user option followed by that name.

W hen picking an entry from the pap-secrets file to identify yourself to a remote host, 
pppd must know the remote host’s name. As it has no way of finding that out, you 
must specify it on the command line using the remotename keyword followed by the 
peer’s hostname. To use the above entry for authentication with c3po, for example, 
we must add the following option to pppd's command line:

# pppd ... remotename c3po user vlager-pap

In the fourth field of the PAP secrets file (and all following fields), you can specify 
what IP addresses are allowed for that particular host, just as in the CHAP secrets 
file. The peer will be allowed to request only addresses from that list. In the sample 
file, the entry that c3po will use when it dials in— the line where c3po is the client—  
allows it to use its real IP address and no other.

Note that PAP is a rather weak authentication method, you should use CHAP 
instead whenever possible. We will therefore not cover PAP in greater detail here; if 
you are interested in using it, you will find more PAP features in the pppd(8) 
manpage.

Authentication with PPP | 111



Debugging Your PPP Setup
By default, pppd  logs any warnings and error messages to sys/og’s daemon facility. You 
have to add an entry to syslog.conf that redirects these messages to a file or even the 
console; otherwise, syslog simply discards them. The following entry sends all mes­
sages to /var/log/ppp-log:

daemon.* /var/log/ppp-log

If your PPP setup doesn’t work right away, you should look in this logfile. If the log 
messages don’t help, you can also turn on extra debugging output using the debug 
option. This output makes pppd log the contents of all control packets sent or 
received to syslog. All messages then go to the daemon facility.

Finally, the most drastic way to check a problem is to enable kernel-level debugging 
by invoking pppd with the kdebug option. It is followed by a numeric argument that is 
the sum of the following values: 1 for general debug messages, 2 for printing the con­
tents of all incoming HDLC frames, and 4 to make the driver print all outgoing 
HDLC frames. To capture kernel debugging messages, you must either run a syslogd 
daemon that reads the /proc/kmsg file, or the klogd daemon. Either of them directs 
kernel debugging to the syslog kernel facility.

More Advanced PPP Configurations
While configuring PPP to dial in to a network like the Internet is the most common 
application, some users have more advanced requirements. In this section we’ll talk 
about a few of the more advanced configurations possible with PPP under Linux.

PPP Server
Running pppd as a server is just a matter of configuring a serial tty device to invoke 
pppd with appropriate options when an incoming data call has been received. One 
way to do this is to create a special account, say ppp, and give it a script or program 
as a login shell that invokes pppd  with these options. Alternatively, if you intend to 
support PAP or CHAP authentication, you can use the mgetty program to support 
your modem and exploit its “/AutoPPP/ ” feature.

To build a server using the login method, you add a line similar to the following to 
your /etc/passwd file:*

ppp:x :500:200:Public PPP Account:/tmp:/etc/ppp/ppplogin

If your system supports shadow passwords, you also need to add an entry to the letcl 
shadow file:

The u s e r a d d  or adduser utility, if you have it, will simplify this task.

112 | Chapter 6: The Point-to-Point Protocol



ppp:!-.10913:0:99999:7:::

Of course, the UID and GID you use depends on which user you wish to own the 
connection, and how you’ve created it. You also have to set the password for the 
mentioned account using the passwd command.

The ppplogin script might look like this:
#!/bin/sh

# ppplogin - script to fire up pppd on login 

mesg n

stty -echo

exec pppd -detach silent modem crtscts

The mesg command disables other users from writing to the tty by using, for 
instance, the write command. The stty command turns off character echoing. This 
command is necessary; otherwise, everything the peer sends would be echoed back 
to it. The most important pppd option given is -detach because it prevents pppd from 
detaching from the controlling tty. If we didn’t specify this option, it would go to the 
background, making the shell script exit. This in turn would cause the serial line to 
hang up and the connection to be dropped. The s ilen t option causes pppd to wait 
until it receives a packet from the calling system before it starts sending. This option 
prevents transmit timeouts from occurring when the calling system is slow in firing 
up its PPP client. The modem option makes pppd drive the modem control lines of the 
serial port. You should always turn this option on when using pppd with a modem. 
The c r tsc ts  option turns on hardware handshake.

Besides these options, you might want to force some sort of authentication— for 
example, by specifying auth on pppd's command line or in the global options file. 
The manual page also discusses more specific options for turning individual authen­
tication protocols on and off.

If you wish to use m getty, all you need to do is configure mgetty to support the serial 
device your modem is connected to (see Chapter 3 for details), configure pppd  for 
either PAP or CHAP authentication with appropriate options in its options file, and 
finally, add a section similar to the following to your /etc/mgettyflogin.config file:

# Configure mgetty to automatically detect incoming PPP calls and invoke

# the pppd daemon to handle the connection.

#
/AutoPPP/ - ppp /usr/sbin/pppd auth -chap +pap login

The first field is a special piece of magic used to detect that an incoming call is a PPP 
one. You must not change the case of this string; it is case sensitive. The third col­
umn is the username that appears in who listings when someone has logged in. The 
rest of the line is the command to invoke. In our example, we’ve ensure.d that PAP 
authentication is required, disabled CHAP, and specified that the system passwd file 
should be used for authenticating users. This is probably similar to what you’ll want. 
Remember, you can specify the options in the options file or on the command line if 
you prefer.

More Advanced PPP Configurations | 113



Here is a small checklist of tasks to perform and the sequence you should perform 
them to get PPP dial in working on your machine. Make sure each step works before 
moving on to the next:

1. Configure the modem for auto-answer mode. On Hayes-compatible modems, 
this is performed using a command such as ATS0=3. If you’re going to be using 
the mgetty daemon, this isn’t necessary.

2. Configure the serial device with a getty-type of command to answer incoming 
calls. A commonly used getty variant is mgetty.

3. Consider authentication. Will your callers authenticate using PAP, CHAP, or 
system login?

4. Configure pppd as server as described in this section.
5. Consider routing. Will you need to provide a network route to callers? Routing 

can be performed using the ip-up script.

Demand Dialing
When there is IP traffic to be carried across the link, demand dialing causes your tele­
phone modem to dial and to establish a connection to a remote host. Demand dial­
ing is most useful when you can’t leave your telephone line permanently switched to 
your Internet provider. For example, you might have to pay timed local calls, so it 
might be cheaper to have the telephone line switched on only when you need it and 
disconnected when you aren’t using the Internet.

In the past, Linux solutions used the diald command, which worked well but was 
fairly tricky to configure. Versions 2.3.0 and later of the PPP daemon have built-in 
support for demand dialing and make it very simple to configure.

To configure pppd for demand dialing, all you need to do is add options to your 
options file or the pppd command line. Table 6-2 summarizes the options related to 
demand dialing.

Table 6-2. D em and dialing options 

Option Description

demand This option specifies that the PPP link should be placed in demand dial mode. The PPP net­
work device will be created, but the connect command will not be used until a datagram is 
transmitted by the local host. This option is mandatory for demand dialing to work.

active-filter This option allows you to specify which data packets are to be considered active traffic. Any
expression traffic matching the specified rule will restart the demand dial idle timer, ensuring that pppd

waits again before closing the link. The filter syntax has been borrowed from the tcpdump 
command. The default filter matches all datagrams.

holdof f n This option allows you to specify the minimum amount of time, in seconds, to wait before
reconnecting this link if it terminates. If the connection fails while pppd believes it is in active 
use, it will be reestablished after this timer has expired. This timer does not apply to reconnec­
tions after an idle timeout

114 | Chapter 6: The Point-to-Point Protocol



Table 6-2. Dem and dialing options (continued)

Option Description

idle n If this option is configured, pppd will disconnect the link whenever this timer expires. Idle
times are specified in seconds. Each new active data packet will reset the timer.

A simple demand dialing configuration would therefore look something like this:

demand 
holdoff 60 
idle 180

This configuration would enable demand dialing, wait 60 seconds before reestablish­
ing a failed connection, and drop the link if 180 seconds pass without any active data 
on the link.

Persistent Dialing
Persistent dialing is what people who have permanent dial-up connections to a net­
work will want to use. There is a subtle difference between demand dialing and per­
sistent dialing. W ith persistent dialing, the connection is automatically established as 
soon as the PPP daemon is started, and the persistent aspect comes into play when­
ever the telephone call supporting the link fails. Persistent dialing ensures that the 
link is always available by automatically rebuilding the connection if it fails.

You might be fortunate to not have to pay for your telephone calls; perhaps they are 
local and free, or perhaps they’re paid by your company. The persistent dialing 
option is extremely useful in this situation. If you do have to pay for your telephone 
calls, then you have to be a little careful. If you pay for your telephone calls on a 
time-charged basis, persistent dialing is almost certainly not what you want; unless 
you’re very sure you’ll be using the connection fairly steadily 24 hours a day. If you 
do pay for calls, but they are not time charged, you need to be careful to protect 
yourself against situations that might cause the modem to endlessly redial. The pppd 
daemon provides an option that can help reduce the effects of this problem.

To enable persistent dialing, you must include the p ers is t option in one of your 
pppd options files. Including this option alone is all you need to have pppd automati­
cally invoke the command specified by the connect option to rebuild the connection 
when the link fails. If you are concerned about the modem redialing too rapidly (in 
the case of modem or server fault at the other end of the connection), you can use 
the holdoff option to set the minimum amount of time that pppd will wait before 
attempting to reconnect. This option won’t solve the problem of a fault costing you 
money in wasted phone calls, but it will at least serve to reduce the impact of one.

A typical configuration might have persistent dialing options that look like this:

persist 
holdoff 600

More Advanced PPP Configurations | 115



The holdoff time is specified in seconds. In our example, pppd waits a full five min­
utes before redialing after the call drops out.

It is possible to combine persistent dialing with demand dialing, using id le  to drop 
the link if it has been idle for a specified period of time. We doubt many users would 
want to do so, but this scenario is described briefly in the pppd manpage, if you’d 
like to pursue it.

• PPPoE Options in Linux
PPPoE has become much more important recently, as it is the connection method of 
choice by a number of DSL providers. Fortunately for Linux users, a number of func­
tional options are available, most of which are easily configurable. PPPoE is nothing 
new; it is simply the same PPP as used over dial-up, except it is used over Ethernet.

For the purposes of this section, we’ll assume that your DSL modem and equipment 
are properly configured and ready for use. More information on how this is accom­
plished can be found in the excellent Linux DSL HOWTO, written by David Fannin 
and Hal Burgiss (http://www.tldp.org/HOWTO/DSL-HOWTO). Additionally, we’ll 
assume that the Ethernet card in your PC is installed and operational.

In most DSL environments the DSL modem is configured to be a bridge, meaning 
that it w on’t have an IP address. As a result of this, your server will be configured 
with a WAN IP address. Before enabling the WAN interface, you should make cer­
tain that you’ve patched all of the listening services on your machine. Additionally, 
you should consider using an IPtables or other firewall. Security when connecting 
directly to the Internet should be of the utmost importance. It has been reported that 
unpatched versions of some Linux distributions survive only a few hours on the 
Internet before they’re compromised. Make sure you’ve done as much as possible to 
ensure that this doesn’t happen to you!

PPPoE Clients
To get started with configuring PPPoE, you will need to obtain a PPPoE client. There 
are a number of clients available, including one from Roaring Penguin that has 
become very popular with many users and providers. It can be downloaded from 
http://www.roaringpenguin.com in both source format and as pre-compiled RPMs. 
When you’ve downloaded and compiled or installed the software, you are ready for 
configuration. The client software comes with a very easy to use configuration script 
called adsl-setup. It will ask you a number of questions about your system, network, 
and PPPoE user information. In some cases it will have already provided the answers, 
requiring you to only confirm!

However helpful, the script isn’t foolproof, so we’ll walk through a manual configu­
ration. It’s also a good idea, especially from the network administrator’s viewpoint,

116 | Chapter 6: The Point-to-Point Protocol

http://www.tldp.org/HOWTO/DSL-HOWTO
http://www.roaringpenguin.com


to have a good idea of how software is configured, just in case something goes wrong 
in the future.

PPPoE manual client configuration
Configuring the client is pretty easy, especially if you’ve previously set up a standard 
PPP configuration. First, you’ll need to edit the /etc/ppp/pap-secrets file. You will 
need to replace the default values with your PPPoE username and password. The file 
will look something like this:

#User #Server #Password #IP

groucho@dslcompany.to * my_password *

Next, open the /etc/ppp/pppoe.conf file in your text editor. You will need to tell it 
both your WAN interface name, and your PPPoE username. The relevant lines in the 
file appear as follows:

# Ethernet card connected to ADSL modem 

ETH=ethO

# ADSL user name. You may have to supply "Qprovider.com"

USER=groucho@dslcompany.to

The file contains a number of additional configuration options. Unless you’re really 
certain that you need to change these, you probably shouldn’t. If you are deter­
mined to make some changes, refer to the PPP manpages for more information.

Lastly, if you haven’t already configured your DNS servers in the /etc/resolv.conf file, 
this should be done now. Detailed information about DNS configuration can be 
found in Chapter 5.

When you’ve finished with the configuration, you can now test the connection to see 
if it works. The adsl-start script is used specifically for this purpose. You can call it 
from the command line, or, ideally, include it in your system startup scripts. This is 
accomplished differently for almost every distribution. Consult documentation spe­
cific to your distribution for specifics on how to install startup scripts.

If the startup script completes without errors, you should be connected to the Inter­
net. A quick and easy way to test this is to ping something that will answer. Success 
will look like this:

vlager# ping wMM.google.com
PING www.google.akadns.net (66.102.7.99) 56(84) bytes of data.

64 bytes from 66.102.7.99: icmp_seq=l ttl=245 time=5.94 ms 

64 bytes from 66.102.7.99: icmp_seq=2 ttl=245 time=5.02 ms 

64 bytes from 66.102.7.99: icmp_seq=3 ttl=245 time=5.02 ms 
ctrl-c
—  www.google.akadns.net ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2009ms 

rtt min/avg/max/mdev = 5.028/5.333/5.945/0.440 ms 

vlager#

PPPoE Options in Linux | 117

mailto:groucho@dslcompany.to
mailto:groucho@dslcompany.to
http://www.google.akadns.net
http://www.google.akadns.net


Additionally, you can check the configuration by using ifconfig: 

vlager# ifconfig -a
etho Link encap:Ethernet HWaddr 00:08:02:FO:BB:OE

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 

RX packets:8701578 errors:6090 dropped:0 overruns:0 frame:5916 

TX packets:3888596 errors:0 dropped:0 overruns:0 carrier:0 

collisions:6289 txqueuelen:100

RX bytes:1941625928 (1851.6 Mb) TX bytes:1481305134 (1412.6 Mb)

Interrupt:30

ethl Link encap:Ethernet HWaddr 00:90:27:FE:02:A0

inet addr:lO.10.0.254 Beast:10.10.0.255 Mask:255.255.255.0 
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 

RX packets:48920435 errors:0 dropped:0 overruns:0 frame:0 

TX packets:55211769 errors:0 dropped:0 overruns:2 carrier:9 
collisions:367030 txqueuelen:lOO

RX bytes:2018181326 (1924.6 Mb) TX bytes:1564406617 (1491.9 Mb)

Interrupt:10 Base address:0x4000

pppO Link encap:Point-to-Point Protocol

inet addr: 64.168.44.33 P-t-P:64.168.44.1 Mask:255.255.255.255 
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1492 Metric:1 

RX packets: 8701576 errors:0 dropped:0 overruns:0 frame:0 

TX packets: 3888594 errors:0 dropped:0 overruns:0 carrier:0 

collisions:0 txqueuelen:10

If something isn’t working properly at this point, check all of your connections, and 
ensure the DSL gear is properly configured. Additionally, recheck your username and 
password in the configuration files— a mistyped password is one of the most com­
mon configuration problems!

118 | Chapter 6: The Point-to-Point Protocol



CHAPTER 7

TCP/IP Firewall

Security is increasingly important for companies and individuals alike. The Internet 
provides them with a powerful tool to distribute information about themselves and 
obtain information from others, but it also exposes them to dangers from which they 
were previously exempt. Computer crime, information theft, and malicious damage 
are all potential dangers.

This chapter covers the Linux features for setting up a firewall, known both by its 
command interface (iptables) and its kernel subsystem name (netfilter). This firewall 
implementation was new in the 2.4 kernel and works substantially the same way in 
2.6.
A malicious person who gains access to a computer system may guess system pass­
words or exploit the bugs and idiosyncratic behavior of certain programs to obtain a 
working account on that host. Once they are able to log in to the host, they may have 
access to sensitive information. In a commercial setting, stealing, deleting, or modify­
ing information such as marketing plans, new project details, or customer informa­
tion databases can cause significant damage to the company.

The safest way to avoid such widespread damage is to prevent unauthorized people 
from gaining network access to the host. This is where firewalls come in.

Constructing secure firewalls is an art. It involves a good understand­
ing of technology, but equally important, it requires an understanding 
of the philosophy behind firewall designs. We won’t cover everything 
you need to know in this book; we strongly recommend you do some 
additional research before trusting any particular firewall design, 
including any we present here.

We will focus on the Linux-specific technical issues in this chapter. Later we will 
present a sample firewall configuration that should serve as a useful starting point in 
your own configuration, but as with all security-related matters, you’ll want to make 
sure that you understand the information well enough to customize it to suit your

119



needs and verify that the result is sufficient. Double-check the design, make sure that 
you understand it, and then modify it to suit your requirements. To be safe, be sure.

Methods of Attack
As a network administrator, it is important that you understand the nature of poten­
tial attacks on computer security. W e’ll briefly describe the most important types of 
attacks so that you can better understand precisely what the Linux IP firewall will 
protect you against. You should do some additional reading to ensure that you are 
able to protect your network against other types of attacks. Here are some of the 
more important methods of attack and ways of protecting yourself against them:

Unauthorized access
This simply means that people who shouldn’t be allowed to use your computer 
services are able to connect to and use them. For example, people outside your 
company might try to connect to your company accounting host or to your NFS 
server.
There are various ways to avoid this attack by carefully specifying who can gain 
access through these services. You can prevent network access to all except the 
intended users.

Exploitation of known weaknesses in programs
Some programs and network services were not originally designed with strong 
security in mind and are inherently vulnerable to attack. The BSD remote ser­
vices (rlogin, rexec, etc.) are an example.
The best way to protect yourself against this type of attack is to disable any vul­
nerable services or find alternatives. A good place to start is to only install, run 
and expose services that you absolutely have to. Start with no network services 
and work your way up from there. Use the netstat command to determine the 
ports that your host is listening on, make sure the list is as small as possible, and 
know exactly what each of them is for. Don’t run any network services on the 
firewall host, with the possible exception of Secure Shell (SSH)
Track bug databases and patch lists and keep your systems up to date. Two of 
the most popular bug databases are the Bugtraq database, available online at 
http://www.securityfocus.com/bid (see also http://www.securityfocus.com/rss for 
information on accessing Bugtraq via an RSS feed) and the Common Vulnerabili­
ties and Exposures (CVE) database, available online at http://cve.mitre.org/ (see 
also the RSS at http://www.opensec.org/feeds/cve/latest.xml). Most Linux distribu­
tors provide tools to download and install updates. Red Hat has a utility called 
yum, SuSE has a utility called YaST Online Update (YOU), and Debian uses apt- 
get.

120 | Chapter 7: TCP/IP Firewall

http://www.securityfocus.com/bid
http://www.securityfocus.com/rss
http://cve.mitre.org/
http://www.opensec.org/feeds/cve/latest.xml


SSH and iptables
W ith SSH and iptables, you have two easy ways to access hosts and services 
inside your network from the outside world without exposing them directly. 
First, you can run SSH on the firewall and use SSH’s port forwarding feature to 
access internal hosts and services from the outside, without exposing them 
directly to the outside. Section 12.1 of Bob Toxen’s book Real World Linux Secu­
rity, Second Edition (Prentice Hall), has additional information on using SSH in 
this way. Second, you can use iptables Destination Network Address Translation 
to expose SSH for multiple servers as distinct ports on the firewall’s public IP 
address, with the connections forwarded to the individual hosts inside the net­
work. See Chapter 9 for more information on Network Address Translation.

Denial of service
Denial of service attacks cause the service or program to cease functioning or 
prevent others from making use of the service or program. These may be per­
formed at the network layer by sending carefully crafted and malicious packets 
that cause network connections to fail. They may also be performed at the appli­
cation layer, where carefully crafted application commands are given to a pro­
gram that cause it to become extremely busy or stop functioning.
Preventing suspicious network traffic from reaching your hosts and preventing 
suspicious program commands and requests (this requires software that under­
stands the underlying protocols, such as proxy servers) are the best ways of mini­
mizing the risk of a denial of service attack. It’s useful to know the details of the 
attack method, so you should educate yourself about each new attack as it gets 
publicized.

Spoofing
This type of attack involves one host or application pretending to be another. 
Typically the attacker’s host pretends to be an innocent host by forging IP 
addresses in network packets. For example, a well-documented exploit of the 
BSD rlogin service can use this method to mimic a TCP connection from 
another host by guessing TCP sequence numbers.
To protect against this type of attack, verify the authenticity of packets and com­
mands (a combination of filtering and proxy servers can help here). Prevent 
packet routing with invalid source addresses. Use operating systems (such as 
Linux) with unpredictable connection control mechanisms, such as TCP 
sequence numbers and the allocation of dynamic port addresses.
Putting hosts with operating systems that have insecure sequence number algo­
rithms behind a Linux firewall performing Network Address Translation allows 
you to continue to use them with increased safety, since the firewall host will use

Methods of Attack | 121



its own sequence numbering algorithms for communication with the outside 
world.

Eavesdropping
This is the simplest type of attack. A host is configured to “listen” to and cap­
ture data not belonging to it (by putting its network interface into “promiscu­
ous” mode and monitoring all packets traversing the network segment). 
Carefully written eavesdropping programs can take usernames and passwords 
from user login network connections. Broadcast networks such as unswitched 
Ethernet are especially vulnerable to this type of attack, although it does require 
physical access to the Ethernet network. Wireless networks have similar prob­
lems and can be more dangerous since physical access is not required; proximity 
is sufficient.
To protect against this type of threat, avoid use of broadcast network technolo­
gies and enforce the use of data encryption.
It is more complicated, but not impossible, to do packet sniffing in a switched 
environment. Some Ethernet switches have administrative settings or even fail­
ure modes that cause them to copy all packets to one or more of their ports.

IP firewalling is very useful in preventing or reducing unauthorized access, network 
layer denial of service, and IP spoofing attacks. It not very useful in avoiding exploi­
tation of weaknesses in network services or programs and eavesdropping.

What Is a Firewall?
A firewall is a hardened and trusted host that acts as a choke point among a group of 
networks (usually a single private network and a single public network).* All net­
work traffic among the affected networks is routed through the firewall. The firewall 
host is configured with a set of rules that determine which network traffic will be 
allowed to pass and which will be blocked (dropped without response) or refused 
(rejected with a response). In some large organizations, you may even find a firewall 
located inside their corporate network to segregate sensitive areas of the organiza­
tion from employees in other areas. Many cases of computer crime originate within 
an organization, rather than from outside.

Firewalls can be constructed in a variety of ways. The most sophisticated arrange­
ment involves a number of separate hosts and is known as a perimeter network or 
demilitarized zone (DMZ) network. Two hosts act as “filters” (sometimes called 
chokes) to allow only certain types of network traffic to pass, and between these 
chokes reside network servers such as an email (SMTP) server or a W orld Wide Web

* The term firewall comes from a device used to protect people from fire. The firewall is a shield of material 
resistant to fire that is placed between a potential fire and the people it is protecting.

122 | Chapter 7: TCP/IP Firewall



(HTTP) proxy server. This configuration can be very safe and allows a great range of 
control over who can connect both from the inside to the outside and from the out­
side to the inside. This sort of configuration might be used by large organizations.

In many cases, though, people build firewalls that also provide other services (such 
as SMTP or HTTP). These are less secure because if someone exploits a weakness in 
one of the extra services running on the firewall, the entire network’s security has 
been breached. The attacker could modify the firewall rules to allow more access and 
turn off accounting that might have otherwise alerted the network administrator that 
there was unusual network activity. Nevertheless, these types of firewalls are cheaper 
and easier to manage than the more sophisticated arrangement just described. 
Figure 7-1 illustrates the two most common firewall configurations.

Internet

Application
Server

i LAN Intranet

IP Filter

Application
Server

Internet

IP Filter and 
Application Server

Intranet

Figure 7-1. The tw o m ajor classes o f  firew a ll design

The Linux kernel provides a range of built-in features that allow it to function as an 
IP firewall. The network implementation includes code (the netfilter subsystem) to 
do IP packet processing in a number of different ways, and provides a user-space 
mechanism (the iptables command) to configure what sort of rules you’d like to put 
in place. A Linux firewall is flexible enough to make it very useful in either of the 
configurations illustrated in Figure 7-1. Linux firewall software provides two other 
useful features that we’ll discuss in separate chapters: IP Accounting (Chapter 8) and 
IP Masquerade and Network Address Translation (Chapter 9).

The three main classes of packet processing are filtering, mangling, and Network 
Address Translation (NAT). Filtering is simply deciding, at various points in the 
packet flow, whether or not to allow the packets through to the next stage. Packet 
mangling is a generic term for modifying packets as they move through the packet

What Is a Firewall? | 123



flow. NAT is a special application of mangling whereby source or destination IP 
addresses and/or ports are modified to transparently redirect traffic.

What Is IP Filtering?
IP filtering is simply a mechanism that decides which types of IP packets will be pro­
cessed normally and which will be dropped or rejected. By dropped we mean that the 
packet is deleted and completely ignored, as if it had never been received. By rejected 
we mean that the firewall sends an ICMP response to the sender indicating a reason 
why the packet was rejected. You can apply many different sorts of criteria to deter­
mine which packets you wish to filter. Some examples of these are:

• Protocol type: TCP, UDP, ICMP, etc.
• Port number (for TCP/UPD)
• Packet type: SYN/ACK, data, ICMP Echo Request, etc.
• Packet source address: wh^re it came from
• Packet destination address: where it is going to

It is important to understand at this point that IP filtering is a network layer facility. 
This means that it doesn’t understand anything about the application using the net­
work connections, only about the connections themselves. For example, you may 
deny users access to your internal network on the default Telnet port, but if you rely 
on IP filtering alone, you can’t stop them from using the Telnet program with a port 
that you do allow to pass through your firewall. You can prevent this sort of prob­
lem by using proxy servers for each service that you allow across your firewall. The 
proxy servers understand the application that they were designed to proxy and can 
therefore prevent abuses, such as using the Telnet program to get past a firewall by 
using the W orld Wide Web port. If your firewall supports a World Wide Web 
proxy, outbound Telnet connections on the HTTP port will always be answered by 
the proxy and will allow only HTTP requests to pass. A large number of proxy-server 
programs exist. Some are free software and many others are commercial products. 
The Firewall and Proxy Server HOWTO (available online at http://www.tldp.org/ 
HO WTO/Fir ewall-HOWTO.html) discusses one popular set of these, but they are 
beyond the scope of this book.

The IP filtering rule set is made up of many combinations of the criteria listed previ­
ously. For example, let’s imagine that you wanted to allow World Wide Web users 
within the Virtual Brewery network to have no access to the Internet except to use 
other sites’ web servers. You would configure your firewall to allow forwarding of 
the following:

• Packets with a source address on Virtual Brewery network, a destination address 
of anywhere, and with a destination port of 80 (WWW)

124 | Chapter 7: TCP/IP Firewall

http://www.tldp.org/


• Packets with a destination address of Virtual Brewery network and a source port 
of 80 (WWW) from a source address of anywhere

Note that we’ve used two rules here. We have to allow our data to go out, but also 
the corresponding reply data to come back in. In practice, as we’ll see in the chapter 
on IP masquerade and Network Address Translation (Chapter 9), iptables simplifies 
this and allows us to specify this in one command.

Netfilterand iptables
While developing the previous version of Linux IP firewalling (called ipchains), Paul 
“Rusty” Russell decided that IP firewalling should be less difficult. He set about the 
task of simplifying aspects of packet processing in the kernel firewalling code and 
produced a filtering framework that was both much cleaner and much more flexible. 
He called this new framework netfilter.

While ipchains was a vast improvement over its predecessor (ipfwadm) for the man­
agement of firewall rules, the way it processed packets was still complex, especially 
in conjunction with important features such as IP masquerade (discussed in 
Chapter 9) and other forms of address translation. Part of this complexity existed 
because IP masquerade and NAT were developed independently of the IP firewalling 
code and integrated later, rather than having been designed as a true part of the fire­
wall code from the start. If a developer wanted to add yet more features in the 
packet-processing sequence, he would have had difficulty finding a place to insert 
the code and would have been forced to make changes in the kernel in order to do 
so.

netfilter addresses both the complexity and the rigidity of older solutions by imple­
menting a generic framework in the kernel that streamlines the way packets are pro­
cessed and provides a capability to extend filtering policy without having to modify 
the kernel. The Linux 2.4 Packet Filtering HOWTO (available online at http://www. 
netfilter.orgldocumentationlHOWTOIpacket-filtering-HOWTO.htm1) offers a detailed 
list of the changes that have been made, so let’s focus on the more practical aspects 
here.

To build a Linux IP firewall, it is necessary to have a kernel built with IP firewall (net­
filter) support and the iptables user-space configuration utility. The netfilter code is 
the result of a large redesign of the packet handling flow in Linux, netfilter provides 
direct backward-compatible support for both of the two older Linux firewalling solu­
tions (ipfwadm and ipchains), as well as a new command called iptables. In this book, 
we’ll only cover iptables, but you can refer to previous editions of this book if you 
need to understand ipfwadm or ipchains rules.

Netfilter and iptables | 125

http://www


Example iptables Commands
The iptables architecture groups network packet processing rules into tables by func­
tion (packet filtering, network address translation, and other packet mangling), each 
of which have chains (sequences) of processing rules. Rules consist of matches (used 
to determine which packets the rule will apply to) and targets (which determine what 
will be done with the matching packets).

iptables operates at OSI Layer 3 (Network). For OSI Layer 2 (Link), there are other 
technologies such as ebtables (Ethernet Bridge Tables). See http://ebtables. 
sourceforge.net/ for more information.

This section will give a couple examples of iptables usage with high-level explana­
tions. See the “iptables Concepts” section, later in the chapter, for additional infor­
mation.

A packet-filtering example
This command could be used on a firewall to filter out all non-HTTP traffic, imple­
menting the rules described in the earlier section, “W hat Is IP Filtering?”, assuming 
etho is the Ethernet interface on the inside and eth l is the Ethernet interface to the 
Internet.

iptables -t filter -P FORWARD DROP

iptables -t filter -A FORWARD -i etho -p tcp --dport 80 -j ACCEPT 

iptables -t filter -A FORWARD -i ethl -p tcp --sport 80 -j ACCEPT

The first command sets the default policy for the FORWARD chain of the f i l t e r  table to 
DROP all packets. Table 7-1 shows how the second command means “allow all out­
bound HTTP requests.” The third command is similar except that it means “allow 
all inbound HTTP responses.”

Table 7-1. D ecom posed exam ple iptables com m and  argum ents

Component Description

-t filter Operate on the filter table (actually, the default)...
-A FORWARD ... by appending the following rule to its FORWARD chain.
-i etho Match packets coming in on the etho (inside) network interface.
-P tcp ...and using the tcp (TCP/IP) protocol
--dport 80 ... and intended for port 80 on the (outside) destination host.
-j ACCEPT Accept the packet for forwarding.

A Masquerading example
The previous section’s packet filtering example doesn’t make the best use of iptables’ 
functionality. If you have a dynamic IP address on your Internet interface, you’d be 
better off using Masquerading (see Chapter 9 for more on Masquerading):

126 | Chapter 7: TCP/IP Firewall

http://ebtables


iptables -t nat -P POSTROUTING DROP

iptables -t nat -A POSTROUTING -o ethl -p tcp --dport 80 -j MASQUERADE

A network translation example
This command could be used on a firewall to forward incoming HTTP traffic to a 
web server on the internal network (see Chapter 9 for more on Network Address 
Translation):

iptables -t nat -A PREROUTING -i ethl -p tcp -dport 80 \
-j DNAT --to-destination 192.168.1.3:8080

Table 7-2 shows what this sample iptables command means.

Table 7-2. Decomposed example iptables command arguments

Component

-t nat
-A PREROUTING 
-i ethl 
-P tcp 
--dport 80 
-j DNAT
--to-destination 192.168.1.3: 
8080

Description

Operate on the nat (Network Address Translation) table...
... by appending the following rule to its PREROUTING chain.
Match packets coming in on the ethl network interface...
...and using the tcp (TCP/IP) protocol 
... and intended for local port 80.
Jump to the DNAT (Destination Network Address Translation) target...
... and change the destination address to 192.168.1.3 and destination 
port to 8080.

iptables Concepts
iptables defines five “hook points” in the kernel’s packet processing pathways: 
PREROUTING, INPUT, FORWARD, POSTROUTING, and OUTPUT. Built-in chains are attached to 
these hook points; you can add a sequence of rules for each of them. Each of these 
represents an opportunity to affect or monitor packet flow.

It is common to refer to “the PREROUTING chain of the nat table,” which 
makes it seem like chains belong to tables. But chains and tables are 
only partially correlated, and neither really “belongs” to the other. 
Chains represent hook points in the packet flow, and tables represent 
the types of processing that can occur. Figure 7-2 shows all the legal 
combinations, and the order in which they are encountered by pack­
ets flowing through the system.

Packet Flow
Figure 7-2 shows how packets traverse the system. The boxes represent the iptables 
chains, and inside each box is a list of the tables that have such a chain (in the order

iptables Concepts | 127



in which they are invoked). All of these Table and Chain combinations are involved 
in packet mangling.

PREROUTING: 
(Network interface j — ► * mangle

w tT * _ _ t

INPUT:
* mangle 
♦filter

POSTROUTING: 
*  mangle 
*nat

I — Loca| process ^

OUTPUT: I ^
*  mangle U— C  
*nat I  ^
*  fitter \

Figure 7-2. All network packet flow hook points

In Figure 7-3, the gray boxes represent chains and tables not involved in NAT.

Figure 7-4 shows how packets traverse the system for packet filtering.

Table 7-3 shows the five “hook points” and describes the points in the packet flow 
where they allow you to specify processing.

« * 4 .

For the curious, the hook points are defined in the kernel header file 
/usr/include/linuxlnetfilter_ipv4.h with names such as NF_IP_FORWARD,

V NF_IP_L0CAL_{IN,OUT}, and NF_IP_{PRE,POST}_ROUTING.

128 | Chapter 7: TCP/IP Firewall



PREROUTING:
(  Network interface);— ► * mangle

(Network interface

*nat

■ ~ t ...FORWARD:
* mangle i
* filter > _ r _ .

POSTROUTING: ,
* mangle *  
*nat ¡

INPUT: __________
* mangle ^ - < L o g I process J
* filter

OUTPUT: i ___________
* mangle j*— ( Local process \
* nat i V ,  ■ -.....
•filter

Figure 7-4. Network packet flow and hook points for filtering 

Table 7-3. Hook points

Hook

FORWARD

INPUT

OUTPUT

POSTROUTING

PREROUTING

Allows you to process packets...

flowing through a gateway computer, coming in one interface and going right back out 
another.
just before they are delivered to a local process, 
just after they are generated by a local process, 
just before they go out a network interface.
just as they arrive from a network interface (after dropping any packets resulting from 
the interface being in "promiscuous" mode, and after checksum validation).

Your choice of chain will be based on where in the packet lifecycle you need to apply 
your rules. For example, if you w ant to filter outgoing packets, you generally do so in 
the OUTPUT chain, since the POSTROUTING chain is no t associated with the f i l t e r  table.

Three Ways We Can Do Filtering
Consider how a Unix host, or in fact any host capable of IP routing, processes IP 
packets. The basic steps, shown in Figure 7-5 are:

1. The IP packet is received.
The incoming IP packet is examined to determine if it is destined for a process 
on this host.

2. If the packet is for this host, it is processed locally.
3. If it is not destined for this host (and IP forwarding is turned on), a search is 

made of the routing table for an appropriate route and the packet is forwarded 
to the appropriate interface or rejected if no route can be found.

4. Packets from local processes are sent to the routing software for forwarding to 
the appropriate interface.

iptables Concepts | 129



Figure 7-5. The stages o f IP packet processing

The outgoing IP packet is examined to determine if there is a valid route for it to 
take; if not, it is dropped (ignored completely) or rejected (ignored after sending 
an ICMP message indicating there is no route to the destination host).

5. The IP packet is transmitted.

In our diagram, the flow 1 -♦ 3 -> 5 represents our host routing data between a host on 
our Ethernet network to a host reachable via our PPP link. The flows 1 -► 2 and 4 -> 5 
represent the data input and output flows of a network program running on our local 
host. The flow 4 -> 3 -> 2 would represent data flow via a loopback connection. Natu­
rally, data flows both into and out of network devices. The question marks on the dia­
gram represent the points where the IP layer makes routing decisions.

The Linux kernel IP firewall is capable of applying filtering at various stages in this 
process. That is, you can filter the IP packets that come into your host, filter those 
packets being forwarded across your host, and filter those packets that are ready to 
be transmitted.

This may seem unnecessarily complicated at first, but it provides flexibility that 
allows some very sophisticated and powerful configurations to be built.

Tables
iptables comes with three built-in tables: filter, mangle, and nat. Each of these is 
preconfigured with chains corresponding to one or more of the hook points 
described in Table 7-4 and shown in Figure 7-2.

130 | Chapter 7: TCP/IP Firewall



Table 7-4. Built-in tables

Table Description

filter Used to set policies for the type of traffic allowed into, through, and out of the computer. Unless you
refer to a different table explicitly, iptables will operate on chains within this table by default.
Its built-in chains are FORWARD, INPUT, and OUTPUT.

mangle Used for specialized packet alteration, such as stripping off IP options (as with the IPV40PTSSTRIP
target extension).
Its built-in chains are FORWARD, INPUT, OUTPUT, POSTROUTING, and PREROUTING.

nat Used in conjunction with connection tracking to redirect connections for NAT, typically based on
source or destination addresses.
Its built-in chains are OUTPUT, POSTROUTING, and PREROUTING.

iptables arranges for the appropriate chains in these tables to be traversed by net­
work packets based on the source and destination, and in the order depicted in 
Figure 7-2.

The default table is the f i l t e r  table; If you do not specify an explicit table in an 
iptables command, f i l t e r  is assumed.

Chains
Packets traverse chains, being presented to the chain’s rules one at a time in order. If 
the packet does not match the rule’s criteria, it moves on to the next rule in the 
chain. If a packet reaches the last rule in a chain and still does not match, the chain’s 
policy is applied to it.

By default, each table has chains (initially empty) for some or all of the hook points. 
See Table 7-3 for a list of hook points, and Table 7-4 for a list of built-in chains for 
each table.

In addition, you can create your own custom chains to organize your rules.

A chain’s policy is used to determine the fate of packets that reach the end of the 
chain without otherwise being sent to a specific target. Only the built-in targets 
ACCEPT and DROP (described in “Targets,” later in this chaper) may be used as the pol­
icy for a built-in chain, and the default is ACCEPT. All user-defined chains have an 
implicit policy of RETURN, which cannot be changed.

If you want to have a more complicated policy target for a built-in chain, or a policy 
other than RETURN for a user-defined chain, you can add a rule to the end of the chain 
that matches all packets, with any target you like. You can set the chain’s policy to 
DROP just in case you make a mistake in your catch-all rule, or to filter out traffic 
while you make modifications to your catch-all rule (by deleting it and re-adding it 
with changes).

iptables Concepts | 131



Rules
An iptables rule consists of one or more match criteria to determine which network 
packets it will affect and a target specification that determines how the network 
packets will be affected. All match options must be satisfied for the rule to match a 
packet.

The system maintains packet and byte counters for every rule. Every time a packet 
reaches a rule and matches the rule’s criteria, the packet counter is incremented and 
the byte counter is increased by the size of the matching packet.

Both the match and the target portion of the rule are optional. If there are no match 
criteria, all packets are considered to match. If there is no target specification, noth­
ing is done to the packets (processing will proceed as if the rule did not exist except 
that the packet and byte counters will be updated). You can add such a “null” rule to 
the FORWARD chain of the f i l t e r  table with the command ip tables - t  f i l t e r  -A 
FORWARD.

Matches
There are a wide variety of matches available for use with iptables, although some are 
available only for kernels with certain features enabled. Generic Internet Protocol 
(IP) matches (such as protocol or source or destination address) are applicable to any 
IP packet.

In addition to the generic matches, iptables includes many specialized matches avail­
able through dynamically loaded extensions (you use the iptables -m or --match 
option to tell iptables that you want to use one of these extensions).

There is one match extension for dealing with a networking layer below the IP layer. 
The mac match extension matches based on Ethernet Media Access Controller 
(MAC) addresses.

Targets
Targets are used to specify the action to take when a rule matches a packet, and also 
to specify chain policies. There are four targets built into iptables, and extension 
modules that provide others. Table 7-5 describes these built-in targets.

Table 7-5. Built-in targets 

Target Description

ACC E PT Let the packet through to the next stage of processing. Stop traversing the current chain, and start at
the next stage shown in Figure 7-2.

DROP Discontinue processing the packet completely. Do not check it against any other rules, chains, or tables.
If you want to provide some feedback to the sender, then you can use the REJECT target extension.

132 | Chapter 7: TCP/IP Firewall



Target Description

QUEUE Send the packet to userspace (i.e., code not in the kernel).
See the lipipq manpage for more information.

RETURN From a rule in a user-defined chain, discontinue processing this chain, and resume traversing the call­
ing chain at the rule following the one that had this chain as its target.
From a rule in a built-in chain, discontinue processing the packet and apply the chain's policy to it.
See the "Chains" section earlier in this chapter for more information about chain policies.

Setting Up Linux for Firewalling
The Linux kernel must be configured to support IP firewalling. There isn’t much 
more to it than selecting the appropriate options when performing:

# make menuconfig

of your kernel.' In 2.4 kernels you should select the following options:

Networking options --->

[*] Network packet filtering (replaces ipchains)

IP: Netfilter Configuration --->

<M> Userspace queueing via NETLINK (EXPERIMENTAL)

<M> IP tables support (required for filtering/masq/NAT)

Table 7-5. Built-in targets (continued)

<M> limit match support

<M> MAC address match support

<M> netfilter MARK match support

<M> Multiple port match support

<M> TOS match support

<M> Connection state match support

<M> Unclean match support (EXPERIMENTAL)

<M> Owner match support (EXPERIMENTAL)

<M> Packet filtering

<M> REJECT target support

<M> MIRROR target support (EXPERIMENTAL)

<M> Packet mangling

<M> TOS target support

<M> MARK target support

<M> LOG target support

<M> ipchains (2.2-style) support 

<M> ipfwadm (2.0-style) support

* Firewall packet logging is a special feature that writes a line ot information about each datagram that matches 
a particular firewall rule out to a special device so you can see them.

Setting Up Linux for Firewalling | 133



Loading the Kernel Module
Before you can use the iptables command, you must load the netfilter kernel module 
that provides support for it. The easiest way to do this is to use the modprobe com­
mand as follows:

# modprobe ipjtables

Backward Compatibility with ipfwadm and ipchains
The remarkable flexibility of Linux netfilter is illustrated by its ability to emulate the 
ipfwadm and ipchains interfaces. Emulation makes the initial transition to the new 
generation of firewall software much easier (although you’d want to rewrite your 
rules as iptables eventually).

The two netfilter kernel modules called ipfwadm.o and ipchains.o provide backward 
compatibility for ipfwadm and ipchains. You may load only one of these modules at a 
time, and use one only if the ip_tables.o module is not loaded. W hen the appropriate 
module is loaded, netfilter works exactly like the former firewall implementation.

netfilter mimics the ipchains interface with the following commands:

# rmmod ip tables
# modprobe ipchains
# ipchains options

Using iptables
The iptables command is extensible through dynamically loaded libraries. It is 
included in the netfilter source package available at http://www.netfilter.org/. It will 
also be included in any Linux distribution based on the 2.4 series kernels.

The iptables command is used to configure IP filtering and NAT (along with other 
packet-processing applications, including accounting, logging, and mangling). To 
facilitate this, there are two tables of rules called filter and nat. The filter table is 
assumed if you do not specify the - t  option to override it. Five built-in chains are 
also provided. The INPUT and FORWARD chains are available for the filter table, the 
PREROUTINC and POSTROUTINC chains are available for the nat table, and the OUTPUT 
chain is available for both tables. In this chapter we’ll discuss only the filter table. 
W e’ll look at the nat table in Chapter 9.

The general syntax of most iptables commands is:

# iptables command rule-specification extensions

Now we’ll take a look at some options in detail, after which we’ll review some exam­
ples.

Most of the options for the iptables command can be grouped into subcommands 
and rule match criteria. Table 7-6 describes the other options.

134 | Chapter 7: TCP/IP Firewall

http://www.netfilter.org/


Table 7-6. iptables miscellaneous options

Option

-c packets bytes

--exact
-h

--help
-j target [options]

--jump

--line-numbers

-m match [options]

--match
-M cmd

--modpiobe=cmd

--numeric 

--set-counters 

-t table

--table

-v

--verbose

-x

Description

When combined with the -A, - I, or -R subcommand, sets the packet counter to 
packets and the byte counter to bytes for the new or modified rule.
Synonym for-x.
Displays information on iptables usage. If it appears after -m match or - j target, 
then any additional help related to the extension match or target (respectively) 
is also displayed.
Synonym for -h.
Determines what to do with packets matching this rule. The target can be the 
name of a user-defined chain, one of the built-in targets, or an iptables extension (in 
which case there may be additional options).

Synonym for-j.
When combined with the - L subcommand, displays numbers for the rules in each 
chain, so you can refer to the rules by index when inserting rules into (via -1) or 
deleting rules from (via -D) a chain. Be aware that the line numbering changes as 
you add and remove rules in the chain.
Invoke extended match, possibly with additional options.

Synonym for-m.
Used to load an iptables module (with new targets or match extensions) when 
appending, inserting, or replacing rules.
Synonym for-M.
Displays numeric addresses and ports, instead of looking up domain names for the IP 
addresses and service names for the port numbers.
This can be especially useful if your DNS service is slow or down.
Synonym for-n.
Synonym for-c.
Performs the specified subcommand on table. If this option is not used, the sub­
command operates on the filter table by default.
Synonym for-t.
Produces verbose output.
Synonym for-v.
Displays exact numbers for packet and byte counters, rather than the default abbre­
viated format with metric suffixes (K, M, or G).

Getting Help
iptables provides some source of online help. You can get basic information via the 
folowing commands:

iptables -h | --help 
iptables -m match -h 
iptables -j TARGET -h 
man iptables

Using iptables | 135



Sometimes there are contradictions among these sources of informa­
tion.

The iptables Subcommands
Each iptables command can contain one subcommand, which performs an opera­
tion on a particular table (and, in some cases, chain). Table 7-7 lists the options that 
are used to specify the subcommand.

The manpage for the iptables command in the 1.2.7a release shows a -C 
option in the synopsis section, but there is no -C option to the iptables 
command.

Table 7-7. iptables subcommand options

Option Description

-A chain rule Appends rule to chain.
--append Synonym for -A.
-D chain 
[index | rule]

Deletes the rule at position index or matching rule from chain.

--delete Synonym for -D.
--delete-chain Synonym for-X.
-E chain newchain Renames chain to newchain.
-F [chain] Flushes (deletes) all rules from chain (or from all chains if no chain is 

given).
-flush Synonym for-F.
-I chain [index] Inserts rule into chain, at the front of the chain, or in front of the rule at
rule position index.

--insert Synonym for-I.
-L [chain] Lists the rules for chain (or for all chains if no chain is given).
- l i s t Synonym for - L.
-N chain Creates a new user-defined chain.
—new-chain Synonym for -N. Commonly abbreviated - - new.
-P chain target Sets the default policy of the built-in chain to target, (applies to built- 

in chains and targets only).
--policy Synonym for-P.
-R chain index rule Replaces the rule at position index of chain with the new rule.
—rename-chain Synonym for -E.
--replace Synonym for -R.
-V Displays the version of iptables.

136 | Chapter 7: TCP/IP Firewall



Table 7-7. iptables subcom m and options (continued)

Option Description

--version Synonym for -V.
-X [chain] Deletes the user-defined chain, or all user-defined chains if none is 

given.
-Z chain Zeros the packet and byte counters for chain (or for all chains if no chain 

is given).
--zero Synonym for-Z.

Basic iptables Matches
iptables has a small number of built-in matches and targets and a set of extensions 
that are loaded if they are referenced. The matches for IP are considered built-in, and 
the others are considered match extensions (even though the icmp, tcp and udp match 
extensions are automatically loaded when the corresponding protocols are refer­
enced with the -p built-in IP match option).

Some options can have their senses inverted by using an optional 
exclamation point surrounded by spaces, immediately before the 
option. The options that allow this are annotated with [!]. Only the 
non-inverted sense is described in the sections that follow, since the 
inverted sense can be inferred from it.

Internet Protocol (IPv4) Matches
These built-in matches are available without a preceding -m argument to iptables. 
Table 7-8 shows the layout of the fields in an Internet Protocol (IPv4) packet. These 
fields are the subjects of various match and target extensions (including the set of 
built-in matches described in this section). Table 7-8 describes the options to this 
match.

Table 7-8. In ternet Protocol m atch  options

Option

-d [!] addr[/mask] 

--destination 
--dst 
[!] -f

--fragments

Description

Destination address addr (or range, \imask is given).
Synonym for -d.
Synonym for-d.
Second or further fragment of a packet that has undergone fragmentation.
Connection tracking does automatic defragmentation, so this option is not often 
useful. If aren't using connection tracking, though, you can use it.
Synonym for - f . Commonly abbreviated (including in the iptables manpage) - - 
fragment.

Basic iptables Matches | 137



Table 7-8. Internet Protocol match options (continued)

Option

-i [!] in

--in-interface 
-o [!] out

--out-interface 
-p [!] proto

--protocol
-s [!] addr[/mask]
--source
--src

Description

Input interface in (if in ends with +, any interface having a name that starts with 
in will match).
Synonym for-i.
Input interface out (if out ends with +,any interface having a name that starts with 
out will match).
Synonym for-o.
Protocol name or number proto.
See Table 7-9 for a list of common protocol names and numbers. Your system's /etc/ 
protocols file will be consulted to map official names (in a case-insensitive manner) 
to numbers. The aliases in /etc/protocols are not available.
See also the official protocol list at http://www.iana.org/assignments/protocol- 
numbers.
-p protocol includes an implicit -m protocol when protocol is one of 
icmp,tcp, orudp.
Synonym for - p. Commonly abbreviated - - proto.
Source address addr (or range, if mask is given).
Synonym for-s.
Synonym for-s.

You can use the old-style dotted-quad notation for masks such as 192.168.1.0/255. 
255.255.0, or the newer Common Inter-Domain Routing (CIDR) notation such as 
192.168.1.0/24 (see RFC 1591, available online at http://www.rfc-editor.org/rfc/ 
rfcl519.txt) for the address specifications of -s and -d.

Table 7-9. Common IP protocols

Name Numbers) Description

ALL 1,6,17 Equivalent to not specifying protocol at all
icmp 1 Internet Control Message Protocol
tcp 6 Transmission Control Protocol
udp 17 User Datagram Protocol

Ethernet Media Access Controller (MAC) Match
This match is based on the Media Access Controller (MAC) address of the source 
Ethernet interface. Table 7-10 describes the single option to this match.

This is actually not an IP match. Ethernet is at a lower level in the network architec­
ture, but since many IP networks run over Ethernet, and the MAC information is 
available, this match extension is included anyway.

138 I Chapter 7: ТСРЛР Firewall

http://www.iana.org/assignments/protocol-
http://www.rfc-editor.org/rfc/


I | This match is available only if your kernel has been configured with
CONFIG_IP_NF_MATCH_MAC enabled.

Table 7-10. M A C  m atch options 

Option Description

--mac-source [!] mac Match when the Ethernet frame source MAC field matches mac.

The format is: XX : XX : XX : XX : XX : XX, where each XX is replaced by two hexadec­
imal digits.

Use this only with rules on the PREROUTING, FORWARD, or INPUT chains, and only for 
packets coming from Ethernet devices.

For example, to allow only a single Ethernet device to communicate over an inter­
face (such as an interface connected to a wireless device):

iptables -A PREROUTING -i ethl -m mac --mac-source ! Od:bc:97:02:l8:21 -j DROP

Internet Control Message Protocol Match
The Internet Control Message Protocol (ICMP) match extension is automatically 
loaded if -p icmp is used. Table 7-11 describes the options to this match.

Table 7-11. IC M P m atch options

Option Description

--icmp-type [!] typename Matches ICMP type typename

--icmp-type [!] type[/code] Matches ICMP type and code given

You can find the official ICMP types and codes at the official database at http://www. 
iana.org/assignments/icmp-parameters (per RFC 3232, “Assigned Numbers: RFC 
1700 is Replaced by an On-line Database,” available online at http://www.rfc-editor. 
org/rfc/rfc3232.txt).

User Datagram Protocol Match
The User Datagram Protocol (UDP) match extension is automatically loaded if -p 
udp is used. Table 7-12 describes the options to this match.

Basic iptables Matches | 139

http://www
http://www.rfc-editor


Table 7-12. UDP match options

Option

--destination-port [!] port[:port]

-dport
-source-port [!] port[:port]

-sport

Match when the UDP destination port number is equal to port (if 
only one port is given) or in the inclusive range (if both ports are 
given).
Ports can be specified by name (from your system's /etc/services 
file) or number.
Synonym for--destination-port.
Match when the UDP source port is equal to port (if only one 
port is given) or in the inclusive range (if both ports are given).
Ports can be specified by name (from your system's /etc/services 
file) or number.
Synonym for - -source-port.

Description

Transmission Control Protocol Match
The Transmission Control Protocol (TCP) match extension is automatically loaded if 
-p tcp is used. Table 7-13 describes the options to this match.

Table 7-13. TCP match options 

Option

--destination-port 
--dport [!] port[:port]

--mss value[:value]

--source-port 
--sport [!] port[:port]

[!] -syn

--tcp-flags 
[!] mask comp

--tcp-option[!] nùm

Description

Synonym for--dport.
Match when the TCP destination port number is equal to port (if only one 
port is given) or in the inclusive range (if both ports are given).
Ports can be specified by name (from your system's /etc/services file) or num­
ber.
Match SYN and ACK packets when the value of the TCP protocol Maximum Seg­
ment Size (MSS) field is equal to value (if only one value is given) or in the 
inclusive range (if both values are given).
See also the tcpmss match extension.
Synonym for--sport.
Match when the TCP source port is equal to port (if only one port is given) or 
in the inclusive range (if both ports are given).
Ports can be specified by name (from your system's /etc/services file) or num­
ber.
Synonym for - - tcp-flags SYN, RST, ACK SYN. Packets matching this are 
called "SYN" packets.
This option can be used to construct rules to block incoming connections while 
permitting outgoing connections.
Check the mask flags, and match if only the comp flags are set.
Thtmask and comp arguments are comma-separated lists of flag names, or 
one of the two special values AL L and NONE.
Match if TCP option num is set.

140 | Chapter 7: TCP/IP Firewall



A Naive Example
Let’s suppose that we have a network in our organization and that we are using a 
Linux-based firewall host to allow our users to be able to access WW W  (HTTP on 
port 80 only, not HTTPS on port 443) servers on the Internet, but to allow no other 
traffic to be passed. The commands that follow could be used to set up a simple set 
of forwarding rules to implement this policy. Note, however, that while this exam­
ple is simple, the NAT and Masquerading solutions discussed in Chapter 9 are more 
often used for this type of application.

If our network has a 24-bit network mask (class C) and has an address of 172.16.1. 
0, then we’d use the following iptables rules:

1 # modprobe ip tables
2 # iptables -F FORWARD
3 # iptables -P FORWARD DROP
4 # iptables -A FORWARD -p tcp -s 0/0 --sport 80 \

-d 172.16.1.0/24 --syn -j DROP
5 # iptables -A FORWARD -p tcp -s 172.16.1.0/24 \

--dport 80 -d 0/0 -j ACCEPT
6 # iptables -A FORWARD -p tcp -d 172.16.1.0/24 \

--sport 80 -s 0/0 -j ACCEPT

Lines 1-3 install iptables into the running kernel, flush the FORWARD chain of the 
f i l t e r  table (the default table if no explicit table is m entioned in the iptables com ­
m and’s arguments), and sets the default policy for the FORWARD chain of the filter table 
to  DROP.

Line 4 prevents Internet hosts establishing connection from to the internal netw ork 
by dropping SYN packets (but only if the source port is 80 since those are the only 
ones that would be let through by later rules)

Line 5 allows all packets heading from the internal network to port 80 on any host to 
get out.

Line 6 allows all packets heading from port 80 on any host to hosts on the internal 
network through.

A Sample Firewall Configuration
W e’ve discussed the fundamentals of firewall configuration. Let’s now look at an 
easily customizable firewall configuration. In this example, the network 172.16.1.0/ 
24 is treated as if it were a publicly routable network, but it is actually a private, non- 
routable network. We are using such a non-routable network in this example 
because we have to use some network, and we don’t want to put a real publicly 
routable network number here. The commands shown would work for a real class C 
publicly routable network.

A Sample Firewall Configuration | 141



# ! /b in /bash

# This sample configuration is for a single host firewall configuration

# with no services supported by the firewall host itself.

USER CONFIGURABLE SECTION (Lists are comma-separated)

OURNET Internal network address space

OURBCAST Internal network broadcast address

OURDEV Internal network interface name

ANYADDR External network address space

EXTDEV External network interface name

TCPIN List of TCP ports to allow in (empty = all)

TCPOUT List of TCP ports to allow out (empty = all)

UDPIN List of TCP ports to allow in (empty = all)

UDPOUT List of TCP ports to allow out (empty = all)

LOGGING Set to 1 to turn logging on, else leave empty

0URNET="172.29.16.0/24"

0URBCAST=M172.29.l6.255"
0URDEV="eth0"

ANYADDR="0/0"

EXTDEV="ethl"

TCPIN="smtp,www"

TCPOUT="smtp,www,ftp,ftp-data,irc"

UDPIN="domain"

UDP0UT="domain"

L0GGING=

#
# Install the modules

#

modprobe ip_tables

modprobe ip_conntrack # Means we won't have to deal with fragments

#

142 | Chapter 7: TCP/IP Firewall



# Drop all packets destined for this host received from outside.

#

iptables -A INPUT -i $EXTDEV -j DROP 

#
# Remove all rules on the FORWARD chain of the filter table, and set th

# policy for that chain to DROP.

#

iptables 

iptables 

iptables 

iptables 

#
# TCP - ESTABLISHED CONNECTIONS
#
# We will accept all TCP packets belonging to an existing connection

# (i.e. having the ACK bit set) for the TCP ports we're allowing through.

# This should catch more than 95 % of all valid TCP packets.

#

iptables -A FORWARD -d SOURNET -p tcp --tcp-flags SYN,ACK ACK \

-m multiport --dports $TCPIN -j ACCEPT

iptables -A FORWARD -s $0URNET -p tcp --tcp-flags SYN,ACK ACK \

-m multiport --sports $TCPIN -j ACCEPT

#
# TCP - NEW INCOMING CONNECTIONS

#
# We will accept connection requests from the outside only on the

# allowed TCP ports.

#

iptables -A FORWARD -i $EXTDEV -d SOURNET -p tcp --syn \

-m multiport --sports $TCPIN -j ACCEPT

#
# TCP - NEW OUTGOING CONNECTIONS

#
# We will accept all outgoing tcp connection requests on the allowed /

# TCP ports.

#

iptables -A FORWARD -i $0URDEV -d $ANYADDR -p tcp --syn \

-m multiport --dports STCPOUT -j ACCEPT

#
# UDP - INCOMING

#
# We will allow UDP packets in on the allowed ports and back.

#

-F FORWARD # Delete rules

-P FORWARD DROP # Policy = DROP

-A FORWARD -s SOURNET -i SEXTDEV -j DROP # Anti-spoof

-A FORWARD -p icmp -i SEXTDEV -d SOURBCAST -j DROP # Anti-Smurf

A Sample Firewall Configuration | 143



iptables -A FORWARD -i SEXTDEV -d $OURNET -p udp \

-m multiport --dports SUDPIN -j ACCEPT

iptables -A FORWARD -i SEXTDEV -s $OURNET -p udp \

-m multiport --sports $UDPIN -j ACCEPT

#
# UDP - OUTGOING

#
# We will allow UDP packets out to the allowed ports and back.
#

iptables -A FORWARD -i SOURDEV -d $ANYADDR -p udp \

-m multiport --dports $UDP0UT -j ACCEPT

iptables -A FORWARD -i SOURDEV -s SANYADDR -p udp \

-m multiport --sports SUDPOUT -j ACCEPT

#
# DEFAULT and LOGGING

#
# All remaining packets fall through to the default

# rule and are dropped. They will be logged if you've

# configured the LOGGING variable above.
#

if [ "SLOGGING" ] 
then

iptables -A FORWARD -p tcp -j LOG # Log barred TCP 

iptables -A FORWARD -p udp -j LOG # Log barred UDP 

iptables -A FORWARD -p icmp -j LOG # Log barred ICMP

fi

In many simple situations, to use the sample, all you have to do is edit the top sec­
tion of the file labeled “USER CONFIGURABLE section” to specify which protocols and 
packets type you wish to allow in and out. For more complex configurations, you 
will need to edit the section at the bottom as well. Remember, this is a simple exam­
ple, so scrutinize it very carefully to ensure it does what you want while implement­
ing it.

References
There is enough material on firewall configuration and design to fill a whole book, 
and indeed here are some good references that you might like to read to expand your 
knowledge on the subject:

Real World Linux Security, Second Edition
by Bob Toxen (Prentice Hall). A great book with broad coverage of many secu­
rity topics, including firewalls.

144 | Chapter 7: TCP/IP Firewall



Building Internet Firewalls, Second Edition
by E. Zwicky, S. Cooper, and D. Chapman (O’Reilly). A guide explaining how to 
design and install firewalls for Unix, Linux, and Windows NT, and how to con­
figure Internet services to work with the firewalls.

Firewalls and Internet Security, Second Edition
by W. Cheswick, S. Bellovin, and A. Rubin (Addison Wesley). This book covers 
the philosophy of firewall design and implementation.

Practical Unix & Internet Security, Third Edition
by S. Garfinkel, G. Spafford, and A. Schwartz (O’Reilly). This book covers a 
wide variety of security topics for popular Unix variants (including Linux), such 
as forensics, intrusion detection, firewalls, and more.

Linux Security Cookbook
by D. Barrett, R. Silverman, and R. Byrnes (O’Reilly). This book provides over 
150 ready-to-use scripts and configuration files for important security tasks such 
as time-of-day network access restrictions, web server firewalling, preventing IP 
spoofing, and much more.

Linux iptables Pocket Reference
by G. Purdy (O’Reilly). This book covers firewall concepts, Linux packet pro­
cessing flows, and contains a complete reference to the iptables command, 
including an encyclopedic reference to match and target extensions, that you can 
use for advanced applications.



CHAPTER 8_______

IP Accounting

In today’s world of commercial Internet service, it is becoming increasingly impor­
tant to know how much data you are transmitting and receiving on your network 
connections. If you are an Internet Service Provider and you charge your customers 
by volume, this will be essential to your business. If you are a customer of an Inter­
net Service Provider that charges by data volume, you will find it useful to collect 
your own data to ensure the accuracy of your Internet charges.

There are other uses for network accounting that have nothing to do with dollars and 
bills. If you manage a server that offers a number of different types of network ser­
vices, it might be useful to you to know exactly how much data is being generated by 
each one. This sort of information could assist you in making decisions, such as what 
hardware to buy or how many servers to run.

The Linux kernel provides a facility that allows you to collect all sorts of useful infor­
mation about the network traffic it sees. This facility is called IP accounting.

Configuring the Kernel for IP Accounting
The Linux IP accounting feature is very closely related to the Linux firewall soft­
ware. The places you want to collect accounting data are the same places that you 
would be interested in performing firewall filtering: into and out of a network host 
and in the software that does the routing of packets. If you haven’t read the section 
on firewalls, now is probably a good time to do so, as we will be using some of the 
concepts described in Chapter 7.

Configuring IP Accounting
Because IP accounting is closely related to IP firewall, the same tool was designated 
to configure it, so the iptables command is used to configure IP accounting. The 
command syntax is very similar to that of the firewall rules, so we won’t focus on it,

146



but we will discuss what you can discover about the nature of your network traffic 
using this feature.

The general command syntax is:

# iptables -A chain rule-specification

The iptables command allows you to specify direction in a manner consistent with 
the firewall rules.

The commands are much the same as firewall rules, except that the policy rules do 
not apply here. We can add, insert, delete, and list accounting rules. In the case of 
ipchains and iptables, all valid rules are accounting rules, and any command that 
doesn’t specify the - j  option performs accounting only.

The rule specification parameters for IP accounting are the same as those used for IP 
firewalls. These are what we use to define precisely what network traffic we wish to 
count and total.

Accounting by Address
Let’s work with an example to illustrate how we’d use IP accounting.

Imagine we have a Linux-based router that serves two departments at the Virtual 
Brewery. The router has two Ethernet devices, etho and ethl, each of which services 
a department; and a PPP device, pppO, that connects us via a high-speed serial link to 
the main campus of the Groucho Marx University.

Let’s also imagine that for billing purposes that we want to know the total traffic 
generated by each of the departments across the serial link, and for management pur­
poses we want to know the total traffic generated between the two departments.

Table 8-1 shows the interface addresses we will use in our example:

Table 8-1. Interfaces and their addresses

Interface Address Netmask

etho 172.16.3.0 255.255.255.0

e th l 172.16.4.0 255.255.255.0

To answer the question, “How much data does each department generate on the PPP 
link?”, we could use a rule that looks like this:

# iptables -A FORWARD -i pppO -d 172.16.3.0/24
# iptables -A FORWARD -o pppO -s 172.16.3.0/24
# iptables -A FORWARD -i pppO -d 172.16.4.0/24
# iptables -A FORWARD -o pppO -s 172.16.4*0/24



The first two rules say, “Count all data traveling in either direction across the inter­
face named pppO with a source or destination address of 172.16.3.0/24. ” The second 
set of two rules do the same thing, but for the second Ethernet network at our site.

To answer the second question, “How much data travels between the two depart­
ments?”, we need a rule that looks like this:

# iptables -A FORWARD -s 172.16.3.0/24 -d 172.16.4.0/24
# iptables -A FORWARD -s 172.16.4.0/24 -d 172.16.3.0/24

These rules will count all packets with a source address belonging to one of the 
department networks and a destination address belonging to the other.

Accounting by Service Port
Okay, let’s suppose we also want a better idea of exactly what sort of traffic is being 
carried across our PPP link. We might, for example, want to know how much of the 
link the FTP, SMTP, and W orld Wide Web (HTTP) services are consuming.

A script of rules to enable us to collect this information might look like this:
#!/bin/sh

# Collect ftp, smtp and www volume statistics for data carried on our

# PPP link using iptables.
#
iptables -A FORWARD -i pppO -p tcp --sport 20:21 

iptables -A FORWARD -o pppO -p tcp --dport 20:21 

iptables -A FORWARD -i pppO -p tcp --sport smtp 

iptables -A FORWARD -o pppO -p tcp --dport smtp 

iptables -A FORWARD -i pppO -p tcp --sport www 

iptables -A FORWARD -o pppO -p tcp --dport www

There are a couple of interesting features to this configuration. First, we’ve specified 
the protocol. W hen we specify ports in our rules, we must also specify a protocol 
because TCP and UDP provide separate sets of ports. Since all of these services are 
TCP based, we’ve specified it as the protocol. Second, we’ve specified the two ser­
vices ftp and ftp-data in one command. The iptables command allows either single 
ports or ranges of ports, which is what we’ve used here. The syntax “20:21” means 
“ports 20 (ftp-data) through 21 (ftp),” and is how we encode ranges of ports in ipta­
bles (the tcp match extension allow you to use port names in range specifications, 
but the multiport match extension does not— and you are better off using numbers 
for ranges anyway so you don’t accidentally include more ports than you intend). 
When you have a list of ports in an accounting rule, it means that any data received 
for any of the ports in the list will cause the data to be added to that entry’s totals. 
Remembering that the FTP service uses two ports, the command port and the data 
transfer port; we’ve added them together to total the FTP traffic.

We can expand on the second point a little to give us a different view of the data on 
our link. Let’s now imagine that we class FTP, SMTP, and W orld Wide Web (HTTP) 
traffic as essential traffic, and all other traffic as nonessential. If we were interested in

148 | Chapter 8: IP Accounting



seeing the ratio of essential traffic to nonessential traffic, we could do something like 
this:

# iptables -A FORWARD -i pppO -p tcp -m multiport \
--sports ftp-data,ftp,smtp,www -j ACCEPT

# iptables -A FORWARD -j ACCEPT

The first rule would count our essential traffic while the second one would count 
everything else.

Alternatively, we can use user-defined chains (this would be useful if the rules for 
determining essential traffic were more complex):

# iptables -N a-essent
# iptables -N a-noness
# iptables -A a-essent -j ACCEPT
# iptables -A a-noness -j ACCEPT
# iptables -A FORWARD -i pppO -p tcp -m multiport \

--sports ftp-data,ftp,smtp,www -j a-essent
# iptables -A FORWARD -j a-noness

Here we create two user-defined chains— one called a-essent, where we capture 
accounting data for essential services, and another called a-noness, where we cap­
ture accounting data for nonessential services. We then add rules to our forward 
chain that match our essential services and jump to the a-essent chain, where we 
have just one rule that accepts all packets and counts them. The last rule in our for­
ward chain is a rule that jumps to our a-noness chain, where again we have just one 
rule that accepts all packets and counts them. The rule that jumps to the a-noness 
chain will not be reached by any of our essential services, as they will have been 
accepted in their own chain. Our tallies for essential and nonessential services will 
therefore be available in the rules within those chains. This is just one approach you 
could take; there are others.

This looks simple enough. Unfortunately, there is a small but unavoidable problem 
when trying to do accounting by service type. You will remember that we discussed 
the role the MTU plays in TCP/IP networking in an earlier chapter. The MTU 
defines the largest packet that will be transmitted on a network device. When a 
packet is received by a router that is larger than the MTU of the interface that needs 
to retransmit it, the router performs a trick called fragmentation. The router breaks 
the large packet into small pieces no longer than the MTU of the interface and then 
transmits these pieces. The router builds new headers to put in front of each of these 
pieces, and these are what the remote host uses to reconstruct the original data. 
Unfortunately, during the fragmentation process, the port is lost for all but the first 
fragment. This means that the IP accounting can’t properly count fragmented pack­
ets. It can reliably count only the first fragment or unfragmented packets. To ensure 
that we capture the second and later fragments, we could use a rule like this:

# iptables -A FORWARD -i pppO -m tcp -p tcp -f



These w on’t tell us what the original port for this data was, but at least we are able to 
see how much of our data is fragments and account for the volume of traffic they 
consume.

A

1 Connection tracking does automatic defragmenting, so this technique 
won’t often be useful. But if you aren’t doing connection tracking, you

V can use it.

Accounting of ICMP Packets
The ICMP protocol does not use service port numbers and is therefore a little bit 
more difficult to collect details on. ICMP uses a number of different types of pack­
ets. Many of these are harmless and normal, while others should only be seen under 
special circumstances. Sometimes people with too much time on their hands attempt 
to maliciously disrupt the network access of a user by generating large numbers of 
ICMP messages. This is commonly called ping flooding (the generic term for this type 
of denial of service attack is packet flooding, but ping flooding is a common one). 
While IP accounting cannot do anything to prevent this problem (IP firewalling can 
help, though!), we can at least put accounting rules in place that will show us if any­
body has been trying.

ICMP doesn’t use ports as TCP and UDP do. Instead ICMP has ICMP message 
types. W e can build rules to account for each ICMP message type. We place the 
ICMP message and type number in place of the port field in the accounting com­
mands.

An IP accounting rule to collect information about the volume of ping data that is 
being sent to you or that you are generating might look like this:

# iptables -A FORWARD -m icmp -p icmp --sports echo-request
# iptables -A FORWARD -m icmp -p icmp --sports echo-reply
# iptables -A FORWARD -m icmp -p icmp -f

The first rule collects information about the “ICMP Echo Request” packets (ping 
requests), and the second rule collects information about the “ICMP Echo Reply” 
packets (ping replies). The third rule collects information about ICMP packet frag­
ments. This is a trick similar to that described for fragmented TCP and UDP packets.

If you specify source and/or destination addresses in your rules, you can keep track 
of where the pings are coming from, such as whether they originate inside or outside 
your network. Once you’ve determined where the rogue packets are coming from, 
you can decide whether you want to put firewall rules in place to prevent them or 
take some other action, such as contacting the owner of the offending network to 
advise them of the problem, or perhaps even taking legal action if the problem is a 
malicious act.

150 | Chapter 8: IP Accounting



Accounting by Protocol
Let’s now imagine that we are interested in knowing how much of the traffic on our 
link is TCP, UDP, and ICMP. We would use rules like the following:

# iptables -A FORWARD -i pppO -m tcp -p tcp
# iptables -A FORWARD -o pppO -m tcp -p tcp
# iptables -A FORWARD -i pppO -m udp -p udp
# iptables -A FORWARD -o pppO -m udp -p udp
# iptables -A FORWARD -i pppO -m icmp -p icmp
# iptables -A FORWARD -o pppO -m icmp -p icmp

W ith these rules in place, all of the traffic flowing across the pppO interface will be 
analyzed to determine whether it is TCP, UDP, or ICMP traffic, and the appropriate 
counters will be updated for each.

Using IP Accounting Results
It is all very well to be collecting this information, but how do we actually get to see 
it? To view the collected accounting data and the configured accounting rules, we 
use our firewall configuration commands, asking them to list our rules. The packet 
and byte counters for each of our rules are listed in the output.

Listing Accounting Data
The iptables command behaves very similarly to the ipchains command. Again, we 
must use the -v when listing tour rules to see the accounting counters. To list our 
accounting data, we would use:

# iptables -L -v

Just as for the ipchains command, you can use the -x argument to show the output in 
expanded format with unit figures.

Resetting the Counters
The IP accounting counters will overflow if you leave them long enough. If they over­
flow, you will have difficulty determining the value they actually represent. To avoid 
this problem, you should read the accounting data periodically, record it, and then 
reset the counters back to zero to begin collecting accounting information for the 
next accounting interval.

The iptables command provides you with a simple means of doing this:

# iptables -Z

Resetting the Counters | 151



You can even combine the list and zeroing actions together to ensure that no 
accounting data is lost in between:

# iptables -L -Z -v

This command will first list the accounting data and then immediately zero the 
counters and begin counting again. If you are interested in collecting and using this 
information regularly, you would probably want to put this command into a script 
that recorded the output and stored it somewhere, and execute the script periodi­
cally using the cron command.

Flushing the Rule Set
One last command that might be useful allows you to flush all the IP accounting 
rules that you have configured. This is most useful when you want to radically alter 
your rule set without rebooting the host.

The iptables command supports the -F argument, which flushes all the rules of the 
type you specify:

# iptables -F

This flushes all of your configured rules (not just your accounting rules), removing 
them all and saving you having to remove each of them individually.

Passive Collection of Accounting Data
One last trick you might like to consider: if your Linux host is connected to an Ether­
net, you can apply accounting rules to all of the data from the segment, not only that 
which it is transmitted by or destined for it. Your host will passively listen to all of 
the data on the segment and count it.

You should first turn IP forwarding off on your Linux host so that it doesn’t try to 
route the packets it receives.* You can do so by running this command:

# echo 0 >/proc/sys/net/ipv4/ip_forward

You should then enable promiscuous mode on your Ethernet interface using the ifcon- 
fig command. Enabling promiscuous mode for an Ethernet device causes it to deliver 
all packets to the operating system rather than only those with its Ethernet address as 
the destination. This is. only relevant if the device is connected to a broadcast 
medium (such as unswitched Ethernet). For example, to enable promiscuous mode 
on interface ethl:

# ifconfig ethl promise

* This isn’t a good thing to do if your Linux machine serves as a router. If you disable IP forwarding, it will 
cease to route! Do this only on a machine with a single physical network interface.

152 | Chapter 8: IP Accounting



Now you can establish accounting rules that allow you to collect information about 
the packets flowing across your Ethernet without involving your Linux accounting 
host in the route at all.

Passive Collection of Accounting Data | 153



CHAPTER 9
IP Masquerade and 
Network Address 
Translation

You don’t have to have a good memory to remember a time when only large organi­
zations could afford to have a number of computers networked together by a LAN. 
Today network technology has dropped so much in price that two things have hap­
pened. First, LANs are now commonplace, even in many household environments. 
Certainly many Linux users will have two or more computers connected by some 
Ethernet. Second, network resources, particularly IP addresses, are now a scarce 
resource, and while they used to be free, they are now being bought and sold.

Most people with a LAN will probably also want an Internet connection that every 
computer on the LAN can use. The IP routing rules are strict in how they deal with 
this situation. Traditional solutions to this problem would have involved requesting 
an IP network address, perhaps a class C address for small sites, assigning each host 
on the LAN an address from this network and using a router to connect the LAN to 
the Internet.

In a commercialized Internet environment, this is an expensive proposition. First, 
you’d be required to pay for the network addresses that are assigned to you. Second, 
you’d probably have to pay your Internet Service Provider for the privilege of having 
a suitable route to your network put in place so that the rest of the Internet knows 
how to reach you. This might still be practical for companies, but domestic installa­
tions don’t usually justify the cost.

Fortunately, Linux provides an answer to this dilemma. This answer involves a com­
ponent of a group of advanced networking features called Network Address Transla­
tion (NAT). NAT describes the process of modifying the network addresses (and 
sometimes port numbers) contained with packet headers while they are in transit. 
This might sound odd at first, but we’ll show that it is ideal for solving the problem 
we’ve just described. IP masquerading is the name given to one type of network 
address translation that allows all of the hosts on a private network to use the Inter­
net at the price of a single dynamic IP address. W hen the single address is statically 
assigned, the same functionality goes by the name SNAT (Source NAT). W e’ll refer 
to both of these as “masquerading” in what follows.

154



IP masquerading allows you to use private (non-routable) IP network addresses for 
your hosts on your LAN and have your Linux-based router perform some clever, 
real-time translation of IP addresses and ports. When it receives a packet from a 
computer on the LAN, it takes note of the type of packet it is, (such as TCP, UDP or 
ICMP) and modifies the packet so that it looks like it was generated by the router 
host itself (and remembers that it has done so). It then transmits the packet onto the 
Internet with its single connection IP address. When the destination host receives 
this packet, it believes the packet has come from the routing host and sends any 
reply packets back to that address. When the Linux masquerade router receives a 
packet from its Internet connection, it looks in its table of established masqueraded 
connections to see if this packet actually belongs to a computer on the LAN, and if it 
does, it reverses the modification it did on the forward path and transmits the packet 
to the LAN computer. A simple example is illustrated in Figure 9-1.

Internet

pppO

203.10.23.1
PPP

192.168.1.0/255.255.255.0

192.168.1.2

ethO

192.168.1.1

Linux Masquerade 
Router

192.168.1.3

Masqueraded request 
From: 203.10.23.1 port 1035

Original reply 
To: 203.10.23.1 port 1035

Translated by masquerade router at 
203.10.23.1

Original request 
From: 192.168.1.3 port 1234

Demasqueraded reply 
To: 192.168.1.3 port 1234

Figure 9-1. A typical IP masquerade configuration

We have a small Ethernet network using one of the reserved network addresses. The 
network has a Linux-based masquerade router providing access to the Internet. One 
of the workstations on the network (192.168.1.3) wishes to establish a connection 
to the remote host 209.1.106.178. The workstation routes its packet to the mas­
querade router, which identifies this connection request as requiring masquerade ser­
vices. It accepts the packet and allocates a port number to use (1035), substitutes its 
own IP address and port number for those of the originating host, and transmits the 
packet to the destination host. The destination host believes it has received a connec­
tion request from the Linux masquerade host and generates a reply packet. The mas­
querade host, on receiving this packet, finds the association in its masquerade table 
and reverses the substitution it performed on the outgoing packet. It then transmits 
the reply packet to the originating host.

IP Masquerade and Network Address Translation | 155



The local host believes it is speaking directly to the remote host. The remote host 
knows nothing about the local host at all and believes it has received a connection 
from the Linux masquerade host. The Linux masquerade host knows these two hosts 
are speaking to each other, and on what ports, and performs the address and port 
translations necessary to allow communication.

This might all seem a little confusing, and it can be, but it works and is actually sim­
ple to configure. So don’t worry if you don’t understand all the details yet.

Side Effects and Fringe Benefits
The IP masquerade facility comes with its own set of side effects, some of which are 
useful and some of which might become bothersome.

None of the hosts on the supported network behind the masquerade router are ever 
directly seen; consequently, you need only one valid and routable IP address to allow 
all hosts to make network connections out onto the Internet. This has a downside: 
none of those hosts are visible from the Internet and you can’t directly connect to 
them from the Internet; the only host visible on a masqueraded network is the mas­
querade host itself. This is important when you consider services such as mail or 
FTP. It helps determine what services should be provided by the masquerade host 
and what services it should proxy or otherwise treat specially.

However, you can use DNAT (Destination NAT) on the router to route inbound con­
nections to certain ports to internal servers. This works great for web and mail serv­
ers. You can run those services on hosts on the private network, and use DNAT to 
forward inbound connections to port 80 and port 25 to the appropriate internal serv­
ers. This way, the router host is only involved in routing, not in providing any exter­
nally visible services. You can use the same technique to route incoming connections 
to a high-numbered port (say, 4022) to the Secure Shell (SSH) port (usually 22) on an 
internal host so you can SSH directly into one of your internal hosts through the 
router.

Because none of the masqueraded hosts are visible, they are relatively protected from 
attacks from outside. You can have one host serve as your firewall and masquerad­
ing router. Your whole network will be only as safe as your masquerade host, so you 
should use firewall rules to protect it and you should not run any other externally 
visible services on it.

IP masquerade will have some impact on the performance of your networking. In 
typical configurations this will probably be barely measurable. If you have large 
numbers of active masquerade sessions, though, you may find that the processing 
required at the masquerade host begins to impact your network throughput. IP mas­
querade must do a good deal of work for each packet compared to the process of 
conventional routing. That low-end host you have been planning on using as a mas­
querade host supporting a personal link to the Internet might be fine, but don’t

156 | Chapter 9: IP Masquerade and Network Address Translation



expect too much if you decide you want to use it as a router in your corporate net­
work at Ethernet speeds.

Finally, some network services just won’t work through masquerade, or at least not 
without a lot of help. Typically, these are services that rely on incoming sessions to 
work, such as some types of Direct Communications Channels (DCC), features in 
IRC, or certain types of video and audio multicasting services. Some of these services 
have specially developed “helper" kernel modules to provide solutions for these, and 
we’ll talk about those in a moment. For others, it is possible that you will find no 
support, so be aware— it won’t be suitable in all situations.

Configuring the Kernel for IP Masquerade
To use the IP masquerade facility, your kernel must be compiled with network 
packet filtering support. You must select the following options when configuring the 
kernel:

Networking options --->
[M] Network packet filtering (replaces ipchains)

The netfilter package includes modules that help perform masquerading functions. 
For example, to provide connection tracking of FTP sessions, you’d load and use the 
ip_conntrack_ftp and ip_nat_ftp.o modules. This connection tracking support is 
required for masquerading to work correctly with protocols that involve multiple 
connections for one logical session, since masquerading relies on connection track­
ing.

Configuring IP Masquerade
If you’ve already read the firewall and accounting chapters, it probably comes as no 
surprise that the iptables command is used to configure the IP masquerade rules as 
well.

Masquerading is a special type of packet mangling (the technical term for modifying 
packets). You can masquerade only packets that are received on one interface that 
will be routed to another interface. To configure a masquerade rule, construct a rule 
very similar to a firewall forwarding rule, but with special options that tell the kernel 
to masquerade the packet. The iptables command uses -j MASQUERADE to indicate that 
packets matching the rule specification should be masqueraded (this is for a dynamic 
IP address; if you have a static IP address, use - j SNAT instead).

Let’s look at an example. A computing science student at Groucho Marx University 
has a number of computers at home on a small Ethernet-based LAN. She has chosen 
to use one of the reserved private Internet network addresses for her network. She 
shares her accommodation with other students, all of whom have an interest in using 
the Internet. Because the students’ finances are very tight, they cannot afford to use a

Configuring IP Masquerade | 157

ftp://ftp.o


permanent Internet connection, so instead they use a single Internet connection. 
They would all like to be able to share the connection to chat on IRC, surf the Web, 
and retrieve files by FTP directly to each of their computers— IP masquerade is the 
answer.

The student first configures a Linux host to support the Internet link and to act as a 
router for the LAN. The IP address she is assigned when she dials up isn’t impor­
tant. She configures the Linux router with IP masquerade and uses one of the private 
network addresses for her LAN: 192.168.1.0. She ensures that each of the hosts on 
the LAN has a default route pointing at the Linux router.

The following iptables commands are all that are required to make masquerading 
work in her configuration:

# iptables -t nat -P POSTROUTING DROP
# iptables -t nat -A POSTROUTING -o pppO -j MASQUERADE

Now whenever any of the LAN hosts try to connect to a service on a remote host, 
their packets will be automatically masqueraded by the Linux masquerade router. 
The first rule in each example prevents the Linux host from routing any other pack­
ets and also adds some security.

To list the masquerade rules you have created, use the -L argument to the iptables 
command, as we described earlier while discussing firewalls:

# iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy DROP)
target prot opt source destination
MASQUERADE all -- anywhere anywhere MASQUERADE

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Masquerade rules appear with a target of MASQUERADE.

Handling Nameserver Lookups
Handling domain nameserver lookups from the hosts on the LAN with IP masquer­
ading has always presented a problem. There are two ways of accommodating DNS 
in a masquerade environment. You can tell each of the hosts to use the same DNS 
that the Linux router host does, and let IP masquerade do its magic on their DNS 
requests. Alternatively, you can run a caching nameserver on the Linux host and 
have each of the hosts on the LAN use the Linux host as their DNS. Although a more 
aggressive action, this is probably the better option because it reduces the volume of 
DNS traffic traveling on the Internet link and will be marginally faster for most 
requests, since they’ll be served from the cache. The downside to this configuration

158 | Chapter 9: IP Masquerade and Network Address Translation



is that it is more complex. The section “Caching-Only named Configuration” in 
Chapter 5 describes how to configure a caching nameserver.

More About Network Address Translation
The netfilter software is capable of many different types of NAT. IP masquerade is 
one simple application of it.

It is possible, for example, to build NAT rules that translate only certain addresses or 
ranges of addresses and leave all others untouched, or to translate addresses into 
pools of addresses rather than just a single address, as masquerade does. You can in 
fact use the iptables command to generate NAT rules that map just about anything, 
with combinations of matches using any of the standard attributes, such as source 
address, destination address, protocol type, port number, etc.

Translating the source address of a packet is referred to as Source NAT, or SNAT, in 
iptables. Translating the destination address of a packet is known as Destination 
NAT, or DNAT. SNAT and DNAT are targets that you may use with the iptables command 
to build more sophisticated rules.

More About Network Address Translation | 159



CHAPTER 10___________
Important Network 
Features

After successfully setting up IP and the resolver (DNS), you then must look at the 
services you want to provide over the network. This chapter covers the configura­
tion of a few simple network applications, including the inetd and xinetd servers and 
the programs from the rlogin family. W e’ll also deal briefly with the Remote Proce­
dure Call interface, upon which services like the Network File System (NFS) are 
based. The configuration of NFS, however, is more complex and is not described in 
this book.

Of course, we can’t cover all network applications in this book. If you want to install 
one that’s not discussed here, please refer to the manual pages of the server for 
details.

The inetd Super Server
Programs that provide application services via the network are called network dae­
mons. A daemon is a program that opens a port, most commonly a well-known ser­
vice port, and waits for incoming connections on it. If one occurs, the daemon 
creates a child process that accepts the connection, while the parent continues to lis­
ten for further requests. This mechanism works well but has a few disadvantages; at 
least one instance of every possible service that you wish to provide must be active in 
memory at all times. In addition, the software routines that do the listening and port 
handling must be replicated in every network daemon.

To overcome these inefficiencies, most Unix installations run a special network dae­
mon, what you might consider a “super server.” This daemon creates sockets on 
behalf of a number of services and listens on all of them simultaneously. When an 
incoming connection is received on any of these sockets, the super server accepts the 
connection and spawns the server specified for this port, passing the socket across to 
the child to manage. The server then returns to listening.

160



The most common super server is called inetd, the Internet Daemon. It is started at 
system boot time and takes the list of services it is to manage from a startup file 
named /etc/inetd.conf. In addition to those servers, there are a number of trivial ser­
vices performed by inetd itself called internal services. They include chargen, which 
simply generates a string of characters, and daytime, which returns the system’s idea 
of the time of day.

An entry in this file consists of a single line made up of the following fields: 

service type protocol wait user server cmdline 

Each of the fields is described in the following list: 

service
Gives the service name. The service name has to be translated to a port number 
by looking it up in the I etc!services file. This file will be described later in this 
chapter in the “The Services and Protocols Files” section later in this chapter.

type
Specifies a socket type, either stream (for connection-oriented protocols) or 
dgram (for datagram protocols). TCP-based services should therefore always use 
stream, while UDP-based services should always use dgram.

protocol

Names the transport protocol used by the service. This must be a valid protocol 
name found in the protocols file, explained later.

wait

This option applies only to dgram sockets. It can be either wait or nowait. If wait 
is specified, inetd executes only one server for the specified port at any time. 
Otherwise, it immediately continues to listen on the port after executing the 
server.
This is useful for “single-threaded” servers that read all incoming datagrams 
until no more arrive, and then exit. Most RPC servers are of this type and should 
therefore specify wait. The opposite type, “multithreaded” servers, allows an 
unlimited number of instances to run concurrently. These servers should specify 
nowait.
stream sockets should always use nowait.

user

This is the login ID of the user who will own the process when it is executing. 
This will frequently be the root user, but some services may use different 
accounts. It is a very good idea to apply the principle of least privilege here, 
which states that you shouldn’t run a command under a privileged account if the 
program doesn’t require this for proper functioning. For example, the NNTP 
news server runs as news, while services that may pose a security risk (such as 
tftp or finger) are often run as nobody.

The inetd Super Server | 161



server
Gives the full pathname of the server program to be executed. Internal services 
are marked by the keyword internal.

cmdline
This is the command line to be passed to the server. It starts with the name of 
the server to be executed and can include any arguments that need to be passed 
to it. If you are using the TCP wrapper, you specify the full pathname to the 
server here. If not, then you just specify the server name as you’d like it to appear 
in a process list. W e’ll talk about the TCP wrapper shortly.
This field is empty for internal services.

A sample inetd.conf file is shown in Example 10-1. The finger service is commented 
out so that it is not available. This is often done for security reasons because it can be 
used by attackers to obtain names and other details of users on your system.

Example 10-1. A sample ¡etc!inetd.conf file

#
# inetd services
ftp stream tcp nowait root /usr/sbin/ftpd in.ftpd -1
telnet stream tcp nowait root /usr/sbin/telnetd in.telnetd -b/etc/issue
#finger stream tcp nowait bin /usr/sbin/fingerd in.fingerd
#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd
#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd /boot/diskless
#login stream tcp nowait root /usr/sbin/rlogind in.rlogind
#shell stream tcp nowait root /usr/sbin/rshd in.rshd
#exec stream tcp nowait root /usr/sbin/rexecd in.rexecd
#
# inetd internal services
#
daytime stream tcp nowait root internal 
daytime dgram udp nowait root internal 
time stream tcp nowait root internal 
time dgram udp nowait root internal 
echo stream tcp nowait root internal 
echo dgram udp nowait root internal 
discard stream tcp nowait root internal 
discard dgram udp nowait root internal 
chargen stream tcp nowait root internal 
chargen dgram udp nowait root internal

The tftp daemon is shown commented out as well, tftp implements the Trivial File 
Transfer Protocol (TFTP), which allows someone to transfer any world-readable 
files from your system without password checking. This is especially harmful with 
the /etc/passwd file, and even more so when you don’t use shadow passwords.

tftp is commonly used by diskless clients and X terminals to download their code 
from a boot server. If you need to run the tftpd daemon for this reason, make sure to 
limit its scope to those directories from which clients will retrieve files; you will need

162 | Chapter 10: Important Network Features



to add those directory names to tftpd's command line. This is shown in the second 
tftp line in the example.

The tcpd Access Control Facility
Since opening a computer to network access involves many security risks, applica­
tions are designed to guard against several types of attacks. Some security features, 
however, may be flawed (most drastically demonstrated by the RTM Internet worm, 
which exploited a hole in a number of programs, including old versions of the send- 
mail mail daemon), or do not distinguish between secure hosts from which requests 
for a particular service will be accepted and insecure hosts whose requests should be 
rejected. W e’ve already briefly discussed the finger and tftp services. A network 
administrator would want to limit access to these services to “trusted hosts” only, 
which is impossible with the usual setup, for which inetd provides this service either 
to all clients or not at all.

A useful tool for managing host-specific access is tcpd, often called the daemon 
“wrapper.” For TCP services you want to monitor or protect, it is invoked instead of 
the server program, tcpd checks whether the remote host is allowed to use that ser­
vice, and only if this succeeds will it execute the real server program, tcpd also logs 
the request to the syslog daemon. Note that this does not work with UDP-based ser­
vices.

For example, to wrap the finger daemon, you have to change the corresponding line 
in inetd.conf from this:

# unwrapped finger daemon
finger stream tcp nowait bin /usr/sbin/fingerd in.fingerd 

to this:

# wrap finger daemon
finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

W ithout adding any access control, this will appear to the client as the usual finger 
setup, except that any requests are logged to syslog’s auth facility.

Two files called /etc/hosts.allow and /etc/hosts.deny implement access control. They 
contain entries that allow and deny access to certain services and hosts. When tcpd 
handles a request for a service such as finger from a client host named biff.foobar. 
com, it scans hosts.allow and hosts.deny (in this order) for an entry matching both the 
service and client host. If a matching entry is found in hosts.allow, access is granted 
and tcpd doesn’t consult the hosts.deny file. If no match is found in the hosts.allow 
file, but a match is found in hosts.deny, the request is rejected by closing down the 
connection. The request is accepted if no match is found at all.

Entries in the access files look like this: 

s e rv ic e lis t :  h o s t l is t  [ishellcmd]

The tcpd Access Control Facility | 163



serv icelist is a list of service names from I etc!services, or the keyword ALL. To match 
all services except finger and tftp, use ALL EXCEPT finger, tftp.

hostlist  is a list of hostnames, IP addresses, or the keywords ALL, LOCAL, UNKNOWN, or 
PARANOID. ALL matches any host, while LOCAL matches hostnames that don’t contain a 
dot.* UNKNOWN matches any hosts whose name or address lookup failed. PARANOID 
matches any host whose hostname does not resolve back to its IP address.t A name 
starting with a dot matches all hosts whose domain is equal to this name. For exam­
ple, .foobar.com matches biff.foobar.com, but not nurks.fredsville.com. A pattern 
that ends with a dot matches any host whose IP address begins with the supplied 
pattern, so 172.16. matches 172.16.32.0, but not 172.15.9.1. A pattern of the form 
n.n.n.n/m.m.m.m is treated as an IP address and network mask, so we could specify 
our previous example as 172.16.0.0/255.255.0.0 instead. Lastly, any pattern begin­
ning with a “/ ” character allows you to specify a file that is presumed to contain a list 
of hostname or IP address patterns, any of which are allowed to match. So a pattern 
that looked like /var/access/trustedhosts would cause the tcpd daemon to read that 
file, testing if any of the lines in it matched the connecting host.

To deny access to the finger and tftp services to all but the local hosts, put the follow­
ing in /etc/hosts.deny and leave /etc/hosts.allow empty:

in.tftpd, in.fingerd: ALL EXCEPT LOCAL, .your.domain

The optional shellcmd field may contain a shell command to be invoked when the 
entry is matched. This is useful to set up traps that may expose potential attackers. 
The following example creates a logfile listing the user and host connecting, and if 
the host is not vlager.vbrew.com, it will append the output of a finger to that host:

in.ftpd: ALL EXCEPT LOCAL, .vbrew.com : \
echo "request from %d@%h: »  /var/log/finger.log; \ 
if [ %h != "vlager.vbrew.com:" ]; then \ 

finger -1 @%h >> /var/log/finger.log \
fi

The %h and %d arguments are expanded by tcpd to the client hostname and service 
name, respectively. Please refer to the hosts_access(5) manpage for details.

The xinetd Alternative
An alternative to the standard inetd has emerged and is now widely accepted. It is 
considered a more secure and robust program, and provides protection against some

Usually only local hostnames obtained from lookups in /etc/hosts contain no dots.
t  While its name suggests it is an extreme measure, the PARANOID keyword is a good default, as it protects you 

against mailicious hosts pretending to be someone they are not. Not all tcpd are supplied with PARANOID com­
piled in; if yours is not, you need to recompile tcpd to use it.

164 | Chapter 10: Important Network Features



DoS attacks used against inetd. The number of features offered by xinetd also makes 
it a more appealing alternative. Here is a brief list of features:

• Provides full-featured access control and logging
• Limits to the number of servers run at a single time
• Offers granular service-binding -services, which can be bound to specific IP 

addresses

xinetd is now a standard part of most Linux distributions, but if you need to find the 
latest source code or information, check the main distribution web site http://www. 
xinetd.org. If you are compiling, and use IPv6 , you should make certain that you use 
the --with-inet6 option.

The configuration of xinetd is somewhat different, but not more complex than inetd. 
Rather than forcing one master configuration file for all services, xinetd can be con­
figured to use a master configuration file, /etc/xinetd.conf, and separate configuration 
files for each additional service configured. This, aside from simplifying configura­
tion, allows for more granular configuration of each service, leading to xinetd's 
greater flexibility.

The first file you’ll need to configure is letc/xinetd.conf. A sample file looks like this:

# Sample configuration file for xinetd

defaults 

{
only_from 
instances 
l°g_type 
log_on_success 
log_on_failure 
cps

}

includedir /etc/xinetd.d 

There are a number of options that can be configured, the options used above are: 

only_from

This specifies the IP addresses or hostnames from which you allow connections. 
In this example, we’ve restricted connections to the loopback interface only.

instances

This sets the total number of servers that xinetd will run. Having this set to a rea­
sonable number can help prevent malicious users from carrying out a DoS attack 
against your machine.

l°g_type SYSLOG|FILE
This option allows you to set the type of logging you’re planning to use. There 
are two options, syslog or f i le .  The first, syslog, will send all log information to

= localhost 
= 60
= SYSLOG authpriv info 
= HOST PID 
= HOST 
= 25 30

The xinetd Alternative | 165

http://www


the system log. The f i l e  directive will send logs to a file you specify. For a list of 
the additional options under each of these, see the xinetd.conf manpage.

log_on_success
With this option, you can set the type of information logged when a user con­
nection is successful. Here’s a list of some available suboptions:
HOST

This will log the remote host’s IP address.
PID

This logs the new server’s process ID.
DURATION

Enable this to have the total session time logged.
TRAFFIC

This option may be helpful for administrators concerned with network 
usage. Enabling this will log the total number of bytes in/out.

log_on_failure
HOST

This will log the remote host’s IP address.
ATTEMPT

This logs all failed attempts to access services.
cps

Another security feature, this option will limit the incoming rate of connections 
to a service. It requires two options: the first is the number of connections per 
second which are allowed, and the second is the amount of time in seconds the 
service will be disabled.

Any of these options can be overridden in the individual service configuration files, 
which we’re including in the /etc/xinetd.d directory. These options set in the master 
configuration file will serve as default values. Configuration of individual services is 
also this simple. Here’s an example of the FTP service, as configured for xinetd:

service ftp 

{
sockettype = stream
wait = no
user = root
server = /usr/sbin/vsftpd
server_args = /etc/vsftpd/vsftpd.conf
log_on_success += DURATION USERID
log_on_failure += USERID
nice = 10
disable = no

}

The first thing you will want to note is that in the xinetd.d directory, the individual 
services tend to be helpfully named, which makes individual configuration files easier

166 | Chapter 10: Important Network Features



to identify and manage. In this case, the file is simply called vsftp, referring to the 
name of the FTP server we’re using.

Taking a look at this example, the first active configuration line defines the name of 
the service that’s being configured. Surprisingly, the service type is not defined by the 
service directive. The rest of the configuration is contained in brackets, much like 
functions in C. Some of the options used within the service configurations overlap 
those found in the defaults section. If an item is defined in the defaults and then 
defined again in the individual service configuration, the latter takes priority. There 
are a large number of configuration options available and are discussed in detail in 
the xmeid.con/manpage, but to get a basic service running, we need only a few:

socketjtype

This defines the type of socket used by the service. Administrators familiar with 
inetd will recognize the following available options, such as stream, dgram, raw, 
and seqpacket.

wait
This option specifies whether the service is single or dual-threaded, yes means 
that the service is single threaded and that xinetd will start the service and then 
will stop handling requests for new connections until the current session ends, 
no means that new session requests can be processed.

user

Here, you set the name of the user that will run the service, 
server

This option is used to specify location of the service that’s being run. 
server_args

You can use this option to specify any additional options that need to be passed 
to the server.

nice
This option determines the server priority. Again, this is an option that can be 
used to limit resources used by servers.

disable
Really a very straightforward option, this determines whether or not the service 
is enabled.

The Services and Protocols Files
The port numbers on which certain “standard” services are offered are defined in the 
Assigned Numbers RFC. To enable server and client programs to convert service 
names to these numbers, at least part of the list is kept on each host; it is stored in a 
file called !etc!services. An entry is made up like this:

service port/protocol [a liases]

The Services and Protocols Files | 167



Here, service specifies the service name, port defines the port the service is offered 
on, and protocol defines which transport protocol is used. Commonly, the latter 
field is either udp or tcp. It is possible for a service to be offered for more than one 
protocol, as well as offering different services on the same port as long as the proto­
cols are different. The aliases field allows you to specify alternative names for the 
same service.

Usually, you don’t have to change the services file that comes along with the net­
work software on your Linux system. Nevertheless, we give a small excerpt from that 
file in Example 10-2.

Example 10-2. A sample I etc!services file 

# /etc/services

tcpmux l/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat ll/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp # message send protocol
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 20/tcp
ftp 21/tcp
fsp 2l/udp fspd
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp
# 24 - private
smtp 25/tcp mail
# 26 - unassigned

Like the services file, the networking library needs a way to translate protocol 
names— for example, those used in the services file— to protocol numbers under­
stood by the IP layer on other hosts. This is done by looking up the name in the letcl 
protocols file. It contains one entry per line, each containing a protocol name, and 
the associated number. Having to touch this file is even more unlikely than having to 
meddle with I etc!services. A sample file is given in Example 10-3.

Example 10-3. A sample /etc/protocols file

#
# Internet (IP) protocols
#

168 | Chapter 10: Important Network Features



Exam ple 10-3. A sample I etc!protocols file (continued)

ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
igmp 2 IGMP # internet group multicast protocol
tcp 6 TCP # transmission control protocol
udp 17 UDP # user datagram protocol
raw 255 RAW # RAW IP interface

esp 50 ESP # Encap Security Payload for IPv6
ah 51 AH # Authentication Header for IPv6
skip 57 SKIP # SKIP
ipv6-icmp 58 IPv6-ICMP # ICMP for IPv6
ipv6-nonxt 59 IPv6-NoNxt # No Next Header for IPv6
ipv6-opts 60 IPv6-0pts # Destination Options for IPv6
rspf 73 RSPF # Radio Shortest Path First.

Remote Procedure Call
The general mechanism for client-server applications is provided by the Remote Pro­
cedure Call (RPC) package. RPC was developed by Sun Microsystems and is a collec­
tion of tools and library functions. An important application built on top of RPC is 
NFS.

An RPC server consists of a collection of procedures that a client can call by sending 
an RPC request to the server along with the procedure parameters. The server will 
invoke the indicated procedure on behalf of the client, handing back the return 
value, if there is any. In order to be machine-independent, all data exchanged 
between client and server is converted to the External Data Representation format 
(XDR) by the sender, and converted back to the machine-local representation by the 
receiver. RPC relies on standard UDP and TCP sockets to transport the XDR format­
ted data to the remote host. Sun has graciously placed RPC in the public domain; it 
is described in a series of RFCs.

Sometimes improvements to an RPC application introduce incompatible changes in 
the procedure call interface. Of course, simply changing the server would crash all 
applications that still expect the original behavior. Therefore, RPC programs have 
version numbers assigned to them, usually starting with 1 , and with each new ver­
sion of the RPC interface, this counter will be bumped up. Often, a server may offer 
several versions simultaneously; clients then indicate by the version number in their 
requests which implementation of the service they want to use.

The communication between RPC servers and clients is somewhat peculiar. An RPC 
server offers one or more collections of procedures; each set is called a program and 
is uniquely identified by a program number. A list that maps service names to pro­
gram numbers is usually kept in fetc/rpc, an excerpt of which is shown in 
Example 10-4.

Remote Procedure Call | 169



Example 10-4. A sam ple /etc/rpcfile

#
# /etc/rpc - 
it

miscellaneous RPC-based services
it

portmapper 100000 portmap sunrpc
rstatd 100001 rstat rstat_svc rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
bootparam 100026
ypupdated 100028 ypupdate

In TCP/IP networks, the authors of RPC faced the problem of mapping program 
numbers to generic network services. They designed each server to provide both a 
TCP and a UDP port for each program and each version. Generally, RPC applica­
tions use UDP when sending data and fall back to TCP only when the data to be 
transferred doesn’t fit into a single UDP datagram.

Of course, client programs need to find out to which port a program number maps. 
Using a configuration file for this would be too inflexible; since RPC applications 
don’t use reserved ports, there’s no guarantee that a port originally meant to be used 
by our database application hasn’t been taken by some other process. Therefore, 
RPC applications pick any available port and register it with a special program called 
the portmapper daemon. The portmapper acts as a service broker for all RPC servers 
running on its machine. A client that wishes to contact a service with a given pro­
gram number first queries the portmapper on the server’s host, which returns the 
TCP and UDP port numbers the service can be reached at.

This method introduces a single point of failure, much like the inetd daemon does for 
the standard Berkeley services. However, this case is even a little worse because when 
the portmapper dies, all RPC port information is lost; this usually means that you 
have to restart all RPC servers manually or reboot the entire machine.

On Linux, the portmapper is called /sbin/portmap, or sometimes /usr/sbin/rpc.port- 
map. Other than making sure it is started from your network boot scripts, the port­
mapper doesn’t require any configuration.

Configuring Remote Login and Execution
It’s often very useful to execute a command on a remote host and have input or out­
put from that command be read from, or written to, a network connection.

The traditional commands used for executing commands on remote hosts are rlogin, 
rsh, and rep. We briefly discussed the security issues associated with it in Chapter 1

170 | Chapter 10: Important Network Features



and suggested ssh as a replacement. The ssh package provides replacements called 
ssh and scp.

Each of these commands spawns a shell on the remote host and allows the user to 
execute commands. Of course, the client needs to have an account on the remote 
host where the command is to be executed. Thus, all these commands use an 
authentication process. The r commands use a simple username and password 
exchange between the hosts with no encryption, so anyone listening could easily 
intercept the passwords. The ssh command suite provides a higher level of security: it 
uses a technique called Public Key Cryptography, which provides authentication and 
encryption between the hosts to ensure that neither passwords nor session data are 
easily intercepted by other hosts.

It is possible to relax authentication checks for certain users even further. For 
instance, if you frequently have to log in to other machines on your LAN, you might 
want to be admitted without having to type your password every time. This was 
always possible with the r commands, but the ssh suite allows you to do this a little 
more easily. It’s still not a great idea because it means that if an account on one 
machine is breached, access can be gained to all other accounts that user has config­
ured for password-less login, but it is very convenient and people will use it.

Let’s talk about removing the r commands and getting ssh to work instead.

Disabling the r Commands
Start by removing the r commands if they’re installed. The easiest way to disable the 
old r commands is to comment out (or remove) their entries in the /etc/inetdxonf file. 
The relevant entries will look something like this:

# Shell, login, exec and talk are BSD protocols.
shell stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rshd
login stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rlogind
exec stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.rexecd

You can comment them by placing a # character at the start of each line, or delete the 
lines completely. Remember, you need to restart the inetd daemon for this change to 
take effect. Ideally, you should remove the daemon programs themselves, too.

Installing and Configuring ssh
OpenSSH is a free version of the ssh suite of programs; the Linux port can be found 
at ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/ and in most modern Linux 
distributions.* We won’t describe compilation here; good instructions are included in

* OpenSSH was developed by the OpenBSD project and is a fine example of the benefit of free software.

Configuring Remote Login and Execution | 171

ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/


the source. If you can install it from a precompiled package, then it’s probably wise 
to do so.

There are two parts to an ssh session. There is an ssh client that you need to config­
ure and run on the local host and an ssh daemon that must be running on the remote 
host.

The ssh daemon
The sshd daemon is the program that listens for network connections from ssh cli­
ents, manages authentication, and executes the requested command. It has one main 
configuration file called /etc/ssh/sshd_config and a special file containing a key used 
by the authentication and encryption processes to represent the host end. Each host 
and each client has its own key.

A utility called ssh-keygen is supplied to generate a random key. This is usually used 
once at installation time to generate the host key, which the system administrator 
usually stores in a file called /etc/ssh/ssh_host_key. Keys can be of any length of 512 
bits or greater. By default, ssh-keygen generates keys of 1,024 bits in length, and most 
people use the default. Using OpenSSH with SSH Version 2, you will need to gener­
ate RSA and DSA keys. To generate the keys, you would invoke the ssh-keygen com­
mand like this:

# ssh-keygen -t rsal -f /etc/openssh/ssh_host_key -N ,,n
# ssh-keygen -t dsa -f /etc/openssh/ssh_host_dsa_key -N ""
# ssh-keygen -t rsa -f /etc/openssh/ssh_host_rsa_key -N nn

You will be prompted to enter a passphrase if you omit the -N option. However, host 
keys must not use a passphrase, so just press the return key to leave it blank. The 
program output will look something like this:

Generating public/private dsa key pair.
Your identification has been saved in sshkey.
Your public key has been saved in sshkey.pub.
The key fingerprint is:
fb:bf:dl:53:08:7a:29:6f:fb:45:96:63:7a:6e:04:22 tb@eskimo 1024

You’ve probably noticed that three different keys were created. The first one, type 
rsal, is used for SSH protocol Version 1, the next two types, rsa and dsa, are used for 
SSH protocol Version 2. It is recommended that SSH protocol Version 2 be used in 
place of SSH protocol Version 1 because of potential man-in-the-middle and other 
attacks against SSH protocol Version 1.

You will find at the end that two files have been created for each key. The first is 
called the private key, which must be kept secret and will be in /etc/openssh/ssh_host_ 
key. The second is called the public key and is one that you can share; it will be in 
/etc/openssh/ssh_host_key.pub.

Armed with the keys for ssh communication, you need to create a configuration file. 
The ssh suite is very powerful and the configuration file may contain many options.

172 | Chapter 10: Important Network Features



W e’ll present a simple example to get you started; you should refer to the ssh docu­
mentation to enable other features. The following code shows a safe and minimal 
sshd configuration file. The rest of the configuration options are detailed in the 
sshd(8) manpage:

# SOpenBSD: sshd_config,v 1.59 2002/09/25 11:17:16 markus Exp $

#Port 22 
Protocol 2
#ListenAddress 0.0.0.0 
#ListenAddress : :

# HostKeys for protocol version 2 
HostKey /etc/openssh/ssh_host_rsa_key 
HostKey /etc/openssh/ssh_host_dsa_key

# Lifetime and size of ephemeral version l server key 
#KeyRegenerationInterval 3600
#ServerKeyBits 768

# Authentication:

#LoginGraceTime 120 
#PermitRootLogin yes 
#StrictModes yes

#RSAAuthentication yes 
#PubkeyAuthentication yes
# Change to yes if you don't trust ~/.ssh/known_hosts for
# RhostsRSAAuthentication and HostbasedAuthentication 
#IgnoreUserKnownHosts no

# To disable tunneled clear text passwords, change to no here!
#PasswordAuthentication yes
#PermitEmptyPasswords no

# Change to no to disable s/key passwords 
#ChallengeResponseAuthentication yes

#XllForwarding no 
#XllDisplayOffset 10 
#XllUseLocalhost yes 
#PrintMotd yes 
#PrintLastLog yes 
#KeepAlive yes 
#UseLogin no
#UsePrivilegeSeparation yes 
#PermitUserEnvironment no 
MaxStartups 10
# no default banner path 
#Banner /some/path 
#VerifyReverseMapping no

Configuring Remote Login and Execution | 173



# override default of no subsystems
Subsystem sftp /usr/lib/misc/sftp-server

It’s important to make sure the permissions of the configuration files are correct to 
ensure that system security is maintained. Use the following commands:

# chown -R root:root /etc/ssh
# chmod 755 /etc/ssh
# chmod 600 /etc/ssh/ssh_host_rsa_key
# chmod 600 /etc/ssh/ssh_host_dsa_key
# chmod 644 /etc/ssh/sshd_config

The final stage of sshd administration daemon is to run it. Normally you’d create an 
rc file for it or add it to an existing one, so that it is automatically executed at boot 
time. The daemon runs standalone and doesn’t require any entry in the /etc/inetd. 
conf file. The daemon must be run as the root user. The syntax is very simple:

/usr/sbin/sshd

The sshd daemon will automatically place itself into the background when being run. 
You are now ready to accept ssh connections.

The ssh client
There are a number of ssh client programs: slogin, scp, and ssh. They each read the 
same configuration file, usually called /etc/openssh/ssh_config. They each also read con­
figuration files from the .ssh directory in the home directory of the user executing them. 
The most important of these files is the .ssh/config file, which may contain options that 
override those specified in the /etc/openssh/ssh_config file, the .ssh/identity file, which 
contains the user’s own private key, and the corresponding .ssh/identity.pub file, con­
taining the user’s public key. Other important files are .ssh/known_hosts and .ssh/ 
authorizedjkeys; we’ll talk about those in the next section, “Using ssh.” First, let’s cre­
ate the global configuration file and the user key file.

/etc/ssh/ssh_config is very similar to the server configuration file. Again, there are lots 
of features that you can configure, but a minimal configuration looks like that pre­
sented in Example 10-5. The rest of the configuration options are detailed in the 
sshd(8) manpage. You can add sections that match specific hosts or groups of hosts. 
The parameter to the “Host” statement may be either the full name of a host or a 
wildcard specification, as we’ve used in our example, to match all hosts. We could 
create an entry that used, for example, Host *.vbrew.com to match any host in the 
vbrew.com domain.

Example 10-5. Example ssh client configuration file

# $0penBSD: ssh_config,v 1.19 2003/08/13 08:46:31 markus Exp $

# Site-wide defaults for various options

# Host *

174 | Chapter 10: Important Network Features



# ForwardAgent no
# ForwardXll no
# RhostsRSAAuthentication no
# RSAAuthentication yes
# PasswordAuthentication yes
# HostbasedAuthentication no ■

A  BatchMode no
# CheckHostIP yes
# AddressFamily any
# ConnectTimeout 0
# StrictHostKeyChecking ask
# IdentityFile ~/.ssh/identity
# IdentityFile ~/.ssh/id_rsa
# IdentityFile ~/.ssh/id_dsa
# Port 22
# Protocol 2,1
# Cipher 3des
# Ciphers aesl28-cbc,3des-cbc,blowfish-cbc,castl28-cbc,arcfour,aesl92-cbc,aes2 
56-cbc
# EscapeChar ~

We mentioned in the server configuration section that every host and user has a key. 
The user’s key is stored in his or her ~/.ssh/indentity file. To generate the key, use the 
same ssh-keygen command we used to generate the host key, except this time you do 
not need to specify the name of the file in which you save the key. The ssh-keygen 
defaults to the correct location, but it prompts you to enter a filename in case you’d 
like to save it elsewhere. It is sometimes useful to have multiple identity files, so ssh 
allows this. Just as before, ssh-keygen will prompt you to entry a passphrase. Pass- 
phrases add yet another level of security and are a good idea. Your passphrase won’t 
be echoed on the screen when you type it.

Example 10-5. Example ssh client configuration file (continued)

There is no way to recover a passphrase if you forget it. Make sure it is 
something you will remember, but as with all passwords, make it 
something that isn’t obvious, like a proper noun or your name. For a 
passphrase to be truly effective, it should be between 10 and 30 char­
acters long and not be plain English prose. Try to throw in some 
unusual characters. If you forget your passphrase, you will be forced to 
generate a new key.

You should ask each of your users to run the ssh-keygen command just once to 
ensure their key file is created correctly. The ssh-keygen will create their -/.ssh/  direc­
tories for them with appropriate permissions and create their private and public keys 
in .ssh/identity and .ssh/identity.pub, respectively. A sample session should look like 
this:

$ ssh-keygen
Key generation complete.
Enter file in which to save the key (/home/maggie/.ssh/identity):

Configuring Remote Login and Execution | 175



Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/maggie/.ssh/identity.
Your public key has been saved in /home/maggie/.ssh/identity.pub.
The key fingerprint is:
1024 85:49:53:f4:8a:d6:d9:05:do:If:23:c4:d7:2a:11:67 maggie@moria 
$

Now ssh is ready to run.

Using ssh
We should now have the ssh command and its associated programs installed and 
ready to run. Let’s now take a quick look at how to run them.

First, we’ll try a remote login to a host. The first time you attempt a connection to a 
host, the ssh client will retrieve the public key of the host and ask you to confirm its 
identity by prompting you with a shortened version of the public key called a finger­
print.

The administrator at the remote host should have supplied you in advance with its 
public key fingerprint, which you should add to your .ssh/known_hosts file. If the 
remote administrator has not supplied you the appropriate key, you can connect to 
the remote host, but ssh will warn you that it does have a key and prompt you 
whether you wish to accept the one offered by the remote host. Assuming that you’re 
sure no one is engaging in DNS spoofing and you are in fact talking to the correct 
host, answer yes to the prompt. The relevant key is then stored automatically in your 
.ssh/known_hosts and you will not be prompted for it again. If, on a future connec­
tion attempt, the public key retrieved from that host does not match the one that is 
stored, you will be warned, because this represents a potential security breach.

A first-time login to a remote host will look something like this:
#

$ ssh vlager.vbreM.com
The authenticity of host 'vlager.vbrew.com' can't be established.
Key fingerprint is 1024 7b:d4:a8:28:c5:19:52:53:3a:fe:8d:95:dd:14:93:f5.
Are you sure you want to continue connecting (yes/no)? yes 
Warning: Permanently added 'vchianti.vbrew.com,172.16.2.3' to the list of/ 

known hosts. 
maggie@vlager.vbrew.com's pas sword:
Last login: Tue Feb 1 23:28:58 2004 from vstout.vbrew.com 
$

You will be prompted for a password, which you should answer with the password 
belonging to the remote account, not the local one. This password is not echoed 
when you type it.

W ithout any special arguments, ssh will attempt to log in with the same user ID used 
on the local machine. You can override this using the -1 argument, supplying an 
alternate login name on the remote host. This is what we did in our example earlier

176 | Chapter 10: Important Network Features



in the book. Alternately, you can use the userid@hostname.ext format to specify a 
different username.

We can copy files to and from the remote host using the scp program. Its syntax is 
similar to the conventional cp with the exception that you may specify a hostname 
before a filename, meaning that the file path is on the specified host (It is also possi­
ble to use the userid@hostname format previously mentioned). The following exam­
ple illustrates scp syntax by copying a local file called /tmp/fred to the /home/maggie/ 
of the remote host vlager.vbrew.com:

$ scp /tmp/fred vlager.vbrew.com:/home/maggie/ 
maggie@vlager.vbrew.com's password:
f re (j 100% |*****************************| 50165 00 :0 1  ETA

Again, you’ll be prompted for a password. The scp command displays useful 
progress messages by default. You can copy a file from a remote host with the same 
ease; simply specify its hostname and file path as the source and the local path as the 
destination. It’s even possible to copy a file from a remote host to some other remote 
host, but it is something you wouldn’t normally want to do, because all of the data 
travels via your host.

You can execute commands on remote hosts using the ssh command. Again, its syn­
tax is very simple. Let’s have our user maggie retrieve the root directory of the remote 
host vchianti.vbrew.com. She’d do this with the following:

$ ssh vchianti.vbrew.com Is -CF /
maggie@vchianti.vbrew.com's pas sword: 
bin/ ftp/ mnt/ sbin/
boot/ home/ opt/ service/
dev/ lib/ proc/ stage3-pentiumB-l.4-20030726.tar.bz2
etc/ lost+found/ root/

You can place ssh in a command pipeline and pipe program input/output to or from 
it just like any other command, except that the input or output is directed to or from 
the remote host via the ssh connection. Here is an example of how you might use this 
capability in combination with the tar command to copy a whole directory with sub­
directories and files from a remote host to the local host:

$ ssh vchianti.vbrew.com "tar cf - /etc/" | tar xvf -
maggie@vchianti.vbrew.com's password:
etc/GNUstep
etc/Muttrc
etc/Net
etc/Xll
etc/adduser.conf

Here we surrounded the command we will execute with quotation marks to make it 
clear what is passed as an argument to ssh and what is used by the local shell. This 
command executes the tar command on the remote host to archive the /etc! directory

tmp/
usr/
var/

Configuring Remote Login and Execution | 177

mailto:userid@hostname.ext


and write the output to standard output. W e’ve piped to an instance of the tar com­
mand running on our local host in extract mode reading from standard input.

Again, we were prompted for the password. Let’s now configure our local ssh client 
so that it w on’t prompt for a password when connecting to the vchianti.vbrew.com 
host. We mentioned the .ssh/authorized_keys file earlier; this is where it is used. The 
.ssh/authorized_keys file contains the public keys on any remote user accounts that 
we wish to automatically log in to. You can set up automatic logins by copying the 
contents of the .ssh/identity.pub from the remote account into our local .ssh/ 
authorized_keys file. It is vital that the file permissions of .ssh/authorized_keys allow 
only that you read and write it; anyone may steal and use the keys to log in to that 
remote account. To ensure the permissions are correct, change .ssh/authorized_keys, 
as shown:

$ chmod 600 ~/.ssh/authorizedjceys

The public keys are a long single line of plain text. If you use copy and paste to dupli­
cate the key into your local file, be sure to remove any end of line characters that 
might have been introduced along the way. The .ssh/authorizedjkeys file may con­
tain many such keys, each on a line of its own.

The ssh suite of tools is very powerful, and there are many other useful features and 
options that you will be interested in exploring. Please refer to the manpages and 
other documentation that is supplied with the package for more information.

178 | Chapter 10: Important Network Features



CHAPTER 11
Administration Issues 

with Electronic Mail

Electronic mail transport has been one of the most prominent uses of networking 
since networks were devised. Email started as a simple service that copied a file from 
one machine to another and appended it to the recipient’s mailbox file. The concept 
remains the same, although an ever-growing net, with its complex routing require­
ments and its ever increasing load of messages, has made a more elaborate scheme 
necessary.

Various standards of mail exchange have been devised. Sites on the Internet adhere 
to one laid out in RFC 822, augmented by some RFCs that describe a machine-inde- 
pendent way of transferring just about anything, including graphics, sound files, and 
special characters sets, by email.* CCITT has defined another standard, X.400. It is 
still used in some large corporate and government environments, but is progressively 
being retired.

Quite a number of mail transport programs have been implemented for Unix sys­
tems. One of the best known is sendmail, which was developed by Eric Allman at the 
University of California at Berkeley. Eric Allman now offers sendmail through a com­
mercial venture, but the program remains free software, sendmail is supplied as the 
standard mail transfer agent (or MTA) in some Linux distributions. We describe 
sendmail configuration in Chapter 12.

sendmail supports a set of configuration files that have to be customized for your sys­
tem. Apart from the information that is required to make the mail subsystem run 
(such as the local hostname), there are many parameters that may be tuned, send- 
maiVs main configuration file is very hard to understand at first. It looks as if your 
cat has taken a nap on your keyboard with the Shift key pressed. Luckily, modern 
configuration techniques take away a lot of the head scratching.

* Read RFC 1437 if you don’t believe this statement!

179



W hen users retrieve mail on their personal systems, they need another protocol to 
use to contact the mail server. In Chapter 15 we discuss a powerful and increasingly 
popular type of server called IMAP.

In this chapter, we deal with what email is and what issues administrators have to 
deal with. Chapter 12 provides instructions on setting up sendmail for the first time. 
The information included should help smaller sites become operational, but there 
are several more options and you can spend many happy hours in front of your com­
puter configuring the fanciest features.

For more information about issues specific to electronic mail on Linux, please refer 
to the Electronic Mail HOWTO by Guylhem Aznar. The source distribution of send­
mail also contains extensive documentation that should answer most questions on 
setting it up.

What Is a Mail Message?
A mail message generally consists of a message body, which is the text of the mes­
sage, and special administrative data specifying recipients, transport medium, etc., 
similar to what you see when you look at a physical letter’s envelope.

This administrative data falls into two categories. In the first category is any data that 
is specific to the transport medium, such as the address of sender and recipient. It is 
therefore called the envelope. It may be transformed by the transport software as the 
message is passed along.

The second variety is any data necessary for handling the mail message, which is not 
particular to any transport mechanism, such as the message’s subject line, a list of all 
recipients, arid the date the message was sent. In many networks, it has become stan­
dard to prepend this data to the mail message, forming the so-called mail header. It is 
offset from the mail body by an empty line.* Most mail transport software in the Unix 
world use a header format outlined in RFC 822. Its original purpose was to specify a 
standard for use on the ARPANET, but since it was designed to be independent from 
any environment, it has been easily adapted to other networks, including many 
UUCP-based networks.

RFC 822 is only the lowest common denominator, however. More recent standards 
have been conceived to cope with growing needs such as data encryption, interna­
tional character set support, and Multipurpose Internet Mail Extensions (MIME), 
described in RFC 1341 and other RFCs.

* It is customary to append a signature or .sig to a mail message, usually containing information on the author. 
It is offset from the mail messagc’by a line containing ”, followed by a space. Netiquette dictates, “Keep 
it short.”

180 I Chapter 11: Administration Issues with Electronic Mail



In all these standards, the header consists of several lines separated by an end-of-line 
sequence. A line is made up of a field name, beginning in column one, and the field 
itself, offset by a colon and whitespace. The format and semantics of each field vary 
depending on the field name. A header field can be continued across a newline if the 
next line begins with a whitespace character such as tab. Fields can appear in any 
order.

A typical mail header may look like this:

Return-Path: <root@oreilly.com>
X-Original-To: spam@xtivix.com 
Delivered-To: spam@ xtivix.com
Received: from smtp2.oreilly.com (smtp2.oreilly.com [209.58.173.10]) 

by www.berkeleywireless.net (Postfix) with ESMTP id B05C520DF0A 
for <spam@ xtivix.com>; Wed, 16 Dul 2003 06:08:44 -0700 (PDT)

Received: (from root@localhost)
by smtp2.oreilly.com (8.11.2/8.11.2) id h6GD5f920140;
Wed, 16 Dul 2003 09:05:41 -0400 (EDT)

Date: Wed, 16 Dul 2003 09:05:41 -0400 (EDT)
Message-Id: <200307161305.h6GD5f920l40@smtp2.oreilly.com>
From: Andy Oram <root@oreilly.com>
To: spam@ xtivix.com 
Subject: Article on IPv6

Usually, all necessary header fields are generated by the mail reader you use, such as 
elm, Outlook, Evolution, or pine. However, some are optional and may be added by 
the user, elm, for example, allows you to edit part of the message header. Others are 
added by the mail transport software. If you look into a local mailbox file, you may 
see each mail message preceded by a “From” line (note: no colon). This is not an 
RFC 822 header; it has been inserted by your mail software as a convenience to pro­
grams reading the mailbox. To avoid potential trouble with lines in the message 
body that also begin with “From,” it has become standard procedure to escape any 
such occurrence in the body of a mail message by preceding it with a > character.

This list is a collection of common header fields and their meanings:

From:

This contains the sender’s email address and possibly the “real name.” Many dif­
ferent formats are used here, as almost every mailer wants to do this a different 
way.

To:

This is a list of recipient email addresses. Multiple recipient addresses are sepa­
rated by a comma.

Cc:
This is a list of email-addresses that will receive “carbon copies” of the message. 
Multiple recipient addresses are separated by a comma.

What Is a Mail Message? | 181

mailto:root@oreilly.com
mailto:spam@xtivix.com
http://www.berkeleywireless.net
mailto:200307161305.h6GD5f920l40@smtp2.oreilly.com
mailto:root@oreilly.com


Bcc:
This is a list of hidden email addresses that will receive “carbon copies” of the 
message. The key difference between a “Cc:” and a “Bcc:” is that the addresses 
listed in a “Bcc:” will not appear in the header of the mail messages delivered to 
any recipient. It’s a way of alerting recipients that you’ve sent copies of the mes­
sage to other people without telling the others. Multiple recipient addresses are 
separated by a comma.

Subject:
Describes the content of the mail in a few words.

Date:

Supplies the date and time the mail was sent.
Reply-To:

Specifies the address that the sender wants the recipient’s reply directed to. This 
may be useful if you have several accounts, but want to receive the bulk of mail 
only on the one you use most frequently. This field is optional.

Organization:

The organization that owns the machine from which the mail originates. If your 
machine is owned by you privately, either leave this out, or insert “private” or 
some complete nonsense. This field is not described by any RFC and is com­
pletely optional. Some mail programs support it directly, many don’t.

Message-ID:
A string generated by the mail transport on the originating system. It uniquely 
identifies this message.

Received:
Every site that processes your mail (including the machines of sender and recipi­
ent) inserts such a field into the header, giving its site name, a message ID, time 
and date it received the message, which site it is from, and which transport soft­
ware was used. These lines allow you to trace which route the message took, and 
you can complain to the person responsible if something went wrong.

X-anything:

No mail-related programs should complain about any header that starts with X-. 
It is used to implement additional features that have not yet made it into an 
RFC, or never will. For example, there was once a very large Linux mailing list 
server that allowed you to specify which channel you wanted the mail to go to by 
adding the string X-Mn-Key: followed by the channel name.

How Is Mail Delivered?
Generally, you will compose mail using a program such as mail or mailx, or more 
sophisticated ones such as mutt, tkrat, or pine. These programs are called mail user 
agents (MUAs). If you send a mail message, the interface program will in most cases

182 | Chapter 11: Administration Issues with Electronic Mail



hand it to another program for delivery. This is called the mail transport agent 
(MTA). On most systems the same MTA is used for both local and remote delivery 
and is usually invoked as /usrIsbin!sendmail, or on non-FSSTND compliant systems 
as IftsrMb I sendmail.

Local delivery of mail is, of course, more than just appending the incoming message 
to the recipient’s mailbox. Usually, the local MTA understands aliasing (setting up 
local recipient addresses pointing to other addresses) and forwarding (redirecting a 
user’s mail to some other destination). Also, messages that cannot be delivered must 
usually be bounced— that is, returned to the sender along with some error message.

For remote delivery, the transport software used depends on the nature of the link. 
Mail delivered over a network using TCP/IP commonly uses Simple Mail Transfer 
Protocol (SMTP), which is described in RFC 821. SMTP was designed to deliver mail 
directly to a recipient’s machine, negotiating the message transfer with the remote 
side’s SMTP daemon. Today it is common practice for organizations to establish spe­
cial hosts that accept all mail for recipients in the organization and for that host to 
manage appropriate delivery to the intended recipient.

Email Addresses
Email addresses are made up of at least two parts. One part is the name of a mail 
domain that will ultimately translate to either the recipient’s host or some host that 
accepts mail on behalf of the recipient. The other part is some form of unique user 
identification that may be the login name of that user, the real name of that user in 
“Firstname.Lastname” format, or an arbitrary alias that will be translated into a user 
or list of users. Other mail addressing schemes, such as X.400, use a more general set 
of “attributes” that are used to look up the recipient’s host in an X.500 directory 
server.

How email addresses are interpreted depends greatly on what type of network you 
use. W e’ll concentrate on how TCP/IP networks interpret email addresses.

RFC 822
Internet sites adhere to the RFC 822 standard, which requires the familiar notation 
of user@host.domain, for which host.domain is the host’s fully qualified domain 
name. The character separating the two is properly called a “commercial a t” sign, 
but it helps if you read it as “at.” This notation does not specify a route to the desti­
nation host. Routing of the mail message is left to the mechanisms we’ll describe 
shortly.

Email Addresses | 183



Obsolete Mail Formats
Before moving on, let’s have a look at the way things used to be. In the original 
UUCP environment, the prevalent form was path!host!user, for which path described 
a sequence of hosts the message had to travel through before reaching the destina­
tion host. This construct is called the bang path notation because an exclamation 
mark is colloquially called a “bang.”

Other networks had still different means of addressing. DECnet-based networks, for 
example, used two colons as an address separator, yielding an address of host::user. 
The X.400 standard uses an entirely different scheme, describing a recipient by a set 
of attribute-value pairs, such as country and organization.

Lastly, on FidoNet, each user was identified by a code such as 2:320/204.9, consist­
ing of four numbers denoting zone (2 for Europe), net (320 referred to Paris and Ban- 
lieue), node (the local hub), and point (the individual user’s PC). Fidonet addresses 
were mapped to RFC 822; the above, for example, was written as Thomas. 
Quinot@p9.f204.n320.z2.fidonet.org. Now aren’t you glad we do things with simple 
domain names today?

How Does Mail Routing Work?
The process of directing a message to the recipient’s host is called routing. Apart 
from finding a path from the sending site to the destination, it involves error check­
ing and may involve speed and cost optimization.

On the Internet, the main job of directing data to the recipient host (once it is known 
by its IP address) is done by the IP networking layer.

Mail Routing on the Internet
On the Internet, the destination host’s configuration determines whether any spe­
cific mail routing is performed. The default is to deliver the message to the destina­
tion by first determining what host the message should be sent to and then delivering 
it directly to that host. Most Internet sites want to direct all inbound mail to a highly 
available mail server that is capable of handling all this traffic and have it distribute 
the mail locally. To announce this service, the site publishes a so-called MX record 
for its local domain in its DNS database. MX stands for Mail Exchanger and basi­
cally states that the server host is willing to act as a mail forwarder for all mail 
addresses in the domain. MX records can also be used to handle traffic for hosts that 
are not connected to the Internet themselves. These hosts must have their mail 
passed through a gateway. This concept is discussed in greater detail in Chapter 6 .

MX records are always assigned a preference. This is a positive integer. If several mail 
exchangers exist for one host, the mail transport agent will try to transfer the

184 | Chapter 11: Administration Issues with Electronic Mail

mailto:Quinot@p9.f204.n320.z2.fidonet.org


message to the exchanger with the lowest preference value, and only if this fails will 
it try a host with a higher value. If the local host is itself a mail exchanger for the des­
tination address, it is allowed to forward messages only to MX hosts with a lower 
preference than its own; this is a safe way of avoiding mail loops. If there is no MX 
record for a domain, or no MX records left that are suitable, the mail transport agent 
is permitted to see if the domain has an IP address associated with it and attempt 
delivery directly to that host.

Suppose that an organization, say Foobar, Inc., wants all its mail handled by its 
machine mailhub. It will then have MX records like this in the DNS database:

green.foobar.com. IN MX 5 mailhub.foobar.com.

This announces mailhub.foobar.com as a mail exchanger for green.foobar.com with 
a preference of 5. A host that wishes to deliver a message to joe@green.foobar.com 
checks DNS and finds the MX record pointing at mailhub. If there’s no MX with a 
preference smaller than 5, the message is delivered to mailhub, which then dis­
patches it to green.

This is a very simple description of how MX records work. For more information on 
mail routing on the Internet, refer to RFC 821, RFC 974, and RFC 1123.

Mail Routing on the Internet | 185

mailto:joe@green.foobar.com


It’s been said that you aren’t a real Unix system administrator until you’ve edited a 
sendmail.cf file. It’s also been said that you’re crazy if you’ve attempted to do 'so 
twice.

Fortunately, you no longer need to directly edit the cryptic sendmail.cf file. The new 
versions of sendmail provide a configuration utility that creates the sendmail.cf file for 
you based on much simpler macro files. You do not need to understand the complex 
syntax of the sendmail.cf file. Instead, you use the macro language to identify the fea­
tures you wish to include in your configuration and specify some of the parameters 
that determine how that feature operates. A traditional Unix utility, called ra4, then 
takes your macro configuration data and mixes it with the data it reads from tem­
plate files containing the actual sendmail.cf syntax to produce your sendmail.cf file.

sendmail is an incredibly powerful mail program that is difficult to master. Any pro­
gram whose definitive reference (sendmail, by Bryan Costales with Eric Allman, pub­
lished by O ’Reilly) is 1,200 pages long scares most people off. And any program as 
complex as sendmail cannot be completely covered in a single chapter. This chapter 
introduces sendmail and describes how to install, configure, and test it, using a basic 
configuration for the Virtual Brewery as an example. If the information presented 
here helps make the task of configuring sendmail less daunting for you, we hope 
you’ll gain the confidence to tackle more complex configurations on your own.

Installing the sendmail Distribution
sendmail is included in prepackaged form in most Linux distributions. Despite this 
fact, there are some good reasons to install sendmail from source, especially if you are 
security conscious, sendmail changes frequently to fix security problems and to add 
new features. Closing security holes and using new features are good reasons to 
update the sendmail release on your system. Additionally, compiling sendmail from 
source gives you more control over the sendmail environment. Subscribe to the 
sendmail-announce mailing list to receive notices of new sendmail releases, and

186



monitor the http://www.sendmail.org/ site to stay informed about potential security 
threats and the latest sendmail developments.

Downloading sendmail Source Code
Download the sendmail source code distribution and the source code distribution 
signature file from http://www.sendmail.org/current-release.html, from any of the mir­
ror sites, or from ftp:llftp.sendmail.org/publsendmaill. Here is an example using ftp:

# ftp ftp.sendmail.org
Connected to ftp.senchnail.org (209.246.26.22).
220 services.sendmail.org FTP server (Version 6.00LS) ready.
Name ( f t p . sendmail.org:c ra ig ) : anonymous
331 Guest login ok, send your email address as password.
Pas sword: win@vstout.com
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files. 
ftp> cd /pub/sendmail 
250 CWD command successful. 
ftp> get sendmail.8.12.11.tar.gz
local: sendmail.8.12.11.tar.gz remote: sendmail.8.12.ll.tar.gz 
227 Entering Passive Mode (209,246,26,22,244,234)
150 Opening BINARY mode data connection for 'sendmail.8.12.11.tar.gz' (1899112 
bytes).
226 Transfer complete.
1899112 bytes received in 5.7 secs (3.3e+02 Kbytes/sec) 
ftp> get sendmail.8.12.11.tar.gz.sig
local: sendmail.8.12.11.tar.gz.sig remote: sendmail.8.12.11.tar.gz.sig
227 Entering Passive Mode (209,246,26,22,244,237)
150 Opening BINARY mode data connection for 'sendmail.8.12.11.tar.gz.sig' (152 
bytes).
226 Transfer complete.
152 bytes received in 0.000949 secs (l.6e+02 Kbytes/sec)

If you do not have the current sendmail PGP keys on your key ring, download the 
PGP keys needed to verify the signature. Adding the following step to the ftp  session 
downloads the keys for the current year:

ftp> get PGPKEYS
local: PGPKEYS remote: PGPKEYS
227 Entering Passive Mode (209,246,26,22,244,238)
150 Opening BINARY mode data connection for 'PGPKEYS' (61916 bytes).
226 Transfer complete.
61916 bytes received in 0.338 secs (l.8e+02 Kbytes/sec) 
ftp> quit
221 Goodbye.

If you downloaded new keys, add the PGP keys to your key ring. In the following 
example, gpg (Gnu Privacy Guard) is used:

# gpg --import PGPKEYS
gpg: key 16F4CCE9: not changed

Installing the sendmail Distribution | 187

http://www.sendmail.org/
http://www.sendmail.org/current-release.html
ftp://ftp.sendmail.org/publsendmaill
ftp://ftp.sendmail.org
ftp://ftp.senchnail.org
mailto:win@vstout.com


gpg: key 95F61771: public key imported
gpg: key 396F0789: not changed
gpg: key 678C0A03: not changed
gpg: key CC374F2D: not changed
gpg: key E35C5635: not changed
gpg: key A39BA655: not changed
gpg: key D432E19D: not changed
gpg: key 12D3461D: not changed
gpg: key BF7BA421: not changed
gpg: key AOOE1563: non exportable signature (class 10) - skipped
gpg: key AOOE1563: not changed
gpg: key 22327A01: not changed
gpg: Total number processed: 12
gpg: imported: 1 (RSA: l)
gpg: unchanged: 11

Of the twelve exportable keys in the PGPKEYS file, only one is exported to our key 
ring. The not changed comment for the other eleven keys shows that they were 
already installed on the key ring. The first time you import PGPKEYS, all twelve keys 
will be added to the key ring.

Before using the new key, verify its fingerprint, as in this gpg example:

# gpg --fingerprint 95F61771
pub 1024R/95F61771 2003-12-10 Sendmail Signing Key/2004 <sendmail@Sendmail.ORG>

Key fingerprint = 46 FE 81 99 48 75 30 Bl 3E A9 79 43 BB 78 Cl D4

Compare the displayed fingerprint against Table 12-1, which contains fingerprints 
for sendmail signing keys.

Table 12-1. Sendmail signing key fingerprints

Year Fingerprint
1997 CAAE F2 943B 1D 413C 947B  725FAE 0B 6 A 11

1998 F9 32 40 A13B 3A B6 DE B2 98 6A 70 AF 54 9D 26

1999 25 734C8E94B1 E8 EA EA 9B A4 D6 00 51 <3 71

2000 8 1 8C 58 EA 7A 9D 7C 1B 09 78 AC 5E EB 99 08 5D

2001 59 AF DC 3E A2 7D 29 56 89 FA 25 70 90 0D 7E Cl

2002 7B 02 F4 AA FC CO 22 DA 47 3E 2A 9A 9B 35 22 45

2003 C4 73 DF 4A 97 9C 27 A9 EE 4F B2 BD 55 B5 EO OF

2004 46 FE 8199 48 75 30 Bl 3E A9 79 43 BB 78 C1 D4

If the fingerprint is correct, you can sign, and thus validate, the key. In this gpg exam­
ple, we sign the newly imported sendmail key:

# gpg --edit-key 95F61771
gpg (GnuPG) 1.0.7; Copyright (C) 2002 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it 
under certain conditions. See the file COPYING for details.

188 | Chapter 12: sendmail

mailto:sendmail@Sendmail.ORG


gpg: checking the trustdb
gpg: checking at depth 0 signed=l ot(-/q/n/m/f/u)=0/0/0/0/0/l
gpg: checking at depth 1 signed=l ot(-/q/n/m/f/u)=l/0/0/0/0/0
pub 1024R/95F61771 created: 2003-12-10 expires: never trust: -/q
(l). Sendmail Signing Key/2004 <sendmail@Sendmail.ORG>

Command> sign

pub 1024R/95F61771 created: 2003-12-10 expires: never trust: -/q
Fingerprint: 46 FE 81 99 48 75 30 Bl 3E A9 79 43 BB 78 Cl D4

Sendmail Signing Key/2004 <sendmail@Sendmail.ORG>

How carefully have you verified the key you are about to sign actually belongs to the 
person named above? If you don't know what to answer, enter "0".

(0) I will not answer, (default)
(1) I have not checked at all.
(2) I have done casual checking.
(3) I have done very careful checking.

Your selection? 3
Are you really sure that you want to sign this key
with your key: "Winslow Henson <win.henson@vstout.vbrew.com>"

I have checked this key very carefully.

Really sign? y

You need a passphrase to unlock the secret key for 
user: "Winslow Henson <win.henson@vstout.vbrew.com>"
1024-bit DSA key, ID 34C9B515, created 2003-07-23

Command> quit 
Save changes? y

After the sendmail keys have been added to the key ring and signed,’ verify the send­
m ail distribution tarball. Here we use the sendm ail.8.12.11 .tar.gz.sig signature file to 
verify the sendm ail.8 .1 2 .1 1 .tar.gz compressed tarball:

# gpg --verify sendmail.8.12.11.tar.gz.sig sendmail.8.12.11.tar.gz
gpg: Signature made Sun 18 Dan 2004 01:08:52 PM EST using RSA key ID 95F61771 
gpg: Good signature from "Sendmail Signing Key/2004 <sendmail@Sendmail.ORG>" 
gpg: checking the trustdb
gpg: checking at depth 0 signed=2 ot(-/q/n/m/f/u)=0/0/0/0/0/l 
gpg: checking at depth 1 signed=0 ot(-/q/n/m/f/u)=2/0/0/0/0/0

Based on this, the distribution tarball can be safely restored. The tarball creates a 
directory and gives it a name derived from the sendmail release number. The tarball

* It is necessary to download and import the PGPKEYS file only about once a year.

Installing the sendmail Distribution | 189

mailto:sendmail@Sendmail.ORG
mailto:sendmail@Sendmail.ORG
mailto:win.henson@vstout.vbrew.com
mailto:win.henson@vstout.vbrew.com
mailto:sendmail@Sendmail.ORG


downloaded in this example would create a directory named sendmail-8.12.11. The 
files and subdirectories used to compile and configure sendmail are all contained 
within this directory.

Compiling sendmail
Compile sendmail using the Build utility provided by the sendmail developers. For 
most systems, a few com m and^ similar to the following, are all that is needed to 
compile sendmail:

# cd sendmail-8.12.11
# ./Build

A basic Build command should work unless you have unique requirements. If you 
do, create a custom configuration, called a site configuration, for the Build command 
to use. sendmail looks for site configurations in the devtools/Site directory. On a 
Linux system, Build looks for site configuration files named site.linux.m4, site.config. 
m4, and site.post.m4. If you use another filename, use the -f argument on the Build 
command line to identify the file. For example:

$ ./Build -f ourconfig.m4

As the file extension .m4 file implies, the Build configuration is created with m4 com­
mands. Three commands are used to set the variables used by Build.

define
The define command modifies the current value stored in the variable.

APPENDDEF

The APPENDDEF macro appends a value to an existing list of values stored in a vari­

able.

PREPENDDEF

The PREPENDDEF macro prepends a value to an existing list of values stored in a 

variable.

As an example assume that the devtools/OS/Linux file, which defines Build character­
istics for all Linux systems, puts the manpages in /usr/man\

define('confMANROOT’, '/usr/man/man1)

Further assume that our Linux systems stores manpages in /usr/share/man. Adding 
the following line to the devtools/Site!site.config.m4 file directs Build to set the 
manpage path to /usr/share/man:

define('confMANROOT’, '/usr/share/man/man’)

Here is another example. Assume you must configure sendmail to read data from an 
LDAP server. Further, assume that you use the command sendmail -bt -dO.l to

* Notice that m4 uses unbalanced single quotes, i.e., ' 1.

190 | Chapter 12: sendmail



check the sendmail compiler options and the string LDAPMAP does not appear in the 
“Compiled with:” list. You need to add LDAP support by setting LDAP values in the 
site.config.m4 file and recompiling sendmail as shown below:

# cd devtools/Site
# cat »  site.config.m4 
APPENDDEF('confMAPDEF', '-DLDAPMAP')
APPENDDEF('confLIBS', '-lldap -liber’)
Ctrl-D
# cd ../../
# ./Build -c

Notice the Build command. If you make changes to the siteconfig.m4 file 
Build, use the -c command-line argument to alert Build of the changes.

Most custom Build configurations are no more complicated than these 
However, there are more than 100 variables that can be set for the Build 
tion— far too many to cover in one chapter. See the devtools/READM E file 
plete list.

Installing the sendmail Binary
Because the sendmail binary is no longer installed as set-user-ID root, you must cre­
ate a special user ID and group ID before installing sendmail. Traditionally, the send­
mail binary was set-user-ID root so that any user could submit mail via the command 
line and have it written to the queue directory. However, this does not really require 
a set-user-ID root binary. W ith the proper directory permissions, a set-group-ID 
binary works fine, and presents less of a security risk.

Create the sm m sp user and group for sendmail to use when it runs as a mail submis­
sion program. Do this using the tools appropriate to your system. Here are the le tc l 
passw d and I etc!group entries added to a sample Linux system:

# grep smmsp /etc/passwd
smmsp:x:25:25:Mail Submission:/var/spool/clientmqueue:/sbin/nologin
# grep smmsp /etc/group 
smmsp:x:25:

Before installing the freshly compiled sendm ail, back up the current sendmail binary, 
the sendmail utilities, and your current sendmail configuration files. (You never 
know; you might need to drop back to the old sendmail configuration if the new one 
doesn’t work as anticipated.) After the system is backed up, install the new sendmail 
and utilities as follows:

# ./Build install

Running Build install installs sendmail and the utilities, and produces more than 
100 lines of output. It should run without error. Notice that Build uses the sm m sp  
user and group when it creates the /var/spool/clientm queue directory and when it

and rerun

examples, 
configura- 
for a corn-

installing the sendmail Distribution | 191



installs the sendm ail binary. A quick check of the ownership and permissions for the 
queue directory and the sendmail binary shows this:

drwxrwx—  2 smmsp smmsp 4096 Dun 7 16:22 clientmqueue
-r-xr-sr-x 1 root smmsp 568701 Dun 7 16:51 /usr/sbin/sendmail

After sendmail is installed, it must be configured. The topic of most of this chapter is 
how to configure sendmail.

sendmail Configuration Files
sendmail reads a configuration file (typically called /etc/m aillsendm ail.cf', or in older 
distributions, I etc!sendmail.cf, or even /usr/lib/sendm ail.cf ) that is simple for send­
m ail to parse, but not simple for a system administrator to read or edit. Fortunately, 
most sendmail configuration does not involve reading or editing the sendm ail.cf file. 
Most sendm ail configuration is macro driven. The macro method generates configu­
rations to cover most installations, but you always have the option of tuning the 
resultant sendm ail.cf manually.

The m4 macro processor program processes a macro configuration file to generate 
the sendm ail.cf file. For our convenience, we refer to the macro configuration file as 
the sendm ail.m c file throughout this chapter. Do not name your configuration file 
sendmail.m c. Instead, give it a descriptive name. For example, you might name it 
after the host it was designed for— vstou t.m 4 , in our case. Providing a unique name 
for the configuration file allows you to keep all configuration files in the same direc­
tory and is an administrative convenience.

The configuration process is basically a matter of creating a sendmail.m c file that 
includes the macros that describe your desired configuration, and then processing 
that sendm ail.m c file with m 4. The sendmail.m c file may include basic m4 com­
mands such as define or divert, but the lines in the file that have the most dramatic 
effect on the output file are the sendmail macros. The sendmail developers define the 
macros used in the sendm ail.m c file. The m4 macro processor expands the macros 
into chunks of sendm ail.cf syntax. The macro expressions included in the sendmail. 
me file begin with the macro name (written in capital letters), followed by parame­
ters (enclosed in brackets) that are used in the macro expansion. The parameters 
may be passed literally into the sendm ail.cf output or may be used to govern the way 
the macro processing occurs.

Unlike a sendm ail.cf file, which may be more than 1,000 lines long, a basic sendmail. 
me file is often less than 10 lines long, excluding comments.

Comments
Lines in the sendm ail.m c file that begin with the # character are not parsed by ra4, 
and, by default, are output directly into the sendm ail.cf Hit. This is useful if you want

192 | Chapter 12: sendmail



to comment on what your configuration is doing in both the sendmail.mc and the 
sendmail.cf files.

To put comments in the sendmail.mc that are not placed into the sendmail.cf, use 
either m4 divert or dnl commands, d iv e rt(- l)  causes all output to cease, d ivert(o) 
restores output to the default. Any lines between these will be discarded. Blocks of 
comments that should appear only in the sendmail.mc file are usually brackets by 
d iv e rt(- l)  and divert(o) commands. To achieve the same result for a single line, 
use the dnl command at the beginning of a line that should appear as a comment 
only in the sendmail.mc file. The dnl command means “delete all characters up to 
and including the next newline.” Sometimes dnl is added to the end of a macro com­
mand line, so that anything else added to that line is treated as a comment.

Often there are more comments than configuration commands in a sendmail.mc file! 
The following sections explain the structure of the sendmail.mc file and the com­
mands used in the file.

Typically Used sendmail.mc Commands
A few commands are used to build most sendmail.mc files. Some of these typically 
used commands and the general sequence of these commands in the sendmail.mc are 
as follows:

VERSIONID
OSTYPE
DOMAIN
FEATURE

define
MAILER
L0CAL_*

The commands in this list that are written in uppercase are sendmail macros. By con­
vention, the sendmail developers use uppercase letters for the names of the macros 
they create. There are more macros than those shown above. See the file cf/README 
for a complete list of the sendmail macros. In the list above, everything except the 
define command is a sendmail macro. The define command, which is shown in low­
ercase, is a basic m4 command. All basic m4 commands are written in lowercase let­
ters. There are other basic m4 commands used in sendmail.mc files; in fact you can 
use any legal m4 command in a sendmail.mc file. However, the commands listed 
above are the basic set used to show the general order in which commands occur in a 
sendmail.mc file. We examine each of these commands in the following sections.

VERSIONID
The VERSIONID macro defines version control information. This macro is optional, 
but is found in most of the sendmail m4 files. The command has no required format

sendmail Configuration Files | 193



for the arguments field. Use any version control information you desipe. Generally 
this is something compatible with the revision control system you use. If you don’t 
use a revision control system, put a descriptive comment in this field. The VERSIONID 
macro from a sendmail.mc file on a system that did not use version control might 
look something like the following:

VERSIONID('sendmail.mc, 6/11/2004 18:31 by Win Henson’)

Notice that the argument is enclosed in single quotes and that the opening quote is ' 
and the closing quotes is '. When the argument passed to the sendmail macro con­
tains spaces, special characters or values that may be misinterpreted as m4 com­
mands, the argument is enclosed in quotes, and it must be enclosed using these 
specific single quotes. This is true for all macros, not just VERSIONID.

OSTYPE
The OSTYPE macro is a required part of the macro configuration file. The OSTYPE 
macro command loads an m4 source file that defines operating system-specific infor­
mation, such as file and directory paths, mailer pathnames, and system-specific 
mailer arguments. The only argument passed to the OSTYPE command is the name of 
the m4 source file that contains the operating system-specific information. OSTYPE 
files are stored in the cf/ostype directory. The command OSTYPE( ' linux ') processes 
the cf/ostype/linux.m4 file.

The sendmail distribution provides more than 40 predefined operating system macro 
files in the cf/ostype directory, and you can create your own for a specific Linux dis­
tribution if you like. Some Linux distributions, notably the Debian distribution, 
include their own definition file that is completely Linux-FHS compliant. W hen your 
distribution does this, use its definition instead of the generic-linux.m4 file. The 
OSTYPE macro should be one of the first commands to appear in the sendmail.mc file, 
as many other definitions depend on it.

DOMAIN
The DOMAIN macro processes the specified file from the cf/domain directory. A DOMAIN 
file is useful when configuring a large number of machines on the same network in a 
standard way, and typically configures items such as the name of mail relay hosts or 
hubs that all hosts on your network use.

To make effective use of the DOMAIN macro, you must create your own macro file con­
taining the standard definitions you require for your site, and write it into the domain 
subdirectory. If you saved your domain macro file as cf/domain/vbrew.m4, you’d 
invoke it in your sendmail.mc using:

DOMAIN('vbrew')

194 | Chapter 12: sendmail



The sendmail distribution comes with a number of sample domain macro files that 
you can use to model your own. One is the domain/generic.m4 file shown later in 
Example 12-3.

FEATURE
Use the FEATURE macro to include predefined sendmail features in your configura­
tion. There are a large number of features— the cf/feature directory contains about 50 
feature files. In this chapter we’ll talk about only a few of the more commonly used 
features. You can find full details of all of the features in the cf/README file 
included in the source package.

To use a feature, include a line in the sendmail.mc that looks like:

FEATURE(name)

where name is the feature name. Some features take an optional parameter in a for­
mat like:

FEATURE(name, param)

where param is the parameter to supply.

define
Use the m4 define command to set values for internal sendmail.cf macros, options, 
or classes. The first argument passed to the define is the m4 name of the variable 
being set and the second field is the value to which the variable is set. Here is an 
example of how define is used to set a sendmail.cf macro:

define('confDOMAIN_NAME1, 'vstout.vbrew.com')

The define command shown above places the following in the sendmail.cf file.

Djvstout.vbrew.com

This sets the sendmail.cf macro $j, which holds the full domain name of the send­
mail host, to vstout.vbrew.com. Manually setting a value for $j is generally not nec­
essary because, by default, sendmail obtains the correct name for the local host from 
the system itself.

Most of the m4 variables default to a reasonable value and thus do not have to be 
explicitly set in the m4 source file. The undef ine command sets a variable back to its 
default. For example:

undefine('confDOMAIN_NAME*)

Resets confDOMAIN_NAME to the default value even if the configuration had previously 
set it to a specific hostname.

The list of m4 variables that can be set by define is quite long. The cf/README file 
lists all of the variables. The listing includes the m4 variable name, the name of the

sendmail Configuration Files | 195



corresponding sendm ail.cf option, macro, or class, a description of the variable, and 
the default value that is used if you do not explicitly define a value for the variable.

Note that the define command is not limited to setting values for sendm ail.cf mac­
ros, options, and classes, define is also used to modify values used in the m4 configu­
rations and internal sendmail values.

MAILER
If you want sendmail to transport mail in any way other than by local delivery, use 
the MAILER macro to tell it which transports to use. sendmail supports a variety of 
mail transport protocols; some are essential, some are rarely used, and a few are 
experimental. The mailer arguments that can be used with the MAILER macro are 
shown in Table 12-2.

Table 12-2. Arguments for the MAILER macro

Argument Purpose
l o c a l Adds the local and prog mailers

smtp Adds all SMTP mailers: smtp, esmtp, smtp8, dsmtp, and relay

uucp Adds all UUCP mailers: uucp-old (uucp) and uucp-new (suucp)

u se n e t Adds Usenet news support to sendmail

f a x Adds FAX support using HylaFAX software

pop Adds Post Office Protocol (POP) support to sendmail

p ro c m a il Adds an interface for procmail

m a i l l l Adds the DECnet maill 1 mailer

p hq uery Adds the phquery program for CSO phone book

qpage Adds the QuickPage mailer used to send email to a pager

c y ru s Adds the cyrus and cyrusbb mailers

Most hosts need only the SMTP transport to send and receive mail among other 
hosts, and the local mailer to move mail among users on the system. To achieve this, 
include both MAILER('local') and MAILER('smtp') in the macro configuration file. 
(The local mail transport is included by default, but is usually specified in the macro 
configuration file for clarity.)

The MAILER('local') macro adds the local mailer, which delivers local mail between 
users of the system, and the prog mailer, which sends mail files to programs running 
on the system. The MAILER('smtp') macro includes all of the mailers needed to send 
S M T P  mail over a network. The mailers included in the sendm ail.cf file by the 
MAILER('smtp') macro are:

smtp

This mailer handles only traditional 7-bit ASCII SMTP mail.

196 | Chapter 12: sendmail



esmtp

This mailer supports Extended SMTP (ESMTP), which understands the ESMTP 
protocol extensions and the complex message bodies and enhanced data types of 
MIME mail. This is the default mailer used for SMTP mail.

smtp8
This mailer sends 8-bit data to the remote server, even if the remote server does 
not support ESMTP.

dsmtp

This mailer supports the ESMTP ETRN command that allows the destination 
system to retrieve mail queued on the server.

relay

This mailer is used to relay SMTP mail through another mail server.

Every system that connects to or communicates with the Internet needs the 
MAILER('smtp') set of mailers, and most systems on isolated networks use these mail­
ers because they use TCP/IP on their enterprise network. Despite the fact that the 
vast majority of sendmail systems require these mailers, installing them is not the 
default. To support SMTP mail, you must add the MAILER(smtp) macro to your con­
figuration.

LOCAL.*
The L0CAL_C0NFIG, LOCAL_NET_C0NFIG, LOCAL_RULESET, and LOCAL_RULE_n macros allow 

you to put sendmail.cf configuration commands directly in the m4 source file. These 
commands are copied, exactly as written, into the correct part of the sendmail.cf file. 
The list below describes where the macros place the sendmail.cf configuration co m­
mands that you provide.

L0CAL_C0NFIG

Marks the start of a block of sendmail.cf commands to be added to the local 
information section of the sendmail.cf file.

LOCAL_NET_CONFIG
Marks the start of a section of rewrite rules that are to be added to the end of 
ruleset 0, which is also called ruleset parse.

L0CAL_RULE _n
Marks the start of a section of rewrite rules to be added to ruleset 0, 1, 2, or 3. 
The n identifies the ruleset to which the rewrite rules are to be added.

L0CAL_RULESET

Marks the start of a custom ruleset to be added to the configuration.

These macro mean that everything that can be done in the sendmail.cf file can be 
done in the m4 macro configuration file because not only do you have access to all of 
the m4 macros, you have access to all of the sendmail.cf commands. Of course,

sendmail Configuration Files | 197



before you can use the sendmail.cf commands you need some idea of h o w  they work. 
The next section briefly covers the sendmail.cf configuration commands.

sendmail.cf Configuration Language
There is rarely any need to use sendmail.cf commands in your configuration because 
the sendmail macros created by the sendmail developer handle most possible configu­
rations. Yet it is useful to know something about the sendmail.cf co mm an d for those 
rare occasions when you come across a configuration that requires something that 
the sendmail developers just didn’t think of. Table 12-3 lists the sendmail.cf configu­
ration commands.

Table 12-3. sendmail.cf configuration commands

Command Syntax Meaning

Version Level [V level/vendor] Specify version level.

Define Macro Dxvalue Set macro x  to va lu e .

Define Class Ccwordl[word2]... Set class c to wordi word2___

Define Class F cfile Load class c from file.

Key File Kname type [argument] Define database name.

Set Option Ooption=value Set option to value.

Trusted Users Juserl[user2 . . . ] Trusted users are useri user2 . . .

Set Precedence Pname=number Set name to precedence number.

Define Mailer Mname, [field=value] Define mailer name.

Define Header H[?mflag ?]name :format Set header format.

Set Ruleset S n Start ruleset number n.

Define Rule Rlhs rhs comment Rewrite lhs patterns to rhs format.

All of the commands in this table, except the last two, can be used with the L0CAL_ 
CONFIG macro. The L0CAL_C0NFIG macro is the one that heads a section of sendmail.cf 
commands used to define values for the configuration. These can be sendmail.cf 
database declarations, macros, or class values. Essentially anything except rewrite 
rulesets. Despite this, several of the sendmail.cf commands shown in Table 12-3 are 
simply not needed in the sendmail.mc file, even when you create a special configura­
tion.

There is no real reason to add sendmail.cf 0 commands to the sendmail.mc configura­
tion because all sendmail.cf options can be set using the define co mm an d and m4 
variables. Likewise, all necessary M commands are added to the sendmail.cf file by the 
v'4 MAILER macros, and therefore it is very unlikely you would use L0CAL_C0NFIG to 
add M commands to your configuration. The T and P commands have limited roles. 
The T co mm an d adds usernames to the list of users who are allowed to send mail

198 | Chapter 12: sendmail



under someone else’s username. Because of security considerations, you should be 
very careful about extending this list, and even if you do, you can use the 
confTRUSTEDJJSERS define in the m4 file, or the FEATURE(use_ct_file) macro and 
define the usernames in the /etc/mail/trusted-users file. The P command defines mail 
precedence, and frankly the default sendmail.cf configuration already has more mail 
precedence defined you will ever need.

The sendmail.cf commands that most commonly follow the L0CAL_C0NFIG macro are 
D, C, F, and K. All of these can be used to define custom values that are later use, in a 

custom ruleset. The D command sets the value for a sendmail.cf macro. The C co m­
mand adds values to a sendmail.cf class from the command line. The F command 
adds values to a sendmail.cf class from a file. The K command defines a database from 
which sendmail can obtain values. All of the standard sendmail.cf macros, classes, 
and databases can be used through standard m4 macros. D, C, F, or K commands are 
added to the sendmail.mc configuration only on those rare occasions when you cre­
ate your own private macros, classes, or databases.

The H co mm an d defines a mail header. All of the standard mail headers are already 
defined in the default configuration, and it is unlikely you will ever need to define a 
new header type. Calling special header processing is the most c o m m o n  reason to 
add a header definition to the configuration. (See the cf/cf/knecht.mc file for an exam­
ple of a header definition that calls special processing, and see Recipe 6.9 in the send­
mail Cookbook [O’Reilly] by Craig Hunt for a good description of how special 
header processing is invoked.) Of course, if you do call special header processing, 
you must also write the ruleset that performs the processing. The S and R commands 
used to write custom rulesets are our next topic.

sendmail.cf R and S Commands
Arguably the most powerful feature of sendmail is the rewrite rule. Rewrite rules 
determine how sendmail processes a mail message, sendmail passes the addresses 
from the headers of a mail message through collections of rewrite rules called 
rulesets. In the sendmail.cf file, each ruleset is named using an S command, coded as 
S/7, where n specifies the name or number that is to be assigned to the current ruleset.

The rules themselves are defined by R commands grouped together as rulesets. Each 
rule has a left side and a right side, separated by at least one tab character.* W h e n  
sendmail is processing a mail address, it scans through the rewrite rules looking for a 
match on the left side. If the address matches the left side of a rewrite rule, the 
address is replaced by the right side and processed again. In this manner, the rewrite 
rules transform a mail address from one form to another. Think of them as being

* Only tabs can separate the left and right side.

sendmail.cf Configuration Language | 199



similar to an editor co mm an d that replaces all text matching a specified pattern with 

another.

A  sendmail ruleset therefore looks like this:

S n
Rl h s  r h s  
Rl h s 2  r h s 2

The Left Side
The left side of a rewrite rule specifies the pattern an address must match to be trans­
formed. The pattern may contain literals, sendm ail.cf macros and classes, and the 
metasymbols described in the following list:

$@ Match exactly zero tokens 

$* Match zero or more tokens 

$+ Match one or more tokens 

$- Match exactly one token 

$=x Match any value in class x 

$~x Match any value not in class x

A  token is either a string of characters delimited by an operator or a delimiting oper­
ator. The operators are defined by the sendm ail.cf OperatorChars option, as shown 
below:

0 OperatorChars=.:%@!A/[ ]+

Assume the following address:

alana@ipa.vbrew.com

This email address contains seven tokens: alana, @, ipa, ., vbrew, ., and com. Three of 

these tokens, two dots (.), and an @, are operators. The other four tokens are strings. 
This address would match the symbol $+ because it contains more than one token, 
but it would not match the symbol $- because it does not contain exactly one token.

W h e n  a rule matches an address, the text matched by each of the patterns in the 
expression is assigned to special variables, called indefinite tokens, which can then be 
used in the right side. The only exception to this is the $@, which matches no tokens 
and therefore will never generate text to be used on the right side.

The Right Side
W h e n  the left side of a rewrite rule matches an address, the original text is deleted 
and replaced by the right side of the rule. Literal values in the right side are copied to 
the new address verbatim. Righthand side sendm ail.cf macros are expanded and

200 | Chapter 12: sendmail

mailto:alana@ipa.vbrew.com


copied to the new address. Just as the left side has a number of metasymbols used for 
pattern matching, the right side has a special syntax for transforming an address, as 
described in the following list:

$n
This metasymbol is replaced with the n th indefinite token from the left side. 

$[name$]
This string is replaced by the canonical form of the hostname supplied.

$(map key $:default $)
This special syntax returns the result of looking up key in the database named 
map. If the lookup is unsuccessful, the value defined for default is returned. If a 
default is not supplied and lookup fails, the key value is returned.

$ > /7

This metasymbol calls ruleset n to process the rest of the line.

A rewrite rule that matches is normally tried repeatedly until it fails to match, then 
parsing moves on to the next rule. This behavior can be changed by preceding the 
right side with one of two special loop control metasymbols:

$@ This metasymbol terminates the ruleset.
$: This metasymbol terminates this individual rule.

There is also a special right side syntax used to create the mail delivery triple of 
mailer, host and user. This syntax is most commonly seen in ruleset 0, which parses 
the mail delivery address. These symbols are:

$#mailer
This metasymbol causes ruleset evaluation to halt and specifies the mailer that 
should be used to transport this message in the next step of its delivery. The spe­
cial mailer error can be invoked in this manner to return an error message.

$@f?ost
This metasymbol specifies the host to which this message will be delivered. If the 
destination host is the local host, this syntax may be omitted from the mail deliv­
ery triple. The host may be a colon-separated list of destination hosts that will be 
tried in sequence to deliver the message.

%:user
This metasymbol specifies the recipient user for the mail message.

A Simple Rule Pattern Example
To better see how the macro substitution patterns operate, consider the following 
left side:

$*<$+>

sendmail.cf Configuration Language | 201



This rule matches “Zero or more tokens, followed by the < character, followed by 
one or more tokens, followed by the > character.”

If this rule were applied to brewer@vbrew.com or Head Brewer < >, the rule would not 
match. The first string would not match because it does not include a < character, 
and the second would fail because $+ matches one or more tokens and there are no 
tokens between the <> characters. In any case in which a rule does not match, the 
right side of the rule is not used.

If the rule were applied to Head Brewer < brewer@vbrew.com >, the rule would match, 
and on the right side $1 would be substituted with Head Brewer and $2 would be sub­
stituted with brewer@vbrew.com.

If the rule were applied to < brewer@vbrew.com > the rule would match because $* 
matches zero or more tokens, and on the right side $1 would be substituted with the 
empty string.

A Complete Rewrite Rule Example
The following example uses the LOCAL_NET_CONFIG macro to declare a local rule and 
to insert the rule near the end of ruleset 0. Ruleset 0 resolves a delivery address to a 
mail delivery triple specifying the mailer, user, and host. Example 12-1 shows a sam­
ple rewrite rule.

Example 12-1. Sample rewrite rule 

LOCA L_N E T_C0N FIG
R$*<@$*.$m.>$* $#esmtp $@$2.$m. $:$l<@$2.$m.>$3

The LOCAL_NET_C0NFIG macro is used to direct m4 to place the rewrite rule in ruleset 
0. The rule itself is the line beginning with R. Let’s look at the rule’s left side and the 
right side in turn.

The left side looks like: $*<@$*.$m.>$*.

< and > are focus characters, inserted by ruleset 3 early on in the address processing, 
which enclose the host part of the mail address. All addresses get rewritten with 
these focus characters. The @ is literally the @ used in an Internet email address to 
separate the user part from the host part. The dots (.) are literally the dots used in 
domain names. $m is a sendmail.cf macro used to hold the local domain name. The 
three remaining items are all $* metasymbols.

This rule matches any mail address that looks like: DestUser<@somehost.ourdomain.> 
Some Text. That is, it matches mail for any user at any host within our domain.

Text matched by metasymbols on the left side of a rewrite rule is assigned to indefi­
nite tokens for use on the right side. In this example, the first $* matches all text 
from the start of the address until the <@ characters. All of this text is assigned to $1

202 | Chapter 12: sendmail

mailto:brewer@vbrew.com
mailto:brewer@vbrew.com
mailto:brewer@vbrew.com
mailto:brewer@vbrew.com


for use on the right side. Similarly, anything matching the second $* in this rewrite 
rule is assigned to $2, and anything matching the last $* is assigned to $3.

When this rule matches an address of any user at any host within our domain, it 
assigns the username to $1, the hostname to $2, and any trailing text to $3. The right 
side is then used to process these values.

The right side of our example rewrite rule looks like this: $#esmtp $@$2.$m. $: 
$l<@$2.$m.>$3.

When the right side of our ruleset is processed, each of the metasymbols are inter­
preted and relevant substitutions are made.

The $# metasymbol causes this rule to resolve to a specific mailer— esmtp, in our 
case.

The $@ metasymbol specifies the target host. In our example, the target host is speci­
fied as $2.$m., which is the fully qualified domain name of the host in our domain. 
The FQDN is constructed of the hostname component assigned to $2 from our left 
side with our domain name (.$m.) appended.

The $: metasymbol specifies the recipient user’s address. This is the full email 
address of the recipient, constructed in this case by $1 < @ $2.$m. > $3— user, bracket, 
at, host, dot, domain, dot, bracket, trailing text.

Since this rule resolves to a mailer, the message is forwarded to the mailer for deliv­
ery. In our example, the message would be forwarded to the destination host using 
the SMTP protocol.

Creating a sendmail Configuration
Using the sendmail.mc and sendmail.cf information covered so far in this chapter you 
should be able to read or create a basic sendmail configuration. Let’s get started by 
looking at a sample sendmail.mc file.

The sendmail distribution comes with a large number of sample macro configuration 
files located in the cf/cf directory. Many are generic configuration files for different 
operating systems, including the generic-linux.mc file for Linux. Example 12-2 shows 
the contents of this file.

Example 12-2. The generic-linux.mc file 

divert(-l)
#
# Copyright (c) 1998, 1999 Sendmail, Inc. and its suppliers.
# All rights reserved.
# Copyright (c) 1983 Eric P. Allman. All rights reserved.
# Copyright (c) 1988, 1993
# The Regents of the University of California. All rights reserved.
#

Creating a sendmail Configuration | 203



# By using this file, you agree to the terms and conditions set
# forth in the LICENSE file which can be found at the top level of
# the sendmail distribution.
#
#

#
# This is a generic configuration file for Linux.
# It has support for local and SMTP mail only. If you want to
# customize it, copy it to a name appropriate for your environment
# and do the modifications there.
#

divert(o)dnl
VERSIONID('$Id: chl2,v 1.6 2005/01/19 03:22:50 free2 Exp adam $')
OSTYPE('linux')dnl 
DOMAIN('generic')dnl 
MAILERf local’)dnl 
MAILER('smtp')dnl

A few things are obvious about this configuration file without knowing anything 
about the file syntax. First, the name sendmail.mc is obviously not sacrosanct. 
generic-linux.mc works just as well and is clearly a more descriptive name. Second, 
the configuration file is very short. The bulk of the lines in Example 12-1 are com­
ments; only the last five lines are really sendmail configuration commands. Third, the 
sendmail configuration commands are short with a relatively simple syntax.

The five active lines in the generic-linux.mc file are composed of four different mac­
ros. The VERSI0NID macro from the generic-linux.mc file is:

VERSI0NID('$Id: chl2,v 1.6 2005/01/19 03:22:50 free2 Exp adam $')

From this we know that the generic-linux.mc file was last updated in September 1999 
by Greg Shapiro, one of the Linux developers.

The OSTYPE('linux') command in the generic-linux.mc file loads the cf/ostype/linux. 
m4 file, which we will look at shortly. The DOMAIN( 'generic ' ) macro processes the cf! 
domain/generic.m4 file, which is also discussed shortly.

Finally, the MAILER('local') and MAILER('smtp') macros are used to add the local, 
prog, smtp, esmtp, smtp8, dsmtp, and relay mailers to the sendmail.cf configuration.

These five macro lines create the entire generic Linux sendmail configuration. There 
are, however, additional details to be found in the linux.m4 and generic.m4 file.

The Iinux.m4 0STYPE File
The cf/ostype/linux.m4 file is shown in Example 12-3.

Example 12-2. The generic-linux.mc file (continued)

204 | Chapter 12: sendmail



Example 12-3. The linux.m4 OSTYPE file 

divert(-l)
#
# Copyright (c) 1998, 1999 Sendmail, Inc. and its suppliers.
# All rights reserved.
# Copyright (c) 1983 Eric P. Allman. All rights reserved.
# Copyright (c) 1988, 1993
# The Regents of the University of California. All rights reserved.
#
# By using this file, you agree to the terms and conditions set
# forth in the LICENSE file which can be found at the top level of
# the sendmail distribution.
#
#

divert(O)
VERSIONID('$Id: chl2,v 1.6 2005/01/19 03:22:50 free2 Exp adam $') 
define('confEBINDIR’, '/usr/sbin’) 
ifdef('PROCMAIL_MAILER_PATH',,

define('PROCMAIL_MAILER_PATH', '/usr/bin/procmail'))
FEATURE(local_procmail)

The file begins with a block of comments and a VERSIONID macro. It then defines the 
path to the directory that holds executable binaries. The path is stored in the m4 
variable confEBINDIR. The linux.m 4 file sets that path value to /usr/sbin. Next, if the 
path to procmail has not yet been defined, it is set to /usr/bin/procmail. The last line 
in the file is a FEATURE macro that loads the local_procmail feature, which cause send­
mail to use procm ail as the local mailer. m 4 uses the path defined for PR0CMAIL_ 
MAILER_PATH when constructing the local_procmail feature. This is an excellent 
example of how a value is first defined and then used in building a configuration. 
The Unux.m4 file is also a good example of the type of configuration commands nor­
mally found in an OSTYPE file.

The generic.m4 DOMAIN File
The cf/domain/generic.m4 file is a sample DOMAIN file provided by the sendmail devel­
opers. It is used by the generic-linux.mc file shown in Example 12-1. The generic.m4  
file is shown in Example 12-4.

Example 12-4. The generic. m4 DOMAIN file 

divert(-i)
#
# Copyright (c) 1998, 1999 Sendmail, Inc. and its suppliers.
# All rights reserved.
# Copyright (c) 1983 Eric P. Allman. All rights reserved.
# Copyright (c) 1988, 1993
# The Regents of the University of California. All rights reserved.
#
# By using this file, you agree to the terms and conditions set

Creating a sendmail Configuration | 205



# forth in the LICENSE file which can be found at the top level of
# the sendmail distribution.
#
#

#
# The following is a generic domain file. You should be able to
# use it anywhere. If you want to customize it, copy it to a file
# named with your domain and make the edits; then, copy the appropriate
# .me files and change 'DOMAIN(generic)' to reference your updated domain
# files.
#
divert(0)
VERSIONID('$Id: chl2,v 1.6 2005/01/19 03:22:50 free2 Exp adam $')
define(' confFORWARD_PATH’, ' $z/.forward.$w+$h:$z/.forward+$h:$z/.forward.$w:$z/.
forward’)dnl
define(' confMAX_HEADERS_LENGTH’, '32768’)dnl 
FEATURE('redirect’)dnl 
FEATURE('use_cw_file’)dnl 
EXPOSED_USER('root’)

Again the file begins with a large block of comments and a VERSIONID macro. This is 
followed by a define that sets the search path sendmail will use when looking for a 
user’s .forw ard file. This co mm an d sets the ForwardPath option in the sendm ail.cf file. 
$z, $w, and $h are internal sendm ail.cf macros.*

The second define sets the ma xi mu m length for all headers in a single piece of mail 
to 32,768 bytes. It does this by setting the MaxHeadersLength option in the sendm ail.cf 
file.

The next two lines add features to the sendmail configuration. The FEATURE ('redirect') 
macro adds support for the .REDIRECT pseudo-domain. A  pseudo-domain is a domain- 
style extension internally added to an email address by sendmail to define special han­
dling for the address. The . REDIRECT pseudo-domain works together with the aliases data­
base to handle mail for people who no longer read mail at your site but who still get mail 
sent to an old address.T After enabling this feature, add an alias for each obsolete mailing 
address in the form:

o ld -address new-address.REDIRECT

This returns the following error to the sender telling them to try a new address for 
the recipient:

551 User not local; please try < n ew -a d d ress>

Exam ple 12-4. The generic.m4 D O M A IN  file (continued)

* See the cf/README file for more information about these sendmail.cf macros and the Sendmail Installation 
and Operations Guide, found in file doc/op.ps, for a full list of all sendmail.cf macros.

t  The aliases database is covered later in this chapter.

206 | Chapter 12: sendmail



The FEATURE('use_cw_file') command reads /etc/mail/local-host-names and adds the 
hostnames listed there to sendmail.cf class $=w. Class $=w contains the names of hosts 
for which the local computer will accept local mail. Normally, when a system run­
ning sendmail receives mail from the network that is addressed to another hostname, 
it assumes that the mail belongs to that host and forwards the mail to that host if the 
local host is configured as a relay, or discards the mail if the local host is not config­
ured as a relay. If the system should accept, as local mail, mail that is addressed to 
another host, the name of the other host is added to class $=w. Any hostname listed 
in the local-host-names file is added to class $=w when the use_cw_f i le  feature is used.

The last line in the generic.m4 file is the EXPOSEDJJSER macro. The EXPOSED_USER 
macro adds usernames to class $=E. The users listed in class $=E are not masquer­
aded, even when masquerading is enabled. (Masquerading hides the real hostname 
in outbound mail and replaces it with the hostname you wish to advertise to the out­
side world.) Some usernames, such as root, occur on many systems and are therefore 
not unique across a domain. For those usernames, converting the host portion of the 
address makes it difficult to sort out where the message really came from and makes 
replies impossible. The EXPOSEDJJSER command in the generic.m4 file prevents that 
from happening by ensuring that root is not masqueraded.

Given the commands contained in the generic-linux.mc file, the Unux.m4 file and the 
generic.m4 file, the generic Linux configuration does the following:

• Sets /usr/sbin as the path to executable binaries
• Sets the procmail path to /usr/bin/procmail
• Uses procmail as the local mailer
• Defines the search path for .forward files
• Adds support for the .REDIRECT pseudo-domain to the configuration

• Loads class $=w from the /etc/local-host-names file
• Adds root to class $=E
• Adds the local, prog, smtp, esmtp, smtp8, dsmtp, and relay mailers to the configu­

ration

You can configure sendmail by modifying the configuration provided in your Linux 
distribution or create a custom configuration by modifying the generic-linux.mc file 
provided with the sendmail distribution. In the next section we build a sendmail con­
figuration based on the generic-linux.mc file.

Creating a Sample Linux sendmail Configuration
We begin building our custom configuration by changing to the configuration direc­
tory and copying the generic-linux.mc configuration file to a working file. Because we

Creating a sendmail Configuration | 207



are creating the configuration for vstout.vbrew.com, we call the working file vstout. 
me.

$ cd sendmail-8.12.ll/cf/cf 
$ cp generic-linux.mc vstout.me

We are configuring vstout to be a mail server for our group. We want it to:

• Accept inbound mail for various clients that plan to store mail on the server. No 
modifications to the m4 configuration are needed to support this because the 
domain/generic.m4 file used in the Linux configuration already includes the 
FEATURE('use_cw_file') command.

• Relay mail for clients in the vbrew.com domain. Implementing this requires no 
changes to the m4 configuration. By default, sendmail configurations support 
relaying for any domain defined in the relay-domains file. We will see how to 
configure the relay-domains file later in the chapter when we discuss sendmail 
databases.

• Rewrite the sender address on outbound mail to a generic format used by every­
one at vbrew.com. We will add support for the genericstable database to do this. 
The contents of the genericstable database is covered in the sendmail databases 
section of this chapter.

• Provide some anti-spam support. We will use the access database for this task.
• Be easy to configure with additional security measures. The access database 

added for its anti-spam capabilities has many other easily configured features. 
We will see more about the access database in sendmail databases section later in 
this chapter.

To configure sendmail to do the tasks listed above, we edit the vstout.mc file and add 
the following features:

FEATURE('genericstable')
GENERICS_DOMAIN('vbrew.com1)
FEATURE('generics_entire_domain1)
FEATURE('access_db')

This first line adds support for the genericstable. The second line defines vbrew.com 
as the domain to which the genericstable will be applied. The third line tells sendmail 
to apply the genericstable to every host in the vbrew.com domain. The final line adds 
support for the access database.

After removing unneeded comments, updating the VERSIONID and adding the new 
lines, the vstout.mc configuration file is as shown below in Example 12-5:

Example 12-5. Sample custom configuration

VERSIONID('Sample vstout configuration by Craig Hunt’)
OSTYPE('linux')dnl 
DOMAIN( generic’)dnl

208 | Chapter 12: sendmail



dnl Add support for the genericstable 
FEATURE('genericstable1)
dnl Apply the genericstable to the vbrew.com domain 
GENERICS_DOMAIN('vbrew.com1)
dnl Apply the genericstable to every host in the domain 
FEATURE('generics_entire_domain') 
dnl Add support for the versatile access database 
FEATURE('access_db')
MAILER('local')dnl 
MAILER('smtp’)dnl

We now need to build a sendmail.cf file from our master configuration file, install the 
new sendmail.cf file, and ensure that sendmail reads it.

Building the sendmail.cf File
The sendmail.cf file is normally built in the same cf/cf directory where the master 
configuration file is created. If you’re not currently in that directory, change to the cf/ 
cf directory before attempting the build.

Run Build to create the sendmail.cf file from the m4 master configuration file. The 
Build script is easy to use. Provide the name of the output file you want to create as 
an argument on the Build command line. The script replaces the .cf extension of the 
output file with the extension .me and uses the macro configuration file with that 
name to create the output file. Thus, putting vstout.cf on the Build command line 
means that vstout.mc is used to create vstout.cf. Here is an example:

$ ./Build vstout.cf
Using M4=/usr/bin/m4 
rm -f vstout.cf
/usr/bin/m4 . J m 4 / c f . m 4  vstout.mc > vstout.cf || ( rm -f vstout.cf && exit 1 ) 
chmod 444 vstout.cf

Despite the simplicity of the Build command, many administrators never use it to 
build a sendmail configuration because the m4 command line used to build a send­
mail configuration is also very simple. The m4 command line that would build the 
vstout.cf file from the vstout.mc file is:

$ m4 ../m4/cf.m4 vstout.mc > vstout.cf

For the average sendmail administrator, the Build script doesn’t offer any critical 
advantages. For most of us, deciding to use the Build script or the m4 command is 
primarily a matter of personal preference. It is even possible to invoke the Makefile 
directly with a basic make command. Use whatever method you prefer.

After building the new .cf file, test it thoroughly as described later in this chapter 
before copying that file to the location where sendmail expects to find the sendmail.cf

Example 12-5. Sample custom configuration (continued)

Creating a sendmail Configuration | 209



configuration file, which is usually /etc/mail/sendmail.cf. In most cases this is simply 
done with a cp command

# cp vstout.cf /etc/mail/sendmail.cf

However, it can also be done with the Build command, as follows:

# mv vstout.cf sendmail.cf
# ./Build install-cf
Using M4=/usr/bin/m4
../../devtools/bin/install.sh -c -o root -g bin -m 0444 sendmail.cf /etc/mail/ 
sendmail.cf
../../devtools/bin/install.sh -c -o root -g bin -m 0444 submit.cf /etc/mail/submit.cf

The Build in s ta l l- c f  command used above installs two configuration files: the 
sendmail.cf file, and a second file named submit.cf. sendmail.cf doesn’t exist unless 
you create it. (In this case we created it as vstout.cf and renamed that file sendmail.cf.) 
But a full submit.cf file is delivered with the sendmail distribution, and does not nor­
mally need to be created or modified by you. The submit.cf file is the special configu­
ration used by sendmail when it acts as a mail submission program, while sendmail.cf 
is the configuration file used by the sendmail daemon. The Build in s ta l l- c f  com­
mand is generally used when a new sendmail distribution is first installed to ensure 
that both the sendmail.cf and submit.cf files are installed. Other than the initial instal­
lation, however, there is generally no need to copy both files at the same time 
because it is not usually necessary to create a new submit.cf file when you create a 
new sendmail.cf file.

Once the configuration is installed, restart sendmail to force it to read the new con­
figuration by sending it a HUP signal. This method of restarting sendmail uses stan­
dard sendmail signal processing that is available on any Linux system:

# kill -HUP 'head -1 /var/run/sendmail.pid'

Some Linux systems provide their own tools for managing daemons. For example, 
some systems can start sendmail with the service command:

# service sendmail start
Starting sendmail: [ OK ]

Regardless of how sendmail is restarted, when the daemon starts it reads in the con­
figuration file /etc/mail/sendmail.cf, which now contains the new configuration.

sendmail Databases
The sample configuration created above uses several sendmail databases. (Here we 
use the term “database” loosely to include both real databases and flat files.) send­
mail databases are an often overlooked component of sendmail configuration. Yet 
sendmail databases play an important role in sendmail configuration. It is in these 
databases, not in the m4 files or the sendmail.cf file, that day-to-day configuration

210 | Chapter 12: sendmail



changes are made. The sendmail databases used in our sample configuration are as 
follows:

aliases
The aliases database is included in the configuration by default. This database is 
an essential component in local mail delivery and in mail forwarding. Nothing 
needs to be added to the configuration to use the aliases database.

local-host-names
The local-host-names file is added to a configuration by the use_cw_file feature. 
This file is used to define which mail is accepted for local delivery.

relay-domains
The relay-domains file is included in the configuration by default. Therefore, no 
changes are needed in the sendmail configuration to use this file. The relay- 
domains file can authorize relaying, which, by default, is disabled.

genericstable
The genericstable feature adds support for this database. The genericstable is 
used to rewrite the email addresses an organization uses internally into the for­
mat it wishes to present to the outside world.

access
The access_db feature adds support for this database 
ful in a wide variety of ways.

Each of these databases, and others not used in the 
described in the following sections.

The aliases Database
Mail aliases are a powerful feature for routing mail on a destination host. For exam­
ple, it is common practice to direct feedback or comments relating to a World Wide 
Web server to “webmaster.” Often there isn’t a user known as “webmaster” on the 
target machine; instead, it is an alias for another user. Another common use of mail 
aliases is to create mailing lists by directing a single alias to many recipients or to use 
an alias to direct incoming messages to the list server program. Aliases can:

• Provide a shorthand or well-known name for mail to be addressed to in order to 
go to one or more persons. For example, all systems require aliases for the 
well-known names Postmaster and MAILER-DAEMON in order to be RFC com­
pliant.

• Invoke a program with the mail message as the input to the program. Always be 
extremely aware of security when defining aliases that invoke programs or write 
to programs, since sendmail sometimes runs with root permissions.

• Deliver mail to a file.

. The access database is use- 

sample configuration, are

sendmail Databases | 211



Details concerning mail aliases may be found in the aliases(5) manpage. A sample 
aliases file is shown in Example 12-6.

Example 12-6. Sample aliases file

#
# The following two aliases must be present to be RFC-compliant.
# It is important to resolve them to 'a person' who reads mail routinely.
#
postmaster: root # required entry
MAILER-DAEMON: postmaster # required entry
#
#
# demonstrate the common types of aliases
#
usenet: janet # alias for a person
admin: joe,janet # alias for several people
newspak-users: :include:/usr/lib/lists/newspak # read recipients from file 
changefeed: |/usr/local/lib/gup # alias that invokes program
complaints: /var/log/complaints # alias writes mail to file
#

Whenever you update the /etc/aliases text file, be sure to run the command:

# /usr/bin/newaliases

This command rebuilds the database that sendmail uses internally. The newaliases 
command is a symbolic link to the sendmail executable, which behaves exactly as if 
sendmail was invoked with the -bt command line argument.

The sendmail program consults the aliases database to determine how to handle an 
incoming mail message that has been accepted for local delivery. If the user portion 
of the delivery address in the mail message matches an entry in the aliases database, 
sendmail redirects the message as described by the entry. But this happens only if 
sendmail accepts the mail message for local delivery. The loQal-host-names file helps 
sendmail decide which messages should be accepted for local delivery.

The local-host-names File
Inbound mail is either delivered directly to the addressee or relayed to another mail 
host for delivery, sendmail accepts only mail for local delivery that is addressed to the 
local host. All other mail is relayed. The system checks class $=w to decide whether or 
not it should accept inbound mail for local delivery. Class $=w is an array that con­
tains all of the names that sendmail considers valid for local mail delivery.

The use_cw_file feature directs sendmail to load the /etc/mail/local-host-names file 
into class $=w. It does this by placing the following F command in the sendmailcf file:

Fw/etc/mail/local-host-names

212 | Chapter 12: sendmail



Once the use_cwJile feature is added to the configuration, sendmail expects to find 
the local-host-names file and displays a non-fatal error message when it doesn’t. If 
you’re not ready to add hostnames to the file, simply create an empty file.

To configure the sendmail server to accept inbound mail for other hosts, simply add 
the hostnames of those hosts to the local-host-names file. The local-host-names file is 
just a list of hostnames— one hostname to a line. Here is a sample local-host-names 
file for the vbrew.com domain:

vbrew.com
vporter.vbrew.com
vale.vbrew.com
vlager.vbrew.com
vpils.vbrew.com
vipa.vbrew.com

The values stored in the local-host-names file are added to the other values in class 
$=w. The other values stored in $=w are all of the hostnames, hostname aliases, and IP 
addresses assigned to this host that sendmail was able to determine by probing the 
various network interfaces. It is possible to limit the interface probing done by send­
mail by adding the following define to the sendmail configuration:

define( 'confDONT_PROBE_INTERFACES', 'true')

The confDONT_PROBE_INTERFACES define is generally only used when probing the inter­
faces gives sendmail erroneous information, or when a large number of virtual inter­
faces are used.

It is also possible to add hostnames to class $=w inside the sendmail configuration file 
using the L0CAL_D0MAIN macro:

L0CAL_D0MAIN('vbrew.com’)
L0CAL_D0MAIN('vipa.vbrew.com')

However, every time a L0CAL_D0MAIN macro is added to the configuration the 

sendmail.cf file must be rebuilt, tested, and moved to the /etc/mail directory. W h e n  
the local-host-names file is used, there is no need to rebuild sendmail.cf just because 
the local-host-names file has been edited.

The bestmxJs Jo ca l feature
The bestmx_is_local feature is another way to accept mail for local delivery that is 
addressed to another hostname. It works well if the only reason why hostnames are 
being added to the local-host-names file is because the local host is the preferred mail 
exchanger for those hosts. Mail addressed to any system that lists the local host as its 
preferred mail exchanger is accepted as local mail when the bestmx_is_local feature is 
used. To use this approach, put the following line in the configuration:

FEATURE('bestmx_is_local', 'vbrew.com')

sendmail Databases | 213



The great advantage of the bestmx_is_local feature is that it is easy— the hostnames 
of MX clients do not need to be added to the local-host-names file. However, a 
potential problem with the bestmx_is_local solution is that it increases the process­
ing overhead for each piece of mail. This is not a problem for a small system, but it 
could be a problem if the system deals with a high volume of mail. Another limita­
tion is that bestmx_is_local depends completely on MX records, but it is possible to 
have other reasons to accept mail as local mail. The local-host-names file can store 
any hostnames that you wish; it is not limited to hosts that define your system as 
their mail exchanger.

Mail that is not addressed to the local host is relayed. The relay-domains file is one 
way to configure relaying.

The relay-domains File
By default, sendmail does not permit relaying— even relaying from other hosts within 
the local domain. Attempts to relay through a system using the default configuration 
returns the “Relaying denied” error to the sender, sendmail will, however, relay mail 
for any domain listed in class $=R, and anything listed in the relay-domains file is 
added to class $=R. For example, the following commands extend the relay-domains 
file to enable relaying for the vbrew.com domain:

# cat »  /etc/mail/relay-domains 
vbrew.com
Ctrl-D

Restart sendmail to ensure that it reads the relay-domains file:

# kill -HUP 'head -1 /var/run/sendmail.pid'

Now, hosts within the local domain are allowed to relay through vstout.vbrew. 
com— all without any changes to the m4 configuration or any need to rebuild the 
sendmail.cf file. Mail from or to hosts in the vbrew.com domain is relayed. Mail that 
is neither from nor to a host in the vbrew.com domain is still blocked from relaying 
mail.

There are other ways to enable relaying. However, none is as easy as adding the local 
domain to the relay-domains file, and some are potential security risks. A good alter­
native is to add the local domain name to class $=R by using the RELAY_DOMAIN macro. 
The following lines added to the macro configuration would have the same effect as 
the relay-domains file defined above:

dnl RELAY_DOMAIN adds a domain name to class R 

R E LAY_DOMAIN('vbrew.com1)

However, the RELAY_DOMAIN command requires modifying the m4 configuration, and 
rebuilding and reinstalling the sendmail.cf file. Using the relay-domains file does not, 
which makes the relay-domains file simpler to use.

214 | Chapter 12: sendmail



Another good alternative is the relay_entire_domain feature. The following com­
mand added to a macro configuration would enable relaying for hosts in the local 
domain:

dnl A feature that relays mail for the local domain 

FEATURE('relay_entire_domain’)

The relay_entire_domain feature relays mail from any host in a domain listed in class 
$=m. By default, class $=m contains the domain name of the server system, which is 
vbrew.com on a server named vstout.vbrew.com. This alternative solution works, but 
is slightly more complex than using the relay-domains file. Additionally, the relay- 
domains file is very flexible. It is not limited to the local domain. Any domain can be 
listed in the relay-domains file and mail from or to any host in that domain will be 
relayed.

There are some techniques for enabling relaying that should be avoided for security 
reasons. Two such alternatives are:

promiscuous_relay
This feature turns on relaying for all hosts. Of course, this includes the local 
domain so this feature would work. However, it would create an open relay for 
spammers. Avoid the promiscuousjrelay feature even if your host is protected by 
a firewall.

relay_local_from
This feature enables relaying for mail if the email address in the envelope sender 
address of the mail contains the name of a host in the local domain. Because the 
envelope sender address can be faked, spammers can possibly trick your server 
into relaying spam.

Once the relay-domains file is configured to relay mail to and from the local domain, 
clients on the local network can start sending mail through the server to the outside 
world. The genericstable, discussed next, allows you to rewrite the sender address on 
the mail as it passes through the server.

The genericstable Database
To provide support for the genericstable, we added the genericstable feature, the 
GENERICS_DOMAIN macro, and the generics_entire_domain feature to our sample send­
mail configuration. The following commands were added:

FEATURE('genericstable’)

GENERICS_DOMAIN('vbrew.com’)

FEATURE('generics_entire_domain’)

The genericstable feature adds the code sendmail needs to make use of the 
genericstable. The GENERICS_DOMAIN macro adds the value specified on the macro 
command line to sendmail class $=G. Normally, the values listed in class $=G are

sendmail Databases | 215



interpreted as hostnames, and only exact matches enable genericstable processing. 
The generics_entire_domain feature causes sendmail to interpret the values in class 
$=G as domain names, and any host within one of those domains is processed 
through the genericstable. Thus the hostname vipa.vbrew.com, because it contains 
the domain name vbrew.com, will be processed through the genericstable with this 
configuration.

Each entry in the genericstable contains two fields: the key and the value returned for 
that key. The key field can be either a full email address or a username. The value 
returned is normally a full email address containing both a username and a host­
name. To create the genericstable, first create a text file that contains the database 
entries and then run that text file through the makemap command to build the 
genericstable database. For the vstout.vbrew.com server, we created the following 
genericstable:

# cd /etc/mail
# cat > genericstable
kathy kathy.mccafferty@vbrew.com
win winslow.smiley@vbrew•com
sara sara.henson@vbrew.com
dave david.craig@vbrew.com
becky rebecca.fro@vbrew.com
jay jay.james@vbrew.com
alana@vpils.vbrew.com alana.darling@vbrew.com
alana@vale.vbrew.com alana.henson@vbrew.com
alana alana.sweet@vbrew.com 
Ctrl-D
# makemap hash genericstable < genericstable

Given this genericstable, the header sender address win@vipa.vbrew.com is rewritten 
to winslow.smiley@vbrew.com, which is the value returned by the genericstable for 
the key win. In this example, every win account in the entire vbrew.com domain 
belongs to Winslow Smiley. No matter what host in that domain he sends mail from, 
when the mail passes through this system it is rewritten into winslow.smiley@vbrew. 
com. For replies to the rewritten address to work correctly, the rewritten hostname 
must resolve to a host that will accept the mail and that host must have an alias for 
winslow.smiley that delivers the mail to the real win account.

The genericstable mapping can be anything you wish. In this example, we map login 
names to the user’s real name and the local domain name formatted as firstname. 
lastnameQdomainOf course, if mail arrives at the server addressed to firstname. 
lastnameQdomain, aliases are needed to deliver the mail to the users’ real address. 
Aliases based on the genericstable entries shown above could be appended to the 
aliases database in the following manner:

* The firstname.lastnameQdomain format is not universally endorsed. See the sendmail FAQ for some reasons 
why you might not want to use this address format.

216 | Chapter 12: sendmail

mailto:kathy.mccafferty@vbrew.com
mailto:sara.henson@vbrew.com
mailto:david.craig@vbrew.com
mailto:rebecca.fro@vbrew.com
mailto:jay.james@vbrew.com
mailto:alana@vpils.vbrew.com
mailto:alana.darling@vbrew.com
mailto:alana@vale.vbrew.com
mailto:alana.henson@vbrew.com
mailto:alana.sweet@vbrew.com
mailto:win@vipa.vbrew.com
mailto:winslow.smiley@vbrew.com


# cd /etc/mail
# cat > aliases 
kathy.mccafferty: kathy 
win.strong: craig 
sara.henson: sara 
david.craig: dave 
rebecca.fro: becky 
alana.smiley: alana
alana.darling: alana$vpils.vbrew.com 
alana•henson: alana@vale.vbrew.com 
jay.james: jay
Ctrl-D
# newaliases

The aliases that map to a username store the mail on the server, where it is read by 
the user or retrieved by the client using POP or IMAP. The aliases that map to full 
addresses forward the mail to the host defined in the full address.

Most of the entries in the sample genericstable (kathy, sara, dave, becky, and jay) are 
any-to-one mappings that work just like the win entry described above. A more inter­
esting case is the mapping of the username alana. Three people in the vbrew.com 
domain have this username: Alana Henson, Alana Darling, and Alana Sweet. The 
complete addresses used in the genericstable keys for Alana Darling and Alana Hen­
son make it possible for sendmail to do one-to-one mappings for those addresses. 
The key used for Alana Sweet’s entry, however, is just a username. That key matches 
any input address that contains the username alana, except for the input addresses 
alana@vpils.vbrew.com and alana@vale.vbrew.com. When a system handles mail 
that originates from several hosts, it is possible to have duplicate login names. The 
fact that the key in the genericstable can contain a full email address allows you to 
map these overlapping usernames.

The last database used in the sample Linux sendmail configuration is the access data­
base. This database is so versatile that it should probably be included in the configu­
ration of every mail server.

The access Database
The access database offers great flexibility and control for configuring from which 
hosts or users mail is accepted and for which hosts and users mail is relayed. The 
access database is a powerful configuration tool for mail relay servers that provides 
some protection against spam and that provides much finer control over the relay 
process than is provided by the relayjdomains file. Unlike the relayjdomains file, the 
access database is not a default part of the sendmail configuration. To use the access 
database, we added the access_db feature to our sample Linux sendmail configura­
tion:

FEATURE('access_db’)dnl

sendmait Databases | 217

mailto:alana@vale.vbrew.com
mailto:alana@vpils.vbrew.com
mailto:alana@vale.vbrew.com


The general idea of the access database is simple. When an SMTP connection is 
made, sendmail compares information from the envelope header to the information 
in the access database to see how it should handle the message.

The access database is a collection of rules that describe what action should be taken 
for messages from or to specific users or hosts. The database has a simple format. 
Each line in the table contains an access rule. The left side of each rule is a pattern 
matched against the envelope header information of the mail message. The right side 
is the action to take if the envelope information matches the pattern.

The left pattern can match:

• An individual defined by either a full email address (user@host.domain) or a 
username written as username@.

• A host identified by its hostname or its IP address.
• A domain identified by a domain name.
• A network identified by the network portion of an IP address.

By default, the pattern is matched against the envelope sender address, and thus the 
action is taken only if the mail comes from the specified address. Adding the 
blacklistjrecipient feature to the sendmail configuration applies the pattern match to 
both source and destination envelope addresses. However, an optional tag field that 
can be prepended to the left side to provide finer control over when the pattern 
match is applied. Beginning the pattern with an optional tag tells sendmail to limit 
pattern matching to certain conditions. The three basic tags are:

To:
The action is taken only when mail is being sent to the specified address.

From:
The action is taken only when mail is received from the specified address. 

Connect:
The action is taken only when the specified address is the address of the system 
at the remote end of the SMTP connection.

There are five basic actions that may be defined on the right side of an access rule. 
These are:

OK
Accept the mail message.

RELAY
Accept the mail messages for relaying.

REJECT
Reject the mail with a generic message.

DISCARD
Discard the message using the $#discard mailer.

218 | Chapter 12: sendmail



ERROR:dsn:code tex t
Return an error message using the specified DSN code, the specified SMTP error 
code, and the specified text as the message.

An example !etc!mail!access might look like this:

friends@cybermail.com RED ECT

aol.com REJECT

207.46.131.30 REJECT

postmaster@aol.com OK

linux.org.au RELAY

example.com ERROR:5.7.1:550 Relaying denied to spammers

This example would reject any email received from friends@cybermail.com, any host 
in the domain aol.com and the host 207.46.131.30. The next rule would accept 
email from postmaster@aol.com, despite the fact that the domain itself has a reject 
rule. The fifth rule allows relaying of mail from any host in the linux.org.au domain. 
The last rule rejects mail from example.com with a custom error message. The error 
message includes delivery status notification code 5.7.1, which is a valid code as 
defined by RFC 1893, and SMTP error code 550, which is a valid code from RFC 
821.

The access database can do much more than shown here. Note that we explicitly said 
“basic” tags and “basic” actions because there are several more values that can be 
used in advanced configurations. If you plan to tackle an advanced configuration, see 
the “More Information” section later in the chapter.

The access database is the last database we used in our sample configuration. There 
are several other databases that are not used in our sample Linux sendmail configura­
tion. These are described in the following section.

Other Databases
Some of the available sendmail databases were not used in our sample configuration 
either because their use is discouraged or because they focus on outdated technolo­
gies. These databases are:

define('confUSERDB_SPEC', 'pa th ')
The confUSERDB_SPEC option tells sendmail to apply the user database to local 
addresses after, the aliases database is applied and before the .forward file is 
applied. The path argument tells sendmail where the database is found. The user 
database is not widely used because the sendmail developers discourage its use in 
their responses to questions 3.3 and 3.4 of the FAQ.

FEATURE('use_ct_file', 'path ')
The use_ct_file feature tells sendmail to add trusted usernames from the speci­
fied file to the class $=t. Because users listed in $=t are allowed to send mail 
using someone else’s username, they present a security risk. There are fewer files 
to secure against tampering if trusted users are defined in the macro configura­

sendmail Databases | 219

mailto:friends@cybermail.com
mailto:postmaster@aol.com
mailto:friends@cybermail.com
mailto:postmaster@aol.com


tion file using confTRUSTED_USERS, and because so few users should be trusted, 
defining them in the macro configuration file is no burden.

FEATURE( 'domaintable’, ' specification ')
The domaintable feature tells sendmail to use the domain table to map one 
domain name to another. An optional database specification can be provided to 
define the database type and pathname, which, by default, are hash type and letcl 
mail!domaintable. The domaintable eases the transition from an old domain 
name to a new domain name by translating the old name to the new name on all 
mail. Because you are rarely in this situation, this database is rarely used.

FEATURE( 'uucpdomain', ' specification ')
The uucpdomain feature tells sendmail to use the uucpdomain database to map 
UUCP site names to Internet domain names. The optional database specifica­
tion overrides the default database type of hash and the default database path of 
/etc/mail/uucpdomain. The uucpdomain database converts email addresses from 
the .UUCP pseudo-domain into old-fashioned UUCP bang addresses. The key to 
the database is the hostname from the .UUCP pseudo-domain. The value returned 
for the key is the bang address. It is very unlikely that you will use this database 
because even sites that still use UUCP don’t often use bang addresses because 
current UUCP mailers handle email addresses that look just like Internet 
addresses.

FEATURE( 'bitdomain',  ' specification ')
The bitdomain feature tells sendmail to use the bitdomain database to map BIT- 
NET hostnames to Internet domain names. BITNET is an outdated IBM main­
frame network that you won’t use, and therefore you won’t use this database.

There are two other databases, mailertable and virtusertable, that, although not 
included in the sample configuration, are quite useful.

The mailertable
The mailertable feature adds support to the sendmail configuration for the 
mailertable. The syntax of the mailertable feature is:

FEATURE('mailertable1, 'specification')

The optional database specification is used to override the default database type of 
hash and the default database path is /etc/mail/mailertable.

The mailertable maps domain names to the internal mailer that should handle mail 
bound for that domain. Some mailers are used only if they are referenced in the 
mailertable. For example, the MAILER('smtp’) command adds the esmtp, relay, smtp, 
smtp8, and dsmtp mailers to the configuration. By default, sendmail uses only two of 
these mailers. The esmtp mailer is used to send standard SMTP mail, and the relay 
mailer is used when mail is relayed through an external server. The other three mail­

220 | Chapter 12: sendmail



ers are unused unless they are reference in a mailertable entry or in a custom rewrite 
rule. (Using the mailertable is much easier than writing your own rewrite rules!)

Let’s use the smtp8 mailer as an example. The smtp8 mailer is designed to send 8-bit 
MIME data to outdated mail servers that support MIME but cannot understand 
Extended SMTP. If the domain example.edu used such a mail server, you could put 
the following entry in the mailertable to handle the mail:

.example.edu smtp8:oldserver.example.edu

A mailertable entry contains two fields. The first field is a key containing the host 
portion of the delivery address. It can either be a fully qualified hostname— emma. 
example.edu— or just a domain name. To specify a domain name, start the name 
with a dot, as in the example above. If a domain name is used, it matches every host 
in the domain.

The second field is the return value. It normally contains the name of the mailer that 
should handle the mail and the name of the server to which the mail should be sent. 
Optionally, a username can be specified with the server address in the form 
user@server. Also, the selected mailer can be the internal error mailer. If the error 
mailer is used, the value following the mailer name is an error message instead of a 
server name. Here is an example of each of these alternative entries:

.example.edu smtp8:oldserver.example.edu

vlite.vbrew.com esmtp:postmaster@vstout.vbrew.com

vmead.vbrew.com error:nohost This host is unavailable

Normally, mail passing through the mailertable is sent to the user to which it is 
addressed. For example, mail to jane@emma.example.edu is sent through the smtp8 
mailer to the server oldserver.example.edu addressed to the user jane@emma. 
example.edu. Adding a username to the second field, however, changes this normal 
behavior and routes the mail to an individual instead of a mail server. For example, 
mail sent to any user at vlite.vbrew.com is sent instead to postmaster@vstout.vbrew. 
com. There, presumably, the mail is handled manually. Finally, mail handled by the 
mailertable does not have to be delivered at all. Instead, an error message can be 
returned to the sender. Any mail sent to vmead.vbrew.com returns the error mes­
sage “This host is unavailable” to the sender.

The virtusertable
The sendmail virtusertable feature adds support for the virtual user table, where vir­
tual email hosting is configured. Virtual email hosting allows the mail server to 
accept and deliver mail on behalf of a number of different domains as though it were 
a number of separate mail hosts. The virtual user table maps incoming mail destined 
for some user@host to some otheruser@otherhost. You can think of this as an 
advanced mail alias feature— one that operates using not just the destination user, 
but also the destination domain.

sendmail Databases | 221

mailto:postmaster@vstout.vbrew.com
mailto:jane@emma.example.edu


To configure the virtusertable feature, add the feature to your m4 macro configura­
tion as shown:

FEATURE('virtusertable')

By default, the virtusertable source file is /etc/mail/virtusertable. You can override this 
by supplying an argument to the macro definition; consult a detailed sendmail refer­
ence to learn about what options are available.

The format of the virtual user table is very simple. The left side of each line contains 
a pattern representing the original destination mail address; the right side has a pat­
tern representing the mail address that the virtual hosted address will be mapped to. 
The following example shows three possible types of entries:

samiam@bovine.net colin

sunny@bovine.net darkhorse@mystery.net

@dairy.org mail@jhm.org

@artist.org $l@red.firefly.com

In this example, we are virtual hosting three domains: bovine.net, dairy.org, and art- 
ist.org.

The first entry redirects mail sent to a user in the bovine.net virtual domain to a local 
user on the machine. The second entry redirects mail to a user in the same virtual 
domain to a user in another domain. The third example redirects all mail addressed 
to any user in the dairly.org virtual domain to a single remote niail address. Finally, 
the last entry redirects any mail to a user in the artist.org virtual domain to the same 
user in another domain; for example, julie@artists.org would be redirected to 
julie@ red. firefly, com.

Testing Your Configuration
Email is an essential service. It is also a service that can be exploited by intruders 
when it is misconfigured. It is very important that you thoroughly test your configu­
ration. Fortunately, sendmail provides a relatively easy way of doing this.

sendmail supports an “address test” mode that allows a full range of tests. In the fol­
lowing examples we specify a destination mail address and a test to apply to that 
address, sendmail then processes that destination address displaying the output of 
each ruleset as it proceeds. To place sendmail into address test mode, invoke it with 
the -bt argument.

The default configuration file used for the address test mode is the Ietclmaillsendmail. 
cf file. To specify an alternate configuration file, use the -C argument. This is impor­
tant because you will test a new configuration before moving it to I etclmaill sendmail. 
cf. To test the sample Linux sendmail configuration created earlier in this chapter, 
use the following sendmail command:

222 | Chapter 12: sendmail

mailto:samiam@bovine.net
mailto:sunny@bovine.net
mailto:darkhorse@mystery.net
mailto:mail@jhm.org
mailto:l@red.firefly.com
mailto:julie@artists.org


# /usr/sbin/sendmail -bt -Cvstout.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

>

The > prompt shown above indicates that sendmail is ready to accept a test mode 
command. While in address test mode, sendmail accepts a variety of commands that 
examine the configuration, check settings, and observe how email addresses are pro­
cess by sendmail. Table 12-4 lists the commands that are available in test mode.

Table 12-4. Sendmail test mode commands

Command Usage

ruleset [j ruleset... ] address Process th e  address th ro u g h  th e  co m m a -s e p a ra te d  list o f  rulesets.

=Sruleset D isplay th e  co n te n ts  o f  th e  ruleset.

=M D isplay all o f  th e  m aile r d e fin itio n s .

$ v D isp lay th e  v a lu e  o f  m acro v.

$ = c  D isplay th e  va lue s in class c .

. Dvval ue S e t th e  m acro v to  val ue.

. Ccvalue A d d  value to  class c .

- d value S e t th e  d e b u g  leve l to  value.

/ t r y f  l a g s  flags S e t th e  flag s used fo r address processing b y / t r y .

/try mailer address Process th e  address fo r  th e  m aile r.

/parse address R e tu rn  th e  m a ile r/ho st/u se r d e live ry trip le  fo r  th e  address.

/canon hostname C a n o n ify  hostname.

/ m x  hos tname L o o k u p  th e  M X  records fo r hos tname.

/ m a p  mapname key L o o k  up  key in th e  d a ta b as e  id e ntifie d  b y  mapname.

/ q u i t  E x it  address te s t m o d e .

Several commands (=S, =M, $v, and $=c) display current sendmail configuration values 
defined in the sendmail.cf file, and the /map command displays values set in the send­
mail database files. The -d command can be used to change the amount of informa­
tion displayed. A great many debug levels can be set by -d, but only a few are useful 
to the sendmail administrator. See a detailed sendmail reference for valid debug val­
ues.

Two commands, .D and .C, are used to set macro and class values in real time. Use 
these commands to try alternate configuration settings before rebuilding the entire 
configuration.

Two commands display the interaction between sendmail and DNS. /canon displays 
the canonical name returned by DNS for a given hostname, /mx shows the list of mail 
exchangers returned by DNS for a given host.

Testing Your Configuration | 223



Most of the remaining commands process an email address through sendmaiTs 
rewrite rules, /parse displays the processing of a delivery address and shows which 
mailer is used to deliver mail sent to the address, / t ry  displays the processing of 
addresses for a specific mailer. (The /try flag s  command specifies whether the 
sender or the recipient address should be processed by the / t ry  command.) Use the 
ruleset address command to display the processing of an address through any arbi­
trary list of rulesets that you wish to test.

First we’ll test that sendmail is able to deliver mail to local users on the system. In 
these tests we expect all addresses to be rewritten to the local mailer on this machine:

# /usr/sbin/sendmail -bt -Cvstout.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /parse issac
Cracked address = $g

Parsing envelope recipient address

canonify input: issac

Canonify2 input: issac

Canonify2 returns: issac

canonify returns: issac

parse input: issac

ParseO input: issac

ParseO returns: issac

ParseLocal input: issac

ParseLocal returns: issac

Parsel input: issac

Parsel returns: $# local $: issac

parse returns: $# local $: issac

2 input: issac

2 returns: issac

EnvToL input: issac

EnvToL returns: issac

final input: issac

final returns: issac

mailer local, user issac

This output shows us how sendmail processes mail addressed to isaac on this sys­
tem. Each line shows us what information has been supplied to a ruleset or the result 
obtained from processing by a ruleset. We told sendmail that we wished to parse the 
address for delivery. The last line shows us that the system does indeed direct mail to 
isaac to the local mailer.

Next we’ll test mail addressed to our SMTP address: isaac@vstout.vbrew.com. We 
should be able to produce the same end result as our last example:

> /parse isaac@vstout.vbrew.com
Cracked address = $g

Parsing envelope recipient address

canonify input: isaac @ vstout . vbrew . com

Canonify2 input: isaac < @ vstout . vbrew . com >

Canonify2 returns: isaac < @ vstout . vbrew . com . >

canonify returns: isaac < @ vstout . vbrew . com . >

224 | Chapter 12: sendmail

mailto:isaac@vstout.vbrew.com
mailto:isaac@vstout.vbrew.com


parse

ParseO

ParseO

ParseLocal

ParseLocal

Parsel

Parsel

parse

2
2
EnvToL

EnvToL

final

final

mailer local,

input: 

input: 

returns: 

input: 

returns: 

input: 

returns: 

returns: 

input: 

returns: 

input: 

returns: 

input: 

returns: 

user isaac

isaac < @ vstout .

isaac < @ vstout .

isaac < @ vstout .

isaac < @ vstout .

isaac < @ vstout .

isaac < @ vstout .

$# local $: isaac

$# local $: isaac

isaac

isaac

isaac

isaac

isaac

isaac

vbrew

vbrew

vbrew

vbrew

vbrew

vbrew

com

com

com

com

com

com

Next we will test that mail addressed to other hosts in the vbrew.com domain is 
delivered directly to that host using SMTP mail:

> /parse issac@vale.vbrew.com
Cracked address = $g 

Parsing envelope recipient address

canonify 

Canonify2 

Canonify2 

canonify 

parse 

ParseO 

ParseO 

ParseLocal 

ParseLocal 

Parsel

MailerToTriple 

MailerToTriple 

Parsel 

. com . > 

parse 

. com . >

2
2
EnvToSMTP

PseudoToReal

PseudoToReal

MasqSMTP

MasqSMTP

EnvToSMTP

final

final

input: 

input: 

returns: 

returns: 

input: 

input: 

returns: 

input: 

returns: 

input: 

input: 

returns:

issac @ vale . 

issac < @ vale 

<
<
<
<
<
<
<
<

issac

issac

issac

issac

issac

issac

issac

issac

@ vale 

@ vale 

@ vale 

@ vale 

@ vale 

@ vale 

@ vale 

@ vale

vbrew .

. vbrew

. vbrew

. vbrew

. vbrew

. vbrew

. vbrew 

. vbrew 

. vbrew 

. vbrew

com

. com

. com

. com

. com

. com

. com

. com

. com

. com

< > issac < @ vale . vbrew

issac < @ vale

returns: $# esmtp $@ vale 

returns: $# esmtp $@ vale

vbrew . 

. vbrew

com . 

. com $: issac < @ vale . vbrew

vbrew . com . $: issac < @ vale . vbrew

input:

returns:

input:

input:

returns:

input:

returns:

returns:

input:

returns:

@ vale 

@ vale 

@ vale 

@ vale 

@ vale 

@ vale 

@ vale 

@ vale 

@ vale 

issac @ vale .

issac

issac

issac

issac

issac

issac

issac

issac

issac

. vbrew

. vbrew

. vbrew

. vbrew

. vbrew

. vbrew

. vbrew

. vbrew

. vbrew 

vbrew .

. com

. com

. com

. com

. com

. com

. com

. com

. com 

com

mailer esmtp, host vale.vbrew.com., user issac@vale.vbrew.com

We can see that this test has directed the message to the default SMTP mailer (esmtp) 
to be sent to the host vale.vbrew.com and the user issac on that host.

Testing Your Configuration | 225

mailto:issac@vale.vbrew.com
mailto:issac@vale.vbrew.com


Our final test checks the genericstable we created for the vstout.cf configuration. We 
check the mapping of the username alana for all three people in the vbrew.com 
domain that have this username. The following test shows how the genericstable 
maps each variation of this name:

# sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /tryflags HS
> /try esmtp alana@vpils.vbrew.com
Trying header sender address alana@vpils.vbrew.com for mailer esmtp

canonify input: alana @ vpils . vbrew . com

Canonify2 input: alana < @ vpils . vbrew . com >

Canonify2 returns: alana < @ vpils . vbrew . com . >

canonify returns: alana < @ vpils . vbrew . com . >

1 input: alana < @ vpils vbrew . com . >

1 returns: alana < @ vpils . vbrew . com . >

HdrFromSMTP input: alana < @ vpils . vbrew . com . >

PseudoToReal input: alana < @ vpils vbrew . com . >

PseudoToReal returns: alana < @ vpils vbrew . com . >

MasqSMTP input: alana < @ vpils vbrew . com . >

MasqSMTP returns: alana < @ vpils vbrew . com . >

MasqHdr input: alana < @ vpils . vbrew . com . >

canonify input: alana . darling @ vbrew . com

Canonify2 input: alana darling < @ vbrew . com >

Canonify2 returns: alana . darling < @ vbrew . com .

canonify returns: alana . darling < @ vbrew . com .

MasqHdr returns: alana . darling < @ vbrew . com .

HdrFromSMTP returns: alana darling < @ vbrew . com .

final input: alana darling < @ vbrew . com .

final returns: alana . darling @ vbrew . com

Rcode = 0, addr = alana.darling@vbrew.com

> /try esmtp alana@vale.vbrew.com
Trying header sender address alana@vale.vbrew.com for mailer esmtp

canonify input: alana @ vale . vbrew . com

Canonify2 input: alana < @ vale . vbrew . com >

Canonify2 returns: alana < @ vale vbrew . com .

canonify returns: alana < @ vale vbrew . com .

1 input: alana < @ vale vbrew . com .

1 returns: alana < @ vale vbrew . com .

HdrFromSMTP input: alana < @ vale vbrew . com .

PseudoToReal input: alana < @ vale vbrew . com .

PseudoToReal returns: alana < @ vale . vbrew . com .

MasqSMTP input: alana < @ vale . vbrew . com .

MasqSMTP returns: alana < @ vale vbrew . com .

MasqHdr input: alana < @ vale . vbrew . com .

canonify input: alana . henson @ vbrew . com

Canonify2 input: alana henson < @ vbrew . com

Canonify2 returns: alana henson < @ vbrew . com

canonify returns: alana henson < @ vbrew . com

MasqHdr returns: alana . henson < @ vbrew . com

HdrFromSMTP returns: alana henson < @ vbrew . com

final input: alana henson < @ vbrew . com

226 | Chapter 12: sendmail

mailto:alana@vpils.vbrew.com
mailto:alana@vpils.vbrew.com
mailto:alana.darling@vbrew.com
mailto:alana@vale.vbrew.com
mailto:alana@vale.vbrew.com


final returns: alana . henson @ vbrew . com

Rcode = 0, addr = alana.henson@vbrew.com

> /try esmtp alana@foobar.vbrew.com
Trying header sender address alana@foobar.vbrew.com for mailer esmtp

canonify input: alana @ foobar . vbrew . com

Canonify2 input: alana < @ foobar . vbrew . com >

Canonify2 returns: alana < @ foobar . vbrew . com . >

canonify returns: alana < @ foobar . vbrew . com . >

l input: alana < @ foobar . vbrew . com . >

1 returns: alana < @ foobar . vbrew . com . >

HdrFromSMTP input: alana < @ foobar . vbrew . com . >

PseudoToReal input: alana < @ foobar . vbrew . com . >

PseudoToReal returns: alana < @ foobar . vbrew . com . >

MasqSMTP input: alana < @ foobar . vbrew . com . >

MasqSMTP returns: alana < @ foobar . vbrew . com . >

MasqHdr input: alana < @ foobar . vbrew . com . >

canonify input: alana smiley @ vbrew . com

Canonify2 input: alana . smiley < @ vbrew . com >

Canonify2 returns: alana . smiley < @ vbrew . com . >

canonify returns: alana smiley < @ vbrew . com . >

MasqHdr returns: alana smiley < @ vbrew . com . >

HdrFromSMTP returns: alana smiley < @ vbrew . com . >

final input: alana smiley < @ vbrew . com . >

final returns: alana smiley @ vbrew . com

Rcode = 0, addr = alana.smiley@vbrew.com 

> /quit

This test uses the / t r y f  lags command that allows us to specify whether we want to 
process the header sender address (HS), the header recipient address (HR), the enve­
lope sender address (ES), or the envelope recipient address (ER). In this case, we want 
to see how the header sender address is rewritten. The /try  command allows us to 
specify which mailer the address should be rewritten for and the address to be rewrit­
ten.

This test was also successful. The genericstable tests work for Alana Darling, Alana 
Henson, and Alana Smiley.

Running sendmail
The sendmail daemon can be run in either of two ways. One way is to have to have it 
run from the inetd daemon; the alternative, and more commonly used method, is to 
run sendmail as a standalone daemon. It is also common for mailer programs to 
invoke sendmail as a user command to accept locally generated mail for delivery.

When running sendmail in standalone mode, place the sendmail command in a star­
tup file so that it runs at boot time. The syntax used is commonly:

/usr/sbin/sendmail -bd -qlOm

Running sendmail | 227

mailto:alana.henson@vbrew.com
mailto:alana@foobar.vbrew.com
mailto:alana@foobar.vbrew.com
mailto:alana.smiley@vbrew.com


The -bd argument tells sendmail to run as a daemon. It will fork and run in the back­
ground. The -qlOm argument tells sendmail to check its queue every ten minutes. You 
may choose to use a different time interval to check the queue.

To run sendmail from the inetd network daemon, you’d use an entry such as this:

smtp stream tcp nowait nobody /usr/sbin/sendmail -bs

The -bs argument here tells sendmail to use the SMTP protocol on stdin/stdout, 
which is required for use with inetd.

When sendmail is invoked this way, it processes any mail waiting in the queue to be 
transmitted. When running sendmail from inetd, you must also create a cron job that 
runs the runq command periodically to service the mail spool periodically. A suit­
able cron table entry would be similar to:

# Run the mail spool every fifteen minutes 

0,15,30,45 * * * * /usr/bin/runq

In most installations sendmail processes the queue every 15 minutes as shown in our 
crontab example. This example uses the runq command. The runq command is usu­
ally a symlink to the sendmail binary and is a more convenient form of:

# sendmail -q

Tips and Tricks
There are a number of things you can do to make managing a sendmail site efficient. 
A number of management tools are provided in the sendmail package; let’s look at 
the most important of these.

Managing the Mail Spool
Mail is queued in the /var/spool/mqueue directory before being transmitted. This 
directory is called the mail spool. The sendmail program provides the mailq com­
mand as a means of displaying a formatted list of all spooled mail messages and their 
status. The /usr/bin/mailq command is a symbolic link to the sendmail executable and 
behaves identically to:

# sendmail -bp

The output of the mailq command displays the message ID, its size, the time it was 
placed in the queue, who sent it, and a message indicating its current status. The fol­
lowing example shows a mail message stuck in the queue with a problem:

$ mailq
Mail Queue (l request)

--0-ID-- --Size........ 0-Time................... Sender/Recipient........... -

RAA00275 124 Wed Dec 9 17:47 root
(host map: lookup (tao.linux.org.au): deferred) 

terry@tao.linux.org.au

228 | Chapter 12: sendmail

mailto:terry@tao.linux.org.au


This message is still in the mail queue because the destination host IP address could 
not be resolved.

To force sendmail to immediately process the queue, issue the /usr/bin/runq com­
mand. sendmail will process the mail queue in the background. The runq command 
produces no output, but a subsequent mailq command will tell you if the queue is 
clear.

Forcing a Remote Host to Process Its Mail Queue
If you use a temporary dial-up Internet connection with a fixed IP address and rely 
on an MX host to collect your mail while you are disconnected, you will find it use­
ful to force the MX host to process its mail queue soon after you establish your con­
nection.

A small peri program is included with the sendmail distribution that makes this sim­
ple for mail hosts that support it. The etrn script has much the same effect on a 
remote host as the runq command has on the local server. If we invoke the com­
mand as shown in this example:

# etrn vstout.vbrew.com

we force the host vstout.vbrew.com to process any mail queued for our local 
machine.

Typically you’d add this command to your PPP startup script so that it is executed 
soon after your network connection is established.

Mail Statistics
sendmail collects data on the volume of mail traffic and some information on the 
hosts to which it has delivered mail. There are two commands available to display 
this information, mailstats and hoststat.

mailstats
The mailstats command displays statistics on the volume of mail processed by send­
mail. The time at which data collection commenced is printed first, followed by a 
table with one row for each configured mailer and one showing a summary total of 
all mail. Each line presents eight items of information, which are described in 
Table 12-5.

Table 12-5. The fields displayed by mailstat

Field Meaning

M T h e  m aile r (tra n s p o rt p ro to c o l) n u m b e r

m s g s f  r  T h e  n u m b e r o f  m essages received fro m  th e
m aile r

Tips and Tricks | 229



Table 12-5. The fields displayed by mailstat (continued)

Field
bytes_from

Meaning
T h e  K b yte s o f  m ail fro m  th e  m aile r 

T h e  n u m b e r o f  m essages s e n t to  th e  m aile r 

T h e  K b yte s o f  m ail se n t to  th e  m aile r 

T h e  n u m b e r o f  m essages rejected 

T h e  n u m b e r o f  m essages discarded 

T h e  n a m e  o f  th e  m ailer

msgsto

bytes_to

msgsreg

msgsdis

Mailer

A sample of the output of the mailstats command is shown in Example 12-7.

Example 12-7. Sample output of the mailstats command

# /usr/sbin/mailstats
Statistics from Sun Dec 20 22:47:02 1998

M msgsfr bytes_from msgsto bytesjto msgsrej msgsdis Mailer

0 0 OK 19 515K 0 0 prog

3 33 545K 0 OK 0 0 local

5 88 972K 139 1018K 0 0 esmtp

T 121 1517K 158 1533K 0 0

This data is collected if the StatusFile option is enabled in the sendmail.cf file and 
the status file exists. The StatusFile option is defined in the generic Linux configura­
tion and therefore defined in the vstout.cf file we built from the generic configura­
tion, as shown below:

$ grep StatusFile vstout.cf
0 StatusFile=/etc/mail/statistics

To restart the statistics collection, make the statistics file zero length and restart send­
mail.

hoststat
The hoststat command displays information about the status of hosts to which send­
mail has attempted to deliver mail. The hoststat command is equivalent to invoking 
sendmail as:

sendmail -bh

The output presents each host on a line of its own, and for each the time since deliv­
ery was attempted to it, and the status message received at that time.

Persistent host status is maintained only if a path for the status directory is defined 
by the HostStatusDirectory option, which in turn is defined in the m4 macro config­
uration file by confHOST_STATUS_DIRECTORY. By default, no path is defined for the host 
status directory and no persistent host status is maintained.

230 | Chapter 12: sendmail



Example 12-8 shows the sort of output you can expect from the hoststat command. 
Note that most of the results indicate successful delivery. The result for earthlink. 
net, on the other hand, indicates that delivery was unsuccessful. The status message 
can sometimes help determine the cause of the failure. In this case, the connection 
timed out, probably because the host was down or unreachable at the time delivery 
was attempted.

Example 12-8. Sample Output of the hoststat Command

# hoststat
-.............- Hostname-----------How long ago ---

mail.telstra.com.au 04:05:41

scooter.eye-net.com.au 81+08:3 2:42

yarrina.connect.com.a 5 3+10:46:03

happy.optus.com.au 55+03:34:40

mail.zip.com.au 04:05:33

kwanon.research.canon.com.au 44+04:39:10

linux.org.au 83+10:04:11

albert.aapra.org.au 00:00:12

field.medicine.adelaide.edu.au 53+10:46:03

copper.fuller.net 65+12:38:00

amsat.org 5+06:49:21

mail.acm.org 53+10:46:17

extmail.bigpond.com 11+04:06:20

earthlink.net 45+05:41:09

--------- Results----------

250 Message accepted for 

250 OK id=0zTGai-0008S9-0 

250 LAA09163 Message acce 

250 Mail accepted 

250 RAA23904 Message acce 

250 ok 911542267 qp 21186 

250 IAA31139 Message acce 

250 VAA21968 Message acce 

250 ok 910742814 qp 721 
250 0AA14470 Message acce 

250 UAA07526 Message acce 

250 TAA25012 Message acce 

250 ok

Deferred: Connection time

The purgestat command flushes the collected host data and is equivalent to invoking 
sendmail as:

# sendmail -bH

The statistics will continue to grow until you purge them. You might want to period­
ically run the purgestat command to make it easier to search and find recent entries, 
especially if you have a busy site. You could put the command into a crontab file so it 
runs automatically, or just do it yourself occasionally.

More Information
sendmail is a complex topic— much too complex to be truly covered by a single 
chapter. This chapter should get you started and will help you configure a simple 
server. However, if you have a complex configuration or you want to explore 
advanced features, you will need more information. Here are some sources to start 
you on your quest for knowledge.

• The sendmail distribution is delivered with some excellent README files. The 
README file in the top-level directory created when the distribution is installed 
is the place to start. It contains a list of other informational files, such as 
sendmail/README and cf/README, that provides essential information. (The

More Information | 231



cf/README file, which covers the sendmail configuration language, is also avail­
able on the Web at http://www.sendmail.org/m4/readme.htmL)

• The sendmail Installation and Operations Guide is an excellent source of informa­
tion. It is also delivered with the sendmail source code distribution, and can be 
found in doc/op/op.me or doc/op/op.ps, depending on your preferred format.

• The sendmail web site provides several excellent papers and online documents. 
The Compiling Sendmail documentation, available at http://www.sendmail.org/ 
compiling.html, is an excellent example.

• The sendmail site provides a list of available sendmail books at http://www. 
sendmail org/books. html.

• Formal sendmail training is available. Some training classes are listed at http:// 
www.sendmail. org!classes, html.

Using these resources, you should be able to find out more about sendmail than you 
will ever need to know. Go exploring!

232 | Chapter 12: sendmail

http://www.sendmail.org/m4/readme.htmL
http://www.sendmail.org/
http://www
http://www.sendmail


CHAPTER 13

Configuring IPv6 
Networks

IPv4 space is becoming scarcer by the day. By 2005, some estimates place the num­
ber of worldwide Internet users at over one billion. Given the fact that many of those 
users will have a cellular phone, a home computer, and possibly a computer at work, 
the available IP address space becomes critically tight. China has recently requested 
IP addresses for each of their students, for a total of nearly 300 million addresses. 
Requests such as these, which cannot be filled, demonstrate this shortage. When 
IANA initially began allotting address space, the Internet was a small and little- 
known research network. There was very little demand for addresses and class A 
address space was freely allocated. However, as the size and importance of the Inter­
net started to grow, the number of available addresses diminished, making obtaining 
a new IP difficult and much more expensive. NAT and CIDR are two separate 
responses to this scarcity. NAT is an individual solution allowing one site to funnel 
its users through a single IP address. CIDR allows for a more efficient division of net­
work address block. Both solutions, however, have limitations.

W ith new electronic devices such as PDAs and cellular phones, which all need IP 
addresses of their own, the NAT address blocks suddenly do not seem quite as large.

Researchers, realizing the potential IP shortage, have redesigned the IPv4 protocol so 
that it supports 128-bits worth of address space. The selected 128-bit address space 
provides 340 trillion possible addresses, an exponential increase that we hope will 
provide adequate addressing into the near (and far) future. This is, in fact, enough 
addresses to provide every person on Earth with one billion addresses.

Not only does IPv6 solve some of the address space logistics, it also addresses some 
configuration and security issues. In this section, we’ll take a look at the current solu­
tions available with Linux and IPv6.

233



The IPv4 Problem and Patchwork Solutions
At the beginning, IANA gave requestors an entire class A network space thereby 
granting requestors 16.7 million addresses— many more than necessary. Realizing 
their error, they began to assign class B networks— again, providing far too many 
addresses for the average requestor. As the Internet grew, it quickly became clear 
that allocating class A and class B networks to every requestor did not make sense. 
Even their later action of assigning class C banks of addresses still squandered 
address space, as most companies didn’t require 254 IP addresses. Since IANA could 
not revoke currently allocated address space, it became necessary to deal with the 
remaining space in a way that made sense. One of these ways was through the use of 
Classless Inter-Domain Routing (CIDR).

CIDR
CIDR allows network blocks to be allocated outside of the well-defined class A/B/C 
ranges. In an effort to get more mileage from existing class C network blocks, CIDR 
allows administrators to divide their address space into smaller units, which can then 
be allocated as individual networks. This made it easier to give IPs to more people 
because space could be allocated by need, rather than by predefined size-of-space. 
For example, a provider with a class C subnet could choose to divide this network 
into 32 individual networks, and would use the network addresses and subnet masks 
to delineate the boundaries. A sample CIDR notation looks like this:

10 .10 .0 .64 /29

In this example, the /29 denotes the subnet mask, which means that the first 29 bits 
of the address are the subnet. It could also be noted as 255.255.255.248, which 
gives this network a total of six usable addresses.

While CIDR does deal with the problem in a quick and easy way, it doesn’t actually 
create more IP addresses, and it does have some additional disadvantages. First, its 
efficiency is compromised since each allocated network requires a broadcast IP and a 
network address IP. So if a provider breaks a class C block into 32 separate net­
works, a total of 64 individual IPs are wasted on network and broadcast IPs. Second, 
complicated CIDR networks are more prone to configuration errors. A router with 
an improper subnet mask can cause an outage for small networks it serves.

NAT
Network Address Translation (NAT) provides some relief for the IP address space 
dilemma, and without it, we’d currently be well out of usable IP space. NAT pro­
vides a many-to-one translation, meaning that many machines can share the same IP 
address. This also provides some privacy and security for the machines behind the 
NAT device, since individually identifying them is more difficult. There are also

234 I Chapter 13: Configuring IPv6 Networks



some disadvantages to NAT— primarily that some older protocols aren’t designed to 
handle redirection.

IPv6 as a Solution
In order to combat the shrinking IP space problem, the concept of IPv6 was born. 
Future-minded designers chose to have 128 bits of address space, providing for a 
total of 340,282,366,920,938,463,463,374,607,431,768,211,456 (3.4 x 1,038) 
addresses or, in more visual terms, 655,570,793,348,866,943,898,599 (6.5 x 1,023) 
addresses for every square meter of the earth’s surface. This provides a sizable exten­
sion over the current 32-bits of address space under IPv4.

IPv6 Addressing
The first noticeable difference between IPv4 and IPv6 is how the addresses are writ­
ten. A typical IPv6 address looks like:

fe80:0010:0000:0000:0000:0000:0000:0001

There are eight sets of four hex values in every IP address. These addresses can be 
long and cumbersome, which is why a shortening method was developed. A single 
string of zeroes can be replaced with the double colon. For example, the previous 
example could be written in shortened form as.

fe80:0010::l

However, this can be done only one time in an address in order to avoid ambiguity 
about what has been removed. Let us consider the following example IP which has 
separate strings of zeroes:

2001:0000:0000:a080:0000:0000:0000:0001

Since only one string of zeroes can be replaced, the IP can not be shortened to:

2001::a080::l

Generally, the longest string is shortened. In this example, with the longest set 
replaced, the shortened IP is:

2001:0000:0000:a080::l

W ithin IPv6, there are several different types of addresses that define the various 
functions available within the specification:

Link-local address
This address is automatically configured when the IPv6 stack is initialized using 
the MAC address from your network card. This kind of address is generally con­
sidered a client-only type of address, and would not be capable of running a 
server or listening for inbound connections. Link-local addresses always begin

IPv6 as a Solution | 235



with FE8x, FE9x, FEAx, or FEBx, where the x can be replaced with any hex 
digit.

Site-local addresses
While a part of the original specification, and still described in various texts, site- 
local addresses have been deprecated and are no longer considered to be part of 
IPv6.

Global unicast address
This address type is Internet routable and is expected to be the outward facing IP 
on all machines. This kind of address is currently identified by its starting digits 
of either 2xxx or 3xxx, though this may be expanded in the future as necessary.

IPv6 Advantages
While the most obvious benefit of IPv6 is the dramatically increased address space, 
there are several other key advantages that come with it. For example, there are 
numerous performance gains with IPv6. Packets can be processed more efficiently 
because option fields in the packet headers are processed only when actual options 
are present; additional performance gains come from having removed packet frag­
mentation. A second advantage is a boost in security through the inclusion of 
embedded IPSec. As it will be part of the protocol, implementation of encryption and 
non-repudiation will be more natural. Quality of Service (QoS) is another advantage 
that is developing with IPv6. Enabling this functionality would allow network 
administrators to prioritize groups of network traffic. This can be critical on net­
works that handle services like Voice over IP because even small network disrup­
tions can make the service less reliable. Finally, advances in address auto­
configuration make on-the-fly networking much easier. Additional benefits will 
emerge as adoption and research continue. Hopefully, some of these will come with 
advances in Mobile IP technologies that promise to make it possible for any device to 
keep the same IP address regardless of its current network connection.

IPv6 Configuration
IPv6 support has come a long way recently and is now supported in nearly all Linux 
distributions. It has been a part of the 2.4 kernel for the last few releases and is 
included in kernel 2.6.

Kernel and system configuration
Enabling IPv6 support in Linux has become much easier now that it is distributed 
with the kernel sources. Patching is no longer necessary, but you will need to install a 
set of tools, which will be described later in this section.

236 | Chapter 13: Configuring IPv6 Networks



If IPv6 support isn’t already built into your kernel, it may already be compiled as a 
module. A quick test to see whether or not the module is present can be accom­
plished with the following command:

vlager# modprobe ipv6
vlager#

If there is no response the module was most likely successfully loaded. There are sev­
eral ways to verify that support is enabled. The fastest is by checking the /proc direc­
tory:

vlager# Is -1 /proc/net/if_inet6
-r-r-r-- 1 root root 0 Dul 1 12:12 /proc/net/if_inet6

If you have a compatible version of ifconfig, it can also be used to verify: 

vlager# ifconfig etho Igrep inet6

inet6 addr: fe80::200:ef99:f3df:32ae/lO Scope:Link

If these tests are unsuccessful, you will likely need to recompile your kernel to enable 
support. The kernel configuration option for IPv6 in the .config file is:

C0NFIG_IPV6=m

By using a “make menuconfig,” the option to enable IPv6 under the 2.4 kernel is 
found under “Network Options” section. Under the 2.6 kernel configuration, it is 
found under “Network Support/Network Options”. It can either be compiled into 
the kernel or built as a module. If you do build as a module, remember that you must 
modprobe before attempting to configure the interface.

Interface configuration
In order to configure the interface for IPv6 usage, you will need to have IPv6 ver­
sions of the common network utilities. With most Linux distributions now support­
ing IPv6 out of the box, it’s likely that you’ll already have these tools installed. If 
you’re upgrading from an older distribution or using Linux From Scratch, you will 
probably need to install a package called net-tools, which can be found at various 
places on the Internet. You can find the most recent version by searching for “net- 
tools” on Google or FreshMeat.

To verify that you have compatible versions, a quick check can be done with either 
ifconfig or netstat. The quick check would look like this:

vlager# /sbin/netstat grep inet6

Before proceeding, you’ll also want to make sure you have the various network con­
nectivity checking tools for IPv6, such as ping6, traceroute6, and tracepath6. They are 
found in the iputils package and, again, are generally installed by default on most 
current distributions. You can search your path to see whether or not these tools are 
available and install them if necessary. Should you need to find them, the author has 
placed them at ftp://ftp.inr.ac.ru/ip-routing.

IPv6 as a Solution | 237

ftp://ftp.inr.ac.ru/ip-routing


If everything has gone smoothly, your interface will have been auto-configured using 
your MAC address. You can check this by using ifconfig:

vlager# ifconfig etho
ethO Link encap:Ethernet HWaddr 00:07:E9:DF:32:AE

inet addr:10.10.10.19 Beast:10.10.10.255 Mask:255.255.255.0 

inet6 addr: fe80::207:e9ff:fedf:32ae/lO Scope:Link 

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 

RX packets:2272821 errors:0 dropped:0 overruns:0 frame:73 

TX packets:478473 errors:0 dropped:0 overruns:0 carrier:0 

collisions:4033 txqueuelen:lOO

RX bytes:516238958 (492.3 Mb) TX bytes:54220361 (51.7 Mb)

Interrupt:20 Base address:0x2000

vlager#

The third line in the output displays the link-local address of vlager. It is easy to iden­
tify it as such because any address starting with f  e80 will always be a link-local type 
IP address. If you are concerned about privacy issues in using your MAC as your 
main IP address, or if you are configuring a server and wish to have an easier IP 
address, you can configure your own IP address according to the following example:

vlager# ifconfig etho inet6 add 2001:02A0::1/64
vlager#

At this point, however, you may not have a global address type to assign, as we’ve 
done above. So, your IP may be a link- or site-local address. These will work per­
fectly for any non-Internet routable traffic that you want to pass, but if you wish to 
connect to the rest of the world, you will need to have either a connection directly to 
the IPv6 backbone or an IPv6 tunnel through a tunnel broker, which we’ll discuss in 
the next section.

Establishing an IPv6 Connection via a Tunnel Broker
To join the wonderful world of IPv6 you will need a path through which to connect. 
A tunnel is currently the only way to access the IPv6 backbone for most users, as few 
sites have direct IPv6 connectivity. Attempting to route IPv6 traffic directly over IPv4 
networks w on’t get you very far, as the next-hop router will most likely not know 
what to do with your seemingly odd traffic. For most users, the easiest path to estab­
lish a tunnel is through a tunnel broker. There are a number of different brokers on 
the Internet who will provide you with your very own IPv6 address space. One of the 
fastest and most popular tunnel brokers is Hurricane Electric (Figure 13-1), which 
has an automated IPv6 tunnel request form. They require only that you have a “ping- 
able” IPv4 address that is constantly connected to the Internet. This is the IPv4 
address that they will expect to be the source of your tunnel.

238 | Chapter 13: Configuring IPv6 Networks



iis«

HE.net IPv6 Tunnel Broker Registration

Account Information
The a ccou n t nam e you p rov ide  below will be  used to label your 
IPv6 address in reverse DN S  and fo r adm in is tra tion  o f y o u r tunnel 
A fte r reg is tering , yo u r a c c o u n t w ill becom e active w ith in  24 hours 
O nce  y o u r a ccoun t is activated, you w ill be  able to setup the rest o f 
the tunnel inc lud ing  y o u r IPv4 e ndpo in t and any address range 
de legations W e  will p e r io d ica lly  p ing  the IPv6 address at yo u r end 
o f the tunnel to see if it is still up If y o u r end  o f the tunnel is 
unp ingab le  for a day o r m ore  we will assum e you  a re  no longer 
us ing  the tunnel and w ill rem ove it Y ou r a ccou n t w ill rem a in  active

You must provide COMPLETE and VALID contact information 
or your tunnel will be deleted.

Account
Name:

Figure 13-1. Obtaining a tunnel from he.net

Building your tunnel
Once you have received your IPv6 address space, you’re ready to build your tunnel. 
In order to accomplish this, you will need to use the additional Link encapsulation 
interfaces that exist after installing the IPv6 module.

To build your tunnel, you will need to configure both the sitO and sitl interfaces. 
The sit interfaces are considered virtual adapters, because they do not directly repre­
sent hardware in your system. However, from a software perspective, these will be 
treated in almost the same way any other interface is treated. W e will direct and 
route traffic through them. The sit virtual interfaces allow you to map your IPv4 
address to an IPv6 address, and then create an IPv6 interface on your machine. This

IPv6 as a Solution | 239



process is started by enabling the sitO interface and assigning it your IPv4 address. 
For this example, 10.10.0.8 is the tunnel broker’s IPv4 endpoint, and 2001: FEFE: 
0F00: :4B is vlager’s IPv6 tunnel endpoint IP address.

vlager# ifconfig sitO up
vlager# ifconfig sitO inet6 tunnel ::10.10.0.8

This step enables the sitO interface and binds it to the tunnel broker’s IPv4 address. 
The next step is to assign your IPv6 address to the sitl interface. That is accom­
plished with the following commands:

vlager# ifconfig sitl up
vlager# ifconfig sitl inet6 add 2001:FEFE:0F00::4B/127

The tunnel should now be operational. However, in order to test, you will need to 
route IPv6 traffic to the sitl interface. This is most easily handled by using route.

vlager$ route -A inet6 add ::/0 dev sitl

This command tells the OS to send all IPv6 traffic to the sitl device. With the route 
in place, you should now be able to verify your IPv6. The connectivity can now be 
tested by using ping6. In this example, we will ping the IPv6 address of the remote 
side of our newly created tunnel.

vlager# ping6 200l:470:lf00:ffff::3a
PING 2001:470:lfOO:ffff::3a(2001:470:lf00:ffff::3a) 56 data bytes 
64 bytes from 2001:470:if00:ffff::3a: icmp_seq=l ttl=64 time=26.2 ms 

64 bytes from 2001:470:If00:ffff::3a: icmp_seq=2 ttl=64 time=102 ms 

64 bytes from 2001:470:lf00:ffff::3a: icmp_seq=3 ttl=64 time=143 ms 

64 bytes from 2001:470:if00:ffff::3a: icmp_seq=4 ttl=64 time=130 ms 
Ctrl-c

—  2001:470:lfOO:ffff::3a ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3013ms 

rtt min/avg/max/mdev = 26.295/100.590/143.019/45.339 ms 
vlager#

At this point, you now have a system configured to a pubic IPv6 net­
work. You can see the whole IPv6 world, and they can see you. It is 
important to note that at this point you should verify exactly which 
services are listening, and that they are patched and not exploitable.
While IPv6 netfilter support is under development, it may not be sta­
ble enough to rely on.

IPv6-Aware Applications
There are currently quite a few IPv6-aware applications that are also commonly in 
use on the IPv4 networks. Among the more popular are the Apache web server and 
OpenSSH. In this section, we’ll detail common configuration for enabling IPv6 
within these applications.

240 | Chapter 13: Configuring IPv6 Networks



Apache web server
Although Apache vl.3  is commonly used due to its stability, it does not support IPv6 
without source code modification. Should you absolutely need vl.3 and IPv6 sup­
port, IPv6 patches do exist, but they are unsupported and likely untested. There has 
been a great deal of discussion about whether to include official IPv6 support in the 
stable vl.3 , and the general consensus has been to leave vl.3  alone and use v2.0 for 
the continued support and development of Apache’s IPv6 support. The Apache web 
server Versions 2.0 and higher support IPv6 without modification. Therefore, we will 
focus on this version in this section.

Configuring Apache v2.0.x for IPv6 support
The configuration of Apache with IPv6 is fairly straightforward. The build process 
requires no special options and can be installed from either source or RPM. One 
option that can be set at compile time that may be of interest to IPv6 users is -enable- 
v4-mapped tag. This is most often the default in pre built packages. It enables you to 
have a line with a general Listen directive such as:

Listen 80

This will bind the web server process to all available IP addresses. Administrators of 
IPv6 systems may find this behavior insecure and inefficient, as unnecessary sockets 
will be opened for the large number of default IPv6 addresses. It is for this reason 
that you can use -disable-v4-mapped when compiling and force explicit configura­
tion of listening interfaces. W ith this option disabled, you can still have interfaces lis­
ten on all ports, but you must specify to do so.

W hen the server is compiled and installed as you wish, a single change to the config­
uration file is required to enable a listener. This step is very similar to the IPv4 con­
figuration of Apache. To enable a web listener on vlager’s IPv6 IP, the following 
change to the apache.conf file is required:

Listen [fecOiffff::2]:80

Once Apache is started, it opens up a listener on port 80 on the specified IP. This can 
be verified through the use of netstat:

vlager# netstat -aunt
Active Internet connections (servers and established)

Proto Recv-0 Send-0 Local Address Foreign Address

tcp 0 0 10.10.0.4:22 0.0.0.0:*

tcp 0 0 fec0:ffff::2:80 :::*

vlager#

The second entry in the table is the IPv6 apache listener, and it is noted in exactly the 
same format as the IPv4 addresses.

State

LISTEN

LISTEN

IPv6 as a Solution | 241



If you would like to have your Apache server listen on all available IPv6 addresses, a 
slightly different configuration option can be used:

Listen [::]:80

This is very similar to the 0.0.0.0 address used to accomplish the same thing in IPv4. 
To enable listeners on ports other than 80, either replace the existing port number or 
add additional Listen lines. For a more detailed discussion of Apache, please refer to 
Chapter 14.

OpenSSH
The OpenSSH project has been compatible with IPv6 since its early days, and sup­
port within the program is now considered mature. It is also quite easy to configure. 
No additional options need to be passed during compile time, so installing from 
binary package will cause no problems.

This section assumes that you have OpenSSH operational under IPv4 and know 
where your configuration files are installed. In our case, the configuration files are 
installed in /etc/ssh. To add an IPv6 listener, we need to add a line to the sshd_config 
file:

ListenAddress fec0:ffff::2 

Port 1022

When OpenSSH is restarted with the -6 command-line option, it will now be listen­
ing on our IPv6 address at port 1022.

Accessing IPv6 hosts with the OpenSSH client is also quite easy. It is only necessary 
to specify the -6 command-line option as follows:

othermachine$ ssh -6 feco:ffff::2 -p 1022
bob@fecO:ffff::2's password: 

bob@vlager $

That’s really all there is to configuring OpenSSH for IPv6 usage. At this point you 
should have a server with an OpenSSH IPv6 listener and be able to use ssh to con­
nect to other machines on the IPv6 network. If not, please see the “Troubleshoot­
ing” section, next.

Troubleshooting
As IPv6 networking is often uncharted territory, it is not uncommon for things to go 
wrong. One of the most common mistakes made when dealing with IPv6 initially 
involves the address notation. The change from the period to the colon for subset 
separation can cause errors, as most administrators’ hands are used to reaching for 
the period. A second notation problem when writing out addresses comes with 
shortening them. As discussed earlier in the section, when omitting series of zeroes, a 
double colon is used. Should you forget the double colon, the machine will generate 
an error informing you that you have entered an incomplete IP address. Here are 
some examples of incorrect IPv6 notation:

242 | Chapter 13: Configuring IPv6 Networks



fe80.ffff.0207.3bfe.Oddd.bbfe.02 

3ffe:0001:fefe:5 

2001:fdff::0901::1

If the problem is more severe, and you’re not seeing the IPv6 stack at all, you should 
review your kernel configuration. If you’ve compiled support for IPv6 directly into 
the kernel, check your system log and see if you’re receiving any errors when it 
attempts to load. A successful IPv6 installation will yield the following message at 
boot time:

NET4: Linux TCP/IP 1.0 for NET4.0 

IP Protocols: ICMP, UDP, TCP

IP: routing cache hash table of 4096 buckets, 32Kbytes 

TCP: Hash tables configured (established 32768 bind 65536)

NET4 Unix domain sockets 1.0/SMP for Linux NET4 .0 .
IPv6 v0.8 for NET4.0
IPv6 over IPv4 tunneling driver

This section shows the network stack initialization, and the last two lines are spe­
cific to IPv6. If you don’t see these two lines, or see an error, you need to check your 
kernel configuration file and perhaps consider building IPv6 as a module.

If you’ve built IPv6 support as a module, make sure you have it configured to load 
automatically. There are as many ways to do this as there are Linux distributions, so 
consult your distribution’s documentation for specific details.

W hen properly loaded, the module should appear when you enter the Ismod com­
mand.

vlager# lsmod Igrep ipv6

Module Size Used by Not tainted

ipv6 162132 -1

W hen loading the module, you should also see the following lines in your system 
log:

Dul 7 16:13:43 deathstar kernel: IPv6 v0.8 for NET4.0
Jul 7 16:13:43 deathstar kernel: IPv6 over IPv4 tunneling driver

If you are confident that your IPv6 stack has installed properly, and you are able to 
send traffic on your local LAN but cannot send traffic through your IPv6 tunnel, 
check your IPv4 connectivity. The first step in this process would be double-check- 
ing the IPv4 tunnel addresses specified in the sitO configuration. If the configuration 
is accurate, test the remote IPv4 endpoint. The inability to send IPv4 traffic to the 
tunnel endpoint IP will also prevent you from sending any IPv6 traffic.

Other connectivity issues could be the result of a misconfigured firewall. If you have 
decided to use Netfilter for IPv6, make certain that your firewall rules are accurate by 
attempting to send traffic both with and without your rules enabled. It is possible 
that there may be problems within Netfilter for IPv6 that prevent certain configura­
tions from working properly.

IPv6 as a Solution | 243



CHAPTER 14

Configuring the Apache 
Web Server im
One of the most widely used software packages under Linux currently is the Apache 
web server. Starting in 1995 as small group of developers, the Apache Software foun­
dation incorporated in 1999 to develop and support the Apache HTTP server. With 
a base of more than 25 million operational Internet web servers, Apache’s HTTP 
server is known for its flexibility and performance benefits. In this section, we will 
explore the basics of building and configuring an Apache HTTP server and examine 
some options that will assist in the security and performance of its operation. In this 
chapter, we’ll be looking at Apache vl.3 , which is currently the most widely 
deployed and supported version.

Apache HTTPD Server— An Introduction
Apache is in itself just a simple web server. It was designed with the goal of serving 
web pages. Some commercial web servers have tried to pack many different features 
into a web server product, but such combination products tend to be open to sub­
stantial numbers of security vulnerabilities. The simplicity and modular design of the 
Apache HTTPD server brings a more secure product, and its track record especially 
when compared to other web servers shows it to be a stable and robust product.

This is not to say that Apache servers are incapable of providing dynamic content to 
users. There are many Apache modules that can be integrated to provide an almost 
infinite number of new features. Add-on products, such as PHP and modjperl, can 
be used to create powerful web applications and generate dynamic web content. This 
chapter, however, will concentrate on the configuration of Apache itself. Here, we 
will discuss how to build and configure an Apache HTTPD web server and look at 
the different options that can be used to build a stable and secure web server.

Configuring and Building Apache
If your Linux distribution does not currently have Apache, the easiest way to get it is 
from one of the many Apache mirror sites. A list can be found at the main Apache

244



Software Foundation site, http://www.apache.org. At present, there are two branches 
of the Apache HTTPD version tree, 1.3 and 2.0. The new version tree, v2.0 offers 
new features and is being actively developed, but is more likely to be susceptible to 
bugs and vulnerabilities. In this chapter, we will be using the most recent version of 
the 1.3 branch because of its proven reliability and stability. Many of the configura­
tion options, however, are similar in both versions.

Getting and Compiling the Software
You have the option of obtaining Apache in either source format or package format. 
If you are installing from package, you will not have the same amount of initial con­
figuration flexibility as you would building from source. Packages generally come 
with the most common options pre-built into the binaries. If you are looking for spe­
cific features or options or if you want to build a very minimal version of the server, 
you should consider building from source.

Building Apache from source is similar to building other Linux source packages and 
follows the “configure-make-make install” path. Apache has many options that need 
to be set at source configuration time. Among these is the ability to select the mod­
ules which you would like to build or have disabled. Modules are a great way to add 
or remove functionality to your web server and cover a wide range of functions—  
from performance to authentication and security. Table 14-1 shows a sample list 
taken from the Apache documentation of a number of the available modules.

Table 14-1. Apache modules

Type
E n a b le d  o r  d is a b le d  
b y  d e f a u lt F u n c t io n

E n v i r o n m e n t  c r e a tio n

mod_env En a b le d Set e n v iro n m e n t variab les fo r CGI/SSI scripts

mod_setenvif En a b le d Se t e n v iro n m e n t variab les based on H T T P  heade rs

mod_unique_id Disable d G e n e ra te  un iq u e  ide ntifiers fo r re quest

C o n t e n t - t y p e  d e c is io n s

mod_mime Ena b le d C o n te n t ty p e /e n c o d in g  d e te rm in a tio n  (c o n fig ure d )

mod_mime_magic D isabled C o n te n t ty p e /e n c o d in g  d e te rm in a tio n  (a u to m a tic )

mod_negotiation Ena b le d C o n te n t selection based on th e  H T T P  A c c e p t* headers

U R L  m a p p i n g

mod_alias E n a b le d S im p le  U R L  tran slatio n  a n d  redirection

mod_rewrite D isabled A d v a n c e d  U R L  tra n s la tio n  and redirection

mod_userdir En a b le d Selection o f  resource directories b y use rna m e

mod_spelling D isabled Correction o f  m isspelled U R Ls

D ir e c to r y  h a n d lin g

mod_dir E n a b le d D ire cto ry a n d  d irectory d e fa u lt file h a n d lin g

mod_autoindex E n a b le d A u to m a te d  d irectory in d e x  file g e n e ra tio n

Configuring and Building Apache | 245

http://www.apache.org


Table 14-1. Apache modules (continued)

E n a b le d  o r  d is a b le d
Type b y  d e f a u l t F u n c t io n

A ccess c o n tro l

mod_access En a b le d Access co ntrol (u se r, h o s t, an d  n e tw o rk )

mod_auth En a b le d H T T P  basic a u th e n tic a tio n  (user an d  passw o rd )

mod_auth_dbm Disable d H T T P  basic a u th e n tic a tio n  via U N IX  N D B M  files

mod_auth_db Disable d H T T P  basic a u th e n tic a tio n  via B erkele y D B  files

mod_auth_anon Disable d H T T P  basic a u th e n tic a tio n  fo r a n o n y m o u s -s ty le  users

mod_digest Disable d D ig e st au th e n tic a tio n

H T T P  re s p o n s e

modjheaders D isable d A rb itra ry  H T T P  response heade rs (c o n fig ure d )

mod_cern_meta Disable d A rb itra ry  H T T P  response h eade rs (C E R N -s ty le  files)

mod_expires Disable d Expires H T T P  responses

mod_asis En a b le d R a w  H T T P  responses

S c r ip tin g

modjnclude En a b le d S e rver Side Includes (SSI) s u p p o rt

mod_cgi En a b le d C o m m o n  G a te w a y  Interface (C G I) s u p p o rt

mod_actions En a b le d M a p  CGI scripts to  act as in te rna l "h a n d le rs "

I n t e r n a l c o n t e n t  h a n d le rs

mod_status En a b le d C o n te n t h a n d le r fo r  serve r ru n tim e  status

m odjnfo Disable d C o n te n t h a n d le r fo r  c o n fig u ra tio n  s u m m a ry

R e q u e s t l o g g i n g

mod_log_config E n a b le d C u s to m iza b le  lo g g in g  o f  requests

mod_log_agent Disable d S p ecialized H T T P  U s e r -A g e n t lo g g in g  (d e p re cate d )

mod_log_referer Disable d Specialized H T T P  R e fe rre r lo g g in g  (d ep re cated

mod_usertrack D isable d Lo g g in g  o f  user d ic k -tra ils  via H T T P  cookies

M is c e lla n e o u s

modjmap En a b le d S e rv e r-sid e  im a g e  m a p  s u p p o rt

mod_proxy D isable d Caching p ro xy  m o d u le  (H T T P , H T T P S , F T P )

mod_so D isable d D y n a m ic  S h ard  O b je c t (D S O ) b o o ts tra p p in g

E x p e r im e n ta l

mod_mmap_static Disable d C aching o f  fre q u e n tly  serve d pages via mmapO

D e v e lo p m e n t a l

mod_example Disable d A p a c h e  A P I d e m o n s tra tio n  (d e ve lo p e rs  o n ly)

When you have decided which options to use, you can add them to the configure 
script as follows. To enable a module, use:

v lager#  ./configure -enable-module=module_name

246 I Chapter 14: Configuring the Apache Web Server



To disable a default module, you can use the following command:

viager# ./configure -disable-module=modulejiame

If you choose to enable or disable any of the default modules, make sure you under­
stand exactly what that modules does. Enabling or disabling certain modules can 
adversely affect performance or security. More information about the specific mod­
ules can be found on the Apache web site.

The next step after configuration is to compile the entire package. Like many other 
Linux programs, this is accomplished by the make command. After you have com­
piled, make install will install Apache in the directory you specified via the -prefix= 
option at configuration time.

Configuration File Options
W hen the Apache software has been installed in the directory you have selected, you 
are ready to begin configuration of the server. Earlier versions of the Apache server 
used multiple configuration files. However, now only the httpd.conf file is required. It 
is still quite handy to have multiple configuration files (for example, to make version 
upgrades easier). The include option will allow you to read additional configuration 
files from the main httpd.conf file.

Apache comes with a default configuration file that has the most common options 
set. If you are in a hurry to have your server running, this default configuration 
should cover the requirements to launch Apache. While functional, this configura­
tion is not acceptable to many administrators. To begin fine-tuning the configura­
tion, the first option most administrators choose is selecting the IP address and port 
information of the server.

Binding Addresses and Ports
Listen and BindAddress are the first two options that you may want to change.

# Listen: Allows you to bind Apache to specific IP addresses and/or

# ports, instead of the default. See also the <VirtualHost>

# directive.

#
#Listen 3000 

Listen 172.16.0.4:80
This configuration change enables the Apache server to listen only on the specified 
interface and port. You can also use the BindAddress option to specify the IP address 
to which the server will bind. W ith this option, you are only specifying the IP 
address, not the port as above.

# BindAddress: You can support virtual hosts with this option. This directive

# is used to tell the server which IP address to listen to. It can either

# contain "*", an IP address, or a fully qualified Internet domain name.

Configuration File Options | 247



# See also the <VirtualHost> and Listen directives.

#
BindAddress 172.16.0.4

Logging and Path Configuration Options
When building Apache, you may have specified the installation directory. If so, the 
installation has automatically set the paths for your server root documents and all of 
your logfiles. If you need to change this, the following options will be useful:

ServerRoot
The location of the server’s main configuration and logfiles 

DocumentRoot
The location of your HTML documents, or other web content

By default, Apache will log to a path under its main server root path. If you have a 
different place on your system where you collect logs and would like to change the 
logfile paths, the following options will require changes:

CustomLog
The location of your access logfile

ErrorLog
The location of your error logfile

There are also some other useful options that can be set when configuring the log­
ging settings on Apache:

HostnameLookups
Tells Apache whether it should look up names for logged IP addresses. It is a 
good idea to leave this setting turned off, since logging can be slowed if the 
server is attempting to resolve all names.

LogLevel
This option tells Apache how much information it should save to the logfiles. By 
default it is set at warn, but possible values are debug, info, notice, warn, error, 
crit, a le r t, and emerg. Each increasing level logs less information.

LogFormat
W ith this option, administrators can choose which format the logs are written 
in. Items such as date, time, and IP address can be rearranged to any format 
desired. The default settings are usually not changed.

Server Identification Strings
By default, Apache is very friendly and will provide requesting users with a great deal 
of information about itself, including version information, virtual hostname, admin­
istrator name, and so on. Security conscious administrators may wish to disable this 
information, as it allows attackers a much quicker way of enumerating your server.

248 I Chapter 14: Configuring the Apache Web Server



While it is not a foolproof method of protecting your site, it can slow down would- 
be attackers who use automated scanning tools. The following two configuration 
options can help you limit the amount of information your server discloses:

ServerSignature
With this option turned on, the server adds a line to server-generated pages that 
includes all of its version information.

ServerTokens
Setting this option to Prod will prevent Apache from ever disclosing its version 
number.

Performance Configuration
Sites will always have different performance requirements. For many sites, the 
default settings provided with Apache will deliver all the required performance. 
However, busier sites will need to make some changes to the configuration to 
increase performance capabilities. The following options can be used.in perfor­
mance tuning a server. More information on Apache performance tuning can be 
found at the Apache Software Foundation’s web site.

Timeout
The number of seconds before Apache will timeout receive and send requests. 

KeepAlive
Enable this option if you want persistent connections enabled. It can be set to 
either on or off.

MaxKeepAliveRequests
Set this option to the number of keep-alive requests that you want the server to 
allow in persistent connections. Having a higher value here may increase perfor­
mance.

KeepAliveTimeout
This is the number of seconds that Apache will wait for a new request from the 
current connected session.

Min/MaxSpareServers
These options are used to create a pool of spare servers that Apache can use 
when it is busy. Larger sites may wish to increase these numbers from their 
defaults. However, for each spare server, more memory is required on the server.

StartServers
This option tells Apache how many servers to start when first launched. 

MaxClients
This is the option an administrator can use to limit the number of client sessions 
to a server. The Apache documentation warns about setting this option too low 
because it can adversely affect availability.

Configuration File Options | 249



Starting and Stopping Apache with apachectl
If you are feeling confident that your server is configured, and you’re ready to run it, 
you will need to use apachectl, a tool provided with Apache that allows for the safe 
startup and shutdown of the server. The available options of apachectl are as follows:

start
Starts the standard HTTP server 

s ta r ts s l
Starts the SSL servers in addition to the regular server

stop
Shuts down the Apache server 

re s ta r t
Sends a HUP signal to the running server 

fu lls ta tu s
Prints out a full status of the web server, but requires mod_status 

status
Displays a shorter version of the above status screen. Requires mod_status 

graceful
Sends a SIGUSR1 to the Apache server 

configtest
Inspects the configuration file for errors

While it’s not mandatory to start Apache with apachectl, it is the recommended and 
easiest way to do so. apachectl makes shutting down the server processes quicker and 
more efficient, as well.

VirtualHost Configuration Options
One of the more powerful features of Apache is the ability to run multiple web serv­
ers on one machine. This functionality is accomplished using the VirtualHost 
functionality found within the httpd.conf file. There are two types of virtual hosts 
that can be configured— named virtual hosts and IP virtual hosts. W ith named vir­
tual hosts, you can host multiple TLDs on a single IP, while with IP virtual hosting, 
you can host only one virtual host per IP address. In this section, we will give exam­
ples of each, and list some common configuration options.

IP-Based Virtual Hosts
For those who have only one site to host or have multiple IPs for all sites they wish to 
run, IP-based virtüal hosting is the best configuration choice. Consider the following 
example where the Virtual Brewery decides to host a web site for its Virtual

250 I Chapter 14: Configuring the Apache Web Server



Vineyard. The following is the minimum amount of configuration that would need 
to be added to the httpd.conf file in order to create the new web site.

Listen Mww.virtualvineyard.com:80

<VirtualHost www.virtualvineyard.com>
ServerAdmin webmaster@vbrew.com 
DocumentRoot /home/www/virtualvineyard.com 

ServerName www. virtualvineyard.com 
ErrorLog /var/www/logs/vvineyard.errorJLog 

TransferLog /var/www/logs/vvineyard.access_log 

</VirtualHost>

You would also want to make sure that www.virtualvinyard.com was added to your 
/etc/hosts file. This is done because Apache will need to look up an IP address for 
this domain when it starts. You can rely entirely on your DNS, but should your DNS 
server be unavailable for some reason when the web server restarts, your web server 
will fail. Alternately, you can hardcode the IP address of your server at the beginning 
of the configuration in the <VirtualHost> tag. Doing so may seem more efficient, 
however, should you wish to change your web server IP address, it will require 
changing your Apache configuration file.

In addition to the configuration options listed in the example, any of the options dis­
cussed earlier in the chapter can be added to the VirtualHost groups. This provides 
you with maximum flexibility for each of your separate web servers.

Name-Based Virtual Hosting
The configuration of name-based virtual hosting is very similar to the previous exam­
ple, with the exception that multiple domains can be hosted on a single IP address. 
There are two caveats to this functionality. The first— perhaps the biggest draw­
back— is that SSL can be used only with a single IP address. This is not a problem 
with Apache, but rather with SSL and the way certificates work. The second poten­
tial drawback is that some older web browsers, such as those without the HTTP 1.1 
specification, will not work. This is because name-based virtual hosting relies on the 
client to inform the server in the HTTP request header of the site they wish to visit. 
Nearly any browser released within the past few years, however, will have HTTP 1.1 
implemented, so this isn’t a problem for most administrators.

Proceeding to an example configuration, we will use the same example given earlier 
in the chapter, except this time the Virtual Brewery has only one public IP address. 
You will first need to inform Apache that you are using named virtual hosting, and 
then provide the detail on your sites as is shown in this example.

NameVirtualHost 172.16.0.199 

<VirtualHost 172.16.0.199>
ServerName www.vbrew.com 
DocumentRoot /home/www/vbrew.com

VirtualHost Configuration Options | 251

http://www.virtualvineyard.com
mailto:webmaster@vbrew.com
http://www.virtualvinyard.com
http://www.vbrew.com


</VirtualHost>

<VirtualHost 172.16.0.199>
ServerName wivw. virtualvineyard. com 
DocumentRoot /home/www/vvineyard.com 

</VirtualHost>

For the sake of clarity, the additional options were omitted, but any of the previ­
ously discussed options can be added as necessary.

Apache and OpenSSL
After having configured and tested your Apache web server configuration, the next 
thing you may wish to do is configure an SSL page. From protecting web-based email 
clients, to providing secure e-commerce transactions, there are many reasons why 
one would use SSL. W ithin the Apache realm there are two options for providing 
SSL, Apache-SSL and mod_ssl. In this section, we’ll focus on the older and more 
commonly used mod_ssl.

As with any SSL-based application, certificates are required. These provide the basis 
on which the trust relationship between client and server is established. This being 
said, if you are hosting a site for a business, you will likely want to get a certificate 
signed by a third party, such as Verisign or Thawte. Since these certificates are some­
what costly, if you aren’t hosting a business, you also have the option of generating 
your own certificate. The disadvantage of this method is that when clients access 
your site, an error will be generated telling them that your certificate is not trusted 
since it hasn’t been signed by a third party. This means that they will be required to 
click through the error message and decide whether or not they want to trust your 
certificate. In this chapter we will provide configuration examples for administrators 
generating their own certificates. Alternately, the cacert.org organization offers free 
certificates for individuals.

Generating an SSL Certificate
In order to enable an SSL session, you will first need to create a certificate. To do this, 
you will need to make sure you have OpenSSL installed. It can be found at http:!I 
www.openssl.org, in both source and binary package format. This package comes 
installed with many Linux distributions, so you may not have to install it. Once you 
have installed or verified the installation of OpenSSL, you can proceed to create the 
required SSL certificate.

The first step in this process is to create a certificate signing request. You will need to 
enter a temporary PEM pass phrase and some information about jo u r  site:

vlager# openssl req -config openssl.cnf -new -out vbrew.csr

Using configuration from openssl.cnf 

Generating a 1024 bit RSA private key 

..................................++++++

252 I Chapter 14: Configuring the Apache Web Server

http://www.openssl.org


.++++++
writing new private key to 'privkey.pem' 

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated 

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN. 

There are quite a few fields but you can leave some blank 

For some fields there will be a default value,

If you enter the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:California 
Locality Name (eg, city) []:Berkeley
Organization Name (eg, company) [Internet Widgits Pty Ltd]:www.vbrew.com 
Organizational Unit Name (eg, section) [ ]:

Common Name (eg, YOUR name) [ ] :www.vbrew.com 
Email Address [ ]:webmaster@vbrew.com 
Please enter the following 'extra' attributes 

to be sent with your certificate request 

A challenge password [ ]:

An optional company name [ ]:

The next step is to remove the private key PEM pass phrase from your certificate. 
This will allow the server to restart without having to input the password. For para­
noid administrators, this step can. be bypassed, but should your server fail at any 
point, you will have to manually restart it.

vlager # openssl rsa -in privkey.pem -out vbrew.key
read RSA key

Enter PEM pass phrase:

writing RSA key

Having separated the pass phrase, you will now need to self-sign your certificate file. 
This is accomplished using the x509 option with OpenSSL:

apache ssl # openssl x509 -in vbrew.csr -out vbrew.cert -req -signkey vbrew.key -days 
365
Signature ok

subject=/C=US/ST=California/L=Berkeley/0=www.vbrew.com/CN=www.vbrew.com/ 

Email=webmaster@vbrew.com 

Getting Private key

Once this has been completed, your certificate is ready for use. You should copy the 
certificate files to your Apache directory so the web server can access them.

Compiling mod_ssl for Apache
If you compiled Apache from sourfce as in the earfier example in the chapter, you will 
need to patch the Apache source and recompile in order to use rribd_ssl. If you 
installed Apache from a binary package for your Linux distributions, then there’s a

ApatteandOpenSSL | 253

http://www.vbrew.com
http://www.vbrew.com
mailto:webmaster@vbrew.com
http://www.vbrew.com/CN=www.vbrew.com/
mailto:webmaster@vbrew.com


good chance that it is already compiled in. To see whether you need to recompile, 
check which modules are built into Apache by using the following command:

vlager # /var/www/bin/httpd -1

Compiled-in modules: 

http_core.c 

mod_env.c 

mod_log_config.c 

mod jnime.c 

mod_negotiation.c 

mod_status.c 

mod_include.c 

mod_autoindex.c 

mod_dir.c 

mod_cgi.c 

mod_asis.c 

mod_imap.c 

mod_actions.c 

mod_userdir.c 

mod_alias.c 

mod_access.c 

mod_auth.c 

mod_setenvif.c

In this case, mod_ssl is not present, so we will have to download and compile it into 
our Apache server. Fortunately, this isn’t as difficult as it might sound. The source 
for mod_ssl can be found at http://www.modssl.org. You will need to unpack it along 
with the source to OpenSSL. For ease, we have put all three source trees under the 
same directory. When you have everything unpacked, you are ready to continue. 
First, you will need to configure the build of mod_ssl:

vlager # ./configure --with-apache=../apache_l.3.28 --with-openssl=../openssl-0.9.6i

Configuring mod_ssl/2.8.15 for Apache/1.3.28 

+ Apache location: ../apache_l.3.28 (Version 1.3.28)

+ Auxiliary patch tool: ./etc/patch/patch (local)

+ Applying packages to Apache source tree: 

o Extended API (EAPI) 

o Distribution Documents 

o SSL Module Source 

o SSL Support

o SSL Configuration Additions 

o SSL Module Documentation 

o Addons

Done: source extension and patches successfully applied.

Now, assuming that you built your OpenSSL from source and it is in line with your 
Apache source directory, you can configure and build Apache as follows:

vlager # cd ../apache_l.3*28

vlager # SSL_BASE=../openssi-0.9.6i ./configure -prefix=/var/www --enable-module=ssl
Configuring for-Apache, Version 1.3.28 

+ using installation path layout: Apache (config.layout)

Creating Makefile

Creating Configuration.apaci in src

254 I Chapter 14: Configuring the Apache Web Server

http://www.modssl.org


Creating Makefile in src 

+ configured for Linux platform 

+ setting C pre-processor to gcc -E 

+ using "tr [a-z] [A-Z]" to uppercase 

+ checking for system header files 

+ adding selected modules

o ssl_module uses ConfigStart/End 

+ SSL interface: mod_ssl/2.8.l5 
+ SSL interface build type: OBJ 

+ SSL interface compatibility: enabled 

+ SSL interface experimental code: disabled 

+ SSL interface conservative code: disabled 

+ SSL interface vendor extensions: disabled 

+ SSL interface plugin: Built-in SDBM 

+ SSL library path: /root/openssl-0.9.6i 

+ SSL library version: OpenSSL 0.9.6i Feb 19 2003 

+ SSL library type: source tree only (stand-alone)

+ enabling Extended API (EAPI)

+ using system Expat 

+ checking sizeof various data types 

+ doing sanity check on compiler and options 

Creating Makefile in src/support 

Creating Makefile in src/regex 

Creating Makefile in src/os/unix 

Creating Makefile in src/ap 

Creating Makefile in src/main 

Creating Makefile in src/modules/standard 

Creating Makefile in src/modules/ssl

W hen the source configuration has completed, you can now rebuild Apache with 
make install. You can also repeat the httpd -I command used above to verify that 
mod_ssl has been compiled into Apache.

Configuration File Changes
Only a few minor changes are required. The easiest way to enable SSL within Apache 
is by using the Virtual Host directives discussed earlier. However, first, outside of the 
Virtual Host section, at the end of your configuration file, you will need to add the 
following SSL directives:

SSLRandomSeed startup builtin 

SSLSessionCache None

Now you need to build your VirtualHost configuration to enable the SSL engine. 
Again, in the httpdxonf file, add the following lines:

<VirtualHost www.vbrew.com:443>

SSLEngine On

SSLCipherSuite ALL:!ADH: !EXP0RT56:RC4+RSA:+HIGH:+MEDIUM:!SSLv2:+EXP:+eNULL 

SSLCertificateFile conf/ssl/vbrew.cert 

SSLCertificateKeyFile conf/ssl/vbrew.key 

</VirtualHost>

Apache and OpenSSL | 255

http://www.vbrew.com:443


This section enabled the SSLEngine and configured the cipher suites. You can select 
which you would like to allow or disallow. The “!” is used for entries that are explic­
itly disallowed, and the “+ ” is for those that are allowed. If you have stored your cer­
tificates in any other directory, you will need to make the necessary changes to the 
SSLCertificateFile and KeyFile entries. For more information about the options avail­
able with mod_ssU consult the documentation found on the mod_ssl web site.

Troubleshooting
As complex as Apache configurations can be, it’s not unlikely that there will be prob­
lems. This section will address some common errors and resolutions to those prob­
lems.

Testing the Configuration File with apachectl
Fortunately for administrators, Apache comes with a configuration checker, which 
will test changes made to the configuration before bringing down an operational 
server. If it finds any errors, it will provide you with some diagnostic information. 
Consider the following example:

vlager # ../bin/apachectl configtest

Syntax error on line 985 of /var/www/conf/httpd.conf:

Invalid command 'SSLEgine', perhaps mis-spelled or defined by a module not included 

in the server configuration

The configuration testing tool has found an error on line 985, and it appears that the 
SSLEngine directive was spelled incorrectly. This configuration checker will catch 
any syntactical errors, which certainly helps. Administrators should always run this 
before stopping and restarting their servers.

The config test option won’t solve all of your problems, however. Transposed digits 
in an IP, a misspelled domain name, or commented out requirements will all pass the 
test, but cause problems for the operational server.

Page Not Found Errors
This is a very general error, and a variety of circumstances can cause it. This is 
Apache’s way of telling you that it can’t find or read the page. If you are getting an 
error of this nature, first check all of your paths. Remember with Apache, you are 
operating within a virtual directory environment. If you have links to files outside of 
this structure, it is likely that the server will not be able to server them. Additionally, 
you should verify the permissions of the files and make sure that the user who owns 
the web server process can read them. Files owned by root, or any other user, set to 
mode 700 (read/write/execute user) may cause the server to fail, since it will be 
unable to read them.

256 I Chapter 14: Configuring the Apache Web Server



Pathnames, along with domain names, are often misspelled. While configtest may 
catch some of them, it is unlikely that it will catch all of them. One typo can cause a 
whole site to fail. Double-check everything if you are having a problem.

SSL problems
If your SSL server isn’t working, there are a number of things that could have gone 
wrong. If your server isn’t delivering the pages, you should check the error Jog  file. It 
will often provide you with a wealth of troubleshooting options. For example, our 
example web server was not serving up SSL pages, but unencrypted pages were being 
served without issue. Checking the err or Jog, we see:

[Wed Aug 6 14:11:33 2003] [error] [client 10.10.0.158] Invalid method in request 

\x80L\x01\x03

This type of error is quite common. The invalid request is the client trying to negoti­
ate an SSL session, but for some reason the web server is serving only unencrypted 
pages on the SSL port. We can even verify this by pointing the browser at port 443 
and initiating a normal HTTP session. The reason why this is occurring is that the 
server does not think it has been told to enable the SSLEngine, or doesn’t think.it 
has.

To fix this problem, you need to verify that you have the line in your httpd.conf file: 

SSLEngine On

You should also check the Virtual Host entry that you created for the SSL server. If 
there is an error with the IP address or DNS name on which it was told to create the 
server, the server will create this kind of error. Consider the following excerpt of our 
configuration file:

<VirtualHost www.vbrew.cmo:443>

SSLEngine On

SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:+HICH:+MEDIUM:+LOW:!SSLv2:+EXP:+eNULL 

SSLCertificateFile conf/ssl/vbrew.cert 

SSLCertificateKeyFile conf/ssl/vbrew.key 

</VirtualHost>

A typo in the VirtualHost directive has caused the server to try to start for a name in 
the .cmo rather than the .com top-level domain. Of course, Apache doesn’t realize 
this is an error, and is doing exactly what you’ve asked it to do.

Other SSL-related problems are likely to center on key locations and permissions. 
Make sure that your keys are in a location known to the server and that they can be 
read by the necessary entities. Also, note that if you are using a self-signed key—  
some clients may be configured not to accept the certificate, causing them to fail. If 
this is the case, either reconfigure your client workstations or purchase a third-party 
signed certificate.

Troubleshooting | 257

http://www.vbrew.cmo:443


CHAPTER 15

IMAP

Internet Message Access Protocol (IMAP) was developed from a need for mobile email 
access. Many workers read mail from a variety of locations (the office, home, hotel 
rooms, and so on) and want such flexible features as the ability to download headers 
first and then selectively download mail messages. The main mail delivery protocols 
before IMAP, for the Internet, was POP, which offers more rudimentary mail deliv­
ery-only functionality

With IMAP, traveling users can access their email from anywhere and download it or 
leave it on the server as desired. POP, on the other hand, does not work well when 
users access email from many different machines; users end up with their email dis­
tributed across many different email clients. IMAP provides users with the ability to 
remotely manage multiple email boxes, and store or search as well as archive old 
messages.

IMAP— An Introduction
IMAP, fully documented in RFC 3501, was designed to provide a robust, mobile 
mail delivery and access mechanism. For more detail on the protocol and how it 
functions on the network layer, or for additional information on the numerous speci­
fication options, please consult the RFC documentation.

IMAP and POP
POP and IMAP tend to be grouped together or compared, which is a bit unfair since 
they are dissimilar in many ways. POP was created as a simple mail delivery vehicle, 
which it does very well. Users connect to the server and obtain their messages, which 
are then, ideally, deleted from the server. IMAP takes an entirely different approach. 
It acts as the keeper of the messages and provides a framework in which the users 
can efficiently manipulate the stored messages. While administrators and users can 
configure POP to store the messages on the server, it can quickly become inefficient

258



since a POP client will download all old messages each time the mail is queried. This 
can get messy quickly, if the user is receiving any quantity of email. For users who do 
not need any kind of portability, or receive little email, POP is probably an accept­
able choice, but those seeking greater functionality will want to use IMAP.

Which IMAP to Choose?
Once you’ve decided that IMAP is for you, there are two primary options. The two 
main flavors are Cyrus IMAP and the University of Washington IMAP server. Both 
follow the RFC specification for IMAP and have their advantages and disadvantages. 
They also use different mailbox formats and therefore cannot be mixed. One key dif­
ference between the two is found in Cyrus IMAP. It does not use /etc/passwd for its 
mail account database, so the administrator does not have to specially add mail users 
to the system password file. This is more secure option for system administrators, 
because creating accounts on systems can be construed as a security risk. However, 
the ease of configuration and installation of UW IMAP often makes it more appeal­
ing. In this chapter, we’ll primarily focus on the two most common IMAP servers: 
UW IMAP, because of its popularity and ease of installation, and Cyrus IMAP, 
because of its additional security features.

Getting an IMAP client
The UW IMAP, as its name suggests, can be found at the University of Washington. 
Their web site, http://www.washington.edu/imap/, contains various documentation 
and implementation suggestions, as well as the link to their software repository FTP 
site. There are a number of different versions available in various forms. For simplic­
ity, the UW IMAP team offers a link a direct link to the most current version: ftp:// 
ftp. cac. Washington. edu/mail/imap. tar.Z.

Installing UW-IMAP
Once the server software has been downloaded and decompressed, it can be 
installed. However, because of UW-IMAP’s large portability database, it does not 
support GNU automake, meaning that there isn’t a configure script. Instead, a Make­
file that relies on user-specified parameters is used. There are many supported oper­
ating systems, including a number of Linux distributions. Here’s a list of a few of the 
supported Linuxes distributions:

# ldb Debían Linux

# lnx Linux with traditional passwords and crypt( ) in the С library

# (see lnp, sl4, sl5, and six)

# lnp Linux with Pluggable Authentication Modules (PAM)

# lrh RedHat Linux 7.2

# lsu SuSE Linux

# sl4 Linux using -lshadow to get the crypt( ) function

# sl5 Linux with shadow passwords, no extra libraries

# six Linux using -lcrypt to get the crypt( ) function

IMAP— An Introduction | 259

http://www.washington.edu/imap/


The lrh version will probably work on newer Red Hat versions as well. If your distri­
bution isn’t listed, try one of the matching generic options, lnp is a good guess for 
most modern versions of Linux.

If you don’t have OpenSSL installed, you will need to edit a part of the Makefile. 
Find the section where SSL is being configured, and look for the following line:

SSLTYPE=nopwd

The nopwd option needs to be set to none in order to tell IMAP that you aren’t using 
OpenSSL.

If you have OpenSSL installed but the installer is still failing, the cause is most likely 
that it is looking for OpenSSL in the wrong place. By default, the Makefile searches a 
predefined path based on your build selection at the beginning of the process. For 
example, if you have used the lnp option to build IMAP, it is looking for SSL in the 
/usr/ssl directory. But if you’re using Gentoo Linux, your SSL directory is /usr and 
you will need to search for the SSLPATH option in the Makefile and correct the path. 
The same process will need to be followed for the SSLCERTS option, which should 
be in the same area of the Makefile.

Having successfully compiled the IMAP server, you should install it in your inetd. 
conf file (or use xinetd , if appropriate). To use inetd.conf, you need to add the follow­
ing line:

imap stream tcp nowait root /path/to/imapd imapd

Note that you will need to change the actual path to reflect the location where you 
installed your imapd binary.

Most modern Linux systems have a fairly complete /etc/services file, but you should 
verify that IMAP is present by searching for or, if necessary, adding, the following 
line:

imap 143/tcp
imaps 993/tcp

When these steps have been completed, the installation can be tested with the net- 
stat. If you installation is successful, you will see a listener on TCP port 143.

vlager# netstat -aunt

Active Internet connections (servers and established)

Proto Recv-0 Send-0 Local Address Foreign Address State

tcp 0 0 0.0.0.0:143 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

As with any service, it may also be necessary to make adjustments to the firewall to 
allow the new connections.

260 | Chapter 15: IMAP



One of the great joys of UW IMAP is that once it is installed, it is almost always fully 
functional. The default options, including the use of standard /etc/passwd authentica­
tion and the Unix mailbox format, are considered acceptable by most administra­
tors. If you need more flexibility or features, UW IMAP offers extended 
configuration options such as anonymous logins, IMAP alert messages, alternate 
mailbox formats, and the possibility of shared mailboxes, which we’ll take a look at 
in the next section.

Advanced UW IMAP configuration options
There are a number of additional options that can be added to a UW IMAP server, 
based on your requirements. One feature that may be useful is the potential to allow 
anonymous logins. This can be used as a way to provide information to users with­
out creating specific accounts for them. This has been used at universities as a 
method of distributing information, or providing read-only access to discussion lists. 
To enable this functionality, the only step required is to place a file in your /etc direc­
tory called anonymous.newsgroups. Once this has been completed, anonymous users 
will have access to commonly shared mailboxes.

Another potentially useful feature is the ability to create an alert message for IMAP 
users. When enabled, this feature will generate an alert message for any user logging 
in to check their mail. As the message is displayed every time a user checks their 
mail, it should be used only in emergency situations. It would not be a good place to 
put a banner or disclaimer. To create the alert message, you need to create a file 
called imapd.alert. The contents consist of your message.

Using alternate mailbox formats
The default mailbox format configured by UW IMAP was selected because it pro­
vides the greatest flexibility and compatibility. While these are two definite advan­
tages, they come at a cost of performance. The mbx format supported by UW IMAP 
provides better capabilities for shared mailboxes, since it supports simultaneous 
reading and writing.

Configuring IMAP to use OpenSSL
IMAP provides many useful conveniences required by users when dealing with their 
email, but lacks one very important feature— encryption. For this reason, IMAP-SSL 
was developed. When it is installed, an IMAP user with compatible client software 
can enjoy all the functions of IMAP without worrying about eavesdropping. In order 
to install IMAP with SSL support, you will first need to make sure that your IMAP 
server is properly installed and functioning. You will also need a functional OpenSSL 
installation. Most Linux distributions are shipped with OpenSSL, but if for some

IMAP configuration

IMAP— An Introduction | 261



reason your distribution does not have it, please consult the Apache chapter in this 
book for more information on building OpenSSL.

To begin the configuration process, create digital certificates for your IMAP server to 
use. This can be done with the OpenSSL command-line utility. A sample certificate 
can be created as follows:

vlager# cd /path/to/ssl/certs
vlager# openssl req -new -x509 -nodes -out imapd.pein -keyout imapd.pem -days 365
Using configuration from /etc/ssl/openssl.cnf 

Generating a 1024 bit RSA private key

.....................++++++

...............................................................................++++++
writing new private key to 'imapd.pern'

You are about to be asked to enter information that will be incorporated 

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank 

For some fields there will be a default value,

If you enter the field will be left blank.

Country Name (2 letter code) [AU]:

Common Name (eg, YOUR name) []: mail.virtualbreMeTy.com 

Email Address []: 

vlager # Is -1 
total 4

-rw-r--r-- 1 root root 1925 Nov 17 19:08 imapd.pem
vlager #

W hen creating this certificate, make sure that you’ve entered the domain name of 
your mail server in the common name field. If this is not set, or is set improperly, you 
will at best get error messages when clients try to connect, and at worst have a bro­
ken server.

There is a good chance that your IMAP server will need to be recompiled and config­
ured to use OpenSSL. Fortunately, this is a fairly easy process. If you are using Red 
Hat, SuSE, or any of the other mentioned distributions, substitute them in the com­
mand line; otherwise, the following command-line options will work for most other 
Linux distributions:

vlager# make lnp PASSWDTYPE=pam SSLTYPE=nopwd

If you receive errors regarding OpenSSL, you may need to adjust the path settings. 
You can do this by making changes to the SSLDIR, SSLLIB, and SSLINCLUDE path 
options found in the Makefile. For most users, this will not be necessary.

After compiling the new IMAP server, copy it from the build directory to the loca­
tion on your system where your other daemon files are located. Since IMAP-SSL uses

262 | Chapter 15: IMAP



a different port from the standard IMAP, you will need to make a change to your 
inetd.conf file.

imaps stream tcp nowait root /path/to/imapd imapd

If you’re using xinetd, you will need to create a file in your /etc/xinetd.d directory, 
which looks like this:

service imaps 

{
socket_type = stream

wait = no

user = root

server = /path/to/imapd

log_on_success += DURATION USERID

log_on_failure += USERID

disable = no

}
It is also important, at this point, to make certain that you have an imaps entry in 
your /etc/services file.

vlager # cat /etc/services Igrep imaps
imaps 993/tcp # IMAP over SSL

imaps 993/udp # IMAP over SSL

vlager #

You can now test your server from any number of clients. Make certain that you’ve 
specified in the client configuration that you will be using SSL. In a number of cli­
ents, upon connection, you will receive a message asking you if you wish to trust the 
certificate. This message will appear only if you’ve generated your own certificate, as 
we did in the above example. Some administrators, especially if the server is being 
used for production use, will likely want to purchase a certificate to avoid this.

Cyrus IMAP
Another option IMAP administrators have is the product from CMU called Cyrus. It 
is similar to UW IMAP as far as general functionality goes— from the user stand­
point, there will be little difference. The majority of the differences come on the 
administrative side. This is also where its benefits can be seen.

Getting Cyrus IMAP
The Cyrus software can be obtained in a number of places, but the most reliable 
choice, with the latest source releases, will be the central CMU Cyrus distribution 
site, http://asg.web.cmu.edu/cyrus/downloadl. Here, both current and previous 
releases can be downloaded. The availability of previous releases could be an advan­
tage for sites with polices against using the most recent versions of software.

http://asg.web.cmu.edu/cyrus/downloadl


To begin the installation of the Cyrus server, download and decompress the latest 
version. You will need to download both the IMAP and SASL packages.

SASL is the authentication mechanism used by Cyrus IMAP, and will need to be con­
figured and installed first. It is easily built using the standard “configure-make” 
order.

vlager# cd cyrus-sasl-2.1.15 
vlager# ./configure
loading cache ./config.cache

checking host system type... i686-pc-linux-gnu

creating saslauthd.h

Configuration Complete. Type 'make' to build.

vlager# make
make all-recursive

make[l]: Entering directory '/tmp/cyrus-sasl-2.1.15'

Assuming the compile is completed without failure and you’ve successfully executed 
the make install, you can now proceed to configuring and installing the Cyrus IMAP 
server itself.

After decompressing the Cyrus IMAP source, prepare the configuration using the fol­
lowing command:

vlager# ./configure --with-auth=unix

This will prepare Cyrus IMAP to use the Unix passwd/shadow files for user authenti­
cation. It is also possible to enable Kerberos for authentication at this point.

Next, you will need to create all of the dependency files, and then build and install 
the package:

vlager# make depend 

vlager# make all CFLAGS=-0 

vlager# make install

With that successfully completed, your Cyrus IMAP server is now ready to be config­
ured.

Configuring Cyrus IMAP
You will need to create a user for the Cyrus server to use. It should be something that 
you can easily relate to your Cyrus server, and it also needs to be a part of the mail 
group.

Once the user is created, you can begin configuring your Cyrus server. The letcl 
imapd.conf file is the primary configuration file for the server. Verify that it looks 
something like the example below. You may need to add some of these lines.

264 | Chapter 15: IMAP



configdirectory:

partition-default:

sievedir:

/var/imap

/var/spool/imap

/var/imap/sieve

# Don't use an everyday user as admin.

admins:

hashimapspool: 

allowanonymouslogin: 

allowplaintext:

cyrus root 

yes

no

no

Troubleshooting Cyrus IMAP
Building Cyrus IMAP can be somewhat tricky, as it tends to be pickier about files 
and locations. If the configure process is failing, take special note of what exactly is 
causing the failure. For example, when building Cyrus-SASL, if the build fails with 
an error complaining about undefined references in the berkeley_db section, it is 
likely that you do not have BerkeleyDB installed, or you installed it in a place where 
the configure script isn’t looking. The path to the installed BerkeleyDB can be set at 
the command line when the configure script is run. This method of tracing the root 
of the error, and remedying it can solve many problems.

Another common problem when building Cyrus IMAP involves the location of a file 
called com_err.h. It is expected by Cyrus IMAP to be in the /usr/include directory. 
However, it often tends to be found in the /usr/include/et directory. Therefore, it will 
be necessary to copy this file to the /usr/include directory for the installation to pro­
ceed.



CHAPTER 16

Samba

The presence of Microsoft Windows machines in the network environment is often 
unavoidable for the Linux network administrator, and often interoperability is criti­
cal. Fortunately, a group of developers has been hard at work for the last 10 years, 
and has created one of the most advanced Windows-to-UNIX interoperability pack­
ages— Samba. It has, in fact, become so successful and practical that system adminis­
trators can completely replace Windows servers with Samba servers, keeping all 
functionality, while adding additional stability.

Samba— An Introduction
Samba, still actively developed in order to maintain feature compatibility with the 
ever-changing Microsoft software, provides a framework to allow Linux machines to 
access W indows network resources, such as shared drives and printers. Samba not 
only lets Linux machines access these services, but also allows Linux to offer these 
same services to Windows machines. W ith Samba, it’s possible to completely replace 
a Windows-based file server, a Windows print server, and even, with advanced 
options, replace the Primary Domain Controller (PDC). Recent versions of Samba 
even allow Active Directory compatibility. The open-source flexibility of Samba 
means that development will be able to continue, and new features will be intro­
duced when the Windows architecture changes. More information on Samba can be 
found in Using Samba, Second Edition (O’Reilly), by Jay Ts, Robert Eckstein, and 
David Collier-Brown.

SMB, CIFS, and Samba
The underlying technology used in Samba is based on Server Message Blocks (SMB), 
which was originally developed in the early 80s by Dr. Barry Feigenbaum while he 
was working at IBM. Initially, IBM was actively involved with the development, but 
Microsoft soon took charge and heavily continued the development work. In later

266



years, Microsoft renamed the SMB protocol to Common Internet File System (CIFS), 
by which it is now known. One sees the terms used interchangeably.

There is little accurate and official documentation about how CIFS functions. Unlike 
most other network protocols, there is no official RFC documentation, though 
Microsoft did submit specifications to the IETF in the 1990s that expired due to 
numerous inaccuracies and inconsistencies. Newer documentation attempts by 
Microsoft have not been as helpful to the Samba development group, due to the 
licensing restrictions place upon it as well as a general lack of new information.

Obtaining Samba
There are a number of options available for obtaining Samba. Many distributions 
now come with Samba as a part of their default installation. If this is the case with 
your distribution, you will not necessarily need to build from source. Red Hat, Man­
drake, and SuSE users may install the package from RPM, available via a number of 
Samba mirrors. Gentoo users need only use emerge samba to install the package, and 
Debian users do the same with apt-get. Other users, or those who prefer to do so, 
can install the Samba package from source. Often this provides the greatest amount 
of flexibility because of the options available at compile time.

Building from source
In order to build from source, you will need to obtain the latest source tarball, found 
at any of the Samba mirrors listed on the main http://www.samba.org site. Once the 
tarball has downloaded, extract it to a directory and build the binaries using the pro­
vided configuration file.

vlager# tar xzvf samba-current.tgz
vlager# cd samba-3.0.0
vlager# cd source
vlager# ./configure

vlager# make 

vlager# make install

Once the software has compiled and installed, you will need to choose how you wish 
to have it run at startup. It can be run as an inetd service or as a daemon. Either way 
is acceptable, but running Samba from inetd may require the update of your /etc/ser­
vices file. You will need to make sure that the following lines, which define the 
Samba protocol, are inserted:

netbios-ns 137/tcp # NETBIOS Name Service

netbios-ns 137/udp

netbios-dgm 138/tcp # NETBIOS Datagram Service

netbios-dgm 138/udp

netbios-ssn 139/tcp # NETBIOS session service

Samba— An Introduction | 267

http://www.samba.org


netbios-ssn 139/udp

microsoft-ds 445/tcp Microsoft-DS

microsoft-ds 445/udp Microsoft-DS

After this has been added or confirmed, you are should add Samba to your inetd.conf 
file, or to your xinetd configuration. You should also check to verify that your fire­
wall is configured to allow the necessary ports.

Alternately, if you’re planning to have Samba run as a daemon process, you will need 
to add it to your re’startup scripts. This is different for each of the various Linux dis­
tributions, so if you’re unsure of how to do this, check your distribution’s documen­
tation.

Getting Started with Samba
Once you’ve compiled or installed Samba, you now have the potentially lengthy task 
of configuration ahead of you. The enormous flexibility offered by Samba means that 
there are a number of configuration options. Fortunately, for file server functional­
ity, the configuration is fairly straightforward. In this section, we’ll cover some of the 
basic options and discuss how to create shared file directories. For additional infor­
mation, refer to Using Samba (O’Reilly).

Basic configuration options
The easiest way to get started configuring Samba is to start with the minimal config­
uration and add to it. So, to start, we’ll just create a workgroup, name our server, 
and add a simple file share.

{global}

workgroup = Brewery 

netbios name = vlager

[share]

path = /home/files

comment = Some HomeBrew recipes

You can test your Samba configurations with testparm. It will parse your configura­
tion files and point out any typos or incorrect options you’ve entered. At this point, 
it’s not too likely that you’ll have any mistakes, but it’s still good to get to know how 
to use the tool.

If everything works, you can start or restart your Samba server and attempt to view 
your new file share. The smbclient program, which is a part of the Samba package, 
can be used to view file shares. In this example, we’re going to look at the file shares 
we’ve just created on vlager (10.10.0.5)

client# smbclient -L 10.10.0.5
Password:

268 | Chapter 16: Samba



Sharename Type Comment

share Disk Some HomeBrew recipes

client#

After the successful completion of this step, we’re now ready to tackle some more 
sophisticated configuration options, which will make Samba much more useful.

Configuring Samba user accounts
The above configuration is great if you’re only interested in having an open file share, 
but you may have been wondering about access control. In the above example con­
figuration, anyone can connect to the file share. This is generally not a desirable con­
figuration on a network. It is for that reason that Samba does, in fact, have user 
authorization functionality.

Staring with the previous configuration file, authentication can be added by adding 
the following lines:

security = user 

encrypt passwords = yes

smb passwd file = /etc/samba/private/smbpasswd 

username map = /etc/samba/smbusers

The first line enables user security. This means that you will need to manage the 
users file on the Samba server. The second line establishes that the Samba password 
file will be encrypted. The third and fourth lines provide the path locations for the 
password and user files. It isn’t necessary to have a separate users file, but it is possi­
ble with Linux.

When this has been configured, you will now be required to create users on your sys­
tem. The Samba suite provides smbpasswd to manage user accounts. This isn’t 
required, because Samba can reference the users in your /etc/passwd file. However, if 
there are users from Microsoft environments accessing files on your new Samba 
server, you will need to have this file.

Creating users is pretty straightforward and is done with the smbpasswd utility.

vlager# smbpasswd -a larry
New SMB password:

Retype new SMB password: 

vlager#

Once the user has been created, it can be tested with either a Windows machine or a 
Linux machine using smbmount. After entering \\<server.ip> into the Explorer 
address bar, the Windows user will be presented with a dialog box, as shown in 
Figure 16-1.

For Linux, and other Unixes, smbmount is invoked as follows: 

vlager# mount -t smbfs -o username=larry //server.ip /mnt/samba

Samba— An Introduction | 269



Connect to [ ? l ®

I

Connecting to 1
User name: C  larry r

1
Password: ----------------  1

0  Remember my password

[ OK ] [ Cancel

Figure 16-1. Windows network login request

If everything has been successful, you will now be able to access the shared directory 
at Imntlsamba.

Additional Samba Options
So far, we’ve discussed the bare minimum configuration of a Samba server. This is 
great for those who just want to quickly get something on the network. In order to 
get a little bit more out of Samba, we’ll now take a look at some additional options.

Access control
The Samba server offers some additional security, which can prove very useful in 
large networks. IP-based access control is available with what are likely very familiar 
commands:

hosts allow = 10.10. 
hosts.deny = any

This will allow connections only from the 10.10 network. The Samba IP access con­
trol follows the same logic used by tcpwrappers. You can either explicitly allow or 
deny IP addresses or ranges. This option is really convenient because it can be used 
at the global or the share level, meaning that you can have a list of IP addresses that 
are either allowed or banned from all of your server’s file shares, or you can break it 
down so that only certain IP addresses have access to certain shared directories. This 
type of granular access is not even offered by Windows itself!

The Samba server is also flexible as to which interface it will bind to. By default, it 
will bind to all available interfaces, including loopback. To remove any unwanted

270 | Chapter 16: Samba



access, such as binding Samba to the external interface of a dual-homed machine, the 
bind interface can be specified.

bind interfaces only = True 

interfaces = ethl 10.10.0.4

This will make sure that Samba listens only on the specified interface on the pro­
vided IP address. If you are concerned about security, it is best to restrict access at 
the application level, rather than rely on a firewall to protect you.

Another type of access control offered by Samba is the ability to mark a shared direc­
tory as browsable. If it is browsable, it will be immediately visible and users will be 
able to peruse its contents. The command to manipulate this feature is:

browsable = yes|no

If you would like to be able to give people access to certain files, perhaps by sending 
them a URI pointing to a specific file, while not wanting them to be able to see all the 
files in the directory, this option should be set to no. A URI of this kind should look 
familiar; for example, \\vlager.vbrew.com\recipe\secret.txt would work for Windows 
users, while for Unix users, one might use smb://vlager.vbrew.com/recipe/secret.txt. In 
either case, the user would be allowed access to just the secret.txt file only. For most 
purposes it is set to yes, as the Samba server tends to be more functional when users 
can browse the filesystem.

Along the same lines, shared directories can be marked as to whether or not they’re 
publicly available. If a folder is not public, even with a specific URI a user cannot 
access a file. It is important to note, though, that anyone with a Samba account will 
be able to view folders that are labeled public.

public = yes|no

Having granted viewing rights to a user, the Samba administrator can also choose 
whether or not shared directories are writable. This is done with the writable com­
mand:

writable = yes|no

W hen this option is set to no, nothing can be written to the directory.

Should you wish to have a fairly open Samba server for something like an open, 
browsable documentation server, you might wish to enable the Samba guest 
account. This is easily done with the guest directive:

guest ok = yes|no

Finally, one of the most useful features of Samba is that it allows access to shared 
directories to be controlled with user access lists. The easiest way to accomplish this 
is by using the valid users option.

valid users = sharon paul charlie pat

Samba— An Introduction | 271



You can also simplify this by using an already defined group from your I etc!group 
file:

valid users = @brewers

The at sign (@) tells Samba that the brewers value is the group name. Having con­
trolled access to the point where you’re comfortable, you’re probably interested in 
making sure that your configuration is working. One of the best ways to see w hat’s 
happening with Samba is through its excellent logging capabilities.

Logging with Samba
Using the log functions with Samba is quite simple. There are a number of addi­
tional modifiers that can be added to expand on the logging capabilities. The most 
basic logging can be accomplished with the following command:

log file = /var/log/samba.log

This will provide basic logging of all Samba transactions to the file specified. How­
ever, in some instances, these logfiles can be a bit unwieldy if many machines are 
accessing the Samba server. To make the logging easier to sift through, Samba offers 
the ability to log by each host that connects. Enabling this functionality requires only 
the following addition:

log file = /var/log/samba.log.%m

As with most logging functions on Linux, the administrator has the ability to config­
ure how much logging occurs. In Samba, these log levels follow a 0 to 10 scale, start­
ing from light to intensive logging. For most uses, the Samba documentation 
suggests using log level 2, which provides a good amount of information for debug­
ging, without overdoing it. Levels 3 and higher are designed for Samba programmers 
and aren’t for normal usage. To specify the log level in your Samba configuration file, 
add this line:

log level = 2

If you have a fairly busy server, it is likely that your logfiles will grow very quickly. 
For this reason, Samba offers a maximum size logfile directive.

max log size = 75

This example sets the maximum logfile size to 75 KB. When the logfile reaches this 
size, it is automatically renamed by adding .old to the file, and a new logfile is cre­
ated. W hen the new logfile reaches 75 KB, the previous .old file is overwritten. If you 
have logfile retention requirements in your environment, make sure that you have a 
script that automatically archives your Samba logs.

Logging with syslog
In addition to its own logging capabilities, Samba, when compiled with the --with- 
syslog option, will also use the system logger. In situations when administrators

272 | Chapter 16: Samba



have automated log-watching tools, like swatch, this can be more useful. To have 
Samba use syslog, just add the following line to your Samba configuration file:

syslog = 2

This will send all of Samba’s Level 2 logging detail to the syslogfile. If you’re happy 
with this, and would like to use the syslog exclusively, specify the following in your 
smb.conf:

syslog only = yes

Printing with Samba
Samba is fully functional as a Windows print server, enabling users to connect and 
print, and even download relevant print drivers. According to the Samba team, this 
was one of the biggest interoperability issues they faced because of complexities with 
the Windows print job queuing system. There are a number of ways to configure 
Samba for printing, but the two most common are the traditional BSD printing, and 
more recent CUPS.

BSD Printing
The older, traditional method of printing is the BSD print system which is based 
around the RFC 1179 framework. It uses commands such as Ipr that most Unix 
administrators are familiar with. Samba works well with this environment, and it is 
easily configured. The basic configuration to enable BSD printing looks like this:

[global] 

printing = bsd 

load printers = yes

[printers]

path = /var/spool/samba 

printable = yes 

public = yes 

writable = no

At this point, if you’re thinking that this seems really simplistic, it is! This is thanks 
to the fact that Samba makes a great number of assumptions with its default configu­
ration. To see what the configuration really looks like, you can use the testparm pro­
gram:

ticktock samba # testparm -s -v |egrep "(lplprint|port|driver|spool|\[)n
Processing section "[printers]"

[global]

smb ports = 445 139 

nt pipe support = Yes 

nt status support = Yes 

lpq cache time = 10 

load printers = Yes 

printcap name = /etc/printcap

Samba— An Introduction | 273



disable spoolss = No

enumports command =

addprinter command =

deleteprinter command =

show add printer wizard = Yes

os2 driver map =

wins support = No

printer admin =

nt acl support = Yes

min print space = 0

max reported print jobs = 0

max print jobs = 1000

printable = No

printing = bsd

print command = lpr -r -P'%p' %s 

lpq command = lpq -P'%p' 

lprm command = lprm -P*%p' %j 

lppause command = 

lpresume command = 

printer name = 

use client driver = No 

[printers]

path = /var/spool/samba 

printable = Yes

This is the point at which you can readjust some of the default options that might 
not be right for your system. One item to consider is whether the Ip commands are in 
your default path. You can also add anything to the Ip command lines that you see 
fit.

A sample /etc/printcap file is also included here. As all systems are different, this con­
figuration file may not work properly for you, but it is provided to give you an idea of 
the configuration format. For more detailed information, check the printcap 
manpages.

# /etc/printcap: printer capability database.

/Ip|Generic dot-matrix printer entry 

:lp=/dev/lpl 

:sd=/var/spool/lpd/lp 

:af=/var/log/lp-acct 

:lf=/var/log/lp-errs 

:pl#66 

ipviUSO 
:pc#150 

:mx#0 

:sh

Printing with CUPS
The Common Unix Printing System (CUPS) is quickly replacing BSD-style printing in 
most Linux distributions. There are numerous reasons why CUPS is displacing the

274 | Chapter 16: Samba



status quo, which we will leave for another discussion. However, no discussion of 
printing in the Samba environment would be complete without now including a sec­
tion on CUPS printing.

To introduce printing with CUPS, let’s have a look at a simple CUPS configured smb. 
conf file:

[global]

load printers = yes 

printing = cups 

printcap name = cups

[printers]

comment = Brewery Printers

path = /var/spool/samba

browsable = no

public = yes

guest ok = yes

writable = no

printable = yes

printer admin = root, @wheel

This is all that is required for basic configuration to make Samba work with CUPS, 
provided that CUPS itself is functional on your system.

The global section establishes that the /etc/printcap file is enumerated with the load 
p rin ters  option, which automatically parses the printcap and enables the printers 
configured within. This feature can be both really helpful and a bit frightening for 
some system administrators. While it makes configuration much easier, it does 
somewhat reduce the administrators ability to control what is visible to users. If this 
option turned off, you must individually create each printer share in the Samba con­
figuration files.

The printing option, which we had previously set to bsd, has been changed to cups. 
W e’ve also named the printcap cups for clarity.

The next section, printers, is also very similar to the previous example; however, 
we’ve now configured a printer administration group. This is a basic option that will 
allow the group specified to have administrative access to the CUPS aspects of the 
printing.

While not necessary, there are a number of additional options that can be added to a 
cups-based printer configuration to customize it based on need. For more detail and 
advanced configuration with CUPS and Samba, check the Samba web site at http:// 
www.samba.org and the CUPS web site at http://www.cups.org.

Using SWAT
Samba Web Administration Tool (SWAT) is used to simplify administration and con­
figuration of Samba. For those who like to use a GUI, this is one of the best options

Samba— An Introduction | 275

http://www.samba.org
http://www.cups.org


because it is written by the Samba team and contains all possible configuration 
options. O ther GUI frontend programs will work, but may not be as current.

Enabling SWAT
SWAT is basically a web server as well as an administration tool. In order to get it 
working, you will need to add it to your inetd.conf or xinetd configurations. W ith 
xinetd, your configuration for swat should look something like this:

service swat 

{
port = 901
socket_type = stream 
wait = no
user = root
server = /usr/sbin/swat
log_on_failure += USERID 
disable = no

}
You will also need to add the SWAT port to your /etc/services file, if it’s not already 
there.

swat 901/tcp # Samba configuration tool

After you restart your xinetd process, you are ready to use the service, which you 
would do by pointing your web browser at your Samba server’s IP address on port 
901.

SWAT and SSL
You may have noticed that SWAT doesn’t use SSL, which is probably OK if you are 
using it from only localhost. If you are interested in using it over the network, how­
ever, encryption is a good idea. Though SWAT doesn’t support encryption, it can be 
added using the popular SSL tunneling tool called stunnel

The easiest method to configure this was developed by Markus Krieger. In order to 
use this method, you will need to have both OpenSSL and stunnel installed. Docu­
mentation and source code for stunnel can be found at http://www.stunnel.org. Once 
both are installed and operational, you will need to generate a private key, which can 
be done like this:

vlager# /usr/bin/openssl req -new -x509 -days 730 -nodes -config /path/to/stunnel/ 
stunnel.cnf -out /etc/stunnel/stunnel.pem -keyout /etc/stunnel/stunnel.pem

Once you have created your keys, you need to make sure that you remove the origi­
nal SWAT from your inetd.conf file and send a SIGHUP signal to the daemon, if nec­
essary. You will no longer be calling the standard SWAT daemon through inetd, so 
be sure that it has been removed.

276 | Chapter 16: Samba

http://www.stunnel.org


stunnel can now be started. You can launch it from the command line or create a 
small script to launch it automatically. To start stunnel, as root, type:

vlager# stunnel -p /etc/stunnel/stunnel.pem -d 901 -1 /path/to/samba/bin/swat swat

Troubleshooting Samba
If you’ve built your Samba server and everything has worked perfectly the first time, 
consider yourself a part of the lucky minority. For everyone else, we’ll now discuss a 
few tips on how to track down and fix some common problems.

Configuration file woes
When troubleshooting Samba, one important issue to keep in mind is that the 
default options always take priority. This means that if a default configuration option 
is set, simply commenting it out does not change its value. For example, you can try 
to disable the load p rin ters option by simply commenting it out.

[printers]
path = /var/spool/samba 
#load printers = yes

However, using testparm, you will see that the option is still set to yes.

ticktock samba # testparm -s -v |grep "load printers"
load printers = Yes

W ith Samba, you must always explicitly define the options you wish to have; com­
menting out will not necessarily guarantee success. If something isn’t working as 
expected, check this first.

As basic as it sounds, you should also check to see whether the smbd and nmbd pro­
cesses exist. It is not uncommon for something to cause them to fail silently, and you 
will not realize they are not running.

Account problems
One of the more common login problems with Samba occurs with the root, but can 
happen with any user on the system. For each Samba user, it is important to remem­
ber that a separate Samba password must be created because Samba does not use the 
Linux /etc/shadow hash. For example, if you try to access a Samba file share as root, 
the system root password will fail, unless you’ve already created a Samba password 
for the root account using the same root password (which is definitely not advised). 
To correct this issue, a separate account must be created as follows:

vlager# smbpasswd -a root
New SMB password:
Retype new SMB password:
Added user root.

Samba— An Introduction | 277



CHAPTER 17
OpenLDAP

OpenLDAP is a freely available, open source LDAP solution designed to compile on 
a number of different platforms. Under Linux, it is currently the most widely used 
and best supported free LDAP product available. It offers the performance and 
expected functionality of many commercial solutions, but offers additional flexibil­
ity because the source is available and customizable. In this section, we will discuss 
possible uses for an OpenLDAP server as well as describe installation and configura­
tion.

Understanding LDAP
Before proceeding, a brief explanation of LDAP is required. Lightweight Directory 
Access Protocol (LDAP) is a directory service that can be used to store almost any­
thing. In this way, it is very similar to a database. However, it is designed to store 
only small amounts of data, and is optimized for quick searching of records. A per­
fect example of an application for which LDAP is suited is a PKI environment. This 
type of environment stores only minimal amount of information and is designed to 
be accessed quickly.

The easiest way to explain the structure of LDAP is to imagine it as a tree. Each 
LDAP directory starts with a root entry. From this entry others branch out, and from 
each of these branches are more branches, each with the ability to store a bit of infor­
mation. A sample LDAP tree is shown in Figure 17-1.

Another critical difference between LDAP and regular databases is that LDAP is 
designed for interoperability. LDAP uses predefined schemas, or sets of data that 
map out specific trees. The X.500 structure is outlined by RPC 2253 and contains the 
following entries:

String X.500 AttributeType

CN commonName

278



Root

r~n C=CA

r
—  0=VBrew i t -. 0=VWine —  0=VBrew «— «

ou=Sales ou=Marketing ;

..... I I ......
cn=firstlast t cn=firstlast t

ou=Sales ou=Marketing !

......1' .......... r  '•

cn=firstlast cn=firstlast ,

Figure 17-1. Sample LDAP tree.

L localityName
ST stateOrProvinceName
0 organizationName
ou organizationalUnitName
c countryName
STREET streetAddress
DC domainComponent
UID userid

Another useful schema is inetOrgPerson. It is designed to represent people within an 
organizational structure and contains values such as telephone numbers, addresses, 
user IDs, and even employee photos.

Data Naming Conventions
LDAP entries are stored in the directory as Relative Distinguished Names (RDN), and 
individual entries are referred to by their Distinguished Names (DN). For example, 
the user Bob Jones might have an RDN of:

cn=BobDones

And his DN might look like this:

c=us,st=California,o=VirtualBrewery,ou=Engineering,cn=BobDones

While this section barely scratches the surface of the entirety of LDAP, it serves as 
the necessary background to install and operate OpenLDAP. For a more detailed 
look at LDAP, consult RFC 2251, “The Lightweight Directory Access Protocol (v3).”

Understanding LDAP | 279



Obtaining OpenLDAP
The current home of OpenLDAP is http://www.openldap.org. All current stable and 
beta versions can be acquired from this site along with an “Issue Tracking” engine, 
should you encounter any bugs that you wish to report.

While the temptation of downloading and using beta versions is always there, 
because of the promise of increased functionality, unless you are installing the soft­
ware on a test server, it is best to use only known stable versions.

Having downloaded and extracted the source archive, it is generally a good idea to 
briefly review any README files that may be contained within the archive. The five 
minutes spent reading these files can save five times the initial time investment 
should there be any problems during install.

Dependencies
Like many software packages, OpenLDAP is not without its dependencies. W ith 
OpenLDAP, you will need to have the latest version of OpenSSL installed and con­
figured. If you do not yet have this package, it can be found at http://www.openssl. 
org, along with installation instructions.

SASL from Cyrus is also required for OpenLDAP. As defined by its name, Simple 
Authentication and Security Layer (SASL) provides an easy-to-use security frame­
work. Many Linux distributions have this package installed by default; however, 
should you need to install this yourself, it can be found at http://asg.web.cmu.edu/ 
sasHsasl-library.html or by using a package search engine such as RPMfind.

OpenLDAP supports Kerberos as an option rather than a requirement. If you are cur­
rently using Kerberos in your environment, you will want to make sure that you have 
it installed on your OpenLDAP server machine. If you’re not currently using Ker­
beros, it may not be of great value to enable it especially for OpenLDAP. There is a 
great deal of Kerberos information available on which you can base your decision as 
to whether or not to enable it.

Another optional component is for the OpenLDAP backend database (BDB). In 
order to use BDB, you will need something like the BerkeleyDB from Sleepycat Soft­
ware. This is a very commonly used package that is often installed by default on 
many Linux distributions. If your system does not have this installed, you can find it 
at http://www.sleepycat.com. Alternately, other BDBs exist; for example, MySQL may 
be appropriate in your environment. It is important to note that this is a matter of 
personal preference, and for most users the default OpenLDAP database is accept­
able.

280 | Chapter 17: OpenLDAP

http://www.openldap.org
http://www.openssl
http://asg.web.cmu.edu/
http://www.sleepycat.com


Compiling OpenLDAP
Building OpenLDAP is fairly straightforward once you have selected the options you 
wish to have built into the software. A list of available options can be retrieved with 
the configure program. One option that you may wish to enable is -with-tls. This will 
enable SSL support in OpenLDAP, which we will discuss later in this chapter.

vlager# ./configure -with-tls
Copyright 1998-2003 The OpenLDAP Foundation, All Rights Reserved.

Restrictions apply, see COPYRIGHT and LICENSE files.
Configuring OpenLDAP 2.1.22-Release ...
checking host system type... i686-pc-linux-gnu
checking target system type... i686-pc-linux-gnu
checking build system type... i686-pc-linux-gnu
checking for a BSD compatible install... /bin/install -c
checking whether build environment is sane... yes
checking for mawk... no
checking for gawk... gawk
checking whether make sets ${MAKE}... yes
checking for working aclocal... found
checking for working autoconf... found
checking for working automake... found
checking for working autoheader... found
checking for working makeinfo... found
checking for gnutar... no
checking for gtar... no

vlager#

After configuring the makefile, the next step is to attempt to compile the package. 
W ith most software, the next step is to run make. However, it is recommended when 
building OpenLDAP to run a make depend first. The configure script will even 
remind you of this, should you forget.

W hen the dependencies have been built, you can now safely issue the make com­
mand and wait for the software to build. Upon completion, you may wish to verify 
that the build process has completed properly. Using make test will run a series of 
checks and inform you of any problems with the build.

Assuming all has gone successfully, you can now become root and install the soft­
ware automatically by using the make install option. By default, OpenLDAP will 
place its configuration files in /usr/local/etc/openldap. Users of some distributions will 
choose to have these files placed in /etc/openldap for consistency. The option to do 
this should be set in the ./configure command line.

Obtaining OpenLDAP | 281



Configuring the OpenLDAP Server
If you were watching the installation of the software, you may have noticed that it 
created two programs, slapd and slurpd. These are the two daemons used with an 
OpenLDAP installation.

The first step in understanding how to configure the OpenLDAP server is to look at 
its configuration files. On our sample host, vlager, we have placed the configuration 
scripts in the /usr/local/etc/openldap directory. Looking at the slapdxonf file, we see a 
few places that must be customized. It will be necessary to update any of the follow­
ing values to make them consistent with your site:

include /usr/local/etc/openldap/schema/core.schema
include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/inetorgperson. :

database ldbm
suffix "o=vbrew"
suffix "dc=ldap,dc=vbrew,dc=com"
rootdn "cn=JaneAdmin,o=vbrew"
rootpw secret
directory /usr/local/var/openldap-vbrew
defaultaccess read
schemacheck on
lastmod on

You should also change the rootpw from secret to something that makes sense to 
you. This is the password you will need to use to make changes to your LDAP direc-. 
tory.

W ith these changes made, you are now ready to run the OpenLDAP server, which 
we will discuss in the next section.

Running OpenLDAP
The standalone OpenLDAP server is called slapd and, if you have not changed any of 
the default paths, it will have installed in /usr/local/libexec/. This program simply lis­
tens on the LDAP port (TCP 389) for incoming connections, and then processes the 
requests accordingly. Since this process runs on a reserved port, you will need to 
start it with root privileges. The quickest way to do this is as follows:

vlager# su root -c /usr/local/libexec/slapd

To verify that the service has started, you can use netstat to see that it is listening on 
port 389:

vlager# netstat -aunt | grep 389
tcp 0 0 0.0.0.0:389 0.0.0.0:* LISTEN

282 I Chapter 17: OpenLDAP



At this point, you should also verify that the service itself is working by issuing a 
query to it using the Idapsearch command:

vlager# Idapsearch -x -b " -s base '(objectclass=*)' namingContexts
version: 2 

#
# filter: (objectclass=*)
# requesting: namingContexts
#

#
dn:
namingContexts: dc=vbrew,dc=com

# search result 
search: 2 
result: 0 Success

# numResponses: 2
# numEntries: 1 
vlager#

This query is designed to do a wildcard search on your database; it should therefore 
retrieve everything stored within. If your configuration was completed properly, you 
will see your own domain name in the dc field.

Adding entries to your directory
Now that the LDAP server is operational, it makes sense to add some entries. 
OpenLDAP comes with a utility called Idapadd, which inserts records into your 
LDAP database. The program only accepts additions from LDAP Data Interchange 
files (LDIF), so in order to add a record, you will need to create this file. More infor­
mation about the LDIF file format can be found in RFC 2849. Fortunately, creating 
LDIF files is a very easy step— a sample file looks like:

# Organization for Virtual Brewery Corporation 
dn: dc=vbrew,dc=com
objectClass: dcObject 
objectClass: organization 
dc: example
o: VirtualBrew Corporation
description: The Virtual Brewery Corporation

# Organizational Role for Directory Manager 
dn: cn=Manager,dc=vbrew,dc=com 
objectClass: organizationalRole
cn: Manager
description: Directory Manager

dn: dc=ldap,dc=vbrew,dc=com 
objectClass: top

Obtaining OpenLDAP | 283



objectClass: dcObject 
objectClass: orginization 
dc: vbrew 
o: vbrew
description: Virtual Brewing Company LDAP Domain

dn: o=vbrew 
objectClass: top 
objectClass: organization 
o: vbrew
description: Virtual Brewery

dn: cn=DaneAdmin,o=vbrew 
objectClass: organizationalRole 
en: JaneAdmin
description: Linux System Admin Guru

dn: ou=Marketing,o=vbrew
ou: Marketing
objectClass: top
objectClass: orgânizationalUnit
description: The Marketing Department

dn: ou=Engineering,o=vbrew 
ou: Engineering 
objectClass: top 
objectClass: organizationalUnit 
description: Engineering team

dn: ou=Brewers,o=vbrew 
ou: Brewers 
objectClass: top 
objectClass: orginazationalUnit 
description: Brewing team

dn: cn=Doe Slick,ou=Marketing,o=vbrew
en: Doe Slick
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
mail: j s l i c k @ v b r e w .c o m
firstname: 3oe
lasname: Slick
ou: Marketing
uid: 1001
postalAddress: 10 Westwood Lane 
1: Chicago 
st: IL
zipcode: 12394 
phoneNumber: 312-555-1212

dn: cn=Mary Smith,ou=Engineering,o=vbrew 
en: Mary Smith

284 | Chapter 17: OpenLDAP

mailto:jslick@vbrew.com


objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
mail: m sm ith @ vb iev i.co m
firstname: Mary
lasname: Smith
ou: Engineering
uid: 1002
postalAddress: 123 4th Street 
1: San Francisco 
st: CA
zipcode: 12312 
phoneNumber: 415-555-1212

dn: cn=Bill Peris,ou=Brewing,o=vbrew
cn: Bill Peris
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
mail: p e i@ v b ie w .c o m
firstname: Bill
lasname: Peris
ou: Brewing
uid: 1003
postalAddress: 8l8l Binary Blvd 
1: New York 
st: NY
zipcode: 12344 
phoneNumber: 212-555-1212

Once the LDIF file is ready, it is added to the LDAP directory using the following 
command:

vlager# ldapadd -x -D "cn=Manager,dc=vbrew,dc=comn -W -f goo.ldif
Enter LDAP Password:
adding new entry "dc=vbrew,dc=com"

adding new entry "cn=Manager,dc=vbrew,dc=com"

vlager#

You can search for your new directory entries using the Idapsearch command 
described earlier.

Using OpenLDAP
There are a number of uses for an LDAP server— too many to mention. However, 
authentication is among the more useful to Linux network administrators. For an 
administrator of many different machines, the task of managing the password and 
authentication details for a large number of users can quickly become daunting. An

Obtaining OpenLDAP | 285

mailto:msmith@vbievi.com
mailto:pei@vbiew.com


OpenLDAP directory can be used to centrally manage the user accounts for a group 
of systems, making it possible for an administrator to enable or disable user accounts 
quickly and efficiently— a process that, on multiple systems, can be a chore.

The first step in configuring this is to install the LDAP NSS and PAM libraries. Under 
Linux, NSS and PAM handle authentication and tell the system where to look to ver­
ify users. It is necessary to install two packages, pamjldap and nssjldap, which can 
be found at http://www.padlcom/OSS in the software subsection. Most distributions 
have packages for these, and they are often combined and named libnss-ldap. If you 
are installing from source, the building of this software is straightforward and can be 
accomplished with the standard configure, make install method. Along with install­
ing this on your LDAP server, you will also need to install these libraries on your cli­
ent machines.

W hen these libraries have been installed, you can now start configuring your slapd 
OpenLDAP process. You will need to make a few changes to your slapd.conf file, 
similar to those which were covered earlier. The schema section as configured earlier 
is sufficient; however, you will need to add some new definitions in the database sec­
tion.

# ldbm database definitions

database ldbm
suffix "o=vbrew,dc=com"
rootdn "uid=root,ou=Engineering,o=vbrew,dc=com"
rootpw secret
directory /usr/local/etc/openldap/data
# Indices to maintain
index objectClass,uid,uidNumber,gidNumber eq
index cn,mail,surname,givenname eq,subinitial

This section will create the directory definitions for the structure in which you will be 
storing your user data.

Adding access control lists (ACLs)
As this type of directory should not be writable by any anonymous users, it is a good 
idea to include some type of access list as well. Fortunately, OpenLDAP makes this 
type of control quite easy.

# Access control listing - basic
#

access to dn=".*,ou=Engineering,o=vbrew,dc=com" 
attr=userPassword 

by self write
by dn="uid=root,ou=Engineering,o=vbrew,dc=com" write 
by * auth

286 | Chapter 17: OpenLDAP

http://www.padlcom/OSS


access to dn=".*,o=vbrew,dc=com" 
by self write
by dn="uid=root,ou=Engineering,o=vbrew,dc=com" write 
by * read

access to dn=".*,o=vbrew,dc=com" 
by * read

defaultaccess read

This list does some basic locking down of the directory and makes it more difficult 
for anyone to write to the directory. Once this configuration has been completed, 
you can now safely start (or restart) the OpenLDAP daemon.

Migrating to LDAP authentication
You now have your empty directory created awaiting input and queries. For adminis­
trators who have hundreds or thousands of user accounts across many machines, the 
next step, migrating the authentication data into the directory, may sound like a 
nightmare. Fortunately, there are tools created to assist with this potentially difficult 
step. The OpenLDAP migration tools from http://www.padl.com/OSS make the task 
of populating the LDAP database from existing /etc/passwd files simple. Each distri­
bution or package will likely place the files in the /usr/share directory, but check the 
documentation in your package for specifics.

In order for these scripts to work properly, you will need to make a few minor 
changes to one of them. The first one to update is migrage_common.ph. Search for 
the following lines:

#Default DNS domain 
$DEFAULT_MAIL_DOMAIN = "padl.com";

#Default base
$DEFAULT_BASE = "dc=padl,dc=com";

And replace them with the values that are correct for your environment. For our 
example, this would be:

$DEFAULT_MAIL_DOMAIN = "vbrew.com";
$DEFAULT_BASE = "o=vbrew,dc=com";

Now, verify that your OpenLDAP server is listening and that you’ve saved the 
changes to the migration configuration file. When all of this has been completed, you 
are now ready to execute migrate_all_online.sh, which will begin the process of mov­
ing your /etc/passwd entries into your LDAP directory.

vlager# ./migrate_all_online.sh
Enter the Name of the X.500 naming context you wish to import into: [o=vbreW; dc=com] 
Enter the name of your LDAP server [ldap]: vlager
Enter the manager DN: [cn=manager,o=vbrew,dc=com] cn=root,o=vbrew,dc=com
Enter the credentials to bind with: p a s s w o r d  
Importing into o=vbrew,dc=com...

Obtaining OpenLDAP | 287

http://www.padl.com/OSS


Creating naming context entries...
Migrating aliases...
Migrating groups...

vlager#

At this point, you will now see that all of your /etc/passwd entries have been automat­
ically entered into your LDAP directory. You may wish to use the Idapsearch query 
tool now to see some of your entries. W ith your directory service functional and now 
populated with user entries, you now need to configure your clients to query the 
LDAP server, which we will discuss in the next section.

Client LDAP configurations
Linux distributions come configured by default to look at the /etc/passwd file for 
authentication. This default option is easily configurable once the nss-ldap and PAM 
libraries are installed, as described earlier. The first of the configuration files that 
need to be changed is the /etc/nsswitch.conf file. You simply need to tell the system to 
query LDAP.

passwd: files ldap 
group: files ldap 
shadow: files ldap

You might be wondering why we’ve left the f i le s  entry in the configuration. It is 
strongly recommended that it be left in so accounts such as root can still have access 
should something happen to the LDAP server. If you delete this line, and the LDAP 
server fails, you will be locked out of all of your systems! This is, of course, where 
multiple servers come in handy. Replication between LDAP servers is possible and a 
fairly straightforward exercise. For information on building backup OpenLDAP serv­
ers, check the OpenLDAP HOWTOs found on the Linux Documentation Project 
web site.

Some Linux distributions (Debian, for example) have the client configuration in /etc! 
openldap.conf. Be careful not to mistake this for the server configuration files found 
in /etc/openldap.

The next file you need to modify is the openldap.conf file. Like the other configura­
tion files, the location of this will vary between the distributions. This file is very sim­
ple and has only a few configurable options. You need to update it to reflect the URI 
of your’LDAP server and your base LDAP information.

URI ldap://vlager.vbrew.com 
BASE o=vbrew,dc=com

You should now attempt an LDAP query on one of your client machines.

client$ Idapsearch -x 'uid=bob'
version: 2

288 | Chapter 17: OpenLDAP



#
# filter: uid=bob
# requesting: ALL
#

# bob,Engineering,vbrew,com
dn: uid=bob,ou=Engineering,o=vbrew,c=com 
uid: bob 
cn: bob 
sn: bob
mail: bob@vbrew.com 
objectClass: person 
objectClass: organizationalPerson 
objectClass: inetOrgPerson 
objectClass: account 
objectClass: posixAccount 
objectClass: top 
objectClass: shadowAccount 
shadowMax: 99999 
shadowWarning: 7 
loginShell: /bin/bash 
uidNumber: 1003 
gidNumber: 1003 
homeDirectory: /home/bob 
gecos: bob

# search result 
search: 2 
result: 0 Success

# numResponses: 2
# numEntries: 1

clients

If your query resembled the above entry, you know that your queries are working. 
Your OpenLDAP server is now fully populated, can be queried from client machines, 
and is ready for real use.

Adding SSL to OpenLDAP
As LDAP was designed to be a secure and efficient method of serving up small 
amounts of data, by default it runs in clear text. While this may be acceptable for 
certain uses, at some point you may wish to add encryption to the data stream. This 
will help preserve the confidentiality of your directory inquiries and make it more 
difficult for attackers to gather information on your network. If you are using LDAP 
for any kind of authentication, encryption is highly recommended.

If you configured your OpenLDAP at compile time using the -w ith -tls  option, your 
server is ready to use SSL. If not, you will need to rebuild OpenLDAP before continu­
ing.

Obtaining OpenLDAP | 289

mailto:bob@vbrew.com


Adding SSL to OpenLDAP requires only a few simple changes to the OpenLDAP 
configuration file. You will need to tell OpenLDAP which SSL cipher to use and tell 
it the locations of your SSL certificate and key files, which you will create later.

TLSCipherSuite HIGH:MEDIUM:+SSLv3 
TLSCertificateFile /etc/ssl/certs/slapd.pem 
TLSCertificateKeyFile /etc/ssl/certs/slapd.pern

In this case, we’ve specified that our OpenSSL certificates will be stored in the /etc/ssl 
directory. This will vary between the distributions; however, you can choose to store 
your SSL in certificates any place you like. W e’ve also specified the type of cipher to 
use. Note that there are a number of different choices available; you can choose 
whichever you prefer. Since the server now expects to find certificate files when it is 
restarted, we will need to create them. Information on how to do this is covered in 
previous sections of this book or is available in the OpenSSL documentation.

It is important to realize that this creates a self-signed certificate, as opposed to one 
that is purchased from one of the certificate providers. If an LDAP client were to 
check the validity of your certificate, it would likely generate an error, just as a web 
browser would when it detects a non-third-party signed certificate. However, most 
LDAP clients do not check certificate validity, so this isn’t likely to create many 
issues. If you would like to have a third party certificate, there are numerous vendors 
who provide them.

Before you restart your server, you should also make sure that your certificates are 
readable only by your LDAP server. They should not be accessible or writable by any 
other user on the system. You should also clean up any temporary files, such as those 
created in the previous step before continuing. When these steps have been taken, 
you can safely restart your LDAP server.

Testing SSL availability
There are a couple of quick tests that can be done to see whether or not the SSL sup­
port has been enabled. The easiest way to test whether or not the server is listening is 
to use netstat, as we did in the earlier example.

vlager# netstat -aunt | grep 636
tcp 0 0 0.0.0.0:636 0.0.0.0:* LISTEN

Seeing that the server is listening on the LDAP SSL port is a good start. This means 
that the server understood the request to run SSL and is listening on the correct port. 
Next, you can choose to see whether or not the process is actually working. An easy 
way to do this is to request tfo see its digital certificates. The OpenSSL package comes 
with a client that can be used to do this.

vlager# openssl s_client -connect vlager:636 -showcerts

The output of this command will display the full technical information about the 
digital certificate that you created at the beginning of this section. If you aren’t seeing

290 | Chapter 17: OpenLDAP



any output from this command, verify that you’ve started the service and that some­
thing is listening on port 636. If you are still receiving no response, check the trou­
bleshooting section found later in this chapter.

LDAP GUI Browsers
For those administrators who prefer a GUI to a command line, there are a number of 
LDAP browsers available for Linux. One of the more functional offerings is from 
Argonne National Laboratory and is a Java applet available at http://www-unix.mcs. 
anl.gov/-gawor/ldap/applet/applet.html. As seen in Figure 17-2, the GUI allows you to 
easily browse your directories and modify entries. This software also has the advan­
tage of running from any platform, easily and without any installation hassles, pro­
vided that Java is available.

r~ LDAP Browser/tditor Demo Applet Mozilla Firebird Ej|nif5c|

I Fie  E dt View Qo Bookmarks Tools H dp

|(^ v ' ̂  ; LJ http://www-urix.fncs.anl.gov/~gaworAlap/applet/appleLhtml v ■ \ j j

I  l_j Mozia Firebird H dp ¡_j M ozla Firebird Discu... j_j Plug-in F A Q

LDAP Browser/Editor 2.8.2

Hte Edit View UMF Help

lia i  [»l»ll*l f c v f x f l  |* j \ w  i•IlftUl
Root DSE '‘ Attribute lvalue

? a rc=usj
Ç C3 st=NewYork

Ç C3 o=New York University
ou=\“FacultyVAdminVStafTr 

©■ C3 ou=Students 
^■[3 ou=Offices 
©-C3 ou=Medicine

Campus=Washington Squ

createtimestamp 
;• creatorsname 
objectclass 
objectclass 

Î c

200307240007112
cn=manager,o=New York University.st=N 
top
country
US

ü n a B B B B H H "  " 1»
| Applet be.u.BrowserApplet started |

Figure 17-2. Java LDAP browser

Another popular and very powerful LDAP frontend for Linux is GQ, illustrated in 
Figure 17-3. It uses a GTK+-style interface and gives administrators full control over 
their directories, allowing them to add, modify, and remove entries, build templates, 
execute advanced searches and more. GQ can be found at http://www.biot.com/gq, 
and requires a Linux GTK+-compatible interface.

Troubleshooting OpenLDAP
Installing and configuring OpenLDAP can be a tricky process, and there are a num­
ber of things that can go wrong. As with many Linux server processes, the best place

Obtaining OpenLDAP | 291

http://www-unix.mcs
http://www-urix.fncs.anl.gov/~gaworAlap/applet/appleLhtml
http://www.biot.com/gq


elrond
É-o=house.com
[=h-c=University of Michigan,c=US 
m-ou=Groups,o=University of Michigan, c=US
—  cn=Manager,o=University of Michigan, c=L 
Eh-ou=People,o=University of Michigan, c=US 
[=}Tou=Alumni Association,ou=People,o=Uni< 

-cn=Dorothy Stevens,ou=Alumni AssocU 
-cn=James A Jones 1,ou=Alumni Assoc
—  cn=Jane Doe,ou=Alumni Association,01 
cn=Jennifer Smith,ou=Alumm Associatic 
cn=Mark Elliot,ou=Alumni Association̂  
cn=Ursula Hampster,ou=Alumni Associe 

ou=lnformation Technology Division,ou=F

—  cn=Bjorn Jensen,ou=lnformation Techrn
—  cn=James A Jones 2,ou=lnformation Te
—  cn=John Doe,ou=lnformation Technoloç 

¿1- CN=MONITOR
S-CN=CONFIG 
B-CN=SCHEMA 

El-sslap.wind.surfnet.nl 

----- T"
Apply

Help |

dn ‘People,o=Umversity of Michigan, c=US

objectclass top| |

person

organizationalPerson

newPilotPerson

umichPerson A
cn Barbara Jensen

Babs Jensen A
sn Jensen A
title Mythical Manager, Research Systems _/)

ITD Prod Dev & Deployment $ 535 W? 
. William St. Room 4212 $ Ann Arbor, J

Figure 17-3. GQin browsing mode

to start debugging is the system log. There, you should see a line somewhat similar to 
this one, which should give you an indication as to whether your server has started 
properly.

Dun 15 11:33:39 vlager slapd[1323]: slapd starting

If you make a typo in the slapd.conf file, the process is often smart enough to just 
ignore the line and proceed. However, if you happen to make a critical error, as we 
have in the following example, slapd will fail to start.

Dul 25 11:45:25 vlager slapd[l0872]: /etc/openldap/slapd.conf: line 46: unknown 
directive "odatabase" outside backend info and database definitions (ignored)
Dul 25 11:45:25 vlager slapd[l0872]: /etc/openldap/slapd.conf: line 47: suffix line 
must appear inside a database definition (ignored)
Dul 25 11:45:25 vlager slapd[10872]: /etc/openldap/slapd.conf: line 49: rootdn line 
must appear inside a database definition (ignored)
Dul 25 11:45:25 vlager slapd[l0872]: /etc/openldap/slapd.conf: line 54: rootpw line 
must appear inside a database definition (ignored)
Dul 25 11:45:25 vlager slapd[l0872]: /etc/openldap/slapd.conf: line 57: unknown 
directive "directory" outside backend info and database definitions (ignored)
Dul 25 11:45:25 vlager slapd[l0872]: /etc/openldap/slapd.conf: line 59: unknown 
directive "index" outside backend info and database definitions (ignored)
Dul 25 11:45:25 vlager slapd[l0873]: backend_startup: 0 databases to startup.
Dul 25 11:45:25 vlager slapd[l0873]: slapd stopped.
Dul 25 11:45:25 vlager slapd[10873]: connections_destroy: nothing to destroy.

292 I Chapter 17: OpenLDAP



In this example, we mistyped the word “database,” which is a critical option in the 
configuration. As you can see, the server failed to start, but still provided us with 
enough information to figure out what went wrong.

If you have verified that everything is running on the server, but clients are unable to 
connect, you should verify that the LDAP ports 389 and 636 are not being blocked 
by a firewall. If your server is running iptables with a default policy denying any 
incoming connections, you will need to explicitly allow these two ports.

Other common issues are caused by missing or incomplete SSL certificates. An indi­
cation from the system log that something is wrong with the SSL functioning is:

Dul 25 12:02:15 vlager slapd[lll35]: main: TLS init def ctx failed: 0 
Dul 25 12:02:15 vlager slapd[lll35]: slapd stopped.
Dul 25 12:02:15 vlager slapd[lll35]: connections_destroy: nothing to destroy.

The error in this case is very terse; however, the fact that TSL is mentioned indicates 
a problem with SSL. If you are receiving this error, you should check your certificate 
paths and permissions. Often, the certificate files cannot be read by the LDAP server 
because they are set to be readable only by the root account.

Obtaining OpenLDAP | 293



CHAPTER 18_____________________ r “T

Wireless Networking

Wireless networking is a promising and increasingly popular technology, offering a 
wide range of benefits compared to traditional wired technology. These advantages 
range from increased convenience to users and decreased deployment cost to ease of 
network installation. A new wireless deployment can save substantial amounts of 
money since there is no need for additional cables, jacks, or network switches. Add­
ing new users to a network can be as easy as plugging in a wireless card and power­
ing up a machine. Wireless networking has also been used to deliver network access 
to areas where there is little or no traditional network infrastructure.

Perhaps the biggest impact of wireless networking can be seen within its widespread 
acceptance among consumers. The most obvious example of this popularity can be 
seen with new laptop systems, where nearly every unit is shipped with integrated 
802.11b or g. The practical benefits have consequently insured good sales, allowing 
manufacturers to lower the equipment costs. At the time of this writing, the price of 
client wireless cards is comparable to that of traditional Ethernet adapter cards.

These benefits, however, do not come without some disadvantages, the most severe 
of these being the security issues.

History
Wireless LANs are based on spread spectrum technology, initially developed for mil­
itary communications by the U.S. Army during W orld W ar II. Military technicians 
considered spread spectrum desirable because it was more resistant to jamming. 
Other advances at this time allowed an increase in the radio data rate. After 1945, 
commercial enterprises began to expand on this technology, realizing its potential 
benefits to consumers.

Spread spectrum technology evolved into the beginnings of the modern wireless 
LAN in 1971 with a University of Hawaii project called AlohNet. This project

294



allowed seven computers around the various islands to communicate bidirectionally 
with a central hub on Oahu.

The university research on AlohNet paved the way for the first generation of modern 
wireless networking gear, which operated at the 901—928 MHz frequency range. Pri­
marily used by the military, this phase of wireless development saw only limited con­
sumer use, due to crowding within this frequency and the relatively low speed.

From this point, the 2.4 GHz frequency was defined for unlicensed use, so wireless 
technology began to emerge in this range and the 802.11 specification was estab­
lished. This specification evolved into the widely accepted 802.11b standard, and 
continues to evolve into faster, more secure implementations of the technology.

The Standards
The standards based around wireless networking for PCs are established by the 
Institute of Electrical and Electronics Engineers (IEEE). LAN/MAN technology has 
been broadly assigned number 802, which is then broken down into working groups. 
Some of the most active wireless working groups include 802.15, designed for wire­
less personal area networks (Bluetooth), 802.16 which defines support for broad­
band wireless systems, and finally, 802.11, assigned to wireless LAN technology. 
W ithin the 802.11 definition, there are more specific definitions that are assigned let­
ters. Here is a list of the most important 802.11 wireless LAN definitions:

802.11a
This definition provides wireless access on the 5 GHz band. It offers speeds of 
up to 54 MBps, but has not caught on, perhaps due to relatively higher priced 
equipment and short range.

802.11b
This is still the standard to which most people refer when talking about wireless 
networking. It establishes 11 MBps speeds on the 2.4 GHz band, and can have a 
range extending more than 500 meters.

802.1 lg
This standard has been established to provide higher data rates within the 2.4 
GHz band and provides added security with the introduction of WiFi Protected 
Access, or WPA. 802.1 lg  devices are now being deployed in place of 802.11b 
devices and have nearly reached mainstream acceptance.

802.1 li
While still in the development phase, this standard seeks to resolve many of the 
security issues that have plagued 802.11b and provide a more robust system of 
authentication and encryption. At the time of this writing, the specification has 
not been finalized.

The Standards | 295



802.1 In

802.1 In  is being touted as the high-speed answer to current wireless network 
speed shortcomings. W ith an operational speed of 100 Mbps, it will roughly 
double existing wireless transfer speeds, while maintaining backward compati­
bility with b and g. At the time of this writing, the specification is not complete; 
however, several vendors have released “pre-n” products, based on the early 
drafts of the specification.

802.11 b Security Concerns
W hen the IEEE created the 802.11b standard, they realized that the open nature of 
wireless networking required some kind of data integrity and protection mechanism 
and thus created Wired Equivalent Privacy (WEP). Promised by the standard to pro­
vide encryption at the 128-bit level, users were supposed to be able to enjoy the same 
levels of privacy found on a traditional wired network.

Hopes for this kind of security, however, were quickly dashed. In a paper called 
“Weaknesses in the Key Scheduling Algorithm of RC4” by Scott Fluhrer, Itsik Man- 
tin, and Adi Shamir, the weaknesses in the key generation and implementation of 
WEP were described in great detail. Although this development was a theoretical 
attack when the paper was written, a student at Rice University, Adam Stubblefield, 
brought it into reality and created the first WEP attack. Although he has never made 
his tools public, there are now many similar tools for Linux that will allow attackers 
to break WEP, making it an untrustworthy security tool.

Still, it should be acknowledged that staging a WEP attack requires a considerable 
amount of time. The success of the attack relies upon the amount of encrypted data 
the attacker has captured. Tools such as AirSnort require approximately 5 to 10 mil­
lion encrypted packets. A busy wireless LAN, which is constantly seeing the maxi­
mum amount of traffic, can still take as long as 10 hours to crack. Since most 
networks do not run at capacity for this long, it can be expected that the attack 
would take considerably longer, stretching out to a few days for smaller networks.

However, for true protection from malicious behavior and eavesdropping, a VPN 
technology should be used, and wireless networks should never be directly con­
nected to internal, trusted networks.

Hardware
Different manufacturers use a slightly different architecture to provide 802.11b func­
tionality. There are two major chipset manufacturers, Hermes and Prism, and within 
each, hardware manufacturers have made modifications to increase security or 
speed. For example, the USRobotics equipment, based on the Prism chipset, now 
offers 802.11b at 22 MBps, but it will not operate at these speeds without the DLink 
802.11b 22 MBps hardware. However, they are interoperable at the 11 MBps speed.

296 | Chapter 18: Wireless Networking



Due to new chipsets and manufacturer differences, 802. l lg  support on Linux has 
been somewhat difficult. At the time of writing, support for 802.l lg  devices under 
Linux was still emerging and was not yet as stable and robust as the 802.11b sup­
port. For this reason, this chapter focuses on 802.11b drivers and support. Main­
stream Linux support for g devices, however, is not far off. With the work of groups 
such as Prism54.org, which is developing g drivers, and Intel’s announcement that it 
will release drivers for its Centrino chipset, full support is less than a year away.

Chipsets
As mentioned, there are two main 802.11b chipsets, Hermes and Prism. While ini­
tially Hermes cards were predominant due to the popularity of Lucent WaveLAN 
(Orinoco) cards, a majority of card makes today use Prism’s prism2 chipset. Some 
well-known Prism cards are those from D-Link, Linksys, and USR. You’ll get roughly 
the same performance with either card, and they are interoperable when operating 
within the 802.1 lb  standard, meaning that you can connect a Lucent wireless card to 
a D-Link access point, and vice versa. A brief listing of major card manufacturers and 
their chipsets follows. If your card is not listed, check your operation manual or the 
vendor web site.

• Hermes chipset cards:
Lucent Orinoco Silver and Gold Cards 
Gateway Solo 
Buffalo Technologies

• Prism 2 Chipset cards:
Addtron
Belkin
Linksys
D-Link
ZoomMax

Client Configuration
802.11b networks can be configured to operate in several different modes. The two 
main types you’re likely to encounter are infrastructure mode (sometimes referred to 
as managed mode) and ad-hoc. Infrastructure mode is the most common and uses a 
hub-and-spoke architecture in which multiple clients connect to a central access 
point, as shown in Figure 18-1. The ad-hoc wireless network mode is a peer-to-peer 
network, in which clients connect to each other directly, as shown in Figure 18-2. 
Infrastructure mode deployments are an effective means to replace wires on a tradi­
tional network, making them ideal for office environments where wireless clients 
need access to servers that are connected to the wired network. Ad-hoc networks are

801.11 g versus 802.11 b on Linux

802.11 b Security Concerns | 297



beneficial to those who simply wish to transfer files between PCs, or do not require 
access to any servers outside of the wireless network.

Hub-and-spoke 
wireless network

Figure 18-1. Hub-and-spoke wireless network

Ad-hoc (peer-to-peer) 
wireless network

Figure 18-2. Ad-hoc (peer-to-peer) wireless network

802.11b networks operate on a predetermined set of frequencies known as a chan­
nel. The specification allows for 14 separate channels, though in North America 
users are limited to the first 11 and in Europe, the first 13. Only Japanese users have 
access to the full range of channels. In North America, the eleven channel span from 
2400 to 2483 MHz, with each channel set to 22 MHz wide. Clearly there is some 
overlap between the channels, so it is important to conduct a site survey before 
selecting a channel to save future headaches by avoiding possible interference from 
other wireless networks.

As it is the most commonly used mode, this section will focus primarily on the infra­
structure mode, which works on a hub-and-spoke model. The access point is the 
hub, and the clients are the spokes. An access point can either be a packaged unit 
bought from a store, or be built from a Linux machine running HostAP, which we’ll 
discuss later.

298 | Chapter 18: Wireless Networking



An 802.11b network utilizes an access point that transmits a signal known as a bea­
con. This is basically just a message from the access point informing any nearby cli­
ents that it is available for connections. The beacon contains a limited amount of 
information that is necessary for the client to connect. The most important content 
of the beacon is the ESSID, or the name of the access point. The client, on seeing an 
access point, sends a request to associate. If the access point allows this, it grants an 
associate frame to the client, and they attach. Other types of authentication can also 
occur at this point. Some access points allow only clients with a prespecified MAC 
address, and some require further authentication. Developers are working on the 
standard 802. lx  in an effort to establish a good authentication framework. Unfortu­
nately, however, this is unlikely to prove effective, as there are already known vulner­
abilities for it.

Drivers
A Linux wireless driver can either be built into your kernel when you compile, or 
created as a loadable kernel module (LKM). It is recommended that you create a ker­
nel module, since drivers may require frequent updates. Building a new module is 
much easier and less time consuming than rebuilding the entire kernel. Either way, 
you need to enable the wireless extensions in the kernel configuration. Most distribu­
tions now come with this enabled; however, if you are upgrading from scratch, the 
configuration looks like this:

# Loadable module support
#
C0NFIG_M0DULES=y
# C0NFIG_M0DVERSI0NS is not set
C0NFIG_KM0D=y

You may also notice that M0DVERSI0NS has been disabled. Having this option disabled 
makes it easier to compile modules separate from the kernel module tree. While not 
a requirement, this can save time when trying to patch and recompile kernel mod­
ules. Whichever chip architecture your card is using, if you’re using a PC card, or 
even some PCI cards, pcmcia-cs, the Linux PCMCIA card manager, will be able to 
detect your card and will have the appropriate driver installed for you. There are a 
number of drivers available, but only two are currently and actively maintained.

The Orinico_cs drivers, written by David Gibson, are generally recognized as the 
best for the Hermes cards. They are actively developed and patched, and work with 
most wireless applications. The Orinoco_cs drivers have been included in the Linux 
kernel since Version 2.4.3 and have been a part of the pcmcia-cs since version 3.1.30. 
The driver included with your distribution may not be as current, so you may wish to 
upgrade.

Confusingly enough, some prism2 cards are now supported in the Orninoco_cs driv­
ers. That number is increasing with each new release, so despite the name of the

802.11 b Security Concerns | 299



driver, it is beginning to be a solid option for prism2 users, and may emerge as a 
standard in the future.

However, should your card not be supported by the Orinoco_cs driver, Prism cards 
are also supported by the linux-wlan-ng driver from Absolute Value Systems. This is 
the best known and maintained client driver for this chipset at the moment. It is also 
included with most Linux distributions and supports PCI, USB, and PCMCIA ver­
sions of Prism 2.x and 3.0 cards.

Once you have installed the driver of your choice and everything is working, you’ll 
need to install the Linux Wireless Extension Tools, a collection of invaluable config­

u ra tio n  tools written by Jean Tourrilhes, found at his site: http://www.hpl.hp.com/ 
personal/]ean_Tourrilhes/Linux/Tools.html.

Using the Linux Wireless Exension Tools
Linux Wireless Extension Tools are very useful for configuring every aspect of your 
wireless networking devices. If you need to change any of the default wireless 
options or want to easily configure ad-hoc networks, you will need to familiarize 
yourself with these tools. They are also required for building a Linux access point, 
which will be discussed later in the chapter.

The toolkit contains the following programs:

iwconfig
This is the primary configuration tool for wireless networking. It will allow you 
to change all aspects of your configuration, such as the ESSID, channel, fre­
quency, and WEP keying.

iwlist
This program lists the available channels, frequencies, bit rates, and other infor­
mation for a given wireless interface.

iwspy
This program collects per node link quality information, and is useful when 
debugging connections.

iwpriv
'W ith this program, you can modify and manipulate parameters specific to your 
driver. For example, if you are using a modified version of the Orinoco_cs 
driver, iwpriv will allow you to place the driver into promiscuous mode.

Linux Access Point Configuration
A very useful tool in the Linux wireless arsenal is HostAP, a wireless driver written 
by Jouni Malinen. It allows prism2 card users to turn their wireless cards and Linux 
servers into access points. Since there are many inexpensive access points on the 
market, you might be asking yourself why you’d ever want to turn a server into an

300 | Chapter 18: Wireless Networking

http://www.hpl.hp.com/


access point. The answer is simply a matter of functionality. With most inexpensive 
dedicated access points, there is little functionality other than simply serving up the 
wireless network. There is little option for access control and firewalling. This is 
where Linux provides immeasurable advantages. W ith a Linux-based access point, 
you will be able to take advantage of Netfilter, RADIUS, MAC authentication, and 
just about any other type of Linux-based software you may find useful.

Installing the HostAP driver
In order to install HostAP, your system must have the following:

• Linux Kernel v2.4.20 or higher (kernel patches for 2.4.19 are included)
• Wireless extensions toolkit
• Latest HostAP driver, found at http://hostap.epitest.fi/releases 

Obtaining and building the HostAP driver
While RPM and .deb packages may be available, it’s likely that you will have to build 
HostAP from scratch in order to have the most recent version of the driver. Untar the 
source to a working directory. HostAP will also look for the Linux kernel source 
code in /usr/src/linux. Some distributions, such as Red Hat, place kernel source in 
/usr/src/linux-2.4. In that case, you should make a symbolic link called linux that 
points at your kernel source directory. Preparing the source for installation is fairly 
straightforward and looks like this:

[root@localhost root]# tar xzvf hostap-0.0.1.tar.gz
hostap-0.0.1/ 
hostap-0.0.l/COPYING 
hostap-O.O.l/ChangeLog 
hostap-0.0.1/FA0

hostap-0.0.1/Makefile 
hostap-0.0.l/README 
hostap-0.0.l/utils/util.h 
hostap-0.0.1/utils/wireless_copy.h

Unlike many packages, HostAP has no configuration script to run before building 
the source. You do, however, need to choose which modules you would like to 
build. HostAP can currently support PCMCIA, PLX, or PCI devices. USB devices are 
not compatible, though support may be added in the future. For this example, we’ll 
be building the PC Card version.

[root@localhost root]# make pccard
gcc -I/usr/src/linux/include -02 -D__KERNEL__ -DMODULE -Wall -g -c -I/usr/src/
linux/arch/i386/mach-generic -I/usr/src/linux/include/asm/mach-default -fomit-frame- 
pointer -o driver/modules/hostap_cs.o driver/modules/hostap_cs.c
gcc -I/usr/src/linux/include -02 -D__KERNEL__ -DMODULE -Wall -g -c -I/usr/src/
linux/arch/i386/mach-generic -I/usr/src/linux/include/asm/mach-default -fomit-frame- 
pointer -o driver/modules/hostap.o driver/modules/hostap.c

802.11 b Security Concerns | 301

http://hostap.epitest.fi/releases


Run 'make install_pccard' as root to install hostap_cs.o

[root@localhost root]# make pccard_install 
Installing hostap_crypt*.o to /lib/modules/2.4.20-8/net 
mkdir -p /lib/modules/2.4.20-8/net

Installing /etc/pcmcia/hostap_cs.conf 
[root@localhost hostap-0.O.l]#

After compiling, take note of the hostap_cs.conf file that’s now installed in letcl 
pcmcia. It is the module configuration file and tells the module to load when seeing a 
matching card. The list comes with configurations for a number of popular cards, 
but if yours isn’t listed, you will need to add it. This is an easy process, and entries 
are generally only three lines long:

card "Compaq WL100 llMb/s WLAN Card" 
manfid 0x0138, 0x0002 
bind "hostap_cs"

To determine the exact make of your card, this command can be used:

[root@localhost etc]# cardctl ident 
Socket 0: 
no product info available 

Socket 1:
product info: "Lucent Technologies", "WaveLAN/IEEE", "Version 01.01", "" 
manfid: 0x0156, 0x0002 
function: 6 (network)

[root@localhost etc]#

After these steps, you can either use modprobe to install your device, or reboot, and it 
will automatically load. You can check your syslog for the following message, or 
something similarly reassuring, to confirm that it has been loaded properly:

hostap_crypt: registered algorithm 'NULL' 
hostap_cs: hostap_cs.c 0.0.1 2002-10-12 

(SSH Communications Security Corp, Jouni Malinen) 
hostap_cs: (c) Douni Malinen 
PCI: Found IRQ 12 for device 00:0b.0 
hostap_cs: Registered netdevice wlanO 
prism2_hw_init()
prism2_hw_config: initialized in 17775 iterations 
wlanO: NIC: id=0x8013 vl.0.0 
wlanO: PRI: id=0xl5 vl.0.7 
wlanO: STA: id=0xlf vl.3.5
wlanO: defaulting to host-based encryption as a workaround for 
firmware bug in Host AP mode WEP 

wlanO: LinkStatus=2 (Disconnected) 
wlanO: Intersil Prism2.5 PCI: mem=0xe7000000, irq=12 
wlanO: prism2_open 
wlanO: LinkStatus=2 (Disconnected)

302 | Chapter 18: Wireless Networking



As discussed earlier, the iwconfig program is necessary to configure HostAP. First, 
you have to tell HostAP that you wish to use it in infrastructure mode. This is done 
with the following command:

vlager# iwconfig wlanO mode Master

Next, the ESSID must be set. This will be the name of the access point, seen by all of 
the clients. In this example, we’ll call ours “pub”:

vlager# iwconfig wlanO essid pub

Then you should set the IP address as follows:

vlager# iwconfig wlanO 10.10.0.1

Selecting a channel is an important step, and as mentioned earlier, a site survey 
should be conducted to find the least congested channel available:

vlager# iwconfig channel 1

Now, once this has been completed, you can check to make sure that it’s all been 
entered properly. The following command will produce:

vlager# iwconfig wlanO
wlanO IEEE 802.11-DS ESSID:"pub" Nickname:" "

Mode:Managed Frequency:2.457GHz Access Point:00:04:5A:OF:19:3D 
Bit Rate=llMb/s Tx-Power=l5 dBm Sensitivity:1/3 
Retry limit:4 RTS thr:off Fragment thr:off 
Encryption key:off 
Power Management:off
Link Quality:21/92 Signal level:-74 dBm Noise level:-95 dBm 
Rx invalid nwid:0. Rx invalid crypt:0 Rx invalid frag:2960 
Tx excessive retries:l Invalid misc:0 Missed beacon:0

The configuration of HostAP is complete. You should now be able to configure cli­
ents to connect to your Linux server through the wireless network.

Additional options
As you get more comfortable with HostAP, you may wish to configure some addi­
tional options, such as MAC filtering and WEP configurations. It is a good idea to 
implement one or both of these security measures, since the default configuration 
results in an open access point that can be sniffed or used by anyone within range. 
Using WEP will make sniffing more difficult but not impossible, and will also make 
unauthorized use a more complex process. MAC address filtering provides another 
good way to keep out unwanted guests. Again, it is important to note that because of 
flaws in the 802.11b protocol, neither of these steps will guarantee a safe and secure 
computing environment. In order to secure a wireless installation properly, tradi­
tional security methods, like VPNs, should be used. A VPN provides both confidenti­
ality and authentication, since after all, a client on a wireless LAN should be 
classified in the same way as a client from the Internet— untrusted.

Configuring HostAP

802.11 b Security Concerns | 303



Enabling WEP is simple and accomplished through the iwconfig command. You can 
choose whether you wish to use a 40-bit or 104-bit key. A 40-bit WEP key is config­
ured by using 10 hexadecimal digits:

# iwconfig wlanO key 1234567890

A 104-bit WEP key is configured with 26 hexadecimal digits, grouped in four, sepa­
rated by a dash:

# iwconfig wlanO key 1000-2000-3000-4000-5000-6000-70

Using the following command will confirm your key:

# iwconfig wlanO

It is also important to note that a WEP key can also be configured with an ASCII 
string. There are a number of reasons why this method isn’t particularly good, but 
perhaps the most important is that ASCII keys don’t always work when entered on 
the client side. However, should you decide you’d like to try, ASCII key configura­
tion is accomplished by specifying s: followed by the key in the iwconfig command, 
as follows:

For 40-bit keys, 5 characters, which equate to a 10-digit hexadecimal, are requred:

# iwconfig wlanO key s:smile

For 104-bit keys, 13 characters, which equate to the 26 hexadecimal digits in the ear­
lier example, are required:

# iwconfig wlanO key s:passwordtest3

If you wish to disable WEP, it can be done with:

# iwconfig wlanO key off

HostAP also provides another useful feature that allows clients to be filtered by MAC 
address. While this method is not a foolproof security mechanism, it will provide 
you with a certain amount of protection from unauthorized users.

There are two basic ways to filter MAC addresses: you can either allow the clients in 
your list, or you can deny the clients in your list. Both options are enabled with the 
iwpriv command. The following command will enable MAC filtering, allowing the 
clients in the MAC list:

# iwpriv wlanO maccmd 1

The M A C  filtering command maccmd offers the following options:

maccmd 0
Disables MAC filtering

maccmd 1
Enables MAC filtering and allows specified MAC addresses 

maccmd 2
Enables MAC filtering and denies specified MAC addresses

304 | Chapter 18: Wireless Networking



maccmd 3
Flushes the MAC filter table

To begin adding MAC addresses to your list, iwpriv is again used as follows:

# iwpriv wlanO addmac 00:44:00:44:00:44
This command adds the client with the MAC address 00:44:00:44:00:44 . Now this 
user will be allowed to participate in our wireless network. However, should we 
decide that we don’t want to allow this MAC at some point in future; it can be 
removed with the following command:

# iwpriv wlanO delmac 00:44:00:44:00:44
Now this MAC has been removed, and will no longer be able to associate. If you 
have a large list of client MAC addresses and wish to remove them all, you can flush 
the MAC access control list by invoking:

# iwpriv wlanO maccmd 3

This clears the access control list, and you will need to either disable filtering or re­
enter the valid MAC addresses you wish to authorize.

Troubleshooting
Because of their wireless nature, 802.11b networks can be much more prone to prob­
lems than traditional wired networks. There are a number of issues you may face 
when planning a wireless deployment.

The first is that of the signal strength. You want to make sure that your signal is 
strong enough to reach all of your clients, and yet not so strong that you’re broad­
casting to the world. The signal strength can be controlled with an antenna, through 
access point placement and some software controls. Experiment with different con­
figurations and placements to see what works the best in your environment.

Interference may also be an issue. Many other devices now share the same 2.4 GHz 
frequency used by 802.11b. Cordless phones, baby monitor, and microwave ovens 
may all cause certain amounts of interference with your network. Neighboring access 
points operating on the same channel, or close to the channel you have selected, can 
also interfere with your network. While it’s not likely that this particular issue will 
cause an outage, there will certainly be performance degradation. It is recom­
mended, again, that experimentation be conducted prior to any major deployment.

Besides the physical issues, there are a number of software issues that are fairly com­
mon. Most issues are caused by driver or card incompatibility. The best way to avoid 
these kinds of problems is to know precisely which hardware you’re using. Being 
able to identify your chipset will make finding the correct driver much easier.

Card identification is accomplished with the cardctl command, or by looking at the 
system log:

802.11 b Security Concerns | 305



[root@localhost etc]# cardctl ident 
Socket 0: 
no product info available 

Socket 1:
product info: "Lucent Technologies", "WaveLAN/IEEE", "Version 01.01", "" 
manfid: 0x0156, 0x0002 
function: 6 (network)

[root@localhost etc]#

In this example, we’re using the easily identifiable WaveLAN card. Of course, this 
only works after successful configuration and module loading.

Bridging Your Networks
Once the HostAP software and drivers have been properly configured, a useful next 
step is to grant the client’s access to your wired LAN. This is done via bridging, 
which requires software located at http://bridge.sourceforge.net. Some distributions 
have ready-to-install packages containing all necessary tools and kernel modifica­
tions. Red Hat RPMs contain both. Debian users can just enter apt-get install bridge- 
utils. Check your distribution for specifics.

The bridging software is controlled with a program called brctl. It is the main config­
uration tool for the software and has quite a few options. W e’ll be using only a few 
of the available choices, but for a more comprehensive listing, check the brctl 
manpages, which install with the software.

The first step in bridging is to create our virtual bridging interface by typing:

viager# brctl addbr brO

This command creates an interface on the machine that is used to bridge the two 
connections. You’ll see it when running ifconfig:

viager# ifconfig brO
brO Link encap:Ethernet HWaddr 00:00:00:00:00:00

BROADCAST MULTICAST MTU:1500 Metric:1 
RX packets:0 errors:0 dropped:0 overruns:0 frame:0 
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 
collisions:0 txqueuelen:0 
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Additionally, you can tell by looking at the system log whether the bridge has been 
enabled:

Dan 22 13:17:54 vlager kernel: NET4: Ethernet Bridge 008 for NET4.0

The next step is to add the two interfaces that you wish to bridge. In this example, 
we’ll be bridging wlanO, our wireless interface, and etho, our wired Ethernet inter­
face. First, however, it is important to clear the IP addresses from your interfaces. 
Since we’re bridging the networks at layer two, IP addresses are not required.

Viager# ifconfig ethl 0.0.0.0 down 
Vlager# ifconfig wlanO 0.0.0.0 down

306 I Chapter 18: Wireless Networking

http://bridge.sourceforge.net


vlager# brctl addif brO wlanO 
vlager# brctl addif brO ethl

The addif option adds interfaces that you’d like to have bridged. If you have another 
wired or wireless interface to add to the bridge, do so now in the same way.

The final step in the bridging process is to bring up the interfaces. You can also 
decide at this point whether you wish to assign an IP to your bridging interface. Hav­
ing an IP makes it possible to remotely manage your server; however, some would 
argue that not having an IP makes the device more secure. For most purposes, how­
ever, it is helpful to have a management IP. To enable the bridge, you will need to 
enable the bridge interface, as well as both hardware interfaces.

vlager# ifconfig brO 10.10.0.1 up 
vlager# ifconfig wlanO up 
vlager# ifconfig etho up

With the successful completion of these commands, you will now be able to access 
your bridge using the IP 10.10.0.1. Of course, this address must be one that is acces­
sible from either side of the bridge.

Now you may wish to configure all of this to load at startup. This is done in a differ­
ent way on just about every Linux distribution. Check the documentation specific to 
your distribution regarding the modification and addition to startup scripts.

Once the IP addresses have been removed, the interfaces can be added to the bridge.

802.11 b Security Concerns | 307





_______________ APPENDIX

Example Network: 
The Virtual Brewery

Throughout this book we’ve used the following example that is a little less complex 
than Groucho Marx University and may be closer to the tasks you will actually 
encounter.

The Virtual Brewery is a small company that brews, as the name suggests, virtual 
beer. To manage their business more efficiently, the virtual brewers want to network 
their computers, which all happen to be PCs running the brightest and shiniest prp- 
duction Linux kernel. Figure A-l shows the network configuration.

Virtual Wineiy Virtual Brewery
172.16.2.0/ 172.16.1.0/ UUCP

255.255.255.0 255.255.255.0 у

ethO
viager—if!

(1.1)

Éethl 6
vlager—if2 viager

(2.1)

Figure A-l. The Virtual Brewery and Virtual Winery subnets

O n the same floor, just across the hall, there’s the Virtual Winery, which works 
closely with the brewery. The vintners run an Ethernet of their own. Quite naturally, 
the two companies want to link their networks once they are operational. As a first 
step, they want to set up a gateway host that forwards datagrams between the two 
subnets. Later, they also want to have a UUCP link to the outside world, through 
which they exchange mail and news. In the long run, they also want to set up PPP 
connections to connect to offsite locations and to the Internet.

The Virtual Brewery and the Virtual Winery each have a class C subnet of the Brew­
ery’s class B network, and gateway to each other via the host vlager, which also sup­
ports the UUCP connection. Figure A-2 shows the configuration.

309



Virtual Winery 
172.16.2.0/ 
255.255.255.0

Virtual Brewery 
172.16.1.0/ 
255.255.255.0

ethO 
vlager— if! 
(1.1)

UUCP
ft

vlager (1.1)

Virtual Subsidiary 
172.16.3.0/ 
255.255.255.0

PPP link---
(3.1)

ethl 
(3.1) 

vbourbon— if!

vbourbon

PPP link

ethl 
vlager— if2 
(2.1)

pppo
Dynamic

oneshot

Figure A-2. The Virtual Brewery Network

Connecting the Virtual Subsidiary Network
The Virtual Brewery grows and opens a branch in another city. The subsidiary runs 
an Ethernet of its own using the IP network number 172.16.3.0, which is subnet 3 of 
the Brewery’s class B network. The host vlager acts as the gateway for the Brewery 
network and will support the PPP link; its peer at the new branch is called vbourbon 
and has an IP address of 172.16.3.1. This network is illustrated in Figure A-2.

310 | Example Network: The Virtual Brewery



Symbols
'  (asterisk), 61,110 
@ (at sign) (see a t sign)
{} (braces), 79 
[] (brackets), 68, 167 
: (colon), 67, 184, 242 
, (comma), 182 
$ command (sendmail), 223 
$= command (sendmail), 223 
. (dot) (see dot)
:: (double-colon), 235, 242 
= (equal sign), 94 
! (exclamation point), 184, 256 
! flag (netstat), 61 
> (greater than) sign, 181, 202 
-(hyphen), 102,110
< (input redirection), 37
< (less than) sign (sendmail), 202 
$# metasymbol, 201, 203
$* metasymbol, 200, 202 
$+ metasymbol, 200 
$- metasymbol, 200 
$: metasymbol, 201, 203 
$= metasymbol, 200 
$@ metasymbol, 200, 201, 203 
$~ metasymbol, 200 
- (minus sign), 37, 58 
+ (plus sign), 94, 256
#  (pound sign) (see pound sign)
" (quotation marks) (ssh), 177 
; (semicolon), 79 
’ (single quotation mark), 194 
/(forward slash), 78, 164

Numbers
16450 UART chip, 34 
16550 UART chip, 34 
-6 option (OpenSSH), 242 
802.11 standard, 295 
802.11a standard, 4, 295 
802.11b standard

client configuration, 297-300 
hardware and, 296, 297 
LANs and, 4 
laptops and, 294 
Linux access point

configuration, 300-305 
overview, 295 
troubleshooting, 305-306 

802.11g standard 
802.l ib  versus, 297 
LANs and, 4 
laptops and, 294 
overview, 295 

802. l l i  standard, 295
802.1 In standard, 296
802.15 working group, 295
802.16 working group, 295 
8250 UART chip, 34

A
A record

address resolution, 82 
FQDNs and, 75 
as glue record, 77 
hostcvt tool and, 91 
hostnames and, 81

W e’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com,

311

mailto:index@oreilly.com


A record (continued) 
nslookup and, 89 
purpose, 79 
type option and, 80 

-A subcommand option (iptables), 136 
AAAA record, 81 
ABORT keyword (chat), 102 
absolute names, 79, 80 
Absolute Value Systems, 300 
ACCEPT target (iptables), 126, 131, 132 
access control, 163, 164, 270-272 
access control lists (ACLs), 286 
access database, 208, 211, 217-219 
access points (wireless networks), 298, 299, 

300-305 
access_db feature, 211, 217 
ACLs (access control lists), 286 
action items, 68 
Active Directory, 266 
active hubs, 4
active-filter option (pppd), 114 
add argument (route), 50 
add-alias command (djbdns), 94 
add-host command (djbdns), 94 
addif option (bred), 307 
add-ns command (djbdns), 94 
address resolution 

A records and, 82 
BIND and, 66 
defined, 8
of external machines, 94 
overview, 19, 20 

Address Resolution Protocol (see ARP) 
addresses (see IP addresses; MAC addresses) 
adduser utility, 112« 
ad-hoc mode, 297 
adsl-setup script, 116 
adsl-start script, 117 
advanced policy routing, 11 
AF_ ROSE socket, 11 
AF_ X25 socket, 11 
AF_ATMPVC socket, 11 
AF_ATMSVC socket, 11 
AF_AX25 socket, 11 
AF.INET socket, 11 
AF_INET6 socket, 11 
AF.IPX socket, 11 
AF.NETROM socket, 11 
AFJJNIX socket, 11 
AirSnort tool, 296 
Albitz, Paul, 66 
alert messages, 261

aliases
canonical hostnames and, 82 
CNAME records and, 79 
configuring for interfaces, 57 
email addresses and, 183 
genericstable database and, 216, 217 
hostcvt tool and, 91 
hostnames and, 75 

aliases database
genericstable database and, 216 
overview, 211 
sendmail and, 206, 212 

aliases field (services), 168 
ALL EXCEPT keyword, 164 
ALL keyword, 164 
Allman, Eric, 179, 186 
ALLMULTI flag (ifconfig), 60 
allmulti option (ifconfig), 60 
allow-recursion option (named.conf), 78 
allow-transfer option (named.conf), 78 
AlohNet project, 294, 295 
amateur radio, 6, 11, 19 
anonymous users, 261, 286 
anonymous.newsgroups directory, 261 
Apache Software Foundation, 249 
Apache web servers 

background, 244
configuration file options, 247-250, 255 
configuring and building, 244—247 
IPv6 and, 240, 241 
OpenSSLand, 252-256 
overview, 244 
security considerations, 15 
troubleshooting, 256-257 
VirtualHost functionality, 250-252 

apache.conf file, 241 
apachectl tool, 250, 256 
Apache-SSL, 252 
-append subcommand option 

(iptables), 136 
APPENDDEF macro (Build), 190 
Appletalk, 11,96 
apt-get utility, 306 
apt-get utility (Debian), 120, 306 
Argonne National Laboratory, 291 
ARP (Address Resolution Protocol) 

ifconfig options and, 59 
overview, 19, 20 
proxy, 56, 64, 104 

arp option (ifconfig), 59 
ARP tables, 63, 65 
arp tool, 20, 63, 64

312 | Index



ARPANET, 2, 180 
ASCII characters, 105, 106, 304 
asterisk (*), 61, 110 
asynch map, 105, 106 
asynchronous communications, 5, 6, 105 
Asynchronous Control Character Map, 105 
Asynchronous Transfer Mode (ATM), 6, 11 
asyncmap option (pppd), 106 
AT command set, 39 
at sign (@) 

dot and, 80 
group names and, 272 
Internet email address and, 202 
origin and, 79 
SOA record, 76 

ATM (Asynchronous Transfer Mode), 6, 11 
attacks

ifconfig option and, 60 
inetd.conf file and, 162 
man-in-the-middle, 172 
methods of, 120-122 
named.conf and, 78 
system security and, 13 
onWEP, 296 
xinetd and, 164, 165 

ATTEMPT suboption (xinetd), 166 
ATZ command, 101 
auth facility (syslog), 163 
authentication

access points and, 301
chap-secrets file, 109
Cyrus IMAP and, 264
IMAP and, 261
LDAP and, 289
OpenLDAP and, 280, 285, 286
PAP and, 111
PPP and, 108-111,113
pppd and, 99, 109
Samba and, 269
security considerations, 15, 60, 107 
servers and, 96 
ssh daemon and, 172 
wireless networks and, 295, 299 

authoritative nameservers, 75 
authorization, 96, 269 
authorized_keys file, 174, 178 
autoconfig parameter (setserial), 35 
auto_irq parameter (setserial), 35 
automake configuration script, 46, 259 
automatic dialing, 100-102 
autonomous systems, 21 
AX.25 protocol, 6,11, 19 
Aznar, Guylhem, 180

B
backend database (BDB), 280 
bang path notation, 184 
baseband modulation (base), 4 
Bastille Linux, 14 
Bcc: field (mail header), 182 
-bd argument (sendmail), 228 
BDB (backend database), 280 
beacons, 299 
Beale, Jay, 14
Berkeley Internet Name Domain service (see 

BIND service)
Berkeley Socket Library, 10 
BerkeleyDB, 265, 280 
Bernstein, D.J., 66, 92 
bestmx_is_local feature, 213 
BGP (Border Gateway Protocol), 25 
binary data, XON/XOFF handshake and, 33 
BIND (Berkeley Internet Name Domain) 

service 
address resolution and, 66 
alternatives to, 92-95 
dig tool, 84, 87, 88 
hostcvt tool, 91 
named.conf file, 77-79 

bind interface, 270 
BindAddress option (Apache), 247 
binding

addresses and ports, 247 
Samba and, 270 

Biro, Ross, 11 
bitdomain database, 220 
bitdomain feature, 220 
BITNET networks, 220 
biz top-level domain, 72 
blacklist_recipient feature, 218 
Bluetooth, 295 
BNC connector, 3 
BOOTP protocol, 20 
Border Gateway Protocol (BGP), 25 
bounced mail, 183 
braces {}, 79 
brackets [], 68, 167 
bred program, 306, 307 
BREAK (carriage return), 102 
Brewery, Virtual, 309 
bridges/bridging

DSL modems and, 116 
wireless networks, 306-307 

broadband wireless systems, 295 
broadcast address, 18 
BROADCAST flag (ifconfig), 59

Index | 313



broadcast option (ifconfig), 59 
broadcasting 

defined, 19
eavesdropping and, 122 
Ethernet and, 56, 60 

browsable command (Samba), 271 
-bs argument (sendmail), 228 
BSD print system, 273 
BSD remote services, 120, 121 
BSD routed daemon, 25 
buffers, UART chips and, 34 
bug databases, 120 
Bugtraq database, 120 
Build utility, 190-191, 209 
Burgiss, Hal, 116 
BUSY message, 102 
bytes_from field (mailstats), 230 
bytes_to field (mailstats), 230

c
-c argument (Build), 191 
.C command (sendmail), 223 
C command (sendmail), 198, 199 
-c option (iptables), 135 
cable modems, 30 
cacert.org organization, 252 
cache option (named.conf), 79 
caching-only servers, 75, 78, 83, 98 
Callahan, Michael, 97 
callout (cua) devices, 31 
/canon command (sendmail), 223 
canonical hostname 

A record and, 81 
aliases and, 82 
defined, 75 
SOA record and, 80 

card identification, 305 
cardctl command, 305 
carriage return, 102 
case sensitivity, 113,193 
Cc: field (mail header), 181 
CCITT, 179 
cellular phones, 233 
certificates

OpenLDAP and, 290 
OpenSSL and, 262 
SSL and, 252,253 
troubleshooting, 293 

chains
iptables and, 126, 130, 134 
packets and, 131

policies for, 131 
rules and, 149 

Challenge Handshake Authentication 
Protocol (see CHAP)

channels
defined, 298 
HostAP and, 303 
iwconfig tool and, 300 
troubleshooting and, 305 

CHAP (Challenge Handshake Authentication 
Protocol) 

authorization and, 96 
chap-secrets file, 109,111 
mgetty program and, 113 
PAP and, 108,109 
PPP and, 108,113 
pppd and, 97, 99 

chap-secrets file, 109, 111 
chargen internal service, 161 
chat program, 97, 100-102 
checksums, 15, 96, 129 
chipsets, 296, 297 
choke points, 122
CIDR (Classless Inter-Domain Routing) 

address scarcity and, 233 
block notation, 19 
IP addresses and, 18 
notation used, 138 
overview, 234 

CIFS (Common Internet File System), 266, 
267

cipher, SSL, 290 
Class A networks 

address ranges, 18 
IANA and, 45,233,234 
nslookup and, 89 
overview, .17 

Class B networks 
address ranges, 18 
IANA and, 45,234 
overview, 17 
subnetting and, 48 

Class C networks 
address ranges, 18 
CIDR and, 234 
IANA and, 45 
overview, 17 
subnetting and, 48 

Class D networks, 17 
Class E networks, 17 
Class F networks, 17

314 | Index



class field (resource record) (DNS master 
file), 79

Classless Inter-Domain Routing (see CIDR)
Clear to Send (CTS), 33
clients

802.11b standard and, 297-300 
certificates and, 252 
Ethernet addresses and, 20 
listening for, 10 
ports and, 10 
PPPoE, 116-118 
RPC and, 169 
testing IMAP, 263 
ucspi-tcp program, 92 

clocal flag (stty), 38 
cmdline field (inetd), 162 
CNAME record

canonical hostname and, 75, 81 
purpose, 79, 82 

coaxial cable and, 3 
Collier-Brown, David, 266 
collisions, 4 
colon (:), 67, 184, 242 
com top-level domain, 72 
Comer, Douglas R., 16 
com_err.h file, 265 
comma (,), 182 
comments 

DNS, 78 
nsswitch.conf, 67 
pppd, 99 
r command, 171 
sendmail.mc file, 192 

Common Internet File System (CIFS), 266, 
267

Common Unix Printing System (CUPS), 274, 
275

Common Vulnerabilities and Exposures 
(CVE) database, 120 

communications software, 29, 30 
Compressed SLIP (CSLIP), 8 
confDONT_PROBE_INTERFACES variable 

(m4), 213 
confEBINDIR variable (m4), 205 
confHOST_STATUS_DIRECTORY variable 

(m4), 230 
configtest option (apachectl), 250, 256 
configuration files

Apache web servers, 247-250, 255 
COPS program, 14 
dhcpd.conf file, 47 
djbdns resolver and, 93

mgetty program, 39, 40 
named.conf, 77
OpenLDAP and, 281,282,288,290 
PPPoE clients, 117 
printcap file, 274, 275 
remote login and execution, 170-178 
resolver functions and, 67 
RPC and, 170 
Samba and, 269, 277 
sendmail, 179, 190, 191, 192-198 
testing with apachectl, 256 
troubleshooting, 257 
xinetd and, 166, 167 

configuration utilities, serial ports 
and, 34-38 

configure program (OpenLDAP), 281 
confTRUSTED_USERS option 

(FEATURE), 219 
confUSERDB_SPEC option (define), 219 
connect command, 114 
CONNECT message (chat), 101 
connect option (pppd), 100, 107 
Connect: tag field (sendmail), 218 
connection tracking, 150, 157 
contact field (SOA RR) (DNS master file), 80 
continue option (nsswitch.conf), 68 
control characters, 106 
converting binary to hexadecimal, 106 
COPS program, 14 
Costales, Bryan, 186 
country codes, 73 
Cox, Alan, 11 
cp command, 177,210 
cps option (xinetd), 166 
cron jobs, 13, 228 
crontab file, 231 
crtscts flag (stty), 36, 37 
crtscts option (pppd), 98, 113 
crtsdts flag (stty), 38 
cs5 flag (stty), 38 
cs6 flag (stty), 38 
cs7 flag (stty), 38 
cs8 flag (stty), 38 
CSLIP (Compressed SLIP), 8 
cstopb flag (stty), 38 
CTS (Clear to Send), 33 
cua (callout) devices, 31 
CUPS (Common Unix Printing System), 274, 

275
CustomLog option (Apache), 248 
CVE (Common Vulnerabilities and 

Exposures) database, 120

Index | 315



cyrus argument (MAILER macro), 196 
Cyrus IMAP, 259,263-265

D
-d built-in match (iptables), 137 
.D command (sendmail), 223 
D command (sendmail), 198, 199 
-d command (sendmail), 223 
-d option (arp), 64
-D subcommand option (iptables), 136 
daemon facility (syslog), 101,112 
daemon wrapper, 163 
daemons, 160,162, 171 
daemontools program, 92, 93 
DARPA (Defense Advanced Research 

Projects Agency), 2 
Data Carrier Detect (DCD), 38, 101 
data communications equipment, 5 
data terminal equipment, 5 
Data Terminal Ready (DTR), 40 
databases

LDAP and, 278 
sendmail, 210-222 

datagrams
broadcasting, 19
congested networks and, 55
firewall packet logging and, 133n
hops for, 26
hosts and, 20, 21
netstat command and, 61
packets as, 2, 7
routing, 24-26
subnets and, 21
traceroute and, 63
UDP and, 9
Van Jacobson header compression, 97 

data-only keyword (mgetty), 40 
Date: field (mail header), 182 
daytime internal service, 161 
DCC (Direct Communications 

Channels), 157 
DCD (Data Carrier Detect), 38, 101 
DDI (Device Driver Interface), 12 
Debian, 120, 288, 306 
debug keyword (mgetty), 40 
debugging, PPP and, 112 
DECnet, 196 
default route, 18, 24, 25 
default-lease-time option (DHCP), 47 
defaultroute option (pppd), 99, 104 
Defense Advanced Research Projects Agency 

(DARPA), 2

define command (sendmail) 
databases and, 219 
lowercase and, 193 
overview, 190, 195 
sendmail.cf and, 198 
sendmail.me and, 192 
setting maximum headers, 206 

del argument (route), 50 
--delete subcommand option (iptables), 136 
-delete-chain subcommand option 

(iptables), 136 
delimiters, 200 
demand dialing, 114,115 
demand option (pppd), 114 
denial of service attacks, 121, 150 
dependencies, OpenLDAP and, 280 
-destination built-in match (iptables), 137 
Destination NAT (DNAT), 121, 156, 159 
--destination-port match option 

(iptables), 140 
-detach option (pppd), 101, 113 
/dev directory, 30 
device argument (ip-up), 105 
Device Driver Interface (DDI), 12 
device drivers, Net-4 and, 11 
dgram sockets, 161 
DHCP (Dynamic Host Configuration 

Protocol), 44-48 
dhcpcd program, 46 
dhcpd.conf file, 47 
diald command, 114 
dial-up configuration 

authorization and, 96 
dumb terminals and, 38 
IP addresses and, 103 
nameservers and, 69 
persistent dialing and, 115 
proxy ARP and, 64 

dig tool (BIND), 84,87,88 
Direct Communications Channels 

(DCC), 157 
direct keyword (mgetty), 40 
directory services, 278 
disable configuration option (xinetd), 167 
-disable-v4-mapped tag (IPv6), 241 
DISCARD action (access rule), 218 
discussion lists, 261 
Distinguished Names (DN), 279 
divert command (m4), 192, 193 
djbdns resolver, 66, 92-93 
DMZ (demilitarized zone) networks, 122 
DN (Distinguished Names), 279

316 | Index



DNAT (Destination NAT), 121, 156, 159 
DNAT target (iptables), 127, 159 
dnl command (m4), 193 
DNS database

master files and, 79-83 
overview, 75-77 
time to live, 75 
tools used with, 91 

DNS (Domain Name System)
BIND alternatives, 92-95 
IP masquerade and, 158, 159 
name lookups, 74-75 
name resolution and, 28 
named.conf file, 77-79, 83 
nameservers, 75, 87, 88 
newsgroups, 67 
nslookup and, 88-91 
overview, 71-73 
spoofing, 176 
useful tools, 91 
writing master files, 84-87 

dns option (nsswitch.conf), 67 
dnsip tool, 95 
dnswalktool, 91
DocumentRoot option (Apache), 248 
domain field (resource record), 79, 82 
DOMAIN file, 194,205-209 
DOMAIN macro (sendmail), 194, 204 
Domain Name System (see DNS) 
domain names, 47, 202 
domain option 

pppd, 110 
resolv.conf, 70 

domainname command, 44 
domain-name-servers command, 47 
domains

access database and, 218 
authoritative servers and, 75 
country codes, 73 
default, 70 
defined, 71
hosting on single IP addresses, 251 
hostnames in, 73 
in-addr.arpa, 82 
mail, 82, 183, 184 
master files and, 79 
relay-domains file and, 214 

domaintable feature, 220 
dot (.)

absolute names and, 79 
at sign and, 80 
domain names and, 202

local hostnames and, 164m 
namespace and, 71 

dotted decimal notation, 8 
dotted quad notation 

ARP tables and, 63 
ifconfig command and, 58 
IP addresses and, 8, 17, 110 
iptables built-in matches and, 138 
netstat command and, 61 
pppd and, 103 
route command and, 54 

double-colon (::), 235, 242 
down option (ifconfig), 58 
--dport match option (iptables), 140 
DROP target (iptables), 126, 131,132 
DSA keys, 172 
DSL modems, 30,116 
dsmtp mailer (MAILER macro), 196, 197, 

204, 220
--dst built-in match (iptables), 137 
DTR (Data Terminal Ready), 40 
DURATION suboption (xinetd), 166 
Dynamic Host Configuration Protocol 

(DHCP), 44-48

E
-E subcommand option (iptables), 136
eavesdropping, 122
ebtables (Ethernet Bridge Tables), 126
echo flag (stty), 38
Echo Reply message (ICMP), 150
Echo Request message (ICMP), 124, 150
Echo Request message (PPP), 107
Echo Response message (PPP), 107
Eckstein, Robert, 266
edu top-level domain, 72
EGP (External Gateway Protocol), 25
electronic mail

administration issues with, 179-185 
IMAP and, 258 
serial communications and, 29 
testing, 222 

elm mail reader, 181 
email addresses

$: metasymbol and, 203 
access database and, 218 
genericstable database and, 216 
genericstable feature and, 211 
parts of, 183
relay_from_local feature and, 215 

email (see electronic mail) 
-enable-v4-mapped tag (IPv6), 241

Index | 317



encryption
802.11b standard and, 296 
802. l l i  standard and, 295 
eavesdropping and, 122 
LDAP and, 289 
remote login and, 171 
Samba and, 269 
ssh daemon and, 172 
SWAT and, 276 
troubleshooting, 257 
wireless Ethernet and, 4 

end points, TCP and, 9 
envelope, 180, 218 
equal sign (=), 94 
ERROR action (access rule), 219 
error messages

access rules and, 219 
Apache web servers and, 256 
bounced mail and, 183 
certificates and, 252 
ICMP and, 26 
IPv6 notation and, 242 
OpenSSLand, 262 

error_log file, 257 
ErrorLog option (Apache), 248 
ertm script, 229 
escape characters, 105, 106 
ESMTP (Extended SMTP), 197 
esmtp mailer (MAILER macro), 196, 197,

203, 204, 220 
ESSID, 299,300,303 
Ethernet

ARP and, 20
broadcasting and, 19, 56, 60 
IP addresses and, 44 
IP masquerading and, 155 
MAC addresses and, 132, 138 
overview, 3-5
passive collection of accounting data, 152 
PPP and, 98 
prevalence of, 154 
(see also PPPoE)

Ethernet interfaces, 16, 52-54 
Ethernet snooping, 59 
ETRN command (ESMTP), 197 
Evolution mail reader, 181 
-exact option (iptables), 135 
exclamation point (!), 184, 256 
expect strings, 100, 102 
expire field (SOA RR), 81 
EXPOSED_USER macro (generic.m4), 207

External Data Representation (XDR) 
format, 169 

External Gateway Protocol (EGP), 25 
external routing protocols, 25

F
-f argument (Build), 190 
-f built-in match (iptables), 137 
F command (sendmail), 198, 199 
-f option (chat), 101
-F subcommand option (iptables), 136, 152 
Fannin, David, 116 
fax argument (MAILER macro), 196 
FDDI, 11, 16 
FE8x addresses, 236, 238 
FE9x addresses, 236 
FEATURE macro (sendmail)  ̂

databases and, 219, 220 
generic.m4 file and, 208 
hostnames and, 207 
mailers and, 205 
overview, 195 
pseudo-domains and, 206 
usernames and, 199 

FEAx addresses, 236 
FEBx addresses, 236 
Feigenbaum, Barry, 266 
FHS (File Hierarchy Standard), xv 
FidoNet, 184 
FIFO buffer, 34
File Hierarchy Standard (FHS), xv 
files option (nsswitch.conf), 67 
files service (nsswitch.conf), 69 
filter table (iptables) 

chains for, 134 
as default, 131 
description, 131 
null rule, 132 

filtering
defined, 123 
hosts and, 122 
MAC addresses, 303, 304 
spoofing and, 121 
(see also IP filtering) 

finger daemon, 163 
finger service, 162, 164 
fingerprints, 176, 188 
firewall packet logging, 133m 
firewalls

denial of service attacks and, 150 
IP accounting and, 147 
IP masquerade and, 156

318 | Index



kernel and, 123, 133, 134 
Linux and, x
methods of attacks and, 120-122 
NAT and, 125 
Net-4 and, 11 
overview, 122, 123 
PPPoE and, 116 
purpose of, 119 
references, 144 
Samba and, 268 
sample configuration, 141-144 
troubleshooting, 243, 293 

fixed IP addresses, 47 
fixed-address option (DHCP), 47 
Fluhrer, Scott, 296
-flush subcommand option (iptables), 136 
focus characters, 202 
FORWARD hook point (iptables) 

chains and, 127 
DROP target and, 126 
filter table and, 131,134 
functionality, 129 
MAC match option, 139 
mangle table and, 131 
null rule, 132 

forward slash 0 , 78, 164 
ForwardPath option (sendmail.cf), 206 
fourport parameter (setserial), 35 
Fox, Karl, 97
-fqdn argument (hostname), 44 
FQDNs (fully qualified domain names) 

adding hosts and, 94 
DHCP servers and, 47 
email addresses and, 183 
hostnames and, 44, 203 
NS record and, 77 

FRAD (Frame Relay Access Device), 5 
-fragments built-in match (iptables), 137 
fragmentation, 149, 150 
Frame Relay Access Device (FRAD), 5 
Frame Relay protocol, 5,11 
frames (see packets)
Free Software Foundation, x 
FreeBSD, 12
From: field (mail header), 181 
From: tag field, 218 
fs file, 67
FSSTND (Linux File System Standard 

Group), xv 
FTP, 148, 156
fullstatus option (apachectl), 250 
fully qualified domain names (see FQDNs)

G
G flag (netstat), 61 
gated

defined, 56 
metric value and, 26 
netstat options and, 61 
RIP and, 26 

gateways
configuring, 55 
hops and, 26 
hosts as, 7 
IP and, 24-26 
mail routing and, 184 
netstat command and, 61 
networks and, 22-24 
proxy ARP and, 64 
routing through, 54 

generic-linux.mc file
generic.m4 file and, 205 
modifying, 207 
naming of, 204 
purpose, 203 

generic.m4 file, 205-209 
GENERICS_DOMAIN macro, 215 
generics_entire_domain feature, 215 
genericstable database, 208, 211, 215-217 
genericstable feature, 211,215 
Gentoo Linux, 260, 267 
getdomainname() system call, 70 
gethostbyaddr() function, 27, 67 
gethostbyname() function, 27, 67 
gethostname() function, 110 
getty program, 38, 39 
Gibson, David, 299 
glibc library, 67
global Top-Level Domains (gTLD), 72
global unicast address, 236
glue records, 77, 82
GNU General Public License, x
Gnu Privacy Guard (gpg), 187, 188
GNU standard library, 67
gov top-level domain, 72
gpg (Gnu Privacy Guard), 187, 188
GQ, 291
graceful option (apachectl), 250 
greater than (>) sign, 181, 202 
group ID, sendmail and, 191 
GTK+-style interface, 291 
gTLD (global Top-Level Domains), 72 
guest directive (Samba), 271 
GUI, 275, 291

Index | 319



H
H command (sendmail), 198, 199 
H flag (netstat), 61 
-h option (iptables), 135 
handshakes, 33, 36, 105 
hardware, 802.11b standard and, 296 
hardware Ethernet option (DHCP), 47 
hardware field (HINFO RR), 83 
hardware handshaking (see handshakes) 
hash sign (see pound sign)
HDLC (High-Level Data Link Control), 96, 

97, 112
help command (nslookup), 91 
--help option (iptables), 135 
Hermes chipsets, 296, 297, 299 
Hesiod addresses, 75, 79 
hexadecimal characters, 106, 304. 
High-Level Data Link Control (HDLC), 96, 

97, 112 
HINFO record, 83 
holdoff option (pppd), 114,115 
hook points, 127,129,131 
hops, 26, 26n 
host field (MX RR), 82 
host keys, 172, 175 
host numbers, 17 
-host option (route), 50 
HOST suboption (xinetd), 166 
host tool, 91
HostAP tool, 298, 300-303, 306 
hostap_cs.conf file, 302 
hostcvt tool (BIND), 91 
hostlist, 164 
hostname

A record and, 81 
access database and, 218 
canonical, 75, 80, 81, 82 
chap-secrets file, 110 
dot and, 164n 
FEATURE macro and, 207 
FQDNs and, 203 
genericstable database and, 216 
hostlist and, 164 
IP addresses and, 67, 81, 103 
IP masquerade and, 207 
localhost, 51,52 
mapping, 79, 82 
networks file and, 50n 
scp program and, 177 
setting, 44 
uniqueness of, 73 
xinetd and, 165

hostname command, 44 
hostname option (nslookup), 89 
hostname resolution 

defined, 8
local nameservers and, 71 
nsswitch.conf and, 67 
overview, 27 
pppd and, 98
TCP/IP networking and, 48-50 

HostnameLookups option (Apache), 248 
hosts

access database and, 218 
adding, 93 
broadcasting and, 19 
communications and, 5 
defined, 1
DHCP lease and, 47 
eavesdropping and, 122 
filtering and, 122 
firewalls and, 122 
as gateways, 7, 22 
IP addresses and, 8, 20, 45 
IP masquerade and, 156 
MAC addresses, 48 
mail and, 183, 184 
names for, 70, 75 
ports on, 9
relay-domains file and, 214 
remote login to, 176 
security and, 163 
serial communications and, 29 
sizes of, 17 
spoofing and, 121 
thin Ethernet and, 4 
trusted, 163 
updating files for, 27 
zones and, 74 

hosts database, 67 
hosts: dns files, 71 
hosts file

backup host table in, 71 
configuring gateways and, 55 
hostcvt tool and, 91 
ifconfig and, 51 
nameservers and, 69 
writing, 48-50 

hosts.allow file, 163 
hosts.deny file, 163 
hoststat command, 230, 231 
HostStatusDirectory option, 230 
HOSTS.TXT database, 27 
HTTP, 123, 124, 148

320 | Index



httpd -1 command, 255 
httpd.conf file, 247, 250-252, 255 
hub-and-spoke model, 298 
hubs, active, 4 
Hunt, Craig, 16, 199 
hwaddr argument (arp), 64 
HylaFAX software, 196 
hyphen (-), 102,110

I
-i built-in match (iptables), 138 
-I subcommand option (iptables), 136 
IANA (Internet Assigned Numbers 

Authority), 45, 233, 234 
IBM, 5, 220, 266
ICMP (Internet Control Message Protocol) 

IP accounting and, 150,151 
IP filtering and, 124 
iptables matches, 139 
netstat options and, 61 
TCP/IP and, 26-28 
traceroute and, 63 

-icmp-type match option (iptables), 139 
identity file, 174, 175 
identity.pub file, 174, 178 
idle option (pppd), 115 
IEEE (Institute of Electrical and Electronics 

Engineers), 295, 296 
IETF (Internet Engineering Task Force), 10, 

267
if argument (route), 50 
iface argument (ip-up), 105 
ifconfig command

bridging interface and, 306 
compatibility considerations, 52 
Ethernet interfaces, 53 

1 interface configuration and, 50 
IPv6 and, 237 
multicast support, 46 
network devices and, 30 
overview, 57-60 
PPPoE clients and, 118 

IMAP (Internet Message Access Protocol) 
aliases and, 217 
choosing, 259-263 
Cyrus, 263-265 
email and, 180 
POP and, 258, 259 
purpose, 258 

imapd.alert file, 261 
imapd.conf file, 264 
in-addr.arpa domain, 82

include option (Apache), 247 
indefinite tokens, 200 
inetd daemon, 160-163, 227, 267 
inetd.conf file

disabling r* commands, 171 
finger daemon, 163 
IMAP and, 260, 262 
overview, 161-162 
Samba in, 268 
SWAT and, 276 

inetOrgPerson schema, 279 
info top-level domain, 72 
infrastructure mode, 297, 298, 303 
--in-interface built-in match (iptables), 138 
init command, 40 
inittab file, 40 
INPUT hook point (iptables) 

chains and, 127 
filter table and, 131, 134 
functionality, 129 
MAC match option, 139 
mangle table and, 131 

input redirection (<), 37 
--insert subcommand option (iptables), 136 
install-cf command (Build), 210 
installing

Apache considerations, 248 
LDAP libraries, 286 
sendmail, 186-192 
ssh tools, 171-178 
UW IMAP, 259-261 

instances option (xinetd), 165 
Institute of Electrical and Electronics 

Engineers (IEEE), 295, 296
interfaces 

bind, 270
bridging and, 306, 307 
configuring aliases for, 57 
defined, 16
displaying netstat statistics, 62 
Ethernet, 16, 52-54 
GTK-f-style, 291 
incompatible changes and, 169 
IP and, 50n 
IPv6 and, 237, 238 
packets and, 18 
packet-switching and, 26 
PPP, 57
procmail argument (MAILER) and, 196 
promiscuous mode, 59 
Samba and, 270
(see also loopback interface; network 

interfaces)

Index | 321



interference, 305
internal keyword (inetd.conf), 162 
internal routing protocols, 25 
internal services, 161 
International Standards Organization 

(ISO), 96
Internet

ARPANET and, 2 
dangers of, 119 
estimated users, 233 
expense of connections, 154 
growth of, 29 
HOSTS.TXT database, 27 
IP masquerade and, 155, 156, 157 
Linux documentation available, xii 
mail routing on, 184-185 
PPP links, 98 
prevalence of, ix 
RFC 822 and, 179, 183 
security considerations, 116 

Internet Assigned Numbers Authority 
(IANA), 45, 233, 234 

Internet Control Message Protocol (see 
ICMP)

Internet Daemon (see inetd daemon)
Internet Engineering Task Force (IETF), 10, 

267
Internet Message Access Protocol (see IMAP) 
Internet Protocol Control Protocol 

(IPCP), 97, 98, 102 
Internet Protocol (see IP) 
internetworking, 7 
interoperability, 278 

(see also Samba) 
interrupts, UART chips and, 34 
intranets, 18
IP accounting, 11,146-152 
IP addresses

access database and, 218
ARP table and, 64
assigning, 8, 44, 45
binding, 247
bridging and, 307
choosing, 102, 104
clearing, 306
DHCP and, 45-48
DNS and, 75,94
dotted quad notation, 8, 17,110
DSL modems and, 116
end points and, 9
finding, 8
fixed, 47

HostAP driver and, 303 
hostlist and, 164 
hostnames and, 81 
ifconfig and, 58 
interfaces and, 16 
IP accounting by, 147, 148 
IP masquerading and, 155 
IPv4 problems, 234 
IPv6 and, 235, 236 
looking up, 67 
mapping, 27, 82 
MTAs and, 184 
NAT and, 159,234 
nslookup and, 89 
pap-secrets file and, 111 
Samba and, 276 
scarcity of, 154, 233 
TCP/IP and, 17-26 
virtual hosting, 57 
xinetd and, 165 

IP Alias, 57 
IP filtering

example, 126 
IP masquerade and, 157 
iptables and, 129, 130, 134 
overview, 124-125 

IP firewalling, 11,125 
IP forwarding, 55, 152«
IP (Internet Protocol)

choosing gateways, 24-26 
configuration options, 102-105 
Frame Relay and, 5 
interfaces and, 50« 
iptables matches, 137 
networks, 20, 21 
overview, 6-8 
tunneling, 11 
virtual hosting, 250,251 

IP masquerade
configuring, 157, 158 
example, 126 
hostnames and, 207 
IP firewalling and, 125 
kernel and, 157 
nameserver lookups and, 158 
NAT and, 154 
Net-4 and, 11 
overview, 156, 157 

IP Multicast service, 17 
ipchains command, 125, 134, 147 
ipchains.o module, 134 
ip_conntrack_ftp module, 157

322 | Index



IPCP (Internet Protocol Control 
Protocol), 97, 98, 102 

ipcp-accept-local option (pppd), 103« 
ipcp-accept-remote option (pppd), 103« 
ipfwadm interface, 125, 134 
ipfwadm.o module, 134 
ip_nat_ftp.o module, 157 
IPSec, 236 
iptables command

built-in matches, 137-141 
concepts, 127-133 
IP accounting and, 146, 147 
IP accounting by service port, 148 
IP masquerade and, 157, 158 
netfilter and, 134 
OpenLDAP and, 293 
options for, 134 
overview, 125-127 
resetting counters, 151 
rules and, 123, 152, 159 
security and, 121 
subcommands, 136, 137 
using, 134-135 

ip_tables.o module, 134 
ip-up command, 104,105,114 
iputils package, 237 
IPv4 standard

addressing and, 8 
match options, 137 
OpenSSH and, 242 
problems with, 233, 234 
tunnel brokers and, 238 

IPv6 standard
AAAA record and, 81 
addresses with, 8, 235, 236 
advantages, 236 
applications and, 240-242 
configuration, 236-238 
troubleshooting, 242-243 
tunnel brokers and, PP-240 
xinetd and, 165 

IPX, 11,96 
IPXCP, 97
irq option (ifconfig), 59 
irq parameter (setserial), 35 
ISDN, Net-4 and, 11 
ISO (International Standards 

Organization), 96 
ISO-3166, 73
iwconfig tool, 300, 303, 304 
iwlist program, 300 
iwpriv program, 300, 304, 305

iwspy program, 300 
ixon flag (stty), 38

J
-j MASQUERADE option (iptables), 157
-j option (iptables), 135, 147
-j SNAT option (iptables), 157
Java applets, 291
--jump option (iptables), 135

K
K command (sendmail), 198, 199 
kdebug option (pppd), 112 
Keep Alive option (Apache), 249 
KeepAliveTimeout option (Apache), 249 
Kerberos authentication, 60, 264, 280 
kermit terminal program, 29 
kernel

access control and, 31 
ARP tables, 63, 65 
debugging, 112 
domainname command, 44 •
HostAP and, 301 
ICMP and, 26 
ifconfig command and, 50 
initializing, 42 
interfaces and, 16 
IP accounting and, 146 
IP firewall and, 123, 133, 134 
IP forwarding and, 55 
IP masquerade and, 157 
IPv6 and, 236,237,243 
loadable kernel module and, 299 
location of source code, 301 
MTU and, 106 
netfilter and, 119 
PPP and, 30, 97 
/proc filesystem and, 43 
serial ports and, 34 

key ring, 187, 188, 189 
KeyFile entry (httpd.conf), 256 
keys (see private keys; public keys)
Kim, Gene, 15 
klogd daemon, 112 
known_hosts file, 174, 176 
Krieger, Markus, 276

L
-1 argument (ssh), 176
-L subcommand option (iptables), 136, 158

Index | 323

ftp://ftp.o


LANs (Local Area Networks)
IP masquerading and, 155 
nameservers and, 71 
prevalence of, 154 
routing tables and, 25 
wireless networking and, 295 

LCP (Link Control Protocol) 
overview, 105-107 
PPP and, 96 
pppd and, 98, 108 

lcp-echo-failure option (pppd), 107 
lcp-echo-interval option (pppd), 107 
LDAP Data Interchange files 

(LDIF), 283-285 
LDAP (Lightweight Directory Access 

Protocol)
GUI and, 291 
overview, 278-279 
sendmail and, 190 
(see also OpenLDAP) 

ldapadd utility, 283 
ldapsearch command, 283, 285, 288 
LDIF (LDAP Data Interchange 

files), 283-285 
less than (<) sign (sendmail), 202 
libc library, 27, 67 
Libes, Don, 100
Lightweight Directory Access Protocol (see 

LDAP) 
line discipline, 30
-line-numbers option (iptables), 135 
Link Control Protocol (see LCP) 
link-local address, 235, 238 
Linux

documentation available, xii 
getting the code, 12 
mailing lists, xiii 
obtaining, xiv 
platforms supported, ix 
Usenet newsgroups, xiii 
user groups, xiv 

Linux Documentation Project, xii 
Linux File System Standard Group 

(FSSTND), xv, 32 
Linux Journal, xiii 
Linux Magazine, xiii 
Linux Standard Base, xv 
Linux Systems Labs, xii 
Linux Wireless Extension Tools, 300 
linux.m4 file, 204 
linux-wlan-ng driver, 300 
--list subcommand option (iptables), 136

Listen option (Apache), 247 
listening

IPv6 cautions, 240, 241 
OpenLDAP and, 287 
OpenSSH and, 242 
ports and, 10 
Samba and, 271 
slapd program and, 282 
testing, 290 

Liu, Cricket, 67
LKM (loadable kernel module), 299 
lnp option (IMAP), 260 
load printers option (printcap), 275 
loadable kernel module (LKM), 299 
loadavgfile, 43
Local Area Networks (see LANs) 
local argument (MAILER macro), 196 
LOCAL keyword, 164 
local mailer (MAILER macro), 196, 204 
local_addr option 

ip-up, 105 
pppd, 103 

LOCAL_CONFIG macro (sendmail), 197, 
198

LOCAL_DOMAIN macro (sendmail), 213 
localhost hostname, 51,52 
local-host-names file, 207, 211, 212-214 
LOCAL_NET_CONFIG macro 

(sendmail), 197, 202 
LOCAL_RULE_n macro (sendmail), 197 
LOCAL_RULESET macro (sendmail), 197 
lock files, 31,32 
lock keyword (pppd), 99 
log file command (Samba), 272 
log level command (Samba), 272 
LogFormat option (Apache), 248 
logins

anonymous, 261 
PAP and, 108 
pppd and, 100 
remote, 170-178 
serial devices and, 38-41 

LogLevel option (Apache), 248 
log_on_failure option (xinetd), 166 
log_on_success option (xinetd), 166 
log_type option (xinetd), 165 
Longyear, Al, 97 
loopback address, 18 
loopback interface 

defined, 18 
example, 24 
gated and, 26

324 I Index



IP address and, 44 
overview, 51-52 
Samba and, 270 

lowercase, sendmail and, 193 
lpr command (BSD), 273 
lsmod command, 243

M
=M command (sendmail), 223 
M command (sendmail), 198 
M field (mailstats), 229 
M flag (netstat), 61 
-M option (iptables), 135 
-m option (iptables), 132, 135 
m4 macro processor program 

Build utility and, 190 
hoststat command and, 230 
lowercase and, 193 
purpose, 186
sendmail.cf file and, 192, 209 
virtusertable feature and, 222 

MAC (Media Access Controller) addresses 
filtering, 303, 304 
fixed IP addresses and, 47 
HostAP and, 304,305 
iptables and, 132, 138 
IPv6 and, 235, 238 
wireless networks and, 299 

maccmd command, 304, 305 
Mackaras, Paul, 97
-mac-source match option (iptables), 139 
mail body, 180 
mail domains, 183 
mail exchangers, 82, 179, 184 

(see also electronic mail) 
mail header

composition of, 181 
defined, 180 
sendmail and, 199 
setting maximum length, 206 

mail spool, 228
mail transfer agents (MTAs), 179
mail transport agents (MTAs), 182, 184
mail user agents (MUAs), 182
mail 11 argument (MAILER macro), 196
mailboxes

alternate formats, 261 
IMAP and, 261 
transport and, 179,181,183 

Mailer field (mailstats), 230

MAILER macro (sendmail) 
mailers and, 204, 220 
overview, 196 

mailertable database, 220, 221 
mailertable feature, 220 
mailing lists 

Linux, xiii 
PPP and, 97 
security and, 15 
sendmail-announce, 186 

mailq command, 228 
mailstats command, 229, 230 
make command, 209, 247, 281 
make depend command, 281 
make install command, 247, 255 
make test command, 281 
Makefile

OpenLDAP and, 281 
path options for OpenSSL, 262 
sendmail and, 209 
UW-IMAP and, 259 

makemap command, 216 
Malinen, Jouni, 300 
managed mode, 297 
Mandrake, 267 
mangle table (iptables), 131 
mangling, 123, 157 
man-in-the-middle attack, 172 
Mantin, Itsik, 296 
/map command (sendmail), 223 
mapping

addresses, 159
genericstable database and, 217 
hostnames, 27, 79 
IP addresses, 19, 82 
RPC and, 169,170 

MASQUERADE target (iptables), 157, 158 
master files

domains and, 79 
resource records and, 80-83 
writing, 84-87 

--match option (iptables), 132, 135 
max log size directive (Samba), 272 
MaxClients option (Apache), 249 
MaxHeadersLength option 

(sendmail.eft, 206 
Maximum Receive Unit (MRU), 96, 105, 106 
Maximum Transfer Unit (MTU), 16, 106,

149
Maximum Transmission Unit (MTU), 59

Index | 325



MaxKeepAliveRequests option 
(Apache), 249 

max-lease-time option (DHCP), 47 
MaxSpareServers option (Apache), 249 
Media Access Controller addresses (see MAC 

addresses) 
meminfo file, 43 
mesg command, 113 
Message-ID: field (mail header), 182 
metasymbols, 200-202 
metric option (ifconfig), 59 
metric value, 26, 59 
mgetty program, 39-41, 112, 113 
Microsoft Windows, 266, 273 
migrage_common.ph script, 287 
migrate_all_online.sh script, 287 
migration tools, 287 
mil top-level domain, 72 
MIME (Multipurpose Internet Mail 

Extensions), 180 
minicom program, 29, 99 
minimum field (SOA RR), 81 
MinSpareServers option (Apache), 249 
minus sign (-), 37, 58 
Mockaptris, Paul, 28 
mod_access module (Apache), 246 
mod_actions module (Apache), 246 
mod_alias module (Apache), 245 
mod_asis module (Apache), 246 
mod_auth module (Apache), 246 
mod_auth_anon module (Apache), 246 
mod_auth_db module (Apache), 246 
mod_auth_dbm module (Apache), 246 
mod_autoindex module (Apache), 245 
mod_cern_meta module (Apache), 246 
mod_cgi module (Apache), 246 
mod_digest module (Apache), 246 
mod_dir module (Apache), 245 
modem keyword (pppd), 101 
modem option (pppd), 113 
modems

abort messages, 102 
ATZ command and, 101 
demand dialing, 114,115 
getty program and, 38 
mgetty program and, 112 
PPP servers and, 114 
pppd options and, 113 
software for, 29-30 
XOFF characters and, 105 

mod_env module (Apache), 245 
mod_example module (Apache), 246 
mod_expires module (Apache), 246

mod_headers module (Apache), 246 
mod_imap module (Apache), 246 
mod_include module (Apache), 246 
mod_info module (Apache), 246 
mod_log_agent module (Apache), 246 
mod_log_config module (Apache), 246 
mod_log_referer module (Apache), 246 
mod_mime module (Apache), 245 
mod_mime_magic module (Apache), 245 
mod_mmap_static module (Apache), 246 
mod_negotiation module (Apache), 245 
modprobe command, 134, 237, 302 
-modprobe option (iptables), 135 
mod_proxy module (Apache), 246 
mod_rewrite module (Apache), 245 
mod_setenvif module (Apache), 245 
mod_so module (Apache), 246 
mod_spelling module (Apache), 245 
mod_ssl, 252-255 
mod_status module (Apache), 246 
mod_unique_id module (Apache), 245 
mod_userdir module (Apache), 245 
mod_usertrack module (Apache), 246 
MODVERSIONS option (LKM), 299 
MRU (Maximum Receive Unit), 96, 105, 106 
mru option (pppd), 106 
msgsdis field (mailstats), 230 
msgsfr field (mailstats), 229 
msgsreg field (mailstats), 230 
msgsto field (mailstats), 230 
-mss match option (iptables), 140 
MTAs (mail transfer agents), 179 
MTAs (mail transport agents), 182, 184 
MTU (Maximum Transfer Unit), 16, 106,

149
MTU (Maximum Transmission Unit), 59 
mtu option (ifconfig), 59 
MU As (mail user agents), 182 
multicast addresses, 60 
MULTICAST option (ifconfig), 47 
Multipurpose Internet Mail Extensions 

(MIME), 180 
mutt MUA, 182 
/mx command (sendmail), 223 
MX record

bestmx_is_local feature and, 214 
overview, 82 
preferences and, 184 
querying for, 90
sendmail test mode commands, 223 

MySQL BDB, 280 
MySQL service, 18

326 | Index



N flag (stty), 38 
-N option

iptables, 136 
ssh-keygen, 172 

-n option (iptables), 135 
name option 

dig, 88 
pppd, 111 

name resolution, DNS and, 28, 74-75 
name top-level domain, 72 
named program, 66 
named.conf file, 77-79,83 
nameserver option 

dig, 87
resolv.conf, 69 

nameservers
DNS and, 74, 75, 98 
handling lookups, 158, 159 
hosts file and, 69 
LANs and, 71 
nslookup and, 89 
resolv.conf and, 69-71 
root, 90
serial number and, 80 
verifying setup of, 87, 88 

namespace, 73, 77 
naming conventions, LDAP and, 279 
NAT (Network Address Translation) 

address scarcity and, 233 
defined, 123 
IP addresses and, 45 
IP firewalling and, 125 
IP masquerade and, 154 
iptables and, 121,127,134 
netfilter and, 159 
overview, 234, 235 
spoofing and, 121 

nat table (iptables), 131, 134 
NCP (Network Control Protocol), 96 
net directory, 43 
-net option (route), 50, 53 
net top-level domain, 72 
Net-2, 11 
Net-3, 11 
Net-4, 11,12 
netfilter kernel module 

access control and, 301 
backwards compatibility with, 134 
firewalls and, 243 
IP masquerade and, 157 
kernel and, 119

N loading, 134 
NAT and, 159 
overview, 125-127 
packet processing and, 123 

netmask option (ifconfig), 58 
netmasks, 21, 25, 164, 234 
NetRom protocol, 6,11 
netstat command

Apache web server and, 241 
checking interface configuration, 54 
checking ports and, 120 
IMAP and, 260 
IPv6 and, 237 
overview, 60-63 
testing SSL availability, 290 

net-tools package, 57, 237 
Network Address Translation (see NAT) 
Network Control Protocol (NCP), 96 
Network File System (NFS), 169 
Network Information Center (NIC), 17, 27, 

73
network interface card (NIC), 4 
network interfaces 

configuring, 50n 
gated and, 26 
scripts and, 42 
TCP/IP, 16 

network layer
denial of service and, 122 
ebtables command and, 126 
IP filtering and, 124 
protocols, 6, 45 

network numbers, 17, 21, 45 
networking

access database and, 218 
broadcast, 56 
choke points, 122 
congested, 55 
DHCP lease and, 45 
email and, 179 
gateways and, 22-24 
global village and, ix 
history, 1
IP masquerade and, 156 
IPv6 and, 236 
Linux, 12-13 
perimeter, 122 
system maintenance, 13-15 
TCP/IP networks, 2-11 
unauthorized access, 120 
(see also wireless networks) 

networks database, 67

Index | 327



networks file, 50, 53 
newaliases command, 212 
—new-chain subcommand option 

(iptables), 136 
newsgroups 

DNS, 67 
PPP and, 97 
Usenet, xiii 

NFS (Network File System), 169 
NIC (Network Information Center), 17, 27, 

73
NIC (network interface card), 4 
nice configuration option (xinetd), 167 
NIS domain, 44 
nmbd process, 277 
NO CARRIER message, 102 
NO ARP flag (ifconfig), 59 
noauth option (pppd), 107 
noipdefault option (pppd), 103 
nopwd option (IMAP), 260 
notfound option (nsswitch.conf), 68 
Novell, 11, 12«, 96
Novell NCP (NetWare Core Protocol), 11 
NS record

as glue record, 77 
nslookup and, 90 
purpose, 82 
type option and, 80 

nslint tool, 91 
nslookup tool, 88-91 
NSS library (LDAP), 286,288 
nss_ldap package, 286 
nsswitch.conf file, 67-69, 288 
NULL character (ASCII), 106 
—numeric option (iptables), 135

0
-o built-in match (iptables), 138 
O command (sendmail), 198 
octets, 17, 59
OK action (access rule), 218 
100-baseT, 4 
1000-baseT, 4
only_from option (xinetd), 165 
OpenBSD project, 171«
OpenLDAP

compiling, 281 
configuring server, 282 
dependencies with, 280 
GUI browsers, 291 
obtaining, 280 
overview, 278

running, 282-285 
SSL and, 289-291 
troubleshooting, 291-293 
using, 285-289 

OpenLDAP BDB (backend database), 280 
openldap.conf file, 288 
OpenSSH project, 171, 240, 242 
OpenSSL

Apache web servers and, 252-256 
certificates and, 290 
generating SSL certificates, 252, 253 
IMAP and, 260,261-263 
OpenLDAP and, 280 
security considerations, 15 
SWAT and, 276 

OperatorChars option (sendmail.cf), 200 
option domain-name option (DHCP), 47 
option domain-name-servers option 

(DHCP), 47 
option router command, 47 
options file

auth option, 109 
demand dialing and, 114 
mgetty program and, 113 
overview, 99
security considerations, 107 

org top-level domain, 72 
Organization: field (mail header), 182 
origin, 79
origin field (SOA RR), 80 
Orinico_cs drivers, 299, 300 
OSTYPE command (generic-linux.me), 204 
OSTYPEfile, 205 
OSTYPE macro (sendmail), 194 
-out-interface built-in match (iptables), 138 
Outlook mail reader, 181 
OUTPUT hook point (iptables) 

chains and, 127 
filter table and, 131 
functionality, 129 
iptables and, 134 
mangle table and, 131 
nat table and, 131

P
-p built-in match (iptables), 138 
P command (sendmail), 198 
-P subcommand option (iptables), 136 
Packet Assembler Disassembler (PAD), 5 
packet filtering (see IP filtering) 
packet flooding, 150 
packet mangling, 123, 157

328 j Index



packet radio, 6, 59 
packet sniffing, 122 
packets

chains and, 131 
as datagrams, 2, 7 
encapsulation of, 5 
Ethernet and, 4 
Ethernet maximum size, 53 
firewall packet logging and, 133« 
flow of, 127-129 
fragmenting, 149, 150 
ICMP, 150 
interfaces and, 16, 18 
IPv6 and, 236 
netfilter subsystem and, 123 
rules and, 132 

packet-switching
gateways and, 22, 55 
interfaces and, 26 
protocols for, 2 
support for, 5 

PAD (Packet Assembler Disassembler), 5 
PAM library (LDAP), 286,288 
pam jdap package, 286 
PAP (Password Authentication Protocol) 

authorization and, 96 
CHAP and, 108, 109 
mgetty program and, 113 
pap-secrets file, 111 
PPP and, 108,113 
pppd and, 97, 99 

pap-secrets file, 109,111 
PARANOID keyword, 164 
parenb flag (stty), 38 
parodd flag (stty), 38 
/parse command (sendmail), 223 
passphrases, 175, 252, 253 
passwd command, 113 
passwdfile, 112,113,162 
Password Authentication Protocol (see PAP) 
passwords

chat script and, 101«
Cyrus IMAP and, 264 
eavesdropping and, 122 
login procedure and, 108 
PPPoE client and, 118 
remote login and, 171 
Samba and, 269, 277 
security and, 14 
ssh command and, 176, 178 
TFTP and, 162 

patch lists, 120

PCI, 301 
PCMCIA, 301 
pcmcia-cs, 299 
PDAs, 233
PDC (Primary Domain Controller), 266
PEM pass phrase, 252, 253
perimeter networks, 122
Perkins, Drew, 97
permissions, 256
persist option (pppd), 115
persistent dialing, 115
PGP keys (sendmail), 187
PGPKEYS file, 188,189«
phquery argument (MAILER macro), 196
pid (process ID), 31
PID suboption (xinetd), 166
pine MUA, 181,182
ping command, 51, 117
ping flooding, 150
ping6 tool, 237
PKI environment, 278
PLIP, 11,56,59
plipconfig tool, 57
plus sign (+), 94,256
PDC, 301
pointopoint option (ifconfig), 59 
point-to-point links, 56 
Point-to-Point Protocol (see PPP) 
policy, chains and, 131 
--policy subcommand option (iptables), 136 
pop argument (MAILER macro), 196 
POP (Post Office Protocol) 

aliases and, 217 
IMAP and, 258,259 
MAILER macro and, 196 

port field (services), 168 
port parameter (setserial), 35 
portmapper daemon, 52«, 170 
ports

accounting services by, 148-150 
binding, 247 
daemons and, 160 
ICMP and, 150 
LDAP and, 282 
netstat command and, 120 
outgoing connections and, 63« 
overview, 10 
Samba and, 268, 276 
services and, 167 
TCP and, 9 
troubleshooting, 293 

Post Office Protocol (see POP)

Index | 329



POSTROUTING hook point (iptables) 
chains and, 127 
functionality, 129 
mangle table and, 131 
nat table and, 131,134 

pound sign (#), 67, 78, 99, 171, 192 
PPP (Point-to-Point Protocol)

advanced configurations, 112-116 
authentication with, 108-111 
debugging and, 112 
escape characters for, 105 
interfaces, 57 
interfaces and, 16 
IP accounting by service port, 148 
IP configuration options, 102-105 
kernel and, 30 
Linux and, x 
Net-4 and, 11 
overview, 96, 97 
security considerations, 107,108 
serial communications and, 30 
SLIP and, 8 

pppd daemon
authentication and, 109 
chap-secrets file and, 109,110 
chat and, 100-102 
demand dialing, 114 
IPCP options and, 102 
LCP and, 108 
options files, 99 
pap-secrets file, 111 
persistent dialing and, 115 
purpose, 97 
running, 98, 99 
security considerations, 107 
as server, 112,114 

ppp-log file, 112 
PPPoE (PPP over Ethernet) 

connections used, 30 
DSL and, 96 
options for, 116-118 

preference field (MX RR), 82 
-prefix= option (make install), 247 
PREPENDDEF macro (Build), 190 
PREROUTING hook point (iptables) 

chains and, 127 
functionality, 129 
MAC match option, 139 
mangle table and, 131 
nat table and, 131, 134 

Primary Domain Controller (PDC), 266 
primary option (named.conf), 79

primary servers, 75,82 
printcap file, 274, 275 
printing, Samba and, 273-275 
Prism chipsets, 296, 297, 300 
private keys 

defined, 172 
ssh clients and, 174 
ssh-keygen command and, 175 
SWAT and, 276 

/proc filesystem (procfs)
ARP tables, 63,65 
assigning IP addresses, 44, 45 
creating subnets, 48 
DHCP and, 45-48 
Ethernet interfaces, 52-54 
gateways and, 54, 55 
hostname resolution, 48-50 
ifconfig command and, 57-60 
installing tools, 43 
interfaces and, 50n 
IP Alias, 57
loopback interface, 51-52 
netstat command, 60-63 
PPP interface, 57 
setting hostnames, 44 
traceroute tool and, 63 

process ID (pid), 31 
procfs (see /proc filesystem) 
procmail argument (MAILER macro), 196 
prog mailer (MAILER macro), 196, 204 
program numbers, 169 
promise option (ifconfig), 59, 60 
promiscuous mode

eavesdropping and, 122 
ifconfig and, 59, 152 
iptables and, 129 
iwpriv program and, 300 

promiscuous_relay feature, 215 
-protocol built-in match (iptables), 138 
protocol field 

inetd, 161 
services, 168 

protocols
for amateur radio, 6 
defined, 1 
encryption and, 4 
IP accounting by, 151 
serial, 8
(see also specific protocols) 

protocols file, 167-169 
proxy ARP, 56, 64, 65, 104 
proxy servers, 121,122,124

330 | Index



proxyarp option (pppd), 104 
ps command, 101 
pseudo-domains, 206, 220 
PTR record, 80, 82, 91 
public command (Samba), 271 
Public Key Cryptography, 171 
public keys

authorized_keys file and, 178 
defined, 172 
fingerprints, 176 
ssh clients and, 174, 176 
ssh-keygen command and, 175 

purgestat command, 231

-qlOm argument (sendmail), 228 
QoS (Quality of Service), 6, 236 
qpage argument (MAILER macro), 196 
Quality of Service (QoS), 6, 236 
querying

dig tool and, 88 
DNS servers, 87 
host tool and, 91 
IP addresses, 19, 20, 89 
LDAP server and, 283, 288, 289 
nameservers and, 71, 98 
recursive, 78 
for root domain, 74 
for root nameservers, 90 
servers handling mail, 88 
services, 68 

QUEUE target (iptables), 133 
QuickPage mailer, 196 
/quit command (sendmail), 223 
quotation marks (") (ssh), 177

R
R command (sendmail), 198, 199, 200 
R configuration command (sendmail), 199 
-R subcommand option (iptables), 136 
random key generator, 172 
RARP (Reverse Address Resolution 

Protocol), 20 
rc.inetl script, 42 
rc.inet2 script, 42 
rep command, 170 
rc.serial script, 35, 36 
rdata field (resource record), 80 
RDN (Relative Distinguished Names), 279 
Received: field (mail header), 182

Red Hat
bridging networks, 306 
IMAP and, 260,262 
kernel source code and, 301 
Samba and, 267 
yum utility, 120 

Redirect message (ICMP), 26, 27, 61 
refresh field (SOA RR), 80 
REJECT action (access rule), 218 
REJECT target (iptables), 132 
Relative Distinguished Names (RDN), 279 
RELAY action (access rule), 218 
relay mailer (MAILER macro), 196, 197,

204, 220
RELAY_DOMAIN command, 214 
relay-domains database, 211 
relay-domains file

access database and, 217 
configuring, 208, 214 
overview, 214, 215 

relay_entire_domain feature, 215 
relay_local_from feature, 215 
remote login, 170-178 
Remote Procedure Call (RPC), 169, 170 
remote_addr option 

ip-up, 105 
pppd, 103 

remotename keyword (pppd), 111 
--rename-chain subcommand option 

(iptables), 136 
--replace subcommand option (iptables), 136 
Reply-To: field (mail header), 182 
Request to Send (RTS), 33 
requested command, 172 
reset command, 101 
resolv.conf file 

DHCP and, 46 
dig tool and, 87
nameserver lookups using, 69-71 
PPPoE clients, 117 

resolver library, 27, 67-71 
resolvers

djbdns, 66,92-93 
nsswitch.conf and, 68, 69 
pppd and, 98 
resolv.conf, 69-71 
resolver library, 67 
resource records and, 79 
robustness of, 71 

resource records (RRs), 75, 79-83 
respawn option (mgetty), 40

Index | 331



restart option (apachectl), 250 
retry field (SOA RR), 81 
return option (nsswitch.conf), 68 
RETURN target (iptables), 131, 133 
Reverse Address Resolution Protocol 

(RARP), 20 
rewrite rules

example, 202, 203 
leftside, 200,201 
mailers and, 220 
right side, 200, 202 
sendmail and, 199 

rexec command, 15, 171 
rexec service (BSD), 120 
RFC 821, 183,185,219 
RFC 822

as common denominator, 180 
FidoNet and, 184 
header format, 180 
Internet and, 179, 183 

RFC 974, 185 
RFC 1123, 185 
RFC 1179, 273 
RFC 1341, 180 
RFC 1437, 179«
RFC 1591, 138 
RFC 1700, 10 
RFC 1893, 219 
RFC 1912, 78 
RFC 1918, 18,45 
RFC 2251, 279 
RFC 2253, 278 
RFC 2849, 283 
RFC 3232, 139 
RFC 3501, 258 
RING message, 39
RIP (Routing Information Protocol), 25, 26 
rlogin command, 15, 170, 171 
rlogin service (BSD), 120, 121 
Roaring Penguin, 116 
root account

cron job output and, 13 
LDAP server and, 288 
ssh daemon and, 174 
troubleshooting Samba, 277 

root domain, 71, 74 
root nameservers, 90 
root.hint file, 84 
rootpw option (slapd.conf), 282 
Rose protocol, 6, 11 
route command 

building tables, 25

compatibility considerations, 52 
displaying information, 25 
Ethernet interfaces and, 53 
interface configuration and, 50 
PPP links and, 104, 105 

routing
advanced policy, 11 
defined, 7 
DNAT and, 156 
email and, 184-185 
Ethernet interfaces and, 53 
fragmentation and, 149 
gateways and, 54 
ICMP and, 27 
IP addresses, 20-24 
IPv6 traffic, 238 
PPP links, 104-105 
PPP servers and, 114 
protocols for, 25 
strictness of rules for, 154 
TCP and, 9 

Routing Information Protocol (RIP), 25, 26 
routing tables 

initializing, 50 
metric value and, 26 
netstat command and, 60, 61 
overview, 24-26 
TCP/IP networking and, 43 

rpc file, 169,170
RPC (Remote Procedure Call), 169, 170
RRs (resource records), 75, 79-83
RS-232 standard, 33,34
RSAkeys, 172
rsh command, 15, 170, 171
RTM Internet worm, 163
RTS (Request to Send), 33
rules

access database and, 218 
IP accounting and, 150 
IP masquerade and, 157 
iptables and, 132, 149 
mapping addresses, 159 
matches for, 126,131 
sendmail and, 199, 200 
(see also rewrite rules)

RUNNING flag (ifconfig), 58 
runq command, 228, 229 
Russell, Paul, 125

s
-s built-in match (iptables), 138 
=S command (sendmail), 223

332 | Index



S command (sendmail), 198, 199, 200
-s option (arp), 64
Samba

access control, 270-272 
CIFS and, 266,267 
configuring, 268-270 
interoperability and, 11 
logging with, 272 
obtaining, 267, 268 
printing with, 273-275 
troubleshooting, 277 

Samba Web Administration Tool 
(SWAT), 276 

SASL (Simple Authentication and Security 
Layer) package, 264, 265, 280 

scp program (ssh), 170, 174, 177 
scripts

adsl-setup, 116 
adsl-start, 117 
chat, 100, 101 
expect, 100
migrage_common.ph, 287 
migrate_all_online.sh, 287 
pppd and, 100 
TCP/IP networking and, 42 

search lists, 70
search option (resolv.conf), 70 
secondary servers, 75, 82 
secrets database, 108 
Secure Shell (SSH), 120,156 
security

802.11b and, 296-307 
access database and, 208 
DNS cache and, 78 
enabling relaying and, 215 
finger service and, 162 
host lookups and, 70 
importance of, 119 
Internet and, 116 
IPv6 and, 236 
mail accounts and, 259 
passphrases and, 175 
PPP and, 107,108 
relay-domains file and, 214 
RTM Internet worm and, 163 
Samba and, 269, 270 
sendmail and, 186 
ssh command and, 171, 176 
system maintenance and, 13-15 
wireless networking and, 4, 295 
xinetd and, 166 

semicolon (;), 79

send strings, 100, 102 
sendmail

additional information, 231 
configuration files, 192-198 
creating a configuration, 203-210 
databases used, 210-222 
downloading source code, 187-190 
installing, 186-192 
overview, 179 
running, 227 
sendmail.cf, 198-203 
signing key fingerprints, 188 
testing configuration, 222-227 
tips and tricks, 228-231 

sendmail mail daemon, 163 
sendmail-announce mailing list, 186 
sendmail.cf file

building, 209, 210 
configuration language, 198-203 
define command and, 195 
editing, 186 
generic.m4 file and, 206 
LOCAL macro and, 197 
mailers and, 204 
StatusFile option, 230 
tuning, 192 

sendmail.me file 
comments, 192 
FEATURE macro and, 195 
m4 program and, 192 
sample, 203-204 
typical commands, 193-198 

serial field (SOA RR), 80 
Serial Line IP (SLIP), 8, 11,59 
serial ports/devices 

accessing, 30-34 
configuration utilities, 34-38 
login: prompt, 38-41 
mgetty program and, 113 
modem links, 29-30 
PAD and, 5 
PPP and, 97, 114 
pppd and, 99 

server configuration option (xinetd), 167 
server field (inetd), 162 
Server Message Blocks (SMB), 266, 267 
server_args configuration option 

(xinetd), 167 
ServerRoot option (Apache), 248 
servers

Apache configuration options, 248 
authentication and, 96

Index | 333



servers (continued)
dynamic addresses and, 103 
ports and, 10 
PPP, 112-114 
pppd as, 112 
proxy, 121, 122, 124 
RPC and, 169 
secrets database and, 108 
ucspi-tcp program, 92 
WAN IP addresses and, 116 
web, 156,276 

ServerSignature option (Apache), 249 
ServerTokens option (Apache), 249 
service field 

inetd, 161 
services, 168 

servicelist, 164 
services

accounting by ports, 148-150 
action items, 68
denial of service attacks and, 121 
exploiting weaknesses in, 123 
finger, 162 
internal, 161 
port numbers and, 167 
portmapper daemon and, 170 
query order, 68 
security and, 14 

services file, 167-169, 276 
set type command, 89 
--set-counters option (iptables), 135 
setserial command, 34-36 
setuid program, 14, 107 
seyon terminal program, 29 
shadow file, 112 
shadow passwords, 14, 162, 264 
Shamir, Adi, 296 
Shapiro, Greg, 204 
shared directories, 271 
shellcmd field (fingerd/tftpd), 164 
SIGHUP signal, 276 
signatures, 180«, 187, 189 
silent option (pppd), 113 
Simple Authentication and Security Layer 

(SASL) package, 264, 265, 280 
Simple Mail Transfer Protocol (see SMTP) 
single quotation mark (’), 194 
site configuration, 190 
site.config.m4 file, 190 
site.linux.m4 file, 190 
site-local address, 236, 238 
site.post.m4 file, 190

skip_test parameter (setserial), 35 
slapd program, 282 
slapd.conf file, 282,286,292 
Sleepycat Software, 280 
SLIP (Serial Line IP), 8, 11,59 
slogin program (ssh), 174 
slurpd program, 282 
SMB (Server Message Blocks), 266, 267 
smbclient program, 268 
smb.conf file, 273,275 
smbd process, 277 
smbmount utility, 269 
smbpasswd utility, 269 
smmsp user/group, 191 
smtp mailer (MAILER macro), 196, 204, 220 
SMTP (Simple Mail Transfer Protocol) 

Connect: tag field and, 218 
firewalls and, 123 
IP accounting by sendee port, 148 
MAILER macro and, 196 
remote delivery and, 183 
sendmail and, 203, 224, 225 

smtp8 mailer (MAILER macro), 196, 197, 
204,220

SNAT (Source NAT), 154, 157, 159 
SNAT target (iptables), 157, 159 
snooping, Ethernet, 59 
SOA record 

at sign in, 76 
fields in, 80, 81 
nslookup and, 89 
purpose, 76 
ttl and, 79 
type option and, 80 

socket library, 11 
sockets, 62, 160, 161 
socket_type configuration option 

(xinetd), 167
software

Apache web servers, 245-247 
bridging, 306 
communications, 29, 30 
security considerations, 14 
testing networking, 18 
troubleshooting wireless networks, 305 

software field (HINFO RR), 83 
--source built-in match (iptables), 138 
Source NAT (SNAT), 154, 157, 159 
-source-port match option (iptables), 140 
spaces, 67, 79, 194 
Spafford, Gene, 15 
spd_hi parameter (setserial), 35

334 | Index



spcLnormal parameter (setserial), 35 
spd_vhi parameter (setserial), 35 
Specialized Systems Consultants, Inc.

(SSC), xii, xiii 
speed argument (ip-up), 105 
spoofing, 121, 176 
--sport match option (iptables), 140 
Spurgeon, Charles, 5n 
--src built-in match (iptables), 138 
SSC (Specialized Systems Consultants, 

Inc.), xii, xiii 
ssh client, 172, 174-176 
ssh command

localhost and, 52 
remote hosts and, 170 
security and, 171 
using, 176-178 

ssh daemon, 172-174 
SSH protocol, 121,172 
ssh tools, 10, 15, 171-178 
ssh_config file, 174 
sshd_config file, 3, 242 
ssh_host_key file, 172 
ssh-keygen utility, 172, 175 
SSL

Apache and, 252 
certificates and, 252, 253 
named virtual hosting and, 251 
OpenLDAP and, 281,289-291 
SWAT and, 276 
troubleshooting, 257, 293 

SSLCertificateFile entry (httpd.conf), 256 
SSLCERTS option (Makefile), 260 
SSLDIR option (Makefile), 262 
SSLEngine, 256
SSLINCLUDE option (Makefile), 262 
SSLLIB option (Makefile), 262 
SSLPATH option (Makefile), 260 
start option (apachectl), 250 
StartServers option (Apache), 249 
startssl option (apachectl), 250 
status option (apachectl), 250 
StatusFile option (sendmail.cf), 230 
stop option (apachectl), 250 
stty command, 36-38,113 
Stubblefield, Adam, 296 
stunnel tool, 276 
subdomains, 71, 73 
Subject: field (mail header), 182 
submit.cf file, 210 
subnet masks, 21, 234 
subnetworks, 21,22,48

subscripts, 102
success option (nsswitch.conf), 68 
Sun, Andrew, 96 
Sun Microsystems, 169 
super servers 

inetd, 160-163 
xinetd, 164—167 

SuSE, 120,262,267 
suucp mailer (MAILER macro), 196 
svscan process, 93, 94 
SWAT (Samba Web Administration 

Tool), 276 
swatch tool, 272
—syn match option (iptables), 140 
synchronous serial ports, 5, 6 
syslog.conf, 101m, 112, 163 
syslogd daemon, 112 
system administration, 13-15 
system configuration, IPv6 and, 236, 237 
system log (syslog) 

bridging and, 306 
card identification and, 305 
HostAP driver and, 302 
logging with, 272 
Samba and, 273 
troubleshooting and, 291, 293

T
T command (sendmail), 198 
-t option 

arp, 64 
iptables, 135 

tab character, 67, 79, 199 
--table option (iptables), 135 
tables

ARP, 63, 65
iptables and, 126, 127, 130, 131 
mapping via, 27 

tar command, 177 
targets

chains and, 131 
IP masquerade and, 158 
iptables and, 126, 132, 133, 159 

TCP (Transmission Control Protocol) 
distinguishing connections, 10 
inetd.conf and, 161 
IP accounting and, 148, 151 
IP filtering and, 124 
iptables matches, 140 
overview, 8, 9 
ports and, 150 
RPC and, 169, 170

Index | 335



TCP (Transmission Control Protocol) 
(continued) 

tcpd and, 163 
ucspi-tcp program, 92 
Van Jacobson header compression, 97 

tcpd access control facility, 163, 164 
tcpdump tool, 59, 114 
--tcp-flags match option (iptables), 140 
TCP/IP networking 

ARP tables, 63, 65 
creating subnets, 48 
DHCP and, 45-48 
Ethernet interfaces, 52-54 
gateways and, 54, 55 
hostname resolution, 48-50 
ICMP and, 26-28 
ifconfig command and, 57-60 
installing tools, 43 
interfaces and, 16, 50n 
IP addresses, 17-26, 44, 45 
IP Alias, 57 
Linux and, x 
loopback interface, 51-52 
netstat command, 60-63 
overview, 2-11 
PPP interface, 57 
setting hostnames, 44 
SMTP and, 183 
socket library for, 11 
traceroute tool and, 63 
Unix and, 2 

--tcp-option match option (iptables), 140 
tcpwrappers, 270 
teletype devices (see tty devices) 
telnet, 105, 124 
10-base2, 4 
10-base5, 4 
10-baseT, 4
Terminal Node Controller, 6 
terminal programs, 29 
testparm program, 268, 273, 277 
tftp daemon, 162 
tftp service, 164
TFTP (Trivial File Transfer Protocol), 14, 

162
Thawte, 252 
thick Ethernet, 3, 4 
thin Ethernet, 3, 4 
time to live (see ttl)
Timeout option 

Apache, 249

chat, 102 
tkrat MU A, 182
TLDs (top-level domains), 72, 73, 250
To: field (mail header), 181
To: tag field, 218
toggle-dtr keyword (mgetty), 40
Token Ring, 5, 11
tokens, 200, 202
top-level domains (TLDs), 72, 73
Torvalds, Linus, x
Tourrilhes, Jean, 300
Toxen, Bob, 121
tracepath6 tool, 237
traceroute tool, 63
traceroute6 tool, 237
TRAFFIC suboption (xinetd), 166
Transmission Control Protocol (see TCP)
tree structure, 278
tripwire tool, 15
Trivial File Transfer Protocol (TFTP), 14, 

162
troubleshooting

802.11b standard, 305-306 
Apache web servers, 256-257 
Cyrus IMAP, 265 
IPv6 and, 242-243 
OpenLDAP, 291-293 
Samba, 277 

trusted hosts, 163 
/try command (sendmail), 223, 227 
tryagain option (nsswitch.conf), 69 
/tryflags command (sendmail), 223, 227 
Ts, Jay, 266
ttl field (resource record), 79 
ttl (time to live) 

defined, 75
resource records and, 79,81 
SOA record and, 76 

tty devices 
defined, 30 
opening, 31 
PPP servers and, 112 
stty command, 37 

tunnels, 238-240, 276 
twisted pair Ethernet, 3, 4 
type field 

inetd, 161 
resource record, 80 

type option (dig), 88

336 | Index



u
U flag (netstat), 61 
UART chips, 34 
uart parameter (setserial), 35 
ucspi-tcp program, 92 
UDP (User Datagram Protocol) 

inetd.conf and, 161 
IP accounting and, 148,151 
IP filtering and, 124 
iptables matches, 139 
overview, 9 
ports and, 150 
RPC and, 169, 170 
tcpd and, 163 
traceroute and, 63 

unavail option (nsswitch.conf), 69 
undefine coijimand (m4), 195 
Unix

Berkeley Socket Library, 10 
counting and, 31 
daemontools program, 92 
init command, 40 
kermit and, 29 
lpr command and, 273 
m4 program, 186 
networks and, ix 
sendmail and, 179 
socket library for, 11 
TCP/IP and, 2 
tty devices and, 30 

UNKNOWN keyword, 164 
up option (ifconfig), 58 
uppercase, 193 
URIs, 271,288 
Urlichs, Matthias, 12 
USB, 301
use_ct_file feature, 219
use_cw_file feature, 211, 212
usehostname option (pppd), 111
usenet argument (MAILER macro), 196
Usenet newsgroups, xiii, 196
user accounts, 269, 277, 285
user configuration option (xinetd), 167
user database, 219
User Datagram Protocol (see UDP)
user field (inetd), 161
user ID, 191
useradd utility, 112n
username

adding to classes, 207 
eavesdropping and, 122 
FEATURE macro and, 199

genericstable database and, 216 
login procedure and, 108 
PPP servers and, 113 
PPPoE client and, 118 
remote login and, 171 

uucico program, 99 
uucp argument (MAILER macro), 196 
UUCP environment, 180, 184, 196, 220 
uucpdomain database, 220 
uucpdomain feature, 220 
UW IMAP, 259-261

V
V command (sendmail), 198 
-v option

chat, 101 
iptables, 135 

-V subcommand option (iptables), 136 
valid users option (Samba), 271 
vampire taps, 4
Van Jacobson header compression, 97, 106
van Kempen, Fred, 11
variables, 191, 195
/var/lock directory, 32
--verbose option (iptables), 135
Verisign, 252
-version subcommand option (iptables), 137 
VERSIONID macro 

generic-linux.mc, 204 
generic.m4, 206, 208 
linux.m4, 205 
sendmail, 193 

versions
OpenLDAP and, 280 
RPC and, 169 

Virtual Brewery, 309 
virtual hosting, 57 
virtual terminals, 30, 38, 100 
VirtualHost functionality

(httpd.conf), 250-252, 255, 257 
virtusertable database, 220, 221, 222 
virtusertable feature, 221 
VJ header compression (see Van Jacobson 

header compression)
Voice over IP, 236 
VPNs, 296, 303 
vulnerabilities 

BIND and, 92 
RTM Internet worm, 163 
security considerations and, 15

Index | 337



w X
wait configuration option (xinetd), 167
wait field (inetd), 161
WANs, server addresses and, 116
WaveLAN cards, 297,306
web browsers, 251, 291
web servers, 156, 276

(see also Apache web servers)
WEP (Wired Equivalent Privacy) 

attacks on, 296 
HostAPand, 303,304 
iwconfig tool and, 300 

whitespace, 67
WiFi Protected Access (WPA), 295 
wildcards, 110,174,283 
Windows (Microsoft), 266, 273 
WinModem, 34n
Wired Equivalent Privacy (see WEP) 
wireless networks

802.1 lb security concerns, 296-305 
acceptance of, 294 
bridging, 306-307 
history, 294, 295 
Linux and, 4 
standards, 295-296 
troubleshooting, 305-306 

-with-inet6 option (xinetd), 165 
--with-syslog option (Samba), 272 
-with-tls option (OpenLDAP), 281,289 
working groups, 295 
World Wide Web, 124, 148, 211 

(see also Internet)
WPA (WiFi Protected Access), 295 
writable command (Samba), 271

X- field (mail header), 182 
-x option (iptables), 135 
-X subcommand option (iptables), 137 
X terminals, 162 
X.11, 29,30 
X.25 protocol, 5, 11, 96 
X.400 standard, 179, 183, 184 
x509 option (OpenSSL), 253 
XDR (External Data Representation) 

format, 169 
xinetd super server, 164-167 
xinetd.conf file, 165, 263, 268, 276 
XON/XOFF handshaking, 33, 105

Y
YaST Online Update (YOU) utility, 120 
YOU (YaST Online Update) utility, 120 
yum utility (Red Hat), 120

z
-Z subcommand option (iptables), 137 
--zero subcommand option (iptables), 137 
zeroes, double-colon and, 235, 242 
zone option (named.conf), 78 
zones

domains and, 73 
nameservers and, 74 
NS records and, 82 
RFC 1912, 78 
serial numbers and, 80 
SOA records and, 80

338 | Index



About the Authors
Tony Bautts is an independent security consultant who has worked with Fortune 
500 companies in the U.S. and Japan. He has spoken at security-related events for 
The Information Systems Audit and Control Association (ISACA) and has spoken 
and chaired events for the MIS Training Institute. Tony is the coauthor of Hack 
Proofing Your Wireless Network, Nokia Network Solutions Handbook, and the Secu­
rity Certification Handbook and has, additionally, served as technical reviewer for 
Implementing IPv6 on Cisco IOS. His specialties include wireless networking, secure 
infrastructure design, and post-intrusion forensics.

Terry Dawson has 20 years of professional experience in telecommunications and 
currently leads a team engaged in operational support system research in the Telstra 
Research Laboratories.

Gregor N. Purdy is an engineering manager in the large account services group at 
Amazon.com. Before joining Amazon.com in 2003, Gregor worked for 10 years as a 
consultant in high-end data warehousing, system integration, and prior art research 
in software and Internet patents. He has also contributed to a number of open source 
projects, including Perl core and extension modules, the Perl shell, and the Parrot 
virtual machine for Perl 6 .

Colophon
Our look is the result of reader comments, our own experimentation, and feedback 
from distribution channels. Distinctive covers complement our distinctive approach 
to technical topics, breathing personality and life into potentially dry subjects.

The image on the cover of Linux Network Administrator's Guide, Third Edition, is 
adapted from a 19th-century engraving from Marvels o f the New West: A Vivid 
Portrayal o f the Stupendous Marvels in the Vast Wonderland West o f the Missouri 
River, by William Thayer (The Henry Bill Publishing Co., Norwich, CT, 1888). The 
cowboy has long been an American symbol of strength and rugged individualism, 
but the first cowboys, known as vaqueros, were actually from Mexico. In the 1800s, 
vaqueros drove their cattle north into America to graze. This practice gave ranchers 
in Texas ideas of moving herds away from cold weather, toward water sources, and 
eventually north to railheads so that their cattle could be shipped to eastern markets.

Cattle trails started from the southernmost tip of Texas and extended through Colo­
rado, Arkansas, and Wyoming. Cowboys were hired by ranchers to brand and drive 
the cattle through dangerous countryside and deliver them safely to railheads. Cattle 
were often scared by bad weather and started stampedes powerful enough to make 
the ground vibrate. It was the cowboys’ responsibility to calm the herds and round 
up any cows and steers that had wandered off. One well-known technique for 
calming nervous cattle was singing to them.



American cowboys were a diverse crowd. African-Americans, Indians, Mexicans, and 
former Confederate cavalrymen were about as common as the Hollywood, John 
Wayne Stereotype. Cowboys were usually medium-sized, wiry fellows, and on 
average about twenty-four years old. They owned their saddles, but not the horses 
they rode day and night. Cowboys were worked so hard and paid so little that most 
of them made only one trail drive before finding another occupation.

Although cowboys had a large impact on American culture, they were only an 
important part of the West for a short time. As more and more ranchers began using 
barbed wire to fence cattle for branding, fewer cowboys were needed. Before long, 
railroads covered the former Wild West, and cattle herding turned into an event seen 
primarily at the rodeo.

Adam W itwer was the production editor and copyeditor for Linux Network Adminis­
trator's Guide, Third Edition. Ann Schirmer proofread the text. Matt Hutchinson 
and Claire Cloutier provided quality control. Lucie Haskins wrote the index.

Edie Freedman designed the cover of this book. Emma Colby produced the layout 
with Adobe InDesign CS using Adobe’s ITC Garamond font.

David Futato designed the interior layout. The chapter opening images are from 
Marvels of the New West: A Vivid Portrayal of the Stupendous Marvels in the Vast 
Wonderland West of the Missouri River. This book was converted to FrameMaker 
5.5.6 by Julie Hawks with a format conversion tool created by Erik Ray, Jason McIn­
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font 
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is 
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book 
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 
MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christo­
pher Bing. This colophon was written by Lydia Onofrei.



SPD I O’Reilly Reprints
TITLES AT REDUCED PRICES
8173663661 .NET Framework Essentials, 324 Pages Thai 75.00
8173664277 Access Cookbook for 97, 2000 & 2002 (B / CD-ROM), 724 Pages Getz 100.00
8173662231 ActionScriprt: The Definitive Guide, 726 Pages Moock 150.00
8173662886 Building Oracle XML Applications (B / CD-ROM), 824 Pages Muench 100.00
8173664250 Building Wireless Community Networks, 144 Pages Flickenger 50.00
8173662584 Cascading Style Sheets: The Definitive Guide, 476 Pages Meyer 75.00
8173662878 Developing ASP Components 2/ed, 864 Pages Powers 100.00
817366272X DHCP for Windows 2000, 288 Pages Alcott 75.00
8173663599 Exim: The Mail Transport Agent, 638 Pages Hazel 75.00
8173664145 Java Cookbook, 890 Pages Darwin 150.00
8173660557 Java Foundation Classes in a Nutshell, 752 Pages Flanagan 75.00
8173662711 Java Internationalization, 456 Pages Deitsch 75.00
8173663807 Java Programming with Oracle SQLJ, 404 Pages Price 75.00
8173661103 JavaScript Application Cookbook, 512 Pages Bradenbaugh 75.00
8173661111 JavaScript Pocket Reference, 96 Pages Flanagan 25.00
8173662509 Jini in a Nutshell, 420 Pages Oaks 75.00
8173662320 Learning Java (B / CD-ROM), 732 Pages Niemeyer 75.00
8173660603 Learning Perl/Tk, 380 Pages Walsh 75.00
8173661677 Learning Web Design: A Beginner’s Guide to HTML,

Graphics & Web Environment (2 Color Book), 432 Pages Niederst 100.00
8173663173 Learning WML & WMLScript, 204 Pages Frost 50.00
8173663149 Learning XML, 376 Pages Ray 75.00
8173662193 MCSD in a Nutshell: The Visual Basic Exams, 636 Pages Foxall 75.00
8173662398 MCSE in a Nutshell: The Windows 2000 Exams, 504 Pages Moncur 75.00
8173662517 MP3: The Definitive Guide, 408 Pages Hacker 75.00
8173660697 Oracle PL/SQL Language Pocket Reference, 80 Pages Feuerstein 25.00
8173661243 Perl/Tk Pocket Reference, 104 Pages Lidie 25.00
817366269X PHP Pocket Reference, 124 Pages Lerdorf 25.00
8173661251 PNG: The Definitive Guide, 344 Pages Roelofs 50.00
817366126X Practical Internet Groupware, 520 Pages Udell 75.00
8173660751 Practical UNIX & Internet Security, 2/ed, 1,008 Pages Garfmkel 150.00
8173660190 QuarkXPress in a Nutshell, 552 Pages O’Quinn 50.00
8173662487 sed & awk Pocket Reference, 60 Pages Robbins 25.00
8173661294 sendmail Desktop Reference, 74 Pages Costales 25.00
8173662606 Tcl/Tk Pocket Reference, 100 Pages Raines 25.00
8173663734 VB .NET Language in a Nutshell, 662 Pages Roman 100.00
8173663475 Web Database Applications with PHP & MySQL, 600 Pages Williams 75.00
8173661359 Webmaster in a Nutshell, 2/ed, 540 Pages Spainhour 75.00
8173662630 Windows 2000 Active Directory, 624 Pages Lowe-Norris 75.00
8173663327 Windows 2000 Performance Guide, 650 Pages Friedman 75.00
8173663289 XML in a Nutshell, 400 Pages Harold 100.00
8173662096 XSLT, 486 Pages Tidwell 100.00

PUBLISHED TITLES
8173666539 .NET and XML, 484 Pages Bomstein 425.00
8173669201 .NET Compact Framework Pocket Guide, 122 Pages Lee 125.00
8173666547 .NET Framework Essentials, 3/ed, 392 Pages Thai 325.00
8173665753 802.11 Security, 200 Pages Potter 175.00
8173664420 802.11 Wireless Networks: The Definitive Guide, 474 Pages Gast 400.00
8173661995 Access 2003 Personal Trainer (B / CD-ROM),

(2 Color book) 432 Pages CustomGuide 400.00
8173664285 Access Database Design & Programming, 3/ed, 454 Pages Roman 325.00



8173667233 ActionScript Cookbook, 904 Pages Lott 675.00
8173666555 ActionScript for Flash MX Pocket Reference, 152 Pages Moock 125.00
8173665761 ActionScript for Flash MX: The Definitive Guide, 2/ed, 904 Pgs Colin Moock 750.00
8173666563 Active Directory for Windows Server 2003, 2/ed, 692 Pgs Allen 575.00
8173667357 Active Directory Cookbook for Windows Server 2003 and Windows 2000, 632 Pages Allen 525.00
817366725X ADO .NET Cookbook, 636 Pages Hamilton 500.00
8173665222 ADO .NET for Visual Basic .NET 2003 in a Nutshell: A Desktop Quick

Reference (B / CD-ROM), 626 Pgs Hamilton 500.00
0596006004 Adobe Encore DVD: In the Studio, 336 Pages Dixon 1,225.00
0596007361 Adobe InDesign CS One-on-One (B / CD-ROM), 400 Pgs McClelland 1,375.00
0596006187 Adobe Photoshop CS One-on-One (B / CD-ROM), 488 Pgs McClelland 1,225.00
8173668205 AI for Game Developers , 400 Pages Bourg 375.00
8173669384 AspectJ Cookbook, 364 Pages Miles 350.00
8173667292 Amazon Hacks: 100 Industrial Strenght Tips & Tricks, 312 Pgs Bausch 250.00
8173665524 Ant: The Definitive Guide, 296 Pages Tilly 275.00
8173667446 Apache Cookbook (Covers Apache 2.0 & 1.3), 264 Pages Coar 250.00
8173662525 Apache Pocket Reference, 112 Pages Ford 75.00
8173662275 Apache Security, 428 Pages Ristic 350.00
8173665133 Apache: The Definitive Guide (Covers Apache 2.0 & 1.3) 3/ed, 594 Pages Laurie 500.00
8173666571 ASP .NET Cookbook (Cover ASP .NET 1.1), 846 Pages Kittel 700.00
8173667306 ASP .NET in a Nutshell: A Desktop Quick Reference, 2/ed, 1008 Pages Duthie 600.00
8173662347 AutoCAD 2000 In a Nutshell: A Command Reference Guide, 592 Pages Kent 325.00
8173663955 Beginning Perl for Bioinformatics, 390 Pages Tisdall 300.00
8173668981 Better, Faster, Lighter Java, 270 Pages Tate 250.00
817366658X BGP,292  Pages van Beijnum 275.00
8173665125 BLAST, 372 Pages Korf 325.00
817366899X BSD Hacks:100 Industrial-Strength Tips & Tools, 458 Pgs Lavigne 375.00
8173666598 Building Embedded Linux Systems, 422 Pages Yaghmour 350.00
8173661014 Building Internet Firewalls 2/ed, 904 Pages Chapman 650.00
8173662282 Building Java Enterprise Applications: Vol. 1 - Architecture, 324 Pages McLaughlin 225.00
8173661391 Building Linux Clusters (B / CD-ROM), 360 Pages Spector 350.00
8173665621 Building Secure Servers with Linux, 454 Pages Bauer 375.00
8173666601 C Pocket Reference, 142 Pages Prinz 100.00
8173664439 C# & VB .NET Conversion Pocket Reference, 156 Pages Mojica 75.00
8173665885 C# Cookbook, 876 Pages Teilhet 600.00
8173664293 C# Essentials, 2/ed, 224 Pages Albahari 175.00
8173665192 C# Language Pocket Reference, 132 Pages Drayton 100.00
8173663726 C# in a Nutshell: A Desktop Quick Reference, 864 Pages Drayton 600.00
8173666628 C++ in a Nutshell, (Cover ISO/IEC 14882 STD) 816 Pages Lischner 500.00
8173667101 C ++Pocket Reference, 148 Pages Loudon 100.00
0596001088 The Cathedral & The Bazaar: Musings On Linux and Open Source

by an Accidental Revolutionary, Revised & Expanded, 256 Pgs Raymond 525.00
8173669066 Cascading Style Sheets: The Definitive Guide

(Covers CSS2 & CSS 2.1), 2/ed, 538 Pages Meyer 475.00
8173662266 CDO & MAPI Programming with Visual Basic, 388 Pages Grundgeiger 175.00
8173664269 CGI Programming on the World Wide Web, 454 Pages Gundavaram 300.00
817366045X CGI Programming with Perl 2/ed, 476 Pages Gundavaram 325.00
8173667241 Cisco Cookbook, 918 Pages Dooley 700.00
8173663653 COM& .NET Component Services, 390 Pages Lowy 250.00
8173663645 COM+ Programming with Visual Basic, 372 Pages Mojica 225.00
8173660638 Creating Effective JavaHelp, 196 Pages Lewis 125.00
8173669163 CSS Cookbook (Cover CSS 2.1), 280 Pages Schmitt 275.00
8173662363 Database Nation: The Death of Privacy in the 21st Century, 336 Pgs Garfinkel 235.00
8173662894 Database Programming with JDBC & Java 2/ed, 348 Pages Reese 150.00

www.shroffpublishers.com 2 e-mail: spdorders@shroffpublishers.com

http://www.shroffpublishers.com
mailto:spdorders@shroffpublishers.com


8173665664 Designing Embedded Hardware, 324 Pages Catsoulis 250.00
8173663882 Designing Large Scale LANs, 408 Pages Dooley 275.00
8173662428 Developing Bio-informatics Computer Skills, 504 Pages Gibas 225.00
0596005474 Digital Photography: Expert Techniques (Covers Photoshop CS), 496 Pages Milburn 1,375.00
0596006667 Digital Photography Hacks: 100 Industrial ■ Strength Tips & Tools, 336 Pages Story 800.00
0596006276 Digital Photography Pocket Guide, 2/ed, 128 Pages Story 500.00
0596005237 Digital Video Pocket Guide, 474 Pages Story 500.00
8173662983 DNS & BIND (Covers BIND 9), 4/ed, 642 Pages Albitz 500.00
8173665672 DNS & BIND Cookbook, 248 Pages Liu 250.00
8173663785 DNS on Windows 2000, 2/ed, 376 Pages Larson 275.00
8173660506 DNS on Windows NT, 352 Pages Albitz 195.00
8173662991 Dreamweaver MX: The Missing Manual, 750 Pages McFarland 600.00
8173665281 Dynamic HTML: The Definitive Reference, 2/ed, 1,428 Pgs Goodman 650.00
8173669015 Eclipse (Coverage of 3.0), 344 Pages Holzner 325.00
8173669309 Eclipse Cookbook (Cover 3.0), 372 Pages Holzner 350.00
8173663017 Effective awk Programming, 3/ed, 454 Pages
8173667268 Enterprise JavaBeans (Covers EJB 2.1 & EJB 2.0 Includes workbook

Robbins 325.00

for JBoss 4.0), 4/ed, 798 Pgs Monson - Haefel 500.00
8173668167 Enterprise Service Architecture - O’Reilly SAP Series, 236 Pgs Woods 225.00
8173669317 Essential ActionScript 2.0, 528 Pages Moock 400.00
8173666784 Enterprise Service Bus, 284 Pages Chappell 300.00
8173663580 Essential SNMP, 338 Pages Mauro 300.00
817366529X Essential System Administration, 3/ed, 1,178 Pages Frisch 525.00
8173666644 Essential System Administration Pocket Reference, 152 Pgs Frisch 125.00
8173660255 Essential Windows NT System Administration, 488 Pages Frisch 225.00
8173662495 Ethernet: The Definitive Guide, 528 Pages Spurgeon 300.00
8173662754 Excel 2000 In a Nutshell: A Power User’s Quick Reference, 560 Pgs Simon 300.00
8173669619 Excel 2003 Personal Trainer (B 1 CD-ROM), (2 Color book) 490 Pages CustomGuide 550.00
8173668299 Excel 2003 Programming: A Developer’s Notebook, 330 Pgs Webb 325.00
8173669406 Excel Annoyances, 268 Pages Frye 300.00
8173668612 Excel Hacks: 100 Industrial Strength Tips & Tools, 316 Pgs David 275.00
8173668035 Excel: The Missing Manual, 802 Pages MacDonald 550.00
8173665257 Exploring the JDS Linux Desktop (B/CD-ROM), 418 Pgs Adelstein 400.00
8173667470 Flash Hacks: 100 Industrial Strength Tips & Tools, 504 Pgs Bhangal 400.00
8173667314 Flash Remoting MX: The Definitive Guide, 652 Pages Muck 550.00
8173668590 Flash Out of the Box (B / CD-ROM), 264 Pages Hoekman 300.00
0596002874 Free As In Freedom: Richard Stallman’s Crusade for Free Software, 243 Pages Williams 750.00
817366708X Google Hacks: 100 Industrial Strenght Tips & Tricks, 358 Pages Calishain 300.00
8173667136 Google Pocket Guide, 144 Pages Calishain 125.00
8173669325 Google: The Missing Manual, 312 Pages Milstein 325.00
0596006624 Hackers & Painters: Big Ideas from the Computer Age, 272 Pgs Graham 700.00
8173668256 Hardcore Java, 354 Pages Simmons 300.00
8173663424 Hardening Cisco Routers, 196 Pages Akin 150.00
8173668213 Hardware Hacking Projects for Geeks, 358 Pages Fullam 350.00
8173664668 Head First Design Patterns, 688 Pages
8173665265 Head First EJB: Passing the Sun Certified Business

Sierra 500.00

Component Developer Exam, 744 Pgs Sierra 450.00
8173666652 Head First Java, 650 Pages
817366403X Head First Servlets & JSP: Passing the Sun Certified Web

Sierra 400.00

Component Developer Exam, 666 Pages Sierra 550.00
8173669341 Hibernate: A Developer’s Notebook, 190 Pages 
8173669260 High Performance Linux Cluster with OSCAR, Rocks,

Elliott 200.00

OpenMosix, and MPI, 380 Pgs Sloan 350.00
8173669023 High Performance MySQL, 304 Pages Zawodny 300.00



8173665141 HTML & XHTML: The Definitive Guide, 5/ed, 676 Pages Musciano 500.00
8173664323 HTML Pocket Reference, 2/ed, 100 Pages Niederst 70.00
8173663165 Home Hacking Projects for Geeks, 352 Pages Faulkner 325.00
8173669449 Home Networking Annoyances, 234 Pages Ivens 250.00
0596008597 Illustrations with Photoshop: A Designer’s Notebook, 96 Pgs Rodarmor 775.00
8173665109 Information Architecture for the World Wide Web, 2/ed, 492 Pgs Rosenfeld 400.00
8173669414 Internet Annoyances, 266 Pages Gralla 250.00
8173661057 Internet Core Protocols: The Definitive Guide (B / CD-ROM), 476 Pgs Hall 375.00
8173660158 Internet in a Nutshell, 456 Pages Quercia 215.00
8173663378 IP Routing, 244 Pages Malhotra 200.00
817366448X IPv6 Essentials, 362 Pages Hagen 300.00
8173663025 IPv6 Network Administration, 316 Pages Murphy 325.00
8173667489 IRC Hack: 100 Industrial-Strength Tips & Tools, 442 Pgs Mutton 400.00
8173667373 J2EE Design Patterns, 390 Pages Crawford 325.00
8173663432 J2ME in a Nutshell: A Desktop Quick Reference, 474 Pgs Topley 300.00
8173669295 Jakarta Commons Cookbook, 412 Pages O'Brien 375.00
8173669481 Jakarta Struts Cookbook, 536 Pages Siggelkow 400.00
8173667144 Jakarta Struts Pocket Reference, 142 Pages Cavaness 125.00
8173668477 Java 1.5 Tiger: A Developer’s Notebook, 210 Pgs McLaughlin 175.00
8173664471 Java & SOAP, 286 Pages Englander 275.00
817366367X Java & XML, 2/ed, 534 Pages McLaughlin 450.00
8173664498 Java & XML Data Binding, 224 Pages McLaughlin 200.00
8173663793 Java & XSLT, 534 Pages Burke 350.00
8173669368 Java Cookbook (Coverage of 1.5), 2/ed, 872 Pgs Darwin 600.00
8173666660 Java Database Best Practices, 304 Pages Eckstein 275.00
8173666679 Java Data Objects, 568 Pages Jordan 350.00
817366577X Java Enterprise Best Practices, 296 Pages Eckstein 275.00
8173664625 Java Enterprise in a Nutshell: A Desktop Quick Reference, 2/ed, 1004 Pages Farley 600.00
8173662843 Java Examples in a Nutshell 2/ed, 592 Pages Flanagan 225.00
8173668639 Java Examples in a Nutshell: A Tutorial Companion to

Java in a Nutshell, 3/ed, 728 Pages Flanagan 400.00
8173666687 Java Extreme Programming Cookbook, 296 Pages Burke 225.00
817366434X Java in a Nutshell: A Desktop Quick Reference, 4/ed, 1000 Pgs Flanagan 600.00
8173664404 Java Management Extensions, 318 Pages Perry 275.00
8173663211 Java Message Service, 300 Pages Monson-Haefel 150.00
8173662312 Java Network Programming 2/ed, 768 Pages Harold 500.00
8173665117 Java NIO, 308 Pages Hitchens 275.00
8173665788 Java Performance Tuning, 2/ed, 600 Pages Shirazi 450.00
8173663904 Java Programming with Oracle JDBC, 504 Pages Bales 300.00
8173663815 Java RMI, 578 Pages Grosso 400.00
8173664129 Java Security, 2/ed, 624 Pages Oaks 500.00
8173668221 Java Servlet & JSP Cookbook, 756 Pages Perry 500.00
8173662851 Java Servlet Programming 2/ed, 786 Pages Hunter 500.00
8173665680 Java Swing, 2/ed, 1288 Pages Loy 750.00
8173660573 Java Threads, 2/ed, 336 Pages Oaks 250.00
8173665923 Java Threads (Covers J2SE 5.0), 3/ed, 368 Pages Oaks 300.00
8173663440 Java Web Services, 286 Pages Chappell 250.00
8173666695 Java Web Services in a Nutshell: A Desktop Quick

Reference (Covers J2EE 1.4 & JWSDP), 696 Pages Topley 500.00
8173666709 JavaScript and DHTML Cookbook, 546 Pages Goodman 475.00
8173663823 JavaScript: The Definitive Guide (Covers JavaScript 1.5), 4/ed, 942 Pgs Flanagan 750.00
8173669031 JavaServer Faces, 614 Pages Bergsten 450.00
8173665303 JavaServer Pages (Covers JSP 2.0 & JSTL 1.1), 3/ed, 762 Pgs Bergsten 400.00
8173663831 JavaServer Pages Pocket Reference, 96 Pages Bergsten 65.00



8173666717 JDBC Pocket Reference, 160 Pages Bales 100.00
8173668604 JUnit Pocket Guide, 100 Pages Beck 100.00
059600768X Just A Geek, 296 Pages Wheaton 775.00
817366515X JXTA in a Nutshell: A Desktop Quick Reference, 422 Pages Oaks 225.00
8173665605 Kerberos: The Definitive Guide, 280 Pages Garman 275.00
8173666725 LDAP System Administration, 318 Pages Carter 300.00
8173665168 Learning C#, 374 Pages Liberty 300.00
8173669635 Learning GNU Emacs, 3/ed, 544 Pages Cameron 450.00
8173663912 Learning Oracle PL/SQL (Covers Oracle9i), 452 Pages Pribyl 325.00
8173663718 Learning Perl, 3/ed, 344 Pages Schwartz 275.00
8173667322 Learning PHP 5, 378 Pages Sklar 350.00
8173667381 Learning Python (Covers Python 2.3), 2/ed, 630 Pages Lutz 525.00
8173668051 Learning the Bash Shell,3/ed, 362 Pages Newham 350.00
8173664447 Learning the Korn Shell, 2/ed, 438 Pages Rosenblett 325.00
8173664234 Learning the UNIX Operating System, 5/ed, 174 Pages Peek 125.00
8173660611 Learning the vi Editor 6/ed, 352 Pages Lamb 250.00
8173666741 Learning UML, 304 Pages Si Alhir 150.00
817366563X Learning Visual Basic .NET, 326 Pages Liberty 250.00
8173669422 Learning Windows Server 2003, 682 Pages Hassell 500.00
817366062X lex & yacc 2/ed, 392 Pages Levine 225.00
8173668442 Linux Cookbook, 590 Pages Schroder 425.00
8173663602 Linux Device Drivers (Covers Linux 2.4), 2/ed, 596 Pages Rubini 450.00
8173667179 Linux in a Nutshell, 4/ed, 994 Pages Siever 500.00
8173669457 Linux in a Windows World, 504 Pages Smith 450.00
8173668507 Linux iptables Pocket Reference, 106 Pages Purdy 100.00
8173662541 Linux Network Administrator’s Guide, 2/ed, 512 Pages Kirch 400.00
8173668647 Linux Pocket Guide, 212 Pages Barrett 150.00
8173667187 Linux Security Cookbook, 340 Pages Barrett 325.00
817366675X Linux Server Hacks: 100 Industrial - Strength Tips & Tools, 240 Pgs Flickenger 225.00
8173668434 Linux Unwired, 322 Pages Weeks 300.00
817366465X Managing & Using MySQL, 2/ed, 448 Pages Reese 325.00
8173662746 Managing IMAP, 412 Pages Mullet 200.00
8173660271 Managing IP Networks with Cisco Routers, 352 Pages Ballew 200.00
8173663610 Managing NFS & NIS, 2/ed, 518 Pages Stern 400.00
8173669589 Managing Projects with GNU Make, 3/ed, 310 Pgs Mecklenburg 300.00
8173665230 Managing RAID on Linux, 268 Pages Vadala 275.00
8173668655 Managing Security with Snort & IDS Tools, 296 Pages Cox Ph.D. 300.00
8173662800 Managing the Windows 2000 Registry, 564 Pages Robicheaux 325.00
8173661162 Mastering Algorithms with С (В / DISK), 572 Pages Loudon 400.00
8173664455 Mastering FreeBSD and OpenBSD Security, 472 Pages Korff 425.00
8173664366 Mastering Oracle SQL, (Cover Oracle9i), 348 Pages Mishra 225.00
8173664617 Mastering Oracle SQL (Covers Oracle DatabaselOg), 2/ed, 504 Pgs Mishra 400.00
8173666768 Mastering Perl for Bioinformatics, 406 Pages Tisdall 300.00
8173665087 Mastering Regular Expressions, 2/ed, 492 Pages Friedl 400.00
8173665702 Mastering Visual Studio .NET 2003, 420 Pages Flanders 375.00
8173667497 Mono: A Developer’s Notebook, 312 Pages Dumbill 325.00
8173665648 MySQL Cookbook (Covers MySQL 4.0), 1,028 Pages DuBois 750.00
8173666776 MySQL Pocket Reference, 94 Pages Reese 100.00
8173665249 NetBeans: The Definitive Guide, 662 Pages Boudreau 500.00
8173663521 Networking Security Hacks: 100 Industrial-Strength Tips & Tools, 328 Pages Lockhart 325.00
8173668809 Network Security Assessment, 398 Pages McNab 400.00
8173668396 Network Security Tools, 350 Pages Dhanjani 350.00
8173663688 Network Troubleshooting Tools, 370 Pages Sloan 250.00
8173667845 NUnit Pocket Reference, 100 Pages Hamilton 100.00

w w w .shroffpublishers.com 5 e-m ail: spdorders@ shroffpublishers.com

http://www.shroffpublishers.com
mailto:spdorders@shroffpublishers.com


8173665613 Object-Oriented Programming with Visual Basic .NET, 306 Pages Hamilton 225.00
8173668264 Office 2003 XML, 596 Pages Lenz 450.00
8173667519 OpenOffice.org Writer (B / CD-ROM), 234 Pages Weber 250.00
8173667403 Optimizing Oracle Performance, 426 Pages Milsap 375.00
8173669287 Oracle Applications Server 10g Essentials, 292 Pages Greenwald 275.00
8173661170 Oracle Built-in Packages (B / DISK), 956 Pages Feuerstein 475.00
8173667071 Oracle Data Dictionary Pocket Reference, 150 Pages Kreines 125.00
8173660670 Oracle Database Administration: The Essential Reference, 552 Pgs Kreines 325.00
817366417X Oracle DBA Checklist Pocket Reference, 88 Pages RevealNet 65.00
8173660689 Oracle Distributed Systems (B / DISK), 552 Pages Dye 325.00
8173664110 Oracle Essentials: Oracle9i, Oracle8i & Oracle8, 2/ed, 382 Pgs Greenwald 250.00
817366935X Oracle Essentials: Oracle Database 10g, 3/ed, 368 Pgs Greenwald 275.00
817366580X Oracle in a Nutshell: A Desktop Quick Reference, 934 Pgs Greenwald 600.00
8173664560 Oracle Initialization Parameters Pocket Reference

(Oracle Database 10g), 128 Pages Kreines 125.0.0
8173663246 Oracle Net8 Configuration & Troubleshooting, 412 Pages Toledo 250.00
8173663629 Oracle PL/SQL Best Practices, 208 Pages Feuerstein 125.00
8173661189 Oracle PL/SQL Built-ins Pocket Reference, 78 Pages Feuerstein 60.00
8173665176 Oracle PL/SQL Programming, 3/ed, 1,024 Pages Feuerstein 600.00
8173662401 Oracle PL/SQL Programming: A Developer’s Workbook, 576 Pgs Feuerstein 300.00
8173661197 Oracle PL/SQL Programming: Guide to Oracle8i Features (B / DISK), 264 Pages Feuerstein 235.00
8173668116 Oracle Regular Expression Pocket Reference, 74 Pages Burcham 75.00
8173661200 Oracle SAP Administration, 208 Pages Burleson 175.00
8173660298 Oracle Scripts (B / CD-ROM), 208 Pages Lomansky 250.00
8173660719 Oracle Security, 448 Pages Theriault 220.00
8173663637 Oracle SQL* Loader: The Definitive Guide, 278 Pages Gennick 175.00
8173669333 Oracle SQL*Plus Pocket Reference, 3/ed, 160 Pages Gennick 125.00
8173666067 Oracle SQL*Plus: The Definitive Guide, 2/ed, 592 Pages Gennick 400.00
8173662916 Oracle SQL: The Essential Reference, 424 Pages Kreines 200.00
8173661847 Oracle Utilities Pocket Reference, 136 Pages Mishra 100.00
8173661219 Oracle Web Applications: PL/SQL Developer’s Intro, 264 Pages Odewahn 180.00
817366028X Oracle8 Design Tips, 136 Pages Ensor 120.00
8173668027 PC Annoyances: How to Fix the Most Annoying Things

about your Personal Computer, 236 Pages Bass 225.00
8173667152 PC Hacks: 100 Industrial-Strength Tips & Tools, 316 Pages Aspinwall 300.00
8173669732 PC Hardware Annoyances, 276 Pages Bigelow 275.00
817366532X PC Hardware in a Nutshell: A Desktop Quick Reference, 3/ed, 848 Pgs Thompson 325.00
8173667128 PDF Hacks: 100 Industrial-Strength Tips & Tools, 308 Pages Steward 300.00
8173664463 Perl & XML, 224 Pages Ray 175.00
8173661073 Perl 5 Pocket Reference, 3/ed, 96 Pages Vromans 70.00
8173667195 Perl 6 Essentials, 208 Pages Randal 175.00
8173667330 Perl Cookbook, 2/ed, 976 Pages Christiansen 675.00
8173668043 Perl Template Toolkit, 600 Pages Chamberlain 525.00
8173665710 PHP Cookbook, 638 Pages Sklar 550.00
0596008600 Photo Retouching with Photoshop: A Designer’s Notebook, 96 Pgs CLEC’H 775.00
817366871X Postfix: The Definitive Guide, 288 Pages Dent 275.00
8173669805 Powerpoint 2003 PersonalTrainer (B / CD-ROM), (2 Color book) 342 Pages CustomGuide 425.00
8173660301 Practical C Programming 3/ed, 456 Pages Oualline 225.00
8173666822 Practical C++ Programming, 2/ed, 582 Pages Oualline 225.00
817366711X Practical mod_perl, 932 Pages Bekman 675.00
8173663920 Practical PostgreSQL (B / CD-ROM), 642 Pgs Command Prompt Inc. 450.00
8173666733 Practical RDF, 360 Pages Powers 325.00
8173666830 Practical Unix & Internet Security, 3/ed, 994 Pages Garfinkel 650.00
8173664390 Practical VoIP Using VOCAL, 532 Pages Dang 450.00

www .shroffpublishers.com 6 e-m ail: spdorders@ shroffpublishers.G om

http://www.shroffpublishers.com
mailto:spdorders@shroffpublishers.Gom


8173665818 Programming .NET 1.1 Components, 488 Pages Lowy 375.00
8173667209 Programming .NET Security, 704 Pages Freeman 550.00
8173667411 Programming .NET Windows Applications

(Covers .NET 1.1,& Visual Studio .NET 2003), 1316 Pages Liberty 750.00
8173664382 Programming .NET Web Services, 500 Pages Ferrara 375.00
817366742X Programming ASP .NET (Covers .NET 1.1, &

Visual Studio .NET 2003), 2/ed, 1026 Pages Liberty 675.00
8173669694 Programming Flash Communication Server, 824 Pgs Lesser 500.00
817366076X Programming Embedded Systems in C & C++, 198 Pages Barr 150.00
8173661278 Programming Internet E-mail, 384 Pages Wood 225.00
8173668183 Programming Jakarta Struts 2/ed, 470 Pages Cavaness 400.00
8173662657 Programming Perl 3/ed, 1,116 Pages Wall 675.00
8173663114 Programming PHP, 530 Pages Lerdorf 350.00
8173667500 Programming Python (Covers Python 2) (B / CD-ROM), 2/ed, 1,305 Pgs Lutzf 750.00
8173662371 Programming the Perl DBI, 372 Pages Descartes 200.00
8173667098 Programming Visual C# .NET 2003 (Covers .NET 1.1, &

Visual Studio .NET 2003), 3/ed, 718 Pages Liberty 525.00
8173667063 Programming Visual Basic .NET 2003, 2/ed, 564 Pages Liberty 425.00
8173665737 Programming Web Services with Perl, 492 Pages Ray 400.00
8173662045 Programming Web Services with SOAP, 268 Pages Snell 200.00
817366207X Programming Web Services with XML-RPC, 240 Pages St.Laurent 175.00
8173668175 Programming with QT (Covers Qt 3), 2/ed, 532 Pages Dalheimer 450.00
8173666857 Python in a Nutshell: A Desktop Quick Reference (Cover Python 2.2), 662 Pages Martelli 500.00
817366479X Python Cookbook, 2/ed, 852 Pages Martelli 600.00
8173669708 Python Pocket Reference, 3/ed, 168 Pages Lutz 125.00
8173668485 qmail, 268 Pages Levine 275.00
817366689X Real World Web Services, 230 Pages Iverson 225.00
8173667276 Regular Expression Pocket Reference, 112 Pages Stubblebine 100.00
0596007191 Revolution in the Valley, 324 Pages Hertzfeld 775.00
8173665206 Running Linux, 4/ed, 702 Pages Welsh 425.00
8173667055 Samba Pocket Reference, 2/ed, 146 Pages Eckstein 125.00
8173664226 SAX2 (Simple API for XML), 248 Pages Brownell 175.00
8173667217 Secure Coding: Principles & Practices, 200 Pages Graff 225.00
8173667284 Secure Programming Cookbook for C and C++, 800 Pages Viega 600.00
817366840X Security Warrior, 562 Pages Peikari 500.00
8173663262 Securing Windows NT/2000 Servers for the Internet, 200 Pgs Norberg 125.00
8173669376 Securing Windows Server 2003, 456 Pages Danseglio 400.00
8173660786 Sed & awk, 2/ed, 440 Pages Dougherty 300.00
817366918X SELINUX NSA’s Open Source Security Enhanced Linux, 264 Pgs McCarty 275.00
8173665834 sendmail, 3/ed, 1,238 Pages Costales 850.00
817366823X sendmail Cookbook, 418 Pages Hunt 400.00
8173666865 Sequence Analysis in a Nutshell: A Guide to Common Tools

and Databases (Covers EMBOSS 2.5.0), 310 Pages Markel 275.00
8173664161 Server Load Balancing, 198 Pages Bourke 150.00
817366739X SharePoint User’s Guide Bryan 150.00
8173669503 Snort Cookbook, 296 Pages Orebaugh 300.00
8173663866 Solaris 8 Administrator's Guide, 308 Pages Watters 225.00
8173669198 SpamAssassin (Covers 3.0), 232 Pages Schwartz 250.00
8173668191 Spidering Hacks: 100 Industrial - Strength Tips & Tools, 436 Pgs Hemenway 350.00
817366837X Spring: A Developer’s Notebook, 212 Pages Tate 200.00
8173666520 SQL in a Nutshell (Covers SQL Server, DB2, MySQL,

Oracle & PostgreSQL), 2/ed, 720 Pages Kline 450.00
8173667438 SQL Pocket Reference (Cover Oracle. DB2,

SQL Server & MySQL), 170 Pages Gennick 125.00

w w w .shroffpublishers.com 0e-m ail: spdorders@ shroffpub lishers .com

http://www.shroffpublishers.com
mailto:spdorders@shroffpublishers.com


8173668248 SQL Tunning (Covers Oracle, DB2 & SQL Server), 356 Pgs Tow 325.00
8173668418 Squid: The Definitive Guide, 472 Pages Wessels 450.00
8173662924 SSH: The Secure Shell: The Definitive Guide, 564 Pages Barrett 325.00
8173668574 STL Pocket Reference, 136 Pages Lischner 100.00
8173669511 SWT: A Developer’s Notebook, 330 Pages Hatton 325.00
8173663254 T1: A Survival Guide, 312 Pages Gast 225.00
817366093X Tcl/Tk in a Nutshell: A Desktop Quick Reference, 480 Pages Raines 240.00
8173664676 TCP/IP Network Administration 3/ed, 756 Pages Hunt 500.00
8173667837 The Art of Project Management, 512 Pages Berkun 350.00
8173666873 Tomcat: The Definitive Guide (Cover Tomcat 4), 336 Pages Brittain 300.00
8173660352 UML in a Nutshell: A Desktop Quick Reference, 336 Pages Alhir 225.00
8173667225 UML Pocket Reference, 96 Pages Pilone 100.00
8173665893 Understanding the Linux Kernel, 2/ed, 832 Pages Bovet 500.00
817366627X Unit Test Frameworks (B / CD-ROM), 222 Pages Hamill 225.00
8173661324 UNIX in a Nutshell: A Desktop Quick Reference for

SVR4 & Solaris 7, 3/ed, 628 Pages Robbins 225.00
8173665656 Unix Power Tools, 3/ed, 1,162 Pages Powers 750.00
8173666202 Upgrading to PHP 5 (Covers MySQL 4.1), 358 Pgs Trachtenberg 35a.oo
8173660948 Using & Managing PPP, 464 Pages Sun 240.00
8173665842 Using Samba, 2/ed, 570 Pages Eckstein 500.00
8173664374 VB .NET Core Classes in a Nutshell: A Desktop

Quick Reference (B / CD-ROM), 584 Pgs Kurniawan 500.00
817366594X VB .NET Language Pocket Reference, 160 Pages Roman 125.00
8173666881 VBScript in a Nutshell: A Desktop Quick Reference, 2/e, 528 Pages Lomax 400.00
8173663300 VBScript Pocket Reference, 118 Pages Childs 60.00
8173662622 vi Editor Pocket Reference, 76 Pages Robbins 60.00
8173661340 Virtual Private Networks, 2/ed, 228 Pages Scott 150.00
8173666164 Visual Basic 2005: A Developer's Notebook, 272 Pages MacDonald 250.00
8173669740 Visual C# 2005: A Developer's Notebook, 250 Pages Liberty 225.00
8173660964 Visual Basic Controls in a Nutshell, 512 Pages Dictor 310.00
817366501X Visual Studio Hacks, 508 Pages Avery 375.00
8173668094 Volume One: Xlib Programming Manual (Version 11), 824 Pgs Nye 575.00
8173668108 Volume Two: Xlib Reference Manual (Version 11), 3/ed, 948 Pgs Nye 600.00
8173668086 Volume Zero: X Protocol Reference Manual (Version X11), 468 Pgs Nye 350.00
8173668310 X Windows Reference Manaul (3 Volume Set) Nye 1,350.00
0596007337 We the Media: Grassroots Journalism by the People,

for the People, 320 Pages Gillmor 775.00
8173663092 WebLogic 8.1: The Definitive Guide, 860 Pages Mountjoy 600.00
8173669058 Web Database Application with PHP & MySQL

(Covers PEAR, PHP 5 & MySQL 4.1), 2/ed, 828 Pages Willaims 600.00
8173663750 Web Design in a Nutshell: A Desktop Quick Reference, 2/ed, 656 Pgs Niederst 425.00
8173664412 Web Performance Tuning, 2/ed, 488 Pages Killelea 350.00
8173665214 Web Privacy with P3P, 350 Pages Cranor 300.00
8173663947 Web Security, Privacy & Commerce, 2/ed, 768 Pages Garfinkel 500.00
8173663394 Web Services Essentials, 320 Pages Cerami 200.00
8173665931 WebLogic Server 6.1 Workbook for Enterprise JavaBeans , 3/ed, 264 Pgs Nyberg 200.00
8173661308 The Whole Internet: The Next Generation, 576 Pages Conner/Krol 425.00
8173661367 Win32 API Programming with Visual Basic (B / CD-ROM), 534 Pgs Roman 400.00
8173662789 Windows 2000 Administration in a Nutshell:

A Desktop Quick Reference, 1000 Pages Tulloch 350.00
8173663319 Windows 2000 Commands Pocket Reference, 122 Pages Frisch 60.00
8173660743 Windows 2000 Quick Fixes, 304 Pages Boyce 225.00
8173660883 Windows NT TCP/IP Network Administration, 512 Pages Hunt 250.00
8173666903 Windows Server 2003 in a Nutshell: A Desktop Quick Reference, 672 Pgs Tulloch 550.00

www.shroffpublishers.com 8 e-mail: spdorders@shroffpublishers.com

http://www.shroffpublishers.com
mailto:spdorders@shroffpublishers.com


8173668833 Windows Server Hacks: 100 Industrial-Strength Tips & Tools , 328 Pages Tulloch
8173667454 Windows XP Hacks: 100 Industrial-Strength Tips & Tools, 294 Pgs Gralla
8173663564 Windows XP in a Nutshell: A Desktop Quick Reference, 640 Pgs Karp
8173669643 Windows XP Personal Trainer (B / CD-ROM), 480 Pages CustomGuide
8173666911 Windows XP Pocket Reference, 196 Pages Karp
8173665915 Windows XP Unwired: A Guide for Home, Office, and the Road, 316 Pgs Lee
8173667462 Wireless Hacks: 100 Industrial-Strength Tips & Tools, 424 Pgs Flickenger
8173662770 Word 2000 in a Nutshell: A Power User’s Quick Reference, 516 Pages Glenn
8173669716 Word 2003 Personal Trainer (B / CD-ROM), 456 Pgs CustomGuide
817366692X Word Pocket Guide, 160 Pages Glenn
8173665354 Writing Excel Macros with VBA, 2/ed, 580 Pages Roman
8173660778 Writing Word Macros, 416 Pages Roman
8173668450 XML in a Nutshell (Covers XML 1.1 & Xlnclude), 3/ed, 724 Pgs Harold
8173666156 XML Hacks: 100 Industrial-Strength Tips & Tools, 490 Pgs Fitzgerald
8173663343 XML Pocket Reference, 2/ed, 128 Pages Eckstein
FORTHCOMING TITLES

June 2005
817366335X Java Network Programming, 3/ed, 770 Pages Harold
8173669686 Linux Server Security, 2/ed, 542 Pages Bauer
8173668302 Managing Windows Server 2003, 510 Pages Hassell
8173661987 Outlook 2003 Personal Trainer (B / CD-ROM), (2 Color book) 504 Pages Custom Guide
8173669473 QuickTime for Java: A Developer's Notebook, 256 Pages Adamson
8173669678 Windows XP Power Hound, 384 Pages Gralla
8173669651 Windows XP Pro: The Missing Manual, 2/ed, 704 Pages Pogue
817366966X Windows XP Home Edition: The Missing Manual, 624 Pages Pogue
8173664579 Word Hacks, 416 Pages Savikas

July 2005
8173666377 Access Hacks, 304 Pages Bluttman
8173667349 ANT: The Definitive Guide, 2/ed, 456 Pages Holzner
8173664749 Linux Desktop Hacks, 384 Pages Petreley
8173669465 Mapping Hacks (B / 4 CD-ROM), 400 Pages Erie
817366806X MySQL in a Nutshell, 400 Pages Dyer
8173666512 Test Driving Linux (B / CD-ROM), 224 Pages Lavigna
8173668396 TOAD Pocket Reference for Oracle, 2/ed, 120 Pages McGrath
8173665346 Windows Server Cookbook, 704 Pages Allen

August 2005
8173665729 .NET Gotchas, 352 Pages Subramaniam
8173668469 Access Annoyances, 304 Pages Mitchell
8173669430 ASP .NET 2.0 Developer's Notebook, 256 Pages Lee
8173668493 Classic Shell Scripting, 456 Pages Robbins
8173666024 Home Networking: The Missing Manual, 456 Pages Lowe
8173664544 JUnit: The Definitive Guide, 300 Pages Lane
8173668582 Killer Game Programming in Java, 656 Pages Davison
8173669252 Computer Privacy Annoyances, 280 Pages Tynan
817366949X PHP Security, 300 Pages Shiflett
8173669724 Programming Apache Axis, 400 Pages Haddad
8173669732 Programming SQL Server 2005, 352 Pages Wildermuth

• Dates & Prices of forthcoming titles are tentative and subject to change without notice.
• All Prices are in Indian
• TITLES RELEASED AFTER AUGUST 2004 ARE MARKED IN BOLD.

325.00
350.00
375.00
550.00
125.00
275.00
275.00
225.00
400.00
125.00
450.00
275.00
500.00
425.00
100.00

500.00
400.00
400.00
425.00
275.00
350.00
600.00
500.00
275.00

300.00
350.00
350.00
300.00
300.00
225.00
100.00
550.00

350.00
300.00
250.00
325.00
400.00
275.00
500.00
300.00
300.00
400.00
250.00



For Wholesale enquiries contact:-

C-103, TTC Industrial Area, MIDC, Pawane, Navi Mumbai - 400 701. 
Tel: (91 22) 2763 4290 • Fax: (91 22) 2768 3337 

E-mail: spdorders@shroffpublishers.com

Branches
Kolkata

7B Haati Bagan Road, 1st Floor, 
Kolkata 700 014 

Tel: (91 33) 2284 9329, 2284 7954 
Fax: (91 33) 2240 6109 

E-mail: spdcal@vsnl.com .

Chennai
23, Damodharan Street, (Old No. 12) 

T.Nagar, Chennai - 600 017 
Tel: (91 44) 2431 5343 
Fax: (91 44) 2431 5342 

E-mail: spdchennai@shroffpublishers.com

Delhi
Basement, 2/11 Ansari Road, Daryaganj 

New Delhi- 110 002 
Tel: (91 11) 2324 3337/8  
Fax: (91 11) 2324 3339 

E-mail: spddel@shroffpublishers.com

Bangalore
7, Sharada Colony, Basaveshwamagar, 

8th Main, Bangalore 560 079 
Tel: (91 80) 5128 7393 
Fax: (91 80) 5128 7392 

E-mail: spdblr@shroffpublishers.com

Hyderabad Resident Representative
Jayashanker Kuppili 

Mobile: 988 50 59050 
E-mail: shanker@shroffpublishers.com

For retail enquiries contact:-

M a p
www.cb-india.com

Mumbai
Computer Bookshop (India) Pvt. Ltd.

190 Dr. D.N. Road, Fort, Mumbai 400 001 
Tel: (91 22) 5631 7 9 2 2 /2 3 /2 4  

Fax: (91 22) 2262 3551 
E-mail: orders@cb-india.com©

Sterling Book House
181, Dr. D. N. Road, Fort, Mumbai - 400 001. J^j  W  

Tel. : (91 -22) 2261 2521, 2265 9599 X  '  
Fax : 2262 3551 • E-mail : sbh@vsnl.com

Kolkata 
Franchisee: Millennium

11 Mayfair Road (Opp. Ice Skating Rink), 
Kolkata: 700 019 • Tel: (91 33) 2280 0478, 

2280 7045 • Fax : (91 33) 2240 6109 
E-mail: millennium@vsnl.com

900KS-0p FOR PROFESSIONAL«

Shop #1, Cassinath Building, 172/174, 
Dr. D. N. Road, Mumbai - 400 001. India. 

Tel. : (91 -22) 5633 4622 
Fax: (91-22) 5633 4624 

E-mail : mail@bookzone-india.com

www.shroffpublishers.com

mailto:spdorders@shroffpublishers.com
mailto:spdcal@vsnl.com
mailto:spdchennai@shroffpublishers.com
mailto:spddel@shroffpublishers.com
mailto:spdblr@shroffpublishers.com
mailto:shanker@shroffpublishers.com
http://www.cb-india.com
mailto:orders@cb-india.com
mailto:sbh@vsnl.com
mailto:millennium@vsnl.com
mailto:mail@bookzone-india.com
http://www.shroffpublishers.com


8173665818 Programming .NET 1.1 Components, 488 Pages Lowy 375.00
8173667209 Programming .NET Security, 704 Pages Freeman 550.00
8173667411 Programming .NET Windows Applications

(Covers .NET 1.1 ,& Visual Studio .NET 2003), 1316 Pages Liberty 750.00
8173664382 Programming .NET Web Services, 500 Pages Ferrara 375.00
817366742X Programming ASP .NET (Covers .NET 1.1, &

Visual Studio .NET 2003), 2/ed, 1026 Pages Liberty 675.00
8173669694 Programming Flash Communication Server, 824 Pgs Lesser 500.00
817366076X Programming Embedded Systems in C & C++, 198 Pages Barr 150.00
8173661278 Programming Internet E-mail, 384 Pages Wood 225.00
8173668183 Programming Jakarta Struts 2/ed, 470 Pages Cavaness 400.00
8173662657 Programming Perl 3/ed, 1,116 Pages Wall 675.00
8173663114 Programming PHP, 530 Pages Lerdorf 350.00
8173667500 Programming Python (Covers Python 2) (B / CD-ROM), 2/ed, 1,305 Pgs Lutzf 750.00
8173662371 Programming the Perl DBI, 372 Pages Descartes 200.00
8173667098 Programming Visual C# .NET 2003 (Covers .NET 1.1, &

Visual Studio .NET 2003), 3/ed, 718 Pages Liberty 525.00
8173667063 Programming Visual Basic .NET 2003, 2/ed, 564 Pages Liberty 425.00
8173665737 Programming Web Services with Perl, 492 Pages Ray 400.00
8173662045 Programming Web Services with SOAP, 268 Pages Snell 200.00
817366207X Programming Web Services with XML-RPC, 240 Pages St. Laurent 175.00
8173668175 Programming with QT (Covers Qt 3), 2/ed, 532 Pages Dalheimer 450.00
8173666857 Python in a Nutshell: A Desktop Quick Reference (Cover Python 2.2), 662 Pages Martelli 500.00
817366479X Python Cookbook, 2/ed, 852 Pages Martelli 600.00
8173669708 Python Pocket Reference, 3/ed, 168 Pages Lutz 125.00
8173668485 qmail, 268 Pages Levine 275.00
817366689X Real World Web Services, 230 Pages Iverson 225.00
8173667276 Regular Expression Pocket Reference, 112 Pages Stubblebine 100.00
0596007191 Revolution in the Valley, 324 Pages Hertzfeld 775.00
8173665206 Running Linux, 4/ed, 702 Pages Welsh 425.00
8173667055 Samba Pocket Reference, 2/ed, 146 Pages Eckstein 125.00
8173664226 SAX2 (Simple API for XML), 248 Pages Brownell 175.00
8173667217 Secure Coding: Principles & Practices, 200 Pages Graff 225.00
8173667284 Secure Programming Cookbook for C and C++, 800 Pages Viega 600.00
817366840X Security Warrior, 562 Pages Peikari 500.00
8173663262 Securing Windows NT/2000 Servers for the Internet, 200 Pgs Norberg 125.00
8173669376 Securing Windows Server 2003, 456 Pages Danseglio 400.00
8173660786 Sed & awk, 2/ed, 440 Pages Dougherty 300.00
817366918X SELINUX NSA’s Open Source Security Enhanced Linux, 264 Pgs McCarty 275.00
8173665834 sendmail, 3/ed, 1,238 Pages Costales 850.00
817366823X sendmail Cookbook, 418 Pages Hunt 400.00
8173666865 Sequence Analysis in a Nutshell: A Guide to Common Tools

and Databases (Covers EMBOSS 2.5.0), 310 Pages Markel 275.00
8173664161 Server Load Balancing, 198 Pages Bourke 150.00
817366739X SharePoint User’s Guide Bryan 150.00
8173669503 Snort Cookbook, 296 Pages Orebaugh 300.00
8173663866 Solaris 8 Administrator's Guide, 308 Pages Watters 225.00
8173669198 SpamAssassin (Covers 3.0), 232 Pages Schwartz 250.00
8173668191 Spidering Hacks: 100 Industrial - Strength Tips & Tools, 436 Pgs Hemenway 350.00
817366837X Spring: A Developer’s Notebook, 212 Pages Tate 200.00
8173666520 SQL in a Nutshell (Covers SQL Server, DB2, MySQL,

Oracle & PostgreSQL), 2/ed, 720 Pages Kline 450.00
8173667438 SQL Pocket Reference (Cover Oracle. DB2,

SQL Server & MySQL), 170 Pages Gennick 125.00
1 www.shroffpublishers.com 7 0e-mail: spdorders@shroffpublishers.com

http://www.shroffpublishers.com
mailto:spdorders@shroffpublishers.com


8173668248 SQL Tunning (Covers Oracle, DB2 & SQL Server), 356 Pgs Tow 325.00
8173668418 Squid: The Definitive Guide, 472 Pages Wessels 450.00
8173662924 SSH: The Secure Shell: The Definitive Guide, 564 Pages Barrett 325.00
8173668574 STL Pocket Reference, 136 Pages Lischner 100.00
8173669511 SWT: A Developer's Notebook, 330 Pages Hatton 325.00
8173663254 T1: A Survival Guide, 312 Pages Gast 225.00
817366093X Tcl/Tk in a Nutshell: A Desktop Quick Reference, 480 Pages Raines 240.00
8173664676 TCP/IP Network Administration 3/ed, 756 Pages Hunt 500.00
8173667837 The Art of Project Management, 512 Pages Berkun 350.00
8173666873 Tomcat: The Definitive Guide (Cover Tomcat 4), 336 Pages Brittain 300.00
8173660352 UML in a Nutshell: A Desktop Quick Reference, 336 Pages Alhir 225.00
8173667225 UML Pocket Reference, 96 Pages Pilone 100.00
8173665893 Understanding the Linux Kernel, 2/ed, 832 Pages Bovet 500.00
817366627X Unit Test Frameworks (B / CD-ROM), 222 Pages Hamill 225.00
8173661324 UNIX in a Nutshell: A Desktop Quick Reference for

SVR4 & Solaris 7, 3/ed, 628 Pages Robbins 325.00
8173665656 Unix Power Tools, 3/ed, 1,162 Pages Powers 750.00
8173666202 Upgrading to PHP 5 (Covers MySQL 4.1), 358 Pgs Trachtenberg 3 5 (Ш
8173660948 Using & Managing PPP, 464 Pages Sun 240.00
8173665842 Using Samba, 2/ed, 570 Pages Eckstein 500.00
8173664374 VB .NET Core Classes in a Nutshell: A Desktop

Quick Reference (B / CD-ROM), 584 Pgs Kurniawan 500.00
817366594X VB .NET Language Pocket Reference, 160 Pages Roman 125.00
8173666881 VBScript in a Nutshell: A Desktop Quick Reference, 2/e, 528 Pages Lomax 400.00
8173663300 VBScript Pocket Reference, 118 Pages Childs 60.00
8173662622 vi Editor Pocket Reference, 76 Pages Robbins 60.00
8173661340 Virtual Private Networks, 2/ed, 228 Pages Scott 150.00
8173666164 Visual Basic 2005: A Developer's Notebook, 272 Pages MacDonald 250.00
8173669740 Visual C# 2005: A Developer's Notebook, 250 Pages Liberty 225.00
8173660964 Visual Basic Controls in a Nutshell, 512 Pages Dictor 310.00
817366501X Visual Studio Hacks, 508 Pages Avery 375.00
8173668094 Volume One: Xlib Programming Manual (Version 11), 824 Pgs Nye 575.00
8173668108 Volume Two: Xlib Reference Manual (Version 11), 3/ed, 948 Pgs Nye 600.00
8173668086 Volume Zero: X Protocol Reference Manual (Version X11), 468 Pgs Nye 350.00
8173668310 X Windows Reference Manaul (3 Volume Set) Nye 1,350.00
0596007337 We the Media: Grassroots Journalism by the People,

for the People, 320 Pages Gillmor 775.00
8173663092 WebLogic 8.1: The Definitive Guide, 860 Pages Mountjoy 600.00
8173669058 Web Database Application with PHP & MySQL

(Covers PEAR, PHP 5 & MySQL 4.1), 2/ed, 828 Pages Willaims 600.00
8173663750 Web Design in a Nutshell: A Desktop Quick Reference, 2/ed, 656 Pgs Niederst 425.00
8173664412 Web Performance Tuning, 2/ed, 488 Pages Killelea 350.00
8173665214 Web Privacy with P3P, 350 Pages Cranor 300.00
8173663947 Web Security, Privacy & Commerce, 2/ed, 768 Pages Garfinkel 500.00
8173663394 Web Services Essentials, 320 Pages Cerami 200.00
8173665931 WebLogic Server 6.1 Workbook for Enterprise JavaBeans , 3/ed, 264 Pgs Nyberg 200.00
8173661308 The Whole Internet: The Next Generation, 576 Pages Conner/Krol 425.00
8173661367 Win32 API Programming with Visual Basic (B / CD-ROM), 534 Pgs Roman 400.00
8173662789 Windows 2000 Administration in a Nutshell:

A Desktop Quick Reference, 1000 Pages Tulloch 350.00
8173663319 Windows 2000 Commands Pocket Reference, 122 Pages Frisch 60.00
8173660743 Windows 2000 Quick Fixes, 304 Pages Boyce 225.00
8173660883 Windows NT TCP/IP Network Administration, 512 Pages Hunt 250.00
8173666903 Windows Server 2003 in a Nutshell: A Desktop Quick Reference, 672 Pgs Tulloch 550.00

www.shroffpublishers.com ° 8 e-mail: spdorders@shroffpublishers.com

http://www.shroffpublishers.com
mailto:spdorders@shroffpublishers.com


8173668833 Windows Server Hacks: 100 Industrial-Strength Tips & Tools , 328 Pages Tulloch
8173667454 Windows XP Hacks: 100 Industrial-Strength Tips & Tools, 294 Pgs Gralla
8173663564 Windows XP in a Nutshell: A Desktop Quick Reference, 640 Pgs Karp
8173669643 Windows XP Personal Trainer (B / CD-ROM), 480 Pages CustomGuide
8173666911 Windows XP Pocket Reference, 196 Pages Karp
8173665915 Windows XP Unwired: A Guide for Home, Office, and the Road, 316 Pgs Lee
8173667462 Wireless Hacks: 100 Industrial-Strength Tips & Tools, 424 Pgs Flickenger
8173662770 Word 2000 in a Nutshell: A Power User’s Quick Reference, 516 Pages Glenn
8173669716 Word 2003 Personal Trainer (B / CD-ROM), 456 Pgs CustomGuide
817366692X Word Pocket Guide, 160 Pages Glenn
8173665354 Writing Excel Macros with VBA, 2/ed, 580 Pages Roman
8173660778 Writing Word Macros, 416 Pages Roman
8173668450 XML in a Nutshell (Covers XML 1.1 & Xlnclude), 3/ed, 724 Pgs Harold
8173666156 XML Hacks: 100 Industrial-Strength Tips & Tools, 490 Pgs Fitzgerald
8173663343 XML Pocket Reference, 2/ed, 128 Pages Eckstein
FORTHCOMING TITLES

June 2005
817366335X Java Network Programming, 3/ed, 770 Pages Harold
8173669686 Linux Server Security, 2/ed, 542 Pages Bauer
8173668302 Managing Windows Server 2003, 510 Pages Hassell
8173661987 Outlook 2003 Personal Trainer (B / CD-ROM), (2 Color book) 504 Pages Custom Guide
8173669473 QuickTime for Java: A Developer's Notebook, 256 Pages Adamson
8173669678 Windows XP Power Hound, 384 Pages Gralla
8173669651 Windows XP Pro: The Missing Manual, 2/ed, 704 Pages Pogue
817366966X Windows XP Home Edition: The Missing Manual, 624 Pages Pogue
8173664579 Word Hacks, 416 Pages Savikas

July 2005
8173666377 Access Hacks, 304 Pages Bluttman
8173667349 ANT: The Definitive Guide, 2/ed, 456 Pages Holzner
8173664749 Linux Desktop Hacks, 384 Pages Petreley
8173669465 Mapping Hacks (B / 4 CD-ROM), 400 Pages Erie
817366806X MySQL in a Nutshell, 400 Pages Dyer
8173666512 Test Driving Linux (B / CD-ROM), 224 Pages Lavigna
8173668396 TOAD Pocket Reference for Oracle, 2/ed, 120 Pages McGrath
8173665346 Windows Server Cookbook, 704 Pages Allen

August 2005
8173665729 .NET Gotchas, 352 Pages Subramaniam
8173668469 Access Annoyances, 304 Pages Mitchell
8173669430 ASP .NET 2.0 Developer's Notebook, 256 Pages Lee
8173668493 Classic Shell Scripting, 456 Pages Robbins
8173666024 Home Networking: The Missing Manual, 456 Pages Lowe
8173664544 JUnit: The Definitive Guide, 300 Pages Lane
8173668582 Killer Game Programming in Java, 656 Pages Davison
8173669252 Computer Privacy Annoyances, 280 Pages Tynan
817366949X PHP Security, 300 Pages Shiflett
8173669724 Programming Apache Axis, 400 Pages Haddad
8173669732 Programming SQL Server 2005, 352 Pages Wildermuth

• Dates & Prices of forthcoming titles are tentative and subject to change without notice.
• All Prices are in Indian
• TITLES RELEASED AFTER AUGUST 2004 ARE MARKED IN BOLD.

325.00
350.00
375.00
550.00
125.00
275.00
275.00
225.00
400.00
125.00
450.00
275.00
500.00
425.00
100.00

500.00
400.00
400.00
425.00
275.00
350.00
600.00
500.00
275.00

300.00
350.00
350.00
300.00
300.00
225.00
100.00
550.00

350.00
300.00
250.00
325.00
400.00
275.00
500.00
300.00
300.00
400.00
250.00



For Wholesale enquiries contact:-

C-103, TTC Industrial Area, MIDC, Pawane, Navi Mumbai - 400 701. 
Tel: (91 22) 2763 4290 • Fax: (91 22) 2768 3337 

E-mail: spdorders@shroffpublishers.com

Branches:-
Kolkata

7B Haati Bagan Road, 1st Floor, 
Kolkata 700 014 

Tel: (91 33) 2284 9329, 2284 7954 
Fax: (91 33) 2240 6109 

E-mail: spdcal@vsnl.com .

Chennai
23, Damodharan Street, (Old No. 12) 

T.Nagar, Chennai - 600 017 
Tel: (91 44) 2431 5343 
Fax: (91 44) 2431 5342 

E-mail: spdchennai@shroffpublishers.com

Delhi
Basement, 2/11 Ansari Road, Daryaganj 

New Delhi- 110 002 
Tel: (91 11) 2324 3337/8  
Fax: (91 11) 2324 3339 

E-mail: spddel@shroffpublishers.com

Bangalore
7, Sharada Colony, Basaveshwamagar, 

8th Main, Bangalore 560 079 
Tel: (91 80) 5128 7393 
Fax: (91 80) 5128 7392 

E-mail: spdblr@shroffpublishers.com

Hyderabad Resident Representative
Jayashanker Kuppili 

Mobile: 988 50 59050 
E-mail: shanker@shroffpublishers.com

For retail enquiries contact:-

Husnu
www.cb-india.com

Mumbai
Computer Bookshop (India) Pvt. Ltd.

190 Dr. D.N. Road, Fort, Mumbai 400 001 
Tel: (91 22) 5631 7922 / 2 3 / 2 4  

Fax: (91 22) 2262 3551 
E-mail: orders@cb-india.com©

Sterling Book House
181, Dr. D. N. Road, Fort, Mumbai - 400 001. 

Tel.: (91-22) 2261 2521,2265 9599 
Fax: 2262 3551 • E-mail: sbh@vsnl.com

Kolkata 
Franchisee: Millennium

11 Mayfair Road (Opp. Ice Skating Rink), 
Kolkata: 700 019 • Tel: (91 33) 2280 0478, 

2280 7045 • Fax : (91 33) 2240 6109 
E-mail: millennium@vsnl.com

7 O l ' i C

Shop #1, Cassinath Building, 172/174, 
Dr. D. N. Road, Mumbai - 400 001. India. 

Tel.: (91-22) 5633 4622 
Fax : (91-22) 5633 4624 

E-mail: mail@bookzone-india.com

wwvv.shroffpublishers.com

mailto:spdorders@shroffpublishers.com
mailto:spdcal@vsnl.com
mailto:spdchennai@shroffpublishers.com
mailto:spddel@shroffpublishers.com
mailto:spdblr@shroffpublishers.com
mailto:shanker@shroffpublishers.com
http://www.cb-india.com
mailto:orders@cb-india.com
mailto:sbh@vsnl.com
mailto:millennium@vsnl.com
mailto:mail@bookzone-india.com

