
S o f t w a r e E n g i n e e r i n g E s s e n t i a l s

V o l u m e I : T h e D e v e l o p m e n t P r o c e s s

F O U R T H E D I T I O N

i

— i -

^ c o m p u t e r o t t w a r e i
S O C ie t y * \ ■;v o l o p r i . t ' n ■. ..

^ - ' r o f e s s i p n a i

T he CS D A c r e d e n t i a l is in tended fo r T he C S D P c r e d e n t i a l is in tended fo r
g ra d u a tin g so ftw are eng ineers an d m id ca ree r so ftw are professionals
en try-level so ftw are professionals. looking to advance in th e ir ca ree rs

T he IE E E C o m p u te r Society (T he w o rld ’s la rgest o rgan iza tion o f co m p u te r
professionals) has launched an exam -based process fo r certify ing softw are
eng ineers as so ftw are eng ineering professionals.

T h is certifica te establishes th a t th e certificate h o ld er is capab le o f using
so ftw are eng ineering m ethods, tools, an d techn iques to develop an d build
so ftw are system s an d , in add ition , can fulfill the roles of:

• S o ftw are p ro jec t m an ag er

• S o ftw are a rch itec t an d req u irem en ts
an a ly st

• S o ftw are designer

• S o ftw are con figu ra tion m an ag er

• S o ftw are q u a lity -assu ran ce eng ineer

• V & V eng ineer

• S o ftw are tes t lead

• A nd so forth

The au thor team of Drs. R ichard Hall T hayer and M erlin Dorfm an has w ritten a
three-volume set of study guides to assist the potential certificate holder to pass the
CSDP exam (you are currently reading Volume I).

In addition, Dr. Thayer has developed a self-teaching, m ultimedia, CD training
course, with both audio and visual component as an addition study guide in passing
the certificate exam.

<t> c o m p u t e r
s o c i e t y

C P

T »/3

S o f t w a r e E n g i n e e r i n g E s s e n t i a l s

V o l u m e I : T h e D e v e l o p m e n t P r o c e s s

F O U R T H E D I T I O N

A m u l t i - t e x t s o f t w a r e e n g i n e e r i n g c o u r s e o r c o u r s e s (b a s e d o n

t h e 2 0 1 3 I E E E S W E B O K) f o r u n d e r g r a d u a t e a n d

g r a d u a t e u n i v e r s i t y s t u d e n t s

A s e l f - t e a c h i n g I E E E C S D P / C A D A c e r t i f i c a t e e x a m t r a i n i n g

c o u r s e b a s e d o n t h e C o m p u t e r S o c i e t y ’s

C S D P e x a m s p e c i f i c a t i o n s

E d i t e d & W r i t t e n b y :

R i c h a r d H a l l T h a y e r a n d M e r l i n D o r f m a n

T o sh k e n U ^ ÿ o ÿ ^ io g iy a ia r i U niversel

Axborot Resurs Markazi

¿ j . P u b l i s h e d b y :

S o f t w a r e M a n a g e m e n t T r a i n i n g P r e s s

C a r m i c h a e l , C a l i f o r n i a

2 0 1 3

C o p y r i g h t © 2 0 1 3 A l l r i g h t s r e s e r v e d

R i c h a r d H a l l T h a y e r & M e r l i n D o r f m a n

C a r m i c h a e l , C a l i f o r n i a

N o part o f this b o o k m a y b e copied, stored in a retrieval system, or transmitted

in a n y f o r m b y a n y m e a n s , including electronic, mechanical, photocopying, a n d

recording, or b y a n y other m e a n s without the written permission of the authors.

Copyright Notices

• SW EB O K Copyright and Reprint Perm issions: This docum ent m ay be copied , in w h ole or in
part, in any form or by any m eans, as is, or w ith alterations, provided that (1) alterations are
clearly marked as alterations and (2) th is copyright notice is included unm odified in any
copy. A n y other use or distribution o f th is docum ent is prohibited w ithout the prior express
perm ission o f IEEE.

• U nderstanding Softw are Requirem ents, b y Stuart R. Faulk (B ased on “ Software Require
ments: A Tutorial,” by Stuart R. Faulk, which appeared in R.H. Thayer and M. Dorfm an
(editors), Softw are R equirem ents E ngineering , 2 nd edition , IEEE Computer S ociety Press,
Los A lam itos, C A, © IEEE 1997).

• Softw are Design: In troduction a n d O verview by David Budgen (B ased on “Softw are D e
sign: A n Introduction,” by D avid B u d gen , w h ich appeared in R .H . Thayer and M. Dorfman
(editors), Softw are Engineering, V o lu m e I, 3rd edition, IEEE Computer S ociety Press, Los
A lam itos, C A , © IEEE 2005).

• W elcome to Softw are C onstruction by S tev e M cC onnell (This paper is an extract from
M cC onnell's book. Code Com plete: A p ra c tica l handbook o f softw are construction, 2nd ed.,
M icrosoft Press, Redm ond, W A , 2004 . U sed w ith perm ission o f M icrosoft, Inc. U sed w ith
perm ission o f the author). (T his b ook is recom m ended by the IEEE Computer S ociety a s a
reference book for the C SD P exam).

• Softw are Engineering M aintenance: A n In troduction by Keith H. Bennett (B ased on “Soft
ware M aintenance: A Tutorial,” by K eith H. Bennett, w hich appeared in R.H. Thayer and M.
Dorfm an (editors), Softw are E ng ineering , V olum e I, 3rd edition, IEEE Computer Society
Press, Los A lam itos, C A , © 2 0 0 7 IEEE).

• W ikipedia is a free w eb based en cyclop ed ia enabling m ultiple users to freely add and ed it
online content. D efin itions cited on W ikiped ia and their related sources have been verified by
the authors and other peer review ers. R eaders w ho w ou ld like to ver ify a source or a refer
ence should search the subject on G o o g le , and read the technical report found under W ikipe
dia.

• P ortrait o f M axw ell by Laura M arshall Photography, San Jose. CA 2007. Perm ission to copy
granted 2009 .

I S B N - 1 3 : 9 7 8 - 0 - 9 8 5 2 7 0 7 - 0 - 4

I S B N - 1 0 : 0 - 9 8 5 2 7 0 7 - 0 - 5

-- iv --

A c k n o w l e d g m e n t s

N o su ccessfu l endeavor has ever been done b y one person alone. W e w ou ld like to thank the
people and organizations that supported us in this effort:

First w e w ou ld like to thank our w ives - M ildred Thayer and Sandy Dorfm an - for their high
degree o f tolerance in putting up with us w orking m any hours on this manuscript.

W e w ou ld also like to thank the writers, proofreaders, and subject matter experts w ho wrote
our overv iew papers on the various software engineering processes:

Friedrich L. Bauer, K eith H. Bennett, A ntonia Bertolino, J. G lenn Brookshear, David
B udgen , Richard E. Fairley, Stuart R. Faulk, A lfonso Fuggetta, H assan Gomaa, D on
G otterbam , A nne Matte Jensen H ass, Jill M acari, Eda M archetti, S teven M cC onnell,
N ational A eronautics and Space Adm inistration (N A SA), Jed S cu lly , Laura Sfardini,
Ian S om m erville , S teve T ockey, Leonard Tripp, and Gerard Voland.

In addition, w e w ou ld like to thank: S teve T ockey for providing us w ith the current CSDP
exam sp ecifica tions in order to m axim ize the usefu lness o f our study gu ide, E llen Sander for
helping w ith proofing and copy editing our manuscript to make it ready for printing, M elville
(M el) P iercey o f Copy Plus for providing printing and other graphic support, and Jim T ozza for
giv ing us technical support to keep our com puter equipm ent running. Dr. Thayer w ould like to
g iv e an extra special thanks to B ig John N e lso n and Iain L ow o f the Technical Progress L im ited
(TPL) o f Cum bernauld, Scotland, for providing com puter equipm ent and support w hen Dr.
Thayer w as a resident at the U niversity o f Stirling, during the 2000s.

A nd finally , Dr. Thayer w ould like to thank his little dog M axw ell (a.k.a. M ax, M axito, or
Speedy) w ho kept him com pany in the even ing hours w hen everybody e lse had gone to bed.

A h a p p y M a x s a y s t h a t :

T his is a T e r r r r r r if lc Book

A nd be su re and also get Volum es II and III

— v —

A D e t a i l e d G u i d e t o t h e I E E E S W E B O K a n d t h e I E E E

C S D P / C S D A E x a m

A T h r e e V o l u m e S e t

This is vo lum e I o f a three-volum e docum ent (1) to provide a more detailed understanding o f the
SW EBO K know ledge areas (K A s) and (2) to use in preparing for the exam s for the IEEE S oft
ware Engineering Certificates (called the C ertified Software D evelopm en t A ssociate and the
Certified Software D evelopm ent Professional, m ore com m only referred to as the C S D A and the
C SD P). The CSDA credentia l is intended for graduating softw are engineers and entry-level
softw are professionals. The C SD P credentia l is intended for m id-career softw are professionals
looking to advance in their careers.

This study w as partitioned into three volum es: (1) because o f its overall size (over 700
pages), (2) to provide a university-level textbook for an IEEE SW E B O K -based softw are en g i
neering course or courses, and/or (3) to a llow exam takers to buy and study on ly what they need
in order to take and pass the C SD A /C SD P exam .

The Table o f Contents for V olum e I fo llo w s. This docum ent also includes the Table o f
Contents for V olum e II and V olum e III. This inform ation is provided so that interested software
engineeering exam takers can find additonal inform ation about the test and dermine i f the
additional vo lum es are necessary. To aid in m aking this decision , the inform ation contained in
Table 1 (w hich fo llo w s) is provided.

Table 1: The differences between the CSDP and the CSDA exams

Contains: Volume I Volume II Volume III

Chapters in the study guides 1 through 5 6 through 11 12 through 16

Page counts in the study guides 2 60 2 56 2 0 4

Percent coverage o f exam for C SDP 47% 35% 18%

Percent coverage o f exam for C SD A 39% 24% 37%

The n ew C S D P /C S D A exam specifications are m uch m ore detailed than the earlier exam s
and contain 15 K A s that need to be defined and explained (plus a 16th K A added by the authors).

S ince the exam is based on the IEEE SW E B O K 2013, this guide books can also serve as a
textbooks for university-level softw are engineering courses.

The C SD A and the C SD P exam s are sim ilar and fo llo w the sam e exam specification. The
biggest d ifference is that the C S D A exam p laces a greater em phasis (and m ore questions) on the
K A s o f com puter economics, science, engineering, a n d m athem atics and therefore contains less
em phasis on the other K A s. H ow ever, this n ew reference gu id e can be used to study for both
exam s.

A N o t e t o O u r R e a d e r s

O ne o f the a d v a n ta g e s o f u s in g a “p r in t-o n -d em a n d ” or an e -m a il p u b lish in g se r v ic e s is
the a b ility to m a k e ch a n g es to th e m an u scrip t re la t iv e ly e a s ily w h en errors or im p ro v e
m en ts are id e n t if ied .

T h e a u th ors en co u ra g e y o u to id e n tify and sen d p o ten tia l errors or su g g es ted im
p ro v em en t to e ith er T hayer or D o r fm a n at th e b e lo w e -m a il a d d resses . W e d o n ’t gu aran
tee to m a k e a ll th e ch a n g es id e n t if ied , but w e do p ro m ise to ser io u s ly co n sid er all
reco m m en d a ti o n s .

N o te h o w e v e r that so m e th in g s c a n ’t b e ch a n g ed . F or ex a m p le , th e o u tlin e or con ten ts
o f the e x a m sp e c if ic a t io n , w h ic h are lis te d o n th e first p a g e o f a ll o f th e chapters la b e led
“n .2 ,” are co n tr o lle d b y th e C o m p u te r S o c ie ty ’s C S D P C e r tif ic a tio n C o m m itte e and
can n ot b e c h a n g e d b y us. A ls o w e w o u ld h a v e n o real con tro l o v e r th e papers w ritten by
the co n tr ib u tin g so ftw a re en g in e e r in g ex p er ts (h o w e v e r w e w o u ld n o tify th em o f you r
co n ce rn s). /

l Z hdL$
These th re e so ftw a r e -e n g in e e r in g ib o o k s w e re rep u b lish ed as “te x tb o o k s /g u id e b o o k ” in
A u g u st 2 0 1 3 . O n e o f th e d ifferen ceiT E efw ’ee n a “ g u id e b o o k ” and a “te x tb o o k ” is that a
tex tb o o k co n ta in s an “in d ex ” and a g u id e b o o k u su a lly d o e s not. T h e in d ex for th is b ook
is current u n d er d ev e lo p m en t and w il l b e a id ed th e te x tb o o k in th e n ex t p r in t in g j l f yo u
w o u ld lik e to h a v e a c o p y o f th is in d e x to u se w ith th is v o lu m e , p le a se em a il Dr. T hayer,
p ro v id in g th e v o lu m e n um ber, and h e w i l l sen d y o u an e lec tro n ic co p y as so o n as it is
fin ish ed .

T hank y o u fo r lis ten in g .

R ichard H a ll T h ayer
th a y e r @ e su s .e d u

M erlin D o r fm a n
d o rfm a n @ eo m p u ter .o rg

mailto:thayer@esus.edu
mailto:dorfman@eomputer.org

D i s c l a i m e r

W hile the authors have more than 80 years o f system and software engineering
experience betw een us, we are not experts in all aspects o f this very large disci
pline. We have m ade extensive use o f material written by subject matter experts
and have cross-checked the material w ith other sources to confirm its accuracy.

Every effort has been made to m ake these r e f e r e n c e b o o k s as complete and ac
curate as possible. However, m istakes m ay remain, both typographical and in
content. Furthermore, while the books are current as o f the date o f publication o f
the SW EBOK and the CSDP and CSDA exam specifications, the state o f the art
advances on a daily basis. The reader should use his/her education and experience
to supplement these t e x t b o o k s / g u i d e b o o k s .

T a b l e o f C o n t e n t s

V o l u m e I : T h e D e v e l o p m e n t P r o c e s s

Forewords:

L e o n a r d L . T r i p p ... xiii

F r i e d r i c h L . B a u e r .. xv

Preface:

R i c h a r d H a l l T h a y e r a n d M e r l i n D o r f m a n ... xvii

C hapter 1: Software R equirem ents...1

Understanding Software Requirem ents..1
S t u a r t R . F a u l k

Essentials o f Software Requirements Engineering..43
R i c h a r d H a l l T h a y e r a n d M e r l i n D o r f m a n

C hapter 2: Software Design.. 57

Software Design: Introduction & Overview...57
D a v i d B u d g e n

Model-Based Software Design for Concurrent and Real-Time Systems...........................83
H a s s a n G o m a a

Essentials o f Software Design... 103
R i c h a r d H a l l T h a y e r & M e r l i n D o r f m a n

C hapter 3: Software C onstruction.. 121

Welcome to Software Construction...121
S t e v e M c C o n n e l l

Essentials of Software Construction..129
R i c h a r d H a l l T h a y e r & M e r l i n D o r f m a n

C hapter 4: Software Testing... 149

Software Testing: Fundamentals, Techniques and Related Concepts............................. 149
A n t o n i a B e r t o l i n o a n d E d a M a r c h e t t i

Essentials of Software Testing.. 183
R i c h a r d H a l l T h a y e r & M e r l i n D o r f m a n

C hapter 5: Software M aintenance.. 201

Software Engineering Maintenance: An Introduction.. 201
K e i t h H B e n n e t t

Essentials of Software Maintenance..225
R i c h a r d H a l l T h a y e r & M e r l i n D o r f m a n

F orew ord s:

Ian Som m erville x iii

Friedrich L. Bauer x v

Preface:
R ichard H all Thayer and M erlin D orfm an ...xv ii

C h a p ter 6: S oftw are C on figu ra tio n M a n a g e m e n t................... ... 1

Software Configuration M anagem ent at a G lan ce......................... .. 1
A nne M ette Jonas sen H ass

E ssentials o f Software Configuration M a n a g em en t..................... ...15
R ichard H all Thayer & M erlin D orfm an

C h a p ter 7: S o ftw a re E n g in eer in g M a n a g e m e n t....................... ...31

Softw are Engineering Project M anagem ent: A T u to ria l............ ...31
R ichard H all Thayer & M erlin D orfm an

E ssentials o f Software Engineering M an agem en t......................... ...51
R ichard H all Thayer & M erlin D orfm an

C h a p ter 8: S o ftw a re E n g in eer in g P r o c e ss59

Software Engineering P ro c ess 59
Ian Som m erville

E ssentials o f Software Engineering Process83
R ichard H all Thayer & M erlin Dorfman

C h a p ter 9: S o ftw are E n g in eer in g M e th o d s95

Softw are Engineering M ethods, T ools, and T ech n olog ies95
A lfonso Fuggetta a n d Laura Sfardini

E ssentials o f Software Engineering M eth o d s... 107
R ichard H all Thayer & M erlin D orfm an

C h a p ter 10: S o ftw a re Q u a lity 119

Softw are Q uality A ssurance ... 119
N ationa l Aeronautics Space Adm inistra tion (NASA)

E ssentials o f Software Q uality A ssu ran ce 143
R ichard H all Thayer & M erlin D orfm an

C h a p ter 11: S o ftw a re E n g in eer in g P ro fessio n a l P r a c t ic e s159

Software Engineering as a P rofession 159
Steve M cC onnell & L eonard Tripp

The Software Engineering C ode o f E th ics... ..165
D on G otterbarn

Software, Intellectual Property, and the L aw 173
J e d Scully

Team s, Team work, M otivation, Leadership, and C om m unications... 191
R ichard E. Fairley

E ssentials o f Professional P ractices.. 213
R ichard H all Thayer & M erlin D orfm an

V o l u m e I I : T h e S u p p o r t i n g P r o c e s s e s

— x —

Forew ords:

S t e v e T o c k e y ..xiii

F r i e d r i c h L . B a u e r ..xv

Preface:

R i c h a r d H a l l T h a y e r a n d M e r l i n D o r f m a n ... xvii

C h a p te r 12: Softw are M e a su re m e n ts .. 1

Software Measurements: Essential to Good Software Engineering.................................1

N o r m a n E . F e n t o n & S h e r i L a w r e n c e P f l e e g e r

Essentials o f Software Measurements and M etrics..17

R i c h a r d F l a i l T h a y e r & M e r l i n D o r f m a n

C h a p te r 13: Software Engineering E conom ics...39

Software Engineering Econom ics...39

S t e v e T o c k e y

Essentials o f Software Engineering Economics... 51

R i c h a r d F l a i l T h a y e r & M e r l i n D o r f m a n

C h ap te r 14: C om puting Foundations...63

Computer Science: An Overview..63

J . G l e n n B r o o k s h e a r

Essentials o f Computing..91

R i c h a r d H a l l T h a y e r & M e r l i n D o r f m a n

C h ap te r 15: M athem atical F o u n d a tio n s...123

Discrete Mathematics for Software E ngineers.. 123

C o m p i l e d b y R i c h a r d H a l l T h a y e r & Merlin Dorfman

Essentials o f Mathematics.. 135

R i c h a r d H a l l T h a y e r & M e r l i n D o r f m a n

C h ap te r 16: Engineering F ou n d a tio n s.. 151

An Introduction to Engineering... 151

G e r a r d V o l a n d

Essentials o f Engineering... 167

R i c h a r d H a l l T h a y e r & M e r l i n D o r f m a n

V o l u m e I I I : T h e F o u n d a t i o n s D o c u m e n t s

- x i --

F o r e w o r d

Softw are is pervasive in m odem society. Problem s w ith softw are quality are no longer just a n
inconvenience and an expense— they can im pact the health and w elfare o f individuals and o f
so ciety as a w h o le . Thus, it is vitally important that those o f us involved in software d evelop m en t
do all w e can to ensure that the softw are w e produce m eets the users’ needs— it does what it i s
intended to do, operates correctly, and d oesn ’t do things that it shouldn’t. A dditionally, t h e
survival o f developer organizations requires that the softw are be produced quickly and e c o n o m i
cally .

M ore than 50 years ago, the IEEE Computer S ociety established itse lf as the leading a s so c ia
tion for com puting professionals w orldw ide. Today there are nearly 85 ,000 m em bers in over 1 4 0
countries. The Com puter Society strives to be the leading provider o f technical inform ation a n d
services to the w orld ’s com puting professionals.

T he Com puter Society has alw ays been instrumental in advancing the profession o f so ftw a re
engineering. T he S ociety ’s focus on advancing this important profession can be seen from t h e
introduction o f the IE E E Transactions on Softw are E ngineering in 1975, to the introduction o f
the SW E B O K Guide in 2004 , and has led to the developm ent o f formal softw are certifica tion
programs.

A fter m ore than three years o f exten sive research in the field am ong professionals, e m p lo y
ers, and their custom ers, I initiated and launched the first IEEE Computer Society certification
program in 2002— the Certified Software D evelopm ent Professional (C SD P), intended for m id
level softw are engineering professionals.

A fter m y term o f o ffice had passed, the Com puter S ociety launched a second certifica te
program to satisfy a request for the com puting industry to provide a m eans o f evaluating en try
lev e l com puter engineers prior to their being hired. T his new certificate is entitled the C ertified
Softw are D evelopm en t A ssocia te (C SD A).

In 2008 , both certifications w ere recognized as the first certifications to conform to the IS O -
IEC 24773 Standard {Software engineering— Certification o f software engineering p ro fe s s io n
als— C om parison fra m ew o rk), m aking them internationally portable. This developm ent tru ly
positions the S ociety as an international credentialing body w ith certification programs that a r e
the benchm ark standards in the field o f softw are engineering.

T he C SD P exam ination w as designed to m easure an individual’s m astery o f the fundam ental
k now ledge required to perform the functions o f an experienced software engineer. The C S D P
also supports the Computer S o c ie ty ’s position that the d isciplined developm ent to h igh -q u ality
softw are requires a good developm ent process and applicable software engineering standards.

W hy should an individual softw are engineer be interested in becom ing certified? The C o m
puter Society lists these reasons [http://w w w .com puter.org/portal/w eb/certification/hom e]:

In a w orld w here softw are is pervasive, the need for sk illed, com petent, softw are d e v e lo p
m ent professionals is greater than ever.

• Graduates: B ridge the gap betw een your education and work requirem ents and v e r ily
your understanding o f fundam ental softw are developm ent practices

• Professionals: Confirm your proficiency in established software developm ent p ractices
and dem onstrate your com m itm ent and professionalism

http://www.computer.org/portal/web/certification/home

• Em ployers: Standardize your softw are developm ent practices and protect your in vest
m ent in a com petent and proficient w orkforce.

The C SD P and C S D A exam s cover a w ide range and extensive depth o f material as indicated
in the Preface below . M any practitioners w ill be fam iliar w ith m uch o f the required know ledge;
few w ill have all, or even enough to pass the exam , “in their heads” or readily at hand. R ev iew
ing co lleg e textbooks w ill refresh the candidate on the fundam entals, but much o f the “state o f
the practice” is docum ented in journal articles, conference proceedings, w eb pages, and a p leth o
ra o f books that an individual w ould be hard pressed to afford, m uch less read, and understand.
H ow , then, to prepare efficien tly and effec tiv e ly to take a certification exam ? The guide books
by Thayer and Dorfm an m eet this need, covering all aspects o f the exam top ics in an affordable
and readily-understood form. A nd even i f you are not ready to take the leap and go for certifica
tion quite yet, the material in the guide books w ill round out your know ledge o f the d iscipline
and help you im prove your professional perform ance.

Leonard L. Tripp
1999 President o f the IEEE Com puter S ociety

-- x iv --

In the m id -1 9 6 0 s , there w as increasing concern in scientific quarters o f the W estern world that
the tem pestuous developm ent o f com puter hardware w as not matched by appropriate progress
in software. The softw are situation looked m ore turbulent. Operating system s had ju st been
the latest rage, but they show ed unexpected w eaknesses. The uneasiness had been lined out in
the N A T O S cien ce Com m ittee by its U .S . representative, Dr. 1.1. Rabi, the N ob el laureate and
fam ous, as w e ll as influential, physicist. In 1967, the Science C om m ittee set up the Study
Group on C om puter Science, w ith m em bers from several countries, to analyze the situation.
The G erm an authorities nominated m e for this team. The study group w as given the task o f
“assessin g the entire field o f com puter sc ien ce ,” w ith particular elaboration on the S cien ce
C om m ittee’s consideration o f “organizing a conference and, perhaps, at a later date, setting up
. . . an International Institute o f Computer S cien ce.”

The study group, concentrating its deliberations on actions that w ould merit an internation
al rather than a national effort, d iscussed all sorts o f prom ising scien tific projects. H ow ever, i t
was rather in con c lu sive on the relation o f these them es to the critical observations m entioned
above, w h ich had guided the Science C om m ittee. Perhaps not all m em bers o f the study group
had been properly inform ed about the rationale o f its existence. In a sudden m ood o f anger, I
made th e remark, “The w hole trouble com es from the fact that there is so m uch tinkering w ith
software. It is not m ade in a clean fabrication process,” and w hen I found out that this remark
was sh ock in g to som e o f m y scientific co lleagu es, I elaborated the idea w ith the provocative
saying, “W hat w e need is software engineering .”

This remark had the effect that the expression “softw are engineering,” w hich seem ed to
som e to be a contradiction in terms, stuck in the m inds o f the m em bers o f the group. In the
end, the study group recom m ended in late 1967 the holding o f a W orking C onference o n
Software E ngineering, and I w as m ade chairman. I had not on ly the task o f organizing the
m eeting (w h ich w as held from October 7 to October 10, 1968, in Garm isch, Germany), but I
had to set up a scien tific program for a subject that was suddenly defined by m y provocative
remark. I en joyed the help o f m y co-chairm en, L. B olliet from France, and H. J. H elm s from
Denmark, and in particular the invaluable support o f the program com m ittee m em bers, A . J.
Perlis and B. R andell in the section on design , P. Naur and J. N . B uxton in the section o n
production, and K. Sam uelson, B. G aller, and D. Gries in the section on service.

A m on g the 50 or so participants, E. W . Dijkstra w as dominant. He actually made not o n ly
cynical remarks like “the dissem ination o f error-loaded softw are is frightening” and “it is n ot
clear that the p eop le w ho manufacture softw are are to be blam ed. I think manufacturers
deserve better, m ore understanding users.” H e also said already at this early date, “W hether
the correctness o f a p iece o f softw are can be guaranteed or not depends greatly on the struc
ture o f the th ing m ade,” and he had very fittingly named h is paper “C om plexity Controlled b y
Hierarchical Ordering o f Function and V ariability,” introducing a them e that fo llow ed his l ife
over the n ext 20 years.

H o n o r a r y F o r e w o r d

To e x p la in th e o r ig in o f th e te rm “ S o f tw a re E n g in e e r in g , ” I s u b m it th e f o l l o w in g s to r y 1

1. Dr. Bauer originally wrote this paper as an introduction to a 1993 IEEE tutorial, R.H. Thayer, and A.D. McGet-
trick (eds.), Software Engineering: A European Perspective, IEEE Computer Society Press, Los Alamitos, CA ,
1993.

- X V -

Som e o f h is w ords have becom e proverbs in com puting, like “testing is a very inefficient
w ay o f convincing o n e se lf o f the correctness o f a program.”

W ith the w id e distribution o f the reports on the Garm isch C onference and on a fo llow -up
conference in R om e, from October 27 to 31 , 1969, it em erged that not on ly the phrase soft
ware engineering, but also the idea behind th is becam e fashionable. Chairs were created,
institutes w ere established (although the one w h ich the N A T O Science C om m ittee had
proposed did not com e about because o f reluctance on the part o f Great Britain to have it
organized on the European continent), and a great number o f conferences were held.

The tutorial nature o f the papers in this b ook is intended to offer readers an easy introduc
tion to the top ics and indeed to the attempts that have been m ade in recent years to provide
them w ith the tools, both in a handcraft and intellectual sense, w h ich a llo w them n ow to
honestly call them selves softw are engineers.

Friedrich L. Bauer
Professor Emeritus
Technical U niversity o f M unich, Germ any

— xv i —

P r e f a c e

1. Software engineers who wish to study for and pass either or both of the IEEE Comput
er Society's software engineering certification exams.
T h e C e r t i f i e d S o f t w a r e D e v e l o p m e n t P r o f e s s i o n a l (C S D P) a n d i s a w a r d e d t o s o f t w a r e e n g i n e e r s w h o

h a v e 5 t o 7 y e a r s o f s o f t w a r e d e v e l o p m e n t e x p e r i e n c e a n d p a s s t h e C S D P e x a m . T h i s c e r t i f i c a t i o n

w a s i n s t i t u t e d i n 2 0 0 1 a n d e s t a b l i s h e s t h a t t h e c e r t i f i c a t e h o l d e r i s a c o m p e t e n t s o f t w a r e e n g i n e e r i n

m o s t a r e a s o f s o f t w a r e e n g i n e e r i n g s u c h a s :

• Softw are project manager

• Softw are developer

• Softw are configuration m anager

• Softw are quality-assurance expert

• Softw are test lead

• A nd so forth

T he other certificate is for recent softw are engineering graduates or self-taught software
en gineers and is designated Certified Software D evelopm ent A ssocia te (C D SA). The C SD A
also requires passing an exam , but does not require any professional experience.

2. University students who are taking (or reading) a BS or MS degree in software engi
neering, or practicing software engineers who want to update their knowledge.

This book was originally written as a guide to help software engineers take and pass the IEEE
CSDP exam. However several reviewers commented that this book would also make a good university
text book fo r an undergraduate or graduate course in software engineering. So the original books
were modified to be applicable to both tasks.

T he SW E B O K (Softw are Engineering B ody o f K now ledge) is a major m ilestone in the
d evelop m en t and publicity o f softw are engineering technology. H ow ever it needs to be noted
that SW E B O K w as N O T developed as a software engineering tutorial or textbook. The
S W E B O K is in tended to catalog softw are engineering concepts, no t teach them.

The n ew , three-volum e, fourth edition, Softw are E ngineering Essentials, by Drs. Richard
H all Thayer and M erlin Dorfm an attempts to fill this void. T his n ew software engineering
text expands on and replaces the earlier tw o-volum e, third-edition, Softw are Engineering
books w h ich w as also written by Thayer and Dorfm an and published by the IEEE Computer
S ociety Press [2006].

T hese n ew V olum es I and II offer a com plete and detailed overv iew o f software engi
neering as defined in IEEE SW E B O K 2013. These books provide a thorough analysis of
so ftw are developm ent in requirem ents analysis, design, cod ing, testing, and maintenance,
plus the supporting processes o f configuration m anagem ent, quality assurance, verification
and validation , and review s and audits.

To keep up w ith evolution o f the softw are industry (as expressed through evolution o f the
SW E B O K G uide, C SD P /C SD A , and the curriculum guidelines) a third volum e in the Soft
ware E ngineering series is needed. This third volum e contains:

Toshkent Axborot Texnclcgiyateri Universltet

T h e s e s o f t w a r e e n g i n e e r i n g b o o k s s e r v e s t w o s e p a r a t e b u t c o n n e c t e d a u d i e n c e s a n d r o l e s :

- - X V I I

Axborot Resurs Markazi

• Softw are E ngineering M easurem ents

• Softw are Engineering Econom ics

• C om puter Foundations

• M athem atics Foundations

• Engineering Foundations

This three-volum e, Softw are E ngineering Essentials series, provides an overv iew snap
shot o f the softw are state o f the practice in a form that is a lot easier to d igest than the
SW EB O K G uide. The three-volum e set is a lso a valuable reference (usefu l w ell beyond un
dergraduate and graduate software engineering university programs) that provides a concise
survey o f the depth and breadth o f softw are engineering.

T hese n ew K A s exist so that softw are engineers can dem onstrate a m astery o f scientific
technology and engineering. This is in answ er to the criticism o f softw are engineering that it
does not contain enough engineering to qualify it as an engineering d iscipline.

1. History

In 2 0 0 0 , the president o f the Computer S ociety , Mr. Leonard L. Tripp, asked Dr. Richard Hall
Thayer to develop a reference/text and a three-day CSDP Software Engineering course to aid
softw are engineers in refreshing their k now ledge o f softw are engineering. Dr. Thayer is a F ellow
o f the IEEE, a m em ber o f the Computer S o c ie ty ’s G olden Core, and a C ertified Software D e v e l
opm ent Professional. Thayer team ed w ith Dr. M erlin Dorfman (F ellow o f the A IA A and regis
tered Professional Engineer) to develop these reference books. The first result w as a book titled
Softw are Engineering, 2nd edition, in tw o vo lum es. (Thayer and Dorfm an also w rote the first
edition in 1997; how ever it preceded the C SD P program .) T he third ed ition w as written in 2005
to update and im prove the contents. In 2 009 , the exam w as updated and m ade broader (contain
ing m ore k now ledge areas) and m ore d ifficu lt. Therefore, the C SD P exam reference needed to be
rewritten yet again.

In 2004 , the IEEE Com puter S ociety initiated a reference book on softw are engineering to
provide an overv iew o f the d iscipline o f softw are engineering. This book is entitled Software
Engineering B ody o f K now ledge (SW E B O K). SW EB O K parallels the C SD P exam sp ecifica
tions. The SW EBO K is being updated for 2013 and is n o w the driving force behind the CSDP
exam s. The primary purpose o f the current revision o f the SW EB O K G uide is to add a
K now ledge A rea (K A) on professional practices— a subject currently covered by the C SDP
exam s— and to add “foundation” K A s on h igh-tech subject is technology and science.

To ach ieve alignm ent w ith the C SD P and to m aintain the currency o f the SW EB O K Guide,
the IEEE Computer S o ciety ’s Professional Practices Com m ittee agreed in 20 0 8 to the fo llow ing
changes in the C SD P exam:

• A dd four new education KAs: E ngineering Econom y Foundations, C om puting F ounda
tions, M athem atical Foundations, and E ngineering Foundations

• R em ove three R ela ted D isciplines o f Softw are Engineering (C hapter 12, SW EBO K
2004): C om puter Science, M athem atics, a n d Softw are Ergonom ics

• A dd material about H um an-C om puter In terfaces in the Softw are Design a n d Software
Testing K A

• Rem ove the Software Tools section from SW EBO K , Softw are Engineering Tools and
M ethods, and distribute the material to the other K A s

• R enam e the Software E ngineering Tools and M ethods K A to Software Engineering
M ethods K A in SW EBO K 2013 to focus on m ethods that affect more than one K A

For additional information see http://w w w .com puter.org/portal/w eb/sw ebok

In 2 0 1 0 , the Com puter Society launched an additional initiative to set up a software d ev el
opm ent certificate for recent university graduates and other entry-level software engineers or
com puter scientists. This certificate w as called the Certified Softw are D evelopm ent A ssociate
(C S D A). The C S D A credential is intended for graduating softw are engineers and entry-level
softw are professionals and serves to bridge the gap betw een educational experience and real-
world w ork requirem ents.

The C S D P and C SD A exam s are sim ilar and are based on the sam e exam specification.
H ow ever, the C S D A exam places m ore em phasis on the basic k now ledge areas o f com puter
scien ce and engineering.

2. The Book’s Contents
In its role as a supporting text to the IEEE SW EBO K , this reference book greatly expands the
SW E B O K outline to provide greater detail to the SW EBO K engineering concepts and as a result
should m ake an above average university softw are engineering textbook or textbooks. A s an
exam ple, th is tex t greatly expands the coverage o f the software engineering project m anagem ent
K A to provide the detail necessary to (1) properly m anage a large-scale software project or (2) to
study for a softw are engineering project m anagem ent course.

T he n ew C S D P /C S D A exam specifications (w hich are based on the SW BO K 2013) are much
more detailed than the earlier C SD P 20 0 4 exam s specifications. The new specifications contain
15 K A s. T he C S D A exam is sim ilar to the C SD P exam and u ses the sam e exam specifications.
The b iggest d ifference is that the C S D A exam places a greater em phasis (and more questions) on
the K A s o f com puter economics, science, engineering, and m athem atics (see Table 1 earlier) and
therefore, less em phasis (and questions) on the other K As.

3. What Makes Our Book Unique?

This text m akes u se o f the broad coverage o f SW EB O K to ensure that all possib le elem ents o f
the softw are engineering d iscipline are covered. W e also asked notable softw are engineering
authors to provide overview papers to provide a general look at som e o f the software engineering
k now ledge areas to help the student tie th ings together. B y using the new print on demand
(PO D) business m odel to print our books and our decision to d ivide the extensive material into
three parts w e have provided one o f the less exp en sive texts o f it s ize and scope.

T his is the fourth edition o f this softw are engineering reference book and, in many w ays, a
better book than the earlier editions for upgrading a professional’s softw are engineering
know ledge.

Each chapter o f the reference is d ivided into tw o parts. Part 1 consists o f one or more papers
written as an "overview tutorial" on one o f the 16 K A s o f the SW EB O K and the exam sp ecifica
tions. T hese authors are experts in their particular area and in m any cases are also the authors o f
reference books recom m ended by the IEEE Computer Society to potential certification exam
takers. Part 2 is an analysis o f the certification exam specifications for that K A (written by the

-- x ix —

http://www.computer.org/portal/web/swebok

Drs. Thayer and Dorfm an). Part 2 w as based on the exam specifications that were furnished to
the G uides authors by the Computer S ociety com m ittee w ho w rote the exam questions. N o te that
the questions them selves have not been and w ill not be released to guide book authors.

The exam specification outlines 15 softw are engineering know ledge areas (K A s). Our b ook
covers 16 K A s because w e split one area into tw o— the Software Engineering M anagem ent KA
w as separated into Softw are Engineering Project M anagem ent K A and Software M easurem ent
and M etrics Foundation K A. W e have recom m ended to the Com puter Society that they do the
sam e for the next SW EBO K .

Richard Hall Thayer, PhD, CSD P
Emeritus Professor o f Software Engineering
California State U niversity, Sacramento

M erlin Dorfm an, PhD , PE
Quality System s S ta ff Engineer (Retired)
C isco System s, Inc.

— xx —

C h a p t e r 1 .1
2

U n d e r s t a n d i n g S o f t w a r e R e q u i r e m e n t s

S tu a rt R. F a u lk
D epartm en t o f C om puter Sc ien ce

U niversity o f O regon
E ugene , O regon

“The hardest single pa r t o f building a softw are system is deciding precise ly what
to build. N o other p a r t o f the conceptual w ork is as d ifficult as establishing the
deta iled technical requirem ents . . . No other p a r t o f the w ork so cripples the re
su lting system i f done wrong. N o other p a r t is as difficult to rectify later ” [Brooks
87].

1. I n t r o d u c t io n

D ecid in g p rec ise ly what to build and then docum enting the result is the goal o f the requirements
phase o f softw are developm ent. For m any developers o f large, com plex softw are system s,
requirem ents are their b iggest softw are engineering problem . W hile there is considerable disa
greem ent regarding h ow to so lve the problem , fe w w ould disagree with Brook's assessm ent that
no other part o f a developm ent is as d ifficult to do w ell or as disastrous in result w hen done
poorly.

a)
software

requirements

▼
software

design

b)
system

requirements

I
system design

hardware
requirements

software
requirements

I
hardware

design

I
software
design

F ig u r e 1 : S y s te m vs . s o f tw a r e re q u ire m e n ts

The purpose o f this tutorial is to help the reader understand w hy the apparently sim ple notion
o f “decid ing w hat to build" is so difficu lt in practice, w here the state o f the art does and does not
address these d ifficu lties, and what hopes w e have for doing better in the future. This paper does
not survey the literature, but rather seeks to provide the reader w ith an understanding o f the

2. Based on “Software Requirements: A Tutorial,” by Stuart R. Faulk, which appeared in R.H. Thayer and M.
Dorfman (editors), Software Requirements Engineering, 2nd edition, IEEE Computer Society Press, Los
Alamitos, CA, 1997.

underlying issues. There are currently m any m ore approaches to requirem ents than one can cover
in a short paper. This diversity is the product o f d ifferent v iew s about w hich o f the m any prob
lem s in requirem ents are p ivotal and o f different assum ptions concerning the desirable character
istics o f a solution. W e begin w ith basic term inology and som e historical data about the
requirem ents problem. W e exam ine the goals o f the requirements phase and the problem s that
can arise w h ile attempting to m eet those goals.

A s in B rooks’ article, m uch o f the d iscussion is m otivated by the distinction betw een the
difficu lties inherent in what one is trying to accom plish (the '‘essentia l” difficu lties) and those
one creates through inadequate practice (“accidental” d ifficu lties) [B rooks 87]. W e d iscuss h ow
a disciplined software engineering process helps address many o f the accidental d ifficu lties and
w hy the focus o f such a disciplined process is on producing a written specification o f the detailed
technical requirem ents. W e exam ine current technical approaches to requirem ents in terms o f the
sp ecific problem s each approach seeks to address. F inally , w e exam ine technical trends and
discuss where significant advances are likely to occur in the future.

2. Requirements and the Software Life Cycle
A variety o f softw are life -c y c le m odels have been proposed w ith an equal variety o f term inolo
gy. W hile differing in the detailed decom position o f the steps (e.g.. prototyping m odels) or in the
surrounding m anagem ent and control structure (e .g ., to manage risk), there is general agreem ent
on the core elem ents o f the m odel. Figure 2 presents a version o f the m odel that illustrates the
relationship betw een the software developm ent stages and the related testing and acceptance
phases.

W hen software is created in the context o f a larger hardware and softw are system , system
requirem ents are defined first fo llow ed by system design. System design includes decisions
about w hich parts o f the system requirem ents w ill be allocated to hardware and w h ich to soft
ware. For softw are-only system s, the life -cy c le m odel begins w ith analysis o f the software
requirements. From this point on, the role o f softw are requirem ents in the developm ent m odel is
sam e w hether or not the softw are is part o f a larger system , as show n in Figure 2 . For this reason,
the remainder o f our d iscussion does not d istinguish w hether or not softw are is developed as part
o f a larger system . For an overv iew o f system versus softw are issues, the reader is referred to
Dorfm an and Thayer’s survey [Thayer 90].

In a large system developm ent, the softw are requirem ents specification m ay play a variety o f
roles:

• For custom ers, the requirem ents typ ically docum ent what should be delivered and m ay
provide the contractual basis for the developm ent.

• For m anagers the requirem ents m ay provide the basis for scheduling and a yardstick for
m easuring progress.

• For the softw are designers, the requirem ents m ay provide the “d es ig n -to ” specification.

• For coders, the requirem ents define the range o f acceptable im plem entations and are the
final authority on the outputs that m ust be produced.

• For quality assurance personnel, the requirem ents represent the basis for validation, test
planning, and verification.

Main 'rtoric 4onv]p»i»
F e&dtmck path ***%—

Figure 2: A conventional life-cycle Model

Such d iverse groups as marketing and governm ental regulators m ay also use the require
ments. T h e se groups and any others w ith an interest in the outcom e o f system developm ent are
co llec tiv e ly referred to as the system ’s stakeholders.

It is co m m o n practice (e .g ., see [Thayer 9 0]) to c lassify softw are requirem ents as “function
al” or “n on -fu n ction a l.” W hile defin itions vary som ew hat in detail, “functional” typically refers
to requirem ents defin ing the acceptable m appings betw een system input values and correspond
ing output va lues. “N on-functional” then refers to all other constraints including, but not limited
to, perform ance, dependability, m aintainability, reusability, and safety.

W hile w id ely used, the classification o f requirem ents as ’’functional” and ”non-functional” is
confusing in its term inology and o f little help in understanding com m on properties o f different
kinds o f requirem ents. The word “function” is one o f the m ost overloaded in com puter science
and its o n ly rigorous m eaning, as that o f a m athem atical function, is not what is m eant in this
context. T he c lassification o f requirem ents as functional and non-functional offers little help in
understanding com m on attributes o f different types o f requirem ents since it partitions c lasses of
requirem ents w ith m arkedly sim ilar qualities (e .g ., output values and output deadlines) while
grouping others that have com m on on ly what they are not (e .g ., output deadlines and m aintaina
bility go a ls).

A m ore u sefu l distinction is betw een what can be described as “behavioral requirem ents” and
“developm ental quality attributes” w ith the fo llow in g defin itions [B ass 03]:

• B eh a v io ra l requirem ents - Behavioral requirem ents include any and all inform ation n ec
essary to determ ine i f the run-tim e behavior o f a g iven im plem entation is acceptable. The
b eh aviora l requirem ents define all constraints on the system outputs (e .g ., value, accura

— 3 —

cy, and tim ing) and the resulting system state for all p ossib le inputs and the current sy s
tem state. B y this definition, security, safety , perform ance, timing, and fault—tolerance are
all behavioral requirements.

• D evelopm ental quality attributes - D evelopm ental quality attributes include any con
straints on the attributes o f the sy stem ’s static construction. These include properties like
testability, changeability, m aintainability, and reusability.

Behavioral requirem ents have in com m on that th ey are properties o f the run-tim e behavior o f
the system and can (at least in principle) be validated objectively by observing the behavior o f
the running system , independent o f its m ethod o f im plem entation. In contrast, developm ental
quality attributes are properties o f the sy stem ’s static structures (e .g ., m odularization) or repre
sentation. D evelopm ental quality attributes have in com m on that they are functions o f the
developm ent process and m ethods o f construction. A ssessm en t o f developm ental quality attrib
utes is necessarily relativistic— for exam ple, w e do n o t say that a design is or is not m aintainable
but that one design is m ore maintainable than another.

In addition, there m ay be constraints on the developm ent process itself, for exam ple, that the
softw are m ust reuse certain legacy code, be d ev e lo p ed on a particular platform, or be written in a
specific language. Such requirements m ay be co llec tiv e ly referred to as process requirem ents
[SW EBO K 04]. Process requirements are often im posed by regulatory agencies or internal
com pany standards.

3. A Big Problem
Requirem ents problem s are persistent, p ervasive, and costly. E vidence is m ost readily available
for the large softw are system s developed for the U .S . Government since the results are a matter
o f public record. A s soon as software becam e a significant part o f such system s, developers
identified requirem ents as a major source o f problem s. For exam ple, developers o f the early
B allistic M issile D efen se System noted that:

In nearly every softw are p ro jec t that fa ils to m eet perform ance a n d cost goals, re
quirem ents inadequacies p la y a m ajor a n d expensive role in p ro jec t fa ilu re [A lford 79].

N or has the problem been m itigated over the intervening years. A study o f problem s in
m ission-critical defense system s identified requirem ents as a major problem source in two-thirds
o f the system s exam ined [G AO 92]. This is con sisten t with results o f a survey o f large aerospace
firm s that identified requirements as the m ost critical software developm ent problem [Faulk 92].
L ikew ise, studies by Lutz identified functional and interface requirem ents as the major source o f
safety-related softw are errors in N A S A ’s V oyager and G alileo spacecraft [Lutz 92]. The G ov
ernment A ccounting O ffice (G A O) again identified requirements as a m ajor issue in defense
acquisition [G A O 04]. Requirem ents errors have a lso been cited as a major cause in the very
public lo sses o f the Mars Clim ate Orbiter and M ars Polar Lander spacecraft [Bahill 05].

R esults o f industry studies described by B o eh m , and since replicated a number o f tim es,
show ed that requirem ents errors are the m ost co stly [B oehm 81]. T hese studies all produced the
sam e basic result: the earlier in the developm ent process an error occurs and the later the error is
detected, the m ore exp en sive it is to correct. M oreover, the relative cost rises quickly. A s show n
in Figure 3, an error that costs a dollar to fix in th e requirements phase may cost 100 to 200
dollars to fix i f it is not corrected until the system is fie ld ed or in the m aintenance phase.

— 4 —

T he costs o f such failures can be enorm ous. For exam ple, a 1992 G A O report noted that one
system , the C heyenne M ountain Upgrade, w ou ld be delivered eight years late and exceed budget
by $6 0 0 m illion w ith less capability than originally planned, largely due to requirements-related
problem s. R ecently , requirements problem s have been cited in cost overruns projected for the
2010 C ensus o f up to $2 b illion [G AO 08]. Broader G AO review s (e .g ., o f troubled weapons
programs) su ggest that such problem s are the norm rather than the exception [G AO 10]. W hile
data from private industry is less readily available, there is little reason to b elieve that the situa
tion in that sector is significantly different.

Table 1: Relative cost to repair a requirements error

Stage Relative
Repair Cost

Requirem ents 1-2

D esign ~ 5

Coding ~ 10

U nit test ~ 20

System test ~ 50

M aintenance ~ 200

In sp ite o f advances in softw are engineering m eth odology and tool support, the requirements
problem has not dim inished. This does not m ean that the apparent progress in softw are engineer
ing is illusory. W hile the features o f the problem have not changed, the applications have grown
sign ificantly in capability, scale, and com plexity . A reasonable con clu sion is that the growing
am bitiousness o f our softw are system s has outpaced the gains in requirem ents technology; at
least as such technology is applied in practice.

4. Why are Requirements so Hard?
It is gen erally agreed that the goal o f the requirem ents phase is to establish and specify precisely
what the softw are must do w ithout describing h o w to do it. So sim ple seem s this basic intent that
it is not at all evident w hy it is so difficu lt to accom plish in practice. I f w hat w e want to achieve
is so clear, w h y is it so hard? To understand this, w e m ust exam ine m ore c lo se ly the goals o f the
requirem ents phase, w here errors originate, and w h y the nature o f the task leads to som e inherent
difficu lties.

M ost authors agree in principle that requirem ents should specify “w hat” rather than “how .”
In other w ords, the goal o f requirem ents is to understand and specify the prob lem to be solved
rather than the solution. For exam ple, the requirem ents for an automated teller system should talk
about custom er accounts, deposits, and withdrawals rather than softw are algorithm s and data
structures. T he m ost basic reason for this is that a specification in terms o f the problem captures
the actual requirem ents w ithout over-constraining the subsequent design or its implementation.
Furthermore, solutions in softw are terms are typ ically m ore com plex, m ore difficult to change,
and harder to understand (particularly for the custom er) than a specification o f the problem.

- 5 -

U nfortunately, d istinguishing “what” from “h o w ” in itse lf represents a dilem m a. A s D avis
am ong others points out, the distinction b etw een what and h ow is n ecessarily a function o f
perspective [D avis 88]. A specification at any chosen level o f system decom position can be
v iew ed as describing the “what” for the next lev e l. Thus, customer needs m ay define the “what”
w h ile the decom position into hardware and softw are specifies the corresponding “h ow .” Subse
quently, the behavioral requirem ents allocated to a software com ponent define its “w hat,” the
softw are design determ ines the “h o w ,” and so on. In other words, one person’s design becom es
the next person’s requirements.

The upshot is that requirem ents cannot be e ffec tiv e ly d iscussed at all w ithout prior agreem ent
on w hich system one is talking about and at what level o f decom position . One must agree on
what constitutes the prob lem space and w hat constitutes the solution space— the analysis and
specification o f requirem ents then properly b elon g in the problem space.

In d iscussing requirem ents problem s one m ust also distinguish the developm ent o f large,
com plex system s from sm aller efforts (e .g ., developm ents by a sing le or sm all team o f program
mers). Large system developm ents are m ulti—person efforts. They are developed b y team s o f tens
to thousands o f programmers. The program m ers work in the context o f an organization that
typ ically includes m anagem ent, system s engineering, marketing, accounting, and quality assur
ance. The organization itse lf m ust operate w ith in the context o f outside stakeholders w ho are
also interested in the softw are product, including the customer, regulatory agencies, and suppli
ers.

E ven in cases in w hich on ly one system is intended, large system s inevitab ly becom e m ulti
version as w ell. Software ev o lv es as it is being developed, tested, and even fielded. Custom ers
better understand what they want and developers better understand what they can and cannot do
w ithin the constraints o f cost and schedule, all w h ile circum stances surrounding developm ent
change. The results are changes in the softw are requirem ents and, u ltim ately, the software itself.
In effect, several versions o f a g iven program are produced, i f on ly increm entally. Such un
planned changes occur in addition to the expected variations o f planned im provem ents.

The m ulti-person, m ulti-version nature o f large system developm ent introduces problem s that
are both quantitatively and qualitatively different from those found in sm aller developm ents. For
exam ple, scale introduces the need for adm inistration and control functions w ith the attendant
m anagem ent issues that do not ex ist in sm all projects. The quantitative effects o f increased
com plexity in com m unication w ith an increased num ber o f workers are w ell docum ented by
Brooks [Brooks 95]. The effort required for com m unication and other overhead tasks such as
docum entation or configuration m anagem ent tends to rise exponentially w ith the size and
com plexity o f the system . The fo llow in g d iscussion is written w ith in this large system d evelop
m ent context since that is where the worst problem s occur and where the m ost help is needed.

G iven the context o f m ulti-person , m u lti-v ersio n developm ent, our basic goal o f sp ecify in g
what the softw are m ust do is decom posed into the fo llow in g subgoals:

• Understand precisely what is required o f the software.

• C om m unicate the understanding o f w hat is required to each party in vo lved in the project
developm ent.

• Control the softw are production to ensure that the final system satisfies the requirem ents
(including m anaging the effects o f changes).

- 6 -

It fo llo w s that the source o f m ost requirem ents errors lies in the failure to adequately accom
plish one o f th ese goals, i.e.:

• T he developers failed to understand what w as required o f the softw are by the custom er,
end user, or other parties w ith a stake in the final product.

• T he d evelopers did not adequately capture the requirem ents or subsequently com m uni
cate the requirem ents effectively to other parties involved in the developm ent.

• T he developers did not effec tiv e ly m anage the effects o f changing requirements or ensure
the conform ance o f downstream developm ent steps, including design , code, integration,
test, or m aintenance, to the system requirements.

T he end result o f such failures is a softw are system that d oes not perform as desired or
expected, a developm ent that exceed s budget and schedule, or, all too frequently, failure to
deliver any w orking software at all.

4.1 Essential Difficulties
Even our m ore detailed goals appear reasonably straightforward. W hy then, do so m any d evel
opment efforts fa il to achieve the desired goals? The short answer is that the mutual satisfaction
o f these goa ls, in practice, is inherently difficu lt. To understand w hy, it is useful to reflect on
som e points raised by Brooks as to w hy softw are engineering is hard and on the distinction he
makes betw een essential d ifficu lties - those inherent in the problem , and the accidental d ifficu l
ties - those introduced through im perfect practice [Brooks 87]. For though requirements are
inherently d ifficu lt, there is no doubt that these d ifficu lties are m any tim es m ultiplied by the
inadequacies o f current practice.

The fo llo w in g essential d ifficu lties attend each (in som e cases all) o f the requirem ents goals:

• Com prehension. People do not k now w hat they want. This does not m ean that people do
not have a general idea o f what the softw are is for. Rather, they do not begin w ith a pre
c ise and detailed understanding o f w hat functions belong in the softw are, what the output
m ust be for every possib le input, h o w long each operation should take, h ow one decision
w ill a ffect another, and so on. Indeed, unless the n ew system is sim ply a reconstruction o f
an o ld on e, such a detailed understanding at the outset is unachievable. Many decisions
about the system behavior w ill depend on other decisions yet unmade, and expectations
w ill change as the problem (and attendant costs o f alternative solutions) is better under
stood. N on eth eless, it is a precise and richly detailed understanding o f expected behavior
that is needed to create effective d esign s and to develop correct code.

• Com m unication. Software requirem ents are difficult to com m unicate effectively . As
B rooks points out, the conceptual structures o f software system s are com plex, arbitrary,
and d ifficu lt to visualize. The large softw are system s n ow being built are am ong the m ost
com p lex structures ever attempted. That com plexity is arbitrary in the sense that it is an
artifact o f p eo p le ’s decisions and prior construction rather than a reflection o f fundam en
tal properties (as in, for exam ple, the case o f physical law s). T o m ake matters worse,
m any o f the conceptual structures in softw are have no readily com prehensible physical
analogue so they are d ifficult to v isualize .

In practice, com prehension suffers under all o f these constraints. W e work best with
regular, predictable structures, can com prehend only a very lim ited amount o f infor-

- - 7 —

m ation at one tim e, and understand large am ounts o f inform ation best w hen w e can visu
alize it. Thus, the task o f capturing and conveying softw are requirem ents is inherently
difficult.

The inherent d ifficu lty o f com m unication is com pounded by the diversity o f purposes
and audiences for a requirem ents specification . Ideally, a technical specification is writ
ten for a particular audience. The brevity and com prehensibility o f the docum ent depend
on assum ptions about com m on technical background and use o f language. Such com
m onality typ ically does not hold for the m any diverse groups (e .g ., custom ers, system s
engineers, m anagers) that m ust use a softw are requirem ents specification.

• Control. Inherent d ifficu lties attend control o f softw are developm ent as w ell. The arbi
trary and invisib le nature o f softw are m akes it difficult to anticipate w hich requirements
w ill be m et easily and w hich w ill decim ate the project's budget and schedule if, indeed,
they can be fu lfilled at all. The lo w fid elity o f softw are planning has becom e a cliche, yet
the requirem ents are often the best available basis for planning or for tracking to a plan.

This situation is made incalculably w orse by softw are’s inherent m alleability. O f all
the problem s bedeviling softw are m angers, few evok e such passion as the d ifficu lties o f
dealing w ith arbitrary requirem ents changes. For m ost system s, such changes remain a
fact o f life even after delivery. The continuous changes m ake it d ifficult to develop stable
sp ecifications, plan effectively , or control cost and schedule. For m any industrial d evel
opers, change m anagem ent is the m ost critical problem w ith regard to requirements.

• Inseparable concerns. In seeking so lutions to the foregoing problem s, w e are faced w ith
the additional d ifficu lty that the issu es cannot easily be separated and dealt w ith p iece
m eal. For exam ple, developers have attempted to address the problem o f changing re
quirem ents by baselining and freezing requirem ents before design begins. This proves
impractical because o f the com prehension problem— the custom er m ay mot fu lly know
what he w ants until he sees it. Sim ilarly, the diversity o f purposes and audiences is often
addressed by w riting a different specification for each. Thus, there m ay be a system sp ec
ification , a set o f requirem ents delivered to a custom er, a distinct set o f technical re
quirem ents written for the internal consum ption o f the softw are developers, and so on.
H ow ever, this solution vastly increases project com plexity , provides an open avenue for
inconsistencies, and m ultiplies the d ifficu lties o f m anaging changes.

T hese issues represent on ly a sam ple o f the inherent dependencies betw een different
facets o f the requirem ents problem . The m any distinct parties w ith an interest in a sy s
tem ’s requirem ents, the m any different roles the requirem ents play, and the interlocking
nature o f softw are’s conceptual structures all introduce dependencies am ong concerns
and im pose conflicting constraints on any potential solution.

The im plications are tw ofold . First, w e are constrained in the application o f our most
effec tive strategy for dealing w ith com p lex problem s— divide and conquer. If a problem
is considered in isolation, the solution is lik e ly to aggravate other difficu lties. E ffective
solutions to m ost requirem ents d ifficu lties m ust sim ultaneously address m ore than one
problem . Second, developing practical so lutions requires m aking difficult tradeoffs.
W here different problem s have con flictin g constraints, com prom ises must be m ade. B e
cause the tradeoffs result in different gains or losses to the different parties involved , ef-

- 8 -

fec tiv e com prom ise requires negotiation. These issues are considered in more detail when
w e d iscu ss the properties o f a good requirem ents specification.

4.2 Accidental Difficulties

W hile there is no doubt that softw are requirem ents are inherently difficu lt to do w ell, there is
equally no doubt that com m on practice unnecessarily exacerbates the difficulty. W e use the term
“accidental” in contrast to “essentia l,” not to im ply that the d ifficu lties arise by chance, but that
they are the product o f com m on failings in m anagem ent, elicitation, specification, or use o f
requirements. It is these failings that are m ost easily addressed by im proved practice.

• W ritten as an afterthought. It rem ains com m on practice that requirem ents documentation
is d evelop ed only after the softw are has been written. For m any projects, the temptation
to rush into im plem entation before the requirem ents are adequately understood proves ir
resistib le. This is understandable. D evelopers often feel like they are not really doing
anything w hen they are not writing code; m anagers are concerned about schedule when
there is no v isib le progress toward project im plem entation. Then too, the intangible na
ture o f the product m itigates toward early im plem entation. D evelop in g the system is an
ob v iou s w ay to better understand what is needed and make v isib le the actual behavior o f
the product. The result is that requirem ents specifications are written as an afterthought
(i f at all). They are not created to guide the developers and testers, but are instead treated
as a necessary evil to satisfy contractual demands.

Such after-the-fact docum entation inevitably v io lates the principle o f defining “what”
the system must do rather than “h ow ,” since it is a specification o f the code as written.
B ecau se it is produced after the fact, it is not planned or m anaged as an essential part of
the developm ent but rather is thrown together. In fact, it is not even available in tim e to
guide project im plem entation or to m anage production.

• C onfused in purpose. B ecause there are so m any potential audiences for a requirements
specification w ith different points o f v iew , the exact purpose o f the docum ent becom es
confused . An early version is used to sell the product to the custom er so it includes mar
keting hype extolling the product’s virtues. A s the on ly docum entation o f the system , it
provides introductory, explanatory, and overv iew material. It is a contractual document
so it is intentionally im precise to a llow the developer latitude in the delivered product or
the custom er latitude in m aking n o -co s t changes. It is the veh ic le for com m unicating de
c is io n s about software to designers and coders, so it incorporates design and im plem enta
tion details. The result is a docum ent in w hich it is unclear w hich statem ents represents
real requirem ents and w hich are m ore properly allocated to m arketing, design, or other
docum entation. It is a docum ent that attempts to be everything to everyone and ultimately
serves no one w ell.

• N ot designed to be useful. O ften in the rush to im plem entation, little effort is expended on
requirem ents. The requirem ents specification is not expected to be useful and, indeed,
this turns out to be a se lf-fu lfillin g prophecy. Little effort is expended on designing it,
w riting it, checking it, or m anaging its creation and evolution. The m ost obvious result is
poor organization. The specification is written in English prose and fo llo w s either the au
thor’s stream o f consciousness or the order o f execu tion [H eninger 80].

The resulting docum ent is in effective as a technical reference. It is unclear w h ich
statem ents represent actual requirem ents. It is unclear where to put or find particular re
quirements. There is no effective procedure for ensuring that the specification is con
sistent or com plete. There is no system atic w ay to m anage requirem ents changes. The
specification is d ifficu lt to use and d ifficu lt to maintain. It quickly b ecom es out o f date
and lo ses whatever usefu lness it m ight originally have had.

• Lacks essentia l properties. Lack o f forethought, confusion o f purpose, or lack o f careful
design and execution all lead to requirem ents that lack properties critical to good tech
nical specifications. The requirements, i f docum ented at all, are redundant, inconsistent,
incom plete, im precise, and inaccurate.

W hile the essential d ifficu lties are inherent in the problem, the accidental d ifficu lties result
from a failure to gain or m aintain intellectual control over w hat is to be built. W hile the presence
o f the essential d ifficu lties m eans that there can be no “silver bullet” that w ill suddenly render
requirem ents easy, w e can rem ove at least the accidental d ifficu lties through a w ell-thought-out,
system atic, and d iscip lined developm ent process. Such a disciplined process then provides a
stable foundation for attacking the essential d ifficu lties.

5. Role of a Disciplined Approach
The application o f d iscip line in analyzing and sp ecify in g softw are requirem ents can address the
accidental d ifficu lties. W hile there is considerable agreem ent on the desirable qualities o f a
softw are developm ent approach, developm ent processes have not been standardized. Further, the
context and qualities o f developm ent can differ such that no single process m odel w ill suit all
developm ents. N on eth eless, it is useful to exam ine the characteristics o f an idealized process and
its products to understand w eaknesses in current approaches and w hich current trends are prom
ising. In general, a com plete requirements approach w ill define:

• Process: The (partially ordered) sequence o f activities, entrance and exit criteria for each
activity, w h ich work products are produced in each activity, and what skill sets are need
ed to do the work.

• Products: The w ork products to be produced and, for each product, the resources needed
to produce it, the inform ation it contains, the expected audience, and the acceptance crite
ria the product m ust satisfy.

C onceptually, the requirem ents phase con sists o f tw o d istinct but overlapping activ ities cor
responding to the first tw o goals for requirem ents previously enumerated:

1. Problem analysis: The goal o f problem analysis is to understand p recisely w hat problem
is to be solved . It includes identifying the system ’s stakeholders and eliciting their re
quirements. It also includes deciding the exact purpose o f the system , w ho w ill use it, the
constraints on acceptable solutions, and the p ossib le tradeoffs b etw een conflicting con
straints.

2. Requirem ents specification: The goal o f requirem ents specification is to capture the re
sults o f problem analysis in a transferable form . The products o f th is activity typically in
clude a written specification o f p recisely what is to be built in the form o f a Software
Requirem ents S pecification (SR S). The SR S captures the decisions m ade during problem
analysis and characterizes the set o f acceptable solutions to the problem .

- 1 0 -

In practice, the distinction between these activities is conceptual rather than temporal. Where
both are needed, the developer typically switches back and forth between analysis o f the problem
and documentation o f the results. When problems are w ell understood, the analysis phase may be
virtually non-existent. When the system model and documentation are standardized or based on
existing specifications, the documentation paradigm may guide the analysis [Hester 81].

5.1 Problem Analysis

Problem analysis lies at the boundary between human concerns and the realization o f some
software system that seeks to address those concerns. It is necessarily informal in the sense that
there is no effective, closed-end procedure that will guarantee success. It is a process o f acquir
ing, collating, and structuring information, through which one attempts to understand all the
various parts o f a problem and their relationships.

Problem analysis may be further divided into two closely related sub-activities: requirem ents
elicita tion and requirem ents m odeling and analysis. Requirements elicitation focuses on the
human side o f problem analysis. It seeks to answer the question “What are the behavioral and
developmental qualities o f an acceptable system?” M odeling and analysis supports elicitation by
capturing the answers to this question in a form that allows the stakeholders to understand,
communicate, and reason about the results.

5.2 R equirem ents Elicitation

A s our discussion o f the essential difficulties suggests, understanding what constitutes an “ac
ceptable system ” to its stakeholders can be a daunting task. People do not really know what they
want in sufficient detail. Moreover, different people or types o f stakeholders often have different
and incompatible view s o f the problem, the purposes for developing the system, and what it
should accom plish. In fact, since the scope o f the system may be undetermined, it may not even
be clear who the stakeholders are.

The purpose o f a disciplined elicitation process is to systematically remove the uncertainty
from problem understanding, resolve conflicting view s, and arrive at a set o f behavioral and
developmental requirements that the stakeholders w ill agree to. To do so, the process must
answer the follow ing questions:

• What are the system boundaries?

• What is the rationale for creating the system? What are the current problems and what are
the goals for the proposed system?

• What are the constraints on acceptable solutions?

• Who are the stakeholders?

• What are the different stakeholders’ view s o f the problem and the system requirements?

• Where does the understanding differ or requirements conflict and how can those conflicts
be resolved?

Developm ents differ in the extent to which the process must address such questions. For ex
ample, for a project with a single customer, it may be unnecessary to expend any effort establish
ing who the stakeholders are or managing stakeholder conflicts. Thus, the activities necessary to
answering these questions are incorporated into the elicitation process as needed.

Establish system boundaries: The purpose o f this activity is to establish where system con
cerns properly begin and end. In practice, this means characterizing the system ’s external inter
faces. It delimits and defines how the software interacts with users or with other system s
(software or hardware).

In addition, establishing the system boundaries sets boundaries on the elicitation process it
self. By defining what is inside the system and what is outside, the scope o f inquiry about the
problem and the system requirements is bounded. By identifying which concerns properly
belong to the software it helps establish who the stakeholders are and which view s or concerns
are relevant. By establishing bounds on which persons and issues are relevant, it helps determine
when elicitation is done.

Rationale a n d goa l understanding : Fully understanding the problem requires understanding
the rationale - why the system is being built in the first place. Understanding the rationale can be
necessary for establishing system requirements and for maintaining consistency as real-world
objectives or constraints change over time.

The rationale encompasses both the problems with any current system (automated or manual)
and the objectives for the new system. System objectives may be codified in the form o f goals
where a g o a l characterizes “an objective the system under consideration should achieve”
[Lamsweerde 01].

Goals provide a link between broader concerns like business objectives and the requirements
that instantiate those concerns in the software context. Defining goals and providing traceability
to the software requirements supports managing requirements changes as business objectives
mature. Likewise, understanding the overall system goals and their relative priorities provides a
basis for choosing among likely alternatives and resolving conflicting requirements. Specific
approaches to goal-based requirements are discussed in the subsequent section on the state o f
practice.

Stakeholder identification : fully understanding the problem necessitates identifying all o f the
system ’s stakeholders, then understanding their interest in the system. In stakeholder identifica
tion, it is important to include both the individuals (and organizations) who stand to lose, as well
as those who stand to gain, from development success or failure [Gause 89].

For many large developments it is not imm ediately obvious who all the stakeholders are,
even to the stakeholders themselves. Further, the set o f stakeholders may change as requirements
evolve, system boundaries change, or the individual filling those organizational roles are re
placed.

Since different stakeholders will have different attributes, concerns, and view s o f the system,
identifying them is a necessary step toward selecting appropriate elicitation methods, gathering a
complete set o f requirements, establishing priorities, and negotiating conflicts.

Elicitation-. The core o f requirements elicitation is the process o f working with the stakehold
ers to obtain their understanding o f the problem, goals, and system requirements. Since different
classes o f stakeholders typically have different perspectives about the problem, have different
cultures, and communicate in different languages, a number o f different elicitaiion methods may
have to be used as part o f an effective elicitation process. Determining which methods to use,
incorporating them in the requirements process, and synthesizing the results are the concerns o f
effective practice (e.g., [Lauesen 02]).

R equirem ents N egotia tion : Different stakeholders necessarily have different perspectives on
the system requirements. For most real developments, there is no single set o f requirements
waiting to be discovered. Rather, there are many potential manifestations o f stakeholder desires
that lead to different, and often conflicting, sets o f requirements.

Before development can proceed to implementation, there must be agreement on a single,
consistent set o f requirements. M odeling and analyzing the requirements can help identify where
conflicts occur but does not resolve them. This almost always requires tradeoffs and compromis
es between conflicting goals. It follow s that arriving at agreement requires an effective process
for negotiating requirements tradeoffs among stakeholders (e.g., [Boehm 94]).

5.3 Requirem ents Modeling and Analysis

The inherent difficulties o f software complexity and invisibility are typically addressed by
developing one or more abstract models. “M odel,” in this sense, means a representation o f some
aspect o f the software system, the system ’s context, or both. It is abstract in that it represents
certain information (entities and relationships) about the system while omitting others.

The use o f m odels can help make the intangible objects and relationships in a software sys
tem visible. For example, a behavioral model might show the required system transitions and the
observable behavior in response to user inputs. Such m odels aid elicitation and understanding by
providing a transferable representation o f the problem or system requirements. The use o f
models also reduces complexity by allowing the user to focus on and reason about a limited,
related set o f information at one time.

That said, not all m odels or modeling languages are equal. In some cases, “abstract” is inter
preted to mean vague, not w ell defined, or inaccurate. To support reasoning about a system, any
model should have the property that anything that is true o f the model is also true o f the system it
represents. One can then manipulate the model to achieve particular developmental goals with
the understanding that corresponding transformations to the system w ill yield corresponding
real-world properties. In many cases, m odeling languages (e.g., UM L) lack sufficiently w ell-
defined semantics to achieve this property. The result is a model that is open to conflicting
interpretations.

In addition to supporting problem understanding, the creation o f models can support various
kinds o f analysis. Where m odels provide a formal syntax and semantics, they may support
analysis for properties like consistency and com pleteness, as well as reasoning about require
ments like safety properties. Such analyses can help identify m issing requirements, inconsisten
cies. and requirements conflicts during elicitation. W hile informal models may not support
formal reasoning, they can be useful aids for visualizing and reasoning about system require
ments, as long as their limitations are understood.

5.4 Requirem ents Specification

For substantial developments, the effectiveness o f the requirements effort depends on how well
the SRS captures the results o f analysis and how useable the specification is. There is little
benefit to developing a thorough understanding o f the problem if that understanding is not
effectively communicated to customers, designers, implementers, testers, and other stakeholders.
The larger and more com plex the system, the more important a good specification becomes. This
is a direct result o f the many roles the SRS plays in a multi-person, m ulti-version development
[Pamas 86]:

1. The SRS is the primary vehicle for agreement between the developer and customer on
exactly what is to be built. It is the document that is reviewed by the customer or his rep
resentative and often is the basis forjudging fulfillment o f contractual obligations.

2. The SRS records the results o f problem analysis. It is the basis for determining where the
requirements are complete and where additional analysis is necessary. Documenting the
results o f analysis allows questions about the problem to be answered only once during
development.

3. The SRS defines what properties the system must have and the constraints on its design
and implementation. It defines where there is, and is not, design freedom. It helps ensure
that requirements decisions are made explicitly during the requirements phase, not im
plicitly during the design or programming phases.

4. The SRS is the basis for estimating cost and schedule. It is management’s primary tool
for tracking development progress and ascertaining what remains to be done.

5. The SRS is the basis for test plan development. It is the tester’s ch ief tool for determining
acceptable software behavior.

6. The SRS provides the standard definition o f expected behavior for the system 's maintain
e d and is used to record engineering changes.

For a disciplined software development, the SRS is both the primary technical specification
o f the software and the primary control document. This is an inevitable result o f the complexity
o f large system s and the need to coordinate multi-person development teams. To ensure that the
right system is built, one must first understand the problem. To ensure agreement on what is to
be built and the criteria for success, the results o f that understanding must be recorded. The goal
o f a systematic requirements process is thus the development o f a set o f specifications that
effectively communicate the results o f analysis. The SRS is the primary vehicle for communi
cating requirements between the developers, managers, and customers, so the document is
designed to be useful for that purpose. A useful document is maintained.

5.5 Requirem ents Process and Plan

Requirements’ accidental difficulties are addressed through the careful analysis and specification
o f a disciplined process. Rather than developing the specification as an afterthought, require
ments are understood and specified before development begins. One knows what one is building
before attempting to build it. When requirements cannot be com pletely known in advance, the
process systematically revisits the requirements process and downstream activities (e.g., iterative
development).

The facts that requirements cannot be fully known in advance, and often change, are som e
times used as justification for expending little effort toward requirements planning. The thought
is that the project w ill deal with requirements when and i f they becom e manifest. Such an
approach surrenders the notion o f a controlled engineering process to chance.

By definition, as a system enters the coding phase every decision about the requirements
necessarily gets made. The question is not whether any particular requirements decision w ill be
made but when it w ill be made and by whom. By default, any decision that is not made earlier in
the process will be made by the programmers. In many cases, the programmers have little

- 1 4 -

visibility into the business implications o f such decisions or their effects on stakeholder goals.
This is se ldom a desirable outcome.

Being in control o f the process means that requirements decisions, including postponing or
not making decisions, are conscious choices. Each decision is made at the appropriate time by
those w ith the knowledge and skills necessary to choose the best available alternative. This kind
o f control requires that the complex activities related to requirements be planned in advance.

W hile organizations that develop com plex software systems should employ a disciplined re
quirements process, no one process will m eet the needs o f every organization. A company that is
developing an application in which development cost and time to market are primary business
drivers should not use the same process as an organization developing safety-critical aerospace
software with a long life expectancy.

It fo llow s that the requirements process is something that should be chosen or designed to fit
the organizational and even developmental contexts. W hile every development w ill typically go
through som e form o f elicitation, modeling, analysis, and specification, the emphasis on the
different phases and products will differ from one situation to the next. Likewise, the choices
among m ethods, technologies, notations, and tools w ill vary.

We then must create (build) or choose (buy) a process that satisfies the requirements. We
must compare the process to the goals, verify its enactment, and so on. We must communicate
that process to those who will enact it, manage it, or monitor it. We must validate the process
against the goals, verify its enactment, and so on.

In a disciplined organization, this means that there must be a written specification that rec
ords decisions about the process and provides a baseline for enactment, tailoring, or process
improvement. W hile treating a process as a product in this manner may seem alien, in fact many
organizations that have embarked on systematic process improvement (e.g., [SEI 06]) have done
all o f this and more. Thinking about the process as a product helps ensure that adequate consid
eration is given to planning, budgeting for, and managing process development or improvement.

At the project level, the requirements process should be instantiated in the form o f a require
ments p la n [Young 04]. The requirements plan makes the abstract requirements processes
concrete by mapping activities to tasks, people to roles, and artifacts to deliverables. It describes
who w ill do what and how. For example, it should describe which elicitation methods will be
used to obtain w hich kinds o f requirements information and which m odeling methods will be
used to capture that information.

The plan serves as the basis for team consensus on exactly what w ill be done, provides a
yardstick for tracking progress, and serves as a guide to new personnel and other stakeholders.
The exact plan contents should vary depending on the organization’s process and the specific
characteristics o f the project. In general, however, it should answer the following kinds of
questions for the reader:

• R o les and Responsibilities — Who is responsible for what?

• Project Background — What background information will help us understand this pro
ject?

• Requirem ents Process — What idealized requirements process w ill w e follow?

• M echanisms, methods, techniques — H ow w ill we elicit, identify, analyze, define, speci
fy, prioritize, track, etc.?

• Quality assessment — What methods w ill be used to assess requirements qualities and
what are the acceptance criteria for the products produced?

• Detailed schedule, m ilestones — H ow are the activities and artifacts mapped to the pro
ject schedule and milestones?

• Resources and references — Who or what resources can answer questions about the
product or process?

The instantiation o f a well-defined process in the project plan helps ensure that the process
actually enacted by project personnel will be consistent with the organization’s overall process
goals. Observing and measuring the results then provides metrics for systematic process im
provement.

The final key to implementing the plan is providing adequate resources. Historical data from
a large set N A SA projects shows that, in general, the projects that spent the least on developing
requirements tended to have the highest cost overruns. Projects that spend 8% to 14% o f the total
project budget on acquiring and managing requirements reduced cost overruns by 50% ([N A SA
05], [Young 06]).

6. Requirem ents for the Software R equirem ents Specification

The goals o f the requirements process, the attendant difficulties, and the role o f the requirements
specification in a disciplined process determine the properties o f a “good'’ requirements specifi
cation. These properties do not mandate any particular specification method but do describe
characteristics an effective method should possess.

The semantic properties determine how effectively an SRS captures the software require
ments. The packaging properties determine how useable the resulting specification is and illus
trates the classification o f properties o f a good SR S (see Table 2). An SRS that satisfies the
semantic properties o f a good specification is:

• Com plete. The SRS defines the set o f acceptable implementations. It should contain all
the information needed to write software that is acceptable to the customer and no more.
A ny implementation that satisfies every statement in the requirements is an acceptable
product. Where information is not available before developm ent begins, areas o f incom
pleteness must be explicitly indicated [Pamas 86].

• Im plem enta tion independent. The SRS should be free o f design and implementation deci
sions unless those decisions reflect actual requirements.

• U nam biguous and consistent. I f the SRS is subject to conflicting interpretation, the differ
ent parties will not agree on what is to be built or whether the right software has been
built. Every requirement should have only one possible interpretation. Similarly, no two
statements o f required behavior should conflict.

• Precise. The SRS should precisely define the required behavior. For each output, it should
define the range o f acceptable values for every input. The SRS should define any applica
ble timing constraints such as minimum and maximum acceptable delay.

- 1 6 -

T a b l e 2 : S e m a n t i c v s . p a c k a g i n g p r o p e r t i e s

SRS Semantic Properties SRS Packaging Properties

Complete
Implementation independent

Unambiguous and consistent,
precise and verifiable

Modifiable
Readable

Organized for reference and
review

• Verifiable. A requirement is verifiable i f it is possible to determine unam biguously
whether a given implementation satisfies the requirement or not. For example, a b eh a v
ioral requirement is verifiable i f it is possible to determine, for any given test case (i.e., an
input and an output), whether the output represents an acceptable behavior o f the input
and the system state.

A n SRS that satisfies the packaging properties o f a good specification is:

• M odifiable. The SRS must be organized for ease o f change. Since no organization can b e
equally easy to change for all possible changes, the requirements analysis process m ust
identify expected changes and the relative likelihood o f their occurrence. The specifica
tion is then organized to limit the effect o f likely changes.

• Readable. The SRS must be understandable by the parties that use it. It should clearly
relate the elements o f the problem space as understood by the customer to the observable
behavior o f the software.

• O rgan ized fo r reference and review. The SRS is the primary technical specification of th e
software requirements. It is the repository for all the decisions made during analysis
about what should be built. It is the document reviewed by the customer or his repre
sentatives. It is the primary arbitrator o f disputes. A s such, the document must be orga
nized for quick and easy reference. It must be clear where each decision about th e
requirements belongs. It must be possible to answer specific questions about the require
ments quickly and easily.

To address the difficulties associated with writing and using an SRS, a requirements a p
proach must provide techniques addressing both semantic and packaging properties. It is a lso
desirable that the conceptual structures o f the approach treat the semantic and packaging proper
ties as distinct concerns (i.e., as independently as possible). This allow s one to change th e
presentation o f the SRS without changing its meaning.

In aggregate, these properties o f a good SRS represent an ideal. Som e o f the properties m a y
be unachievable, particularly over the short term. For example, a comm on complaint is that o n e
cannot develop complete requirements before design begins because the customer does not y e t
fully understand what he wants or is still making changes. Further, different SRS “requirements”
mitigate toward conflicting solutions. A comm only cited example is the use o f English prose to
express requirements. English is readily understood but notoriously ambiguous and im precise.
Conversely, formal languages are precise and unambiguous, but can be difficult to read.

Although the ideal SRS may be unachievable, possessing a common understanding o f what
constitutes an ideal SRS is important [Pamas 86] because it:

• Provides a basis for standardizing an organization’s processes and products,

• Provides a standard against which progress can be measured, and.

• Provides guidance - it helps developers to understand what needs to be done next and to
know when they are finished.

Because it is so often true that (1) requirements cannot be fully understood before at least
starting to build the system, and (2) a perfect SRS cannot be produced even when the require
ments are understood, some approaches advocated in the literature do not even attempt to
produce a definitive SRS. For example, som e authors advocate going directly from a problem
model to design or from a prototype implementation to the code. W hile such approaches may be
effective on some developments, they are inconsistent with the notion o f software development
as an engineering discipline. The development o f technical specifications is an essential part o f a
controlled engineering process. This does not mean that the SRS must be complete or perfect
before anything else is done but that its developm ent is a fundamental goal o f the process as a
whole. That we may currently lack the ability to write good specifications in some cases does not
change the fact that it is useful and necessary to try.

7. State of the Practice

The past decade has brought a significant shift in requirements practice and the perception o f the
role o f requirements in the development process. When the first version o f this article was
published, requirements analysis was generally treated as a distinct concern (e.g., [Davis 93]).
There was the conceptual distinction that requirements should express an implementation-
independent specification o f what the software should do. However, it was also treated as a
development phase that divided the software process into distinct and relatively independent
parts. It is this sequencing relationship that is represented in the Waterfall model and its varia
tions [e.g., Figure 1].

In this view , the requirements phase begins with requirements gathering, and ends with the
delivery o f som e form o f requirements specification to the software designers. W hile it is under
stood that the requirements activities and its products may be revisited in subsequent phases, it is
assumed that the requirements specification can capture and communicate everything the devel
opers need to know to design, implement, and maintain the software. In practice, this separation
o f concerns was embodied in the notion o f the “requirements handoff ’ - a process milestone in
which the requirements specification is baselined and control is passed to the software designers
and coders.

The unstated assumption behind this m odel is that the dependencies between non-contiguous
parts o f the process do not require explicit understanding or management; that everything the
stakeholders need to know can be captured through work products like the SRS and supporting
traceability matrices. Thus, for example, the designers do not need to understand the source o f
particular requirements or the underlying business rationale to design good software architecture.

Over the past decade, a more holistic v iew o f the software process has emerged. It has
become clear that, for m ost com plex software development, the decisions made in each phase o f
development may have significant implications across the life cycle and, indeed, across more

than one life cycle. Thus, controlling the downstream effects o f development decisions requires
explicit understanding and management o f these dependencies. This requires a model o f devel
opment that spans the software life cycle and, for som e concerns, multiple life cycles.

In the remainder o f this section we discuss the current state o f practice, particularly as it
embodies this broader, more interdisciplinary view o f requirements.

7.1 Software Methodologies

Over the years, a number o f analysis and specification methods have been developed as part of
more comprehensive software engineering methods. The general trend has been for software
engineering techniques to be applied first to coding problems (e.g., com plexity, ease o f change),
then to similar problems occurring earlier and earlier in the life cycle. Thus the concepts of
structured programming eventually led to structured design and analysis. Similarly, the concepts
of object-oriented programming led to object-oriented design and analysis.

The benefits o f this approach are that a common set o f conceptual structures and notations
can be used across the software life cycle. It is unnecessary to translate from one set o f abstrac
tions to another (until code is produced), avoiding translation errors, and inconsistencies between
models. The drawback is that the same notations and structures must be used to represent con
cepts that w e are trying to keep distinct. For example, the concept o f objects is used to represent
both entities in the problem domain (requirements) and entities in the implementation domain
(code). This can make it difficult to distinguish requirements decisions from downstream con
cerns.

Since a number o f the concepts used in current object-oriented approaches were introduced
in Structured Analysis, and since Structured Analysis is still in use in use in some application
domains, our discussion will treat both.

7.1.1 S tructu red Analysis (SA)

Following the introduction o f structured programming as a means to gain intellectual control
over increasingly com plex programs, structured analysis evolved from functional decomposition
as a means to gain intellectual control over system problems.

The basic assumption behind SA is that the accidental difficulties can be addressed by a sys
tematic approach to problem analysis using [Svoboda 90]:

• A com m on conceptual model for describing all problems,

• A set o f procedures suggesting the general direction o f analysis and an ordering on the
steps,

• A set o f guidelines or heuristics supporting decisions about the problem and its specifica
tion, and

• A set o f criteria for evaluating the quality o f the product.

W hile functional decomposition is still a part o f SA, the focus o f the analysis shifts from the
processing steps to the data being processed. The analyst view s the problem as constructing a
system to transform data. He analyzes the sources and destinations o f the data, determines what
data must be held in storage, what transformations are done on the data, and the form o f the
output.

- 1 9 -

Common to the SA approaches is the use o f data flow diagrams and data dictionaries. Data
flow diagrams provide a graphic representation o f the movement o f data through the system
(typically represented as arcs) and the transformations on the data (typically represented as
nodes). The data dictionary supports the data flow diagram by providing a repository for the
definitions and descriptions o f each data item on the diagrams. Required processing is captured
in the definitions o f the transformations. Associated with each transformation node is a specifica
tion o f the processing the node does to transform the incoming data items to the outgoing data
items. At the most detailed level, a transformation is defined using a textual specification called a
“m inispec.” A minispec may be expressed in a number o f different ways, including English
prose, decision tables, or a procedure definition language (PDL).

SA approaches originally evolved for management information system s (MIS). Examples o f
widely used strategies include those described by DeMarco [1978] and Gane and Sarson [1979].
Later “M odem ” structured analysis was introduced to provide more guidance in modeling
systems as data flow s, as exem plified by Yourdon [1989].

Structured analysis is based on the notion that there should be a systematic (and hopefully
predictable) approach to analyzing a problem, decomposing it into parts, and describing the
relationships between the parts. By providing a well-defined process, structured analysis seeks to
address, at least in part, the accidental difficulties that result from ad hoc approaches and the
definition o f requirements as an afterthought. It seeks to address problems in comprehension and
communication by using a common set o f conceptual structures and a graphic representation o f
the specification in terms o f those structures, based on the assumption that a decomposition, in
terms o f the data the system handles, w ill be clearer and less inclined to change than one based
on the functions performed.

W hile structured analysis techniques have continued to evolve and have been widely used,
there remain a number o f common criticisms. When used in problem analysis, a common com
plaint is that structured analysis provides insufficient guidance. Analysts have difficulty deciding
which parts o f the problem to model as data, which parts to model as transformations, and which
parts should be aggregated. W hile the gross steps o f the process are reasonably w ell defined,
there is only very general guidance (in the form o f heuristics) as to what specific questions the
analyst needs to answer next. Similarly, practitioners find it difficult to know when to stop
decomposition and addition o f detail. In fact, the basic structured analysis paradigm o f modeling
requirements as data flow s and data transformations requires the analyst to make decisions about
intermediate values (e.g., form and content o f stored data a.nd the details o f internal transfor
mations) that are not requirements. Particularly in the hands o f less experienced practitioners,
data flow m odels tend to incorporate a variety o f detail that properly belongs to design or im ple
mentation.

Many o f these difficulties result from the weak constraints imposed by the conceptual model.
A goal o f the developers o f structured analysis was to create a very general approach to modeling
systems; in fact, one that could be applied equally to m odel human enterprises, hardware applica
tions, software applications o f different kinds, and so on. Unfortunately, such generality can be
achieved only by abstracting away any semantics that are not common to all types o f systems
potentially being modeled. The conceptual m odel itself can provide little guidance relevant to a
particular system. Since the conceptual m odel applies equally to both requirements analysis and
design analysis, its semantics provide no basis for distinguishing between the two. Similarly,
such m odels can support only very weak syntactic criteria for assessing the quality o f structured

- 20 -

analysis specifications. For example, the test for completeness and consistency in data flow
diagrams is lim ited to determining that the transformations at each level are consistent in name
and number with the data flow s o f the level above.

This does not mean one cannot develop data flow specifications that are easy to understand,
communicate effectively with the user, or capture required behavior correctly. The large number
o f system s developed using structured analysis show that it is possible to do so. However, the
weakness o f the conceptual model means that a specification’s quality depends largely on the
experience, insight, and expertise o f the analyst. The analyst must provide the necessary disci
pline because the model itself is relatively unconstrained.

Finally, structured analysis provides little support for producing an SRS meeting our quality
criteria. Data flow diagrams are unsuitable for capturing mathematical relations or detailed
specifications o f value, timing, or accuracy. Therefore, detailed behavioral specifications are
typically given in English or as pseudo-code segments in the minispec. These constructs provide
little or no support for writing an SRS that is complete, implementation independent, unambigu
ous, consistent, precise, and verifiable. Further, the data flow diagrams and attendant dictionaries
do not, by them selves, provide support for organizing an SRS to satisfy the packaging goals of
readability, ease o f reference and review, or reusability. In fact, for many o f the published
methods, there is no explicit process step, structure, or guidance for producing an SRS at all as a
distinct developm ent product.

7.1.2 O bject-O riented Analysis (OOA)

OOA has evolved from at least two significant sources: information modeling and object-
oriented design. Each has contributed to current view s o f OOA, and the proponents o f each
emphasize somewhat different sets o f concepts. OOA techniques differ from structured analysis
in their approach to decomposing a problem into parts and in the methods for describing the
relationships between the parts. In OOA, the analyst decom poses the problem into a set of
interacting objects based on the entities and relationships extant in the problem domain. An
object encapsulates a related set o f data, processing, and state. (Thus, a significant distinction
between object-oriented analysis and structured analysis is that OOA encapsulates both data and
related processing together.)

The structural components o f OOA (e.g., objects, classes, services, and aggregation) support
a set o f analytic principles. O f these structural components, two directly address requirements
problems:

1. From information m odeling com es the assumption that a problem is easiest to understand
and communicate i f the conceptual structures created during analysis map directly to enti
ties and relationships in the problem domain. This principle is realized in OOA through
the heuristic o f representing problem domain objects and relationships o f interest as OOA
objects and relationships. Thus an OOA specification o f a vehicle registration system
might m odel vehicles, vehicle owners, vehicle titles, and so on as objects. The object par
adigm is used to model both the problem and the relevant problem context.

2. From early work on modularization by Pamas [Pamas 72] and abstract data types, and by
way o f object-oriented programming and design, com e the principles o f information hid
ing and abstraction. The principle o f information hiding guides one to limit access to in
formation on which other parts o f the system should not depend. In an 0 0 specification

o f requirements, this principle is applied to hide details o f design and implementation. In
OOA, behavior requirements are specified in terms o f the data and services provided on
the object interfaces; the object encapsulates how those services are implemented. The
principle o f abstraction says that only the relevant or essential information should be pre
sented. Abstraction is implemented in OOA by defining object interfaces that provide ac
cess only to essential data or state information encapsulated by an object (conversely
hiding the accidentals).

The principles and mechanisms o f OOA provide a basis for attacking the essential difficulties
o f comprehension, communication, and control. The principles o f problem domain m odeling
help guide the analyst in distinguishing requirements (what) from design (how). Where the
objects and their relationships faithfully model entities and relationships in the problem, they are
understandable by the customer and other domain experts; this supports early comprehension o f
the requirements.

The principles o f information hiding and abstraction, with the attendant object structures,
provide mechanisms useful for addressing the essential problems o f control and communication.
Objects provide the means to divide the requirements into distinct parts, abstract from details,
and limit unnecessary dependencies between the parts. Object interfaces can be used to hide
irrelevant detail and define abstractions providing only the essential information. This provides a
basis for managing com plexity and improving readability. L ikewise objects provide a basis for
constructing reusable requirements units o f related functions and data.

The potential benefits o f OOA are often diluted by the w ay the key principles are manifested
in particular methods. W hile the objects and relations o f OOA are intended to m odel essential
aspects o f the application domain, this goal is typically not supported by a corresponding con
ceptual model o f the domain behavior. Object m odeling mechanisms and techniques are inten
tionally generic rather than application specific. One result is insufficient guidance in developing
appropriate object decompositions. OOA practitioners often have difficulty choosing appropriate
objects and relationships.

In practice, the notion that one can develop the structure o f a system, or a requirements
specification, based on physical structure is often oversold. It i s true that the elem ents o f the
physical world are usually stable (especially relative to software details) and that real-world-
based models have intuitive appeal. It is not true; however, that everything that must be captured
in requirements has a physical analog. An obvious example is shared state information. Further,
many real world structures are them selves arbitrary and likely to change (e.g., where two hard
ware functions are put on one physical platform to reduce cost). W hile the notion o f basing
requirements structure on physical structure is a useful heuristic, more is needed to develop a
complete and consistent requirements specification.

A further difficulty is that the notations and semantics o f OOA methods are typically based
on the conceptual structures o f software rather than those o f the problem domain the analyst
seeks to model. Symptomatic o f this problem is that analysts find them selves debating about
object language features and their properties rather than about the properties o f the problem. An
example is the use o f m essage passing, com plete with m essage passing protocols, where one
object uses information defined in another. In the problem domain it is often irrelevant whether
information is actively solicited or passively received. In fact there may be no notion o f m essag
es or transmission at all. Nonetheless one finds analysts debating about which object should

- 22 -

initiate a request and the resulting anomaly o f passive entities modeled as active. For example, to
get information from a book one might request that the book “read itse lf ’ and “send” the re
quested information in a message. To control an aircraft the pilot might “use his hands and feet
to ‘send m essages’ to the aircraft controls which in turn send m essages to the aircraft control
surfaces to m odify them selves” [Davis 93]. Such decisions are about OOA mechanisms or
design, not about the problem domain or requirements.

As m entioned in the previous section, where the decomposition into objects is driven only by
use cases, the result is effectively a functional specification in object guise. The problems with
such specifications are well understood [Pamas 72], in particular, being difficult to understand,
change, or maintain.

A more serious complaint is that most OOA methods inadequately address our goal of
developing a good SRS. M ost OOA approaches in the literature provide only informal specifica
tion m echanism s, relying on refinement o f the 0 0 model in design and implementation to add
detail and precision. There is no formal basis for determining i f a specification is complete,
consistent, or verifiable. Further, the approach does not directly address the issues o f developing
the SRS as a reference document. The focus is on problem analysis rather than specification. If
the SRS is addressed at all, the assumption is that the principles applied to problem understand
ing and m odeling are sufficient, when results are written down, to produce a good specification.
Experience suggests otherwise. A s we have discussed, there are inherently tradeoffs that must be
made to develop a specification that meets the need o f any particular project. Making effective
tradeoffs requires a disciplined and thoughtful approach to the SRS itself, not just the problem.
Thus, w hile OOA provides the means to address packaging issues, there is typically little meth
odological emphasis on issues like modifiability or organization o f a specification for reference
and review.

7.2 Use Cases

Usage scenarios or use cases have been widely adopted as a method for specifying required
system behavior from the user’s point o f view. Use cases are sometimes deployed as the primary
focus o f elicitation and problem modeling [Schneider 98]. Use cases are also frequently em
ployed as a first step in many object-oriented approaches (e.g., [Jacobsen 92], [Kruchten 99]).
Despite their prevalence in object-oriented development, there is nothing intrinsically object-
oriented about use cases and they are applied in other contexts. For these reasons, we will treat
them separately.

Briefly, a use case describes a set o f possible sequences o f interactions between the system
and a user seeking to accomplish a particular goal. U ses cases are intended capture a user-centric
view o f the required system behavior — i.e., how the system should respond to different user
inputs to accom plish specific tasks like checking the balance on an account or adding an item to
an on-line shopping cart.

W hile many approaches attempt to structure use cases by providing standard formats or tem
plates (e.g., [Cockbum 00]), use cases are ultimately an informal, natural-language specification.
A use-case template captures the user’s (or a c to r ’s) interaction with the system as a sequence of
natural-language statements that alternate between describing user inputs (e.g., the customer
clicks the checkout button”) and system responses (“the page displays the contents o f the cus
tomers shopping cart”).

- 2 3 -

Because use cases directly capture interaction with the system in terms o f the user’s problem
domain (e.g., work tasks), they are usually easy for non-technical stakeholders to read, under
stand, review, and even assist in creating. W hile writing good use cases requires expertise, there
is a relatively natural transition from a description o f what a user wants the system to do, to a
specification o f how the system might support that task in a use case. Similarly, marketing or
business goals for a system (e.g., what new things the system w ill allow users to do) are often
straightforwardly represented as use cases [Lee 99].

W hile there is evidence that use cases can be an effective informal modeling technique, they
lack many o f the properties necessary to a technical requirements specification:

• U nam biguous and consistent'. Use cases necessarily have all the limitations o f any natural
language specification. They are inherently ambiguous and open to inconsistent interpre
tation by stakeholders or developers.

• M odifiab le : Individually, use cases are relatively easy to modify, particularly where
standard templates are used. Collectively, where there are a large number o f use cases, it
can become very difficult to find or identify all o f the use cases relating to a particular
change.

• O rganized fo r reference a n d review : Where the number o f use cases becom es large, it
also becomes difficult to find specific use cases or specific information. There is general
ly no organizing principle that accurately characterizes exactly where to put or find a giv
en piece o f information among the set o f use cases. Similarly, it can be difficult for
reviewers to find key information or assess basic properties like consistency.

• C om plete: Since use cases represent specific paths through the system behavior, it is usu
ally impossible or impractical to write a com plete set o f use cases. The problem is analo
gous to trying to write a complete set o f test cases. W hile the level o f abstraction is
higher, in general, the number o f possible scenarios is very large and there is no w ay to
check i f the set o f use cases is complete, or to identify which ones might be missing.

There are also more important senses in which use cases are typically incomplete. Tradition
ally, use cases represent only users’ interactions with the system. It follow s that a specification
written only in terms o f use cases is an entirely functional specification. Other viewpoints as w ell
as critical quality requirements are not addressed. Such an approach recapitulates the deficiencies
o f functional decomposition and discards decades o f progress in software engineering. W hile
there have been some efforts to m odify use cases to represent quality requirements, (e.g., [Bass
03]) such approaches remain a work in progress.

These limitations suggest that use cases are more appropriate for informal business- or
mission-oriented requirements capture. In many organizations there are tw o distinct audiences
for the requirements: one audience that is versed in the organizational goals and problem domain
and a second audience that is versed in technical goals and the solution domain. For businesses,
the first audience typically includes customers, marketing, product management, and others on
the business side o f the organization. The second audience includes architects, coders, and others
on the development side o f the organization.

Because these two audiences tend to speak different languages and have different interests in
the product, it is difficult to write any single specification that is suitable to both. In such cases, it
often makes sense to create two distinct documents, one owned by the business side and a second

- 2 4 -

owned b y the technical side. The goal in dividing the specification is to create a clear allocation
o f purpose, responsibility, and ownership.

The purpose o f the business-oriented document is to capture the rationale for building th e
system. It includes the business case, solution approach, and the mapping between them. T h is
document m ay be described as the, M arket Requirem ents D ocum ent (MRD), Business R equ ire
ments D o cu m en t (BRD) or, Concept o f O peration D ocum ent (ConOps). It should com m unicate
the results o f problem analysis and characterize the set o f acceptable solutions to custom ers,
managers, and others responsible for why the system is being developed. Because its purpose i s
to capture rationale, it is organized to “tell a story” [Fairley 97] rather than as a reference docu
ment.

The technical specifications are then captured in an SRS. By tracing requirements in the S R S
to the B RD or similar document, one captures the origin and rationale for the technical require
ments w h ile maintaining the desirable properties o f an SRS.

Use cases are a natural fit for the audience and purpose o f a document like the ConOps o r
BRD. U se cases are written in terms o f the problem domain and in a language that is accessib le
to those familiar with the problem domain. The format and organization is consistent with th e
objective that the document should “tell a story” and provides a vehicle for linking the system
behavior to user tasks. W hile this com es at the expense o f some redundancy in that the sam e
requirements must be expressed in more than place, the benefits typically outweigh any issues in
maintaining consistency.

7.3 L inking Requirem ents to Architecture

While a detailed discussion o f software architecture is beyond the scope o f this paper, one m ust
have a clear understanding o f the effect o f architecture on important system qualities to under
stand the relationships between architectural design decisions and the requirements process.

We use the term softw are architecture to denote the structures o f the system comprising a s e t
o f components, relations, and interfaces. For example, the class structure could refer to the set o f
classes in the system , the class interfaces, and the inheritance or instance relation. The p r o c e s s
structure could refer to the organization o f the system into processes or threads; interfaces are
the inter-process operations (synchronization, communication), and the relations include e x c lu
sion and concurrency. By this definition, any software system can comprises o f more than o n e
architecture [Bass 03].

Architecture manifests the earliest set o f design decisions. It is these decisions that enable o r
inhibit the system ’s quality attributes. These include essentially all o f the system ’s developm en
tal qualities (e.g ., maintainability, reusability, etc.) and all o f the system ’s behavioral qualities
(e.g., performance, reliability, etc.) except functionality-’,

Inevitably, architectural design requires making tradeoffs among the system 's quality attrib
utes. For exam ple, significantly increasing system security w ill tend to decrease performance and
improving reliability will typically require longer development time.

3. Without going into detail, precisely the same functionality can be realized by any number of different architec
tural decompositions.

Since different stakeholders have different interests in system properties, the process o f
choosing among architectural design alternatives directly affects the extent to which the design
w ill, or will not, satisfy their desires and goals. Since making good architectural design decisions
requires making tradeoffs among the concerns o f different stakeholders, the architect must
understand the rationale for different quality requirements, as w ell as the relative priorities
among stakeholder goals, and. ultimately, negotiate compromises. The architect must understand
both the source and nature o f the system ’s quality requirements.

The implication is that it is not sufficient to communicate black-box requirements; an effec
tive process must also capture and communicate contextual information. This includes the
purpose o f different requirements, their relationships to organizational goals, and their im
portance to the system ’s diverse stakeholders.

Where an organization goes on to develop subsequent versions o f the software or similar sys
tems, the dependencies also extend downstream. The architectural design decisions embodied in
the current system tend to influence subsequent business goals, requirements, and architectural
structures. For example, how easy a system is to extend or m odify the software in particular
ways can significantly affect the ability to add specific features, address new customer needs, or
target different markets.

These overlapping dependencies between developmental goals, requirements, and architec
tural design are captured in what Bass, et al., [Bass 03] calls the architectural business cycle.
W hile our focus is on the role o f requirements in that cycle, it expresses the key idea that there
are important dependencies between the conceptually distinct activities o f software development.
Managing the implications o f these dependencies requires explicit two-way communication
between the business and technical parts o f an organization. The activities and artifacts support
ing this communication must be part o f a disciplined process.

7.4 Elicitation Methods and Goal Modeling

Failing to understand what the stakeholders want leads to substantial rework [Boehm 88] or even
rejection o f a system. Because elicitation occurs at the beginning o f development, errors in this
step are the most expensive and difficult to correct later in the process. The importance o f getting
these early steps right has led to a wide range o f efforts focused on understanding elicitation
issues and supporting improved elicitation processes.

One significant result o f these efforts has been a shift in the way researchers and practitioners
view elicitation. W hile there were exceptions (e.g. [Gause 89]), the prevailing view in the past
was that there existed some set o f requirements characterizing the behavior o f an ideal system.
One could effectively elicit those requirements by asking a few key people, notably customers,
and users, what the system should do.

For many o f the reasons that we have discussed, this approach often proved ineffective. This
reflects the fact that “what is wanted” is typically not well defined, fully understood, or even one
thing. Rather, the perception o f the problem, developmental goals, and requirements will vary
from one stakeholder to the next, and even for a single stakeholder, over time. Any individual
stakeholder’s answers w ill yield a v iew that is neither complete nor precise. V iew s from multiple
stakeholders tend to be inconsistent or conflicting.

The upshot is that the notion o f an ideal system or set o f requirements that can be “discov
ered” is a poor approximation o f reality. Rather, there are many different perspectives on the

problem, partial v iew s o f solutions, and possible systems. The central challenge o f elicitation is
to obtain and reconcile these different perspectives to a single system definition that the stake
holders can live with.

Where, historically, this aspect o f the requirements process received little attention, it has
recently emerged as a distinct discipline in both practice and the literature. The understanding
that elicitation must reconcile many different view s from different kinds o f stakeholders, and in
different contexts, has stimulated research into the various facets o f elicitation. This has, in turn,
stimulated developm ent o f a number o f elicitation methods targeted to different needs. An
overview o f the approaches is given in [Nuseibeh 00]; a more complete survey o f different
elicitation methods is given in [Lauesen 02].

7.4.1 G oal M odeling

An elicitation approach that integrates systematic modeling o f objectives (e.g., business goals)
with downstream requirements activities is that o f g oa l m odeling or goa l-orien ted requirements.
A goal specifies som e objective that the system should achieve [Lamsweerde 01]. The essential
foci o f goal-oriented requirements are:

1. To capture the stakeholder’s objectives for the system in the problem context.

2. To system atically map those objectives to a detailed specification o f the system require
ments.

By beginning with goals, the approach seeks to capture each stakeholder’s rationale for the
system in the stakeholder’s language and context. Thus, for example, business goals might be
captured in terms o f market opportunities and user needs in terms o f ease o f performing a work
task. Expressing the system objectives using the stakeholder’s perspective and language supports
ease o f understanding and elicitation. Integrating the different view s o f system goals provides an
early opportunity for identifying and resolving conflicts [Robinson 89]. Subsequent refinement
links rationale to specific system requirements. This supports two-way traceability and commu
nication as goals or requirements evolve.

A relatively complete approach to requirements based on goals is the KAOS method by
Lamsweerde et al. [Lamsweerde 09]. This work integrates goal-based elicitation with formal
m odeling and analysis. A formal language and tool support reasoning and the automated analysis
o f som e com pleteness and consistency properties. Related publications include case studies of
industrial experience (e.g., [Winter 01]). A good overview o f goal-oriented requirements and set
o f references is given in [Lamsweerde 01].

7.5 “Agile” M ethods

Much recent attention has been given to a set o f development approaches that their authors
characterize as “agile,” for example, Extreme Programming [Beck 04], Scrum [Rising 02], or the
Agile U nified Process [Ambler 02]. W hile there are differences among agile methods, they share
a code-centered v iew o f development - the view that the development effort should focus on the
implementation rather than documentation (see the “agile manifesto”4).

fh e emphasis on code at the expense o f documentation particularly pertains to the software
requirements. Requirements documentation ranges from small amounts o f informal documenta

4. http://agilemanifesto.org

- 2 7 -

http://agilemanifesto.org

tion to using the code as the primary repository for all requirements and design decisions. This
more extreme view is reflected in statements like: “The urge to write requirements documenta
tion should be transformed into an urge to instead collaborate closely with your stakeholders and
then create working software based on what they tell you.’’"

It should be clear that the software engineering philosophy behind these methods is at odds
with what we have characterized as a “disciplined approach.” To understand why this difference
arises, it is necessary to examine the differences in m ethodological goals and the underlying
assumptions the different approaches make about software development. B y understanding the
extent to which each approach's assumptions do or do not hold, the reader has a basis for choos
ing the approach best fitting a particular developm ent situation.

A gile approaches seek to address the essential difficulties o f com prehension, comm unication,
and control by shortening the development cycle and bringing key stakeholders into the devel
opment loop. Many o f the difficulties o f traditional development processes (i.e., “waterfall” and
its variations) arise from the temporal distance between project conceptualization and the deliv
ery o f any working software. In big projects, it may be months, or even years, between the time
stakeholders begin describing their requirements and the time the developers can show them
software that presumes to meet those requirements.

Because stakeholders typically do not know exactly what they want until they see it, this is
often the point at which developers find out that what they have built is, in part or whole, not
acceptable to the stakeholders. Because all o f the work o f design and implementation has been
founded on incorrect requirements, fixing these errors is difficult and expensive. The result is a
system that costs more than it should and delivers less than the stakeholders want.

Many o f these problems can be avoided i f it is possible to drastically shorten the develop
ment cycle. For agile methods, this cycle tim e is on the order o f two to four weeks rather than
months. Instead o f eliciting all o f the custom er’s requirements, the goal is to capture a small
number o f the most important ones (typically two or three). This small subset o f requirements is
then taken to code and validated with the customer. This cycle repeats until the customer is
satisfied with the product. Little, i f any, documentation is created or maintained. Rather, the code
is the primary repository o f the evolving set o f requirements and design decisions.

With a short cycle time, the customer very quickly sees the expression o f his requirements in
the (partial) software. Errors and misunderstandings can be detected and corrected each cycle.
Where errors occur, relatively little effort has been expended and the amount o f rework may be
limited to the length o f the increment. Continuous communication between developers and the
customer reduces the opportunity for misunderstanding. Because the developers are constantly
integrating new requirements, requirements changes are addressed in the normal course o f
iterative development.

However, these benefits com e at a substantial cost. Since only a small number o f require
ments can be considered at any time, there is no opportunity to understand the relationship o f
requirements to long-term goals, relationships between requirements, or the relationship between
requirements and system structure:

• Because requirements are not gathered or considered in advance, it is not possible for the

5. http://www.agilemodeling.com/essays/agileRequirementsBestPractices.htm

http://www.agilemodeling.com/essays/agileRequirementsBestPractices.htm

designer to anticipate likely changes. There is constant rework as new requirements are
added.

• Since only a very small subset o f the requirements is examined at any one time, there is
no m echanism to balance goals and make tradeoffs. Nor is there an opportunity to detect
conflicting requirements before coding begins.

• Since the wide range o f possible quality requirements that are whole-system properties
(e.g., performance, safety, reliability, etc.) are not considered together, there is no oppor
tunity to develop an architecture that balances such concerns. Similarly, constant restruc
turing (refactoring) makes it difficult to establish or maintain architectural properties.

• Constant interaction with the stakeholders is not just desirable, but essential. Without
constant feedback validating the development, errors w ill accumulate over time, obviat
ing the benefits o f rapid increments.

• Because nothing is written down, progress depends on personnel who are intimately fa
miliarity with the code. There is no mechanism to control the downstream effects o f deci
sions on properties like maintainability or reusability.

Thus, realizing the benefits o f agile methods depends on certain assumptions being
true o f the product, process, and people involved. It is a process that acts as if the devel
opment has neither a past nor a future, reacting only to immediate needs. Clearly there
are many kinds o f system s and development situations that are inconsistent with these as
sumptions, to name a few:

• Where there is limited availability or communication with stakeholders.

• Where stakeholders have conflicting view s and requirements.

• Where there are critical behavioral and developmental properties that must be addressed
by the architecture such as safety, reliability, or performance.

• Where requirements are relatively stable or predictable.

• Where there is a history o f developing similar system s or the current system is a new ver
sion o f a previous one.

• Where the development team is not co-located and frequent, high-bandwidth communica
tion is not possible.

• Where the system is long lived and maintenance is a key concern - and so on.

In essence, agile approaches make an implicit assumption that the software requirements are
relatively independent. It cannot be otherwise. If there are strong dependencies between require
ments then the order in which requirements are addressed and design decisions are made signifi
cantly affects overall system properties including how easily the software can be changed to
address subsequent requirements. These effects have been w ell understood for decades (e.g.,
[Pamas 76]). One obvious example is where requirements from different users conflict. Taking
such requirements in arbitrary order (as opposed to considering them together) will result in an
implementation that first meets one stakeholder’s needs, then the other’s, but never both.

It fo llow s that there can be only limited circumstances in which the benefits o f agile methods
outweigh the costs and risks. The notion that most development efforts can abandon a disciplined

- 29 -

approach to requirements in favor o f coding is not supportable. Unfortunately, many proponents
o f these methods do not make the underlying assumptions clear nor provide a balanced discus
sion o f the limitations. Leaving this as an exercise for the reader may be good salesmanship but
is poor software engineering. A somewhat more even-handed v iew can be found in [Boehm 02].
A more critical v iew that encompasses som e o f the issues o f agile methods and XP is given in
[Stephens 01].

7.6 Software Product-Lines

A v iew o f development that spans multiple product cycles is that o f software product-lines.
Briefly, a software product line is a family o f system s that share a significant number o f common
requirements, and are produced from a com m on set o f reusable software assets. The reusable
assets typically include a common software architecture, reusable, adaptable code modules, test
cases, documentation, and so on.

Conventional software processes fo llow a “craftsman” production model - i.e., skilled
individuals build each system by hand. Product-line development is more analogous to a manu
facturing m odel where one builds a factory, then uses the factory to produce products. Software
product lines are constructed by first creating a set o f reusable assets, tools for deploying the
assets (e.g., code generators), and a process for using the assets to produce members o f the
product line. Software system s are then created from the common assets.

Where applicable, software product-line approaches have been shown to significantly
increase productivity (by as much as an order o f magnitude), while decreasing cycle time and
improving quality. Since code can be quickly created from reusable assets and validated with the
customer, it provides the benefits o f a rapid cycle time.

The approach, however, is applicable only where an organization is developing a number o f
reasonably similar systems. Refreshingly, the proponents o f product-line approaches are careful
not only to state the underlying assumptions (e.g., [W eiss 99]), but also to provide specific
methods for assessing the costs and risks o f applying a product-line approach to any particular
application (also [Clements 01], [Pohl 05]).

The relevance o f software product-lines to this discussion is that product line processes
exem plify a disciplined approach to requirements that spans multiple software life cycles.
Software product-lines work by amortizing the larger up-front developm ent costs o f the common
asset base over the delivery o f a number o f similar software products. To create a reusable
architecture and set o f assets, the developers must understand not only the requirements for the
next software system, but how those requirements are likely to vary over future instances o f the
product-line. In particular, which requirements should be the same across all members o f the
product-line (called com m onalities) and which requirements are allow ed to differ (called varia
bilities)?

This entails understanding both the current business objectives and how those objectives are
likely to change over time. It also requires an understanding o f the relationship o f the require
ments to the architecture, and how architectural design decisions w ill affect the future ability to
build different versions o f the product-line.

A variety o f approaches to product-line requirements have been proposed and used. A
significant difference from other requirements approaches has been a substantial body o f work
focusing on identifying and managing variabilities and the relationships between them (e.g.,

[Svahnber 05], [Pohl 05]). These works provide useful insight into disciplined approaches to
managing requirements across multiple products and development cycles.

7.7 Practical Form al M ethods

Like so many o f the promising technologies in requirements, the application o f formal methods
is characterized by an essential dilemma. On one hand, formal specification techniques hold out
the only real hope for producing specifications that are precise, unambiguous, and demonstrably
com plete or consistent. On the other, industrial practitioners widely view formal methods as
impractical. D ifficulty o f use, inability to scale, readability, and cost are among the reasons cited.
Thus, in spite o f significant technical progress and a growing body o f literature, the pace of
adoption by industry has been extremely slow.

In spite o f the technical and technology-transfer difficulties, increased formality is necessary.
Only by placing behavioral specification on a mathematical basis w ill we be able to acquire
sufficient intellectual control to develop complex systems with any assurance that they satisfy
their intended purpose and provide necessary properties like safety. W hile it is not necessary to
apply formal methods to all systems, or even all parts o f critical systems, they are needed where
it is necessary to establish correctness o f the essential parts o f critical systems (e.g., safety
critical aspects). The solution is better formal methods - methods that are practical given the
time, cost, and personnel constraints o f industrial development.

Engineering m odels and the training to use them are de rigueur in every other discipline that
builds large, com plex, or safety-critical systems. Builders o f a bridge or skyscraper who did not
em ploy proven methods or mathematical m odels to predict reliability and safety would be held
criminally negligent in the event o f failure. It is only the relative youth o f the software discipline
that permits us to get away with less. But, we cannot expect great progress overnight. As Jackson
[Jackson 94] notes, the field is sufficiently immature that “the prerequisites for a more mathe
matical approach are not in place.” Further, many o f those practicing our craft lack the back
ground required o f licensed engineers in other disciplines [Pamas 89]. Nonetheless, sufficient
work has been done to show that more formal approaches are practical and effective in industry.
The Naval Research Laboratory’s (NRL) Software Cost Reduction (SCR) method and tools
exem plify such an approach.

The Softw are Cost Reduction (SCR) Method'. Where most o f the techniques thus far dis
cussed focus on problem analysis, the requirements work at the United States Naval Research
Laboratory focused equally on issues o f developing a good SRS [Heninger 80]. As part o f an
overall effort in validating software engineering m ethodologies the SCR project has developed
rigorous approaches to requirements specification and documentation based on an underlying
formal model.

The SCR approach uses formal, mathematically based specifications o f acceptable system
outputs to support development o f a specification that is unambiguous, precise, and verifiable. It
also provides techniques for checking a specification for a variety o f completeness and con
sistency properties. The SCR approach introduced principles and techniques to support our SRS
packaging goals including the principle o f separation o f concerns to aid readability and support
ease o f change. It includes the use o f a standard structure for an SRS specification and the use of
tabular specifications that improve readability and modifiability, and facilitate use o f the specifi
cation for reference and review.

W hile other requirements approaches have stated similar objectives, the SCR project is
unique in having applied software engineering principles to develop a standard SRS organiza
tion, a specification method, a review method [Pamas 85a], and notations consistent with those
principles. The SCR project is also unique in making publicly available a complete, model SRS
o f a significant system [Alspaugh 92].

More recently, NRL has extended the SCR work to provide a suite o f supporting tools. Since
the approach is based on a formal m odel, the tools not only assist the developer in creating well-
formed specification, the tools provide automated checking for the specification’s completeness
and consistency ([Heitmeyer 95a], [Heitmeyer 95b]). L ikewise, the model can be used to support
automated proofs o f semantic properties like system safety properties [Heitmeyer 98] or fault
tolerance [Jeffords 09] The work has also shown som e o f the promise o f formal methods in
supported automated test case generation [Gargantini 99] and even code generation [Rothamel
06].

W hile the SCR requirements approach is reasonably general, many o f the specification
techniques and models are targeted to real-tim e, embedded applications. More work needs to be
done toward comparing the benefits o f a practical formal methods to other types o f systems.

8. T rends and Em erging Technology

There has been increasing agreement on the underlying problems in requirements as well as on
the general characteristics o f an effective requirements process. However, the overall trend has
not been toward a common m ethodology, but toward a broadening o f the concerns addressed and
a proliferation o f approaches.

These trends in requirements reflect more general trends in software engineering and soft
ware technology. A s discussed in the section on processes, early life-cycle m odels tended to treat
the conceptually distinct activities o f software development, like requirements, design, and
coding, as relatively independent phases. This reflected a desire to divide the development
process into activities that addressed distinct concerns, with well-defined inputs and outputs.

With increasing application com plexity and diversity o f users, this paradigm has changed.
More recent process m odels tend to reflect the view that the activities o f the software life cycle
are heavily interdependent and necessarily interleaved in time. Thus, for example, requirements
activities may persist, i f with diminishing effort, until the customer accepts the product. Where
the software is developed in several versions, or part o f a software product line, som e require
ments activities may continue across multiple delivery cycles ([Clements 01], [Faulk 01]).

At the same time, software has become increasingly ubiquitous. The types o f applications
along with the number and kinds o f stakeholders have grown almost as fast as the size and
com plexity o f the systems we build. One result has been an increasing diversity o f development
contexts and kinds o f stakeholders.

Requirements research and practice have follow ed suit in broadening the scope o f require
ments activities and the diversity o f methods. Thus, for example, we have seen new elicitation
methods emerge to address different contexts and stakeholders. Likewise, requirements activities
have been extended to encompass an organization’s long-term goals and, in the case o f software
product lines, multiple developments or development cycles. We see these trends continuing in
several areas o f research and development:

D om ain specificity. Requirements methods w ill provide improved support for understanding,
specification, analysis, and usefulness by being tailored or created to address particular classes o f
problems.

Historically requirements approaches have been advanced as being equally useful to a wide
variety o f types o f applications. For example, structured analysis methods based on conceptual
models that were intended to be “universally applicable” (e.g., [Ross 77]); similar claims have
been made for object-oriented approaches and notations like UML (e.g., [OMG 05]).

Such generality com es at the expense o f ease o f use and amount o f work the analyst must do
for any particular application. Where the underlying models have been tailored to a particular
class o f applications, the properties common to the class can be embedded in the model. The
amount o f work necessary to adapt the model to a specific instance o f the class is relatively
small. The more general the model, the more decisions that must be made, the more information
that must be provided, and the more tailoring that must be done. This provides increased room
for error and, since each analyst will approach the problem differently, makes solutions difficult
to standardize. In particular, such generality precludes standardization o f sufficiently rigorous
models to support algorithmic analysis o f properties like completeness and consistency.

Jackson [94] has expressed similar points. He points out that some o f the characteristics
separating real engineering disciplines from what is euphemistically described as “software
engineering” are well-understood procedures, mathematical models, and standard designs
specific to narrow classes o f applications. Jackson points out the need for software methods
based on the conceptual structures and mathematical models o f behavior inherent in a given
problem domain (e.g., publication, command and control, accounting, and so on). Such common
underlying constructs can provide the engineer guidance in developing the specification for a
particular system.

This trend is currently reflected in the proliferation o f elicitation methods and m odels target
ed to different development contexts. It is also evidenced in the trend toward tailoring the overall
requirements processes [Young 06] to address the specific concerns o f a project or organization.
The trend toward better integration o f requirements processes with business processes (e.g.,
[Middleton 05]) w ill also further the trend toward domain specificity to meet the needs o f
specific business areas.

Currently lacking are dom ain-specific approaches that encompass the artifacts, activities and
roles comprising the entire requirements process. Some earlier work (e.g., [Prieto-Diaz 94],
[Lam 97]) explored the potential o f requirements reuse using domain-specific methods. Like
wise, both product-line approaches and methods based on domain-specific modeling necessarily
incorporate aspects o f domain-specific requirements. For example, the use o f the Embedded
System M odeling Language (ESM L) [Balasubramanian 07] on a family o f embedded avionics
applications [Karsai 02]. However, developing new requirements languages and semantics for
specific domains remains a labor-intensive task. Progress in this area should see improved tool
support (see the subsequent section on meta-engineering), new methods for modeling require
ments in specific domains, and better guidance in adapting components to provide integrated
processes.

D istributed D evelopm ent: Another way in which the requirements problem has broadened (in
a literal as w ell as figurative sense) is in the trend toward distribu ted developm ent. We use the
term “distributed development” to denote software projects where development teams and

- 3 3 -

activities are located in multiple geographic sites around the globe, particularly where sites are
separated by time zones, cultures, and languages. W hile the early focus o f globalization was on
reduced cost, factors like increased access to talent and proximity to markets have continued to
push the trend forward.

Distributed development has proven to have its own set o f costs and risks, often requiring
more effort and taking much longer than similar co-located projects [Mockus 01]. A key reason
is the difficulty in achieving a common understanding o f the requirements. In a cross-domain
survey o f industrial distributed developments, issues with misinterpreted, changing, and m issing
requirements ranked as the top three sources o f error above all other development issues [Komi
05].

Experience suggests that distributed development is different from co-located projects (e.g.,
[Battin 01], Bradner 02]). These differences are manifestations o f what Herbsleb characterizes as
the key problem o f distributed development, coordination at a distance [Herbsleb 07]. “Coordi
nation,” here, denotes the need to manage dependencies between people, tasks, and artifacts in a
com plex software development. In turn, difficulties in coordination are largely the result o f
difficulties in communicating effectively at a distance [Olson 2000], particularly where there are
cultural, language, and organizational differences.

These differences suggest that new methods, m odels, and processes w ill be needed to man
age requirements in distributed developments [Damian 07]. These w ill include new work in areas
like cross-cultural requirements elicitation and communication. Likewise, new process m odels
are needed for managing requirements elicitation, allocation, verification, and validation in a
distributed project.

Personalization, M onitoring, a n d A dap ta tion : The trend toward broadening the scope o f
requirements engineering is evidenced in the areas o f requirements personalization [Sutcliffe 06],
requirements monitoring (e.g., [Fickas 95]), and real-time adaptation (e.g., [Robinson 05]).
W hile these are three distinct areas o f requirements research, they share a common concern for
software contextualization'. adapting software to a particular context such as user characteristics,

Contextualization extends the issues around changing requirements to a personal and real
time level. Personalized software is software that is produced to m eet the requirements o f small
groups or even individuals. This can include software that is individually customized, software
that the user can custom ize, or software that configures itself based on user preferences. Real
time adaptation is customization in response to changes over time. For example, software that
changes behavior as the system m oves through space (e.g., on a cell phone) or software that
changes behavior depending on the time o f day. Where the software itse lf does the adaptation, it
must monitor parameters relating to the requirements (e.g., time o f day or location) and change
behavior accordingly.

While, historically, there have been many approaches to software customization and even
personalization6 these have not been system atically addressed as a type o f requirements varia
tion. Only recently have researchers begun to look at systematic approaches to understanding and
managing contextual requirements.

6. The infamous Microsoft® “ Clippy” being one.

Basically, contextualization embraces cases where requirements remain fluid even at ru n
time. W hile we may continue to make tradeoffs between different stakeholders’ requirements,
we may also v iew the system as implementing more than one set o f requirements at a tim e,
switching between them depending on the context o f use.

As more and more personal devices include increasingly powerful computing systems (o r
access to networks), the trend toward personalization and other forms o f contextualization w il l
grow. There is likew ise a trend toward integrating the results o f several requirements areas to
address various dimension o f the contextualization problem.

Personal Contextual - Requirements Engineering (PC-RE) [Sutcliff 06] addresses the issu e
that user goals tend to change with context. A s the user m oves through tim e and space, o b jec
tives and, hence, requirements change; PC-RE proposes a framework for relating changing goa ls,
requirements, and m odes o f implementation.

M eta-E ngineering : “M eta-engineering” refers to the engineering o f engineering practices. A l l
engineering disciplines include meta-engineering practices. An obvious example is that m anufac
turing necessarily includes processes for creating processes that will be used in a factory d esign
to produce specific kinds o f products.

M eta-engineering is an area in which software engineering excels [Faulk 10]. W hile creating
“abstractions o f abstractions” or designing “processes to design processes” may sound convolut
ed, it is precisely these kinds o f capabilities that allow new methods, processes, and even tools to
be created and introduced into practice at a pace commensurate with changing technology.

W hile not discussed in these terms, meta-engineering capabilities underlie some o f th e
advances w e have discussed in this paper. In particular, the ability to system atically create or
adapt requirements processes to satisfy specific project constraints (i.e., the process require
ments) is a meta-engineering activity. Likewise is the development o f new m ethodologies l ik e
agile or product-line engineering.

Product-line engineering is a particularly instructive case since the product-line engineering
process, itself, embeds a meta-engineering process. Whenever the domain engineers develop a
set o f product-line assets, it is also necessary to create a process for using those assets (com m on
architecture, libraries o f adaptable modules, etc.) to create any software product that is a m em ber
o f the product line. Thus, any complete product-line process model includes a process fo r
creating the application engineering process. O f course, the product-line process is its e lf a
product o f meta-engineering.

Improved meta-engineering capabilities w ill be necessary to much o f the evolution of r e
quirements practice. Facilitating the practice o f defining new requirements processes for specific
application domains requires providing systematic processes for producing new processes to
satisfy specific developmental goals or constraints. Similar capabilities will be needed for fitting
elicitation methods, m odeling methods, and artifacts to specific needs.

The same argument can be made for tools. W hile we have not seen meta-engineering to o ls
targeted specifically to requirements, meta-engineering tools exist in other disciplines. F o r
example, there are already methods and “tool-building-tools” supporting product-line engineer
ing [Kelly 08]. Such tools aim to create tools supporting application engineering based on a
domain model. The output o f the tool is a code generator that takes a specification o f the r e
quirements for member o f the product line and generates the application code.

The potential for creating meta-engineering tools to support requirements modeling and
analysis provides substantial opportunity for fruitful research.

9. Conclusions

Requirements are intrinsically hard to do w ell. Beyond the need for discipline, there are a host o f
essential difficulties that attend both the understanding o f requirements and their specification.
Further, many o f the difficulties in requirements will not yield to technical solution alone.
Addressing all o f the essential difficulties requires the application o f technical solutions in the
context o f human factors such as the ability to manage com plexity or communicate to diverse
audiences. A requirements approach that does not account for both technical and human con
cerns can have only limited success. For developers seeking new methods, the lesson is caveat
emptor. If someone tells you his method makes requirements easy, keep a hand on your wallet.

Nevertheless, difficulty is not impossibility and the inability to achieve perfection is not an
excuse for surrender. W hile all o f the approaches discussed have significant weaknesses, they all
contribute to the attempt to make requirements analysis and specification a controlled, systemat
ic, and effective process. Though there is no easy path, experience confirms that the use o f any
careful and systematic approach is preferable to an a d hoc and chaotic one. Further good news is
that, i f the requirements are done w ell, chances are much improved that the rest o f the develop
ment w ill also go well. Unfortunately, a d hoc approaches remain the norm in much o f the
software industry.

A final observation is that the benefits o f good requirements come at a cost. Such a difficult
and exacting task cannot be done properly by personnel with inadequate experience, training, or
resources. Providing the time and the means to do the job right is the task, o f responsible man
agement. The time to commit the best and brightest is before, not after, disaster occurs. The
monumental failures o f a host o f ambitious developments bear witness to the folly o f doing
otherwise.

10. F u rth e r Reading

Those seeking more depth on requirements m ethodologies than this tutorial can provide have
access to a number o f good texts on software requirements. Berenbach, el al., [Berenbach 09]
focuses on practical approaches with depth in elicitation and quality attribute requirements.
W eigers [W eigers 03] provides broad coverage with emphasis on the voice o f the customer and
requirements management. Young [Young 06] addresses effective practices and the role o f a
requirements plan. Middleton and Sutton [Middleton 05] provide a business-oriented approach
driven by customer value.

A ckno wledgements
The quality o f this paper has been much improved thanks to thoughtful reviews by Merlin
Dorfman and Richard Thayer. Paul Clements, Connie Heitmeyer, Jim Kirby, Bruce Labaw,
Richard Morrison, and David W eiss provided helpful reviews o f the first version.

REFERENCES

[Alford 79] M. Alford and J. Lawson, “Software Requirements Engineering M ethodology
(Developm ent),” R A D C -T R -7 9 -1 6 8 , U .S. Air Force Rome Air Developm ent Center, June 1979.

- 3 6 -

[Alspaugh 92] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Pamas, and J. Shore, “Softw are
Requirements for the A -7E Aircraft,” NRL/FR/5530 92 9194. Washington, D.C.: N a v a l
Research Laboratory, 1992.

[Ambler 02] S. Ambler and R. Jeffries, Agile M odeling: Effective P ractices fo r Extrem e P r o
gram m ing a n d the U nified Process, W iley, Boston, March 2002.

[Balasubramanian 07] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. G okhale,
D.Schmidt, “A Platform-Independent Component M odeling Language for Distributed R eal-T im e
and Embedded System s,” Journal o f C om puter a n d System Sciences, 73 (2), March 2007, 1 7 1 -
185.

[Bahill 05] A . Bahill and S. Henderson, “Requirements Development, Verification, and V a lid a
tion Exhibited in Famous Failures, System s Engineering, 8 (2), 2005, 1-14.

[Bass 03] L. Bass, P. Clements, and R. Kazman, Softw are Architecture in Practice (S econ d
Edition), A ddison-W esley, N ew York, 2003.

[Battin 01] R. Battin, Crocker, R., and Kreidler, J., “Leveraging Resources in Global Softw are
Developm ent,” IE E E Softw are, 18 (2), 2001, 70-77.

[Beck 04] K. Beck and Andres, C., E xtrem e P rogram m ing Explained: Em brace Change (2 n d
Edition). Addison-W esley Professional, Boston, N ov. 2004.

[Berenbach 09] B. Berenbach, D. Paulish, J. Kazmeier and A. Rudorfer, Softw are & S y s te m s
Requirem ents E ngineering in Practice, McGraw Hill, N ew York, 2009.

[Boehm 81] B. Boehm , Softw are Engineering Econom ics, Prentice Hall, N ew Jersey, 1981.

[Boehm 88] B. Boehm and P. Papaccio, “Understanding and Controlling Software Costs,” IEEE
Transactions on Softw are Engineering, Oct. 1988.

[Boehm 94] B. Boehm , P. Bose, E. Horowitz, and M. Lee, “Software Requirements as N egotia t
ed W in Conditions,” in Proceedings o f the F irst International Conference on R equ irem en ts
Engineering, Colorado Springs, Colorado, Apr. 18-22, 1994, 74-83.

[Boehm 02] B. Boehm, and T. DeMarco, “The A gile Methods Fray,” IE E E Com puter , June
2002, 90-92.

[Bradner 02] E. Bradner, and G. Mark, “Why Distance Matters: Effects on Cooperation, Persua
sion and D eception,” Proceedings o f the 2002 A C M Conference on C om puter Supported C o o p
erative Work, N ew Orleans, 2002, 226 - 235.

[Brooks 95] F. Brooks, The M ythical M an-M onth: Essays on Softw are Engineering, 2nd Edition,
A ddison-W esley, 1995.

[Brooks 87] F. Brooks, “N o Silver Bullet: Essence and Accidents o f Software Engineering,”
IEEE C om puter, April 1987, 10-19.

[Clements 01] P. Clements and Northrop, L., Softw are Product Lines: Practices and P a ttern s ,
3rd ed., Addison-W esley Professional, Boston, Aug. 2001.

[Cockbum 00] A . Cockbum, W riting E ffective Use Cases, Addison-W esley, Reading, MA, 2000 .

[Damian 07] D. Damian, “Stakeholders in Global Requirements Engineering: Lessons Learned
from Practice,” IE E E Softw are, 2007, 21-27.

[Davis 88] A. Davis, “A Taxonomy for the Early Stages o f the Software Developm ent Life
Cycle,” Journal o f System s and Softw are, Sep. 1988, 297-311.

[Davis 93] A. Davis, Softw are R equirem ents (Revised): O bjects, Functions, and States, Prentice
Hall, N ew Jersey, 1993.

[DeMarco 78] T. DeMarco, S tructured A nalysis a n d System Specification, Prentice Hall, N ew
Jersey, 1978.

[Dorfman 90] M. Dorfman and R. Thayer (eds.), Standards, G uidelines, a n d Exam ples on
System a n d Softw are Requirem ents Engineering, IEEE Computer Society Press, Los Alam itos,
California, 1990.

[Fairley 97] R. Fairley and R. Thayer, “The Concept o f Operations Document: The Bridge from
Operational Requirements to Technical Specifications,” in Softw are Engineering, R.H. Thayer
and M. Dorfman (eds.), IEEE Computer Society Press, 1997.

[Faulk 92] S. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr., “The Core Method for R eal-T im e
Requirements,” IE E E Softw are, V ol. 9, N o. 5, Sep. 1992.

[Faulk 93] S. Faulk, L. Finneran, J. Kirby Jr., and A. Moini, C onsortium Requirem ents E ngineer
ing G uidebook, Version 1.0, SP C -92060-C M C , Software Productivity Consortium, Herndon,
Virginia, 1993.

[Faulk 01] S. Faulk, “Product-Line Requirements Specification (PRS): An Approach and Case
Study,” Proceedings, F ifth IE E E In ternational Sym posium on Requirem ents Engineering,
Toronto, Canada, Aug. 27-31, 2001, 48-55.

[Faulk 10] S. Faulk and M. Young, “Sharing What W e K now About Software Engineering,”
Proceedings: F oundations o f Softw are Engineering, FOSER 10, Santa Fe, NM, and N ov., 2010.

[Fickas 95] S. Fickas and M. Feather, “Requirements Monitoring in Dynamic Environments,”
Proceedings, Second IE E E International Sym posium on R equirem ents Engineering, York,
England, March 1995, 140-150.

[GAO 79] U.S. General Accounting O ffice, C ontracting fo r C om puter Software D evelopm ent-
Serious P roblem s Require M anagem ent A tten tion to A vo id W asting A dditional M illions, Report
F G M S D -80-A N ov. 1979.

[GAO 92] U.S. General Accounting O ffice, M ission C ritical System s: Defense A ttem pting to
Address M ajor Softw are Challenges, G AO /IM TEC -93-1 3, Dec. 1992.

[GAO 08] U.S. General Accounting O ffice, Significant Problem s o f Critical A utom ation P ro
gram Contribute to R isks F acing 2010 C ensus, G AO -08-550T, March 2008.

[GAO 10] U.S. General Accounting Office, D efense A cquisitions: A ssessm ents o f Se lec ted
W eapon Program s, G AO -10-388SP, March 2010.

[Gargantini 99] A. Gargantini and C. Heitmeyer, “Using M odel Checking to Generate Tests from
Requirements Specifications,” Proceedings, Jo in t 7th E uropean Softw are E ngineering Confer
ence a n d 7th A C M SIG SO F T In ternational Sym posium on F oundations o f Softw are E ngineering
(ESEC/FSE99), Toulouse, FR, Sept. 6-10, 1999.

[Gause 89] D. Gause and G. Weinberg, E xp loring Requirem ents: Q uality Before D esign, Dorset
House, 1989.

- 3 8 -

[Game & Sarsen 791 C. Game and T. Sarsen, Structured System s A nalysis, Prentice Hall, N ew
Jersey, 1979.

[Heitmeyer 95a] C. Heitmeyer, B. Labaw, and D. Ki skis, “Consistency Checking o f SC R-Style
Requirements Specifications,” in Proceedings, IE E E International Sym posium on Requirem ents
Engineering, March 1995.

[Heitmeyer 95b] C. Heitmeyer, R. Jeffords, and B. Labaw, “Tools for Analyzing SC R -Style
Requirements Specifications: A Formal Foundation,” NRL Technical Report NRL-7499, U.S.
Naval Research Laboratory, Washington, DC, 1995.

[Heitmeyer 98] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj, “Using A b
straction and M odel Checking to Detect Safety Violations in Requirements Specifications,”
IE E E Transactions on Softw are Engineering, 24, (11), November 1998.

[Heninger 80] K. Heninger, Specifying Software Requirements for Com plex Systems: N ew
Techniques and Their Application, IE E E Transactions on Softw are Engineering, 6 (1), Jan.
1980.

[Herbsleb 07] J. Herbsleb, “Global Software Engineering: The Future o f Socio-Technical
Coordination,” International Conference on Softw are Engineering 2007 Future o f Softw are
E ngineering, IEEE Computer Society, 2007, 188-198.

[Hester 81] S. Hester, D. Pamas, and D. Utter, “Using Documentation as a Software Design
M edium,” Bell System Technical Journal, 60 (8), Oct. 1981, 1941-1977.

[Jackson 94] M. Jackson., “Problems, Methods, and Specialization,” IE E E Softw are, Nov. 1994,
57-62.

[Jacobsen 92] I. Jacobson, Christerson, M., Jonsson, P., and Övergaard, G., Object-O riented
Softw are Engineering: A Use Case D riven Approach, Addison-W esley, Reading, MA, 1992.

[Jeffords 09] R. Jeffords, C. Heitmeyer, M. Archer, and E. Leonard, A Formal Method for
Developing Provably Correct Fault-Tolerant System s Using Partial Refinement and Com posi
tion, Proceedings, F orm al M ethods, Second W orld Congress (F M 2009), Eindhoven, The
Netherlands, Novem ber 2-6, 2009, 173-189.

[Karsai 02] G. Karsai, S. Neem a, B. Abbott, and D. Sharp, “A M odeling Language and its
Supporting Tools for A vionics System s,” P roceedings o f the 21st D ig ita l A vionics Systems
Conference, Oct. 2002, 6A3 1-13.

[Kelly 08] S. K elly and Juha-Pekka Tolvanen, D om ain-Specific M odeling: E nabling Full Code
G eneration, W iley-IEEE Computer Society Press, March 2008.

[Komi 05] S. K omi-Sirvio and M. Tihinen, “Lessons Learned by Participants o f Distributed
Software Developm ent,” K now ledge and Process M anagem ent, 2005, 108-122.

[Kruchten 99] P. Kruchten, The R ational U nified Process: A n Introduction, Addison-W esley,
Reading, M A, 1999.

[Lam 97] W. Lam, “A chieving Requirements Reuse: A Domain Specific Approach from A vion
ics,” Journa l o f System s and Softw are, 38 (3), Sept. 1997, 197-209.

[Lamsweerde 98] A. van Lamsweerde, R. Darimont, and E. Letier, “M anaging Conflicts in Goal-
Driven Requirements Engineering” in IE E E Transactions on Software Engineering, N ov. 1998.

- 39 -

[Lamsweerde 09] A. van Lamsweerde, Requirem ents Engineering: From System G oals to UML
M odels to Softw are Specifications , W iley, March 2009.

[Lauesen 02] S. Lauesen, “Softw are Requirem ents: Styles a n d T ech n iq u es '’ Addison-W esley
Professional, London, 2002.

[Lee 99] J. Lee and N. Xue, “Analyzing User Requirements by U se Cases: A Goal-Driven
Approach.” IEEE Software, 16(4): July/Aug. 1999, 92-101.

[Lutz 93] R. Lutz, “Analyzing Software Requirements Errors in Safety-Critical Embedded
System s,” Proceedings, IE E E In ternational Sym posium on Requirem ents Engineering, Jan. 4-6,
1993, 126-133.

[Middleton 05] P. Middleton and J. Sutton, Lean Softw are Strategies: P roven Techniques fo r
M anagers and Developers, Productivity Press, N Y , 2005.

[Mockus 01] A. Mockus and J. Herbsleb, “Challenges o f Global Software Developm ent,”
Proceedings o f the Seventh International Softw are M etrics Sym posium , 2001.

[Nuseibeh 00] B. Nuseibeh and S. Easterbrook, “Requirements Engineering: A Roadmap,” in
IC SE ’00: Proceedings o f the Conference on The Future o f Softw are Engineering, N ew York,
N Y , 2000, ACM, 35^46.

[N A SA 05] S. Cavanaugh, A. W ilhite, “Systems Engineering Cost/Risk Analysis Capability
Roadmap Progress Review ,” Apr. 6, 2005.

[Olson 2000] G. Olson, and Olson, J., “Distance Matters,” H um an-C om puter Interaction, 15 (2),
2000, 139-178.

[OMG 05] Object Management Group, “Introduction to OM G’s Unified Modeling Language
(UM L),” [http://www.omg.org/gettingstarted/what_is_uml.htm], 2005.

[Pamas 72] D. Pamas, “On the Criteria to be Used in Decom posing Systems into M odules,”
C om m unications o f the AC M , 15 (12), December 1972, 1053-1058.

[Pamas 76] D. Pamas, “On the Design and Developm ent o f Program Fam ilies,” IEEE Transac
tions on Softw are .Engineering, 2 (1) March 1976,1-9.

[Pamas 85a] D. Pamas, and D. W eiss, A ctive Design Reviews: Principles and Practices, in
Proceedings o f the E ighth In ternational Conference on Softw are Engineering, London, England,
Aug. 1985.

[Pamas 86] D. Pamas, and P. Clements, “A Rational D esign Process: H ow and W hy to Fake It,”
IE E E Transactions on Softw are Engineering, 12 (2), Feb. 1986. 251-257.

[Pamas 89] D. Pamas, Education fo r C om puting Professionals, Technical Report 89-247,
Department o f Computing and Information Science, Queens University, Kingston, Ontario,
1989.

[Pamas 91] D., Pamas and J. Madey, Functional D ocum entation fo r Com puter System s E ngi
neering (Version 2), CRL Report N o. 237, McMaster University, Hamilton, Ontario, Canada,
Sept. 1991.

[Pohl 05] K. Pohl, G. Bockle, and F. J. van der Linden, Softw are P roduct Line Engineering:
Foundations, P rinciples and Techniques, 1st ed., Springer, Sept. 2005.

http://www.omg.org/gettingstarted/what_is_uml.htm

[Prieto-Diaz 97] R. Prieto-Diaz, M. Lubars, M. Carrion, “DSSR: Support for Domain Specific
Software Requirements,” U.S. Army Communications-Electronics Command, April 1994.

[Rising 02] L. Rising and Janoff, N . S., “The Scrum Software Development Process for Small
Team s,” Software, IEEE , 17 (4), pp. 26-32, Aug. 2002.

[Robinson 89] W. Robinson, “Integrating Multiple Specifications Using Domain Goals,” P ro
ceedings, 5th International W orkshop on Softw are Specification and D esign , IEEE, 1989, 219-
225.

[Robinson 05] W. Robinson, “Implementing Rule-Based Monitors within a Framework for
Continuous Requirements M onitoring,” in H aw aii In ternational Conference on System Sciences
(H IC SS'05), B ig Island, Hawaii, U SA , 2005.

[Ross 77] D. Ross and K. Schuman Jr., “Structured Analysis for Requirements Definitions,”
IEEE Transactions on Softw are Engineering, 3 (1), Jan. 1977, 6-15.

[Rothamel 06] T. Rothamel, C. Heitmeyer, Y. Liu, and E. Leonard, “Generating Optimized Code
from SCR Specifications,” in Proceedings, A C M S1G PLAN/SIG BED Conference on Languages,
Com pilers, and Tools fo r Em bedded System s (LCTES 2006), Ottawa, Canada, June 14-16, 2006.

[Schneider 98] G. Schneider, and J. P. Winters, A pplying Use Cases: A Practical Guide. Read
ing, MA: Addison-W esley, Reading, M A, 1998.

[SEI 06] C M M I fo r D evelopm ent, Version 1.2, CM M I-DEV, Carnegie M ellon University
Software Engineering Institute, Aug., 2006.

[Stephens 01] M. Stephens and D. Rosenberg, Extrem e P rogram m ing Refactored: The Case
against X P . APRESS, Sep. 2003.

[Sutcliffe 06] A. Sutcliffe, S. Fickas, M. Sohlberg, Journal o f R equirem ents Engineering, 11 (3),
Jun. 2006.

[Svahnberg 05] M. Svahnberg, J. van Gurp, and J. Bosch, “A Taxonomy o f Variability Realiza
tion Techniques,” Softw are: Practice a n d Experience, 35 (8), pp. 705-754, 2005.

[Svoboda 90] C. Svoboda, “Structured Analysis,” in Tutorial: System and Softw are Require
m ents Engineering, R. Thayer and M. Dorfman (eds.), IEEE Computer Society Press, Los
Alam itos, California, 1990, 218-237.

[Thayer 90] R. Thayer and M. Dorfman (eds.), Tutorial: System a n d Softw are Requirem ents
Engineering, IEEE Computer Society Press, Los Alamitos, California, 1990.

[W eigers 03] K. Weigers, Softw are Requirem ents, Microsoft Press, Redmond, WA, 2003.

[W eiss 99] D. W eiss and C. T. R. Lai, Softw are Product-Line Engineering: A Fam ily-Based
Softw are D evelopm ent Process, Addison-W esley, Reading MA, 1999.

[Winter 01] V. Winter, R. Berg, and J. Ringland, “Bay Area Rapid Transit District Advance
Automated Train Control System Case Study Description,” in H igh Integrity Softw are , Kluwer
Academ ic Publishers, Norwell, M A, 2001.

[Young 06] R. Young, Project Requirem ents: A Guide to Best P ractices, Management Concepts,
2006.

[Yourdon 89] E. Yourdon, M odern S tructured Analysis, Yourdon Press/Prentice Hall, Upper
Saddle River, NJ, 1989.

_ 4 1 . .

C h a p t e r 1 .2

E s s e n t i a l s o f S o f t w a r e R e q u i r e m e n t s E n g i n e e r i n g

Richard Halt Thayer and Merlin Dorfman
This is the fir s t chapter o f a textbook to a id individual software engineers in a
greater understanding o f the IEEE SW E B O K [2013] and a guide book to a id
softw are engineers in pa ssin g the IEEE C SD P/CSD A certification exams.

M issing, incomplete, or inaccurate softw are requirem ents are a m ajor issue in
softw are engineering. B etter quality in both the software developm ent process
and the softw are p roduct can be obtained i f our m ethods and tools f o r gathering,
m odeling, and analyzing user requirem ents are more effective, robust, a n d codi
f ie d in practice. Therefore, software requirem ents engineering (SRE) has em erged
as an “eng ineering” approach to what used to be ca lled “requirem ents analysis
and specification. ”

This increased aw areness o f software requirem ents engineering is show n by an
increase in the num ber o f conferences, workshops, books and jo u rn a ls devoted
exclusively to requirem ents engineering.

Chapter 1 covers the CSDP exam specifications for the software requirements engineering
m odule [Software Exam Specification, Version 2, 18 March 2009]:

1. Software requirements fundamentals (definition o f a software requirement; prod
uct and process requirements; functional and non-functional requirements; emer
gent properties; quantifiable requirements; system requirements and software
requirements)

2. Requirements process (process models; process actors; process support and management;
process quality and improvement)

3. Requirements elicitation (requirements sources; elicitation techniques)

4. Requirements analysis (requirements classification; conceptual modeling; architectural
design and requirements; requirements negotiation; formal analysis)

5. Requirements specification (the system definition document; the system requirements
specification; the software requirements specification)

6. Practical considerations (iterative process; change management; requirements attributes;
requirements tracing; measuring requirements; software requirements tools)

1.1 Software Requirem ents Fundam entals

1.1.1 Definition of software requirem ents. Software requirements are defined as:

• A software capability required by a user to solve a problem or achieve an objective.

• A software capability that must be met or possessed by a system or system component to
satisfy a contract, specification, standard, or other formally imposed document [IEEE Std
610.12-1990].

- 4 3 -

• A prob lem defin ition , which is, determining the needs and constraints o f the software sys
tem by analyzing the system requirements that have been allocated to software [Thayer
2004].

• A n externally observable characteristic o f a desired system [Davis 2005].

1.1.2 P roduct and process requirem ents. Possible groupings o f requirements involve product
versus p ro cess requirements. P roduct requirem ents apply to the product or services to be devel
oped, and include what the system does, data or command inputs or outputs to the system, speed
and memory required by the system, quality m etrics (e.g., reliability, maintainability, and securi
ty), and limits on the design’s freedom such as interfaces (keyboard or m ouse), language, and
accuracy o f computations.

P rocess requirem ents apply to the activities associated with enabling the creation o f a prod
uct or service. Some examples o f tasks to be performed are processes that:

• Analyze a manual effort

• D evelop a product

• Operate a system

• Comply with a product requirement

• Comply with constraints such as compliance with laws, standards, regulations, and rules

Process requirements are normally defined in a contractual statement o f work (SOW) or pro
gram plan, N O T in the software requirem ents specification, w h ich in standard US practice, is
lim ited to product requirements.

1.1.3 Functional and non-functional requirem ents. There are five general types o f require
ments [Thayer 2004 \. functional, perform ance, external interface, design constraints, and quality
attributes. A sixth type, “Other,” may be added i f a system has requirements that do not fit neatly
into one o f the first five.

1.1.3.1 Functional requirem ents. A functional requirement is a system/software requirement
that specifies a function that a system, software system or component must be capable o f per
forming. Functional requirements define system behavior— the fundamental process o f transfor
mation that the system ’s software and hardware components must perform on inputs to produce
outputs. Functional requirements should define the fundamental actions that must take place in
the software when accepting and processing the inputs and when processing and generating the
outputs.

1.1.3.2 Non-functional requirem ents. Non-functional requirements are just that— those re
quirements that do not directly affect the functionality o f the system.

1.1.3.2.1 Perform ance requirem ents. P erform ance requirem ents specify a performance charac
teristic that a system or system component must possess - typically speed, volum e, or accuracy.
For example, static numerical requirements may include:

• The number o f customer contacts to be supported

• The number o f simultaneous users to be supported

• The number o f files and records to be handled

• The size o f tables and files that must be handled

• Dynam ic numerical requirements may include, for example, the number o f transactions
and tasks and the amount o f data to be processed within certain times for both normal and
m axim um workload conditions

All these requirements should be in measurable terms— for example, “95% o f the transac
tions shall be processed in less than one second” rather than “the operator shall not have to wait
for the transaction to com plete.” A ll requirements must be validated (tested) as part o f system
development, and unmeasureable requirements may be difficult or impossible to test.

Numerical requirements should also specify the logical requirements for any information to
be placed into a database. See section on “Other requirements” (1.1.3.2.5) for additional infor
mation on logical requirements.

1.1.3.2.2 E xternal interface requirem ents. An external interface requirement is a sys
tem/software requirement that specifies a hardware, software, or database element with which a
system, software component or human must interface or that sets forth constraints on formats,
timing, or other factors that such an interface causes. The interface requirement should consider:

• Item name

• Num erical requirement

• D escription o f purpose

• Input source or output destination

• V alid range, accuracy, or tolerance

• U nits o f measure

• Tim ing

1.1.3.2.3 Design constraints. A design constraint is any requirement that affects or constrains
the design o f a software system or software system component. Table 1.1 lists several design
constraints. Performance requirements and quality attributes may also be considered to be special
cases o f design constraints.

T able 1.1: Sam ple design constraints

Size Physical size o f the product

Programming language Programmed in the Ada language

Power consumption Maximum electric power that the product may use

Human computer interface Requires menus for system interface

Weight Physical weight o f the product

Computer resource utilization U ses no more than a specified fraction o f CPU cycles,
communications bandwidth, etc.

Incorporated software Must use a specified data base management system

- 4 5 -

1.1.3.2.4 Quality attributes. A quality attribute specifies the degree o f an attribute (a number)
that affects the quality the software must possess. Some quality attributes are included in Table
1.2.

Other quality factors are listed in IEEE Standard 1061-1998, IEEE Standard for a Software
Quality Metrics M ethodology, IEEE Standard 982.1-1988, IEEE Standard for Dictionary o f
Measures to Produce Reliable Software, and IEEE Standard 1044-1993, IEEE Standard Classifi
cation for Software Anomalies.

It is often very difficult to provide proper requirements metrics for software quality that can
prove performance to the requirements specifications.

The developer and user then need to agree on what w ill constitute a valid software require
ment for the particular quality attribute.

1.1.3.2.5 O ther requirem ents. These are requirements that do not fit within the basic types o f
requirements and thus fall under the “m iscellaneous requirements” category:

• Data definition and database requirements

• Installation and acceptance requirements for the delivered software product at the opera
tion and maintenance site(s)

• User documentation requirements

• User operation and execution requirements

Table 1.2: Examples of quality requirem ents

Maintainability — The average effort required to locate and fix a software failure.

Reliability — The probability that the software will perform its logical operation in the speci
fied environment without failure.

Safety — The probability that a system does not lead to a state in which human life or environ
ment are endangered.

Security — The protection o f computer hardware and software from accidental or malicious
access, use, modification, destruction, or disclosure; the probability that the system can be
made secure for a predetermined amount o f time.

Survivability — The probability that the system w ill continue to perform or support critical
functions when a portion o f the system is inoperable.

User friendliness — The degree o f ease o f use or learning o f a system.

1.1.4 Em ergent properties. E m ergent p roperties (i.e., requirements) o f software are require
ments that cannot be addressed by a single com ponent, but that depend for their satisfaction on
how all the software components interoperate. Emergent properties are crucially dependent on
the system architecture.

1.1.5 Q uantifiable requirem ents. Software requirements should be stated as clearly and as
unambiguously as possible, and, where appropriate, quantitatively. It is important to avoid vague
and unverifiable requirements that depend for their interpretation on subjective judgm ent (“the
software shall be reliable;” “the software shall be user-friendly”).

- 4 6 -

These non-quantifiable requirements can be stated in user-defined documents such as a
Concept o f Operations (ConOps) document.

1.1.6 System requirem ents and software requirem ents. System requirements are the re
quirements for the system as a whole. In a system containing software components, software
requirements are derived from system requirements.

The literature on system requirements sometimes calls system requirements “user require
ments.” W e can define “user requirements” in a restricted way as the requirements provided by
the system ’s customers or end-users. System requirements, by contrast, encompass user require
ments, requirements o f other stakeholders (such as regulatory authorities), and requirements
without an identifiable human source (“derived requirements”).

1.2 Requirem ents Process
This section introduces the software requirements process, orienting the remaining five subareas
and showing how the requirements process dovetails with the overall software engineering
process [SW EBOK 2004].

1.2.1 Process models. The objective o f this topic is to provide an understanding that the re
quirements process:

• Is not a discrete front-end activity o f the software life cycle, but rather a process initiated
at the beginning o f a project and continuing to be refined throughout the life cycle.

• Identifies software requirements as configuration items, and manages them using the
same software configuration management practices as other products o f the software life
cycle processes.

• N eeds to be adapted to the organization and project context.

• In particular is concerned with how the activities o f elicitation, analysis, specification,
and validation are configured for different types o f projects and constraints.

1.2.2 Process actors. This topic introduces the roles o f the people who participate in the re
quirements process. This process is fundamentally interdisciplinary, and the requirements
specialist (i.e., the “System Engineer”) needs to mediate between the domain o f the stakeholder
and that o f software engineering. There are often many people involved besides the requirements
specialist, each o f whom has a stake in the software. The stakeholders w ill vary across projects,
but w ill always include users/operators and customers (who need not be the same).

Typical exam ples o f software stakeholders include (but are not restricted to):

• Users — This group comprises those who w ill operate the software. It is often a hetero
geneous group comprising people with different roles and requirements.

• Customers — This group comprises those who have comm issioned the software or who
represent the software’s target market.

• Market analysts — A mass-market product w ill often not have a real customer, so mar
keting people are needed to establish the market needs and to act as proxy customer.

• Regulators — Many application domains such as medical, banking, and public transport
are regulated. Software in these domains must comply with the requirements o f the regu
latory authorities.

- 4 7 -

• Software engineers — These individuals have a legitimate interest in profiting from de
veloping the software by, for example, reusing components in other products. If, in this
scenario, a customer o f a particular product has specific requirements that compromise the
potential for component reuse, the software engineers must carefully w eigh their own
stake against that o f the customer.

It w ill not be possible to perfectly satisfy the requirements o f every stakeholder, and it is the
system engineer’s job to negotiate trade-offs that are both acceptable to the principal stakehold
ers and within budgetary, technical, regulatory, and other constraints. A prerequisite for success
ful negotiations is that all the stakeholders be identified, the nature o f their “stake” analyzed, and
their requirements elicited.

1.2.3 Process support and m anagem ent. This topic introduces the project management re
sources required and consumed by the requirements process. Its principal purpose is to make the
link between the identified process activities and the issues o f cost, human resources, training,
and tools.

1.2.4 Process quality and im provem ent. This topic is concerned with the assessment o f the
quality and improvement o f the requirements process. Its purpose is to emphasize the key role
the requirements process plays in terms o f the cost and tim eliness o f a software product, and o f
the customer’s satisfaction with it. It w ill help to orient the requirements process with quality
standards and process improvement models for software and systems. O f particular interest are
issues o f software quality attributes and measurement, and software process definition. This topic
covers:

• Requirements process measures and benchmarking

• Improvement planning and implementation

1.3 R equirem ents E licitation

Software requirements elicitation is the process through which the customer (buyer
and/or user) and developer (contractor) o f a software system discover, reveal, articulate,
and understand the customers’ requirements.

1.3.1 R equirem ents sources. Software requirements information can be obtained from many
sources:

• System requirem ents specifications prepared by a system engineering function describe
the totality o f the requirements for the entire system. Buried in these system s require
ments are those requirements that can best be satisfied, com pletely or partially, through
software.

• P rocurem ent specifications and sta tem ents o f work (S O Ws) are documents produced by
the acquisition agency in preparing for a contract to develop and deliver a software sys
tem. By necessity, these documents contain top-level software requirements.

• M arketing (product) requirem ents docum ents are sales documents in w hich marketing
has described a possible future product and obtained customer concurrence, sometimes
without the knowledge and agreement o f engineering or other software developers.

• C ustom er-prepared needs docum ents are requirements-type documents prepared by a
system user to establish the need for a new system or changes to an existing system.

- 4 8 -

These documents typically describe the system ’s operational needs rather than its tech
nical requirements.

• D escrip tions o f how the system is intended to operate in service, e.g., scenarios, use cas
es, and user “stories.” These are typically developed by, or in conjunction with, intended
users.

• A concept o f operations (ConOps) docum ent [IEEE Std 1362-1998] is a rather formal
method o f documenting a system ’s operational needs. This document is prepared by the
system ’s potential user(s) and spells out needs and expectations.

• O bservations and m easurem ents o f the current system by the user, developer, or acquirer
(a third party contracted to prepare the needs documents).

• Interviews with the customers and users to elicit system requirements.

• C urrent system docum entation that contains the current system ’s processes and products.

« F easib ility studies performed to justify the development o f a new software system.

• M odels a n d pro to types built to demonstrate parts o f the finished system.

1.3.2 E licitation techniques. [Cleland-Huang 2004], [Christel & Kang 1992]. A few o f the
techniques that can be used to identify the software requirements are:

• Asking — Identify the appropriate person, such as the acquirer or user o f the software,
a n d ask w hat the requirem ents are.

• Discussing and formulating — D iscuss needs w ith the custom er and/or system acquirer
a n d jo in tly fo rm u la te a com m on understanding o f the requirem ents.

• Observing — Observe the behavior o f users o f an existing system (whether m anual or
autom ated).

• Facilitated meetings — A m eeting betw een interested stakeholders to arrive at a consen
sus, e.g., JA D (Joint A pplication D evelopm ent) [W ood & S ilver 1995].

• Negotiating with respect to a standard set — Beginning w ith an existing set o f require
m ents or fea tures, negotiate w ith users w hich o f those fea tu res w ill be included, excluded,
or modified.

« Prototyping — Provides a context in w hich the users better understand what they need.

1.4 R equirem ents A nalysis

This topic is concerned with the process o f analyzing requirements to:

« Detect and resolve conflicts between requirements

• D iscover the bounds o f the software and how it must interact with its environment

• Elaborate system requirements to derive software requirements.

The traditional view o f requirements analysis has been that it should be reduced to conceptu
al m odeling using one o f a number o f analysis methods such as structured analysis, object-
oriented analysis, and use cases. W hile conceptual modeling is important, w e include the classi
fication o f requirements to help inform trade-offs between requirements (requirements classifica-

- 4 9 -

Care must be taken to describe requirements precisely enough to enable the requirements to
be validated, their implementation to be verified, and their costs to be estimated.

1.4.1 R equirem ents classification. Requirements can be classified on a number o f dimensions:

• Whether the requirement is fu n c tio n a l or n o n fu n c tio n a l

• Whether the requirement is an original requirem ent (from the customer/user) or is a de
rived requirem ent (from the developer)

• Whether the requirement is a pro d u c t (from the requirements specifications) or a process
(documented in the statement o f work [SOW]) requirement

• The degree o f priority, e.g., mandatory, desirable, optional

• The range o f the requirements

• Whether the requirements might be verifiably stable.

Other classifications may be appropriate, depending upon the organization’s normal practice
and the application itself.

1.4.2 C onceptual m odeling. The development o f m odels o f a real-world problem is a key to
software requirements analysis. Their purpose is to aid in understanding the problem, rather than
to initiate design o f the solution. Hence, conceptual m odels comprise m odels o f entities from the
problem domain configured to reflect their real-world relationships and dependencies.

Several kinds o f models can be developed. These include data and control flow s, state
models, event traces, user interactions, object m odels, data m odels, and many others. The factors
that influence the choice o f model include:

• The nature o f the problem . Some types o f software demand that certain aspects be ana
lyzed particularly rigorously, because these aspects are known to be difficult or error-
prone. For example, control flow and state m odels are likely to be more important for re-
al-time software than for management information software, while it would usually be
the opposite for data models.

• The expertise o f the softw are engineer. It is often more productive to adopt a modeling
notation or method with which the software engineer has experience.

• The process requirem ents o f the customer. Customers may impose their favored notation
or method, or prohibit any with which they are unfamiliar. This factor can conflict with
the previous factor.

• The availability o f m ethods and tools. Notations or methods that are poorly supported by
training and tools may not achieve widespread acceptance even i f they are suited to par
ticular types o f problems.

Note that, in almost all cases, it is useful to start by building a model o f the software
context. The software context provides a connection between the intended software and
its external environment. This is crucial to understanding the software’s context in its op
erational environment and to identifying its interfaces with the environment.

t i o n) a n d t h e p r o c e s s o f e s t a b l i s h i n g t h e s e t r a d e - o f f s (r e q u i r e m e n t s n e g o t i a t i o n) .

The issue o f modeling is tightly coupled with that o f methods. For practical
purposes, a method is a notation (or set o f notations) supported by a process that
guides the application o f the notations. There is little empirical evidence to sup
port claims for the general superiority o f one notation over another (though some
are known to be more useful in a particular problem space than in others). H ow
ever, the widespread acceptance o f a particular method or notation can lead to
beneficial industry-wide pooling o f skills and knowledge.

Som e examples o f current software requirements m odels (or methods) are:

о Structured analysis (a.k.a. the Yourdon method)

о Object-Oriented analysis

о Use cases

• F orm al m odeling using notations based on discrete mathematics, and which are traceable
to logical reasoning, have made an impact in som e specialized domains. These tend to be
difficult and time-consuming but may be imposed by customers or standards, or may of
fer com pelling advantages to the analysis o f certain critical functions or components.

1.4.3 A rch itectural design and requirem ents allocation. At some point, the architecture o f the
solution must be derived. Architectural design is the point at which the requirements process
overlaps with software or systems design and illustrates how impossible it is to cleanly decouple
the tw o tasks. In many cases, the software engineer acts as software architect because the process
o f analyzing and elaborating the requirements demands the identification o f components that will
be responsible for satisfying the requirements. This is requirements allocation— the assignment
to components o f the responsibility for satisfying requirements.

Architectural design is closely identified with conceptual modeling. Because the mapping
from real-world domain entities to software components is not always obvious, architectural
design is identified as a separate topic. The requirements o f notations and methods are broadly
the same for both conceptual m odeling and architectural design.

1.4.4 R equ irem ents negotiation. R equirem ents negotiation, a.k.a. “conflict resolution,” con
cerns resolving problems with requirements where conflicts occur between two stakeholders
requiring mutually incompatible features, between requirements and resources, or between
functional and non-functional requirements. In most cases, it is unwise for the software engineer
to make a unilateral decision, and so it becom es necessary to consult with the stakeholder(s) to
reach a consensus on an appropriate trade-off It is often important for contractual reasons that
such decisions be traceable back to the customer. We have classified this as a software require
ments analysis topic because problems emerge as the result o f analysis. However, a strong case
can also be made for considering this to be a requirements validation topic.

1.4.5 F orm al analysis. In computer science and software engineering, fo rm a l m ethods are a
particular kind o f mathematically-based technique for the specification, development and verifi
cation o f software and hardware systems. The use o f formal methods for software and hardware
design is motivated by the expectation that, as in other engineering disciplines, performing
appropriate mathematical analysis can contribute to the reliability and robustness o f a design.
However, the high cost o f using formal methods means that they are usually only used in the
development o f high-integrity systems, where safety or security is o f utmost importance.

Formal methods are best described as the application of a fairly broad variety o f theoretical
computer science fundamentals, in particular logic calculi, formal languages, automata theory,
and program semantics, but also type system s and algebraic data types to problems in software
and hardware specification and verification.

1.5 R equirem ents Specification

For m ost engineering professions, the term “specification” refers to the assignment o f numerical
values or limits to a product’s design goals. Typical physical system s have a relatively small
number o f such values. A typical software system has a large number o f requirements, and the
emphasis is shared between performing the numerical quantification and managing the com
plexity o f interaction among the large number o f requirements. So, in software engineering
jargon, “software requirements specification” typically refers to the production o f a document, or
its electronic equivalent, that can be systematically reviewed, evaluated, and approved.

For complex systems, particularly those involving substantial non-software components, as
many as three different types o f documents are produced. H owever, in small, software-driven
documentations, only a software requirements specification is required. In this paragraph we will
discuss: [SWEBOK 2004].

• System definition document

• System requirements specification

• Software requirements specification

1.5.1 System definition docum ent. The softw are acquisition m anager or pro d u c t m anager is
responsible for assisting the user in developing the user document (som etim es called the concept
o f operation [ConOps] document or “needs document”) supporting the user during acceptance
testing, and, finally, delivering the system to the user.

The document lists the system requirements along with background information about the
overall objectives for the system, its target environment and a statement o f the constraints,
assumptions, and non-functional requirements. It may include conceptual m odels designed to
illustrate the system context, usage scenarios and the principal domain entities, as well as data,
information, and workflows.

In turn, the softw are p ro jec t m anager or system engineer is responsible for developing the
software requirements specification from the users’ needs documents, delivering the system to
the acquirer within budget, and meeting the acquirer’s expectations and requirements.

1.5.2 System requirem ents specification. A system requirem ents specification is a document
that sets forth the requirements for a system or system segment. Typically included are function
al requirements, performance requirements, interface requirements, quality attributes, design
constraints, and development standards. The software requirements are derived from the system
requirements specification.

A softw are requirem ent is a software capability that must be met or possessed by a system
component to satisfy a contract, specification, standard, or other formally imposed document.

1.5.3 Softw are requirem ents specification . This document is based on a m odel in which the
result o f the software requirements specification process is an unambiguous and complete
specification document. The purpose o f this document is so that [Thayer & Dorfman 1998]:

• Software customers can accurately describe what they w ish to obtain

• Software suppliers can understand exactly what the customer wants

• Individuals can accomplish the following goals:

o Develop a standard software requirements specification (SRS) outline for their own
organization

o Define the format and content o f their specific software requirements specification

o Develop additional local supporting items such as an SRS quality checklist, or an
SRS writer's handbook

To the customers, suppliers, and other individuals, a good SRS should provide several specif
ic benefits, such as the following:

• E stablish the basis fo r agreem ent between the custom ers and the suppliers on what the
softw are product is to do. The complete description o f the functions to be performed by
the software specified in the SRS will assist potential users in determining i f the software
as specified meets their needs or how the software must be modified to meet their needs.

• Reduce the developm ent effort. The preparation o f the SRS forces the various concerned
groups in the customer’s organization to rigorously consider all o f the requirements be
fore design begins and reduces later redesign, recoding, and retesting. Careful review of
the requirements in the SRS can reveal om issions, misunderstandings, and inconsisten
cies early in the development cycle when these problems are easier to correct. Require
ments that are infeasible or exceptionally difficult, risky, and/or time-consuming can also
be identified, and negotiations can take place concerning their removal or modification.

• Provide a basis fo r estim ating costs and schedules. The description o f the product to be
developed as given in the SRS is a realistic basis for estimating project costs and can be
used to obtain approval for bids or price estimates.

• Provide a baseline fo r validation a n d verification (V&V). Organizations can develop their
validation and verification plans much more productively from a good SRS. A s a part of
the development contract, the SRS provides a baseline against which compliance can be
measured.

• Facilita te transfer. The SRS makes it easier to transfer the software product to new users
or new machines. Since the use o f standards makes is easier for numerous organizations
to use a standard developed requirements specification without additional training, cus
tomers thus find it easier to transfer the software to other parts o f their organization, and
suppliers find it easier to transfer it to new customers.

• Serve as a basis fo r enhancem ent. Because the SRS discusses the product but not the pro
ject that developed it, the SRS serves as a basis for later enhancement o f the finished
product. Although the SRS may need to be altered, it does provide a foundation for con
tinued production evaluation.

1.5.4 W hat the softw are requirem ents specifications should not contain. The SRS should
specify valid design constraints, not needless designs. This particular issue is very hard to

- 53 -

enforce or even identify. Any designs that is absolutely required by the customer or acquirer
must be included under the category “design constraints.”

Other things that should not be specified in a project requirement are programmatic: (In the
U.S. these items are found in the project plan or other plans, but in Europe the SRS often con
tains these items.)

• Project cost and schedule

• Software quality assurance procedures

• Software development methods

• Acceptance test procedures

• Project reporting procedures.

Finally, an SRS does not specify a service. A service contract is a legitimate contract, but it is
NOT a software requirements contract.

1.6 Practical C onsiderations

1.6.1 Iterative process. This is a process in which the developers sometimes initiate the design
phase before the requirements are complete or verified. In the event that errors are found in the
requirements specification, some or all o f the requirements analysis is reinitiated and the re
quirements problems or errors are fixed. At the new completion o f the requirements phase, the
design phase is again reinitiated. In the event that more errors are found, the requirements phase
is again reinitiated. And the cycle begins all over again.

Dr. Winston Royce (the well-known developer o f the “waterfall chart”) believed that you can
begin the design o f a software system as soon as 80% o f the requirements are completed [Royce
1987].

1.6.2 C hange m anagem ent. Project managers are responsible to see that [Thayer 2004]:

• A ll requests for changes are presented as formal requests in writing

• All change requests are reviewed and changes are limited to those approved

• Type and frequency o f change requests are analyzed and evaluated

• The degree to which a change is needed, and its anticipated use, are considered

• Changes are evaluated to ensure they are not incompatible with the original system de
sign and intent

• N o change is implemented without careful consideration o f its ramifications

• The need to determine whether a proposed change w ill enhance or degrade the system is
emphasized

1.6.3 R equirem ents attributes. All requirements need to have the following attributes:

• Complete — N o requirements are overlooked

• Consistent — N o individual requirements or set o f requirements conflicts with any other

• Correct— N o error exists that w ill affect design

• Clear — There is only one semantic interpretation (i.e., unambiguous)

• Modifiable — Any necessary changes can be made completely and consistently (this en
courages having a requirement specified in only one place)

• Verifiable — Some finite process exists to verify that the product meets the requirements

• Traceable and Traced— An audit trail exists from requirements to tested code and back

• Implementation-free — Design and management requirements are excluded

1.6.4 R equirem ents tracing. Requirem ents tracing is the identification and documentation o f
the derivation path (upward) and allocation/flowdown path (downward) o f requirements in the
requirements hierarchy. Requirements tracing is a valuable software maintenance tool as well as
a requirements analysis and design tool. A requirements traceability matrix will allow the
maintainer to identify the breadth and depth o f the impact o f a required software system change.

If a traceability matrix was not produced during the software development phase, a limited
matrix w ill have to be developed around any system changes required by the maintenance effort.
This approach w ill reduce the impact o f the so-called “domino effect” in which a software
change spins o f f numerous unneeded and unwanted secondary changes.

1.6.5 M easu ring requirem ents. See Chapter 16 regarding software requirements measurements

1.6.6 Softw are requirem ents tools. See the paper by Stuart Faulk [2012] on U nderstanding
Softw are Requirem ents.

References

Additional information on the softw are requirem ents KA can be found in the following docu
ments:

• [C hristel & K ang 1992] Michael G. Christel and Kyo C. Kang, Issues in Requirem ents
Elicita tion, CM U/SEI-92-TR-012, ESC-TR-92-012, Software Engineering Institute, Sep
tember 1992.

• [C leland-H uang 2004] Jane Cleland-Huang, “Software Requirements,” in Software E n
gineering, Vol. 1: The D evelopm ent Process, R.H. Thayer and M. J. Christensen, (eds.),
IEEE Computer Society Press, Los Alamitos, CA, 2004.

• [Davis 2005] Alan M. Davis, Ju st Enough Requirem ents M anagem ent: Where Software
D evelopm ent M eets M arketing, Dorset House Publishing, N ew York, 2005.

• [Faulk 2012] Stuart R. Faulk, “Understanding Software Requirements” in R.H. Thayer
and M. Dorfman, Softw are E ngineering Essentials, Vol. I: The Development Process.
2012, Chapter 1.1.

• [IEEE Std 1362-1998] IEEE Standard 1362-1998, IEEE Guide fo r Inform ation Technol
ogy— System D efinition— C oncept o f O perations (ConOps) D ocum ent.

• [IEEE Std 610.12-1990] Adapted from IE E E S tandard G lossary o f Softw are Engineer
ing Term inology, Standard 610.12-1990.

• [IEEE Std 830-1998] ANSI/IEEE Standard 830-1998, IE E E R ecom m ended Practice fo r
Softw are Requirem ents Specifications.

[Royce 1987] Dr. W.W. Royce, Pers. comm. 1987.

[SW EB O K 2004] E. Bourque and R. Dupuis, (eds.), Softw are E ngineering B ody o f
Know ledge (SW EBOK), IEEE Computer Society Press, Los Alamitos, CA, 2004.

[T hayer 2004] R.H. Thayer, “Software System Engineering,” in Softw are E ngineering
Vol. 1: The D evelopm ent Process, R.H. Thayer and M. J. Christensen, (eds.), IEEE Com
puter Society Press, Los Alamitos, CA, 2004.

[W eigers 2003] Karl E. Weigers, Softw are Requirem ents (Paperback), 2nd Edition, M i
crosoft Press, 2003, 544 pages, ISBN-13: 978-0735618794 (Recommended as
CSDP/CSDA exam reference book by the IEEE Computer Society).

[W ood & Silver 1995] Jane Wood and Denise Silver, Jo in t Application D evelopm ent,
2nd ed., W iley, N ew York, 1995.

C h a p t e r 2 .1 a
7

S o f t w a r e D e s ig n : I n t r o d u c t i o n & O v e r v i e w

David Budgen
School of Engineering & Computing Sciences

University of Durham
Durham City, England

1. T he N ature o f Softw are Design

W hile softw are is a lm ost all-pervasive in the m odern world, the act o f designing
so ftw are p o ses som e very significant challenges. The aim o f this overview paper
is therefore to describe the key properties o f software; to explain how these in flu
ence the design process; a n d to review som e m ajor exam ples o f the strategies and
fo r m s that have evolved to address them.

In the context o f softw are design, we are seeking to create a ‘solution ’ that in
volves creating som e fo rm o f artefact fro m appropriate softw are fo rm s. In the rest
o f th is f ir s t section we therefore exam ine how software design is in fluenced by the
nature o f design activities, by the particu lar characteristics o f software, by the
con text w ith in which software design is perform ed, and by our ideas about w hat
m igh t constitute a ‘g o o d ’ design.

First o f all though, we should ask the question:

W hat exactly is the purpose o f design?

The answer to this question essentially defines the scope o f this paper by identifying the is
sues that any design solution should address. There are o f course many possible answers, some
o f which will reflect the context within which a particular design task is undertaken. However, a
reasonably generic answer is:

To produce a p la n (or model) that represents a workable (im plem entable) solu
tion to a g iven need.

The follow ing sections then examine some o f the conceptual tools that w e employ to assist
with software design. Section 2 discusses some o f the different ways that software can be orga
nized, broadly classified as architecture. Section 3 examines how we can visualise ideas about a
design through the use o f different notations. Together, these then underpin Section 4, where we
review som e well-established ways o f organising the process o f designing.

1.1 T h e nature o f designing

Software design activities need to conform to the constraints imposed by the nature o f designing
in general. Design problems are widely recognised to be ‘wicked’ problems [Rittel & Webber,
1984], som etim es also termed ‘ill-structured problems.’ Such problems are characterised by
having such properties as:

7. Based on “Software Design: An Introduction,” by David Budgen, which appeared in R.H. Thayer and M.
Dorfman (editors), Software Engineering, Volume I, 3rd edition, IEEE Computer Society Press, Los Alamitos,
CA, ©2007 IEEE.

□ no true/false solutions, with many possible solutions that can only be ranked as better or
worse from a particular perspective;

□ no definitive form ula tion , so that the specification and understanding o f a problem are
bound up with our ideas about ‘solving’ it;

□ no stopping rule that can be used to determine when an optimum design has been
achieved;

□ no immediate and ultimate test that can be used to determine that a design solution fits
the needs o f the problem (in our case, the requirements).

A key consequence is that the activity o f designing cannot ever be a ‘procedural’ or ‘defined’
process. Indeed, the design process is essentially em pirica l or opportunistic in nature [Hayes-
Roth & Hayes-Roth, 1979; W illiams & Cockbum, 2003], and involves exploration o f a potential
ly very large ‘solution space’.

These characteristics can be illustrated by a very sim ple example o f a design task that will be
familiar to many people, which is that o f m oving home. When we m ove to a new house or
apartment, we are faced with a classical design problem: namely that o f determining where our
furniture is to be placed. Indeed, w e may also be expected to provide a design ‘plan’ for the
removal company to indicate our intentions.

There are o f course many ways in which furniture can be arranged within a house or apart
ment. For each item, we need to decide in which room we want it to be placed, perhaps deter
mined mainly by functionality, and then where it might go within that room. W e might choose to
concentrate on getting a good balance o f style and arrangement in more public rooms at the
expense o f others. The form o f the building will also provide constraints, in that furniture should
not block doors or windows and should leave power outlets and other connections accessible.

The process o f designing software is really not so very different from this, and exhibits the
same forms and issues, further complicated by som e properties o f software itse lf that we now
need to consider.

1.2 C haracteristics o f softw are

Given that an important task for the software designer is to formulate some form o f abstract
design m odel that represents his or her ideas about a design solution, w e might ask what causes
this to be so great a challenge. Fred Brooks [1987] suggested that some software characteristics
that contribute to this include:

□ The com plexity o f so ftw are, with no two parts ever being quite alike, and with a process
or system having many possible states during execution.

□ The prob lem o f conform ity that arises from the very pliable nature o f software, so that the
designer is expected to tailor software so as to meet the needs o f hardware, o f existing
system s, or to meet other ‘standards’.

□ The (apparent) ease o f changeability o f software means that users are apt to expect
changes to be made without an appreciation o f the tm e costs (in terms o f m oney, re
sources and structure) that these imply.

□ The invisib ility o f software means that our descriptions o f our design ideas lack any clear
visual link to the form o f the end product, and so are unable to help with comprehension
in the same way that occurs with more ‘physically’ connected forms o f description.

Together these explain why it is so difficult to clearly and unambiguously ‘capture’ any ideas
that w e m ight have about the design for a software system. Designing is always a challenging
activity, and for software it is rendered even harder by these characteristics.

1.3 W h at constitu tes design know ledge?

The process o f learning about design may well involve both a period o f academic study and also
a spell o f ‘apprenticeship’, which involves learning directly from a more experienced practitioner
by working with them in some way. Regardless o f how this may be organized, the aim is to
provide a fledgling designer with both experience and an understanding o f how they can most
effectively deploy the design elements available in their particular medium.

Studies o f the role that experience plays in designing software are consistent with this view
o f design know ledge. Adelson & Soloway [1985] noted a range o f techniques being used, with
the choice being dependent both upon the expertise o f the designer and also their familiarity with
the given problem domain. They particularly noted the use o f ‘labels for plans’ by experts,
whereby a designer identified a part o f their task for which they could reuse prior design experi
ence, ‘ labelling’ this intention at an abstract level.

A later study o f expert designers by Guindon [1990], observed that a variety o f knowledge
schem as were em ployed, from simple rules to part solutions. Indeed, for object-oriented devel
opment, Détienne [2002] has noted the use o f three forms o f knowledge schema: application
dom ain schem as, function schemas, and procedure schemas. From a cognitive perspective, a
schem a can be considered as some form o f internal ‘knowledge structure’ that an expert employs
to represent ‘generic concepts stored in memory’, and it is their possession o f a richer set of
internal schem a that largely distinguishes experts from the less experienced.

1.4 T h e softw are developm ent lifecycle

Designing software is not an isolated and independent activity. The eventual system as imple
mented w ill be expected to meet a whole set o f user needs (reminding us o f the criterion of
“fitness for purpose”). In a classical software lifecycle such as the well-know n ‘waterfall’ model,
it is expected that these needs will be determined in advance through some form o f requirem ents
elicitation process, possibly aided by an analysis o f what the system is to do. But in reality, these
tasks are likely to interact, both with each other and also with the activities o f design, since each
step can both constrain later steps and also reveal inconsistencies in the earlier ones.

In addition, it is expected that the designer w ill provide a set o f specifications for those
whose job it is to construct the system. These w ill need to be clear, complete and unambiguous,
yet despite this (if such an ideal can be achieved), it is likely that further needs for change will
emerge during implementation too. Furthermore, over and above such immediate issues, the
designer also needs to think about the long-term evolution o f a system and seek to devise a
structure that can accommodate any likely changes.

The sheer difficulty o f balancing this m edley o f conflicting goals has led to the emergence of
a quite different way o f thinking about the software development context that w e describe as
agile m ethods. These seek to recognise the uncertainties in the overall development process, and
assume that the form o f system w ill evolve as understanding o f its role emerges. For such forms,

~ 59 -

the role o f design becom es much more closely entwined with those o f requirements elicitation
and implementation. A s far as design is concerned, an important aspect o f such methods is to
ensure that constant change and evolution does not unduly undermine design qualities and
structures.

1.5 Q uality factors for design

Quality can be an elusive concept at best, and given the properties o f software discussed above, it
is not surprising that this is particularly so for software design. Indeed, our ideas about quality
are almost always bound up with our particular relationship with the system itself.

Having suggested that the concept o f ‘fitness for purpose’ was a paramount goal for any sys
tem, we have to recognise that this cannot be directly measured, nor, indeed, is it absolute.
Simply performing the specified task(s) correctly and within the given resource constraints may
not be enough to achieve fitness for purpose. A n example o f this would be a. system that is
expected to be in service for at least ten years, with m odification at frequent intervals. For this
case, our notions o f fitness for purpose are very likely to incorporate ideas about how w ell the
overall structure can be adapted to accommodate the likely changes without compromising the
other qualities. The converse is equally true. Where a system is urgently required to meet a short
term need, getting a system that works (correctly) w ill be more important than ensuring that it
can be modified and extended.

Space limits what w e can say here about quality factors, but a useful group to note are those
that are generally referred to as the ‘ilities’. The exact com position o f this group may be depend
ent upon context, but the key ones are generally those o f re liab ility , efficiency, m aintainability ,
and usability. They describe rather abstract ‘top-level' properties o f the eventual system and
cannot be easily accessed from design information alone.

Indeed, devising suitable ways to measure design information in a reliable and systematic
manner is something o f a challenge. W hile at the level o f implementation we can em ploy basic
code measurement (metrics) by such means as counting lexical tokens [Fenton & Pfleeger,
1997], the variability and the weak syntax and semantics associated with design notations makes
such an approach less appropriate for design. Flence, more qualitative forms such as design walk
throughs and design reviews may well be more suitable [Pamas & W eiss, 1987].

2. Softw are A rchitecture

The idea o f architecture in connection with software began to emerge in the early 1990s. To
some extent this probably reflected a growth in the different ways o f organising software sys
tems. Where once almost all software was organized on the basis o f a main program unit invok
ing a set o f sub-programs (what we now usually term ‘call-and-retum’), later systems began to
be organized around other forms such as objects, processes that were spread across a range o f
different computers, and large databases.

Various terms were used to capture these ideas, and as usual when something new emerges,
these were not always used consistently, thus reducing their value as a ‘vocabulary’. In the next
subsection we examine som e o f the early ideas about resolving this issue, and how these have
evolved. W e then briefly look at some examples o f what w e now term softw are architectures.

2.1 Basic concepts
An early, and very clear discussion o f this appeared in a paper by David Garlan and Dewayne
Perry [1995], written as an introduction to a collection o f papers on this topic. In this, they

- 6 0 -

examined som e o f the roles that the concept could perform, including: helping with understand
ing o f a high-level design through the provision o f an abstract vocabulary; helping to identify
where elem ents could be reused; and providing an understanding o f “a system is expected to
evolve”. Indeed, in many ways, the architecture o f a system is simply the abstract form o f its top-
level design.

The book by Mary Shaw and David Garlan [1996] provided a valuable baseline for the
emerging ideas. In this, they employed a basic framework o f describing an architecture in terms
of the kinds o f com ponents and connectors employed in a given system architecture. Their book
examined and classified a number o f architectural styles based upon these ideas, and hence had
the benefit o f clarifying a vocabulary that was increasingly being used, but not always consist
ently.

Ideas about architecture and about its influence upon such developments as the concept of
'software product lines,’ involving the reuse o f architectural ideas for multiple systems, have
continued to evolve. For a fuller understanding o f this area, a book such as [Taylor et al., 2010]
provides more detail as w ell as examples. For our purposes though, the basic concepts should be
a sufficient introduction.

2.2 Som e architectural styles

The concept o f an architectural style has proved a useful one in a number o f other domains.
When speaking o f buildings, referring to a house as being in a ‘black and white’ style tells us
about its likely characteristics— with external wooden beams and small windows. The same
concept applies to ships where the term ‘naval architecture’ has long been employed and where it
is recognised that the overall characteristics o f a ship will reflect its purpose. Aircraft carriers
have large flat decks and a small superstructure to one side; oil tankers have large tanks in the
main hull and small superstructures at the stem, etc. In the case o f buildings, style may be
dictated partly by the materials available in the period when it was constructed, while for ships, it
is driven more by function.

Software architecture is probably driven by all o f these: the type o f elements used the way
that they interact, and the purpose o f the system being the main influences. Table 1 below
summarises som e common examples o f software architectural styles, drawing upon the categori
sations proposed in [Shaw & Garlan, 1996].

2.3 A rch itectural patterns

While the notion o f architectural style tells us something about the type o f elements within a
system and how they interact, an architectural pa ttern focuses more upon the overall organisa
tion o f the elements. A useful introduction with illustrations is provided in [Buschmann et al.,
1996]. FI ere, w e illustrate the concept by discussing two particularly familiar forms.

M odel-V iew -C ontroller (MVC)

This is a w idely-used pattern (many student projects have this form) in which the overall de
sign o f an interactive application is organized as three elements that have clearly-defined roles
and functionality:

□ The m odel contains the core functionality and any relevant data

□ V iew s provide information to the user

- 6 1 -

□ Controllers handle user input. Each view has an associated controller that also handles
related forms o f input

The user interface then consists o f view s and controllers together and is independent o f the
model itself. However, the model will need to propagate information about changes to the
controllers. Such an approach makes it easy to change the interface for a new platform, or to
employ new forms for presenting the information. Figure 1 illustrates the MVC structure.

T ab le 1: Som e exam ples o f architectural style

C ategory C haracteristics Exam ples o f styles

• Data-flow

• Call-and-retum

• Data-centered
repository

M ovement o f data with
recipients having no con
trol o f content

Single thread o f control
determining order o f com
putation

Focus upon a complex
central data store

Batch sequential

Pipe-and-filter

Main program/subprograms
Classical objects

Transactional databases
Client-server
Blackboard

Layers

The layers pattern is another form that is em ployed in many roles. It is com m only (but not
exclusively) used for organizing a hierarchy o f protocols (such as that o f the OSI seven-layer
model used in computer networking). The idea is that each layer will deal with a specific aspect
o f communication and w ill employ the services o f the layer below (and no other layers) while
providing service to the layer above. The value o f this pattern is that specific functionality related
to a particular layer o f abstraction is encapsulated in a layer and may easily be redeployed into a
new context simply by substituting new layers below it. This form is illustrated in Figure 2,
where we use part o f the network OSI m odel to illustrate the characteristics.

3. D escrib ing D esigns

When discussing the nature o f software in Section 1, it was observed that its characteristics, and
particularly that o f invisibility, provide a challenge to any attempts to visualise our ideas about a
design. However, regardless o f the different roles for design notations explored in this section,
w e need them simply to avoid cognitive overload in developing design ideas. There is a limit to
how much we can reliably ‘store’ in our own working memory and so for anything but the
smallest problems w e simply need to find w ays o f visualising design ideas, even i f these are not
embedded in any form o f ‘physical reality’.

Over the years, software engineers have therefore developed a range o f ‘box and lin e’ nota
tions intended to help with this task. Whether this has really had the attention (as a design task in
itself) that it should perhaps have had is a moot point. Analysed against a cognitive framework,
most software engineering notations do seem to com e out rather badly [Moody 2009]. Anecdo
tally too, experienced designers seem to produce fairly informal diagrams to help develop their

- 62 -

ideas, only reverting to more formal notations when these ideas need to be recorded and shared
with others.

However, regardless o f these issues, we still have a need for well-defined notations for such
purposes as:

□ documenting and exploring our ideas about a design solution;

□ explaining our ideas to others (the customer, implementers, and other members o f a de
sign team . . .) ;

□ checking for consistency and completeness o f a design model

So in this section we examine a general categorisation o f design notations and then examine
som e exam ples o f these.

select view
C o n tr o lle r ■■ ■ — — > V ie w

(i n t e r a c t s w ith (d i s p la y s t h e

u s e r ; p e r f o r m s user actions m o d e l fo r

c o m m a n d s) ■4......................... t h e u s e r)

in model’s API

query model /
state

s \ /

\ /

Model
(s t o r e s t h e

‘d a t a ’, in c lu d in g notify of change
r u ie s) of model state

Figure 1: The Model-View-Controller pattern

3.1 Design view points

The wide range o f notational forms that we use can be categorised in a number o f different ways.
Som e, such as the ‘4+ 1’ model [Kruchten, 1994] are closely linked to a particular architectural
style (in this case, object-orientation). For this section, though, w e w ill employ a more generic
categorisation into four different groupings, described more fully in [Budgen, 2003].

This grouping is based upon the idea o f a design viewpoint, where a viewpoint is considered as
being a ‘projection’ from the ‘internal’ design model that displays certain o f the characteristics
with an appropriate level o f abstraction.

F i g u r e 2: E x a m p le o f th e L a y e r s p a t t e r n

Figure 3 provides a schematic illustration o f this idea along with some examples o f forms
used to record these viewpoints. The four viewpoints em ployed here are as follows:

1. The behavioural viewpoint, describing the causal links between external events and sys
tem activities during system execution.

2. The fu n ctio n a l viewpoint, describing the operations performed by a system.

3. The constructional viewpoint, describing the static interdependencies o f the construction
al elements that make up a system, such as objects, subprograms, and processes. (In earli
er papers this was often termed the ‘structural’ viewpoint, but as all view points have
some degree o f structure, this has been revised.)

4. The data-m odeling viewpoint, describing the relationships that exist between the data ob
jects in a system.

The term ‘system ’ in the above definitions is used fairly loosely, since at different times we
might want to describe a complete design solution, or parts o f it.

We might also note that, while none o f these can be considered easy to represent, the fu n c
tional viewpoint tends to offer the greatest challenge to ‘box and line’ forms, partly because o f
its very task-centered nature.

3.2 Form s of representation

Although this section has so far largely referred to the use o f ‘box and line’ notations, this is only
one o f several forms that can be used to realise the design viewpoints. The other two forms that
are w idely used are text and mathematical notations. Each has features that render it useful and
w e should avoid the assumption that all notations are necessarily diagrammatical.

Text

Text is widely used, largely in conjunction with the other forms, but also on its own. The
practice o f note-m aking has been widely observed in studies o f software design [Adelson &
Soloway, 1985; Guindon, 1990], and such notes are often organized as lists, which can have
some degree o f informal structure through indentation, numbering, bullets, etc. Ideas and de
scriptions can also be usefully recorded as tables.

- 6 4 -

However, in exchange for its relative ease o f use, text offers only limited scope for represent
ing any structure that may be present in information, beyond the use o f lists and tables. In
addition, natural language is prone to ambiguity that can only be resolved by using long and
com plex sequences o f words (a good example is a legal document).

C o n s tru c tio n
C la s s D ia g ra m s

Data M odel
E ntity R e la tio n sh ip
D ia g ra m s (E R D s)
J a c k s o n S tru c tu re
D ia g ra m s (J S D s)
C la s s D ia g ra m s

B e h a v io r
S ta te c h a r t s
S ta te T ran s itio n
D ia g ra m s (S T D s)
S ta te T ran s itio n
T a b le s (S T T s)
M e s s a g e S e q u e n c e
D ia g ra m s

F u n c tio n s
D a ta Flow
D ia g ra m s (D F D s)
J a c k s o n S tru c tu re
D ia g ra m (J S D s)
A ctivity D ia g ra m

Figure 3: Exam ples o f the design view points

D iagram s

Since our exam ples w ill largely focus upon diagrams, w e briefly describe two characteristics
that appear to be significant for the successful use o f diagrams.

The first relates to the number o f symbols in use to describe the concepts (the ‘elem ents’) o f
a diagram. A s a loose rule o f thumb, the more abstract the diagram the fewer the symbols.
Diagrams with a large number o f symbols tend to be more com plex to use. (In this context, what
we might term sym bols are not necessarily shapes or characters; they might be arrowheads, solid
or dashed lines, etc.). A supplementary aspect o f this is that we should also be able to draw the
symbols easily— many designs are worked out and explored using whiteboards or pencil & paper
and the designer wants to be able to concentrate on exploring an idea without needing to spend
time drawing com plex shapes. So, symbols should be simple in form and easily distinguished
from each other.

The second is concerned with having a hierarchy within a notation. Large diagrams may be
very difficult to understand, and many forms therefore allow the use o f a hierarchy, whereby
symbols at a higher level o f abstraction are expanded into a ‘tree’ o f diagrams, with each level
providing greater detail. Figure 4 demonstrates this idea in a schematic manner.

M athem atics

Mathematical notations are o f course ideally suited to providing concise abstractions, so it is
hardly surprising that they have been employed for this purpose through the use o f Formal

D escription Techniques, or FDTs for short. Traditionally, they are usually em ployed for the
purpose o f specification, whether this be o f system properties (for analysis and requirements
specification), or o f the behaviour and functionality o f individual design elements. A s with the
case o f text, it can be argued that these notations are most valuable when being used to support
other descriptive forms, rather than being used solely on their own. On the downside, their use
requires learning a set o f (usually non-intuitive) symbols, and they are less w ell suited to describ
ing larger-scale systems.

Figure 4: H ierarchy in representations

3.3 Some examples

Before discussing some simple examples o f the concepts outlined above, w e should note that
the old saying about fire, that it “makes a good servant but a bad master” applies equally to the
use o f diagrams when designing software.

Any given form o f diagram w ill have an established syntax (how we draw it) and semantics
(what is meant by the symbols, their positioning, etc.). However, the aim o f a diagram is to assist
with the process o f design— too slavish a regard for syntax in particular during the evolution o f
design ideas can be a handicap. Indeed, observation suggests that experienced designers often
produce fairly informal diagrams while developing their ideas and formalise these later. This is a
point that w e w ill return to when considering the use o f tools to support the design process.

B elow , we briefly describe how the different viewpoints are used within different system
forms and provide some simple examples o f how these might be organized.

We should first also observe that where the object-oriented architectural forms are con
cerned, the U nified M odeling Language (UM L) is widely supported by a range o f tools and w ell-

- 66 -

defined form s [Rumbaugh et al., 1999]. However, the term ‘unified’ as used here refers to th e
drawing together o f the ideas o f the three m ethodology ‘gurus’ who wrote the standard, and there
has subsequently been some significant empirically-based questioning about its complexity and
general usefulness [Moody, 2009; Budgen et al., 2011]. Hence, given its wide recognition, w e
have m ainly illustrated the viewpoints with forms that may be less familiar to those accustom ed
to the U M L , in order to demonstrate the breadth o f the concepts.

The constructiona l view point

Various forms o f ‘object’ and ‘class’ diagram have been developed, although most tend to b e
broadly similar in form to the UM L class diagram . Indeed, in many ways, they closely resem ble
the entity-relationship diagrams (ERDs) used for data m odeling, although obviously the range o f
relationships included in such forms is more related to object and class interactions, such a s
aggregation, uses and inheritance.

In contrast, Figure 5 shows an example o f a Structure Chart, a form that is generally a sso c i
ated with a call-and-retum form o f architectural style.

In th is notation, the boxes represent sub-program units, and the lines joining them represent
invocation (akin to the use o f methods in object-oriented terminology). Order and frequency o f
invocation are not shown, only its existence. The small arrows provide details o f the parameters
being passed— there are other drawing conventions used with this form, as w ell as some varia
tions (som e authors prefer to provide a table detailing the parameters).

This form o f ‘call graph’ som etim es has another role, in that it is often created by maintainers
o f software (either manually, or via support tools) in order to gain a clearer visualisation o f th e
hierarchy o f units within an existing system.

The ju n c tio n a l view point

As indicated above, this aspect o f a system is probably the most difficult one to capture in
diagrammatical form. D ata Flow D iagram s (DFDs) capture functionality in terms o f how th e
operations o f the system affect the forms o f information it holds. (Tom De Marco suggests that
this form is much older than computing, and was certainly used in the early 1900s to model h o w
teams o f clerks processed things like insurance claim s.)

A related but different way to describe function in this way is in terms o f workflows (fo c u s
ing on the tasks rather than the data). Figure 6 shows one o f the UML notations used for this (the
Activity D iagram) being used to describe part o f the process o f conducting a systematic rev iew
(see [Budgen et al., 2011] for an example o f this form o f study).

Here the focus lies upon the activities being performed by the researchers and where the r e
lated flow s are divided and then recombined.

The behavioura l view point

The idea o f state is a valuable one in computing, and particularly when considering object
m odels, since w e can view the operations on an object (performed by its methods) as either
m odifying its state or providing the end-user with information about its state. Indeed, state
models can be used to describe the real-world activities that the system is intended to interact
with, the activities o f the system itself, or the activities o f the parts making up the system (su ch
as the objects).

- 67 -

Figure 8 shows an example o f a Statechart [Harel 1987] being used to model the part o f an
air traffic control system concerned with 'stacking’ o f aircraft that may not yet be able to land.
W e might also note that the form o f the State Diagram that is used in the UML differs relatively
little from this.

Figure 5: Exam ple o f a Structure Chart

Fiere states can be combined to form ‘super states’ and also decom posed into sub-states. Our
figure labels only a few o f the transitions in order to keep it reasonably clear— the reader might
w ish to complete the m issing ones.

The data m odeling view point

An example o f the classic E ntity-R elationship D iagram is shown in Figure 7, and continues
the theme set by the example used in Figure 8.

There are different drawing conventions associated with ERDs and this one uses a fairly
long-established set o f conventions by which the entities are shown as boxes, attributes o f
entities are in boxes with rounded corners, and the ‘arity' o f the relationship is shown as numbers
on the lines linking to the entities. (Here, som e n aircraft can be held in the stick.)

W hile this form o f model is often largely associated with the data-centered repository archi
tectural style and the use o f databases in particular, it does have wider application since we may
also be interested in m odeling how the data entities within a system are related. Such models
might be hierarchical (i.e., how is the information associated with some system -level entity
mapped onto lower level structures).

4 . O r g a n i s i n g t h e D e s ig n P r o c e s s

In section 1.3 w e discussed the concept o f know ledge schem a, with expert designers owning a
richer [and more organized) set o f such schema than less experienced designers. Since a
knowledge schema is an internal representation o f that knowledge, one o f the challenges since
the early days o f software development has been to find ways o f codifying that knowledge in
such a w ay that the less experienced designer can learn design skills as quickly and effectively as
possible. W hile the ideal might be that o f a ‘design studio’ where the ‘novice’ can sit beside and
learn from the ‘master’, this is rarely a practical option. Indeed, expert designers are likely to be
a rare com m odity in most organisations [Curtis et al., 1988].

The earliest forms used for knowledge transfer were often termed ‘software design m ethods’,
using what w e often term a plan-driven approach. A s experience o f design grew, and the range
o f software architectural styles expanded with technology, so did ideas about how design
knowledge could usefully be organized. Design pa tterns offer an approach that is often consid
ered as more appropriate for object-oriented forms and com ponent-based design approaches have
tried to em ploy a ‘black-box’ model that in som e ways approximates to the way that electronic
hardware design is organized. The classical approach o f the design method was often seen as
being too closely linked to the waterfall model o f development, and agile m ethods have subse
quently emerged as one means o f making the software design process more responsive to its
environment (including the business needs o f the customer for the software).

In the fo llow ing sections we provide a brief introduction to each o f these concepts and identi
fy some key examples and references. Because space precludes an in-depth exposition o f their
features, the discussion necessarily has to be at a fairly high level o f abstraction. The final
section discusses the role o f design support tools and their limitations.

4.1 Plan-driven design

Plan-driven design approaches essentially structure design knowledge as follows:

□ A set o f procedures that should be follow ed in order to create a ‘design m odel’ that even
tually evolves into the actual design plan.

□ A set o f descriptions, usually in the form o f diagrams, which are used to represent the de
sign m odel in various stages o f evolution.

□ A set o f heuristics, that are based upon experience o f using the method and might relate
to such things as how to go about creating the initial model for a particular form o f prob
lem, or how to adapt the process for specific needs.

□ So these three elements essentially represent the knowledge schema as conveyed through
a method. The procedures are organized around a strategy. Usually this is either based
upon a ‘top-down’ [decompositional) form, or a ‘bottom-up’ (compositional) form.

□ One o f the earliest (and quite successful) design methods was known under various
names, but can be summarised as Structured A nalysis and D esign. Here the initial model
was based upon analysing the data flow involved in the w hole system (using some form
o f D ata F low D iagram) and the procedures were concerned with transforming this into a
call-and-retum form o f model based upon a main program and sub-programs (usually
represented as a Structure Chart). Here the procedures were concerned with constructing
the original model and then performing what were usually referred to as transaction

analysis (identifying the different functions in the model) and transform analysis (chang
ing the form o f the model to map onto executable structures). The heuristics helped with
identifying such concepts as the ‘central transform' for a particular transaction. A good
example o f a textbook describing this process is [Page-Jones, 1988].

The original strategy was essentially one o f functional decomposition, but perhaps reflecting
both the growing size o f systems and also greater experience, other, more compositional
forms such as ‘event partitioning’ were later developed.

! Allocation to I
I reviewers J

Inclusion/exclusion
based on paper
by Reviewer 1

Inclusion/exclusion
based on paper
by Reviewer 2

T
1r

f a

Reviewers make
joint decision

V J

F ig u r e 6: E x a m p le U M L A ctiv i ty D ia g r a m

W hile the m odel could be and was extended, especially w ith the addition o f real-time m odel
ing features such as State Transition D iagram s, it was essentially limited by the use o f rather
one-dimensional models and also by being tied to an architectural style (call-and-retum) that was
gradually replaced by the now dominant object-oriented forms. Hence evolution essentially
ended in the late 1980s, although its basic influence should not be under-rated as has been noted
by A vison & Fitzgerald [1995].

The em ergence o f the object-oriented (0 0) paradigm created problems for plan-driven
forms. W hile these had proved quite effective when designing around such architectural styles as
call-and-retum and distributed processes, objects represent a much more complicated end model.

For this paper w e will side-step the (sometimes thorny) issue o f exactly what constitutes an
‘object’. The terminology relating to objects is now fairly well established, and for this discus
sion we w ill assume that objects are created from classes and that objects provide for encapsula
tion of their internal state and have public methods that can be used to inspect or m odify that
state. Objects can also inherit part o f their structure from parent objects.

aircraft

n

Figure 7: Exam ple entity-reiationship diagram

Two characteristics from the above, rather brief, outlines have provided a substantial problem
for plan-driven approaches. One is encapsulation, while the other is inheritance. Neither o f these
fits well into the forms o f description or procedure that were used for earlier design methods, nor
have both continued to provide particular challenges for methodologists.

Through the 1980s and 1990s, a wide variety o f OO methods were developed. Those o f the
‘first generation’ were largely evolutionary in nature, in the sense that they derived many o f their
ideas from earlier forms and often attempted to use non-object-oriented forms o f system analysis.
Later m ethods were more revolutionary, in the sense o f using quite different (and more complex)
procedures than those o f earlier methods, with a stronger emphasis upon composition.

A key problem, regardless o f strategy, has been to identify the ‘right’ objects to use for a g iv
en design problem. W hile this tends to favour a compositional strategy, determining the choice
o f objects is still a com plex one. Indeed, Etienne [2002] has noted that “early books on 0 0
emphasized how easy it was to identify objects, while later ones, often by the same authors,
emphasize the difficulty o f identifying them.”

A very comprehensive review o f this theme, including descriptions o f some 18 0 0 methods,
is provided in [Wieringa 1998]. Wieringa particularly noted that the use o f forms such as DFDs
was incompatible with object-oriented structuring because the enforced separation o f data
storage and data processing implicit in the DFD did not map onto the encapsulation o f data and
related operations embodied in the OO model. He did also note that there was “overwhelming
agreement that the decomposition must be represented by a class diagram, component behaviour
by a Statechart, and component communications by sequence or collaboration diagrams,”
although the detailed forms o f these varied quite extensively.

Figure 8: Exam ple o f a Statechart

By the late 1990s, the ideas o f the major players in the OO method domain (Booch, Jacob
son, and Rumbaugh) converged to create the U nified Process which can perhaps be considered
as a ‘third generation’ method. Their form is much more complex— see Jacobson et al. [1999]—
and indeed, is almost an intermediate form between that o f earlier plan-driven forms and the
agile methods that w e discuss below. Certainly, this seem s to represent the ‘outer lim it’ as far as
the development o f plan-driven methods is concerned.

D e s ig n patterns o ffe r a qu ite d iffe re n t w a y o f c o d ify in g design e xp erien ce fo r reuse b y others.
U n l ik e a rch ite ctu ra l patterns, w h ic h describe the o ve ra rch in g fo rm o f the w h o le system , a design
pattern is u s u a lly concerned w ith o rg a n is in g a part o f a design . C u r io u s ly , a lthough the idea o f
the so ftw a re d es ign pattern resonates w ith the idea o f ‘ labels fo r p la n s ’ id e n tifie d in such e m p ir i
cal stud ies o f designers as that o f A d e ls o n & S o lo w a y [1985], the design pattern co m m u n ity
have instead d ra w n th e ir in sp ira tio n from the ideas o f an arch ite ct, C h ris to p h e r A le xa n d e r.
A le x a n d e r, et al. [1977] characterise a pattern as:

□ d e s c rib in g a re cu rrin g p ro b le m ;

□ also d e sc rib in g the core o f a so lu tio n to that p rob lem ;

□ w ith that so lu tio n b e in g capable o f b e in g reused m any tim es w ith o u t a ctua lly u s in g it in
e x a c tly the same w a y tw ic e .

F o r so ftw a re design , the p io n e e rin g w o rk that established the concept w id e ly as w e ll as
p ro v id in g a standard fo r ca ta lo gu in g patterns is the book b y G am m a et al. [1995], w ith the
authors (and the b o o k) often re fe rred to as the ‘ gang o f fo u r ’ o r G o F . T h e ir book catalogues
som e 23 d esign patterns. W h ile a recent s u rv e y o f softw are d e ve lo p e rs w ith extensive exp erien ce
o f pattern use [Z h a n g & B u d g e n , 2010] suggests that not a ll have p ro ve n to be e q u a lly useful
(an d s ix o f them to be o f v e ry questionab le use), there is little qu estion that patterns such as
Observer and Abstract Factory p ro v id e usefu l g u id e line s about h o w to structure system s fo r ease
o f e x te n s io n and change.

T h e k e y p o in t about a pattern is that it is no t a tem plate in to w h ic h the w o u ld -b e user s im p ly
p lu g s in th e ir o w n cho ice o f ob jects . A pattern is a w a y o f o rg a n is in g part o f a d es ign and as
such , needs to be rea lised in a m anner that fits loca l requirem ents, w h a te ve r the ir form m ig h t be .

A s d efin ed b y the G o F , patterns fa ll in to tw o categories in term s o f th e ir scope: classes or
o b je cts , w ith m ost patterns addressing the use o f ob jects. T h e y are a lso categorised b y th e ir
purpose , w h e re b y :

□ creational patterns are concerned w ith h o w and w h e n ob jects need to be created fo r some
purpose ;

□ structural patterns are concerned w ith the w a ys that ob je cts and classes are com posed
together;

□ behavioural patterns address the in te ra ction betw een objects/classes and the w a y that re
s p o n s ib ility is shared betw een them .

W h ile patterns are un qu e stio na b ly a va lu a b le ad d itio n to the d e s ig n e r’ s reperto ire , the en thu
siasm o f the pattern co m m u n ity fo r f in d in g and d ocum enting n e w patterns needs to be regarded
w ith som e ca u tio n . In p a rticu la r:

□ O ve r-e n th u s ia s tic use b y in e xp e rie n ce d designers m ay lead to p o o r ly structured designs.
S o m m e rv ille [2010] argues f irm ly that patterns are best e m p lo ye d b y m ore experien ced
designers w h o are better able to reco gn ise w hen a design is t ru ly o f a generic fo rm .

□ T h e im pact o f u s in g patterns is apt to be found d u rin g m aintenance a ctiv itie s . E v id e n c e
here is p a tch y , but the paper b y W e n d o rf f [2001] p ro v id e s som e illu stra tion s o f the h a z
ards o f m isuse, taken d ire c t ly fro m experience .

4 .2 D e s ig n p a t t e r n s

- 7 3 -

T o illu s tra te the concept, w e w i l l b r ie f ly exam ine the exam ple o f the w id e ly used Observer
(293) pattern. (B y co n ve n tio n , w h en re fe rrin g to patterns fro m the G o F , w e o ften append the
page num ber to its nam e.) O b s e rve r p ro v id e s an exam ple o f an o b je ct b e h a vio u ra l pattern , in that
it concerns ob jects rather than classes and addresses a p ro b le m that is related to the d yn a m ic
b e h a v io u r o f those ob jects .

T h e s itu a tion that it addresses is one w h e re a change o f state that occurs in one ob ject re
qu ires that (a va ria b le num ber o f) other ob jects then need to be no tifie d so that, w h e re a p p ro p ri
ate, th e y can change th e ir state to re fle ct th is . A g o o d illu s tra tio n o f such a s ituation occurs w ith a
spreadsheet (the ‘ su b je ct’) and a data g ra p h in g to o l (the ‘ o b se rve r’) that is p ro v id in g a chart o f
the data in the spreadsheet. I f w e change the data va lue s in some o f the spreadsheet c e lls , then w e
expect that the graph w i l l change in response, and that it w i l l do so w ith o u t any need fo r us to do
an yth ing .

F ig u re 9 show s a s im ple o b je ct m odel that represents th is o n e -to -m a n y s ituation , u su a lly re
fe rred to as a ‘p u b lis h -su b sc rib e ’ m odel. In essence, (concre te) observers re g is te r w ith the
re le va nt sub ject; w h en a state change o ccu rs in the su b ject it issues a notify () message to a ll
reg istered o b servers ; and the observers then p e rfo rm appropria te update () ope ra tions to obta in
the deta ils o f the change that m ig h t a ffect them .

Patterns em phasise the use o f co m p o s itio n and in terfaces o v e r inheritance. W h e n id e n tify in g
a pattern , the goa l is therefore to id e n tify the parts o f a design that are l ik e ly to v a ry , and to
encapsulate these so that these parts o f the system can v a ry w ith o u t a ffectin g others [Freem an et
a l., 2004] T h is de legation o f changeable elem ents then creates the required f le x ib i l i t y fo r patterns
such as O b s e rve r. O b s e rv e r also dem onstrates the idea o f loose c o u p lin g that is co m m o n to m any
patterns. It also m eans that the k e y in fo rm a tio n rem ains u n d e r the con tro l o f a s in g le ob je ct.

4.3 A g i le m e th o d s

F o r p la n -d r iv e n design m ethods, the p rocedures in v o lv e d ne a rly a lw ays assum e that a fa ir ly
com plete requirem ents sp e c ifica tio n is a va ila b le at the start o f the design process . T h e y are
therefore im p lic it ly based u pon a trad itio n a l ‘w a te rfa ll’ m od e l o f deve lopm ent. S ince m any such
m ethods w ere d e ve lo p e d w ith ‘ data p ro ce ss in g ’ a p p lica tio n s in m ind , th is is n o t w h o lly unrea
sonable. H o w e v e r , as the co m p u tin g e n v iro n m e n t has e v o lv e d from m ainfram es th ro u g h person
al com puters to the in ternet, expectations o f so ftw a re h a ve changed and becom e m ore f lu id .

T h e late 1980s and the 1990s sa w the d eve lo p m e nt o f ideas about rap id application devel
opment (R A D) , based at least in part up on the idea o f d e ve lo p in g a system th ro u g h a series o f
increm ental stages. B a rry B o e h m ’ s sp ira l model o f deve lopm e nt [B o e h m , 1988], ty p if ie s th is
m o ve fro m a w a te rfa ll-b a se d co n te xt to one in w h ic h both design and im plem entation e v o lv e in a
stepw ise fash io n , a d ju stin g as greater in sig h t in to the needs o f the eventual e n d -u se rs em erge.

W ith the n e w ce n tu ry , these ideas coa lesced in to m ore radical th in k in g s t ill (a lth o u g h s t ill
s tructu red in its w a y) , and led to the A gile Manifesto (see F ig u re 10). T h e basis o f the ag ile
m ovem ent w as the idea that requirem ents w e re them se lves ‘ em ergent’ [T ru e x et a l., 1999] and
lik e ly to be in a constant state o f change as th e y adapted to co n tinua l changes in business needs.

A num ber o f agile methods have e v o lv e d fro m th is , g e n e ra lly characterised b y th e ir use o f
increm ental deve lop m e nt m odels and close in te ra ctio n w ith the end -user (cu s to m e r). P ro b a b ly
the best k n o w n fo rm s are Extreme Program m ing (X P) d eve lop ed b y K e n t B e c k [2004], and
Scrum [S ch w a b e r & B e e d le , 2002] w h ic h seems to be in c re a s in g ly attracting attention. S ince

these tw o e m b o d y quite in te re s tin g ly d iffe ren t approaches to addressing the ideas em bodied in
the A g i le M a n ife s to , w e p ro v id e a v e ry b r ie f ou tlin e o f each o f th e ir m ain chara cteristics here.

F ig u re 9 : S t ru c tu re o f th e O b s e r v e r p a tte rn

Extreme Program m ing (XP)

X P is characterised b y an em phasis u p o n its 12 basic p ractices rather than b y a sp e c ific form
o f p rocess m o d e l. Space p recludes d iscu ss in g a ll o f these in deta il, but b e lo w w e b r ie f ly outline
som e o f those that are p ro b a b ly better k n o w n (and w h ic h he lp to d is tin g u ish X P fro m other
m ethods).

□ Test-first program ming. T h e X P practice is to w rite the tests before w r it in g the code and
then test c o n tin u o u s ly , at the end o f each day, a fte r each increm ent in the design .

□ P a ir program ming. P ro b a b ly the b e st-k n o w n feature o f X P . A l l code is w ritte n b y tw o
program m e rs w o rk in g at a s ing le m achine, d iscu ss in g th e ir w o rk as th e y go.

□ Collective ownership. T h e code is ow ned b y a ll o f the team m em bers, and th e y m a y make
changes to it w h e n e ve r th e y deem it necessary.

□ 40-hour weeks. Iterations sh o u ld be sized so that o ve rtim e is not needed, on the basis that
tired p rogram m ers m ake m istakes.

W h ile e m p irica l studies o f d e s ign m ethods are d if f ic u lt to p erfo rm , som e o f the features o f
X P have been studied e m p ir ic a lly , in p a rticu la r p a ir p ro g ra m m in g . A secondary s tu d y (aggregat
in g p r im a ry experim enta l stud ies) in the fo rm o f a m e ta -a na lys is w as p erform ed b y H a n n a y et
a l., [2009] T h e resu lts o f th is w e re not s tro n g ly c o n c lu s iv e due to va ria tio ns in the prim ary
studies, but th e y d id observe that fo r m ore co m p le x p ro b le m s, the use o f p a ir p rog ra m m in g did
seem to re su lt in h ig h e r q u a lity so ftw a re , w hereas fo r s im p le r problem s it tended to be more
tim e -co n su m in g than so lo p rogra m m in g .

- 7 5 -

U n lik e X P , S crum is less concerned w ith tech n ica l issues and m ore w ith the m anagem ent o f
the o v e ra ll deve lopm ent process. A cha ra cteristic that S crum shares w ith a num ber o f R A D and
a g ile m ethods is the use o f time boxing, b y w h ic h em phasis is placed u pon the use o f d e ve lo p
m ent phases that use a f ix e d tim e in te rva l, v a ry in g the re su lting d e liv e ry o f fu n c tio n a lity as
necessary. T h is is o f course in contrast to p la n -d r iv e n fo rm s w here fu n c tio n a lity tends to be
f ix e d , and d e liv e ry tim es are va rie d as necessary.

A S cru m p ro je c t is therefore o rg a n ize d a rou n d a series o f f ixe d -te rm sprints, u su a lly o f 2 -4
w e e k s ’ duration . E a ch sp rin t generates a n e w increm ent, and increm ents are grouped to create
releases o f the p ro d u ct. T h e lis t o f d eve lo p m e nt tasks is term ed the product backlog, and a
p o rtio n o f the b a ck log is u s u a lly addressed in each sp rin t. T h e team is s e lf -o rg a n is in g and meets
each d a y fo r a fifte e n -m in u te daily scrum (the term com es fro m the h udd le in the game o f ru g b y
fo o tb a ll). D u r in g the scrum , th e y re v ie w w h a t has been accom plished s ince the p re v io u s m eeting,
id e n t ify w h a t is to be done that d a y , and note a n y p oss ib le obstacles. S che du led a ro u n d th is is a
fu rth e r set o f fo rm a lised m eetings that o ccu r at the b e g in n in g and end o f a sprin t.

S c ru m also d istingu ish es betw een d iffe re n t ro le s , w h ic h are cha ra cterised as b e in g those o f
p igs o r chickens (fro m the tra d itio n a l m odel o f the cooked breakfast fo r w h ic h the p ig is co m m it
ted and the ch icken m e re ly in v o lv e d) . In th is co n te xt, ro les defined as p ig s are those that ca rry
re s p o n s ib ility , and hence ch ick en s m ay not d ire c t the a c tiv itie s o f p ig s .

4.4 C o m p o n e n t -b a s e d d e v e lo p m e n t

In o th e r dom ains, the ro le o f the component has been h ig h ly successfu l, im p ly in g w e ll-d e fin e d
and th o ro u g h ly tested fu n c tio n a lity and in terfaces, so en ab lin g the designer to reuse such com
ponents in other system s w ith con fid e nce .

In the 1990s researchers began to e x p lo re h o w th is concept m ight be e m p lo ye d fo r softw are .
O n e p ro b le m that em erged w as that o f d e te rm in ing e x a c tly w hat sh o u ld be the k e y properties o f
a so ftw a re com ponent in o rd e r to enable the degree o f reuse a ch ie ve d in other dom ains. In
(B u d g e n , 2003) one o f the chapters exam ines th is qu estion , and discusses the e v o lu tio n o f the
com pone nt concept— a process that has co n tin u e d . Som e k e y ideas about com ponent-based
so ftw a re e n g in eerin g (C B S E) that have em erged are:

□ p ro v is io n fo r reuse (im p ly in g a c lea r d e fin it io n o f in terfaces needed to enable a ‘ p lu g and
p la y ’ ro le in w h ic h a com ponent c o u ld s im p ly be v ie w e d as a ‘ b la ck b o x ’) ;

□ independence o f d e liv e ry (a com ponent sh o u ld no t have a n y ‘aw areness ’ o f its c o n te x t);

□ the existence o f a component model that in co rporate s specific com ponent in te ra ction and
co m p o sitio n standards;

□ a composition standard that p ro v id e s the necessary d e fin itio n s o f h o w com ponents can be
com posed to fo rm la rge r structures.

E lem en ts o f these are e xam ine d in the d iscu ss io n s o f com ponents p ro v id e d in papers such as
[B ro w n & S hort, 1997] and books such as [S z y p e rs k i, 1998] and [H e in e m a n & C o u n c ill , 2001].

H o w e v e r , w h ile at one p o in t it began to lo o k as th o u gh a com ponent ‘ m arket’ w a s e m erg in g ,
th is has not re a lly d e ve lo p e d as far as m a ny expected o r hoped. T h e reasons fo r th is p ro b a b ly

in c lu d e at least the fo llo w in g :

S cru m

- 7 6 -

□ the co m m e rc ia l potentia l o f a com ponent m arket w as p ro b a b ly underm ined b y the emer
gence o f open source system s (and co m pone nts), so that ven d ors o f com m ercia l com po
nents w e re d is in c lin e d to in ve st too e x te n s iv e ly ;

□ the lack o f adequate standards, in the sense that beyon d a fe w specia lised areas such as
Ja va A P Is , there w as no agreed fra m e w o rk that com ponent ve n d o rs and users cou ld de
pend u p o n ;

□ the em ergence o f the softw are serv ice m odel and the related concept o f the service ori
ented architecture (S O A) , w h ic h w e address b e lo w .

Service models (and particularly web services) began to develop in the early 2000s. Th e ir use o f

standards fo r interaction (such as the use o f S O A P — the simple object access protocol), s im plicity o f

interface, and platform independence offered an (adm ittedly constrained) approach to component assem

bly. A rch itectura lly , they provide a constrained form o f distributed processes. How ever, because the

com puting w ork is undertaken b y the service provider, they more readily lend themselves to creating

commercial opportunities than components that the user has to execute on their own computer [K ra fz ig et

al. 2004]. Em erging ideas about cloud computing take this aspect yet further.

W e a r e u n c o v e r i n g b e t t e r w a y s o f d e v e l o p i n g s o f t w a r e b y d o i n g i t

a n d h e l p i n g o t h e r s t o d o i t . T h r o u g h t h i s w o r k w e h a v e c o m e t o

v a l u e :

• I n d i v i d u a l s a n d i n t e r a c t i o n o v e r m e t h o d & t o o l s

• W o r k i n g s o f t w a r e o v e r c o m p r e h e n s i v e d o c u m e n t a t i o n

• C u s t o m e r c o l l a b o r a t i o n o v e r c o n t r a c t n e g o t i a t i o n

• R e s p o n d i n g t o c h a n g e o v e r f o l l o w i n g t h e p l a n

T h a t i s , w h i l e t h e r e i s v a l u e i n t h e i t e m s o n t h e r i g h t , w e v a l u e t h e

i t e m s o n t h e l e f t m o r e .

A s so o fte n , th o u g h , the se rv ice m odel, w h ile appearing to ove rco m e som e o f the lim itations
o f p re ce d in g te ch n o lo g ie s , b rin g s technical cha llenges o f its o w n . Its d istrib u ted nature means
that the e n d -u se r is dependent u pon others to p ro v id e th e ir com p u ting resources; in d e x in g and
lo ca tin g se rv ice s o ffe rs som eth ing o f a sem antic cha lle n g e ; and there is a m u lt ip lic ity o f stand
ards and m a ny d iffe r in g d e fin it io n s o f S O A . S o ftw a re se rv ice m odels do c e rta in ly o ffe r potential
and th ey change the co m p u tin g paradigm — but they have ye t to dem onstrate th e ir potentia l rea lly
e ffe c t iv e ly .

4.5 D e s ig n s u p p o r t to o ls

S o ftw a re to o ls can p ro v id e support fo r creative a c tiv itie s in m any dom ains. T h e w o rd processor
p ro v id e s features that are usefu l to the author; m usica l co m p o sitio n can be made easier b y score -

F ig u re 10: T h e A g i le M a n ife s to

_ 7 7 . .

w rit in g softw a re that he lps keep track o f m u ltip le parts; eng in eerin g has lo n g had C A D (co m p u t
er assisted d e s ig n) so ftw are to he lp rem ove the m ore tedious d ra fting tasks.

C u r io u s ly , the one dom ain w h ere design support to o ls have m ade little real p rogress is that o f
so ftw a re eng ineering . T h e re are a num ber o f p o ss ib le reasons fo r th is : one is that the design o f
so ftw a re in v o lv e s m a n ip u la ting abstractions, and in the e a rly stages at least, th is u s u a lly in vo lv e s
re la t iv e ly litt le attention to deta iled syn ta x and sem antics. H o w e v e r , the exam ples o f successfu l
design support id e n tifie d above are a ll fro m dom ains w h e re d e s ign tends to take place us ing
w e ll-d e fin e d form s.

A second is the in v is ib i l it y o f o u r m edia. A s observed above , o u r notations are essentia lly
a rt if ic ia l and lack any w e ll-d e fin e d o r e a s ily e n visa ge d connections w ith the end product itse lf.
R e la ted to th is is the need fo r w e ll-e sta b lish e d d e sc rip tive standards. M u s ic a l no ta tio n , te x t, 3 -D
e n g in e e rin g and d ra w in g d escrip tio n s are a ll fo rm s that have w e ll-e sta b lish e d co n ve n tio n s and
standards. W h ile fo r o b je c t-o rie n te d design and fo r som e other fo rm s as w e ll, the U M L has at
least p a rtia lly m et th is need, as w e noted e a rlie r, in its present fo rm at least, th is m ay ju s t b e one

step on the path tow a rd s th is o b je ctive .

S o ftw a re design too ls have tended to p ro v id e the m eans o f d ra w in g d iagram s u s in g such
fo rm s as the U M L . H o w e v e r , it is s till not u n co m m o n to f in d that th e ir design m akes it d if f ic u lt
to create d iagram s w ith non -sta n d a rd syn ta x o r fo rm s. Y e t. as w e have also observed , softw are
designs ra re ly em erge ‘ fu l ly f le d g e d ’ and expressed in a w e ll-d e fin e d syntax. Ind e ed , a lthough
the cha llenge o f d e ve lo p in g such to o ls has lo n g been recogn ised [G u in d o n & C u rt is . 1988;
R eeves et a l., 1995], p rogress w ith addressing th is cha llenge seems to have been la rg e ly lim ite d
to d e ve lo p in g to o ls fo r use in education (fo r e xa m p le , see [D ra n id is , 2007]),

5. D is c u s s io n

S o ftw a re d esign is a la rge and c o m p le x to p ic and an o v e rv ie w paper such as th is can o n ly
p ro v id e an o u tlin e d e sc rip tio n o f som e o f the k e y issues and deve lopm ents in c lu d e d in the to p ic ,
together w ith som e po in te rs to w h e re the reader can o b ta in m ore deta il.

T h e softw a re d e s ig n e r’ s reperto ire o f conceptua l to o ls is both qu ite exten sive and also needs
som e care in its use. A s the d iscu ss io n o f k n o w le d g e schem a in d ica tes , each d e s ig n e r ha.s the ir
o w n set o f m odels, based both on th e ir o w n exp e rie n ce s , and experien ces ob ta in ed from oth ers ,
th ro u g h w h a te ve r m eans are m ost appropria te . T h e sheer d if f ic u lty o f und erta k ing e m p irica l
studies in th is area has tended to lim it o u r un dersta nd in g o f the e ffectiveness o f o u r conceptual
to o ls , a lth ou gh th is s ituation is s lo w ly ch a n g in g . H o w e v e r , regard less o f th is , it is a lw a ys im
portant fo r the reader to be aw are that so ftw are d e s ign does n o t lend its e lf to ‘ s ilv e r bu lle ts ’ — and
indeed , conceptual to o ls are ju s t that: th ey are a ids that assist the design er in p e rfo rm in g th e ir
o w n c re a tive task, no t a source o f so lu tion s in them se lves.

A c k n o w le d g e m e n ts

A re v ie w paper such as th is d raw s u pon m any sources and past d iscuss ions w ith co llea gue s and
co llab o ra to rs and m y thanks to a ll o f them fo r th e ir he lp w ith e x p lo r in g th is c o m p le x and fasc i
nating to p ic .

R e fe re n c e s

• A d e ls o n , B . & S o lo w a y , E . (1985). “ T h e R o le o f D o m a in E xp e rie n c e in S oftw a re D e
s ig n ,” I E E E Trans. Software Eng., 11(11), pp. 1351-1360.

• A le x a n d e r , C . , Ish ik a w a , S ., S ilve rs te in , M ., Jacobson , M ., F ik s d a h l-K in g , I . & A n g e l, S.
(1 9 7 7). A Pattern Language, O x fo rd U n iv e rs it y Press. O x fo rd , E n g la n d .

• A v is o n , D .E . & F itzg e ra ld , G . (1995). Inform ation Systems Development Methodologies,
Techniques & Tools, 2nd e d itio n , M c G r a w -H i l l , N e w Y o rk .

• B e c k , K . (2004). Extreme Program m ing Explained: Embrace Change, 2nd ed itio n , A d d i-
s o n -W e s le y , R ea d in g , M A .

• B o e h m , B .W . (1988). “ A sp ira l m odel o f softw are deve lopm ent and enhancem ent,” IE E E
Com puter 2 1 (5), p p . 6 1 -7 2 .

• B ro o k s , F .P . J r . (1987). “ N o S ilv e r B u lle t : Essence and A c c id e n ts o f S o ftw a re E n g in e e r
in g ,” I E E E Computer, A p r , pp. 10-19.

• B ro w n , A .W . & S ho rt, K . (1997). “ O n com ponents and ob jects : T h e fou n d ation s o f com
p o n ent-b ased deve lopm e nt,” in Proceedings o f 5th International Symposium on Assess
ment o f Software Tools and Technologies, I E E E C o m p u te r S o c ie ty Press, pp . 112-121.

• B u d g e n , D . (2003). Software Design, 2nd ed itio n , Pearson A d d is o n -W e s le y , R eading,
M A .

• B u d g e n , D . , B u m , A .J . , B re re to n , O .P ., K itch e n h a m , B .A . & P re to riu s , R . (2011). “ E m
p ir ic a l e v id e n ce about the U M L : A System atic L ite ra tu re R e v ie w ,” to appear in Software:
Practice & Experience.

• B u sch m a n n , F . , M e u n ie r, R ., R o h n e rt H . , Som m erlad , P . & S ta l, M . (1996). Pattern-
O riented Software Architecture: A System o f Patterns, W ile y .

• C u r t is , B . , K ra sn e r, H . & Isco e , N . (1988). “ A fie ld s tudy o f the softw are d e s ign process
fo r la rge system s,” Comm. A C M , 3 1 (11), pp . 1268-1287.

• D e tie n n e , F . (2002). Software Design— Cognitive Aspects, S p rin g e r P ra ctitio n e r Series.

• D ra n id is , D . (2007). “ E v a lu a tio n o f Student U M L : A n E d u ca tio n a l T o o l fo r consistent
m o d e llin g w ith U M L , ” in Proceedings o f the Informatics Europe I I Conference, pp. 248-
256.

• F e n to n , N .E . & P fle e g e r, S . L . (1997). Software M etrics: A Rigorous & Practical Ap
proach , 2nd e d itio n , P W S P u b lis h in g C o m p a n y , B o sto n , M A .

• Freem an, E . , S ie rra , K & Bates, B . (2004). Head F irs t Design Patterns, O ’ R e illy .

• G a m m a , E . , H e lm , R ., Jo h n so n , R . & V lis s id e s , J . (1995). Design Patterns— Elements of
Reusable O bject-Oriented Software, A d d is o n -W e s le y R ead in g , M A ,

• G a r la n , D . & P e rry , D .E . (1996). “ In tro d u c tio n to the special issue on softw are architec
tu re ,” IE E E Trans, on Software. Eng ., 2 1 (4), pp. 269-274.

I n fo rm a tio n s o u rc e s fo r th is a r tic le are:

• G u in d o n , R . & C u rt is , B . (1988). “ C o n tro l o f c o g n it iv e processes d u rin g so ftw a re design :
w h at to o ls are needed ,” in Proceedings o f C H I ’88, A C M Press, pp . 263-268.

• G u in d o n , R . (1990). “ K n o w le d g e e x p lo ite d b y experts d u rin g so ftw a re system d e s ig n ,”
Int. J. M an-M achine Studies, 33, pp. 279-304.

• H a n n a y , J . E . , D y b ä , T . , A r is h o lm , E . & S j0b e rg , D . I . K . (2009). “ T h e e ffe ctive ne ss o f
p a ir p ro g ra m m in g : A m e ta -a n a lys is ,” Inform ation & Software Technology 51, pp. I l l 0—
1122.

• H a re l, D . (1987). “ Statecharts: a v is u a l fo rm a lism fo r c o m p le x system s,” Science o f
Computer Programm ing, 8, 231 -274 .

• H a y e s -R o th , B . & H a y e s -R o th , F . (19 79). “ A C o g n it iv e M o d e l o f P la n n in g ,” Cognitive
Science, 3, pp . 275-310.

• F ie inem an, G .T . & C o u n c ill , W .T . (20 01). Com ponent-Based Software Engineering: Put
ting the Pieces Together, A d d is o n -W e s le y , R e a d in g , M A .

• Jacobson , I ., B o o c h , G . & R u m b a u gh , J . (1 9 9 9). The Unified Software Development P ro
cess, A d d is o n -W e s le y , R e a d in g , M A .

• K ra fz ig , D ., B a nk e , K . & S lam a, D . (2004). Enterprise S O A : Service-Oriented Architec
ture Best Practices, P re n tic e -H a ll. U p p e r S a d d le R iv e r , N J

• K ru ch te n , P .B . (1994). “ T h e 4+1 v ie w m o d e l o f a rch itectu re ,” IE E E Software, 12(6), 42 -
50.

• M o o d y , D .L . (2009). “ T h e ‘ p h ys ic s ’ o f n o ta tio n s : T o w a rd a sc ie n tific b a s is fo r construct
in g v is u a l no tations in softw are e n g in e e rin g ,” IE E E Trans, on Software. Eng ., 3 5 (6), pp.
756-779.

• P age -Jon es, M . (1988). The Practical Guide to Structured Systems Design, 2 nd ed itio n ,
P re n tic e -F la ll In te rna tio na l. U p p e r S addle R iv e r , N J

• Pam as, D .L . & W e iss , D .M . (1987). “ A c t iv e D e s ig n R e v ie w s : P rin c ip le s and P ra ctice s ,”
J. Systems & Software, 7, p p . 259-265.

• R eeves, A .C . , M a ra sh i. M . & B u d g e n . D . (1 9 9 5). “ A softw a re design fra m e w o rk o r h o w
to support real d es ign ers ,” Software Eng. Jo u rn a l, 10(4), pp . 141-155.

• R itte l, H .J . & W e b b e r, M .M . (19 84). “ P la n n in g P rob lem s are W ic k e d P ro b lem s,” in N .
C ro s s , ed. Developments in Design M ethodology, W ile y , pp . 135-144.

• Peter R u m b a u gh , J . , Jacob son , I. & B o o c h , G . (1999). The Unified M odeling Language
Reference M anual, A d d is o n -W e s le y , R e a d in g , IM A .

• S chw ab er, K . & B e e d le , M . (2002). A gile software development with Scrum, P re n tice -
F la ll. U p p e r Saddle R iv e r , N J

• S ha w , M . & G a rla n , D . (1996). Software Architecture: Perspectives on an Em erging D is
cipline, P re n tic e -H a ll, U p p e r Saddle R iv e r , N J

• S o m m e rv ille , I . (2007). Software En g ineering , 8th e d itio n , A d d is o n -W e s le y , R e a d in g ,
M A .

S zy p e rs k i, C . (1998). Component Software: Beyond O bject-Oriented Program m ing, A d -
d is o n -W e s le y , R ead in g , M A .

T a y lo r , R .N . , M e d v id o v ic , N . & D a s h o fy , E .M . (2010). Software Architecture: Founda
tions, Theory and Practice, W ile y & S ons, H o b o k e n , N J .

T r u e x , D ., B a sk e rv ille , R . & K le in , H . (1999). “ G ro w in g system s in em ergent o rg a n iza
t io n s ,” Comm. A C M , 4 2 (8), pp. 117 -123.

W e n d o rff , P . (2001). Peter W e n d o rff , “ Assessm ent o f d es ign patterns d u rin g softw are
re e n g in e e rin g : Lessons learned fro m a large com m ercia l p ro je c t,” in Proc. o f F ifth C on
ference on Software Maintenance and Reengineering CSM R ’01, I E E E C o m p u te r S o c ie ty
P ress, L o s A la m ito s , C A , pp . 77-84.

W ie r in g a , R . (1998). “ A su rve y o f structu red and o b je ct-o rie n te d softw are sp e c ifica tio n
m ethods and techniques,” A C M Com puting Surveys, 30 (4), pp . 459-527.

W illia m s , L . & C o c k b u m , A . (2003). “ A g i le softw are d eve lo p m e nt: I t ’ s about feedback
and ch a n g e ,” IE E E Computer, 3 6 (6), pp. 3 9 -4 3 .

Z h a n g , C . & B u d g en , D . (2010). “ A S u rv e y o f E xp e rie n c e about D e s ig n Patterns,” S u b
m itted fo r p u b lica tio n .

- 8 2 -

C h a p t e r 2 . 1 b

M o d e l - B a s e d S o f t w a r e D e s i g n f o r C o n c u r r e n t

a n d R e a l - T i m e S y s t e m s

Hassan Gomaa
Department o f Computer Science

George Mason University
Fa irfax, V irginia 22030, USA

A b s t ra c t

When designing concurrent and real-time systems, it is essential to blend object-
oriented concepts with the concepts o f concurrent processing. This paper de
scribes a model-based software design method fo r designing concurrent and real
time systems, which integrates object-oriented and concurrent processing con
cepts and uses the U M L notation.

Keyw ords: real-time systems, UM L, concurrency, real-time software, design
method, software product lines, software modeling.

1. In t r o d u c t io n

In m o d e l-b a se d softw a re d esign and deve lopm ent, so ftw are m o d e lin g is used as an essential part
o f the so ftw a re deve lopm ent process. M o d e ls are b u ilt and a n a lyze d p r io r to the im plem entation
o f the system , and are used to d ire c t the subsequent im plem entation . A better understand ing o f a
system can be obta ined b y c o n s id e rin g the m u ltip le v ie w s [G o m a a 2004, G om aa 2006], such as
requ irem ents m odels , static m ode ls , and d ynam ic m odels o f the system . A g raph ica l m odeling
language su ch as U M L helps in d e ve lo p in g , understa nd ing and co m m un icatin g the d ifferent
v ie w s .

B e cause re a l-tim e system s are re a ctive system s, c o n tro l dec is io n s are o fte n state dependent,
hence the im p o rta nce o f fin ite state m achines in the d e s ign o f these system s. R e a l-tim e systems
ty p ic a lly ne ed to process co n cu rre n t inpu ts from m any sources, hence the im portance o f co n cu r
rent so ftw a re d esign . T h e y h a ve re a l-t im e th rou ghput and/or response tim e requ irem ents, so there
is a need to a n a lyze the perfo rm a nce o f rea l-tim e designs. Fu rth erm o re , there is a need to in te
grate re a l-t im e te ch n o lo g y w ith m odern softw are e n g in e e rin g concepts and m ethods.

T h is p a p e r p ro v id e s an o v e rv ie w o f des ig n in g re a l-t im e em bedded softw a re system s. I t starts
b y p ro v id in g an o v e rv ie w o f co n cu rre n t p rocessing concepts in Section 2. In section 3, run -tim e
support fo r co n cu rre n t and re a l-tim e system s is b r ie f ly d iscussed. S ection 4 presents an o v e rv ie w
o f co n cu rre n t and rea l-tim e d e s ig n m ethods. W ith th is backgrou n d , an o v e rv ie w o f a m ode l-
based so ftw a re design m ethod fo r d istribu ted and re a l-tim e em bedded system s is g ive n in
S ection 5. T h e C O M E T m ethod [G o m a a 2000, G om a a 2011] integrates o b je ct-o rie n te d and
co n cu rre n t p ro ce ss in g concepts, and uses the U n if ie d M o d e lin g Lan gu a ge (U M L) notation.
S ection 6 d e scrib es softw are a rch ite ctu ra l patterns fo r re a l-t im e co n tro l. Section 7 describes the
perform ance a n a lys is o f rea l-tim e so ftw a re designs. S e ctio n 8 describes the d esign o f real-tim e
em bedded so ftw a re p ro d u ct lines.

A cha ra cteristic o f a ll re a l-tim e em bedded system s is that o f con cu rren t p ro ce ss in g ; that is, m any
a c tiv it ie s o ccu rrin g s im u lta ne o u s ly w h e re b y , fre q u e n tly , the o rd e r o f in co m in g events is not
p re d icta b le . C o n se q u e n tly , as rea l-tim e em bedded system s deal w ith severa l con cu rren t a c t iv i
ties, it is h ig h ly desirab le fo r a rea l-tim e em bedded system to be stru ctu red in to co n cu rren t tasks
(a lso k n o w n as co n cu rre n t processes o r th re ads). T h is section describes the concepts o f the
co n cu rre n t task, and the com m u n ica tion and syn c h ro n iza tio n betw een co -o p e ra tin g tasks. F o r
m ore in fo rm a tio n , re fe r to [B a c o n 2003, M a g ee and K ram er 2006, S ilb e rsch a tz and G a lv in 2008,
Ta n en b au m 2008].

A con cu rren t task (a lso k n o w n as con cu rren t p ro ce ss) represents the e xe cu tio n o f a sequentia l
p ro g ra m o r sequential com ponent o f a co n cu rre n t p rogram . A co n cu rre n t system consists o f
severa l tasks e xe cu tin g in p a ra lle l. E a ch task deals w ith one sequentia l thread o f e xe cu tio n .
C o n c u rre n c y in a so ftw a re system is obta ined b y h a v in g m u ltip le a syn ch ro n o u s tasks, ru n n in g at
d iffe re n t speeds. F ro m tim e to tim e, the tasks need to com m unicate and s yn c h ro n ize t lie ir o p e ra
t io n s w ith each other. T h e co n cu rre n t task ing co n ce p t has been ap p lie d e x te n s ive ly in the d es ign
o f ope ra ting system s, re a l-t im e system s, in te ra c tive system s, d is trib u te d system s, p a ra lle l s ys
tem s, and in s im u la tion ap p lica tio ns [B a co n 2003].

3. R u n -T im e S u p p o r t f o r C o n c u r r e n t T a s k s

R u n tim e support fo r co n cu rre n t p rocess ing m a y be p ro v id e d b y :

• K e r n e l o f a n o p e ra t in g system . T h is has the fu n c tio n a lity to p ro v id e se rv ices fo r c o n
current p rocess ing . In som e m odem o p e ra ting system s, a m ic ro -k e rn e l p ro v id e s m in im al
fu n c tio n a lity to support con curren t p ro ce ss in g , w ith m ost se rv ices p ro v id e d b y system
le ve l tasks.

• R u n t im e s u p p o r t syste m fo r a co n cu rre n t language.

• T h re a d s p a ck a g e . P ro v id e s se rv ices fo r m a na ging threads (lig h tw e ig h t processes) w ith in
h e a vyw e ig h t processes.

F o r m ore in fo rm a tio n , re fe r to [G o m a a 2000].

4. S u rv e y o f D e s ig n M e th o d s f o r C o n c u r r e n t a n d R e a l-T im e S yste m s

F o r the design o f co n cu rre n t and re a l-tim e system s, a m ajo r co n trib u tio n cam e in the late 1970s
w ith the in tro d u ctio n o f the M A S C O T no ta tion [S im p so n 1979], and later the M A S C O T d esign
m ethod [S im p so n 1986]. B a se d on a data f lo w approach , M A S C O T fo rm a lize d the w a y tasks
com m unicate w ith each other, v ia e ither channels fo r m essage co m m u n ica tio n o r p o o ls (in fo r
m ation h id in g m odules that encapsulate shared data structu res).

T h e 1980s saw a general m aturation o f so ftw a re design m ethods, d u rin g w h ic h tim e severa l
system design m ethods w e re in troduce d . P am as’ s w o rk w ith the N a v a l R esearch L a b , in w h ic h
he e x p lo re d the use o f in fo rm a tio n h id in g in la rg e -sca le softw a re d esign , led to the deve lopm ent
o f the N a v a l R esearch L a b (N R L) S o ftw a re C o s t R e d u ctio n M e th o d [Pam as, C le m e nts , and
W e iss 1984]. W o rk on a p p ly in g S tructu re d A n a ly s is and S tructu re d D e s ig n to con cu rren t and
re a l-t im e system s led to the deve lopm e nt o f R e a l-T im e S tructu re d A n a ly s is and D e s ig n
(R T S A D) [W a rd 1985, H a t le y 1988] and the Design Approach f o r Real-Tim e Systems (D A R T S)
[G o m a a 1984] m ethods.

2 . C o n c u r r e n t P r o c e s s in g C o n c e p ts

A n o th e r so ftw a re deve lopm e nt m ethod to em erge in the e a rly 1980s w a s Jackson System
D e ve lo p m e n t (J S D) [Jackson 1983]. J S D was one o f the firs t m ethods to advocate that the design
sh o u ld m odel re a lity f irs t and, in th is respect, predated the o b je ct-o rie n te d ana lysis m ethods. T h e
system is considered a s im u la tio n o f the real w o r ld and is designed as a n e tw o rk o f con curren t
tasks, w h ere each re a l-w o r ld en tity is m odeled b y m eans o f a co n cu rre n t task. J S D also defied
the th e n -co n ve n tio n a l th in k in g o f to p -d o w n d es ign b y a d vo ca ting a sc e n a rio -d rive n beh a vio ra l
ap proach to so ftw are design . T h is approach w as a p re cu rso r o f o b je ct in teraction m o d e lin g , an
essentia l aspect o f m odem o b je ct-o rie n te d deve lopm ent.

T h e e a rly o b je ct-o rie n te d ana lysis and design m ethods em phasized the structura l aspects o f
so ftw a re deve lop m e nt th ro u g h in fo rm a tio n h id in g and inheritance but neglected the d yn a m ic
aspects, and hence w e re less u se fu l fo r rea l-tim e design . A m a jo r c o n trib u tio n b y the O b je c t
M o d e lin g Te ch n iq u e [R u m b a u gh et a l., 1991] w as to c le a rly dem onstrate that d yn am ic m od e lin g
w as e q u a lly im portant. In a d d itio n to in tro d u c in g the static m o d e lin g notation fo r the object
d iagram s, O M T show ed h o w d yn am ic m o d e lin g c o u ld be perfo rm e d w ith statecharts (h ie ra r
ch ica l state tra n s itio n d iagram s o r ig in a lly co n ce ive d b y H a re l [1996, 1998] fo r sh o w in g b e h a v io r
o f a c tive ob jects , and w ith sequence d iagram s to sh o w the sequence o f in teractions betw een
ob je cts .

T h e C O D A R T S (C o n c u rre n t D e s ig n A p p ro a ch fo r R e a l-T im e S ystem s) m ethod [G om aa
1993] b u ilt on the strengths o f earlie r co n cu rre n t d es ign , re a l-t im e d esign , and e a rly o b je c t-
o rie n te d design m ethods. Th e se in c lu d e d P am as’ s N R L M e th o d , B o o c h ’ s O b je c t-O rie n te d
D e s ig n [B o o c h 1994], J S D , and the D A R T S m ethod b y em p h a siz in g both in fo rm a tio n h id in g
m o d u le s tru ctu rin g and task s tru ctu rin g . In C O D A R T S , c o n cu rre n cy and tim in g issues are
con side re d d u r in g task d esign w h ile in fo rm a tio n h id in g issues are considered d u rin g m odule
design .

O c to p u s [A w a d , K u u se la , and Z ie g le r 1996] is a re a l-t im e d e s ign m ethod based on use cases,
static m o d e lin g , o b je ct in teractions , and statecharts. B y co m b in in g concepts from Ja co b so n ’s use
cases w ith R u m b a u g h ’ s static m od e lin g and statecharts, O c to p u s antic ipated the m e rg ing o f the
no ta tions that is n o w the U M L . F o r re a l-tim e d esign , O c to p u s p laces p a rticu la r em phasis on
in te rfa c in g to e xte rna l d e v ice s and o n con curren t task stru ctu rin g .

R O O M (R e a l-T im e O b je c t -O r ie n te d M o d e lin g) [S e lic , G u lle k s o n , and W a rd 1994], is a re a l
tim e design m ethod that is c lo s e ly tied in w ith a C A S E (C o m p u te r A ss is te d S oftw a re E n g in e e r
in g) to o l ca lle d O b je c T im e . R O O M is based a round actors, w h ic h are a ctive ob jects that are
m odeled u s ing a va ria tio n on statecharts ca lled R O O M c h a rts . A R O O M m odel that has been
sp e c ifie d in s u ff ic ie n t deta il m a y be executed. T h u s , a R O O M m odel is operationa l and m a y be
used as an e a rly p ro to typ e o f the system .

B u h r [1996] in trod u ce d an in teresting concept ca lle d the use case map (based on the use case
co n ce p t) to address the issue o f d yn a m ic m o d e lin g o f la rge -sca le system s. U s e case m aps c o n
s id er the sequence o f in teractions betw een ob jects (o r aggregate ob jects in the form o f subsys
tem s) at a coarser g ra ined le ve l o f detail than do co m m u n ica tio n d iagram s.

F o r U M L -b a s e d re a l-tim e so ftw a re deve lopm e nt, D o u g la ss [1999, 2004] has p ro v id e d a co m
p reh ens ive d e scrip tio n o f h o w U M L can be app lie d to re a l-tim e system s. T h e 2004 book de
scribes a p p ly in g the U M L no ta tion to the deve lopm ent o f rea l-tim e system s. T h e 1999 b o o k is a
deta iled com pend iu m c o v e r in g a w id e range o f to p ics in rea l-tim e system deve lopm ent, in c lu d -

in g sa fe ty -c rit ic a l system s, in te raction w ith re a l-t im e o p e ra ting system s, re a l-tim e sche du ling ,
b e h a v io ra l patterns, re a l-tim e fra m e w o rk s, d e b u g g in g , and testing.

5. A M o d e l-B a s e d S o ftw a re D e s ig n M e th o d fo r C o n c u r r e n t a n d
R e a l-T im e E m b e d d e d S yste m s

M o s t bo o k s on o b je ct-o rie n te d an a lysis and d esign o n ly address the design o f sequentia l system s
o r o m it the im portant d es ign issues that need to be addressed w hen d e s ig n in g re a l-t im e and
d is trib u te d app lica tio ns [G o m a a 2000, B a co n 2003].

It is essential to b lend o b je ct-o rie n te d concepts w ith the concepts o f co n cu rre n t p rocess ing in
o rd e r to su cce ssfu lly d es ign these a p p lica tio ns . T h is paper describes som e o f the k e y aspects o f
the C O M E T m odel-ba sed so ftw a re d esign m ethod fo r re a l-t im e em bedded and d istribu ted
system s. C O M E T integrates o b je ct-o rie n te d and co n cu rre n t p ro ce ss ing concepts and uses the
U n if ie d M o d e lin g L a n gu a ge (U M L) notation (R u m b a u g h 2005). I t also describes the decis ions
m ade re g a rd in g h o w to use the U M L no ta tion to address the design o f co n cu rre n t, d istribu ted ,
and re a l-tim e em bedded system s. E xa m p le s are g ive n fro m a Pum p M o n ito r in g and C o n tro l
System , w h ic h is dep icted u s in g the U M L 2 notation .

5.1 T h e C O M E T M e th o d

C O M E T is a C o n cu rre n t O b je c t M o d e lin g and A rc h ite c tu ra l D e s ig n M e th o d fo r the deve lopm ent
o f co n cu rre n t ap p lica tio ns , in p a rticu la r d is trib u te d and re a l-t im e em bedded ap p lica tio n s [G o m aa
2000, G om aa 2011]. A s the U M L is n o w the standard ized notation fo r d e sc rib in g o b je ct-o rie n te d
m odels [B o o c h et al. 2005, R u m b a u gh et al. 2004, Ja cob son et al. 2000], the C O M E T m ethod
uses the U M L notation th rou gho ut.

T h e C O M E T O b je c t -O r ie n te d S o ftw a re L ife C y c le is h ig h ly ite ra tive . In the R equirem ents
M o d e lin g phase, a use case m odel is d e ve lo p e d in w h ic h the fu n ctio n a l requirem ents o f the
system are defin ed in term s o f actors and use cases.

In the A n a ly s is M o d e lin g phase, static and d yn a m ic m od e ls o f the system are d e ve lo p e d . T h e
static m od e l defines the structu ra l re la tio nsh ip s am ong p ro b le m dom ain classes. O b je c t stru ctu r
in g c rite ria are used to determ ine the ob jects to be co n sid e re d fo r the an a lys is m od e l. A d yn am ic
m odel is then d e ve lo p e d in w h ic h the use cases fro m the requirem ents m odel are re fin e d to show
the ob jects that partic ipate in each use case and h o w th e y in te ract w ith each other. In the d yn am ic
m ode l, state dependent ob je cts are d efin ed u s in g statecharts.

In the D e s ig n M o d e lin g phase, an A rc h ite c tu ra l D e s ig n M o d e l is d e ve lo p e d . Subsystem
s tru ctu rin g crite ria are p ro v id e d to design the o ve ra ll softw are arch itecture . F o r d istribu ted
a p p lica tio ns , a com ponent-based deve lop m e nt approach is taken, in w h ic h each subsystem is
designed as a d is trib u te d se lf-co n ta in e d com ponent. T h e em phasis is on the d iv is io n o f responsi
b i l it y betw een c lien ts and servers , in c lu d in g issues co n ce rn in g the ce n tra liza tio n v s . d is trib u tio n
o f data and c o n tro l, and the d esign o f m essage co m m u n ica tio n in terfaces, in c lu d in g syn ch ro n o u s ,
a synchron ou s, b rokered , and g ro u p com m u n ica tion . E a ch co n cu rre n t subsystem is then designed,
in term s o f active ob jects (tasks) and passive ob jects. T a s k co m m u n ica tio n and s yn c h ro n iza tio n
in terfaces are defined . T h e perfo rm ance o f re a l-tim e designs is estim ated u s in g an approach
based o n rate m onoto n ie an a lysis [S E I 1993].

D is tin g u is h in g fe a tu re s o f th e C O M E T m e th o d a re th e e m p h a s is on:

- 8 6 -

• S tru c tu rin g c rite ria to assist the designer at d iffe re n t stages o f the an a lysis and design
p rocess : subsystem s, ob jects , and co n cu rre n t tasks.

• D y n a m ic m o d e lin g , bo th o b je ct co m m u n ica tio n d iagram s and statecharts, d e sc rib in g in
deta il h o w ob je ct com m un ication diagram s and statecharts relate to each other.

• D is tr ib u te d ap p lica tio n design , addressing the design o f c o n fig u ra b le d istrib u ted co m p o
nents and in te r-co m p o ne nt m essage co m m u n ica tio n in terfaces.

• C o n c u rre n t design , addressing in deta il task s tru ctu rin g and the design o f task in terfaces.

• P e rfo rm a nce ana lysis o f re a l-t im e designs u s in g re a l-tim e sche du ling .

C O M E T em phasizes the use o f s tru ctu rin g c r ite r ia at d iffe re n t stages in the an a lys is and de
sign p rocess . O b je c t s tru ctu rin g c rite ria are used to he lp determ ine the ob jects in the system ,
subsystem s tru c tu rin g c rite ria are used to help determ ine the subsystem s, and co n cu rre n t task
s tru ctu rin g is used to he lp determ ine the tasks (a c tive o b je cts) in the system . U M L stereotypes
are used th ro u g h o u t to c le a rly sh o w the use o f the s tru ctu rin g c rite ria .

T h e U M L N o ta tio n supports R equ irem ents, A n a ly s is , and D e s ig n concepts. T h e C O M E T
m ethod separates requ irem ents, an a lys is , and design a c tiv itie s . R equirem ents m o d e lin g address
d e fin in g the fu n c tio n a l requirem ents o f the system . C O M E T d iffe ren tia tes ana lysis fro m design
as fo llo w s : a n a lys is is b reak ing d o w n o r decom p osing the p rob lem so that it is better understood,
w h ile d e s ig n is s yn th e s iz in g o r co m p o sin g (p u ttin g toge the r) the so lu tio n . Th ese a c tiv itie s are
n o w d e scrib e d in m ore deta il.

5.2 R e q u ire m e n ts M o d e lin g w it h U M L

In the R e q u ire m e nts M o d e l, the system is considered as a b la ck b o x . T h e U s e Case M o d e l is
d e ve lo p e d in w h ic h the fu n ctio n a l requirem ents o f the system are defined in term s o f use cases
and actors . T h is section describes the use o f actors in re a l-tim e app lications.

T h e re are severa l va ria tio n s on h o w actors are m odeled [Jacobson 1992, B o o ch 2007, F o w le r
2004, G o m a a 2011]. A n actor is v e ry often a hum an user. In m any in fo rm a tio n system s, hum ans
are the o n ly actors. It is also p oss ib le in in fo rm a tio n system s fo r an actor to be an external
system . In re a l-t im e and d istrib u ted ap p lica tio ns , an actor can also be an externa l I/O d e v ice o r a
tim er. E x te rn a l I/O d e v ice s and tim er actors are p a rt ic u la r ly p reva le n t in rea l-tim e em bedded
system s, w h e re the system interacts w ith the externa l e n v iro n m e n t th ro u g h sensors and actuators.

A h um a n a cto r m ay use va rio u s I/O device s to p h y s ic a lly in teract w ith the system . In such
cases, the hum an is the actor and the I/O d e vice s are not actors. In som e cases, h o w e v e r, it is
p ossib le fo r an a cto r to be an I/O d e v ice . T h is can happen w h e n a use case does n o t in v o lv e a
hum an, as o ften o c c u r in rea l-tim e ap p lica tio ns .

A n a cto r can also be a tim e r that p e r io d ic a lly sends tim er events to the system . P e rio d ic use
cases a re needed w h en certa in in fo rm a tio n needs to be outp u t b y the system on a re g u la r basis.
T h is is p a rt ic u la r ly im porta nt in re a l-t im e system s, a lthough it can also be useful in in fo rm ation
system s. A lth o u g h som e m eth od o log ists co n sid e r tim ers to be in terna l to the system , it is more
useful in re a l-t im e a p p lica tio n design to co n sid e r tim ers as lo g ic a lly externa l to the system and to
treat them as p r im a ry actors that in itia te actions in the system .

A n e xa m p le o f a use case m odel fro m the Pum p M o n ito r in g and C o n tro l System is g ive n in
F ig u re 1, in w h ic h there are tw o use cases, C o n tro l Pum p and V ie w Pum p Status. T h e re are five

actors, three representing the three exte rna l sensors, one c lo c k actor, and an exte rn a l user actor -
the O p e ra to r.

5.3 A n a ly s is M o d e lin g w it h U M L

T h is section describes som e o f the in te resting aspects o f C O M E T fo r ana lysis m o d e lin g . In
p a rticu la r, th is section describes static m o d e lin g o f th e system co n te xt, stereotypes to represent
ob ject s tru ctu rin g d ec is ion s m ade b y the a n a lyst, a n d co n sis te n cy ch e ck in g betw ee n m u ltip le
v ie w s o f a d yn a m ic m odel.

5.3.1 S ta t ic M o d e lin g

F o r rea l-tim e ap p lica tio ns , it is p a rt ic u la rly im p o rta n t to understand the in terface betw een the
system and the externa l en v iro n m e n t, w h ic h is re fe rre d to as the system context. In S tructured
A n a ly s is [Y o u rd o n 1989], the system co n te xt is s h o w n on a system context diagram. T h e U M L
no ta tion does n o t e x p lic it ly support a system co n te xt d iagram . H o w e v e r , the system con text m ay
be depicted u s in g e ither a static m odel o r a co m m u n ica tio n m odel [D oug la ss 1999]. A system
context class diagram p ro v id e s a m ore deta iled v ie w o f the system b o u n d a ry than a use case
diagram .

F ig u r e 1 : U se C a s e M o d e l f o r P u m p M o n i t o r i n g a n d C o n t r o l S y s te m s

U s in g the U M L no ta tion fo r the static m od e l, the system co n te xt is depicted sh o w in g the sys
tem as an aggregate class w ith the stereotype «s o ftw a re sys te m », and the exte rna l en vironm en t is
depicted as e x te rn a l classes to w h ic h the system m ust interface. E x te rn a l classes are categorized
using ste reotyp es (see descrip tion in S ection 5 .4 .2). A n externa l class can be an «e xte rn a l input
d e v ic e » , an «e x te rn a l output d e v ic e » , an «e x te rn a l I/O d e v ic e » , an «e x te rn a l u s e r», an «e xterna l
s ys te m », o r an «e x te rn a l t im e r» . F o r a rea l-tim e system , it is desirab le to id e n tify lo w -le v e l
external classes that correspond to the p h ys ica l I/O d e vice s to w h ic h the system m ust interface.
These e x te rn a l classes are depicted w ith the stereotype «e x te rn a l I/O d e v ic e » .

A n exa m p le o f a system co n te xt class d iagram from the Pum p M o n ito r in g and C o n tro l S ys
tem is g iv e n in F ig u re 2. Th e re are three externa l in p u t d e v ice classes, na m e ly the three sensors,
one e x te rn a l ou tp u t d e v ice class, the pum p engine , one externa l tim er class, and one externa l user
class.

D u r in g the an a lys is m o d e lin g phase, static m o d e lin g is also used fo r m o d e lin g data -intensive
classes [R u m b a u g h 1991].

F ig u r e 2 : P u m p M o n it o r in g a n d C o n t r o l S ys te m C la s s C o n te x t D ia g ra m

5.3.2 O b je c t S t r u c t u r in g

O b je ct s tru c tu rin g c rite ria are p ro v id e d to assist the designer in s tru ctu rin g a system in to objects.
Severa l o b je ct-b a se d and o b je ct-o rie n te d an a lysis m ethods p ro v id e c rite ria fo r determ in ing
objects in the p ro b le m dom ain [B o o c h 1994, C o a d 1991, G om a a 1993, Jacobson 1992, Pamas
1984, S h la e r, and M e llo r 1988]. T h e C O M E T ob je ct s tru ctu rin g c rite ria b u ild on these m ethods.

- 8 9 -

In o b je ct s tru ctu rin g , the goa l is to ca te g o rize ob jects in o rd e r to g ro u p together those w ith
s im ila r characteristics. W hereas c la ss ifica tio n based o n in heritance is an o b je ctive o f o b je ct-
o rien ted m o d e lin g , it is essentia lly tactica l in nature. C a te g o riza tio n , h o w e ve r, is a strategic
c la ss ifica tio n . T h e d e c is io n to o rg a n ize classes in to certa in groups is m ade because m ost soft
w are system s have these k ind s o f classes, and c a te g o riz in g classes in th is w a y he lps us under
stand the system w e are to deve lop .

U M L stereotypes are used to d is tin g u ish am ong the d iffe re n t k in d s o f ap p lica tio n classes. A
stereotype is a subclass o f an e x is tin g m o d e lin g elem ent, in th is case an a p p lica tio n class, w h ich
is used to represent a usage d is tin c tio n , in th is case the k in d o f class. A stereotype is dep icted in
g u ille m e ts , e .g ., « c o n t ro l» . A n instance o f a stereotype class is a stereotype ob je ct, w h ic h can
also be sho w n in gu ille m e ts . T h u s an a p p lica tio n c lass ca n be ca te g o rize d as an « e n t i t y » c lass,
w h ic h is a persistent class that stores data, a «b o u n d a ry » class, w h ic h interfaces to and c o m
m unicates w ith the exte rna l en viro nm e n t, a « c o n t r o l» class, w h ic h p ro v id e s the o v e ra ll c o o rd in a
t io n fo r the ob jects that partic ipate in a use case, o r an «a p p lic a tio n lo g ic » c lass, w h ic h
encapsulates a lg orith m s separate ly from the data b e in g m anipulated .

R e a l-tim e system s w i l l have m any d e v ice in te rfa ce classes to in terface w ith the va rio u s sen
sors and actuators. T h e y w i l l also have c o m p le x state-dependent co n tro l classes because these
system s are h ig h ly state dependent.

5.3.3 D y n a m ic M o d e lin g

F o r con cu rren t, d is trib u te d , and rea l-tim e a p p lica tio n s , dynam ic m o d e lin g is o f p a rticu la r im
portance . U M L does not em phasize co n sis te n cy c h e c k in g betw ee n m u ltip le v ie w s o f the va rio u s
m odels. N e ve rth e le ss , d u rin g d yn am ic m o d e lin g , it is im portant to understand h o w the f in ite
state m achine m od e l, dep icted u s in g a statechart [H a re l 1988, H a re l 1996, H a re l 1998] that is
executed b y a state-dependent co n tro l o b je ct, re la tes to the in teraction m o d e l, w h ic h dep icts the
in te ra ctio n o f th is o b je ct w ith other objects.

State Dependent Dynam ic Analysis addresses the in teraction am ong ob jects that p a rtic ip a te in
state-dependent use cases. A state-dependent use case has a state-dependent co n tro l ob je ct,
w h ic h executes a statechart, p ro v id in g the o v e ra ll con tro l and sequencing o f the use case. T h e
in te ra ctio n am ong the ob jects that partic ipate in the use case is depicted on a. co m m u n ica tio n
d iagram o r sequence d iagram .

T h e statechart needs to be considered in c o n ju n c tio n w ith the co m m u n ica tio n d iagram . In
p a rticu la r, it is necessary to co n sid e r the m essages that are re c e ive d and sent b y the co n tro l
ob je ct, w h ic h executes the statechart. A n in p u t e ve n t in to th e co n tro l o b je c t on the co m m u n ica
t io n d iagram m ust be consistent w ith the same e ve n t depicted on the statechart. T h e output eve n t
(w h ic h causes an action , enable o r d isable a c t iv ity) o n the statechart m ust be consistent w ith the
output eve n t sh o w n o n the co m m u n ica tio n d iagram .

A n exam ple o f the co m m u n ica tio n d iagram fo r the C o n tro l Pum p use case is g iv e n in F ig u re
3. A n exam ple o f the statechart fo r the Pum p C o n tro l ob ject is sh o w n in F ig u re 4. In F ig u re 3,
there are tw o in pu t ob je cts , H ig h W ate r S enso r In te rfa ce and L o w W a te r S enso r Interface, both
o f w h ic h re ce ive inpu ts fro m the externa l in p u t d e v ice s . T h e re is one output ob je ct, P u m p E n g in e
In te rfa ce , w h ic h outputs to the externa l ou tp u t d e v ic e . T h e re is one state-dependent co n tro l
ob je ct, Pum p C o n tro l, w h ic h executes the statechart in F ig u re 4. F in a lly , there is one tim e r
ob ject. M essage in pu ts to the Pum p C o n tro l o b je ct, such as H ig h W a te r D etected in F ig u re 3, are

the eve nts that cause state changes o n the statechart in F ig u re 4. A c t io n s in F ig u re 4 , such as
Start Pum p and S top Pum p, co rre spo nd to output m essages from the Pum p C o n tro l o b je ct in
F ig u re 4.

5.4 D e s ig n M o d e lin g

T h is section describes som e o f the in teresting aspects o f C O M E T fo r design m ode ling . In
p a rticu la r, th is section describes the co n so lid a tio n o f com m u n ica tion d iagram s to synthesize an
in itia l so ftw a re design , subsystem stru ctu rin g u s in g packages, d is trib u te d a p p lica tio n design ,
co n cu rren t task d esign , and the design o f connecto rs u s in g m onito rs .

5.4.1 T h e T r a n s i t io n f ro m A n a ly s is to D e s ig n

In o rd e r to tra n s itio n from an a lys is to design , it is necessary to syn the size an in itia l softw are
design fro m the ana lysis carried out so far. In the ana lysis m od e l, a com m unication d iagram is
d e ve lo p e d fo r each use case. T h e integrated communication diagram is a synthesis o f a ll the
co m m u n ica tio n d iagram s d eve lop ed to support the use cases. T h e co n so lid a tio n perform ed at th is
stage is a n a lo g o u s to the robustness an a lys is perform ed in o ther m ethods [Jacobson 1992,
R osenb e rg 1999]. These other m ethods use the static m odel fo r robustness ana lysis , whereas
C O M E T em phasizes the d yn a m ic m od e l, as th is addresses the m essage com m un ication in te rfa c
es, w h ic h is c ru c ia l in the design o f re a l-t im e and d istrib u ted a p p lica tio ns .

W1: High

F ig u r e 3 : C o m m u n ic a t io n d ia g r a m f o r C o n t r o l P u m p U se C a s e

D u r in g S oftw a re A rc h ite c tu ra l D e s ig n , the system is decom posed in to subsystem s and the
in terfaces betw een the subsystem s are defin ed [S h a w 1996, T a y lo r 2009]. A system is structured
in to subsystem s, w h ic h con ta in ob jects that are fu n c tio n a lly dependent on each other. T h e goal is
to have ob jects w ith h ig h c o u p lin g am ong each other in the same subsystem , w h ile ob je cts that
are w e a k ly coup le d are p lace d in d iffe re n t subsystem s. A subsystem can be considered a com p o
site o r aggregate o b je ct that conta ins the s im p le o b je cts that com pose that subsystem .

T h e in tegrated co m m u n ica tio n d iagram , w h ic h dep icts the ob jects and m essages from a ll the
use -case -based co m m u n ica tio n d iagram s, can get v e r y la rg e fo r a la rge system and thus, it m ay
not be p ra ctica l to sh o w a ll the ob jects on one d iagram . T h is p ro b le m is addressed b y d e v e lo p in g
an in tegrated co m m u n ica tio n d iagram fo r each subsystem , and d e ve lo p in g a h ig h e r le ve l subsys
tem co m m u n ica tio n d iagram to sh o w the d yn a m ic in te ra ctions betw een subsystem s on a subsys
tem communication diagram, w h ic h depicts the o v e ra ll so ftw a re arch itecture , as sh o w n in F ig u re
5. T h e structu re o f an in d iv id u a l subsystem is then dep icted on an in tegrated co m m u n ica tio n
d iagram , w h ic h show s a ll the ob jects in the subsystem and th e ir in te rco nn ectio ns .

5 .4 .2 S o f tw a r e A r c h i t e c t u r a l D e s ig n

Methane unsafe Detected
. W 2 .3 : S to p Pum p.
W ater c o n d it io n W2.3a: s ta rt Timer M ethane c o n d it io n

F ig u re 4: P u m p C o n tro l S ta techart

5.4.3 C o n c u r r e n t C o m m u n ic a t io n D ia g ra m s

In the U M L 2 no ta tion , an a ctive ob je ct o r task is d e p ic te d as a b o x w ith tw o p a ra lle l lin e s on the
le ft and r ig h t sides o f the ob je ct b o x . A n a ctive o b je c t has its o w n thread o f c o n tro l and executes
c o n cu rre n tly w ith o ther ob jects . T h is is in contrast to a passive o b je ct, w h ic h does n o t have a
thread o f co n tro l.

- 9 2 -

A p a ssive o b je ct o n ly executes w h e n another o b je c t (a c tive o r p a ss ive) in vo k e s one o f its o p
era tions. In th is paper, w e re fe r to an active ob je ct as a task and a passive ob ject as an ob ject.
T a s k s are dep icted on concurrent communication diagrams , w h ic h dep ict the c o n cu rre n c y
co n ce rn s o f the system [D o u g la ss 2004, G o m a a 2011]. O n a co n cu rre n t com m unication d iagram ,
a task is dep ic te d as a b o x w ith th ick b la ck lin es w h ile a passive o b je c t is depicted as a b o x w ith
th in b la ck lines. In a d d ition , decis ions are made about the type o f m essage com m un ication
b etw ee n tasks, asynchronous o r syn ch ro n o u s , w ith o r w ith o u t re p ly .

5 .4 .4 A r c h i t e c t u r a l D e s ig n o f D is t r ib u te d R e a l-T im e S yste m s

D is trib u te d re a l-t im e system s execute on g e o g ra p h ica lly d is trib u ted nodes supported b y a lo ca l
o r w id e area n e tw o rk . W ith C O M E T , a d istrib u ted re a l-t im e system is structured in to d is trib u te d
subsystem s, w h e re a subsystem is designed as a c o n fig u ra b le com ponent and corresponds to a
lo g ic a l node. A subsystem com ponent is de fin ed as a c o lle c tio n o f co n cu rre n t tasks e xe cu tin g on
one lo g ic a l node. A s com ponent subsystem s p o te n tia lly reside on d iffe re n t nodes, all co m m u n i
ca tion betw ee n com ponent subsystem s m ust be restricted to m essage com m unication . Ta sk s in
d iffe re n t subsystem s m ay com m unicate w ith each o th er u s in g severa l d iffe ren t types o f m essage
co m m u n ica tio n (F ig u re 5) in c lu d in g a synchron ou s co m m u n ica tio n , syn chrono us co m m u n ica
t io n , c lien t/server com m u n ica tion , g ro u p com m unication , b rokered com m unication , and n e g o ti
ated co m m u n ica tio n . T h e co n fig u ra tio n o f the d is trib u te d re a l-t im e system is dep icted o n a
d e p lo ym e n t d iagram , as sh o w n in F ig u re 6, w h ic h show s the three subsystem s dep icted as
d is trib u te d nodes in a d istribu ted c o n fig u ra tio n .

« c o n t r o l
s u b s y s te m »

Pum pS ubsystem

p u m p
C o n tro l

, , S ta tu s (s ta tu s)

« s e rv ic e
s u b s y s te m »
Pum pS ta tus

Serv ice

s ta tu s R e q u e s t

*

------ »
s ta tu s R e s p o n s e

___ it....... ;---------------
« u s e r in te raction

s u b s y s te m »
O pera to r

In teraction

K e y

A c tiv e (c o n c u rre n t) o b je c t

A s y n c h ro n o u s m e s s a g e

S y n c h ro n o u s m e s s a g e

S y n c h ro n o u s re s p o n s e

F ig u r e 5 : D i s t r i b u t e d S o f tw a r e A r c h i t e c tu r e

D u r in g the task s tru ctu rin g phase, each subsystem is structu red in to co n cu rren t tasks and the task
in terfaces are defined . T a sk s tru ctu rin g c rite ria are p ro v id e d to assist in m a p p in g an o b je ct-
o rien ted ana lysis m odel o f the system to a co n cu rre n t ta sk ia g architecture . F o llo w in g the ap
proach used fo r o b je ct s tru ctu rin g , stereotypes are used to dep ict the d iffe re n t k in d s o f tasks.
E a ch task is dep icted w ith tw o stereotypes. T h e f irs t is the ob ject ro le c r ite r io n , determ ined
d u rin g o b je ct s tru ctu rin g as described in S e ctio n 5 .4.2. T h e second is used to d e p ic t the type o f
co n cu rre n cy . D u r in g co n cu rren t task s tru ctu rin g , i f an o b je ct in the an a lys is m odel is determ ined
to be a ctive , it is ca te gorized fu rth e r to sh o w its co n cu rre n t task characteristics. F o r exam ple , an
a ctive « I / O » o b je ct is co n cu rre n t and is ca te g o rize d fu rth e r using a second stereotype a s one o f
the fo llo w in g : an «e v e n t d r iv e n » task, a «p e r io d ic » task, o r a «de m and d r iv e n » task. S tereotypes
are also used to d ep ic t the k ind s o f dev ice s to w h ic h the con cu rren t tasks in terface.

T h u s , an «e x te rn a l in pu t d e v ic e » is fu rth e r c la ss ifie d , depend ing on its cha racte ristics , in to an
«e v e n t d r iv e n » exte rna l in pu t d e v ice o r a «p a s s iv e » ex te rn a l in p u t d evice . A n e v e n t-d riv e n I/O
task is needed w h e n there is an e v e n t-d riv e n (a lso re fe rred to as in te rru p t d r iv e n) I/O d e v ic e to
w h ic h the system has to in terface. T h e event d r iv e n I/O task is activated b y an in terrupt from the
event d r iv e n d e v ice .

5 .4 .5 T a s k S t r u c t u r i n g

F ig u r e 6 : D i s t r ib u te d S y s te m C o n f ig u r a t io n

I f a p ass ive c lass is accessed b y m ore than one task, then the class's operations m ust syn ch ro n ize
the access to the data it encapsulates. S yn c h ro n iza tio n is ach ieve d us ing the m utual e x c lu s io n or
m u ltip le readers and w rite rs a lg orith m s [B a co n 2003].

C o n n e c to r classes encapsulate the deta ils o f in te r-task com m u n ica tion , such as lo o s e ly and
t ig h t ly cou p le d m essage com m u n ica tion . Som e con curren t p ro g ra m m in g languages such as A d a
and Ja v a p ro v id e m echanism s fo r in te r-task co m m u n ica tio n and syn ch ro n iza tio n . N e ith e r o f
these languages supports lo o s e ly co u p le d message co m m u n ica tio n . In o rder to p ro v id e this
c a p a b ility , it is necessary to d es ign a M essage Q u e u e co n n e cto r class, w h ic h encapsulates a
m essage queue and p ro v id e s operations to access it. A co n ne cto r is designed u s in g a m onito r,
w h ic h com bines the concepts o f in fo rm a tio n h id in g and task syn ch ro n iza tio n [B a co n 2003,
M a g ee & K ra m e r 2006]. These m o n ito rs are used in a s ing le p ro ce sso r o r m u ltip ro ce sso r system
w ith shared m e m o ry. C o n n e cto rs m a y be designed to handle a synchron ous m essage co m m u n ica
t ion , syn ch ro n o u s m essage co m m u n ica tio n w ith o u t re p ly , and syn ch ro n o u s m essage co m m un ica
tio n w ith re p ly .

6. S o ftw a re A r c h it e c t u r a l P a tte rn s f o r R e a l -T im e C o n t r o l

S o ftw a re a rch ite ctu ra l patterns [B u schm an n 1996] p ro v id e the skeleton o r tem plate fo r the
o v e ra ll so ftw a re arch itecture o r h ig h -le v e l design o f an a p p lica tio n . B a sin g the so ftw are a rch itec
ture o f a p ro d u c t lin e on one o r m ore softw are arch itectura l patterns helps in d e s ig n in g the
o r ig in a l a rch ite ctu re , because it is based on a p ro ve n arch itectu re and it e vo lve s the arch itecture .

T h e re are tw o m ain categories o f softw are arch itectura l patterns [G o m a a 2011]. A rch ite c tu ra l
structu re patterns address the static structu re o f the so ftw a re architecture . A rc h ite c tu ra l com m u
n ica tio n patterns address the m essage co m m u n ica tio n am ong d istribu ted com ponents o f the
so ftw a re a rch itectu re .

5 .4 .6 D e ta i le d S o f tw a r e D e s ig n

F ig u r e 7 : P u m p S u b s ta t io n - T a s k A r c h i t e c tu r e

M o s t softw are system s can be based o n w e ll-u n d e rs to o d o v e ra ll so ftw a re arch itectures. F o r
exam ple , the c lien t/server softw are arch itectu re is p re va le n t in m any softw are ap p lica tio ns . T h e
basic c lient/server a rch ite ctu re has one se rve r and m any c lien ts . H o w e v e r, there are a lso m any
va ria tio n s on th is them e, such as m u ltip le c lien t/m ultip le se rve r arch itectures and b rokered
clien t/server architectures.

M a n y rea l-tim e system s p ro v id e o v e ra ll co n tro l o f the e n v iro n m e n t b y p ro v id in g e ith er cen
tra lize d co n tro l, d e ce ntra lize d co n tro l, o r h ie ra rch ica l co n tro l. E a c h o f these co n tro l approaches
can be m odeled u s in g a softw a re a rch itectu ra l pattern. In a ce n tra lize d c o n tro l pattern , there is
one c o n tro l com ponent, w h ic h executes a Statechart. I t re ce ive s sensor input fro m in pu t co m p o
nents and con tro ls the externa l en viro nm e n t v ia output com ponents, as show n in F ig u re 7 fo r the
Pum p C o n tro lle r task. In a cen tra lized co n tro l pattern , the co n tro l com ponent executes a
statechart, w h ic h is dep icted fo r the Pum p C o n tro lle r in F ig u re 4. A n o th e r pattern used in the
Pum p M o n ito r in g and C o n tro l System is the c lien t/server pattern , as show n in F ig u re 5, w here
the P um p Subsystem is the c lie n t and the P um p Status S e rve r is the server.

A rc h ite c tu ra l co m m u n ica tio n patterns fo r re a l-t im e system s in c lu d e a synchro n o u s co m m u n i
ca tion and syn ch ro n o u s co m m u n ica tion , bo th w ith and w ith o u t re p ly . O th e r p o ss ib le co m m u n i
ca tion patterns in c lu d e subscrip tio n /no tifica tio n patterns and b ro k e r patterns. In the Pum p
M o n ito r in g and C o n tro l System , both a syn ch ro n o u s and syn ch ro n o u s message com m unications
are used as show n in F ig u re s 5 and 7.

7. P e rfo rm a n c e A n a ly s is o f R e a l -T im e D e s ig n s

P erform a nce an a lys is o f softw are designs is p a rt ic u la r ly im porta nt fo r re a l-t im e system s. T h e
consequences o f a re a l-t im e system fa ilin g to m eet a deadline can be catastrophic.

F ig u re 8 : W a te r S e n so rs - T e m p o ra l C lu s t e r in g w ith N e s te d In p u t O b je c ts

T h e quantita tive an a lys is o f a re a l-t im e system d esign a llo w s the e a r ly detection o f potentia l
p e rfo rm a nce p rob lem s. T h e ana lysis is fo r the so ftw a re d esign co n ce p tu a lly e xe cu tin g o n a g ive n
h a rdw a re co n fig u ra tio n w ith a g ive n externa l w o rk lo a d a p p lie d to it. E a r ly detection o f potentia l

- 9 6 -

perfo rm a nce p ro b le m s a llo w s a lte rnative softw are designs and hardw are co n fig u ra tio n s to be
investigated .

In C O M E T , p erform a nce ana lysis o f so ftw a re designs is ach ieved b y a p p ly in g real-time
scheduling th e o ry . Real-time scheduling is an approach that is p a rtic u la rly appropria te fo r hard
re a l-t im e system s that have deadlines that m ust be m et [G om aa 2000, S E I 1993]. W ith th is
approach , the re a l-t im e design is a n a lyzed to determ ine w hether it can meet its deadlines.

A second approach fo r a n a ly z in g the perform a nce o f a design is to use event sequence analy
sis and to integrate th is w ith the real-time scheduling th e o ry . E ve n t sequence ana lysis considers
scenarios o f task co lla b o ra tio ns and annotates them w ith the t im in g param eters fo r each o f the
tasks p a rtic ip a tin g in each co lla b o ra tio n , in ad d ition to system overhead fo r in te r-o b je c t com m u
n ica tio n and co n te xt sw itch in g . T h e e qu iva le nt p e rio d fo r the active ob jects in the co lla b o ra tio n
is the m in im u m in te r -a rr iv a l tim e o f the externa l event that in itiates the co lla b o ra tio n .

8. R e a l -T im e E m b e d d e d S o ftw a re P ro d u c t L in e D e s ig n

A so ftw a re p ro d u c t lin e (S P L) consists o f a fa m ily o f softw are system s that have som e com m on
fu n c tio n a lity and some va ria b le fu n c tio n a lity [Pam as 1979, C lem ents 2002, G om aa 2005].
S o ftw a re p ro d u ct lin e en g in e e rin g in v o lv e s d e ve lo p in g the requ irem ents, arch itecture , and
com pone nt im plem entations fo r a fa m ily o f system s, fro m w h ic h products (fa m ily m em bers) are
d e rive d and co n fig u re d . T h e p rob lem s o f d e ve lo p in g in d iv id u a l so ftw are system s are scaled
u p w a rd s w h en d e ve lo p in g so ftw a re p ro d u ct lin es because o f the increased c o m p le x ity due to
v a r ia b il ity m anagem ent.

A better understa nd ing o f a system o r p ro d u ct lin e can be obtained b y c o n s id e rin g the m u lt i
p le v ie w s , such as requirem ents m odels , static m odels , and d yn am ic m odels o f the system o r
p ro d u c t lin e . A g ra p h ica l m o d e lin g language such as U M L helps in d e ve lo p in g , understa nd ing
and co m m u n ica tin g the d iffe re n t v ie w s . A k e y v ie w in the m ultip le v ie w s o f a so ftw a re p ro d u ct
lin e is the feature m o d e lin g v ie w . T h e feature m od e l is c ru c ia l fo r m anaging v a r ia b ility and
p ro d u ct d e riv a tio n as it describes the p ro d u ct lin e requ irem ents in term s o f co m m o n a lity and
v a r ia b ility , as w e ll as d e fin in g the p ro d u ct lin e dependencies. Fu rth e rm o re , it is necessary to
have a deve lop m e nt approach that prom otes so ftw a re e vo lu tio n , such that o rig in a l deve lopm ent
and subsequent m aintenance are both treated u s in g fe a tu re -d rive n e vo lu tio n .

T h e E v o lu t io n a ry S o ftw a re P ro d u ct L in e E n g in e e rin g Process [G o m a a 2005] is a h ig h ly ite r
a tive so ftw a re process that e lim inates the trad itio n a l d is tin c tio n betw een so ftw are deve lopm ent
and m aintenance. F u rth erm o re , because ne w so ftw a re system s are o u tg ro w th s o f e x is tin g ones,
the process takes a softw are p ro d u c t lin e p e rsp ective ; as sho w n in F ig u re 9:

1. Product Line (Dom ain) Engineering. A p ro d u c t lin e m u lt ip le -v ie w m odel is d eve lop ed ,
w h ic h addresses the m u ltip le v ie w s o f a so ftw are p ro d u ct line . T h e p ro d u ct lin e m u ltip le -
v ie w m o d e l, p ro d u ct lin e architecture , and reusable com ponents are d eve lop ed and stored
in the p ro d u c t lin e reuse lib ra ry .

2. Software Application Engineering. A so ftw a re ap p lica tio n m u lt ip le -v ie w m odel is an in
d iv id u a l p ro d u ct lin e m em ber d e rive d from the softw are p rod u ct lin e m u lt ip le -v ie w m o d
el. T h e user selects the req u ire d features fo r the in d iv id u a l p ro d u ct lin e m em ber. G iv e n
the features, the p ro d u ct lin e m odel and arch itecture are adapted and ta ilo re d to d e rive the
a p p lica tio n arch itecture . T h e arch itecture determ ines w h ic h o f the reusable com ponents
are needed fo r c o n fig u rin g the executable ap p lica tio n .

S o ftw a re p ro d u ct lin e concepts can also be app lie d to the d esign o f em bedded re a l-t im e soft
w are . T h u s the C O M E T design m ethod has been extended to the P L U S m ethod (P ro d u ct L in e
U M L -B a s e d S oftw a re E n g in e e rin g) fo r d e s ig n in g em bedded re a l-t im e softw are p ro d u c t lin es as
described in [G o m a a 2005].

9. C o n c lu s io n s

T h is paper has described concepts and m ethods fo r the design o f co n cu rre n t and re a l-tim e
so ftw a re system s. It is essential to b lend o b je ct-o rie n te d concepts w ith the concepts o f con curren t
p rocess ing . T h is paper has g iv e n an o v e rv ie w o f the C O M E T m odel-base d softw are design
m ethod fo r d e s ign ing co n cu rre n t and re a l-tim e system s, w h ic h integrates o b je ct-o rie n te d and
co n cu rre n t p rocess ing concepts and uses the U M L notation .

F o r so ftw a re -in te n s ive system s, in w h ic h the so ftw a re is one com ponent o f a la rge r hard
w are/softw are system , system s m o d e lin g can be carried out befo re so ftw a re m o d e lin g . A d ia lect
o f U M L ca lle d S y s M L is a general purpose m o d e lin g language fo r system s e n g in e e rin g ap p lica
tion s [F rie d e n th a l et al. 2009]. M o re in fo rm a tio n on U M L m o d e lin g fo r re a l-t im e and em bedded
system s is g iv e n in M A R T E , the U M L p ro f ile fo r M o d e lin g and A n a ly s is o f R e a l-T im e and
E m b e dd e d System s [E s p in o za et al. 2009].

W ith the p ro life ra tio n o f lo w -c o s t w o rk sta tio n s and personal com puters ope rating in a net
w o rk e d e n viro nm e n t, the interest in d e s ig n in g co n cu rre n t system s, p a rt ic u la r ly re a l-tim e and
d is trib u te d system s, is g ro w in g ra p id ly . Fu rth e rm o re , w ith the g ro w in g need fo r reusable designs,
design m ethods fo r so ftw a re p ro d u ct lin es [G o m a a 2005] and se rv ice -o rie n te d arch itectures
[G o m a a 2011] are l ik e ly to be o f in crea sin g im porta nce fo r fu tu re re a l-tim e em bedded softw are
system s.

Product Line Requirements and Analysts
Models.

Product Line Architecture,
Reusable Components

F ig u r e 9 : P r o c e s s M o d e l f o r S o f tw a r e P r o d u c t L in e E n g in e e r in g

R e f e r e n c e s

• M . A w a d , J. K u u s e la , and J . Z ie g le r , “ O b je c t-O r ie n te d T e c h n o lo g y fo r R e a l-T im e S y s
tem s,” P re n t ic e -H a ll, U p p e r S addle R iv e r , N J , 1996.

• J . B a co n , Concurrent Systems, T h ird E d it io n , A d d is o n -W e s le y , R e a d in g , M A , 2003.

• G . B o o c h , R . A . M a k s im ch u k , M . W . E n g e l, et a l., “ O b je c t -O r ie n te d A n a ly s is and D e
s ign w ith A p p lic a t io n s ,” 3 rd ed ., A d d is o n -W e s le y , B o sto n , 2007.

• G . B o o c h , J . R u m b a u g h , I . Ja co b so n , “ T h e U n if ie d M o d e lin g Lan gu age U s e r
G u id e ,” 2nd e d ., A d d is o n -W e s le y , R e a d in g , M A . 2005.

• R . J . A . B u h r and R . S . C a sse lm an , “ U s e Ca se M a p s fo r O b je c t -O r ie n te d System s,” P re n -
t ic e -H a ll, U p p e r S a d d le R iv e r , N J , 1996.

• P. C le m e nts a n d L . N o rth ro p , “ S o ftw a re P ro d u c t L ine s: P ractices and Patterns,” A d d is o n -
W e s le y , R e a d in g , M A , 2002.

• P. C o a d and E . Y o u rd o n , “ O b je c t -O r ie n te d A n a ly s is ,” P re n tic e -H a ll, U p p e r Saddle R iv e r ,
N J , 1991.

• B . P . D o u g la s s , “ D o in g H a rd T im e : U M L , O b je c ts , F ra m e w o rks , and Patterns in R e a l-
T im e S o ftw a re D e v e lo p m e n t,” A d d is o n -W e s le y , R ead in g , M A , 1999.

• B . P. D o u g la s s , “ R e a l-T im e U M L , ” T h ird E d it io n , A d d is o n -W e s le y , R e a d in g , M A , 2004.

• H . E sp in o za , D . C a n c ila , B . S e lic and S. G é ra rd , “ C h a lle nge s in C o m b in in g S y s M L and
M A R T E fo r M o d e l-B a s e d D e s ig n o f E m b e d d e d System s.” L e c tu re N o te s in C om p u te r

S c ie n c e , v o l. 5 56 2 , p p . 98 -11 3. S p rin g e r, B e r lin , 2009.

• M . F o w le r a n d K . S co tt, “ U M L D is t ille d ,” T h ird E d it io n , A d d is o n -W e s le y , R ea d in g ,
M A , 2004.

• S. F r ie d e n th a l, A . M o o re , and R . S te iner, “ A P ractica l G u id e to S y s M L : T h e System s
M o d e lin g L a n g u a g e ,” M o rg a n K a u fm a n n , B u rlin g to n , M A 2009.

• H . G o m a a , “ A S o ftw a re D e s ig n M e th o d fo r R ea l T im e S ystem s,” Communications A C M ,
V o l . 27, N o . 9 , Septem ber 1984.

• H . G o m a a , “ S o ftw a re D e s ig n M e th o d s fo r C o n cu rre n t and R e a l-T im e System s,” A d d i
s o n -W e s le y , R e a d in g , M A , 1993.

• FI. G o m a a , “ D e s ig n in g C o n c u rre n t, D is trib u te d , and R e a l-T im e A p p lic a tio n s w ith U M L , ”
A d d is o n -W e s le y , R e a d in g , M A , 2000.

• H . G om a a, “ D e s ig n in g S o ftw a re P ro d u ct L in e s w ith U M L : F ro m U s e Cases to Pattern -
based S o ftw a re A rc h ite c tu re s ,” A d d is o n -W e s le y , R ead ing , M A , 2005.

• H . G o m a a , “ A S o ftw a re M o d e lin g O d ys s e y : D e s ig n in g E v o lu t io n a ry A rc h ite c tu re -c e n tric
R e a l-T im e S ys te m s and P ro d u ct L in e s ,” K e yn o te Paper, Proc. A C M / IE E E 9th Interna
tional Conference on M ode l-D riven Engineering, Languages and Systems, S p rin g e r V e r -
lag L N C S 4199, Pages 1 -15, G e n o va , Ita ly , O c to b e r 2006.

R e fe re n c es fo r th is c h a p te r a re :

H . G om aa, “ S o ftw a re M o d e lin g and D e s ig n : U M L , U s e Cases, Patterns, and S oftw are
A rc h ite c tu re s ,” C a m b rid g e U n iv e r s it y P ress, N e w Y o r k , 2011.

H . G om a a and M .E . S h in , “ A M u lt ip le -V ie w M e ta -M o d e lin g A p p ro a ch fo r V a r ia b il it y
M anagem ent in S o ftw a re P ro d u c t L in e s ,” Proc. International Conference on Software
Reuse, M a d rid , S p a in , S p rin g e r L N C S 3107, J u ly 2004.

D . H a re l, “ O n V is u a l F o rm a lis m s .” C A C M 31, 5 (M a y 1988), 514-530.

D . H a re l and E . G a ry , “ E x e c u ta b le O b je c t M o d e lin g w ith S tatecharts,” Proc. 18th Inter
national Conference on Software Engineering, B e rlin . M a rch 1996.

D . H a re l and M . P o lit i , “ M o d e lin g R e a c tive System s w ith S tatecharts,r’ M c G r a w -H i l l ,
1998.

D . H a tle y and I. P irb h a i, “ S tra teg ies fo r R ea l T im e S ystem S p e c ific a tio n ,” D o rse t H o u se ,
N e w Y o rk , 1988.

M . Jackson, “ S ystem D e v e lo p m e n t,” P re n t ic e -H a ll, U p p e r Saddle R iv e r , 1983.

I. Jacobson , “ O b je c t -O r ie n te d S o ftw a re E n g in e e rin g ,” A d d is o n -W e s le y . R ea d in g , M A ,
1992.

I . Jacobson , G . B o o c h , J . R u m b a u g h , “ T h e U n if ie d S oftw are D e ve lo p m e n t P rocess,”
R e a d in g , M A , A d d is o n -W e s le y , R e a d in g , M A , 2.

J . M ag ee and J . K ra m e r, “ C o n c u rre n c y , State M o d e ls & Ja va P ro g ra m s,” S e co n d ed.,
Jo h n W ile y & Sons, 2006.

D . Pam as, “ D e s ig n in g S o ftw a re fo r Ease o f E x te n s io n and C o n tra c tio n ,” IE E E Transac
tions on Software Engineering, M a rc h 1979.

D . Pam as, P . C le m e n ts and D . W e is s , “ T h e M o d u k r S tructu re o f C o m p le x S yste m s,”
Proc. Seventh IE E E In ternational Conference on Software Engineering, O r la n d o , F lo r i
da, M a rc h 1984.

D . R osenb e rg and K . S co tt, “ U s e Case D r iv e n O b je c t M o d e lin g w ith U M L , ” A d d is o n -
W e s le y , R e a d in g , M A , 1999.

J . R um ba ugh , J . B la h a , W . P re m e rla n i, F . E d d y , W . L o re n so n , “ O b je c t -O r ie n te d M o d e l
in g and D e s ig n ,” P re n t ic e -H a ll, U p p e r S addle R iv e r , N J , 1991.

J . R um ba ugh , G . B o o c h , I . Ja c o b so n , “ T h e U n if ie d M o d e lin g Lan gu age R eference M a n
u a l,” 2nd ed., A d d is o n -W e s le y , R e a d in g , M A , 2005.

B . S e lic , G . G u lle k s o n . and P. W a rd , “ R e a l-T im e O b je c t -O r ie n te d M o d e lin g ,” W ile y &
S ons, H o b o k e n , N J . 1994.

M . S h a w and D . G a rla n , Software Architecture, Perspectives on an Em erging Discipline,
P re n tic e -H a ll, U p p e r S add le R iv e r , N J , 1996.

S. Shlaer and S. M e llo r , “ O b je c t -O r ie n te d System s A n a ly s is ,” P re n t ic e -H a ll, U p p e r Sad
d le R iv e r , N J , 1988.

A . S ilb e rscha tz , P . G a lv in , and G . G agn e , “ O p e ra tin g S ystem C o n ce p ts ,” 8th e d ., A d d i
s o n -W e s le y , R e a d in g , M A , 2008.

- 1 0 0 -

• H . S im p so n and K . Jackson, “ P rocess S yn c h ro n iza tio n in M A S C O T , ” The Com puter
Jo u rn a l, v o l . 17, no. 4, 1979.

• H . S im p so n , “ T h e M A S C O T M e th o d ,” IE E /B C S Software Engineering Journ a l, 1 (3) ,
1986, 103-120.

• S E I - C a rn e g ie M e llo n U n iv e rs ity S o ftw a re E n g in e e rin g Institu te , “ A P ra c tit io n e r's
H a n d b o o k fo r R e a l-T im e A n a ly s is - G u id e to Rate M o n o to n ie A n a ly s is fo r R e a l -T im e
S ys te m s,” K lu w e r A ca d e m ic P u b lishe rs , B o sto n , 1993.

• A . S . Ta n en b a u m , “ M o d e rn O p e ra tin g S ystem s,” 3rd ed ., P re n tice H a ll, U p p e r S a d d le
R iv e r , N J , 2008.

• R . N . T a y lo r , N . M e d v id o v ic , E . M . D a s h o fy , “ S oftw are A rc h ite c tu re , Fo u n d a tio n s , T h e
o ry , and P ra c tice ,” N e w Y o rk , W ile y & Sons, H o b o k e n , N J 2009.

• P . W a rd and S. M e llo r , “ S tructu red D e ve lo p m e n t fo r R e a l-T im e S ystem s,” V o ls . 1, 2 &
3, Y o u rd o n Press, N e w Y o rk , 1985.

• E . Y o u rd o n , “ M o d e m Structu red A n a ly s is ,” P rentice H a ll, U p p e r Saddle R iv e r , N J , 1989.

- 1 0 1 -

I

I

- 1 0 2 -

C h a p t e r 2 .2

E s s e n t i a l s o f S o f t w a r e D e s i g n

R ichard H a ll Thayer and M e rlin Dorfm an

This is the second chapter o f a textbook to a id individual software engineers in a
greater understanding o f the IE E E S W E B O K [2013] and a guide book to a id
software engineers in passing the IE E E C S D P and CSDA certification exams.

Th is module provides an introduction to the principles and concepts relevant
to software design. It examines the role and context o f the design activity as a

fo rm o f the problem -solving process, describes how this is supported by current
design methods, and considers the strategies, strengths, limitations, and main
dom ains o f application o f these methods.

T h is lis t o f exam specifica tions is rep o rted to be the same lis t that the exam w rite rs used to
w rite th e e xa m questions. T h e re fo re it is the best source o f he lp fo r the exa m takers. C h a p te r 2
covers the fo l lo w in g C S D P exam softw a re d esign m od u le [S o ftw a re E xa m S p e c ifica tio n , V e r
s ion 2, 18 M a rc h 2009]:

1. S o ftw a re d e s ig n fundam entals (gen era l design concepts; the co n te xt o f softw are design;
the so ftw a re d e s ign process; e n a b lin g techn iques)

2. K e y issues in softw are d esign (c o n c u rre n c y ; co n tro l and h a n d lin g o f events; d istrib u tio n
o f co m p o n e n ts ; e rro r and e xce p tio n h a n d lin g and fau lt to le ra nce ; in te ractio n and presen
ta tio n ; data persistence)

3. S o ftw a re structu re and arch itecture (a rch ite ctu ra l structures and v ie w p o in ts ; architectura l
s ty le s ; d e s ig n patterns; fam ilie s o f p rogram s and fra m e w o rk s ; h a rdw a re issues in soft
w a re a rch ite ctu re)

4. H u m a n com puter in terface d esign (genera l H C I design p r in c ip le s ; use o f m odes, na vig a
t io n ; c o d in g techniques and v is u a l d es ign [c o lo r , ico n s, fon ts , and so o n]; response tim e
and fe e d b a ck ; design m oda lities [m e n u -d rive n , fo rm s, q u e stio n -a n sw e rin g , and so o n];
lo c a liz a t io n and in te rn a tio n a liza tio n ; hum an com puter in terface d esign m ethods; m u lti-
m ed ia [I/ O , v o ic e , natural language, w e b -p a g e , so u n d]; m etaphors and conceptua l m od
e ls ; p s y c h o lo g y o f H C I)

5. S o ftw a re d e s ig n q u a lity ana lysis and eva lu a tio n (q u a lity a ttributes; q u a lity ana lysis and
e va lu a tio n techniques; m easures)

6. S o ftw a re d e s ig n notations (s tru c tu ra l descrip tio ns [static v ie w] ; b e h avio ra l descriptions
[d yn a m ic v ie w])

7. S o ftw a re d e s ig n strategies and m ethods (genera l strategies; fu n c tio n -o rie n te d [structured]
d e s ig n ; o b je ct-o rie n te d design ; d ata -structu re -cen te red d e s ig n ; com ponent-ba sed design
[C B D] ; o ther m ethods; softw are d e s ig n to o ls)

Software design is a process o f d e fin in g the a rch itecture , com ponents, in terfaces, and other
chara cteristics o f a system o r com ponent and p la n n in g fo r a so ftw a re so lu tio n . A fte r the purpose
and sp e c ifica tio n s o f softw are are dete rm ined , softw are d eve lo p ers w i l l design o r e m p lo y de
signers to d e v e lo p a p la n fo r a so lu tion .

~ 1 0 3 -

V ie w e d as a p rocess , softw are d esign is the so ftw a re e n g in e e rin g l ife -c y c le a c t iv ity in w h ic h
softw a re requirem ents are ana lyzed in o rd e r to p ro d u ce a d e sc rip tio n o f the so ftw a re ’ s in ternal
structure that w i l l serve as the basis fo r its co n stru ctio n . M o re p re c is e ly , a softw are d esign (the
re su lt) m ust describe the softw are com ponents and th e interfaces betw een those com ponents. It
m ust also describe the com ponents at a le ve l o f d e ta il that enable th e ir co n stru ctio n [S W E B O K
2004].

2.1 S o ftw a re D e s ig n F u n d a m e n ta ls

T h e concepts, n o tio n s , and te rm in o lo g y in tro d u ce d h e re form an u n d e rly in g basis fo r understand
in g the ro le and scope o f softw are design .

2.1.1 G e n e ra l d e s ig n co n ce p ts . S o ftw a re is n o t the o n ly fie ld w h ere design is in v o lv e d . In the
general sense, w e can v ie w design as a fo rm o f p ro b le m -s o lv in g . F o r e xam ple , the concept o f a
wicked problem is in teresting in term s o f u n d e rsta n d in g th e lim its o f design . A nu m ber o f other
no tio ns and concepts are also o f interest in u n d ersta n d in g d esign in its general sense: goa ls ,
constra in ts, a lte rnatives, representations, and so lu tio n s [S W E B O K 2004].

A wicked problem is a phrase o r ig in a lly used in so c ia l p la n n in g to d escribe a p ro b le m that is
d if f ic u lt o r im p o ssib le to so lve because o f in co m p le te , con tra d ic to ry , and cha ng in g requirem ents
that are often d if f ic u lt to re co g n ize . M o re o v e r , b ecau se o f co m p le x in terdependencies, the e ffo rt
to so lve one aspect o f a w ic k e d p ro b lem m a y reveal/create o th er p rob lem s [http ://en.w ik ipedia
.o rg /w ik i/W icke d p ro b lem],

2 .1.2 C o n te x t o f s o ftw a re d e s ig n . T o understand the role o f softw are design , it is im portant to
understand the co n te xt in w h ic h it fits , the so ftw a re e n g in e e rin g life c y c le . T h u s , it is im portant
to understand the m a jo r characteristics o f so ftw a re requ irem ents a n a lys is versus so ftw a re design
versus so ftw a re co n stru ctio n versus so ftw a re te stin g [S W E B O K 2004].

• Software requirements are a s u b -f ie ld o f so ftw a re e n g in e e rin g that deal w ith the e lic ita
t io n , an a lysis , sp e c ifica tio n , and v a lid a t io n o f requirem ents fo r softw are [http://en.w iki
ped ia .o rg/w ik i/S oftw are re q u ire m e n ts].

• Software design is a process o f p ro b le m s o lv in g and p la n n in g fo r a so ftw are so lu tion .
A fte r the purpose and spe c ifica tio n s o f s o ftw a re are determ ined, so ftw a re d e ve lo p e rs w ill
design o r e m p lo y designers to d e ve lo p a p la n fo r a s o lu tio n [h ttp ://en.w ik iped ia .org /w ik i

/Softw are de s ign],

• Software construction (a lso k n o w n as so ftw a re d e ve lo p m e n t, a p p lica tio n deve lopm ent,
so ftw a re d esign , d e s ig n in g so ftw a re , so ftw a re app lication d e ve lo p m e n t, enterprise a p p li
ca tion deve lop m e nt, o r p la tfo rm d e ve lo p m e n t) is the d e ve lo p m e n t o f a softw are product.
T h e term “ softw are deve lop m e nt” m a y be u se d to re fe r to the a c t iv ity o f com puter p ro
g ra m m ing , w h ic h is the process o f w r it in g and m a in ta in in g the source code. B u t in a
b roader sense o f the term , it in c lu d e s a ll that is in v o lv e d betw een the con ce ption o f the
desired so ftw a re th ro u g h to the fin a l m an ife sta tion o f the so ftw a re , id e a lly in a p lanned
and structu red process [h ttp ://e n .w ik ip e d ia .o rg/w ik i/S o ftw are _d e ve lo p m e n t].

• Software testing is an in ve stig a tio n c o n d u c te d to p ro v id e stakeholders w ith in fo rm atio n
about the q u a lity o f the p ro d u c t o r se rv ic e u n d e r test. S o ftw a re testin g can also p ro v id e an
o b je c tive , independent v ie w o f the so ftw a re to a llo w the business to appreciate and u n

- 1 0 4 -

http://en.wikipedia
http://en.wiki
http://en.wikipedia.org
http://en.wikipedia.org/wiki/Software_development

derstand the risks o f so ftw a re im p lem entation [http ://en.w ik iped ia .org/w ik i/Softw are
te stin g].

2.1.3 S o ftw a re d e s ig n p ro ce ss . S o ftw a re d e s ign is g e n e ra lly considered to be a tw o -s te p process
[S W E B O K 2004]:

• A rch itec tu ra l design — Architectural design describes h o w so ftw a re is decom posed and
o rg a n ize d in to com ponents (the so ftw a re arch itectu re).

• Detailed design — Detailed design describes the sp e c ific b e h a v io r o f these com ponents.
T h e ou tp u t o f th is p rocess is a set o f m odels and artifacts that re co rd the m ajor decisions
that have been taken.

2 .1 .4 E n a b l in g te c h n iq u e s . Software design principles, also ca lled enabling techniques, are key
n o tions co n sid e re d fundam ental to m any d iffe re n t so ftw a re d esign approaches and concepts.
A c c o rd in g to the O x fo r d E n g lis h D ic t io n a ry , a p r in c ip le is “ a basic tru th o r a general la w . . . that
is used as a basis o f reason ing o r a gu ide to a c tio n .” Som e en ab lin g techniques are [S W E B O K
2004]:

• A bstraction — Abstraction is “ the process o f fo rg e ttin g in fo rm a tio n so that th ings that
are d iffe re n t can be treated as i f th e y w e re the same” [L is k o v & G u tta g 2001]. In the c o n
te x t o f so ftw a re design , tw o k e y abstraction m echanism s are param eterization and sp e c i
f ic a tio n .

o A bstraction by param eterization — R ather than w rite code that m entions sp e c ific
va lu e s o n w h ic h com putation is to o ccu r, w e w rite fu n ctio n s . F u n c tio n s describe a
co m p u ta tio n that w o rk s o n a ll acceptable va lu e s o f the appropria te types. T h u s , the
deta il o f w h a t sp e c ific va lue s are to be used is rem oved . Param eterized types are a n
o th er e xam ple o f abstraction b y param eterization , a lthough there the param eters are
types ra ther than values.

o A bstraction by specification — A w e ll-d e s ig n e d sp e c ifica tio n rem oves unnecessary
deta il about the actual typ e o r va lu e b e in g sp ec ified . T h e sp e c ifica tio n serves as a
con tra ct betw een the im plem enter and the user (c lie n t), m ak ing the jo b o f both p a r
ties s im p le r and m ak ing the code m ore exten sib le and m ainta inable . T h is idea is a lso
k n o w n as in fo rm a tio n h id in g o r encapsu lation in the o b je ct-o rie n te d w o r ld [http://
w w w .cs.com ell.edu/courses/cs312/2007sp/lectures/lec06.htm l].

• C o u p lin g and cohesion — C oupling is defined as the strength o f the re la tionsh ips be
tw een m o d u le s , w hereas cohesion is de fin ed b y h o w the elem ents m ak ing up a m odule
are re lated.

• Decom position and m odularization — Decomposing and m odularizing refers to the de
c o m p o s itio n and m o d u la riza tio n o f a la rge elem ent o f so ftw a re in to a num ber o f sm aller
independent ones, u su a lly w ith the goa l o f p la c in g d iffe re n t fu n ctio n a litie s o r re sp o n s ib il
ities in d iffe re n t com ponents.

• Encapsulation/inform ation h id in g — Encapsulation/information h iding means g ro u p in g
and p a ck a g in g the com ponents and in ternal deta ils o f an abstraction and m ak ing those de
ta ils in acce ssib le .

- 1 0 5 -

http://en.wikipedia.org/wiki/Software
http://www.cs.comell.edu/courses/cs312/2007sp/lectures/lec06.html

• Separation o f interface and implementation — Separating interface and implementation
in v o lv e s d e fin in g a com ponent b y s p e c ify in g a p u b lic in terface, k n o w n to the c lien ts ,
separate fro m the deta ils o f h o w the com pone nt is rea lized .

• Suffic iency, completeness and prim itiveness— Achieving sufficiency, completeness, and
primitiveness m eans ensuring that a so ftw a re com ponent captures a ll the im porta nt char
acteristics o f an abstraction , and n o th in g m ore.

2 .2 K e y Is s u e s in S o f t w a r e D e s ig n

A num ber o f key issues must be dealt w ith w h en designing software. Som e are qu a lity concerns that
all software m ust address— fo r exam ple, perform ance . A n o th e r im portant issue is h o w to decom
pose, organize, and package software com ponents. In contrast, other issues “ deal w ith some aspect o f
softw are ’s behavio r that is not in the application dom ain, but w h ich addresses som e o f the supporting
dom ains” [B o sch 2000]. Such issues, w h ic h often cross-cut the system 's fu nctio na lity , h a ve been
referred to as aspects: w h ic h “ tend not to be u n its o f so ftw a re ’ s fu n ctio n a l decomposition, but rather
to be properties that affect the perform ance o r sem antics o f the com ponents in system ic w a y s ”
[K ic za le s et al. 1997]. T h e fo llo w in g are a num ber o f these k e y , cross -cu tting issues are the
fo llo w in g (presented in a lphabetica l o rd er) [S W E B O K 2004, C h a p te r 3] :

• Concurrency — H o w to decom pose the so ftw a re in to processes, tasks, and threads and
deal w ith related e ffic ie n cy , a to m ic ity , s y n c h ro n iz a t io n , and sc h e d u lin g issues.

• C ontro l and handling o f events— H o w to o rga n ize data and c o n tro l f lo w , and h o w to
handle reactive and tem poral events th rough va riou s m echanism s such as im p lic it in v o c a
t io n and ca ll-b a ck s .

• Distribution o f components — H o w to d istribute the softw are across the hardw are , h o w
the com ponents com m unicate, h o w m id d le w a re can be used to deal w ith heterogeneous
softw are.

• E r ro r and exception handling and fa u lt tolerance — H o w to p re v e n t and to le ra te
fa u lts and dea l w ith exceptiona l cond itions .

• Interaction and presentation — H o w to structure and o rga n ize the in teractions w ith users
and the p re se n ta tio n o f in fo rm a tio n .

• D ata persistence — H o w lo n g -l iv e d data are to b e h a n d le d .

2.3 S o ftw a re S t r u c tu re a n d A rc h it e c t u r e

In its s tric t sense, so ftw a re arch itecture is “ a d e sc rip tio n o f the subsystem s and com ponents o f a
so ftw a re system and the re la tio nsh ip s betw een th em .” A rc h ite c tu re thus attem pts to define the

in terna l structure— a cco rd in g to the O x fo r d E n g lis h D ic t io n a ry , “ the w a y in w h ic h som eth ing is

constructed o r o rg a n ize d ” — o f the re su ltin g so ftw a re . D u r in g the m id -1990s, h o w e ve r, so ftw a re
arch itectu re started to em erge as a b roader d is c ip lin e in v o lv in g the study o f softw are structures
and arch itectures in a m ore generic w a y . T h is ga ve rise to a num ber o f in te re stin g ideas about
so ftw a re d e s ign at d iffe re n t le ve ls o f abstraction . Som e o f these concepts can be usefu l d u rin g the
arch itectu ra l d es ign (fo r exam ple , a rch itectu ra l s ty le) o f sp ec ific so ftw a re , as w e ll as d u rin g its
deta iled design (fo r e xam ple , lo w e r -le v e l d es ign patterns). B u t th e y can also be u sefu l fo r d e s ig n
in g g e ne ric system s, le a d in g to the d e s ign o f fa m ilie s o f p rogram s (a lso k n o w n as p ro d u ct lin e s).

- 1 0 6 -

In te re s tin g ly , m ost o f these concepts can be seen as attem pts to describe , and thus reuse, generic
de s ign kn o w le d g e [S W E B O K 2004].

2.3.1 A r c h it e c t u r a l s t ru c tu re s a n d v ie w p o in ts . D iffe re n t h ig h -le v e l facets o f a softw are design
can and shou ld be described and docum ented. Th e se facets are often ca lle d v ie w s : “ A v ie w
represents a partia l aspect o f a softw are arch itecture that show s sp e c ific p roperties o f a softw are
system ” [Buschm ann 1996]. Th ese d is tin c t v ie w s perta in to d is tin c t issues associated w ith so ft

w are design— fo r e xa m p le , the lo g ica l v ie w (s a tis fy in g the fu n ctio n a l requ irem ents) versus the
process v ie w (c o n c u rre n c y issues) ve rsu s the p h ys ica l v ie w (d is trib u tio n issues) versus the
d eve lo p m e nt v ie w (h o w the design is b ro k en d o w n in to im plem entation u n its). O th e r authors use
d iffe re n t te rm in o lo g ie s , lik e b e h a vio ra l versus fu n ctio n a l ve rsu s structu ra l versus data m ode lin g
v ie w s . In sum m ary, a so ftw are d esign is a m u lti-fa ce te d a rtifact p roduced b y the design process
and g e n e ra lly com posed o f re la t iv e ly independent and o rth o g o n a l v ie w s [S W E B O K 2004].

A n arch itectura l s ty le is “ a set o f constra in ts o n an arch itectu re [that] defines a set o r fa m ily o f
arch itectures that satisfies them ” [Bass 2003, Chapter 2]. A n arch itectura l sty le can thus be seen
as a m eta-m odel w h ic h can p ro v id e so ftw a re ’ s h ig h -le v e l o rg a n iza tio n (its m acro a rch itecture)
[S W E B O K 2004].

• G e ne ra l structu re (fo r exam ple , layers , p ipes, and filte rs , b la ck b oa rd)

• D is trib u te d system s (fo r exam ple , c lie n t-se rve r, th re e -tie rs , b ro k e r)

• In te ra ctive system s (fo r exam ple , m o d e l-v ie w -c o n tro lle r , p resentation -abstraction -
co n tro l)

• A da p tab le system s (fo r e xam ple , m ic ro -k e m e l, re fle c tio n)

• O the rs (fo r e xam p le , batch, in terpreters, p rocess c o n tro l, ru le -ba sed)

2.3.2 D e s ig n p a tte rn s . S u c c in c tly described , a pattern is “ a com m on so lu tio n to a com m on
p ro b le m in a g ive n co n te xt” [Ja cob son , B o o c h , & R um baugh 1999]. W h ile a rch itectura l styles
can be v ie w e d as patterns d e sc rib in g the h ig h -le v e l o rg a n iza tio n o f softw are (i t is m acro
a rch ite ctu re), o ther d es ign patterns can be used to describe deta ils at a lo w e r, m ore loca l le ve l (its
m ic ro -a rch ite c tu re). T y p e s o f d es ign patterns in c lu d e [h ttp ://w w w .oodesign .com /]:

• C re a tio n a l patterns (fo r exam ple : b u ild e r, fa c to ry , p ro to typ e , and s ing le to n)

• S tructu ra l patterns (fo r exam ple : adapter, b rid g e , com posite , decorato r, façade, f lyw e ig h t,
and p ro x y)

• B e h a v io ra l patterns (fo r e xa m p le : com m and, in terpre ter, m ediator, m em ento, observer,
state, stra tegy, tem plate , and v is ito r)

2.3.3 F a m ilie s o f p ro g ra m s a n d f ra m e w o rk s . O n e p oss ib le approach to a llo w the reuse o f
softw are designs and com ponents is to design fa m ilies o f softw a re , a lso k n o w n as softw are
p ro d u ct lines. T h is can be done b y id e n t ify in g the com m onalities am ong m em bers o f such
fam ilie s and b y u s in g reusable and cu sto m iza b le com ponents to account fo r the v a ria b ility
am ong fa m ily m em bers.

- 1 0 7 -

http://www.oodesign.com/

In o b je ct-o rie n te d p ro g ra m m in g , a k e y re lated n o tio n is that o f the fra m e w o rk : a p a rt ia lly
com plete softw are subsystem that can be extended b y a p p ro p ria te ly insta ntia ting sp e c ific p lu g
ins (a lso k n o w n as h o t spots).

2.4 H u m a n C o m p u te r In te r fa c e D e s ig n

C o m p u te r system d e s ign encom passes a spectrum o f a c tiv itie s fro m hardw are d esign to user
in te rfa ce design . W h ile specia lists are often em p lo ye d fo r hardw are design and fo r the graph ic
design o f w e b pages, o n ly la rge o rg a n iza tio n s n o rm a lly e m p lo y specia lis t in terface designers fo r
th e ir ap p lica tio n softw are . T h e re fo re , softw are engineers m ust often take re s p o n s ib ility fo r user
in terfa ce d e s ign as w e ll as fo r the d esign o f the so ftw are to im plem ent that in terface [S o m m e r-
v i l le 2006, p . 363].

2.4.1 G e n e ra l H C I d e s ig n p r in c ip le s . T h e A s s o c ia tio n fo r C o m p u tin g M a c h in e ry (A C M)
defines hum a n -com p u te r in te ra ction as “ a d isc ip lin e con ce rn ed w ith the design , e va lu a tion and
im plem entation o f in te ra ctive co m p u tin g system s fo r hum an use and w ith the s tudy o f m a jo r
phenom ena su rro u n d in g them ” [A C M S IG C H I 1996].

H u m a n -c o m p u te r in te ractio n (H C I) is the s tu d y o f in te raction betw een peo p le (u sers) and
com puters. In te ractio n betw een users and com puters o ccu rs at the user in terface (o r s im p ly
interface), w h ic h in c lu d e s both softw are and h a rdw are ; fo r exam ple , characters o r ob jects
d isp la ye d b y softw are on a persona l com puter's m o n ito r, in pu t re ce ive d fro m users v ia hardw are
p erip h era ls such as ke yb o a rd s and m ice , and other user in teractions w ith la rge -sca le com puter
ize d system s such as a irc ra ft and p o w e r p lants [h ttp ://en .w ik iped ia .org/w ik i /H um an com puter

in te ra ctio n],

H C I d es ign p rin c ip le s v a ry g re a tly d epe nd in g u p o n w h o e v e r is re p o rting . T h e lis t o f design
p rin c ip le s b y S o m m e rv ille appears to be the best, the m ost understandable , and am ong the
shortest [S o m m e rv ille 2006, p. 364].

• User fam iliarity — T h e in te rfa ce sh o u ld use term s and conce pts d ra w n fro m the e x p e r i
ence o f those w h o w i l l m ake the m ost use o f the system .

• Consistency — T h e in te rfa ce sh o u ld be co n sis te n t in that, w h e re v e r p o ss ib le , com para
b le ope rations sh o u ld be a ctiva te d in the sam e w a y .

• M in im a l surprise — U s e rs sh o u ld n e v e r be su rp rise d b y the b e h a v io r o f a system .

• Recoverability — T h e in te rfa ce sh o u ld in c lu d e m echa n ism s to a llo w users to re co ve r
from errors.

• User guidance — T h e in te rfa ce s h o u ld p ro v id e m e a n in g fu l feedback w h e n e rro rs o ccu r
and p ro v id e c o n te x t -s e n s it iv e u ser h e lp .

• User diversity— T h e in terfa ce sh o u ld p ro v id e app rop ria te in te ra c tio n fa c ilit ie s fo r d if fe r
ent type s o f system users.

2.4.2 U s e o f m odes. A mode is d e fin ed as a p a rticu la r fo rm o r va ria tio n o f som eth ing. A H C I
m ode is a d is tinct m ethod o f ope ra tion w ith in a com puter p ro gra m , in w h ic h the same in pu t can
p ro d u ce d iffe re n t p e rce ive d results depend ing on the state o f the com puter p rogram . F o r exam
p le , ‘ caps lo c k 7 sets an in pu t m ode in w h ic h type d letters are uppercase b y defa u lt; the same

- 1 0 8 -

http://en.wikipedia.org/wiki

typ in g p ro d u ce s low ercase letters w h e n no t in the caps lo ck m ode. H e a v y use o f m odes often
reduces the u sa b ility o f a u ser in terface , as the user m ust expend e ffo rt to rem em ber current
m ode states, and sw itch betw een m ode states as necessary [h ttp ://e n .w ik iped iaw ik i/U ser

in te rfa ce].

2.4.3 U s e o f n a v ig a t io n . Navigation is the a b ility to m o ve e ff ic ie n tly and e ffe c tiv e ly th ro u g h a
docum ent, such as w e b pages that are lin k e d toge the r to fin d a p a rticu la r w o rd o r paragraph.

Th ere are severa l standard n a v ig a tio n a l layou ts — h ie ra rch ica l, linear and w e bbed .

• Linear navigation systems o n ly a llo w users to navigate th ro u g h the in terface in one w a y .
L in e a r system s are n o rm a lly n o n - o r m in im a lly in te ra ctive , w ith start, n e xt, and back b u t
tons but no others. L in e a r system s are the m ost structured o f a ll the categories.

• A hierarchical based site is s im ila r to a fa m ily tree in that e v e ry page has a parent page.
E a c h page has o n ly one page lea d ing to it . T h e structure o f sites o f th is type is v e ry r ig id ,
but can be u sefu l fo r o rg a n iza tio n s w ith d iscrete departm ents re q u ir in g one section each.
B re a d cru m b tra ils can a lso be used in a h ie ra rch ica l site.

• A webbed topology a llo w s the user to navigate in a m ore f lu id fash io n . T h e range o f
w e b b ed to p o lo g ies is q u ite broad, ra n g in g fro m alm ost h ie ra rch ica l w ith add itiona l lin ks ,
to those in w h ic h each page w i l l lin k to others o f s im ila r o r related to p ics , but w ith o u t an
u n d e r ly in g ca te g o riza tio n b y to p ic .

2.4.4 C o d in g te c h n iq u e s a n d v is u a l d e s ig n . C o d in g and v is u a l design in c lu d e such techniques
as t ie use o f d iffe re n t co lo rs , ic o n s , and fonts.

2.4.4.1 C o lo r . C o lo r can im p ro v e user in terfaces b y h e lp in g users to understand and manage
co m p le x ity . H o w e v e r , it is easy to m isuse c o lo r and to create user in terfaces that are v is u a lly
unattractive and e rro r-p ro n e S hn e ide rm an [1998] g ive s 14 k e y gu id e lin e s fo r the e ffe ctive use o f
co lo r in user in terfaces. T h e m ost im porta nt o f these are [S o m m e rv ille 2006, p . 16]:

• L im it the num ber o f c o lo rs e m p lo ye d and be co n se rva tive as to h o w they are used. Y o u
sh o u ld not use m ore than fo u r o r f iv e separate c o lo rs in a w in d o w and no m ore than sev
en in a system in terface . I f y o u use too m a ny, o r i f th ey are too b r ig h t, the d isp la y m ay be
c o n fu s in g . Som e users m a y f in d masses o f c o lo r d is tu rb in g and v is u a lly t ir in g . U s e r c o n
fu s io n is also p oss ib le i f c o lo rs are used in co n s is te n tly .

• U s e c o lo r change to s h o w a change in system status. I f a d is p la y changes c o lo r, th is
shou ld m ean that a s ig n ific a n t event has o ccu rre d . T h u s , in a fu e l gauge, y o u co u ld use a
change o f c o lo r to in d ica te that fu e l is ru n n in g lo w . C o lo r h ig h lig h t in g is p a rtic u la rly im
portant in co m p le x d isp la ys w h e re hundreds o f d is tin c t entities m ay be d isp layed .

• U s e c o lo r c o d in g to su p p o rt the task users are t ry in g to p erfo rm . I f th e y have to id e n tify
anom alous instances, h ig h lig h t these instances; i f s im ila rities are a lso to be d iscovered ,
h ig h lig h t these us ing a d iffe re n t co lo r.

• U s e c o lo r c o d in g in a th o u g h tfu l and consistent w a y . F o r instance, i f one part o f a system
d isp la ys e rro r m essages in red , a ll o ther parts sh o u ld do lik e w ise . R e d shou ld not be used
fo r a n yth in g else. I f it is , the user m ay in terp re t the red d isp la y as an e rro r message.

- 1 0 9 -

http://en.wikipediawiki/User

• B e ca re fu l about c o lo r p a irin g s . Because o f the p h y s io lo g y o f the eye , p e o p le cannot fo
cus on red and b lue s im u lta ne ou sly . E ye s tra in is a lik e ly consequence o f a red o n b lue
d isp la y . O th e r c o lo r co m b inatio ns m ay also be v is u a lly d is tu rb in g o r d if f ic u lt to read.

In general, y o u shou ld use c o lo r fo r h ig h lig h tin g , but y o u shou ld not associate m eanings w ith
p a rtic u la r co lo rs . A b o u t 10% o f m en are c o lo r -b lin d and m ay m isin te rp re t the m eaning. H u m a n
c o lo r p erceptions are d iffe re n t, and there are d iffe re n t co n ve n tio n s in d iffe re n t p ro fess ions about
the m ean ing o f p a rticu la r co lo rs . U se rs w ith d iffe re n t backgrounds m a y u n co n sc io u s ly in terp re t
the same c o lo r in d iffe re n t w a ys . F o r exam ple , to a d r iv e r , red u su a lly m eans danger. H o w e v e r ,
to a chem ist, red m eans hot.

2.4.4.2 Ic o n s . Ico n s are p ic to g ra p h ic representations o f data o r processes w ith in a com puter
system , w h ic h have been used to rep lace com m ands and m enus as the m eans b y w h ic h the
com puter supports a d ia lo g u e w ith the end -user. T h e y have been a p p lie d p r in c ip a lly to g ra p h ic s -
based in terfaces to o p e ra ting system s, ne tw ork s and d o cu m e n t-p ro ce ss in g softw are .

2 .4.4.3 F o n ts . A study o f fon ts w as conducted at the W ic h ita State U n iv e r s it y [B e rn a rd , L ia l , &
M il ls 2001] to determ ine the im pact o f fo n t s ize and style on le g ib i l it y , re a d in g tim e, and general
p re fe rence w h e n read b y an o ld e r p op u la tio n . T h e s tudy in v o lv e d test vo lu n te e rs read in g te x t
passages co n ta in in g tw o s e r if and sans s e r if fonts at 12- and 1 4 -po in t s izes. T w o type s o f fonts
w e re used, the s e r if fonts G e o rg ia and T im e s N e w R om an, and the sans s e r if fonts A r ia l and
V e rd a n a . B o th T im e s N e w R o m a n and A r ia l w e re o r ig in a lly d e ve lo p e d fo r p r in t and are the m ost
com m on fonts o f th e ir re sp e ctive fo n t type used tod ay . G e o rg ia and V e rd a n a , h o w e ve r, w e re
d e ve lo p e d s p e c if ic a lly fo r o p tim ize d v ie w in g on a com puter screen.

S eve ra l observations can be m ade fro m these find in gs :

• F irs t , 1 4 -po int fonts w e re fo u n d to be m ore le g ib le and to p rom o te faster read ing , and
w e re p re fe rred to the 12 -p o in t fonts.

• S econd , at the 1 4 -p o in t s ize , s e r if fonts tended to support faster reading. (S e r if fon ts ,
h o w e ve r, w e re g e n e ra lly no t p referred o v e r the sans s e r if fo n ts .)

• T h ird , there w as e sse n tia lly no d iffe re n ce betw een the com puter fon ts and the p rin t fonts.

T h u s , in lig h t o f these re su lts , it is recom m ended to use 1 4 -po in t s ized fon ts fo r p resen ting
o n lin e te x t to o ld e r readers. H o w e v e r , a com prom ise m ust be made in d e c id in g w h ic h fon t type
to use. I f speed o f read ing is param ount, then s e r if fon ts are recom m ended. H o w e v e r, i f fon t
p reference is im portant, then sans s e r if fonts are recom m ended.

2.4.5 R e sp o n se t im e a n d fe e d b a c k . S lo w response tim es and d if f ic u lt n a viga tio n are the m ost
com m on co m pla in ts o f In te rne t users. A fte r w a it in g past a ce rta in “ attention th re sh o ld ,” users
bail ou t to lo o k fo r a faster site. O f course , e x a c tly w here that th re sh o ld is depends on m a ny
factors. H o w co m p e llin g is the experien ce? Is there e ffe ctive feedback? T h e fo llo w in g is a set o f
response and feedback tim es p ro p o sed b y D r . B e n S hneiderm an [1998]:

• L o a d in under 8.6 seconds (n o n -in c re m e n ta l d is p la y)

• D ecrease these load tim es b y 0.5 to 1.5 seconds fo r d yn am ic transactions

~ 1 1 0 -

• M in im iz e th e n u m b e r o f steps needed to a cco m p lish tasks to a v o id cu m u la tive frustration
from e x c e e d in g user tim e budgets

• Lo a d in u n d e r 20 to 30 seconds (increm en ta l d is p la y) w ith u sefu l content w ith in 2 sec
onds

• P ro v id e p e rfo rm a n ce in fo rm a tio n

• E q u a lize p a g e d o w n lo a d tim es to m in im ize d e la y va ria b ility

2.4.6 D e s ig n m o d a lit ie s . M ultim odal interfaces are in terfaces that support perceptua l capabilities
(e .g ., a u d ito ry , speech , and v is u a ls) as a m eans o f fa c ilita tin g hum an in te ra ctio n w ith com puters
[Sears & Ja ck o 2007, p . 861]. T h e re are a nu m ber o f d iffe re n t H C I in te rfa ce designs that focus
on the hum an s ide o f the in te rfa ce , fo r e xam ple , m e n u -d rive n , c o m m a n d -lin e , and e ve n t-d rive n
interfaces. O the r in te rfa c e su p p o rt too ls m ake in te racting w ith com puter system s easier, e .g .,
form s and q u e s tio n -a n sw e rin g interfaces.

• M e n u -d r iv e n in te r fa c e — T h is in terface consists o f a series o f screens that are n a v i
gated b y c h o o s in g o p tio n s from lists , i.e . m enus. (H e re , “ m enu” is no t used to re fe r to
p u ll-d o w n m e n u s, b u t to lis ts o f op tion s o n the screen that lead to other screens.) Because
o f th e ir s im p lic ity , m e n u -d riv e n in terfaces are co m m o n ly used fo r w a lk -u p -a n d -u s e sys
tem s, such as in fo rm a tio n k iosks and A T M s . W ebsites are a lso often designed w ith the
same basic n a v ig a tio n p r in c ip le , w h ere n a v ig a tio n bars substitute fo r “ m enus.”

• C o m m a n d - l in e in te r fa c e — T h is in terface is a m eans o f opera ting a com puter b y typ in g
a te xt co m m a n d in response to an o n -sc re e n p rom p t and h ittin g the E n te r o r R eturn k e y to
issue the co m m a n d . T h e com puter then processes the com m and, d isp la ys w h a te ver output
is a p p ro p ria te , and presents another p ro m p t fo r the n e xt com m and. T y p ic a l com m ands are
to ru n a p ro g ra m , enter a te x t ed ito r, lis t f ile s , and change d ire c to rie s . T h is m ode o f in ter
action is co m m o n , fo r instance, in the tra d itio n a l D O S and U N I X ope ra ting system s.

• E v e n t -d r iv e n in te r fa c e — T h is k in d o f in terface is com m on to m ost m odem operating
system s w h e re the user can in itia te actions at any tim e — the system responds to user
“ e ve n ts ,” s u c h as ty p in g , m ouse m ovem ents, o r m ouse c licks.

• F o rm s d ia lo g u e b o x e s — T h e user e m p lo ys th is in terface to com m unicate w ith the sys
tem b y f i l l in g in an o n -sc re e n fo rm (e .g ., a data en try fo rm o n a database). D e s ig n o f the
fo rm m ust be c le a r ly w o rd e d and presented, and c o lo r and h ig h lig h ts can be used. Fo rm
f i l l in g enab les e xp e rie n ce d users to enter data q u ic k ly and is u s e r -fr ie n d ly to the less e x
perienced u se r.

• Q u e s t io n -a n s w e r in te r fa c e — In th is in terface the ap p lica tio n asks questions, and w hen
the user p ro v id e s an sw e rs co n ta in in g a ll necessary data, the ap p lica tio n g ive s the results.
Som etim es these are c a lle d “ w a lk th ro u g h and use” o r “ in te rv ie w ” app lications.

2.4.7 L o c a l iz a t io n a n d in te rn a t io n a liz a t io n . In co m p u tin g , internationalization and localiza
tion are m eans o f adapting co m p u te r softw are (in c lu d in g H C I so ftw a re) to d iffe ren t languages,
reg ional d iffe re n ce s and te ch n ica l requirem ents o f a target m arket. Internationalization is the
process o f d e s ig n in g a so ftw a re a p p lica tio n so that it can be adapted to va rio u s languages and
reg io ns w ith o u t e n g in e e r in g changes. Localization is the adapting in te rn a tio n a lize d softw are for
a sp e c ific re g io n o r language b y a d d in g lo c a le -s p e c if ic com ponents and transla ting text.

- I l l -

2.4.8 H u m a n -c o m p u te r in te r fa c e d e s ig n m e th o d s. S hneiderm an’ s “ E ig h t G o ld e n R u le s o f
In te rfa ce D e s ig n ” w ere docum ented in th e te x t D esigning the User Interface [Shneiderm an
1998]. Shneiderm an p roposed th is c o lle c t io n o f p r in c ip le s that are d e rive d h e u ris tica lly fro m
exp e rie n ce and are ap p lica b le in m ost in te ra c tive system s after b e in g p ro p e rly re fine d , extended,
and in terpreted .

1. S trive f o r consistency — C o n s is te n t sequences o f actions shou ld be re q u ire d in s im ila r
s ituations; id en tica l te rm in o lo g y sh o u ld be used in p rom pts, m enus, and help screens; and
consistent com m ands sh o u ld be e m p lo ye d th ro u g h o u t.

2. En a b le frequent users to use shortcuts — A s the fre q u e n cy o f use increases, so do the
u se r’ s desires to reduce the nu m be r o f in te ra ctio n s and to increase the pace o f in teraction .
A b b re v ia t io n s fu n c tio n k e ys , h id d e n com m ands, and m acro fa c ilit ie s are v e r y h e lp fu l to
an e xp e rt user.

3. O ffe r inform ative feedback — F o r e ve ry operator action , there sh o u ld be som e system
feedback. F o r frequ ent and m in o r a ctio n s , the response can be m odest, w h ile fo r in fre
quent and m a jo r a ction s , the resp o nse sh o u ld be m ore substantia l.

4. D esign dialog to y ie ld closure — Sequences o f actions shou ld be o rg a n ize d in to groups
w ith a b e g in n in g , m id d le , and e n d . T h e in fo rm a tive feedback at the co m p le tio n o f a
g ro u p o f actions g iv e s the o p e ra to rs the satisfaction o f accom plishm ent, a sense o f re lie f,
the s igna l to d rop c o n tin g e n c y p la n s and op tion s fro m th e ir m inds, and an in d ica tio n that
the w a y is c lea r to p repare fo r the n e x t g ro u p o f actions.

5. O ffe r sim ple e rror h a n d lin g — A s m uch as po ss ib le , design the system so the user can
n o t m ake a serious e rro r. I f an e rro r is m ade, the system shou ld be able to detect the e rro r
and o ffe r s im ple , co m p re h e n s ib le m echanism s fo r h a n d lin g the e rror.

6. Perm it easy reversal o f actions — T h is feature re lie ve s a n x ie ty , s ince the user k n o w s
that e rro rs can be u n d o n e ; it thus encourages e x p lo ra tio n o f u n fa m ilia r op tions. T h e un its
o f re v e rs ib ility m ay be a s in g le a c tio n , a data e n try , o r a com plete g ro u p o f actions.

7. Support internal locus o f contro l — E x p e rie n c e d operators s tro n g ly desire the sense that
th e y are in charge o f the system a n d that the system responds to th e ir action s . D e s ig n the
system to m ake users the in itia to rs o f actions rather than the responders.

8. Reduce short-term m emory load — T h e lim ita tio n o f hum an in fo rm a tio n p ro ce ss in g in
short-te rm m e m o ry re q u ire s that d is p la y s be kept s im ple , m u ltip le page d isp la ys be c o n
so lidated , w in d o w -m o tio n fre q u e n c y be reduced , and su ffic ie n t t ra in in g tim e be a llo tted
fo r codes, m nem on ics, and sequences o f actions.

2.4.9 M u lt im e d ia . (I/ O , v o ic e , natura l lan guag e , w e b -p a g e , soun d .). M ultim edia is m edia and
content that uses a co m b in a tio n o f d iffe re n t con tent fo rm s. T h e term can be used as a n o u n (a
m edium w ith m u ltip le content fo rm s) o r as an a d je c tive d e sc rib in g a m edium as h a v in g m u ltip le
content fo rm s. T h e term is used in co n trast to m edia w h ic h o n ly use tra d itio n a l form s o f p rin te d
o r h a n d -p ro d u ce d m ateria l. M u lt im e d ia in c lu d e s a co m b in a tio n o f text, audio, still images,
animation, video, and interactivity content form s.

M u ltim e d ia is u s u a lly re co rd e d and p la y e d , d isp la ye d o r accessed b y in fo rm a tio n content
p ro ce ss in g d e vice s , such as co m p u te rize d and e le c tro n ic d evice s, but can also be part o f a liv e

- 1 1 2 -

perfo rm a nce . Multim edia (as an a d je c tive) a lso describes e le ctro n ic m edia devices used to store
and e xp e rie n ce m u ltim e d ia content [h ttp ://e n .w ik ip ed ia .o rg/w ik i/M u ltim ed ia].

• In p u t and O utput — In co m p u ting , input/output, o r I/O, re fers to the co m m u n ica tio n b e
tw een an in fo rm a tio n p rocess ing system (such as a com p u ter), and the outside w o rld ,
p o ss ib ly a hum an, o r another in fo rm a tio n p ro ce ss in g system . Inpu ts are the s igna ls o r d a
ta re ce ive d b y the system , and outputs are the s igna ls o r data sent from it. T h e term can
also be used as part o f an action ; to “ p e rfo rm I/ O ” is to p e rfo rm an input o r ou tp u t o p e ra
tion . I/O d e vice s are used b y a person (o r o th er system) to com m unicate w ith a com puter.
F o r instance, a k e yb o a rd o r a m ouse m a y be an in pu t d e v ice fo r a com puter, w h ile m o n i
tors and p rin te rs are considered output d e vice s fo r a com puter. D e v ic e s fo r co m m u n ica
tio n betw een com puters, such as m odem s and n e tw o rk cards, ty p ic a lly serve fo r both
input and output.

N o te that the designation o f a d e v ice as e ith er input o r ou tp u t depends o n the p ersp ec
tive . M ic e and keyb oa rd s take as in p u t p h y s ic a l m ovem ent that the hum an user outputs
and co n ve rts th is m ovem ent in to s igna ls that a com puter can understand. H e nce the o u t
put fro m these d e vice s is in pu t fo r the com puter. S im ila r ly , p rin te rs and m onito rs take as
in pu t s igna ls that a com puter outputs. T h e y then co n ve rt these s igna ls into representations
that hum an users can see o r read. F o r a hum an user, the process o f reading o r see ing these
representations com prises the reception o f in p u t. These in te ractions betw een com puters
and hum ans are stud ied in a f ie ld ca lle d h u m a n -c o m p u te r in te raction (H C I) [http://en
. w ik ip e d i a. o rg / w ik i/ In p u t/ou tp u t].

D e v ic e s m ust be constructed fo r m ed ia ting betw een hum ans and m achines.

о In p u t devices — m echanics o f p a rticu la r d e v ice s , perform ance characteristics
(hu m an and system), d e v ice s fo r the d isab led , h a n d w rit in g and gestures, speech
in p u t, eye tra ck in g , e xo tic dev ice s (e .g ., E E G and other b io lo g ic a l s igna ls).

о O utput devices — m echanics o f p a rticu la r d e v ice s , ve c to r and raster d ev ice s,
fram e b u ffe rs and im age stores, canvases, event h a n d lin g , perform ance character
is tics , d e v ice s fo r the d isab led , sound and speech output, 3 D d isp la ys , m otion
(e .g ., f lig h t s im u la to rs), e x o tic d evice s.

о Characteristics o f I/O devices — (e .g ., w e ig h t, p o rta b ility , b a n d w id th , sensory
m o d a lity).

• N a tu ra l languages — N atural language deals w ith com puter system s that in terpre t the
languages that hum ans use. T h e u ltim ate g oa l is to e ve n tu a lly be able to com m unicate
w ith y o u r com puter as y o u w o u ld w ith another person. U n fo rtu n a te ly , natural language,
w h ic h is the easiest fo r hum ans to learn , is the hardest fo r com puters to learn . T h e R e d -
m ond -ba sed N a tu ra l Lan gu a ge P ro ce ss in g G ro u p described at [http://research.m icrosoft
.com /en-us/groups/nlp/] is w o rk in g to w a rd s d e ve lo p in g a lg o rith m s and statistical m odels
that can in te rp re t natura l language e ff ic ie n tly . T h e g ro u p ’ s advancem ents have been in te
grated in to a p p lica tio ns in c lu d in g in fo rm a tio n re c o ve ry , te x t c rit iq u in g , question a n sw er
in g , g a m in g , and m a ny others. A s the g ro u p ’ s w o rk p rogresses, th ey anticipate it w il l
enable p e o p le to com m unicate w ith com puters th rou gh natura l language [https://wiki
spaces .psu .edu /d isp lay/ЗЗlG rp l/ N a tu ra l+ la n g u a g e + H C I+ In fo rm a tio n] ,

~ 1 1 3 -

http://en.wikipedia.org/wiki/Multimedia
http://en
http://research.microsoft
https://wiki

• S o u n d — Sound recording and reproduction is an e le c trica l o r m echa n ica l in sc r ip tio n
and re -c re a tio n o f sound w a ve s , such as spoken v o ic e , s in g in g , instrum ental m u sic , o r
sound effects. T h e tw o m ain classes o f sound re c o rd in g te ch n o lo g y are ana log re co rd in g
and d ig ita l re co rd in g . A c o u s t ic analog re co rd in g is achieved b y a sm all m icrophone d ia
p hragm that can detect changes in atm ospheric pressure (acoustic sound w a ve s) and rec
o rd them as a g raph ic representation o f the sound w a ve s o n a m ed ium such as a
p h o no g ra p h . D ig ita l re c o rd in g and re p ro d u c tio n co n ve rts the analog sound s igna l p ick e d
up b y the m icro p h o n e to a d ig ita l fo rm b y a process o f d ig it iza tio n , a llo w in g it to be
stored and transm itted b y a w id e r v a r ie ty o f m edia [h ttp ://e n .w ik iped ia .o rg/w ik i/So und -

re c o rd in g and re p ro d u c tio n],

• Text — Text (w r it in g) is the representation o f language in a textua l m edium th ro u g h the
use o f a set o f s igns o r sym b o ls (k n o w n as a w r it in g system). It is d is tin g u ish e d fro m i l
lu stra tio n , such as cave d ra w in g and p a in tin g , and n o n -s y m b o lic p re se rva tio n o f language
v ia n o n -te x tu a l m edia , such as m agnetic tape aud io
[h ttp ://e n .w ik ip e d ia .o rg /w ik i/W ritin g].

• Voice — Voice (o r v o c a liz a tio n) is the sound p ro d u ced b y hum ans and o th er vertebrates
u s in g the lungs and the vo c a l fo ld s in the la ry n x , o r v o ic e b o x . V o ic e is no t a lw ays p ro
duced as speech, h o w e ve r. In fa nts babb le and co o ; anim als bark , m oo, w h in n y , g ro w l,
and m e o w ; and adult hum ans laugh, s in g , and c ry . V o ic e is generated b y a ir f lo w from the
lu n gs as the vo c a l fo ld s are b ro u g h t close together. W h e n a ir is pushed past the v o c a l
fo ld s w ith su ffic ie n t pressure , the v o c a l fo ld s v ib ra te . I f the v o c a l fo ld s in the la ry n x d id
not v ib ra te n o rm a lly , speech co u ld o n ly be p ro d u ce d as a w h isp e r. Y o u r v o ic e is as
u n ique as y o u r f in g e rp rin t. It helps define y o u r p e rso n a lity , m ood , and health [http://
w w w .n id cd .n ih .g o v/h e a lth /vo ice /w h a tis _ v s l.h tm l].

V o ic e is a m a jo r m eans o f m u ltim e d ia . V o ic e can be app lie d to m a n y o th er m u ltim e
d ia types to increase the un d ersta nd in g b y the re c e ive r (lis te n e r).

• Web Page — E a ch w e b page (a lso k n o w n as a w e b p a g e) represents va rio u s types o f in
fo rm a tio n presented to the v is ito r in an aesthetic and readable m anner. M o s t o f the w e b
pages are a va ila b le on the W o r ld W id e W e b , w h ic h m akes them w id e ly accessib le to the
In te rnet p u b lic . T h e in fo rm a tio n on a w e b page is d isp la ye d o n lin e w ith the he lp o f a w e b
b ro w se r, w h ic h connects w ith the se rver w h ere the w e b s ite ’s contents are hosted th ro u g h
the H y p e rte x t T ra n s fe r P ro to co l (H T T P) [h ttp ://w w w .ntchosting .com /intem et/w ebpage
.h tm l],

2.4.10 M e ta p h o rs a n d c o n c e p tu a l m o d e ls . Metaphors are lin g u is tic d ev ice s that express an
abstract concept th ro u g h a n a lo g y. T h e use o f m etaphors a llo w s u n fa m ilia r and abstract concepts
to be m ore re a d ily grasped and understood .

A n exam ple o f the use o f a m etaphor in e v e ry d a y speech is w hen w e ta lk about tim e as i f i t is
m one y o r cu rre n c y . T im e is an abstract con ce p t and b y u s in g a m etaphor to m ake it m ore fa m il
ia r and understandable , w e can ta lk about it m ore fre e ly . B y u s in g th is m one y m etaphor in
re la tio n to tim e, it has becom e no rm al fo r us to save, spend, g iv e , waste, and b o rro w tim e.

M e ta p h o rs are im porta nt w ith in H C I because th e y a llo w users to a p p ly th e ir un dersta nd in g o f
e ve ryd a y ob jects and s ituations to h e lp them understand concepts w ith in a co m p u tin g e n v iro n
m ent.

- 1 1 4 -

http://en.wikipedia.org/wiki/Sound-
http://en.wikipedia.org/wiki/Writing
http://www.nidcd.nih.gov/health/voice/whatis
http://www.ntchosting.com/intemet/webpage

T h e desk top m etaphor is one w h ic h has been used from an e a rly stage b y the M a c W in d o w s
System w h ic h then o f course led to the W in d o w s O p e ra tin g System b y M ic ro s o ft . I t is im portant
to note that n o t a ll the fu n c tio n a lity o f a re a l-w o r ld desktop can be transform ed in to a v irtu a l
counterpart. T h is is a s ituation in w h ic h n o v ic e users w h o e xp ect a certain b e h a v io r based on the

real w o r ld b u t are surprised w h e n th ings a ren ’ t qu ite the sam e, e .g ., “ ico n s” — som e users expect

re lig io u s ob je cts .

A conceptual model describes the w a y a system is m eant to be understood . A g o o d conceptu
al m odel that is a p p lie d p ro p e rly in the d esign o f a system w i l l enable a user to d e ve lo p a good
m ental m o d e l associated w ith the system . T h e re are ty p ic a lly m any m etaphors and mental
m odels o f users that can be used in IS D [In s tru c tio n a l S ystem D e s ig n] to he lp users gain a good
understa nd ing o f the system . T h e user’ s m ental m od e l o f a system is d e ve lo p e d b y v ie w in g
and/or e x p e r ie n c in g the system and its v is ib le fu n c tio n a lity and structure.

F o r an in te ra c tive system s designer, it is g o o d p ra ctice to start w ith a desired m ental m odel
and then d e v e lo p the in terface w ith the in ten tio n o f c o n v e y in g that m ental m od e l e x p lic it ly to the
user th ro u g h a con ce p tu a l m odel. Parts o f the system that m ay clash w ith the conceptua l m odel
can be h id d e n fro m the user in o rd e r to m ainta in a g o o d conceptua l m odel, w h ic h w i l l h o p e fu lly
lead to ease o f use fo r the user [h ttp ://w w w .com putingstudents.com /notes/in teractive system s
/m etaphors co n ce p tu a l m o d e ls .p h p].

2.4.11 P s y c h o lo g y o f H C I . Cognitive psychologists w h o w o rk in the so ftw are in d u s try ty p ic a lly
fin d th e m se lve s d e s ig n in g and e va lu a tin g co m p le x so ftw a re system s to a id hum ans in a w ide
range o f p ro b le m dom ains, lik e w o rd p ro ce ss ing , in te rp e rso na l com m u n ica tion s, in fo rm ation
access, f in a n ce , rem ote m eeting support, a ir tra ff ic c o n tro l, o r even ga m ing s ituations. In these
dom ains, the te ch n o lo g ie s and the users’ tasks are in a constant state o f f lu x , e vo lu tio n and co
e vo lu tio n . C o g n it iv e p sych o lo g is ts w o rk in g in h u m a n -co m p u te r in teraction d e s ign m ay t ry to
start f ro m f irs t p r in c ip le s d e ve lo p in g these system s, b u t th e y o ften encounter n o ve l usage scenar
ios fo r w h ic h n o gu ida nce is a va ilab le . F o r th is reason, w e b e lie ve that there is n o t as much
a p p lica tio n o f th eories , m odels , and sp e c ific fin d in g s fro m basic p s yc h o lo g ic a l research to user
in terface (U I) d e s ig n as one w o u ld hope. H o w e v e r, seve ra l ana lysis techniques and some gu id e
lines ge ne ra te d fro m the literatu re are usefu l [D u m a is and C z e rw in s k i 2001].

2.5 S o ftw a re D e s ig n Q u a l i t y A n a ly s is a n d E v a lu a t io n

T h is s e c tio n in c lu d e s a num ber o f q u a lity and e va lu a tio n to p ics that are s p e c if ic a lly related to
softw a re d e s ig n [S W E B O K 2004].

2.5.1 Q u a l i t y a t t r ib u te s . V a r io u s attributes are g e n e ra lly considered im porta nt fo r o b ta in in g a
softw are d e s ig n o f goo d q u a lity [e .g ., va rio u s “ ilit ie s ” (m a in ta in a b ility , p o rta b ility , testability ,
t ra c e a b ility), v a r io u s “ nesses” (correctness, robustne ss), in c lu d in g “ fitness fo r p u rp o se .”]

A n in te re s tin g d is tin c tio n is the one betw een q u a lity attributes d iscem able at ru n -t im e (per
fo rm ance , s e c u r ity , a v a ila b ility , fu n c tio n a lity , u s a b ility) , those not d iscem ab le at run -tim e
(m o d if ia b ility , p o rta b ility , re u sa b ility , in te g ra b ility , and te s ta b ility), and those related to the
a rch ite c tu re ’ s in tr in s ic qu a lities (co nce ptua l in te g rity , correctness, and com pleteness, build

a b ility) [S W E B O K 2004].

2.5.2 Q u a l i t y a n a ly s is a n d e v a lu a t io n te c h n iq u e s . V a r io u s too ls and techn iques can help

ensure a so ftw a re d e s ig n ’ s q u a lity [S W E B O K 2004].

- 1 1 5 ~

http://www.computingstudents.com/notes/interactive

• Softw are design reviews — In fo rm a l o r sem ifo rm al, o ften g ro u p -ba se d , techniques to
v e r if y and ensure the q u a lity o f d e s ign artifacts.

• Static analysis — Fo rm a l o r se m ifo rm a l static (n o n -e xe cu ta b le) ana lysis that can be used
to eva luate a design (fo r exam ple , fa u lt-tre e an a lysis or autom ated c ro ss -ch e ck in g).

• Sim ulation and prototyping — D y n a m ic techn iques to eva luate a d e s ign (fo r exam ple ,
perfo rm a nce s im u la tion o r fe a s ib ility p ro to ty p e).

2.5.3 M e a s u re s . M easures can be used to assess o r to q u a n tita tive ly estim ate va rio u s aspects o f a
so ftw a re d e s ig n ’ s s ize , structure , o r q u a lity . M o s t m easures that depend on the approach used fo r
p ro d u c in g the d esign . Th ese m easures are c la ss ifie d in to tw o b road categories [S W E B O K 2004]:

• Function-oriented (structured) design m easures the d e s ig n ’ s structure , obta ined m o stly
th ro u g h fu n ctio n a l deco m p o sitio n and g e n e ra lly represented as a structure chart (so m e
tim es ca lle d a h ie ra rch ica l d iag ra m) o n w h ic h v a rio u s m easures can b e com puted.

• Object-oriented design m easures the d e s ig n ’ s ove ra ll structu re , often represented as a
class d iagram , o n w h ic h va rio u s m easures can be com puted . M easures o f the properties
o f each c la ss ’ s in terna l content can a lso be com puted.

2.6 S o ftw a re D e s ig n N o ta t io n s

M a n y no ta tion s and languages e x is t to represent so ftw a re d e s ign a rtifacts . Som e are used m a in ly
to d e scrib e a d e s ig n ’ s structu ra l o rg a n iza tio n , others to represent so ftw a re b e h a v io r. C e rta in
no ta tions are used m o stly d u rin g a rch itectu ra l d e s ig n and others m a in ly d a rin g deta iled design ,
a lth o u g h som e notations can be used in bo th steps. In a d d itio n , som e notations are used m o s tly in
the co n te xt o f sp e c ific m ethods. H e re , th e y are ca te go rized in to no ta tions fo r d e scrib in g the
stru ctu ra l (s ta tic) v ie w versus the b eh a v io ra l (d y n a m ic) v ie w [S W E B O K 2004].

2.6.1 S t r u c t u r a l D e s c r ip t io n s (s ta t ic v ie w) . T h e fo l lo w in g no ta tion s, m o stly (b u t not a lw a ys)

g ra p h ica l, describe and represent the stru ctu ra l aspects o f a so ftw a re design — that is , th ey
describe the m a jo r com ponents and h o w th e y are in te rco nn ected (static v ie w) [S W E B O K 2004]:

• A rchitecture description languages (A D L s) — T e x tu a l, o ften fo rm a l, languages used to
d escribe softw a re arch itecture in term s o f com ponents and connectors .

• Class and object diagrams — U s e d to represent a set o f classes (and o b je cts) and th e ir
in te rre la tion sh ip s .

• Com ponent diagrams — U s e d to represent a set o f com ponents (“ p h ys ic a l and rep lacea
b le part[s] o f a system that [co n fo rm] to and [p ro v id e] the re a liza tio n o f a set o f in te rfa c
es”) [B o o c h , R um baugh , & Jacob son 1999] and th e ir in te rre la tion sh ips .

• Class responsibility collaborator (C R C) m odels — U s e d to denote the nam es o f co m p o
nents (c la ss), th e ir re sp o n s ib ilit ie s , and th e ir c o lla b o ra tin g com p one nts ’ names [http://
w w w .a g ile m o d e lin g .co m / a rtifa c ts/ c rcM o d e l.h tm].

• Deploym ent diagrams — U s e d to represent a set o f (p h y s ic a l) nodes and th e ir in te rre la
t io n sh ip s , and thus to m odel the p h ys ic a l aspects o f a system .

• E ntity -re la tionsh ip diagrams (E R D s) — U s e d to represent conceptua l m odels o f data
stored in in fo rm a tio n system s.

~ 1 1 6 -

http://www.agilemodeling.com/artifacts/crcModel.htm

• In terface description languages (ID L s) — P ro g ra m m in g -lik e languages used to d e f in e
the in terfaces (nam es and types o f exp o rte d opera tions) o f so ftw a re com ponents.

• Jackson structure diagrams (JS D s) — U s e d to describe the data structures in term s o f

sequence , se lection , and iteration.

• S tructure charts — U s e d to describe the c a llin g structure o f p rogram s (w h ic h m o d u le

ca lls , and is ca lle d b y , w h ic h other m od u les).

2.6.2 B e h a v io r a l d e s c r ip t io n s (d y n a m ic v ie w) . T h e fo llo w in g notations and languages, som e
graph ica l and som e te xtu a l, are used to d escribe the d yn a m ic b e h a v io r o f softw are and c o m p o
nents. M a n y o f these notations are usefu l m o stly , b u t not e x c lu s iv e ly , d u rin g deta iled d e s ig n

[S W E B O K 2004]:

• A ctiv ity diagram s — U s e d to sho w the co n tro l f lo w from a c t iv ity (“ o n g o in g n o n -a to m ic
e xe c u tio n w ith in a state m achine”) to a c tiv ity .

• Collaboration diagrams — U s e d to sh o w the in teractions that o c c u r am ong a g ro u p o f
o b je cts , w h e re the em phasis is on the ob jects , th e ir lin k s , and the m essages they e x c h a n g e

on these lin k s .

• D ata f lo w diagrams (D F D s) — U s e d to sh o w data f lo w am ong a set o f processes.

• D ecision tables and diagrams — U s e d to represent co m p le x com b ina tio ns o f c o n d it io n s

and action s .

• F low ch arts and structured flow charts — U s e d to represent the f lo w o f c o n tro l a n d the

associated actions to be perform ed.

• Sequence diagram s — U s e d to sh o w the in teractions am ong a g ro u p o f o b je cts , w ith

em phasis o n the tim e -o rd e rin g o f m essages.

• State transition and state-chart diagram s — U se d to sh o w the c o n tro l f lo w fro m state to

state in a state m achine.

• F o rm a l specification languages — T e x tu a l languages that use basic no tions from m a th
em atics (fo r exam ple , lo g ic , set, and sequence) to r ig o ro u s ly and a b stractly d e fin e s o ft
w a re co m p o ne nt in terfaces and b e h a v io r, o ften in term s o f p re - and p o st-co n d itio n s .

• Pseudocode and program design languages (P D Ls) — S tru c tu re d -p ro g ra m m in g -lik e
languages used to describe , g e n e ra lly at the d eta iled design stage, the b e h a v io r o f a p ro

cedure o r m ethod.

2.7 S o ftw a re D e s ig n S tra te g ie s a n d M e th o d s

There e x is t v a r io u s general strategies to he lp gu id e the design process. In contrast to g e n e ra l
strategies, m ethods are m ore sp e c ific in that th ey g e n e ra lly suggest and p ro v id e a set o f no ta tion s
to be u s e d w ith the m ethod, a d escrip tio n o f the process to be used w h e n fo llo w in g the m eth od ,
and a se t o f g u id e lin e s in u s in g the m ethod. S u ch m ethods are usefu l as a m eans o f tra n s fe rr in g
k n o w le d g e and as a com m on fra m e w o rk fo r team s o f softw are engineers.

2.7.1 G e n e r a l s tra te g ie s . Som e o fte n -c ite d exam ples o f general strategies usefu l in the d e s ig n
process are d iv id e -a n d -c o n q u e r and stepw ise re fine m e nt, to p -d o w n versus b o tto m -u p stra teg ies,
data a b stra c tio n and in fo rm a tio n h id in g , use o f h e u ris tics , use o f patterns and pattern la n g u a g e s ,
and use o f an ite ra tive and increm ental approach [S W E B O K 2004].

- 1 1 7 -

2.7.2 F u n c t io n -o r ie n te d (s t ru c tu re d) d e s ig n . T h is is one o f the classica l m ethods o f so ftw a re
design , w h ere deco m p o sitio n centers on id e n t ify in g the m ajo r softw are fu n ctio n s and then
e la b o ra ting and re f in in g them in a to p -d o w n m anner. S tructured d e s ign is g e n e ra lly used after
stru ctu red an a lysis , thus p ro d u c in g , am ong o th e r th in g s , data f lo w diagram s and associated
p rocess d e scrip tio n s . Researchers have p ro p o sed va rio u s strategies (fo r exam ple , transfo rm ation
a n a lys is , transactio n a n a lys is) and h e u ris tics (fo r exam ple , fa n -in / fa n -o u t, scope o f e ffe ct ve rsus
scope o f c o n tro l) to transform a D F D in to a so ftw a re a rch ite ctu re g e n e ra lly represented as a
s tru ctu re chart [S W E B O K 2004].

2.7.3 O b je c t -o r ie n t e d d e s ig n . N u m e ro u s so ftw a re d esign m ethods based o n ob jects have been
p roposed . T h e f ie ld has e vo lve d fro m the e a rly o b je ct-b a sed d e s ig n o f the m id -19 8 0s (n o u n =
o b je ct; v e rb = m ethod; ad jective = a ttrib u te) th ro u g h O O d e sign , w h e re inheritance and p o ly
m o rp h ism (See C h a p te r 3.2, P aragraph 3.5.3 fo r d e fin it io n s) p la y a k e y ro le , to the f ie ld o f
com pone nt-ba se d d esign , w h ere m e ta -in fo rm a tio n c a n be d e fin e d and accessed. A lth o u g h O O
d e s ig n ’ s roo ts stem from the concept o f data abstraction , re s p o n s ib ility -d r iv e n d es ign has also
been p ro p o se d as an a lte rnative approach to O O d es ign [S W E B O K 2004; http:/7en.w ikipedia
.o rg / w ik i / R e s p o n s ib ility -d r iv e n de s ign],

2.7.4 D a ta -s t ru c tu re -c e n te re d d e s ig n . D a ta -s tru c tu re -ce n te re d d e s ig n (fo r exam ple , Ja ck so n ,
W a m ie r -O r r) starts from the data structures a p ro g ra m m anipulates ra th er than fro m the fu n c tio n
it p e rfo rm s. T h e softw are engineer firs t d escrib es th e input and output data stru ctu res (u s in g
Ja c k so n ’ s structure d iagram s, fo r instance) and then develops the p ro g ra m ’ s c o n tro l structu re
based o n these data structure d iagram s. V a r io u s h eu ristics h a ve been p roposed to deal w ith
specia l cases— fo r exam ple , w h e n there is a m ism atch betw een the in pu t and outp u t structures.

2.7.5 C o m p o n e n t -b a s e d d e s ig n (C B D) . A so ftw a re com p one nt is an independent u n it, h a v in g
w e ll-d e fin e d in terfaces and dependencies that can b e com posed and d e p lo ye d in de p e n d e ntly .
C o m p o n e n t-b a se d design addresses issues re la ted to p ro v id in g , d e v e lo p in g , and in tegra tin g such
com ponents in o rd e r to im p ro ve reuse [S W E B O K 2004].

2 .7.6 O t h e r m e th o d s . O th e r in teresting b u t less m ainstream approaches also ex ist, fo r exam ple ,
fo rm a l and r ig o ro u s approaches (V D M , Z , e tc .); S A D T ; R .UP; state charts.

R e fe re n c e s

A d d it io n a l in fo rm a tio n on the softw are d e s ig n K A can be fo u n d in the fo llo w in g docum ents:

• [A C M S I G C H I 1996] Th o m a s T . H e w e tt , R o n a ld B a e ck e r, T o m C a re y , Jean G asen,
M a r i ly n M a n te i, G a ry P erlm an, G a ry S tro n g , and W ill ia m V e rp la n k , C urricu la f o r H u -
m an-Com puter Interaction A C M , N e w Y o r k , 1996.

• [B a ss 2003] L . B ass, P . C le m e nts , and R . K a zm a n , Software Architecture in Practice,
2 nd ed., A d d is o n -W e s le y , R e a d in g . M A , 2003.

• [B e r n a r d , L ia l , & M il ls 2001] M . B e rn a rd , C .H . L ia o , and M . M ills . “ T h e E ffe c ts o f
F o n t T y p e and S ize on the L e g ib i l i t y and R e a d in g T im e o f O n lin e T e x t b y O ld e r A d u lts ,”
D ep artm en t o f P s yc h o lo g y , W ic h ita State U n iv e rs it y , W ic h ita , K S , 2001.

• [B o o c h , R u m b a u g h , & Ja c o b s o n 1999] G . B o o c h , J. R u m b a u gh , and I . Jacobson , The
U nified M odeling Language User Guide, A d d is o n -W e s le y , R e a d in g , M A , 1999.

. [B o s c h 2000] J . B o sc h , Design & Use o f Software Architectures: Adopting and Evo lv ing
a Product-Line Approach, 1st ed ., A C M Press. N e w Y o r k 2000.

- 1 1 8 -

• [B u d g e n 2003] D a v id B u d g e n , Software Design (H a rd c o v e r) , 2 nd E d it io n , A d d is o n -
W e s le y , R ea d in g , M A , 400 pages, IS B N -1 3 : 978-0201722192. (R ecom m ended as a

C S D P exam reference b o o k b y the I E E E C o m p u te r S o c ie ty .)

• [B u s c h m a n n 1996] F . B usch m a nn Pattern-Oriented Software Architecture: A System of
Patterns, Jo h n W ile y & Sons, N e w Y o rk , 1996.

• [C le m e n ts et a l. 2002] Paul C le m e nts , F e l ix Bachm ann, L e n B a ss and D a v id G arlan ,
Docum enting Software Architectures: Views and Beyond (H a rd c o v e r) , A d d is o n -W e s le y ,
R e a d in g , M A , 2002, 560 pages, IS B N -1 3 : 978-0201703726. (R e com m e nded as a C S D P
e xa m reference b o o k b y the I E E E C o m p u te r S o c ie ty .)

• [D r a p e r 1998] S teve W . D ra p e r, Computer Supported Cooperative Lecture Notes, U n i
v e rs ity o f G la s g o w , G la s g o w , S cotlan d , 1998.

• [D u m a is & C z e r w in s k i 2001] Susan D u m a is and M a ry C z e rw in s k i, Build ing Bridges
from Theory to Practice. M ic ro s o ft R esearch , O n e M ic ro s o ft W a y , R e d m o nd , W A , 2001.

• [G a m m a et a l. 1994] E r ic h G am m a, R ic h a rd H e lm , R a lp h Jo h n so n and Jo h n V liss id e s ,
Desigri Patterns: Elements o f Reusable Object-Oriented Software , 1st e d itio n , B oston :
A d d is o n -W e s le y , R e a d in g , M A , 1994, 16 pages, IS B N -1 3 : 978-0201633610 (R e co m
m ended as a C S D P exam reference b o o k b y the I E E E C o m p u te r S o c ie ty).

• [J a c o b s o n , B o o c h , & R u m b a u g h 1999] I. Ja co b so n . G . B o o c h , and J . R um baugh, The
U nified Software Development Process, A d d is o n -W e s le y , R e a d in g , M A , 1999.

• [K ic z a le s et a l 1997] G re g o r K ic z a le s , Jo h n L a m p in g , A n u ra g M e n d h e k a r, C h ris M aeda,
C r is t in a V id e ira L o p e s , Je a n -M a rc L o in g t ie r , and Jo h n Irw in , “ A sp e c t-O rie n te d P ro
g ra m m in g ,” Presented at E C O O P ’97 - Objected-Oriented Program m ing , 1997.

• [L is k o v & G u t ta g 2001] B . L is k o v and J . G uttag , Program Development in Java : A b
straction, Specification, and Object-Oriented Design, A d d is o n -W e s le y , R ea d in g , M A ,
2 0 0 1 .

• [N ie ls e n 1994] Jakob N ie ls e n , Usability Engineering (P ap erb a ck), 1st E d it io n , M o rg a n
K a u fm a n n , B u rlin g to n , M A , 1994, 362 pages, IS B N -1 3 : 978-0125184069 (R ecom m end
ed as a C S D P exam reference b o o k b y the I E E E C o m p u te r S o c ie ty).

• [P a g e -Jo n e s 1999] M e i l i r P a ge -Jo n es , Fundam ental o f O bject-Oriented Design in U M L
(P a p e rb a ck), 2nd E d it io n , A d d is o n -W e s le y , R e a d in g , M A , 1999, 480 pages, I S B N - 13:
978-0201699463. (R e com m e nded as a C S D P exam reference b o o k b y the I E E E C o m p u t
er S o c ie ty .)

• [S e a rs & J a c k o 2007] A n d re w Sears and J u lie A . Ja ck o , E d ito rs , The Human-Computer
Interaction Handbook: Fundamentals, Evo lv in g Technologies and Em erging Applica
tions, S econ d E d it io n (H u m a n Fa cto rs and E rg o n o m ic s), L a w re n ce E rlb a u m Associates,

N e w Y o r k , 2007.

• [S h n e id e rm a n 1998] B e n Shneiderm an, Designing the User Interface: Strategies fo r Ef
fective Hum an-Com puter Interaction , 3d ed., A d d is o n -W e s le y , R e a d in g , M A , 1998.

• [S ilb e rs c h a tz 2008] A b ra h a m S ilb e rsch a tz , P eter B a er G a lv in , G re g G a g n e , Operating
System Concepts (H a rd c o v e r) , 8th E d it io n , Jo h n W ile y & S ons, H o b o k e n , N J , 2008,

- 1 1 9 -

IS B N -1 3 : 978-0470128725. (R e co m m e nd e d as a C S D P exam reference b o o k b y the
I E E E C o m p u te r S o c ie ty .)

• [S o m m e rv ille 2006] Ian S o m m e rv ille , Software Engineering, 8th e d itio n , A d d is o n -
W e s le y , H a r lo w , E n g la n d 2006. (R e co m m e n d e d as a C S D P exam reference b o o k b y the
I E E E C o m p u te r S o c ie ty .)

• [S W E B O K 2004] E . B o u rq u e and R . D u p u is , E d ito rs , Software Engineering Body o f
Knowledge (SW EB O K). I E E E C o m p u te r S o c ie ty Press, L o s A la m ito s , C A , 2004.

• [W ik ip e d ia] is a free w e b based e n c yc lo p e d ia enab ling m u ltip le users to fre e ly add and
ed it o n lin e content.

- 1 2 0 -

C h a p t e r 3 .1

W e l c o m e t o S o f t w a r e C o n s t r u c t i o n 8

Steven M cConnell
Construx Software

Bellevue, WA 98004

You know what “construction” means when i t ’s used outside software develop
ment. “Construction” is the work “construction workers” do when they bu ild a
house, a school, or a skyscraper. When you were younger, yo u built things out o f
“construction paper. ” In common usage, “construction ” refers to the process o f
building. The construction process m ight include some aspects o f planning, de
signing, and checking yo u r work, but mostly “ construction ” refers to the hands-
on p art o f creating something.

1. W h a t Is S o ftw a re C o n s t ru c t io n ?

D e v e lo p in g com p u ter so ftw are can be a co m p lica te d process, and in the last 25 years, re se a rch
ers h a ve id e n tif ie d num erous d is tin ct a c tiv itie s that go in to so ftw a re deve lopm ent. T h e y in c lu d e :

• P ro b le m d e fin it io n

• R equ ire m e nts deve lopm ent

• C o n s tru c tio n p lan n in g

• S o ftw a re a rch itectu re , o r h ig h -le v e l d e s ig n

• D e ta ile d d e s ign

• C o d in g and d e b u g g in g

• U n it testing

• In te g ra tio n testing

• In te g ra tio n

• S ystem testing

• C o rre c t iv e m aintenance

I f y o u ’ v e w o rk e d on in fo rm a l p ro jects , y o u m ig h t th ink that th is lis t represents a lo t o f red
tape. I f y o u ’ v e w o rk e d on p ro jects that are to o fo rm a l, yo u k n o w that th is lis t represents a lo t o f
red tape. I t ’ s hard to strike a balance betw een to o lit t le and too m uch fo rm a lity .

I f y o u ’ ve taught y o u rs e lf to p rogram o r w o rk e d m a in ly on in fo rm a l p ro jects, y o u m ig h t n o t
have m ade d is tin c tio n s am ong the m any a c tiv itie s that go in to c rea tin g a software p ro d u ct.
M e n ta lly , y o u m ig h t have grou p e d a ll o f these a c tiv it ie s together as “ p ro g ra m m in g .” I f yo u

8. This paper is an extract from McConnell’s book, Code Complete: A practical handbook of software construc
tion, 2nd ed., Microsoft Press, Redmond, WA, 2004. Used with permission of Microsoft, Inc. (This book is rec
ommended by the IEEE Computer Society as a reference book for the CSDP exam.)

- 1 2 1 -

w o rk o n in fo rm a l p ro jects , the m ain a c t iv ity y o u th in k o f w h en y o u th in k about creating
softw a re is p ro b a b ly the a c t iv ity the researchers re fe r to as “ co n stru c tio n .”

T h is in tu it iv e n o tio n o f “ co n stru c tio n ” is fa ir ly accurate, but it suffers fro m a lack o f p e r
spective . P u ttin g co n struction in its c o n te xt w ith other a c tiv itie s helps keep the focus on the
r ig h t tasks d u rin g co n stru ctio n and a p p ro p ria te ly em phasizes im porta nt n o n -c o n s tru c tio n
activ itie s .

C o n s tru c tio n is m o stly c o d in g and d e b u g g in g but a lso in v o lv e s deta iled d esign , con stru ction
p la n n in g , u n it testing , in tegra tion , in te g ra tio n testing , and other a c tiv itie s . I f th is w ere a paper
about a ll aspects o f softw are deve lop m e nt, it w o u ld feature n ic e ly balanced d iscu ss io n s o f all
a c tiv itie s in the deve lopm ent process. B ecause th is is a paper about co n stru ctio n techniques,
h o w e ve r, it p laces a lop s id ed em phasis o n co n stru c tio n and o n ly touches o n re lated to p ics . I f th is
paper w e re a d o g , it w o u ld m u zz le up to co n stru ctio n , w a g its ta il at design and testin g , and bark
at the o th er deve lop m e nt a c tiv itie s .

C o n s tru c tio n is also som etim es k n o w n as “ c o d in g ” o r “ p ro g ra m m in g .” “ C o d in g ” isn ’ t re a lly
the best w o rd because it im p lie s the m echanica l tra nsla tio n o f a p re e x is tin g design into a co m
puter language , but co n stru c tio n is no t at a ll m echanical and in v o lv e s substantia l c re a tiv ity and
ju d g m e n t. T h ro u g h o u t the a rtic le , I use “ p ro g ra m m in g ” in te rch a n ge a b ly w ith “ co n stru c tio n .”

H e re are som e o f the sp e c ific tasks in v o lv in g construction :

• V e r i f y in g that the g ro u n d w o rk has been la id so that co n stru ctio n can p roceed su cce ssfu lly

• D e te rm in in g h o w y o u r code w i l l be tested

• D e s ig n in g and w r it in g classes and routines

• C re a tin g and nam ing va riab le s and nam ed constants

• S e le c tin g co n tro l structures and o rg a n iz in g b lo ck s o f statements

• U n it testing , in tegra tion testing , and d e b u g g in g y o u r o w n code

• R e v ie w in g other team m em bers’ lo w -le v e l des igns and code and h a v in g them re v ie w
y o u rs

• P o lis h in g code b y c a re fu lly fo rm a ttin g and com m e nting it

• In te g ra tin g softw are com ponents that w ere created separate ly

• T u n in g code to m ake it faster and use fe w e r resources

W ith so m a n y a c tiv itie s at w o rk in co n stru ctio n , y o u m ig h t say , “ O K , Jack , w h a t a c tiv itie s
are not parts o f co n stru ctio n ?” T h a t ’ s a fa ir qu estion . Im p orta n t n o n -c o n s tru c tio n a c tiv itie s
inclu de m anagem ent, requirem ents d eve lo p m e nt, so ftw are arch itecture , u ser-in te rfa ce d esign ,
system testin g , and m aintenance. E a ch o f these a c tiv itie s a ffects the ultim ate success o f a. p ro je c t
as m uch as co n stru c tio n — at least the success o f any p ro je c t that ca lls fo r m ore than one or tw o
people and lasts lo n g e r than a fe w w eeks. Y o u can fin d good books on each a c t iv ity ; m a ny are
listed in the “ A d d it io n a l R esources” sections o f Code Complete: A practical handbook o f s o ft
ware construction [2004].

- 1 2 2 -

Y o u p ro b a b ly agree that im p ro v in g softw are q u a lity and d e ve lo p e r p ro d u c t iv ity is im p o rta n t.
M a n y o f today's m ost e xc it in g p ro jects use softw are e x te n s iv e ly . T h e Internet, m o v ie s p e c ia l
e ffects , m ed ica l life -su p p o rt system s, space p rogram s, aeronautics , h ig h -sp e e d fin a n c ia l a n a ly
sis, and s c ie n tific research are a fe w exam ples. Th ese p ro je cts and m ore c o n ve n tio n a l p ro je c ts
can a ll ben e fit fro m im p ro ve d p ractices because m any o f the fundam entals are the same.

I f y o u agree that im p ro v in g softw are deve lopm e nt is im porta nt in general, the qu estion f o r

y o u as a reader o f th is docum ent becom es— w h y is co n stru c tio n an im portant focus?

H e re ’ s w h y :

• Construction is a large p a rt o f software development. D e p e n d in g o n the s ize o f the p r o
je c t , c o n stru c tio n ty p ic a lly takes 30 to 80 percent o f the total tim e spent on a p ro ject. A n
y th in g that takes up that m u ch p ro je c t tim e is b o u n d to a ffect the success o f the p ro je c t.

• Construction is the central activity in software development. R equirem ents and a rc h ite c
tu re are done before co n stru c tio n so that y o u can do co n stru ctio n e ffe c t iv e ly . S ystem t e s t
in g (in the stric t sense o f independent te stin g) is done after co n stru ctio n to v e r ify th a t
co n stru c tio n has been done c o rre c tly . C o n s tru c tio n is at the center o f the s o ftw a re -

de ve lo p m e n t process.

• With a focus on construction, the individual program m er’s productivity can im prove
enormously. A classic s tudy b y Sackm an, E r ik s o n , and G ra n t [1968] sh o w e d that the p r o
d u c t iv ity o f in d iv id u a l p rogram m e rs va rie d b y a fa c to r o f 10 to 20 d u rin g c o n s tru c tio n .
S ince th e ir s tu d y, th e ir resu lts have been co n firm e d b y num erous o ther studies [C u r t is
1981, M i l ls 1983, C u rt is et al. 1986, C a rd 1987, V a le t t & M c G a r ry 1989, D e M a rc o &
L is te r 1999, B o e hm et a l. 2000]. T h is paper h e lp s a ll p rogram m ers learn techniques th a t

are a lre a d y used b y the best p rogram m ers.

• Construction ’s product, the source code, is often the only accurate description o f the
software. In m any p ro je c ts , the o n ly docum entation a va ilab le to p rogram m ers is the c o d e
itse lf. R equ irem ents sp e c ifica tio n s and design docum ents can go out o f date, but th e
source cod e is a lw a ys up to date. C o n se q u e n tly , i t ’ s im p e ra tive that the source code b e o f
the h ig h e st p ossib le q u a lity . C o n s iste n t a p p lica tio n o f techniques fo r so u rce -co d e im
p ro ve m e n t m akes the d iffe re n ce betw een a R u b e G o ld b e rg con tra p tio n and a d e ta ile d ,
co rre c t, and therefore in fo rm a tive program . S u ch techniques are m ost e ffe c t iv e ly a p p lie d
d u rin g con stru c tio n .

• Construction is the only activity that’s guaranteed to be done. Th e idea l so ftw are p ro j ect
goes th ro u g h carefu l requ irem ents deve lopm ent and architectura l d es ign b e fo re c o n s t ru c
tio n b e g in s . T h e idea l p ro je c t undergoes co m p re h e n s ive , sta tis tica lly c o n tro lle d sys te m
testin g after co n stru ctio n . Im p e rfe ct, re a l-w o r ld p ro je cts , h o w e ve r, o ften sk ip re q u ire
m ents and d esign to ju m p in to con stru ction . T e s t in g is d ropped because d e ve lo p e rs h a v e
too m a n y e rrors to f i x and th e y ’ v e run out o f tim e. B u t no m atter h o w rushed o r p o o r ly
p lanned a p ro je c t is , y o u ca n ’ t d ro p co n stru c tio n : it's w here the ru b b e r m eets the ro a d .
Im p ro v in g co n stru c tio n is thus a w a y o f im p ro v in g any so ftw a re -d e ve lo p m e n t e ffo rt , n o
m atter h o w abbreviated .

2 . W h y I s S o f tw a r e C o n s t r u c t io n I m p o r t a n t ?

- 1 2 3 -

T h e im age o f “ b u ild in g ” softw are is m ore u se fu l than that o f “ w r it in g ” o r “ g ro w in g ” softw are .
I t ’ s com p a tib le w ith the idea o f softw are a ccre tio n and p ro v id e s m ore deta iled gu idance. B u ild
in g so ftw a re im p lie s v a rio u s stages o f p la n n in g , p reparation , and e xe cu tio n that v a ry in k in d and
degree d epe nd ing o n what's b e ing b u ilt. W h e n y o u e xp lo re the m etaphor, y o u f in d m any other
para lle ls .

B u ild in g a fo u r -fo o t to w e r requ ires a steady hand, a le ve l surface, and 10 undam aged beer
cans. B u ild in g a to w e r 100 tim es that s ize doesn 't m e re ly re q u ire 100 tim es as m any beer cans. It
req u ire s a d iffe re n t k in d o f p la n n in g and co n stru c tio n altogether.

I f y o u ’ re b u ild in g a s im p le structure— a doghouse , say— y o u can d r iv e to the lu m b e r store
and b u y som e w o o d and na ils . B y the end o f the a fte rnoon , y o u 'l l h a ve a n e w house fo r F id o . I f
y o u fo rg e t to p ro v id e fo r a d o o r, o r m ake som e other m istake, it's n o t a b ig p rob lem ; y o u can f ix
it o r e ve n start o v e r fro m the b e g in n in g . A l l y o u 'v e w asted is part o f an afternoon. T h is loose
a pproach is appropria te fo r sm all so ftw are p ro je c ts too. I f y o u use the w ro n g d e s ign fo r 1000
lin es o f code, y o u can start o v e r co m p le te ly w ith o u t lo s in g m uch .

I f yo u 're b u ild in g a house, the b u ild in g process is m ore com p lica ted , and so are the conse
quences o f p o o r design . F irs t y o u have to decide w h at k in d o f house y o u w ant to b u ild —
analogous in softw are deve lopm e nt to p ro b le m d e fin it io n . T h e n y o u and an arch itect h a ve to
com e u p w ith a general d es ign and get it a p p ro ved . T h is is s im ila r to softw a re arch itectura l
design . Y o u d ra w deta iled b lu ep rin ts and h ire a contracto r. T h is is s im ila r to deta iled softw are
design . Y o u prepare the b u ild in g site, la y a fo u n d a tio n , fram e the house, p u t s id in g and a r o o f on
it, and p lu m b and w ire it . T h is is s im ila r to so ftw a re con stru ction . W h e n most o f the house is
done, the landscapers, pa in ters, and decorato rs com e in to m ake the best o f y o u r p ro p e rty and the
hom e y o u ’ ve b u ilt . T h is is s im ila r to so ftw a re o p tim iza tio n . T h ro u g h o u t the process, va rio u s
inspe cto rs com e to check the site, fo u n d a tio n , fram e, w ir in g , and other inspectables. T h is is s im
ila r to so ftw a re re v ie w s and inspections.

G re a te r c o m p le x ity and s ize im p ly g reater consequences in b o th a c tiv itie s . In b u ild in g a
house, m ateria ls are som ew hat e xp e n s ive , b u t the m ain expense is la b or. R ip p in g out a w a ll and
m o v in g it s ix inches is e x p e n s ive not because y o u waste a lo t o f n a ils but because y o u h a ve to
p a y the p eo p le fo r the e x tra tim e it takes to m o ve the w a ll. Y o u h a ve to m ake the d esign as good
as p o ss ib le so that y o u d o n ’ t w aste tim e f ix in g m istakes that cou ld have been avo ided . In b u ild
in g a so ftw a re p ro d u ct, m ateria ls are eve n less e xp e n s ive , but labor costs ju s t as m uch. C h a n g in g
a re p o rt form at is ju s t as e x p e n s ive as m o v in g a w a ll in a house because the m ain co s t com ponent
in b o th cases is p e o p le ’ s tim e.

W h a t o th er para lle ls do the tw o a c tiv itie s share? In b u ild in g a house , y o u w o n 't t r y to b u ild
th ings y o u can b u y a lrea dy b u ilt . Y o u ’ ll b u y a w asher and d rye r, d ishw a she r, re frig e ra to r, and
freezer. U n le s s y o u ’ re a m echanical w iz a rd , y o u w o n ’ t co n s id e r b u ild in g them y o u rs e lf . Y o u 'l l
a lso b u y p re fab rica ted cabinets, counters, w in d o w s , doors, and b a th ro o m fixtu re s . I f y o u ’ re
b u ild in g a softw a re system , y o u ’ ll do the sam e th in g . Y o u ’ l l m ake e xte n sive use o f h ig h -le v e l
language features rather than w r it in g y o u r o w n o p e ra tin g -sys te m -le ve l code . Y o u m ig h t a lso use
p re b u ilt lib ra rie s o f con ta ine r classes, s c ie n tific fu n ctio n s , user in terfa ce classes, and database -
m a n ip u la tio n classes. It g e n e ra lly doe sn ’ t m ake sense to code th ings y o u can b u y re a d y -m a d e .

I f y o u ’ re b u ild in g a fa n c y house w ith f irs t -c la s s fu rn ish in g s , h o w e ve r, y o u m igh t have y o u r

3 . S o f tw a r e C o n s t r u c t io n : B u i ld in g S o f tw a r e

- 1 2 4 -

cab inets custom -m ade. Y o u m ig h t have a d ish w a sh e r, re frig e ra to r, and freezer b u ilt in to lo o k
lik e the rest o f y o u r cabinets. Y o u m ight have w in d o w s custom -m ade in unusual shapes a n d
s izes . T h is cu s to m iza tio n has para lle ls in so ftw a re deve lopm e nt. I f y o u ’ re b u ild in g a f irs t -c la s s
so ftw a re p ro d u ct, y o u m ig h t b u ild y o u r o w n s c ie n tific fu n ctio n s fo r better speed o r a c c u ra c y .
Y o u m igh t b u ild y o u r o w n conta ine r classes, user in terfa ce classes, and database classes to g iv e
y o u r system a seam less, p e rfe c tly consistent lo o k and fee l.

B o th b u ild in g co n stru ctio n and softw are co n stru c tio n benefit from appropria te le ve ls o f p la n
n in g . I f y o u b u ild so ftw are in the w ro n g o rd e r, i t ’ s hard to code, hard to test, and hard to d e b u g .
It can take lo n g e r to com plete , o r the p ro je c t can fa ll apart because e v e ry o n e ’ s w o rk is t o o
c o m p le x and th ere fo re too c o n fu s in g w h e n i t ’ s a ll com bined .

C a re fu l p la n n in g doe sn ’ t ne cessarily m ean e xh a u stive p la n n in g o r o v e r-p la n n in g . Y o u c a n
p lan out the s tru ctu ra l supports and decide later w h eth er to put in h a rd w o o d flo o rs o r c a rp e tin g ,
w h a t c o lo r to p a in t the w a lls , w hat ro o fin g m ateria l to use, and so on . A w e ll-p la n n e d p ro je c t
im p ro ve s y o u r a b il ity to change deta ils later. T h e m ore experience y o u have w ith the k in d o f
so ftw a re y o u ’ re b u ild in g , the m ore deta ils y o u can take fo r granted. Y o u ju s t w a nt to be sure th a t
y o u p la n enough so that lack o f p la n n in g d o e sn ’ t create m ajo r problem s later.

T h e co n stru c tio n a n a lo g y a lso helps e x p la in w h y d iffe re n t softw are p ro je cts benefit fro m d i f
fe ren t d eve lo p m e nt approaches. In b u ild in g , y o u ’ d use d iffe re n t leve ls o f p la n n in g , d e s ig n , a n d
q u a lity assurance i f y o u ’ re b u ild in g a w arehouse o r a too lshed than i f y o u ’ re b u ild in g a m e d ic a l
center o r a n u c le a r reactor. Y o u ’ d use s till d iffe re n t approaches fo r b u ild in g a schoo l, a s k y s c ra p
er, o r a th re e -b e d ro o m hom e. L ik e w is e , in so ftw a re y o u m ig h t ge ne ra lly use f le x ib le , lig h tw e ig h t
d eve lo p m e nt approaches, b u t som etim es y o u ’ l l need r ig id , h e a vyw e ig h t approaches to a c h ie v e
safety goa ls and o th er goa ls.

M a k in g changes in the softw are b rin g s up another p a ra lle l w ith b u ild in g co n stru ctio n . T o
m o ve a w a ll s ix inches costs m ore i f the w a ll is lo a d -b e a rin g than i f i t ’ s m e re ly a p a rt it io n
betw een room s. S im ila r ly , m ak ing structu ra l changes in a p rogram costs m ore than add ing o r

d e le tin g p e rip h e ra l features.

F in a lly , the co n stru c tio n a n a lo g y p ro v id e s in s ig h t in to extre m e ly la rge softw a re p ro je c ts . B e
cause the p e n a lty fo r fa ilu re in an e x tre m e ly la rge structu re is severe, the structure has to be o v e r
engineered . B u ild e rs m ake and inspect th e ir p lans c a re fu lly . T h e y b u ild in m arg ins o f sa fe ty ; i t ’ s
better to p a y 10 percent m ore fo r s tronger m ateria l than to have a sk yscra p er fa ll o v e r. A g re a t
deal o f attention is pa id to t im in g . W h e n the E m p ire State B u ild in g w as b u ilt , each d e liv e ry t ru c k
had a 15-m inute m a rg in in w h ic h to m ake its d e liv e ry . I f a tru ck w asn't in p lace at the r ig h t t im e ,
the w h o le p ro je c t w as delayed .

L ik e w is e , fo r e x tre m e ly la rge softw a re p ro je c ts , p la n n in g o f a h ig h e r o rd e r is needed than f o r
p ro je cts that are m e re ly la rge . Capers Jones [1998] reports that a softw a re system w ith o n e
m illio n lines o f code re q u ire s an average o f 69 kinds o f docum entation . T h e re q u ire m e n ts
sp e c ifica tio n fo r such a system w o u ld ty p ic a lly be about 4000-5000 pages lo n g , and the d e s ig n
docum entation can e a s ily be tw o o r three tim es as e x te n s ive as the requirem ents. I t ’ s u n l ik e ly
that an in d iv id u a l w o u ld be able to understand the com plete design fo r a p ro je c t o f th is s ize — o r
even read it. A greater degree o f preparation is appropria te .

T h e b u ild in g -c o n s tru c tio n m etaphor is qu ite u sefu l and can be extended in a v a r ie ty o f o th e r
d ire c tio n s to represent a v a r ie ty o f other co n stru ctio n s.

- 1 2 5 -

B ecause m etaphors are h e u ris tic rather than a lg o rith m ic , th e y are not m u tu a lly e x c lu s iv e . Y o u
can use b o th the accretion and the co n stru c tio n m etaphors. Y o u can use w rit in g i f y o u w a n t to ,
and y o u can com bine w r it in g w ith d r iv in g , h u n tin g fo r w e re w o lv e s , o r d ro w n in g in a tar p it w ith
d inosaurs. U se w h a te ve r m etaphor o r co m b in a tio n o f m etaphors stim ulates y o u r o w n th in k in g o r
com m unicates w e ll w ith others o n y o u r team.

U s in g m etaphors is a fu z z y business. Y o u have to exten d them to ben efit fro m the h e u ris tic
in s ig h ts th e y p ro v id e . B u t i f y o u extend them too fa r o r in the w ro n g d ire c tio n , th e y ’ l l m islead
yo u . Ju s t as y o u can m isuse a n y p o w e rfu l to o l, y o u can m isuse m etaphors; but th e ir p o w e r
m akes them a va lu a b le part o f y o u r in te lle ctu a l to o lb o x .

5. S e le c tio n o f M a jo r C o n s t ru c t io n P ra c tic e s

Part o f p re p a rin g fo r co n stru ctio n is d e c id in g w h ic h o f the m a n y a va ila b le goo d p ra c tice s y o u ’ ll
em phasize . Som e pro jects use p a ir p ro g ra m m in g and te s t-f irs t deve lopm e nt, w h ile others use
so lo d e ve lo p m e n t and fo rm a l inspe ctio ns . E ith e r co m b in a tio n o f techniques can w o rk w e ll,
d e p e n d in g on sp e c ific c ircum stances o f the p ro je c t.

6. C h e c k lis t : M a jo r C o n s t ru c t io n P ra c tic e s

T h e fo l lo w in g m a jo r co n stru c tio n practices a p p ly in d e p e n d e n tly to co d in g , team w o rk , q u a lity
assurance, and too ls .

6.1 C o d in g

• H a v e y o u defined h o w m u ch design w i l l be done up fro n t and h o w m uch w i l l be done at
the k e yb o a rd , w h ile the code is b e in g w ritte n?

• H a v e y o u defined c o d in g co n ve n tio n s fo r names, com m ents, and la yo u t?

• H a v e y o u defined sp e c ific c o d in g p ractices that are im p lie d b y the arch ite ctu re , such as
h o w e rro r co n d itio n s w i l l be h and le d , h o w s e cu rity w i l l be addressed, w hat co n ve n tio n s
w i l l be used fo r class in terfaces, w h a t standards w i l l a p p ly to reused code, h o w m uch to
co n s id e r perform a nce w h ile c o d in g , and so on?

6.2 T e a m w o r k

• H a v e y o u defin ed an in te g ra tio n p ro ced u re— that is , have y o u d e fin e d the sp e c ific steps a
p ro gra m m e r m ust go th ro u g h b efo re ch e ck in g code in to the m aster sources?

• W i l l p rogram m ers p ro g ra m in pa irs , o r in d iv id u a lly , o r som e co m b inatio n o f the tw o ?

6.3 Q u a l i t y a ssu ra n ce

• W i l l p rogram m ers w rite test cases fo r th e ir code befo re w rit in g the code itse lf?

• W i l l p rogram m ers w rite u n it tests fo r th e ir code regard less o f w h e th e r they w rite them
f ir s t o r last?

• W i l l p rogram m ers step th ro u g h th e ir code in the debug ger before th e y check it in?

• W i l l p rogram m ers in te g ra tio n -te st th e ir code b e fo re th e y check it in ? ”

• W i l l p rogram m ers re v ie w o r inspe ct each o th e r’ s code?

4. C o m b in in g M e ta p h o r s

- 1 2 6 -

6.4 T o o ls

• H a v e y o u selected a re v is io n co n tro l to o l?

• H a v e y o u selected a language and language v e rs io n o r co m p ile r ve rs io n ?

• H a v e y o u selected a fram e w o rk such as J 2 E E o r M ic ro s o f t .N E T o r e x p lic it ly decided
n o t to use a fra m e w ork?

• H a v e y o u decided w h e th e r to a llo w use o f nonstandard language features?

• H a v e y o u id e n tifie d and acqu ired o ther to o ls y o u ’ l l be using— e d ito r, re fa cto ring to o l,
d e b u g g e r, test fra m e w o rk , syn tax checker, and so on?

8. K e y P o in ts

Severa l k e y p o in ts in softw are co n stru c tio n are:

• S o ftw a re co n stru c tio n is the centra l a c t iv ity in softw are deve lop m e nt; co n stru c tio n is the
o n ly a c t iv ity that’ s guaranteed to happen on e v e ry p ro ject.

• T h e m ain ac tiv itie s in co n stru ctio n are d eta iled design , co d in g , d e b u g g in g , in tegration ,
and d e ve lo p e r testing (u n it testing and in te g ra tio n testing).

• O th e r com m on term s fo r co n stru ctio n are “ c o d in g ” and “ p ro g ra m m in g .”

• T h e q u a lity o f the co n stru ctio n su b sta n tia lly a ffects the q u a lity o f the softw are .

• In the f in a l an a lys is , y o u r understand ing o f h o w to d o co n struction determ ines h o w g o o d
a p ro g ra m m e r y o u are, and that’ s the sub ject o f Code Complete: A practica l handbook o f
software construction [2004].

• E v e r y p ro g ra m m in g language has strengths and weaknesses. B e aw are o f the sp e c ific
strengths and weaknesses o f the language y o u ’ re us ing .

• E s ta b lis h p rogra m m in g co n ve n tio n s befo re y o u b e g in p rogram m in g . I t ’ s n e a rly im possi
b le to change code to m atch them later.

• M o re co n stru c tio n practices e x is t than y o u can use on any s ing le p ro je c t. C o n s c io u s ly
cho ose the practices that are best suited to y o u r p ro ject.

R e fe re n c e s :

A d d it io n a l in fo rm a tio n o n the software construction K A can be fou n d in the fo llo w in g docu
ments :

• [B o e h m et a l. 2000] B a rry W . B o e hm , C h r is A b ts , A . W in s o r B ro w n , S un ita C h u la n i,
B ra d fo rd K . C la rk , E l l is H o ro w itz , R a y M a d a c h y , D o n a ld J . R e ife r, B e rt Steece, Software
Cost Estimation with C O C O M O I I A d d is o n -W e s le y , B o ston , M A , 2000.

• [C a r d 1987] D . C a rd , “ A S oftw a re T e c h n o lo g y E va lu a tio n P ro g ra m ,” Information a n d
Software Technology, v o l . 29, no . 6, 1987, pp . 291-300.

. [C u r t is 1981] B . C u rt is , “ Substantia ting P rogram m e r V a r ia b il it y ,” Proceedings o f the
IE E E , V o l . 69, no . 7, 1981, p. 846.

- 1 2 7 -

• [C u r t is et a l. 1986] B . C u rt is , E .M . S o lo w a y , R .E . B ro o k s , J .B . B la c k , K . E h il ic h , H .R .
R am se y, “ S o ftw a re P s y c h o lo g y : T h e need fo r an In te rd is c ip lin a ry P ro g ra m ,” Proceed
ings o f the IE E E , v o l. 74, no . 8, 1986, p p . 1092-1106.

• [D e M a rc o & L is t e r 1999] T . D e M a rc o and T . L is te r , Peopleware: Productive and
Terms, 2nd, e d itio n , D o rse t H o u se , N e w Y o r k , 1999.

• [Jo n e s 1998] C . Jones, Estim ating Software Costs, M c G r a w -H i l l , N e w Y o r k , 1998.

• [M c C o n n e ll 2004] S. M c C o n n e ll, Code Complete: A practica l handbook o f software
construction, 2nd ed ., M ic ro s o ft P ress, R e d m o n d , W A , 2004.

• [M i l ls 1983] H . M il ls , Software Productivity, L it t le B ro w n , B o s t o n M A , 1983.

• [S a c k m a n , E r ik s o n , & G r a n t 1968] H . Sackm an, W .J . E r ik s o n , and E .E . G ra n t, “ E x p e r
im ental Studies C o m p a rin g O n lin e and O f f l in e P ro g ra m m in g P erfo rm a nce ,” Communica
tions o f the A CM , V o l . l , N o . 1 (Ja n u a ry), 1968, pp. 188-204.

• [V a le t t & M c G a r r y 1989] J . V a le tt and F .E . M c G a r ry , “ A S u m m a ry o f S o ftw a re M e a s
urem ent E xp e rie n c e in the S o ftw a re E n g in e e rin g L a b o ra to ry ,” Journa l o f Systems and
Software, v o l. 9, no . 2 (F e b ru a ry), 1989, p p . 137-138.

- 1 2 8 -

C h a p t e r 3 .2

E s s e n t i a l s o f S o f t w a r e C o n s t r u c t i o n

R ich ard H a il Thayer and M e rlin D orfm an

This is the th ird chapter o f a textbook to a id individual software engineers in a
greater understanding o f the IE E E S W E B O K [2013] and a guide book to aid
software engineers in passing the IE E E C S D P and CSD A certification exams.

This chapter also introduces concepts and problems o f software construction. The
term software construction refers to the detailed creation o f working, meaningful
software through a combination o f coding, verification, unit testing, integration
testing, and debugging.

S o ftw a re co n stru c tio n is lin ke d to a ll the o th er softw are e n g in e e rin g e ffo rts , m ost s tro n g ly to
so ftw a re d e s ig n and softw a re testing. T h is is because the softw a re co n stru ctio n process its e lf
in v o lv e s s ig n ific a n t so ftw are design and test a c t iv ity . It also uses the output o f d es ign and
p ro v id e s one o f the inpu ts to testing. D e ta ile d boundaries betw een d esign , co n stru ctio n , and
testing (i f a n y) w i l l v a ry d epe nd in g u p o n the so ftw a re life -c y c le processes and m ethods that are
used in a p ro je c t [S W E B O K 2013].

C h a p te r 3 c o ve rs the C S D P exam spe c ifica tio n s fo r the softw a re co n stru c tio n m odule [S o ft
w a re E x a m S p e c ific a tio n , V e rs io n 2, 18 M a rc h 2009]:

1. S o ftw a re co n stru c tio n fundam entals (m in im iz in g c o m p le x ity ; a n tic ip a tin g change ; c o n
s tru ctin g fo r ve r if ic a tio n ; standards in co n stru c tio n)

2. M a n a g in g co n stru ctio n (co n stru c tio n m ode ls ; con stru ction p la n n in g ; con stru ction m eas

u rem ent)

3. P ra ctica l co n sid e ra tio n (co n stru c tio n d esign ; co n stru ctio n languages; c o d in g ; construction
te stin g ; re fu se ; co n stru ctio n q u a lity ; in te g ra tio n ; executable m od e ls)

4. C o n s tru c tio n to o ls (d eve lop m e nt en v iro n m e n ts ; G U I b u ild e rs ; u n it testing to o ls ; a p p lica
t io n o rie n te d languages [fo r exam ple , sc rip tin g , v is u a l, d o m a in -sp e c if ic , m arkup, and
m a cro s]; p ro f il in g , perform ance an a lysis and s lic in g too ls)

5. C o n s tru c t io n te ch n o lo g ie s Part 1 (A P I design and use; code reuse and lib ra ries ;
o b je c t-o r ie n te d ru n -t im e issues [fo r exam ple , p o lym o rp h ism and d yn a m ic b in d in g]; pa
ra m e te riza tio n and g e ne rics ; assertions, d es ign b y contract, d e fe ns ive p ro g ra m m in g ; error
h a n d lin g , e xce p tio n h a n d lin g , and fa u lt to le ra nce ; state-based and table d r iv e n con stru c
tio n tech n iq u es; ru n -t im e c o n fig u ra tio n and in te rn a tio n a liza tio n)

6. C o n s tru c t io n te ch n o lo g ie s Part 2 (gram m a r-based in pu t p ro ce ss in g [p a rs in g]; co n cu r
re n c y p r im it iv e s [such as sem aphores and m o n ito rs]; m id d le w a re [com ponents and con
ta in e rs]; co n stru c tio n m ethods fo r d is trib u te d so ftw a re ; co n stru ctin g heterogeneous sys
tem s [ha rdw are and so ftw a re]; hardw are -sofitw are c o -d e s ig n ; perform ance analysis and
tu n in g ; p la tfo rm standards [P o s ix , e tc .]; te s t-f irs t p ro gra m m in g)

- 1 2 9 -

3.1 S o ftw a re C o n s t ru c t io n F u n d a m e n ta ls

T h e fundam entals o f so ftw a re co n stru ctio n in c lu d e [S W E B O K 2004]:

• M in im iz in g c o m p le x ity

• A n tic ip a tin g change

• C o n s tru c tin g fo r v e r if ic a t io n

• Standards in co n stru ctio n

T h e firs t three concepts a p p ly to design as w e ll as to co n stru c tio n . T h e fo llo w in g sections de
fine these concepts and describe h o w th e y a p p ly to co n stru ctio n .

3.1.1 M in im iz in g c o m p le x ity . A m a jo r fa cto r in h o w people c o n v e y intent to com puters is the
se ve re ly lim ite d a b ility o f peo p le to h o ld c o m p le x structures and in fo rm a tio n in the ir w o rk in g
m em ories, e sp e c ia lly o v e r lo n g p erio d s o f tim e. T h is leads to one o f the strongest d rive rs in
softw a re co n stru ctio n : m inim izing complexity. T h e need to re d u ce c o m p le x ity app lies to essen
tia lly e v e ry aspect o f so ftw a re co n stru ctio n , and is p a rtic u la r ly c r it ica l to the process o f v e r if ic a
tio n and testing o f so ftw are con struction s.

In so ftw a re co n stru ctio n , reduced complexity is ach ieve d th ro u g h em p h a sizing the creation o f
code that is s im ple and readable rather than c le ve r.

3.1.2 A n t ic ip a t in g ch a n g e . M o s t so ftw a re w i l l change o ve r tim e , and the an tic ip a tio n o f change
d rive s m any aspects o f so ftw a re con stru c tio n . S o ftw a re is u n a vo id a b ly part o f cha nging externa l
e n vironm en ts, and changes in those outside environm ents a ffect so ftw a re in d ive rse w a ys .

T h e need to anticipate change is supported b y m a n y sp e c ific co n stru ctio n techn iques:

• C o m m u n ica tio n m ethods (fo r e xam ple , standards fo r d ocum en t form ats and contents)

• P ro g ra m m in g languages (fo r exam ple , language standards fo r languages lik e Ja v a and
C + +)

• P la tfo rm s (fo r exam ple , p ro gra m m e r in terfa ce standards fo r operating system c a lls)

• T o o ls (fo r exam ple , d iagram m atic standards fo r n o ta tio n s lik e U M L (U n if ie d M o d e lin g
L a n g u a g e)

3.1.3 C o n s t r u c t in g f o r v e r if ic a t io n . Constructing fo r verification m eaas b u ild in g so ftw a re in
such a w a y that fau lts can be ferreted out re a d ily b y the so ftw a re engineers w r it in g the so ftw a re ,
as w e ll as d u rin g independent testin g and op e ra tiona l a c tiv itie s . S p e c if ic techn iques that support
con stru ctin g fo r v e r if ic a tio n in c lu d e fo llo w in g c o d in g standards to support code re v ie w s , u n it
testing, o rg a n iz in g code to support autom ated testin g , and restricted use o f c o m p le x or h a rd -to -
understand language structures, am ong others.

3.1.4 S ta n d a rd s in c o n s tru c t io n . S tandards that d ire c tly a ffe c t co n stru ctio n issues in c lu d e :

• Use o f externaI standards — C o n s tru c tio n depends o n the use o f externa l standards fo r
co n stru c tio n languages, co n stru c tio n to o ls , tech n ica l in te rfa ces , and in teractions betw ee n
so ftw a re co n stru ctio n and other k n o w le d g e areas (K A s) . Standards com e fro m num erous
sources, in c lu d in g hardw are and so ftw a re interface spe c ifica tio n s such as the O b je c t M a n
agem ent G ro u p (O M G) and in ternatio na l o rg a n iza tio n s such as the I E E E o r IS O .

- 1 3 0 -

• Use o f in terna l standards — Standards m ay also be created on an o rg a n iza tio n a l basis at
the co rp ora te leve l o r fo r use on sp e c ific p ro jects . Th e se standards support co o rd in a tio n o f
g ro u p a c tiv itie s , m in im iz in g c o m p le x ity , a n tic ip a ting change , and co n stru cting fo r v e r i f i
cation .

3.2 M a n a g in g C o n s t ru c t io n

T h e funda m enta ls o f m anaging co n stru ctio n in c lu d e [S W E B O K 2004]:

• C o n s tru c tio n m odels

• C o n s tru c tio n p la n n in g

• C o n s tru c tio n m easurem ent

3-2.1 C o n s t r u c t io n m ode ls . N u m e ro u s m odels have been created to d e ve lo p softw a re , som e o f
w h ic h em phasize co n stru ctio n m ore than others.

Som e m o d e ls are m ore lin e a r fro m the co n stru ctio n p o in t o f v ie w , such as the w a te rfa ll and
s ta g e d -d e liv e ry l ife -c y c le m odels. Th ese m odels treat co n stru c tio n as an a c tiv ity that o ccu rs o n ly
after s ig n ific a n t p re req u is ite w o rk has been com pleted - in c lu d in g deta iled requirem ents, exten
s ive d e s ig n , and deta iled p la n n in g . T h e m ore linear approaches tend to em phasize the a ctiv itie s
that p recede co n stru ctio n (requ irem ents and de s ign), and tend to create m ore d istinct separations
betw een the a c tiv itie s . In these m odels , the m ain em phasis o f co n stru c tio n m ay be co d in g .

O th e r m od e ls are m ore ite ra tive , such as e vo lu t io n a ry p ro to ty p in g , E xtre m e P rogram m in g ,
and S cru m . T h e s e approaches tend to treat co n stru ctio n as an a c tiv ity that occurs co n cu rre n tly
w ith o th e r so ftw a re deve lopm e nt a c tiv itie s , in c lu d in g requirem ents, design , and p la n n in g , or
o ve rla p s them . T h e se approaches tend to m ix design , c o d in g , and testing a c tiv itie s , and they
often treat the co m b ina tio n o f a c tiv itie s as con stru ction .

C o n s e q u e n tly , w h a t is con sid e re d to be “ co n stru c tio n ” depends to som e degree on the l ife
c y c le m od e l used.

3.2.2 C o n s t r u c t io n p la n n in g . T h e ch o ice o f co n stru ctio n m ethod is a k e y aspect o f the co n stru c
t io n p la n n in g a c t iv ity . T h e ch o ice o f co n stru ctio n m ethod affects the extent to w h ic h con stru ction
p re req u is ite s are p e rfo rm e d , the o rd e r in w h ic h th ey are p e rfo rm e d , and the degree to w h ic h they
are e xp ected to be com pleted b efo re co n stru ctio n w o rk beg ins.

T h e a p p ro a ch to co n stru ctio n affects the p ro je c t’ s a b ility to reduce c o m p le x ity , anticipate
c liange , and co n stru ct fo r v e r if ic a tio n . E a ch o f these o b je ctive s m ay a lso be addressed at the

process, requ ire m e nts , and d esign le ve ls— but they w i l l a lso be in flu e n ce d b y the ch o ice o f
co n stru ctio n m ethod.

C o n s tru c tio n p la n n in g also defines the o rd e r in w h ic h com ponents are created and integrated,
the so ftw a re q u a lity m anagem ent processes, the a llo ca tio n o f task assignm ents to sp ec ific
softw are e n g in eers , and the other tasks, a cco rd in g to the chosen m ethod.

3.2.3 C o n s t r u c t io n m e a su re m e n t. N u m e ro u s co n stru ctio n a c tiv itie s and artifacts can be meas
ured, in c lu d in g cod e d eve loped , code m o d ifie d , code reused, code destroye d , code c o m p le x ity ,
code in sp e ctio n statistics, fa u lt - f ix and fa u lt -f in d rates, e ffo rt, and sche du ling . Th e se m easure
m ents can be u se fu l fo r purposes o f m anaging co n stru c tio n , en su rin g q u a lity d u rin g con stru ction ,
im p ro v in g the co n stru ctio n process, as w e ll as fo r o ther reasons.

- 1 3 1 ~

3 .3 P r a c t i c a l C o n s id e r a t i o n s

C o n s tru c tio n is an a c t iv ity in w h ic h the so ftw a re has to com e to term s w ith a rb itra ry and ch a o tic
re a l-w o r ld constra in ts, and to do so e x a c tly . D u e to its p ro x im ity to re a l-w o r ld constra in ts,
co n stru c tio n is m ore d r iv e n b y p ra ctica l con sid e ra tions than som e other k n o w le d g e areas, and
so ftw a re e n g in e e rin g is perhaps m ost c ra ft -lik e in the co n stru ctio n area.

Som e pra ctica l con side ra tions in co n stru c tio n d e s ign in c lu d e [S W E B O K 2004]:

• C o n s tru c tio n design

• C o n s tru c tio n languages

• C o d in g

• C o n s tru c tio n testing

• Reuse

• C o n s tru c tio n q u a lity

• In te g ra tio n

• E xe cu ta b le m odels

3.3.1 C o n s t ru c t io n d e s ig n . Som e pro jects a llocate m ore design a c t iv ity to co n stru ctio n ; others
to a phase e x p lic it ly focused on design . R ega rd less o f the exact a llo ca tio n , som e detailed design
w o rk w i l l o c c u r at the co n stru c tio n le ve l, and that d e s ign w o rk tends to b e d ictated b y im m o va
b le constra in ts im posed b y the re a l-w o r ld p ro b le m that is b e in g addressed b y the so ftw a re . Ju st
as co n stru ctio n w o rk e rs b u ild in g a p h ys ic a l structu re m ust m ake sm a ll-sca le m o d ifica tio n s to
account fo r unantic ipated gaps in the b u ild e r ’ s p lans, softw are con stru ction w o rk e rs m ust make
m o d ifica tio n s on a sm alle r o r la rge r scale to flesh out deta ils o f the so ftw a re design d u rin g
co n stru ctio n [S W E B O K 2004].

3.3.2 C o n s t ru c t io n la n g u a g e s . Construction languages in c lu d e a ll fo rm s o f co m m u n ica tio n b y
w h ic h a hum an can s p e c ify an executable p ro b le m so lu tio n to a com puter [S W E B O K 2004].

3 .3.2.1 C o n f ig u r a t io n la n g u a g e s . T h e s im plest typ e o f co n stru c tio n language is a c o n fig u ra tio n
language, in w h ic h so ftw a re engineers choose fro m a lim ite d set o f p redefined op tio n s to create
n e w o r custom softw are in sta lla tion s. T h e te x t-b a se d c o n fig u ra tio n file s used in bo th the W in
d o w s and U N I X opera ting system s are exam ples o f th is , and the m enu style se le ctio n lis ts o f
som e p ro g ra m generators constitu te another.

Toolkit languages are used to b u ild ap p lica tio n s o u t o f to o lk its (in tegrated sets o f a p p lic a tio n -
s p e c ific reusable p a rts), and are m ore c o m p le x than c o n fig u ra tio n languages. T o o lk it languages
m ay be e x p lic it ly de fin ed as a p p lica tio n p ro g ra m m in g languages (fo r exam ple , sc rip ts), o r m ay
s im p ly be im p lie d b y the set o f in terfaces o f a to o lk it .

Program m ing languages are the m ost f le x ib le type o f co n stru ctio n languages. T h e y a lso c o n
ta in the least am ount o f in fo rm a tio n about s p e c if ic a p p lica tio n areas and d e ve lo p m e n t processes,
and so re q u ire the m ost tra in in g and sk ill to use e ffe c t iv e ly .

T h e re are three general k in d s o f n o ta tio n used fo r p ro g ra m m in g languages, na m e ly L in g u is
t ic , F o rm a l, and V is u a l [S W E B O K 2004].

• Form al notations re ly less on in tu it iv e , e v e ry d a y m eanings o f w o rd s and te x t strings and

- 1 3 2 -

m ore o n d e fin itio n s backed u p b y precise, u n a m big u o u s , and form al (o r m athem atical)
d e fin it io n s . Fo rm a l co n stru c tio n notations and fo rm a l m ethods are at the heart o f most
fo rm s o f system p ro g ra m m in g , w here accu ra cy, tim e b e h a v io r, and te s ta b ility are more
im p o rta n t than ease o f m a pp ing in to natural language. F o rm a l constructions also use p re
c is e ly d e fin e d w a ys o f co m b in in g sym bo ls that a v o id the a m b ig u ity o f m a n y natural lan
guage con struction s.

• Visual notations re ly m uch less on the te x t-o rie n te d notations o f both lin g u is t ic and fo r
m al co n stru ctio n , and instead re ly on d ire ct v is u a l in te rp re ta tion and p lacem ent o f v isual
entities that represent the u n d e rly in g softw are . V is u a l co n stru ctio n tends to be som ewhat
lim ite d b y the d if f ic u lty o f m a k ing “ c o m p le x” statem ents u s ing o n ly m ovem ent o f visual
entities o n a d isp la y . H o w e v e r , it can also be a p o w e rfu l to o l in cases w h e re the p rim a ry
p ro g ra m m in g task is s im p ly to b u ild and “ ad just” a v is u a l in terface to a p rogram , the de
ta ile d b e h a v io r o f w h ic h has been defined earlie r.

3 .3 .2 .2 O b je c t -o r ie n te d la n g u a g e s . Th e re are a lm ost tw o d o ze n m ajo r o b je c t-o rie n te d p ro
g ra m m in g languages in use today. H o w e v e r , here are fa r fe w e r o b je ct-o rie n te d languages in
co m m e rc ia l use [h ttp ://w w w .com pu terc lub .i8 .com /eoo .h tm] . Th e se are:

• C + +

• S m a llta lk

• Ja va

3.3 .2 .2 .1 C + + . C + + is an o b je c t-o rie n te d ve rs io n o f C . It is com patib le w ith C (it is a c tu a lly a
superset), so that e x is tin g C code can be in co rporate d in to C + + program s. C + + p rogram s are fast
and e ff ic ie n t, qu a litie s that he lped m ake C an e xtre m e ly p o p u la r p ro gra m m in g lan guag e . It
sa c rifice s som e f le x ib i l i t y in o rd e r to rem ain e ffic ie n t, h o w e ve r. C + + uses co m p ile -tim e b in d in g ,
w h ic h m eans that the program m e r m ust sp e c ify the sp e c ific class o f an ob je ct, o r at the ve ry
least, the m ost general class that an o b je ct can b e lo ng to . T h is m akes fo r h ig h ru n -tim e e ffic ie n cy
and sm all code s ize , b u t it trades o f f som e o f the p o w e r to reuse classes.

C + + has becom e so p o p u la r that m ost n e w C co m p ile rs are a c tu a lly C / C + + co m p ile rs . H o w
e ve r, to take fu ll advantage o f o b je ct-o rie n te d p ro g ra m m in g , one m ust program (and th in k !) in
C + + , n o t C . T h is can o ften be a m a jo r p rob lem fo r exp e rie n ce d C program m ers. M a n y p ro
gram m ers th in k th e y are c o d in g in C + + , b u t instead are o n ly u s in g a sm all part o f the la n g u a g e ’s
o b je c t-o rie n te d p o w e r.

3 .3 .2 .2 .2 S m a llta lk . Smalltalk is a pure o b je ct-o rie n te d language. W h ile C + + m akes some
p ra ctica l com prom ises to ensure fast e xe cu tio n and sm all code s ize , S m allta lk m akes n o n e . It
uses ru n -t im e b in d in g , w h ic h m eans that n o th in g about the typ e o f an o b je ct need be know n
b efo re a S m a llta lk p ro gra m is run .

S m a llta lk p rogram s are con side re d b y m ost to be s ig n if ic a n tly faster to d e ve lo p than C + +
p rogra m s. A r ic h -c la ss lib ra ry that can be e a sily reused v ia inheritance is one reason fo r this.
A n o th e r reason is S m a llta lk 's d yn a m ic deve lopm ent e n viro nm e n t. It is not e x p lic it ly com piled ,
lik e C + + . T h is m akes the d eve lo p m e nt process m ore f lu id , so that “ w hat i f ’ scenarios can be
e a s ily trie d out, and classes’ d e fin it io n s ea sily re fin e d . B u t b e in g p u re ly o b je c t-o rie n te d , p ro
gram m ers cannot s im p ly put th e ir toes in the o -o w aters , as w ith C + + . F o r th is reason, Sm allta lk
g e n e ra lly takes lo n g e r to m aster than C + + . B u t m ost o f th is tim e is a ctu a lly spent le a rn in g ob ject-

- 1 3 3 -

http://www.computerclub.i8.com/eoo.htm

orie n te d m e th o d o lo g y and techniques, rather than deta ils o f a p a rticu la r p ro g ra m m in g language.
In fact, S m a llta lk is syn ta c tic a lly v e r y s im p le , m u ch m ore so than e ither C o r C + + .

U n lik e C + + , w h ic h has becom e standard ized , T h e S m allta lk language d iffe rs som ew hat from
one im p lem entation to another. T h e m ost p o p u la r co m m e rc ia l “ d ia le cts” o f S m a llta lk are:

• VisualW orks — - VisualWorks is a rg u a b ly the m ost p o w e rfu l o f S m allta lks. V is u a lW o rk s
w as d eve lop ed b y Parc P lace, w h ic h g re w out o f the o rig in a l X e ro x P A R C p ro je c t that
in ve nte d the S m allta lk language.

• Sm allta lk/V and V isua l Sm alltalk — D ig ita lk ’ s ve rs io n s o f S m a llta lk are som ew hat
sm aller and s im p le r, and are s p e c if ic a lly ta ilo re d to IB M -c o m p a t ib le P C s.

• VisualAge — I B M ’ s v e rs io n o f S m a llta lk . V is u a lA g e is com p a ra b le to S m a llta lk /V .

3 .3 .2 .2 .3 J a v a . Java is a p ro g ra m m in g language o r ig in a lly d e ve lo p e d b y James G o s lin g at Sun
M ic ro s ys te m s (w h ic h is n o w a su b s id ia ry o f O ra c le C o rp o ra tio n) and released in 1995 as a core
com p one nt o f S un M ic ro s ys te m s ’ s Ja v a p la tfo rm . T h e language d e rive s m uch o f its syn ta x from
C and C + + but has a s im p le r ob je ct m odel and fe w e r lo w -le v e l fa c ilit ie s . Java a p p lica tio n s are
t y p ic a lly co m p ile d to b yte code (c lass f i le) that can ru n o n an y Ja v a V ir tu a l M a c h in e (J V M)
regard less o f com puter arch itecture . Ja va is a gene ra l-p u rp ose , con cu rren t, c la ss -b a sed , o b je c t-
o rie n te d language that is s p e c if ic a lly des ign ed to have as fe w im plem entation dependencies as
p o ss ib le . It is in tended to let a p p lica tio n d eve lo p ers “ w rite once, run a n yw h e re .” Ja v a is c u rre n tly
one o f the m ost p o p u la r p ro g ra m m in g languages in use, and is w id e ly used fro m a p p lica tio n

so ftw a re to w e b ap p lica tio ns [h ttp ://e n .w ik ipcd ia .o rg/w ik i/Java (p ro g ra m m in g _ la n g u a g e)].

Ja v a is a cu riou s m ix tu re o f C + + and S m a llta lk . W h ile it lias the syntax o f C + + , m ak ing it
easy (o r d if f ic u lt) to leam , d epe nd in g on y o u r exp e rie n ce , it has im p ro ve d on C + + in som e
im p o rta n t areas. F o r one th in g , it has no p o in te rs (p o in te rs are lo w -le v e l p ro g ra m m in g constructs
that can m ake fo r e rro r -p ro n e p ro g ra m s). L ik e S m a llta lk , it has garbage co lle c tio n , a feature that
frees the program m e r fro m e x p lic it ly a llo ca tin g and d e -a llo ca tin g m em ory. A n d it runs on a
S m a llta lk -s ty le v irtu a l m achine, so ftw a re b u ilt in to y o u r w e b b ro w se r that executes the same
standard co m p ile d Ja va b yte codes no m atter w h a t type o f com puter y o u have.

Ja v a deve lopm ent to o ls are b e in g ra p id ly d e p lo ye d , and are a va ila b le fro m such m a jo r soft
w a re com panies as IB M , M ic ro s o ft , and Sym antec.

3 .3.3 C o d in g . T h e fo llo w in g con sid e ra tions a p p ly to the softw a re c o n stru c tio n c o d in g a c tiv ity :

• Te ch n iq u e s fo r c reatin g understandable source co d e , in c lu d in g na m in g and source code
la yo u t

• U s e o f classes, enum erated type s , va ria b le s , nam ed constants, and other s im ila r entities

• U s e o f co n tro l structures

• H a n d lin g o f e rro r co n d itio n s— both p lan ne d e rro rs and e xcep tio n s (in p u t o f bad data, fo r
e xa m p le)

• P re ve n tio n o f co d e -le v e l se cu rity breaches (b u ffe r o ve rru n s o r a rra y in d e x o v e rf lo w s , fo r
exa m p le)

• R esource usage v ia use o f e x c lu s io n m echanism s and d is c ip lin e in accessing s e r ia lly re
usable resources (in c lu d in g threads o r database lo ck s)

- 1 3 4 -

http://en.wikipcdia.org/wiki/Java

• S o u rc e c o d e o r g a n iz a t io n (in t o s ta te m e n ts , r o u t in e s , c la s s e s , p a c k a g e s , o r o th e r s t r u c
tu re s)

• C o d e d o c u m e n ta t io n

• C o d e t u n in g

3 .3 .4 C o n s t r u c t i o n t e s t in g . C o n s t r u c t io n in v o lv e s t w o f o r m s o f te s t in g , w h ic h a re o f t e n p e r
f o r m e d b y th e s o f tw a r e e n g in e e r w h o w r o te th e c o d e :

• U n i t t e s t in g

• I n t e g r a t io n te s t in g

T h e p u r p o s e o f construction testing is to r e d u c e th e g a p b e tw e e n th e t im e a t w h ic h f a u l t s are
in s e r te d in t o th e c o d e a n d th e t im e th o s e f a u l t s a re d e te c te d . I t is t r a d i t i o n a l t o d e v e lo p the
c o n s t r u c t io n te s ts a f t e r th e c o d e i t s e l f is w r i t t e n , b u t s o m e p r a c t i t io n e r s a n d s o m e m e th o d s
a d v o c a te w r i t i n g th e te s ts b e fo r e c o d in g .

C o n s t r u c t io n t e s t in g t y p i c a l l y in v o lv e s a s u b s e t o f t y p e s o f te s t in g . F o r in s ta n c e , c o n s t r u c t io n
t e s t in g d o e s n o t t y p i c a l l y in c lu d e s y s te m te s t in g , a lp h a te s t in g , b e ta te s t in g , s tre s s te s t in g , c o n
f ig u r a t io n te s t in g , u s a b i l i t y t e s t in g , o r o th e r , m o r e s p e c ia l iz e d k in d s o f t e s t in g .

T w o s ta n d a rd s h a v e b e e n p u b l is h e d o n th e t o p ic : I E E E S td 8 2 9 - 1 9 9 8 , I E E E S ta n d a rd fo r
S o f tw a r e T e s t D o c u m e n t a t io n a n d IE E E S td 1 0 0 8 - 1 9 8 7 , I E E E S ta n d a rd f o r S o f tw a r e U n i t
T e s t in g .

3 .3 .5 R e u s e . I m p le m e n t in g s o f tw a r e re u s e e n ta i ls m o r e th a n c r e a t in g a n d u s in g l ib r a r ie s o f
a s s e ts . I t r e q u ir e s f o r m a l i z in g th e p r a c t ic e o f re u s e b y in te g r a t in g re u s e p ro c e s s e s a n d a c t iv i t ie s
in t o th e s o f tw a r e l i f e c y c le . H o w e v e r , re u s e is im p o r t a n t e n o u g h in s o f tw a r e c o n s t r u c t io n t h a t i t
is in c lu d e d h e re a s a to p ic .

T h e ta s k s r e la te d to re u s e i n s o f tw a r e c o n s t r u c t io n d u r in g c o d in g a n d t e s t in g a re :

• T h e s e le c t io n o f th e re u s a b le u n i t s , d a ta b a s e s , te s t p ro c e d u r e s , o r te s t d a ta

• T h e e v a lu a t io n o f c o d e o r te s t r e u s a b i l i t y

• T h e r e p o r t in g o f re u s e in f o r m a t io n o n n e w c o d e , te s t p r o c e d u r e s , o r te s t d a ta

3 .3 .6 C o n s t r u c t i o n q u a l i t y . N u m e r o u s te c h n iq u e s e x is t t o e n s u re th e q u a l i t y o f c o d e as i t is
c o n s t r u c te d . T h e p r im a r y te c h n iq u e s u s e d f o r c o n s t r u c t io n in c lu d e :

• Code stepping — O n e o f th e m o s t c o m m o n d e b u g g e r u s a g e s c e n a r io s is C o d e S te p p in g .
W h e n y o u a re d e b u g g in g u n d e r t h is s c h e m e , y o u a re a b le t o e x a m in e th e s ta te o f th e p ro
g r a m , v a r ia b le s , a n d r e la te d d a ta b e fo r e a n d a f t e r e x e c u t in g a p a r t ic u la r l in e o f c o d e . T h is
a l lo w s y o u t o e v a lu a te th e e f fe c ts o f a n i n s t r u c t io n in is o la t io n a n d t o u n d e rs ta n d th e be
h a v io r o f th e p r o g r a m [h t t p : / / b lo g s .m s d n .e o m / b /p h i lp e n n /a r c h iv e / 2 0 1 0 / 0 8 / 3 1 /p r a c t ic a l-
f o r - a n a ly z in g - c o n c u r r e n c y - c o d e - s te p p in g . a s p x] .

• Debugging — Debugging is a m e th o d ic a l p ro c e s s o f f i n d in g a n d r e d u c in g th e n u m b e r o f
b u g s , o r d e fe c ts , i n a c o m p u te r p r o g r a m o r a p ie c e o f e le c t r o n ic h a r d w a r e , th u s m a k in g i t
b e h a v e a s e x p e c te d . I n s o f tw a r e , th e d e b u g g in g p ro c e s s is n o r m a l l y d o n e a t u n i t l e v e l b y
th e u n i t p r o g r a m m e r . D e b u g g in g a t t h is le v e l c a n in c lu d e f i x i n g th e e r r o r th a t is id e n t i f ie d
b y th e d e b u g g in g p ro c e s s .

- 1 3 5 -

http://blogs.msdn.eom/b/philpenn/archive

• Static analysis — Formal or semiformal static (n o n - e x e c u ta b le) a n a ly s is th a t c a n b e u s e d
t o e v a lu a te a d e s ig n (f o r e x a m p le , f a u l t - t r e e a n a ly s is o r a u to m a te d c r o s s - c h e c k in g) .

• Technical reviews — T h e p u r p o s e o f a technical review is to e v a lu a te a s o f tw a r e p r o d u c t
t o d e te r m in e i t s s u i t a b i l i t y f o r i t s in te n d e d u s e . T h e o b je c t iv e is t o i d e n t i f y d is c re p a n c ie s
f r o m a p p r o v e d s p e c i f ic a t io n s a n d s ta n d a rd s , i .e . , t o f i n d te c h n ic a l p r o b le m s a n d n o t t o (1)
s u g g e s t s o lu t io n s o r r e m e d ia l a c t io n o r (2) c a s t b la m e . T h e r e s u lts s h o u ld p r o v id e m a n
a g e m e n t w i t h e v id e n c e c o n f i r m in g (o r n o t) t h a t t h e p r o d u c t m e e ts th e s p e c i f ic a t io n s a n d
a d h e re s to s ta n d a rd s a n d th a t c h a n g e s a re c o n t r o l le d [I H H H 1 0 2 8 - 1 9 9 7] .

• Test-first development — T h is c o n c e p t s u g g e s ts t h a t w r i t i n g te s t c a s e s f i r s t w i l l m in im iz e
th e a m o u n t o f t im e b e tw e e n w h e n a d e fe c t is in s e r te d i n t o th e c o d e a n d w h e n th e d e fe c t is
d is c o v e r e d a n d r e m o v e d [M c C o n n e l l 2 0 0 4] .

• T e s t in g a n d i n t e g r a t i o n t e s t i n g — SoftM’are testing c o n s is ts o f th e d y n a m ic v e r i
f i c a t i o n o f th e b e h a v io r o f a p r o g r a m o n a f i n i t e s e t o f te s t ca s e s , s u i t a b ly s e le c te d
f r o m th e u s u a l ly i n f i n i t e e x e c u t io n s d o m a in , a g a in s t th e s p e c i f ie d e x p e c te d b e h a v
io r . Integration testing is th e p ro c e s s o f v e r i f y in g th e in t e r a c t io n (in te r fa c e s) b e
tw e e n s o f tw a r e c o m p o n e n ts . C la s s ic a l in t e g r a t io n t e s t in g s t ra te g ie s , s u c h as t o p -
d o w n o r b o t t o m - u p , a re u s e d w i t h t r a d i t io n a l , h ie r a r c h ic a l l y s t r u c tu r e d s o f tw a r e .

• Use of assertions — I n c o m p u te r p r o g r a m m in g , a n assertion is a p r e d ic a te (f o r e x a m p le
a t r u e - f a ls e s ta te m e n t) p la c e d in a p r o g r a m to in d ic a te th a t th e d e v e lo p e r thinks t h a t th e
p r e d ic a te is a lw a y s t r u e a t t h a t p la c e [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / A s s e r t io n _ (c o m p u t
in g)] .

T h e s p e c i f ic te c h n iq u e o r te c h n iq u e s s e le c te d d e p e n d o n th e n a tu r e o f th e s o f tw a r e b e in g
c o n s t r u c te d , as w e l l as o n th e s k i l l s s e t o f th e s o f tw a r e e n g in e e r s p e r f o r m in g th e c o n s t r u c t io n .

C o n s t r u c t io n q u a l i t y a c t iv i t ie s a re d i f f e r e n t ia t e d f r o m o th e r q u a l i t y a c t i v i t i e s b y t h e i r fo c u s .
C o n s t r u c t io n q u a l i t y a c t iv i t ie s fo c u s o n c o d e a n d o n a r t i f a c t s th a t a re c lo s e ly r e la te d to c o d e :
s m a l l- s c a le d e s ig n s - as o p p o s e d t o o th e r a r t i f a c t s th a t a re le s s d i r e c t l y c o n n e c te d t o th e c o d e ,
s u c h a s r e q u ir e m e n ts , h ig h - le v e l d e s ig n s , a n d p la n s .

3 .3 .7 I n t e g r a t i o n . A k e y a c t i v i t y d u r in g c o n s t r u c t io n is th e in te g r a t io n o f s e p a ra te ly c o n s t r u c te d
r o u t in e s , c la s s e s , c o m p o n e n ts , a n d s u b s y s te m s . I n a d d i t io n , a p a r t ic u la r s o f tw a r e s y s te m m a y
n e e d to b e in te g r a te d w i t h o th e r s o f tw a r e o r h a r d w a r e s y s te m s .

C o n c e r n s r e la te d t o c o n s t r u c t io n in t e g r a t io n in c lu d e p la n n in g th e s e q u e n c e in w h ic h c o m p o
n e n ts w i l l b e in te g r a te d , c r e a t in g s c a f f o ld in g t o s u p p o r t i n t e r im v e r s io n s o f th e s o f tw a r e , d e te r
m in in g th e d e g re e o f t e s t in g a n d q u a l i t y w o r k p e r fo r m e d o n c o m p o n e n ts b e fo r e t h e y a re
in te g r a te d a n d d e te r m in in g p o in t s i n th e p r o je c t a t w h ic h i n t e r im v e r s io n s o f th e s o f tw a r e a re
te s te d .

3 .3 .8 E x e c u t a b le m o d e ls . E x e c u ta b le m o d e ls a re s o f tw a r e p r o d u c t s s u c h as s o f tw a r e r e q u i r e
m e n ts s p e c i f ic a t io n s a n d s o f tw a r e d e s ig n d e s c r ip t io n s th a t c a n b e r u n o n a c o m p u te r a n d p r o d u c e
a n a n s w e r th a t s a t is f ie s th e r e q u ir e m e n ts o r d e s ig n . A s im p le e x e c u ta b le m o d e l t o o l is a c o m p i le r
t h a t c a n c o n v e r t s o u rc e c o d e t o e x e c u ta b le c o d e .

- 1 3 6 -

http://en.wikipedia.org/wiki/Assertion_(comput

3 .4 C o n s t r u c t i o n T o o ls

A programming tool or software development t o o l (i . e . , a c o n s t r u c t io n t o o l) is a p r o g r a m o r
a p p l ic a t io n t h a t s o f tw a r e d e v e lo p e r s u s e to c re a te , d e b u g , m a in ta in , o r o th e r w is e s u p p o r t o t h e r
p r o g r a m s a n d a p p l ic a t io n s .

3 .4 .1 D e v e lo p m e n t e n v i r o n m e n ts . A software development environment (S D E) is th e e n t i r e
e n v i r o n m e n t (a p p l ic a t io n s , s e rv e rs , n e t w o r k) th a t p r o v id e s c o m p r e h e n s iv e f a c i l i t i e s to c o m p u t e r
p r o g r a m m e r s f o r s o f tw a r e d e v e lo p m e n t .

T y p i c a l l y a n S D E is d e d ic a te d t o a s p e c i f ic p r o g r a m m in g la n g u a g e , a l l o w in g a fe a tu r e s e t
th a t m o s t c lo s e ly m a tc h e s th e p r o g r a m m in g p a r a d ig m s o f th e la n g u a g e . S D E s t y p i c a l l y p re s e n t a
s in g le p r o g r a m i n w h ic h a l l d e v e lo p m e n t is d o n e . T h is p r o g r a m t y p i c a l l y p r o v id e s m a n y f e a t u r e s
f o r a u t h o r in g , m o d i f y in g , c o m p i l in g , d e p lo y in g a n d d e b u g g in g s o f tw a r e . T h e a im is t o a b s t r a c t
th e c o n f i g u r a t i o n n e c e s s a ry to p ie c e to g e th e r c o m m a n d l in e u t i l i t ie s in a c o h e s iv e u n i t , w h i c h
t h e o r e t ic a l l y r e d u c e s th e t im e to le a r n a la n g u a g e , a n d in c re a s e s d e v e lo p e r p r o d u c t i v i t y . I t is a ls o
t h o u g h t t h a t th e t i g h t in t e g r a t io n o f d e v e lo p m e n t ta s k s c a n f u r t h e r in c re a s e p r o d u c t i v i t y
[h t t p : / / e n . w ik ip e d ia . o r g / w ik i /S o f tw a r e d e v e lo p m e n t e n v i r o n m e n t] .

A n S D E c a n c o n t a in b u t is n o t l im i t e d to s u c h t o o ls as :

• R e q u i r e m e n ts m a n a g e m e n t to o ls

• D e s ig n m o d e l in g t o o ls

• D o c u m e n t a t io n g e n e r a t io n to o ls

• In te g r a te d d e v e lo p m e n t e n v i r o n m e n t (I D E)

• C o d e a n a ly s is t o o ls

• C o d e r e fe r e n c in g t o o ls

• C o d e in s p e c t io n t o o ls

• S o f tw a r e b u i l d in g t o o ls (c o m p i le , l i n k)

• S o u r c e r e p o s i t o r y (c o n f ig u r a t io n m a n a g e m e n t)

• P r o b le m r e p o r t in g / t r a c k in g t o o ls

3 .4 .2 G U I b u i l d e r . A graphical user interface (GUI) builder, a ls o k n o w n a s G U I d e s ig n e r , is a
s o f tw a r e d e v e lo p m e n t t o o l th a t s im p l i f i e s th e c r e a t io n o f G U I s b y a l l o w in g th e d e s ig n e r t o
a r ra n g e w id g e t s u s in g a d r a g - a n d - d r o p W Y S I W Y G (W h a t Y o u S e e Is W h a t Y o u G e t) e d i t o r .
W i t h o u t a G U I b u i ld e r , a G U I m u s t b e b u i l t b y m a n u a l ly s p e c i f y in g e a c h w id g e t ’ s p a ra m e te rs i n
c o d e , 'w i t h n o v is u a l fe e d b a c k u n t i l th e p r o g r a m is r u n .

U s e r in te r f a c e s a re c o m m o n ly p r o g r a m m e d u s in g a n e v e n t - d r iv e n a r c h i te c tu r e , s o G U I b u i l d
e rs a ls o s i m p l i f y c r e a t in g e v e n t - d r iv e n c o d e . T h is s u p p o r t in g c o d e c o n n e c ts w id g e ts w i t h t h e
o u t g o in g a n d in c o m in g e v e n ts th a t t r ig g e r th e f u n c t io n s p r o v id in g th e a p p l ic a t io n lo g ic .

A widget (o r control) is a n e le m e n t o f a G U I th a t d is p la y s a n in f o r m a t io n a n a n g e m e n t
c h a n g e a b le b y th e u s e r , s u c h a s a w in d o w o r a t e x t b o x [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / G r a p h ic a l
_ u s e r _ in t e r f a c e _ b u i ld e r] .

- 1 3 7 -

http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki/Graphical

3 .4 .3 U n i t t e s t in g t o o ls . Unit testing is a m e th o d b y w h ic h in d i v id u a l u n i t s o f s o u rc e c o d e a re
te s te d t o d e te r m in e i f t h e y a re f i t f o r u s e . A unit is th e s m a l le s t te s ta b le p a r t o f a n a p p l ic a t io n . I n
p r o c e d u r a l p r o g r a m m in g a u n i t m a y b e a n i n d i v id u a l f u n c t io n o r p ro c e d u r e . U n i t te s ts a re c re a te d
b y p r o g r a m m e r s o r o c c a s io n a l ly b y w h i t e b o x te s te rs .

White-box testing (a .k .a . c le a r b o x te s t in g , g la s s b o x te s t in g , t r a n s p a r e n t b o x t e s t in g , o r s t r u c
t u r a l t e s t in g) is a m e th o d o f t e s t in g s o f tw a r e t h a t te s ts in te r n a l s t ru c tu re s o r w o r k in g s o f a n
a p p l ic a t io n , as o p p o s e d t o i t s f u n c t i o n a l i t y (i . e . b la c k - b o x te s t in g) . I n w h i t e - b o x te s t in g a n
in t e r n a l p e r s p e c t iv e o f th e s y s te m , as w e l l a s p r o g r a m m in g s k i l l s , a re r e q u i r e d a n d u s e d to d e s ig n
te s t c a s e s . T h e white-box tester c h o o s e s in p u t s t o e x e r c is e p a th s th r o u g h th e c o d e a n d d e te r m in e
th e a p p r o p r ia te o u tp u ts [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / W h i t e - b o x te s t in g] .

I d e a l l y , e a c h te s t c a s e is in d e p e n d e n t f r o m th e o th e r s : s u b s t i tu te s l i k e m e th o d s tu b s , m o c k
o b je c ts , fa k e s a n d te s t h a rn e s s e s c a n b e u s e d t o a s s is t t e s t in g a m o d u le in is o la t io n . U n i t te s ts a re
t y p i c a l l y w r i t t e n a n d r u n b y s o f tw a r e d e v e lo p e r s w h o d e v e lo p e d th e c o d e t o e n s u re th a t c o d e
m e e ts i t s d e s ig n a n d b e h a v e s as in te n d e d . I ts im p le m e n t a t io n c a n v a r y f r o m b e in g v e r y m a n u a l
(p e n c i l a n d p a p e r) t o b e in g f o r m a l iz e d as p a r t o f b u i l d a u to m a t io n .

3 .4 .4 A p p l i c a t i o n o r i e n t e d la n g u a g e s . A n application oriented language is a c o m p u te r la n
g u a g e w h o s e s ta te m e n ts re s e m b le t e r m in o lo g y o f t h e u s e r [h t t p : / / w w w . t h e f r e e d ic t io n a r y . c o m
/a p p l ic a t io n - o r ie n te d + la n g u a g e] .

S o m e e x a m p le s a re :

• S c r i p t i n g la n g u a g e — A scripting language is a p r o g r a m m in g la n g u a g e th a t a l lo w s c o n
t r o l o f o n e o r m o r e s o f tw a r e a p p l ic a t io n s . “ S c r ip t s ” a re d is t in c t f r o m th e c o r e c o d e o f th e
a p p l ic a t io n , as th e y a re u s u a l ly w r i t t e n i n a d i f f e r e n t la n g u a g e a n d a re o f t e n c re a te d o r a t
le a s t m o d i f ie d b y th e e n d -u s e r . S c r ip ts a re o f t e n in te r p r e te d f r o m s o u r c e c o d e o r b y te
c o d e , w h e re a s a p p l ic a t io n s o f tw a r e is t y p i c a l l y f i r s t c o m p i le d t o a n a t iv e m a c h in e c o d e o r
t o a n in te r m e d ia te c o d e [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / S c r ip t in g _ la n g u a g e] .

• V i s u a l la n g u a g e — A n im a g e th a t c o m m u n ic a te s a n id e a p re s u p p o s e s th e u s e o f a v is u a l
la n g u a g e . J u s t as p e o p le c a n “ v e r b a l iz e ” t h e i r t h in k in g , t h e y c a n “ v is u a l i z e ” it. A d ia
g r a m , a m a p , a n d a p a in t in g a re a l l e x a m p le s o f u s e s o f v is u a l la n g u a g e . I t s s t r u c tu r a l
u n i t s in c lu d e l in e , s h a p e , c o lo r , f o r m , m o t io n , te x tu r e , p a t te r n , d i r e c t io n , o r ie n ta t io n ,
s c a le , a n g le , s p a c e a n d p r o p o r t io n .

T h e e le m e n ts i n a n im a g e re p r e s e n t c o n c e p ts i n a s p a t ia l c o n te x t , r a th e r t h a n th e l i n e
a r f o r m u s e d f o r w o r d s . S p e e c h a n d v is u a l c o m m u n ic a t io n a re p a r a l le l a n d o f t e n in t e r d e
p e n d e n t m e a n s b y w h ic h h u m a n s e x c h a n g e i n f o r m a t io n [h t t p : / / e n . w ik ip e d ia . o r g / w ik i
/ V i s u a l la n g u a g e] ,

• D o m a in - s p e c i f i c la n g u a g e — A d o m a in - s p e c i f ic la n g u a g e (D S L) is a p r o g r a m m in g la n
g u a g e o r s p e c i f ic a t io n la n g u a g e d e d ic a te d t o a p a r t ic u la r p r o b le m d o m a in , a p a r t ic u la r
p r o b le m r e p r e s e n ta t io n te c h n iq u e , a n d /o r a p a r t i c u la r s o lu t io n te c h n iq u e . T h e c o n c e p t
i s n ’ t n e w — special-purpose programming languages a n d a l l k in d s o f m o d e l
in g / s p e c i f ic a t io n la n g u a g e s h a v e a lw a y s e x is te d , b u t th e t e r m h a s b e c o m e m o r e p o p u la r
d u e t o th e r is e o f d o m a in - s p e c i f ic m o d e l in g [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / D o m a in _ s p e
c i f ic _ la n g u a g e] .

- 1 3 8 -

http://en.wikipedia.org/wiki/White-box
http://www.thefreedictionary.com
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki/Domain_spe

• M a r k u p la n g u a g e — A markup language is a m o d e m s y s te m f o r a n n o ta t in g a t e x t i n a
w a y t h a t is s y n ta c t ic a l ly d is t in g u is h a b le f r o m th a t te x t . T h e id e a a n d t e r m in o lo g y e v o lv e d
f r o m th e “ marking up” o f m a n u s c r ip ts , i .e . th e r e v is io n in s t r u c t io n s b y e d ito r s , t r a d i t i o n a l
l y w r i t t e n w i t h a b lu e p e n c i l o n a u th o r s ’ m a n u s c r ip ts . E x a m p le s a re t y p e s e t t in g in s t r u c
t io n s s u c h as th o s e fo u n d i n troff a n d Latex, a n d s t r u c tu r a l m a r k e r s s u c h as X M L ta g s .
M a r k u p is t y p i c a l l y o m i t t e d f r o m th e v e r s io n o f th e t e x t t h a t is d is p la y e d f o r e n d -u s e r c o n
s u m p t io n [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / M a r k u p _ la n g u a g e] .

• M a c r o s — A m a c r o is a r u le o r p a t te r n t h a t s p e c if ie s h o w a c e r ta in in p u t s e q u e n c e (o f te n
a s e q u e n c e o f c h a ra c te rs) s h o u ld b e m a p p e d to a n o u tp u t s e q u e n c e (a ls o o f te n a s e q u e n c e
o f c h a r a c te r s) a c c o r d in g t o a d e f in e d p ro c e d u r e . T h e m a p p in g p ro c e s s e s th a t in s ta n t ia te s
(t r a n s f o r m s) a m a c r o in t o a s p e c i f ic o u t p u t s e q u e n c e is k n o w n as macro expansion [h t t p : / /
e n .w ik ip e d ia . o r g / w ik i / M a c r o _ (c o m p u t e r _ s c ie n c e)] .

3 .4 .5 P r o f i l i n g . I n s o f tw a r e e n g in e e r in g , software profiling o r s im p ly profiling, a f o r m o f d y
n a m ic p r o g r a m a n a ly s is (a s o p p o s e d t o s ta t ic c o d e a n a ly s is) , is th e in v e s t ig a t io n o f a p r o g r a m ’ s
b e h a v io r u s in g i n f o r m a t io n g a th e r e d as th e p r o g r a m e x e c u te s . T h e u s u a l p u rp o s e o f t h is a n a ly s is
is t o d e te r m in e t h a t s e c t io n s o f a p r o g r a m to o p t im iz e - t o in c re a s e i t s o v e r a l l s p e e d , d e c re a s e its
m e m o r y r e q u i r e m e n t o r s o m e t im e s b o th .

F o r e x a m p le , a code profiler is a p e r fo r m a n c e a n a ly s is t o o l th a t , m o s t c o m m o n ly , m e a s u re s
o n l y th e f r e q u e n c y a n d d u r a t io n o f f u n c t io n c a l ls , b u t th e re a re o th e r s p e c i f ic ty p e s o f p r o f i l e r s
(e .g . m e m o r y p r o f i l e r s) in a d d i t io n t o m o r e c o m p r e h e n s iv e p r o f i l e r s , c a p a b le o f g a th e r in g
e x te n s iv e p e r fo r m a n c e d a ta [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / S o f t w a r e _ p r o f i l in g] .

3 .4 . i P e r f o r m a n c e a n a ly s is . Performance analysis i n v o lv e s g a th e r in g f o r m a l a n d in f o r m a l d a ta
to h e lp c u s to m e r s a n d s p o n s o rs d e f in e a n d a c h ie v e t h e i r p e r fo r m a n c e g o a ls . P e r fo r m a n c e a n a ly
s is u n c o v e r s s e v e r a l p e r s p e c t iv e s o n a p r o b le m o r o p p o r t u n i t y , d e t e r m in in g a n y a n d a l l d r iv e r s
to w a r d s o r b a r r ie r s t o s u c c e s s fu l p e r fo r m a n c e , a n d p r o p o s in g a s o lu t io n s y s te m b a s e d o n w h a t is
d is c o v e r e d .

3 .4 .7 S l i c i n g t o o ls . I n c o m p u te r p r o g r a m m in g , program slicing is th e c o m p u ta t io n o f t h e s e t o f
p r o g r a m s s ta te m e n ts , th e p r o g r a m s l ic e th a t m a y a f f e c t th e v a lu e s a t s o m e p o in t o f in te r e s t ,
r e fe r r e d t o a s a slicing criterion. P r o g r a m s l ic in g c a n b e u s e d in d e b u g g in g t o lo c a te s o u r c e o f
e r ro r s m o r e e a s i ly . O th e r a p p l ic a t io n s o f s l i c in g in c lu d e s o f tw a r e m a in te n a n c e , o p t im iz a t io n ,
p r o g r a m a n a ly s is , a n d i n f o r m a t io n f l o w c o n t r o l [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / P r o g r a m _ s l ic in g] .

3 .5 C o n s t r u c t i o n T e c h n o lo g ie s

T e c l in o lo g y c a n b e m o s t b r o a d ly d e f in e d as th e e n t i t ie s , b o th m a te r ia l a n d im m a te r ia l , c re a te d b y
th e a p p l ic a t io n o f m e n ta l a n d p h y s ic a l e f f o r t i n o r d e r t o a c h ie v e s o m e v a lu e . I n t h is u s a g e ,
te c h n o lo g y r e fe r s t o t o o ls a n d m a c h in e s th a t m a y b e u s e d t o s o lv e r e a l - w o r ld p r o b le m s . I t is a
f a r - r e a c h in g t e r m th a t m a y in c lu d e s im p le t o o ls , s u c h as a c r o w b a r o r w o o d e n s p o o n , o r m o re
c o m p le x m a c h in e s , s u c h as a s p a c e s ta t io n o r p a r t ic le a c c e le ra to r . T o o ls a n d m a c h in e s n e e d n o t
b e m a te r ia l ; v i r t u a l t e c h n o lo g y , s u c h as c o m p u te r s o f tw a r e a n d b u s in e s s m e th o d s , f a l ls u n d e r th is
d e f i n i t i o n o f te c h n o lo g y .

T h e w o r d “ t e c h n o lo g y ” c a n a ls o b e u s e d t o r e fe r t o a c o l le c t io n o f te c h n iq u e s . I n th is c o n te x t ,
i t i s th e c u r r e n t s ta te o f h u m a n i t y ’ s k n o w le d g e o f h o w to c o m b in e re s o u rc e s to p ro d u c e d e s ire d
p r o d u c ts , t o s o lv e p r o b le m s , f u l f i l l n e e d s , o r s a t is f ie s w a n ts ; i t in c lu d e s te c h n ic a l m e th o d s , s k i l ls ,
p ro c e s s e s , te c h n iq u e s , t o o ls a n d r a w m a te r ia ls . W h e n c o m b in e d w i t h a n o th e r te r m , s u c h as

- 1 3 9 -

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Software_profiling
http://en.wikipedia.org/wiki/Program_slicing

“ m e d ic a l t e c h n o lo g y ” o r “ s p a c e t e c h n o lo g y , ” i t re fe rs to th e s ta te o f th e r e s p e c t iv e f i e l d ’ s
k n o w le d g e a n d to o ls . “ S ta te - o f - th e - a r t t e c h n o lo g y ” r e fe r s t o th e h ig h t e c h n o lo g y a v a i la b le to
h u m a n i t y i n a n y f i e l d [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / T e c h r io lo g y] .

3 .5 .1 A P I d e s ig n a n d u s e . A n A P I (a p p l ic a t io n p r o g r a m m in g in te r fa c e) is a la n g u a g e a n d
m e s s a g e f o r m a t u s e d b y a n a p p l ic a t io n p r o g r a m to c o m m u n ic a te w i t h th e o p e r a t in g s y s te m o r
s o m e o th e r c o n t r o l p r o g r a m s u c h as a d a ta b a s e m a n a g e m e n t s y s te m . A n A P I im p l ie s th a t s o m e
p r o g r a m m o d u le is a v a i la b le in th e c o m p u te r t o p e r f o r m th e o p e r a t io n o r th a t i t m u s t b e l in k e d
in to th e e x is t in g p r o g r a m t o p e r f o r m th e ta s k s [P C M a g a z in e E n c y c lo p e d ia] .

3 .5 .2 C o d e r e u s e a n d l i b r a r i e s . Code reuse, a ls o c a l le d software reuse, is th e use o f e x is t in g
s o f tw a r e , o r s o f tw a r e k n o w le d g e , t o b u i l d n e w s o f tw a r e . C o d e re u s e is th e id e a th a t a p a r t ia l o r
c o m p le te c o m p u te r p r o g r a m w r i t t e n a t o n e t im e c a n be . s h o u ld b e , o r is b e in g u s e d in a n o th e r
p r o g r a m w r i t t e n a t a la te r t im e . T h e re u s e o f p r o g r a m m in g c o d e is a c o m m o n te c h n iq u e th a t
a t te m p ts t o s a v e t im e a n d e n e r g y b y r e d u c in g r e d u n d a n t w o r k .

T h e s o f tw a r e l i b r a r y is a g o o d e x a m p le o f c o d e re u s e . P r o g r a m m e r s m a y d e c id e t o c re a te i n
te r n a l a b s t r a c t io n s so th a t c e r ta in p a r ts o f t h e i r p r o g r a m c a n b e re u s e d , o r m a y c re a te c u s to m
l ib r a r ie s f o r t h e i r o w n u s e . S o m e c h a r a c te r is t ic s th a t m a k e s o f tw a r e m o r e e a s i ly r e u s a b le a re
m o d u la r i t y , lo o s e c o u p l in g , h ig h c o h e s io n , i n f o r m a t io n h id in g a n d s e p a r a t io n o f c o n c e rn s
[h t t p : / / e n .w ik ip e d ia . o r g / w ik i / C o d e _ r e u s e] .

3 .5 .3 O b j e c t - o r i e n t e d r u n - t i m e is s u e s . Object-oriented programming (OOP) is a p r o g r a m m in g
p a r a d ig m th a t u s e s “ o b je c ts ” - d a ta s t r u c tu r e s c o n s is t in g o f d a ta a n d m e th o d s t o g e th e r w i t h t h e i r
in te r a c t io n s - t o d e s ig n a p p l ic a t io n s a n d c o m p u te r p r o g r a m s . P r o g r a m m in g te c h n iq u e s m a y
in c lu d e fe a tu r e s s u c h as d a ta a b s t r a c t io n , e n c a p s u la t io n , m o d u la r i t y , p o ly m o r p h is m , a n d in h e r
i ta n c e . M a n y m o d e m p r o g r a m m in g la n g u a g e s n o w s u p p o r t O O P [h t t p : / / e n . w ik ip e d ia o r g / w ik i
/ O b j e c t _ o r ie n t e d _ p r o g r a m m in g] .

• Data abstraction — Abstraction is th e p ro c e s s b y w h ic h d a ta a n d p r o g r a m s a re d e f in e d
w i t h a r e p r e s e n ta t io n s im i la r i n f o r m to i t s m e a n in g (s e m a n t ic s) , w h i l e h id in g a w a y th e
im p le m e n t a t io n d e ta i ls .

• Encapsulation — Encapsulation is u s e d t o r e f e r t o o n e o f t w o r e la te d b u t d is t in c t n o
t io n s , a n d s o m e t im e s t o th e c o m b in a t io n : (1) a la n g u a g e m e c h a n is m f o r r e s t r i c t in g a c c e s s
t o s o m e o f th e o b je c t ’ s c o m p o n e n ts , a n d (2) a la n g u a g e c o n s t r u c t th a t f a c i l i t a t e s th e b u n
d l i n g o f d a ta w i t h th e m e th o d s (o r o th e r f u n c t io n s) o p e r a t in g o n th a t d a ta .

• Modularity — A ls o k n o w n a s modular programming (a ls o k n o w n as t o p d o w n d e s ig n
a n d s te p w is e r e f in e m e n t) is a s o f tw a r e d e s ig n te c h n iq u e th a t in c re a s e s th e e x te n t t o w h ic h
s o f tw a r e is c o m p o s e d o f s e p a ra te , in te r c h a n g e a b le c o m p o n e n ts b y b r e a k in g d o w n p r o
g r a m fu n c t io n s in t o modules, e a c h o f w h ic h a c c o m p l is h e s o n e f u n c t io n a n d c o n ta in s e v e
r y t h in g n e c e s s a ry t o a c c o m p l is h t h is f u n c t io n .

• Polymorphism — I n c o m p u te r s c ie n c e , polymorphism is a p r o g r a m m in g la n g u a g e fe a tu r e
t h a t a l lo w s v a lu e s o f d i f f e r e n t d a ta ty p e s to b e h a n d le d u s in g a u n i f o r m in te r fa c e . T h e
c o n c e p t o f p a r a m e t r ic p o ly m o r p h is m a p p l ie s t o b o th d a ta ty p e s a n d f u n c t io n s . A f u n c t i o n
t h a t c a n e v a lu a te t o o r b e a p p l ie d t o v a lu e s o f d i f f e r e n t ty p e s is k n o w n a s a polymorphic
function. A d a ta t y p e t h a t c a n a p p e a r to b e o f a g e n e r a l iz e d ty p e (e .g . , a l i s t w i t h e le m e n ts
o f a r b i t r a r y t y p e) is d e s ig n a te d polymorphic data type l i k e th e g e n e r a l iz e d t y p e f r o m
w h ic h s p e c ia l iz a t io n s a re m a d e [h t p p : / / e n . w ik ip e d ia . o r g / w ik i / T v p e _ p o ly m o r p l i i s m] .

- 1 4 0 -

http://en.wikipedia.org/wiki/Techriology
http://en
http://en.wikipediaorg/wiki

• Inheritance — In o b je c t - o r ie n te d s o f tw a r e e n g in e e r in g , in h e r i ta n c e is th e c a p a b i l i t y f o r
c la s s e s t o i n h e r i t a t t r ib u te s f r o m p r e - e x is t in g c la s s e s (c a l le d b a s e c la s s e s , s u p e r c la s s e s ,
p a r e n t c la s s e s o r a n c e s to r c la s s e s) . T h e r e s u l t in g c la s s e s a re k n o w n as d e r iv e d c la s s e s ,
s u b c la s s e s o r c h i ld c la s s e s . T h e r e la t io n s h ip o f c la s s e s t h r o u g h in h e r i ta n c e g iv e s r is e t o a
h ie r a r c h y . B y d e fa u l t , th e s u b c la s s in h e r i t s a l l th e a t t r ib u te s a n d p r o p e r t ie s o f th e s u p e r
c la s s b u t u s u a l ly th e y m a y b e r e d e f in e d in th e s u b c la s s i f d e s ire d . In h e r i t a n c e m a y a p p l y
t o o b je c ts as w e l l as to c la s s e s . N o t e : th is is a g e n e r a l d e f i n i t i o n a n d i n d i v id u a l la n g u a g e s
m a y h a v e s p e c i f ic in h e r i ta n c e d e f in i t i o n s th a t d i f f e r [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / I n h e r
i t a n c e _ (o b je c t - o r ie n t e d . p r o g r a m m in g) ; S h e rm a n 2 0 1 2] .

• Dynamic binding — I n o b je c t - o r ie n te d p r o g r a m m in g , dynamic binding or late binding
m e a n s d e t e r m in in g th e e x a c t im p le m e n t a t io n o f a re q u e s t b a s e d o n b o th th e r e q u e s t (o p
e r a t io n) n a m e a n d th e r e c e iv in g o b je c t a t r u n - t im e . I t o f t e n h a p p e n s w h e n i n v o k in g a d e
r i v e d c la s s ’ s m e m b e r f u n c t i o n u s in g a p o in t e r t o i t s b a s e c la s s . T h e im p le m e n t a t io n o f t h e
d e r iv e d c la s s w i l l b e in v o k e d in s te a d o f t h a t o f th e b a s e c la s s . I t a l lo w s s u b s t i t u t in g a p a r
t i c u l a r im p le m e n t a t io n u s in g th e s a m e in te r fa c e a n d e n a b le s p o ly m o r p h is m [h t t p : / / w w w
. a s k . c o m / w ik i / D y n a m ic _ b in d in g _ (c o m p u t e r _ s c ie n c e)] .

3 .5 .4 P a r a m e t e r i z a t i o n a n d g e n e r ic s . A parameter is a s p e c ia l k in d o f v a r ia b le , u s e d i n a
s u b r o u t in e t o r e f e r t o o n e o f th e p ie c e s o f d a ta p r o v id e d as in p u t t o th e s u b r o u t in e . T h e s e p ie c e s
o f d a ta a re c a l le d arguments. A n o r d e r e d l i s t o f p a ra m e te rs is u s u a l ly in c lu d e d in th e d e f i n i t i o n
o f a s u b r o u t in e , s o th a t , e a c h t im e th e s u b r o u t in e is c a l le d , i t s a rg u m e n ts f o r th a t c a l l c a n b e
a s s ig n e d t o th e c o r r e s p o n d in g p a ra m e te rs . T h e te r m “ a r g u m e n t ” is o f t e n (in c o r r e c t l y) u s e d i n
p la c e o f “ p a r a m e te r , ” [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / P a r a m e t e r _ (c o m p u t e r _ p r o g r a m m in g)] .

T w o t y p e s o f p a ra m e te rs a re f r e q u e n t ly u s e d — d e p e n d e n t a n d in d e p e n d e n t v a r ia b le s . T h e
independent variable is t y p i c a l l y th e v a r ia b le r e p r e s e n t in g th e v a lu e b e in g m a n ip u la te d o r
changed and the dependent variable is the observed result of the independent variable being
manipulated. In Boehm’s equations on software costs, the size of the computer program was the
in d e p e n d e n t a n d th e c o s t o f d e v e lo p in g th e s o f tw a r e w a s th e d e p e n d e n t v a r ia b le [B o e h m 1 9 8 1] .

Generic programming is a s ty le o f c o m p u te r p r o g r a m m in g i n w h ic h a lg o r i t h m s a re w r i t t e n i n
te r m s o f to-be-specified-later ty p e s t h a t a re th e n instantiated w h e n n e e d e d f o r s p e c i f ic t y p e s
p r o v id e d a s p a ra m e te rs . T h is a p p r o a c h , p io n e e r e d b y A d a i n 1 9 8 3 , p e r m it s w r i t i n g c o m m o n
fu n c t io n s o r t y p e s th a t d i f f e r o n l y i n t h e s e t o f ty p e s o n w h ic h t h e y o p e ra te w h e n u s e d , t h u s
r e d u c in g d u p l i c a t io n . S o f tw a r e e n t i t ie s c re a te d u s in g g e n e r ic p r o g r a m m in g a re k n o w n as g e n e r
ic s [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / G e n e r ic p r o g r a m m in g] .

3 .5 .5 A s s e r t i o n s . I n c o m p u te r p r o g r a m m in g , a n assertion is a p r e d ic a te (f o r e x a m p le a t r u e - f a l s e
s ta te m e n t) p la c e d i n a p r o g r a m t o in d ic a te th a t th e d e v e lo p e r thinks th a t th e p r e d ic a te is a lw a y s
t r u e a t t h a t p la c e [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / A s s e r t io n _ (c o m p u t in g)] .

• Design by contract™ — Design by Contract o r Programming by Contract is a n a p
p r o a c h t o d e s ig n in g c o m p u te r s o f tw a r e . I t p r e s c r ib e s th a t s o f tw a r e d e s ig n e rs s h o u ld d e
f i n e f o r m a l , p re c is e a n d v e r i f i a b le in te r fa c e s p e c i f ic a t io n s f o r s o f tw a r e c o m p o n e n t s ,
w h ic h e x te n d th e o r d in a r y d e f i n i t i o n o f a b s t ra c t d a ta ty p e s w i t h p r e c o n d i t io n s , p o s t c o n d i
t io n s a n d in v a r ia n ts . T h e s e s p e c i f ic a t io n s a re r e fe r r e d to a s “ c o n t r a c ts , ” i n a c c o r d a n c e
w i t h a c o n c e p tu a l m e ta p h o r w i t h th e c o n d i t io n s a n d o b l ig a t io n s o f b u s in e s s c o n t r a c t s .
T h e t e r m w a s c o in e d b y B e r t r a n d M e y e r in c o n n e c t io n w i t h h is d e s ig n o f th e E i f f e l p r o
g r a m m in g la n g u a g e [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / D e s ig n _ b y _ c o n t r a c t] .

- 1 4 1 -

http://en.wikipedia.org/wiki/Inher
http://www
http://en.wikipedia.org/wiki/Parameter_(computer_programming
http://en.wikipedia.org/wiki/Assertion_(computing
http://en.wikipedia.org/wiki/Design_by_contract

• Defensive programming — D e fe n s iv e p r o g r a m m in g is a f o r m o f d e fe n s iv e d e s ig n i n
te n d e d t o e n s u re th e c o n t in u in g f u n c t i o n o f a p ie c e o f s o f tw a r e i n s p i te o f u n fo r e s e e a b le
u s a g e o f s a id s o f tw a r e . T h e id e a c a n b e v ie w e d as r e d u c in g o r e l im in a t in g th e p r o s p e c t o f
M u r p h y ’ s L a w h a v in g e f fe c t . D e fe n s iv e p r o g r a m m in g te c h n iq u e s a re u s e d e s p e c ia l ly
w h e n a p ie c e o f s o f tw a r e c o u ld b e m is u s e d m is c h ie v o u s ly o r in a d v e r t e n t ly t o c a ta s t r o p h ic
e f f e c t [h t t p :/ / e n . w ik ip e d ia . o r g / w ik i / D e f e n s iv e _ p r o g r a m m in g] .

3 .5 .6 E r r o r h a n d l i n g . E r r o r h a n d l in g r e fe r s t o th e p r o g r a m m in g p r a c t ic e o f a n t ic ip a t in g a n d
c o d in g f o r e r r o r c o n d i t io n s th a t m a y a r is e w h e n y o u r p r o g r a m ru n s . E r r o r s in g e n e r a l c o m e in
th r e e f la v o r s : c o m p i le r e r r o r s s u c h as u n d e c la r e d v a r ia b le s t h a t p r e v e n t y o u r c o d e f r o m c o m p i l
in g ; u s e r d a ta e n t r y e r r o r s u c h as a u s e r e n te r in g a n e g a t iv e v a lu e w h e r e o n ly a p o s i t i v e n u m b e r is
a c c e p ta b le ; a n d r u n t im e e r r o r s , th a t o c c u r w h e n y o u r p r o g r a m c a n n o t c o r r e c t l y e x e c u te a p r o
g r a m s ta te m e n t [h t t p : / / w w w . c . c o m / e x c e l / e r r o r h a n d l in g . l i t m] .

F o r e x a m p le :

• Exception handling — Exception handling is a p r o g r a m m in g la n g u a g e c o n s t r u c t o r
c o m p u te r h a r d w a r e m e c h a n is m d e s ig n e d t o h a n d le th e o c c u r r e n c e o f e x c e p t io n s , s p e c ia l
c o n d i t io n s th a t c h a n g e th e n o r m a l f l o w o f p r o g r a m e x e c u t io n . P r o g r a m m in g la n g u a g e s
d i f f e r c o n s id e r a b ly in t h e i r s u p p o r t f o r e x c e p t io n h a n d l in g (a s d is t in c t f r o m e r r o r c h e c k
in g , w h ic h is n o r m a l p r o g r a m f l o w th a t c o d e s f o r re s p o n s e s to a d v e rs e c o n t in g e n c ie s s u c h
as i n v a l id s ta te c h a n g e s o r th e u n s u c c e s s fu l t e r m in a t io n o f in v o k e d o p e r a t io n s) [h t t p : / / e n
. w ik ip e d ia . o r g / w ik i / E x c e p t io n h a n d l i n g] .

• Fault tolerance — F a u l t - to le r a n c e (a .k .a . g r a c e fu l d e g r a d a t io n) i s th e p r o p e r t y th a t e n a
b le s a c o m p u te r s y s te m to c o n t in u e o p e r a t in g p r o p e r ly i n th e e v e n t o f th e f a i lu r e o f (o r
o n e o r m o r e f a u l t s w i t h i n) s o m e o f i t s c o m p o n e n ts . I f i t s o p e r a t in g q u a l i t y d e c re a s e s a t
a l l , th e d e c re a s e is p r o p o r t io n a l t o th e s e v e r i t y o f th e f a i lu r e , as c o m p a r e d t o a n a iv e ly -
d e s ig n e d s y s te m in w h ic h e v e n a s m a l l f a i l u r e c a n c a u s e to ta l b r e a k d o w n . F a u l t - t o le r a n c e
is p a r t i c u la r l y s o u g h t - a f t e r i n m i l i t a r y s y s te m s o r l i f e - c r i t i c a l s y s te m s [h t t p : / / e n . w ik i p e -
d ia . o r g / w ik i / F a u l t - t o le r a n t s y s te m] ,

3 .5 .7 S ta te - b a s e d a n d t a b le - d r i v e n c o n s t r u c t i o n t e c h n iq u e s . State-based construction tech
niques a re m o s t c o m m o n ly re p re s e n te d b y state diagrams w h ic h a re a ls o r e fe r r e d t o as state
transition diagrams. A s ta te d ia g r a m is a d i r e c te d g ra p h in w h ic h e a c h v e r t e x re p re s e n ts a s ta te
a n d e a c h e d g e re p re s e n ts a t r a n s i t io n b e tw e e n t w o s ta te s .

A s ta te t r a n s i t io n t a b le p re s e n ts a c o m m o n r e p r e s e n ta t io n o f F in i t e S ta te M a c h in e s (F S M s) .
(S e e F ig u r e 3 .1) E v e r y c o lu m n in c lu d e d i n th e ta b le c o r r e s p o n d s t o a s ta te . E a c h r o w c o r r e
s p o n d s t o a n e v e n t c a te g o r y . V a lu e s c o n ta in e d i n ta b le c e l ls p r o v id e s ta te s r e s u l t in g f r o m re s p e c
t i v e t r a n s i t io n s . T a b le c e l ls a ls o c a n b e u s e d f o r s p e c i f y in g a c t io n s r e la te d t o t r a n s i t io n s .

A finite-state machine (F S M) o r f in i t e - s t a t e a u to m a to n (p lu r a l : automata), o r s im p ly a s ta te
m a c h in e , is a m a th e m a t ic a l a b s t r a c t io n s o m e t im e s u s e d t o d e s ig n d ig i t a l l o g ic o r c o m p u te r
p r o g r a m s . I t is a b e h a v io r m o d e l c o m p o s e d o f a f i n i t e n u m b e r o f s ta te s , t r a n s i t io n s b e tw e e n th o s e
s ta te s , a n d a c t io n s , s im i l a r t o a f l o w g r a p h in w h ic h o n e c a n in s p e c t th e w a y lo g i c r u n s w h e n
c e r ta in c o n d i t io n s a re m e t . I t h a s f i n i t e in te r n a l m e m o r y , a n in p u t fe a tu re th a t re a d s s y m b o ls i n a
s e q u e n c e , o n e a t a t im e w i t h o u t g o in g b a c k w a r d ; a n d a n o u t p u t fe a tu r e , w h ic h m a y h e i n th e
f o r m o f a u s e r in te r fa c e , o n c e th e m o d e l is im p le m e n te d . T h e o p e r a t io n o f a n F S M b e g in s f r o m
o n e o f th e s ta te s (c a l le d a start state), g o e s t h r o u g h t r a n s i t io n s d e p e n d in g o n in p u t to d i f f e r e n t

- 1 4 2 ~

http://en.wikipedia.org/wiki/Defensive_programming
http://www.c.com/excel/errorhandling.litm
http://en
http://en.wiki

s ta te s a n d c a n e n d in a n y o f th o s e a v a i la b le , h o w e v e r o n l y a c e r ta in s e t o f s ta te s m a r k a s u c c e s s
f u l f l o w o f o p e r a t io n (c a l le d accept states) [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / F in i t e - s t a t e _ m a c h in e] .

3 .5 .8 R u n - t i m e c o n f i g u r a t i o n a n d i n t e r n a t i o n a l i z a t i o n . T h e s e i t e m s a re d e f in e d a s f o l l o w s :

3 .5 .8 .1 R u n - t i m e c o n f i g u r a t i o n . U s in g r u n - t im e c o n f ig u r a t io n le ts y o u c re a te a n d d e le te d a ta
s e r v ic e s , a d a p te rs , a n d d e s t in a t io n s , e v e n a f te r th e s e r v e r h a s b e e n s ta r te d .

T h e r e a re m a n y re a s o n s w h y y o u m ig h t w a n t t o c re a te c o m p o n e n ts d y n a m ic a l ly . F o r e x a m
p le , c o n s id e r th e f o l l o w i n g u s e c a s e s :

• Y o u w a n t a s e p a ra te d e s t in a t io n f o r e a c h o f y o u r o f f i c e s th a t u s e a n a p p l ic a t io n . In s te a d
o f m a n u a l ly c r e a t in g d e s t in a t io n s in th e c o n f ig u r a t io n f i le s , y o u w a n t to c re a te t h e m
d y n a m ic a l ly b a s e d o n in f o r m a t io n in a d a ta b a s e .

• Y o u w a n t t o d y n a m ic a l ly c re a te , d e le te , o r m o d i f y d e s t in a t io n s in re s p o n s e t o s o m e
u s e r in p u t .

T h e r e a re t w o p r im a r y w a y s t o p e r f o r m d y n a m ic c o n f ig u r a t io n . T h e f i r s t w a y is t o u s e a c u s
to m b o o ts t r a p s e r v ic e c la s s . T h is is th e p r e fe r r e d w a y t o p e r fo r m d y n a m ic c o n f ig u r a t io n . T h e
s e c o n d w a y is t o c a l l a r e m o te o b je c t o n th e s e rv e r t h a t p e r fo r m s d y n a m ic c o n f ig u r a t io n .

€20811

d o s e d

o p e n e d c lo s e d

p a s s c lo s e d

C o in o p e n e d

F ig u r e 3 . 1 : S ta te t r a n s i t i o n t a b le s [S a k h a r o v 2 0 0 5]

3 .5 .8 .2 I n t e r n a t i o n a l i z a t i o n . I n c o m p u t in g , internationalization a n d localization a re m e a n s o f
a d a p t in g c o m p u te r s o f tw a r e t o d i f f e r e n t la n g u a g e s , r e g io n a l d i f f e r e n c e s a n d te c h n ic a l r e q u i r e
m e n ts o f a t a r g e t m a r k e t . Internationalization is th e p ro c e s s o f d e s ig n in g a s o f tw a r e a p p l ic a t io n
so t h a t i t c a n b e a d a p te d to v a r io u s la n g u a g e s a n d r e g io n s w i t h o u t e n g in e e r in g c h a n g e s . Locali
zation is th e p ro c e s s o f a d a p t in g in te r n a t io n a l iz e d s o f tw a r e f o r a s p e c i f ic r e g io n o r la n g u a g e b y
a d d in g lo c a le - s p e c i f i c c o m p o n e n ts a n d t r a n s la t in g te x t . S o m e c o m p a n ie s u s e th e t e r m “ g lo b a l i
z a t io n ” f o r th e c o m b in a t io n o f in t e r n a t io n a l iz a t io n a n d lo c a l iz a t io n [h t t p : / / e n . w ik ip e d ia . o r g / w ik i
/ I n t e m a t io n a l i z a t io n a n d l o c a l i z a t i o n] .

T h is c o n c e p t is a ls o k n o w n as N L S (N a t io n a l L a n g u a g e S u p p o r t o r N a t iv e L a n g u a g e S u p
p o r t) .

3 .5 .9 G r a m m a r - b a s e d i n p u t p r o c e s s in g (p a r s in g) . Parsing is to b r e a k d o w n (a s e n te n c e) in to
i ts c o m p o n e n t p a r ts o f s p e e c h w i t h a n e x p la n a t io n o f t h e f o r m , f u n c t io n , a n d s y n ta c t ic a l r e la t io n
s h ip o f e a c h p a r t .

3 .5 .1 0 C o n c u r r e n c y p r i m i t i v e s . I n c o m p u te r s c ie n c e , concurrency is a p r o p e r t y o f s y s te m s in
w h ic h s e v e ra l c o m p u ta t io n s a re e x e c u t in g s im u lt a n e o u s ly , a n d p o t e n t ia l l y in t e r a c t in g w i t h e a ch
o th e r . T h e c o m p u ta t io n s m a y b e e x e c u t in g o n m u l t i p le c o re s in th e s a m e c h ip , p r e e m p t iv e ly
t im e - s h a r e d th r e a d s o n th e s a m e p r o c e s s o r , o r e x e c u te d o n p h y s ic a l l y s e p a ra te d p ro c e s s o rs .

- 1 4 3 -

http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki

Concurrency primitives a re a s e r ie s o f p ro c e s s e s th a t c a n b e u s e d t o d e v e lo p a c o m p u te r p r o
g ra m . E x a m p le s a re :

• Semaphores — I n c o m p u te r s c ie n c e , a semaphore is a p r o te c te d v a r ia b le o r a b s t ra c t d a ta
t y p e th a t p r o v id e s a s im p le b u t u s e fu l a b s t r a c t io n f o r c o n t r o l l i n g a c c e s s b y m u l t i p le p r o
ce s s e s to a c o m m o n re s o u rc e in a p a r a l le l p r o g r a m m in g e n v ir o n m e n t .

A u s e fu l w a y t o t h i n k o f a s e m a p h o re is as a re c o r d o f h o w m a n y u n i t s o f a p a r t ic u la r
re s o u rc e a re a v a i la b le , c o u p le d w i t h o p e r a t io n s t o safely (i .e . w i t h o u t ra c e c o n d i t io n s) a d
j u s t th a t r e c o r d as u n i t s a re r e q u i r e d o r b e c o m e f r e e , a n d i f n e c e s s a ry w a i t u n t i l a u n i t o f
th e re s o u rc e b e c o m e s a v a i la b le . S e m a p h o re s a re a u s e fu l t o o l i n th e p r e v e n t io n o f ra c e
c o n d i t io n s a n d d e a d lo c k s ; h o w e v e r t h e i r u s e is b y n o m e a n s a g u a ra n te e th a t a p r o g r a m is
f r e e f r o m th e s e p r o b le m s . S e m a p h o re s th a t a l l o w a n a r b i t r a r y re s o u rc e c o u n t a re c a l le d
c o u n t in g s e m a p h o re s , w h i l s t s e m a p h o re s th a t a re r e s t r ic te d t o th e v a lu e s 0 a n d 1 (o r
lo c k e d /u n lo c k e d , u n a v a i la b le /a v a i la b le) a re c a l le d b in a r y s e m a p h o re s [h t t p : / / e n . w ik ip e
d ia .o r g / w ik i / S e m a p h o r e _ (p r o g r a m m in g)] .

• Monitors — In c o n c u r r e n t p r o g r a m m in g , a monitor is a n o b je c t o r m o d u le in te n d e d t o b e
u s e d s a fe ly b y m o r e th a n o n e th r e a d . T h e d e f in in g c h a r a c te r is t ic o f a m o n i t o r is th a t i t s
m e th o d s a re e x e c u te d w i t h m u tu a l e x c lu s io n . T h a t is , a t e a c h p o in t in t im e , a t m o s t o n e
th r e a d m a y b e e x e c u t in g a n y o f i t s m e th o d s . T h is m u tu a l e x c lu s io n g r e a t ly s im p l i f i e s re a
s o n in g a b o u t th e im p le m e n t a t io n o f m o n i t o r s c o m p a r e d w i t h c o d e th a t m a y b e e x e c u te d
i n p a r a l le l .

M o n i t o r s a ls o p r o v id e a m e c h a n is m f o r th r e a d s t o t e m p o r a r i l y g iv e u p e x c lu s iv e a c
c e s s , i n o r d e r to w a i t f o r s o m e c o n d i t io n to b e m e t , b e fo r e r e g a in in g e x c lu s iv e a c c e s s a n d
r e s u m in g t h e i r ta s k . M o n i t o r s a ls o h a v e a m e c h a n is m f o r s ig n a l in g o th e r th r e a d s th a t s u c h
c o n d i t io n s h a v e b e e n m e t [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / M o n i t o r _ (s y n c h r o n iz a t io n)] .

3 .5 .1 1 M i d d l e w a r e (c o m p o n e n t s a n d c o n t a in e r s) . Middleware is u s e d t o d e s c r ib e a b r o a d a r r a y
o f t o o ls a n d d a ta th a t h e lp a p p l ic a t io n s u s e n e tw o r k e d r e s o u rc e s a n d s e rv ic e s . S o m e to o ls , s u c h
as a u th e n t ic a t io n a n d d i r e c to r ie s , a re i n a l l c a te g o r iz a t io n s . O th e r s e r v ic e s , s u c h as c o s t s c h e d u l
in g o f n e t w o r k e d re s o u rc e s , s e c u re m u l t ic a s t , a n d o b je c t b r o k e r in g a n d m e s s a g in g , a re th e m a jo r
m id d le w a r e in te r e s ts o f p a r t i c u la r c o m m u n i t ie s , s u c h as s c ie n t i f i c re s e a rc h e rs o r b u s in e s s s y s
te m s v e n d o r s . O n e d e f i n i t i o n th a t r e f le c ts t h is b r e a d t h o f m e a n in g is “ M id d le w a r e is th e in te r s e c
t i o n o f th e s t u f f t h a t n e t w o r k e n g in e e rs d o n ’ t w a n t t o d o w i t h th e s t u f f th o s e a p p l ic a t io n s
d e v e lo p e r s d o n ’ t w a n t t o d o ” [h t t p : / / m id d le w a r e . in t e m e t 2 . e d u / o v e r v ie w / m id d le w a r e - f a q . h t m l] .

• Components — T h e components o f m id d le w a r e a re a n e x e c u ta b le u n i t o f f u n c t io n a l i t y .
O n e c a n b u y o r d o w n lo a d i t , d e p lo y i t , a n d i t w o r k s . I t is a s o f tw a r e b la c k b o x .

• Containers — Containers a re u s e d i n a p p l ic a t io n s e rv e rs t o p lu g c o m p o n e n ts in t o a p p l i
c a t io n s e rv e rs [T h e In te r n e t E n c y c lo p e d ia , p . 6 1 1] .

3 .5 .1 2 C o n s t r u c t i o n m e t h o d s f o r d i s t r i b u t e d s o f t w a r e . T h e f o l l o w i n g s te p s m ig h t b e u s e d t o
in i t ia t e c o n s t r u c t io n a p p ro a c h e s f o r d e v e lo p in g a c u s to m e r - o r ie n te d d is t r ib u te d s o f tw a r e s y s te m
(D S S) :

1. D r a f t a r e q u ir e m e n ts s p e c i f ic a t io n f o r th e D S S .

2 . E s ta b l is h w i t h th e p o t e n t ia l u s e r a d r a f t f r o n t - e n d in te r fa c e .

- 1 4 4 -

http://en.wikipe
http://en.wikipedia.org/wiki/Monitor_(synchronization
http://middleware.intemet2.edu/overview/middleware-faq.html

3 . I n v e n t o r y th e te c h n ic a l c a p a b i l i t ie s o f th e s o f tw a r e e n g in e e r in g d e v e lo p m e n t te a m .

4 . S c h e d u le t r a in in g f o r g a p s i n th e t e c h n ic a l k n o w le d g e o f th e a s s ig n e d s o f tw a r e e n g in e e rs .

5 . E s t im a t e th e s c h e d u le a n d c o s t f o r d e v e lo p in g th e s y s te m .

6 . I n v e n t o r y th e e x is t in g s y s te m to d e te r m in e w h a t p a r t o f th e e x is t in g s y s te m c a n be re
u s e d .

7 . E s t a b l i s h th e d e g re e o f a u t h o r i t y t h a t th e p r o je c t m a n a g e m e n t , th e u s e r , a n d s p o n s o r h a v e
o v e r t h e p r o je c t .

8 . D e v e lo p a p r o to t y p e s y s te m . R e a n a ly z e th e r e q u ir e m e n ts a n d u s e r in te r fa c e .

9 . L o o k a g a in a t th e r e q u ir e m e n ts . A r e th e y r e a l is t i c ?

10. I s th e b u d g e t r e a l is t ic ?

11. D o th e b e n e f i t s o u t w e ig h th e c o s ts a n d p o te n t ia l p r o b le m s ?

12. S t a r t t h e p r o je c t .

3 .5 .1 3 C o n s t r u c t i n g h e te r o g e n e o u s s y s te m s (h a r d w a r e a n d s o f t w a r e) . I n i n f o r m a t io n te c h
n o lo g y h e t e r o g e n e i t y m e a n s a n e t w o r k c o m p r is in g d i f f e r e n t ty p e s o f c o m p u te r s , p o t e n t ia l l y w i t h
v a s t ly d i f f e r i n g m e m o r y s iz e s , p r o c e s s in g p o w e r a n d e v e n b a s ic u n d e r ly in g a r c h i te c tu r e , o r a
d a ta r e s o u r c e w i t h m u l t i p le ty p e s o f fo r m a ts [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / H o m o g e n e i t y _ a n d

h e t e r o g e n e i t y] .

3 .5 .1 4 H a r d w a r e - s o f t w a r e c o - d e s ig n . C u r r e n t m e th o d s f o r d e s ig n in g e m b e d d e d s y s te m s re q u ire
h a r d w a r e a n d s o f tw a r e t o b e s p e c i f ie d a n d d e s ig n e d s e p a ra te ly . A s p e c i f ic a t io n , o f t e n in c o m p le te
a n d w r i t t e n i n n o n - f o r m a l la n g u a g e s , is d e v e lo p e d a n d s e n t to th e h a r d w a r e a n d s o f tw a r e e n g i
n e e rs . H a r d w a r e - s o f t w a r e p a r t i t i o n is d e c id e d a priori a n d is a d h e re d t o a s m u c h as is p o s s ib le ,
b e c a u s e a n y c h a n g e s i n th is p a r t i t i o n m a y n e c e s s ita te e x te n s iv e re d e s ig n . D e s ig n e r s o f t e n s tr iv e
to m a k e e v e r y t h in g f i t i n s o f tw a r e , a n d o f f - l o a d o n l y s o m e p a r ts o f th e d e s ig n t o h a r d w a r e to
m e e t t i m i n g c o n s t r a in ts [P e d e rs o n 2 0 1 1] .

L o c k h e e d M a r t i n [2 0 0 6] d e f in e s c o - d e s ig n as a s im u lta n e o u s c o n s id e r a t io n o f h a r d w a r e an d
s o f tw a r e w i t h i n th e d e s ig n p ro c e s s . I t e m p h a s iz e s th a t i t c o n s is ts o f th e “ c o - d e v e lo p m e n t a n d c o
v e r i f i c a t io n o f h a r d w a r e a n d s o f tw a r e t h r o u g h th e u s e o f s im u la t io n a n d /o r e m u la t io n . ”

C o - d e s ig n in c lu d e s [A s s im a k o p o u lo s 1 9 9 8] :

• C o - s p e c i f i c a t io n , w h e r e th e r o le s o f s o f tw a r e a n d h a r d w a r e in im p le m e n t in g s y s te m fu n c
t i o n a l i t y a re c o n s id e r e d a n d , b a s e d o n th e e v a lu a t io n , th e im p le m e n ta t io n is a s s ig n e d to
e i t h e r o f t h e t w o .

• C o - d e v e lo p m e n t , w h e r e th e s o f tw a r e , h a r d w a r e a n d in te r fa c e s a re d e v e lo p e d .

• C o - v e r i f i c a t i o n t o f u r t h e r o p t im iz e a n d r e f in e th e S W / H W p a r t i t io n in g , i.e . to a id d e s ig n
s p a c e e x p lo r a t io n .

• C o - m a n a g e m e n t th a t c o v e r s c o o r d in a t io n , p r o je c t m a n a g e m e n t , r e q u ir e m e n ts m a n a g e
m e n t a n d c o n f ig u r a t io n m a n a g e m e n t th r o u g h o u t s y s te m s p e c i f ic a t io n , d e v e lo p m e n t and
v e r i f i c a t io n .

- 1 4 5 -

http://en.wikipedia.org/wiki/Homogeneity_and

3 .5 .1 5 P e r f o r m a n c e a n a ly s is a n d t u n i n g . Performance analysis, c o m m o n ly k n o w n as profiling,
is th e in v e s t ig a t io n o f a p r o g r a m ’ s b e h a v io r u s in g i n f o r m a t io n g a th e r e d a s t h e p r o g r a m e x e c u te s .
I t s g o a l is t o d e te r m in e w h ic h s e c t io n s o f a p r o g r a m t o o p t im iz e .

A profiler is a p e r fo r m a n c e a n a ly s is t o o l t h a t m e a s u re s th e b e h a v io r o f a p r o g r a m as i t e x e
c u te s , p a r t i c u la r l y th e f r e q u e n c y a n d d u r a t io n o f f u n c t io n c a l ls . P e r fo r m a n c e a n a ly s is to o ls
e x is te d a t le a s t f r o m th e e a r ly 1 9 7 0 s . P r o f i le r s m a y b e c la s s i f ie d a c c o r d in g t o t h e i r o u tp u t ty p e s ,
o r t h e i r m e th o d s f o r d a ta g a th e r in g .

T u n in g (i . e . , code tuning) is th e p r a c t ic e o f m o d i f y i n g c o r r e c t c o d e i n w a y s th a t m a k e i t r u n
m o r e e f f i c i e n t l y . “ T u n in g ” r e fe r s to s m a l l- s c a le c h a n g e s th a t a f f e c t a s in g le c la s s , a s in g le
r o u t in e , o r , m o r e c o m m o n ly , a f e w l in e s o f c o d e . “ T u n in g ” d o e s n o t r e fe r to la r g e - s c a le d e s ig n
c h a n g e s o r o th e r h ig h e r - le v e l m e a n s o f im p r o v in g p e r fo r m a n c e . T h e r e is a n a r g u m e n t th a t “ c o d e
t u n in g ” c a n m a k e d r a m a t ic im p r o v e m e n ts a t e a c h l e v e l f r o m s y s te m d e s ig n th r o u g h c o d e tu n in g .
J o n B e n t le y [1 9 8 2] c i te s a n a r g u m e n t th a t i n s o m e s y s te m s th e im p r o v e m e n ts a t e a c h le v e l c a n
b e m u l t i p l i e d b y a f a c t o r o f 1 0 . B e c a u s e y o u c a n a c h ie v e a 1 0 - f o ld im p r o v e m e n t i n e a c h o f s ix
le v e ls , t h a t im p l ie s a p o t e n t ia l p e r fo r m a n c e im p r o v e m e n t o f a m i l l i o n f o ld . A l t h o u g h s u c h a
m u l t i p l i c a t i o n o f im p r o v e m e n ts r e q u ir e s a p r o g r a m i n w h ic h g a in s a t o n e l e v e l a re in d e p e n d e n t
o f g a in s a t o th e r le v e ls , w h ic h is r a re , th e p o t e n t ia l is in s p i r in g .

H o w e v e r , c o d e t u n in g is n o t th e m o s t e f f e c t i v e w a y to im p r o v e p e r fo r m a n c e — p r o g r a m a r
c h i t e c tu r e , c la s s d e s ig n , a n d a lg o r i t h m s e le c t io n u s u a l ly p r o d u c e m o r e d r a m a t ic im p r o v e m e n ts .
N o r is i t th e e a s ie s t w a y t o im p r o v e p e r fo r m a n c e — b u y in g n e w h a r d w a r e o r a c o m p i le r w i t h a
b e t te r o p t im iz e r is e a s ie r . A n d i t ’ s n o t th e c h e a p e s t w a y t o im p r o v e p e r fo n n a n c e e i t h e r — i t ta k e s
m o r e t im e to h a n d - tu n e c o d e i n i t i a l l y , a n d h a n d - t u n e d c o d e is h a r d e r t o m a in t a in la te r .

3 .5 .1 6 P l a t f o r m s t a n d a r d s (P o s ix , e t c .) . A computing platform is s o m e s o r t o f h a r d w a r e a r c h i
te c tu r e a n d s o f tw a r e f r a m e w o r k (in c lu d in g a p p l i c a t i o n f r a m e w o r k s) th a t a l lo w s s o f tw a r e to ru n .
T y p ic a l p la t f o r m s in c lu d e a c o m p u te r ’ s a r c h i t e c tu r e , o p e r a t in g s y s te m , p r o g r a m m in g la n g u a g e s
a n d r e la te d u s e r in te r fa c e (r u n t im e l ib r a r ie s o r g r a p h ic a l u s e r in te r fa c e) .

A p la t f o r m is a c r u c ia l e le m e n t in s o f tw a r e d e v e lo p m e n t . A p la t f o r m m ig h t b e s im p ly d e f in e d
as a p la c e to la u n c h s o f tw a r e . I t is a n a g r e e m e n t t h a t th e p la t f o r m p r o v id e r g a v e t o th e s o f tw a r e
d e v e lo p e r th a t lo g ic c o d e w i l l in t e r p r e t c o n s is t e n t ly a s lo n g as th e p la t f o r m is r u n n in g o n t o p o f
o th e r p la t f o r m s . L o g ic c o d e in c lu d e s b y te c o d e , s o u r c e c o d e , a n d m a c h in e c o d e . I t a c tu a l ly
m e a n s e x e c u t io n o f th e p r o g r a m is n o t r e s t r ic t e d b y t h e ty p e o f o p e r a t in g s y s te m p r o v id e d . I t h a s
m o s t l y r e p la c e d th e m a c h in e in d e p e n d e n t la n g u a g e s [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / C o m p u t in g
_ p la t f o n n] .

P O S I X (P o r ta b le O p e r a t in g S y s te m I n te r f a c e) is a f a m i l y o f s ta n d a rd s , s p e c i f ie d b y th e I E E E ,
t o c l a r i f y a n d m a k e u n i f o r m th e a p p l ic a t io n p r o g r a m m in g in te r fa c e s (a n d a n c i l l a r y is s u e s , s u c h
as c o m m a n d l in e s h e l l u t i l i t i e s) p r o v id e d b y U n i x - l i k e o p e r a t in g s y s te m s . W h e n y o u w r i t e y o u r
p r o g r a m s to r e ly o n P O S I X s ta n d a rd s , y o u c a n b e p r e t t y s u re t o b e a b le to p o r t t h e m e a s i ly
a m o n g a la rg e f a m i l y o f U N I X d e r iv a t iv e s (i n c l u d i n g L i n u x , b u t n o t l im i t e d t o i t !) [M a r t e l l i
2 0 0 9] .

Java r e fe r s to a n u m b e r o f c o m p u te r s o f tw a r e p r o d u c t s a n d s p e c i f ic a t io n s f r o m S u n M i
c ro s y s te m s , a s u b s id ia r y o f O r a c le C o r p o r a t io n , t h a t t o g e th e r p r o v id e a s y s te m f o r d e v e lo p in g
a p p l ic a t io n s o f tw a r e a n d d e p lo y in g i t i n a cross-platform environment. (I n o r d e r f o r s o f tw a r e to
b e c o n s id e r e d cross-platform, i t m u s t b e a b le t o f u n c t i o n o n m o r e th a n o n e c o m p u t e r a r c h i te c tu r e

- 1 4 6 -

http://en.wikipedia.org/wiki/Computing

o r o p e r a t in g s y s te m .) Java is u s e d in a w id e v a r ie t y o f computing platforms f r o m e m b e d d e d
d e v ic e s a n d m o b i le p h o n e s o n th e l o w e n d , t o e n te r p r is e s e rv e rs a n d s u p e r c o m p u te r s o n th e h ig h
e n d .

T h e Java platform is th e n a m e f o r a b u n d le o f r e la te d p r o g r a m s f r o m S u n w h ic h a l l o w fo r
d e v e lo p in g a n d r u n n in g p r o g r a m s w r i t t e n in th e J a v a p r o g r a m m in g la n g u a g e . T h e J a v a p la t f o r m
is n o t s p e c i f ic to a n y o n e p r o c e s s o r o r o p e r a t in g s y s te m , b u t r a th e r a n e x e c u t io n e n g in e (c a l le d a
v i r t u a l m a c h in e) a n d a c o m p i le r w i t h a s e t o f l ib r a r ie s th a t a re im p le m e n te d f o r v a r io u s h a rd w a re
a n d o p e r a t in g s y s te m s s o th a t J a v a p r o g r a m s c a n r u n i d e n t i c a l ly o n a l l o f t h e m [h t tp : / /e n
.w ik ip e d ia . o r g / w ik i / J a v a _ (s o f t w a r c _ p la t f o r m) | . N o t e th e d is t in c t io n b e tw e e n J a v a as a la n g u a g e
(S e c t io n 3 .3 . 2 . 2 . 3) a n d as a p la t f o r m .

3 .5 .1 7 T e s t - f i r s t p r o g r a m m in g . D o n W e l ls (c o n s u l ta n t , E x t r e m e P r o g r a m m in g) s ta te s th a t
“ When you create your tests first, before the code, you will find it much easier and faster to
create your code.̂ T h e c o m b in e d t im e i t ta k e s t o c re a te a u n i t te s t a n d c re a te s o m e c o d e t o m a k e
i t p ass is a b o u t th e s a m e as j u s t c o d in g i t u p s t r a ig h t a w a y . I f y o u a l r e a d y h a v e th e u n i t te s ts y o u
d o n ’ t n e e d t o c re a te th e m a f t e r th e c o d e s a v in g y o u s o m e t im e n o w a n d lo t s la te r . C r e a t in g a u n i t
te s t h e lp s a d e v e lo p e r t o r e a l l y c o n s id e r w h a t n e e d s t o b e d o n e . T h e r e c a n b e n o m is u n d e r s ta n d
in g a s p e c i f ic a t io n w r i t t e n i n th e f o r m o f e x e c u ta b le c o d e ” [h t t p : / / w w w . e x t r e m e p r o g r a m m in g in g
. o r g / r u le s / t e s t f i r s t . h t m l] .

R e fe r e n c e s :

A d d i t i o n a l i n f o r m a t io n o n th e software construction K A c a n b e f o u n d i n th e f o l l o w in g d o c u
m e n ts :

• [A s s im a k o p o u lo s 1 9 9 8] N . A . A s s im a k o p o u lo s , “ S y s te m ic in d u s t r ia l m a n a g e m e n t o f
H W / S W c o - d e s ig n , ” The Journal of High Technology Management Research, V o l . 9 , N o .
2 , 1 9 9 8 , p p . 2 7 1 - 2 8 4 .

• [B e n t le y 1 9 8 2] J o n B e n t le y , Writing Efficient Programs, P r e n t ic e - H a l l , E n g le w o o d
C l i f f s , N J , 1 9 8 2 .

• [B o e h m 1 9 8 1] B a r r y W . B o e h m . Software Engineering Economics. P r e n t ic e - H a l l , E n g
le w o o d C l i f f s , N J , 1 9 8 1 .

• [C le m e n t s e t a l . 2 0 0 2] P a u l C le m e n ts , F e l i x B a c h m a n n , L e n B a s s , D a v id G a r la n , P a u lo
M e r s o n , J a m e s I v e r s , R e e d L i t t l e , R o b e r t N o r d , a n d J u d i t h S t a f f o r d , Documenting Soft
ware Architectures: Views and Beyond (H a r d c o v e r) , P e a rs o n , B o s to n , 2 0 0 2 , 5 6 0 p a g e s ,
I S B N - 1 3 : 9 7 8 - 0 2 0 1 7 0 3 7 2 6 . (R e c o m m e n d e d a s a re fe re n c e b o o k b y th e IE E E C o m p u te r
S o c ie t y) .

• [I E E E S t a n d a r d 1 0 2 8 - 2 0 0 8] I E E E S ta n d a rd 1 0 2 8 , Standard for Software Reviews, IE E E
I n c . , 2 0 0 8 .

• [L o c k h e e d M a r t i n 2 0 0 6] L o c k h e e d M a r t i n , “ H a r d w a r e / s o f tw a r e c o - d e s ig n , ” h t t p : / /
w w w . a t l . lm c o . c o m / p r o je c t s / r a s s p / R A S S P _ le g a c y / a p p n o t e s / H W S W / A P N O T E _ H W S W
_ I N D E X . H T M , 2 0 0 6 .

• [M a r t e l l i 2 0 0 9] A le x M a r t e l l i , h t t p : / / s t a c k o v e r f lo w .c o m /q u e s t io n s /1 7 8 0 5 9 9 / i - n e v e r -
r e a l ly - u n d e r s t o o d - w h a t - is - p o s ix , 2 0 0 9 .

- - 1 4 7

http://en
http://www.extremeprogramminging
http://www.atl.lmco.com/projects/rassp/RASSP_legacy/appnotes/HWSW/APNOTE_HWSW
http://stackoverflow.com/questions/1780599/i-never-

• [M c C o n n e l l 2 0 0 4] S te v e M c C o n n e l l , Code Complete, (P a p e r b a c k) , 2 n d E d i t io n , r e v is e d ,
M i c r o s o f t P re s s , 2 0 0 4 , 9 6 0 p a g e s , I S B N - 1 3 : 9 7 8 - 0 7 3 5 6 1 9 6 7 8 . (R e c o m m e n d e d a s a r e fe r
e n c e b o o k b y th e I E E E C o m p u te r S o c ie t y .)

• [N u l l & L o b u r 2 0 0 6] L in d a N u l l a n d J u l ia L o b u r , The Essentials of Computer Organiza
tion and Architecture (H a r d c o v e r) , 2 n d E d i t i o n , J o n e s & B a r t le t t , 2 0 0 6 , I S B N - 1 3 : 9 7 8 -
7 6 3 7 3 7 6 9 6 , C h a p te r s 1 -4 , 9 - 1 2 , a ls o s e c t io n s 8 .1 - 8 .4 , 8 .6 , 8 .7 . (R e c o m m e n d e d a s a r e fe r
e n c e b o o k b y th e I E E E C o m p u te r S o c ie t y .)

• [P C M a g a z in e E n c y c lo p e d ia] PC Magazine Encyclopedia, Z i f f D a v is . In c . , N e w Y o r k ,
1 9 9 6 .

• [P e d e r s o n 2 0 1 1] D o n a ld O . P e d e rs o n , “ A F r a m e w o r k f o r H a r d w a r e - S o f tw a r e C o - D e s ig n
o f E m b e d d e d S y s te m s . U C B E le c t r o n ic S y s te m s D e s ig n P u b l ic a t io n s , U n iv e r s i t y o f C a l i
f o r n ia , B e r k e le y , C A , 2 0 1 1 .

• [S a k h a r o v 2 0 0 5] F in i t e S ta te M a c h in e s , h t t p : / / s a k h a r o v . n e t / f s m t u t o r ia l . h t m l , 2 0 0 5 .

• [S h e r m a n 2 0 1 2] D r . S . S h e rm a n , P e rs . c o m m . , 2 0 1 2 .

• [S i lb e r s c h a t z , G a l v in , & G a g n e 2 0 0 8] J. A b r a h a m S i lb e r s c h a tz , P e te r B a e r G a lv in ,
G r e g G a g n e , Operating System Concepts (H a r d c o v e r) , 8 th E d i t i o n , J o h n W i l e y , H o b o
k e n , N J , 2 0 0 8 , I S B N - 1 3 : 9 7 8 - 0 4 7 0 1 2 8 7 2 5 , C h a p te r 3 -6 , 1 6 , 1 8 . (R e c o m m e n d e d as a r e f
e re n c e b o o k b y th e I E E E C o m p u te r S o c ie t y .)

• [T h e I n t e r n e t E n c y c lo p e d ia 2 0 0 3] H o s s e in B id g o l i , “ The Internet Encyclopedia,” V o l
u m e 1, J o h n W i le y , H o b o k e n , N J . 2 0 0 3 .

• [S W E B O K 2 0 0 4] E . B o u r q u e a n d R . D u p u is , E d i t o r s , SoftM>are Engineering Body of
Knowledge (SWEBOK). I E E E C o m p u t e r S o c ie t y P re s s , L o s A la m i t o s , C A , 2 0 0 4 .

• [W e b s t e r 1 9 1 3] W e b s te r ’ s R e v is e d U n a b r id g e d D ic t io n a r y , G & C . M e m a m C o . ,
S p r in g f ie ld , M A , 1 9 1 3 .

• [W i k i p e d i a] W ik ip e d ia is a f r e e w e b b a s e d e n c y c lo p e d ia e n a b l in g m u l t i p l e u s e rs to
f r e e ly a d d a n d e d i t o n l in e c o n te n t . D e f in i t i o n s c i te d o n W ik ip e d ia a n d t h e i r r e la te d
s o u rc e s h a v e b e e n v e r i f i e d b y th e a u th o r s a n d o t h e r p e e r r e v ie w e r s .

- 1 4 8 -

http://sakharov.net/fsmtutorial.html

C h a p t e r 4 . 1

S o f t w a r e T e s t i n g

F u n d a m e n t a l s , t e c h n i q u e s a n d r e l a t e d c o n c e p t s

Antonia Bertolino and Eda Marchetti
Istituto di Scienza e Tecnologie dell ’Informazione “A. Faedo ”

Consiglio Nazionale delle Ricerche,
Pisa, Italy

Abstract— Nowadays, a common consideration is that testing is a fundamental
and effort-consuming activity of the software development process, influencing the
quality and reliability of the released products. Performing software testing does
not mean only the detection of “bugs” in the software, but also assuring the
necessary confidence in the functioning of the product developed and assessing its
properties.

Thus the various steps of a testing process, which evolves all along in parallel
with the entire development process, need to be specified. In this chapter we
provide a survey of the fundamental concepts of the software testing discipline,
focusing in particular on criteria and techniques, test levels, process,
measurements and tools. Due to the vastness of the topic and the impossibility to
be all-embracing, we try to highlight the most important concepts and approaches
for each covered subject, and provide plenty of references for further reading.

Index Terms — D.2.4 Software/Program Verification, D.2.5 Testing and
Debugging. 1.

1 . I n t r o d u c t i o n

T e s t in g is a c r u c ia l a c t i v i t y a l l a lo n g s o f tw a r e d e v e lo p m e n t . W h e r e a s s e v e ra l d e v e lo p m e n t
p ro c e s s m o d e ls e x is t w h ic h p o s i t io n i t i n d i f f e r e n t s ta g e s , b y n o m e a n s a re te s t in g a c t i v i t i e s t o be
t r e a te d a s a la s t - m in u t e c o n c e rn . C o n s id e r in g a t r a d i t io n a l w a t e r f a l l p ro c e s s , te s t in g s h o u ld s ta r t
a t th e r e q u i r e m e n ts s p e c i f ic a t io n s ta g e , w h i l e p la n n in g a h e a d f o r te s t s t r a te g ie s a n d p ro c e d u r e s ,
a n d p r o p a g a te d o w n , w i t h d e r iv a t io n a n d r e f in e m e n t o f te s t c a s e s , a l l a lo n g th e v a r io u s
d e v e lo p m e n t s te p s a f t e r th e c o d e - le v e l s ta g e , a t w h ic h t im e th e te s t c a s e s a re e x e c u te d . I t s h o u ld
c o n t in u e e v e n a f t e r d e p lo y m e n t , w i t h l o g g in g a n d a n a ly s is o f o p e r a t io n a l u s a g e d a ta a n d
c u s to m e r ’ s r e p o r t e d f a i lu r e s . I n th e m o r e r e c e n t T e s t - D r iv e n D e v e lo p m e n t a p p ro a c h , t e s t in g is
m o v e d a h e a d w i t h te s ts w r i t t e n a n d e x e c u te d b e fo r e a n y s p e c i f ic a t io n o r c o d in g b e g in s .

T e s t in g is a n e x p e n s iv e a n d c h a l le n g in g a c t i v i t y th a t in v o lv e s s e v e ra l h ig h - d e m a n d in g ta s k s :
a t th e f o r e f r o n t is th e ta s k o f d e r i v in g a n a d e q u a te s u ite o f te s t c a s e s , a c c o r d in g to a fe a s ib le a n d
c o s t - e f f e c t iv e te s t s e le c t io n te c h n iq u e . H o w e v e r , te s t s e le c t io n is j u s t a s ta r t in g p o in t , a n d m a n y
o th e r c r i t i c a l ta s k s fa c e te s t p r a c t i t io n e r s w i t h t e c h n ic a l a n d c o n c e p tu a l d i f f i c u l t i e s : th e a b i l i t y to
la u n c h th e s e le c te d te s ts (i n a c o n t r o l le d h o s t e n v i r o n m e n t , o r w o r s e i n th e t ig h t t a r g e t e n v i r o n
m e n t o f a n e m b e d d e d s y s te m) ; d e c id in g w h e th e r th e te s t o u tc o m e is a c c e p ta b le o r n o t (w h ic h is
r e f e n e d t o a s th e test oracle p r o b le m) ; i f n o t , e v a lu a t in g th e im p a c t o f th e f a i lu r e a n d f i n d i n g its
d ir e c t c a u s e (t h e f a u l t) , a n d th e i n d i r e c t o n e (v ia R o o t C a u s e A n a ly s is) ; j u d g in g w h e th e r t e s t in g is
s u f f i c ie n t a n d c a n b e s to p p e d , w h ic h i n t u r n w o u ld r e q u ir e h a v in g a t h a n d m e a s u re s o f th e
e f fe c t iv e n e s s o f t h e te s ts . E a c h o n e o f th e a b o v e ta s k s p re s e n ts to u g h c h a l le n g e s b o th to te s t in g

- 1 4 9 -

p r a c t i t io n e r s , w h o s e s k i l l a n d e x p e r t is e a lw a y s r e m a in o f to p m o s t im p o r ta n c e , a n d t o t e s t in g
re s e a rc h e rs , w h o i n f o u r d e c a d e s o f th e s o f tw a r e t e s t in g d is c ip l in e [1 1] h a v e g a in e d g re a t a d
v a n c e s in te s t a u to m a t io n a n d f o r m a l iz a t io n .

T h e Guide to the Software Engineering Body of Knowledge (S W E B O K) [1 4] p r o v id e s a
c o m p e n d iu m o f th e g e n e r a l ly a c c e p te d k n o w le d g e i n s o f tw a r e e n g in e e r in g , d iv id e d in t o 10
knowledge areas (K A) . A m o n g th e m , th e S o f t w a r e T e s t in g K A s u m m a r iz e s b a s ic c o n c e p ts a n d
in c lu d e s a d e ta i le d re fe r e n c e l is t . A r o a d m a p o f a c h ie v e m e n ts a n d o p e n c h a l le n g e s f o r th e
s o f tw a r e t e s t in g r e s e a rc h d is c ip l in e w i t h a n e x te n s iv e b ib l io g r a p h y c a n a ls o b e f o u n d in [1 0] .

I n t h is d o c u m e n t , w e p r o v id e a b r o a d o v e r v ie w o f th e c u r r e n t s ta te - o f - a r t o f t h e s o f tw a r e te s t
in g d is c ip l in e , s p a n n in g te s t le v e ls , te s t t e c h n iq u e s , i n c lu d in g u s a b i l i t y t e s t in g , te s t - r e la te d
m e a s u re s , te s t p ro c e s s a n d s u p p o r t in g to o ls . I n a n a t t e m p t to c o v e r a l l th e s e te s t in g - r e la te d to p ic s ,
w e c a n o n ly b r i e f l y e x p a n d o n e a c h a r g u m e n t , a n d p r o v id e re fe re n c e s t h r o u g h o u t f o r f u r t h e r
r e a d in g .

T h e r e m a in d e r o f th e d o c u m e n t is o r g a n iz e d as f o l l o w s : w e p re s e n t s o m e b a s ic c o n c e p ts in
S e c t io n 2 , a n d a n o v e r v ie w o f V & V a p p ro a c h e s (s t a t ic a n d d y n a m ic) i n S e c t io n 3 . I n S e c t io n 4 ,
w e fo c u s o n th e te s t le v e ls (u n i t , i n t e g r a t io n a n d s y s te m te s t) , th e r o le o f r e g r e s s io n te s t in g a n d
th e o b je c t iv e s o f te s t in g . I n S e c t io n 5 , w e l i s t t h e m o s t c o m m o n ly a d o p te d t e c h n iq u e s f o r te s t
s e le c t io n . S e c t io n 6 is d e d ic a te d t o th e a s p e c ts o f u s e fu ln e s s a n d u s a b i l i t y , w h i l e S e c t io n 7
h ig h l ig h t s te s t m e a s u re m e n ts th a t c a n b e a d o p te d d u r in g th e s o f tw a r e l i f e c y c le . G o in g o n , in
S e c t io n 8 , w e p r e s e n t th e te s t p ro c e s s , w h ic h in c lu d e s te s t p la n n in g , d e s ig n , e x e c u t io n a n d
d o c u m e n ta t io n , a n d th e n i n S e c t io n 9 w e s u m m a r is e m a n a g e m e n t c o n c e rn s . F in a l l y , a s u r v e y o f
te s t in g t o o ls is d is c u s s e d i n S e c t io n 1 0 a n d c o n c lu s io n s are d r a w n i n S e c t io n 11 .

2 . T e r m i n o l o g y a n d B a s ic C o n c e p t s

W e p r o v id e in t h is s e c t io n s o m e in t r o d u c t o r y n o t io n s o n t e s t in g - r e la te d t e r m in o lo g y a n d k e y
is s u e s .

2.1 Foreword

G e n e r a l ly s p e a k in g , te s t t e c h n iq u e s c a n b e d iv id e d in t o tw o c la s s e s :

• Static analysis techniques (e x p a n d e d i n S e c t io n 3 .1) , w h e r e th e t e r m “ s ta t ic ” d o e s n o t r e
f e r to th e t e c h n iq u e s th e m s e lv e s (t h e y c o u ld u s e a u to m a te d a n a ly s is t o o ls) , b u t i s u s e d to
m e a n th a t t h e y d o n o t in v o lv e th e e x e c u t io n o f th e s y s te m u n d e r te s t (S U T) . S ta t ic te c h
n iq u e s a re a p p l ic a b le th r o u g h o u t th e l i f e c y c le t o th e v a r io u s d e v e lo p e d a r t i f a c t s f o r d i f
f e r e n t p u rp o s e s , s u c h as t o c h e c k th e a d h e re n c e o f th e im p le m e n t a t io n t o th e
s p e c i f ic a t io n s o r t o d e te c t f la w s i n t h e c o d e v i a in s p e c t io n o r r e v ie w .

• Dynamic analysis techniques (f u r t h e r d is c u s s e d in S e c t io n 3 .2) , w h ic h e x e r c is e th e S U T
i n o r d e r t o e x p o s e p o s s ib le f a i lu r e s a n d t o o b s e r v e th e b e h a v io r a l a n d n o n - f u n c t io n a l
p r o p e r t ie s o f th e p r o g r a m .

S ta t ic a n d d y n a m ic a n a ly s is a re c o m p le m e n ta r y te c h n iq u e s [4] : th e f o r m e r y i e ld g e n
e r a l l y v a l id r e s u l ts , b u t th e y m a y b e w e a k i n p r e c is io n ; th e la t t e r a re e f f i c ie n t a n d p r o v id e
m o r e p r e c is e r e s u l ts , b u t o n l y h o ld in g f o r th e e x a m in e d e x e c u t io n s . T h e f o c u s o f th is
c h a p te r is m a in l y o n d y n a m ic te s t t e c h n iq u e s , a n d , w h e r e n o t o th e r w is e s p e c i f ie d , t e s t in g
is m e a n t to b e s y n o n y m o u s w i t h “ d y n a m ic t e s t in g . ”

- 1 5 0 -

2.2 A General Definition

F o r a g e n e r a l d e f i n i t i o n o f s o f tw a r e te s t in g , w e r e fe r t o th e d e f in i t i o n p r o v id e d in th e S W E B O K
[1 4] :

Software testing consists of the dynamic verification of the behavior of a program
on a finite set of test cases, suitably selected from the usually infinite executions
domain, against the specified expected behavior.

T h is s h o r t d e f i n i t i o n a t te m p ts t o in c lu d e a l l e s s e n t ia l t e s t in g c o n c e rn s : th e t e r m dynamic
m e a n s , a s p r e v io u s ly s ta te d , th a t t e s t in g im p l ie s e x e c u t in g th e p r o g r a m o n re a l n u m b e rs (as
o p p o s e d t o s y m b o l ic in p u t s) ; finite in d ic a te s th a t o n l y a l im i t e d n u m b e r o f te s t c a s e s c a n be
e x e c u te d d u r in g th e te s t in g p h a s e , c h o s e n f r o m th e w h o le te s t s e t, th a t c a n g e n e r a l ly b e c o n s id
e re d i n f i n i t e ; selected r e fe r s t o th e te s t t e c h n iq u e s a d o p te d f o r s e le c t in g th e te s t ca s e s (a n d te s te rs
m u s t b e a w a r e t h a t d i f f e r e n t s e le c t io n c r i t e r ia m a y y ie ld v a s t ly d i f f e r e n t e f fe c t iv e n e s s) ; expected
p o in ts t o th e d e c is io n p ro c e s s (s e e T e s t O ra c le s b e lo w) a d o p te d f o r e s ta b l is h in g w h e th e r th e
o b s e rv e d o u tc o m e s o f p r o g r a m e x e c u t io n a re a c c e p ta b le o r n o t .

2.3 Fault vs. Failure

T o f u l l y u n d e r s ta n d th e fa c e ts o f s o f tw a r e te s t in g , i t is im p o r t a n t t o c l a r i f y th e te r m s “ f a u l t , ”
“ e r r o r ” 9 a n d “ f a i l u r e : ” in d e e d , a l t h o u g h t h e i r m e a n in g s a re s t r i c t l y r e la te d , th e re a re im p o r ta n t
d is t in c t io n s b e tw e e n th e s e th r e e c o n c e p ts .

A failure is t h e m a n i fe s te d i n a b i l i t y o f th e p r o g r a m to p e r f o r m th e f u n c t io n r e q u ir e d , i . e . , a
s y s te m m a l f u n c t i o n e v id e n c e d b y in c o r r e c t o u tp u t , a b n o r m a l t e r m in a t io n o r u n m e t t im e a n d
s p a c e c o n s t r a in ts . T h e c a u s e o f a f a i lu r e , e .g . , a m is s in g o r in c o r r e c t p ie c e o f c o d e , is a fault. A
f a u l t m a y r e m a in u n d e te c te d f o r a l o n g t im e , u n t i l s o m e e v e n t a c t iv a te s i t . W h e n th is h a p p e n s , i t
f i r s t b r in g s th e p r o g r a m in t o a n in te r m e d ia te u n s ta b le s ta te , c a l le d error, w h ic h , i f a n d w h e n i t
p ro p a g a te s t o th e o u tp u t , e v e n t u a l ly c a u s e s th e f a i lu r e . T h e p ro c e s s o f f a i lu r e m a n i f e s ta t io n c a n
b e t h e r e fo r e s u m m e d u p as a c h a in [4 4] :

F a u l t —» E r r o r —> F a i lu r e

w h ic h c a n r e c u r s iv e ly i te r a te : a fault in turn can be caused by the failure of some other interact
ing system.

W h a t t e s t in g re v e a ls a re th e f a i lu r e s , a n d a c o n s e q u e n t a n a ly s is s ta g e (f a u l t l o c a l iz a t io n) is
n e e d e d t o i d e n t i f y th e f a u l t s t h a t c a u s e d th e m .

T h e n o t io n o f a f a u l t , h o w e v e r , is a m b ig u o u s a n d d i f f i c u l t t o g ra s p , b e c a u s e n o p r e c is e c r i t e
r ia e x is t t o d e f i n i t i v e l y d e te r m in e th e c a u s e o f a n o b s e r v e d f a i lu r e . I t w o u ld b e m o r e p r a c t ic a l to
s p e a k about failure-causing inputs, t h a t is , th o s e s e ts o f in p u ts t h a t w h e n e x e r c is e d c a n r e s u l t in to
a f a i lu r e , s in c e t h e y c a n b e u n a m b ig u o u s ly id e n t i f ie d .

2.4 Test Criteria

A d e c is io n p r o c e d u r e s ta t in g w h a t a s u i ta b le s e t o f t e s t c a s e s s h o u ld b e is c a l le d a test criterion.
A m o r e p r e c is e d e f i n i t i o n f o r a te s t c r i t e r io n is p r o v id e d b e lo w [1 4] :

9. N ote that we are using the term “error” w ith the com m only used m eaning within the Software Dependability
community, w hich is stricter than its general definition in [28].

- 1 5 1 -

A test criterion C is a decision predicate defined on triples (P, RM, T), where P is
a program, RM is a reference model related to P, and T is a test suite. When C (P,
RM, and T) holds, it is said that T satisfies criterion C for P and RM.

I n p a r t ic u la r , a te s t c r i t e r i o n u s e d f o r s e le c t in g th e te s t c a s e s is s a id t o b e a test selection c r i t e
r io n , w h e r e a s i f u s e d f o r c h e c k in g w h e th e r a s e le c te d te s t s u i te is a d e q u a te , th a t is , to d e c id e
w h e th e r th e te s t in g c a n b e s to p p e d , i t is s a id t o b e a test adequacy o r a s to p p in g c r i t e r io n .

T e s te rs c a n u s e th e s a m e te s t c r i t e r io n f o r g u id in g in a p r o a c t i v e w a y th e s e le c t io n o f te s t c a s
es (s o th a t w h e n th e s e le c t io n te r m in a te s , th e c r i t e r i o n is a u to m a t ic a l ly f u l f i l l e d) , o r f o r c h e c k in g
a f t e r th e f a c t i f th e e x e c u te d (a n d h o w e v e r e ls e s e le c te d) s u ite is s u f f ic ie n t . F o r in s ta n c e , a te s te r
c o u ld e x e c u te a te s t s u i te m a n u a l ly d e r iv e d f r o m th e a n a ly s is o f th e r e q u i r e m e n ts s p e c i f ic a t io n
d o c u m e n t , a n d u s e a c o v e ra g e a n a ly z e r t o o l d u r in g te s t e x e c u t io n f o r m e a s u r in g th e p e rc e n ta g e
o f p r o g r a m b ra n c h e s c o v e r e d , s to p p in g th e t e s t in g a s s o o n a s t h is p e rc e n ta g e re a c h e s a f i x e d
th r e s h o ld .

A b r o a d c la s s o f te s t c r i t e r ia is r e fe r r e d t o as partition testing. T h e u n d e r l y in g id e a is t h a t th e
p r o g r a m in p u t d o m a in is d iv id e d in t o s u b d o m a in s w i t h i n w h ic h i t is a s s u m e d th a t th e p r o g r a m
b e h a v e s th e s a m e , i .e . , f o r e v e r y p o in t w i t h i n a s u b d o m a in th e p r o g r a m e i t h e r s u c c e e d s o r f a i ls :
w e a ls o c a l l t h is th e “ te s t h y p o th e s is . ” T h e r e fo r e , th a n k s t o t h is a s s u m p t io n , o n l y o n e o r a f e w
p o in t s w i t h i n e a c h s u b d o m a in n e e d t o b e c h e c k e d , a n d t h is is w h a t a l lo w s f o r g e t t in g a f i n i t e s e t
o f te s ts o u t o f th e p o t e n t ia l l y i n f i n i t e d o m a in .

H e n c e a p a r t i t i o n t e s t in g c r i t e r io n e s s e n t ia l ly p r o v id e s a w a y t o d e r iv e th e s u b d o m a in s . I t is
c o n t r a s te d w i t h random testing ([1 9] , [2 0]) , b y w h ic h te s t in p u t s a re b l i n d l y d r a w n f r o m th e
e n t i r e d o m a in . (R a n d o m te s t in g is b r i e f l y d is c u s s e d i n S e c t io n 5 .3 .)

A te s t c r i t e r io n y ie ld in g th e a s s u m p t io n t h a t a l l te s t ca se s w i t h i n a s u b d o m a in e i t h e r s u c c e e d
o r f a i l is o n ly a n id e a l , a n d w o u ld g u a ra n te e th a t a n y f u l f i l l i n g s e t o f te s t c a s e s a lw a y s d e te c ts th e
s a m e f a i lu r e s ; in p r a c t ic e , th e a s s u m p t io n is r a r e ly s a t is f ie d , a n d d i f f e r e n t s e ts o f te s t ca se s
f u l f i l l i n g th e s a m e c r i t e r io n m a y s h o w v a r y in g e f fe c t iv e n e s s d e p e n d in g o n h o w th e te s t c a s e s a re
p ic k e d w i t h i n e a c h s u b d o m a in .

W i t h r e fe r e n c e t o th e a b o v e d e f i n i t i o n f o r a te s t c r i t e r io n , t h e p a r t i t i o n in g o f th e p r o g r a m i n
p u t d o m a in in t o s u b d o m a in s is in d u c e d b y th e a d o p te d r e fe re n c e m o d e l (R M) . T e s t c r i t e r ia c a n
b e c la s s i f ie d a c c o r d in g t o th e k in d o f RM: i t c a n b e a s i n f o r m a l a s “ te s te r i n t u i t i o n , ” o r s t r i c t l y
f o r m a l iz e d , as in th e c a s e o f c o n fo r m a n c e t e s t in g f r o m a f o r m a l s p e c i f ic a t io n o r o f c o d e
c o v e r a g e c r i t e r ia . T h e a d v a n ta g e s o f a f o r m a l iz e d RM a re e v id e n t : th e s e le c t io n o f te s t ca s e s , o r
th e a d e q u a c y e v a lu a t io n o f te s t c a s e a d e q u a c y , c a n b e a u to m a te d .

2.5 About Testing Effectiveness

G iv e n t h a t te s t re s o u rc e s a re l im i t e d , h o w th e te s t cases a re s e le c te d o r d e c id e d is o f c r u c ia l
im p o r ta n c e . In d e e d , e f f e c t iv e t e s t in g r e q u ir e s s t r a te g ie s to t r a d e - o f f b e tw e e n th e tw o o p p o s in g
n e e d s o f a m p l i f y in g t e s t in g th o r o u g h n e s s o n th e o n e s id e (f o r w h ic h a h i g h n u m b e r o f te s t ca se s
w o u ld b e d e s ir a b le) , a n d r e d u c in g t im e s a n d c o s ts o n th e o th e r (f o r w h ic h th e f e w e r th e te s t c a s e s
th e b e t te r) .

A s w e w i l l see i n th e r e m a in d e r o f t h is c h a p te r , th e re e x is t m a n y ty p e s o f t e s t in g a n d m a n y
te s t s t r a te g ie s ; h o w e v e r , a l l o f th e m s h a re th e s a m e u l t im a te p u r p o s e : in c r e a s in g th e s o f tw a r e
e n g in e e r ’ s c o n f id e n c e in th e p r o p e r f u n c t io n in g o f th e s o f tw a r e . T o w a r d s t h is g e n e ra l g o a l , a
p ie c e o f s o f tw a r e c a n b e te s te d to a c h ie v e v a r io u s m o r e d i r e c t o b je c t iv e s , a l l m e a n t in f a c t to

- 1 5 2 -

in c re a s e c o n f id e n c e , s u c h as e x p o s in g p o te n t ia l d e s ig n f la w s o r d e v ia t io n s f r o m u s e r ’ s r e q u i r e
m e n ts , m e a s u r in g th e o p e r a t io n a l r e l i a b i l i t y , e v a lu a t in g th e p e r fo r m a n c e c h a r a c te r is t ic s , a n d so
o n (w e f u r t h e r e x p a n d o n te s t o b je c t iv e s i n S e c t io n 4 .5) .

To s e r v e e a c h s p e c i f ic o b je c t iv e , d i f f e r e n t te c h n iq u e s c a n b e a d o p te d . H o w e v e r , i t is o n l y in
l i g h t o f t h e o b je c t iv e p u r s u e d th a t th e e f fe c t iv e n e s s o f th e te s t s e t c a n b e e v a lu a te d .

H e n c e , i f th e r e a re m a n y fa c to r s o f r e le v a n c e w h e n a te s t s e le c t io n c r i t e r io n h a s t o b e c h o s e n ,
a n im p o r t a n t p o in t t o a lw a y s k e e p in m in d is th a t w h a t m a k e s a te s t a “ g o o d ” o n e d o e s n o t h a v e a
u n iq u e a n s w e r , b u t v a r ie s d e p e n d in g o n th e c o n te x t , o n th e s p e c i f ic a p p l ic a t io n , a n d o n th e g o a l
f o r te s t in g .

T h e m o s t c o m m o n in t e r p r e t a t io n f o r “ g o o d ” w o u ld b e “ a b le t o d e te c t m a n y f a i lu r e s . ” F o r e x
a m p le , i n t e s t in g f o r d e fe c t id e n t i f i c a t io n , a s u c c e s s fu l te s t is o b v io u s ly o n e th a t c a u s e s th e
s y s te m t o f a i l . H o w e v e r , a g a in p r e c is io n w o u ld r e q u i r e s p e c i f y in g w h a t k in d s o f f a i lu r e s a re m o s t
u n d e s ir a b le , a s i t is w e l l k n o w n a n d e x p e r im e n t a l ly o b s e rv e d th a t d i f f e r e n t te s t c r i t e r ia t r ig g e r
d i f f e r e n t t y p e s o f f a u l t s ([8] , [6 3]) . F o r th is re a s o n , i t is a lw a y s p r e fe r a b le t o s p e n d th e te s t
b u d g e t t o a p p ly a c o m b in a t io n o f d iv e r s e te c h n iq u e s r a th e r th a n c o n c e n t r a t in g o n j u s t o n e , e v e n
i f i t is s h o w n t o b e th e m o s t e f f e c t iv e .

T e s t in g f o r id e n t i f i c a t io n o f d e fe c ts is q u i t e d i f f e r e n t f r o m te s t in g t o d e m o n s t ra te th a t th e
s o f tw a r e m e e ts i t s s p e c i f ic a t io n s o r o th e r d e s ir e d p r o p e r t ie s , in w h ic h c a s e t e s t in g is s u c c e s s fu l i f
n o (s ig n i f i c a n t) f a i lu r e s a re o b s e rv e d .

W h a t e v e r th e te s t o b je c t iv e , r e d u c in g th e t e s t in g c o s t r e m a in s a c r u c ia l c o n c e rn . T w o m a in
a p p ro a c h e s a re t a k e n t o c o n t r o l th e te s t s e t d im e n s io n : test suite minimization, w h ic h , g iv e n a te s t
s u ite T, a t te m p ts t o i d e n t i f y a re d u c e d te s t s u i te T ' t h a t y ie ld s th e s a m e p r o p e r t ie s (e .g . , i n te rm s
o f c o d e c o v e r a g e) o f T ; a n d test suite prioritization, w h ic h o r d e r s th e te s ts in T a c c o r d in g t o s o m e
c r i t e r ia , s u c h a s f a u l t - d e t e c t io n e f fe c t iv e n e s s .

2.6 Test Oracles

A n im p o r t a n t c o m p o n e n t o f t e s t in g is th e oracle. In d e e d , a te s t is m e a n in g f u l o n ly i f i t is p o s s ib le
t o d e c id e a b o u t i t s o u tc o m e . T h e d i f f i c u l t i e s in h e r e n t in t h is ta s k , o f t e n o v e r s im p l i f i e d , h a d b e e n
a r t ic u la te d e a r ly o n i n [6 2] .

A n o r a c le is a n y (h u m a n o r m e c h a n ic a l) a g e n t th a t d e c id e s w h e th e r th e p r o g r a m b e h a v e d c o r
r e c t ly o n a g iv e n te s t . T h e o r a c le is s p e c i f ie d t o o u t p u t a reject v e r d ic t i f i t o b s e rv e s a f a i l u r e (o r
e v e n a n e r r o r , f o r s m a r te r o r a c le s) , a n d a n approve v e r d ic t o th e r w is e . T h e o r a c le is n o t a lw a y s
a b le t o r e a c h a d e c is io n : i n th e s e c a s e s th e te s t o u tp u t is c la s s i f ie d a s inconclusive.

In a s c e n a r io i n w h ic h a l im i t e d n u m b e r o f te s t c a s e s is e x e c u te d , s o m e t im e s e v e n d e r iv e d
m a n u a l ly , th e o r a c le c a n b e th e te s te r h im s e l f / h e r s e l f , w h o c a n e i t h e r in s p e c t th e te s t l o g a
p o s t e r io r i , o r e v e n d e c id e a p r i o r i , d u r in g te s t p la n n in g , th e c o n d i t io n s th a t m a k e a te s t s u c c e s s fu l
a n d c o d e th e s e c o n d i t io n s in t o th e e m p lo y e d te s t d r iv e r .

W h e n th e te s ts ca s e s a re a u to m a t ic a l ly d e r iv e d , o r a ls o w h e n t h e i r n u m b e r is q u i t e h ig h , in
th e o r d e r o f th o u s a n d s , o r m i l l i o n s , a m a n u a l lo g in s p e c t io n o r c o d i f i c a t io n is n o t th in k a b le .
A u to m a te d o r a c le s m u s t t h e n b e im p le m e n te d .

G e n e r a l ly s p e a k in g , a n o r a c le c o u ld b e d e r iv e d f r o m a s p e c i f ic a t io n o f th e e x p e c te d b e h a v io r .
T h u s , in p r i n c ip le , th e a u to m a te d d e r iv a t io n o f te s t c a s e s f r o m s p e c i f ic a t io n s , a s is d o n e in
m o d e l- b a s e d te s t in g (s e e S e c t io n 5 .2) , h a s th e a d v a n ta g e th a t w e g e t a n a b s t ra c t o r a c le s p e c i f ic a

- 1 5 3 -

t i o n as w e l l . H o w e v e r , t h e g a p b e tw e e n th e a b s t r a c t le v e l o f s p e c i f ic a t io n s a n d th e c o n c re te le v e l
o f e x e c u te d te s ts o n ly a l lo w s f o r p a r t ia l o r a c le im p le m e n ta t io n s , i . e . , o n ly n e c e s s a ry (b u t n o t
s u f f i c ie n t) c o n d i t io n s f o r c o r re c tn e s s c a n b e d e r iv e d . O n th e o th e r h a n d , i f w e h a d a v a i la b le a
m e c h a n is m th a t k n o w s th e c o r r e c t r e s u lts i n a d v a n c e a n d in f a l l i b l y , i t w o u ld n o t b e n e c e s s a ry to
d e v e lo p th e s y s te m u n d e r te s t : w e c o u ld u s e th e o r a c le in s te a d —h e n c e th e n e e d f o r a p p r o x im a te
s o lu t io n s .

D i f f e r e n t a p p ro a c h e s f o r a p p r o x im a te o r a c le s in c lu d e ([5] , [5 8]) : a s s e r t io n s c o u ld b e e m b e d
d e d in t o th e p r o g r a m so as t o p r o v id e r u n - t im e c h e c k in g c a p a b i l i t y ; c o n d i t io n s e x p r e s s ly s p e c i
f ie d t o b e u s e d as te s t o r a c le s c o u ld b e d e v e lo p e d , i n c o n t r a s t w i t h u s in g th e s a m e s p e c i f ic a t io n s
(i . e . , w r i t t e n t o m o d e l th e s y s te m b e h a v io r a n d n o t f o r r u n - t im e c h e c k in g) ; th e p r o d u c e d e x e c u
t io n t r a c e s c o u ld b e lo g g e d a n d a n a ly z e d .

I n s o m e c a s e s , th e o r a c le c a n b e a n e a r l ie r v e r s io n o f th e s y s te m th a t w e a re g o in g to r e p la c e
w i t h th e o n e u n d e r te s t . A p a r t ic u la r in s ta n c e o f t h is s i t u a t io n is r e g r e s s io n t e s t in g (s e e S e c t io n
4 .4) , i n w h ic h th e te s t o u tc o m e is c o m p a r e d w i t h e a r l ie r v e r s io n e x e c u t io n s (w h ic h h o w e v e r , in
t u r n h a d to b e ju d g e d as p a s s e d o r f a i le d) .

I n v i e w o f th e s e c o n s id e r a t io n s , i t s h o u ld b e e v id e n t th a t th e o r a c le m ig h t n o t a lw a y s ju d g e
c o r r e c t ly . S o th e n o t io n o f coverage10 o f a n o r a c le is in t r o d u c e d t o m e a s u re i t s a c c u ra c y . O r a c le
c o v e r a g e c o u ld b e m e a s u re d , f o r in s ta n c e , b y th e p r o b a b i l i t y th a t th e o r a c le r e je c ts a te s t (o n a n
i n p u t c h o s e n a t r a n d o m f r o m a g iv e n p r o b a b i l i t y d i s t r i b u t i o n o f in p u t s) , g iv e n t h a t i t s h o u ld r e je c t
i t [1 3] . T h u s , a p e r fe c t o r a c le e x h ib i t s 1 0 0 p e r c e n t c o v e r a g e , w h i l e a le s s th a n p e r fe c t o r a c le m a y
y ie ld d i f f e r e n t m e a s u re s o f a c c u ra c y .

2.7 Testability

T h e te r m “ s o f tw a r e t e s t a b i l i t y ” h a s t w o r e la te d b u t d i f f e r e n t m e a n in g s : o n th e o n e h a n d , i t r e fe r s
to th e d e g re e t o w h ic h i t is e a s y f o r s o f tw a r e to f u l f i l a g iv e n te s t c o v e ra g e c r i t e r io n , as i n [3] ; o n
th e o t h e r h a n d , i t is d e f in e d as th e l i k e l i h o o d , p o s s ib ly m e a s u re d s ta t is t ic a l ly , t h a t t h e s o f tw a r e
w i l l e x p o s e a f a i lu r e u n d e r te s t in g , if i t is f a u l t y , a s i n [1 3] .

B o t h m e a n in g s a re im p o r t a n t a n d b o th u l t im a t e l y r e f e r t o t h e e f f o r t r e q u i r e d f o r s u c c e s s fu l ly
c o m p le t in g th e t e s t in g o f a p ie c e o f s o f tw a r e . T h e t e s t a b i l i t y o f a s o f tw a r e c o m p o n e n t d e p e n d s o n
i t s p r o p e r t ie s o f observability a n d controllability [4 8] . I n f o r m a l l y , a s o f tw a r e c o m p o n e n t is
o b s e r v a b le i f d i s t in c t o u tp u ts a re o b s e r v e d f o r d i s t i n c t in p u ts , a n d is c o n t r o l la b le i f a n y d e s ire d
o u tp u t c a n b e p r o d u c e d f r o m a s p e c i f ie d in p u t .

2.8 Limitations of Testing

U n f o r t u n a t e ly , th e r e a re f e w m a th e m a t ic a l c e r t a in t ie s o n w h ic h s o f tw a r e t e s t in g fo u n d a t io n s c a n
b e la id . T h e f i r m e s t o n e , as e v e r y b o d y n o w r e c o g n iz e s , is th a t , e v e n a f te r s u c c e s s fu l c o m p le t io n
o f a n e x te n s iv e t e s t in g c a m p a ig n , th e s o f tw a r e c a n s t i l l c o n ta in fa u l t s . T h e o b v io u s re a s o n is th a t
c o m p le te t e s t in g is n o t fe a s ib le in re a l s o f tw a r e . B e c a u s e o f t h is , t e s t in g m u s t b e d r iv e n b a s e d o n
r is k a n d c a n b e s e e n as a r i s k m a n a g e m e n t s t ra te g y .

A s f i r s t s ta te d b y D i j k s t r a as e a r ly as t h i r t y y e a r s a g o [2 2] , testing can never prove the ab
sence of defects; i t c a n o n l y p o s s ib ly r e v e a l th e p r e s e n c e o f f a u l t s b y p r o v o k in g m a l f u n c t io n s . I n

10. The usage with a quite different m eaning o f the sam e term “coverage” adopted fo r test criteria is ju s t a
coincidence.

- 1 5 4 -

th e d e c a d e s s in c e , a l o t o f p ro g r e s s h a s b e e n m a d e b o th i n o u r k n o w le d g e o f h o w to s c r u t in iz e a
p r o g r a m ’ s e x e c u t io n s in r ig o r o u s a n d s y s te m a t ic w a y s , a n d in th e d e v e lo p m e n t o f t o o ls a n d
p ro c e s s e s t h a t c a n s u p p o r t th e te s te r ’ s ta s k s .

Y e t, t h e m o r e th e d is c ip l in e p ro g re s s e s , th e c le a r e r i t b e c o m e s th a t i t is o n ly b y m e a n s o f rig
orous empirical studies t h a t s o f tw a r e t e s t in g c a n in c re a s e i t s m a t u r i t y le v e l [3 6] . T e s t in g is i n f a c t
a n e n g in e e r in g d is c ip l in e , a n d as s u c h i t c a l ls f o r e v id e n c e a n d p r o v e n fa c ts , t o b e c o l le c te d e i t h e r
f r o m e x p e r ie n c e o r f r o m c o n t r o l le d e x p e r im e n ts , b a s e d o n w h ic h te s te rs c a n m a k e p r e d ic t io n s
a n d d e c is io n s .

3 . O t h e r V & V A p p r o a c h e s

T e s t in g i s o n e a m o n g m a n y a p p ro a c h e s t o s o f tw a r e v e r i f i c a t io n a n d v a l id a t io n (V & V) . V e r i f i c a
t io n r e fe r s t o th e process of evaluating a system or component to determine whether the products
of a given development phase satisfy the conditions imposed at the start of that phase, w h e r e a s
v a l id a t io n is t h e process of evaluating a system or component during or at the end of the devel
opment process to determine whether it satisfies specified requirements [2 8] .

B e f o r e d e s c r ib in g te s t te c h n iq u e s , w e p r o v id e a b r i e f o v e r v ie w o f o th e r V & V a p p ro a c h e s .

3.1 Static Techniques

A f i r s t d i s t i n c t i o n c a n b e m a d e b e tw e e n d y n a m ic a n d s ta t ic te c h n iq u e s , d e p e n d in g o n w h e th e r t h e
s o f tw a r e is e x e c u te d o r n o t . S ta t ic te c h n iq u e s a re b a s e d s o le ly o n th e (m a n u a l o r a u to m a te d)
e x a m in a t io n o f p r o je c t d o c u m e n ta t io n , o f s o f tw a r e m o d e ls a n d c o d e , a n d o f o th e r r e la te d i n f o r
m a t io n a b o u t r e q u ir e m e n ts a n d d e s ig n . T h u s , s ta t ic te c h n iq u e s c a n b e e m p lo y e d t h r o u g h o u t
d e v e lo p m e n t , a n d t h e i r e a r ly u s a g e is o f c o u rs e h i g h l y d e s ira b le . C o n s id e r in g a g e n e r ic d e v e lo p
m e n t p r o c e s s , t h e y c a n b e a p p l ie d ([5 2] , [2]) :

• A t th e requirements stage f o r c h e c k in g la n g u a g e syntax, c o n s is te n c y , a n d c o m p le te n e s s a s
w e l l a s t h e a d h e re n c e t o e s ta b l is h e d c o n v e n t io n s .

• A t t h e design phase f o r e v a lu a t in g th e im p le m e n t a t io n o f r e q u ir e m e n ts , a n d d e te c t in g i n
c o n s is t e n c ie s (f o r in s ta n c e b e tw e e n th e in p u ts a n d o u tp u ts u s e d b y h ig h le v e l m o d u le s
a n d th o s e a d o p te d b y s u b - m o d u le s) .

• D u r i n g th e implementation phase f o r c h e c k in g t h a t th e f o r m a d o p te d f o r th e im p le m e n t e d
p r o d u c t s (e .g . , c o d e a n d r e la te d d o c u m e n ta t io n) a d h e re s t o th e e s ta b l is h e d s ta n d a rd s o r
c o d in g c o n v e n t io n s , a n d th a t in te r fa c e s a n d d a ta ty p e s a re c o r r e c t .

T r a d i t i o n a l s ta t ic te c h n iq u e s in c lu d e [5 3] :

• Software inspection — T h e s te p - b y - s te p a n a ly s is o f th e d e l iv e r a b le s (d o c u m e n ts , c o d e
a n d s o o n) p r o d u c e d , a g a in s t a c o m p i le d c h e c k l is t o f c o m m o n a n d h is t o r ic a l d e fe c ts .

• Software reviews — T h e p ro c e s s b y w h ic h d i f f e r e n t a s p e c ts o f th e w o r k p r o d u c t a re p r e
s e n te d t o p r o je c t p e r s o n n e l (m a n a g e rs , u s e rs , c u s to m e r s , e tc .) a n d o th e r in te r e s te d s t a k e
h o ld e r s f o r c o m m e n t o r a p p r o v a l . T h e p ro c e s s m a y fo c u s in p a r t ic u la r o n th e e v a lu a t io n
o f t h e c o m p l ia n c e t o s ta n d a rd s , p r o c e d u r e s , a n d g u id e l in e s . D i f f e r e n t ty p e s o f r e v ie w i n
c lu d e : c o d e r e v ie w , d e s ig n r e v ie w , f o r m a l q u a l i f i c a t io n r e v ie w , r e q u ir e m e n ts r e v ie w , a n d
t e s t r e a d in e s s r e v ie w .

- 1 5 5 -

• Code reading — T h e d e s k to p a n a ly s is o f th e p r o d u c e d c o d e f o r d is c o v e r in g t y p in g e r r o r s
t h a t d o n o t v io la t e s ty le o r s y n ta x . T h is p r o c e s s in c lu d e s th e c h e c k in g o f t y p o g r a p h ic a l e r
r o r s , d a ta s t ru c tu re s , c o n t r o l f l o w , a n d p r o c e s s in g .

• Algorithm analysis and tracing — T h e p ro c e s s in w h ic h th e c o m p le x i t y o f a lg o r i t h m s
e m p lo y e d a n d th e w o r s t - c a s e , a v e ra g e - c a s e a n d p r o b a b i l i s t i c a n a ly s is e v a lu a t io n s c a n b e
d e r iv e d .

T h e p ro c e s s e s im p l ie d b y th e a b o v e te c h n iq u e s are h e a v i l y m a n u a l , e r r o r - p r o n e , a n d t im e
c o n s u m in g . T o o v e r c o m e th e s e p r o b le m s , r e s e a r c h e r s h a v e p r o p o s e d s ta t ic a n a ly s is te c h n iq u e s
r e ly in g o n th e u s e o f f o r m a l m e th o d s [6 5] . T h e g o a l is to a u to m a te a s m u c h as p o s s ib le th e
v e r i f i c a t io n o f th e p r o p e r t ie s o f th e r e q u ir e m e n ts a n d th e d e s ig n . T o w a r d s t h i s g o a l , i t is n e c e s
s a ry to e n fo r c e a r ig o r o u s a n d u n a m b ig u o u s f o r m a l la n g u a g e f o r s p e c i f y in g th e r e q u ir e m e n ts a n d
th e s o f tw a r e a r c h i te c tu r e . I n fa c t , i f th e la n g u a g e u s e d f o r s p e c i f ic a t io n h a s a w e l l - d e f in e d
s e m a n t ic s , a lg o r i t h m s a n d t o o ls c a n b e d e v e lo p e d to a n a ly z e th e s ta te m e n ts w r i t t e n i n th a t
la n g u a g e .

T h e b a s ic id e a o f u s in g a f o r m a l la n g u a g e f o r m o d e l in g r e q u ir e m e n ts o r d e s ig n is r e c o g n iz e d
as a f o u n d a t io n f o r s o f tw a r e v e r i f i c a t io n . Formal verification te c h n iq u e s to d a y a t t r a c t q u i t e a l o t
o f a t t e n t io n f r o m b o th re s e a rc h in s t i t u t io n s a n d in d u s t r y , a n d i t is fo re s e e a b le th a t p r o o f s o f
c o r r e c tn e s s w i l l b e in c r e a s in g ly a p p l ie d , e s p e c ia l ly f o r th e v e r i f i c a t io n o f c r i t i c a l s y s te m s .

O n e o f th e m o s t p r o m is in g a p p ro a c h e s f o r f o r m a l v e r i f i c a t io n is model checking [2 1] . E s s e n
t ia l l y , a m o d e l c h e c k in g t o o l ta k e s as in p u t a model (a d e s c r ip t io n o f s y s te m f u n c t io n a l r e q u i r e
m e n ts o r d e s ig n) a n d a property t h a t th e s y s te m i s e x p e c te d t o s a t i s f y T h e m o d e l c h e c k e r
p e r f o r m s a n a u to m a te d a n a ly s is , a n d th e n e i t h e r p r o v e s t h a t th e g iv e n m o d e l s a t is f ie s th e s ta te d
p r o p e r t y , o r g e n e ra te s a counterexample. T h e la t t e r d e ta i ls w h y th e m o d e l d o e s n ’ t s a t is f y th e
s p e c i f ic a t io n . B y s t u d y in g th e c o u n te r e x a m p le , th e s o u r c e o f th e e r r o r i n th e m o d e l c a n a ls o b e
id e n t i f i e d . M o d e l c h e c k in g h a s p r o v e n t o b e a s u c c e s s fu l t e c h n o lo g y d e f in e d to c h e c k p r o p e r t ie s
o v e r a v a r ie t y o f r e a l - t im e e m b e d d e d a n d s a f e t y - c r i t i c a l s y s te m s , a n d w i t h t h e c o m p u t in g p o w e r
o f m o d e m m a c h in e s , i t s w id e - s c a le a p p l ic a t io n is b e c o m in g a c o n c r e te p r o s p e c t [3 4] .

B e tw e e n s ta t ic a n d d y n a m ic a n a ly s is t e c h n iq u e s i s symbolic execution [1 6] . w h ic h e x e c u te s a
p r o g r a m b y r e p la c in g v a r ia b le s w i t h s y m b o l ic v a lu e s . T h u s i t p r o d u c e s a s e t o f e x p re s s io n s
r e la t iv e t o th e v a r io u s o u t p u t v a r ia b le s . R e s e a rc h o n t o o ls f o r p e r f o r m in g s y m b o l ic e x e c u t io n w a s
r a th e r a c t iv e i n th e la te 7 0 ’ s, a t w h ic h t im e th e g o a l w a s t o d e r iv e te s t d a ta f o r c o v e ra g e t e s t in g i n
a c o m p le t e ly a u to m a te d w a y , b u t th e id e a w a s t h e n a b a n d o n e d b e c a u s e o f i t s l im i t e d a p p l i c a b i l i t y
t o r e a l c o m p le x p r o g r a m s . P r o b le m s w e r e c la s s ic a l l y th e h a n d l in g o f a r r a y s , p o in te r s , a n d
p r o c e d u r e c a l ls . R e c e n t ly th e a u to m a te d g e n e r a t io n o f te s t d a ta f o r c o v e r a g e te s t in g is a g a in
a t t r a c t in g a l o t o f in te r e s t , a n d a d v a n c e d t o o ls a re b e in g d e v e lo p e d b a s e d o n a s im i la r a p p ro a c h t o
s y m b o l ic e x e c u t io n e x p lo i t in g constraint solving te c h n iq u e s [6] . A f lo w g r a p h p a th t o b e c o v e r e d
is t r a n s la te d in t o a p a th c o n s t r a in t , w h o s e s o lu t io n p r o v id e s th e d e s ir e d in p u t d a ta . I n concolic
testing [5 6] , s y m b o l ic e x e c u t io n is a p p l ie d i n p a r a l l e l w i t h c o n c r e te te s t e x e c u t io n s , w h ic h h e lp
to r e d u c e th e s p a c e o f s o lu t io n s .

W e c o n c lu d e t h is s e c t io n c o n s id e r in g th e a l t e r n a t iv e a p p l ic a t io n o f s ta t ic t e c h n iq u e s i n p r o
d u c in g v a lu e s o f in te r e s t f o r c o n t r o l l i n g a n d m a n a g in g th e t e s t in g p ro c e s s . D i f f e r e n t e s t im a te s
c a n b e o b ta in e d b y o b s e r v in g s p e c i f ic p r o p e r t ie s o f p r e s e n t o r p a s t p r o d u c ts , a n d /o r p a ra m e te rs o f
th e d e v e lo p m e n t p ro c e s s . F o r in s ta n c e , d u r in g th e t e s t in g p h a s e , s ta t ic te c h n iq u e s m a y b e a p p l ie d
to e s t im a te th e t o ta l n u m b e r o f d e fe c ts a n d p r o v id e o t h e r u s e fu l m e a s u re s . S ta t ic d e fe c t m o d e ls

- 1 5 6 -

c a n be a p p l ie d , f o r in s ta n c e , to id e n t i f y h ig h e r - r is k m o d u le s a n d c o n s e q u e n t ly t o r e - a l lo c a te
te s t in g r e s o u r c e s o r t o m o d i f y d e s ig n . T h u s , s ta t ic te c h n iq u e s c o u ld a ls o b e v e r y a t t r a c t iv e to
m a n a g e rs n o t o n l y f o r c h e c k in g , b u t a ls o f o r p r e d ic t io n p u rp o s e s , b e c a u s e th e y p r o v id e “ n u m
b e rs ,” w h i c h th e m a n a g e r s a re e a g e r f o r , v e r y e a r ly in th e p ro c e s s c o m p a r e d to d y n a m ic te c h
n iq u e s . T h e la t t e r c a n o n ly b e u s e d la te i n th e l i f e c y c le , w h e n i t m a y b e t o o la te to e f f ic a c io u s ly
r e - d i r e c t d e v e lo p m e n t e f fo r ts .

3.2 Dynamic Techniques

Dynamic techniques [4] o b ta in in f o r m a t io n o f in te r e s t a b o u t a p r o g r a m b y o b s e r v in g s o m e
e x e c u t io n s . S ta n d a r d d y n a m ic a n a ly s is in c lu d e s t e s t in g (o n w h ic h w e fo c u s in th e re s t o f th e
c h a p te r) a n d profiling. E s s e n t ia l ly , a p r o g r a m p r o f i l e r e c o rd s th e n u m b e r o f t im e s s o m e e n t i t ie s
o f in t e r e s t o c c u r d u r in g a s e t o f c o n t r o l le d e x e c u t io n s . P r o f i l i n g t o o ls a re in c r e a s in g ly u s e d to d a y
to d e r iv e m e a s u re s o f c o v e ra g e , f o r in s ta n c e i n o r d e r to d y n a m ic a l ly i d e n t i f y c o n t r o l f l o w
in v a r ia n ts , a s w e l l a s m e a s u re s o f f r e q u e n c y , c a l le d spectra, w h ic h a re d ia g r a m s p r o v id in g th e
r e la t iv e e x e c u t io n f r e q u e n c ie s o f th e m o n i t o r e d e n t i t ie s . I n p a r t ic u la r , path spectra r e f e r t o th e
d i s t r ib u t io n o f (lo o p - f r e e) p a th s t r a v e r s e d d u r in g p r o g r a m p r o f i l i n g . S p e c i f i c d y n a m ic te c h n iq u e s
a ls o in c lu d e s im u la t io n , s iz in g , a n d t im in g a n a ly s is , a n d p r o t o t y p in g [5 2] .

T e s t in g is b a s e d o n th e e x e c u t io n o f th e c o d e o n in p u ts . O f c o u rs e , a l th o u g h th e s e t o f in p u t
v a lu e s c a n b e c o n s id e r e d i n f in i t e , th o s e t h a t c a n b e r u n e f f e c t i v e ly d u r in g t e s t in g a re f i n i t e . I t is
in p r a c t ic e im p o s s ib le , d u e to th e l im i t a t i o n s o f th e a v a i la b le b u d g e t a n d t im e , to e x h a u s t iv e ly
e x e rc is e e v e r y i n p u t o f a s p e c i f ic s e t e v e n w h e n n o t in f i n i t e . I n o th e r w o r d s , b y t e s t in g w e
o b s e rv e s o m e s a m p le s o f th e p r o g r a m ’ s b e h a v io r .

A t e s t s t r a te g y , t h e r e fo r e , m u s t b e a d o p te d t o f i n d a t r a d e - o f f b e tw e e n th e n u m b e r o f c h o s e n
in p u ts a n d o v e r a l l t im e a n d e f f o r t d e d ic a te d t o t e s t in g p u rp o s e s . D i f f e r e n t te c h n iq u e s c a n be
a p p l ie d d e p e n d in g o n th e ta rg e t a n d th e e f f e c t th a t s h o u ld b e re a c h e d . W e w i l l d e s c r ib e te s t
s e le c t io n te c h n iq u e s i n S e c t io n 5 .

In t h e c a s e o f c o n c u r r e n t , n o n - d e t e r m in is t ic s y s te m s , th e r e s u l t s o b ta in e d b y t e s t in g d e p e n d
n o t o n ly o n th e i n p u t p r o v id e d b u t a ls o o n th e s ta te o f th e s y s te m . T h e r e fo r e , w h e n s p e a k in g
a b o u t t e s t i n p u t v a lu e s , i t is im p l ie d t h a t th e d e f i n i t i o n o f th e p a r a m e te r s a n d e n v ir o n m e n ta l
c o n d i t io n s t h a t c h a r a c te r iz e a s y s te m s ta te m u s t b e in c lu d e d w h e n n e c e s s a ry .

O n c e th e te s ts a re s e le c te d a n d r u n , a n o th e r c r u c ia l a s p e c t o f t h is p h a s e is th e a l r e a d y in t r o
d u c e d o r a c le p r o b le m , w h ic h m e a n s d e c id in g w h e th e r o r n o t th e o b s e r v e d o u tc o m e s a re a c c e p ta
b le (s e e S e c t io n 2 .6) .

4 . T e s t L e v e ls

D u r in g th e d e v e lo p m e n t l i f e c y c le o f a s o f tw a r e p r o d u c t , t e s t in g is p e r fo r m e d a t d i f f e r e n t le v e ls
a n d c a n i n v o l v e t h e w h o le s y s te m o r p a r ts o f i t . D e p e n d in g o n th e p ro c e s s m o d e l a d o p te d , th e n ,
s o f tw a r e t e s t in g a c t i v i t i e s c a n b e a r t ic u la te d i n d i f f e r e n t p h a s e s , e a c h o n e a d d re s s in g s p e c i f ic
needs r e l a t i v e t o d i f f e r e n t p o r t io n s o f a s y s te m . W h a t e v e r th e p ro c e s s a d o p te d , w e c a n a t le a s t
d is t in g u is h i n p r i n c ip le b e tw e e n unit, integration, a n d system test [5 4] . T h e s e a re th e th re e te s t in g
s tages o f a t r a d i t i o n a l p h a s e d p ro c e s s (s u c h a s th e c la s s ic a l w a t e r f a l l) . H o w e v e r , e v e n c o n s id e r
in g d i f f e r e n t , m o r e m o d e m p ro c e s s m o d e ls , a d is t in c t io n b e tw e e n th e s e th re e te s t le v e ls re m a in s
u s e fu l t o e m p h a s iz e th re e lo g i c a l l y d i f f e r e n t s ta g e s in th e v e r i f i c a t io n o f a c o m p le x s o f tw a r e
s y s te m .

- 1 5 7 -

N o n e o f th e s e le v e ls is m o r e r e le v a n t th a n a n o th e r , a n d , m o r e im p o r t a n t ly , o n e s ta g e c a n n o t
s ta n d i n f o r a n o th e r , b e c a u s e e a c h a d d re s s e s d i f f e r e n t t y p o lo g ie s o f f a i lu r e .

4.1 Unit Test

A u n i t is th e s m a l le s t te s ta b le p ie c e o f s o f tw a r e , w h ic h m a y c o n s is t o f h u n d r e d s o r e v e n ju s t a
f e w l in e s o f s o u rc e c o d e , a n d g e n e r a l ly r e p re s e n ts th e r e s u l t o f th e w o r k o f o n e p r o g r a m m e r . T h e
u n i t t e s t ’ s p u r p o s e is to e n s u re t h a t th e u n i t s a t is f ie s its f u n c t io n a l s p e c i f ic a t io n a n d /o r th a t i t s
im p le m e n te d s t r u c tu r e m a tc h e s th e in te n d e d d e s ig n s t r u c tu r e [5 4] .

U n i t te s ts c a n a ls o b e a p p l ie d t o c h e c k in te r fa c e s (p a r a m e te r s p a s s e d in c o r r e c t o rd e r , n u m b e r
o f p a ra m e te rs e q u a l t o n u m b e r o f a r g u m e n ts , p a r a m e te r a n d a r g u m e n t m a t c h in g) , lo c a l d a ta
s t r u c tu r e (im p r o p e r t y p in g , in c o r r e c t v a r ia b le n a m e , in c o n s is te n t d a ta ty p e) o r b o u n d a r y c o n d i
t io n s . A g o o d re fe r e n c e f o r u n i t te s t is [3 0] .

4.2 Integration Test

G e n e r a l ly s p e a k in g , in te g r a t io n is th e p ro c e s s b y w h ic h s o f tw a r e p ie c e s o r c o m p o n e n ts a re
a g g re g a te d t o c re a te a la r g e r c o m p o n e n t . I n t e g r a t io n t e s t in g is s p e c i f ic a l l y a im e d a t e x p o s in g th e
p r o b le m s th a t c a n a r is e a t th is s ta g e . E v e n t h o u g h t h e s in g le u n i t s a re i n d i v id u a l l y a c c e p ta b le
w h e n te s te d i n is o la t io n , i n f a c t t h e y c o u ld s t i l l r e s u l t i n in c o r r e c t o r in c o n s is te n t b e h a v io r w h e n
c o m b in e d in o r d e r t o b u i l d c o m p le x s y s te m s . F o r e x a m p le , th e re c o u ld be a n im p r o p e r c a l l o r
r e tu r n s e q u e n c e b e tw e e n t w o o r m o r e c o m p o n e n ts [4 8] . I n t e g r a t io n t e s t in g is th u s a im e d a t
v e r i f y in g th a t c o m p o n e n ts in te r a c t a c c o r d in g to th e s p e c i f ic a t io n s as d e f in e d d u r in g p r e l im in a r y
d e s ig n . I n p a r t ic u la r , i t m a in ly fo c u s e s o n th e c o m m u n ic a t io n in te r fa c e s a m o n g in te g r a te d
c o m p o n e n ts .

T h e r e a re n o t m a n y f o r m a l iz e d a p p ro a c h e s t o in t e g r a t io n t e s t in g in th e l i t e r a t u r e , a n d p r a c t i
c a l m e th o d o lo g ie s r e l y e s s e n t ia l ly o n g o o d d e s ig n s e n s e a n d th e te s te r s ’ i n t u i t i o n . I n te g r a t io n
t e s t in g o f t r a d i t io n a l s y s te m s w a s d o n e s u b s t a n t ia l l y i n e i th e r a n o n - in c r e m e n t a l o r a n in c r e m e n
ta l a p p ro a c h . I n a n o n - in c r e m e n t a l a p p r o a c h , th e c o m p o n e n ts a re l i n k e d to g e th e r a n d te s te d a l l a t
o n c e : t h is is th e s o - c a l le d , a n d n o t a d v is a b le , “ b ig - b a n g ” t e s t in g [3 5] . I n th e p r e fe r a b le in c r e m e n
ta l a p p ro a c h e s , w e f i n d th e c la s s ic a l “ t o p - d o w n ” s t ra te g y , in w h ic h th e m o d u le s a re in te g r a te d
o n e a t a t im e , f r o m th e m a in p r o g r a m d o w n to th e s u b o r d in a te d o n e s , o r “ b o t t o m - u p , ” i n w h ic h
th e te s ts a re c o n s t r u c te d s ta r t in g f r o m th e m o d u le s a t the lo w e s t h ie r a r c h ic a l le v e l a n d th e n a re
p r o g r e s s iv e ly l i n k e d to g e th e r u p w a r d s , t o c o n s t r u c t th e w h o le s y s te m . U s u a l ly i n p r a c t ic e , a
m ix e d a p p r o a c h is a p p l ie d , as d e te r m in e d b y e x te r n a l p r o je c t f a c to r s (e .g . , a v a i l a b i l i t y o f m o d
u le s . re le a s e p o l ic y , a v a i l a b i l i t y o f te s te rs , a n d s o o n) [5 4] .

I n o b je c t - o r ie n te d , d is t r ib u t e d s y s te m s , a p p r o a c h e s s u c h a s t o p - d o w n o r b o t t o m - u p in t e g r a
t io n a n d t h e i r p r a c t ic a l d e r iv a t iv e s a re n o lo n g e r u s a b le , as n o “ c la s s ic a l” h ie r a r c h y b e tw e e n
c o m p o n e n ts c a n b e g e n e r a l ly id e n t i f ie d . S o m e o t h e r c r i t e r ia f o r i n t e g r a t io n t e s t in g im p ly i n t e
g r a t in g th e s o f tw a r e c o m p o n e n ts b a s e d o n i d e n t i f i e d f u n c t io n a l th re a d s [3 5] . I n t h i s c a s e , th e te s t
is fo c u s e d o n th o s e c la s s e s u s e d in re s p o n s e t o a p a r t ic u la r in p u t o r s y s te m e v e n t (th re a d -b a s e d
t e s t in g) ; o r b y t e s t in g to g e th e r th o s e c la s s e s th a t c o n t r ib u t e to a p a r t ic u la r u s e o f t h e s y s te m .

F in a l l y , s o m e a u th o r s h a v e u s e d th e d e p e n d e n c y s t ru c tu re b e tw e e n c la s s e s as a re fe re n c e
s t r u c tu r e f o r g u id in g in t e g r a t io n te s t in g , i . e . , t h e i r s t a t ic d e p e n d e n c ie s [4 2] , o r e v e n th e d y n a m ic
r e la t io n s o f in h e r i t a n c e a n d p o ly m o r p h is m [4 1] . S u c h p r o p o s a ls a re in t e r e s t in g w h e n th e n u m b e r
o f c la s s e s is n o t to o b ig ; h o w e v e r , te s t p la n n in g in th o s e a p p ro a c h e s c a n b e g in o n ly a t a m a tu r e
s ta g e o f d e s ig n , w h e n th e c la s s e s a n d t h e i r r e la t io n s h ip s a re a l r e a d y s ta b le .

- 1 5 8 -

A d i f f e r e n t b r a n c h o f th e l i t e r a tu r e is t e s t in g b a s e d o n th e Software Architecture: t h is s p e c i f ie s
th e h ig h le v e l , f o r m a l s p e c i f ic a t io n o f a s y s te m s t r u c tu r e in c o m p o n e n ts a n d t h e i r c o n n e c to rs , as
w e l l as t h e s y s te m d y n a m ic s . T h e w a y i n w h ic h th e d e s c r ip t io n o f th e S o f tw a r e A r c h i t e c tu r e
c o u ld b e u s e d t o d r i v e th e in t e g r a t io n te s t p la n is c u r r e n t ly u n d e r in v e s t ig a t io n , e .g . , [4 6] .

4.3 System Test

S y s te m te s t i n v o lv e s th e w h o le s y s te m e m b e d d e d in i t s a c tu a l h a r d w a r e e n v i r o n m e n t a n d is
m a in ly a im e d a t v e r i f y in g th a t th e s y s te m b e h a v e s a c c o r d in g t o u s e r r e q u ir e m e n ts . I n p a r t ic u la r ,
i t a t te m p ts t o r e v e a l b u g s th a t c a n n o t b e a t t r ib u te d to c o m p o n e n ts as s u c h , t o th e in c o n s is te n c ie s
b e tw e e n c o m p o n e n ts , o r to th e p la n n e d in te r a c t io n s o f c o m p o n e n ts a n d o t h e r o b je c ts (w h ic h a re
th e s u b je c t o f in t e g r a t io n te s t in g) . S u m m a r iz in g , th e p r im a r y g o a ls o f s y s te m te s t in g c a n b e [4 8] :

• D is c o v e r in g th e fa i lu r e s t h a t m a n i f e s t th e m s e lv e s o n l y a t th e s y s te m le v e l a n d h e n c e w e re
n o t d e te c te d d u r in g u n i t o r in t e g r a t io n te s t in g ;

• I n c r e a s in g th e c o n f id e n c e th a t th e d e v e lo p e d p r o d u c t c o r r e c t ly im p le m e n ts th e r e q u ir e d
c a p a b i l i t ie s ;

• C o l l e c t i n g i n f o r m a t io n u s e fu l f o r m a k in g d e c is io n s a b o u t th e re le a s e o f th e p r o d u c t .

S y s te m t e s t in g s h o u ld th e r e fo r e e n s u re th a t e a c h s y s te m f u n c t io n w o r k s a s e x p e c te d , th a t a n y
fa i lu r e s a re e x p o s e d a n d a n a ly z e d , a n d a d d i t io n a l ly , t h a t in te r fa c e s f o r in p u t a n d o u tp u t r o u t in e s
b e h a v e as r e q u i r e d .

S y s te m t e s t in g m a k e s a v a i la b le in f o r m a t io n a b o u t th e a c tu a l s ta tu s o f d e v e lo p m e n t th a t o th e r
v e r i f i c a t io n te c h n iq u e s s u c h a s r e v ie w o r in s p e c t io n s o f m o d e ls a n d c o d e c a n n o t p r o v id e .

G e n e r a l ly , s y s te m te s t in g in c lu d e s t e s t in g f o r p e r fo r m a n c e , s e c u r i ty , r e l i a b i l i t y , s tre s s te s t in g ,
a n d r e c o v e r y [3 5 , 5 4] . I n p a r t ic u la r , te s ts a n d d a ta c o l le c te d d u r in g s y s te m te s t in g c a n b e u s e d f o r
d e f in in g a n o p e r a t io n a l p r o f i l e n e c e s s a ry to s u p p o r t a s ta t is t ic a l a n a ly s is o f s y s te m r e l i a b i l i t y
[4 4] .

A f u r t h e r te s t le v e l , c a l le d Acceptance Test, is o f t e n a d d e d to th e a b o v e s u b d iv is io n . T h is is ,
h o w e v e r , m o r e a n e x te n s io n o f s y s te m te s t , r a th e r th a n a n e w le v e l . I t is i n f a c t a te s t s e s s io n
c o n d u c te d o v e r th e w h o le s y s te m , w h ic h m a in ly fo c u s e s o n th e c u s to m e r r e q u ir e m e n ts m o r e th a n
o n th e c o m p l ia n c e o f th e im p le m e n t a t io n a g a in s t s o m e s p e c i f ic a t io n . I t m a y a ls o in c lu d e U s a b i l
i t y T e s t in g w i t h th e in t e n t o f v e r i f y in g t h a t th e e f f o r t r e q u i r e d f r o m e n d -u s e r s to le a rn to u se a n d
f u l l y e x p lo i t t h e s y s te m f u n c t io n a l i t i e s is a c c e p ta b le . (S e e a ls o S e c t io n 5 .3 .)

4.4 Regression Test

P r o p e r ly s p e a k in g , regression test is n o t a s e p a ra te le v e l o f t e s t in g (w e l is t e d i t i n f a c t a m o n g te s t
o b je c t iv e s i n S e c t io n 4 .5 b e lo w) , b u t m a y r e fe r to th e r e te s t in g o f a u n i t , a c o m b in a t io n o f
c o m p o n e n ts o r a w h o le s y s te m (s e e F ig . 1) a f t e r m o d i f i c a t io n , in o r d e r t o a s c e r ta in th a t th e
c h a n g e h a s n o t in t r o d u c e d n e w f a u l t s [5 4] .

A s s o f tw a r e p r o d u c e d t o d a y is c o n s ta n t ly u n d e r g o in g e v o lu t io n , d r iv e n b y m a r k e t fo r c e s a n d
t e c h n o lo g y a d v a n c e s , r e g r e s s io n t e s t in g is th e p r e d o m in a n t p o r t io n o f t e s t in g e f f o r t in in d u s t r y .

S in c e b o t h c o r r e c t iv e a n d p e r f e c t iv e m o d i f i c a t io n s m a y b e p e r fo r m e d q u i t e o f te n , to r e - r u n
a l l p r e v io u s ly e x e c u te d te s t c a s e s a f t e r e a c h c h a n g e w o u ld b e p r o h ib i t i v e l y e x p e n s iv e . T h e r e fo r e ,
v a r io u s ty p e s o f t e c h n iq u e s h a v e b e e n d e v e lo p e d t o re d u c e th e c o s ts a n d in c re a s e th e e f f e c t iv e
n e s s o f r e g r e s s io n te s t in g .

~ 1 5 9 -

Unit Test Integration lest System Test
1 Acceptance Test

î î î
Regression lest

F ig . 1 : L o g i c a l s c h e m a o f s o f t w a r e t e s t i n g le v e ls .

W e a lr e a d y s p o k e o f te s t s u i te m in im iz a t io n a n d p r io r i t i z a t i o n (S e c . 2 .5) : b o t h c a n b e a p p l ie d
in r e g r e s s io n te s t in g . Selective regression test te c h n iq u e s [6 7] h e lp i n s e le c t in g a (m in im iz e d)
s u b s e t o f th e e x is t in g te s t ca s e s b y e x a m in in g th e m o d i f i c a t io n s (f o r in s ta n c e a t c o d e le v e l , u s in g
c o n t r o l f l o w a n d d a ta f l o w a n a ly s is) . O th e r a p p ro a c h e s in s te a d prioritize t h e te s t c a s e s a c c o r d in g
t o s o m e s p e c i f ie d c r i t e r io n (f o r in s ta n c e , m a x im iz in g th e f a u l t d e te c t io n p o w e r o r th e s t r u c tu r a l
c o v e r a g e) ; so th a t th e te s t c a s e s j u d g e d th e m o s t e f f e c t iv e w i t h r e g a r d t o th e a d o p te d c r i t e r i o n c a n
b e ta k e n f i r s t , u p t o th e a v a i la b le b u d g e t .

4.5 Objectives of Testing

S o f tw a r e t e s t in g c a n b e a p p l ie d f o r d i f f e r e n t p u rp o s e s , s u c h as v e r i f y in g t h a t th e f u n c t io n a l
s p e c i f ic a t io n s a re im p le m e n te d c o r r e c t ly , o r t h a t th e s y s te m s h o w s s p e c i f ic n o n - f u n c t io n a l
p r o p e r t ie s s u c h as p e r fo r m a n c e , r e l i a b i l i t y , a n d u s a b i l i t y . A (c e r t a in ly n o t c o m p le te) l i s t o f
r e le v a n t t e s t in g o b je c t iv e s in c lu d e s [4 8] :

• Acceptance/Qualification testing: — T h e f i n a l te s t a c t io n p r i o r t o d e p lo y in g a s o f tw a r e
p r o d u c t . I t s m a in g o a l is to v e r i f y t h a t th e s o f tw a r e m e e ts th e c u s to m e r ’ s r e q u ir e m e n ts .
G e n e r a l ly , i t is r u n b y o r w i t h th e e n d -u s e r s to p e r f o r m th o s e f u n c t io n s a n d ta s k s f o r
w h ic h th e s o f tw a r e w a s b u i l t [5 4] .

• Installation testing — T h e s y s te m is v e r i f i e d u p o n in s t a l la t io n in th e ta r g e t e n v ir o n m e n t .
I n s t a l la t io n t e s t in g c a n b e v ie w e d a s s y s te m te s t in g c o n d u c te d o n c e a g a in a c c o r d in g t o
h a r d w a r e c o n f ig u r a t io n r e q u ir e m e n ts . I n s t a l la t io n p ro c e d u r e s m a y a ls o b e v e r i f i e d [5 4] .

• Alpha testing — B e f o r e r e le a s in g th e s y s te m , i t is d e p lo y e d t o s o m e in - h o u s e u s e rs f o r
e x p lo r a t io n o f th e f u n c t io n s a n d b u s in e s s ta s k s . G e n e r a l ly , t h e r e is n o te s t p la n to f o l l o w ,
b u t th e i n d i v id u a l te s te r d e te r m in e s w h a t t o d o [3 8] .

• Beta testing — T h e s a m e as a lp h a t e s t in g b u t th e s y s te m is d e p lo y e d t o e x te r n a l u s e rs . I n
t h is c a s e , th e a m o u n t o f d e ta i l , th e d a ta , a n d a p p r o a c h ta k e n a re e n t i r e ly u p to th e e x te r n a l
testers, who are responsible for creating their own environment, selecting their data, and
d e t e r m in in g w h a t f u n c t io n s , fe a tu re s , o r ta s k s to e x p lo r e . E a c h te s te r is a ls o r e s p o n s ib le
f o r id e n t i f y i n g t h e i r o w n c r i t e r ia f o r w h e th e r t o a c c e p t th e s y s te m i n i t s c u r r e n t s ta te o r
n o t [3 8] .

• Regression testing — A c c o r d in g to [2 8] , r e g r e s s io n t e s t in g is th e “ s e le c t iv e r e te s t in g o f a
s y s te m o r c o m p o n e n t t o v e r i f y th a t m o d i f i c a t io n s h a v e n o t c a u s e d u n in te n d e d e f fe c ts a n d
t h a t th e s y s te m o r c o m p o n e n t s t i l l c o m p l ie s w i t h i ts s p e c i f ie d r e q u i r e m e n t s . ” i n p r a c t ic e ,
the objective is to show that a system which previously passed the tests still does [6 7] .
N o t ic e th a t a t r a d e - o f f m u s t b e m a d e b e tw e e n th e a s s u ra n c e g iv e n b y r e g r e s s io n te s t in g
e v e r y t im e a c h a n g e is m a d e a n d th e re s o u rc e s r e q u ir e d to d o th a t .

~ 1 6 0 -

• Usability testing: — T h is im p o r t a n t t e s t in g a c t i v i t y e v a lu a te s th e e a se o f u s in g a n d l e a r n
i n g th e s y s te m a n d th e u s e r d o c u m e n ta t io n , a s w e l l as th e e f fe c t iv e n e s s o f s y s te m f u n c
t i o n i n g i n s u p p o r t in g u s e r ta s k s , a n d , f i n a l l y , th e a b i l i t y t o r e c o v e r f r o m u s e r e r r o r s [4 9] .

• Conformance testing/Functional testing — T h e te s t c a s e s a re a im e d a t v a l id a t in g t h a t
t h e o b s e r v e d b e h a v io r c o n fo r m s t o th e s p e c i f ic a t io n s . I n p a r t ic u la r , i t c h e c k s w h e th e r t h e
im p le m e n t e d fu n c t io n s a re as in te n d e d a n d p r o v id e th e r e q u i r e d s e rv ic e s a n d m e t h o d s .
T h i s t e s t c a n b e im p le m e n te d a n d e x e c u te d a g a in s t d i f f e r e n t te s t ta rg e ts , i n c lu d in g u n i t s ,
in te g r a t e d u n i t s , a n d s y s te m s [5 3] .

• Performance testing — T h is is s p e c i f i c a l l y a im e d a t v e r i f y i n g th a t th e s y s te m m e e ts t h e
s p e c i f ie d p e r fo r m a n c e r e q u ir e m e n ts , f o r in s ta n c e , c a p a c i t y a n d re s p o n s e t im e [5 4] .

• Reliability a c h ie v e m e n t — In d e e d , w h e th e r f e w o r m a n y , s o m e fa u l t s w i l l i n e v i t a b l y e s
c a p e t e s t in g a n d d e b u g g in g . H o w e v e r , a f a u l t c a n b e m o r e o r le s s d is t u r b in g d e p e n d in g
o n w h e th e r , a n d h o w f r e q u e n t ly , i t w i l l e v e n t u a l ly s h o w u p t o th e f i n a l u s e r (a n d d e p e n d
in g o f c o u r s e o n th e s e r io u s n e s s o f i t s c o n s e q u e n c e s) . S o , i n th e e n d , o n e m e a s u re t h a t i s
im p o r t a n t i n d e c id in g w h e th e r a s o f tw a r e p r o d u c t is r e a d y f o r re le a s e is i t s r e l i a b i l i t y .
S t r i c t l y s p e a k in g , s o f tw a r e r e l i a b i l i t y is a p r o b a b i l i s t i c e s t im a te , a n d m e a s u re s th e p r o b a
b i l i t y t h a t t h e s o f tw a r e w i l l e x e c u te w i t h o u t f a i lu r e i n a g iv e n e n v i r o n m e n t f o r a g iv e n p e
r i o d o f t im e [4 4] .

T h u s , t h e v a lu e o f s o f tw a r e r e l i a b i l i t y d e p e n d s o n h o w f r e q u e n t ly th o s e in p u t s t h a t
c a u s e a f a i l u r e w i l l b e e x e r c is e d b y th e f i n a l u s e rs . E s t im a te s o f s o f tw a r e r e l i a b i l i t y c a n
b e p r o d u c e d v i a te s t in g . T o t h is p u r p o s e , s in c e th e n o t io n o f r e l i a b i l i t y is s p e c i f ic t o “ a
g iv e n e n v i r o n m e n t , ” th e te s ts m u s t b e d r a w n f r o m a n in p u t d is t r ib u t io n th a t a p p r o x im a t e s
as c lo s e ly a s p o s s ib le th e f u t u r e u s a g e in o p e r a t io n , w h ic h is c a l le d th e o p e r a t io n a l d i s t r i
b u t io n . T e s t in g c a n a ls o b e u s e d a s a m e a n s t o im p r o v e r e l i a b i l i t y ; i n s u c h a c a s e , th e t e s t
c a s e s m u s t b e r a n d o m ly g e n e ra te d a c c o r d in g t o th e o p e r a t io n a l p r o f i l e , i .e . , t h e y s h o u ld
s a m p le m o r e d e n s e ly th e m o s t f r e q u e n t ly u s e d f u n c t io n a l i t i e s [4 4] .

5 . T e s t T e c h n iq u e s

A s h in te d i n S e c t io n 2 .5 , th e te c h n iq u e u s e d f o r te s t ca s e s e le c t io n w i l l g r e a t ly a f f e c t te s t e f f e c
t iv e n e s s . T h e r e e x is t s a f u l l ra n g e o f te s t te c h n iq u e s , q u i te d i f f e r e n t f r o m o n e a n o th e r , w h i c h
e m b ra c e a v a r ie t y o f a im s .

5.1 Selection Criteria Based on Code

Code-based testing, a ls o c a l le d s t r u c tu r a l o r w h i t e - b o x te s t in g , w a s th e d o m in a n t t r e n d i n s o f t
w a re t e s t in g r e s e a r c h d u r in g th e la te 7 0 ’ s a n d th e 8 0 ’ s. O n e re a s o n is c e r t a in ly th a t i n th o s e y e a r s
in w h ic h f o r m a l a p p ro a c h e s t o s p e c i f ic a t io n w e r e m u c h le s s m a tu r e a n d p u rs u e d th a n n o w , t h e
o n ly RM f o r m a l i z e d e n o u g h to a l l o w f o r th e a u to m a t io n o f te s t s e le c t io n o r f o r a q u a n t i t a t i v e
m e a s u r e m e n t o f t h o r o u g h n e s s w a s th e c o d e i t s e l f .

R e f e r r in g t o th e f a u l t - e r r o r - f a i lu r e c h a in d e s c r ib e d in S e c t io n 2 .3 , th e m o t i v a t io n f o r c o d e
b a s e d t e s t in g is t h a t p o te n t ia l f a i lu r e s c a n o n ly b e d e te c te d i f th e p a r ts o f c o d e r e la te d t o t h e
c a u s in g f a u l t s a re e x e c u te d . H e n c e , b y m o n i t o r in g c o d e c o v e ra g e , o n e t r ie s t o e x e rc is e t h o r o u g h
l y a l l “ p r o g r a m e le m e n ts : ” d e p e n d in g o n h o w th e p r o g r a m e le m e n ts t o b e c o v e re d a re i d e n t i f i e d ,
s e v e ra l t e s t c r i t e r i a a re d e f in e d .

- 1 6 1 -

I n structural testing, th e p r o g r a m is m o d e le d as a g ra p h , w h o s e e n t r y - e x i t p a th s re p r e s e n t t h e
f l o w o f c o n t r o l ; h e n c e i t is c a l le d a flow graph. F in d in g a s e t o f f l o w g r a p h p a th s f u l f i l l i n g a
c o v e r a g e c r i t e r io n th u s b e c o m e s a m a t te r o f p r o p e r ly v i s i t i n g th e g r a p h (s e e f o r in s ta n c e [1 2]) .
C o d e c o v e r a g e c r i t e r ia a re a ls o r e fe r r e d t o as p a th - b a s e d te s t c r i t e r ia , b e c a u s e th e y m a p e a c h te s t
i n p u t t o a u n iq u e p a th p o n th e f lo w g r a p h .

T h e id e a l a n d y e t u n r e a c h a b le ta r g e t o f code-based, testing w o u ld b e th e e x h a u s t iv e c o v e r a g e
o f a l l p o s s ib le p a th s a lo n g th e p r o g r a m c o n t r o l - f l o w . T h e u n d e r ly in g te s t h y p o th e s is h e re is th a t
b y e x e c u t in g a p a th o n c e , p o te n t ia l f a u l t s r e la te d t o i t w i l l b e re v e a le d , i . e . , i t is a s s u m e d th a t
e v e r y in p u t e x e c u t in g a p a r t ic u la r p a th w i l l e i t h e r f a i l o r s u c c e e d (w h ic h is n o t n e c e s s a r i ly t r u e ,
o f c o u rs e) .

Full path coverage is n o t a p p l ic a b le b e c a u s e e v e r y p r o g r a m w i t h u n b o u n d e d lo o p s w o u ld
y ie ld a n i n f i n i t e n u m b e r o f p a th s . E v e n l i m i t i n g t h e n u m b e r o f i t e r a t io n s w i t h i n p r o g r a m lo o p s ,
w h ic h is th e u s u a l ly p r a c t ic e d t a c t ic in te s t in g , th e n u m b e r o f te s ts w o u ld r e m a in u n fe a s ib ly h ig h .
T h e r e fo r e , a l l th e p r o p o s e d c o d e -b a s e d c r i t e r i a a t t e m p t t o r e a l iz e c o s t - e f f e c t iv e a p p r o x im a t io n s
to p a th c o v e ra g e , b y i d e n t i f y in g s p e c i f ic (c o n t r o l - f l o w o r d a t a - f lo w) e le m e n ts o f a p r o g r a m th a t
a re d e e m e d t o b e r e le v a n t f o r r e v e a l in g p o s s ib le f a i lu r e s , a n d b y r e q u i r in g th a t e n o u g h te s t c a s e s
to c o v e r a l l s u c h e le m e n ts b e e x e c u te d .

T h e la n d m a r k p a p e r in c o d e -b a s e d t e s t in g is [5 5] , i n w h ic h a f a m i l y o f c r i t e r ia w a s i n t r o
d u c e d , b a s e d o n b o t h c o n t r o l - f l o w a n d d a t a - f lo w . A subsumption h ie r a r c h y b e tw e e n th e c r i t e r ia
w a s d e r iv e d , b a s e d o n th e in c lu s io n r e la t io n s u c h t h a t a te s t s u i te s a t is f y in g a s u b s u m in g c r i t e r io n
is g u a ra n te e d to a ls o s a t is f y th e (t r a n s i t i v e ly) s u b s u m e d c r i t e r io n .

Statement coverage is th e m o s t e le m e n ta r y c r i t e r i o n , r e q u i r in g th a t e a c h s ta te m e n t in a p r o
g r a m b e e x e r c is e d a t le a s t o n c e . T h e branch coverage c r i t e r io n in s te a d r e q u ir e s th a t e a c h b r a n c h
i n a p r o g r a m b e e x e r c is e d a t le a s t o n c e . N o t e th a t c o m p le te s ta te m e n t c o v e ra g e d o e s n o t e n s u re
th a t a l l b r a n c h e s a re e x e r c is e d (s im p ly b e c a u s e e m p t y b ra n c h e s w o u ld b e l e f t o u t) .

Branch coverage is a ls o c a l le d “ d e c is io n c o v e r a g e , ” b e c a u s e it c o n s id e r s th e o u tc o m e o f a
d e c is io n p r e d ic a te . W h e n a p r e d ic a te is c o m p o s e d b y th e lo g ic a l c o m b in a t io n o f s e v e ra l c o n d i
t io n s , a v a r ia t io n t o b r a n c h c o v e ra g e is g iv e n b y “ c o n d i t io n c o v e ra g e , ” w h ic h r e q u ir e s in s te a d
te s t in g th e t r u e a n d fa ls e o u tc o m e o f th e i n d i v id u a l c o n d i t io n s o f p re d ic a te s . F u r th e r c r i t e r ia
c o n s id e r to g e th e r c o v e r a g e o f d e c is io n s a n d c o n d i t io n s u n d e r d i f f e r i n g a s s u m p t io n s (s e e , e .g . ,
[2 5]) .

I n data flow-based te s t in g , th e f lo w g r a p h is a n n o ta te d a t e a c h n o d e w i t h i n f o r m a t io n a b o u t
h o w th e p r o g r a m v a r ia b le s a re d e f in e d a n d u s e d (a s e p a ra te a n n o ta te d f lo w g r a p h is d e r iv e d f o r
e a c h v a r ia b le) , a n d th e te s t c a s e s a re a im e d a t e x e r c is in g h o w th e v a lu e s a s s ig n e d to v a r ia b le s a r e
u s e d a lo n g d i f f e r e n t p a th s .

F o r e x a m p le , all-uses coverage r e q u ir e s t h a t f o r e v e r y v a r ia b le , e v e r y p o s s ib le u s e o f a d e f i
n i t i o n is c o v e r e d b y a t le a s t o n e te s t c a s e . N o t e t h a t i f a v a r ia b le V is a s s ig n e d a v a lu e a t n o d e X
o f th e f lo w g r a p h , a r e fe r e n c e t o th e s a m e v a r ia b le a t s o m e o th e r n o d e Y is a p r o p e r “ u s e ” o n l y i f
th e re e x is ts a t le a s t o n e p a th f r o m X to Y t h a t c o n ta in s n o o th e r d e f i n i t i o n o f V . T h e t r i p le (V , X ,
Y) th e n is c a l le d a definition-use association. A n o t h e r m o r e s t r in g e n t d a t a - f lo w c r i t e r i o n r e q u ir e s

- 1 6 2 -

c o v e r in g all-DU-paths, i .e . , f o r e v e r y v a r ia b le , a l l lo o p - f r e e o r s im p le c y c le p a th s f r o m e v e r y
d e f in i t i o n t o e v e r y u s e o f t h a t d e f in i t i o n m u s t b e te s te d .

T h e a p p l i c a t i o n o f c o d e -b a s e d c r i t e r ia p o s e s s o m e to u g h p r o b le m s , w h ic h m a k e c o m p le t e
c o v e ra g e q u i t e d i f f i c u l t , i f n o t im p o s s ib le , to r e a c h . O n e re a s o n c a n b e th e e x is te n c e o f u n r e a c h a
b le c o d e (e . g . , p r o c e d u r e s w h ic h a re n e v e r in v o k e d) , d u e f o r in s ta n c e t o re u s e o f le g a c y s y s t e m s .
A n o th e r f r e q u e n t p r o b le m h a m p e r in g f u l l c o v e r a g e is infeasible paths, i .e . , f l o w g r a p h p a th s t h a t
c a n n o t b e t r a v e r s e d b e c a u s e o f c o n t r a d ic t in g p r e d ic a te c o n d i t io n s . I n t u i t i v e l y , th e m o r e c o m p le x
th e r e q u i r e m e n ts w e im p o s e o n th e e le m e n ts t o b e c o v e r e d , th e h ig h e r th e in c id e n c e o f i n f e a s ib i l
i ty . L a s t, e v e n f o r fe a s ib le p a th s , f i n d in g a n in p u t th a t e x e c u te s a s e le c te d f lo w g r a p h p a th is n o t
o n ly a n u n d e c id a b le p r o b le m i n p r in c ip le [6 1] , b u t a ls o a q u i te d i f f i c u l t o n e to s o lv e in p r a c t i c e .
A s p r e v io u s ly s ta te d , t r a d i t io n a l l y , s y m b o l ic e x e c u t io n w a s a t te m p te d , w i t h s c a rc e p r a c t i c a l
su cce ss .

A p r o m is in g a p p r o a c h t o a u to m a t in g te s t d a ta g e n e r a t io n is S e a rc h -B a s e d T e s t in g [4 5] , a p p l y
in g s e a rc h -b a s e d m e ta h e u r is t ic te c h n iq u e s . T h e s e le c te d te s t c r i t e r io n is e n c o d e d as a f i t n e s s
fu n c t io n , w h ic h is u s e d to g u id e th e e x p lo r a t io n o f th e s p a c e o f s o lu t io n s (th e s o u g h t te s t c a s e s)
to w a rd s t h e p o t e n t i a l l y m o s t p r o m is in g a re a s o f th e in p u t s p a c e . T h e a p p r o a c h is a t t r a c t iv e i n t h a t
i t c a n be a p p l i e d n o t o n ly t o a u to m a te s t r u c tu r a l t e s t in g , w h ic h h a s r e c e iv e d th e la rg e s t a t t e n t i o n
s o fa r , b u t a ls o t o o th e r te s t c r i t e r ia , b y a p p r o p r ia t e ly d e f in in g th e f i t n e s s f u n c t io n . O th e r t e s t
a u to m a t io n a p p r o a c h e s in c lu d e d y n a m ic g e n e r a t io n b a s e d o n o p t im iz a t io n [4 0] , g e n e t ic a l g o
r i t h m s [5 1] , o r th e a l r e a d y m e n t io n e d c o n s t r a in t - s o lv in g te c h n iq u e s [6] .

I t m u s t b e k e p t i n m in d , h o w e v e r , th a t c o d e -b a s e d te s t s e le c t io n is a t a u t o lo g y : i t l o o k s f o r
p o te n t ia l p r o b le m s i n a p r o g r a m b y u s in g th e p r o g r a m i t s e l f a s a re fe re n c e m o d e l . I n th is w a y , f o r
in s ta n c e , f a u l t s o f m is s in g f u n c t io n a l i t ie s c o u ld n e v e r b e fo u n d .

A s a c o n s e q u e n c e , c o d e -b a s e d te c h n iq u e s s h o u ld b e m o r e p r o p e r ly u s e d as a d e q u a c y c r i t e r i a .
I n o th e r w o r d s , te s te rs s h o u ld c o n s id e r l o w m e a s u re s o f c o v e ra g e as a w a r n in g . I f u n c o v e r e d
e le m e n ts r e m a in , t h is im p l ie s th a t th e s e t o f te s t c a s e s is n o t e x e c u t in g s o m e p a r ts o f th e f u n c
t io n a l i t ie s o r o f t h e d e s ig n .

A s e n s ib le a p p r o a c h is t o u s e a n o th e r a r t i f a c t a s th e r e fe r e n c e m o d e l f r o m w h ic h th e te s t c a s
es a re d e s ig n e d a n d t o m o n i t o r a m e a s u re o f c o v e r a g e w h i l e te s ts a re e x e c u te d , so as t o e v a lu a t e
th e th o r o u g h n e s s o f th e te s t s u ite . I f s o m e e le m e n ts o f th e c o d e r e m a in u n c o v e r e d , a d d i t i o n a l
te s ts to e x e r c is e t h e m s h o u ld b e f o u n d , as i t c a n b e a n in d ic a t io n th a t th e te s ts d o n o t a d d r e s s
s o m e f u n c t i o n t h a t is c o d e d .

A f i n a l w a r n in g is w o r t h m e n t io n in g : “ e x e r c is e d ” a n d “ te s te d ” a re n o t s y n o n y m o u s . A n e le
m e n t is r e a l l y te s te d o n ly w h e n i t s e x e c u t io n p r o d u c e s a n e f f e c t o n th e o u tp u t . I n v ie w o f t h i s
s ta te m e n t , u n d e r m o s t e x is t in g c o d e -b a s e d c r i t e r ia e v e n 1 0 0 % c o v e r a g e c o u ld le a v e s o m e
s ta te m e n ts u n te s te d .

5.2 Selection Criteria Based on Specifications

I n s p e c i f ic a t io n - b a s e d te s t in g , th e re fe r e n c e m o d e l RM is d e r iv e d in g e n e ra l f r o m th e d o c u m e n t a
t io n r e la t i v e t o p r o g r a m s p e c i f ic a t io n s . D e p e n d in g o n h o w th e la t t e r a re e x p re s s e d , l a r g e l y
d i f f e r e n t t e c h n iq u e s a re p o s s ib le [3 5] . E a r ly a p p ro a c h e s [4 7] lo o k e d a t th e I n p u t / O u t p u t r e l a t i o n
o f th e p r o g r a m s e e n as a “ b la c k - b o x ” a n d m a n u a l ly d e r iv e d :

- 1 6 3 -

• Equivalence classes — B y p a r t i t i o n in g t h e in p u t d o m a in i n t o s u b d o m a in s o f “ e q u iv a
le n t ” in p u ts , in th e s e n s e e x p la in e d in S e c t io n 2 .4 , th a t a n y in p u t w i t h i n a s u b d o m a in c a n
b e ta k e n as a r e p r e s e n ta t iv e f o r t h e w h o le s u b s e t . H e n c e , e a c h in p u t c o n d i t io n m u s t b e
s e p a r a te ly c o n s id e r e d t o f i r s t i d e n t i f y th e e q u iv a le n c e c la s s e s . T h e s e c o n d s te p c o n s is ts o f
c h o o s in g th e te s t in p u t s r e p r e s e n ta t iv e o f e a c h s u b d o m a in ; i t is g o o d p r a c t ic e to ta k e b o th
v a l i d a n d in v a l id e q u iv a le n c e c la s s e s f o r e a c h c o n d i t io n . T h e C a te g o r y P a r t i t io n m e th o d
d e s c r ib e d b e lo w in th is s e c t io n b e lo n g s t o t h i s a p p ro a c h .

• Boundary conditions — F o r e x a m p le , th o s e c o m b in a t io n s o f v a lu e s th a t i r e “ c lo s e ”
(p r e c is e ly o n , a b o v e a n d b e n e a th) th e b o r d e r s o f th e e q u iv a le n c e c la s s e s id e n t i f i e d b o th in
th e in p u t a n d th e o u tp u t d o m a in s . T h is te s t a p p ro a c h is b a s e d o n th e i n t u i t i v e fa c t , a ls o
p r o v e d b y e x p e r ie n c e th a t f a u l t s a re m o r e l i k e l y to b e f o u n d a t th e b o u n d a r ie s o f th e in p u t
a n d o u tp u t s u b d o m a in s .

• Cause-effect graphs — T h e s e a re c o m b in a t o r ia l lo g ic n e tw o r k s th a t c a n b e u s e d to e x
p lo r e in a s y s te m a t ic w a y th e p o s s ib le c o m b in a t io n s o f in p u t c o n d i t io n s . B y a n a ly z in g th e
s p e c i f ic a t io n , th e r e le v a n t in p u t c o n d i t io n s , o r c a u s e s , a n d th e c o n s e q u e n t t r a n s fo r m a t io n s
a n d o u tp u t c o n d i t io n s , th e e f fe c ts a re i d e n t i f i e d a n d m o d e le d in to g ra p h s l i n k in g th e e f
fe c ts to t h e i r c a u s e s . A d e ta i le d d e s c r ip t io n o f th is e a r ly te c h n iq u e c a n b e fo u n d in [4 7] .

A s im p le , i n t u i t i v e , y e t e f f e c t iv e a p p r o a c h is th e C a t e g o r y - P a r t i t io n (C P) m e th o d [5 0] f o r th e
a u to m a te d g e n e r a t io n o f f u n c t io n a l te s ts f r o m a n n o ta te d s e m i - f o r m a l s p e c i f ic a t io n s . C P c o n s is ts
o f a s te p w is e m e th o d o lo g y t o d e r iv e a s u i te o f f u n c t io n a l te s ts f r o m th e s p e c i f ic a t io n s w r i t t e n in
s t r u c tu r e d , s e m i fo r m a l la n g u a g e . T h e f i r s t s te p o f th e C P m e th o d is to a n a ly z e th e f u n c t io n a l
r e q u ir e m e n ts t o d iv id e th e a n a ly z e d s y s te m in t o f u n c t io n a l u n i t s t o b e s e p a ra te ly te s te d . A
f u n c t io n a l u n i t c a n b e a h ig h - le v e l f u n c t io n o r a p r o c e d u r e o f th e im p le m e n te d s y s te m . F o r e a c h
d e f in e d fu n c t io n a l u n i t , th e environment conditions (s y s te m c h a r a c te r is t ic o f a c e r ta in f u n c t io n a l
u n i t) a n d th e parameters (e x p l i c i t in p u t o f th e s a m e u n i t) r e le v a n t f o r t e s t in g m u s t b e id e n t i f ie d .

T h e te s t ca s e s a re th e n d e r iv e d b y f i n d i n g s ig n i f i c a n t v a lu e s o f e n v i r o n m e n t c o n d i t io n s a n d
p a ra m e te rs . T h is c a n b e d o n e b y d i v id in g th e m in t o categories r e p r e s e n t in g r e le v a n t s y s te m
p r o p e r t ie s o r p a r t ic u la r c h a r a c te r is t ic s o f p a r a m e te r s o r e n v i r o n m e n t c o n d i t io n s . T h e n , f o r e a c h
c a te g o r y , d i f f e r e n t choices a re id e n t i f i e d th a t a re s ig n i f ic a n t v a lu e s f o r th e s e c a te g o r ie s . T o
p r e v e n t th e c o n s t r u c t io n o f r e d u n d a n t , n o t m e a n in g f u l , o r e v e n c o n t r a d ic t o r y c o m b in a t io n s o f
c h o ic e s , th e c h o ic e s c a n b e a n n o ta te d w i t h c o n s t r a in ts , w h ic h c a n b e o f tw o ty p e s : e i th e r (i)
p r o p e r t ie s o r (i i) s p e c ia l c o n d i t io n s .

I n th e f i r s t c a s e , s o m e p r o p e r t ie s a re s e t f o r c e r t a in c h o ic e s , a n d s e le c to r e x p r e s s io n s r e la te d
t o th e m (i n th e f o r m o f s im p le if c o n d i t io n s) a re a s s o c ia te d w i t h o th e r c h o ic e s : a c h o ic e m a r k e d
w i t h a n if s e le c to r c a n th e n b e c o m b in e d o n l y w i t h th o s e c h o ic e s f r o m o th e r c a te g o r ie s th a t f u l f i l l
th e r e la te d p r o p e r ty . T h e s e c o n d t y p e o f c o n s t r a in t i s u s e fu l t o r e d u c e th e n u m b e r o f te s t c a s e s :
s o m e m a r k in g s , n a m e ly “ e r r o r ” a n d “ s in g le , ” a re c o u p le d to s o m e c h o ic e s , r e f e r r in g to e r ro n e o u s
o r s p e c ia l c o n d i t io n s , r e s p e c t iv e ly , t h a t w e in t e n d t o te s t , b u t t h a t d o n o t h a v e t o be c o m b in e d
w i t h a l l p o s s ib le c h o ic e s . T h e l i s t o f a l l th e c h o ic e s i d e n t i f i e d f o r e a c h c a te g o r y , w i t h th e p o s s ib le
a d d i t io n o f th e c o n s t r a in ts , is c a l le d th e T e s t S p e c i f ic a t io n . I t is n o t y e t a. l i s t o f te s t c a s e s , b u t
c o n ta in s a l l th e n e c e s s a ry in f o r m a t io n f o r i n s t a n t ia t in g th e m b y u n f o ld in g th e c o n s t r a in ts . A s u i te
o f te s t c a s e s is f i n a l l y o b ta in e d b y t a k in g a l l th e p o s s ib le c o m b in a t io n s o f c h o ic e s f o r a l l th e
c a te g o r ie s .

- 1 6 4 -

T h e C P m e t h o d h a s e n c o u n te r e d w id e in te r e s t , a n d h a s in s p i r e d th e d e v e lo p m e n t o f a la rg e
n u m b e r o f te s t m e th o d o lo g ie s . I t s b a s ic p r in c ip le h a s b e e n a p p l ie d t o s p e c i f ic a t io n s in s e v e ra l
la n g u a g e s , a ls o u s in g f o r m a l la n g u a g e s s u c h as Z a n d U M L [7] .

A p p r o a c h e s s u c h as th e o n e s d e s c r ib e d a b o v e a l l r e q u i r e a d e g re e o f “ c r e a t i v i t y ” [4 7] . T o
m a k e t e s t in g m o r e re p e a ta b le a n d t o p u s h a u to m a t io n , m a n y a p p ro a c h e s h a v e b e e n p r o p o s e d th a t
s ta r t f r o m a f o r m a l s p e c i f ic a t io n . E a r ly a t te m p ts in c lu d e d a lg e b r a ic s p e c i f ic a t io n s , V D M . a n d Z
[5 9] , w h i l e a m o r e r e c e n t c o l le c t io n o f a p p ro a c h e s t o f o r m a l t e s t in g c a n b e fo u n d in [2 6] .

A p r e v a le n t a p p r o a c h n o w a d a y s is model-based testing (М В Т) , w h ic h r e l ie s o n a n a b s tra c t
(f o r m a l) r e p r e s e n ta t io n e i th e r o f th e s y s te m u n d e r te s t o r o f i t s r e q u ir e m e n ts . T h is c a n b e a n a
ly s e d f o r d e r i v a t i o n o f th e te s t c a s e s a n d th e e x p e c te d o u tc o m e s as w e l l . U s u a l l y th e a b s tra c t
r e p r e s e n ta t io n fo c u s e s o n th e f u n c t i o n a l i t y o f t h e s y s te m u n d e r te s t so th a t th e t y p ic a l u s e o f th e
d e r iv e d te s t c a s e is f o r c h e c k in g i f th e s o f tw a r e s y s te m c o m p l ie s w i t h th e f u n c t i o n a l i t y as d e
s c r ib e d in th e m o d e l .

T h e m a in a d v a n ta g e o f М В Т is th a t th e m o d e l o f t h e s p e c i f ic a t io n c a n b e u s e d t o a u to m a t i
c a l ly d e r iv e th e te s t ca s e s f o r th e s y s te m u n d e r te s t . U s u a l l y th e te s t s tra te g ie s a d o p te d a re b a s e d
o n m a x im is in g s o m e n o t io n o f c o v e ra g e , b y t r y in g t o e x e r c is e th e m o s t u s e fu l s e q u e n c e s o f
in p u ts a n d th u s d e c id in g w h ic h te s t ca s e s t o in c lu d e in t o a f i n i t e te s t s u ite .

T h e k e y c o m p o n e n ts o f М В Т th u s a re : th e n o t a t io n u s e d f o r r e p r e s e n t in g th e m o d e l o f th e
s y s te m ; th e te s t s t r a te g y o r a lg o r i t h m f o r te s t c a s e g e n e r a t io n ; a n d th e s u p p o r t in g in f r a s t r u c tu r e
f o r th e te s t e x e c u t io n i n c lu d in g th e e v a lu a t io n o f th e e x p e c te d o u tp u ts . G e n e r a l ly , d u e to th e
c o m p le x i t y o f a d o p te d te c h n iq u e s , th e М В Т a p p ro a c h e s a re u s e d in c o n ju n c t io n w i t h te s t a u to
m a t io n h a rn e s s e s (s e e S e c t io n 1 0) .

C o n c e r n in g th e m o d e l n o t a t io n , th e w id e s p r e a d o n e s a re Finite State Machine (F S M) ([2 6] ,
[5 9]) a n d Labelled Transition Systems (L T S) [1 5] . B o t h F S M s a n d L T S s re p re s e n t a s y s te m a s a
s e t o f s ta te s a n d t r a n s i t io n s b e tw e e n th e m . F o r F S M s , e a c h t r a n s i t io n re p re s e n ts a n in p u t f r o m th e
u s e r a n d th e c o r r e s p o n d in g re s p o n s e to b e p r o v id e d b y th e s y s te m . F o r L T S s , e a c h t r a n s i t io n is
la b e l le d b y p r e c is e ly o n e a c t io n , w h ic h c a n b e e i th e r a n in p u t f r o m th e u s e r o r a re s p o n s e o f th e
s y s te m . U s u a l l y F S M s a re u s e d f o r d e t e r m in is t ic s y s te m s in w h ic h a s y n c h r o n o u s c o m m u n ic a
t io n o f in p u t a n d o u tp u t a c t io n s is a d o p te d , w h i l e L T S s a re m o r e s u i ta b le t o s u p p o r t p a r a l le l
c o m p u ta t io n . M a n y t im e s th e a d o p t io n o f a L T S s p e c i f ic a t io n m o d e l is r e la te d t o a “ c o n fo r m a n c e
r e la t io n . ”

G iv e n th e L T S f o r th e s p e c i f ic a t io n S a n d o n e o f i t s p o s s ib le im p le m e n ta t io n s I (th e p r o g r a m
to b e te s te d) , v a r io u s te s t g e n e r a t io n a lg o r i t h m s h a v e b e e n p r o p o s e d t o p ro d u c e s o u n d te s t s u ite s ,
i .e . , s u c h t h a t p r o g r a m s p a s s in g th e te s t c o r r e s p o n d t o c o n f o r m a n t im p le m e n ta t io n s a c c o r d in g to
th e s e le c te d r e la t io n . O n e o f th e w id e s p r e a d r e la t io n s is th e loco c o n fo r m a n c e , w h ic h v e r i f ie s
w h e th e r a n im p le m e n te d s y s te m b e h a v e s as i f i t w e r e a n in p u t - o u t p u t t r a n s i t io n s y s te m th a t is
a lw a y s a b le t o p e r f o r m a n y in p u t a c t io n p o s s ib le i n th e s p e c i f ic a t io n [5 9] .

M a n y М В Т a p p ro a c h e s n o w a d a y s fo c u s o n t e s t in g f r o m U M L m o d e ls . I n t h is c o n te x t , S ta te
D ia g r a m s , M e s s a g e S e q u e n c e C h a r ts a n d S p e c i f i c a t io n a n d D e s c r ip t io n L a n g u a g e (S D L) are
a l t e r n a t iv e ly u s e d . A s p e c t r u m o f a p p ro a c h e s h a s b e e n a n d is b e in g d e v e lo p e d , r a n g in g f r o m
s t r i c t l y f o r m a l t e s t in g a p p ro a c h e s b a s e d o n U M L s ta te c h a r ts [4 3] , t o a p p ro a c h e s t r y i n g t o o v e r
c o m e U M L l im i t a t i o n s r e q u i r in g O C L (O b je c t C o n s t r a in t L a n g u a g e) [6 0] , t o p r a g m a t ic a p
p ro a c h e s u s in g th e d e s ig n d o c u m e n ta t io n a s - is a n d p r o p o s in g a u to m a te d s u p p o r t t o o ls [7] .

- 1 6 5 -

F r e q u e n t ly , e x t r a i n f o r m a t io n (s u c h as th e a c t io n s a t ta c h e d to th e t r a n s i t io n s o r d a ta p r o c e s s in g
b e h a v io r) c o u ld b e a d d e d t o th e m o d e ls [2 4] .

A r e la te d p r o b le m t o m o d e l- b a s e d t e s t in g is t o c h e c k th e c o r r e c tn e s s o f th e m o d e l i t s e l f . D e
p e n d in g o n th e n o t a t io n u s e d , th e a b s t ra c t r e p r e s e n ta t io n o f th e s y s te m c a n b e u s e d f o r s im u la t in g
th e s y s te m b e h a v io u r o r f o r f o r m a l l y c h e c k in g i t s c o r re c tn e s s . I n p a r t ic u la r , m o d e l c h e c k in g
m ig h t p r o v id e e i th e r a f o r m a l v e r i f i c a t io n o r c o u n te r e x a m p le s to v io la t e d p r o p e r t ie s . N o r m a l ly ,
th e s e c o u n te r e x a m p le s a re u s e fu l to g u id e a n a n a ly s t w h e n s e a r c h in g f o r th e r o o t c a u s e o f a
p r o p e r t y v io la t io n . E v e n in th o s e c a s e s i n w h ic h a c o r r e c t m o d e l c o u ld b e a s s u m e d , th is d o e s n o t
c o m p le t e ly s o lv e th e p r o b le m , as e v e n t u a l ly th e m o d e l a n d /o r th e d e r iv e d te s t c a s e s w i l l c h a n g e
d u r in g th e p r o d u c t d e v e lo p m e n t .

5.3 Other Criteria

Specification-based a n d code-based test techniques a re o f te n c o n t r a s te d as f u n c t io n a l v s . s t r u c
t u r a l t e s t in g . T h e s e t w o a p p ro a c h e s t o te s t s e le c t io n a re n o t to b e s e e n as a l te r n a t iv e , b u t r a th e r as
c o m p le m e n ta r y ; i n fa c t , t h e y u s e d i f f e r e n t s o u rc e s o f in f o r m a t io n , a n d h a v e p r o v e d t o h ig h l ig h t
d i f f e r e n t k in d s o f p r o b le m s . T h e y s h o u ld b e u s e d i n c o m b in a t io n , d e p e n d in g o n b u d g e ta r y
c o n s id e r a t io n s [3 5] . M o r e o v e r , b e y o n d c o d e o r s p e c i f ic a t io n s , th e d e r iv a t io n o f te s t c a s e s c a n b e
d o n e s ta r t in g f r o m o th e r i n f o r m a t iv e s o u rc e s . S o m e o th e r im p o r t a n t s tra te g ie s f o r te s t s e le c t io n
a re b r i e f l y o v e r v ie w e d b e lo w .

• Based on tester’s intuition and experience — T h e m o s t p r a c t ic e d te s t s e le c t io n c r i t e r io n
in in d u s t r y p r o b a b ly is s t i l l a d - h o c t e s t in g [3 8] , in w h ic h te s ts a re d e r iv e d r e l y in g o n th e
te s te r ’ s s k i l l , i n t u i t i o n , a n d e x p e r ie n c e w i t h s im i la r p r o g r a m s . In d e e d , e x p e r t te s te rs m a y
p e r f o r m as v e r y g o o d s e le c t io n “ m e c h a n is m s ” (w i t h th e n e c e s s a ry w a r n in g s a g a in s t e x
c lu s iv e ly r e l y in g o n s u c h a s u b je c t iv e s t r a te g y) . I n p a r t ic u la r , a d h o c t e s t in g m ig h t b e u s e
f u l f o r id e n t i f y i n g s p e c ia l te s ts , th o s e n o t e a s i ly c a p tu re d b y f o r m a l iz e d te c h n iq u e s .
E m p i r i c a l in v e s t ig a t io n s [8] s h o w e d i n f a c t t h a t t e s te r ’ s s k i l l is th e f a c t o r th a t m o s t ly a f
fe c ts te s t e f fe c t iv e n e s s in f in d in g fa i lu r e s .

• Exploratory testing [3 9] — A r e la te d t e c h n iq u e is d e f in e d as “ s im u lta n e o u s le a r n in g , te s t
d e s ig n , a n d te s t e x e c u t io n ” ; t h a t is , th e te s ts a re n o t d e f in e d in a d v a n c e in a n e s ta b l is h e d
te s t p la n , b u t a re d y n a m ic a l ly d e s ig n e d , e x e c u te d , a n d m o d i f ie d . T h e e f fe c t iv e n e s s o f e x
p lo r a t o r y t e s t in g r e l ie s o n th e te s te r ’ s k n o w le d g e , w h ic h c a n b e d e r iv e d f r o m v a r io u s
s o u rc e s : o b s e r v e d p r o d u c t b e h a v io r d u r in g te s t in g , f a m i l i a r i t y w i t h th e a p p l ic a t io n , th e
p la t f o r m , th e f a i lu r e p ro c e s s , th e t y p e o f p o s s ib le b u g s , th e r i s k a s s o c ia te d w i t h a p a r t ic u
la r p r o d u c t , a n d s o o n .

• Random — A b a s ic c r i t e r io n is r a n d o m te s t in g , a c c o r d in g t o w h ic h th e te s t in p u ts a re
p ic k e d r a n d o m ly f r o m th e w h o le in p u t d o m a in a c c o r d in g t o a s p e c i f ie d d is t r ib u t io n , i .e . ,
a f t e r a s s ig n in g d i f f e r e n t “ w e ig h t s ” (m o r e p r o p e r ly , p r o b a b i l i t ie s) t o t h e in p u ts . U n d e r th e
u n i f o r m d is t r ib u t io n , n o d is t in c t io n a m o n g th e in p u t s is m a d e , a n d a n y in p u t h a s th e s a m e
p r o b a b i l i t y o f b e in g c h o s e n . A g r o w in g b o d y o f re s e a rc h is , h o w e v e r , in v e s t ig a t in g w a y s
t o m a k e r a n d o m te s t in g m o r e e f f i c i e n t b y e x p lo i t in g th e a v a i la b le in f o r m a t io n o n “ f a i lu r e
p a t te r n s , ” i .e . , c o n t ig u o u s a re a s o f th e in p u t d o m a in w h e r e i t is o b s e rv e d th a t f a i lu r e s te n d
t o c o n c e n t ra te .

V a r io u s a p p ro a c h e s a re p r o p o s e d w i t h i n th e f a m i l y o f A d a p t iv e R a n d o m T e s t in g
(A R T) [1 8] , w h ic h c o m b in e s r a n d o m te s t s e le c t io n w i t h a f i l t e r i n g p ro c e s s t o f a v o r a n

- 1 6 6 -

e v e n s p re a d o f te s t c a s e s t h r o u g h o u t th e in p u t d o m a in : i f s o m e e x e c u te d te s t c a s e s h a v e
n o t r e v e a le d a n y f a i lu r e s , th e a p p ro a c h a s s u m e s th a t th e p a r ts o f th e s y s te m e x e r c is e d b y
t h e s e c a s e s s e e m to b e e r r o r - f r e e o r n e a r ly s o , a n d th u s th a t n e w te s t c a s e s lo c a te d a w a y
f r o m th o s e a re m o r e l i k e l y t o r e v e a l f a i lu r e s . T h e la t t e r a p p r o a c h d i f f e r s f r o m ra n d o m
t e s t i n g u n d e r a n o p e r a t io n a l d is t r ib u t io n (d e s c r ib e d b e lo w) .

• Based on operational usage — T h e te s t e n v i r o n m e n t m u s t r e p r o d u c e th e o p e r a t io n a l e n
v i r o n m e n t o f th e s o f tw a r e as c lo s e ly as p o s s ib le (o p e r a t io n a l p r o f i l e) [3 5] , [4 4] , [5 4] . T h e
id e a is t o in f e r , f r o m th e o b s e r v e d te s t r e s u lts , th e f u t u r e r e l i a b i l i t y o f th e s o f tw a r e w h e n
i n a c tu a l u s e . T o d o t h is , in p u ts a re a s s ig n e d a p r o b a b i l i t y d is t r ib u t io n , o r p r o f i l e , a c c o r d
i n g t o t h e i r o c c u r r e n c e i n a c tu a l o p e r a t io n . I n p a r t ic u la r , S o f tw a r e R e l i a b i l i t y E n g in e e r e d
T e s t in g (S R E T) [4 4] is a te s t in g m e th o d o lo g y e n c o m p a s s in g th e w h o le d e v e lo p m e n t p r o
c e s s , w h e r e b y t e s t in g is “ d e s ig n e d a n d g u id e d b y r e l i a b i l i t y o b je c t iv e s a n d e x p e c te d r e la
t i v e u s a g e a n d c r i t i c a l i t y o f d i f f e r e n t f u n c t io n s in th e f i e l d . ”

• Fault-based — W i t h d i f f e r e n t d e g re e s o f f o r m a l i z a t io n , fa u l t - b a s e d te s t in g te c h n iq u e s
d e v is e te s t c a s e s s p e c i f ic a l l y a im e d a t r e v e a l in g c a te g o r ie s o f l i k e l y o r p r e - d e f in e d fa u lts .
I n p a r t i c u la r , i t is p o s s ib le th a t t h e R M is g iv e n b y e x p e c te d o r h y p o th e s iz e d f a u l t s , s u c h
a s i n e r r o r g u e s s in g , o r m u t a t io n te s t in g . S p e c i f i c a l l y i n e r r o r g u e s s in g [3 8] te s t ca s e s are
d e s ig n e d b y te s te rs t r y in g t o f ig u r e o u t th e m o s t p la u s ib le f a u l t s i n a g iv e n p r o g r a m . A
g o o d s o u r c e o f i n f o r m a t io n is th e h is t o r y o f f a u l t s d is c o v e r e d in e a r l ie r p r o je c ts , as w e l l
a s th e t e s t e r ’ s e x p e r t is e . I n m u t a t io n t e s t in g [5 3] , a m u ta n t is a s l ig h t ly m o d i f ie d v e r s io n
o f th e p r o g r a m u n d e r te s t , d i f f e r i n g f r o m i t b y a s m a l l , s y n ta c t ic c h a n g e . E v e r y te s t case
e x e r c is e s b o t h th e o r ig in a l a n d a l l g e n e ra te d m u ta n ts .

I f a te s t c a s e is s u c c e s s fu l i n i d e n t i f y i n g th e d i f f e r e n c e b e tw e e n th e p r o g r a m a n d a
m u t a n t , th e la t t e r is s a id t o b e k i l l e d . T h e u n d e r ly in g a s s u m p t io n o f m u ta t io n te s t in g , the
c o u p l i n g e f f e c t is th a t , b y l o o k in g f o r s im p le s y n ta c t ic f a u l t s , m o r e c o m p le x b u t re a l
f a u l t s w i l l b e fo u n d . F o r th e t e c h n iq u e t o b e e f f e c t iv e , a h ig h n u m b e r o f m u ta n ts m u s t be
a u t o m a t ic a l l y d e r iv e d in a s y s te m a t ic w a y .

• User observation — A s a b o v e l is t e d , o n e o f t h e o b je c t iv e s f o r t e s t in g is u s a b i l i t y , i . e . , to
t e s t h o w th e f i n a l u s e rs w i l l a p p r o a c h th e s y s te m a n d t o d e te c t p o te n t ia l p r o b le m s e a r ly at
th e u s e r in te r f a c e . U s a b i l i t y p r in c ip le s c a n b e u s e d a s g u id e l in e s t o c h e c k a n d d is c o v e r
p o t e n t ia l p r o b le m s i n th e u s e r in te r fa c e d e s ig n [4 9] . T h e e v a lu a t io n o f s p e c i f ic h e u r is t ic s
in v o lv e s s y s te m a t ic o b s e r v a t io n u n d e r c o n t r o l le d c o n d i t io n s t o d e te r m in e h o w w e l l p e o
p le c a n u s e th e s y s te m s a n d th e in te r fa c e s .

6 . A s p e c t s o f U s e fu ln e s s a n d U s a b i l i t y

U l t im a t e ly , w e a re in te r e s te d i n th e b r o a d e r q u e s t io n o f w h e th e r a s y s te m is g o o d e n o u g h f o r its
in te n d e d p u r p o s e s , i .e . , s y s te m acceptability [4 9] , o f w h ic h u s a b i l i t y is j u s t o n e a s p e c t. N ie ls e n
[4 9] p r o p o s e s a m o d e l o f s y s te m a c c e p t a b i l i t y as a c o m b in a t io n o f s o c ia l a c c e p ta b i l i t y (i .e . ,
w h e th e r p o p u la t io n s w i l l c o n s id e r i t d e s i r a b le o r o f f e n s iv e) a n d p r a c t ic a l a c c e p t a b i l i t y c o n c e rn s .
T h e la t t e r in c lu d e s a m o n g i t s v a r io u s a t t r ib u te s , s u c h as c o s t , r e l ia b i l i t y , c o m p a t ib i l i t y , e tc . , the
c a te g o r y o f u s e fu ln e s s , w h ic h is f u r t h e r c la s s i f ie d i n t o u t i l i t y a n d u s a b i l i t y . U t i l i t y c o v e r s the
f u n c t io n a l a s p e c ts o f a s y s te m , w h e th e r i t d o e s w h a t is n e e d e d , w h e re a s u s a b i l i t y c o n c e r n s a ll
th o s e a s p e c ts i n v o l v i n g h o w th e s y s te m in te r fa c e s w i t h u s e rs .

- 1 6 7 -

U s a b i l i t y e v a lu a t io n c a n b e p e r f o r m e d a t d i f f e r e n t s ta g e s d u r in g th e d e v e lo p m e n t p ro c e s s ,
a n d w i t h v a r y in g d e g re e s o f u s e rs ’ i n v o lv e m e n t . T y p ic a l ly , p r o to t y p e s p r o v id e m e a n s f o r e a r ly
e v a lu a t io n so th a t i t is s t i l l f e a s ib le to in f lu e n c e t h e p r o je c t . T w o b ro a d c la s s e s o f u s a b i l i t y
e v a lu a t io n m e th o d s c a n b e d is t in g u is h e d as u s a b i l i t y te s t in g a n d u s a b i l i t y in s p e c t io n m e th o d s
[2 7] , d e p e n d in g o n w h e th e r th e s y s te m e n d u s e rs a re in v o lv e d o r n o t . U s a b i l i t y in s p e c t io n
e m p lo y s d e v o te d e v a lu a to r s , e .g . , u s a b i l i t y s p e c ia l is t s o r d o m a in e x p e r ts :

• Heuristic evaluation — T h e m o s t c o m m o n u s a b i l i t y in s p e c t io n m e th o d is h e u r is t ic e v a l
u a t io n , in w h ic h th e u s e r in te r fa c e c h a r a c te r is t ic s a re c o m p a r e d a g a in s t u s a b i l i t y p r i n c i
p le s a n d e s ta b l is h e d g u id e l in e s . G e n e r a l ly , m o r e e v a lu a t io n s a re c a r r ie d o u t , as e v id e n c e
h a s d e m o n s t r a te d th a t d i f f e r e n t e v a lu a to r s t e n d to f i n d d i f f e r e n t p r o b le m s [4 9] , so i t is a
g o o d p r a c t ic e , c o m p a t ib le w i t h th e a v a i la b le b u d g e t , t o a g g re g a te m o r e r e p o r t s (r e a s o n a
b l y f i v e , a n d a t le a s t th re e) . I t is , h o w e v e r , im p o r t a n t t o e n s u re th a t th e e v a lu a t io n s a re i n
d e p e n d e n t ; h e n c e th e e v a lu a to r s s h o u ld c a r r y o u t t h e i r o w n a s s e s s m e n t i n is o la t io n .

T h e e v a lu a t io n c o u ld b e s u p e r v is e d b y a n o b s e r v e r o r n o t , w i t h p r o s a n d c o n s f o r e i
t h e r ca s e . A n o b s e r v e r w o u ld d i r e c t l y g e t th e r e s u l t s f r o m th e e v a lu a to r a s s e s s m e n t, th u s
a l le v ia t in g th e b u r d e n o f t h is la t t e r i n d i v id u a l t o w r i t e a d e ta i le d r e p o r t a n d m a k in g c o m
m u n ic a t io n m o r e e f f e c t iv e . O n th e o th e r h a n d , w i t h th e p re s e n c e o f t h e o b s e r v e r , e v a lu a
to r s w o u ld n o t d e l i v e r a n y m o r e f o r m a l r e c o r d s o f th e s e s s io n s a n d th e c o s t o f th e
in s p e c t io n w o u ld in c re a s e .

• Cognitive walkthroughs — A n o t h e r p o p u la r u s a b i l i t y in s p e c t io n m e th o d is th e c o g n i t iv e
w a lk t h r o u g h [6 4] , w h ic h is t a s k - d r iv e n , i .e . , t h e e v a lu a to r e x a m in e s th e s e q u e n c e s o f u s -
e r - r e q u i r e d a c t io n s t o a c c o m p l is h a s p e c i f ie d t a s k . T h is is q u i te a n i n t u i t i v e a p p ro a c h to
e v a lu a t in g th e le a m a b i l i t y o f a u s e r ’ s in t e r f a c e . T h e e v a lu a to r is r e q u i r e d t o a n s w e r , f o r
e a c h ta s k , s o m e p r e c is e q u e s t io n s a b o u t th e u s e r 's e x p e c te d a c t io n . S in c e i t s o r ig in a l p r o
p o s a l b y W h a r to n e t a l. [6 3] i n th e e a r ly 9 0 ’ s, s e v e ra l v a r ia n t s o f th e a p p r o a c h h a v e b e e n
p r o p o s e d , m a in l y a im e d a t m a k in g i t m o r e e f f e c t i v e a n d le s s f o r m a l .

• User-testing approaches (observation sessions) — C o n t r a r y t o in s p e c t io n s c a r r ie d o u t b y
e v a lu a to r s , u s a b i l i t y t e s t in g in v o lv e s le t t in g s o m e u s e rs f a m i l ia r iz e t h e m s e lv e s w i t h a n d
u s e th e s y s te m u n d e r te s t . I t is c le a r ly h i g h l y im p o r ta n t th a t th e s e s s io n re p r o d u c e as
c lo s e ly as p o s s ib le r e a l u s a g e ; h e n c e th e t e s t in g s e s s io n s h o u ld b e a s r e p r e s e n ta t iv e as
p o s s ib le o f f i e l d u s a g e ; b e s id e s , th e t e s t in g s h o u ld c o v e r a l l s y s te m in t e r f a c e fe a tu re s .
S u c h c o n c e r n s a re p a r t o f th e p la n n in g s ta g e .

A s w e h a v e s a id f o r f u n c t io n a l te s t in g , u s a b i l i t y t e s t in g m a y a ls o a d d re s s d i f f e r e n t
g o a ls . N ie ls e n [4 9] d is t in g u is h e s b e tw e e n “ f o r m a t i v e e v a lu a t io n . ” a im in g a t h ig h l ig h t in g
p o t e n t ia l u s a b i l i t y is s u e s a n d im p r o v in g th e in te r fa c e , a n d “ s u m m a t iv e e v a lu a t io n ” a im
in g a t a s s e s s in g a n d c o m p a r in g d i f f e r e n t in te r fa c e s . T h e r e a re d i f f e r e n t te c h n iq u e s th a t
c a n b e a p p l ie d .

T h e m o s t c o m m o n o n e f o r f o r m a t i v e e v a lu a t io n is t h in k in g - a lo u d . T h e te c h n iq u e
s im p ly c o n s is ts o f r e q u i r in g th e u s e r to c o n t in u o u s ly t h in k a lo u d w h i l e u s in g th e s y s te m .
T h e s t r e n g th o f th e a p p r o a c h is t h a t th e t e s t in g n o t o n ly e v id e n c e s p o te n t ia l p r o b le m s , b u t
a ls o h in t s a t t h e i r c a u s e s . H o w e v e r , v e r b a l i z in g th e i r t h o u g h ts a lo u d m a y s e e m u n n a tu r a l
t o m a n y p e o p le ; to p r e v e n t s u c h a n is s u e , a n e x p e r im e n te r c o u ld a s s is t b y p r o m p t in g th e
u s e rs w i t h e n q u ir ie s a b o u t w h a t t h e y a re t h in k in g , b u t h e /s h e s h o u ld n o t in te r f e r e w i t h th e

- 1 6 8 -

te s t s e s s io n b y p r o v id in g a n y a d d i t io n a l i n f o r m a t io n . A n o p p o s i te a p p r o a c h is ta k e n in
c o a c h in g , w h e r e a n e x p e r t g u id e s th e u s e rs t o s p e e d i ly le a r n h o w to u s e th e s y s te m .

A n a l t e r n a t iv e t o t h in k in g - a lo u d is constructive interaction, i n w h ic h t w o u s e rs te s t
th e s y s te m in te r f a c e to g e th e r , so th a t t h e y w i l l b e m o r e n a t u r a l ly in c l in e d to v e r b a l is e
t h e i r t h i n k i n g to c o m m u n ic a te w i t h e a c h o th e r .

O t h e r a p p ro a c h e s f o r u s a b i l i t y t e s t in g in c lu d e f i e ld o b s e r v a t io n , w h ic h j u s t c o n s is ts o f
o b s e r v in g th e u s e rs w o r k in g i n t h e i r n a tu r a l e n v ir o n m e n t . T h e o b s e r v a t io n m a y b e c o n
d u c te d t h r o u g h u n o b t r u s iv e v is i t s o r t h r o u g h c a m e r a r e c o r d in g . E v e n le s s o b t r u s iv e is d a
ta l o g g in g , i .e . , r e c o r d s o f s e s s io n lo g s a re a n a ly s e d , u s u a l ly to g e t in te r e s t in g
p e r fo r m a n c e m e a s u re s o f u s e r ’ s s e s s io n s .

F in a l l y , user’s questionnaires o r interviews c a n a ls o p r o v id e u s e fu l , a l th o u g h le s s d i
r e c t , in f o r m a t io n .

7 . T e s t M e a s u r e m e n t s

Measurements a re n o w a d a y s a p p l ie d i n e v e r y s c ie n t i f i c f i e l d f o r q u a n t i t a t i v e ly e v a lu a t in g
p a r a m e te r s o f in te r e s t , u n d e r s ta n d in g th e e f fe c t iv e n e s s o f te c h n iq u e s o r t o o ls , th e p r o d u c t i v i t y o f
d e v e lo p m e n t a c t i v i t i e s (s u c h as t e s t in g o r c o n f ig u r a t io n m a n a g e m e n t) , th e q u a l i t y o f p r o d u c ts ,
a n d m o r e . I n p a r t ic u la r , i n th e s o f tw a r e e n g in e e r in g c o n te x t t h e y a re u s e d f o r g e n e r a t in g q u a n t i t a
t iv e d e s c r ip t io n s o f k e y p ro c e s s e s a n d p r o d u c ts , a n d c o n s e q u e n t ly c o n t r o l l i n g s o f tw a r e b e h a v io r
a n d r e s u l t s . B u t th e s e a re n o t th e o n ly re a s o n s f o r u s in g m e a s u re m e n t ; i t c a n p e r m i t d e f i n i t i o n o f
a b a s e l in e f o r u n d e r s ta n d in g th e n a tu r e a n d im p a c t o f p r o p o s e d c h a n g e s . M o r e o v e r , m e a s u re m e n t
a l lo w s m a n a g e r s a n d d e v e lo p e r s t o m o n i t o r th e e f fe c ts o f a c t iv i t ie s a n d c h a n g e s o n a l l a s p e c ts o f
d e v e lo p m e n t . I n t h is w a y , a c t io n s t o c h e c k w h e th e r t h e f i n a l o u tc o m e d i f f e r s s ig n i f i c a n t l y f r o m
p la n s c a n b e t a k e n a s e a r ly as p o s s ib le [3 7] .

W e h a v e a l r e a d y h in te d a t u s e fu l te s t m e a s u re s t h r o u g h o u t th e c h a p te r . I t c a n b e u s e fu l to
b r ie f l y s u m m a r iz e t h e m a lto g e th e r . C o n s id e r in g th e t e s t in g p h a s e , m e a s u r e m e n t c a n b e a p p l ie d to
e v a lu a te th e p r o g r a m u n d e r te s t , o r th e s e le c te d te s t se t, o r e v e n f o r m o n i t o r in g th e te s t in g
p ro c e s s i t s e l f [1 0] .

7.1 Evaluation of the Program under Test

F o r e v a lu a t in g th e p r o g r a m u n d e r te s t , th e f o l l o w i n g m e a s u re m e n ts c a n b e a p p l ie d :

• Program measurement can aid in test planning and design — C o n s id e r in g th e p r o g r a m
u n d e r te s t , th r e e d i f f e r e n t c a te g o r ie s o f m e a s u r e m e n t c a n b e a p p l ie d as r e p o r te d i n [3 7] :

o Linguistic measures — T h e s e a re b a s e d o n p r o p r ie t ie s o f th e p r o g r a m o r o f th e s p e c i
f i c a t i o n te x t . T h is c a te g o r y in c lu d e s , f o r in s ta n c e , th e m e a s u r e m e n t o f S o u rc e L in e s o f
C o d e (L O C) , s ta te m e n ts , th e n u m b e r o f u n iq u e o p e ra n d s o r o p e r a to r s , a n d f u n c t io n
p o in t s .

o Structural measures — T h e s e a re b a s e d o n s t r u c tu r a l r e la t io n s b e tw e e n o b je c ts in th e
p r o g r a m a n d c o m p r is e c o n t r o l f l o w o r d a ta f l o w c o m p le x i t y . T h e s e c a n in c lu d e m e a s
u r e m e n ts r e la t iv e t o th e s t r u c t u r in g o f p r o g r a m m o d u le s , e .g ., i n te r m s o f th e f r e q u e n
c y w i t h w h ic h m o d u le s c a l l e a c h o th e r .

o Hybrid measures — T h e s e m a y r e s u l t f r o m th e c o m b in a t io n o f s t r u c tu r a l a n d l i n g u is
t i c p r o p e r t ie s .

- 1 6 9 -

• Fault density — T h is is a w id e l y u s e d m e a s u re in in d u s t r ia l c o n te x ts a n d fo re s e e s th e
c o u n t in g o f th e d is c o v e r e d f a u l t s a n d t h e i r c la s s i f i c a t io n b y t h e i r t y p e . F o r e a c h f a u l t
c la s s , f a u l t d e n s i t y is m e a s u re d b y th e r a t io b e tw e e n th e n u m b e r o f f a u l t s f o u n d a n d th e
s iz e o f th e p r o g r a m [5 3] .

• Life testing, reliability evaluation — B y a p p ly in g th e o p e r a t io n a l te s t in g f o r a s p e c i f ic
p r o d u c t , i t is p o s s ib le e i th e r t o e v a lu a te i t s r e l i a b i l i t y a n d d e c id e i f t e s t in g c a n b e s to p p e d ,
o r to a c h ie v e a n e s ta b l is h e d le v e l o f r e l i a b i l i t y . I n p a r t ic u la r , Reliability Growth m o d e ls
c a n b e u s e d f o r p r e d ic t in g th e p r o d u c t r e l i a b i l i t y [4 4] .

7.2 Evaluation of the Tests Performed

F o r e v a lu a t in g th e s e t o f te s t c a s e s im p le m e n te d , th e f o l l o w i n g m e a s u re s c a n b e a p p l ie d :

• Coverage/thoroughness measures — S o m e a d e q u a c y c r i t e r ia r e q u i r e e x e r c is in g a s e t o f
e le m e n ts i d e n t i f i e d i n th e p r o g r a m o r i n th e s p e c i f ic a t io n b y te s t in g . In t h is c a s e , d a r in g
te s t in g th e n u m b e r o f e le m e n ts c o v e r e d b y t e s t ca se s is m o n i t o r e d a n d t h e c o v e r a g e (e x
p re s s e d as a p e r c e n ta g e) is d e r iv e d as th e r a t io b e tw e e n th e c o v e r e d e le m e n ts a n d th e t o t a l
n u m b e r . T h e c o v e r a g e c a n b e , f o r in s ta n c e , r e la t i v e t o th e p a th s , th e s ta te m e n ts o r th e
b ra n c h e s , as w e l l as th e n u m b e r o f f u n c t i o n a l i t i e s e x e r c is e d d u r in g t e s t in g [5 4] .

• Effectiveness — I n g e n e ra l, a n o t io n o f e f fe c t iv e n e s s m u s t b e a s s o c ia te d w i t h a te s t c a s e
o r a n e n t i r e te s t s u i te , b u t te s t e f fe c t iv e n e s s d o e s n o t y i e ld a u n iv e r s a l in t e r p r e ta t io n .

S o m e p e o p le m is c o n c e iv e th e m e a n in g o f c o v e r a g e m e a s u re s a n d c o n fu s e c o v e r a g e w i t h e f
fe c t iv e n e s s . M o r e p r o p e r ly , c o v e ra g e is r e la t iv e t o th e te s ts th e m s e lv e s a n d m e a s u re s t h e i r
th o r o u g h n e s s i n e x e r c is in g th e r e fe r e n c e m o d e l RM. B e in g s y s te m a t ic a n d t r y in g n o t t o le a v e
e i th e r e le m e n t o f c o d e o r o f t h e s p e c i f ic a t io n u n te s te d i s c e r t a in ly a p r u d e n t n o r m , b u t s h o u ld b e
p r o p e r ly u n d e r s to o d f o r w h a t i t is .

A r e a l m e a s u re o f te s t e f fe c t iv e n e s s s h o u ld b e r e la t i v e t o th e p r o g r a m a n d s h o u ld a l l o w t e s t
e rs to q u a n t i f y th e e f f e c t o f te s t in g o n th e p r o g r a m ’s a t t r ib u t e o f in te r e s t , s o th a t th e te s t p ro c e s s
c a n b e k e p t u n d e r c o n t r o l .

7.3 Measures for Monitoring the Testing Process

W e h a v e a lr e a d y m e n t io n e d th a t o n e i n t u i t i v e a n d w id e l y u s e d p r a c t ic e is t o c o u n t th e n u m b e r o f
f a i lu r e s o r f a u l t s d e te c te d . T h e te s t c r i t e r io n t h a t f o u n d th e h ig h e s t n u m b e r c o u ld b e d e e m e d th e
m o s t u s e fu l . E v e n t h is m e a s u re h a s d r a w b a c k s : a s te s ts a re g a th e r e d a n d m o r e a n d m o r e fa u l t s
a re r e m o v e d , w h a t c a n w e in f e r a b o u t th e r e s u l t in g q u a l i t y o f th e te s te d p r o g r a m ? F o r in s ta n c e , i f
w e c o n t in u e te s t in g a n d n o n e w fa u l t s a re f o u n d f o r a w h i l e , w h a t d o e s th is im p ly ? T h a t th e
p r o g r a m is “ c o r r e c t ” o r t h a t th e te s ts a re in e f f e c t iv e ?

I t is p o s s ib le th a t s e v e ra l d i f f e r e n t f a i lu r e s a re c a u s e d b y a s in g le f a u l t , a s w e l l as t h a t a s in g le
f a i lu r e is c a u s e d b y d i f f e r e n t fa u l t s . W h a t s h o u ld b e b e t t e r e s t im a te d in a p r o g r a m : i t s n u m b e r o f
c o n ta in e d “ f a u l t s ” o r h o w m a n y “ f a i lu r e s ” i t e x p o s e d ? E i t h e r e s t im a te ta k e n a lo n e c a n b e t r i c k y :
i f f a i lu r e s a re c o u n te d i t is p o s s ib le t o e n d th e t e s t in g w i t h a p e s s im is t ic e s t im a te o f p r o g r a m
“ in t e g r i t y , ” as o n e f a u l t m a y p r o d u c e m u l t i p le f a i lu r e s . O n th e o th e r h a n d , i f f a u l t s a re c o n s id
e re d , w e c o u ld e v a lu a te a t th e s a m e le v e l h a r m f u l f a u l t s th a t p r o d u c e f r e q u e n t fa i lu r e s , a n d
in o f f e n s iv e f a u l t s th a t w o u ld r e m a in h id d e n f o r y e a rs o f o p e r a t io n . I t is h e n c e c le a r t h a t th e t w o
e s t im a te s a re b o th im p o r t a n t d u r in g d e v e lo p m e n t a n d a re p r o d u c e d b y d i f f e r e n t (c o m p le m e n t a r y)
ty p e s o f a n a ly s is .

- 1 7 0 -

T h e m o s t o b je c t iv e m e a s u re is a s ta t is t ic a l o n e : i f th e e x e c u te d te s ts c a n b e ta k e n as a r e p r e
s e n ta t iv e s a m p le o f p r o g r a m b e h a v io r , th e n w e c a n m a k e a s ta t is t ic a l p r e d ic t io n o f w h a t w o u ld
h a p p e n f o r th e n e x t te s ts , s h o u ld w e c o n t in u e to u s e th e p r o g r a m i n th e s a m e w a y . T h is re a s o n in g
is th e b a s is o f s o f tw a r e r e l ia b i l i t y .

D o c u m e n t a t io n a n d a n a ly s is o f te s t r e s u lts r e q u ir e d i s c ip l in e a n d e f f o r t , b u t f o r m a n i m
p o r ta n t r e s o u r c e o f a n o r g a n iz a t io n f o r p r o d u c t m a in te n a n c e a n d f o r im p r o v in g f u t u r e p r o je c ts .

8 . T e s t P r o c e s s

W e h a v e s e e n th a t th e re e x is t v a r io u s te s t o b je c t iv e s , m a n y te s t s e le c t io n s tra te g ie s a n d d i f f e r i n g
s ta g e s o f th e l i f e c y c le o f a p r o d u c t d u r in g w h ic h t e s t in g c a n b e a p p l ie d . B e fo r e a c t u a l ly c o m
m e n c in g a n y te s t d e r iv a t io n a n d e x e c u t io n , a l l th e s e a s p e c ts m u s t b e o r g a n iz e d in t o a c o h e re n t
f r a m e w o r k . I n d e e d , s o f tw a r e t e s t in g i t s e l f c o n s is ts o f a c o m p o u n d p ro c e s s f o r w h ic h d i f f e r e n t
m o d e ls c a n b e a d o p te d .

A t r a d i t i o n a l te s t p ro c e s s in c lu d e s s e q u e n t ia l p h a s e s , n a m e ly te s t p la n n in g , te s t d e s ig n , te s t
e x e c u t io n , a n d te s t r e s u lts e v a lu a t io n .

8.J Test Planning

T e s t p la n n in g is th e v e r y f i r s t p h a s e a n d o u t l in e s th e s c o p e o f t e s t in g a c t iv i t ie s , f o c u s in g in
p a r t i c u la r o n th e o b je c t iv e s , re s o u rc e s a n d s c h e d u le , i .e . , i t c o v e r s m o r e th e m a n a g e r ia l a s p e c ts o f
te s t in g , r a th e r th a n th e d e ta i l o f t e c h n iq u e s a n d th e s p e c i f ic te s t ca s e s . A te s t p la n c a n a l r e a d y be
p r e p a r e d d u r in g th e r e q u ir e m e n ts s p e c i f ic a t io n p h a s e .

8.2 Test Design

T e s t d e s ig n is a c r u c ia l p h a s e o f s o f tw a r e te s t in g , in w h ic h th e o b je c t iv e s a n d th e fe a tu r e s t o be
te s te d a n d th e te s t s u ite s a s s o c ia te d w i t h e a c h o f th e m a re d e f in e d ([2 9] , [3 0]) . A ls o th e le v e ls o f
te s t in g a re p la n n e d . T h e n , i t is d e c id e d w h a t k in d o f a p p r o a c h w i l l b e a d o p te d a t e a c h le v e l a n d
f o r e a c h fe a tu r e t o b e te s te d . T h is a ls o in c lu d e s d e c id in g a s to p p in g r u le f o r te s t in g . D u e t o t im e
o r b u d g e t c o n s t r a in ts , a t t h is p o in t i t c a n b e d e c id e d t h a t t e s t in g w i l l c o n c e n t r a te o n s o m e o f th e
m o r e c r i t i c a l p a r ts .

S p e c i f i c a l l y , t h e f o l l o w in g te s t d e s ig n s u b -s te p s c a n b e id e n t i f ie d :

• Establishing test objectives — T h e te s t o b je c t iv e s , th e fe a tu re s a n d c o m b in a t io n s o f fe a
tu r e s t h a t w i l l b e th e o b je c ts o f t h e t e s t in g a re id e n t i f i e d a n d c la s s i f ie d in t o a h ie r a r c h y . In
p a r t ic u la r , f o r e a c h fe a tu r e b o th th e r e fe r e n c e t o th e a s s o c ia te d r e q u ir e m e n ts i n th e re
q u i r e m e n ts s p e c i f ic a t io n o r d e s ig n d e s c r ip t io n a n d a s p e c i f ic te s t g r o u p m u s t b e f i x e d to
e n s u re te s t t r a c e a b i l i t y .

• Define the test case specification — T h e r e f in e m e n ts t o th e a p p r o a c h id e n t i f i e d in th e
p r e v io u s s u b -s te p a re d e v e lo p e d a n d th e te s t c a s e s a re c o n s e q u e n t ly in d iv id u a te d .

• Design test procedures — U s in g th e a v a i la b le in f o r m a t io n , f o r in s ta n c e , th e r e q u ir e m e n ts
d o c u m e n ta t io n o r th e te s t c a s e s s p e c i f ic a t io n , f o r e a c h te s t g r o u p th e c o r r e s p o n d in g te s t
p r o c e d u r e s a re e s ta b l is h e d a n d d e f in e d . A te s t p r o c e d u r e p r o v id e s a d e ta i le d d e s c r ip t io n
o f th e s te p s t o b e f o l l o w e d f o r te s t p r e p a r a t io n a n d e x e c u t io n .

• Define pass/fail criteria — T h e e x p e c te d r e s u l t f o r e a c h te s t p r o c e d u r e , o r m o r e g e n e r a l
l y th e c r i t e r i a to b e u s e d t o d e te r m in e w h e th e r a te s t p r o c e d u r e h a s p a s s e d o r f a i le d , are
a ls o d e c id e d .

- 1 7 1 -

A n e m e r g in g a n d q u i te d i f f e r e n t p r a c t ic e f o r t e s t in g is t e s t - d r iv e n d e v e lo p m e n t , a ls o c a l le d
Test-First programming, w h ic h fo c u s e s o n th e d e r iv a t io n o f (u n i t a n i a c c e p ta n c e) te s ts b e fo re
c o d in g . T h is a p p r o a c h is a k e y p r a c t ic e o f m o d e m A g i l e d e v e lo p m e n t a p p ro a c h e s s u c h as Ex
treme Programming (X P) a n d Rapid Application Development (R A D) [9] . T h e le a d in g p r in c ip le
o f s u c h a p p ro a c h e s is to m a k e d e v e lo p m e n t m o r e l i g h t w e ig h t b y k e e p in g d e s ig n s im p le a n d
r e d u c in g as m u c h as p o s s ib le th e r u le s a n d th e a c t i v i t i e s o f t r a d i t io n a l p ro c e s s e s f e l t b y d e v e lo p
e rs t o b e o v e r w h e lm in g a n d u n p r o d u c t iv e , f o r in s ta n c e d o c u m e n ta t io n , f o r m a l iz e d c o m m u n ic a
t io n , o r a d v a n c e p la n n in g o f r i g i d m i le s to n e s . T h e r e fo r e , a t r a d i t io n a l te s t d e s ig n p h a s e as
d e s c r ib e d a b o v e n o lo n g e r e x is ts , b u t n e w te s ts a re c o n t in u o u s ly c re a te d , a s o p p o s e d to a v is io n
o f d e s ig n in g te s t s u ite s u p f r o n t . I n th e X P p a r a d ig m , th e le a d in g p r in c ip le i s t o “ c o d e a l i t t l e , te s t
a l i t t l e . . . ” s o t h a t d e v e lo p e r s a n d c u s to m e r s c a n g e t im m e d ia te fe e d b a c k .

8.3 Test Execution

E x e c u t in g th e te s t c a s e s s p e c i f ie d i n te s t d e s ig n m a y e n t a i l v a r io u s d i f f i c u l t ie s . B e lo w w e d is c u s s
th e v a r io u s a c t iv i t ie s im p l ie d i n la u n c h in g th e te s ts , a n d d e c id in g th e te s t o u tc o m e . W e a ls o h in t
a t t o o ls f o r a u to m a t in g t e s t in g a c t iv i t ie s .

F o r c in g th e e x e c u t io n o f th e te s t c a s e s (m a n u a l ly o r a u t o m a t ic a l ly) d e r iv e d a c c o r d in g to o n e
o f th e c r i t e r ia p re s e n te d i n S e c t io n 5 m ig h t n o t b e so o b v io u s .

I f a c o d e -b a s e d c r i t e r i o n is f o l lo w e d , i t p r o v id e s u s w i t h e n t r y - e x i t p a th s o v e r th e f lo w g r a p h
t h a t m u s t b e ta k e n , a n d te s t in p u ts th a t e x e c u te th e c o r r e s p o n d in g p r o g r a m p a th s n e e d t o b e
fo u n d . A c t u a l l y , as a l r e a d y s a id , c o d e -b a s e d is b e t te r u s e d as a n a d e q u a c y c r i t e r io n ; h e n c e , in
p r in c ip le , w e s h o u ld n o t l o o k f o r in p u ts a d h o c t o e x e c u te th e e n t i t ie s n o t c o v e r e d , b u t r a th e r use
th e c o v e r a g e a n a ly s is r e s u l ts t o u n d e r s ta n d th e w e a k n e s s e s in th e e x e c u te d te s t c a s e s . H o w e v e r ,
i n th e c y c le o f te s t in g , m o n i t o r in g u n e x e c u te d e le m e n ts , f i n d in g a d d i t io n a l te s t c a s e s , o f te n
c o n d u c te d u n d e r p re s s u re , f i n d in g th o s e te s t c a s e s th a t in c re a s e c o v e r a g e c a n b e v e r y d i f f i c u l t .

I f a s p e c i f ic a t io n - b a s e d c r i t e r io n is a d o p te d , th e te s t c a s e s c o r r e s p o n d to s e q u e n c e s o f e v e n ts ,
w h ic h a re s p e c i f ie d a t th e a b s t r a c t io n le v e l o f th e s p e c i f ic a t io n s ; m o re p r e c is e ly , t h e y a re la b e ls
w i t h i n th e s ig n a tu r e o f th e a d o p te d s p e c i f ic a t io n la n g u a g e . T o d e r iv e c o n c r e te te s t c a s e s , th e s e
la b e ls m u s t b e t r a n s la te d i n t o c o r r e s p o n d in g la b e ls a t c o d e le v e l (e .g . , m e t h o d in v o c a t io n s) , a n d
e v e n t u a l ly in t o e x e c u t io n s ta te m e n ts t o b e la u n c h e d o n th e u s e r in te r fa c e o f th e te s t t o o l b e in g
u s e d .

I n a d d i t io n t o t r a n s la t in g th e s p e c i f ie d te s t c a s e s i n t o e x e c u ta b le r u n s , a n o th e r r e q u i r e m e n t is
th e a b i l i t y t o p u t th e s y s te m in t o a s ta te f r o m w h ic h th e s p e c i f ie d te s ts c a n b e la u n c h e d . T h is is
s o m e t im e s r e fe r r e d t o as th e test precondition. I n s y n c h r o n o u s s y s te m s , b e fo r e a s p e c i f ic c o m
m a n d c a n b e e x e c u te d , s e v e ra l r u n s in s e q u e n c e a re r e q u i r e d t o p u t th e s y s te m in t o th e s u i ta b le
te s t p r e c o n d i t io n . A n e f f e c t iv e w a y to d e a l w i t h t h is is to a r ra n g e th e s e le c te d te s t c a s e s in t o
s u i ta b le s e q u e n c e s , s u c h t h a t e a c h te s t le a v e s th e s y s te m i n a s ta te th a t is th e p r e c o n d i t io n f o r th e
s u b s e q u e n t te s t i n th e s e q u e n c e . T h is a p p r o a c h c a n n o t e a s i ly s c a le u p to th e in t e g r a t io n t e s t in g o f
la rg e , c o m p le x s y s te m s , i n w h ic h th e s p e c i f ie d te s ts in v o lv e a c t io n s s p e c i f ic t o e x e r c is e a s u b s y s
te m . I t c a n b e a l le v ia te d b y a lw a y s d e f in in g th e te s ts a t th e e x te r n a l in te r fa c e s , i .e . , a s c o m p le te
I / O s e q u e n c e s .

A n e w d i f f i c u l t y is a d d e d i n c o n c u r r e n t s y s te m s a l l o w in g f o r n o n d e te r m in is m . I n t h is ca s e ,
th e s y s te m b e h a v io r n o t o n ly d e p e n d s o n th e in t e r n a l s ta tu s , b u t a ls o o n t h e in t e r le a v in g o f e v e n ts
w i t h s y s te m ta s k s a n d o th e r c o n c u r r e n t ly r u n n in g s y s te m s . W h e n te s t in g r e v e a ls a f a i lu r e , th e

- 1 7 2 -

ta s k o f r e c r e a t in g th e c o n d i t io n s th a t m a d e i t o c c u r is te r m e d te s t replay. I n th e d e t e r m in is t ic
a p p ro a c h , o r i g i n a l l y in t r o d u c e d i n [1 7] , e x a c t r e p la y is o b ta in e d b y m e a n s o f m e c h a n is m s th a t
f i r s t c a p tu re th e o c c u r r e n c e o f s y n c h r o n iz a t io n e v e n ts a n d m e m o r y a c c e s s , a n d t h e n f o r c e th e
s a m e o r d e r o f e v e n ts w h e n th e te s t is r e p la y e d . S u c h a n a p p r o a c h is c le a r ly h ig h l y in t r u s iv e , a s i t
r e q u ire s h e a v y in s t r u m e n t a t io n o f th e s y s te m . O th e r w is e , a m o r e p r a g m a t ic a p p r o a c h is t o k e e p
r e p e a t in g a t e s t u n t i l th e d e s ir e d s e q u e n c e is o b s e rv e d (f i x i n g a m a x im u m n u m b e r o f i t e r a t io n s) .

A n o r t h o g o n a l p r o b le m a r is e s d u r in g in te g r a t io n t e s t in g , w h e n te s t in g o n ly p a r ts o f a la r g e r
s y s te m . I n d e e d , th e t e s t in g ta s k i t s e l f r e q u ir e s a la r g e p r o g r a m m in g e f f o r t : to b e a b le t o te s t a
p ie c e o f a l a r g e s y s te m w e n e e d t o s im u la te th e s u r r o u n d in g e n v i r o n m e n t o f t h e p ie c e u n d e r te s t
(i . e . , th e c a l le r a n d c a l le d m e th o d s) . T h is is d o n e b y d e v e lo p in g a d h o c d r iv e r s a n d s tu b s [5 4] ;
s o m e c o m m e r c ia l t e s t t o o ls e x is t t h a n c a n f a c i l i t a t e th e s e ta s k s (s e e S e c t io n 7 .3) .

8.4 Test Documentation

Documentation is a n in t e g r a l p a r t o f th e f o r m a l i z a t io n o f th e te s t p ro c e s s , w h ic h c o n t r ib u te s to
th e c o o r d in a t io n a n d c o n t r o l o f t h e t e s t in g p h a s e . S e v e r a l ty p e s o f d o c u m e n ts m a y b e a s s o c ia te d
w i t h th e t e s t in g a c t i v i t i e s ([5 4] , [2 9]) : T e s t P la n , T e s t D e s ig n S p e c i f ic a t io n , T e s t C a s e S p e c i f ic a
t io n , T e s t P r o c e d u r e S p e c i f i c a t io n , T e s t L o g , a n d T e s t I n c id e n t o r P r o b le m R e p o r t . W e o u t l i n e a
b r i e f d e s c r ip t io n o f e a c h o f th e m , r e f e r r in g t o IE E E S ta n d a r d f o r S o f tw a r e T e s t D o c u m e n ta t io n
[2 9] f o r a c o m p le t e d e s c r ip t io n o f t e s t d o c u m e n ts a n d o f t h e i r r e la t io n s h ip w i t h o n e a n o th e r a n d
w i t h th e t e s t in g p ro c e s s .

• Test plan — D e f in e s te s t i t e m s , fe a tu re s t o b e o r n o t t o b e te s te d , a p p ro a c h t o b e f o l lo w e d
(a c t i v i t i e s , t e c h n iq u e s a n d t o o l [s] to b e u s e d) , p a s s / f a i l c r i t e r ia , th e d e l iv e r e d d o c u m e n ts ,
ta s k s t o b e p e r f o r m e d d u r in g th e t e s t in g p h a s e , e n v i r o n m e n t a l n e e d s (h a r d w a r e , c o m m u
n ic a t i o n a n d s o f tw a r e f a c i l i t i e s) , p e o p le a n d s t a f f r e s p o n s ib le f o r m a n a g in g , d e s ig n in g ,
p r e p a r in g , a n d e x e c u t in g th e ta s k s , s t a f f in g n e e d s , s c h e d u le (in c lu d in g m i le s to n e s , e s t i
m a t io n o f t im e r e q u i r e d t o d o e a c h ta s k , p e r io d o f u s e o f e a c h te s t in g r e s o u rc e) .

• Test design specification — D e s c r ib e s th e fe a tu r e s t o b e te s te d a n d t h e i r a s s o c ia te d te s t
se t.

• Test case specification — D e f in e s a te s t ca s e a n d th e in p u t / o u t p u t r e q u ir e d f o r e x e c u t in g
i t as w e l l a s a n y s p e c ia l c o n s t r a in ts o r in te r - c a s e d e p e n d e n c ie s . A s k e le to n is d e p ic te d in
T a b le 1.

• Test procedure specification — S p e c i f ie s th e s te p s a n d th e s p e c ia l r e q u ir e m e n ts t h a t are
n e c e s s a r y f o r e x e c u t in g a s e t o f te s t ca se s .

• Test log — D o c u m e n ts th e r e s u l t o f a te s t e x e c u t io n , in c lu d in g : th e o b s e r v e d f a i lu r e s (i f
a n y) ; th e i n f o r m a t io n n e e d e d f o r r e p r o d u c in g th e m , a n d lo c a t in g a n d f i x i n g th e c o r r e
s p o n d in g f a u l t s ; th e i n f o r m a t io n n e c e s s a ry f o r e s ta b l is h in g w h e th e r th e p r o je c t is c o m
p le t e ; a n y a n o m a lo u s e v e n ts . S e e a s u m m a r y i n T a b le 2 .

• Test incident or problem report — P r o v id e s a d e s c r ip t io n o f th e in c id e n ts in c lu d in g in
p u t s , e x p e c te d a n d o b s e r v e d r e s u lts , a n o m a l ie s , d a te a n d t im e , p ro c e d u r e s te p s , e n v i r o n
m e n t , a t te m p ts t o re p e a t th e te s ts , o b s e r v a t io n s a n d r e fe re n c e to th e te s t c a s e , a n d
p r o c e d u r e s p e c i f ic a t io n a n d te s t lo g .

- 1 7 3 -

T a b l e 1 : S c h e m e o f a p o s s i b l e t e s t c a s e

T e s t C a s e S p e c i f i c a t i o n s

T e s t c a s e I D T h e u n iq u e i d e n t i f i e r a s s o c ia te d w i t h t h e te s t c a s e

T e s t i t e m a n d p u r p o s e T h e i t e m a n d fe a tu r e s e x e rc is e d

I n p u t d a t a T h e e x p l i c i t l i s t o f th e in p u t s r e q u i r e d f o r e x e c u t in g th e
te s t c a s e (v a lu e , f i l e d a ta b a s e , e tc .)

T e s t c a s e b e h a v io r D e s c r ip t io n o f th e e x p e c te d te s t c a s e b e h a v io r

O u t p u t d a t a T h e l i s t o r th e o u tp u t s a d m i t te d f o r e a c h fe a tu r e in v o lv e d i n th e
te s t c a s e , p o s s ib ly a s s o c ia te d w i t h to le r a n c e v a lu e s

E n v i r o n m e n t a l s e tu p T h e h a r d w a r e / s o f t w a r e c o n f ig u r a t io n r e q u i r e d

S p e c i f i c p r o c e d u r a l
r e q u i r e m e n t s

T h e c o n s t r a in ts a n d th e s p e c ia l p r o c e d u r e s r e q u i r e d

T e s t c a s e d e p e n d e n c ie s T h e I D s o f t h e t e s t ca se s t h a t m u s t b e e x e c u te d p r i o r to t h is te s t
ca se

• T h e s e ta b le s r e f e r to a t r a d i t i o n a l p la n - d r i v e n d e v e lo p m e n t p ro c e s s . O n t l ie o th e r h a n d ,
th e a lr e a d y m e n t io n e d A g i l e p ro c e s s e s p r io r i t i z e w o r k in g s o f tw a r e a n d fa c e - to - fa c e
c o m m u n ic a t io n o v e r c o m p r e h e n s iv e d o c u m e n ta t io n . I n te s t d r iv e n d e v e lo p m e n t in p a r t ic
u la r , th e te s t c a s e s th e m s e lv e s b e c o m e a “ w o r k in g s p e c i f ic a t io n ” d o c u m e n t .

9 . T e s t M a n a g e m e n t

T h e m a n a g e m e n t p ro c e s s e s f o r s o f tw a r e d e v e lo p m e n t c o n c e r n d i f f e r e n t a c t i v i t i e s m a in ly s u m m a
r iz e d i n [4 8] : i n i t i a t io n a n d s c o p e d e f i n i t i o n , p la n n in g , e x e c u t io n a n d c o n t r o l , r e v ie w a n d e v a lu a
t io n , c lo s u r e . T h e s e a c t i v i t i e s a ls o c o n c e r n th e m a n a g e m e n t o f th e te s t p ro c e s s .

I n th e testing phase a v e r y im p o r t a n t c o m p o n e n t o f s u c c e s s fu l t e s t in g is a c o l la b o r a t iv e a t t i
tu d e to w a r d s t e s t in g a n d q u a l i t y a s s u ra n c e a c t i v i t i e s . M a n a g e r s h a v e a k e y r o le i n f o s te r in g a
g e n e r a l ly fa v o r a b le r e c e p t io n t o w a r d s f a i lu r e d is c o v e r y d u r in g d e v e lo p m e n t ; f o r in s ta n c e , b y
p r e v e n t in g a m in d s e t o f c o d e o w n e r s h ip a m o n g p r o g r a m m e r s , s o th a t t h e y w i l l n o t f e e l d e fe n s iv e
a b o u t o r r e s p o n s ib le f o r f a i lu r e s r e v e a le d i n t h e i r c o d e . M o r e o v e r , th e t e s t in g p h a s e s c o u ld b e
g u id e d b y v a r io u s a im s , f o r e x a m p le , r is k - b a s e d t e s t in g , w h ic h u s e s th e p r o d u c t r is k s to p r io r i t i z e
a n d f o c u s th e te s t s t r a te g y ; o r s c e n a r io - b a s e d t e s t in g , in w h ic h te s t c a s e s a re d e f in e d b a s e d o n
s p e c i f ie d s y s te m s c e n a r io s .

Test management c a n b e c o n d u c te d a t d i f f e r e n t le v e ls , s o i t m u s t b e o r g a n iz e d , t o g e th e r w i t h
p e o p le , t o o ls , p o l ic ie s , a n d m e a s u re m e n ts , i n t o a w e l l - d e f in e d p ro c e s s t h a t is a n in te g r a l p a r t o f
th e l i f e c y c le .

I n t h e t e s t in g c o n te x t , t h e m a n a g e r ’ s m a in a c t i v i t i e s c a n b e s u m m a r iz e d as [3 8] , [5 3] , [5 4] :

• Scheduling the timely completion of tasks.

• Estimation of the effort and the resources needed to execute the tasks — A n im p o r t a n t
ta s k i n te s t p la n n in g is th e e s t im a t io n o f r e s o u r c e s r e q u i r e d , w h ic h m e a n s o r g a n iz in g n o t

- 1 7 4 -

o n l y h a r d w a r e a n d s o f tw a r e to o ls b u t a ls o p e o p le . T h u s th e f o r m a l i z a t io n o f th e te s t p r o
c e s s a ls o r e q u ir e s p u t t in g to g e th e r a te s t te a m , w h ic h c a n in v o l v e in te r n a l a s w e l l a s e x te r
n a l s t a f f m e m b e r s . T h e d e c is io n w i l l b e d e te r m in e d b y c o n s id e r a t io n o f c o s ts , s c h e d u le ,
m a t u r i t y le v e l o f t h e in v o lv e d o r g a n iz a t io n , a n d th e c r i t i c a l i t y o f th e a p p l ic a t io n .

• Quantification of the risk associated with the tasks.

• Effort/Cost estimation — T h e te s t in g p h a s e is a c r i t i c a l s te p in p r o d u c t d e v e lo p m e n t , o f
t e n r e s p o n s ib le f o r th e h ig h c o s ts a n d e f f o r t r e q u i r e d f o r p r o d u c t re le a s e . T h e e f f o r t c a n be
e v a lu a te d f o r e x a m p le i n te r m s o f p e r s o n - d a y s , m o n th s , o r y e a rs n e c e s s a ry f o r th e r e a l iz a
t i o n o f e a c h p r o je c t . F o r c o s t e s t im a t io n i t is p o s s ib le t o u s e t w o k in d s o f m o d e ls : s ta t ic
a n d d y n a m ic m u l t i v a r ia t e m o d e ls . T h e f o r m e r u s e h is to r ic a l d a ta t o d e r iv e e m p i r ic a l r e la
t io n s h ip s ; t h e la t t e r p r o je c t f u tu r e re s o u r c e r e q u ir e m e n ts as a f u n c t io n o f t im e . I n p a r t ic u
la r , th e s e te s t m e a s u re s c a n b e r e la te d t o th e n u m b e r o f te s ts e x e c u te d o r th e n u m b e r o f
te s ts f a i le d .

• Test asset reuse — T o c a r r y o u t t e s t in g o r m a in te n a n c e in a n o r g a n iz e d a n d c o s t /e f fe c t iv e
w a y , th e a s s e ts /m e a n s u s e d to te s t e a c h p a r t o f th e s y s te m s h o u ld b e re u s e d s y s t e m a t ic a l
ly . T h is r e p o s i t o r y o f te s t m a te r ia ls m u s t b e c o n f ig u r a t io n - c o n t r o l le d , so th a t c h a n g e s to
s y s te m r e q u i r e m e n ts o r d e s ig n c a n b e r e f le c te d i n c h a n g e s to th e s c o p e o f t h e te s ts c o n
d u c te d . T h e te s t s o lu t io n s a d o p te d f o r t e s t in g s o m e a p p l ic a t io n ty p e s u n d e r c e r ta in c i r
c u m s ta n c e s , w i t h th e m o t iv a t io n s b e h in d th e d e c is io n s ta k e n , f o r m a te s t p a t te r n w h ic h
c a n i t s e l f b e d o c u m e n te d f o r la te r re u s e i n s im i l a r p r o je c ts .

T a b le 2 : S c h e m e o f a p o s s ib le t e s t lo g

T e s t L o g

T e s t l o g I D T h e u n iq u e id e n t i f i e r a s s o c ia te d w i t h th e te s t lo g

I t e m s t e s t e d D e ta i ls o f th e i t e m s te s te d in c lu d in g e n v i r o n m e n ta l a t t r ib u te s

E v e n t s T h e l i s t o f th e e v e n ts o c c u r r e d in c lu d in g :

• T h e s ta r t a n d e n d d a te a n d t im e o f e a c h e v e n t

• I d e n t i f i c a t io n o f th e te s t p ro c e d u r e s e x e c u te d

• P e rs o n n e l w h o e x e c u te d th e p ro c e d u r e s

• D e s c r ip t io n o f te s t p ro c e d u r e s r e s u lts

• E n v i r o n m e n ta l d e ta i ls

• D e s c r ip t io n o f th e a n o m a lo u s e v e n ts t h a t o c c u r r e d

• Quality control measures to be employed — S e v e r a l m e a s u re s r e la t iv e t o th e re s o u rc e s
s p e n t o n te s t in g , as w e l l a s t o th e r e la t iv e f a u l t - f i n d i n g e f fe c t iv e n e s s o f th e v a r io u s te s t
p h a s e s , a re u s e d b y m a n a g e rs to c o n t r o l a n d im p r o v e th e te s t p ro c e s s . T h e s e tes t
m e a s u re s m a y c o v e r s u c h a s p e c ts as : n u m b e r o f te s t ca s e s s p e c i f ie d , n u m b e r o f te s t cases
e x e c u te d , n u m b e r o f te s t c a s e s p a s s e d , a n d n u m b e r o f te s t c a s e s f a i le d , a m o n g o th e rs .
E v a lu a t io n o f te s t p r o b le m r e p o r ts c a n b e c o m b in e d w i t h r o o t - c a u s e a n a ly s is to e v a lu a te

- 1 7 5 -

te s t p ro c e s s e f fe c t iv e n e s s i n f i n d in g f a u l t s a s e a r l y as p o s s ib L e . S u c h a n e v a lu a t io n c o u ld
b e a s s o c ia te d w i t h th e a n a ly s is o f r is k s .

M o r e o v e r , th e re s o u rc e s th a t a re w o r t h a l lo c a t in g to te s t in g s h o u ld b e c o m m e n s u r a te
w i t h th e u s e / c r i t i c a l i t y o f th e a p p l ic a t io n : s p e c i f ic a l ly , a d e c is io n m u s t b e m a d e as t o h o w
m u c h te s t in g is e n o u g h a n d w h e n a te s t s ta g e c a n b e te r m in a te d . T h o r o u g h n e s s m e a s u re s ,
s u c h as a c h ie v e d c o d e c o v e ra g e o r f u n c t io n a l c o m p le te n e s s , a s w e l l a s e s t im a te s o f f a u l t
d e n s i t y o r o f o p e r a t io n a l r e l i a b i l i t y , p r o v id e u s e f u l s u p p o r t , b u t a re n o t s u f f i c ie n t i n t h e m
s e lv e s . T h e d e c is io n a ls o in v o lv e s c o n s id e r a t io n s a b o u t th e c o s ts a n d r is k s in c u r r e d b y
p o te n t ia l r e m a in in g fa i lu r e s , a s o p p o s e d to th e c o s ts im p l ie d \>y c o n t in u in g t o te s t .

1 0 . T e s t T o o l s

T e s t in g r e q u ir e s f u l f i l l i n g m a n y la b o r - in t e n s iv e ta s k s , r u n n in g n u m e r o u s e x e c u t io n s , a n d h a n
d l in g a g re a t a m o u n t o f i n f o r m a t io n . A p p r o p r ia t e t o o ls c a n a l le v ia te th e b u r d e n o f c le r ic a l ,
te d io u s o p e r a t io n s , a n d m a k e t h e m le s s e r r o r - p r o n e . S o p h is t ic a te d to o ls c a n s u p p o r t te s t d e s ig n ,
m a k in g i t m o r e e f f e c t iv e . B e s id e s , m a n y o f th e s u r v e y e d t e s t te c h n iq u e s c a l l f o r a c t iv i t ie s th a t
r e q u ir e s u c h m a s s iv e e f f o r t t h a t t h e a p p l ic a t io n o f th e te c h n iq u e s is n o t fe a s ib le w i t h o u t th e
a s s is ta n c e o f a u to m a te d s u p p o r t to o ls .

M a n a g e r s a n d te s te rs a re r e s p o n s ib le t o s e le c t t h o s e to o ls t h a t w i l l b e th e m o s t u s e fu l t o t h e i r
o r g a n iz a t io n a n d p ro c e s s e s . T h is is a v e r y im p o r t a n t ta s k , as t o o l s e le c t io n g r e a t ly a f fe c ts te s t in g
e f f i c ie n c y a n d e f fe c t iv e n e s s . U s u a l l y s e le c t io n d e p e n d s o n r e q u ir e m e n ts s u c h as th e n e c e s s i t y o f
s ta n d a r d iz e d in te r fa c e s a n d m e s s a g e s f o r te s t in g , th e a b i l i t y to re c o r d , r e p la y a n d m a n a g e te s t
s c r ip ts , th e a b i l i t y t o s im u la te th e in te r a c t in g s y s te m s o r d e p lo y a n d te s t th e S U T , th e a b i l i t y to
r u n r e g r e s s io n o r s tre s s te s ts , th e v e r i f i c a t io n o f th e c o m p o n e n ts , s u i t a b i l i t y f o r th e a d o p te d te s t
p ro c e s s , a n d th e s u p p o r t o f s e c u r i t y r e q u ir e m e n ts . T h e IS O S ta n d a rd “ I n f o r m a t io n T e c h n o lo g y -
G u id e l in e f o r th e e v a lu a t io n a n d s e le c t io n o f C A S E t o o ls ” [3 2] c o v e rs th e t o p ic in d e p th , a n d
s p e c i f ic a l l y a ls o l is t s s u i ta b le c h a r a c te r is t ic s f o r t e s t in g to o ls u s e d f o r v e r i f i c a t io n a n d v a l id a t io n ,
w h i l e a s e le c t io n o f c o m m e r c ia l t o o ls c a n b e f o u n d i n [1] .

T h e f i e l d is s o a c t iv e a n d i n s u c h c o n t in u o u s e v o lu t io n , t h a t i t w o u ld b e im p o s s ib le t o c o m
p i le h e re a c o m p r e h e n s iv e l i s t o f e x is t in g c o m m e r c ia l a n d a c a d e m ic t o o ls . I n th e re s t o f t h is
s e c t io n , w e p r o v id e te s te rs w i t h a t a x o n o m y o f m o s t c o m m o n ly u s e d t o o ls :

1. Test harness (drivers, stubs) [4 8] — P r o v id e s a c o n t r o l le d e n v i r o n m e n t in w h ic h te s ts
c a n b e la u n c h e d a n d th e te s t o u tp u ts c a n b e lo g g e d . I n o r d e r t o e x e c u te p a r ts o f a s y s te m ,
d r iv e r s a n d s tu b s a re p r o v id e d to s im u la te c a l le r a n d c a l le d m o d u le s , r e s p e c t iv e ly .

2 . Test generators [4 8] — P r o v id e a s s is ta n c e in th e g e n e r a t io n o f te s ts . T h e g e n e r a t io n c a n
b e r a n d o m , p a th w is e (b a s e d o n th e f l o w g r a p h) o r f u n c t io n a l (b a s e d o n th e f o r m a l s p e c i
f i c a t io n s) . O th e r s e x p lo i t th e f o r m a l s p e c i f ic a t io n o f a s y s te m to d e r iv e a s e t o f te s t ca s e s
o r g e n e r a t in g te s ts o n th e f l y [5 7] .

3 . Capture/Replay — T h is t y p e o f t o o l a u t o m a t ic a l l y r e - e x e c u te s o r r e p la y s , p r e v io u s ly r u n
te s ts o f w h ic h i t r e c o r d e d in p u t s a n d o u tp u ts (e .g . , s c re e n s) [1] .

4 . Oracle/file comparators/assertion checking [5 3] — T h e s e k in d s o f t o o ls a s s is t i n d e c id
in g w h e th e r a te s t o u tc o m e is s u c c e s s fu l o r f a u l t y

5 . Coverage analyzer/instrumenter [4 8] — A coverage analyzer a sse sse s w h ic h a n d h o w
m a n y e n t i t ie s o f th e p r o g r a m f lo w g r a p h h a v e b e e n e x e rc is e d a m o n g s t a l l th o s e r e q u i r e d

- 1 7 6 -

b y th e s e le c te d c o v e ra g e t e s t in g c r i t e r io n . T h e a n a ly s is c a n b e d o n e th a n k s to p r o g r a m in -
s t r u m e n te r s , w h ic h in s e r t p ro b e s in t o th e c o d e . A s u r v e y o f e x is t in g c o v e ra g e -b a s e d te s t
in g t o o ls c a n b e f o u n d in [6 6] .

6. Tracers — T ra c e th e h is t o r y o f e x e c u t io n o f a p r o g r a m [4 9] .

7. Reliability evaluation tools [4 4] — S u p p o r t te s t r e s u lts a n a ly s is a n d g r a p h ic a l v i s u a l i z a
t i o n i n o r d e r t o asse ss r e l i a b i l i t y r e la te d m e a s u re s a c c o r d in g t o s e le c te d m o d e ls .

8. Model checkers — P r o v id e c o u n te r e x a m p le s t o v io la t e d p r o p e r t ie s s p e c i f ie d i n th e m o d
e l . S o m e o f th e m c a n a ls o g e n e ra te a s e t o f t e s t c a s e s . A s u r v e y o f a v a i la b le t o o ls is p r o
v id e d i n [2 3] .

9. M u t a t i o n t e s t i n g t o o ls — I m p le m e n t th e b a s ic s te p s a n d s t r u c tu r e o f m u t a t io n a n a ly s is .
E v a lu a t io n o f te s t c a s e e f fe c t iv e n e s s a n d t r e n d a n a ly s e s is a ls o p r o v id e d . A s u r v e y o f e x
i s t in g a p p ro a c h e s a n d f a c i l i t i e s is p r o v id e d in [3 3] .

1 1 . C o n c lu s io n s

W e h a v e o v e r v ie w e d th e fu n d a m e n ta ls o f s o f tw a r e te s t in g , h ig h l i g h t i n g th e m o s t im p o r ta n t
te c h n iq u e s a n d a p p ro a c h e s a p p l ic a b le d u r in g th e p ro c e s s l i f e c y c le . O u r in t e n t h a s b e e n to p r o v id e
th e re a d e rs w i t h a c o m p r e h e n s iv e r e fe r e n c e g u id e t h a t c o u ld b e u s e fu l f o r p la n n in g , m a n a g in g ,
a n d e x e c u t in g t e s t in g a c t iv i t ie s . T h u s , th e a p p ro a c h e s o v e r v ie w e d in c lu d e m o r e t r a d i t io n a l
te c h n iq u e s , e .g . , c o d e -b a s e d c r i t e r ia , as w e l l as m o r e r e c e n t o n e s s u c h a s u s a b i l i t y , a d a p t iv e
r a n d o m te s t in g , m o d e l- b a s e d te s t in g , a n d m o d e l c h e c k in g .

A.s is a p p a r e n t f r o m th e r e a d in g , s o f tw a r e te s t in g is a c o m p le x a n d e f f o r t - in t e n s iv e a c t i v i t y . It
in v o lv e s m a n y t o p ic s a n d ta s k s a n d d e s e rv e s a f i r s t - c la s s r o le i n s o f tw a r e d e v e lo p m e n t , in te rm s
o f b o th re s o u rc e s a n d in t e l le c t u a l r e q u ir e m e n ts . F o r t h is , th e a t t e n t io n o f a c a d e m ia is m o n i t o r in g
th e fe e d b a c k p r o v id e d f r o m in d u s t r ia l c o n te x t so as t o r e a l iz e b e t te r a n d m o r e u s e fu l s o lu t io n s .
In d e e d , r e s e a r c h a c t i v i t y is e v o l v in g e v e r y d a y , a n d t o o ls a n d a u to m a t ic f a c i l i t i e s t o a id in th e
s o lu t io n o f s p e c i f ic p r o b le m s a re c o n t in u o u s ly b e in g p r o v id e d .

In t h is d o c u m e n t , w e h ig h l ig h t e d th e r e le v a n t is s u e s a n d o p e n q u e s t io n s , so t o a t t r a c t f u r t h e r
in te re s t f r o m a c a d e m ia a n d in d u s t r y i n c o n t r ib u t in g t o th e e v o lu t io n o f t h e s ta te o f t h e a r t o n th e
m a n y r e m a in in g o p e n is s u e s .

O v e r th e y e a rs , s o f tw a r e t e s t in g h a s e v o lv e d f r o m a n “ a r t ” [4 7] to a n e n g in e e r in g d is c ip l in e ,
as th e s ta n d a rd s , te c h n iq u e s a n d t o o ls c i t e d t h r o u g h o u t th e c h a p te r d e m o n s t ra te . H o w e v e r , te s t
p r a c t ic e in h e r e n t l y s t i l l r e m a in s a t r ia l - a n d - e r r o r m e th o d o lo g y . W e w i l l n e v e r f i n d a te s t a p p ro a c h
th a t is g u a r a n te e d t o d e l i v e r a “ p e r fe c t ” p r o d u c t , r e g a r d le s s o f th e e f f o r t w e e m p lo y . H o w e v e r ,
w h a t w e c a n a n d m u s t p u rs u e is t o c o n t in u e t o t r a n s f o r m te s t in g f r o m “ t r ia l - a n d - e r r o r ” t o a
s y s te m a t ic , c o s t - e f f e c t iv e , a n d p r e d ic ta b le e n g in e e r in g d is c ip l in e .

I t is o u r w is h t h a t in d u s t r y a n d a c a d e m ia w o r k t o g e th e r t o c lo s e th e la rg e g a p s t i l l e x is t in g
b e tw e e n th e re s e a rc h a n d th e p r a c t ic e o f s o f tw a r e te s t in g , t o w a r d s th e u l t im a t e d re a m o f an
“ e f f i c ie n c y - m a x im iz e d te s t e n g in e e r in g ” as fo re s e e n i n [1 0] .

R e fe r e n c e s

[1] A p t e s t (A p p l ie d T e s t in g a n d T e c h n o lo g y , I n c .) , “ S o f tw a r e Q A T e s t in g a n d T e s t T o o l
R e s o u rc e s , ” [h t tp : / /w w w .a p te s t . c o m / r e s o u r c e s .h tm l] .

- 1 7 7 -

http://www.aptest.com/resources.html

[2] N . A y e w a h , D . H o v e m e y e r , J . D . M o r g e n th a le r , J . P e n ix , a n d W. P u g h , “ U s in g S ta t ic
A n a ly s is to F in d B u g s , ” IEEE Software, v o l . 2 5 , n o . 5 , 2 0 0 8 , p p . 2 2 - 2 9 .

[3] R . B a c h e a n d M . M u l le r b u r g , “ M a s u r e s o f T e s t a b i l i t y a s a B a s is f o r Q u a l i t y A s s u r a n c e , ”
Software Engineering Journal, v o l . 5 , n o . 2 , M a r 1 9 9 0 , p p . 8 6 -9 2 .

[4] T . B a l l , “ T h e C o n c e p t o f D y n a m ic A n a ly s is , ” Proc. of Joint 7 th ESEC/7th ACM FSE,
T o u lo u s e , F ra n c e , v o l . 2 4 , n o . 6 , O c to b e r 1 9 9 9 , p p . 2 1 6 - 2 3 4 .

[5] L .B a r e s i a n d M . Y o u n g , “ T e s t O r a c le s , ” T e c h R e p o r t C I S - T R - 0 1 -
0 2 , .c s .u o r e g o n .e d u /~ m ic h a l /p u b s /o r a c le s .h tm l .

[6] R . B a r tá k , “ O n - l in e G u id e to C o n s t r a in t P r o g r a m m in g , ” P ra g u e , [h t t p : / / k t im l . m f f . c u n i . c z
/ - b a r t a k / c o n s t r a in t] , 1 9 9 8 .

[7] F . B a s a n ie r i , A . B e r t o l in o , a n d E . M a r c h e t t i , “ T h e C o w _ S u i t e A p p r o a c h to P la n n in g a n d
D e r i v in g T e s t S u ite s in U M L P r o je c ts , ” Proc. 5th Int. Confi UML 2002, D r e s d e n , G e r m a
n y , L N C S 2 4 6 0 , 2 0 0 2 , p p . 3 8 3 - 3 9 7 .

[8] V . R . B a s i l i a n d R .W . S e lb y , “ C o m p a r in g th e E f f e c t iv e n e s s o f S o f tw a r e T e s t in g S t r a te
g ie s , ” IEEE Trans. Software Eng. v o l . 1 3 , n o . 1 2 , 1 9 8 7 , p p . 1 2 7 8 -1 2 9 6 .

[9] K . B e c k , Test-Driven Development by Example, A d d is o n - W e s le y , R e a d in g , M A , N o
v e m b e r , 2 0 0 2 .

[1 0] A . B e r t o l in o , “ S o f tw a r e T e s t in g R e s e a rc h : A c h ie v e m e n ts , C h a lle n g e s , D r e a m s . ” In 2 0 0 7
F u tu r e o f S o f tw a r e E n g in e e r in g (F O S E ’ 0 7) . IE E E C o m p u te r S o c ie ty , W a s h in g to n , D C ,
U S A , 8 5 - 1 0 3 .

[1 1] A . B e r t o l in o , “ A G u id e d T o u r o f F o u r D e c a d e s o f a S o f tw a r e T e s t in g D is c ip l in e ” (A b s
t r a c t) , i n SEA A 2008 - EUROMICRO Conf. Software Engineering and Advanced Applica
tions (P a rm a , 3 -5 S e p te m b e r 2 0 0 8) .

[1 2] B e r t o l in o , a n d M . M a n é , “ A G e n e r a l P a th G e n e r a t io n A lg o r i t h m f o r C o v e r a g e T e s t in g , ”
Proc. 10th Int. Soft. Quality Week, S a n F r a n c is c o , C a . p a p e r . 2 T 1 , 1 9 9 7 .

[1 3] B e r t o l in o , a n d L . S t r ig in i , “ O n th e U s e o f T e s t a b i l i t y M e a s u re s f o r D e p e n d a b i l i t y A s
s e s s m e n t , ” IEEE Trans. Software Eng., v o l . 2 2 , n o . 2 , 1 9 9 6 , p p . 9 7 - 1 0 8 .

[1 4] P. B o u r q u e a n d R . D u p u is , “ G u id e t o th e S o f tw a r e E n g in e e r in g B o d y o f K n o w le d g e ,
2 0 0 4 V e r s io n , ” SWEBOK, I E E E C S , 2 0 0 4 , [h t t p : / / w w w . c o m p u t e r . o r g / p o r t a l / w e b
/ s w e b o k] ,

[1 5] E . B r in k s m a , a n d J. T r e tm a n s , “ T e s t in g T r a n s i t io n S y s te m s : A n A n n o t a t e d B ib l io g r a p h y , ”
Proc. ofMOVEP’2k, N a n te s , 2 0 0 0 , p p . 4 4 - 5 0 .

[1 6] C . C a d a r , P. G o d e f r o id , S . K h u r s h id , C . S . P a s a re a n u , K . S e n , N . T i l lm a n n , a n d W . V is s e r ,
“ S y m b o l ic E x e c u t io n f o r S o f tw a r e T e s t in g i n P r a c t ic e : P r e l im in a r y A s s e s s m e n t . ” Proc. of
ICSE 2011, W a ik i k i , H o n o lu lu , H I , U S A , M a y , 2 0 1 , p p . 1 0 6 6 -1 0 7 1 .

[1 7] R . H . C a rv e r , a n d K . C T a i , “ U s e o f S e q u e n c in g C o n s t r a in ts f o r S p e c i f ic a t io n - B a s e d
T e s t in g o f C o n c u r r e n t P r o g r a m s , ” IEEE Trans, on Soft. Eng, v o l . 2 4 , n o . 6 , 1 9 9 8 , p p .
4 7 1 - 4 9 0 .

[1 8] T . Y . C h e n , F . C . K u o , R . G . M e r k e l , a n d T . H . T se . A d a p t i v e R a n d o m T e s t in g : T h e A R T
o f T e s t C a s e D iv e r s i t y , J . Syst. Software. 8 3 , v o l . 1. J a n . 2 0 1 0 , p p . 6 0 -6 6 .

- 1 7 8 -

http://ktiml.mff.cuni.cz
http://www.computer.org/portal

[1 9] T . Y . C h e n , Y . T . Y u , “ O n th e R e la t io n s h ip b e tw e e n P a r t i t io n a n d R a n d o m T e s t in g , ” IEEE
Trans, on Soft. Eng, v o l . 2 0 , n o . 1 2 , p p . 9 7 7 - 9 8 0 , 1 9 9 4 .

[2 0] I . C iu p a , A . P r e ts c h n e r , M . O r io l , A . L e i tn e r , a n d B . M e y e r , “ O n th e N u m b e r a n d N a tu r e
o f F a u l t s F o u n d b y R a n d o m T e s t in g , ” Software Testing, Verification and Reliability Jour
nal, v o l . 2 2 , n o . 1, 2 0 1 1 , p p . 3 - 2 8 .

[2 1] E . M . C la r k e , O . G r u m b e r g , a n d D . A . P e le d , Model Checking, M I T P re ss C a m b r id g e ,
M A , U S A , 2 0 0 0 .

[2 2] E . W . D i j k s t r a , “ N o te s o n S t r u c tu r e d P r o g r a m m in g , ” T. H. Rep. 70-WSK03, 1970, [h t t p : / /
w w w . c s . u t e x a s . e d u / u s e r s / E W D / e w d 0 2 x x / E W D 2 4 9 . P D F].

[2 3] G . F ra s e r , F . W o ta w a , a n d P. E . A m m a n n , “ T e s t in g w i t h M o d e l C h e c k e r s : a A u r v e y , ”
Software Testing, Verification and Reliability, v o l . 1 9 , n o . 3 . J o h n W i le y & S o n s , H o b o
k e n , N J , 2 0 0 9 , p p . 2 1 5 - 2 6 1 .

[2 4] A . H a r tm a n , M . K a ta r a , a n d S . O lv o v s k y , “ C h o o s in g a T e s t M o d e l in g L a n g u a g e : A
S u r v e y , ” P r o c . 2 n d I n t . H a i f a V e r i f i c a t io n C o n fe r e n c e o n H a r d w a r e a n d S o f tw a r e , V e r i f i
c a t i o n a n d T e s t in g , L N C S 4 3 8 3 , S p r in g e r , 2 0 0 6 , p p . 2 0 4 - 2 1 8 .

[2 5] K . J . H a y h u r s t , D . S . V e e rh u s e n , J . J . C h ik e n s k i , a n d L . K . R ie r s o n , “ A P r a c t ic a l T u t o r ia l
o n M o d i f i e d C o n d i t io n / D e c is io n C o v e r a g e , ” N A S A / T M - 2 0 0 1 - 2 1 0 8 7 6 , M a y 2 0 0 1 .

[2 6] R . H ie r o n s a n d J. D e r r i c k , (E d s) “ S p e c ia l Is s u e o n S p e c i f ic a t io n - b a s e d T e s t in g , ” Soft.
Testing, Verification and Reliability, v o l . 1 0 , 2 0 0 0 .

[2 7] A . H o lz in g e r , “ U s a b i l i t y E n g in e e r in g M e th o d s f o r S o f tw a r e D e v e lo p e r s , ” C o m m u n .
A C M , v o l . 4 8 , n o . 1 , 2 0 0 5 , p p . 7 1 - 7 4 .

[2 8] IEEE Standard Glossary of Software Engineering Terminology, IE E E S td 6 1 0 .1 2 - 1 9 9 0 .

[2 9] TEEE Standard for Software Test Documentation, I E E E S td 8 2 9 - 1 9 9 8 .

[3 0] IEEE Standard for Software Unit Testing I E E E S td . 1 0 0 8 - 1 9 8 7 (R 1 9 9 3) .

[3 1] TEEE Standard: Guide for Developing Software life-cycle Processes, IE E E S td 1 0 7 4 -
1 9 9 5 .

[3 2 1 Information Technology - Guideline for the Evaluation and Selection of CASE Tools,
I S O / I E C 1 4 6 2 - 1 9 9 8 .

[3 3] Y . J ia a n d M . H a r m a n , “ A n A n a ly s is a n d S u r v e y o f th e D e v e lo p m e n t o f M u t a t i o n T e s
t i n g , ” IEEE Trans, on Software Engineering, v o l . 9 9 , 2 0 1 0 .

[3 4] R . H a la , a n d R . M a ju m d a r , “ S o f tw a r e M o d e l C h e c k in g , ” ACM Comput. Surv. 4 1 , 4 ,
A r t i c l e 2 1 (O c to b e r 2 0 0 9) , 5 4 p a g e s .

[3 5] R C . J o rg e n s e n , Software Testing - a Craftsman ’s Approach, C R C P re s s , N e w Y o r k , 1 9 9 5 .

[3 6] N . J u r is t o , A . M . M o r e n o , a n d S . V e g a s , “ R e v ie w in g 2 5 Y e a rs o f T e s t in g T e c h n iq u e
E x p e r im e n t s , ” Empirical Software. Engineering Journal, v o l . 9 , n o . 1 /2 , M a r c h 2 0 0 4 , p p .
7 - 4 4 .

[3 7] S . H . K a n , “ M e t r i c s a n d M o d e ls i n S o f tw a r e Q u a l i t y E n g in e e r in g , ” A d d is o n - W e s le y ,
R e a d in g , M A , 2 0 0 2 .

- 1 7 9 -

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

[3 8] C . K a n e r , J . F a lk , a n d H .Q . N g u y e n , Testing Computer Software, 2 n d E d i t io n , J o h n W i le y
& S o n s , H o b o k e n , N J , A p r i l , 1 9 9 9 .

[3 9] C . K a n e r , J . B a c h , a n d B . P e t t ic h o r d , Lessons Learned in Software Testing. W i le y C o m
p u t e r P u b l is h in g , H o b o k e n , N J , 2 0 0 1 .

[4 0] B . K o r e l , “ A u to m a te d S o f tw a r e T e s t D a ta G e n e r a t io n , ” IEEE Trans. Software Eng., v o l .
1 6 , n o . 8 , 1 9 9 0 , p p . 8 7 0 - 8 7 9 .

[4 1] Y . L a b ic h e , P. T h e v e n o d - F o s s e , H . W a e s e ly n c k , a n d M . H . D u r a n d , “ T e s t in g L e v e l f o r
O b je c t - O r ie n t e d S o f tw a r e , ” Proceedings of ICSE, L im e r i c k , I r e la n d , J u n e 2 0 0 0 , p p . 1 3 6 -
1 4 5 .

[4 2] J .C . L a p r ie , “ D e p e n d a b i l i t y - I t s A t t r ib u t e s , I m p a i r m e n t s a n d M e a n s , ” Predictably
Dependable Computing Systems, B . R a n d e l l , J .C . L a p r ie , H . K o p e tz , B . L i t t l e w o o d , e d s .,
S p r in g e r , B e r l in , 1 9 9 5 .

[4 3] D . L a te l la , a n d M . M a s s in k , “ O n T e s t in g a n d C o n fo r m a n c e R e la t io n s f o r U M L S ta te c h a r t
D ia g r a m s B e h a v io u r s ” Symposium on Soft. Testing and Analysis ISSTA 2002, R o m a , I t a l y
J u ly 2 0 0 2 .

[4 4] M . R L y u , e d . , Handbook of Software Reliability Engineering, M c G r a w - H i l l , N e w Y o r k ,
1 9 9 6 .

[4 5] P. M c M in n , “ S e a rc h -B a s e d S o f tw a r e T e s t D a t a G e n e r a t io n : A S u r v e y , ” Software Testing,
Verification and Reliability, v o l . 1 4 , n o . 2 , p p . 1 0 5 -1 5 6 , 2 0 0 4 .

[4 6] H . M u c c in i , A . B e r t o l in o , P. I n v e r a r d i , “ U s in g S o f tw a r e A r c h i t e c t u r e f o r C o d e T e s t in g , ”
IEEE Transactions on Software Engineering, v o l . 3 0 , n o . 3 , p p . 1 6 0 - 1 7 0 , M a r c h 2 0 0 4 .

[4 7] G .J . M y e r s , The Art of Software Testing, W i l e y & S o n s , H o b o k e n , N J , 1 9 7 9 .

[4 8] K . N a ik a n d P. T r ip a th y , e d s ., “ S o f tw a r e T e s t in g a n d Q u a l i t y A s s u r a n c e : T h e o r y a n d
P r a c t ic e , ” W i le y & S o n s , H o b o k e n , N J , 2 0 0 8 .

[4 9] J . N ie ls e n , “ U s a b i l i t y E n g in e e r in g , ” M o r g a n K a u f m a n n , S a n F r a n c is c o , 1 9 9 3 .

[5 0] T . J . O s t r a n d a n d M . J. B a lc e r , “ T h e C a t e g o r y - P a r t i t io n M e t h o d f o r S p e c i f y in g a n d
G e n e r a t in g F u n c t io n a l T e s ts , ” A C M C o m m . , v o l . 3 1 , n o . 6 , 1 9 8 8 , p p . 6 7 6 - 6 8 6 .

[5 1] R . P a rg a s , M . J. H a r r o Id , a n d R . P e c k , “ T e s t - D a ta G e n e r a t io n U s in g G e n e t ic A lg o r i t h m s , ”
J. of Soft. Testing, Verification and Reliability, v o l . 9 , 1 9 9 9 , p p . 2 6 3 - 2 8 2 .

[5 2] W . W . P e n g , a n d D . R . W a l la c e , “ S o f tw a r e E r r o r A n a ly s is , ” NIST SP 500-209, N a t io n a l
I n s t i t u t e o f S ta n d a rd s a n d T e c h n o lo g y , G a i t h e r s b u r g , M D , 2 0 8 9 9 , [h t t p : / / h is s a .n is t . g o v
/ S W E R R O R /] , D e c e m b e r , 1 9 9 3 .

[5 3] W . P e r ry , Effective Methods for Software Testing, W i l e y & S o n s . H o b o k e n . N J , 3 r d e d ..
2 0 0 6 .

[5 4] S . R a p p s a n d E .J . W e y u k e r , “ S e le c t in g S o f t w a r e T e s t D a ta U s in g D a ta F lo w I n f o r m a
t i o n ” , IEEE Trans. Software Eng., v o l . 1 1 , 1 9 8 5 , p p . 3 6 7 - 3 7 5 .

[5 5] K . S e n , D . M a r in o v , a n d G . A g h a , “ C U T E : a C o n c o l i c U n i t T e s t in g E n g in e f o r C ” , ACM
Proc. ESEC-FSE 2005, N e w Y o r k , N Y , A C M , 2 0 0 5 , p p . 2 6 3 - 2 7 2 .

- 1 8 0 -

http://hissa.nist.gov

[5 6] M . S h a f iq u e a n d Y . L a b ic h e , “ A S y s te m a t ic R e v ie w o f M o d e l B a s e d T e s t in g T o o l S u p
p o r t ” C a r le t o n U n iv e r s i t y , Tech. Rep. SCE-10-04, 2 0 1 0 [h t tp : / / s q u a l l . s c e . c a r le to n . c a /p u b s
/ te c h r e p o r t / T R _ S C E - l 0 - 0 4 .p d f] .

[5 7] S . R . S h a h a m ir i , W . M . N . W . K a d ir , a n d S . Z . M o h d - H a s h im , “ A C o m p a r a t iv e S tu d y o n
A u t o m a t e d S o f t w a r e T e s t O r a c le M e th o d s ” , P r o c o f 4 th . I C S E A 2 0 0 9 , P o r to , P o r tu g a l,
2 0 0 9 , p p . 1 4 0 - 1 4 5 .

[5 8] J. T r e tm a n s , “ M o d e l - B a s e d T e s t in g a n d S o m e S te p s t o w a r d s T e s t -B a s e d M o d e l l i n g , ”
Journal of Formal Methods for Eternal Networked Software Systems, 2 0 1 1 , p p .2 9 7 - 3 2 6 .

[5 9] J. W a r m e r , a n d A . K le p p e , Object Constraint Language, The, Getting Your Models Ready
for MDA, S e c o n d E d i t i o n , A d d is o n W e s le y , 2 0 0 3 .

[6 0] E . J . W e y u k e r , “ T r a n s la t a b i l i t y a n d D e c id a b i l i t y Q u e s t io n s f o r R e s t r ic te d C la s s e s o f
P r o g r a m S c h e m a s ” S1AMJ. on Computers, v o l . 8 , n o . 4 , 1 9 7 9 . p p . 5 8 7 - 5 9 8 .

[6 1] E . J . W e y u k e r , “ O n T e s t in g N o n - te s ta b le P r o g r a m s , ” The Computer Journal, v o l . 2 5 ,
n o .4 , 1 9 8 2 , p p . 4 6 5 - 4 7 0 .

[6 2] E . J. W e y u k e r , T . J . O s t r a n d , a n d R . M . B e l l , “ C o m p a r in g th e E f f e c t iv e n e s s o f S e v e ra l
M o d e l in g M e t h o d s f o r F a u l t P r e d ic t io n ” , Empirical Software Engineering, v o l . 1 5 , n o .3 .
2 0 1 0 , p p . 2 7 7 - 2 9 5 .

[6 3] C . W . W h a r t o n , J . R e im a n , C . L e w is , a n d P. P o is o n , “ T h e C o g n i t iv e W a lk th r o u g h
M e th o d : A P r a c t i t i o n e r ’ s G u id e , ” i n J. K . N ie ls e n , & R . L . M a c k (e d s .) , U s a b i l i t y I n s p e c
t io n M e t h o d s , W i le y , N e w Y o r k , 1 9 9 4 .

[6 4] J. W o o d c o c k , P. G . L a r s e n , J . B ic a r r e g u i , a n d J . F i t z g e r a ld , “ F o r m a l M e th o d s : P r a c t ic e
a n d E x p e r ie n c e , ” A CM Computing Surveys (CSUR), v o l . 4 1 , n o . 4 , 2 0 0 9 . p p . 1 -3 6 .

[6 5] Q . Y a n g , J . J . L i , a n d D . J . W e is s , “ A S u r v e y o f C o v e ra g e B a s e d T e s t in g T o o ls ” , Proc. of
ASE 2006, 2 0 0 6 . p p . 9 9 - 1 0 3 .

[6 6] S . Y o o , a n d M . H a r m a n , “ R e g re s s io n T e s t in g M in im iz a t i o n , S e le c t io n a n d P r io r i t i z a t i o n :
a S u r v e y , ” Journal of Software Testing, Verification and Reliability, e d . , W i le y , 2 0 1 0 .

- 1 8 1 -

http://squall.sce.carleton.ca/pubs

C h a p t e r 4 . 2

E s s e n t i a l s o f S o f t w a r e E n g i n e e r i n g T e s t i n g

Richard Hall Thayer and Merlin Dor/man

This is the fourth chapter in a reference guide to aid individual software engi
neers in a greater understanding the IEEE SWEBOK [2013] and in passing the
IEEE CSDP/CSDA certification exams. T h e c h a p te r in t r o d u c e s s o f tw a r e e n g in e e r
in g testing.

This module provides an introduction to software testing. Topics covered in
clude basic definitions of testing, validation and verification; the levels of testing
from unit testing through to acceptance testing; the relationship with require
ments and design specifications; and test documentation.

T h is l i s t o f e x a m s p e c i f ic a t io n s is r e p o r te d t o b e th e s a m e l i s t t h a t th e e x a m w r i t e r s u s e d to
w r i t e th e e x a m q u e s t io n s . T h e r e fo r e i t is th e b e s t s o u rc e o f h e lp f o r th e e x a m ta k e rs .

C h a p te r 4 c o v e r s th e C S D P e x a m s p e c i f ic a t io n s f o r th e s o f tw a r e te s t m o d u le [S o f tw a r e E x a m
S p e c i f ic a t io n , V e r s i o n 2 , 1 8 M a r c h 2 0 0 9] :

1. S o f tw a r e t e s t i n g fu n d a m e n ta ls (t e s t in g - r e la te d t e r m in o lo g y ; k e y is s u e s [te s t s e le c t io n c r i
t e r ia , te s t a d e q u a c y c r i t e r ia , t e s t in g e f fe c t iv e n e s s , t e s t in g f o r d e fe c t id e n t i f i c a t io n , o r a c le
p r o b le m , l i m i t a t i o n s , in f e a s ib le p a th s , t e s t a b i l i t y] ; r e la t io n s h ip)

2 . T e s t le v e ls (th e t a r g e t o f t h e te s ts [u n i t t e s t in g , in t e g r a t io n te s t in g , s y s te m t e s t in g] ; o b je c
t iv e s o f t e s t in g)

3 . T e s t t e c h n iq u e s (b a s e d o n th e t e s te r ’ s i n t u i t i o n a n d e x p e r ie n c e ; s p e c i f ic a t io n - b a s e d ; c o d e
b a s e d ; f a u l t - b a s e d ; u s a g e -b a s e d ; b a s e d o n n a tu r e o f a p p l ic a t io n ; s e le c t in g a n d c o m b in in g
te c h n iq u e s)

4 . H u m a n - c o m p u t e r u s e r in te r fa c e t e s t in g a n d e v a lu a t io n (th e v a r ie t y o f a s p e c ts o f u s e fu l
n e s s a n d u s a b i l i t y) ; H e u r is t ic e v a lu a t io n ; c o g n i t i v e w a lk th r o u g h s ; u s e r te s t in g a p p ro a c h e s
[o b s e r v a t io n s e s s io n s , a n d so o n] ; w e b u s a b i l i t y , t e s t in g te c h n iq u e s f o r w e b)

5. T e s t - r e la te d m e a s u re s (e v a lu a t io n o f th e p r o g r a m u n d e r te s t ; e v a lu a t io n o f t h e te s ts p e r
f o r m e d)

6 . T e s t p r o c e s s (p r a c t i c a l c o n s id e r a t io n s [a t t i t u d e s , e g o le s s , te s t g u id e s , te s t p ro c e s s m a n
a g e m e n t , t e s t d o c u m e n ta t io n , in d e p e n d e n c e , c o s t / e f f o r t e s t im a t io n , t e r m in a t io n , te s t re u s e
a n d p a t t e r n s] ; te s t a c t i v i t i e s ; s o f tw a r e t e s t in g t o o ls)

S o f tw a r e t e s t in g is th e p ro c e s s o f e x e c u t in g a p r o g r a m o r s y s te m w i t h th e in te n t o f f i n d in g
e r ro rs . S o f tw a r e is n o t u n l i k e o th e r p h y s ic a l p ro c e s s e s w h e r e in p u ts a re r e c e iv e d a n d o u tp u ts a re
p ro d u c e d . W h e r e s o f t w a r e d i f f e r s is i n th e m a n n e r in w h ic h i t f a i l s . M o s t p h y s ic a l s y s te m s f a i l in
a f ix e d (a n d r e a s o n a b ly s m a l l) s e t o f w a y s . B y c o n t r a s t , s o f tw a r e c a n f a i l i n m a n y b iz a r r e w a y s .
D e te c t in g a l l o f t h e d i f f e r e n t f a i l u r e m o d e s f o r s o f tw a r e is g e n e r a l ly in fe a s ib le .

U n l i k e m o s t p h y s i c a l s y s te m s , m o s t o f th e d e fe c ts in s o f tw a r e a re d e s ig n e r ro r s , n o t m a n u fa c
tu r in g d e fe c ts . S o f t w a r e d o e s n o t s u f f e r f r o m c o r r o s io n o r w e a r - a n d - te a r ; g e n e r a l ly i t w i l l n o t
c h a n g e u n t i l u p g r a d e s , o r u n t i l o b s o le s c e n c e . S o o n c e th e s o f tw a r e is s h ip p e d , th e d e s ig n d e fe c ts ,
o r b u g s , w i l l b e b u r ie d a n d r e m a in la te n t u n t i l a c t iv a t io n .

- 1 8 3 -

S o f tw a r e b u g s w i l l a lm o s t a lw a y s e x i s t in a n y s o f tw a r e m o d u le o f m o d e r a te s iz e : n o t b e c a u s e
p r o g r a m m e r s a re c a re le s s o r i r r e s p o n s ib le , b u t b e c a u s e th e c o m p le x i t y o f s o f tw a r e is g e n e r a l ly
in t r a c ta b le , a n d h u m a n s h a v e o n ly l i m i t e d a b i l i t y to m a n a g e c o m p le x i t y . I t is a ls o t r u e th a t f o r
a n y c o m p le x s y s te m , d e s ig n d e fe c ts c a n n e v e r b e c o m p le t e ly r u le d o u t .

D is c o v e r in g th e d e s ig n d e fe c ts i n s o f t w a r e is e q u a l ly d i f f i c u l t , f o r th e s a m e re a s o n as c o m
p le x i t y . B e c a u s e s o f tw a r e a n d a n y d ig i t a l s y s te m s a re n o t c o n t in u o u s , t e s t in g b o u n d a r y v a lu e s is
n o t s u f f i c ie n t t o g u a ra n te e c o r re c tn e s s . A l l th e p o s s ib le v a lu e s n e e d to b e te s te d a n d v e r i f i e d , b u t
c o m p le te t e s t in g is in fe a s ib le . E x h a u s t i v e ly t e s t in g a s im p le p r o g r a m to a d d o n ly t w o in te g e r
in p u ts o f 3 2 - b i t s (y ie ld in g 2 64 d i s t i n c t te s t c a s e s) w o u ld ta k e h u n d re d s o f y e a rs , e v e n i f te s ts w e re
p e r fo r m e d a t a ra te o f th o u s a n d s p e r s e c o n d . O b v io u s ly , f o r a r e a l i s t i c s o f tw a r e m o d u le , th e
c o m p le x i t y c a n b e f a r b e y o n d th e e x a m p le m e n t io n e d h e re . I f in p u ts f r o m th e r e a l w o r l d a re
i n v o lv e d , th e p r o b le m w i l l g e t w o r s e , b e c a u s e t im in g a n d u n p r e d ic ta b le e n v i r o n m e n ta l e f fe c ts
a n d h u m a n in te r a c t io n s a re a l l p o s s ib le i n p u t p a ra m e te rs u n d e r c o n s id e r a t io n .

A f u r t h e r c o m p l i c a t io n h a s t o d o w i t h th e d y n a m ic n a tu r e o f p r o g r a m s . I f a f a i lu r e o c c u rs
d u r in g p r e l im in a r y t e s t in g a n d th e c o d e is c h a n g e d , th e s o f tw a r e m a y n o w w o r k f o r a te s t ca se
t h a t i t d i d n ’ t w o r k f o r p r e v io u s ly . B u t i t s b e h a v io r o n te s t c a s e s th a t i t p a s s e d b e fo r e c a n n o
lo n g e r b e g u a ra n te e d . T o a c c o u n t f o r t h is p o s s ib i l i t y , t e s t in g s h o u ld b e re s ta r te d . T h e e x p e n s e o f
d o in g t h is is o f t e n p r o h ib i t i v e .

R e g a rd le s s o f th e l im i t a t io n s , t e s t in g is a n in t e g r a l p a r t o f s o f tw a r e d e v e lo p m e n t . I t is b r o a d ly
d e p lo y e d i n e v e r y p h a s e o f th e s o f tw a r e d e v e lo p m e n t c y c le . T y p ic a l ly , m o r e th a n 5 0 p e r c e n t o f
th e d e v e lo p m e n t t im e is s p e n t i n t e s t in g [S W E B O K 2 0 0 4] .

4 .1 S o f t w a r e T e s t in g F u n d a m e n t a l s

S o f tw a r e t e s t in g is th e p ro c e s s o f e x e c u t in g a p r o g r a m o r s y s te m w i t h t h e in te n t o f f i n d in g e r ro r s .
S o f tw a r e t e s t in g c a n n o t “ p r o v e ” t h a t th e s o f t w a r e is c o r r e c t .

4 .1 .1 . T e s t i n g - r e la t e d t e r m i n o l o g y [h t t p : / / w w w . c o m p u t e r . o r g / p o r t a l / w e b / s w e b o k / h t m l / c h 5 #
R e fe re n c e s] .

• Testing is d e f in e d as:

o T h e p ro c e s s o f a n a ly z in g a s o f t w a r e i t e m to d e te c t th e d i f f e r e n c e s b e tw e e n e x is t in g
a n d r e q u i r e d c o n d i t io n s (t h a t i s , b u g s) a n d to e v a lu a te th e fe a tu r e s o f th e s o f tw a r e
i t e m [I E E E 8 2 9 - 2 0 0 7] .

o T h e p ro c e s s o f o p e r a t in g a s y s te m o r c o m p o n e n t u n d e r s p e c i f ie d c o n d i t io n s , o b s e r v
in g o r r e c o r d in g th e r e s u lts , a n d m a k in g a n e v a lu a t io n o f s o m e a s p e c t o f th e s y s te m o r
c o m p o n e n t [I E E E 8 2 9 - 2 0 0 7] .

• Faults vs . Failures — M a n y t e r m s a re u s e d in th e s o f tw a r e e n g in e e r in g l i t e r a tu r e t o d e
s c r ib e a m a l f u n c t io n , n o t a b ly f a u l t , f a i lu r e , e r r o r , a n d s e v e ra l o th e rs . I t i s e s s e n t ia l to
c le a r ly d is t in g u is h b e tw e e n th e c a u s e o f a m a l f u n c t io n f o r w h ic h th e t e r m f a u l t o r d e fe c t
w i l l b e u s e d h e re , a n d a n u n d e s i r e d e f f e c t o b s e rv e d in th e s y s te m ’ s d e l iv e r e d s e r v ic e ,
w h ic h w i l l b e c a l le d a f a i lu r e . T e s t in g c a n r e v e a l f a i lu r e s , b u t i t is th e f a u l t s th a t c a n a n d
m u s t b e r e m o v e d .

H o w e v e r , i t s h o u ld b e r e c o g n iz e d th a t th e c a u s e o f a f a i l u r e c a n n o t a lw a y s b e u n e
q u iv o c a l ly id e n t i f i e d . N o t h e o r e t ic a l c r i t e r i a e x is t t o d e f i n i t i v e ly d e te r m in e w h a t f a u l t
c a u s e d th e o b s e r v e d f a i lu r e . I t m i g h t b e s a id th a t i t w a s th e f a u l t t h a t h a d t o b e m o d i f ie d

- 1 8 4 ~

http://www.computer.org/portal/web

t o r e m o v e t h e p r o b le m , b u t o th e r m o d i f i c a t io n s c o u ld h a v e w o r k e d j u s t as w e l l . T o a v o id
a m b ig u i t y , s o m e a u th o r s p r e f e r t o s p e a k o f f a i lu r e - c a u s in g in p u ts in s te a d o f fa u l t s — th a t
is , th o s e s e ts o f in p u t s th a t c a u s e a f a i lu r e to a p p e a r [S W E B O K 2 0 0 4] .

4 .1 .2 . K e y is s u e s . T h e f o l l o w i n g a re s o m e o f th e k e y is s u e s in s o f tw a r e te s t in g [S W E B O K
2 0 0 4] .

• Test selection criteria/test adequacy criteria (or stopping rules) — A te s t s e le c t io n c r i t e
r io n is a m e a n s o f d e c id in g w h a t a s u i ta b le s e t o f te s t c a s e s s h o u ld b e . A s e le c t io n c r i t e r i
o n c a n b e u s e d f o r s e le c t in g th e te s t c a s e s o r f o r c h e c k in g w h e th e r a s e le c te d te s t s u i te is
a d e q u a te — t h a t is , t o d e c id e w h e th e r th e t e s t in g c a n b e s to p p e d .

• Testing effectiveness/objectives for testing — Testing is th e o b s e r v a t io n o f a s a m p le o f
p r o g r a m e x e c u t io n s . S a m p le s e le c t io n c a n b e g u id e d b y d i f f e r e n t o b je c t iv e s : i t is o n l y in
l i g h t o f th e o b je c t i v e s p u r s u e d th a t th e e f fe c t iv e n e s s o f th e te s t s e t c a n b e e v a lu a te d .

• Testing for defect identification — I n t e s t in g f o r d e fe c t i d e n t i f i c a t io n , a s u c c e s s fu l t e s t is
o n e th a t c a u s e s th e s y s te m to f a i l . T h is is q u i te d i f f e r e n t f r o m te s t in g to d e m o n s t r a te th a t
th e s o f tw a r e m e e ts i t s s p e c i f ic a t io n s o r o th e r d e s ir e d p r o p e r t ie s , i n w h ic h ca se t e s t in g is
s u c c e s s fu l i f n o (s ig n i f i c a n t) f a i lu r e s a re o b s e rv e d . The authors believe this is incorrect.
Testing is for the purpose of finding errors. A demonstration (not a test) can be used to
show the software meets its requirements.

• The oracle problem — A n o r a c le is a n y (h u m a n o r m e c h a n ic a l) a g e n t th a t d e c id e s
w h e th e r a p r o g r a m b e h a v e d c o r r e c t ly i n a g iv e n te s t , a n d a c c o r d in g ly p r o d u c e s a v e r d ic t
o f “ p a s s ” o r “ f a i l . ” T h e r e e x is t m a n y d i f f e r e n t k in d s o f o ra c le s , a n d o r a c le a u to m a t io n c a n
b e v e r y d i f f i c u l t a n d e x p e n s iv e .

• Theoretical and practical limitations of testing — T e s t in g t h e o r y w a r n s a g a in s t a s c r ib
in g a n u n ju s t i f i e d le v e l o f c o n f id e n c e t o a s e r ie s o f p a s s e d te s ts . U n f o r t u n a t e ly , m o s t e s
ta b l is h e d r e s u l t s o f t e s t in g t h e o r y a re n e g a t iv e o n e s , in th a t t h e y s ta te w h a t t e s t in g c a n
n e v e r a c h ie v e a s o p p o s e d t o w h a t i t a c t u a l ly a c h ie v e d . T h e m o s t fa m o u s q u o ta t io n i n th is
r e g a r d is th e D i j k s t r a a p h o r is m th a t “ p r o g r a m t e s t in g c a n b e u s e d t o s h o w th e p re s e n c e o f
b u g s , b u t n e v e r t o s h o w t h e i r a b s e n c e .” T h e o b v io u s re a s o n is t h a t c o m p le te te s t in g is n o t
fe a s ib le i n r e a l s o f tw a r e . B e c a u s e o f t h is , t e s t in g m u s t b e d r iv e n b a s e d o n r is k a n d c a n be
se e n as a r i s k m a n a g e m e n t s t ra te g y .

• The problem of infeasible paths — In fe a s ib le p a th s , th e c o n t r o l f l o w p a th s th a t c a n n o t be
e x e r c is e d b y a n y i n p u t d a ta , a re a s ig n i f ic a n t p r o b le m in p a th - o r ie n te d te s t in g , a n d p a r t i c
u la r l y in th e a u to m a te d d e r iv a t io n o f te s t in p u ts f o r c o d e -b a s e d t e s t in g te c h n iq u e s .

• Testability — T h e t e r m “ s o f tw a r e t e s t a b i l i t y ” h a s t w o r e la te d b u t d i f f e r e n t m e a n in g s : o n
th e o n e h a n d , i t r e fe r s t o th e d e g re e t o w h ic h i t is e a s y f o r s o f tw a r e t o f u l f i l l a g iv e n te s t
c r i t e r io n , as in [B a c h e & M i i l l e r b e r g 1 9 9 0] ; o n th e o th e r h a n d , i t is d e f in e d as th e l i k e l i
h o o d , p o s s ib ly m e a s u r e d s t a t is t ic a l ly , t h a t th e s o f tw a r e w i l l e x p o s e a f a i lu r e u n d e r te s t in g
i f i t is f a u l t y , a s in [V o a s & M i l l e r 1 9 9 5] . B o t h m e a n in g s a re im p o r ta n t .

4 .1 .3 . R e la t io n s h ip s o f t e s t i n g t o o t h e r a c t i v i t i e s . S o f tw a r e t e s t in g is r e la te d to b u t d i f f e r e n t
f r o m s ta t ic s o f t w a r e q u a l i t y m a n a g e m e n t te c h n iq u e s , p r o o f s o f c o r re c tn e s s , d e b u g g in g , a n d
p r o g r a m m in g . H o w e v e r , i t is i n f o r m a t iv e t o c o n s id e r te s t in g f r o m th e p o in ts o f v ie w o f s o f tw a r e
q u a l i t y a n a ly s ts a n d o f c e r t i f i e r s [S W E B O K 2 0 0 4] .

- 1 8 5 -

4 .2 T e s t L e v e ls

4 .2 .1 T h e t a r g e t o f t h e te s t . S o f tw a r e t e s t in g is u s u a l ly p e r fo r m e d a t d i f f e r e n t le v e ls a lo n g th e
d e v e lo p m e n t a n d m a in te n a n c e p ro c e s s e s . T h a t is t o s a y , th e ta r g e t o f th e te s t c a n v a r y : a s in g le
m o d u le , a g r o u p o f s u c h m o d u le s (r e la te d b y p u r p o s e , u s e , b e h a v io r , o r s t r u c tu r e) , o r a w h o le
s y s te m . F o u r b ig te s t s ta g e s c a n b e c o n c e p t u a l ly d is t in g u is h e d , n a m e ly unit, integration, system,
and acceptance. N o p ro c e s s m o d e l is im p l ie d , n o r a re a n y o f th o s e s ta g e s a s s u m e d to h a v e
g re a te r im p o r ta n c e t h a n th e o th e r th r e e [S W E B O K 2 0 0 4] .

• Unit testing — Unit testing v e r i f i e s th e f u n c t io n in g in is o la t io n o f s o f tw a r e p ie c e s th a t
a re s e p a ra te ly te s ta b le . D e p e n d in g o n th e c o n te x t , th e s e c o u ld b e th e in d iv id u a l s u b p r o
g ra m s o r a la r g e r c o m p o n e n t m a d e o f t i g h t l y r e la te d u n i ts . T y p ic a l ly , u n i t t e s t in g o c c u rs
w i t h a c c e s s to th e c o d e b e in g te s te d a n d w i t h th e s u p p o r t o f d e b u g g in g to o ls , a n d m ig h t
i n v o lv e th e p r o g r a m m e r s w h o w r o t e th e c o d e .

• Integration testing — Integration testing is th e p ro c e s s o f v e r i f y in g th e in t e r a c t io n (in t e r
fa c e s) b e tw e e n s o f tw a r e c o m p o n e n ts . C la s s ic a l in te g r a t io n t e s t in g s t ra te g ie s , s u c h as to p -
d o w n o r b o t t o m - u p , a re u s e d w i t h t r a d i t io n a l , h ie r a r c h ic a l ly s t r u c tu r e d s o f tw a r e .

M o d e m s y s te m a t ic in t e g r a t i o n s t ra te g ie s a re r a th e r a r c h i t e c tu r e - d r iv e n , w h ic h im p l ie s
in t e g r a t in g th e s o f tw a r e c o m p o n e n ts o r s u b s y s te m s b a s e d o n id e n t i f i e d f u n c t io n a l
th re a d s . I n t e g r a t io n t e s t in g is a c o n t in u o u s a c t i v i t y , a t e a c h s ta g e o f w h ic h s o f tw a r e e n g i
n e e rs m u s t a b s t ra c t a w a y lo w e r - le v e l p e r s p e c t iv e s a n d c o n c e n t r a te o n th e p e r s p e c t iv e s o f
th e le v e l t h e y a re in t e g r a t in g . T h u s , f a i l u r e to d o u n i t t e s t in g p r o p e r ly d o o m s in te g r a t io n
te s t in g , s in c e t e s t in g w i l l r e v e a l p r o b le m s t h a t s h o u ld h a v e b e e n fo u n d in u n i t te s t in g .
T im e a n d e f f o r t a re th e n w a s te d f i x i n g d e fe c ts in te r n a l to th e u n i ts , r e te s t in g th e u n i t s ,
a n d r e r u n n in g in t e g r a t io n te s ts .

E x c e p t f o r s m a l l , s im p le s o f t w a r e , s y s te m a t ic , in c r e m e n ta l in t e g r a t io n t e s t in g s t ra te
g ie s a re u s u a l ly p r e fe r r e d t o p u t t i n g a l l th e c o m p o n e n ts to g e th e r a t o n c e , w h ic h is p i c t o r i -
a l l y c a l le d “ b ig b a n g ” te s t in g .

• System testing — System testing i s c o n c e r n e d w i t h th e b e h a v io r o f a w h o le s y s te m . T h e
m a jo r i t y o f f u n c t io n a l f a i lu r e s s h o u ld a l r e a d y h a v e b e e n id e n t i f ie d a n d c o r r e c te d d u r in g
u n i t a n d in te g r a t io n te s t in g . S y s te m t e s t in g is u s u a l ly c o n s id e r e d a p p r o p r ia te f o r c o m p a r
i n g th e s y s te m to th e n o n - f u n c t io n a l s y s te m r e q u ir e m e n ts , s u c h as s e c u r i t y , s p e e d , a c c u
r a c y , a n d r e l i a b i l i t y . (W e s u g g e s t th e r e a d e r r e f e r t o C h a p te r 1 t o u n d e rs ta n d th e
d i f f e r e n c e s b e tw e e n f u n c t io n a l a n d n o n - f u n c t io n a l r e q u ir e m e n ts .) E x te r n a l in te r fa c e s to
o th e r a p p l ic a t io n s , u t i l i t i e s , h a r d w a r e d e v ic e s , o r th e o p e r a t in g e n v i r o n m e n t a re a ls o e v a l
u a te d a t t h is le v e l .

• Acceptance testing — Acceptance testing c h e c k s th e s y s te m ’ s b e h a v io r a g a in s t t h e c u s
t o m e r ’ s r e q u ir e m e n ts , h o w e v e r th e s e m a y h a v e b e e n e x p re s s e d : th e c u s to m e r s u n d e r ta k e ,
o r s p e c i f y , t y p ic a l ta s k s t o c h e c k t h a t t h e i r r e q u ir e m e n ts h a v e b e e n m e t o r t h a t th e o r g a n i
z a t io n h a s id e n t i f i e d th e m f o r th e s o f tw a r e ’ s ta r g e t m a r k e t . T h is te s t in g a c t i v i t y m a y o r
m a y n o t in v o lv e th e d e v e lo p e r s o f th e s y s te m .

4 .2 .2 O b je c t iv e s o f t e s t in g . T e s t in g is c o n d u c te d t o a c c o m p l is h a s p e c i f ic o b je c t iv e , w h ic h is
s ta te d m o r e o r le s s e x p l i c i t l y a n d w i t h v a r y i n g d e g re e s o f p r e c is io n . S ta t in g th e o b je c t iv e in
p re c is e , q u a n t i t a t iv e te r m s a l lo w s c o n t r o l to b e e s ta b l is h e d o v e r th e te s t p ro c e s s . T e s t in g c a n b e
a im e d a t v e r i f y in g d i f f e r e n t p r o p e r t ie s . T e s t c a s e s c a n b e d e s ig n e d to c h e c k th a t th e f u n c t io n a l

- 1 8 6 -

s p e c i f ic a t io n s a re c o r r e c t l y im p le m e n te d , w h ic h is v a r io u s ly r e fe r r e d t o in th e l i t e r a tu r e as
c o n fo r m a n c e te s t in g , c o r re c tn e s s te s t in g , o r f u n c t io n a l te s t in g . H o w e v e r , o th e r n o n fu n c t io n a l
p ro p e r t ie s m a y b e te s te d a s w e l l , in c lu d in g p e r fo r m a n c e , r e l i a b i l i t y , a n d u s a b i l i t y , a m o n g m a n y
o th e rs .

O th e r im p o r t a n t o b je c t iv e s f o r t e s t in g in c lu d e (b u t a re n o t l im i t e d t o) r e l i a b i l i t y m e a s u re
m e n t , u s a b i l i t y e v a lu a t io n , a n d a c c e p ta n c e , f o r w h ic h d i f f e r e n t a p p ro a c h e s w o u ld b e ta k e n . N o te
th a t th e t e s t o b je c t iv e v a r ie s w i t h th e s y s te m u n d e r te s t . I n g e n e ra l, d i f f e r e n t p u rp o s e s a re a d
d re s s e d a t d i f f e r e n t le v e ls o f t e s t in g .

T h e s u b - t o p ic s l is t e d b e lo w a re th o s e m o s t o f t e n c i te d i n th e l i t e r a t u r e as objectives of testing.
N o te th a t s o m e k in d s o f t e s t in g a re m o r e a p p r o p r ia te f o r c u s to m - m a d e s o f tw a r e p a c k a g e s , f o r
e x a m p le i n s t a l la t io n te s t in g , w h i l e o th e rs a re m o r e a p p r o p r ia te f o r g e n e r ic p r o d u c ts , s u c h as b e ta
te s t in g [S W E B O K 2 0 0 4] .

• Installation testing — U s u a l l y a f t e r c o m p le t io n o f s o f tw a r e a n d a c c e p ta n c e te s t in g , th e
s o f t w a r e c a n b e v e r i f i e d u p o n in s t a l la t io n in th e ta r g e t e n v i r o n m e n t . I n s t a l la t io n te s t in g
c a n b e v ie w e d as s y s te m te s t in g c o n d u c te d o n c e a g a in a c c o r d in g t o h a r d w a r e c o n f ig u r a
t i o n r e q u ir e m e n ts . I n s t a l la t io n p r o c e d u r e s m a y a ls o b e v e r i f ie d .

• Alpha and beta testing — B e fo r e th e s o f tw a r e is re le a s e d , i t is s o m e t im e s g iv e n t o a
s m a l l , r e p r e s e n ta t iv e s e t o f p o te n t ia l u s e rs f o r t r i a l u s e , e i th e r in - h o u s e (a lp h a t e s t in g) o r
e x t e r n a l (b e ta te s t in g) . T h e s e u s e rs r e p o r t p r o b le m s w i t h th e p r o d u c t . A lp h a a n d b e ta use
is o f t e n u n c o n t r o l le d , a n d is n o t a lw a y s r e fe r r e d t o in a te s t p la n .

• Reliability achievement and evaluation — I n h e lp in g t o i d e n t i f y fa u l t s , t e s t in g i s a
m e a n s t o im p r o v e r e l i a b i l i t y . B y c o n t r a s t , b y r a n d o m ly g e n e r a t in g te s t ca se s a c c o r d in g to
th e o p e r a t io n a l p r o f i l e , s t a t is t ic a l m e a s u re s o f r e l i a b i l i t y c a n b e d e r iv e d . A n o p e r a t io n a l
p r o f i l e (O P) is a q u a n t i t a t iv e c h a r a c te r iz a t io n o f h o w th e s o f tw a r e w i l l b e u s e d [M u s a
1 9 9 3] , w h e r e a p r o f i l e is a s e t o f in d e p e n d e n t p o s s ib i l i t ie s , c a l le d e le m e n ts , a n d t h e i r as
s o c ia te d p r o b a b i l i t y o f o c c u r r e n c e . U s in g r e l i a b i l i t y g r o w t h m o d e ls , b o th o b je c t iv e s ca n
be p u r s u e d to g e th e r .

S o f tw a r e r e l i a b i l i t y r e fe r s to th e p r o b a b i l i t y o f f a i lu r e - f r e e o p e r a t io n o f a s y s te m . I t is
r e la te d t o m a n y a s p e c ts o f s o f tw a r e , in c lu d in g th e te s t in g p ro c e s s . D i r e c t l y e s t im a t in g
s o f t w a r e r e l i a b i l i t y b y q u a n t i f y in g i t s r e la te d f a c to r s c a n b e d i f f i c u l t . T e s t in g is a n e f f e c
t i v e s a m p l in g m e th o d t o m e a s u re s o f tw a r e r e l i a b i l i t y . G u id e d b y th e o p e r a t io n a l p r o f i le ,
s o f t w a r e t e s t in g (u s u a l ly b la c k - b o x te s t in g ; see d e f in i t i o n b e lo w) c a n b e u s e d to o b ta in
f a i l u r e d a ta , a n d a n e s t im a t io n m o d e l c a n b e f u r t h e r u s e d t o a n a ly z e th e d a ta t o e s t im a te
th e p re s e n t r e l i a b i l i t y a n d p r e d ic t f u tu r e r e l i a b i l i t y . T h e r e fo r e , b a s e d o n th e e s t im a t io n ,
th e d e v e lo p e r s c a n d e c id e w h e th e r t o re le a s e th e s o f tw a r e , a n d th e u s e rs c a n d e c id e
w h e t h e r t o a d o p t a n d u s e th e s o f tw a r e . R is k o f u s in g s o f tw a r e c a n a ls o b e a s s e s se d b a s e d
o n r e l i a b i l i t y i n f o r m a t io n . T h e p r im a r y g o a l o f te s t in g s h o u ld b e t o m e a s u re th e d e p e n d a
b i l i t y o f te s te d s o f tw a r e .

T h e r e is a g r e e m e n t o n th e i n t u i t i v e m e a n in g o f d e p e n d a b le s o f tw a r e : i t d o e s n o t fa i l
in u n e x p e c te d o r c a ta s t r o p h ic w a y s . R o b u s tn e s s t e s t in g a n d s tre s s t e s t in g a re v a r ia n c e s o f
r e l i a b i l i t y t e s t in g b a s e d o n t h is s im p le c r i t e r io n .

T h e ro b u s tn e s s o f a s o f tw a r e c o m p o n e n t is th e d e g re e to w h ic h i t c a n f u n c t io n c o r
r e c t l y in th e p re s e n c e o f e x c e p t io n a l in p u ts o r s t r e s s fu l e n v i r o n m e n ta l c o n d i t io n s . R o -

- 1 8 7 -

b u s tn e s s t e s t in g d i f f e r s f r o m c o r re c tn e s s t e s t in g i n th e s e n s e th a t th e f u n c t io n a l c o r r e c t
n e s s o f th e s o f tw a r e is n o t o f c o n c e r n . I t o n l y w a tc h e s f o r r o b u s tn e s s p r o b le m s s u c h as
m a c h in e c ra s h e s , p ro c e s s h a n g s , o r a b n o r m a l t e r m in a t io n . T h e o r a c le is r e la t i v e ly s im p le ;
t h e r e fo r e ro b u s tn e s s t e s t in g c a n b e m a d e m o r e p o r ta b le a n d s c a la b le t h a n c o r re c tn e s s te s t
in g .

• Stress testing — S tre s s t e s t in g o r lo a d t e s t in g i s o f te n u s e d t o te s t th e w h o le s y s te m r a th e r
th a n th e s o f tw a r e a lo n e . I n s u c h te s ts , th e s o f t w a r e o r s y s te m is e x e r c is e d w i t h o r b e y o n d
th e s p e c i f ie d l im i t s . T y p ic a l s tre s s in c lu d e s re s o u rc e e x h a u s t io n , b u r s ts o f a c t iv i t ie s , a n d
s u s ta in e d h ig h lo a d s .

• Regression testing — A c c o r d in g to [I E E E 6 1 0 .1 2 - 9 0] r e g r e s s io n t e s t in g is th e “ s e le c t iv e
r e te s t in g o f a s y s te m o r c o m p o n e n t t o v e r i f y th a t m o d i f i c a t io n s h a v e n o t c a u s e d u n in
te n d e d e f f e c t s . ” I n p r a c t ic e , th e id e a is t o s h o w th a t s o f tw a r e t h a t p r e v io u s ly p a s s e d th e
te s ts s t i l l d o e s . O b v io u s ly , a t r a d e - o f f m u s t b e m a d e b e tw e e n th e a s s u ra n c e g iv e n b y re
g r e s s io n t e s t in g e v e r y t im e a c h a n g e is m a d e a n d th e re s o u rc e s r e q u ir e d t o r u n th e te s t(s) .

R e g r e s s io n t e s t in g c a n b e c o n d u c te d a t e a c h o f t h e te s t le v e ls a n d m a y a p p ly t o f u n c
t io n a l a n d n o n f u n c t io n a l te s t in g .

• Correctness testing — Correctness is th e m in im u m r e q u i r e m e n t o f s o f tw a r e , th e e s s e n t ia l
p u rp o s e o f te s t in g . C o r r e c tn e s s t e s t in g w i l l n e e d s o m e t y p e o f o r a c le t o t e l l th e r i g h t b e
h a v io r f r o m th e w r o n g o n e . T h e te s te r m a y o r m a y n o t k n o w th e in te r n a l d e ta i ls o f th e
s o f tw a r e m o d u le u n d e r te s t , e .g . , c o n t r o l f l o w , d a ta f l o w , e tc . (S e e S e c t io n 4 .3 .4 .3 .)
T h e r e fo r e , e i t h e r a w h i t e - b o x p o in t o f v i e w o r b la c k - b o x p o in t o f v i e w c a n b e ta k e n in
t e s t in g s o f tw a r e . W e m u s t n o te th a t th e b la c k - b o x a n d w h i t e - b o x id e a s a re n o t l im i t e d to
c o r re c tn e s s t e s t in g o n ly .

• Black-box testing — T h e black-box approach is a t e s t in g m e th o d in w h ic h te s t d a ta a re
d e r iv e d f r o m th e s p e c i f ie d f u n c t io n a l r e q u i r e m e n ts w i t h o u t r e g a r d t o th e p r o g r a m s t r u c
tu r e . I t is a ls o te r m e d d a ta - d r iv e n , i n p u t / o u t p u t d r iv e n o r r e q u ir e m e n ts - b a s e d te s t in g . B e
c a u s e o n ly th e f u n c t i o n a l i t y o f th e s o f t w a r e m o d u le is o f c o n c e r n , b la c k - b o x te s t in g a ls o
m a in l y r e fe r s to f u n c t io n a l t e s t in g —a t e s t in g m e th o d e m p h a s iz in g e x e c u t in g th e fu n c t io n s
a n d e x a m in in g t h e i r in p u t a n d o u t p u t d a ta . T h e te s te r t r e a ts th e s o f tw a r e u n d e r te s t a s a
b la c k b o x —o n ly th e in p u ts , o u tp u ts , a n d s p e c i f ic a t io n a re v is ib le , a n d th e f u n c t i o n a l i t y is
d e te r m in e d b y o b s e r v in g th e o u tp u ts t o c o r r e s p o n d in g in p u ts . I n te s t in g , v a r io u s in p u ts
a re e x e r c is e d a n d th e o u tp u t s a re c o m p a r e d a g a in s t s p e c i f ic a t io n t o v a l id a te th e c o r r e c t
n e s s . A l l te s t c a s e s a re d e r iv e d f r o m th e s p e c i f ic a t io n . N o im p le m e n t a t io n d e ta i ls o f th e
c o d e a re c o n s id e r e d .

• White-box testing — C o n t r a r y t o b la c k - b o x te s t in g , i n white-box testing th e s t r u c tu r e a n d
f l o w o f th e s o f tw a r e u n d e r te s t a re v i s ib le t o th e te s te r . T e s t in g p la n s a re m a d e a c c o r d in g
t o th e d e ta i ls o f th e s o f tw a r e im p le m e n t a t io n , s u c h a s p r o g r a m m in g la n g u a g e , lo g ic , a n d
s ty le s . T e s t c a s e s a re d e r iv e d f r o m th e p r o g r a m s t ru c tu re . W h i t e - b o x t e s t in g is a ls o c a l le d
g la s s - b o x te s t in g , l o g ic - d r i v e n t e s t in g o r d e s ig n - b a s e d te s t in g .

T h e r e a re m a n y te c h n iq u e s a v a i la b le i n w h i t e - b o x te s t in g , b e c a u s e th e p r o b le m o f i n
t r a c t a b i l i t y is e a s e d b y s p e c i f ic k n o w le d g e o f a n d a t t e n t io n t o th e s t r u c tu r e o f th e s o f tw a r e
u n d e r te s t . T h e i n t e n t io n o f e x h a u s t in g s o m e a s p e c t o f th e s o f tw a r e is s t i l l s t r o n g in
w h i t e - b o x te s t in g , a n d s o m e d e g re e o f e x h a u s t io n c a n b e a c h ie v e d , s u c h as e x e c u t in g

- 1 8 8 -

e a c h l in e o f c o d e a t le a s t o n c e (s ta te m e n t c o v e r a g e) , t r a v e r s in g e v e r y b r a n c h s ta te m e n t
(b r a n c h c o v e r a g e) , o r c o v e r in g a l l th e p o s s ib le c o m b in a t io n s o f t r u e a n d fa ls e c o n d i t io n
p re d ic a te s (m u l t i p l e c o n d i t io n c o v e ra g e) .

• Boundary between black-box and white-box testing — T h e b o u n d a r y b e tw e e n th e b la c k -
b o x a n d w h i t e - b o x a p p ro a c h e s is n o t c le a r - c u t . M a n y te s t in g s t ra te g ie s m e n t io n e d a b o v e
m a y n o t b e s a fe ly c la s s i f ie d in to b la c k - b o x t e s t in g o r w h i t e - b o x te s t in g . T h is is a ls o t r u e
f o r t r a n s a c t i o n - f l o w te s t in g , s y n ta x te s t in g , f in i t e - s t a t e te s t in g , a n d m a n y o th e r te s t in g
s tra te g ie s n o t d is c u s s e d i n t h is te x t . O n e re a s o n is th a t a l l th e a b o v e te c h n iq u e s w i l l n e e d
s o m e k n o w le d g e o f th e s p e c i f ic a t io n o f th e s o f tw a r e u n d e r te s t . A n o t h e r re a s o n is th a t th e
id e a o f s p e c i f i c a t i o n i t s e l f is b r o a d —i t m a y c o n t a in a n y r e q u ir e m e n t in c lu d in g th e s t r u c
tu r e , p r o g r a m m in g la n g u a g e , a n d p r o g r a m m in g s ty le as p a r t o f th e s p e c i f ic a t io n c o n te n t .

• Random testing — W e m a y b e r e lu c ta n t t o c o n s id e r r a n d o m te s t in g as a t e s t in g te c h
n iq u e . T h e te s t c a s e s e le c t io n is s im p le a n d s t r a ig h t f o r w a r d : th e y a re r a n d o m ly c h o s e n .
R a n d o m t e s t i n g is m o r e c o s t e f f e c t iv e f o r m a n y p r o g r a m s . S o m e v e r y s u b t le e r r o r s c a n be
d is c o v e r e d a t l o w c o s t , a n d i t is n o t i n f e r i o r i n c o v e ra g e to o th e r c a r e f u l l y d e s ig n e d te s t
in g te c h n iq u e s . O n e c a n a ls o o b ta in r e l i a b i l i t y e s t im a te s u s in g r a n d o m te s t in g re s u lts
b a s e d o n o p e r a t io n a l p r o f i le s . E f f e c t i v e l y c o m b in in g r a n d o m te s t in g w i t h o th e r te s t in g
t e c h n iq u e s m a y y i e ld m o r e p o w e r f u l a n d c o s t - e f f e c t iv e te s t in g s tra te g ie s .

• Performance testing — N o t a l l s o f tw a r e s y s te m s h a v e e x p l i c i t p e r fo r m a n c e s p e c i f ic a
t io n s , b u t e v e r y s y s te m w i l l h a v e i m p l i c i t p e r fo r m a n c e r e q u ir e m e n ts . T h e s o f tw a r e s h o u ld
n o t ta k e i n f i n i t e t im e o r i n f i n i t e r e s o u rc e s t o e x e c u te . “ P e r fo r m a n c e b u g s ” s o m e t im e s a re
u s e d t o r e f e r t o th o s e d e s ig n p r o b le m s in s o f tw a r e th a t c a u s e th e s y s te m p e r fo r m a n c e to
d e g ra d e .

P e r fo r m a n c e h a s a lw a y s b e e n a g re a t c o n c e r n a n d a d r i v i n g fo r c e o f c o m p u te r e v o lu
t io n . P e r fo r m a n c e e v a lu a t io n o f a s o f tw a r e s y s te m u s u a l ly in c lu d e s : re s o u rc e u s a g e ,
t h r o u g h p u t , s t im u lu s - r e s p o n s e t im e , a n d q u e u e le n g th s d e t a i l in g th e a v e ra g e o r m a x im u m
n u m b e r o f ta s k s w a i t i n g t o b e s e r v ic e d b y s e le c te d re s o u rc e s . T y p ic a l r e s o u rc e s th a t n e e d
to b e c o n s id e r e d in c lu d e n e t w o r k b a n d w id t h r e q u ir e m e n ts , C P U c y c le s , d is k s p a c e , d is k
a c c e s s o p e r a t io n s , a n d m e m o r y u s a g e . T h e g o a l o f p e r fo r m a n c e t e s t in g c a n b e p e r f o r
m a n c e b o t t le n e c k i d e n t i f i c a t io n , p e r fo r m a n c e c o m p a r is o n a n d e v a lu a t io n , e tc . T h e t y p ic a l
m e th o d o f d o in g p e r fo r m a n c e t e s t in g is u s in g a b e n c h m a r k — a p r o g r a m , w o r k lo a d , o r
t ra c e d e s ig n e d t o b e r e p r e s e n ta t iv e o f th e t y p ic a l s y s te m u s a g e .

• Security testing — S o f tw a r e q u a l i t y , r e l i a b i l i t y a n d s e c u r i t y a re t i g h t l y c o u p le d . F la w s in
s o f tw a r e c a n b e e x p lo i t e d b y in t r u d e r s t o o p e n s e c u r i t y h o le s . W i t h th e d e v e lo p m e n t o f
th e I n t e r n e t , s o f tw a r e s e c u r i t y p r o b le m s a re b e c o m in g e v e n m o r e s e v e re .

M a n y c r i t i c a l s o f tw a r e a p p l ic a t io n s a n d s e rv ic e s h a v e in te g r a te d s e c u r i t y m e a s u re s
a g a in s t m a l i c i o u s a t ta c k s . T h e p u rp o s e s o f s e c u r i t y t e s t in g o f th e s e s y s te m s in c lu d e id e n
t i f y i n g a n d r e m o v in g s o f tw a r e f la w s th a t m a y p o t e n t ia l l y le a d to s e c u r i t y v io la t io n s , a n d
v a l id a t in g th e e f f e c t iv e n e s s o f s e c u r i t y m e a s u re s . S im u la te d s e c u r i t y a t ta c k s c a n b e p e r
fo r m e d t o f i n d v u ln e r a b i l i t ie s .

4 .3 T e s t T e c h n iq u e s

O n e o f th e a im s o f t e s t in g is t o r e v e a l as m u c h p o te n t ia l f o r f a i lu r e as p o s s ib le , a n d m a n y te c h
n iq u e s h a v e b e e n d e v e lo p e d to d o th is , w h ic h a t te m p t t o “ b r e a k ” th e p r o g r a m , b y r u n n in g o n e o r

- 1 8 9 -

m o r e te s ts d r a w n f r o m id e n t i f i e d c la s s e s o f e x e c u t io n s d e e m e d e q u iv a le n t . T h e le a d in g p r in c ip le
u n d e r ly in g s u c h te c h n iq u e s is to b e as s y s t e m a t ic as p o s s ib le in i d e n t i f y i n g a r e p r e s e n ta t iv e s e t o f
p r o g r a m b e h a v io r s ; f o r in s ta n c e , c o n s id e r in g s u b c la s s e s o f th e in p u t d o m a in , s c e n a r io s , s ta te s ,
a n d d a t a f lo w .

I t is d i f f i c u l t to f i n d a h o m o g e n e o u s b a s is f o r c la s s i f y in g a l l te c h n iq u e s , a n d th e o n e u s e d
h e re m u s t b e s e e n as a c o m p r o m is e . T h e c la s s i f i c a t io n is b a s e d o n h o w te s ts a re g e n e ra te d f r o m
th e s o f tw a r e e n g in e e r ’ s i n t u i t i o n a n d e x p e r ie n c e , th e s p e c i f ic a t io n s , th e c o d e s t r u c tu r e , th e (r e a l
o r a r t i f i c i a l) fa u l t s t o b e d is c o v e r e d , th e f i e l d u s a g e , o r , f i n a l l y , th e n a tu re o f th e a p p l ic a t io n .
S o m e t im e s th e s e te c h n iq u e s a re c la s s i f ie d a s w h i t e - b o x , a ls o c a l le d g la s s b o x , i f th e te s ts r e ly o n
i n f o r m a t io n a b o u t h o w th e s o f tw a r e h a s b e e n d e s ig n e d o r c o d e d , o r as b la c k - b o x i f th e te s t c a s e s
r e ly o n ly o n th e in p u t / o u t p u t b e h a v io r . O n e la s t c a te g o r y d e a ls w i t h c o m b in e d u s e o f t w o o r
m o r e te c h n iq u e s . O b v io u s ly , th e s e t e c h n iq u e s a re n o t u s e d e q u a l ly o f t e n b y a l l p r a c t i t io n e r s .
In c lu d e d in th e l i s t a re th o s e t h a t a s o f tw a r e e n g in e e r s h o u ld k n o w [S W E B O K 2 0 0 4] .

4 .3 .1 . B a s e d o n t h e s o f t w a r e e n g in e e r ’ s i n t u i t i o n a n d e x p e r ie n c e . S o m e t e s t in g te c h n iq u e s a re
b a s e d o n th e s o f tw a r e e n g in e e r ’ s e x p e r ie n c e [S W E B O K 2 0 0 4] :

• Ad hoc testing — P e rh a p s th e m o s t w id e ly p r a c t ic e d te c h n iq u e r e m a in s a d h o c te s t in g :
te s ts a re d e r iv e d r e ly in g o n th e s o f t w a r e e n g in e e r ’ s s k i l l , i n t u i t i o n , a n d e x p e r ie n c e w i t h
s im i l a r p r o g r a m s . A d h o c t e s t in g m ig h t b e u s e fu l f o r i d e n t i f y i n g s p e c ia l te s ts , th o s e n o t
e a s i ly c a p tu r e d b y f o r m a l i z e d te c h n iq u e s .

• Exploratory testing — E x p lo r a t o r y te s t in g is d e f in e d as s im u lta n e o u s le a r n in g , te s t d e
s ig n , a n d te s t e x e c u t io n ; th a t is , th e te s ts a re n o t d e f in e d i n a d v a n c e in a n e s ta b l is h e d te s t
p la n , b u t a re d y n a m ic a l ly d e s ig n e d , e x e c u te d , a n d m o d i f ie d . T h e e f fe c t iv e n e s s o f e x
p lo r a t o r y t e s t in g r e l ie s o n th e s o f t w a r e e n g in e e r ’ s k n o w le d g e , w h ic h c a n b e d e r iv e d f r o m
v a r io u s s o u rc e s : o b s e r v e d p r o d u c t b e h a v io r d u r in g te s t in g , f a m i l i a r i t y w i t h th e a p p l ic a
t io n , th e p la t f o r m , th e f a i lu r e p r o c e s s , th e t y p e o f p o s s ib le f a u l t s a n d fa i lu r e s , th e r i s k a s
s o c ia te d w i t h a p a r t i c u la r p r o d u c t , a n d so o n .

4 .3 .2 S p e c i f i c a t io n - b a s e d t e c h n iq u e s . T e s t t e c h n iq u e s a re [S W E B O K L 2 0 0 4] :

• Equivalence partitioning — T h e i n p u t d o m a in is s u b d iv id e d in to a c o l le c t io n o f s u b s e ts ,
o r e q u iv a le n t c la s s e s , w h ic h a re d e e m e d e q u iv a le n t a c c o r d in g t o a s p e c i f ie d r e la t io n , a n d
a r e p r e s e n ta t iv e s e t o f te s ts (s o m e t im e s o n ly o n e) is ta k e n f r o m e a c h c la s s .

• Boundary-value analysis — T e s t c a s e s a re c h o s e n o n a n d n e a r th e b o u n d a r ie s o f th e i n
p u t d o m a in o f v a r ia b le s , w i t h th e u n d e r l y in g r a t io n a le t h a t m a n y fa u l t s te n d t o c o n c e n
t r a te n e a r th e e x t r e m e v a lu e s o f in p u t s . A n e x te n s io n o f t h is te c h n iq u e i s ro b u s tn e s s
te s t in g , w h e r e in te s t c a s e s a re a ls o c h o s e n o u ts id e th e in p u t d o m a in o f v a r ia b le s , t o te s t
p r o g r a m ro b u s tn e s s to u n e x p e c te d o r e r ro n e o u s in p u ts .

• Decision table — D e c is io n ta b le s re p re s e n t lo g ic a l r e la t io n s h ip s b e tw e e n c o n d i t io n s
(r o u g h ly , in p u ts) a n d a c t io n s (r o u g h ly , o u tp u ts) . T e s t c a s e s a re s y s t e m a t ic a l ly d e r iv e d b y
c o n s id e r in g e v e r y p o s s ib le c o m b in a t io n o f c o n d i t io n s a n d a c t io n s . A r e la te d te c h n iq u e is
c a u s e - e f fe c t g r a p h in g .

• Finite-state machine-based — B y m o d e l in g a p r o g r a m as a f i n i t e s ta te m a c h in e , te s ts c a n
b e s e le c te d i n o r d e r t o c o v e r s ta te s a n d t r a n s i t io n s o n i t .

- 1 9 0 -

• Testing from formal specifications — S ta t in g th e s p e c i f ic a t io n s in a f o r m a l la n g u a g e a l
lo w s f o r a u to m a t ic d e r i v a t io n o f f u n c t io n a l te s t c a s e s a n d , a t th e s a m e t im e , p r o v id e s a
r e fe r e n c e o u t p u t , a n o r a c le , f o r c h e c k in g te s t r e s u l ts . M e th o d s e x is t f o r d e r i v in g te s t cases
f r o m m o d e l - b a s e d o r a lg e b r a ic s p e c i f ic a t io n s .

• Random testing — T e s ts a re g e n e ra te d p u r e ly a t r a n d o m , n o t to b e c o n fu s e d w i t h s t a t is t i
c a l t e s t in g f r o m th e o p e r a t io n a l p r o f i l e as d e s c r ib e d e a r l ie r .

• Operational profile — T h is f o r m o f t e s t in g f a l l s u n d e r th e h e a d in g o f th e s p e c i f ic a t io n -
b a s e d e n t r y , s in c e a t le a s t th e in p u t d o m a in m u s t b e k n o w n , t o b e a b le t o p i c k r a n d o m
p o in ts w i t h i n i t .

4 .3 .3 C o d e - b a s e d t e c h n iq u e s . A n u m b e r o f c o d e -b a s e d te c h n iq u e s a re [S W E B O K 2 0 0 4] :

• Control-flow-based criteria — A c o n t r o l - f lo w - b a s e d c o v e r a g e c r i t e r io n is a im e d a t c o v
e r in g a l l t h e s ta te m e n ts o r b lo c k s o f s ta te m e n ts i n a p r o g r a m , o r s p e c i f ie d c o m b in a t io n s
o f t h e m . S e v e r a l c o v e r a g e c r i t e r ia h a v e b e e n p ro p o s e d , l i k e c o n d i t io n / d e c is io n c o v e ra g e .
T h e s t r o n g e s t o f th e c o n t r o l - f lo w - b a s e d c r i t e r ia is p a th te s t in g , w h ic h a im s t o e x e c u te a ll
e n t r y - t o - e x i t c o n t r o l f l o w p a th s i n th e f l o w g ra p h . S in c e p a th t e s t in g is g e n e r a l ly n o t fe a
s ib le b e c a u s e o f lo o p s , o th e r le s s s t r in g e n t c r i t e r ia te n d t o b e u s e d in p r a c t ic e , s u c h as
s ta te m e n t te s t in g , b r a n c h te s t in g , a n d c o n d i t io n / d e c is io n te s t in g . T h e a d e q u a c y o f s u c h
te s ts is m e a s u r e d i n p e rc e n ta g e s ; f o r e x a m p le , w h e n a l l b r a n c h e s h a v e b e e n e x e c u te d at
le a s t o n c e b y th e te s ts , 1 0 0 % b r a n c h c o v e ra g e is s a id t o h a v e b e e n a c h ie v e d .

• Data flow-based criteria — I n d a ta - f lo w - b a s e d te s t in g , t h e c o n t r o l f l o w g ra p h is a n n o ta t
e d w i t h i n f o r m a t io n a b o u t h o w th e p r o g r a m v a r ia b le s a re d e f in e d , u s e d , a n d k i l l e d (u n d e
f in e d) . T h e s t r o n g e s t c r i t e r io n , a l l d e fm i t io n - u s e p a th s , r e q u ir e s th a t , f o r e a c h v a r ia b le ,
e v e r y c o n t r o l f l o w p a th s e g m e n t f r o m a d e f i n i t i o n o f t h a t v a r ia b le t o a u s e o f t h a t d e f i n i
t i o n is e x e c u te d . I n o r d e r t o r e d u c e th e n u m b e r o f p a th s r e q u i r e d , w e a k e r s t r a te g ie s s u c h
as a l l - d e f i n i t i o n s a n d a l l - u s e s a re e m p lo y e d .

• Reference models for code-based testing (flow graph, call graph) — N o t a t e c h n iq u e in
i t s e l f ; t h e c o n t r o l s t r u c tu r e o f a p r o g r a m is g r a p h ic a l ly r e p re s e n te d u s in g a f l o w g r a p h in
c o d e - b a s e d t e s t in g te c h n iq u e s . A f l o w g ra p h is a d i r e c te d g r a p h th e n o d e s a n d a rc s o f
w h ic h c o r r e s p o n d to p r o g r a m e le m e n ts . F o r in s ta n c e , n o d e s m a y re p re s e n t s ta te m e n ts or
u n in t e r r u p t e d s e q u e n c e s o f s ta te m e n ts , a n d a rc s m a y r e p r e s e n t th e t r a n s fe r o f c o n t r o l b e
tw e e n n o d e s .

4 .3 .4 F a u l t - b a s e d t e c h n iq u e s . W i t h d i f f e r e n t d e g re e s o f f o r m a l i z a t io n , f a u l t - b a s e d te s t in g
te c h n iq u e s d e v is e te s t c a s e s s p e c i f i c a l l y a im e d a t r e v e a l in g c a te g o r ie s o f l i k e l y o r p r e d e f in e d
fa u l t s [S W E B O K 2 0 0 4] .

• Error guessing — I n e r r o r g u e s s in g , te s t c a s e s a re s p e c i f ic a l l y d e s ig n e d b y s o f tw a r e en
g in e e r s t r y i n g t o f i g u r e o u t th e m o s t p la u s ib le f a u l t s i n a g iv e n p r o g r a m . A g o o d s o u r c e o f
in f o r m a t i o n is th e h is t o r y o f f a u l t s d is c o v e r e d in e a r l ie r p r o je c ts , as w e l l as th e s o f tw a r e
e n g in e e r ’ s e x p e r t is e .

• Mutation testing — A ls o k n o w n as error seeding. A mutant is a s l ig h t ly m o d i f ie d v e r
s io n o f th e p r o g r a m u n d e r te s t , d i f f e r i n g f r o m i t b y a s m a l l , s y n ta c t ic c h a n g e . E v e r y tes t
c a s e e x e r c is e s b o th th e o r ig in a l a n d a l l g e n e ra te d m u ta n ts : i f a te s t ca s e is s u c c e s s fu l in
i d e n t i f y i n g th e d i f f e r e n c e b e tw e e n th e p r o g r a m a n d a m u ta n t , th e la t te r is s a id t o be

“ k i l l e d . ” O r i g i n a l l y c o n c e iv e d a s a t e c h n iq u e to e v a lu a te a te s t s e t (s e e 4 .2) , m u t a t io n
te s t in g is a ls o a t e s t in g c r i t e r io n in i t s e l f : e i t h e r te s ts a re r a n d o m ly g e n e ra te d u n t i l e n o u g h
m u ta n ts h a v e b e e n k i l l e d , o r te s ts a re s p e c i f i c a l l y d e s ig n e d t o k i l l s u r v iv in g m u ta n ts . I n
th e la t te r c a s e , m u t a t io n t e s t in g c a n a ls o b e c a te g o r iz e d as a c o d e -b a s e d te c h n iq u e . T h e
u n d e r ly in g a s s u m p t io n o f m u t a t io n t e s t in g , th e c o u p l in g e f fe c t , is th a t b y lo o k in g f o r
s im p le s y n ta c t ic fa u l t s , m o r e c o m p le x b u t r e a l f a u l t s w i l l b e f o u n d . F o r th e te c h n iq u e to
b e e f f e c t iv e , a la r g e n u m b e r o f m u t a n t s m u s t b e a u to m a t ic a l ly d e r iv e d i n a s y s te m a t ic
w a y .

4 .3 .5 U s a g e - b a s e d t e c h n iq u e s . S o m e u s a g e b a s e d te c h n iq u e s a re [S W E B O K 2 0 0 4] :

• Operational profile — I n t e s t in g f o r r e l i a b i l i t y e v a lu a t io n , th e te s t e n v i r o n m e n t m u s t r e
p r o d u c e th e o p e r a t io n a l e n v i r o n m e n t o f th e s o f tw a r e a s c lo s e ly as p o s s ib le . T h e id e a i s to
i n f e r , f r o m th e o b s e r v e d te s t r e s u l ts , t h e f u t u r e r e l i a b i l i t y o f t h e s o f tw a r e w h e n i n a c tu a l
u s e . T o d o th is , in p u ts a re a s s ig n e d a p r o b a b i l i t y d is t r ib u t io n , o r p r o f i l e , a c c o r d in g t o t h e i r
o c c u r r e n c e i n a c tu a l o p e r a t io n .

• Software Reliability Engineered Testing — S o f tw a r e R e l i a b i l i t y E n g in e e r e d T e s t in g
(S R E T) [M u s a 1 9 9 3] is a t e s t in g m e t h o d e n c o m p a s s in g th e w h o le d e v e lo p m e n t p ro c e s s ,
w h e r e b y t e s t in g is “ d e s ig n e d a n d g u id e d b y r e l i a b i l i t y o b je c t iv e s a n d e x p e c te d r e la t iv e
u s a g e a n d c r i t i c a l i t y o f d i f f e r e n t f u n c t io n s i n th e f i e l d . ”

4 .3 .6 T e c h n iq u e s b a s e d o n t h e n a t u r e o f t h e a p p l i c a t i o n . T h e s e te c h n iq u e s a p p ly t o a l l ty p e s
o f s o f tw a r e . H o w e v e r , f o r s o m e k in d s o f a p p l ic a t io n s , s o m e a d d i t io n a l k n o w - h o w is r e q u i r e d f o r
te s t d e r iv a t io n . A l i s t o f a f e w s p e c ia l iz e d t e s t in g f ie ld s is p r o v id e d h e re , b a s e d o n th e n a tu re o f
th e a p p l ic a t io n u n d e r te s t [S W E B O K 2 0 0 4] :

• O b je c t - o r ie n te d t e s t in g

• C o m p o n e n t - b a s e d te s t in g

• W e b - b a s e d t e s t in g

• G U I te s t in g

• T e s t in g o f c o n c u r r e n t p r o g r a m s

• P r o to c o l c o n fo r m a n c e t e s t in g

• T e s t in g o f r e a l - t im e s y s te m s

• T e s t in g o f s a f e t y - c r i t i c a l s y s te m s

4 .3 .7 S e le c t in g a n d c o m b in i n g t e c h n iq u e s . S o m e te c h n iq u e s th a t s e le c t a n d c o m b in e o th e r
te c h n iq u e s a re [S W E B O K 2 0 0 4] :

• Functional and structural — S p e c i f ic a t io n - b a s e d a n d c o d e -b a s e d te s t te c h n iq u e s a re e s
s e n t ia l ly b la c k - b o x a n d w h i t e - b o x te c h n iq u e s a n d a re o f t e n c o n t r a s te d as f u n c t io n a l v s .
s t r u c tu r a l te s t in g . T h e s e t w o a p p r o a c h e s to te s t s e le c t io n a re n o t t o b e s e e n as a l te r n a t iv e
b u t r a th e r as c o m p le m e n ta r y ; i n fa c t , t h e y u s e d i f f e r e n t s o u rc e s o f i n f o r m a t io n a n d h a v e
b e e n p r o v e n t o h ig h l i g h t d i f f e r e n t k in d s o f p r o b le m s . T h e y c o u ld b e u s e d i n c o m b in a t io n ,
d e p e n d in g o n b u d g e ta r y c o n s id e r a t io n s .

- 1 9 2 -

• Deterministic vs. random — T e s t c a s e s c a n b e s e le c te d in a d e t e r m in is t ic w a y , a c c o r d in g
t o o n e o f th e v a r io u s te c h n iq u e s l is t e d , o r r a n d o m ly d r a w n f r o m s o m e d is t r ib u t io n o f i n
p u t s , s u c h a s is u s u a l ly d o n e in r e l i a b i l i t y te s t in g . S e v e r a l a n a ly t ic a l a n d e m p i r ic a l c o m
p a r is o n s h a v e b e e n c o n d u c te d to a n a ly z e th e c o n d i t io n s th a t m a k e o n e a p p r o a c h m o r e
e f f e c t i v e th a n th e o th e r .

4 .4 H u m a n C o m p u t e r U s e r I n t e r f a c e T e s t in g a n d E v a lu a t i o n

4 .4 .1 H u m a n c o m p u t e r u s e r i n t e r f a c e (H C I) t e s t i n g a n d e v a lu a t i o n (t h e v a r i e t y o f a s p e c ts
o f u s e fu ln e s s a n d u s a b i l i t y) . H C I in te r fa c e t e s t in g in c lu d e s m e th o d s o f m e a s u r in g u s a b i l i t y a n d
th e s tu d y o f th e p r in c ip le s b e h in d a n o b je c t ’ s p e r c e iv e d e f f i c ie n c y o r e le g a n c e . I n h u m a n -
c o m p u te r in t e r a c t io n a n d c o m p u te r s c ie n c e , u s a b i l i t y s tu d ie s th e e le g a n c e a n d c la r i t y w i t h w h ic h
th e in t e r a c t io n w i t h a c o m p u te r p r o g r a m o r a w e b s i te (w e b u s a b i l i t y) is d e s ig n e d . H o w e v e r , an
e v e n m o r e b a s ic r e q u i r e m e n t is th a t th e u s e r in te r f a c e b e useful, i . e . , t h a t i t a l l o w th e u s e r to
c o m p le te r e le v a n t ta s k s .

4 .4 .2 H e u r i s t i c e v a lu a t io n . A heuristic evaluation is a u s a b i l i t y in s p e c t io n m e th o d f o r c o m p u te r
s o f tw a r e t h a t h e lp s t o i d e n t i f y u s a b i l i t y p r o b le m s i n th e u s e r in te r fa c e (U I) d e s ig n . I t s p e c i f ic a l ly
in v o lv e s e v a lu a to r s e x a m in in g th e in te r f a c e a n d j u d g in g i ts c o m p l ia n c e w i t h r e c o g n iz e d u s a b i l i t y
p r in c ip le s (th e “ h e u r is t ic s ”) . Usability inspection is th e n a m e f o r a s e t o f m e th o d s w h e r e an
e v a lu a to r in s p e c ts a u s e r in te r fa c e . T h is i s i n c o n t r a s t t o u s a b i l i t y t e s t in g w h e r e th e u s a b i l i t y o f
th e in t e r f a c e is e v a lu a te d b y t e s t in g i t o n r e a l u s e rs . U s a b i l i t y in s p e c t io n s c a n g e n e r a l ly b e u s e d
e a r ly in t h e d e v e lo p m e n t p ro c e s s b y e v a lu a t in g p r o to ty p e s o r s p e c i f ic a t io n s f o r th e s y s te m th a t
c a n ’ t be te s te d o n u s e rs . U s a b i l i t y in s p e c t io n m e th o d s a re g e n e r a l ly c o n s id e r e d t o b e c h e a p e r to
im p le m e n t th a n t e s t in g o n u s e rs [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / H e u r i s t i c e v a lu a t io n] ,

4 .4 .3 C o g n i t i v e w a l k t h r o u g h s . T h e cognitive walkthrough m e th o d is a u s a b i l i t y in s p e c t io n
m e th o d u s e d t o i d e n t i f y u s a b i l i t y is s u e s i n a p ie c e o f s o f tw a r e o r o n a w e b s ite , f o c u s in g o n h o w
e a s y it i s f o r n e w u s e rs t o a c c o m p l is h ta s k s w i t h th e s y s te m . W h e r e a s c o g n i t i v e w a lk t h r o u g h is
t a s k - s p e c i f ic , h e u r is t ic e v a lu a t io n ta k e s a h o l i s t i c v i e w to c a tc h p r o b le m s n o t c a u g h t b y t h is a n d
o th e r u s a b i l i t y in s p e c t io n m e th o d s . T h e m e th o d is r o o te d in th e n o t io n th a t u s e rs t y p i c a l l y p r e fe r
to le a m a s y s te m b y u s in g i t t o a c c o m p l is h ta s k s r a th e r th a n , f o r e x a m p le , s tu d y in g a m a n u a l.
T h e m e th o d is p r iz e d f o r i t s a b i l i t y t o g e n e ra te r e s u l t s q u i c k ly w i t h l o w c o s t , e s p e c ia l ly w h e n
c o m p a r e d t o u s a b i l i t y te s t in g , as w e l l a s th e a b i l i t y t o a p p ly th e m e th o d e a r ly i n th e d e s ig n
p h a s e s , b e f o r e c o d in g h a s e v e n b e g u n [h t t p : / / e n . w ik ip e d ia . o r g / w ik i / C o g n i t i v e _ w a lk t h r o u g h] .

4 .4 .4 U s e r t e s t i n g a p p r o a c h e s . U s a b i l i t y t e s t in g is t h e p ro c e s s b y w h ic h th e h u m a n - c o m p u te r
in t e r a c t io n c h a r a c te r is t ic s o f a s y s te m a re m e a s u re d , a n d w e a k n e s s e s a re id e n t i f i e d f o r c o r r e c t io n .
S u c h t e s t in g c a n r a n g e f r o m r ig o r o u s ly s t r u c tu r e d t o h ig h l y i n f o r m a l , f r o m q u i te e x p e n s iv e to
v i r t u a l l y f r e e , a n d f r o m t im e - c o n s u m in g t o q u ic k . W h i le th e a m o u n t o f im p r o v e m e n t is r e la te d to
th e e f f o r t in v e s te d i n u s a b i l i t y te s t in g , a l l o f th e s e a p p ro a c h e s le a d to b e t te r s y s te m s [L e v i &
C o n ra d 2 0 0 8] .

Observational methods i n v o l v e a n in v e s t ig a t o r v ie w in g u s e rs as th e y w o r k in a f i e l d s tu d y ,
a n d t a k in g n o te s o n th e a c t i v i t y th a t ta k e s p la c e . O b s e r v a t io n m a y b e e i t h e r d i r e c t , w h e r e th e
in v e s t ig a t o r is a c t u a l ly p r e s e n t d u r in g th e ta s k , o r in d i r e c t , w h e r e th e ta s k is v ie w e d b y s o m e
o th e r m e a n s s u c h as t h r o u g h u s e o f a v id e o r e c o r d e r . T h e m e th o d is u s e fu l e a r ly i n th e u s e r
r e q u i r e m e n ts s p e c i f ic a t io n p h a s e f o r o b ta in in g q u a l i t a t iv e d a ta . I t is a ls o u s e fu l f o r s t u d y in g
c u r r e n t l y e x e c u te d ta s k s a n d p ro c e s s e s .

- 1 9 3 -

http://en.wikipedia.org
http://en.wikipedia.org/wiki/Cognitive_walkthrough

T h e b e n e f i t is th a t th e o b s e r v e r c a n v i e w w h a t u s e r s a c t u a l ly d o i n c o n te x t . Direct observation
a l lo w s th e in v e s t ig a t o r t o fo c u s a t t e n t io n o n s p e c i f ic a re a s o f in te r e s t . I n d i r e c t o b s e r v a t io n
c a p tu re s a c t i v i t y th a t w o u ld o th e r w is e h a v e g o n e u n r e c o r d e d o r u n n o t ic e d [h t t p : / % w w . U s a b i 1 i t y
n e t . o r g / t o o ls / u s e r o b s e r v a t io n .h tm] .

A scenario-based usability test in v o lv e s p r e s e n t in g r e p r e s e n ta t iv e e n d -u s e rs w i t h s c e n a r io s ,
o r s p e c i f ic ta s k s , d e s ig n e d t o c o v e r th e m a jo r f u n c t i o n a l i t y o f th e s o f tw a r e s y s te m a n d t o s im u
la te e x p e c te d r e a l - l i f e u s a g e p a t te rn s . S u c h s c e n a r io s s h o u ld b e f o r m u la t e d b y k n o w le d g e a b le
ta s k e x p e r ts i n c o n s u l t a t io n w i t h th e s y s te m d e s ig n e rs . R e s u lts a re th e n ta b u la te d u s in g s u c h
m e a s u re s as w h e th e r th e p a r t ic ip a n t s c o r r e c t l y a c c o m p l is h e d th e ta s k s , th e t im e ta k e n f o r e a c h
ta s k , a n d th e n u m b e r o f p a g e s a c c e s s e d f o r e a c h ta s k [L e v i & C o n r a d 2 0 0 8] .

Mining the Logs usability evaluation e v a lu a te s w e b s e rv e r lo g s a s a v a lu a b le s o u rc e o f i n
f o r m a t io n a b o u t u s a g e p a t te rn s . U s a b i l i t y e v a lu a t io n n e e d n o t e n d w i t h a s y s te m ’ s re le a s e .
S ta n d a r d W e b s e rv e rs , o r h t t p d lo g s , a re a n i n v a lu a b le s o u rc e o f i n f o r m a t io n a b o u t u s a g e p a t te r n s
o n c e a W e b s ite h a s g o n e l i v e . A t t h is p o in t , th e te s te rs n e e d n o t f i n d u s a b i l i t y e x p e r ts o r r e p r e
s e n ta t iv e u s e rs ; r e a l u s e rs ’ s e s s io n s a re c a p tu r e d i n g re a t d e ta i l a n d a re a v a i la b le f o r a n a ly s is
[L e v i & C o n r a d 2 0 0 8] .

U s a b i l i t y t e s t in g c a n b e p e r fo r m e d w i t h d e v e lo p e r s , H C I e x p e r ts , o r r e p r e s e n ta t iv e e n d u s e rs .
S o m e a u th o r s d is t in g u is h b e tw e e n “ t e s t in g , ” w h i c h th e y l i m i t t o e m p i r ic a l e n d -u s e r o r ie n te d
m e th o d s , a n d “ e v a lu a t io n , ” w h ic h u t i l iz e s H C I p r o f e s s io n a ls ’ e x p e r t is e [L e v i & C o n r a d 2 0 0 8] .

4 .4 .5 W e b u s a b i l i t y . U s a b i l i t y c a n b e d e f in e d as t h e d e g re e t o w h ic h a g iv e n p ie c e o f s o f tw a r e
a s s is ts th e p e r s o n s i t t in g a t th e k e y b o a r d t o a c c o m p l is h a ta s k , as o p p o s e d to b e c o m in g a n
a d d i t io n a l im p e d im e n t t o th e a c c o m p l is h m e n t . T h e b ro a d g o a l o f u s a b le s y s te m s is o f t e n a s
s e s s e d u s in g s e v e ra l c r i t e r ia [L e v i & C o n r a d 2 0 0 8] :

• E a s e o f le a r n in g

• R e te n t io n o f le a r n in g o v e r t im e

• S p e e d o f t a s k c o m p le t io n

• E r r o r ra te

• S u b je c t iv e u s e r s a t is fa c t io n

4 .4 .6 T e s t i n g t e c h n iq u e s f o r t h e w e b . T h e r e a re th r e e m a in s ty le s o f t e s t in g f o r th e w e b . Ex
ploratory testing e x a m in e s a s y s te m a n d lo o k s f o r a re a s o f u s e r c o n fu s io n , s lo w - d o w n , o r m is
ta k e s . S u c h t e s t in g is p e r fo r m e d w i t h n o p a r t i c u la r p r e c o n c e iv e d n o t io n s a b o u t w h e r e th e
p r o b le m s l i e o r w h a t f o r m th e y m a y ta k e . T h e d e l iv e r a b le f o r a n e x p lo r a t o r y te s t is a l i s t o f
p r o b le m a re a s f o r f u r t h e r e x a m in a t io n : “ u s e rs w e r e v i s ib l y c o n fu s e d w h e n fa c e d w i t h p a g e x ;
o n ly h a l f th e u s e rs w e r e a b le t o c o m p le te ta s k y; t a s k z ta k e s lo n g e r th a n i t s h o u ld . ” E x p lo r a t o r y
te s t in g c a n b e u s e d a t a n y p o in t i n th e d e v e lo p m e n t l i f e c y c le , b u t is m o s t e f f e c t iv e w h e n im p le
m e n te d e a r ly a n d o f te n .

Threshold testing m e a s u re s th e p e r fo r m a n c e c h a r a c te r is t ic s o f a s y s te m a g a in s t p r e d e te r
m in e d g o a ls . T h is is a p a s s / fa i l e f f o r t : “ W i t h t h is s y s te m u s e rs w e r e a b le t o c o m p le te ta s k x in y
s e c o n d s , m a k in g a n a v e ra g e o f z m is ta k e s . T h is d o e s (d o e s n o t) m e e t th e re le a s e c r i t e r ia . ”
T h r e s h o ld t e s t in g t y p i c a l l y a c c o m p a n ie s a b e ta r e le a s e .

- 1 9 4 -

F in a l l y , comparison testing m e a s u re s th e u s a b i l i t y c h a r a c te r is t ic s o f t w o a p p ro a c h e s o r de
s ig n s t o d e t e r m in e w h ic h b e t te r s u i ts u s e rs ’ n e e d s . T h is is u s u a l ly d o n e a t th e e a r ly p r o t o t y p in g
s ta g e [L e v i & C o n r a d 2 0 0 8] .

4 .5 T e s t - r e la t e d M e a s u r e s

S o m e t im e s te s t t e c h n iq u e s a re c o n fu s e d w i t h te s t o b je c t iv e s . T e s t te c h n iq u e s a re t o b e v ie w e d as
a id s th a t h e l p t o e n s u re th e a c h ie v e m e n t o f te s t o b je c t iv e s . F o r in s ta n c e , b r a n c h c o v e ra g e is a
p o p u la r t e s t t e c h n iq u e . A c h ie v in g a s p e c i f ie d b r a n c h c o v e r a g e m e a s u re s h o u ld n o t b e c o n s id e re d
th e o b je c t i v e o f t e s t in g p e r se : i t is a m e a n s to im p r o v e th e c h a n c e s o f f i n d in g f a i lu r e s b y s y s te m
a t ic a l ly e x e r c is in g e v e r y p r o g r a m b r a n c h o u t o f a d e c is io n p o in t . T o a v o id s u c h m is u n d e r s ta n d
in g s , a c le a r d is t in c t io n s h o u ld b e m a d e b e tw e e n te s t - r e la te d m e a s u re s , w h ic h p r o v id e an
e v a lu a t io n o f th e p r o g r a m u n d e r te s t b a s e d o n th e o b s e r v e d te s t o u tp u ts , a n d th o s e th a t e v a lu a te
th e t h o r o u g h n e s s o f th e te s t se t.

M e a s u r e m e n t is u s u a l ly c o n s id e r e d in s t r u m e n ta l t o q u a l i t y a n a ly s is . M e a s u r e m e n t m a y a lso
b e u s e d t o o p t im iz e th e p la n n in g a n d e x e c u t io n o f t h e te s ts . T e s t m a n a g e m e n t c a n u s e s e v e ra l
p ro c e s s m e a s u r e s t o m o n i t o r p ro g r e s s .

4 .5 .1 . E v a l u a t i o n o f t h e p r o g r a m u n d e r te s t . T h e f o l l o w i n g a re m e th o d s o f e v a lu a t in g p r o
g ra m s u n d e r te s t [S W E B O K 2 0 0 4] :

• Program measurement to aid in planning and designing testing — M e a s u re s b a s e d on
p r o g r a m s iz e (f o r e x a m p le , s o u rc e l in e s o f c o d e o r f u n c t io n p o in t s) o r o n p r o g r a m s t ru c
t u r e (l i k e c o m p le x i t y) a re u s e d t o g u id e te s t in g . S t r u c tu r a l m e a s u re s c a n a ls o in c lu d e
m e a s u r e m e n ts a m o n g p r o g r a m m o d u le s i n te r m s o f th e f r e q u e n c y w i t h w h ic h m o d u le s
c a l l e a c h o th e r [S W E B O K 2 0 0 4] .

• Fault types and classification, and statistics. T h e te s t in g l i t e r a tu r e is r i c h i n c la s s i f ic a
t i o n s a n d ta x o n o m ie s o f f a u l t s . T o m a k e t e s t in g m o r e e f f e c t iv e , i t is im p o r t a n t t o k n o w
w h i c h t y p e s o f f a u l t s c o u ld b e f o u n d in th e s o f tw a r e u n d e r te s t , a n d th e r e la t iv e f r e q u e n c y
w i t h w h ic h th e s e f a u l t s h a v e o c c u r r e d in th e p a s t . T h is i n f o r m a t io n c a n b e v e r y u s e f u l in
m a k in g q u a l i t y p r e d ic t io n s , as w e l l as f o r p ro c e s s im p r o v e m e n t . A n I E E E s ta n d a rd e x is ts
o n c la s s i f i c a t io n o f s o f tw a r e “ a n o m a l ie s ” [S W E B O K 2 0 0 4 ; IE E E 1 0 4 4 - 1 9 9 3] ,

• Fault density — A p r o g r a m u n d e r te s t c a n b e a s s e s se d b y c o u n t in g a n d c la s s i f y in g the
d is c o v e r e d f a u l t s b y t h e i r ty p e s . F o r e a c h f a u l t c la s s , f a u l t d e n s i t y is m e a s u re d as th e ra t io
o f t h e n u m b e r o f f a u l t s f o u n d t o th e s iz e o f th e p r o g r a m [S W E B O K 2 0 0 4] .

• Life test, reliability evaluation — A s ta t is t ic a l e s t im a te o f s o f tw a r e r e l i a b i l i t y , w h ic h can
b e o b ta in e d b y r e l i a b i l i t y a c h ie v e m e n t a n d e v a lu a t io n , c a n b e u s e d t o e v a lu a te a p r o d u c t
a n d d e c id e w h e th e r o r n o t t e s t in g c a n b e s to p p e d [S W E B O K 2 0 0 4] .

• Reliability growth models — R e l i a b i l i t y g r o w t h m o d e ls p r o v id e a p r e d ic t io n o f r e l i a b i l i t y
b a s e d o n th e f a i lu r e s o b s e r v e d u n d e r r e l i a b i l i t y a c h ie v e m e n t a n d e v a lu a t io n T h e y a s s u m e ,
in g e n e r a l, t h a t th e f a u l t s th a t c a u s e d th e o b s e r v e d f a i lu r e s h a v e b e e n f i x e d (a l th o u g h
s o m e m o d e ls a ls o a c c e p t im p e r f e c t f i x e s) , a n d th u s , o n a v e ra g e , th e p r o d u c t ’ s r e l i a b i l i t y
e x h ib i t s a n in c r e a s in g t r e n d . T h e r e n o w e x is t d o z e n s o f p u b l is h e d m o d e ls . M a n y a re la id
d o w n o n s o m e c o m m o n a s s u m p t io n s , w h i le o th e r s d i f f e r . N o t a b ly , th e s e m o d e ls a re d i
v i d e d in t o f a i lu r e - c o u n t a n d t im e - b e t w e e n - f a i lu r e m o d e ls [M u s a 2 0 0 5] .

- 1 9 5 -

4 .5 .2 . E v a l u a t i o n o f t h e te s ts p e r f o r m e d . T h e f o l l o w i n g a re m e th o d s o f e v a lu a t in g te s ts p e r
f o r m e d [S W E B O K 2 0 0 4] :

• Coverage/thoroughness measures — S e v e r a l te s t a d e q u a c y c r i t e r ia r e q u i r e th a t th e te s t
c a s e s s y s t e m a t ic a l ly e x e r c is e a s e t o f e le m e n ts i d e n t i f i e d in th e p r o g r a m o r in th e s p e c i f i
c a t io n s . T o e v a lu a te th e th o r o u g h n e s s o f t h e e x e c u te d te s ts , te s te rs c a n m o n i t o r th e e le
m e n ts c o v e r e d , so t h a t th e y c a n d y n a m ic a l l y m e a s u re th e r a t io b e tw e e n c o v e r e d e le m e n ts
a n d t h e i r t o t a l n u m b e r . F o r e x a m p le , i t is p o s s ib le t o m e a s u re th e p e rc e n ta g e o f c o v e r e d
b ra n c h e s i n th e p r o g r a m f l o w g r a p h , o r t h a t o f th e f u n c t io n a l r e q u ir e m e n ts e x e r c is e d
a m o n g th o s e l is te d i n th e s p e c i f ic a t io n s d o c u m e n t . C o d e -b a s e d a d e q u a c y c r i t e r ia r e q u ir e
a p p r o p r ia te in s t r u m e n t a t io n o f th e p r o g r a m u n d e r te s t [I E E E 9 8 2 .1 - 1 9 8 8] .

• Fault seeding — S o m e fa u l t s a re a r t i f i c i a l l y in t r o d u c e d in to th e p r o g r a m b e fo r e te s t in g .
W h e n th e te s ts a re e x e c u te d , s o m e o f th e s e s e e d e d fa u l t s w i l l b e re v e a le d , a n d p o s s ib ly
s o m e fa u l t s th a t w e r e a l r e a d y th e r e w i l l b e a s w e l l . I n t h e o r y , d e p e n d in g o n w h ic h o f th e
a r t i f i c ia l f a u l t s a re d is c o v e r e d , a n d h o w m a n y , t e s t in g e f fe c t iv e n e s s c a n b e e v a lu a te d , a n d
th e r e m a in in g n u m b e r o f g e n u in e f a u l t s c a n b e e s t im a te d . I n p r a c t ic e , s ta t is t ic ia n s q u e s
t i o n th e d is t r ib u t io n a n d r e p r e s e n ta t iv e n e s s o f s e e d e d fa u l t s r e la t iv e t o g e n u in e f a u l t s a n d
th e s m a l l s a m p le s iz e o n w h ic h a n y e x t r a p o la t io n s a re b a s e d . S o m e a ls o a rg u e t h a t th is
t e c h n iq u e s h o u ld b e u s e d w i t h g re a t c a re , s in c e in s e r t in g f a u l t s in t o s o f tw a r e in v o lv e s th e
o b v io u s r is k o f le a v in g t h e m th e re .

• Mutation score — I n m u t a t io n t e s t in g (s e e e a r l ie r d is c u s s io n) th e r a t io o f k i l l e d m u ta n ts
to th e t o t a l n u m b e r o f g e n e ra te d m u ta n ts c a n b e a m e a s u re o f th e e f fe c t iv e n e s s o f th e e x e
c u te d te s t s e t.

• Comparison and relative effectiveness of different techniques — S e v e r a l s tu d ie s h a v e
b e e n c o n d u c te d to c o m p a r e th e r e la t iv e e f f e c t iv e n e s s o f d i f f e r e n t te s t t e c h n iq u e s . I t is i m
p o r ta n t t o b e p re c is e a s t o th e p r o p e r t y a g a in s t w h ic h th e te c h n iq u e s a re b e in g a s s e s se d ;
w h a t , f o r in s ta n c e , is th e e x a c t m e a n in g g i v e n t o th e t e r m “ e f fe c t iv e n e s s ” ? P o s s ib le i n t e r
p r e ta t io n s a re : th e n u m b e r o f te s ts n e e d e d t o f in d th e f i r s t f a i lu r e , th e r a t io o f th e n u m b e r
o f f a u l t s fo u n d t h r o u g h t e s t in g t o a l l th e f a u l t s f o u n d d u r in g a n d a f te r te s t in g , o r h o w
m u c h r e l i a b i l i t y w a s im p r o v e d . A n a ly t i c a l a n d e m p i r ic a l c o m p a r is o n s b e tw e e n d i f f e r e n t
te c h n iq u e s h a v e b e e n c o n d u c te d a c c o r d in g t o e a c h o f th e n o t io n s o f e f fe c t iv e n e s s s p e c i
f ie d a b o v e .

4 .6 T e s t P r o c e s s

T e s t in g c o n c e p ts , s t r a te g ie s , te c h n iq u e s , a n d m e a s u r e s n e e d t o b e in te g r a te d in t o a d e f in e d a n d
c o n t r o l le d p ro c e s s th a t is r u n b y p e o p le . T h e te s t p r o c e s s s u p p o r ts t e s t in g a c t iv i t ie s a n d p r o v id e s
g u id a n c e t o t e s t in g te a m s , f r o m te s t p la n n in g t o te s t o u tp u t e v a lu a t io n , in s u c h a w a y as to
p r o v id e j u s t i f i e d a s s u ra n c e th a t th e te s t o b je c t iv e s w i l l b e m e t c o s t - e f f e c t iv e ly [S W E B O K 2 0 0 4] .

4 .6 .1 . P r a c t i c a l c o n s id e r a t io n s . S o m e p r a c t ic a l t e s t p ro c e s s e s a re [S W E B O K 2 0 0 4 :

• Attitudes/Egoless programming — A v e r y im p o r ta n t c o m p o n e n t o f s u c c e s s fu l t e s t in g is
a c o l la b o r a t iv e a t t i t u d e t o w a r d s t e s t in g a n d q u a l i t y a s s u ra n c e a c t iv i t ie s . M a n a g e r s h a v e a
k e y r o le in f o s t e r in g a g e n e r a l ly fa v o r a b le r e c e p t io n to w a r d s f a i lu r e d is c o v e r y d u r in g d e
v e lo p m e n t a n d m a in te n a n c e ; f o r in s ta n c e , b y p r e v e n t in g a m in d s e t o f c o d e o w n e r s h ip
a m o n g p r o g r a m m e r s , so th a t t h e y w i l l n o t f e e l r e s p o n s ib le f o r f a i lu r e s r e v e a le d b y t h e i r
c o d e .

- 1 9 6 -

• Test guides — The testing phases could be guided by various aims, for example: in risk-
based testing, which uses the product risks to prioritize and focus the test strategy; or in
scenario-based testing, in which test cases are defined based on specified software sce
narios.

• Test process management — Test activities conducted at different test levels must be
organized, together with people, tools, policies, and measurements, into a well-defined
process that is an integral part of the life cycle. In 1EEE/EIA Standard 12207.0 [1996],
testing is no t described as a stand-alone process, but principles for testing activities are
included along with both the five primary life-cycle processes and the supporting pro
cesses. In [IEEE Std 1074], testing is grouped with other evaluation activities as integral
to the entire life cycle.

• Test documentation and work products — Documentation is an integral part o f the for
malization o f the test process. The IEEE Standard for Software Test Documentation
[IEEE 829-2007] provides a good description o f test documents and of their relationship
with one another and with the testing process. Test documents may include, among oth
ers, Test Plan, Test Design Specification, Test Procedure Specification, Test Case Speci
fication, Test Log, and Test Incident or Problem Report. The software under test is
documented as the Test Item. Test documentation should be produced and continually
updated, to the same level of quality as other types o f documentation in software engi
neering.

• Internal vs. independent test team — Formalization o f the test process may involve for
malizing the test team organization as well. The test team can be composed of internal
members (that is, on the project team, involved or not in software construction), of exter
nal members, in the hope of bringing in an unbiased, independent perspective, or, finally,
of both internal and external members. Considerations of costs, schedule, maturity levels
of the involved organizations, and criticality o f the application may determine the deci
sion.

• Cost/effort estimation and other process measures — Several measures related to the
resources spent on testing, as well as to the relative fault-finding effectiveness o f the var
ious test phases, are used by managers to control and improve the test process. These test
measures m ay cover such aspects as number o f test cases specified, number of test cases
executed, num ber o f test cases passed, and number o f test cases failed, among others.

Evaluation o f test phase reports can be combined with root-cause analysis to evaluate
test process effectiveness in finding faults as early as possible. Evaluation o f test reports
could provide feedback about typical errors found to improve coding or pre-test activities
such as peer reviews (so the code is better when it enters testing).

Such an evaluation could be associated with the analysis of risks. Moreover, the re
sources tha t are worth spending on testing should be commensurate with the
use/criticality o f the application: different techniques have different costs and yield dif
ferent levels o f confidence in product reliability.

• Termination — A decision must be made as to how much testing is enough and when a
test stage can be terminated. Thoroughness measures, such as achieved code coverage or
functional completeness, as well as estimates o f fault density or o f operational reliability,

- 1 9 7 -

provide useful support, but are not sufficient in themselves. The decision also involves
considerations about the costs and risks incurred by the potential for remaining failures,
as opposed to the costs implied by continuing to test.

• Test reuse and test patterns — To carry out testing or maintenance in an organized and
cost-effective way, the means used to test each part o f the software should be reused sys
tematically. This repository of test materials must be under the control o f software con
figuration management, so that changes to software requirements or design can be
reflected in changes to the scope of the tests conducted.

The test solutions adopted for testing some application types under certain circum
stances, with the motivations behind the decisions taken, form a test pattern that can itself
be documented for later reuse in similar projects.

4.6.2. Test activities. Under this topic, a brief overview of test activities is given. As often
implied by the following description, successful management o f test activities strongly depends
on the software configuration management process [SWEBOK 2004].

• Planning — Like any other aspect o f project management, testing activities must be
planned. Key aspects of test planning include coordination of personnel, management of
available test facilities and equipment (which may include magnetic media, test plans and
procedures), and planning for possible undesirable outcomes. If more than one baseline
of the software is being maintained, then a major planning consideration is the time and
effort needed to ensure that the test environment is set to the proper configuration.

• Test-case generation — Generation of test cases is based on the level of testing to be per
formed and the particular testing techniques. Test cases should be under the control of
software configuration management and include the expected results for each test.

• Test environment development — The environment used for testing should be compati
ble with the software engineering tools. It should facilitate development and control of
test cases, as well as logging and recovery of expected results, scripts, and other testing
materials.

• Execution — Execution o f tests should embody a basic principle o f scientific experimen
tation: everything done during testing should be performed and documented clearly
enough that another person could replicate the results. Hence, testing should be per
formed in accordance with documented procedures using a clearly defined version of the
software under test.

• Test results evaluation — The results o f testing must be evaluated to determine whether
or not the test has been successful. In most cases, “successful” means that the software
performed as expected and did not have any major unexpected outcomes. Not all unex
pected outcomes are necessarily faults, however, but could be judged to be simply noise.
Before a failure can be removed, an analysis and debugging effort is needed to isolate,
identify, and describe it. When test results are particularly important, a formal review
board may be convened to evaluate them.

• Problem reporting/test log — Testing activities can be entered into a test log to identify
when a test was conducted, who performed the test, what software configuration was the
basis for testing, and other relevant identification information. Unexpected or incorrect

- 1 9 8 -

test results can be recorded in a problem-reporting system, the data of which forms the
basis for later debugging and for fixing the problems that were observed as failures dur
ing testing. Also, anomalies not classified as faults could be documented in case they lat
er turn out to be more serious than first thought. Test reports are also an input to the
change management request process.

• Defect tracking — Failures observed during testing are most often due to faults or de
fects in the software. Such defects can be analyzed to determine when they were intro
duced into the software, what kind of error caused them to be created (poorly defined
requirements, incorrect variable declaration, memory leak, programming syntax error, for
example), and when they could have been first observed in the software. Defect-tracking
information is used to determine what aspects of software engineering need improvement
and how effective previous analyses and testing have been.

References

Additional information on the software testing KA can be found in the following documents:

• (Bache & M ullerberg 1990] R. Bache and M. Miillerberg, “Measures o f Testability as a
Basis for Quality Assurance,” Software Engineering Journal, vol. 5, March 1990, pp. 86-
92.

• [IEEE 610.12-90] IEEE Std 610.12-1990 (R2002J, IEEE Standard Glossary of Software
Engineering Terminology. IEEE Inc., New York 1990.

• [IEEE Std 1074] IEEE Standard 1074-2006 IEEE Standard for Developing a Sof tware
Project life-cycle Process. IEEE Inc., New York 2006.

• [IEEE 829-2007] IEEE Standard 829-2007, IEEE Standard for Software Test Documen
tation. IEEE, Inc., New York, 2007.

• [IEEE/EIA 12207.0-1996] IEEE/EIA12207.0-1996, Industry Implementation of Interna
tional Standard ISO/IEC 12207:1995 Standard for Information Technology Software life
cycle Processes. IEEE Inc., New York 1996.

• [IEEE 1044-1993] IEEE Standard 1044-1993, IEEE Standards for the classification of
Software Anomalies. IEEE, Inc., New York. 1993.

• [IEEE 982.1-1988] IEEE Standard Dictionary of Measurements to Produce Reliable
Software. IEEE, Inc., New York, 1988.

• [Levi & C onrad 2008] Michael D. Levi and Frederick G. Conrad, “Usability Testing of
World Wide Web Sites.” Office o f Survey Methods Research, Bureau of Labor Statistics,
United States Department o f Labor, Washington D.C., 2008.

• [Musa 1993] Joh Musa, “Operational Profiles in Software Reliability Engineering,”
IEEE Software Magazine, March, 1993.

• [Musa 2005] Joh Musa, Software Reliability Engineering: More Reliable Software
Faster and Cheaper, 2nd. Edition, Author House, Bloomington, IN, 2005

• [SW EBOK 2004] Software Engineering Body of Knowledge (SWEBOK). IEEE Comput
er Society Press, Los Alamitos, CA, 2004.

- 1 9 9 -

• [Usability Net 2006] Usability N et was a project funded by the European Union to pro
vide resources and networking for usability practitioners, managers and EU projects
[http://www.usabilitynet.org].

• [Voas & M iller 1995] J.M. Voas and K.W. Miller, “Software Testability: The New
Verification,” IEEE Software, May, 1995, pp. 17-28.

• [Wikipedia] Wikipedia is a free web based encyclopedia enabling multiple users to
freely add and edit online content. Definitions cited on Wikipedia and their related
sources have been verified by the authors and other peer reviewers. Readers who would
like to verify a source or a reference should search the subject on Wikipedia.

- 2 0 0 -

http://www.usabilitynet.org

C h a p t e r 5 .1

S o f t w a r e E n g i n e e r i n g M a i n t e n a n c e : A n i n t r o d u c t i o n 11

Keith H. Bennett
School of Engineering & Computing Sciences

University of Durham
Durham City, England

The purpose of this tutorial is:
1. To explain what is meant by software maintenance
2. To show how software maintenance fits into other software engineering activities
3. To explain the relationship between software maintenance and the organization
4. To explain best practice in software maintenance in terms of a process model
5. To describe important maintenance technologies such as impact analysis
6. To explain what is meant by a legacy system, and describe how reverse engineer

ing and other techniques may be used to support legacy systems
1. OVERVIEW OF TH E TUTORIAL

The tutorial starts with a short introduction to the field of software engineering, thereby provid
ing the context for the constituent field o f software maintenance. The aim o f the tutorial is to
focus ont solutions, not problems, but an appreciation o f the problems in software maintenance is
important. The solutions are categorized in a three-layer model: organizational issues, process
issues, and technical issues.

Our presentation of organizational solutions to maintenance concentrates on software as an
asset whose value needs to be sustained. We explain the process of software maintenance by
describing the IEEE standard for the maintenance process. It provides a very sensible approach
that is applicable to many organizations.

Technical issues are explained by concentrating on techniques o f particular importance to
maintenance. For example, configuration management and version control are as important for
initial development as for maintenance, so these are not addressed. In contrast, coping with the
ripple (domino) effect is only found during maintenance, and it is one of the crucial technical
problems to be solved. We describe solutions to this.

By th is stage, the tutorial will have presented the typical iterative maintenance process that is
used, at various levels of sophistication, in many organizations. However, the software may
become so difficult and expensive to maintain that special, often drastic, action is needed. The
software is then called a “legacy system,” and the particular problems of and solutions to coping
with legacy code are described.

The tutorial is completed by considering some fruitful research directions for the field.

11. Based on “Software Maintenance: A Tutorial,” by Keith H. Bennett, which appeared in R.H. Thayer and M.
Uorfman (editors), Software Engineering, Volume I, 3rd edition, IEEE Computer Society Press,
Los Alamitos, CA, ©2007 IEEE.

- 2 0 1 -

2. T H E S O F T W A R E E N G I N E E R I N G F I E L D

Software maintenance is concerned with modifying software once it is delivered to a customer.
By that definition, it forms a subarea of the wider field of software engineering, which is defined
as:

The application of the systematic, disciplined, quantifiable approach to the devel
opment, operation and maintenance of software; that is, the application of engi
neering to software [IEEE91],

It is helpful to understand trends and objectives o f the wider field in order to explain the de
tailed problems and solutions concerned with maintenance. McDermid’s definition in the Soft
ware Engineering Reference Book embodies the spirit o f the engineering approach. He states
that:

Software engineering is the science and art of specifying, designing, implementing
and evolving—with economy, time limits and elegance—programs, documenta
tion, and operating procedures whereby computers can be made useful to man
[MCDER91],

Software engineering is still a very young discipline and the term itself was only invented in
1967 [BAUE93], Modem computing is only some 50+ years old, yet within that time we have
gained the ability to solve very difficult and large problems. Often, these huge projects consume
thousands of person-years or more of analysis and design. The rapid increase in the size o f the
systems that we tackle, from programs as small as 100 lines of code to multimillion-line systems
now, presents very many problems of dealing with scale, so it is not surprising that evolving
such systems to meet continually changing user needs is difficult.

Much progress has been made over the past decade in improving our ability to construct
high-quality software that meets users’ needs. Is it feasible to extrapolate these trends? Baber
[BABE91] has identified three possible futures for software engineering:

1. Failures o f software systems are common, due to limited technical competence of devel
opers. This is largely an extrapolation o f the present situation.

2. The use of computer systems is limited to that application in which there is a minimal
risk to the public. There is widespread skepticism about the safety of software-based sys
tems. There may be legislation covering the use o f software in safety-critical and safety-
related systems.

3. The professional competence and qualifications o f software designers are developed to
such a high level that even very challenging demands can be met reliably and safely. In
this vision o f the future, software systems would be delivered on time, fully meeting their
requirements, and be applicable in safety-critical systems.

In case (1), software development is seen primarily as a craft activity. Option (2) is unreal
istic; software is too important to be restricted in this way. Hence, there is considerable interest
within the software engineering field in addressing the issues raised by (3). In this tutorial, we
see (3), with obvious extensions to address evolving systems, as defining the goal of software
maintenance.

A root problem for many software systems, which causes some o f the most difficult prob
lems for software maintenance, is complexity. Sometimes, this arises because a system is

- 2 0 2 -

migrated from hardware to software in order to gain the additional functionality that is easy to
achieve in software. Complexity should be a result o f implementing an inherently com plex
application (for example, in a tax calculation package, which is deterministic but nonlinear; or
automation of the U.K. Immigration Act, which is complex and ambiguous). The main tools to
control complexity are modular design and building systems as separated layers o f abstraction in
order to separate concerns. Nevertheless, the combination o f scale and application complexity
means that it is not feasible for one person alone to understand the complete software system.

3. SOFTW ARE MAINTENANCE

Once software has been initially produced, it then passes into the maintenance phase. The IEEE
definition o f software maintenance is as follows:

Software maintenance is the process of modifying the software system or compo
nent after delivery to correct faults, improve performance or other attributes, or
adapt to a change in environment [IEEE91],

Some organizations use the term software maintenance to refer only to the implementation
of very small changes (e.g., less than one day), and software development is used to refer to all
other modifications and enhancements. However, to avoid confusion, we shall continue to use
the IEEE standard definition.

Software maintenance, although part of software engineering, is by itself of major economic
importance. A number o f surveys over the last 15 years have shown that for most software,
software maintenance represents anything between 40% and 90% of total life-cycle costs (se e
[FOST93] for a review of such surveys). A number o f surveys have also tried to compute the
total software maintenance costs in the United Kingdom and in the United States. A lthough
these figures need to be treated with a certain amount o f caution, it seems clear that a huge
amount of money is being spent on software maintenance.

The inability to undertake maintenance quickly, safely, and cheaply means that for m any
organizations, a substantial applications backlog builds up. The Management Information
Services Department is unable to make changes at the rate required by marketing or business
needs. End users become frustrated, and often adopt PC solutions in order to short circuit the
problems. They may then find that a process of rapid prototyping and end-user computing
provides them (at least in the short term) with quicker and easier solutions than those supplied
by the Management Information Systems Department.

In the early decades o f computing, software maintenance comprised a relatively small p a rt
of the software life cycle; the major activity was writing new programs for new applications. In
the late 1960s and 1970s, management began to realize that old software does not simply d ie ,
and at that point software maintenance started to be recognized as a significant activity. A n
anecdote about the early days o f electronic data processing in banks illustrates this point. In the
1950s, a large U.S. bank was about to take the major step of employing its very first full-time
programmer. Management raised the issue of what would happen to this person once the p ro
grams had been written. The same bank now has several buildings full of data processing staff.

In the 1980s, it was becoming evident that old architectures were severely constraining n e w
design. In another example from the U.S. banking system, existing banks had difficulty m odify
ing their software in order to introduce automatic teller machines. In contrast, new banks writing
software from scratch found this relatively straightforward. It has also been reported in the

- 203 -

United Kingdom that at least two mergers o f financial organizations were unable to go ahead
due to the problems of bringing together software from two different organizations.

In the 1990s, a large part o f the business needs of many organizations was implemented, so
that business change is now represented by evolutionary change to the software, not revolution
ary change, and most so-called development is actually enhancement and evolution.

4. TYPES OF SO FTW A RE MAINTENANCE

Leintz and Swanson [LEIN78, LEIN80] undertook a survey, as a result o f which, maintenance
was categorized into four different categories:

1. Perfective maintenance. Changes required as a result o f user requests (also known as
evolutive maintenance)

2. Adaptive maintenance. Changes needed as a consequence o f operating system, hardware,
DBMS, and so forth, changes

3. Corrective maintenance. The identification and removal o f faults in the software

4. Preventative maintenance. Changes made to software to make it more maintainable

The above categorization is very useful to bring home to management some of the basic
costs o f maintenance. However, as will be seen in Section 9, the processes for the four types are
very similar, and there is little advantage in distinguishing them when designing best practice
maintenance processes.

It seems clear from a number of surveys that the majority o f software maintenance is con
cerned with evolution deriving from user-requested changes.

The important requirement o f software maintenance for the client is that changes are accom
plished quickly and cost effectively. The reliability of the software should, at worst, not be
degraded by the changes. Additionally, the maintainability of the system should not degrade
otherwise future changes will be progressively more expensive to carry out. This phenomenon
was recognized by Lehman, and expressed in terms of his well-known laws o f evolution
[LEHE80, LEHE84], The first law o f continuing change states that “a program that is used in a
real-world environment necessarily must change or become progressively less useful in that
environment.”

This argues that software evolution is not an undesirable attribute; essentially, it is only use
ful software that evolves. Lehman’s second law of increasing complexity states that “as an
evolving program changes, its structure tends to become more complex. Extra resources must be
devoted to preserving the semantics and simplifying the structure.” This law argues that things
will become much worse unless we do something about it. The problem for most software is that
nothing has been done about it so that changes are increasingly more expensive and difficult.
Ultimately, maintenance may become too expensive and almost infeasible; the software then
becomes known as a “legacy system” (see Section 11). Nevertheless, it may be of essential
importance to the organization.

5. PROBLEM S OF SO FTW A RE M AINTENANCE

There are many technical and managerial problems in striving to accomplish the objective of
changing software quickly, reliably, and cheaply. For example, user changes are often de
scribed in terms of the behavior o f the software system; these must be interpreted as changes to

- 204 -

the source code. W hen a change is made to the code, there may be substantial consequential
changes, not only in the code itself, but within documentation, design, test suites, and so o n
(this is termed the domino or ripple effect). Many systems under maintenance are very large,
and solutions that work for laboratory-scale pilots will not scale up to industrial-sized software.
Indeed, it may be said that any program that is sufficiently small to fit into a textbook or to b e
understood by one person does not have maintenance problems.

There is much in common between best practice in software engineering in general and
software maintenance in particular. Software maintenance problems essentially break into three
categories:

1. The alignment with organizational objectives. Initial software development is usually
project based, with defined timescale and budget. The main emphasis is to deliver o n
time and within budget to meet user needs. In contrast, software maintenance often h a s
the objective o f extending the life of a software system for as long as possible. In add i
tion, it may be driven by the need to meet user demand for software updates and e n
hancements. In both cases, return on investment is much less clear, so that the view a t
senior management level is often of a major activity that is consuming large resources
and providing no clear quantifiable benefit for the organization.

2. Process issues. At the process level, there are many activities in common with software
development. For example, configuration management is a crucial activity in both. H ow
ever, software maintenance requires a number o f additional activities not found in initial
development. Initial requests for changes are usually made to a “help desk” (often part o f
a larger end-user support unit), which must assess the change (as many change requests
derive from misunderstanding of documentation), and if it is viable, pass it to a technical
group that can assess the cost of making the change. Impact analysis on both the software
and the organization, and the associated need for system comprehension, are crucial i s
sues. Further down the life cycle, it is important to be able to perform regression tests o n
the software so that the new changes do not introduce errors into the parts o f the software
that were not altered.

3. Technical issues. There are a number of technical challenges to software maintenance.
As noted above, the ability to construct software such that it is easy to comprehend is a
major issue [ROBS91]. A number of studies have shown that the majority of time spent
in maintaining software is actually consumed in this activity. Similarly, testing in a cost-
effective way provides major challenges. Despite the emergence o f methods based o n
discrete mathematics (e.g., to prove that an implementation meets its specification), m ost
current software is tested rather than verified, and the cost of repeating a full test suite o n
a major piece o f software can be very large in terms of money and time. It will be better
to select a subset o f tests that only stress those parts of the system that have been
changed, together with the regression tests.

The technology to do this is still not available, despite much useful progress. As a n
example, it is useful to consider a major billing package for an industrial organization.
The change o f the taxation rate in such a system should be a simple matter; after a ll,
generations o f students are taught to place such constants at the head of the program s o
only a one-line edit is needed. However, for a major multinational company, dealing
with taxation rates in several countries with complex and different rules for tax calcula

- 205 -

tions (i.e., complex business rules), the change o f the taxation rate may involve a huge
expense.

Other problems relate to the lower status o f software maintenance compared with software
development. In the manufacture o f a consumer durable, the majority of the cost lies in produc
tion, and it is well understood that design faults can be hugely expensive. In contrast, the
construction o f software is automatic, and development represents almost all the initial cost.
Hence, in conditions of financial stringency, it is tempting to cut costs by cutting back on
design. This can have a very serious effect on the costs of subsequent maintenance.

One of the problems for management is that it is very difficult to assess a software product
to determine how easy it is to change. This means that there is little incentive for initial devel
opment projects to construct software that is easy to evolve. Indeed, lucrative maintenance
contracts may follow a software system in which shortcuts have been taken during development
[WALT94],

We have stressed the problems o f software maintenance in order to differentiate it from
software engineering in general. However, much is known about best practice in software
maintenance and there are excellent case studies such as the U.S. Space Shuttle on-board flight
control software system, which demonstrates that software can be evolved carefully and with
improving reliability. The remainder o f this paper is focused on solutions rather than problems.
The great majority of software in use today is neither geriatric nor state of the art, and this
tutorial addresses this type o f software. It describes a top-down approach to successful mainte
nance, addressing:

1. Software maintenance and the organization

2. Process models

3. Technical Issues

In particular, we shall focus on the IEEE standard for software maintenance process, which
illustrates the improving maturity o f the field.

6. O RG A N IZA TIO N A L ASPECTS OF MAINTENANCE

In 1987, Colter [COLT87] stated that the major problem of software maintenance as not tech
nical, but managerial: software maintenance organizations were failing to relate their work to the
needs o f the business, and, therefore, it should not be a surprise that the field suffered from low
investment and poor status in comparison to initial development, which was seen as a revenue
and profit generator

Initial software development is product oriented; the aim is to deliver an artifact within budg
et and on time. In contrast, software maintenance is much closer to a service. In many Japanese
organizations, for example [BENN94], software maintenance is seen at the senior management
level primarily as a means o f ensuring continued satisfaction with the software; it is closely
related to quality. The customer expects the software to continue to evolve to meet his or her
changing needs, and the vendor must respond quickly and effectively or lose business. In Japan,
it is also possible in certain circumstances to include software as an asset on the balance sheet.
These combine to ensure that software maintenance has a high profile with senior management
in Japan.

- 206 -

Like any other activity, software maintenance requires financial investment. We have already
seen that maintenance may be regarded by senior management in a company simply as a drain on
resources, distant from core activities, and it becomes a prime candidate for funding reduction
and even for closing down. Software maintenance thus needs to be expressed in terms of return
on investment. In many organizations undertaking maintenance for other internal divisions, the
service is rarely charged out as a revenue-generating activity from a profit center. In the U.K.
defense sector, there has been a major change in practice in charging for maintenance. Until
recently, work would be charged to Government based on the time taken to do the work plus a
profit margin. Currently, competitive tendering (procurement) is used for specific work packag
es.

Recently there has been a trend for software maintenance to be outsourced; in other words, a
company will contract out its software maintenance to another that specializes in this field.
Companies in India, China, and other countries are becoming increasingly competitive in this
market. This is sometimes done for peripheral software, as the company is unwilling to release
the software used in its core business. An outsourcing company will typically spend a number of
months assessing the software before it will accept a contract. Increasingly, service-level agree
ments between the maintenance organization (whether internal or external) and the customer are
being used as a contractual mechanism for defining the maintenance service that will be provid
ed. The U.K. Central Computer and Telecommunications Agency has produced a series of
guidelines on good practice in this area, in the form o f the Information Technology Infrastructure
Library [ITIL93].

When new software is passed over to the customer, payment for subsequent maintenance
must be determined. At this stage, primary concerns are typically:

• Repair o f errors on delivery

• Changes to reflect an ambiguous specification

Increasingly, the former is being met by some form of warranty, to bring software in line
with other goods (although much commodity software is still ringed with disclaimers). Hence,
the vendor pays. The latter is much more difficult to resolve, and addresses much more than the
functional specification. For example, if the software is not delivered in a highly maintainable
form, there will be m ajor cost implications for the purchaser.

Recently, Foster [FOST93] proposed an interesting investment cost model that regards soft
ware as a corporate asset that can justify financial support in order to sustain its value. Foster
uses his model to determine the optimum release strategy for a major software system. This is,
hence, a business model, allowing an organization the ability to calculate return on investment in
software by methods comparable with investment in other kinds o f assets. Foster remarks that
many papers on software maintenance recognize that it is a little understood area but it consumes
vast amounts of money. With such large expenditure, even small technical advances must be
worth many times their cost. The software maintenance manager, however, has to justify invest
ment in an area that does not directly generate income. Foster’s approach allows a manager to
derive a model for assessing the financial implications o f the proposed change o f activity,
thereby providing the means to calculate both cost and benefit. By expressing the result in terms
o f return on investment, the change can be ranked against competing demands for funding.

- 207 -

Some work has been undertaken in applying predictive cost modeling to software mainte
nance. based on the COCOMO techniques. The results of such work remain to be seen.

The AMES project [HATH94, BOLD94, and BOLD95] is addressing the development of
methods and tools to aid application management, where application management is defined as
“the contracted responsibility for the management and execution of all activities related to the
maintenance o f existing applications.” Its focus is on the formalization of many of the issues
raised in this section, and, in particular, customer-supplier relations. It is developing a maturity
model to support the assessment o f this relationship in a quantitative and systematic way.

7. PR O C ESS M ODELS

Process management is defined as “the direction, control, and co-ordination of work performed to
develop a product or perform a service” [IEEE91], This deiinition, therefore, encompasses
software maintenance and includes quality, line management, technical, and executive processes.
A mature engineering discipline is characterized by mature, well-understood processes, so it is
understandable that modeling software maintenance, and integrating it with software develop
ment, is an area of active concern [MCDER91], A software process model may be defined as “a
purely descriptive representation o f the software process, representing the attributes of a range of
particular software processes and being sufficiently specific to allow reasoning about them”
[DOWS85],

The foundation of good practice is a mature process, and the Software Engineering Institute
at Camegie-Mellon University has pioneered the development of a scale by which process
maturity may be measured. More recently, the BOOTSTRAP project has provided an alternative
maturity model from a European perspective.

In order to promote the establishment o f better understood processes, the IEEE has pub
lished a standard for software maintenance [IEEE98] and the next section describes this in
detail. This reflects the difference between maintenance and initial development processes. It
represents well many of the elements o f good practice in software maintenance. The model is
based on an iterative approach o f accepting a stream of change requests (and error reports),
implementing the changes, and, after testing, forming new software releases. This model is
widely used in industry, in small-to-medium-sized projects, and for in-house support. It com
prises four keys stages:

1. Help desk. The problem is received, a preliminary analysis undertaken, and, if the prob
lem is sensible, it is accepted.

2. Analysis. A managerial and technical analysis of the problem is undertaken, to investi
gate and cost alternative solutions.

3. Im plem entation. The chosen solution is implemented and tested.

4. Release. The change (along with others) is released to the customer.

Most best-practice models (e.g., that o f Hinley [HINL92]) incorporate this approach, though
it is often refined into much more detailed stages (as in the IEEE model described in the next
section). Wider aspects o f the software maintenance process, in the form of applications man
agement, are addressed in [HATH94],

- 208 -

8. IEEE STANDARD FOR SOFTW ARE MAINTENANCE [IEEE98]

8.1. Overview of the S tandard

This standard describes the process for managing and executing software maintenance activities.
Almost the entire standard is relevant for software maintenance. The focus o f the standard is in a
seven-stage activity model o f software maintenance, which incorporates the following stages:

1. Problem identification

2. Analysis

3. Design

4. Implementation

5. System test

6. Acceptance test

7. Delivery

Each o f the seven activities has five associated attributes; these are:

1. Input life-cycle products

2. Output life-cycle products

3. Activity definition

4. Control

5. Metrics

A number o f these, particularly in the early stages of the maintenance process, were addressed
by existing IEEE standards.

As an example, we consider the second activity in the process model, the analysis phase.
This phase accepts as its input a validated problem report, together with any initial resource
estimates and other repository information, plus project and system documentation if available.
The process is seen as having two substantial components. First o f all, feasibility analysis is
undertaken, in which the impact of the modification is assessed, alternative solutions investigat
ed, short- and long-term costs assessed, and the value o f the benefit of making the change
computed. Once a particular approach has been selected, then the second stage of detailed
analysis is undertaken. This determines firm requirements o f the modification, identifies the
software involved, and requires a test strategy and an implementation plan to be produced.

In practice, this is one o f the most difficult stages o f software maintenance. The change may
affect m any aspects o f the software, including not only documentation, test suites, and so on, but
also the environment and even the hardware. The standard insists that all affected components
shall be identified and brought into the scope o f the change.

The standard also requires that at this stage a test strategy be derived comprising at least
three levels o f test including unit testing, integration testing, and user-orientated functional
acceptance tests. It is also required to supply regression test requirements associated with each
of these levels of test.

- 209 -

The standard also establishes quality control for each o f the seven phases. For example, for the
analysis phase, the following controls are required as a minimum:

1. Retrieval of the current version o f project and systems documentation from the configu
ration control functions o f the organization.

2. A review of the proposed changes and an engineering analysis to assess the technical
and economic feasibility and to assess correctness.

3. Consideration o f the integration of the proposed change within the existing software.

4. Verification that all appropriate analysis and project documentation is updated and
properly controlled.

5. Verification that the testing organization is providing a strategy for testing the changes
and that the change schedule can support the proposed test strategy.

6. Review of the resource estimates and schedules and verification of their accuracy.

7. The undertaking of a technical review to select the problem reports and pro
posed enhancements to be implemented and released. The list of changes shall be docu
mented.

Finally, at the end o f the analysis phase a risk analysis is required to be performed. Any ini
tial resource estimate will be revised, and a decision that includes the customer is made on
whether to proceed on to the next phase.

The phase deliverables are also specified, again as a minimum, as follows:

1. Feasibility report for problem reports

2. Detailed analysis report

3. Updated requirements

4. Preliminary modification list

5. Development, integration, and acceptance test strategy

6. Implementation plan

The contents o f the analysis report are further specified in greater detail by the proposed
standard. The standard suggests that the following metrics be taken during the analysis phase:

1. Requirement changes

2. Documentation error rates

3. Effort per function area

4. Elapsed time

5. Error rates generated, by priority and type

The standard also includes appendices that provide guidelines on maintenance practice.
These are not part o f the standard itself but are included as useful information. For example, in
terms o f our analysis stage, the appendix provides a short commentary on the provision of

8 .2 . S t r u c t u r e o f th e S t a n d a r d

- 2 1 0 -

change on impact analysis. A further appendix addresses supporting maintenance technology,
particularly reengineering and reverse engineering. A brief description of these processes is a lso
given.

8.3. Assessment of the IEEE S tandard

The standard represents a welcome step forward in establishing a process standard for software
maintenance. Strength of this approach is that it is based on existing IEEE standards from other
areas in software engineering. It accommodates practical necessities, such as the need to under
take emergency repairs.

On the other hand, it is clearly oriented toward classic concepts of software development
and maintenance. It does not cover issues such as rapid application development, Agile m eth
ods, and end-user computing. Nor does it address executive-level issues in the process m odel
nor establish boundaries for the scope of the model.

The process model corresponds approximately to level two in the SEI five-level model. T h e
SEI model forms the basis o f the SPICE process assessment standards initiative.

Organizations may well be interested in increasing the maturity o f their software engineer
ing processes. Neither the IEEE standard nor the SEI model give direct help in process im
provement. Further details of this may be found in [HINL92], Additionally, there is still little
evidence in practice that improving software process maturity actually benefits organizations,
and the whole edifice is based on the assumption that the quality o f the product, not its success
es, depends on the process by which it is developed.

It is useful to note that the International Standards Organization [ISOOl] has published a
standard fo r a process model to assess the quality (including maintainability) of software.
However, m any technical problems in measurement remain unsolved.

9. T E C H N IC A L A SPEC TS O F SO FTW A R E M A IN TEN A N C E

9.1. Technical Issues

Much o f the technology required for software maintenance is similar to that needed for initial
development, with minor changes. For example, configuration management and version control
are indispensable for both. Information relating to development and maintenance will be kept in
a repository. For maintenance, the repository will be used to hold frequently occurring queries
handled by the help desk. Metrics data for product and process will be similar. CASE tools,
supporting graphical representation of software, are widely used in development and m ainte
nance. These topics are described in other chapters o f this book; here we concentrate on issues
of specific importance to maintenance.

In our description of the IEEE standard process model, the need for impact analysis w as
identified. This is a characteristic o f software maintenance that is not needed in initial software
development. We shall present further details o f this technique as an example of the technology
needed to support software maintenance.

In the above process model, it was necessary to determine the cost of making a change to
meet a software change request. In this section, we therefore examine how impact analysis c an
help this activity. To amplify the analysis needed, the user-expressed problem must first of all
be translated into software terms to allow the maintenance team to decide if the problem is
viable for further work or if it should be rejected. It then must be localized; this step determines

- 2 1 1 -

the origin o f the anomaly by identifying the primary components to the system that must be
altered to meet the new requirement.

Next, the above step may suggest several solutions, all of which are viable. Each o f these
must be investigated, primarily by using impact analysis. The aim is to determine all changes
that are consequent to the primary change. It m ust be applied to all software components, not
just to code. At the end of impact analysis, we are in the position to make a decision on the best
implementation route or to make no change. Weiss [WEIS 89] has shown, for three NASA
projects, the primary source o f maintenance changes deriving from user problem reports:

• Requirements phase 19%

• Design phase 52%

• Coding phase 7%

He noted that 34% of changes affected only one component and 26% affected two compo
nents.

9.2. The Problem

One of the major difficulties of software maintenance that encourages maintainers to be very
cautious by nature is that a change made at one place in the system may have a ripple effect
elsewhere, so consequent changes must be made. In order to carry out a consistent change, all
such ripple effects must be investigated; the impact of the change must be assessed and changes
possibly made in all affected contexts. You define this as:

Ripple effect propagation is a phenomenon by which changes made to a software
component along the software life cycle (specification, design, code, or test
phase) have a tendency to be felt in other components /YAU87].

As a very simple example, a maintainer may wish to remove a redundant variable X. It is ob
viously necessary to remove all applied occurrences o f X too, but for most high-level languages
the compiler can detect and report undeclared variables. This is, hence, a very simple example of
an impact that can be determined by static analysis. In many cases, ripple effects cannot be
determined statically, and dynamic analysis m ust be used. For example, ail assignment to an
element of an array, followed by the use o f a subscripted variable, may or may not represent a
ripple effect depending on the particular elements accessed. In really large programs containing
pointers, aliases, and so on, the problem is much harder. We shall define the problem of impact
analysis as the task for assessing the effects for making the set o f changes to a software system
[WILD93].

The starting point for impact analysis is an explicit set o f primary software objects that the
maintainer intends to modify. He or she has determined the set by relating the change request to
objects such as variables, assignments, and goals. The purpose of impact analysis is, hence, to
ensure that the change has been correctly and consistently bounded. The impact analysis stage
identifies a set of further objects impacted by changes in the primary sector. This process is
repeated until no further objects can be identified.

9.3. Traceability

In general, we require traceability o f information between various software artifacts in order to
help us assess impact in software components. Traceability is defined as:

- 2 1 2 -

Traceability is the degree to which a relationship can be established between two
or more products of the development process, especially products having a prede-
cessor-successor or master-subordinate relationship to one another [IEEE91],

Informally, traceability provides us with semantic links that we can then use to perform im
pact analysis. The links may relate similar components such as design documents or they may
link between different types, for example, from specification to code.

Some types of traceability links are very hard to determine. For example, altering the source
code in even a minor way may have performance implications that cause a real-time system to
fail to meet a specification. It is not surprising that the majority of work in impact analysis has
been undertaken at the code level as this is the most tractable. Wilde [WILD89] provides a good
review o f code-level impact analysis techniques.

Many modem programming languages are based on using static analysis to detect or stop the
ripple effect. The use o f modules with opaque types, for example, can prevent at compile time
several unpleasant types o f ripple effect. Many existing software systems are unfortunately
written in older languages, using programming styles (such as global aliased variables) that make
the potential for ripple effects much greater and their detection much harder.

More recently, Turver and Munro [TURV94] have described an approach that has placed
impact analysis within the overall software maintenance process. The major advance is that
documentation is included within the objects analyzed; documentation is modeled using a ripple
propagation graph and it is this representation that is used for analysis. The approach has the ad
vantage that it may be set in the early stages of analysis to assess costs without reference to the
source code.

Work has also been undertaken recently to establish traceability links between HOOD design
documents [FILL94] in order to support impact analysis of the design level.

In a major research project at Durham, formal semantic-preserving transformations are being
used to derive executable code from formal specifications, and in reverse engineering to derive
specifications from existing code. The ultimate objective is to undertake maintenance at the
specification level rather than the code level, and generate executable code automatically or semi
automatically. The transformation technique supports the derivation of the formal traceability
link between the tw o representations, and research is underway to explore this as a means of
enhancing the ripple effect across wider sections o f the life cycle (see, e.g., WARD93,
WARD94, WARD94a, YOUN94, BENN95, and BENN95b for more details).

10. LEG A CY SY STEM S

10.1. Legacy Prob lem s

There is no standard definition o f a legacy system, but many in industry will recognize the
problem. A legacy system is typically very old and has been heavily modified over the years to
meet continually evolving needs. It is very large, so that a team is needed to support it; none of
the team were involved when the software was first developed. It will be based on old technolo
gy and be written in out-of-date languages such as Assembler. Documentation will not be
available. Testing new releases is a major difficulty. Often, the system is supporting very large
quantities o f live data.

- 2 1 3 -

Such systems are surely a candidate for immediate replacement. The problem is that the
software is often at the core o f the business; replacing it would be a huge expense, and while
less than ideal, the software works and continues to do useful things.

An example of a legacy system is the billing software for a telecommunications company.
The software was developed 30 years ago, when the company was owned by the government,
and the basic service sold was restricted to a telephone connection to each premise. The system
is the main mechanism for generating revenue; it supports a huge on-line database of paying
customers.

Over the years, the software has been maintained to reflect the changing telecommunications
business: from government to private ownership; from simple call charging to wide-ranging and
complex (and competitive) services; from single country to international organization, with
highly complex VAT (value added tax) systems. The system now comprises several million
lines o f source code.

Although the process o f maintenance to meet continually evolving customer needs is be
coming better understood, and more closely linked with software engineering in general, dealing
with legacy software is still very hard. It has been estimated that there are 70 billion lines of
COBOL in existence, and still doing useful work. Much of the useful software being written
today will end up as legacy software in 20 years’ time. Software that is 40 years old is being
used in mission-critical applications.

It is easy to argue that the industry should never have ended up in the position of relying on
such software. It is not clear that steps are being taken to avoid the problem for modem soft
ware. There seems to be a hope that technology such as object-oriented design will solve the
problems for future generations, though there is as yet little positive evidence for this.

In this section, we shall analyze why it might be useful not just to discard the legacy system
and start over again. In the subsequent section, we shall present solutions to dealing with legacy
systems.

10.2. Analysis of Legacy Systems

In some cases, discarding the software and starting again may be the courageous, if expensive,
solution, following analysis o f the business need and direction, and the state of the software.
Often, the starting point has to be taking an inventory of the software, as this may not be known.
As a result of analysis, the following solutions for the legacy system may be considered:

• Carry on as now, possibly subcontracting the maintenance

• Replace software with a package

• Reimplement from scratch

• Discard software and discontinue

• Freeze maintenance and phase in a new system

• Encapsulate the old system and use as a server for the new system

• Reverse engineer the legacy system and develop a new software suite.

In the literature, case studies addressing these types o f approaches are becoming available.
The interest of this tutorial is focused on reverse engineering, as it appears to be the most fruitful

- 2 1 4 -

approach. Increasing interest is being shown in encapsulation as a way o f drawing a boundary
round the legacy system. The new system is then evolved so that it progressively takes over
functionality from the old one, until the latter becomes redundant. Currently, few successful
studies have been published, but these support the move to distributed open systems based on
client-server architectures.

10.3. Reverse Engineering

Chikofsky and Cross have defined several terms in these fields that are now generally accepted.
Reverse engineering is:

. . . The process of analyzing a subject system to identify the system’s components
and their inter-relationships, and to create representations of the system in anoth
er form or at higher levels of abstraction [CHIK90].

It can be seen that reverse engineering is passive; it does not change the system or result in a
new one, though it m ay add new representations to it. For example, a simple reverse engineering
tool may produce call graphs and control flow graphs from source code. These are both higher-
level abstractions, though in neither case is the original source code changed. Two important
types o f reverse engineering are redocumentation, which is the creation or revision of a semanti
cally equivalent representation within the same relative abstraction layer, and design recovery,
which involves identifying meaningful higher-level abstractions beyond those obtained directly
by examining the system itself.

The main motivation is to provide help in program comprehension; most maintainers have
little choice but to w ork with source codes, in the absence o f any documentation. Concepts such
as procedure structures and control flow are important mechanisms by which the maintainer
understands the system, so tools have been constructed to provide representations to help the
process.

If good documentation existed (including architectural, design, test suite documentation,
etc.), reverse engineering would be unnecessary. However, the types of documentation needed
for maintenance are probably different from those produced during typical initial development.
As an example, most large systems are too big for one person to maintain, yet the maintainer
rarely needs to see a functional decomposition or object structure; he or she is trying to correlate
external behavior w ith internal descriptions. In these circumstances, slicing offers help. Slicing is
a static analysis technique, in which only those source code statements that can affect a nominat
ed variable are displayed.

Pragmatically, m any maintainers cover source-code listings with notes and stick-on pieces of
paper. In an attempt to simulate this, Foster and Munro [FOST87] and Younger [YOUN93] have
built tools to implement a hypertext form of documentation that is managed incrementally by the
maintainer, who is able to attach “notes” to the source code. An advantage of this approach is
that it does not attempt to redocument the whole system; documentation is provided, by the
maintainer, in the form preferred, only for the “hot spots.” Those parts of the code that are stable,
and are never studied by the maintainer (often large parts), do not have to be redocumented,
thereby saving money.

F o r a d e s c r ip t io n o f a re v e rs e e n g in e e r in g m e th o d , see [E D W A 9 5] .

- 2 1 5 -

10.4. Program Comprehension

Program comprehension is a topic in its own right, and has stimulated an annual IEEE workshop.
Documentation is also an active area; see, for example, Knuth's WEB [KNUT84] and also
Gilmore [GILM90] for details o f issues concerned with psychology. In [YOUN93], there is a
useful list of criteria for software maintenance documentation:

• Integrated source code, via traceability links

• Integrated call graphs, control graphs, and so on

• Integration o f existing documentation (if any)

• Incremental documentation

• Informal update by maintainer

• Quality assurance on the documentation

• Configuration management and version control of all representations

• Information hiding to allow abstraction

• Team use

It may be decided that active change of the legacy system is needed. Restructuring is the
transformation from one representation to another at the same relative level o f abstraction, while
preserving the system’s external behavior.

Lehman’s second law argues that such remedial action is essential in a system that is under
going maintenance. Otherwise, the maintainability will degrade and the cost o f maintenance
correspondingly increases. Examples include:

• Control flow restructuring to remove “spaghetti” code

• Converting monolithic code to use parameterized procedures

• Identifying modules and abstract data types

• Removing dead code and redundant variables

• Simplifying aliased/common and global variables

Finally, reengineering is the examination and alteration o f the subject system to
reconstitute it in a new form, and the subsequent implementation of the new form.

Reengineering is the most radical (and expensive) form. It is not likely to be motivated
simply by wanting more maintainable software. For example, owners o f on-line systems pro
duced in the 1960s and 1970s would like to replace the existing character-based input/output
with a modern graphical user interface. This is usually very difficult to achieve easily, so it may
be necessary to undertake substantial redesign.

10.5. Reverse Engineering and Reengineering

In [BENN93], a list of 26 decision criteria for considering reverse engineering is presented. In
abbreviated form, these are:

• Management criteria

- 2 1 6 -

o Enforcing product and process standards (such as the IEEE draft standard introduced
above)

o Permit better maintenance management

o Legal contesting of reverse engineering legislation

o Better audit trails

« Quality criteria

o Simplification of complex software

o Facilitating detection o f errors

o Removing side effects

o Improving code quality

o Undertaking major design repair correction

o Production of up-to-date documentation

o Preparing full test suites

o Improving performance

o Aligning with practices elsewhere in the company

o Financial auditing

o Facilitating quality audits (e.g., ISO 9000)

• Technical criteria

o To allow major changes to be made

o To discover the underlying business model

o To discover the design and requirements specification

o To port the system

o To establish a reuse library

o To introduce technical innovation such as fault tolerance, graphic interfaces, etc.

o To reflect evolving maintenance processes

o To record many different types o f high-level representations

o To update tool support

o To facilitate disaster recovery

It is useful to amplify two o f the above points. First, many legacy systems represent years of
accumulated experience, and this experience may now no longer be represented anywhere else.
Systems analysis cannot start with humans and hope to introduce automation; the initial point is
the software that contains the business rules.

Second, it is not obvious that a legacy system, which has been modified over many years,
does actually have a high-level, coherent representation. Is it simply the original system plus the

- 2 1 7 -

aggregation o f many accumulated changes? The evidence is not so pessimistic. The current
system reflects a model o f current reality, and it is that model we are trying to discover.

10.6. Techniques

Work on the simplification of control-flow and data-flow graphs has been undertaken for
many years. A very early result showed that any control graph (using, e.g., unstructured GOTOs)
can be restructured into a semantically equivalent form using sequences, “if-then-else” condi
tionals, and loops, although this may cause flag variables to be introduced. A good review o f this
type o f approach can be found in the Redo Compendium [ZUYL93], This work is generally
mature, and commercial tools exist for extracting, displaying, and manipulating graphical
representations o f source code. In [WARD93], an approach using formal transformations is
described that is intended to support the human maintainer. rather than act as a fully automated
tool. This work shows that much better simplification is achievable, such as the conversion of
monolithic code with aliased variables to well-structured code using parameterized procedures.

Much research in reverse engineering, especially in the United States, has been based on the
program plan or cliché approach, pioneered by Rich and Waters [RICH90], This is based on the
recognition that many programs use a relatively small number of generic design ideas, which
tend to be used over and over again. Reverse engineering should then attempt to find such plans
in existing source code, by matching from a set o f patterns in a library. This would appear to
have had some modest success, but there are many open issues. For example, how should
patterns be represented? How generic are they? And how good is the matching process? This
approach shares many of the problems o f libraries of reusable components.

Most researchers aim to make their approach source language independent, so that different
languages may be handled by adding front ends. Thus, design of intermediate languages is an
important issue. In [ZUYL93], an approach called UNIFORM is described.

Ward [WARD93] uses a formally defined, wide-spectrum language, WSL, as the heart o f his
system. A wide-spectrum language is used as the representational format because only one
language is then needed, for both low and high levels of abstractions and intermediary points.
The approach has been shown to work for large (80K line) assembler programs, and also for very
challenging benchmark cases such as the Schorr-Waite graph-marking algorithm. Further details
are given in [BULL92] and [BULL94] ([BULL94] also contains a useful review of other trans
formation systems.)

Cimitile and his colleagues have undertaken much research on producing tools and methods
for discovering abstract data types in existing code [CANF94], Sneed [SNEE91, also NYAR95,
and SNEE93] has presented his experience in reverse engineering o f large commercial COBOL
systems using partial tool support.

It is encouraging to observe that most new, promising approaches to reverse engineering ad
dress two basic properties o f legacy systems:

• They are very large, and “toy” solutions are not applicable.

• They must be taken as they are and not how the engineer would like them to be. Often
this means “one-off’ solutions.

- 2 1 8 -

11. R E S E A R C H Q U E S T I O N S

Although software maintenance tends to be regarded in academic circles as being of m inor
importance, it is o f major commercial and industrial significance. It is useful to end this tutorial
with a brief review of promising trends.

There are many interesting research problems to be solved that can lead to important com
mercial benefits. There are also some grand challenges that lie at the heart o f software engineer
ing.

How do we change software quickly, reliably, and safely? In safety-critical systems, for e x
ample, enormous effort is expended in producing and validating software. If we wish to make a
minor change to the software, do we have to completely repeat the validation or can we make th e
cost o f the change proportional in some way to its size? There are several well-publicized cases
in which very minor changes to important software have caused major crashes and failures in
service. A connected problem lies in the measurement o f how easily new software can b e
changed. Without this, it is difficult to purchase software in the knowledge that a reduced
purchase price is not to be balanced by enormous maintenance costs later on. Almost certainly,
the solution to this problem will involve addressing process issues as well as attributes o f th e
product itself. This is a major problem for computer science. A new approach is described in
[SMIT95].

In practice, much existing software has been evolved in ad-hoc ways, and has suffered th e
fate predicted by Lehman’s laws. Despite their often central role in many organizations, such
legacy systems provide a major headache. Management and technical solutions are needed to
address the problems of legacy systems; otherwise, we shall be unable to move forward and i n
troduce new technology because o f our commitments and dependence on the old.

It is often thought that the move to end-user computing, open systems and client-server sy s
tems has removed this problem. In practice, it may well make it considerably worse. A system
that is comprised o f many components, from many different sources, by horizontal and vertical
integration, and possibly across a widely distributed network, poses major problems when any o f
those components change. For further details o f this issue, see [BENN94b].

12. PROFESSIONAL SUPPORT

Over the last 20 years, professional activity in software maintenance has increased considerably.
The annual International Conference on Software Maintenance, sponsored by the IEEE, rep re
sents the major venue that brings academics and practitioners together to discuss and present th e
latest results and experiences. Also relevant is the IEEE workshop on program comprehension.
The proceedings o f both conferences are published by the IEEE.

In Europe, the main annual event is the annual European Workshop on Software M ainte
nance, organized in Durham, England. This is mainly aimed at practitioners, and, again, th e
proceedings are published.

There is a journal— the Journal of Software Maintenance: Research and Practice— which
appears bimonthly and acts as a journal of record for significant research and practice advances
in the field.

Finally, aspects of software maintenance are increasingly being taught in university courses,
and Ph.D. graduates are starting to appear who have undertaken research in the field.

- 2 1 9 -

13. C O N C L U S I O N S

We have described a three-level approach to considering software maintenance in terms of the
impact on the organization, on the process, and on technology supporting tliat process. This
approach has provided a framework with which to consider maintenance. Much progress has
been made in all three areas and we have briefly described recent work on the establishment o f a
standard maintenance process model. The adoption o f such models, along with formal process
assessment and improvement, will do much to improve the best practice and average practice in
the field o f software maintenance.

We have also described a major problem that distinguishes software maintenance: coping
with legacy systems. We have presented several practical techniques for addressing such sys
tems.

Thus, we have presented software maintenance not as a problem but as a solution. However,
there are still major research issues o f strategic industrial importance to be solved. We have
defined these as, first, to learn how to evolve software quickly and cheaply, and, second, how to
deal with large legacy systems. Whereas modern technologies such as object-oriented systems
claim to improve the situation, this is largely a hope, and there is yet little evidence that these
technologies do indeed do so. Such technology may introduce new maintenance problems; see,
for example, [SMIT92, TURN93, and TURN95] for testing methods associated with object-
oriented programs. As usual, there are no magic bullets, and the Japanese principle of Kaizen, the
progressive and incremental improvement o f practices, is likely to be more successful.

ACKNOW LEDGEM ENTS

Much o f the work at Durham in software maintenance has been supported by SERC (now
EPSRC) and DTI funding, together with major grants from IBM and British Telecom. I am
grateful to colleagues at Durham for discussions that led to ideas presented in this paper, in
particular to Martin Ward and Malcolm Munro. A number of key ideas have arisen from discus
sions with Pierrick Fillon. Thanks are due to Cornelia Boldyreff for reading drafts of this paper.

REFEREN CES

The references in this chapter are:

• [BABE91] Baber, R. L., “Epilogue: Future Developments,” in Software Engineer’s Ref
erence Book, Ed. McDermid, Butterworth-Heinemann, 1991.

• [BAUE93] Introduction to a 1993 IEEE tutorial, R.H. Thayer, and A.D. McGettrick (eds.),
Software Engineering: A European Perspective, IEEE Computer Society Press, Los Alamitos,
CA, 1993.

• [BENN93] Bennett, K. H., “An Overview of Maintenance and Reverse Engineering,” in
The REDO Compendium, Ed. van Zuylen, Wiley, 1993.

• [BENN94] Bennett, K. H., “Software Maintenance in Japan.” Report published under the
auspices of the U.K. Department o f Trade and Industry, September, 1994. Available from
the Computer Science Department, University o f Durham, South Road, Durham UK.

• [BENN94b] Bennett, K. H., “Theory and Practice o f Middle-out Programming to Sup
port Program Understanding,” in Proceedings of IEEE Conference on Program Compre
hension, Washington, 1994, pp. 168-175.

- 2 2 0 -

• [BENN95] Bennett, K. H., and Ward, M. P., “Formal Methods for Legacy Systems,”
Journal of Software Maintenance: Research and Practice, 7(3): 203-219, May-June
1995.

• [BENN95b] Bennett, K. H., and Yang, H., “Acquisition o f ERA Models from Data In
tensive Code,” in Proceedings of IEEE International Conference on Software Mainte
nance, Nice, France, October 1995, pp. 116-123.

• [BOLD94] Boldyreff, C., Burd, E., and Hather, R., “An Evaluation o f the State of the Art
for Application Management,” in Proceedings of the International Conference on Soft
ware Maintenance, IEEE Computer Society Press, 1994, pp. 161-169.

• |BOLD95] Boldyreff, C., Burd, E., Hather, R. M., Mortimer, R. E., Munro, M., and
Younger, E. J., “The AMES Approach to Application Understanding: A Case Study,” in
Proceedings of the International Conference on Software Maintenance, IEEE Computer
Society Press, 1995, pp. 182-191.

• [BULL94] Bull, T., Software Maintenance by Program Transformation in a Wide Spec
trum Language, Ph.D. Thesis, Department of Computer Science, University o f Durham,
1994.

• [BULL92] Bull, T. M., Bennett, K. H., and Yang, H., “A Transformation System for
Maintenance— Turning Theory into Practice,” in Proceedings of IEEE Conference on
Software Maintenance, Orlando, Florida, USA, 1992.

• [CANF94] Canfora, G., Cimitile, A., and Munro, M., “RE2: Reverse Engineering and
Reuse Re-Engineering,” Journal of Software Maintenance: Research and Practice, 6(2):
53-72, March-April 1994.

• [CHIK90] Chikofsky, E. J., and Cross, J. H., “Reverse engineering and design recovery:
A taxonomy,” IEEE Software, 7(1):13-17, January 1990.

• [COLT87] Colter, M., “The Business o f Software Maintenance,” in Proceedings of First
Workshop on Software Maintenance, University o f Durham, Durham, 1987. Available
from the Computer Science Department, University of Durham (see [BENN94]).

• [DOWS85] Dowson, M., and Wilden, J. C., “A Brief Report on the International Work
shop on the Software Process and Software Environment,” ACM Software Engineering
Notes, 10: 19-23, 1985.

• [EDWA95J Edwards, H. M., Munro, M., and West, R., The RECAST Method for Reverse
Engineering, Information Systems Engineering Library, CCTA, HMSO, ISBN: 1 85
554705 8, 1995.

• [FILL94] Fillon, P., An Approach to Impact Analysis in Software Maintenance, M.Sc.
Thesis, University o f Durham, 1994.

• [FOST87] Foster, J., and Munro, M., “A Documentation Method Based on Cross-
Referencing,” in Proceedings of IEEE Conference on Software Maintenance, Austin,
Texas, 1990.

• [FOST93] Foster, J., Cost Factors in Software Maintenance, Ph.D. Thesis, Computer
Science Department, University o f Durham, 1993.

_ 2 2 1 -

• [GLLM90] Gilmore, D., “Expert Programming Knowledge: A Strategic Approach,” in
Psychology of Programming, Ed. Hoc, J. M., Green, T. R. G., Samurcay, R., and Gil
more, D. J., Academic Press, 1990.

• [HATH94] Hather, R., Burd, L., and Boldyreff, C., “A Method for Application Man
agement Maturity Assessment,” in Proceedings of Centre for Software Reliability Con
ference, Dublin, 1994.

• [HINL92] Hinley, D. S., and Bennett, K. H., “Developing a Model to Manage the Soft
ware Maintenance Process,” in Proceedings of Conference on Software Maintenance, Or
lando, Florida, IEEE Computer Society Press, 1992.

• [IEEE91] IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology, IEEE, 1991.

• [IEEE98] IEEE Std. 1219-1998, Standard for Software Maintenance. IEEE, 1998.

• [IS001] International Standards Organisation Information Technology—Software Prod
uct Evaluation—Quality Characteristics; and Guidelines for Their Use. ISO/IEC Standard
9126, 2001.

• [ITIL93] The IT Infrastructure Library, Central Computer and Telecommunications
Agency, Gildengate House, Upper Green Lane, Norwich, NR3 1DW.

• [KNUT84] Knuth, D. E., “Literate programming,” Computer Journal, 27 (2): 97-111,
1984.

• [LEHE80] Lehman, M. M., “Programs, Lifecycles, and the Laws o f Software Evolu
tion,” in Proceedings of IEEE, 79:1060-1076, 1980.

• [LEHE84] Lehman, M. M., “Program Evolution,” Information Processing Management,
20: 19-36, 1984.

• [LEIN78] Lientz, B., Swanson, E. B., and Tompkins, G. E., “Characteristics o f Applica
tions Software Maintenance,” Communications of the ACM, 21: 466-471, 1978.

• [LEIN80] Leintz, B., and Swanson, E. B., Software Maintenance Management, Addison-
Wesley, Reading, MA, 1980.

• [LEVE93] Leveson, N. G., and Turner, C. S., “An Investigation o f the Therac-25 Acci
dents,” IEEE Computer, 26 (7): 18-41, July 1993.

• [McDER91] McDermid, J. (Ed.), SERB: Software Engineering Reference Book, Butter-
worth-Heinemann, 1991.

• [NYAR95] Nyary, E., and Sneed, H., “ Software Maintenance Offloading at the Union
Bank o f Switzerland,” in Proceedings of IEEE International Conference on Software
Maintenance, Nice, France, pp. 98-108 October 1995.

• [RICH90] Rich, C., and Waters, R. C., The Programmer’s Apprentice, Addison-Wesley,
Reading, MA, 1990.

• [ROBS91] Robson, D. J., Bennett, K. IT., Cornelius, B. J., and Munro, M., “Approaches
to Program Comprehension,” Journal of Systems Software, 14 {\):\99\.

- 2 2 2 -

[SMIT92] Smith, M. D., and Robson, D. J., “A Framework for Testing Object-Oriented
Programs,” Journal of Object-Oriented Programming, 5 (3): 45-53, June 1992.

[SMIT95J Smith, S. R., Bennett, K. H., and Boldyreff, C., “Is Maintenance Ready for
Evolution?” in Proceedings of IEEE International Conference on Software Maintenance,
Nice, pp. 367-372, October 1995, IEEE Computer Society Press, (1995).

[SNEE91] Sneed, H., “Economics o f Software Re-Engineering,” Journal of Software
Maintenance: Research and Practice, 3(3): 163-182, Sept. 1991.

[SNEE93] Sneed, H., and Nyary, E., “Downsizing Large Application Programs,” in Pro
ceedings of IEEE International Conference on Software Maintenance, Montreal, 1993,
pp. 110-119, IEEE Computer Society Press, 1995.

[TURN93] Turner, C. D., and Robson, D. J., “The State-Based Testing of Object-
Oriented Programs,” in Proceedings of IEEE Conference on Software Maintenance,
Montreal, September 1993, pp. 302-310.

[TURN95| Turner, C. D., and Robson, D. J., “A State-Based Approach to the Testing of
Class-Based Programs,” Software—Concepts and Tools, 16 (3): 106-112, 1995.

[TURV94] Turver, R. J., and Munro, M., “An Early Impact Analysis Technique for
Software Maintenance,” Journal of Software Maintenance: Research and Practice, 6(1):
35 -52 ,Jan. 1994.

[WALT94J Walton, D. S., “Maintainability Metrics,” in Proceedings of the Centre for
Software Reliability Conference, Dublin, 1994. Available from the Centre for Software
Reliability, City University, London, U.K.

|W A RD 93| Ward, M. P., “Abstracting a Specification from Code,” Journal of Software
Maintenance: Practice and Experience, 5 (2): 101-122, June 1993.

[WARD94] Ward, M. P, “Reverse Engineering through Formal Transformation,” Com
puter Journal, 37 (9) 1994.

[W ARD94a| Ward, M. P., “Language Oriented Programming,” Software—Concepts and
Tools, 15: 147-161, 1994.

|W EIS89] Weiss, D. M., Evaluating Software Development by Analysis of Change,
Ph.D. Dissertation, University of Maryland, USA, 1989.

[WILD931 Wilde, N., “Software Impact Analysis: Processes and Issues,” Durham Uni
versity Technical Report 7/93, 1993.

[YAU87] Yau, S. S., and Liu, S., “Some Approaches to Logical Ripple Effect Analysis,”
Technical Report, SERC, USA, 1987.

[YOUN93] Younger, E., “Documentation,” in The REDO Compendium, Ed. van Zuylen,
Wiley, 1993.

[YOUN94] Younger, E., and Ward, M. P., “Inverse Engineering - A Simple Real Time
Program,” Journal of Software Maintenance: Research and Practice, 6: 197-234, 1994.

[ZUYL93] van Zuylen, H. (Ed.), The REDO Compendium, Wiley, 1993.

C h a p t e r 5 . 2

E s s e n t i a l s o f S o f t w a r e M a i n t e n a n c e

Richard Hall Thayer and Merlin Dorfman
This is the fifth knowledge area (KA) in a reference guide to aid individual soft
ware engineers in a greater understanding the IEEE SWEBOK [2013] and in
passing the IEEE CSDP/CSDA certification exams.

In this KA, we introduce the concepts and terminology that form an underly
ing basis for understanding the role and scope of software maintenance and activ
ities required to provide cost-effective support for software. Activities are
performed during the pre-delivery stage, as well as post-delivery.

The chapter starts with the CSDP Exam Specification for the KA of software engineering
maintenance. This list o f exam specifications is reported to be the same list that the exam writers
used to write the exam questions. Therefore it is the best source of help for the exam takers.

Chapter 5 covers the CSDP exam specifications for the software maintenance engineering
KA [Software Exam Specification, Version 2, 18 March 2009]:

1. Software maintenance fundamentals (definitions and terminology; nature of maintenance;
need for maintenance; majority o f maintenance costs; evolution of software; categories of
maintenance)

2. Key issues in software maintenance (technical issues [limited understanding, testing, im
pact analysis, maintainability]; management issues [organizational objectives, staffing,
process, organizational aspects, outsourcing]; maintenance cost estimation; measures

3. Maintenance process (maintenance processes; maintenance activities)

4. Techniques for maintenance (program comprehension; re-engineering; reverse engineer
ing; re-factoring; migration; retirement; disaster recovery techniques; software mainte
nance tools)

In software engineering, software maintenance is the process of enhancing and optimizing
deployed software (software release), as well as remedying defects. Software maintenance is one
o f the phases in the software development process, and follows deployment o f the software into
the field. The software maintenance phase involves changes to the software in order to correct
defects and deficiencies found during field usage as well as the addition of new functionality to
improve the software’s usability and applicability.

The software maintenance phase is an explicit part o f the waterfall model of the software de
velopment process [Royce 1970], which was developed during the structured programming
movement o f computer programming. Another major model, the spiral model [Boehm 1998],
makes no explicit mention o f a maintenance phase. Nevertheless, this activity is notable, consid
ering that, according to conventional wisdom, two-thirds of a software system’s lifetime cost
involves maintenance.

In a formal software development environment, the developing organization or team will
have some mechanisms to document and track defects and deficiencies. Software, just like most
other products, is typically released with a known set o f defects and deficiencies. The software is

~ 2 2 5 -

released with the issues because the development organization decides the utility and value of the
software at a particular level o f quality outweighs the impact o f the known defects and deficien
cies; i.e., it is not cost effective to delay release while the known problems are being resolved.

The known issues are normally documented in a letter o f operational considerations or re
lease notes so that the users o f the software will be able to work: around the known issues and
will know when the use o f the software would be inappropriate for particular tasks.

With the release of the software, other, undocumented defects and deficiencies will be dis
covered by the users of the software. As these issues are reported to the development organiza
tion, they will be entered into the defect tracking system.

The people involved in the software maintenance phase are expected to work on these known
issues, address them, and prepare for a new release of the software, known as a maintenance
release, which will address the documented issues [SWEBOK 2004].

5.1 Softw are M aintenance Fundam entals

This section introduces the concepts and terminology that form an underlying basis to under
standing the role and scope o f software maintenance. The topics provide definitions and empha
size why there is a need for maintenance. Categories o f software maintenance are critical to
understanding its underlying meaning.

5.1.1 Definitions and term inology. Software maintenance is defined as the modification of a
software product after delivery to correct faults, to improve performance or other attributes, or to
adapt the product to a modified environment.

The IEEE/EIA 12207.0-1996 Standard for Software Life-cycle Processes essentially depicts
maintenance as one of the primary processes, and describes maintenance as the process of a
software product undergoing “modification to code and associated documentation due to a
problem or the need for improvement. The objective is to modify the existing software product
while preserving its integrity.” The standard also addresses maintenance activities prior to
delivery of the software product, but only in an information appendix o f the standard.

5.1.2 N ature of m aintenance. Software maintenance sustains the software product throughout
its operational life cycle. Modification requests are logged and tracked, the impact o f proposed
changes is determined, code and other software artifacts are modified, testing is conducted, and a
new version of the software product is released. Also, training and daily support are provided to
users. Pfleeger [2001] states that “maintenance has a broader scope, with more to track and
control” than development.”

A maintainer is defined by IEEE/EIA 12207 as an organization that performs maintenance
activities; this sometimes refers to individuals who perform those activities, contrasting them
with the developers.

IEEE/EIA 12207 identifies the primary activities of software maintenance as: process im
plementation; problem and modification analysis; modification implementation; maintenance
review/acceptance; migration; and retirement.

Maintainers can learn from the developer’s knowledge o f the software. Contact with the de
velopers and early involvement by the maintainer helps reduce the maintenance effort. In some
instances, the software engineer cannot be reached or has moved on to other tasks, which creates
an additional challenge for the maintainers. Maintenance must take the products o f the develop-

- 226 -

ment, for example code or documentation, and support them immediately and evolve/maintain
them progressively over the software life cycle.

5.1.3 Need for m aintenance. Maintenance is needed to ensure that the software continues to
satisfy user requirements (or to be modified to satisfy requirements if it is found deficient in that
regard). Maintenance is applicable to software developed using any software life-cycle model
(for example, spiral). The system changes due to corrective and non-corrective software actions.
Maintenance must be performed in order to:

• Correct faults

• Improve the design

• Implement enhancements

• Interface with other systems

• Adapt programs so that different hardware, software, system features, and telecommuni
cations facilities can be used

• Migrate legacy software

• Retire software

The maintainer’s activities comprise four key characteristics, according to Pfleeger [2001].

• Maintaining control over the software’s day-to-day functions

• Maintaining control over software modification

• Perfecting existing functions

• Preventing software performance from degrading to unacceptable levels

5.1.4 M ajority of m aintenance costs. Maintenance consumes a major share of software life
cycle financial resources. A common perception of software maintenance is that it merely fixes
faults. However, studies and surveys over the years have indicated that the majority, over 80%,
of the software maintenance effort is used for non-corrective actions. Jones [1998] describes the
way in which software maintenance managers often group enhancements and corrections togeth
er in their management reports. This inclusion of enhancement requests with problem reports
contributes to some of the misconceptions regarding the high cost o f corrections. Understanding
the categories o f software maintenance helps to understand the structure o f software maintenance
costs. Also, understanding the factors that influence the maintainability o f a system can help to
contain costs. Pfleeger presents some o f the technical and non-technical factors affecting soft
ware maintenance costs, as follows:

• Application type

• Software novelty

• Software maintenance staff availability

• Software life span

• Hardware characteristics

• Quality of software design, construction, documentation and testing

- 2 2 7 -

5.1.5 Evolution of software. Lehman [1997] first addressed software maintenance and evolution
of systems in 1969. Over a period o f twenty years, his research led to the formulation of eight
“Laws of Evolution.” Key findings include that maintenance is evolutionary development, and
that maintenance decisions are aided by understanding what happens to systems (and software)
over time. Others state that maintenance is continued development, except that there is an extra
input (or constraint)-existing large software is never complete and continues to evolve. As it
evolves, it grows more complex unless some action is taken to reduce this complexity.

Since software demonstrates regular behavior and trends, these can be measured. Attempts to
develop predictive models to estimate maintenance effort have been made, and. as a result,
useful management tools have been developed.

5.1.6 Categories of m aintenance. Maintenance consists o f four parts:

• Corrective maintenance — Reactive modification of a software product performed after
delivery to correct discovered problems. It deals with fixing bugs (faults) in the code.

« Adaptive maintenance — Modification of a software product performed after delivery to
keep a software product usable in a changed or changing environment. It deals with
adapting the software to new environments.

• Perfective maintenance — Modification o f a software product after delivery to improve
performance or maintainability. It deals with updating the software according to changes
in user requirements.

• Preventive maintenance — Modification o f a software product after delivery to detect
and correct latent faults in the software product before they become effective faults. It
deals with updating documentation and making the software more maintainable.

All changes to the system can be characterized by these four types of maintenance. Correc
tive maintenance is “traditional maintenance” while the other types are considered as “software
evolution.”

5.2 Key Issues in Software M aintenance

A number of key issues must be dealt with to ensure the effective maintenance o f software. It is
important to understand that software maintenance provides unique technical and management
challenges for software engineers. Trying to find a fault in software containing 500K lines of
code that the software engineer did not develop is a good example. Similarly, competing with
software developers for resources is a constant battle. Planning for a future release, while coding
the next release and sending out emergency patches for the current release, also creates a chal
lenge. The following section presents some o f the technical and management issues related to
software maintenance. They have been grouped under the following topic headings [SWEBOK
2004]:

• Technical issues

• Maintainability

• Management issues

• Maintenance cost estimation

• Software maintenance measurement

- 2 2 8 -

• Limited understanding — Limited understanding refers to how quickly a software engi
neer can understand where to make a change or a correction in software which this indi
vidual did not develop. Research indicates that some 40% to 60% of the maintenance
effort is devoted to understanding the software to be modified. Thus, the topic of software
comprehension is o f great interest to software engineers.

Comprehension is more difficult in text-oriented representation, for example in
source code, where it is often difficult to trace the evolution of software through its re
leases/versions if changes are not documented and when the developers are not available
to explain it, which is often the case. Thus, software engineers may initially have a lim
ited understanding of the software, and much has to be done to remedy this problem.

• Testing — The cost o f repeating full testing on a major piece of software can be signifi
cant in terms of time and money. Regression testing, the selective retesting o f system or
software components to verify that the modifications have not caused unintended effects,
is important to maintenance. As well, finding time to test is often difficult. There is also
the challenge o f coordinating tests when different members of the maintenance team are
working on different problems at the same time. When software performs critical func
tions, it may be impossible to bring it offline to test.

• Impact analysis — Impact analysis describes how to conduct, cost effectively, a com
plete analysis o f the impact of a change in existing software. Maintainers must possess an
intimate knowledge o f the software’s structure and content. They use that knowledge to
perform impact analysis, which identifies all systems and software products affected by a
software change request and develops an estimate of the resources needed to accomplish
the change. Additionally, the risk o f making the change is determined. The change re
quest, sometimes called a modification request (MR) and often called a problem report
(PR), must first be analyzed and translated into software terms. It is performed after a
change request enters the software configuration management process. The objectives of
impact analysis are [Arthur 1988]:

o Determination of the scope of a change in order to plan and implement work

o Development of accurate estimates of resources needed to perform the work

o Analysis o f the cost/benefits o f the requested change

o Communication to others o f the complexity o f a given change

The severity o f a problem is often used to decide how and when a problem will be
fixed. The software engineer then identifies the affected components. Several potential
solutions are provided and then a recommendation is made as to the best course o f action.
Software designed with maintainability in mind greatly facilitates impact analysis.

• Maintainability — How does one promote and follow up on maintainability issues dur
ing development? The IEEE defines maintainability as the ease with which software can
be maintained, enhanced, adapted, or corrected to satisfy specified requirements
[IEEE610.12-90]. Maintainability can be further subdivided into the sub-characteristics
of analyzability, changeability, stability, and testability [ISO/IEC 9126:2001].

5.2.1 T e c h n ic a l is s u e s . T h e te c h n ic a l issues in m a in ta in in g s o ftw a re a re [S W E B O K 2 0 0 4]:

- 2 2 9 -

Maintainability sub-characteristics m ust be specified, reviewed, and controlled during
the software development activities in order to reduce maintenance costs. If this is done
successfully, the maintainability o f the software will improve. This is often difficult to
achieve because the maintainability sub-characteristics are not an important focus during
the software development process. The developers are preoccupied with many other
things and often disregard the maintainer’s requirements. This in turn can, and often does,
result in a lack of current, accurate system documentation, which is a leading cause of
difficulties in program comprehension and impact analysis. It has also been observed that
the presence o f systematic and mature processes, techniques, and tools helps to enhance
the maintainability o f a system.

5.2.2 M anagem ent issues. The management issues in maintaining software are:

• Alignment with organizational objectives — Organizational objectives describe how to
demonstrate the return on investment o f software maintenance activities. Bennett [2001]
states that “initial software development is usually project-based, with a defined time
scale and budget. The main emphasis is to deliver on time and within budget to meet user
needs. In contrast, software maintenance often has the objective o f extending the life of
software for as long as possible. In addition, it may be driven by the need to meet user
demand for software updates and enhancements. In both cases, the return on investment
is much less clear, so that the view at senior management level is often of a major activity
consuming significant resources with no clear quantifiable benefit for the organization.”

• Staffing — Staffing refers to how to attract and keep software maintenance staff.
Maintenance is often not viewed as glamorous work. Deklava [1992] provides a list of
staffing-related problems based on survey data. As a result, software maintenance per
sonnel are frequently viewed as “second-class citizens” and morale therefore suffers.

• Process — Software process is a set o f activities, methods, practices, and transformations
that people use to develop and maintain software and the associated products. At the pro
cess level, software maintenance activities share much in common with software devel
opment (for example, software configuration management is a crucial activity in both).
Maintenance also requires several activities that are not found in software development.
These activities present challenges to management.

• Organizational aspects of maintenance — Organizational aspects describe how to iden
tify which organization and/or function will be responsible for the maintenance o f soft
ware. The team that develops the software is not necessarily assigned to maintain the
software once it is operational.

In deciding where the software maintenance function will be located, software engi
neering organizations may, for example, stay with the original developer or go to a sepa
rate team (or maintainer). Often, the maintainer option is chosen to ensure that the
software runs properly and evolves to satisfy changing user needs. Since there are many
pros and cons to each of these options, the decision should be made on a case-by-case ba
sis. What is important is the delegation or assignment o f the maintenance responsibility to
a single group or person, regardless o f the organization’s structure.

• Outsourcing — Outsourcing o f maintenance is becoming a major industry. Large corpo
rations are outsourcing entire portfolios o f software systems, including software mainte

- 2 3 0 -

nance. More often, the outsourcing option is selected for less mission-critical software, as
companies are unwilling to lose control of the software used in their core business. Carey
[1994] reports that some will outsource only if they can find ways o f maintaining strate
gic control. However, control measures are hard to find. One of the major challenges for
the outsourcers is to determine the scope of the maintenance services required and the
contractual details. It has been stated that 50% of outsourcers provide services without
any clear service-level agreement [McCracken 2002]. Outsourcing companies typically
spend a number o f months assessing the software before they will enter into a contractual
relationship. Another challenge identified is the transition of the software to the out
sourcer.

5.2.3 M aintenance cost estim ation. Software engineers must understand the different categories
of software maintenance, discussed above, in order to address the question o f estimating the cost
of software maintenance. For planning purposes, estimating costs is an important aspect of
software maintenance.

• Cost estimation — It was mentioned in Section 5.2.1 that impact analysis identifies all
systems and software products affected by a software change request and develops an es
timate of the resources needed to accomplish that change.

• Parametric models — Some work has been undertaken in applying parametric cost mod
eling to software maintenance. The significance is that data from past projects are needed
in order to use the models. Jones [1988] discusses all aspects of estimating costs, includ
ing function points, and provides a detailed chapter on maintenance estimation.

• Experience — Experience, in the form of expert judgment (using the Delphi technique,
for example), analogies, and a work breakdown structure, are several approaches which
should be used to augment data from parametric models. Clearly, the best approach to
maintenance estimation is to combine empirical data and experience. These data should
be provided as a result o f a measurement program.

5.2.4 Software m aintenance m easurem ent. Grady and Caswell [1987] discuss establishing a
corporate-wide software measurement program, in which software maintenance measurement
forms and data collection are described. The Practical Software and Systems Measurement
(PSM) Project [http://www.psmsc.com/] describes an issue-driven measurement process that is
used by many organizations and is quite practical [McCracken 2002].

There are software measures that are common to all endeavors; the following are categories
that the Software Engineering Institute (SEI) has identified: size/effort/productivity, require
ments volatility, progress, quality, and resource utilization. These measures constitute a good
starting point for the maintainer [Pigoski 1997].

• Specific measures — Abran and Nguyenkim [1993] presents internal benchmarking
techniques to compare different internal maintenance organizations. The maintainer must
determine which measures are appropriate for the organization in question [IEEE1219-
1998] suggests measures that are more specific to software maintenance measurement
programs. That list includes a number of measures for each of the four sub-characteristics
of maintainability:

o Analyzability — Measures o f the maintainer’s effort or resources expended in trying
to diagnose deficiencies or causes o f failure, or in identifying parts to be modified

~ 2 3 1 -

http://www.psmsc.com/

o Changeability — Measures of the maintainer’s effort associated with implementing a
specified modification

o Stability — Measures of the unexpected behavior o f software, including that encoun
tered during testing

o Testability — Measures o f the maintainer’s and users’ effort in trying to test the
modified software

Certain measures o f the maintainability of software can be obtained using available commer
cial tools.

5.3 M aintenance Process

The maintenance process KA provides references and standards used to implement the software
maintenance process. The maintenance activities topic differentiates maintenance from develop
ment and shows its relationship to other software engineering activities.

5.3.1 M aintenance processes. The maintenance processes provide needed activities and detailed
inputs/outputs to those activities, and are described in software maintenance standard [IEEE
1219-1998].

The maintenance process model described in this standard starts with the software mainte
nance effort during the post-delivery stage and discusses items such as planning for maintenance.
The maintenance process is depicted in Figure 1.

Figure 1: Software m aintenance process [IEEE Std 1219-1998]

[ISO/IEC 14764-1999] is an elaboration of the IEEE/EIA 12207.0-1996 maintenance pro
cess. The activities o f the ISO/IEC maintenance process are similar to those of the IEEE, except
that they are aggregated a little differently.

Each of the ISO/IEC 14764 primary software maintenance activities is broken down into
tasks, as follows:

• P ro c e s s im p le m e n ta tio n

- 2 3 2 -

• Problem and modification analysis

• Modification implementation

• Maintenance review/acceptance

• Migration

• Software retirement

5.3.2 M aintenance activities. As already noted, many maintenance activities are similar to those
o f software development. Maintainers perform analysis, design, coding, testing, and documenta
tion. They must track requirements in their activities just as is done in development, and update
documentation as baselines change. ISO/IEC 14764-1999 recommends that, when a maintainer
refers to a similar development process, he must adapt it to meet his specific need. However, for
software maintenance, some activities involve processes unique to software maintenance.

• Unique activities — There are a number of processes, activities, and practices that are
unique to software maintenance, for example:

o A transition is a controlled and coordinated sequence of activities during which soft
ware is transferred progressively from the developer to the maintainer.

o Modification request work over a certain size/effort/complexity may be rejected by
maintainers and rerouted to a developer.

o Modification request and problem report help desk: an end-user support function that
triggers the assessment, prioritization, and costing of modification requests.

o Impact analysis describes how to conduct, cost effectively, a complete analysis of the
impact o f a change in existing software.

o Software support: help and advice to users concerning a request for information (for
example, business rules, validation, data meaning and ad-hoc requests/reports).

o Service level agreements (SLAs) and specialized (domain-specific) maintenance con
tracts that are the responsibilities of the maintainers.

• Supporting activities — Maintainers may also perform supporting activities, such as
software maintenance planning, software configuration management, verification and
validation, software quality assurance, reviews, audits, and user training.

• Maintenance planning activity — An important activity for software maintenance is
planning, and maintainers must address the issues associated with a number o f planning
perspectives:

o Business planning (organizational level)

o Maintenance planning (transition level)

o Release/version planning (software level)

o Collect the dates o f availability o f individual requests

o Agree with users on the content o f subsequent releases/versions

o Identify potential conflicts and develop alternatives

~ 2 3 3 -

o Assess the risk o f a given release and develop a back-out plan in case problems
should arise

o Inform all the stakeholders

• Whereas software development projects can typically last from some months to a few
years, the maintenance phase usually lasts for many years. Making estimates of resources
is a key element of maintenance planning. Those resources should be included in the de
velopers’ project planning budgets. Software maintenance planning should begin with the
decision to develop a new system and should consider quality objectives [IEEE1061-
1998]. A concept document should be developed, followed by a maintenance plan.

The concept document for maintenance should address:

o The scope of the software maintenance

o Adaptation o f the software maintenance process

o Identification o f the software maintenance organization

o An estimate o f software maintenance costs

The next step is to develop a corresponding software maintenance plan. This plan should
be prepared during software development, and should specify how users will request soft
ware modifications or report problems. Software maintenance planning is addressed in IEEE
1219-1998, and ISO/IEC14764-1999 provides guidelines for amaintenance plan.

Finally, at the highest level, the maintenance organization will have to conduct business
planning activities (budgetary, financial, and human resources) just like all the other divi
sions of the organization.

• Software configuration management — The IEEE Standard for Software Maintenance,
[IEEE 1219-1998], describes software configuration management as a critical element of
the maintenance process. Software configuration management procedures should provide
for the verification, validation, and audit o f each step required in identifying, authorizing,
implementing, and releasing the software product.

It is not sufficient to simply track modification requests or problem reports. The soft
ware product and any changes made to it must be controlled. This control is established
by implementing and enforcing an approved software configuration management (SCM)
process. SCM for software maintenance is different from SCM for software development
in the number of small changes that must be controlled on operational software. The
SCM process is implemented by developing and following a configuration management
plan and operating procedures. Maintainers participate in Configuration Control Boards
to determine the content o f the next release/version.

• Software quality — It is not sufficient, either, to simply hope that increased quality will
result from the maintenance o f software. It must be planned and processes implemented
to support the maintenance process. The activities and techniques for software quality as
surance (SQA), V&V, reviews, and audits must be selected in concert with all the other
processes to achieve the desired level o f quality. It is also recommended that the main
tainer adapt the software development processes, techniques, and deliverables, for in
stance, testing documentation and test results.

- 2 3 4 -

5.4 T e c h n iq u e s f o r M a in te n a n c e

This section introduces some of the generally accepted techniques used in software maintenance
documents.

5.4.1 Program comprehension. Programmers spend considerable time reading and understand
ing programs in order to implement changes. Code browsers are key tools for program compre
hension. Clear and concise documentation can aid in program comprehension.

5.4.2 Reengineering. Reengineering is defined as the examination and alteration of software to
reconstitute it in a new form, and includes the subsequent implementation o f the new form.
Dorfman and Thayer [2001] state that reengineering is the most radical (and expensive) form of
alteration. Others believe that reengineering can be used for minor changes. It is often not
undertaken to improve maintainability, but to replace aging legacy software. Arnold [1993]
provides a comprehensive compendium of topics, for example: concepts, tools and techniques,
case studies, and risks and benefits associated with reengineering.

5.4.3 Reverse engineering. Reverse engineering is the process o f analyzing software to identify
the software’s components and their interrelationships and to create representations of the
software in another form or at higher levels of abstraction. Reverse engineering is passive; it
does not change the software, or result in new software. Reverse engineering efforts produce call
graphs and control flow graphs from source code. One type of reverse engineering is redocumen
tation. Another type is design recovery. Refactoring is program transformation that reorganizes a
program without changing its behavior, and is a form of reverse engineering that seeks to im
prove program structure.

Finally, data reverse engineering has gained in importance over the last few years where log
ical schemas are recovered from physical databases.

5.4.4 Re-factoring. [Code] refactoring is the process of changing a computer program’s source
code without modifying its external functional behavior in order to improve some of the non
functional attributes of the software. Advantages include improved code readability and reduced
complexity to improve the maintainability o f the source code, as well as a more expressive
internal architecture or object model to improve extensibility [http://en.wikipedia.org/wiki/Code

refactoring],

5.4.5 M igration. [Software] migration is the process of moving from the use of one operating
environment to another operating environment that is, in most cases, thought to be a better one.
For example, moving from a Windows NT Server to a Windows 2000 Server would usually be
considered a migration because it involves making sure that new features are exploited, old
settings do not require changing, and taking steps to ensure that current applications continue to
work in the new environment. Migration could also mean moving from Windows NT to a UNIX-
based operating system (or the reverse). Migration can involve moving to new hardware, new
software, or both. Migration can be small-scale, such as migrating a single system, or large-scale,
involving many systems, new applications, or a redesigned network [http://en.wikipedia.org
/wiki/Softwaremodemization].

5.4.6 Retirem ent. The act o f retirement o f application programs usually involves relocating data
from the legacy application database to another data repository or archive store that can be
accessed independently using industry-standard reporting or business intelligence tools. Applica
tion retirement allows IT departments within companies to reduce the software, hardware, and

- 2 3 5 -

http://en.wikipedia.org/wiki/Code
http://en.wikipedia.org

resources required to manage legacy data. Application retirement is also referred to as applica
tion decommissioning and application “sunsetting.” [http://en.wikipedia.org/wiki/Application re
tirement],

5.4.7 D isaster recovery techniques. Disaster recovery is the process, policies and procedures
related to preparing for recovery or continuation o f technology infrastructure critical to an
organization after a natural or human-induced disaster. Disaster recovery is a subset o f business
continuity. While business continuity involves planning for keeping all aspects of a business
functioning in the midst of disruptive events, disaster recovery focuses on the IT or technology
systems that support business functions [http://en.wikipedia.org/’wiki/Disaster recovery].

Disasters can be classified in two broad categories. The f i r s t is natural disasters such as
floods, hurricanes, tornadoes, or earthquakes. While preventing a natural disaster is very diffi
cult, measures such as good planning, which includes mitigation measures, can help reduce or
avoid losses. The s e c o n d category is man-made disasters. These include hazardous material
spills, infrastructure failure, or terrorism. In these instances surveillance and mitigation planning
are invaluable towards avoiding or lessening losses from these events.

It is estimated that most large companies spend between 2% and 4% of their IT budget on
disaster recovery planning, with the aim of avoiding larger losses in the event that the business
cannot continue to function due to loss of IT infrastructure and data. O f companies that had a
major loss o f business data, 43% never reopen, 51% close within two years, and only 6% will
survive long-term [http://en.wikipedia.org/wiki/Disaster_recovery].

The following is a list of the most common strategies for disaster recovery techniques:

• Backups recorded on tape and sent off-site at regular intervals

• Backups recorded to disk on-site and automatically copied to off-site disk, or recorded
directly to off-site disk

• Replication o f data to an off-site location, which overcomes the need to restore the data
(only the systems then need to be restored or synchronized).

• High availability systems that keep both the data and system replicated off-site, enabling
continuous access to systems and data

In addition to preparing for the need to recover systems, organizations must also implement
precautionary measures with an objective o f preventing a disaster in the first place. These may
include some of the following:

• Local mirrors o f systems and/or data and use of disk protection technology such as
RAID. RAID, an acronym for Redundant Array of Independent Disks, is a technology that
provides increased storage functions and reliability through redundancy. This is achieved
by combining multiple disk drive components into a logical unit, where data is distributed
across the drives in one o f several ways called “RAID levels.”

• Surge protectors minimize the effect of power surges on delicate electronic equipment

• Uninterruptible power supply (UPS) and/or a backup generator to keep systems running
in the event of a power failure

• Fire prevention techniques such as alarms and fire extinguishers, both manual and auto
matic

- 236 -

http://en.wikipedia.org/wiki/Application
http://en.wikipedia.org/%e2%80%99wiki/Disaster
http://en.wikipedia.org/wiki/Disaster_recovery

• Anti-virus software and other security measures

5.5 Software M aintenance Tools

5.5.1 Introduction. A software maintenance tool is an artifact that supports a software maintain-
ei in performing a task. The use of tools for software maintenance simplifies the tasks and
increases efficiency and productivity.

There are several criteria for selecting the right tool for the task. These criteria are capability,
features, cost/benefit, platform, programming language, ease of use, openness of architecture,
stability o f vendor, and organizational culture.

Capability decides whether the tool is capable of fulfilling the task. Once it has been decided
that a method can benefit from being automated, then the features o f the tool need to be consid
ered for the job.

The tool must be analyzed for the benefits it brings compared to its cost. The benefit indica
tors o f a tool are quality, productivity, responsiveness, and cost reduction. The environment that
the tool runs on is called the platform. The language of the source code is called the program
ming language. It’s important to select a tool that supports a language that is an industry stand
ard.

The tool should have a similar feel to the ones that the users are already familiar with. The
tool should have the ability to be integrated with different vendors’ tools. This will help when a
tool will need to run with other tools. The openness of the architecture plays an important role
when the maintenance problem is complex. Therefore, it is not always sufficient to use only one
tool. There may need to be multiple tools running together.

It is also important to consider the vendor’s credibility. The vendor should be capable o f sup
porting the tool in the future. If the vendor is not stable, the vendor could run out of business and
not be able to support the tool.

Another important factor is the culture o f the organization. Every culture has its own work
pattern. Therefore, it is important to take into consideration whether the tool is going to be
accepted by the target users.

• The chosen tools must support program understanding and reverse engineering, testing,
configuration management, and documentation.

• Selecting a tool that promotes understanding is very important in the implementation of
change since a large amount of time is used to study and understand programs.

• Tools for reverse engineering also accomplish the same goal. The tools mainly consist of
visualization tools, which assist the programmer in drawing a model of the system.

• Examples of program understanding and reverse engineering tools include the program
sheer, static analyzer, dynamic analyzer, cross-referencer, and dependency analyzer.

Slicing is the mechanical process of marking all the sections o f a program text that may in
fluence the value of a variable at a given point in the program. Program slicing helps the pro
grammers select and view only the parts of the program that are affected by the changes. A static
analyzer is used in analyzing the different parts of the program such as modules, procedures,
variables, data elements, objects, and classes. A static analyzer allows general viewing of the

- 2 3 7 -

program text and generates summaries o f contents and usage of selected elements in the program
text, such as variables or objects.

A dynamic analyzer could be used to analyze the program while it is executing. A data flow
analyzer is a static analysis tool that allows the maintainer to track all possible data flow and
control flow paths in the program. It allows analysis o f the program to better outline the underly
ing logic o f the program. It also helps display the relationship between components o f the
system. A cross-referencer produces information on the usage o f a program. This tool helps the
user focus on the parts that are affected by the change.

A dependency analyzer assists the maintainer in analyzing and understanding the interrelation
ships between entities in a program. Such a tool provides capabilities to set up and query the
database of the dependencies in a program. It also provides graphical representations o f the
dependencies.

Testing is the most time-consuming and demanding task in software maintenance. Therefore,
it could benefit the most from tools. A test simulator tool helps the maintainer to test the effects
of the change in a controlled environment before implementing the change on the actual system.
A test case generator produces test data that is used to test the functionality o f the modified
system, while a test path generator helps the maintainer to find all the data flow and control flow
paths affected by the changes.

Configuration management benefits from automated tools. Configuration management and
version control tools help store the objects that form the software system. A source control
system is used to keep a history of the files so that versions can be tracked and the programmer
can keep track o f the file changes [SWEBOK 2004].

5.5.2 Commercially available products. There are numerous products on the market available
for software maintenance. Some maintenance tools are: [SWEBOK 2004].

• Bug tracking tools — A bug [fault] tracking system is a software application that is de
signed to help quality assurance and programmers keep track of reported software bugs in
their work. It may be regarded as a type o f issue tracking system. Many bug-tracking sys
tems, such as those used by most open source software projects, allow users to enter bug
reports directly. Other systems are used only internally in a company or organization do
ing software development. Typically bug tracking systems are integrated with other soft
ware project management applications.

Having a bug tracking system is extremely valuable in software development, and
they are used extensively by companies developing software products. Consistent use of
a bug or issue tracking system is considered one o f the attributes o f a good software de
velopment organization [http://en.wikipedia.org/wiki/Bug trackingsystem].

• Debugger — A debugger or debugging tool is a computer program that is used to test
and debug other programs (the “target” program). The code to be examined might alter
natively be running on an instruction set simulator (ISS), a technique o f great power due
to its ability to halt when specific conditions are encountered, but will typically be some
what slower than executing the code directly on the appropriate (or the same) processor.
Some debuggers offer two modes of operation—full or partial simulation, to limit this im
pact [http://en.wikipedia.org/wiki/Debugger].

- 2 3 8 -

http://en.wikipedia.org/wiki/Bug
http://en.wikipedia.org/wiki/Debugger

• Maintenance software package — A maintenance package lets users schedule preventa
tive maintenance, generate automatic work orders, document equipment maintenance his
tory, track assets, and inventory, track personnel, create purchase orders, and generate
reports.

• Profiling — Software profiling or simply profiling, a form of dynamic program analysis
(as opposed to static code analysis), is the investigation o f a program’s behavior using in
formation gathered as the program executes. The usual purpose of this analysis is to de
termine which sections o f a program to optimize—to increase its overall speed, decrease
its memory requirements or sometimes both [http://en.wikipedia.org/wiki/Proilling

(computer-programming)].

• An instruction set simulator — A software system which can measure the totality of a
program’s behavior from invocation to termination.

5.5.3 Sum m ary of tools. The task of software maintenance has become so vital and complex
that automated support is required to perform it effectively. The use o f tools simplifies tasks and
increases efficiency and productivity. There are numerous tools available on the market for
maintenance.

References

Additional information on the software maintenance KA can be found in the following docu
ments:

• [Abran & Nguyenkim 1993] A. Abran and H. Nguyenkim, “Measurement o f the
Maintenance Process from a Demand-Based Perspective,” Journal of Software Mainte
nance: Research and Practice, vol. 5, issue. 2, 1993, pp. 63-90.

. [Arnold 1993] R.S. Arnold, Software Reengineering, IEEE Computer Society Press, Los
Alamitos, CA, 1993.

. [A rthur 1988] L.J. Arthur, Software Evolution: The Software Maintenance Challenge,
Wiley, New York, 1988.

• [Bennett 2001] K.H. Bennett, “Software Maintenance: A Tutorial,” in Software Engi
neering, M. Dorfman and R. Thayer, eds., IEEE Computer Society Press, Los Alami
tos, CA, 2000.

• (Boehm 1988] B.W. Boehm, “A spiral model of software development and enhance
ment,” IEEE Computer, 21(5), 1988: 61-72.

• [Carey 1994] D. Carey, “Executive Round-Table on Business Issues in Outsourcing -
Making the Decision,” CIO Canada, June/July 1994.

• |Deklava 1992] S. Dekleva, “Delphi Study o f Software Maintenance Problems,” Pre
sented at the International Conference on Software Maintenance (Orlando FL, 9-12 Nov.
1992).

• [Dorfman & Thayer 2001] M. Dorfman and R.H. Thayer, eds., Software Engineering
(Vol. 1 & Vol. 2), IEEE Computer Society Press, Los Alamitos, CA 2001.

• [Grady & Caswell 1987] R.B. Grady and D.L. Caswell, Software Metrics: Establishing
a Company-Wide Program, Prentice-Hall, Englewood Cliffs, NJ, 1987.

- 2 3 9 -

http://en.wikipedia.org/wiki/Proilling

• [IEEE 1219-1998] IEEE Standard 1219-1998, IEEE Standard for Software Maintenance,
IEEE Inc., New York, 1998.

. IIEEE/EIA 12207.1-1996] IEEE/EIA 12206.1-1997, Guide for Information Technology
- Software Life Cycle Processes, IEEE, Inc., New York, 1996.

• [IEEE1061-1998] IEEE Standard 1061-1998, IEEE Standard for a Software Quality
Metrics Methodology, IEEE, Inc., New York, 1998.

• JIEEE610.12-1990] [IEEE610.12-90] IEEE Standard Glossary of Software Engineer
ing Terminology, IEEE, Inc., New York, 1990.

• IISO.IEC 9126:2001] ISO/IEC 9126-1: Software Engineering - Product Quality - Part
I : Quality Model, International Organization for Standardization, 2001.

• [ISO/IEC 14764-1999] ISO/IEC 14764-1999, Software Engineering-Software
Maintenance, ISO, and IEC, 1999.

• [Jones 1998] T.C. Jones, Estimating Software Costs, McGraw-Hill, New York, 1998.

• [Lehmanl997] M.M. Lehman, “Laws of Software Evolution Revisited,” Presented at
EWSPT96, 1997.

• [M cCracken 2002] B. McCracken, “Taking Control o f IT Performance,” Presented at
InfoServer LLC, 2002.

• [Pfleeger 2001] S.L. Pfleeger, Software Engineering: Theory and Practice, 2nd edition,
Prentice-Hall, Upper Saddle River, NJ, 2001.

• [Pigoski 1997] T.M. Pigoski, Practical Software Maintenance: Best Practices for Man
aging your Software Investment, First Ed., John Wiley & Sons, New York, 1997.

• [Royce 1970] W.W. Royce, “Managing the Development of Large Software Systems:
Concepts and Techniques,” Proc. IEEE WESCON, IEEE Computer Society Press, Los
Angeles CA, 1970 (Ch.4).

• [Wikipedia] Wikipedia is a free web based encyclopedia enabling multiple users to
freely add and edit online content. Definitions cited on Wikipedia and their related
sources have been verified by the authors and other peer reviewers. Readers who would
like to verify a source or a reference should search the subject on Google, and read the
technical report found under Wikipedia.

- 240 -

N o t e s

N o t e s

- 2 4 2 -

N o t e s

N o t e s

- 2 4 4 -

«

1 0 6 I P - Ll O i

31397955R00150
Made in the USA

Charleston, SC
16 July 2014

