

S. Sumathi, S. Esakkirajan

Fundamentals of Relational Database Management Systems

Studies in Computational Intelligence, Volume 47

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 29. Sai Sumathi, S.N. Sivanandam
Introduction to Data Mining and its
Application, 2006
ISBN 978-3-540-34350-9

Vol. 30. Yukio Ohsawa, Shusaku Tsumoto (Eds.)
Chance Discoveries in Real World Decision Making,
2006
ISBN 978-3-540-34352-3

Vol. 31. Ajith Abraham, Crina Grosan, Vitorino
Ramos (Eds.)
Stigmergic Optimization, 2006
ISBN 978-3-540-34689-0

Vol. 32. Akira Hirose
Complex-Valued Neural Networks, 2006
ISBN 978-3-540-33456-9

Vol. 33. Martin Pelikan, Kumara Sastry, Erick
Cantú-Paz (Eds.)
Scalable Optimization via Probabilistic
Modeling, 2006
ISBN 978-3-540-34953-2

Vol. 34. Ajith Abraham, Crina Grosan, Vitorino
Ramos (Eds.)
Swarm Intelligence in Data Mining, 2006
ISBN 978-3-540-34955-6

Vol. 35. Ke Chen, Lipo Wang (Eds.)
Trends in Neural Computation, 2007
ISBN 978-3-540-36121-3

Vol. 36. Ildar Batyrshin, Janusz Kacprzyk, Leonid
Sheremetor, Lotfi A. Zadeh (Eds.)
Preception-based Data Mining and Decision Making
in Economics and Finance, 2006
ISBN 978-3-540-36244-9

Vol. 37. Jie Lu, Da Ruan, Guangquan Zhang (Eds.)
E-Service Intelligence, 2007
ISBN 978-3-540-37015-4

Vol. 38. Art Lew, Holger Mauch
Dynamic Programming, 2007
ISBN 978-3-540-37013-0

Vol. 39. Gregory Levitin (Ed.)
Computational Intelligence in Reliability
Engineering, 2007
ISBN 978-3-540-37367-4

Vol. 40. Gregory Levitin (Ed.)
Computational Intelligence in Reliability
Engineering, 2007
ISBN 978-3-540-37371-1

Vol. 41. Mukesh Khare, S.M. Shiva Nagendra (Eds.)
Artificial Neural Networks in Vehicular Pollution
Modelling, 2007
ISBN 978-3-540-37417-6

Vol. 42. Bernd J. Krämer, Wolfgang A. Halang (Eds.)
Contributions to Ubiquitous Computing, 2007
ISBN 978-3-540-44909-6

Vol. 43. Fabrice Guillet, Howard J. Hamilton (Eds.)
Quality Measures in Data Mining, 2007
ISBN 978-3-540-44911-9

Vol. 44. Nadia Nedjah, Luiza de Macedo
Mourelle, Mario Neto Borges, Nival Nunes
de Almeida (Eds.)
Intelligent Educational Machines, 2007
ISBN 978-3-540-44920-1

Vol. 45. Vladimir G. Ivancevic, Tijana T. Ivancevic
Neuro-Fuzzy Associative Machinery for
Comprehensive Brain and Cognition Modelling,
2007
ISBN 978-3-540-47463-0

Vol. 46. Valentina Zharkova, Lakhmi C. Jain (Eds.)
Artificial Intelligence in Recognition and
Classification of Astrophysical and Medical
Images, 2007
ISBN 978-3-540-47511-8

Vol. 47. S. Sumathi, S. Esakkirajan
Fundamentals of Relational Database Management
Systems, 2007
ISBN 978-3-540-48397-7

S. Sumathi
S. Esakkirajan

Fundamentals of Relational
Database Management
Systems

With 312 Figures and 30 Tables

Dr. S. Sumathi
Assistant Professor

Department of Electrical and Electronics Engineering

PSG College of Technology

P.O. Box 1611

Peelamedu

Coimbatore 641 004

Tamil Nadu, India

E-mail: ss eeein@yahoo.com

S. Esakkirajan
Lecturer

Department of Electrical and Electronics Engineering

PSG College of Technology

P.O. Box 1611

Peelamedu

Coimbatore 641 004

Tamil Nadu, India

E-mail: ser@mail.psgtech.ac.in

Library of Congress Control Number: 2006935984

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503
ISBN-10 3-540-48397-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48397-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin
Typesetting by SPi using a Springer LATEX macro package
Printed on acid-free paper SPIN: 11820970 89/SPi 5 4 3 2 1 0

Preface

Information is a valuable resource to an organization. Computer software
provides an efficient means of processing information, and database systems
are becoming increasingly common means by which it is possible to store and
retrieve information in an effective manner. This book provides comprehen-
sive coverage of fundamentals of database management system. This book is
for those who wish a better understanding of relational data modeling, its
purpose, its nature, and the standards used in creating relational data model.

Relational databases are the most popular database management systems
in the world and are supported by a variety of vendor implementations.
Majority of the practical tasks in industry require applying relatively not
complex algorithms to huge amounts of well-structured data. The efficiency
of the application depends on the quality of data organization. Advances in
database technology and processing offer opportunities for using information
flexibility and efficiently when data is organized and stored in relational struc-
tures. The relational DBMS is a success in the commercial market place with
respect to business data processing and related applications. This success is
a result of cost effective application development combined with high data
consistency. The success has led to the use of relational DBMS technology in
other application environments requesting its traditional virtues, while at the
same time adding new requirements.

SQL is the standard computer language used to communicate with rela-
tional database management systems. Chapter 4 gives an introduction to SQL
with illustrative examples. The limitations of SQL and how to overcome that
limitations using PL/SQL are discussed in Chap. 5.

The current trends in hardware like RAID technology made relational
DBMSs to support high transmission rates, very high availability, and a soft
real-time transaction a cost effective possibility. The basics of RAID technol-
ogy, different levels of RAID are discussed in this book.

Object-oriented databases are also becoming important. As object-
oriented programming continues to increase in popularity, the demand for

VI Preface

such databases will grow. Due to this reason a separate chapter is being
devoted to object-oriented DBMS and object-relational DBMS.

This text discusses a number of new technologies and challenges in
database management systems like Genome Database Management System,
Mobile Database Management System, Multimedia Database Management
System, Spatial Database Management Systems, and XML.

Finally, there is no substitute for experience. To ensure that every
student can have experience for creating data models and database design,
list of projects along with codes in VB and Oracle are given. The goal in
providing the list of projects is to ensure that students should have atleast
one commercial product at their disposal.

About the Book

The book is meant for wide range of readers from College, University Students
who wish to learn basics as well as advanced concepts in Database Manage-
ment System. It can also be meant for the programmers who may be involved
in the programming based on the Oracle and Visual Basic applications.

Database Management System, at present is a well-developed field, among
academicians as well as between program developers. The principles of Data-
base Management System are dealt in depth with the information and the
useful knowledge available for computing processes. The various approaches
to data models and the relative advantages of relational model are given in
detail.

Relational databases are the most popular database management systems
in the world and are supported by a variety of vendor implementations. The
solutions to the problems are programmed using Oracle and the results are
given. The overview of Oracle and Visual Basic is provided for easy reference
to the students and professionals. This book also provides introduction to
commercial DBMS, pioneers in DBMS, and dictionary of DBMS terms in
appendix.

The various worked out examples and the solutions to the problems are
well balanced pertinent to the RDBMS Projects, Labs, and for College and
University Level Studies.

This book provides data models, database design, and application-oriented
structures to help the reader to move in to the database management world.
The book also presents application case studies on a wide range of connected
fields to facilitate the reader for better understanding. This book can be used
from Under Graduation to Post-Graduate Level. Some of the projects done are
also added in the book. The book contains solved example problems, review
questions, and solutions.

This book can be used as a ready reference guide for computer professionals
who are working in DBMS field. Most of the concepts, solved problems and

Preface VII

applications for wide variety of areas covered in this book, which can fulfill as
an advanced academic book.

We hope that the reader will find this book a truly helpful guide and a
valuable source of information about the database management principles for
their numerous practical applications.

Salient Features

The salient features of this book includes:

– Detailed description on relational database management system concepts
– Variety of solved examples
– Review questions with solutions
– Worked out results to understand the concepts of relational database man-

agement Systems using Oracle Version 8.0.
– Application case studies and projects on database management system

in various fields like Transport Management, Hospital Management, and
Academic Institution Management, Hospital Management, Railway Man-
agement and Election Voting System.

Organization of the Book

The book covers 14 chapters altogether. The fundamentals of relational data-
base management systems are discussed with basic principles, advanced con-
cepts, and recent challenges. The application case studies are also discussed.

The chapters are organized as follows:

– Chapter 1 gives an overview of database management system, Evolution
of Database Management System, ANSI/SPARK data model, Two-tier,
Three-tier and Multi-tier database architecture.

– The preliminaries of the Entity Relation (ER) data model are described in
Chap. 2. Different types of entities, attributes and relations are discussed
with examples. Mapping from ER model to relational model, Enhanced
ER model, which includes generalization, specialization, are given with
relevant examples.

– Chapter 3 deals with relational data model. In this chapter E.F. Codd rule,
basic definition of relation, cardinality of the relation, arity of the rela-
tion, constraints in relation are given with suitable examples. Relational
algebra, tuple relational calculus, domain relational calculus and different
operations involved are explained with lucid examples. This chapter also
discusses the features of QBE with examples.

– Chapter 4 exclusively deals with Structured Query Language. The data
definition language, data manipulation language and the data control lan-
guage were explained with suitable examples. Views, imposition of con-
straints in a relation are discussed with examples.

VIII Preface

– Chapter 5 deals with PL/SQL. The shortcomings of SQL and how they
are overcome in PL/SQL, the structure of PL/SQL are given in detail. The
iterative control like FOR loop, WHILE loop are explained with exam-
ples. The concept of CURSOR and the types of CURSORS are explained
with suitable examples. The concept of PROCEDURE, FUNCTION, and
PACKAGE are explained in detail. The concept of EXCEPTION HAN-
DLING and the different types of EXCEPTION HANDLING are given
with suitable examples. This chapter also gives an introduction to data-
base triggers and the different types of triggers.

– Chapter 6 deals with various phases in database design. The concept of
database design tools and the different types of database design tools
are given in this chapter. Functional dependency, normalization are also
discussed in this chapter. Different types of functional dependency, normal
forms, conversion from one normal form to the other are explained with
examples. The idea of denormalization is also introduced in this chapter.

– Chapter 7 gives details on transaction processing. Detailed descrip-
tion about deadlock condition and two phase locking are given through
examples. This chapter also discusses the concept of query optimization,
architecture of query optimizer and query optimization through Genetic
Algorithm.

– Chapter 8 deals with database security and recovery. The need for data-
base security, different types of database security is explained in detail.
The different types of database failures and the method to recover the
database is given in this chapter. ARIES recovery algorithm is explained
in a simple manner in this chapter.

– Chapter 9 discusses the physical database design. The different types
of File organization like Heap file, sequential file, and indexed file are
explained in this chapter. The concept of B tree and B+ tree are explained
with suitable example. The different types of data storage devices are dis-
cussed in this chapter. Advanced data storage concept like RAID, different
levels of RAID, hardware and software RAID are explained in detail.

– Advanced concepts like data mining, data warehousing, and spatial data-
base management system are discussed in Chap. 10. The data mining con-
cept and different types of data mining systems are given in this chapter.
The performance issues, data integration, data mining rules are explained
in this chapter.

– Chapter 11 throws light on the concept of object-oriented and object
Relational DBMS. The benefits of object-oriented programming, object-
oriented programming languages, characteristics of object-oriented data-
base, application of OODBMS are discussed in detail. This chapter
also discusses the features of ORDBMS, comparison of ORDBMS with
OODBMS.

– Chapter 12 deals with distributed and parallel database management sys-
tem. The features of distributed database, distributed DBMS architecture,
distributed database design, distributed concurrency control are discussed

Preface IX

in depth. This chapter also discusses the basics of parallel database man-
agement, parallel database architecture, parallel query optimization.

– Recent challenges in DBMS are given in Chap. 13 which includes genome
database management, mobile database management, spatial database
management system and XML. In genome database management, the
concept of genome, genetic code, genome directory system project is
discussed. In mobile database, mobile database center, mobile database
architecture, mobile transaction processing, distributed database for mo-
bile are discussed in detail. In spatial database, spatial data types, spatial
database modeling, querying spatial data, spatial DBMS implementation
are analyzed. In XML, the origin of XML, XML family, XSL, XML, and
database applications are discussed.

– Few projects related to bus transport management system, hospital man-
agement, course administration system, Election voting system, library
management system and railway management system are implemented
using Oracle as front end and Visual Basic as back end are discussed in
Chap. 14. This chapter also gives an idea of how to do successful projects
in DBMS.

– Four appendices given in this book includes dictionary of DBMS terms,
overview of commands in SQL, pioneers in DBMS, commercial DBMS.
Dictionary of DBMS terms gives the definition of commonly used terms
in DBMS. Overview of commands in SQL gives the commonly used com-
mands and their function. Pioneers in DBMS introduce great people like
E.F. Codd, Peter Chen who have contributed for the development of data-
base management system. Commercial DBMS introduces some of the pop-
ular commercial DBMS like System R, DB2 and Informix.

– The bibliography is given at the end after the appendix chapter.

About the Authors

S. Sumathi, B.E. in Electronics and Communication Engineering and
Masters degree in Applied Electronics, Government College of Technology,
Coimbatore, TamilNadu and Ph.D. in the area of Data Mining, is currently
working as Assistant Professor in the Department of Electrical and Elec-
tronics Engineering, PSG College of Technology, Coimbatore with teaching
and research experience of 16 years. She received the prestigious Gold Medal
from the Institution of Engineers Journal Computer Engineering Division, for
the research paper titled, “Development of New Soft Computing Models for
Data Mining” and also Best project award for UG Technical Report, “Self-
Organized Neural Network Schemes: As a Data mining tool”. She received
Dr. R. Sundramoorthy award for Outstanding Academic of PSG College of
Technology in the year 2006. She has guided a project which received Best
M.Tech Thesis award from Indian Society for Technical Education, New Delhi.
In appreciation of publishing various technical articles the she has received

X Preface

National and International Journal Publication Awards. She has also pre-
pared manuals for Electronics and Instrumentation Laboratory and Electrical
and Electronics Laboratory of EEE Department, PSG College of Technology,
Coimbatore, has organized second National Conference on Intelligent and
Efficient Electrical Systems and has conducted short-term courses on “Neuro
Fuzzy System Principles and Data Mining Applications.” She has published
several research articles in National and International Journals/Conferences
and guided many UG and PG projects. She has also reviewed papers in
National/International Journals and Conferences. She has published three
books on “Introduction to Neural Networks with Matlab,” “Introduction to
Fuzzy Systems with Matlab,” and “Introduction to Data Mining and its Ap-
plications.” The research interests include neural networks, fuzzy systems and
genetic algorithms, pattern recognition and classification, data warehousing
and data mining, operating systems and parallel computing, etc.

S. Esakkirajan has a B.Tech Degree from Cochin University of Science
and Technology, Cochin and M.E. Degree from PSG College of Technology,
Coimbatore, with a Rank in M.E. He has received Alumni Award in his
M.E. He has presented papers in International and National Conferences. His
research areas include database management system, neural network, genetic
algorithm, and digital image processing.

Acknowledgment

The authors are always thankful to the Almighty for perseverance and achieve-
ments.

Sumathi and Esakkirajan wish to thank Mr. Rangaswamy, Managing
Trustee, PSG Institutions, Mr. C.R. Swaminathan, Chief Executive, and
Dr. R. Rudramoorthy, Principal, PSG College of Technology, Coimbatore, for
their whole-hearted cooperation and great encouragement given in this suc-
cessful endeavor. The authors appreciate and acknowledge Mr. Karthikeyan,
Mr. Ponson, Mr. Manoj Kumar, Mr. Afsar Ahmed, Mr. Harikumar,
Mr. Abdus Samad, Mr. Antony and Mr. Balumahendran who have been
with them in their endeavors with their excellent, unforgettable help, and
assistance in the successful execution of the work.

Dr. Sumathi owe much to her daughter Priyanka, who has helped her and
to the support rendered by her husband, brother, and family. Mr. Esakkirajan
like to thank his wife Akila, who shouldered a lot of extra responsibilities and
did this with the long-term vision, depth of character, and positive outlook
that are truly befitting of her name. He like to thank his father Sankaralingam
for providing moral support and constant encouragement.

DEDICATED TO ALMIGHTY

Contents

1 Overview of Database Management System 1
1.1 Introduction . 1
1.2 Data and Information . 2
1.3 Database . 2
1.4 Database Management System . 3

1.4.1 Structure of DBMS . 3
1.5 Objectives of DBMS . 4

1.5.1 Data Availability . 4
1.5.2 Data Integrity . 4
1.5.3 Data Security . 4
1.5.4 Data Independence . 5

1.6 Evolution of Database Management Systems 5
1.7 Classification of Database Management System. 6
1.8 File-Based System . 7
1.9 Drawbacks of File-Based System . 8

1.9.1 Duplication of Data . 8
1.9.2 Data Dependence . 8
1.9.3 Incompatible File Formats . 8
1.9.4 Separation and Isolation of Data 9

1.10 DBMS Approach . 9
1.11 Advantages of DBMS . 10

1.11.1 Centralized Data Management . 10
1.11.2 Data Independence . 10
1.11.3 Data Inconsistency . 10

1.12 Ansi/Spark Data Model . 11
1.12.1 Need for Abstraction . 11
1.12.2 Data Independence . 12

1.13 Data Models . 13
1.13.1 Early Data Models . 14

1.14 Components and Interfaces of Database Management
System . 14

XII Contents

1.14.1 Hardware . 14
1.14.2 Software . 15
1.14.3 Data . 16
1.14.4 Procedure . 16
1.14.5 People Interacting with Database 16
1.14.6 Data Dictionary . 20
1.14.7 Functional Components of Database System

Structure . 21
1.15 Database Architecture . 22

1.15.1 Two-Tier Architecture . 22
1.15.2 Three-tier Architecture . 24
1.15.3 Multitier Architecture . 24

1.16 Situations where DBMS is not Necessary 26
1.17 DBMS Vendors and their Products . 26

2 Entity–Relationship Model . 31
2.1 Introduction . 31
2.2 The Building Blocks of an Entity–Relationship Diagram 32

2.2.1 Entity . 32
2.2.2 Entity Type . 32
2.2.3 Relationship . 32
2.2.4 Attributes . 32
2.2.5 ER Diagram . 33

2.3 Classification of Entity Sets . 34
2.3.1 Strong Entity . 34
2.3.2 Weak Entity . 34

2.4 Attribute Classification . 35
2.4.1 Symbols Used in ER Diagram . 35

2.5 Relationship Degree . 39
2.5.1 Unary Relationship . 39
2.5.2 Binary Relationship . 40
2.5.3 Ternary Relationship . 40
2.5.4 Quaternary Relationships . 40

2.6 Relationship Classification . 41
2.6.1 One-to-Many Relationship Type . 41
2.6.2 One-to-One Relationship Type . 41
2.6.3 Many-to-Many Relationship Type 41
2.6.4 Many-to-One Relationship Type . 42

2.7 Reducing ER Diagram to Tables . 42
2.7.1 Mapping Algorithm. 42
2.7.2 Mapping Regular Entities . 43
2.7.3 Converting Composite Attribute in an ER Diagram

to Tables . 44
2.7.4 Mapping Multivalued Attributes in ER Diagram

to Tables . 45

Contents XIII

2.7.5 Converting “Weak Entities” in ER Diagram
to Tables . 45

2.7.6 Converting Binary Relationship to Table 46
2.7.7 Mapping Associative Entity to Tables 47
2.7.8 Converting Unary Relationship to Tables 49
2.7.9 Converting Ternary Relationship to Tables 50

2.8 Enhanced Entity–Relationship Model (EER Model) 51
2.8.1 Supertype or Superclass . 51
2.8.2 Subtype or Subclass . 52

2.9 Generalization and Specialization . 52
2.10 ISA Relationship and Attribute Inheritance 53
2.11 Multiple Inheritance . 53
2.12 Constraints on Specialization and Generalization 54

2.12.1 Overlap Constraint . 54
2.12.2 Disjoint Constraint . 55
2.12.3 Total Specialization . 55
2.12.4 Partial Specialization . 56

2.13 Aggregation and Composition . 56
2.14 Entity Clusters . 57
2.15 Connection Traps . 58

2.15.1 Fan Trap . 59
2.15.2 Chasm Trap . 59

2.16 Advantages of ER Modeling . 60

3 Relational Model . 65
3.1 Introduction . 65
3.2 CODD’S Rules . 65
3.3 Relational Data Model . 67

3.3.1 Structural Part . 67
3.3.2 Integrity Part . 67
3.3.3 Manipulative Part . 68
3.3.4 Table and Relation . 69

3.4 Concept of Key . 69
3.4.1 Superkey . 69
3.4.2 Candidate Key . 70
3.4.3 Foreign Key . 70

3.5 Relational Integrity . 70
3.5.1 Entity Integrity . 70
3.5.2 Null Integrity . 71
3.5.3 Domain Integrity Constraint . 71
3.5.4 Referential Integrity . 71

3.6 Relational Algebra . 72
3.6.1 Role of Relational Algebra in DBMS 72

3.7 Relational Algebra Operations . 72
3.7.1 Unary and Binary Operations . 72

XIV Contents

3.7.2 Rename operation (ρ) . 76
3.7.3 Union Operation . 77
3.7.4 Intersection Operation . 78
3.7.5 Difference Operation . 79
3.7.6 Division Operation . 80
3.7.7 Cartesian Product Operation . 82
3.7.8 Join Operations . 83

3.8 Advantages of Relational Algebra . 89
3.9 Limitations of Relational Algebra . 89
3.10 Relational Calculus . 90

3.10.1 Tuple Relational Calculus . 90
3.10.2 Set Operators in Relational Calculus 92

3.11 Domain Relational Calculus (DRC) . 97
3.11.1 Queries in Domain Relational Calculus: 98
3.11.2 Queries and Domain Relational Calculus

Expressions . 98
3.12 QBE . 102

4 Structured Query Language . 111
4.1 Introduction . 111
4.2 History of SQL Standard . 112

4.2.1 Benefits of Standardized Relational Language 113
4.3 Commands in SQL . 113
4.4 Datatypes in SQL . 114
4.5 Data Definition Language (DDL) . 117
4.6 Selection Operation . 121
4.7 Projection Operation . 122
4.8 Aggregate Functions . 124

4.8.1 COUNT Function . 124
4.8.2 MAX, MIN, and AVG Aggregate Function. 127

4.9 Data Manipulation Language . 135
4.9.1 Adding a New Row to the Table 136
4.9.2 Updating the Data in the Table . 137
4.9.3 Deleting Row from the Table . 138

4.10 Table Modification Commands . 138
4.10.1 Adding a Column to the Table . 139
4.10.2 Modifying the Column of the Table 141
4.10.3 Deleting the Column of the Table 142

4.11 Table Truncation . 143
4.11.1 Dropping a Table . 145

4.12 Imposition of Constraints . 146
4.12.1 NOT NULL Constraint . 147
4.12.2 UNIQUE Constraint . 149
4.12.3 Primary Key Constraint . 151
4.12.4 CHECK Constraint . 154

Contents XV

4.12.5 Referential Integrity Constraint . 155
4.12.6 ON DELETE CASCADE . 159
4.12.7 ON DELETE SET NULL . 161

4.13 Join Operation . 163
4.13.1 Equijoin . 165

4.14 Set Operations . 166
4.14.1 UNION Operation . 166
4.14.2 INTERSECTION Operation . 168
4.14.3 MINUS Operation . 169

4.15 View . 169
4.15.1 Nonupdatable View . 172
4.15.2 Views from Multiple Tables . 176
4.15.3 View From View . 179
4.15.4 VIEW with CHECK Constraint . 186
4.15.5 Views with Read-only Option . 187
4.15.6 Materialized Views . 191

4.16 Subquery . 192
4.16.1 Correlated Subquery . 194

4.17 Embedded SQL . 201

5 PL/SQL . 213
5.1 Introduction . 213
5.2 Shortcomings in SQL . 213
5.3 Structure of PL/SQL . 214
5.4 PL/SQL Language Elements . 215
5.5 Data Types . 222
5.6 Operators Precedence . 223
5.7 Control Structure . 224
5.8 Steps to Create a PL/SQL Program . 226
5.9 Iterative Control . 228
5.10 Cursors . 231

5.10.1 Implicit Cursors . 232
5.10.2 Explicit Cursor . 234

5.11 Steps to Create a Cursor . 235
5.11.1 Declare the Cursor . 235
5.11.2 Open the Cursor . 236
5.11.3 Passing Parameters to Cursor . 237
5.11.4 Fetch Data from the Cursor . 237
5.11.5 Close the Cursor . 237

5.12 Procedure . 243
5.13 Function . 247
5.14 Packages . 252
5.15 Exceptions Handling . 255
5.16 Database Triggers . 264
5.17 Types of Triggers . 267

XVI Contents

6 Database Design . 283
6.1 Introduction . 283
6.2 Objectives of Database Design . 285
6.3 Database Design Tools . 286

6.3.1 Need for Database Design Tool . 286
6.3.2 Desired Features of Database Design Tools 286
6.3.3 Advantages of Database Design Tools 287
6.3.4 Disadvantages of Database Design Tools 287
6.3.5 Commercial Database Design Tools 287

6.4 Redundancy and Data Anomaly . 288
6.4.1 Problems of Redundancy . 288
6.4.2 Insertion, Deletion, and Updation Anomaly 288

6.5 Functional Dependency . 289
6.6 Functional Dependency Inference Rules

(Årmstrong’s Axioms) . 292
6.7 Closure of Set of Functional Dependencies 294

6.7.1 Closure of a Set of Attributes . 294
6.7.2 Minimal Cover . 295

6.8 Normalization . 296
6.8.1 Purpose of Normalization . 296

6.9 Steps in Normalization . 296
6.10 Unnormal Form to First Normal Form . 298
6.11 First Normal Form to Second Normal Form 300
6.12 Second Normal Form to Third Normal Form 301
6.13 Boyce–Codd Normal Form (BCNF) . 304
6.14 Fourth and Fifth Normal Forms . 307

6.14.1 Fourth Normal Form. 307
6.14.2 Fifth Normal Form . 311

6.15 Denormalization . 311
6.15.1 Basic Types of Denormalization . 311
6.15.2 Table Denormalization Algorithm 312

7 Transaction Processing and Query Optimization 319
7.1 Transaction Processing . 319

7.1.1 Introduction . 319
7.1.2 Key Notations in Transaction Management 320
7.1.3 Concept of Transaction Management 320
7.1.4 Lock-Based Concurrency Control 326

7.2 Query Optimization . 332
7.2.1 Query Processing . 333
7.2.2 Need for Query Optimization . 333
7.2.3 Basic Steps in Query Optimization 334
7.2.4 Query Optimizer Architecture . 335
7.2.5 Basic Algorithms for Executing Query Operations 341

Contents XVII

7.2.6 Query Evaluation Plans . 344
7.2.7 Optimization by Genetic Algorithms 346

8 Database Security and Recovery . 353
8.1 Database Security . 353

8.1.1 Introduction . 353
8.1.2 Need for Database Security . 354
8.1.3 General Considerations . 354
8.1.4 Database Security System . 356
8.1.5 Database Security Goals and Threats 356
8.1.6 Classification of Database Security 357

8.2 Database Recovery . 368
8.2.1 Different Types of Database Failures 368
8.2.2 Recovery Facilities . 368
8.2.3 Main Recovery Techniques . 370
8.2.4 Crash Recovery . 370
8.2.5 ARIES Algorithm . 371

9 Physical Database Design . 381
9.1 Introduction . 381
9.2 Goals of Physical Database Design . 382

9.2.1 Physical Design Steps . 382
9.2.2 Implementation of Physical Model 383

9.3 File Organization . 384
9.3.1 Factors to be Considered in File Organization 384
9.3.2 File Organization Classification . 384

9.4 Heap File Organization . 385
9.4.1 Uses of Heap File Organization . 385
9.4.2 Drawback of Heap File Organization 385
9.4.3 Example of Heap File Organization 386

9.5 Sequential File Organization . 386
9.5.1 Sequential Processing of File . 387
9.5.2 Draw Back . 387

9.6 Hash File Organization . 387
9.6.1 Hashing Function . 387
9.6.2 Bucket . 388
9.6.3 Choice of Bucket . 389
9.6.4 Extendible Hashing . 391

9.7 Index File Organization . 392
9.7.1 Advantage of Indexing . 392
9.7.2 Classification of Index . 392
9.7.3 Search Key . 393

9.8 Tree-Structured Indexes . 394
9.8.1 ISAM . 394

XVIII Contents

9.8.2 B-Tree . 394
9.8.3 Building a B+ Tree . 394
9.8.4 Bitmap Index . 396

9.9 Data Storage Devices . 397
9.9.1 Factors to be Considered in Selecting Data Storage

Devices . 397
9.9.2 Magnetic Technology . 397
9.9.3 Fixed Magnetic Disk . 398
9.9.4 Removable Magnetic Disk . 398
9.9.5 Floppy Disk . 398
9.9.6 Magnetic Tape . 398

9.10 Redundant Array of Inexpensive Disk . 398
9.10.1 RAID Level 0+1. 399
9.10.2 RAID Level 0 . 400
9.10.3 RAID Level 1 . 401
9.10.4 RAID Level 2 . 401
9.10.5 RAID Level 3 . 402
9.10.6 RAID Level 4 . 403
9.10.7 RAID Level 5 . 404
9.10.8 RAID Level 6 . 405
9.10.9 RAID Level 10 . 406

9.11 Software-Based RAID . 406
9.12 Hardware-Based RAID . 407

9.12.1 RAID Controller . 407
9.12.2 Types of Hardware RAID . 408

9.13 Optical Technology . 409
9.13.1 Advantages of Optical Disks . 409
9.13.2 Disadvantages of Optical Disks . 409

10 Data Mining and Data Warehousing . 415
10.1 Data Mining . 415

10.1.1 Introduction . 415
10.1.2 Architecture of Data Mining Systems 416
10.1.3 Data Mining Functionalities . 417
10.1.4 Classification of Data Mining Systems 417
10.1.5 Major Issues in Data Mining . 418
10.1.6 Performance Issues . 419
10.1.7 Data Preprocessing . 420
10.1.8 Data Mining Task . 423
10.1.9 Data Mining Query Language . 425
10.1.10 Architecture Issues in Data Mining System 426
10.1.11 Mining Association Rules in Large Databases 427
10.1.12 Mining Multilevel Association From Transaction

Databases . 430

Contents XIX

10.1.13 Rule Constraints . 433
10.1.14 Classification and Prediction . 434
10.1.15 Comparison of Classification Methods 436
10.1.16 Prediction . 441
10.1.17 Cluster Analysis . 442
10.1.18 Mining Complex Types of Data . 449
10.1.19 Applications and Trends in Data Mining 453
10.1.20 How to Choose a Data Mining System 456
10.1.21 Theoretical Foundations of Data Mining 458

10.2 Data Warehousing . 461
10.2.1 Goals of Data Warehousing . 461
10.2.2 Characteristics of Data in Data Warehouse 462
10.2.3 Data Warehouse Architectures . 462
10.2.4 Data Warehouse Design . 465
10.2.5 Classification of Data Warehouse Design 467
10.2.6 The User Interface . 471

11 Objected-Oriented and Object Relational DBMS 477
11.1 Objected oriented DBMS . 477

11.1.1 Introduction . 477
11.1.2 Object-Oriented Programming Languages (OOPLs) . . . 479
11.1.3 Availability of OO Technology and Applications 481
11.1.4 Overview of OODBMS Technology 482
11.1.5 Applications of an OODBMS . 487
11.1.6 Evaluation Criteria . 491
11.1.7 Evaluation Targets . 519
11.1.8 Object Relational DBMS . 525
11.1.9 Object-Relational Model . 526
11.1.10 Aggregation and Composition in UML 529
11.1.11 Object-Relational Database Design 530
11.1.12 Comparison of OODBMS and ORDBMS 537

12 Distributed and Parallel Database Management Systems . . 559
12.1 Distributed Database . 559

12.1.1 Features of Distributed vs. Centralized Databases 561
12.2 Distributed DBMS Architecture . 562

12.2.1 DBMS Standardization . 562
12.2.2 Architectural Models for Distributed DBMS 563
12.2.3 Types of Distributed DBMS Architecture 564

12.3 Distributed Database Design . 565
12.3.1 Framework for Distributed Database Design 566
12.3.2 Objectives of the Design of Data Distribution 567
12.3.3 Top-Down and Bottom-Up Approaches to the Design

of Data Distribution . 568
12.3.4 Design of Database Fragmentation 568

XX Contents

12.4 Semantic Data Control . 572
12.4.1 View Management . 572
12.4.2 Views in Centralized DBMSs . 573
12.4.3 Update Through Views . 573
12.4.4 Views in Distributed DBMS . 574
12.4.5 Data Security . 574
12.4.6 Centralized Authorization Control 575
12.4.7 Distributed Authorization Control 575
12.4.8 Semantic Integrity Control . 576
12.4.9 Distributed Semantic Integrity Control 577

12.5 Distributed Concurrency Control . 578
12.5.1 Serializability Theory . 578
12.5.2 Taxonomy of Concurrency Control Mechanism 578
12.5.3 Locking-Based Concurrency Control 580
12.5.4 Timestamp-Based Concurrency Control Algorithms . . . 582
12.5.5 Optimistic Concurrency Control Algorithms 583
12.5.6 Deadlock Management . 583

12.6 Distributed DBMS Reliability . 586
12.6.1 Reliability Concepts and Measures 586
12.6.2 Failures in Distributed DBMS. 588
12.6.3 Basic Fault Tolerance Approaches and Techniques 590
12.6.4 Distributed Reliability Protocols 590

12.7 Parallel Database . 592
12.7.1 Database Server and Distributed Databases 593
12.7.2 Main Components of Parallel Processing 595
12.7.3 Functional Aspects . 597
12.7.4 Various Parallel System Architectures 599
12.7.5 Parallel DBMS Techniques . 602

13 Recent Challenges in DBMS . 611
13.1 Genome Databases . 612

13.1.1 Introduction . 612
13.1.2 Basic Idea of Genome . 612
13.1.3 Building Block of DNA . 612
13.1.4 Genetic Code . 614
13.1.5 GDS (Genome Directory System) Project 614
13.1.6 Conclusion . 619

13.2 Mobile Database . 619
13.2.1 Concept of Mobile Database . 619
13.2.2 General Block Diagram of Mobile Database Center . . . 620
13.2.3 Mobile Database Architecture . 620
13.2.4 Modes of Operations of Mobile Database 622
13.2.5 Mobile Database Management . 622
13.2.6 Mobile Transaction Processing . 623
13.2.7 Distributed Database for Mobile 624

Contents XXI

13.3 Spatial Database . 626
13.3.1 Spatial Data Types . 627
13.3.2 Spatial Database Modeling . 628
13.3.3 Discrete Geometric Spaces . 628
13.3.4 Querying . 629
13.3.5 Integrating Geometry into a Query Language 630
13.3.6 Spatial DBMS Implementation . 631

13.4 Multimedia Database Management System 632
13.4.1 Introduction . 632
13.4.2 Multimedia Data . 632
13.4.3 Multimedia Data Model . 633
13.4.4 Architecture of Multimedia System 635
13.4.5 Multimedia Database Management System

Development . 636
13.4.6 Issues in Multimedia DBMS . 636

13.5 XML . 637
13.5.1 Introduction . 637
13.5.2 Origin of XML . 637
13.5.3 Goals of XML . 638
13.5.4 XML Family . 638
13.5.5 XML and HTML . 638
13.5.6 XML Document . 639
13.5.7 Document Type Definitions (DTD) 640
13.5.8 Extensible Style Sheet Language (XSL) 640
13.5.9 XML Namespaces . 641
13.5.10 XML and Datbase Applications . 643

14 Projects in DBMS . 645
14.1 List of Projects . 645
14.2 Overview of the Projects . 645

14.2.1 Front-End: Microsoft Visual Basic 645
14.2.2 Back-End: Oracle 9i . 646
14.2.3 Interface: ODBC . 646

14.3 First Project: Bus Transport Management System 647
14.3.1 Description . 647
14.3.2 Features of the Project . 647
14.3.3 Source Code . 649

14.4 Second Project: Course Administration System 656
14.4.1 Description . 656
14.4.2 Source Code . 656

14.5 Third Project: Election Voting System . 666
14.5.1 Description . 666
14.5.2 Source Code . 666

14.6 Fourth Project: Hospital Management System 673
14.6.1 Description . 673
14.6.2 Source Code . 674

XXII Contents

14.7 Fifth Project: Library Management System 680
14.7.1 Description . 680
14.7.2 Source Code . 680

14.8 Sixth Project: Railway Management System 690
14.8.1 Description . 690
14.8.2 Source Code . 690

14.9 Some Hints to Do Successful Projects in DBMS 696

A Dictionary of DBMS Terms . 699

B Overview of Commands in SQL . 721

C Pioneers in DBMS . 727
C.1 About Dr. Edgar F. Codd . 728
C.2 Ronald Fagin . 736

C.2.1 Abstract of Ronald Fagin’s Article 737

D Popular Commercial DBMS . 739
D.1 System R . 739

D.1.1 Introduction to System R . 739
D.1.2 Keywords Used . 739
D.1.3 Architecture and System Structure 740
D.1.4 Relational Data Interface . 742
D.1.5 Data Manipulation Facilities in SEQUEL 743
D.1.6 Data Definition Facilities . 745
D.1.7 Data Control Facilities . 746

D.2 Relational Data System . 749
D.3 DB2 . 752

D.3.1 Introduction to DB2 . 752
D.3.2 Definition of DB2 Data Structures 753
D.3.3 DB2 Stored Procedure . 753
D.3.4 DB2 Processing Environment . 755
D.3.5 DB2 Commands . 757
D.3.6 Data Sharing in DB2 . 759
D.3.7 Conclusion . 760

D.4 Informix . 760
D.4.1 Introduction to Informix . 760
D.4.2 Informix SQL and ANSI SQL . 761
D.4.3 Software Dependencies . 762
D.4.4 New Features in Version 7.3 . 763
D.4.5 Conclusion . 766

Bibliography . 767

Abbreviations

ACM Association of Computing Machinery
ACID Atomicity, Consistency, Isolation, and Durability
ANSI American National Standard Institute
ANSI/SPARK American National Standard Institute/Standards Planning

And Requirements Committee
API Application Program Interface
ARIES Algorithms for Recovery and Isolation Exploiting -Semantics
ASCII American Standard Code for Information Interchange
ASP Active Server Page
BCNF Boyce-Codd Normal Form
BLOB Binary Large Object
CAD/CAM Computer Aided Design/Computer Aided Manufacturing
CAEP Classification by Aggregating Emerging Patterns
CASE Computer Aided Software Engineering
CLOB Character Large Object
CD Compact Disk
CD-ROM Compact Disk Read Only Memory
CD-RW Compact Disk ReWritable
CLARA Clustering LARge Application
CLARANS Clustering Large Application based upon Randomized Search
CODASYL Conference On Data System Language
CPT Conditional Probability Table
CSS Cascade Style Sheet
CURE Clustering Using Representatives
CURSOR Current Set of Records
DB Database
DB2 Database 2 (an IBM Relational DBMS)
DBMS Database Management System
DBA Database Administrator

XXIV Abbreviations

DBTG Database Task Group
DCL Data Control Language
DD Data Dictionary
DDBMS Distributed Database Management Systems
DDL Data Description Language
DKNF Domain Key Normal Form
DLM Distributed Lock Manager
DL/I Data Language I
DM Data Manager
DML Data Manipulation Language
DOM Document Object Model
DRC Domain Relational Calculus
DSS Decision Support System
DTD Document Type Definition
DW Data Warehouse
ER Model Entity Relationship Model
EER Model Enhanced Entity Relationship Model
ERD Entity Relationship Diagram
FD Functional Dependency
GDS Genome Directory System
GIS Geographical Information System
GLS Global Language Support
GMOD Generic Model Organism Database
GUAM Generalized Update Access Method
GUI Graphical User Interface
HGP Human Genome Project
HTML Hyper Text Markup Language
NAS Network Attached Storage
IBM International Business Machines
IDE Integrated Development Environment
IMS Information Management System
ISAM Indexed Sequential Access Method
ISO International Standard Organization
JDBC Java Database Connectivity
LAN Local Area Network
MARS Multimedia Analysis and Retrieval System
MMDBMS Multimedia Database Management System
MM Media Manager
MOLAP Multidimensional Online Analytical Processing
MPEG Motion Picture Expert Group
MTL Multimedia Transaction Language
ODBC Open Database Connectivity
ODMG Object Database Management Group

Abbreviations XXV

OLAP Online Analytical Processing
OLTP Online Transaction Processing
OMG Object Management Group
OOPL Object Oriented Programming Language
ORDBMS Object Relational Database Management System
OODBMS Object Oriented Database Management System
OS Operating System
PAM Partitioning Around Medoids
PCTE Portable Common Tool Environment
PL/SQL Programming Language/Structured Query Language
QBE Query By Example
RAID Redundant Array of Inexpensive/Independent Disk
RDBMS Relational Database Management System
ROLAP Relational Online Analytical Processing
SCSI Small Computer System Interface
SEQUEL Structured Query English Language
SGML Standard Generalized Markup Language
SQL Structured Query Language
SQL/DS Structured Query Language/Data System
TM Transaction Manager
TRC Tuple Relational Calculus
UML Unified Modeling Language
VB Visual Basic
VSAM Virtual Storage Access Method
WORM Write Once Read Many
WWW World Wide Web
W3C World Wide Web Consortium
XML Extended Markup Language
XSL Extensible Style Sheet Language
2PL Two Phase Lock
4GL Fourth Generation Language
1:1 One-to-One
1:M One-to-Many
1NF First Normal Form
2NF Second Normal Form
3NF Third Normal Form
4NF Fourth Normal Form
5NF Fifth Normal Form

List of Symbols

Symbol Meaning

Projection operator

Selection operator

Union operator

Intersection operator

Cartesian product operator

Join operator

Left outer join operator

Right outer join operator

Full outer join operator

Semi join operator

Rename operator

Universal quantifier

Existential quantifier

Entity

Attribute

Multivalued attribute

Relationship

Associative entity

Identifying relationship type

Derived attribute

Weak entity type

1

Overview of Database Management System

Learning Objectives. This chapter provides an overview of database management
system which includes concepts related to data, database, and database management
system. After completing this chapter the reader should be familiar with the
following concepts:

– Data, information, database, database management system
– Need and evolution of DBMS
– File management vs. database management system
– ANSI/SPARK data model
– Database architecture: two-, three-, and multitier architecture

1.1 Introduction

Science, business, education, economy, law, culture, all areas of human deve-
lopment “work” with the constant aid of data. Databases play a crucial role
within science research: the body of scientific and technical data and infor-
mation in the public domain is massive and factual data are fundamental to
the progress of science. But the progress of science is not the only process
affected by the way people use databases. Stock exchange data are absolutely
necessary to any analyst; access to comprehensive databases of large scale
is an everyday activity of a teacher, an educator, an academic or a lawyer.
There are databases collecting all sorts of different data: nuclear structure and
radioactive decay data for isotopes (the Evaluated Nuclear Structure Data
File) and genes sequences (the Human Genome Database), prisoners’ DNA
data (“DNA offender database”), names of people accused for drug offenses,
telephone numbers, legal materials and many others. In this chapter, the ba-
sic idea about database management system, its evolution, its advantage over
conventional file system, database system structure is discussed.

S. Sumathi: Overview of Database Management System, Studies in Computational Intelligence

(SCI) 47, 1–30 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

2 1 Overview of Database Management System

1.2 Data and Information

Data are raw facts that constitute building block of information. Data are
the heart of the DBMS. It is to be noted that all the data will not convey
useful information. Useful information is obtained from processed data. In
other words, data has to be interpreted in order to obtain information. Good,
timely, relevant information is the key to decision making. Good decision
making is the key to organizational survival.

Data are a representation of facts, concepts, or instructions in a formalized
manner suitable for communication, interpretation, or processing by humans
or automatic means. The data in DBMS can be broadly classified into two
types, one is the collection of information needed by the organization and the
other is “metadata” which is the information about the database. The term
“metadata” will be discussed in detail later in this chapter.

Data are the most stable part of an organization’s information system.
A company needs to save information about employees, departments, and
salaries. These pieces of information are called data. Permanent storage of
data are referred to as persistent data. Generally, we perform operations on
data or data items to supply some information about an entity. For example
library keeps a list of members, books, due dates, and fines.

1.3 Database

A database is a well-organized collection of data that are related in a meaning-
ful way, which can be accessed in different logical orders. Database systems are
systems in which the interpretation and storage of information are of primary
importance. The database should contain all the data needed by the organi-
zation as a result, a huge volume of data, the need for long-term storage of
the data, and access of the data by a large number of users generally charac-
terize database systems. The simplified view of database system is shown in
Fig. 1.1. From this figure, it is clear that several users can access the data in an

Users

Users

Users

Database

Fig. 1.1. Simplified database view

1.4 Database Management System 3

organization still the integrity of the data should be maintained. A database
is integrated when same information is not recorded in two places.

1.4 Database Management System

A database management system (DBMS) consists of collection of interrelated
data and a set of programs to access that data. It is software that is helpful
in maintaining and utilizing a database.

A DBMS consists of:

– A collection of interrelated and persistent data. This part of DBMS is
referred to as database (DB).

– A set of application programs used to access, update, and manage data.
This part constitutes data management system (MS).

– A DBMS is general-purpose software i.e., not application specific. The
same DBMS (e.g., Oracle, Sybase, etc.) can be used in railway reservation
system, library management, university, etc.

– A DBMS takes care of storing and accessing data, leaving only application
specific tasks to application programs.

DBMS is a complex system that allows a user to do many things to data
as shown in Fig. 1.2. From this figure, it is evident that DBMS allows user to
input data, share the data, edit the data, manipulate the data, and display
the data in the database. Because a DBMS allows more than one user to share
the data; the complexity extends to its design and implementation.

1.4.1 Structure of DBMS

An overview of the structure of database management system is shown in
Fig. 1.3. A DBMS is a software package, which translates data from its logical
representation to its physical representation and back.

The DBMS uses an application specific database description to define this
translation. The database description is generated by a database designer

DBMS

UPDATE

INPUT

MANIPULATE

SELECT

DISPLAYSHARE

EDIT

Fig. 1.2. Capabilities of database management system

4 1 Overview of Database Management System

Data Definition
Language or
Interface

Database
Management
System

Database
Description

Conceptual
Schema

User’s View
of Database

Database

Fig. 1.3. Structure of database management system

from his or her conceptual view of the database, which is called the Con-
ceptual Schema. The translation from the conceptual schema to the database
description is performed using a data definition language (DDL) or a graphical
or textual design interface.

1.5 Objectives of DBMS

The main objectives of database management system are data availability,
data integrity, data security, and data independence.

1.5.1 Data Availability

Data availability refers to the fact that the data are made available to wide
variety of users in a meaningful format at reasonable cost so that the users
can easily access the data.

1.5.2 Data Integrity

Data integrity refers to the correctness of the data in the database. In other
words, the data available in the database is a reliable data.

1.5.3 Data Security

Data security refers to the fact that only authorized users can access the data.
Data security can be enforced by passwords. If two separate users are accessing
a particular data at the same time, the DBMS must not allow them to make
conflicting changes.

1.6 Evolution of Database Management Systems 5

1.5.4 Data Independence

DBMS allows the user to store, update, and retrieve data in an efficient
manner. DBMS provides an “abstract view” of how the data is stored in the
database.

In order to store the information efficiently, complex data structures are
used to represent the data. The system hides certain details of how the data
are stored and maintained.

1.6 Evolution of Database Management Systems

File-based system was the predecessor to the database management system.
Apollo moon-landing process was started in the year 1960. At that time, there
was no system available to handle and manage large amount of information. As
a result, North American Aviation which is now popularly known as Rock-
well International developed software known as Generalized Update Access
Method (GUAM). In the mid-1960s, IBM joined North American Aviation
to develop GUAM into Information Management System (IMS). IMS was
based on Hierarchical data model. In the mid-1960s, General Electric released
Integrated Data Store (IDS). IDS were based on network data model. Charles
Bachmann was mainly responsible for the development of IDS. The network
database was developed to fulfill the need to represent more complex data
relationships than could be modeled with hierarchical structures. Conference
on Data System Languages formed Data Base Task Group (DBTG) in 1967.
DBTG specified three distinct languages for standardization. They are Data
Definition Language (DDL), which would enable Database Administrator to
define the schema, a subschema DDL, which would allow the application pro-
grams to define the parts of the database and Data Manipulation Language
(DML) to manipulate the data.

The network and hierarchical data models developed during that time had
the drawbacks of minimal data independence, minimal theoretical foundation,
and complex data access. To overcome these drawbacks, in 1970, Codd of IBM
published a paper titled “A Relational Model of Data for Large Shared Data
Banks” in Communications of the ACM, vol. 13, No. 6, pp. 377–387, June
1970. As an impact of Codd’s paper, System R project was developed dur-
ing the late 1970 by IBM San Jose Research Laboratory in California. The
project was developed to prove that relational data model was implementable.
The outcome of System R project was the development of Structured Query
Language (SQL) which is the standard language for relational database man-
agement system. In 1980s IBM released two commercial relational database
management systems known as DB2 and SQL/DS and Oracle Corporation re-
leased Oracle. In 1979, Codd himself attempted to address some of the failings
in his original work with an extended version of the relational model called
RM/T in 1979 and RM/V2 in 1990. The attempts to provide a data model

6 1 Overview of Database Management System

that represents the “real world” more closely have been loosely classified as
Semantic Data Modeling.

In recent years, two approaches to DBMS are more popular, which are
Object-Oriented DBMS (OODBMS) and Object Relational DBMS (OR-
DBMS).

The chronological order of the development of DBMS is as follows:

– Flat files – 1960s–1980s
– Hierarchical – 1970s–1990s
– Network – 1970s–1990s
– Relational – 1980s–present
– Object-oriented – 1990s–present
– Object-relational – 1990s–present
– Data warehousing – 1980s–present
– Web-enabled – 1990s–present

Early 1960s. Charles Bachman at GE created the first general purpose DBMS
Integrated Data Store. It created the basis for the network model which was
standardized by CODASYL (Conference on Data System Language).
Late 1960s. IBM developed the Information Management System (IMS). IMS
used an alternate model, called the Hierarchical Data Model.
1970. Edgar Codd, from IBM created the Relational Data Model. In 1981
Codd received the Turing Award for his contributions to database theory.
Codd Passed away in April 2003.
1976. Peter Chen presented Entity-Relationship model, which is widely used
in database design.
1980. SQL developed by IBM, became the standard query language for data-
bases. SQL was standardized by ISO.
1980s and 1990s. IBM, Oracle, Informix and others developed powerful
DBMS.

1.7 Classification of Database Management System

The database management system can be broadly classified into (1) Passive
Database Management System and (2) Active Database Management System:

1. Passive Database Management System. Passive Database Management
Systems are program-driven. In passive database management system the
users query the current state of database and retrieve the information cur-
rently available in the database. Traditional DBMS are passive in the sense
that they are explicitly and synchronously invoked by user or application
program initiated operations. Applications send requests for operations to
be performed by the DBMS and wait for the DBMS to confirm and return
any possible answers. The operations can be definitions and updates of
the schema, as well as queries and updates of the data.

1.8 File-Based System 7

2. Active Database Management System. Active Database Management Sys-
tems are data-driven or event-driven systems. In active database manage-
ment system, the users specify to the DBMS the information they need.
If the information of interest is currently available, the DBMS actively
monitors the arrival of the desired information and provides it to the rele-
vant users. The scope of a query in a passive DBMS is limited to the past
and present data, whereas the scope of a query in an active DBMS addi-
tionally includes future data. An active DBMS reverses the control flow
between applications and the DBMS instead of only applications calling
the DBMS, the DBMS may also call applications in an active DBMS.

Active databases contain a set of active rules that consider events that
represent database state changes, look for TRUE or FALSE conditions as
the result of a database predicate or query, and take an action via a data
manipulation program embedded in the system. Alert is extension archi-
tecture at the IBM Almaden Research, for experimentation with active
databases.

1.8 File-Based System

Prior to DBMS, file system provided by OS was used to store information.
In a file-based system, we have collection of application programs that per-
form services for the end users. Each program defines and manages its own
data.

Consider University database, the University database contains details
about student, faculty, lists of courses offered, and duration of course, etc.
In File-based processing for each database there is separate application pro-
gram which is shown in Fig. 1.4.

Group n of users

Group 2 of users

Group 1 of users Application 1 Files of
Application 1

Application 2

Application n

Files of
Application 2

Files of
Application n

Fig. 1.4. File-based System

8 1 Overview of Database Management System

One group of users may be interested in knowing the courses offered by
the university. One group of users may be interested in knowing the faculty
information. The information is stored in separate files and separate applica-
tions programs are written.

1.9 Drawbacks of File-Based System

The limitations of file-based approach are duplication of data, data depen-
dence, incompatible file formats, separation, and isolation of data.

1.9.1 Duplication of Data

Duplication of data means same data being stored more than once. This can
also be termed as data redundancy. Data redundancy is a problem in file-
based approach due to the decentralized approach. The main drawbacks of
duplication of data are:

– Duplication of data leads to wastage of storage space. If the storage space
is wasted it will have a direct impact on cost. The cost will increase.

– Duplication of data can lead to loss of data integrity; the data are no
longer consistent. Assume that the employee detail is stored both in the
department and in the main office. Now the employee changes his contact
address. The changed address is stored in the department alone and not
in the main office. If some important information has to be sent to his
contact address from the main office then that information will be lost.
This is due to the lack of decentralized approach.

1.9.2 Data Dependence

Data dependence means the application program depends on the data. If some
modifications have to be made in the data, then the application program has to
be rewritten. If the application program is independent of the storage structure
of the data, then it is termed as data independence. Data independence is
generally preferred as it is more flexible. But in file-based system there is
program-data dependence.

1.9.3 Incompatible File Formats

As file-based system lacks program data independence, the structure of the file
depends on the application programming language. For example, the struc-
ture of the file generated by FORTRAN program may be different from the
structure of a file generated by “C” program. The incompatibility of such files
makes them difficult to process jointly.

1.10 DBMS Approach 9

1.9.4 Separation and Isolation of Data

In file-based approach, data are isolated in separate files. Hence it is difficult
to access data. The application programmer must synchronize the processing
of two files to ensure that the correct data are extracted. This difficulty is
more if data has to be retrieved from more than two files.

The draw backs of conventional file-based approach are summarized later:

1. We have to store the information in a secondary memory such as a disk.
If the volume of information is large; it will occupy more memory space.

2. We have to depend on the addressing facilities of the system. If the data-
base is very large, then it is difficult to address the whole set of records.

3. For each query, for example the address of the student and the list of
electives that the student has chosen, we have to write separate programs.

4. While writing several programs, lot of variables will be declared and it
will occupy some space.

5. It is difficult to ensure the integrity and consistency of the data when
more than one program accesses some file and changes the data.

6. In case of a system crash, it becomes hard to bring back the data to a
consistent state.

7. “Data redundancy” occurs when identical data are distributed over vari-
ous files.

8. Data distributed in various files may be in different formats hence it is
difficult to share data among different application (Data Isolation).

1.10 DBMS Approach

DBMS is software that provides a set of primitives for defining, accessing, and
manipulating data. In DBMS approach, the same data are being shared by
different application programs; as a result data redundancy is minimized. The
DBMS approach of data access is shown in Fig. 1.5.

Group n of users

Group 2 of users

Group 1 of users Application 1

Application 2

Application n

DBMS

DB

raw
data

+
 data

Fig. 1.5. Data access through DBMS

10 1 Overview of Database Management System

1.11 Advantages of DBMS

There are many advantages of database management system. Some of the
advantages are listed later:

1. Centralized data management.
2. Data Independence.
3. System Integration.

1.11.1 Centralized Data Management

In DBMS all files are integrated into one system thus reducing redundancies
and making data management more efficient.

1.11.2 Data Independence

Data independence means that programs are isolated from changes in the
way the data are structured and stored. In a database system, the database
management system provides the interface between the application programs
and the data. Physical data independence means the applications need not
worry about how the data are physically structured and stored. Applications
should work with a logical data model and declarative query language.

If major changes were to be made to the data, the application programs
may need to be rewritten. When changes are made to the data representation,
the data maintained by the DBMS is changed but the DBMS continues to
provide data to application programs in the previously used way.

Data independence is the immunity of application programs to changes
in storage structures and access techniques. For example if we add a new
attribute, change index structure then in traditional file processing system,
the applications are affected. But in a DBMS environment these changes are
reflected in the catalog, as a result the applications are not affected. Data
independence can be physical data independence or logical data independence.

Physical data independence is the ability to modify physical schema with-
out causing the conceptual schema or application programs to be rewritten.

Logical data independence is the ability to modify the conceptual schema
without having to change the external schemas or application programs.

1.11.3 Data Inconsistency

Data inconsistency means different copies of the same data will have different
values. For example, consider a person working in a branch of an organization.
The details of the person will be stored both in the branch office as well as in
the main office. If that particular person changes his address, then the “change
of address” has to be maintained in the main as well as the branch office.

1.12 Ansi/Spark Data Model 11

For example the “change of address” is maintained in the branch office but
not in the main office, then the data about that person is inconsistent.

DBMS is designed to have data consistency. Some of the qualities achieved
in DBMS are:

1. Data redundancy −→ Reduced in DBMS.
2. Data independence −→ Activated in DBMS.
3. Data inconsistency −→ Avoided in DBMS.
4. Centralizing the data −→ Achieved in DBMS.
5. Data integrity −→ Necessary for efficient Transaction.
6. Support for multiple views −→ Necessary for security reasons.

– Data redundancy means duplication of data. Data redundancy will occupy
more space hence it is not desirable.

– Data independence means independence between application program and
the data. The advantage is that when the data representation changes, it
is not necessary to change the application program.

– Data inconsistency means different copies of the same data will have dif-
ferent values.

– Centralizing the data means data can be easily shared between the users
but the main concern is data security.

– The main threat to data integrity comes from several different users
attempting to update the same data at the same time. For example, “The
number of booking made is larger than the capacity of the aircraft/train.”

– Support for multiple views means DBMS allows different users to see
different “views” of the database, according to the perspective each one
requires. This concept is used to enhance the security of the database.

1.12 Ansi/Spark Data Model (American National
Standard Institute/ Standards Planning
and Requirements Committee)

The distinction between the logical and physical representation of data were
recognized in 1978 when ANSI/SPARK committee proposed a generalized
framework for database systems. This framework provided a three-level archi-
tecture, three levels of abstraction at which the database could be viewed.

1.12.1 Need for Abstraction

The main objective of DBMS is to store and retrieve information efficiently;
all the users should be able to access same data. The designers use complex
data structure to represent the data, so that data can be efficiently stored
and retrieved, but it is not necessary for the users to know physical database
storage details. The developers hide the complexity from users through several
levels of abstraction.

12 1 Overview of Database Management System

1.12.2 Data Independence

Data independence means the internal structure of database should be
unaffected by changes to physical aspects of storage. Because of data in-
dependence, the Database administrator can change the database storage
structures without affecting the users view.
The different levels of data abstraction are:

1. Physical level or internal level
2. Logical level or conceptual level
3. View level or external level

Physical Level

It is concerned with the physical storage of the information. It provides the
internal view of the actual physical storage of data. The physical level
describes complex low-level data structures in detail.

Logical Level

Logical level describes what data are stored in the database and what rela-
tionships exist among those data.

Logical level describes the entire database in terms of a small number of
simple structures. The implementation of simple structure of the logical level
may involve complex physical level structures; the user of the logical level
does not need to be aware of this complexity. Database administrator use the
logical level of abstraction.

View Level

View level is the highest level of abstraction. It is the view that the individual
user of the database has. There can be many view level abstractions of the
same data. The different levels of data abstraction are shown in Fig. 1.6.

Database Instances

Database change over time as information is inserted and deleted. The collec-
tion of information stored in the database at a particular moment is called an
instance of the database.

Database Schema

The overall design of the database is called the database schema. A schema is
a collection of named objects. Schemas provide a logical classification of ob-
jects in the database. A schema can contain tables, views, triggers, functions,
packages, and other objects.

1.13 Data Models 13

External level

internal to logical mapping

logical to external mappings

disk

Internal Schema Internal level

External View 1 External View 2 External View 3

Logical Schema Logical level

Fig. 1.6. ANSI/SPARK data model

A schema is also an object in the database. It is explicitly created using the
CREATE SCHEMA statement with the current user recorded as the schema
owner. It can also be implicitly created when another object is created,
provided the user has IMPLICIT SCHEMA authority.

Data base schemas

Physical schema Logical schema Subschema

Describes the Database
Design at the
Physical level

Describes the database
design at the logical
level

Describes different
views of the
database

1.13 Data Models

Data model is collection of conceptual tools for describing data, relationship
between data, and consistency constraints. Data models help in describing
the structure of data at the logical level. Data model describe the structure of
the database. A data model is the set of conceptual constructs available for
defining a schema. The data model is a language for describing the data and
database, it may consist of abstract concepts, which must be translated by the

14 1 Overview of Database Management System

designer into the constructs of the data definition interface, or it may consist of
constructs, which are directly supported by the data definition interface. The
constructs of the data model may be defined at many levels of abstraction.

Data model

Conceptual data model Physical data model

Object based
Logical model

Record based
model

∗ E-R model ∗ Relational model
(Entity-Relationship model)

∗ Object-oriented model ∗ Network model
∗ Functional data model ∗ Hierarchical data model

1.13.1 Early Data Models

Three historically important data models are the hierarchical, network, and
relational models. These models are relevant for their contributions in estab-
lishing the theory of data modeling and because they were all used as the
basis of working and widely used database systems. Together they are often
referred to as the “basic” data models. The hierarchical and network models,
developed in the 1960s and 1970s, were based on organizing the primitive data
structures in which the data were stored in the computer by adding connec-
tions or links between the structures. As such they were useful in presenting
the user with a well-defined structure, but they were still highly coupled to
the underlying physical representation of the data. Although they did much
to assist in the efficient access of data, the principle of data independence was
poorly supported.

1.14 Components and Interfaces of Database
Management System

A database management system involves five major components: data, hard-
ware, software, procedure, and users. These components and the interface
between the components are shown in Fig. 1.7.

1.14.1 Hardware

The hardware can range from a single personal computer, to a single main-
frame, to a network of computers. The particular hardware depends on the

1.14 Components and Interfaces of Database Management System 15

Forms

Data
Files

Application
Front ends

DML Interface DDL

Query Evaluation
Engine

File and Access
Methods

Buffer Manager

Disk Space
Manager

Transaction

And Lock

Manager

Recovery

Manager

DDL
Compiler

Indexes System
Catalog

Fig. 1.7. Database management system components and interfaces

requirements of the organization and the DBMS used. Some DBMSs run only
on particular operating systems, while others run on a wide variety of opera-
ting systems. A DBMS requires a minimum amount of main memory and
disk space to run, but this minimum configuration may not necessarily give
acceptable performance.

1.14.2 Software

The software includes the DBMS software, application programs together with
the operating systems including the network software if the DBMS is being
used over a network. The application programs are written in third-generation
programming languages like “C,” COBOL, FORTRAN, Ada, Pascal, etc. or
using fourth-generation language such as SQL, embedded in a third-generation
language. The target DBMS may have its own fourth-generation tools which
allow development of applications through the provision of nonprocedural
query languages, report generators, graphics generators, and application gen-
erators. The use of fourth-generation tools can improve productivity signifi-
cantly and produce programs that are easier to maintain.

16 1 Overview of Database Management System

1.14.3 Data

A database is a repository for data which, in general, is both integrated and
shared. Integration means that the database may be thought of as a unifi-
cation of several otherwise distinct files, with any redundancy among those
files partially or wholly eliminated. The sharing of a database refers to the
sharing of data by different users, in the sense that each of those users may
have access to the same piece of data and may use it for different purposes.
Any given user will normally be concerned with only a subset of the whole
database. The main features of the data in the database are listed later:

1. The data in the database is well organized (structured)
2. The data in the database is related
3. The data are accessible in different orders without great difficulty

The data in the database is persistent, integrated, structured, and shared.

Integrated Data

A data can be considered to be a unification of several distinct data files and
when any redundancy among those files is eliminated, the data are said to be
integrated data.

Shared Data

A database contains data that can be shared by different users for different
application simultaneously. It is important to note that in this way of sharing
of data, the redundancy of data are reduced, since repetitions are avoided, the
possibility of inconsistencies is reduced.

Persistent Data

Persistent data are one, which cannot be removed from the database as a side
effect of some other process. Persistent data have a life span that is not limited
to single execution of the programs that use them.

1.14.4 Procedure

Procedures are the rules that govern the design and the use of database. The
procedure may contain information on how to log on to the DBMS, start
and stop the DBMS, procedure on how to identify the failed component, how
to recover the database, change the structure of the table, and improve the
performance.

1.14.5 People Interacting with Database

Here people refers to the people who manages the database, database admin-
istrator, people who design the application program, database designer and
the people who interacts with the database, database users.

1.14 Components and Interfaces of Database Management System 17

A DBMS is typically run as a back-end server in a local or global network,
offering services to clients directly or to Application Servers.

People interacting with database

Database
Administrator

Database
Designer

Database
manager

Database user

Application
Programmer

 Enduser
∗ Sophisticated
∗ Naïve.
∗ Specialized.

Database Administrator

Database Administrator is a person having central control over data and pro-
grams accessing that data. The database administrator is a manager whose
responsibilities are focused on management of technical aspects of the data-
base system. The objectives of database administrator are given as follows:

1. To control the database environment
2. To standardize the use of database and associated software
3. To support the development and maintenance of database application

projects
4. To ensure all documentation related to standards and implementation is

up-to-date

The summarized objectives of database administrator are shown in Fig. 1.8.
The control of the database environment should exist from the planning

right through to the maintenance stage. During application development the
database administrator should carry out the tasks that ensure proper control
of the database when an application becomes operational. This includes review
of each design stage to see if it is feasible from the database point of view.
The database administrator should be responsible for developing standards to
apply to development projects. In particular these standards apply to system
analysis, design, and application programming for projects which are going
to use the database. These standards will then be used as a basis for training
systems analysts and programmers to use the database management system
efficiently.

Responsibilities of Database Administrator (DBA)

The responsibility of the database administrator is to maintain the in-
tegrity, security, and availability of data. A database must be protected from

18 1 Overview of Database Management System

Control Document Standardize Support

Applications

DBMS

Database

Fig. 1.8. Objectives of database administration

accidents, such as input or programming errors, from malicious use of the
database and from hardware or software failures that corrupt data. Protection
from accidents that cause data inaccuracy is a part of maintaining data in-
tegrity. Protecting the database from unauthorized or malicious use is termed
as database security. The responsibilities of the database administrator are
summarized as follows:

1. Authorizing access to the database.
2. Coordinating and monitoring its use.
3. Acquiring hardware and software resources as needed.
4. Backup and recovery. DBA has to ensure regular backup of database, in-

case of damage, suitable recovery procedure are used to bring the database
up with little downtime as possible.

Database Designer

Database designer can be either logical database designer or physical database
designer. Logical database designer is concerned with identifying the data, the
relationships between the data, and the constraints on the data that is to be
stored in the database. The logical database designer must have thorough
understanding of the organizations data and its business rule.

The physical database designer takes the logical data model and decides
the way in which it can be physically implemented. The logical database
designer is responsible for mapping the logical data model into a set of tables
and integrity constraints, selecting specific storage structure, and designing

1.14 Components and Interfaces of Database Management System 19

security measures required on the data. In a nutshell, the database designer
is responsible for:

1. Identifying the data to be stored in the database.
2. Choosing appropriate structure to represent and store the data.

Database Manager

Database manager is a program module which provides the interface between
the low level data stored in the database and the application programs and
queries submitted to the system:

– The database manager would translate DML statement into low level
file system commands for storing, retrieving, and updating data in the
database.

– Integrity enforcement. Database manager enforces integrity by checking
consistency constraints like the bank balance of customer must be main-
tained to a minimum of Rs. 300, etc.

– Security enforcement. Unauthorized users are prohibited to view the in-
formation stored in the data base.

– Backup and recovery. Backup and recovery of database is necessary to en-
sure that the database must remain consistent despite the fact of failures.

Database Users

Database users are the people who need information from the database to
carry out their business responsibility. The database users can be broadly
classified into two categories like application programmers and end users.

Database users

Application programmers End users

Application programmers write
application programs and interacts
with the data base through host
Language like Pascal, C and Cobol

∗ Sophisticated end users
∗ Specialized end users
∗ Naïve end users

Sophisticated End Users

Sophisticated end users interact with the system without writing programs.
They form requests by writing queries in a database query language. These
are submitted to query processor. Analysts who submit queries to explore
data in the database fall in this category.

20 1 Overview of Database Management System

Specialized End Users

Specialized end users write specialized database application that does not fit
into data-processing frame work. Application involves knowledge base and
expert system, environment modeling system, etc.

Naive End Users

Näıve end user interact with the system by using permanent application pro-
gram Example: Query made by the student, namely number of books borrowed
in library database.

System Analysts

System analysts determine the requirements of end user, and develop specifi-
cation for canned transaction that meets this requirement.

Canned Transaction

Ready made programs through which näıve end users interact with the data-
base is called canned transaction.

1.14.6 Data Dictionary

A data dictionary, also known as a “system catalog,” is a centralized store of
information about the database. It contains information about the tables, the
fields the tables contain, data types, primary keys, indexes, the joins which
have been established between those tables, referential integrity, cascades up-
date, cascade delete, etc. This information stored in the data dictionary is
called the “Metadata.” Thus a data dictionary can be considered as a file
that stores Metadata. Data dictionary is a tool for recording and processing
information about the data that an organization uses. The data dictionary
is a central catalog for Metadata. The data dictionary can be integrated
within the DBMS or separate. Data dictionary may be referenced during
system design, programming, and by actively-executing programs. One of
the major functions of a true data dictionary is to enforce the constraints
placed upon the database by the designer, such as referential integrity and
cascade delete.

Metadata

The information (data) about the data in a database is called Metadata. The
Metadata are available for query and manipulation, just as other data in the
database.

1.14 Components and Interfaces of Database Management System 21

1.14.7 Functional Components of Database System Structure

The functional components of database system structure are:

1. Storage manager.
2. Query processor.

Storage Manager

Storage manager is responsible for storing, retrieving, and updating data in
the database. Storage manager components are:

1. Authorization and integrity manager.
2. Transaction manager.
3. File manager.
4. Buffer manager.

Transaction Management

– A transaction is a collection of operations that performs a single logical
function in a database application.

– Transaction-management component ensures that the database remains
in a consistent state despite system failures and transaction failure.

– Concurrency control manager controls the interaction among the concur-
rent transactions, to ensure the consistency of the database.

Authorization and Integrity Manager

Checks the integrity constraints and authority of users to access data.

Transaction Manager

It ensures that the database remains in a consistent state despite system fail-
ures. The transaction manager manages the execution of database manipula-
tion requests. The transaction manager function is to ensure that concurrent
access to data does not result in conflict.

File Manager

File manager manages the allocation of space on disk storage. Files are
used to store collections of similar data. A file management system man-
ages independent files, helping to enter and retrieve information records.
File manager establishes and maintains the list of structure and indexes
defined in the internal schema. The file manager can:

– Create a file
– Delete a file
– Update the record in the file
– Retrieve a record from a file

22 1 Overview of Database Management System

Buffer

The area into which a block from the file is read is termed a buffer. The
management of buffers has the objective of maximizing the performance or the
utilization of the secondary storage systems, while at the same time keeping
the demand on CPU resources tolerably low. The use of two or more buffers
for a file allows the transfer of data to be overlapped with the processing of
data.

Buffer Manager

Buffer manager is responsible for fetching data from disk storage into main
memory. Programs call on the buffer manager when they need a block from
disk. The requesting program is given the address of the block in main memory,
if it is already present in the buffer. If the block is not in the buffer, the buffer
manager allocates space in the buffer for the block, replacing some other block,
if required, to make space for new block. Once space is allocated in the buffer,
the buffer manager reads in the block from the disk to the buffer, and passes
the address of the block in main memory to the requester.

Indices

Indices provide fast access to data items that hold particular values. An index
is a list of numerical values which gives the order of the records when they
are sorted on a particular field or column of the table.

1.15 Database Architecture

Database architecture essentially describes the location of all the pieces of
information that make up the database application. The database architecture
can be broadly classified into two-, three-, and multitier architecture.

1.15.1 Two-Tier Architecture

The two-tier architecture is a client–server architecture in which the client
contains the presentation code and the SQL statements for data access. The
database server processes the SQL statements and sends query results back to
the client. The two-tier architecture is shown in Fig. 1.9. Two-tier client/server
provides a basic separation of tasks. The client, or first tier, is primarily re-
sponsible for the presentation of data to the user and the “server,” or second
tier, is primarily responsible for supplying data services to the client.

1.15 Database Architecture 23

First Tier: Tasks/Services

• User Interface

• Data services

• Presentation services

• Application services

• Application services

• Business services

Client

Second Tier:

Data Server

Tasks/Services

Fig. 1.9. Two-tier client–server architecture

Presentation Services

“Presentation services” refers to the portion of the application which presents
data to the user. In addition, it also provides for the mechanisms in which the
user will interact with the data. More simply put, presentation logic defines
and interacts with the user interface. The presentation of the data should
generally not contain any validation rules.

Business Services/objects

“Business services” are a category of application services. Business services
encapsulate an organizations business processes and requirements. These rules
are derived from the steps necessary to carry out day-today business in an
organization. These rules can be validation rules, used to be sure that the
incoming information is of a valid type and format, or they can be process
rules, which ensure that the proper business process is followed in order to
complete an operation.

Application Services

“Application services” provide other functions necessary for the application.

Data Services

“Data services” provide access to data independent of their location. The
data can come from legacy mainframe, SQL RDBMS, or proprietary data
access systems. Once again, the data services provide a standard interface for
accessing data.

24 1 Overview of Database Management System

Advantages of Two-tier Architecture

The two-tier architecture is a good approach for systems with stable require-
ments and a moderate number of clients. The two-tier architecture is the
simplest to implement, due to the number of good commercial development
environments.

Drawbacks of Two-tier Architecture

Software maintenance can be difficult because PC clients contain a mixture of
presentation, validation, and business logic code. To make a significant change
in the business logic, code must be modified on many PC clients. Moreover
the performance of two-tier architecture can be poor when a large number of
clients submit requests because the database server may be overwhelmed with
managing messages. With a large number of simultaneous clients, three-tier
architecture may be necessary.

1.15.2 Three-tier Architecture

A “Multitier,” often referred to as “three-tier” or “N -tier,” architecture pro-
vides greater application scalability, lower maintenance, and increased reuse
of components. Three-tier architecture offers a technology neutral method of
building client/server applications with vendors who employ standard inter-
faces which provide services for each logical “tier.” The three-tier architecture
is shown in Fig. 1.10. From this figure, it is clear that in order to improve the
performance a second-tier is included between the client and the server.

Through standard tiered interfaces, services are made available to the ap-
plication. A single application can employ many different services which may
reside on dissimilar platforms or are developed and maintained with different
tools. This approach allows a developer to leverage investments in existing
systems while creating new application which can utilize existing resources.

Although the three-tier architecture addresses performance degradations
of the two-tier architecture, it does not address division-of-processing con-
cerns. The PC clients and the database server still contain the same division
of code although the tasks of the database server are reduced. Multiple-tier
architectures provide more flexibility on division of processing.

1.15.3 Multitier Architecture

A multi-tier, three-tier, or N -tier implementation employs a three-tier logi-
cal architecture superimposed on a distributed physical model. Application
Servers can access other application servers in order to supply services to the
client application as well as to other Application Servers. The multiple-tier
architecture is the most general client–server architecture. It can be most
difficult to implement because of its generality. However, a good design and

1.15 Database Architecture 25

Third Tier:

Data Server

First Tier:

Client

Business
Object/Component

Business
Object/Component

Business
Object/Component

Tasks/Services

• User Interface

• Presentation Services

Tasks/Services

• Application services

• Business services/objects

Tasks/Services

• Data services

• Data validation

Second Tier:

Application Server

Fig. 1.10. Three-tier client–server architecture

Multi-Tier Architecture Client

Legacy

Data

Server

Application
Server

Application
Server

Client Client

Fig. 1.11. Multiple-tier architecture

implementation of multiple-tier architecture can provide the most benefits in
terms of scalability, interoperability, and flexibility.

For example, in the diagram shown in Fig. 1.11, the client application
looks to Application Server #1 to supply data from a mainframe-based appli-
cation. Application Server #1 has no direct access to the mainframe applica-
tion, but it does know, through the development of application services, that

26 1 Overview of Database Management System

Application Server #2 provides a service to access the data from the main-
frame application which satisfies the client request. Application Server #1
then invokes the appropriate service on Application Server #2 and receives
the requested data which is then passed on to the client.

Application Servers can take many forms. An Application Server may be
anything from custom application services, Transaction Processing Monitors,
Database Middleware, Message Queue to a CORBA/COM based solution.

1.16 Situations where DBMS is not Necessary

It is also necessary to specify situations where it is not necessary to use a
DBMS. If traditional file processing system is working well, and if it takes
more money and time to design a database, it is better not to go for the
DBMS. Moreover if only one person maintains the data and that person is
not skilled in designing a database as well as not comfortable in using the
DBMS then it is not advisable to go for DBMS.

DBMS is undesirable under following situations:

– DBMS is undesirable if the application is simple, well-defined, and not
expected to change.

– Runtime overheads are not feasible because of real-time requirements.
– Multiple accesses to data are not required.

Compared with file systems, databases have some disadvantages:

1. High cost of DBMS which includes:
– Higher hardware costs
– Higher programming costs
– High conversion costs

2. Slower processing of some applications
3. Increased vulnerability
4. More difficult recovery

1.17 DBMS Vendors and their Products

Some of the popular DBMS vendors and their corresponding products are
given Table 1.1.

Summary

The main objective of database management system is to store and mani-
pulate the data in an efficient manner. A database is an organized collection
of related data. All the data will not give useful information. Only processed
data gives useful information, which helps an organization to take important

Review Questions 27

Table 1.1. DBMS vendors and their products

vendor product

IBM –DB2/MVS
–DB2/UDB
–DB2/400
–Informix Dynamic

Server (IDS)
Microsoft –Access

–SQL Server
–DesktopEdition(MSDE)

Open Source –MySQL
–PostgreSQL

Oracle –Oracle DBMS
–RDB

Sybase –Adaptive Server
Enterprise (ASE)

–Adaptive Server
Anywhere (ASA)

–Watcom

decisions. Before DBMS, computer file processing systems were used to store,
manipulate, and retrieve large files of data. Computer file processing systems
have limitations such as data duplications, limited data sharing, and no
program data independence. In order to overcome these limitations database
approach was developed. The main advantages of DBMS approach are
program-data independence, improved data sharing, and minimal data
redundancy. In this chapter we have seen the evolution of DBMS and
broad introduction to DBMS. The responsibilities of Database administrator,
ANSI/SPARK, two-tier, three-tier architecture were analyzed in this chapter.

Review Questions

1.1. What are the drawbacks of file processing system?

The drawbacks of file processing system are:

– Duplication of data, which leads to wastage of storage space and data
inconsistency.

– Separation and isolation of data, because of which data cannot be used
together.

– No program data independence.

1.2. What is meant by Metadata?

Metadata are data about data but not the actual data.

28 1 Overview of Database Management System

1.3. Define the term data dictionary?

Data dictionary is a file that contains Metadata.

1.4. What are the responsibilities of database administrator?

1.5. Mention three situations where it is not desirable to use DBMS?

The situations where it is not desirable to use DBMS are:

– The database and applications are not expected to change.
– Data are not accessed by multiple users.

1.6. What is meant by data independence?

Data independence renders application programs (e.g., SQL scripts) immune
to changes in the logical and physical organization of data in the system.
Logical organization refers to changes in the Schema. Example adding a col-
umn or tuples does not stop queries from working.
Physical organization refers to changes in indices, file organizations, etc.

1.7. What is meant by Physical and Logical data independence?

In logical data independence, the conceptual schema can be changed with-
out changing the external schema. In physical data independence, the internal
schema can be changed without changing the conceptual schema.

1.8. What are some disadvantages of using a DBMS over flat file system?

– DBMS initially costs more than flat file system
– DBMS requires skilled staff

1.9. What are the steps to design a good database?

– First find out the requirements of the user
– Design a view for each important application
– Integrate the views giving the conceptual schema, which is the union of

all views
– Map to the data model provided by the DBMS (usually relational)
– Design external views
– Choose physical structures (indexes, etc.)

1.10. What is Database? Give an example.

A Database is a collection of related data. Here, the term “data” means that
known facts that can be record. Examples of database are library information
system, bus, railway, and airline reservation system, etc.

Review Questions 29

1.11. Define – DBMS.

DBMS is a collection of programs that enables users to create and maintain
a database.

1.12. Mention various types of databases?

The different types of databases are:

– Multimedia database
– Spatial database (Geographical Information System Database)
– Real-time or Active Database
– Data Warehouse or On-line Analytical Processing Database

1.13. Mention the advantages of using DBMS?

The advantages of using DBMS are:

– Controlling Redundancy
– Enforcing Integrity Constraints so as to maintain the consistency of the

database
– Providing Backup and recovery facilities
– Restricting unauthorized access
– Providing multiple user interfaces
– Providing persistent storage of program objects and datastructures

1.14. What is “Snapshot” or “Database State”?

The data in the database at a particular moment is known as “Database
State” or “Snapshot” of the Database.

1.15. Define Data Model.

It is a collection of concepts that can be used to describe the structure of a
database.

The datamodel provides necessary means to achieve the abstraction i.e.,
hiding the details of data storage.

1.16. Mention the various categories of Data Model.

The various categories of datamodel are:

– High Level or Conceptual Data Model (Example: ER model)
– Low Level or Physical Data Model
– Representational or Implementational Data Model
– Relational Data Model
– Network and Hierarchal Data Model
– Record-based Data Model
– Object-based Data Model

30 1 Overview of Database Management System

1.17. Define the concept of “database schema.” Describe the types of schemas
that exist in a database complying with the three levels ANSI/SPARC archi-
tecture.

Database schema is nothing but description of the database. The types of
schemas that exist in a database complying with three levels of ANSI/SPARC
architecture are:

– External schema
– Conceptual schema
– Internal schema

2

Entity–Relationship Model

Learning Objectives. This chapter presents a top-down approach to data model-
ing. This chapter deals with ER and Enhanced ER (EER) model and conversion of
ER model to relational model. After completing this chapter the reader should be
familiar with the following concepts:

– Entity, Attribute, and Relationship.
– Entity classification – Strong entity, Weak entity, and Associative entity.
– Attribute classification – Single value, Multivalue, Derived, and Null attribute.
– Relationship – Unary, binary, and ternary relationship.
– Enhanced ER model – Generalization, Specialization.
– Mapping ER model to relation model or table.
– Connection traps.

2.1 Introduction

Peter Chen first proposed modeling databases using a graphical technique
that humans can relate to easily. Humans can easily perceive entities and
their characteristics in the real world and represent any relationship with
one another. The objective of modeling graphically is even more profound
than simply representing these entities and relationship. The database de-
signer can use tools to model these entities and their relationships and then
generate database vendor-specific schema automatically. Entity–Relationship
(ER) model gives the conceptual model of the world to be represented in the
database. ER Model is based on a perception of a real world that consists of
collection of basic objects called entities and relationships among these ob-
jects. The main motivation for defining the ER model is to provide a high
level model for conceptual database design, which acts as an intermediate
stage prior to mapping the enterprise being modeled onto a conceptual level.
The ER model achieves a high degree of data independence which means that
the database designer do not have to worry about the physical structure of
the database. A database schema in ER model can be pictorially represented
by Entity–Relationship diagram.

S. Sumathi: Entity–Relationship Model, Studies in Computational Intelligence (SCI) 47, 31–63

(2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

32 2 Entity–Relationship Model

2.2 The Building Blocks of an Entity–Relationship
Diagram

ER diagram is a graphical modeling tool to standardize ER modeling. The
modeling can be carried out with the help of pictorial representation of
entities, attributes, and relationships. The basic building blocks of Entity-
Relationship diagram are Entity, Attribute and Relationship.

2.2.1 Entity

An entity is an object that exists and is distinguishable from other objects.
In other words, the entity can be uniquely identified.

The examples of entities are:

– A particular person, for example Dr. A.P.J. Abdul Kalam is an entity.
– A particular department, for example Electronics and Communication

Engineering Department.
– A particular place, for example Coimbatore city can be an entity.

2.2.2 Entity Type

An entity type or entity set is a collection of similar entities. Some examples
of entity types are:

– All students in PSG, say STUDENT.
– All courses in PSG, say COURSE.
– All departments in PSG, say DEPARTMENT.

An entity may belong to more than one entity type. For example, a staff
working in a particular department can pursue higher education as part-time.
Hence the same person is a LECTURER at one instance and STUDENT at
another instance.

2.2.3 Relationship

A relationship is an association of entities where the association includes one
entity from each participating entity type whereas relationship type is a mean-
ingful association between entity types.

The examples of relationship types are:

– Teaches is the relationship type between LECTURER and STUDENT.
– Buying is the relationship between VENDOR and CUSTOMER.
– Treatment is the relationship between DOCTOR and PATIENT.

2.2.4 Attributes

Attributes are properties of entity types. In other words, entities are described
in a database by a set of attributes.

2.2 The Building Blocks of an Entity–Relationship Diagram 33

The following are example of attributes:

– Brand, cost, and weight are the attributes of CELLPHONE.
– Roll number, name, and grade are the attributes of STUDENT.
– Data bus width, address bus width, and clock speed are the attributes of

MICROPROCESSOR.

2.2.5 ER Diagram

The ER diagram is used to represent database schema. In ER diagram:

– A rectangle represents an entity set.
– An ellipse represents an attribute.
– A diamond represents a relationship.
– Lines represent linking of attributes to entity sets and of entity sets to

relationship sets.

Entity sets ---------->

Attributes ----------->

Relationship ---------->

Example of ER diagram

Let us consider a simple ER diagram as shown in Fig. 2.1.
In the ER diagram the two entities are STUDENT and CLASS. Two

simple attributes which are associated with the STUDENT are Roll number
and the name. The attributes associated with the entity CLASS are Subject
Name and Hall Number. The relationship between the two entities STUDENT
and CLASS is Attends.

CLASSSTUDENT Attends

Name

Roll
Number

Subject
Name

Hall No

Fig. 2.1. ER diagram

34 2 Entity–Relationship Model

2.3 Classification of Entity Sets

Entity sets can be broadly classified into:

1. Strong entity.
2. Weak entity.
3. Associative entity.

Entity Set

Strong entity Weak entity Associative entity

Representation

2.3.1 Strong Entity

Strong entity is one whose existence does not depend on other entity.

Example

Consider the example, student takes course. Here student is a strong entity.

Student
takes Course

In this example, course is considered as weak entity because, if there are
no students to take a particular course, then that course cannot be offered.
The COURSE entity depends on the STUDENT entity.

2.3.2 Weak Entity

Weak entity is one whose existence depends on other entity. In many cases,
weak entity does not have primary key.

Example

Consider the example, customer borrows loan. Here loan is a weak entity.
For every loan, there should be at least one customer. Here the entity loan
depends on the entity customer hence loan is a weak entity.

2.4 Attribute Classification 35

LoanCustomer Borrows

2.4 Attribute Classification

Attribute is used to describe the properties of the entity. This attribute can be
broadly classified based on value and structure. Based on value the attribute
can be classified into single value, multivalue, derived, and null value attribute.
Based on structure, the attribute can be classified as simple and composite
attribute.

Attribute Classification

Value based classification Structure based classification

Single Value
Attribute

Multivalue
Attribute

Derived
Attribute

Null
Attribute

Simple
Attribute

Composite
Attribute

2.4.1 Symbols Used in ER Diagram

The elements in ER diagram are Entity, Attribute, and Relationship. The
different types of entities like strong, weak, and associative entity, different
types of attributes like multivalued and derived attributes and identifying
relationship and their corresponding symbols are shown later.

Basic symbols

Strong entity Associative entity

Attribute

Multivalued attribute

Derived attribute

Weak entity

Relationship

Identifying relationship

36 2 Entity–Relationship Model

Single Value Attribute

Single value attribute means, there is only one value associated with that
attribute.

Example

The examples of single value attribute are age of a person, Roll number of
the student, Registration number of a car, etc.

Representation of Single Value Attribute in ER Diagram

Multivalued Attribute

In the case of multivalue attribute, more than one value will be associ-
ated with that attribute.

Representation of Multivalued Attribute in ER Diagram

Examples of Multivalued Attribute

1. Consider an entity EMPLOYEE. An Employee can have many skills;
hence skills associated to an employee are a multivalue attribute.

EMPLOYEE Employee
Name

Employee
Age

Skills

2. Number of chefs in a hotel is an example of multivalue attribute. Moreover,
a hotel will have variety of food items. Hence food items associated with
the entity HOTEL is an example of multivalued attribute.

HOTEL Hotel
Name

Food
items

Chefs

2.4 Attribute Classification 37

3. Application associated with an IC (Integrated Circuit). An IC can be used
for several applications. Here IC stands for Integrated Circuit.

IC IC
Name Applications

Using IC

4. Subjects handled by a staff. A staff can handle more than one subject in
a particular semester; hence it is an example of multivalue attribute.

STAFF

Staff
Name

Subjects
handled

Staff
ID

Area of
specialization

Moreover a staff can be an expert in more than one area, hence area of
specialization is considered as multivalued attribute.

Derived Attribute

The value of the derived attribute can be derived from the values of other
related attributes or entities.

In ER diagram, the derived attribute is represented by dotted ellipse.

Representation of Derived Attribute in ER Diagram

Example of Derived Attribute

1. Age of a person can be derived from the date of birth of the person. In
this example, age is the derived attribute.

PERSON Person
Name

Age

38 2 Entity–Relationship Model

2. Experience of an employee in an organization can be derived from date of
joining of the employee.

EMPLOYEE Employee
Name

Experience

3. CGPA of a student can be derived from GPA (Grade Point Average).

STUDENT

Student
Name

GPA

Roll
No

Null Value Attribute

In some cases, a particular entity may not have any applicable value for an
attribute. For such situation, a special value called null value is created.

Null value situations

Not applicable Not known

Example

In application forms, there is one column called phone no. if a person do not
have phone then a null value is entered in that column.

Composite Attribute

Composite attribute is one which can be further subdivided into simple at-
tributes.

Example

Consider the attribute “address” which can be further subdivided into Street
name, City, and State.

2.5 Relationship Degree 39

Street
No

City State Pincode

Address

As another example of composite attribute consider the degrees earned
by a particular scholar, which can range from undergraduate, postgraduate,
doctorate degree, etc. Hence degree can be considered as composite attribute.

Degree

Under-
graduate

Postgraduate Doctorate

2.5 Relationship Degree

Relationship degree refers to the number of associated entities. The rela-
tionship degree can be broadly classified into unary, binary, and ternary
relationship.

2.5.1 Unary Relationship

The unary relationship is otherwise known as recursive relationship. In the
unary relationship the number of associated entity is one. An entity related
to itself is known as recursive relationship.

Captain_of

PLAYER

Roles and Recursive Relation

When an entity sets appear in more than one relationship, it is useful to add
labels to connecting lines. These labels are called as roles.

Example

In this example, Husband and wife are referred as roles.

40 2 Entity–Relationship Model

PERSON

Married
to

2.5.2 Binary Relationship

In a binary relationship, two entities are involved. Consider the example; each
staff will be assigned to a particular department. Here the two entities are
STAFF and DEPARTMENT.

Staff
Is

Assigned
Department

2.5.3 Ternary Relationship

In a ternary relationship, three entities are simultaneously involved. Ternary
relationships are required when binary relationships are not sufficient to ac-
curately describe the semantics of an association among three entities.

Example

Consider the example of employee assigned a project. Here we are considering
three entities EMPLOYEE, PROJECT, and LOCATION. The relationship is
“assigned-to.” Many employees will be assigned to one project hence it is an
example of one-to-many relationship.

PROJECT

LOCATION

EMPLOYEE Assigned-to

1

1 N

2.5.4 Quaternary Relationships

Quaternary relationships involve four entities. The example of quaternary
relationship is “A professor teaches a course to students using slides.” Here
the four entities are PROFESSOR, SLIDES, COURSE, and STUDENT. The
relationships between the entities are “Teaches.”

2.6 Relationship Classification 41

PROFESSOR

COURSE

SLIDES

STUDENT Teaches

2.6 Relationship Classification

Relationship is an association among one or more entities. This relationship
can be broadly classified into one-to-one relation, one-to-many relation, many-
to-many relation and recursive relation.

2.6.1 One-to-Many Relationship Type

The relationship that associates one entity to more than one entity is called
one-to-many relationship. Example of one-to-many relationship is Country
having states. For one country there can be more than one state hence it
is an example of one-to-many relationship. Another example of one-to-many
relationship is parent–child relationship. For one parent there can be more
than one child. Hence it is an example of one-to-many relationship.

2.6.2 One-to-One Relationship Type

One-to-one relationship is a special case of one-to-many relationship. True
one-to-one relationship is rare. The relationship between the President and the
country is an example of one-to-one relationship. For a particular country
there will be only one President. In general, a country will not have more
than one President hence the relationship between the country and the Presi-
dent is an example of one-to-one relationship. Another example of one-to-one
relationship is House to Location. A house is obviously in only one location.

2.6.3 Many-to-Many Relationship Type

The relationship between EMPLOYEE entity and PROJECT entity is an
example of many-to-many relationship. Many employees will be working in
many projects hence the relationship between employee and project is many-
to-many relationship.

42 2 Entity–Relationship Model

Table 2.1. Relationship types

Relationship type Representation Example

One-to-one

One-to-many

Many-to-many

Many-to-one

PRESIDENT COUNTRY

DEPARTME
NT

EMPLOYEES

EMPLOYEE PROJECT

EMPLOYEE DEPARTMENT

2.6.4 Many-to-One Relationship Type

The relationship between EMPLOYEE and DEPARTMENT is an example of
many-to-one relationship. There may be many EMPLOYEES working in one
DEPARTMENT. Hence relationship between EMPLOYEE and DEPART-
MENT is many-to-one relationship. The four relationship types are summa-
rized and shown in Table 2.1.

2.7 Reducing ER Diagram to Tables

To implement the database, it is necessary to use the relational model. There
is a simple way of mapping from ER model to the relational model. There is
almost one-to-one correspondence between ER constructs and the relational
ones.

2.7.1 Mapping Algorithm

The mapping algorithm gives the procedure to map ER diagram to tables.
The rules in mapping algorithm are given as:

– For each strong entity type say E, create a new table. The columns of the
table are the attribute of the entity type E.

– For each weak entity W that is associated with only one 1–1 identifying
owner relationship, identify the table T of the owner entity type. Include
as columns of T, all the simple attributes and simple components of the
composite attributes of W.

– For each weak entity W that is associated with a 1–N or M–N identifying
relationship, or participates in more than one relationship, create a new
table T and include as its columns, all the simple attributes and simple
components of the composite attributes of W. Also form its primary key
by including as a foreign key in R, the primary key of its owner entity.

2.7 Reducing ER Diagram to Tables 43

– For each binary 1–1 relationship type R, identify the tables S and T of
the participating entity types. Choose S, preferably the one with total
participation. Include as foreign key in S, the primary key of T. Include
as columns of S, all the simple attributes and simple components of the
composite attributes of R.

– For each binary 1–N relationship type R, identify the table S, which is at
N side and T of the participating entities. Include as a foreign key in S, the
primary key of T. Also include as columns of S, all the simple attributes
and simple components of composite attributes of R.

– For each M-N relationship type R, create a new table T and include as
columns of T, all the simple attributes and simple components of com-
posite attributes of R. Include as foreign keys, the primary keys of the
participating entity types. Specify as the primary key of T, the list of
foreign keys.

– For each multivalued attribute, create a new table T and include as
columns of T, the simple attribute or simple components of the attribute
A. Include as foreign key, the primary key of the entity or relationship
type that has A. Specify as the primary key of T, the foreign key and the
columns corresponding to A.

Regular Entity

Regular entities are entities that have an independent existence and generally
represent real-world objects such as persons and products. Regular entities
are represented by rectangles with a single line.

2.7.2 Mapping Regular Entities

– Each regular entity type in an ER diagram is transformed into a relation.
The name given to the relation is generally the same as the entity type.

– Each simple attribute of the entity type becomes an attribute of the rela-
tion.

– The identifier of the entity type becomes the primary key of the corre-
sponding relation.

Example 1

Mapping regular entity type tennis player

PLAYERName Position

Nation
Number of

Grand slams
won

44 2 Entity–Relationship Model

This diagram is converted into corresponding table as

Player Name Nation Position Number of Grand
slams won

Roger Federer Switzerland 1 5
Roddick USA 2 4

Here,

– Entity name = Name of the relation or table.

In our example, the entity name is PLAYER which is the name of the table

– Attributes of ER diagram=Column name of the table.

In our example the Name, Nation, Position, and Number of Grand slams won
which forms the column of the table.

2.7.3 Converting Composite Attribute in an ER Diagram to Tables

When a regular entity type has a composite attribute, only the simple com-
ponent attributes of the composite attribute are included in the relation.

Example

In this example the composite attribute is the Customer address, which con-
sists of Street, City, State, and Zip.

CUSTOMER

CUSTOMER
Customer-ID

Street

City

Customer
address

Zip

Customer
name

State

Customer-ID Customer name Street City State Zip

When the regular entity type contains a multivalued attribute, two new
relations are created.

2.7 Reducing ER Diagram to Tables 45

The first relation contains all of the attributes of the entity type except
the multivalued attribute.

The second relation contains two attributes that form the primary key of
the second relation. The first of these attributes is the primary key from the
first relation, which becomes a foreign key in the second relation. The second
is the multivalued attribute.

2.7.4 Mapping Multivalued Attributes in ER Diagram to Tables

A multivalued attribute is having more than one value. One way to map a
multivalued attribute is to create two tables.

Example

In this example, the skill associated with the EMPLOYEE is a multivalued
attribute, since an EMPLOYEE can have more than one skill as fitter, elec-
trician, turner, etc.

EMPLOYEE

EMPLOYEE-SKILL

EMPLOYEE Employee-ID

Employee
Address

Skill
Employee

Name

Employee-ID Employee-Name Employee-Address

EMPLOYEE-ID Skill

2.7.5 Converting “Weak Entities” in ER Diagram to Tables

Weak entity type does not have an independent existence and it exists only
through an identifying relationship with another entity type called the owner.

46 2 Entity–Relationship Model

For each weak entity type, create a new relation and include all of the
simple attributes as attributes of the relation. Then include the primary key
of the identifying relation as a foreign key attribute to this new relation.

The primary key of the new relation is the combination of the primary key
of the identifying and the partial identifier of the weak entity type. In this
example DEPENDENT is weak entity.

EMPLOYEE

Date of
Birth

Has DEPENDENT

Dependent
Name

Gender

Relation with
employee

Employee-ID
Employee-

Name

The corresponding table is given by

EMPLOYEE

DEPENDENT

Employee-ID Employee-Name Date of Birth

Dependent-Name Gender Employee-ID Relation with
Employee

2.7.6 Converting Binary Relationship to Table

A relationship which involves two entities can be termed as binary relation-
ship. This binary relationship can be one-to-one, one-to-many, many-to-one,
and many-to-many.

Mapping one-to-Many Relationship

For each 1–M relationship, first create a relation for each of the two entity
type’s participation in the relationship.

Example

One customer can give many orders. Hence the relationship between the two
entities CUSTOMER and ORDER is one-to-many relationship. In one-to-
many relationship, include the primary key attribute of the entity on the

2.7 Reducing ER Diagram to Tables 47

one-side of the relationship as a foreign key in the relation that is on the
many side of the relationship.

CUSTOMER

ORDER

Customer-
Address

Customer-
ID

Customer-
Name

Order-ID Order-
Date

Submits

Here we have two entities CUSTOMER and ORDER. The relationship
between CUSTOMER and ORDER is one-to-many. For two entities CUS-
TOMER and ORDER, two tables namely CUSTOMER and ORDER are cre-
ated as shown later. The primary key CUSTOMER ID in the CUSTOMER
relation becomes the foreign key in the ORDER relation.

CUSTOMER

ORDER

Customer-ID Customer-Name Customer-Address

Order-ID Order-Date Customer-ID

Binary one-to-one relationship can be viewed as a special case of one-to-
many relationships.

The process of mapping one-to-one relationship requires two steps. First,
two relations are created, one for each of the participating entity types. Sec-
ond, the primary key of one of the relations is included as a foreign key in the
other relation.

2.7.7 Mapping Associative Entity to Tables

Many-to-many relationship can be modeled as an associative entity in the ER
diagram.

48 2 Entity–Relationship Model

Example 1. (Without Identifier)

Here the associative entity is ORDERLINE, which is without an identifier.
That is the associative entity ORDERLINE is without any key attribute.

ORDER Order-ID
Order-

Date

ORDER
LINE

PRODUCT
Standard-

PriceProduct-ID

Product-
Description

Product-
Finish

The first step is to create three relations, one for each of the two par-
ticipating entity types and the third for the associative entity. The relation
formed from the associative entity is associative relation.

ORDER

ORDER LINE

PRODUCT

Order-ID Order-Date

Product-ID Order-Date Quantity

Product-ID Product-
Description

Product-
Finish

Standard-
Price

Example 2. (With Identifier)

Sometimes data models will assign an identifier (surrogate identifier) to the
associative entity type on the ER diagram. There are two reasons to motivate
this approach:

1. The associative entity type has a natural identifier that is familiar to end
user.

2. The default identifier may not uniquely identify instances of the associa-
tive entity.

2.7 Reducing ER Diagram to Tables 49

Date Vendor-ID Address

VENDOR SHIPMENT CUSTOMER

Customer-Id Shipment-No
Amount

Name

(a) Shipment-No is a natural identifier to end user.
(b) The default identifier consisting of the combination of Customer-ID

and Vendor-ID does not uniquely identify the instances of SHIP-
MENT.

CUSTOMER

SHIPMENT

VENDOR

Customer-ID Name Other Attributes

Shipment-No Customer-ID Vendor-ID Date Amount

Vendor-ID Address Other Attributes

2.7.8 Converting Unary Relationship to Tables

Unary relationships are also called recursive relationships. The two most im-
portant cases of unary relationship are one-to-many and many-to-many.

One-to-many Unary Relationship

Each employee has exactly one manager. A given employee may manage zero
to many employees. The foreign key in the relation is named Manager-ID.
This attribute has the same domain as the primary key Employee-ID.

50 2 Entity–Relationship Model

EMPLOYEE

Employee-ID Birth
Date

Name

Manager

Employee-ID Name Birth date Manager-ID

2.7.9 Converting Ternary Relationship to Tables

A ternary relationship is a relationship among three entity types. The three en-
tities given in this example are PATIENT, PHYSICIAN, and TREATMENT.
The PATIENT–TREATMENT is an associative entity.

Patient-
ID

Patient-
Name

PATIENT

Physician-
ID

Physician-
Name

PHYSICIAN

PATIENT
TREATMENT

Date

Time

Results

TREATMENT
Treatment-

Code Description

2.8 Enhanced Entity–Relationship Model (EER Model) 51

The primary key attributes – Patient ID, Physician ID, and Treatment
Code – become foreign keys in PATIENT TREATMENT. These attributes
are components of the primary key of PATIENT TREATMENT.

PATIENT TREATMENT

PHYSICIAN

PATIENT TREATMENT

Patient-ID Patient-Name

Physician-ID Physician-Name

Patient-ID Physician-ID Treatment-Code Date Time Results

TREATMENT

Treatment-Code Description

2.8 Enhanced Entity–Relationship Model (EER Model)

The basic concepts of ER modeling are not powerful enough for some complex
applications. Hence some additional semantic modeling concepts are required,
which are being provided by Enhanced ER model. The Enhanced ER model
is the extension of the original ER model with new modeling constructs. The
new modeling constructs introduced in the EER model are supertype (su-
perclass)/subtype (subclass) relationships. The supertype allows us to model
general entity type whereas the subtype allows us to model specialized entity
types.

Enhanced ER model = ER model + hierarchical relationships.

EER modeling is especially useful when the domain being modeled is
object-oriented in nature and the use of inheritance reduces the complex-
ity of the design. The extended ER model extends the ER model to allow
various types of abstraction to be included and to express constraints more
clearly.

2.8.1 Supertype or Superclass

Supertype or superclass is a generic entity type that has a relationship with
one or more subtypes. For example PLAYER is a generic entity type which has

52 2 Entity–Relationship Model

a relationship with one or more subtypes like CRICKET PLAYER, FOOT-
BALL PLAYER, HOCKEY PLAYER, TENNIS PLAYER, etc.

2.8.2 Subtype or Subclass

A subtype or subclass is a subgrouping of the entities in an entity type that
is meaningful to the organization. A subclass entity type is a specialized type
of superclass entity type. A subclass entity type represents a subset or sub-
grouping of superclass entity type’s instances. Subtypes inherit the attributes
and relationships associated with their supertype.

Consider the entity type ENGINE, which has two subtypes PETROL
ENGINE and DIESEL ENGINE.

Consider the entity type STUDENT, which has two subtypes UNDER-
GRADUATE and POSTGRADUATE.

2.9 Generalization and Specialization

Generalization and specialization are two words for the same concept, viewed
from two opposite directions. Generalization is the bottom-up process of defin-
ing a generalized entity type from a set of more specialized entity types.
Specialization is the top-down process of defining one or more subtypes of a
supertype.

Generalization is the process of minimizing the differences between enti-
ties by identifying common features. It can also be defined as the process of
defining a generalized entity type from a set of entity types.

Specialization is a process of identifying subsets of an entity set (the
superset) that share some distinguishing characteristics. In specialization
the superclass is defined first and the subclasses are defined next. Speciali-
zation is the process of viewing an object as a more refined, specialized object.
Specialization emphasizes the differences between objects.

For example consider the entity type STUDENT, which can be further
classified into FULLTIME STUDENT and PARTTIME STUDENT. The
classification of STUDENT into FULLTIME STUDENT and PARTTIME
STUDENT is called Specialization.

STUDENT

FULLTIME STUDENT PARTTIME STUDENT

d

2.11 Multiple Inheritance 53

2.10 ISA Relationship and Attribute Inheritance

IS A relationship supports attribute inheritance and relationship participa-
tion. In the EER diagram, the subclass relationship is represented by ISA
relationship. Attribute inheritance is the property by which subclass entities
inherit values for all attributes of the superclass.

Consider the example of EMPLOYEE entity set in a bank. The EMPLOYEE
in a bank can be CLERK, MANAGER, CASHIER, ACCOUNTANT, etc. It
is to be observed that the CLERK, MANAGER, CASHIER, ACCOUNTANT
inherit some of the attributes of the EMPLOYEE.

 EMPLOYEE

CLERK
MANAGER

CASHIER

Circle
represents
ISA
relationship

In this example the superclass is EMPLOYEE and the subclasses are
CLERK, MANAGER, and CASHIER. The subclasses inherit the attributes
of the superclass. Since each member of the subclass is an ISA member of
the superclass, the circle below the EMPLOYEE entity set represents ISA
relationship.

2.11 Multiple Inheritance

A subclass with more than one superclass is called a shared subclass. A sub-
class inherits attributes not only of its direct superclass, but also of all its pre-
decessor superclass, that is it has multiple inheritance from its superclasses. In
multiple inheritance a subclass can be subclass of more than one superclass.

Example of Multiple Inheritance

Consider a person in an educational institution. The person can be employee,
alumnus, and student. The employee entity can be staff or faculty. The stu-
dent can be a graduate student or a postgraduate student. The postgraduate
student can be a teaching assistant. If the postgraduate student is a teach-
ing assistant, then he/she inherits the characteristics of the faculty as well
as student class. That is the teaching assistant subclass is a subclass of more
than one superclass (faculty, student). This phenomenon is called multiple
inheritance and is shown in the Fig. 2.2.

54 2 Entity–Relationship Model

PERSON

STAFF

EMPLOYEE STUDENT

O

d

FACULTY

UNDER
GRADUATE

POST
GRADUATE

TEACH

CLASS
TEACHING
ASSISTANT ASSIST

Fig. 2.2. Multiple inheritance

2.12 Constraints on Specialization and Generalization

The constraints on specialization and generalization can be broadly classified
into disjointness and completeness. The disjointness constraint allows us to
specify whether an instance of a supertype may simultaneously be a member of
two or more subtypes. In disjointness we have two categories (1) Overlap and
(2) Disjoint. In completeness we have two categories (1) Total and (2) Partial.
The completeness constraint addresses the question whether an instance of a
supertype must also be a member of at least one subtype.

2.12.1 Overlap Constraint

Overlap refers to the fact that the same entity instance may be a member of
more than one subclass of the specialization.

Example of Overlap Constraint

Consider the example of ANIMAL entity, which can be further subdivided
into LAND ANIMAL and WATER ANIMAL. Consider the example of Frog
and Crocodile which can live in both land and water hence the division of
ANIMAL into LAND and WATER animals is an example of overlap con-
straint.

2.12 Constraints on Specialization and Generalization 55

ANIMAL

LAND ANIMAL WATER ANIMAL

 O

2.12.2 Disjoint Constraint

Disjoint refers to the fact that the same entity instance may be a member of
only one subclass of the specialization.

Example of Disjointness Constraint

Consider the example of CATALOGUE. The CATALOGUE is a superclass,
which can be further subdivided into BOOKS, JOURNALS, and PERIOD-
ICALS. This falls under disjointness because a BOOK entity can be neither
JOURNAL nor PERIODICAL.

CATALOGUE

BOOKS JOURNALS PERIODICALS

 d

2.12.3 Total Specialization

Total completeness refers to the fact that every entity instance in the super-
class must be a member of some subclass in the specialization. With total
specialization, an instance of the supertype must be a member of at least one
subtype.

Example of Total Specialization

Consider the example of TEACHER; the teacher is a general term, which can
be further specialized into LECTURER, TUTOR, and DEMONSTRATOR.
Here every member in the superclass participates as a member of a subclass,
hence it is an example of total participation.

56 2 Entity–Relationship Model

TEACHER

LECTURER TUTOR DEMONSTRATOR

d

IDNAME

SALARY HOURS
WORKED

d within circle
represents
disjointness

Double arrow
indicates total
participation

2.12.4 Partial Specialization

Partial completeness refers to the fact that an entity instance in the superclass
need not be a member of any subclass in the specialization. With partial
specialization, an instance of a supertype may or may not be a member of
any subtype.

Example of Partial Specialization

Consider the PERSON specialization into EMPLOYEE and STUDENT. This
is an example of partial specialization because there can be a person who is
unemployed and does not study.

PERSON

EMPLOYEE STUDENT

O

Single line
indicates partial
participation

O indicates
overlapping
constraint

2.13 Aggregation and Composition

Relationships among relationships are not supported by the ER model. Groups
of entities and relationships can be abstracted into higher level entities using
aggregation. Aggregation represents a “HAS-A” or “IS-PART-OF” relation-
ship between entity types. One entity type is the whole, the other is the part.
Aggregation allows us to indicate that a relationship set participates in an-
other relationship set.

2.14 Entity Clusters 57

Consider the example of a driver driving a car. The car has various compo-
nents like tires, doors, engine, seat, etc., which varies from one car to another.
Relationship drives is insufficient to model the complexity of this system. Part-
of relationships allow abstraction into higher level entities. In this example
engine, tires, doors, and seats are aggregated into car.

Driver Drives

Car

Tires Doors Seats

Engine

Part-of

Piston Valves

Part-of

Part-of Part-of Part-of Part-of

Composition is a stronger form of aggregation where the part cannot exist
without its containing whole entity type and the part can only be part of one
entity type.

Consider the example of DEPARTMENT has PROJECT. Each project is
associated with a particular DEPARTMENT. There cannot be a PROJECT
without DEPARTMENT. Hence DEPARTMENT has PROJECT is an exam-
ple of composition.

2.14 Entity Clusters

EER diagrams are difficult to read when there are many entities and relation-
ships. One possible solution is to group entities and relationships into entity
clusters. Entity cluster is a set of one or more entity types and associated
relationships grouped into a single abstract entity type. Entity cluster be-
haves like an entity type; hence entity clusters and entity types can be further
grouped to form a higher level entity cluster. Entity clustering is a hierarchi-
cal decomposition of a macrolevel view of the data model into finer and finer
views, eventually resulting in the full detailed data model.

To understand entity cluster, consider the example of Hospital Manage-
ment. In hospital, the DOCTORS treat the PATIENT. The DOCTORS are
paid by the MANAGEMENT which builds buildings. The DOCTORS can

58 2 Entity–Relationship Model

be either general physician or specialist like those with MS or MD. The pa-
tient can be either inpatient or outpatient. It is to be noted that only outpa-
tient will be allotted bed. If we have to represent the earlier ideas, it can be
done using EER diagram as shown in Fig. 2.3. The EER diagram is found to
be complex; the same idea is represented using Entity Clusters as shown in
Fig. 2.4. Here the DOCTOR specialization is clustered into DOCTORS entity
and the PATIENT specialization is clustered into simply PATIENT. At the
first glance, it may look like reduction of EER model to ER model, but it
is not so. Here the entities as well as relationships are clustered into simply
entity set.

2.15 Connection Traps

Connection trap is the misinterpretation of the meaning of certain relation-
ships. This connection traps can be broadly classified into fan and chasm trap.
Any conceptual model will contain potential connection traps. An error in the
interpretation of the meaning of the relationship may cause the database to
be incapable of storing certain information. Both the fan and chasm trap arise
when the relationships appear to exist between entity types, but the links be-
tween occurrences may be ambiguous or not exist. Related groups of entities
could become clusters.

DOCTOR

GENERAL
PHYSICIAN

SPECIALIST

PATIENT

d

INPATIENT OUTPATIENT

IS
Assigned

BEDBed Number

Treats

Appoints Management

Specialization

Patient ID

Builds Buildings

Number of
rooms

Fig. 2.3. EER diagram of Hospital Management

2.15 Connection Traps 59

MANAGEMENT

PATIENT

DOCTORS

HOSPITAL

Employs Manage

Treat

Fig. 2.4. Entity Cluster

2.15.1 Fan Trap

Fan trap occurs when the model represents a relationship between entity types
but the pathway between certain entity occurrences is ambiguous. Fan trap
occurs when 1–M relationships fan out from a single entity. In order to un-
derstand the concept of Fan trap, consider the following example

Contractor works in a team. Statement (1)
Team develops projects. Statement (2)

Statement (1) represents M–1 relationship. Statement (2) represents 1–M
relationship. But the information about which contractors are involved in
developing which projects is not clear.

Consider another example of Fan trap.

Department is on Site. Statement (1)
Site employs Staff. Statement (2)

Statement (1) represents M–1 relationship, because many departments may
be in a single site. Statement (2) represents 1–M relationships. However which
staff works in a particular department is ambiguous. The fan trap is resolved
by reconstructing the original ER model to represent the correct association.

Staff
works for

n m

is on
Department Site

2.15.2 Chasm Trap

A chasm trap occurs when a model suggests the existence of a relationship
between entity types, but the pathway does not exist between certain entity

60 2 Entity–Relationship Model

occurrences. It occurs where there is a relationship with partial participation,
which forms part of the pathway between entities that are related. Consider
the relationship shown later.

Branch Staff
oversees

Property
is_allocated

n OO

A single branch may be allocated to many staff who oversees the man-
agement of properties for rent. It should be noted that not all staff oversee
property and not all property is managed by a member of staff. Hence there
exist a partial participation of Staff and Property in the relation “oversees,”
which means that some properties cannot be associated with a branch office
through a member of staff. Hence the model has to modified as shown later.

is_allocated n
Staff

oversees

Property
has

Branch

O

O

2.16 Advantages of ER Modeling

An ER model is derived from business specifications. ER models separate
the information required by a business from the activities performed within a
business. Although business can change their activities, the type of informa-
tion tends to remain constant. Therefore, the data structures also tend to be
constant. The advantages of ER modeling are summarized later:

1. The ER modeling provides an easily understood pictorial map for the
database design.

2. It is possible to represent the real world problems in a better manner in
ER modeling.

3. The conversion of ER model to relational model is straightforward.
4. The enhanced ER model provides more flexibility in modeling real world

problems.
5. The symbols used to represent entity and relationships between entities

are simple and easy to follow.

Summary

This chapter has described the fundamentals of ER modeling of data. An
ER model is a logical representation of data. The ER model was introduced

Review Questions 61

by Peter Chen in 1976. An ER model is usually expressed in the form of
ER diagram. The basic constructs of ER model are entity types, relation-
ships, and attributes. This chapter also described the types of entities like
strong and weak entity, types of relationships like one-to-one, one-to-many,
and many-to-many relationship. Attributes can also be classified as single
valued, multivalued and derived attribute. In this chapter different types of
entities, attributes, and relationship were explained with simple examples.

Review Questions

2.1. Construct an ER diagram of tennis player.

PLAYER

name country

age
Number
of titles

ATP
ranking

2.2. Construct an ER diagram of Indian cricket team.

One way of constructing ER diagram for Indian cricket team is shown later.

TEAM

CRICKET
BOARD

PLAYERS
Consists

of

name age

skills

Managed
by

Appoints COACH

name experience

Here skills refers to player’s skill which may be batting, bowling, and
fielding. All-rounders can have many skills.

2.3. What is Weak entity type?

Entity types that do not have key attribute of their own are called Weak
entity type.

62 2 Entity–Relationship Model

2.4. Define entity with example?

An entity is an object with a physical existence.
Examples of entity is a person, a car, an organization, a house, etc.

2.5. Define Entity type, Entity set?

An entity type defines a collection of entities that have same attribute
Entity Set

Entity set is the collection of a particular entity type that are grouped into
an “Entity Set.”

2.6. Should a real world object be modeled as an entity or as an attribute?

Object should be an entity if a number of attributes could be associated with
it for proper identification and description, either now or later. Object should
be an attribute, if it has an atomic nature. For example, Color should be an
attribute, unless we identify Color either as a process (e.g., painting) where a
number of attributes codes are to be recorded (e.g., type, shade, gray-scale,
manufacturer, or as an object with properties (e.g., car-color with details).

2.7. When composite attribute usage is preferred than set of attributes?

Composite attribute is chosen when a meaningful name can be assigned to
the set of attributes, e.g., data, address. Otherwise a set of simple attributes
should be chosen.

2.8. Distinguish between strong and weak entity?

Strong entity Weak entity
Exists independently of other entities Dependent on a strong entity,

cannot exist on its own
Strong entity has its own unique Does not have a unique
identifier identifier
Represented by a single line rectangle in Represented with a double-line
ER diagram rectangle in ER diagram

2.9. What is inheritance in generalization hierarchies?

Inheritance is a data modeling feature that supports sharing of attributes
between a supertype and a subtype. Subtype inherits attributes from their
supertype.

2.10. Give an example of supertype/subtype relationship where the overlap
rule applies?

Overlap refers to the fact that the same entity instance may be a member
of more than one subclass of the specialization. Consider the example of
CRICKET PLAYER. Here CRICKET PLAYER is the supertype. The sub-
type can be BOWLER, BATSMAN.

Review Questions 63

CRICKET PLAYER

BATSMAN BOWLER

O

Same player can be both batsman and bowler. Hence overlap rule holds
good in this example.

2.11. Give an example of supertype/subtype relationship where the disjoint
rule applies?

Let us consider the example of CRICKET PLAYER again. Here the super type
is CRICKET PLAYER. The subtypes are BOWLER and WICKETKEEPER.
We know that the same cricket player cannot be both bowler and wicket keeper
hence disjoint rule applies for this example.

CRICKET PLAYER

BOWLER WICKET KEEPER

d

II. Match the following

(1) Relation (a) Rows
(2) Tuples (b) Number of Rows of a Relation
(3) Cardinality (c) Number of Columns of a Relation
(4) Degree (d) Columns or Range of values a column may have
(5) Domain (e) Table

Answer

(1) −→ (e)
(2) −→ (a)
(3) −→ (b)
(4) −→ (c)
(5) −→ (d)

3

Relational Model

Learning Objectives. This chapter is dedicated to relational model which is in
use since late 1970s. Various operations in relational algebra and relational calculus
are given in this chapter. After completing this chapter the reader should be familiar
with the following concepts:

– Evolution and importance of relational model
– Terms in relational model like tuple, domain, cardinality, and degree of a relation
– Operations in relational algebra and relational calculus
– Relational algebra vs relational calculus
– QBE and various operations in QBE

3.1 Introduction

E.F. Codd (Edgar Frank Codd) of IBM had written an article “A relational
model for large shared data banks” in June 1970 in the Association of Com-
puter Machinery (ACM) Journal, Communications of the ACM. His work
triggered people to work in relational model. One of the most significant
implementations of the relational model was “System R,” which was develo-
ped by IBM during the late 1970s. System R was intended as a “proof of
concept” to show that relational database systems could really build and
work efficiently. It gave rise to major developments such as a structured query
language called SQL which has since become an ISO standard and de facto
standard relational language. Various commercial relational DBMS products
were developed during the 1980s such as DB2, SQL/DS, and Oracle. In rela-
tional data model the data are stored in the form of tables.

3.2 CODD’S Rules

In 1985, Codd published a list of rules that became a standard way of eval-
uating a relational system. After publishing the original article Codd stated
that there are no systems that will satisfy every rule. Nevertheless the rules
represent relational ideal and remain a goal for relational database designers.

S. Sumathi: Relational Model, Studies in Computational Intelligence (SCI) 47, 65–110 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

66 3 Relational Model

Note: The rules are numbered from 1 to 12 whereas the statements preceded
by the bullet mark are interpretations of the Codd’s rule:

1. The Information Rule. All information in a relational database is repre-
sented explicitly at the logical level and in exactly one way-by values in
tables:
• Data should be presented to the user in the tabular form.

2. Guaranteed Access Rule. Each and every datum (atomic value) in a rela-
tional database is guaranteed to be logically accessible by resorting to a
combination of table name, primary key value, and column name:
• Every data element should be unambiguously accessible.

3. Systematic Treatment of Null Values. Null values (distinct from the empty
character string or a string of blank characters and distinct from zero or
any other number) are supported in fully relational DBMS for representing
missing information and inapplicable information in a systematic way,
independent of data type.

4. Dynamic On-line Catalog Based on the Relational Model. The database
description is represented at the logical level in the same way as ordinary
data, so that authorized users can apply the same relational language to
its interrogation as they apply to the regular data:
• The database description should be accessible to the users.

5. Comprehensive Data Sublanguage Rule. A relational system may support
several languages and various modes of terminal use (for example the
fill-in-the-blanks mode). However, there must be at least one language
whose statements are expressible, per some well-defined syntax, as char-
acter strings and whose ability to support all the following is comprehen-
sive: data definition, view definition, data manipulation (interactive and
by program), integrity constraints, and transaction boundaries:
• A database supports a clearly defined language to define the database,

view the definition, manipulate the data, and restrict some data values
to maintain integrity.

6. View Updating Rule. All views that are theoretically updatable are also
updatable by the system:
• Data should be able to be changed through any view available to the

user.
7. High-level Insert, Update, and Delete. The capacity of handling a base

relation or a derived relation as a single operand applies not only to the
retrieval of data but also to the insertion, update, and deletion of data:
• All records in a file must be able to be added, deleted, or updated with

singular commands
8. Physical Data Independence. Application programs and terminal activities

remain logically unimpaired whenever any changes are made in either
storage representations or access methods:

3.3 Relational Data Model 67

• Changes in how data are stored or retrieved should not affect how a
user accesses the data.

9. Logical Data Independence. Application programs and terminal activities
remain logically unimpaired whenever information-preserving changes of
any kind that theoretically permit unimpairment are made to the base
tables:
• A user’s view of data should be unaffected by its actual form in files.

10. Integrity Independence. Integrity constraints specific to a particular rela-
tional database must be definable in a relational data sublanguage and
storable in the catalog, not in the application programs.
• Constraints on user input should exist to maintain data integrity.

11. Distribution Independence. A relational DBMS has distribution indepen-
dence. Distribution independence implies that users should not have to
be aware of whether a database is distributed.
• A database design should allow for distribution of data over several

computer sites.
12. Nonsubversion Rule. If a relational system has a low-level (single-record-

at-a-time) language, that low level cannot be used to subvert or bypass
the integrity rules and constraints expressed in the higher level relational
language (multiple-records-at-a-time):
• Data fields that affect the organization of the database cannot be

changed.

There is one more rule called Rule Zero which states that “For any system
that is claimed to be a relational database management system, that system
must be able to manage data entirely through capabilities.”

3.3 Relational Data Model

The relational model uses a collection of tables to represent both data and
the relationships among those data. Tables are logical structures maintained
by the database manager. The relational model is a combination of three
components, such as Structural, Integrity, and Manipulative parts.

3.3.1 Structural Part

The structural part defines the database as a collection of relations.

3.3.2 Integrity Part

The database integrity is maintained in the relational model using primary
and foreign keys.

68 3 Relational Model

3.3.3 Manipulative Part

The relational algebra and relational calculus are the tools used to manipu-
late data in the database. Thus relational model has a strong mathematical
background. The key features of relational data model are as follows:

– Each row in the table is called tuple.
– Each column in the table is called attribute.
– The intersection of row with the column will have data value.
– In relational model rows can be in any order.
– In relational model attributes can be in any order.
– By definition, all rows in a relation are distinct. No two rows can be exactly

the same.
– Relations must have a key. Keys can be a set of attributes.
– For each column of a table there is a set of possible values called its

domain. The domain contains all possible values that can appear under
that column.

– Domain is the set of valid values for an attribute.
– Degree of the relation is the number of attributes (columns) in the relation.
– Cardinality of the relation is the number of tuples (rows) in the relation.

The terms commonly used by user, model, and programmers are given
later.

User Model Programmer

Row Tuple Record
Column Attribute Field
Table Relation File

TUPLE 0

TUPLE 1

Attribute

Field

Entity

3.4 Concept of Key 69

3.3.4 Table and Relation

The general doubt that will rise when one reads the relational model is the
difference between table and relation. For a table to be relation, the following
rules holds good:

– The intersection row with the column should contain single value (atomic
value).

– All entries in a column are of same type.
– Each column has a unique name (column order not significant).
– No two rows are identical (row order not significant).

Example of Relational Model

Representation of Movie data in tabular form is shown later.

MOVIE

Movie Name Director Actor Actress

Titanic James Cameron Leonardo DiCapiro Kate Winslet
Autograph Cheran Cheran Gopika
Roja Maniratnam AravindSwamy Madubala

In the earlier relation:
The degree of the relation (i.e., is the number of column in the relation) = 4.
The cardinality of the relation (i.e., the number of rows in the relation) = 3.

3.4 Concept of Key

Key is an attribute or group of attributes, which is used to identify a row in
a relation. Key can be broadly classified into (1) Superkey (2) Candidate key,
and (3) Primary key

Key Classification

Superkey Candidate key Primary key

3.4.1 Superkey

A superkey is a subset of attributes of an entity-set that uniquely identifies
the entities. Superkeys represent a constraint that prevents two entities from
ever having the same value for those attributes.

70 3 Relational Model

3.4.2 Candidate Key

Candidate key is a minimal superkey. A candidate key for a relation schema
is a minimal set of attributes whose values uniquely identify tuples in the
corresponding relation.

Primary Key

The primary key is a designated candidate key. It is to be noted that the
primary key should not be null.

Example

Consider the employee relation, which is characterized by the attributes,
employee ID, employee name, employee age, employee experience, employee
salary, etc. In this employee relation:

Superkeys can be employee ID, employee name, employee age, employee
experience, etc.

Candidate keys can be employee ID, employee name, employee age.
Primary key is employee ID.

Note: If we declare a particular attribute as the primary key, then that attri-
bute value cannot be NULL. Also it has to be distinct.

3.4.3 Foreign Key

Foreign key is set of fields or attributes in one relation that is used to “refer”
to a tuple in another relation.

3.5 Relational Integrity

Data integrity constraints refer to the accuracy and correctness of data in
the database. Data integrity provides a mechanism to maintain data con-
sistency for operations like INSERT, UPDATE, and DELETE. The different
types of data integrity constraints are Entity, NULL, Domain, and Referential
integrity.

3.5.1 Entity Integrity

Entity integrity implies that a primary key cannot accept null value. The
primary key of the relation uniquely identifies a row in a relation. Entity
integrity means that in order to represent an entity in the database it is
necessary to have a complete identification of the entity’s key attributes.

3.5 Relational Integrity 71

Consider the entity PLAYER; the attributes of the entity PLAYER are
Name, Age, Nation, and Rank. In this example, let us consider PLAYER’s
name as the primary key even though two players can have same name. We
cannot insert any data in the relation PLAYER without entering the name of
the player. This implies that primary key cannot be null.

3.5.2 Null Integrity

Null implies that the data value is not known temporarily. Consider the
relation PERSON. The attributes of the relation PERSON are name, age,
and salary. The age of the person cannot be NULL.

3.5.3 Domain Integrity Constraint

Domains are used in the relational model to define the characteristics of the
columns of a table. Domain refers to the set of all possible values that attribute
can take. The domain specifies its own name, data type, and logical size.
The logical size represents the size as perceived by the user, not how it is
implemented internally. For example, for an integer, the logical size represents
the number of digits used to display the integer, not the number of bytes used
to store it. The domain integrity constraints are used to specify the valid
values that a column defined over the domain can take. We can define the
valid values by listing them as a set of values (such as an enumerated data
type in a strongly typed programming language), a range of values, or an
expression that accepts the valid values. Strictly speaking, only values from
the same domain should ever be compared or be integrated through a union
operator. The domain integrity constraint specifies that each attribute must
have values derived from a valid range.

Example 1

The age of the person cannot have any letter from the alphabet. The age
should be a numerical value.

Example 2

Consider the relation APPLICANT. Here APPLICANT refers to the person
who is applying for job. The sex of the applicant should be either male (M)
or female (F). Any entry other than M or F violates the domain constraint.

3.5.4 Referential Integrity

In the relational data model, associations between tables are defined through
the use of foreign keys. The referential integrity rule states that a database

72 3 Relational Model

must not contain any unmatched foreign key values. It is to be noted that
referential integrity rule does not imply a foreign key cannot be null. There
can be situations where a relationship does not exist for a particular instance,
in which case the foreign key is null. A referential integrity is a rule that states
that either each foreign key value must match a primary key value in another
relation or the foreign key value must be null.

3.6 Relational Algebra

The relational algebra is a theoretical language with operations that work on
one or more relations to define another relation without changing the orig-
inal relation. Thus, both the operands and the results are relations; hence
the output from one operation can become the input to another operation.
This allows expressions to be nested in the relational algebra. This property
is called closure. Relational algebra is an abstract language, which means that
the queries formulated in relational algebra are not intended to be executed
on a computer. Relational algebra consists of group of relational operators
that can be used to manipulate relations to obtain a desired result. Knowl-
edge about relational algebra allows us to understand query execution and
optimization in relational database management system.

3.6.1 Role of Relational Algebra in DBMS

Knowledge about relational algebra allows us to understand query execu-
tion and optimization in relational database management system. The role of
relational algebra in DBMS is shown in Fig. 3.1. From the figure it is evident
that when a SQL query has to be converted into an executable code, first it
has to be parsed to a valid relational algebraic expression, then there should
be a proper query execution plan to speed up the data retrieval. The query
execution plan is given by query optimizer.

3.7 Relational Algebra Operations

Operations in relational algebra can be broadly classified into set operation
and database operations.

3.7.1 Unary and Binary Operations

Unary operation involves one operand, whereas binary operation involves two
operands. The selection and projection are unary operations. Union, differ-
ence, Cartesian product, and Join operations are binary operations:

3.7 Relational Algebra Operations 73

SQL Query

Relational algebra
expression

Query execution plan

Executable Code

Fig. 3.1. Relational algebra in DBMS

Unary operation operate on one relation

Binary operation operate on more than one relation

Relational algebra operations

Set Operations Database operations

∗ Union Selection

∗ Intersection Projection
∗

∗
∗
∗Difference Join

∗ Cartesian product

–
–

Three main database operations are SELECTION, PROJECTION, and
JOIN.

Selection Operation

The selection operation works on a single relation R and defines a relation that
contains only those tuples of R that satisfy the specified condition (Predicate).
Selection operation can be considered as row wise filtering. This is pictorially
represented in Fig. 3.2

Syntax of Selection Operation

The syntax of selection operation is: σPredicate (R). Here R refers to relation
and predicate refers to condition.

74 3 Relational Model

Fig. 3.2. Pictorial representation of SELECTION operation

Illustration of Selection Operation

To illustrate the SELECTION operation consider the STUDENT relation
with the attributes Roll number, Name, and GPA (Grade Point Average).

Example

Consider the relation STUDENT shown later:

STUDENT

Student Name GPA
Roll. No

001 Aravind 7.2
002 Anand 7.5
003 Balu 8.2
004 Chitra 8.0
005 Deepa 8.5
006 Govind 7.2
007 Hari 6.5

Query 1: List the Roll. No, Name, and GPA of those students who are having
GPA of above 8.0

Query expressed in relational algebra as σGPA > 8 (Student).
The result of the earlier query is:

Student Name GPA
Roll. No

003 Balu 8.2
005 Deepa 8.5

3.7 Relational Algebra Operations 75

Query 2: Give the details of first four students in the class.
Relational algebra expression is σRoll. No ≤ (student).
Table as a result of query 2 is

Student Name GPA
Roll. No

001 Aravind 7.2
002 Anand 7.5
003 Balu 8.2
004 Chitra 8.0

Projection Operation

The projection operation works on a single relation R and defines a rela-
tion that contains a vertical subject of R, extracting the values of specified
attributes and elimination duplicates. The projection operation can be con-
sidered as column wise filtering. The projection operation is pictorially repre-
sented in Fig. 3.3.

Syntax of Projection Operation

The syntax of projection operation is given by:
∏

a1,a2,......an (R).
Where a1, a2, an are attributes and R stands for relation.

STAFF
Staff No Name Gender Date of birth Salary

SL21 Raghavan M 1-5-76 15,000
SL22 Raghu M 1-5-77 12,000
SL55 Babu M 1-6-76 12,500
SL66 Kingsly M 1-8-78 10,000

Fig. 3.3. Pictorial representation of Projection operation

76 3 Relational Model

Illustration of Projection Operation

To illustrate projection operation consider the relation STAFF, with the
attributes Staff number, Name, Gender, Date of birth, and Salary.

Query 1: Produce the list of salaries for all staff showing only the Name and
salary detail. Relational algebra expression:

∏
Name.salary (staff)

Output for the Query 1

Name Salary

Raghavan 15,000
Raghu 12,000
Babu 12,500
Kingsly 10,000

Query 2: Give the name and Date of birth of the all the staff in the STAFF
relation.

Relational algebra expression for query 2:
∏

Name, date of birth (staff)

Name Date of birth

Raghavan 1-5-76
Raghu 1-5-77
Babu 1-6-76
Kingsly 1-8-78

3.7.2 Rename operation (ρ)

The rename operator returns an existing relation under a new name. ρA(B)
is the relation B with its name changed to A. The results of operation in the
relational algebra do not have names. It is often useful to name such results
for use in further expressions later on. The rename operator can be used to
name the result of relational algebra operation.

Example of Rename Operation

Consider the relation BATSMAN with the attributes name, nation, and BA.

BATSMAN

Name Nation BA

Sachin Tendulkar India 45.5
Brian Lara West Indies 43.5
Inzamamulhaq Pakistan 42.5

3.7 Relational Algebra Operations 77

The attributes of the relation BATSMAN can be renamed as name, nation
and batting average as name, nation, batting average (BATSMAN) so that
the relation BATSMAN after rename operation as shown later.

BATSMAN

Name Nation Batting average

Sachin Tendulkar India 45.5
Brian Lara West Indies 43.5
Inzamamulhaq Pakistan 42.5

From the earlier operation it is clear that rename operation changes the
schema of the database and it does not change the instance of the database.

Union Compatibility

In order to perform the Union, Intersection, and the Difference operations on
two relations, the two relations should be union compatible. Two relations are
union compatible if they have same number of attributes and belong to the
same domain. Mathematically UNION COMPATIBILITY it is given as:

Let R(A1,A2,........An) and S(B1,B2,.............Bn) be the two relations. The
relation R has the attributes A1,A2,........An and the relation S has the
attributes B1,B2,.............Bn. The two relations R and S are union compatible
if dom(Ai) = dom(Bi) for i = 1 to n.

3.7.3 Union Operation

The union of two relations R and S defines a relation that contains all the
tuples of R or S or both R and S, duplicate tuples being eliminated.

Relational Algebra Expression

The union of two relations R and S are denoted by R ∪ S. R ∪ S is pictorially
represented in the Fig. 3.4.

Illustration of UNION Operation

To illustrate the UNION operation consider the two relations Customer 1 and
Customer 2 with the attributes Name and city.

Customer 1 Customer 2

Name City

Anand Coimbatore
Aravind Chennai
Gopu Tirunelveli
Helan Palayankottai

Name City

Gopu Tirunelveli
Balu Kumbakonam
Rahu Chidambaram
Helan Palayamkottai

78 3 Relational Model

R

R U S

R

S

S

Fig. 3.4. Union of two relations R and S

Example

Query Determine Customer 1 ∪ Customer 2
Result of Customer 1 ∪ Customer 2

Customer 1 ∪ Customer 2

Name City

Anand Coimbatore
Aravind Chennai
Balu Kumbakonam
Gopu Tirunelveli
Rahu Chidambaram
Helan Palayamkottai

3.7.4 Intersection Operation

The intersection operation defines a relation consisting of the set of all tuples
that are in both R and S.

Relational Algebra Expression

The intersection of two relations R and S is denoted by R ∩ S.

Illustration of Intersection Operation

The intersection between the two relations R and S is pictorially shown in
Fig. 3.5.

3.7 Relational Algebra Operations 79

Fig. 3.5. Intersection of two relations R and S

Example

Find the intersection of Customer 1 with Customer 2 in the following table.

Customer 1 ∩ Customer 2

Name City

Gopu Tirunelveli
Helan Palayamkottai

3.7.5 Difference Operation

The set difference operation defines a relation consisting of the tuples that are
in relation R but not in S.

Relational Algebra Expression

The difference between two relations R and S is denoted by R–S.

Illustration of Difference Operation

The difference between two relations R and S is pictorially shown in Fig. 3.6.

Example

Compute R–S for the relation shown in the following table.

80 3 Relational Model

Fig. 3.6. Difference between two relations R and S

Customer 1 – Customer 2

Name City

Anand Coimbatore
Aravind Chennai

3.7.6 Division Operation

The division of the relation R by the relation S is denoted by R ÷ S, where
R ÷ S is given by:

R ÷ S = ΠR−−S(r) − ΠR−−S((ΠR−−S(r) × s) − r)

To illustrate division operations consider two relations STUDENT and
MARK. The STUDENT relation has the attributes Student Name and the
mark in particular subject say mathematics. The MARK relation consists of
only one column mark and only one row.

Student Mark

Name Mark

Arul 97
Banu 100
Christi 98
Dinesh 100
Krishna 95
Ravi 95
Lakshmi 98

Mark

100

Case (1)

If we divide the STUDENT relation by the MARK relation, the resultant
relation is shown as:

3.7 Relational Algebra Operations 81

Case (2)

Now modify the relation MARK that is change the mark to be 98. So that
the entry in the MARK relation is modified as 98.

Answer

Name

Banu
Dinesh

Student Mark

Name Mark

Arul 97
Banu 100
Christi 98
Dinesh 100
Krishna 95
Ravi 95
Lakshmi 98

Mark

98

If we divide the relation STUDENT by MARK relation then the resultant
relation is given by ANSWER

Answer

Name

Christi
Lakshmi

Case (3)

Now the MARK relation is modified in such a way that the entry in the
MARK relation is 99. If we divide the STUDENT relation with the MARK
relation, the result is NULL. Because there is no student in the STUDENT
relation with the mark 99.

Student Mark

Name Mark

Arul 97
Banu 100
Christi 98
Dinesh 100
Krishna 95
Ravi 95
Lakshmi 98

Mark

99

82 3 Relational Model

The division of the STUDENT relation with the MARK relation is given
by the ANSWER relation.

The division operation extracts records and fields from one table on the
basis of data in the second table.

Answer

Name

NULL

3.7.7 Cartesian Product Operation

The Cartesian product operation defines a relation that is the concatenation
of every tuples of relation R with every tuples of relation S. The result of
Cartesian product contains all attributes from both relations R and S.

Relational Algebra Symbol for Cartesian Product:

The Cartesian product between the two relations R and S is denoted by
R × S.

Note: If there are n1 tuples in relation R and n2 tuples in S, then the number
of tuples in R × S is n1*n2.

Example

If there are 5 tuples in relation “R” and 2 tuples in relation “S” then the
number of tuples in R × S is 5 ∗ 2 = 10.

Illustration of Cartesian Product

To illustrate Cartesian product operation, consider two relations R and S as
given later:

R S

a

b

1
2
3

3.7 Relational Algebra Operations 83

Determine R × S:

R S

a 1
a 2
a 3
b 1
b 2
b 3

Note:

No. of tuples in R × S = 2 ∗ 3 = 6
No. of attributes in R × S = 2

3.7.8 Join Operations

Join operation combines two relations to form a new relation. The tables
should be joined based on a common column. The common column should be
compatible in terms of domain.

Types of Join Operation

Natural
join

Equi
join

Theta
join

Semi
join

Outer
join

JOIN

Left outer
join

Right outer
join

Natural Join

The natural join performs an equi join of the two relations R and S over all
common attributes. One occurrence of each common attribute is eliminated
from the result. In other words a natural join will remove duplicate attribute.
In most systems a natural join will require that the attributes have the same
name to identity the attributes to be used in the join. This may require
a renaming mechanism. Even if the attributes do not have same name, we
can perform the natural join provided that the attributes should be of same
domain.

84 3 Relational Model

Input: Two relations (tables) R and S
Notation: R �� S
Purpose: Relate rows from second table and

– Enforce equality on all column attributes
– Eliminate one copy of common attribute

* Short hand for
∏

L(R × S):

– L is the union of all attributes from R and S with duplicate removed
– P equates all attributes common to R and S

Example of Natural Join Operation

Consider two relations EMPLOYEE and DEPARTMENT. Let the common
attribute to the two relations be DEPTNUMBER. The two relations are
shown later:

It is worth to note that Natural join operation is associative. (i.e.,) If R,
S, and T are three relations then

R �� (S �� T) = (R �� S) �� T

Employee Department

Employee Designation Dept
ID Number

C100 Lecturer E1
C101 Assistant Professor E2
C102 Professor C1

��
Dept name Dept Number

Electrical E1
Computer C1

Employee �� Department
Employee Designation Dept Number Dept name
ID

C100 Lecturer E1 Electrical
C102 Professor C1 Computer

Equi Join

A special case of condition joins where the condition C contains only
equality.

Example of Equi Join

Given the two relations STAFF and DEPT, produce a list of staff and the
departments they work in.

3.7 Relational Algebra Operations 85

STAFF DEPT

Staff No Job Dept

1 salesman 100
2 draftsman 101

Dept Name

100 marketing
101 civil

Answer for the earlier query is equi-join of STAFF and DEPT:

STAFF EQUI JOIN DEPARTMENT

Staff No Job dept dept Name

1 salesman 100 100 marketing
2 draftsman 101 101 civil

Theta Join

A conditional join in which we impose condition other than equality condition.
If equality condition is imposed then theta join become equi join. The symbol
θ stands for the comparison operator which could be >, <, >=, <=.

Expression of Theta Join

σθ(R × S)

Illustration of Theta Join

To illustrate theta join consider two relations FRIENDS and OTHERS with
the attributes Name and age.

FRIENDS

Name Age

Joe 4
Sam 9
Sue 10

OTHERS

Alias Size

Bob 8
Gim 10

Result of theta join

Name Age Alias Size

Joe 4 Bob 8
Sam 9 Gim 10
Sue 10

Outer Join

In outer join, matched pairs are retained unmatched values in other tables are
left null.

86 3 Relational Model

R

Unmatched rows
from left table

S

Matched rows Unmatched rows from right
table

Right outer
Join

Left outer
Join

Fig. 3.7. Representation of left and right outer join

Types of Outer Join

The pictorial representation of the left and the right outer join of two relations
R and S are shown in Fig. 3.7:

1. Left Outer Join. Left outer joins is a join in which tuples from R that do
not have matching values in the common column of S are also included in
the result relation.

2. Right Outer Join. Right outer join is a join in which tuples from S that do
not have matching values in the common column of R are also included
in the result relation.

3. Full Outer Join. Full outer join is a join in which tuples from R that do
not have matching values in the common columns of S still appear and
tuples in S that do not have matching values in the common columns of
R still appear in the resulting relation.

Example of Full Outer Left Outer and Right Outer Join

Consider two relations PEOPLE and MENU determine the full outer, left
outer, and right outer join.

3.7 Relational Algebra Operations 87

Table 3.1. Left outer join of PEOPLE and MENU relation

PEOPLE PEOPLE. Food = MENU. Food MENU

Name Age People.Food Menu.Food Day

Raja 21 Idly Idly Tuesday
Ravi 22 Dosa Dosa Wednesday
Rani 20 Pizza NULL NULL
Devi 21 Pongal Pongal Monday

Table 3.2. Right outer join of PEOPLE and MENU relation

PEOPLE PEOPLE.Food = Menu.Food MENU

Name Age People.Food Menu.Food Day

Devi 21 Pongal Pongal Monday
Raja 21 Idly Idly Tuesday
Ravi 22 Dosa Dosa Wednesday
NULL NULL NULL Fried rice Thursday
NULL NULL NULL Parotta Friday

PEOPLE

Name Age Food

Raja 21 Idly
Ravi 22 Dosa
Rani 20 Pizza
Devi 21 Pongal

MENU

Food Day

Pongal Monday
Idly Tuesday
Dosa Wednesday
Fried rice Thursday
Parotta Friday

1. The left outer join of PEOPLE and MENU on Food is represented as

PEOPLE. PEOPLE.Food =MENU.Food MENU. The result of
the left outer join is shown in Table 3.1.
From this table, it is to be noted that all the tuples from the left table
(in our case it is PEOPLE relation) appears in the result. If there is any
unmatched value then a NULL value is returned.

2. The right outer join of PEOPLE and MENU on Food is represented in

the relational algebra as PEOPLE PEOPLE.Food = Menu.Food
MENU. The result of the right outer join is shown in Table 3.2.

88 3 Relational Model

Table 3.3. Full outer join of PEOPLE and MENU relation

Name Age People.Food Menu.Food Day

Raja 21 Idly Idly Tuesday
Ravi 22 Dosa Dosa Wednesday
Rani 20 Pizza NULL NULL
Devi 21 Pongal Pongal Monday
NULL NULL NULL Fried rice Thursday
NULL NULL NULL Parotta Friday

From this table, it is clear that all tuples from the right-hand side re-
lation (in our case the right hand relation is MENU) appears in the
result.

3. The full outer join of PEOPLE and MENU on Food is represented in

the relational algebra as PEOPLE PEOPLE.Food =MENU.Food
MENU. The result of the full outer join is shown in Table 3.3.
From this table, it is clear that tuples from both the PEOPLE and the
MENU relation appears in the result.

Semi-Join

The semi-join of a relation R, defined over the set of attributes A, by relation
S, defined over the set of attributes B, is the subset of the tuples of R that
participate in the join of R with S. The advantage of semi-join is that it
decreases the number of tuples that need to be handled to form the join. In
centralized database system, this is important because it usually results in a
decreased number of secondary storage accesses by making better use of the
memory. It is even more important in distributed databases, since it usually
reduces the amount of data that needs to be transmitted between sites in
order to evaluate a query.

Expression for Semi-Join

R �F S =
∏

A(R �F S) where F is the predicate.

Example of Semi-Join

In order to understand semi-join consider two relations EMPLOYEE and PAY

3.9 Limitations of Relational Algebra 89

EMPLOYEE

Employee
Number

Employee Name Designation

E1 Rajan Programmer
E2 Krishnan System Analyst
E3 Devi Database

Administrator
E4 Vidhya Consultant

PAY

Designation Salary

Programmer 25,000
Consultant 70,000

The semi-join of EMPLOYEE with the PAY is denoted by:
EMPLOYEE �EMPLOYE.DESIGNATION=PAY.DESIGNATION PAY. The result of
this semi-join is given later:

Employee Number Employee Name Designation

E1 Rajan Programmer
E4 Vidhya Consultant

From the result of the semi-join it is clear that a semi-join is half of a join:
the rows of one table that match with at least one row of another table. Only
the rows of the first table appear in the result.

3.8 Advantages of Relational Algebra

The relational algebra has solid mathematical background. The mathematical
background of relational algebra is the basis of many interesting developments
and theorems. If we have two expressions for the same operation and if the
expressions are proved to be equivalent, then a query optimizer can automat-
ically substitute the more efficient form. Moreover, the relational algebra is
a high level language which talks in terms of properties of sets of tuples and
not in terms of for-loops.

3.9 Limitations of Relational Algebra

The relational algebra cannot do arithmetic. For example, if we want to know
the price of 10 l of petrol, by assuming a 10% increase in the price of the
petrol, which cannot be done using relational algebra.

The relational algebra cannot sort or print results in various formats. For
example we want to arrange the product name in the increasing order of their
price. It cannot be done using relational algebra.

Relational algebra cannot perform aggregates. For example we want to
know how many staff are working in a particular department. This query
cannot be performed using relational algebra.

90 3 Relational Model

The relational algebra cannot modify the database. For example we want
to increase the salary of all employees by 10%. This cannot be done using
relational algebra.

The relational algebra cannot compute “transitive closure.” In order to
understand the term transitive closure consider the relation RELATIONSHIP,
which describes the relationship between persons.

Consider the query, Find all direct and indirect relatives of Gopal? It is
not possible to express such kind of query in relational algebra. Here transitive
means, if the person A is related to the person B and if the person B is related
to the person C means indirectly the person A is related to the person C. But
relational algebra cannot express the transitive closure.

RELATIONSHIP

Person1 Person2 Relationship

Gopal Nandini Father
Siva Raja Brother
Gopal Neena Husband
Deepa Lakshmi Sister

3.10 Relational Calculus

The purpose of relational calculus is to provide a formal basis for defining
declarative query languages appropriate for relational databases. Relational
Calculus comes in two flavors (1) Tuple Relational Calculus (TRC) and
(2) Domain Relational Calculus (DRC). The basic difference between rela-
tional algebra and relational calculus is that the former gives the procedure
of how to evaluate the query whereas the latter gives only the query without
giving the procedure of how to evaluate the query:

– The variable in tuple relational calculus formulae range over tuples.
– The variable in domain relational calculus formulae range over individual

values in the domains of the attributes of the relations.
– Relational calculus is nonoperational, and users define queries in terms of

what they want, not in terms of how to compute it. (Declarativeness.)

Relational Calculus and Relational Algebra:
The major difference between relational calculus and relational algebra is

summarized later:

– A relational calculus query specifies what information is retrieved
– A relational algebra query specifies how information is retrieved

3.10.1 Tuple Relational Calculus

Tuple relational calculus is a logical language with variables ranging over
tuples. The general form of tuple relational calculus is given by:

3.10 Relational Calculus 91

{<tuple variable list> | <conditions>}

{t | COND(t)}

Here t is the tuple variable, which stands for tuples of relation. COND
(t) is a formula that describes t. The meaning of the earlier expression is to
return all tuples T that satisfy the condition COND:

– T/R(T)} means return all tuples T such that T is a tuple in relation R.
– For example, {T.name/FACULTY(T)} means return all the names of fac-

ulty in the relation FACULTY.
– {T.name/ FACULTY(T) AND T.deptid = ‘EEE’} means return the value

of the name of the faculty who are working in EEE department.

Quantifiers

Quantifiers are words that refer to quantities such as “some” or “all” and tell
for how many elements a given predicate is true. A predicate is a sentence that
contains a finite number of variables and becomes a statement when specific
values are substituted for the variables. Quantifiers can be broadly classified
into two types (1) Universal Quantifier and (2) Existential Quantifier.

Existential Quantifier

symbol: ∃
∃T ε Cond (R)
It will succeed if the condition succeeds for at least one tuple in T.

– (∃t)(C) – Existential operator – True if there exists a tuple t such that
the condition(s) C are true.

– Example of existential quantifier is ∃(m) such that m2 = m.(i.e., m = 1).

Universal Quantifier

symbol: ∀

– (∀t) (C) – Universal operator – True if C is true for every tuple t.
– Example of universal quantifier is ∀(2), sin2 (2) + cos2 (2) = 1.

The example refers to the fact that for all values of 2 sin2 (2) + cos2 (2) = 1.

Free Variable

Any variable that is not bound by a quantifier is said to be free.

Bound Variable

Any variable which is bounded by universal or existential quantifier is called
bound variable.

92 3 Relational Model

Example of selection operation in TRC:

1. To find details of all staff earning more than Rs. 10,000:

{S | Staff(S) ∧ S.salary > 10000}

Example of projection operation in TRC:
2. To find a particular attribute, such as salary, write:

{S.salary | Staff(S) ∧ S.salary > 10000}

Quantifier Example

Client(ID, fName, lName, Age)
Matches(Client1, Client2, Type)

– List the first and last names of clients that appear as client1 in a match
of any type.
RAlg: p(fName, lName)(Client (ID = Client1) Matches)
RCalc: {c.fName, c.lName | CLIENT(c) AND (∃m)(MATCHES(m) AND
c.ID = m.Client1)}

Joins in Relational Calculus

Consider the two relations Client and Matches as
Client(ID, fName, lName, Age)
Matches(Client1, Client2, Type)

– List all information about clients and the corresponding matches
that appear as client1 in a match of any type.

The earlier query can be expressed both in Relational Algebra and Tuple
relational Calculus as:

– RAlg: Client (ID =Client1) Matches
– RCalc:
{c, m | CLIENT(c) AND MATCHES(m) AND c.ID = m.Client1}

3.10.2 Set Operators in Relational Calculus

The set operations like Union, Intersection, difference, and Cartesian Product
can be expressed in Tuple Relational Calculus as:

3.10 Relational Calculus 93

Union

– R1(A,B,C) ∪ R2(A, B, C)
– {r | R1(r) OR R2(r)}

Intersection

– R1(A,B,C) ∩ R2(A, B, C)
– {r | R1(r) AND R2(r)}

Cartesian Product

– R(A, B, C) × S(D, E, F)
– {r, s | R(r) AND S(s)} // same as join without the select condition

Subtraction

– R1(A,B,C) − R2(A, B, C)
– {r | R1(r) AND NOT R2(r)}

Queries and Tuple Relational Calculus Expressions

Some of the queries and the corresponding relational calculus and their expla-
nations are given later. Here we have given set of queries like SET 1, SET 2,
and SET 3.

– Query set 1 deals with Railway Reservation Management
– Query set 2 deals with Library Database Management
– Query set 3 deals with Hostel Database Management

Query Set1: Query set 1 deals with railway reservation system.

Query 1: Find all the train details for the trains where starting place is
“Chennai.”

Relational calculus expression: {t | t ∈ train details ∧ start place
= “Chennai”}

Explanation: Set of all tuples “t” that belong to the relation “train details”
and also the starting place is “Chennai” is found by the query.

Query 2: Find all train names whose destination is “Salem.”

Relational calculus expression

{t | ∃ s ∈ train details (t [train no] = s [train no] ∧ s [destination] = “Salem”)}

Explanation: There exist a tuple “t” in the relation “r” such that the predicate
is true.

94 3 Relational Model

The set of all tuples “t” such that, there exists a tuple “s” in relation train
details for which the values of “t” and “s” for the train no attribute are equal
and the value of “s” for the destination is “Salem.”

Query 3: Find the names of all passengers who have canceled the ticket and
whose age is above 40.

Relational calculus expression {t | ∃ s ∈ cancel (t [train no] = s
[train no] ∧∃ u ∈ passen details (u [name] = s [name] ∧ u[age] >
40))}

Explanation: Set of all passenger names tuples for which the age is above 40
and the ticket is canceled. The tuple variable “s” ensures that the passenger
canceled the ticket. The tuple “u” is restricted to having the same passenger
name as “s.”

Query 4: List the train numbers of all trains which has no cancelation and
only reservation.

Relational Calculus Expression

{t | ∃ s ∈ reserve (t [train no] = s [train no]) ¬∃ u ∈ cancel
(t [train no] = u[train no])}
Explanation: Set of all tuples “t” such that there exists a tuple “s” that
belongs to reserve such that the train no attribute is equal for “t” and “s”
and there exists a tuple “u” that belongs to cancel where the values of “t”
and “u” for the train no attribute is the same.

Query 5: List all female passengers name who are traveling by the train “Blue
Mountain.”

Relational Calculus Expression

{t | ∃ s ∈ passen details (t [p name] = s [p name] ∧ s[sex] = “female”
∧ s[train name] = “Blue mountain”)}.

Explanation: Set of all tuples “t” such that there exists a tuple “s” that
belongs to passen details for which the values of “t” and “s” for the p name
attribute is same and the sex attribute = “female” and train name attribute =
“Blue mountain.”

Query Set 2: Query set 2 deals with frequent queries in library database
management.

Query 1: Find the acc no/- for each book whose price >1000.

Relational Calculus Expression

{t | ∃ s ∈ book (t[acc no/-] = s[acc no/-] ∧ s[price] > 1000)}

3.10 Relational Calculus 95

Explanation: The set of all tuples “t” such that there exists a tuple “s” in
relation book for which the values “t” and “s” for the acc no/- attribute are
equal an the value of the s for the price attribute is greater than 1000.

Query 2: Find the name of all the students who have borrowed a book and
price of those book is greater than 1000.

Relational Calculus Expression

{t | ∃ s ∈ books borrowed(t[std name] = s[std name] ∧ ∃ u ∈ book
(u[acc no/-] = s[acc no/-] ∧ u[price] > 1000))}
Explanation: The set of all tuples “t” such that there exists a tuple “s” in
relation books borrowed for which the values “t” and “s” for the student name
attribute are equal and “u” tuple variable on book relation for which “u” and
“s” for the acc no/- attribute are equal and the value of “u” for the price
attribute is greater than 1000.

Query 3: Find the name of the students who borrowed book, have book in
his account or both.

Relational Calculus Expression

{t | ∃ s ∈ books borrowed (t[stud name] = s[std name]) ∨ ∃ u ∈
books remaining (t[std name] = su[std name])}
Explanation: The set of all tuples “t” such that there exists a tuple “s” in
relation books borrowed for which the values “t” and “s” for the student
name attribute are equal and “u” tuple variable on books remaining relation
for which “u” and “s” for the stud name attribute are equal.

Query 4: Find only those students’ names who are having both the books in
their account as well as the books borrowed from their account.

Relational Calculus Expression

{t | ∃ s ∈ books borrowed (t[std name] = s[std name])∧ ∃ u ∈ books
remaining (t[std name] = s[std name])}
Explanation: The set of all tuples “t” such that there exists a tuple “s” such
that in relation books borrowed for which the values “t” and “s” for the
student name attribute are equal and “u” tuple variable on books remaining
relation for which “u” and “s” for the student name attribute are
equal.

Query 5: Query that uses implication symbol p ⇒ q find all students belongs
to EEE department who borrowed the books.

96 3 Relational Model

Relational Calculus Expression

{t | ∃ r ∈ books borrowed (r[std name] = t[std name] ∧ (∀ u ∈
department (u(dept name] = “EEE”)))} ⇒ {t |∃ r∈ books borrowed
(r [std name] = t[std name] ∧∃ w∈ student (w[roll no/-] = r[roll no/-
] ∧ w[dept name] =u [dept name]))}
Explanation: The set of all tuples “t” such that there exists a tuple “s” such
that in relation books borrowed for which the values “t” and “s” for the stu-
dent name attribute are equal and “u” tuple variable on department relation
must be equal to “EEE.” And this must be equal to the set of all tuple “t”
such that there exists a tuple “r” in relation books borrowed for which the
values “r” and “t” for the student name attribute are equal and “w” the vari-
able on relation student for which “w” and “r” are equal for the roll no/-
attribute and “w” and “u” are equal for the dept name.

Query Set 3: Query set 3 deals with hostel management.

Query 1: Find all the students id who are staying in hostel.

Tuple Relational Calculus Expression

{t | ∃ s ∈ student detail (t[roll no] = s[rollno])}
Explanation: Here t is the set of tuples in the relation student detail such
that there exists a tuple s which consists of students ID who are staying in
the hostel.

Query 2: Find all the details of the student who are belonging to EEE branch.

Tuple Relational Calculus Expression

{t | t ∈ student detail ∧ t[course name] =“EEE”

Explanation: Here t is the set of tuples in the relation student detail such that
it consists of all the details of the student who are belonging to the “EEE”
branch.

Query 3: Find all the third semester BE-EEE students.

Tuple Relational Calculus Expression

{t | t ∈ student detail ∧ t[coursename] = “EEE” ∧ t[semester] = 3}
Explanation: Here t is the set of tuples in the relation student detail such that
it consists of all the details of the student who belongs to the third semester
BE-EEE branch.

Query 4: Find all the lecturers name belonging to the EEE department.

3.11 Domain Relational Calculus (DRC) 97

Tuple Relational Calculus Expression

{t | ∃ s∈ staff detail (t[staffname]= s[staffname])}
Explanation: Here t is the set of tuples in the relation staff detail and there
exists a tuple s which consists of lecturers name who belongs to the “EEE”
department.
Query 5: Find all the staff who are having leisure period at third hour on
Monday.

Tuple Relational Calculus Expression

{t | ∃ s∈ staff detail (t[staffname] = s[staffname] ∧∃u∈ lecturersched-
ule monday (s[staffid] =u[staffid] ∧ u[third hour] = “EEE”))}
Explanation: Here t is the set of tuples in the relation staff detail and there
exists a tuple s which consists of staff name who are all having leisure period
at third hour on Monday for every week.

Safety of Expression

It is possible to write tuple calculus expressions that generate infinite relations.
For example {t/∼t ε R} results in an infinite relation if the domain of any
attribute of relation R is infinite. To guard against the problem, we restrict
the set of allowable expressions to safe expressions. An expression {t/P(t)}
in the tuple relational calculus is safe if every component of t appears in one of
the relations, tuples, or constants that appear in P (Here P refers to Predicate
or condition).

Limitations of TRC

TRC cannot express queries involving:

– Aggregations.
– Groupings.
– Orderings.

3.11 Domain Relational Calculus (DRC)

Domain relational calculus is a nonprocedural query language equivalent in
power to tuple relational calculus. In domain relational calculus each query is
an expression of the form:

{<X1,X2,.............,Xn >/P(X1,X2,.............,Xn)} where

– X1,X2,.............,Xn represent domain variables
– P represents a formula similar to that of the predicate calculus.

Domain variable: A domain variable is a variable whose value is drawn from
the domain of an attribute.

98 3 Relational Model

3.11.1 Queries in Domain Relational Calculus:

Consider the ER diagram:

STUDENT TAKES COURSE

STUDENT

ID Name Address

123 Anbu
456 Anu

CLASS

CID CNAME location

TAKES

ID CID GRADE

Query 1:

Get the details of all students?
This query can be expressed in DRC as
{<I,n,a>/<I,n,a> ε STUDENT}

Query 2: (Selection operation)

Find the details of the student whose roll no (or) ID is 123?
{<123,n,a>/<123,n,a> ε STUDENT}

(OR)
{<I,n,a>/<I,n,a> ε STUDENT Ω I =123}
(Here I,n,a are referred to as domain variables)

Query 3: (Projection)

Find the name of the student whose roll no. is 456?
{<I>/<I,n,a> ε STUDENT Ω I =456}

3.11.2 Queries and Domain Relational Calculus Expressions

Some of the queries and the corresponding relational calculus and their
explanations are given later. Here we have given set of queries like SET 1,
SET 2, and SET 3:

– Query set 1 deals with Railway Reservation Management
– Query set 2 deals with Library Database Management
– Query set 3 deals with Department Database Management

Query Set 1: Query set 1 deals with railway reservation system.

Query 1: List the details of the passengers traveling by the train “Intercity
express.”

3.11 Domain Relational Calculus (DRC) 99

Domain Relational Calculus Expression

{< name, age, sex, train no, “blue mountain”> | <name, age, sex, train no,
train name>∈ passen details}
Explanation: The attributes of the passen details are listed where the
train name attribute = “Intercity express.”

Query 2: Select names of passengers whose sex = “female” and age > 20.

Domain Relational Calculus Expression

{< p name > |∃ p age, p sex, p trainno. (< p name, p age, p sex, p trainno
>∈ passen details ∧ p sex = “female” ∧ p age > 20)}
Explanation: Lists the names of passengers from the relation passenger details
where there are two constraints which are sex= female and age > 20.

Query 3: Find all the names of passengers who have “Salem” as start place
and find their train names.

Domain Relational Calculus Expression

{< p name, train name> |∃ p name > p name, p age, p trainno, (< p name,
p age, p sex, p train no, p trainname >∈ passen details

∧∃ t start, t dest, t route, t no (< t name, t no, t start, t dest, t route
>∈ train details ∧ t start = “salem”))}
Explanation: Two relations – passen details and train details are involved in
this query. The train names and the passenger names whose start place =
Salem is displayed.

Query 4: Find all train names which has reservation and no cancelation.

Domain Relational Calculus Expression

{<t name> | ∃ t name, p name, p source, p dest(<t name, t no, p name,
p source, p dest>

.∈ reserve ∧∃ ticket no, t no, s no, p name (<t name, t no, tick no, p name,
s no>∈ cancel))}
Explanation: The reserve and cancel relations are involved here. The train
names which satisfies both the conditions are displayed.

Query 5: Find names of all trains whose destination is “CHENNAI” and
source is “COIMBATORE.”

Domain Relational Calculus Expression

{<t name> | ∃ t no, t start, t dest, t route (<t name, t no, t start, t dest,
t route>∈ train details ∧ t source=“coimbatore”∧ t desti=“chennai”)}

100 3 Relational Model

Explanation: The name of the trains that start from Coimbatore and reach
Chennai are listed from the relations train details.

Query Set 2:

Query set 2 deals with Library Management.

Query 1: Find the student name, roll no. for those belongs to “EEE” depart-
ment.

Domain Relational Calculus Expression

{<std name, std roll no> | dept name (<std name, roll no, depart name>∈
student ∧depart name=“EEE”)}
Explanation: Student relation is involved in this. Std name, roll no are the
attribute belongs to the student relation whose department name is “EEE.”

Query 2: Find the acc no, books cal no, and author name for the books of
price >120.

Domain Relational Calculus Expression

{< acc no, book call no, author name>/ ∃ book name, price (<book name,
acc no, call no, author name, price> ∈ books ∧ price >120)}
Explanation: Books relation is involved here. In this expression acc no,
book call no, and author name are selected for the book for which the price
is greater than 120.

Query 3: Find the roll no of all the students who have borrowed book from
library and find the no/- of books they borrowed an that books belongs to
“EEE” department.

Domain Relational Calculus Expression

{<roll no/-> | ∃ std name, book acc no (<std name, roll no, book accc no,
number of books borrowed >∈books borrowed ∧ ∃ name, dept name(<name,
roll no, dept name>∈ student ∧dept name=“EEE”))}
Explanation: Here two relations are involved (1) books borrowed and
(2) student. The roll no/- of the students who borrowed “EEE” depart-
ment book involves both the earlier relations. Roll no/- are selected from
the both the relation of the student who borrowed book from library which
belongs to “EEE” department.

Query 4: Find the std name and their depart name who have borrowed a
book which is less than 2 in number.

3.11 Domain Relational Calculus (DRC) 101

Domain Relational Calculus Expression

{<dept name, name> | ∃ roll no/-, book acc no/-, no of books borrowed
(< roll no/-, book acc no/-, no/- of books borrowed, std name >∈ books
borrowed ∧ no/- of books borrowed <2 ∧∃ roll no/-(roll no/-, name,
dept name>∈
student))}
Explanation: Here two relations are involved (1) books borrowed and
(2) student. For student name the relation involved is books borrowed and
for depart name the relation involved is student and the constraint is no/- of
books borrowed is less than two.

Query 5: Find the name of all the students who have borrowed, having books
in his account or both in the department EEE.

Domain Relational Calculus Expression

{<name>/∃ roll no/-, book acc no/-, no of books borrowed(<name, roll
no/-, book acc no/-, no/- of books borrowed>∈ books borrowed ∧∃ roll
no/-, depart name(<name, roll no/-, dept name > ∈ student ∧ dept name =
“eee”)) ∨∃ roll no/-, no/- of books remaining(<name, roll no/-, no/- of
books remaining>∈ books remaining ∧∃ roll no/-, dept name(<name,
roll no/-, dept name >∈ student ∧ dept name = “EEE”))}
Explanation: Here three relations are involved (1) books remaining, (2) books
borrowed, and (3) student. Name is an attribute belonging to books borrowed
and books remaining relations, dept name belongs to student relation. The
student borrowed books or having books in his account or both which belongs
to “EEE” department is selected.

Query Set 3: Query set 2 deals with Department Database Management
system.

Query 1: Find all the student name belongs to fifth sem ECE branch.

Domain Relational Calculus Expression

{<stud name> | ∃ < r,cn,s,h,dob,pn,b > ∈ student detail∧ s = “V”∧b =
“ECE”}
Explanation: Students name domain is formed from relation V semester
“ECE” branch.
Domain variables used:

r - roll no.; cn - course name; s – semester; h - hosteller
dob - date of birth; pn - phone no.; b - branch name

Query 2: Find all the details of students belonging to CSE branch.

102 3 Relational Model

Domain Relational Calculus Expression

{<sn,r,cn,s,h,dob,pn,b> | <sn,r,cn,s,h,dob,pn,b>∈ student–detail ∧ b=
“CSE”}
Explanation: All domain variables included from student-detail table which
consists of all details about students belonging to the CSE branch.

Query 3: Find all the students id whose date of birth is above 1985.

Domain Relational Calculus Expression

{<r> | ∃ sn,cn,s,h,dob,pn,b (<r,sn,cn,b,s,h,dob,pn>∈ student detail |∧
dob>“1985”)}
Explanation: Domain variable r (roll no) is included from student detail rela-
tion, which consists of students ID whose date of birth is above 1985.

Query 4: Find all the lecturers id belonging to production dept.

Domain Relational Calculus Expression

{<sid> |∃ sn,dob,desg,y,foi,e,d | <sid,sn,dob,desg,y,foi,e,d ∈ staff detail ∧
d =“prod”)}
Explanation: Domain variables from staff detail:

sid - staff ID; dob - date of birth; sn - staff name; desg - designation
y - year since serving; foi - field of interest; e - email id; d - department

The sid (staff id) from staff detail belonging to production department.

Query 5: Find all the lecturers’ names who are having fifth period as leisure
period on Friday.

Domain Relational Calculus Expression

{<sn> |∃ sed,dob,desg,y,foi,e,d | <sn,sid,dob,desg,y,foi,e,d> ∈ staff detail
∧∃ <sid,i,ii,iii,iv,v,vi,vii)(<sid,sn,i,ii,iii,iv,v,vi,vii> ∈ rev schedul friday ∧ v
=“free”)))}
Explanation: Staff name domain variable from staff detail relation with fifth
period as leisure which is checked using lecture schedule relation on Friday.
Thus, in this, we have used two relations: staff detail and lecture schedule for
Friday.

3.12 QBE

QBE stands for Query By Example. QBE uses a terminal display with
attribute names as table headings for queries. This looks a little strange in
textbooks, but people like it when they have worked with it for a while on a

3.12 QBE 103

terminal screen. It is very easy to list the entire schema, simply by scrolling in-
formation on the screen. QBE was developed originally by IBM in the 1970s
to help users in their retrieval of data from a database. QBE represents a
visual approach for accessing data in a database through the use of query
templates. QBE can be considered as GUI (Graphical User Interface) based
on domain calculus. QBE allows users to key in their input requests by filling
in empty tables on the screen, and the system will also display its response in
tabular form. QBE is user-friendly because the users are not required to for-
mulate sentences for query requests with rigid query-language syntax. In QBE
the request is entered in the form of tables whose skeletons are initially con-
structed by QBE.
Some of the QBE query template examples:

Example 1. Projection operation

In this template P. implies “Print.” The meaning is: Print the PLAYER
ADDRESS who belong to the country INDIA. To make a projection only put
P. in any column of the projection. QBE will enforce uniqueness of projections
automatically.

PLAYER ADDRESS NAME CITY COUNTRY

P. INDIA

Example 2. Selection operation

To make a selection, put quantifiers in the columns of the attributes in the
question. To print a whole record, put P. in the column with the name of the
record.

PLAYER ADDRESS NAME CITY COUNTRY

P. INDIA

The meaning is to print the PLAYER ADDRESS who belong to the country
INDIA.

Example 3. AND condition

To understand the AND condition consider the following template.

PLAYER ADDRESS NAME CITY COUNTRY

P. CHENNAI INDIA

The meaning of the earlier template is: Print the PLAYER ADDRESS who
live in INDIA and belong to the city CHENNAI.

104 3 Relational Model

Example 4. OR condition

To understand the OR condition consider the following template:

PLAYER ADDRESS NAME CITY COUNTRY

P. CHENNAI INDIA
P. DELHI INDIA

The meaning of the earlier template is “Print the name of the Player who
belongs to the country INDIA and city either CHENNAI or DELHI”.

Example 5. Query involving more than one table

Let us consider a query which involves data from more than one table.
Let us consider two tables PLAYER ADDRESS and PLAYER RANK. Here
we have two tables PLAYER ADDRESS and PLAYER RANK, the template
meaning is: Print the name of the player who belong to the country INDIA
and rank less than 50. The clue for understanding the query is the fact the
variable NAME is the same in all rows of the display.

PLAYER ADDRESS NAME CITY COUNTRY

P. NAME INDIA

PLAYER RANK NAME RANK COUNTRY

P. NAME <50 INDIA

Example 6. Comparison operation

Consider the EMPLOYEE table with the columns EMPLOYEE ID,
EMPLOYEE NAME, SALARY, and MANAGER ID. If one wants to know
the name of the employees who make more money than their managers, it
can be shown in QBE as:

EMPLOYEE EMPLOYEE EMPLOYEE SALARY MANAGER
ID NAME ID

P. N X Y – X
X < Y

Example 7. Ordering of records

The records can be arranged either in the ascending order or in the descending
order using the operator AO. and DO., respectively.

– AO. implies arrange the records in ascending order.
– DO. implies arrange the records in descending order.

3.12 QBE 105

– AO.ALL. implies arrange the records in ascending order by preserving
duplicate records.

– DO.ALL. implies arrange the records in descending order by preserving
duplicate records.

Both AO. and DO. operators automatically eliminates duplicate responses.
However, if one wishes to have all duplicate records displayed, an ALL.
Operator must be added.

Consider the relation VEGETABLE which has three attributes VEGE-
TABLENAME, QUANTITY, and PRICE.

VEGETABLE

VEGETABLENAME QUANTITY(in Kg) PRICE(in Rs)

Brinjal 1 13
Potato 1 17
Ladies Finger 1 12
Carrot 1 16
Tomato 1 14

The QBE template to print the VEGETABLE in the increasing order of
price is given later:

VEGETABLE VEGETABLENAME QUANTITY PRICE

P.AO.

The QBE template to print the VEGETABLE in the decreasing order of
price is given later:

VEGETABLE VEGETABLENAME QUANTITY PRICE

P.DO.

Example 8. Retrieval using Negation

The symbol used for negation is +. For example print the quantity and
price of the VEGETABLE that do not belong to Brinjal is given by:

VEGETABLE VEGETABLENAME QUANTITY PRICE

+ Brinjal P. P.

Condition Box:
The condition box is used to store logical conditions that are not easily

expressed in the table skeleton. A condition box can be obtained by pressing
a special function key.

106 3 Relational Model

Example 9. Retrieval using condition box:

For example, if we want to print the quantity and price of the VEGE-
TABLE, which is either Ladies Finger or Carrot, the condition box is used.

VEGETABLE VEGETABLENAME QUANTITY PRICE

VN P. P.

CONDITIONS
VN= Ladies Finger OR Carrot

Example 10. QBE Built-In Functions

QBE provides MIN, MAX, CNT, SUM, and AVG built-in functions:

– MIN.ALL implies the computation of minimum value of an attribute.
– MAX.ALL implies the computation of maximum value of an attribute.
– CNT.ALL implies COUNT the number of tuples in the relation.
– SUM.ALL implies the computation of sum of an attribute.
– AVG.ALL implies the computation of average value of an attribute.

Note: UNQ. which stands for unique operator is used to eliminate duplicates.
For example, CNT.UNQ.ALL computes the number of tuples in the relation
by eliminating duplicate values.

Example 10.1. MIN and MAX command

The QBE template to get the minimum and maximum vegetable price is
given later:

VEGETABLE VEGETABLE QUANTITY PRICE
NAME

P.MIN.ALL.CX
P.MAX.ALL.CY

Example 10.2. AVG command

The QBE template to get the average price of the vegetable is given later.

VEGETABLE VEGETABLENAME QUANTITY PRICE

P.AVG.CX

Example 10.3. CNT command

The QBE template to count the number of unique vegetables in the VEGE-
TABLE relation is shown later.

3.12 QBE 107

VEGETABLE VEGETABLENAME QUANTITY PRICE

P.CNT.UNQ.ALL

Example 11. Update operation

The QBE template to increase the price of all vegetables by 10% is given
as:

Here U. implies Update. The price UX of the vegetable is increased by
10% which is denoted by 1.1 * UX

VEGETABLE VEGETABLENAME QUANTITY PRICE

U. UX 1.1 * UX

Example 12. Record deletion

The QBE template to delete the record of all vegetables is shown later:

VEGETABLE VEGETABLENAME QUANTITY PRICE

D.

Here D. implies deletion of the entire relation.
Single Record Deletion
The QBE form to delete the record of the vegetable “Brinjal” is shown

later:

VEGETABLE VEGETABLENAME QUANTITY PRICE

D. Brinjal

Summary

In relational model, the data are stored in the form of tables or relations.
Each table or relation has a unique name. Tables consist of a given number of
columns or attributes. Every column of a table must have a name and no two
columns of the same table may have identical names. The rows of the table
are called tuples. The total number of columns or attributes that comprises
a table is known as the degree of the table. The chapter has introduced the
basic terminology used in relational model. Specific importance is given to
E.F. Codd’s rule.

This chapter also introduced different integrity rules. Relational algebra
concepts, different operators like SELECTION, PROJECTION, UNION,
INTERSECTION, and JOIN operators were discussed with suitable exam-
ples. Relational calculus and its two branches, tuple relational calculus and
domain relational calculus, were discussed in this chapter.

Finally, graphical user interface QBE, its relative advantage, different
operations in QBE, concept of condition box in QBE, and aggregate func-
tions in QBE were explained with suitable examples.

108 3 Relational Model

Review Questions

3.1. What is the degree and cardinality of the “Tennis Player” relation shown
later:

Position Player Points Nation

1 Federer 1117 Switzerland
2 Roddick, A. 671 USA
3 Hewitt, L. 638 Australia
4 Safin, M 497 Russia
5 Moya, C. 484 Spain

Hint: Degree of the relation = Number of columns in the relation.
Cardinality of the relation = Number of rows in the relation.

3.2. A relation has a degree of 5 and cardinality of 7. How many attributes
and tuples does the relation have?

3.3. A relation R has a degree of 3 and cardinality of 2 and the relation S has
a degree of 2 and cardinality of 3, then what will be the degree and cardinality
of the Cartesian product of R and S?

Ans: Cardinality = 6, Degree = 5.

3.4. What is the key of the following EMPLOYEE table?

EMPLOYEE

EMPLOYEE EMPLOYEE DEPARTMENT AGE DESIG-
NUMBER NAME NATION

C100 Dr. Vijayarangan Mechanical 51 Principal
C202 Dr. S. Jayaraman ECE 50 Head
C203 Dr. Murugesh EEE 50 Head
C204 Dr. Sivanandam ComputerScience 53 Head
C208 Dr. Selvan IT 51 Head

Ans: In the earlier table, EMPLOYEE NUMBER is the primary key.
Because keys are used to enforce that no two rows are identical.

3.5. Define the operators in the core relational algebra?

3.6. Explain the following concepts in relational databases:

(a) Entity integrity constraint
(b) Foreign key and how it can specify a referential integrity constraint

between two relations
(c) Semantic integrity constraint

Review Questions 109

3.7. Mention the pros and cons of relational data model?

Pros of relational data model:

1. The relational data model is a well formed and data independent model
which is easy to use for applications which fit well into the model.

2. The data used by most business applications fits this model, and that
business applications were the first large customers of database system
explains the popularity of the model.

Cons of relational data model:

1. The simplicity of the model restricts the amount of semantics, which can
be expressed directly by the database.

2. Different groups of information, or tables, must be joined in many cases
to retrieve data.

3.8. Bring out the reasons, why relational model became more popular?

1. Relational model was based on strong mathematical background.
2. Relational model used the power of mathematical abstraction. Operations

do not require user to know storage structures used.
3. Strong mathematical theory provides tool for improving design.
4. Basic structure of the relation is simple, easy to understand and imple-

ment.

3.9. A union, intersection or difference can only be performed between two
relations if they are type compatible. What is meant by type compatibility?
Give an example of two type compatible and two nontype compatible rela-
tions?

Two relations are type compatible if they have same set of attributes.
Example of two type compatible relations is:

Men {<name:varchar>, <dob:date>, <address:varchar>}
Women {<name:varchar>, <dob:date>, <address:varchar>}
Example of two relations which are nontype compatible is:
Husband {<name:varchar>, <dob:date>, <salary: number>}
Wife {<name:varchar>, <dob:date>, <address:varchar>}

3.10. What are the advantages of QBE?

QBE can be considered as GUI (Graphical User Interface) based on domain
calculus. QBE allows users to key in their input requests by filling in empty
tables on the screen, and the system will also display its response in tabular
form. QBE is user-friendly because the users are not required to formulate
sentences for query requests with rigid query-language syntax.

110 3 Relational Model

3.11. What do you understand by domain integrity constraint?

The domain integrity constraints are used to specify the valid values that a
column defined over the domain can take. We can define the valid values by
listing them as a set of values (such as an enumerated data type in a strongly
typed programming language), a range of values, or an expression that accepts
the valid values.

3.12. What do you understand by “safety of expressions”?

It is possible to write tuple calculus expressions that generate infinite relations.
For example {t/∼t ε R} results in an infinite relation if the domain of any
attribute of relation R is infinite. To guard against the problem, we restrict
the set of allowable expressions to safe expressions.

3.13. What are “quantifiers”? How will you classify them?

Quantifiers are words that refer to quantities such as “some” or “all” and tell
for how many elements a given predicate is true. A predicate is a sentence that
contains a finite number of variables and becomes a statement when specific
values are substituted for the variables. Quantifiers can be broadly classified
into two types (1) Universal Quantifier and (2) Existential Quantifier.

4

Structured Query Language

Learning Objectives. This chapter focuses on how to access the data within a
DBMS. An introduction to SQL, an international standard language for manipula-
ting relational database is given in this chapter. After completing this chapter the
reader should be familiar with the following concepts in SQL.

– Evolution and benefits of SQL
– Datatypes in SQL
– SQL commands to create a table, inserting records into the table, and extracting

information from the table
– Aggregate functions, GROUP BY clause
– Implementation of constraints in SQL using CHECK, PRIMARY KEY,

FOREIGN KEY, NOT NULL, UNIQUE commands
– Concepts of sub query, view, and trigger

4.1 Introduction

SQL stands for “Structured Query Language.” The Structured Query Lan-
guage is a relational database language. By itself, SQL does not make a DBMS.
SQL is a medium which is used to communicate to the DBMS. SQL commands
consist of English-like statements which are used to query, insert, update,
and delete data. English-like statements mean that SQL commands resemble
English language sentences in their construction and use and therefore are
easy to learn and understand.

SQL is referred to as nonprocedural database language. Here nonproce-
dural means that, when we want to retrieve data from the database it is
enough to tell SQL what data to be retrieved, rather than how to retrieve it.
The DBMS will take care of locating the information in the database.

Commercial database management systems allow SQL to be used in two
distinct ways. First, SQL commands can be typed at the command line
directly. The DBMS interprets and processes the SQL commands immedi-
ately, and the results are displayed. This method of SQL processing is called
interactive SQL. The second method is called programmatic SQL. Here, SQL

S. Sumathi: Structured Query Language, Studies in Computational Intelligence (SCI) 47,

111–212 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

112 4 Structured Query Language

statements are embedded in a host language such as COBOL, FORTRAN, C,
etc. SQL needs a host language because SQL is not a really complete computer
programming language as such because it has no statements or constructs that
allow branch or loop. The host language provides the necessary looping and
branching structures and the interface with the user, while SQL provides the
statements to communicate with the DBMS.

Some of the features of SQL are:

– SQL is a language used to interact with the database.
– SQL is a data access language.
– SQL is based on relational tuple calculus.
– SQL is a standard relational database management language.
– The first commercial DBMS that supported SQL was Oracle in 1979.
– SQL is a “nonprocedural” or “declarative” language.

4.2 History of SQL Standard

The origin of the SQL language date back to a research project conducted by
IBM at their research laboratories in San Jose, California in the early 1970s.
The aim of the project was to develop an experimental RDBMS which would
eventually lead to a marketable product. At that time, there was a lot of inter-
est in the relational model for databases at the academic level, in conferences
and seminars. IBM, which already had a large share of the commercial data-
base market with hierarchical and network model DBMSs, realized that the
relational model would dominate the future database products. The project
at IBM’s San Jose labs was started in 1974 and was named System R. A
language called SEQUEL (Structured English QUEry Language) was chosen
as the relational database language for System R. A version of SEQUEL was
developed at the IBM San Jose research facilities and tested with college stu-
dents.

In November 1976, specifications for SEQUEL2 were published. In 1980
minor revisions were made to SEQUEL, and it was renamed “SQL.” SEQUEL
was renamed to SQL because the name SEQUEL had already been used for
hardware product. In order to avoid confusion and legal problems SEQUEL
was renamed to SQL. In the first phase of the System R project, researchers
concentrated on developing a basic version of the RDBMS. The main aim
at this stage was to verify that the theories of the relational model could be
translated into a working, commercially viable product. This first phase was
successfully completed by the end of 1975, and resulted in a single-user DBMS
based on the relational model. The System R project was completed in 1979.
The theoretical work of the System R project resulted in the development
and release of IBM’s first commercial relational database management system
in 1981. The product was called SQL/DS (Structured Query Language/Data
Store) and ran under the DOS/VSE operating system environment. Two years
later, IBM announced a version of SQL/DS for VM/CMS operating system.

4.3 Commands in SQL 113

In 1983, IBM released a second SQL-based RDBMS called DB2, which ran
under the MVS operating system. DB2 quickly gained widespread popularity
and even today, versions of DB2 form the basis of many database systems
found in large corporate data-centers. During the development of System R
and SQL/DS, other companies were also at work creating their own relational
database management systems. Some of them, Oracle being an example, even
implemented SQL as the relational database language for their DBMSs con-
currently with IBM. Later on, SQL language was standardized by ANSI and
ISO. The ANSI SQL standards were first published in 1986 and updated in
1989, 1992, and 1999.

4.2.1 Benefits of Standardized Relational Language

The main advantages of standardized language are given below.

1. Reduced training cost
2. Enhanced productivity
3. Application portability

Application portability means applications can be moved from
machine to machine when each machine uses SQL.

4. Application longevity
A standard language tends to remain so for a long time, hence there
will be little pressure to rewrite old applications.

5. Reduced dependence on a single vendor

SQL language development is given in a nutshell below:

1. In 1970 E.F. Codd of IBM released a paper “A relational model of data for
large shared data banks.” IBM started the project System R to demon-
strate the feasibility of implementing the relational model in a database
management system. The language used in system R project was SE-
QUEL. SEQUEL was renamed SQL during the project, which took place
from 1974 to 1979.

2. The first commercial RDBMS from IBM was SQL/DS. It was available in
1981.

3. Oracle from relational software (now Oracle corporation) was on the mar-
ket before SQL/DS, i.e., 1979.

4. Other products included INGRES from relational Technology Sybase from
Sybase, Inc. (1986), DG/SQL from Data General Corporation (1984).

4.3 Commands in SQL

SQL commands can be classified in to three types:

1. Data Definition Language commands (DDL)
2. Data Manipulation Language commands (DML)
3. Data Control Language commands (DCL)

114 4 Structured Query Language

DDL

DDL commands are used to define a database, including creating, altering,
and dropping tables and establishing constraints.

DML

DML commands are used to maintain and query a database, including up-
dating, inserting, modifying, and querying data.

DCL

DCL commands are used to control a database including administering privi-
leges and saving of data. DCL commands are used to determine whether a
user is allowed to carry out a particular operation or not. The ANSI standard
groups these commands as being part of the DDL.

The classification of commands in SQL is shown below.

4.4 Datatypes in SQL

In relational model the data are stored in the form of tables. A table is com-
posed of rows and columns. When we create a table we must specify a datatype
for each of its columns. These datatypes define the domain of values that
each column can take. Oracle provides a number of built-in datatypes as well
as several categories for user-defined types that can be used as datatypes.
Some of the built-in datatypes are string datatype to store characters, num-
ber datatype to store numerical value, and date and time datatype to store
when the event happened (history, date of birth, etc.).

4.4 Datatypes in SQL 115

STRING

In string we have CHAR and VARCHAR datatypes. Character datatype store
data which are words and free-form text, in the database character set.

CHAR Datatype

The CHAR datatype specifies a fixed-length character string. The syntax of
CHAR datatype declaration is:

CHAR (n) – Fixed length character data, “n” characters long.

Here “n” specifies the character length. If we insert a value that is shorter
than the column length, then Oracle blank-pads the value to column length.
If we try to insert a value that is too long for the column then Oracle returns
error message.

VARCHAR2 Datatype

The VARCHAR2 datatype specifies a variable-length character string. The
syntax of VARCHAR2 datatype declaration is:

VARCHAR2 (n) – Variable length character of “n” length.

Here “n” specifies the character length.

VARCHAR vs. VARCHAR2

The VARCHAR datatype behaves like VARCHAR2 datatype in the current
version of Oracle.

In order to justify the above statement, let us create a table CHAMPION,
which refers to Wimbledon Champions. The attributes of the table CHAM-
PION are Name, Nation, Year (the year in which the sportsman has won the
title). For our example, let us use the datatype VARCHAR for the attribute
Name and VARCHAR2 for the datatype Nation. The SQL command to create
CHAMPION is shown in Fig. 4.1.

Now let us try to see the description of the table. The description of the
table is shown in Fig. 4.2.

From Fig. 4.2, it is clear that both name and nation are stored as VAR-
CHAR2(12). This means that VARCHAR datatype in the Oracle 8i version
behaves the same as VARCHAR2.

NUMBER Datatype

The NUMBER datatype stores zero, positive, and negative fixed and floating
point numbers.

116 4 Structured Query Language

Fig. 4.1. CHAR and VARCHAR2 datatype

Fig. 4.2. Table description

The syntax to store fixed-point number is NUMBER (p, q) where “p” is
the total number of digits and “q” is the number of digits to the right of
decimal point.

The syntax to specify an integer is NUMBER (p).

DATE Datatype

The DATE datatype is used to store the date and time information. For each
DATE value, Oracle stores the century, year, month, date, hour, minute, and
second information. The ANSI date literal contains no time portion, and must
be specified in YYYY-MM-DD format where Y stands for Year, M for month,
and D for date.

TIME STAMP Datatype

The TIME STAMP datatype is used to store both date and time. It stores
the year, month, and day of the DATE datatype, and also hour, minute, and
second values.

LOB Datatype

Multimedia data like sound, picture, and video need more storage space. The
LOB datatypes such as BLOB, CLOB, and BFILE allows us to store large
block of data.

4.5 Data Definition Language (DDL) 117

BLOB Datatype

The BLOB datatype stores unstructured binary data in the database. BLOBs
can store up to 4 GB of binary data.

CLOB Datatype

The CLOB datatype can store up to 4 GB of character data in the database.

BFILE Datatype

The BFILE datatype stores unstructured binary data in operating system
files outside the database. A BFILE can store up to 4 GB of data.

4.5 Data Definition Language (DDL)

The Data Definition Language is

– Used to define schemas, relations, and other database structures
– Also used to update these structures as the database evolves

Examples of Structure Created by DDL

The different structures that are created by DDL are Tables, Views, Seque-
nces, Triggers, Indexes, etc.

1. Tables
The main features of table are:

– It is a relation that is used to store records of related data. It is a
logical structure maintained by the database manager.

– It is made up of columns and rows.
– At the intersection of every column and row there is a specific data

item called a value.
– A base table is created with the CREATE TABLE statement and is

used to hold persistent user data.
2. Views

The basic concepts of VIEW are:
– It is a stored SQL query used as a “Virtual table.”
– It provides an alternative way of looking at the data in one or more

tables.
– It is a named specification of a result table. The specification is a

SELECT statement that is executed whenever the view is referenced
in an SQL statement. Consider a view to have columns and rows just
like a base table. For retrieval, all views can be used just like base
tables.

118 4 Structured Query Language

– When the column of a view is directly derived from the column of
a base table, that column inherits any constraints that apply to the
column of the base table. For example, if a view includes a foreign key
of its base table, INSERT and UPDATE operations using that view
are subject to the same referential constraints as the base table. Also,
if the base table of a view is a parent table, DELETE and UPDATE
operations using that view are subject to the same rule as DELETE
and UPDATE operations on the base table.

3. Sequences
– A sequence is an integer that varies by a given constant value. Typi-

cally used for unique ID assignment
4. Triggers

– Trigger automatically executes certain commands when given condi-
tions are met.

5. Indexes
– Indexes are basically used for performance tuning. Indexes play a cru-

cial role in fast data retrieval.

Create Table Command

– The CREATE TABLE command is used to implement the schemas of
individual relations.

Steps in Table Creation

1. Identify datatypes for attributes
2. Identify columns that can and cannot be null
3. Identify columns that must be unique
4. Identify primary key–foreign key mates
5. Determine default values
6. Identify constraints on columns (domain specifications)
7. Create the table

Syntax

CREATE TABLE table name
(column-name1 data-type-1 [constraint],
column-name2 data-type-2 [constraint],
column-nameN data-type-N [constraint]
);

Example Table

See Table 4.1.

4.5 Data Definition Language (DDL) 119

Table 4.1. Peaks of the world

Serial Peak Mountain Place Height
number range

1 Everest Himalayas Nepal 8,848
2 Godwin Karakoram India 8,611

Austin
3 Kanchenjunga Himalayas Nepal 8,579

Fig. 4.3. Table creation example

Syntax to Create the Table

The general syntax to create the table is given below. Here the key words are
shown in bold and capital letters.

CREATE TABLE table name
(column name1 data type (size),
column name2 data type (size),
column name N data type (size));

Example

The SQL command to define Table 4.1 is shown in Fig. 4.3. In this example
the name of the table is peaks. The table has five columns which are serial
number, name of the mountain (peak), height, place where the mountain is
situated, range of the mountain.

To see the description of the table

To see the description of the table we have created we have the command
DESC. Here DESC stands for description of the table. The syntax of DESC
command is:

120 4 Structured Query Language

Fig. 4.4. Table description

Fig. 4.5. Inserting values into the table

Syntax: DESC table name;

The DESC command returns the attributes (columns) of the table, the
datatype associated with the column, and also any constraint (if any) im-
posed on the column. Figure 4.4 shows the description of the table PEAKS.

To insert values into the table

Syntax: Insert into <tablename> values (‘&columnname1’,
‘&columnname2’, &col3,. . .);

(e.g.) The SQL syntax and the corresponding output are shown in Fig. 4.5.
Now to insert the next set of values, use the slash as shown in Fig. 4.6.

To view the entire table

The SQL syntax to see all the columns of the table is:

SELECT * FROM table name;

Here the asterisk symbol indicates the selection of all the columns of the table.

4.6 Selection Operation 121

Fig. 4.6. Inserting successive values into the table

Fig. 4.7. SELECTION of all columns of the table

Example

The SQL command to see all the columns of the table PEAKS and the cor-
responding output are shown in Fig. 4.7.

SQL> select * from peaks;

4.6 Selection Operation

Selection operation can be considered as row wise filtering. We can select
specific row(s) using condition.

Syntax of SELECTION Operation

SELECT * FROM table name
WHERE condition;

122 4 Structured Query Language

Here the
condition
chosen
is the
height of
the peaks

Fig. 4.8. SELECTION operation

Example of SELECTION operation

In the example Table 4.1, there are three rows. Let us filter two rows so
that only one row will appear in the result. Here the condition used to filter
the rows is the “height” of the PEAKS. The SQL command to implement
SELECTION operation and the corresponding output are shown in Fig. 4.8.

From Fig. 4.8 it is clear that even though there are three rows in the
Table 4.1, it is reduced to one using the condition the height of the peaks.
This operation which filters the rows of the relation is called SELECTION.

4.7 Projection Operation

The projection operation performs column wise filtering. Specific columns are
selected in projection operation.

Syntax of PROJECTION Operation

SELECT column name1, column name2, Column name N FROM table
name;

If all the columns of the table are selected, then it cannot be considered
as PROJECTION.

The SQL command to perform PROJECTION operation on the relation
PEAKS and the corresponding results are shown in Fig. 4.9.

From Fig. 4.9, it is clear that only three columns are selected in the result,
even though there are five columns in the Table 4.1.

SELECTION and PROJECTION Operation

We can perform both selection and projection operation in a relation. If we
combine selection and projection operation means naturally we are restricting
the number of rows and the columns of the relation.

4.7 Projection Operation 123

Fig. 4.9. PROJECTION operation

Fig. 4.10. SELECTION and PROJECTION operation

Syntax for Selection and Projection

SELECT column name1, column name 2. column name N
FROM table name
WHERE condition;

The selection and projection operation applied to the peaks relation is
shown in Fig. 4.10.

From Fig. 4.10, we can observe that the selection operation is based on
the “place” of the peaks. As a result only one row is obtained as the result.
Because of projection operation only three columns are obtained in the result
as shown in Fig. 4.10.

124 4 Structured Query Language

4.8 Aggregate Functions

SQL provides seven built-in functions to facilitate query processing. The
seven built-in functions are COUNT, MAX, MIN, SUM, AVG, STDDEV,
and VARIANCE. The uses of the built-in functions are shown in Table 4.2.

4.8.1 COUNT Function

The built-in function returns the number of rows of the table. There are varia-
tions of COUNT function. First let us consider COUNT (*) function. In order
to understand the COUNT (*) function consider the relation PERSON SKILL
as shown in Table 4.3, the relation PERSON has only two columns, name of
the person and skills associated with the person. It is to be noted that some
persons may have more than one skill and some persons may not have any
skills.

From Table 4.3, we can observe that the table PERSON SKILL has six
rows and two columns and the person Ashok has more than one skill and Sam
has no skill hence a NULL is inserted against Sam.

(A) COUNT (*) Function

The syntax of Count (*) function is:

SELECT COUNT (*)
FROM table name;

Table 4.2. Built-in functions

Serial Built-in Use
number function

1 COUNT to count the number of rows of the
relation

2 MAX to find the maximum value of the
attribute (column)

3 MIN to find the minimum value of the
attribute

4 SUM to find the sum of values of the
attribute provided the datatype of the
attribute is number

5 AVG to find the average of n values,
ignoring null values

6 STDDEV standard deviation of n values
ignoring null values

7 VARIANCE variance of n values ignoring null
values

4.8 Aggregate Functions 125

Table 4.3. PERSON SKILL

Name Skill

Ashok fitter
Ashok welder
Kumar piping
Rajan electrician
Ravi turner
Sam NULL

Fig. 4.11. PERSON table

Now let us try to view the table PERSON, and the contents of the table
PERSON as shown in Fig. 4.11. From this figure, it is clear that the number
of rows of the table is six.

Now let us use the COUNT (*) function to view the number of rows of the
relation PERSON. The SQL command and the corresponding output are
shown in Fig. 4.12.

From Fig. 4.12, we can observe that the number of rows returned is
six, which means that the COUNT(*) function takes into account the NULL
values.

(B) COUNT (attribute name) Function

A slight variation of COUNT (*) function is COUNT (attribute name) func-
tion. The syntax of this function is given by:

SELECT COUNT (attribute name)
FROM table name;

126 4 Structured Query Language

Fig. 4.12. COUNT (*) Function

Fig. 4.13. SELECT (attribute name) command

The application of COUNT (attribute name) to the PERSON table and the
corresponding output are shown in Fig. 4.13.

From Fig. 4.13, it is clear that count (attribute name) command will take
NULL values into account as a result the number of rows selected is six.

(C) COUNT (DISTINCT attribute name)

The COUNT (DISTINCT attribute name) command returns the number of
rows of the relation, by eliminating duplicate values. The syntax of COUNT
(DISTINCT attribute name) is:

SELECT COUNT (DISTINCT attribute name)
FROM table name;

The usage of COUNT (DISTINCT attribute name) in the table PERSON
and the corresponding output is shown in Fig. 4.14.

It is worthwhile to note that the DISTINCT command will not take into
consideration the NULL value. In order to prove this, let us select the attribute
be skill rather than the attribute name. The result of choosing the attribute
as skill is show in Fig. 4.15.

4.8 Aggregate Functions 127

Fig. 4.14. COUNT (DISTINCT attribute name)

Fig. 4.15. COUNT command

4.8.2 MAX, MIN, and AVG Aggregate Function

In order to understand MAX, MIN, and AVG aggregate function consider the
relation CONSUMER PRODUCTS. The relation CONSUMER PRODUCTS
has two attributes, the name of the product and the price associated with the
product as shown in Table 4.4.

(A) MAX Command

The MAX command stands for maximum value. The MAX command
returns the maximum value of an attribute. The syntax of MAX command is:

SELECT MAX (attribute name)
FROM table name;

Let us apply the MAX command to Table 4.4 to get the maximum price
of the product, the SQL command and the corresponding output are shown
in Fig. 4.16.

Let us try to find the name of the product which has maximum price by
using PROJECTION operation and the IN operator as shown in Fig. 4.17.

128 4 Structured Query Language

Table 4.4. Consumer product

Name Price (in Rs.)

TV 15,000
refrigerator 10,000
washing machine 17,000
mixie 3,500

Fig. 4.16. MAX command

Fig. 4.17. Maximum price product name

(B) MIN Command

The MIN command is used to return the minimum value of an attribute. The
syntax of MIN command is same as MAX command.

Syntax of MIN Command is

SELECT MIN (attribute name)
FROM table name;

The use of MIN command and the corresponding result are shown in
Fig. 4.18.

From Table 4.4 the minimum price of the product is 3,500 which are re-
turned as the result.

4.8 Aggregate Functions 129

Fig. 4.18. MIN command applied to Table 4.4

Fig. 4.19. Minimum price product name

To know the name of the product which has minimum price, we can use
IN operator as shown in Fig. 4.19.

From Fig. 4.19, it is clear that we can use IN operator along with PRO-
JECTION operation to get the name of the product with minimum price.

(C) AVG Command

The AVG command is used to get the average value of an attribute. The
syntax of AVG command is:

SELECT AVG (attribute name)
FROM table name;

Let us apply AVG command to the Table 4.4, to get the average price of
the product. The result of applying AVG command is shown in Fig. 4.20. The
average price of the product is (15, 000 + 10, 000 + 17, 000 + 3, 500)/4 which
is 11,375 as shown in Fig. 4.20.

130 4 Structured Query Language

Fig. 4.20. AVG command

(D) STDDEV Function

The STDDEV function is used to compute the standard deviation of the
attribute values. The syntax of the standard deviation function is:

SELECT STDDEV (attribute name)
FROM table name;

The STDDEV function applied to the relation CONSUMERPRODUCT
(Table 4.4) is shown in Fig. 4.21.

(E) VARIANCE Function

The variance function is used to get the variance of the attribute values. The
syntax of VARIANCE function is:

VARIANCE (attribute name)
FROM table name;

Let us apply the VARIANCE to the consumer product table; the result
is shown in Fig. 4.22. We know that the variance is the square of the stan-
dard deviation. We have obtained the standard deviation from Fig. 4.21 as
6019.0669; the square of this value is approximately 36229167 which is ob-
tained in Fig. 4.22.

(F) GROUP BY Function

The GROUP BY clause is used to group rows to compute group-statistics. It
is to be noted that when the GROUP BY clause is present, then the SELECT
clause may include only the columns that appear in the GROUP BY clause
and aggregate functions.

4.8 Aggregate Functions 131

Fig. 4.21. STDDEV function

Fig. 4.22. Variance function

In order to understand the GROUP BY Function let us consider the table
PLACEMENT as shown in Table 4.5 which refers to the number students
placed in different companies. The table PLACEMENT consists of three at-
tributes (columns) which are company name, department name which refers
to the curriculum stream and strength which refers to the number of students
placed.

Now we want to know the total number of students placed in each branch.
For this we can use the GROUP BY command. The syntax of GROUP BY
command is:

SELECT attribute name, aggregate function
FROM table name
GROUP BY attribute name;

132 4 Structured Query Language

Table 4.5. Placement

Company name Department Strength

TCS CSE 54
TCS ECE 40
TCS EEE 32
GE CSE 5
GE ECE 8
GE EEE 20
L&T CSE 12
L&T ECE 20
L&T EEE 18
IBM CSE 24
IBM ECE 20
IBM EEE 12

It is to be noted that the attribute name after SELECT command should
match with the attribute name after GROUP BY command. The GROUP
BY command which is used to find the total number of students placed in
each branch is shown in Fig. 4.23.

(G) HAVING Command

The HAVING command is used to select the group. In other words HAVING
restricts the groups according to a specified condition. The syntax of HAVING
command is:

SELECT attribute name, aggregate function
FROM table name
GROUP BY attribute name
HAVING condition;

Let us use the HAVING command as shown in Fig. 4.24 to find the details
of the department in which more than 90 students got placement.

From Fig. 4.24, we are able to get the details of the department where
more than 90 students were placed.

(H) SORTING of Results

The SQL command ORDER BY is used to sort the result in ascending or
descending order.

The table used to understand ORDER BY command is BESTCRICK-
ETER. The table BESTCRICKETER as shown in Table 4.6 gives the details
of best batsman of the world. The attributes of the BESTCRICKETER are
the name of the batsman, the country they belong to, and the number of
centuries they scored.

4.8 Aggregate Functions 133

Fig. 4.23. GROUP BY command

Fig. 4.24. GROUP BY and HAVING command

Table 4.6. BESTCRICKETER

Name Country Centuries

Gavaskar India 34
Sobers Westindies 26
Chappel Australia 24
Bradman Australia 29
Border Australia 27
Gooch England 20

Case 1: The syntax of ORDER BY command to arrange the result in ascend-
ing order is:

SELECT *
FROM table name
ORDER BY attribute name ASC;

134 4 Structured Query Language

Fig. 4.25. Sorting in ascending order

Here ASC stands for ascending order.
Let us apply the command to the Table 4.6, the result of using ORDER

BY command and the corresponding results are shown in Fig. 4.25.

Case 2: The syntax to arrange the result in descending order is:

SELECT *
FROM table name
ORDER BY attribute name DESC.

Here DESC stands for descending order.
Let us apply this DESC keyword to arrange the centuries in descending or-

der. The SQL command and the corresponding output are shown in Fig. 4.26.

Case 3: If we do not specify as ASC or DESC after ORDER BY key word,
by default, the results will be arranged in ascending order.

From Fig. 4.27, it is evident that if nothing is specified as ASC or DESC
then by default, the results will be displayed in ascending order.

(I) Range Queries Using Between

The SQL has built-in command BETWEEN which is used to perform range
queries.

Let us try to find the details of the batsman who has scored centuries
greater than 20 and less than 30. The SQL command to accomplish this task
and the corresponding output are shown in Fig. 4.28.

4.9 Data Manipulation Language 135

Fig. 4.26. Sorting in descending order

Fig. 4.27. Ascending order

4.9 Data Manipulation Language

The data manipulation language is used to add, update, and delete data in the
database. The SQL command INSERT is used to add data into the database,
the SQL command UPDATE is used to modify the data in the database, and
the SQL command DELETE is used to delete data in the database. Here the
term database refers to the table.

136 4 Structured Query Language

Fig. 4.28. Range query using BETWEEN command

Fig. 4.29. Inserting a new row to the table

4.9.1 Adding a New Row to the Table

The INSERT command is to add new row to the table. The syntax of INSERT
command is:

INSERT INTO table name
VALUES (‘&column1-name’, ‘&column2-name’. . . &columnN-name);

It is to be noted that apostrophe is not required for numeric datatype.
Let us try to insert a new row to the Table 4.6 (which has already six

rows) to include the little master Sachin Tendulkar. The SQL command and
the corresponding output are shown in Fig. 4.29.

To verify whether the new row has been added to the Table 4.6 which
had six rows before inserting the new row, let us issue SELECT command as
shown in Fig. 4.30.

From Fig. 4.30, it is clear that little master Sachin Tendulkar record being
added to the best cricketer table so that the total number of rows is seven.

4.9 Data Manipulation Language 137

Fig. 4.30. Modified table

Fig. 4.31. Table updation using UPDATE command

4.9.2 Updating the Data in the Table

The data in the table can be updated by using UPDATE command. The
syntax of the UPDATE command is:

UPDATE table name
SET attribute value=new value
WHERE condition;

Let us apply this UPDATE command to the table BESTCRICKETER.
The motive is to modify the number of centuries hit by Sachin Tendulkar to
35. The corresponding SQL command and the output are shown in Fig. 4.31.

138 4 Structured Query Language

Fig. 4.32. Updated table BESTCRICKETER

To see whether the table has been updated or not use SELECT statement
to view the content of the table BESTCRICKETER. The updated table is
shown in Fig. 4.32.

4.9.3 Deleting Row from the Table

The DELETE command in SQL is used to delete row(s) from the table. The
syntax of DELETE command is

DELETE FROM table name
WHERE condition;

Let us delete the record of a particular player (say Gooch) from the table
BESTCRICKETER. The SQL command to delete a particular row and the
corresponding output are shown in Fig. 4.33.

To verify whether the player Gooch record has been deleted, let us use
SELECT command to view the content of the table as shown in Fig. 4.34. From
this figure it is evident that the player Gooch record has been successfully
deleted.

4.10 Table Modification Commands

We can use ALTER command to alter the structure of the table, that is we
can add a new column to the table. It is also possible to delete the column
from the table using DROP COLUMN command.

4.10 Table Modification Commands 139

Fig. 4.33. Deletion of row from table

Fig. 4.34. Modified table

4.10.1 Adding a Column to the Table

We can add a column to the table by using ADD command. The syntax to
add a new column to the table is:

ALTER TABLE table name
ADD column name datatype;

Example to Add a New Column

Let us consider the Table 4.6 BESTCRICKETER, which has three columns
which are name of the player, country the player belong to, and the cen-
turies which refer to the number of centuries scored by the player. Now try

140 4 Structured Query Language

to add one more column to the table BESTCRICKETER. The new column
to be added is age which refers to player age. The SQL command to add the
new column age and the corresponding output are shown in Fig. 4.35.

To see the description of the table after adding the new column age to the
table bestcricketer, let us use DESC command as shown in Fig. 4.36.

From Fig. 4.36 we can observe that a new column age of datatype number
has been added to the table bestcricketer.

After successfully inserting the column age, we will be interested to know
the content of the table to see any value is assigned to the column age.
Figure 4.37 shows the content of the table after adding a new column.

From Fig. 4.37, it is clear that the table already contains rows when the
column age is added, then the new column age is initially null for all the
rows.

To Insert Values into the New Column

Data can be inserted to the newly added column (in our example it is age) by
using UPDATE command.

For example, we want to insert the age of Sachin Tendulkar to be 33. This
is done using UPDATE command as shown in Fig. 4.38.

Fig. 4.35. Adding a column to the table

Fig. 4.36. Table descriptions after the addition of new column

4.10 Table Modification Commands 141

Fig. 4.37. Content of the table after the insertion of new column

Fig. 4.38. Insertion of data to the new column age

To verify whether the age of sachintendulkar has been added as 33, see
Fig. 4.39.

4.10.2 Modifying the Column of the Table

We can modify the width of the datatype of the column by using ALTER and
MODIFY command. The syntax to change the datatype of the column is:

ALTER table name
MODIFY column-name datatype;

Example to Modify the Width of the Datatype of the Column

For example, we want to modify the width of the datatype age which is
three as shown in Fig. 4.36 to four. The SQL command and the corresponding
output are shown in Fig. 4.40.

142 4 Structured Query Language

Fig. 4.39. Modified table

Fig. 4.40. Modified width of the datatype

From Fig. 4.40 we can observe that the width of the datatype age modified
as four which was three earlier as shown in Fig. 4.36.

4.10.3 Deleting the Column of the Table

The DROP COLUMN command can be used along with the ALTER table
command to delete the column of the table. The syntax to delete the column
from the table is:

ALTER table name
DROP COLUMN column name;

4.11 Table Truncation 143

Example

Let us try to delete the column age from the BESTCRICKETER by using
DROP COLUMN command. The syntax to drop the column and the corre-
sponding output are shown in Fig. 4.41.

After dropping the column age, the description of the table will be as
shown in Fig. 4.42.

From Fig. 4.42, it is evident that the column age is not included in the
table description.

The content of the table after dropping the column age is shown in
Fig. 4.43.

4.11 Table Truncation

The TRUNCATE TABLE command removes all the rows from the table. The
truncate table also releases the storage space used by the table. The syntax
of TRUNCATE command is:

TRUNCATE TABLE table name;

Fig. 4.41. Dropping a column from the table

Fig. 4.42. Table descriptions after dropping the column age

144 4 Structured Query Language

Fig. 4.43. Table content after dropping the column age

Fig. 4.44. Table truncation

Example

Let us try to delete all the rows of the table bestcricketer by issuing TRUN-
CATE TABLE command. The SQL command and the corresponding output
are shown in Fig. 4.44.

After table truncation, if we try to select the rows, what will be the output?
To answer this question, let us try to see the content of the table by using
SELECT command as shown in Fig. 4.45.

4.11 Table Truncation 145

Fig. 4.45. Table content after truncation

Fig. 4.46. Table descriptions after table truncation

From Fig. 4.45, it is clear that all the rows are deleted by issuing TRUN-
CATE TABLE command. After the TRUNCATE TABLE command if we try
to see the description of the table by issuing DESC command as shown in
Fig. 4.46.

From Fig. 4.46, it is clear that the TRUNCATE TABLE command deletes
the content (all rows) of the table but not the table definition.

Note Another way to delete all the rows of the table is to use DELETE
command. The syntax is:

DELETE FROM table name;

4.11.1 Dropping a Table

The definition of the table as well as the contents of the table is deleted by
issuing DROP TABLE command. The syntax of DROP TABLE command is:

DROP TABLE table name;

146 4 Structured Query Language

Example

Let us issue the DROP TABLE command to the table BESTCRICKETER
as shown in Fig. 4.47.

After issuing the DROP TABLE command if we try to see the description
of the table, we will get the result as shown in Fig. 4.48.

From Fig. 4.48 it is clear that DROP TABLE command deletes both the
content and the descriptions of the table.

4.12 Imposition of Constraints

Constraints are basically used to impose rules on the table, whenever a row is
inserted, updated, or deleted from the table. Constraints prevent the deletion
of a table if there are dependencies. The different types of constraints that

Fig. 4.47. Dropping a table

Fig. 4.48. Table descriptions after dropping the table

4.12 Imposition of Constraints 147

can be imposed on the table are NOT NULL, UNIQUE, PRIMARY KEY,
FOREIGN KEY, and CHECK.

Whenever an attribute is declared as NOT NULL then it specifies that
the attribute cannot contain a NULL value.

The UNIQUE constraint specifies that whenever an attribute or set of
attributes are specified as UNIQUE, then the values of the attribute should
be unique for all the rows of the table. For example, consider the Roll number
of the student in the class, every student should have UNIQUE roll number.

PRIMARY KEY constraint is used to identify each row of the table
uniquely.

FOREIGN KEY constraint specifies that the value of an attribute in one
table depends on the value of the same attribute in another table.

CHECK constraint defines a condition that each row must satisfy. Also
there is no limit to the number of CHECK constraints that can be imposed
on a column.

4.12.1 NOT NULL Constraint

If one is very much particular that the column is not supposed to take NULL
value then we can impose NOT NULL constraint on that column. The syntax
of NOT NULL constraint is:

CREATE TABLE table name
(column name1, data-type of the column1, NOT NULL
column name2, data-type of the column2,
column nameN, data-type of the columnN);

The above syntax indicates that column1 is declared as NOT NULL.

Example

Consider the relation PERSON, which has the attributes name of the person,
salary of the person, phone number of the person. Let us try to declare the
column name as NOT NULL. This implies that every person should have
a name. The syntax to declare the column name as NOT NULL is shown in
Fig. 4.49.

From Fig. 4.49, it is clear that the attribute name is declared as NOT
NULL. Now let us try to insert NOT NULL values and NULL value to the
attribute name.
Case 1: Inserting a NOT NULL value to the attribute name.

From Fig. 4.50, it is clear that when we try to insert a NOT NULL name
into the name attribute, the name is included in the relation PERSON1.
Case 2: A NULL value to the attribute name.

From Fig. 4.51, it is clear that when we try to insert a NULL value into
the PERSON1 relation, we get the error message as shown in Fig. 4.51 since
the attribute name is declared as NOT NULL.

148 4 Structured Query Language

Fig. 4.49. NOT NULL constraint

Fig. 4.50. A NOT NULL value to the attribute name

Fig. 4.51. NOT NULL constraint violated

4.12 Imposition of Constraints 149

4.12.2 UNIQUE Constraint

The UNIQUE constraint imposes that every value in a column or set of
columns be unique. It means that no two rows of a table can have duplicate
values in a specified column or set of columns.

Example

In order to understand unique constraint, let us create the table CELL-
PHONE, which has three attributes. The three attributes are model of the
cellphone, make which refers to manufacturer, and the price.

The relation CELLPHONE is created as shown in Fig. 4.52 with unique
constraint on model. When a unique constraint is imposed on the attribute
model, then no two models should have same number.

The values are inserted into the table CELLPHONE. The resulting tables
after inserting the values are shown in Fig. 4.53.

From Fig. 4.53, we can observe that the table CELLPHONE has three
rows.

Case 1: Now let us try to insert a row in the relation CELLPHONE by vio-
lating the UNIQUE constraint, i.e., we are trying to insert a row with model
number 1100 which already exists. The insertion and the corresponding result
are shown in Fig. 4.54. From this figure, we can observe that there is an error
message “unique constraint (SCOTT.SYS C00820) violated.” The reason for
getting this error message is we tried to enter the model (1100) which exists
already in the CELLPHONE relation as shown in Fig. 4.53.

Case 2: Insertion of NULL Value to the Model Attribute. Let us try to insert
a null value to the attribute model. The SQL command to insert a null value
to the attribute model and the corresponding result are shown in Fig. 4.55.

Fig. 4.52. Unique constraint on a column

150 4 Structured Query Language

Fig. 4.53. Values inserted into the table CELLPHONE

Fig. 4.54. Violation of UNIQUE constraint

Difference Between NOT NULL and UNIQUE Constraint

The unique constraint accepts NULL value as shown in Fig. 4.55, whereas the
NOT NULL constraint will not accept NULL values.

Note NOT NULL constraint accepts duplicate values, whereas UNIQUE con-
straint will not accept null values. Moreover when a UNIQUE constraint is im-
posed on an attribute means that attribute can accept NULL values. Whereas
NOT NULL constraint will not accept NULL values.

4.12 Imposition of Constraints 151

Fig. 4.55. Insertion of NULL value into CELLPHONE

4.12.3 Primary Key Constraint

When an attribute or set of attributes is declared as the primary key, then the
attribute will not accept NULL value moreover it will not accept duplicate
values. It is to be noted that “only one primary key can be defined for each
table.”

Example

Consider the relation EMPLOYEE with the attributes ID which refers to
Employee identity, NAME of the employee, and SALARY of the employee.
Each employee will have unique ID hence ID is declared as the primary key
as shown in Fig. 4.56.

From Fig. 4.56, it is clear that the attribute employee ID is declared as the
primary key.

Case 1: Insertion of NULL Value to the Primary Key Attribute.
It is to be noted that the primary key will not take any NULL value.

This is called entity integrity. Now let us try to insert a NULL value to the
employee ID in the SQL syntax, and the corresponding output is shown in
Fig. 4.57. From Fig. 4.57, it is evident that an attribute or set of attributes
declared as primary key will not accept NULL values.

Case 2: Insertion of Duplicate Values into an Attribute Declared as Primary
Key.

152 4 Structured Query Language

Fig. 4.56. Attribute declared as primary key

Fig. 4.57. Inserting NULL value into primary key attribute

When an attribute is declared as primary key, all the values of the attri-
bute should be UNIQUE. The primary key attribute will not accept duplicate
values.

Let us try to insert duplicate values to the attribute employee ID which
is declared as primary key. The SQL command and the corresponding output
are shown in Fig. 4.58.

We got an error message in Fig. 4.54, because we have tried to insert the
employee ID e101 twice. From this we can understand that when an attribute
is declared as primary key, the values of the attribute should be UNIQUE.

4.12 Imposition of Constraints 153

Fig. 4.58. Insertion of duplicate values to an attribute declared as primary key

Difference Between UNIQUE and NOTNULL Constraint

The difference between UNIQUE and NOTNULL constraint is given in the
tabular form as

NOTNULL constraint UNIQUE constraint

an attribute declared as NOTNULL
will not accept NULL values

an attribute declared as UNIQUE can
accept NULL values

an attribute declared as NOTNULL
will accept duplicate values

an attribute declared as UNIQUE will
not accept duplicate values

Difference Between UNIQUE and PRIMARY KEY Constraint

The difference between UNIQUE and PRIMARY KEY is given in tabular
form as

154 4 Structured Query Language

Fig. 4.59. Check constraint on an attribute

PRIMARY KEY constraint UNIQUE constraint

an attribute declared as primary
key will not accept NULL values

an attribute declared as UNIQUE will
accept NULL values

only one PRIMARY KEY can be
defined for each table

more than one UNIQUE constraint can
be defined for each table

4.12.4 CHECK Constraint

CHECK constraint is added to the declaration of the attribute. The CHECK
constraint may use the name of the attribute or any other relation or attribute
name may in a subquery. Attribute value check is checked only when the value
of the attribute is inserted or updated.

Syntax of CHECK Constraint

In order to understand check constraint, consider the relation VOTERS. In
India, only those who have completed the age of 19 are eligible to vote. Let
us impose this constraint on age in our relation VOTERS. The VOTERS
relation has the attributes name, which refers to the name of the voter, age
of the voter, address of the voter.

The creation of the table VOTERS with CHECK constraint imposed
on age is shown in Fig. 4.59.

From Fig. 4.59, we can observe that CHECK constraint is imposed on the
attribute age.
Case 1: Insertion of Data Without Violating the Constraint.

Let us try to insert the values into the table VOTERS without violating
the constraint, that is the age of the voter is greater than 19. The SQL syntax
and the corresponding output are shown in Fig. 4.60. From this figure, it is
evident that the data are successfully inserted into the table VOTERS because
the age of the voter is greater than 19.

4.12 Imposition of Constraints 155

Fig. 4.60. Data insertion without violating the constraint

Case 2: Insertion of Data into the Table VOTERS by Violating the CHECK
Constraint.

Now let us try to insert data into the table VOTERS by violating the
CHECK constraint, that is inserting the record of the voter with age less
than 19. The SQL command to insert the data and the corresponding output
are shown in Fig. 4.61.

From Fig. 4.61, we can observe that we try to insert a value which violates
the CHECK constraint, we get error message.

Case 3: CHECK Constraint During Updation of Record.
The content of the VOTER table is given in Fig. 4.62.
For simplicity, there is only one record in the VOTERS table. Now let us

try to update the record by changing the age of the voter to less than 19, as
shown in Fig. 4.63.

From Fig. 4.63, we can observe that it is not possible to update the record
by violating the CHECK constraint.

4.12.5 Referential Integrity Constraint

According to referential integrity constraint, when a foreign key in one rela-
tion references primary key in another relation, the foreign key value must

156 4 Structured Query Language

Fig. 4.61. Data insertion by violating the CHECK constraint

Fig. 4.62. The content of VOTERS table

match with the primary key value. In other words, the referential integrity
says “pointed to” information must exist.

Example

In order to understand referential constraint, consider two relation DEPART-
MENT and EMPLOYEE. Here the DEPARTMENT relation forms the parent
table. The meaning is the DEPARTMENT table contains the primary key. The
relation EMPLOYEE forms the child table. The meaning is the relation EM-
PLOYEE has foreign key which references to primary key in DEPARTMENT
table. Figure 4.64 shows parent–child relationship.

4.12 Imposition of Constraints 157

Fig. 4.63. Updation of record voters by violating CHECK constraint

Fig. 4.64. Primary key and foreign key relationship

In our example, the relation DEPARTMENT is the parent table which
holds the parent table, and the relation EMPLOYEE forms the child table
which has foreign key which references primary key in DEPARTMENT table.
It is to be noted that the parent table should be created first, then the child
table.

DEPARTMENT

DeptID Dname Location

D100 electrical B

D101 civil A

D102 computer C

EMPLOYEE

EID DID Ename

E201 D100 Raman

E202 D101 Ravi

E203 D101 Krishnan

158 4 Structured Query Language

Fig. 4.65. DEPARTMENT table

Fig. 4.66. EMPLOYEE table

The SQL syntax to create the two relations DEPARTMENT and EM-
PLOYEE with primary key and foreign key constraints is shown in Fig. 4.65
and Fig. 4.66, respectively.

Case 1: Now let us try to insert a value into DepartmentID of the employee
table which is not in department table. The department relation has only
three department IDs D100, D101, D102. Now we are trying to insert D103
in the DID (which stands for department ID) of employee table. The SQL
command and the corresponding output are shown in Fig. 4.67.

From Fig. 4.67, it is evident that the values are not able to insert into the
employee table. The reason for not able to insert value into the employee
table is: we have tried to insert the DID (department id) into the employee
table (child table) which is not matching with DeptID (department id) of the
department table (parent table). In other words the foreign key value in the
child table does not match with the primary key value in the parent relation.

The referential integrity rule says that the foreign key value should match
with the primary key value.

Case 2: NULL Value into Foreign Key Attribute.
Now let us try to insert a null value into the foreign key attribute. The

SQL command and the corresponding output are shown in Fig. 4.68.

4.12 Imposition of Constraints 159

Fig. 4.67. Violation of referential integrity

Fig. 4.68. NULL value to the foreign key attribute

From Fig. 4.68, it is evident that NULL value cannot be inserted into
foreign key attribute unless it matches with the primary key attribute.

4.12.6 ON DELETE CASCADE

When the clause ON DELETE CASCADE is included in the child table, and
if a row is deleted from the parent table then the corresponding referenced
value in the child table will also be deleted.

Example

Let us consider the DEPARTMENT (parent table) and EMPLOYEE (child
table) relation. The employee relation is modified as shown in Fig. 4.69. From
this figure, it is clear that we have included the clause ON DELETE CAS-
CADE in the child table.

160 4 Structured Query Language

Fig. 4.69. Modified EMPLOYEE relation

The content of the table DEPARTMENT and EMPLOYEE are shown
below.

DEPARTMENT

DeptID Dname Location

D100 electrical B

D101 civil A

D102 computer C

EMPLOYEE

EID DID Ename

E201 D100 Raman

E202 D101 Ravi

E203 D101 Krishnan

Now let us try to delete the department “Civil” in the DEPARTMENT
table. If we delete the row “civil” in the DEPARTMENT table, what will be
the impact in the EMPLOYEE table?

First the content of employee table is shown in Fig. 4.70. The number of
tuples in the EMPLOYEE relation is three.

Now we are going to delete the department “civil” in the table DE-
PARTMENT. The SQL command and the corresponding output are shown
in Fig. 4.71.

Now let us see the impact of deleting the record “civil” in the child table
which is EMPLOYEE in our case. The modified table EMPLOYEE is shown
in Fig. 4.72.

By carefully analyzing the Figs. 4.71 and 4.72, we can observe that the
record “civil” in the child table (employee) being deleted.

4.12 Imposition of Constraints 161

Fig. 4.70. EMPLOYEE table (child table) before deletion of record in parent table

Fig. 4.71. DEPARTMENT table without “civil” department

If ON DELETE CASCADE clause is included in the child table
means whatever record deleted in the parent table will be deleted in the
child table.

4.12.7 ON DELETE SET NULL

If ON DELETE SET NULL clause is include in the child table means, when-
ever a row in the parent table is deleted, then the corresponding referenced
value in the child table will be set null.

162 4 Structured Query Language

Fig. 4.72. Modified EMPLOYEE table

Fig. 4.73. Modified employee table definition

Example

Let us consider the parent table as DEPARTMENT and the child table as
EMPLOYEE as before. The child table is created with ON DELETE SET
NULL as shown in Fig. 4.73.

The EMPLOYEE table before modification is shown below.

EID DID Ename

E201 D100 Raman

E202 D101 Ravi

E203 D101 Krishnan

4.13 Join Operation 163

Fig. 4.74. Modified table DEPARTMENT

Fig. 4.75. Modified child table (EMPLOYEE)

Now modify the table DEPARTMENT by deleting the “electrical”
department record. The SQL command to delete the record “electrical” and
the corresponding output are shown in Fig. 4.74.

The impact of deleting the record “electrical” in parent table DEPART-
MENT on the child table EMPLOYEE is shown in Fig. 4.75.

From Fig. 4.75, we can observe that a NULL value is there corresponding
to the ID of the “electrical” department. This is due to inclusion of the clause
ON DELETE NULL in the child table (EMPLOYEE).

4.13 Join Operation

Join operation is used to retrieve data from more than one table. Before pro-
ceeding to JOIN operation let us discuss first the Cartesian product. Cartesian
product with suitable selection and projection operation forms different types
of join.

164 4 Structured Query Language

Cartesian Product

If we have two tables A and B, then Cartesian product combines all rows in
the table A with all rows in the table B. If n1 is the number of rows in the
table A and n2 is the number of rows in the table B. Then the Cartesian
product between A and B will have n1 × n2 rows.

Example

In order to understand Cartesian product, let us consider two relations doctor
and nurse. The relation doctor has the attribute ID which refers to identity
of the doctor, name and department. Similarly, the relation nurse has three
attributes NID, which refers to nurse identity, name and department. The
doctor relation is shown in Fig. 4.76.

Similarly the nurse relation is shown in Fig. 4.77.

Fig. 4.76. DOCTOR relation

Fig. 4.77. NURSE relation

4.13 Join Operation 165

From Figs. 4.76 and 4.77 we can observe that the number of rows in doctor
and nurse relation is 4. Now let us try to find the Cartesian product between
the two relations doctor and nurse. The Cartesian product should return 4×3
= 12 rows. The SQL command to perform Cartesian product between the
two relations doctor and nurse and the corresponding output are shown in
Fig. 4.78. From this figure, it is evident that the Cartesian product between
two relations has 12 tuples (rows).

4.13.1 Equijoin

In equijoin, the join condition is based on equality between values in the
common columns. Moreover the common columns appear redundantly in the
result. Equijoins are also called as simple joins or inner joins. The equijoin
between the two relations doctor and nurse (The relations doctor and nurse
are shown in Figs. 4.76 and 4.77, respectively) is shown in Fig. 4.79.

Fig. 4.78. Cartesian product between the relations doctor and nurse

Fig. 4.79. Equijoin between doctor and nurse relation

166 4 Structured Query Language

From Fig. 4.79, it is evident that the join condition is equality condition
on the attribute department. We can also observe that the common columns
appear redundantly in the result.

4.14 Set Operations

The UNION, INTERSECTION, and the MINUS (Difference) operations are
considered as SET operations. Out of these three set operations, UNION,
INTERSECTION operations are commutative, whereas MINUS (Difference)
operation is not commutative. All the three operations are binary operations.
The relations that we are going to consider for UNION, DIFFERENCE, and
MINUS operations are IBM DESKTOP and DELL DESKTOP as shown in
Figs. 4.80 and 4.81, respectively.

4.14.1 UNION Operation

If we have two relations R and S then the set UNION operation contains
tuples that either occurs in R or S or both.

Case 1: UNION command.
The union of two relations IBM DESKTOP, DELL DESKTOP is given

in Fig. 4.80. From Fig. 4.81, it is clear that the UNION command eliminates
duplicate values.

Case 2: UNION ALL command.
The UNION command removes duplicate values. In order to get the du-

plicate values, we can use UNION ALL command. The use of UNION ALL
command and the corresponding results are shown in Fig. 4.83.

Fig. 4.80. IBM DESKTOP

4.14 Set Operations 167

Fig. 4.81. DELL DESKTOP

Fig. 4.82. UNION command

By carefully looking into the Figs. 4.82 and 4.83, the number of tuples
in the Fig. 4.82 is four; whereas the number of tuples in Fig. 4.83 is five.
The difference in two results is due to the fact that UNION command
rejects duplicate values, whereas UNION ALL command includes duplicate
values.

168 4 Structured Query Language

Fig. 4.83. UNION ALL command

Fig. 4.84. INTERSECTION operation

4.14.2 INTERSECTION Operation

The intersection operation returns the tuples that are common to the
two relations. The intersection of the two relations IBM DESKTOP and
DELL DESKTOP is shown in Fig. 4.84.

4.15 View 169

4.14.3 MINUS Operation

If R and S are two union compatible relations then R–S returns the tuples
that are present in R but not in S. S–R returns the tuples that are present in
S but not in R. It is to be noted that MINUS operation is not commutative.
That is R–S # S–R.

Case 1: IBM DESKTOP–DELL DESKTOP.
Let us first determine IBM DESKTOP–DELL DESKTOP. The SQL com-

mand and the corresponding output are shown in Fig. 4.85.
From Fig. 4.85, we can observe that the result contains the tuples that are

present in IBM DESKTOP and not in DELL DESKTOP.

Case 2: DELL DESKTOP–IBM DESKTOP.
Let us try to compute DELL DESKTOP–IBM DESKTOP. The SQL com-

mand and the corresponding output are shown in Fig. 4.86. From Fig. 4.86, it
is clear that the result contains tuple that are present in DELL DESKTOP
but not in IBM DESKTOP.

Note From Figs. 4.85 and 4.86 it is clear that MINUS operation is not com-
mutative.

4.15 View

View is a pseudotable or virtual table. View is called as “pseudotable” because
view does not actually store data. View just displays the data. The data are
derived from one or more base tables. View table can be used like any other
table for querying. View can be considered as a window to the database. The
view can also be considered as customized presentation of data from one or
more tables. It is to be noted that all views are not updatable.

Fig. 4.85. IBM DESKTOP–DELL DESKTOP

170 4 Structured Query Language

Fig. 4.86. DELL DESKTOP–IBM DESKTOP

The Syntax of VIEW is given as

CREATE VIEW view name
AS SELECT attribute list
FROM table(s)
WHERE condition(s)

Case 1: VIEW from a Single Table.
Consider the base table RECORD which gives the record of the student

such as his/her Roll Number, Age, GPA (Grade Point Average), and institu-
tion which refers to the institution where he/she has got the degree (Fig. 4.87).
The base table RECORD is shown below.

RECORD

S.I. No Name Age GPA Institution

1 Anbalagan 22 9.2 PSG

2 Balu 22 9.4 PSG

3 Dinesh 22 8.4 CIT

4 Karthik 21 8.5 REC

5 Kumar 22 8.7 MIT

6 Kishore 22 8.8 MIT

7 Rajan 22 9.1 PSG

8 Lavanya 21 9.1 CIT

4.15 View 171

Fig. 4.87. Base table RECORD

Now we want to create a view by name PLACED, which gives the list
of students placed in a particular organization (say IBM). The attribute
associated with the view PLACED are Name, Age, and Institution. The view
PLACED is shown below.

PLACED

Name Age Institution

Anbalagan 22 PSG

Balu 22 PSG

Rajan 22 PSG

Lavanya 21 CIT

From the table PLACED, it is obvious that only those students with GPA
greater than nine are placed. The SQL command to create the view PLACED
from the base table RECORD and the output are shown in Fig. 4.88. From
Fig. 4.88, it is clear that the view PLACED has only three columns Name,
Age, and Institution.

172 4 Structured Query Language

Fig. 4.88. View PLACED from base table RECORD

4.15.1 Nonupdatable View

Case 1: A view created using DISTINCT clause is usually nonupdatable.

Example

To prove that the view created using DISTINCT clause is nonupdatable,
consider the base relation SAMPLE, which has two attributes Name and
Age. Let us create a view UPSAMPLE from the base relation SAMPLE using
DISTINCT clause. The base relation SAMPLE and the view UPSAMPLE is
shown below:

SAMPLE

Roll No Name Age

1 Anand 20

2 Anandi 19

3 Banu 20

4 Chandran 20

5 Ravi 21

6 Chandran 21

7 Anand 20

4.15 View 173

UPSAMPLE

Name Age

Anand 20

Anandi 19

Banu 20

Chandran 20

Chandran 21

Ravi 21

The SQL command to create the view UPSAMPLE from the base relation
SAMPLE using DISTINCT clause is shown in Fig. 4.89.

The created view UPSAMPLE is shown in Fig. 4.90. Now let us try to
update the view UPSAMPLE, the SQL command to update the view and the
corresponding output are shown in Fig. 4.91.

From Fig. 4.91, it is clear that the view defined by DISTINCT clause is
nonupdatable.

Case 2: It is not possible to update the view if it contains group function or
if it contains group by clause.

Example

In order to prove that the view is nonupdatable if it contains group function
or group by clause, let us consider the base relation BOOKS. The attributes of
the relation BOOKS are author, title, price. The content of the base relation
BOOKS is shown in Fig. 4.92. Now let us define the view COUNTS, which
gives the number of books written by the author. The SQL syntax to create
the view is shown in Fig. 4.93. The contents of the view COUNTS are shown
in Fig. 4.94.

Fig. 4.89. VIEW creation using DISTINCT

174 4 Structured Query Language

Fig. 4.90. Contents of the view UPSAMPLE

Fig. 4.91. Result of update operation in nonupdatable view

Fig. 4.92. The base relation BOOKS

4.15 View 175

Fig. 4.93. View COUNTS from BOOKS

Fig. 4.94. Contents of COUNTS

Try1

First let us try to delete a row from the view COUNTS. The SQL command
to delete a row from the view COUNTS and the corresponding output are
shown in Fig. 4.95. From Fig. 4.95, it is clear that it is not possible to delete
a row from the view if it is created using group function or group by clause.

Try2

Now let us try to update the view COUNTS by modifying the name malvino
to malvinoleech. The SQL command to modify the name in the view COUNTS
and the corresponding output are shown in Fig. 4.96.

176 4 Structured Query Language

Fig. 4.95. Deletion of row in the view COUNTS

From Fig. 4.96, it is clear it is not possible to update the view if it contains
group function or group by clause.

4.15.2 Views from Multiple Tables

Views from multiple tables are termed as complex views, whereas views from
single table are termed as simple views. View from multiple tables is illustrated
as follows:

4.15 View 177

Fig. 4.96. View updation

Example

Let us try to create view from two tables. Here one table is COURSE and
the other table is STAFF. The attribute of the COURSE table are cour-
seID, course name, LectID (which refers to Lecturer Identity number). The
attributes of STAFF table are name, LectID, and position.

STAFF

Name LectID Position

Rajan E121 lecturer
Sridevi E122 lecturer
Jayaraman E123 professor
Navaneethan E124 professor

COURSE

CourseID Course Name LectID

C200 RDBMS E121
C201 GraphTheory E122
C202 DSP E123
C203 OS(Operating System) E124

The view COURSE STAFF is created by selecting course name from
course and Name from staff as shown in Fig. 4.97.

The SQL command to create the view COURSE STAFF from COURSE
and STAFF is shown in Fig. 4.98. From Fig. 4.98 it is evident that the view
COURSE STAFF is created from two tables COURSE and STAFF.

178 4 Structured Query Language

Fig. 4.97. View COURSE STAFF from COURSE and STAFF

Fig. 4.98. VIEW from two tables

Let us try to see the contents of the view COURSE STAFF by using
SELECT command as shown in Fig. 4.99.

Note The view COURSE STAFF is created from two tables, hence it can be
considered as complex views. Complex views are in general not updatable. Let

4.15 View 179

Fig. 4.99. Contents of the view COURSE STAFF

Fig. 4.100. View nonupdatable

us check whether the view COURSE STAFF is updatable or not by trying to
insert tuples into the view COURSE STAFF as shown in Fig. 4.100.

From Fig. 4.100, it is clear that it is not possible to insert tuples into
complex view (COURSE STAFF). Now let us try to update the view
COURSE STAFF by modifying the name Rajan as Siva as shown in
Fig. 4.101.

From Fig. 4.101, it is clear that the complex view (view created from more
than one table) is usually nonupdatable.

4.15.3 View From View

It is possible to create view from another view. This is diagrammatically shown
in Fig. 4.102. From Fig. 4.102, it is clear that the view2 is created from view1
and not from the base table. View1, View2 can be queried similar to the base
table.

180 4 Structured Query Language

Fig. 4.101. Nonupdatable view COURSE STAFF

Fig. 4.102. View from a view

Example

Let us consider base table STAFF as shown in Fig. 4.103, the view ITSTAFF
is created from the base table STAFF (Fig. 4.104). Then the view YOUNGIT-
STAFF is created from the view ITSTAFF (Fig. 4.105). The view ITSTAFF
is shown in Fig. 4.106 and the view YOUNGITSTAFF is shown in Fig. 4.107.

Figure 4.104 shows the SQL command to create the view ITSTAFF from
the base table STAFF. The view ITSTAFF contains only the details of the
staff who belong to the IT department as shown in Fig. 4.104.

The contents of the view YOUNGITSTAFF is shown in Fig. 4.107. We can
observe that the view YOUNGITSTAFF contains only the details of IT staff
whose age is less than 30.

Doubt 1: Whether the view YOUNGSTAFF which is created from another
view ITSTAFF can be queried like the base table?

4.15 View 181

Fig. 4.103. Base table STAFF

Fig. 4.104. View ITSTAFF from base table STAFF

Fig. 4.105. View YOUNGITSTAFF from the view ITSTAFF

182 4 Structured Query Language

Fig. 4.106. Contents of the view ITSTAFF

Fig. 4.107. Contents of the view YOUNGITSTAFF

Answer : Yes. The view YOUNGITSTAFF, which is created from another
view ITSTAFF can be queried like the base table.

Example

Let us consider the query: What is the pay offered to the YOUNGITSTAFF
Radha? The SQL command to answer the query is shown in Fig. 4.108.

From Fig. 4.108, it is clear that the view YOUNGITSTAFF which is cre-
ated from another view ITSTAFF can be queried similar to the base table
STAFF

Doubt 2: If it is possible to make any change in the view ITSTAFF which was
created from the base table STAFF, will it reflect in the base table STAFF.

Answer : Yes, if it is possible to make any change in the view which was
derived from the base table then the change will be reflected in the base
table.

4.15 View 183

Fig. 4.108. Query on YOUNGITSTAFF

Fig. 4.109. Contents of the base table before any updation in the view ITSTAFF

Example

Let us modify the view ITSTAFF by including one row. Before modification
the contents of the base table STAFF is shown in Fig. 4.109.

From Fig. 4.109, we can observe that there are eight rows in the base table
STAFF.

Now let us update the view ITSTAFF by including one row in the view
ITSTAFF. The SQL command to insert the row in the view ITSTAFF is
shown in Fig. 4.110.

Contents of the ITSTAFF after inserting a row are shown in Fig. 4.111.
From Fig. 4.111, we can observe that the new row being included in the IT-
STAFF view.

184 4 Structured Query Language

Fig. 4.110. Insertion of a row into the view ITSTAFF

Fig. 4.111. Content of the view ITSTAFF after inserting a row

Now let us see the content of the base table STAFF to find whether the
change made in the view ITSTAFF is reflected in the base table STAFF. The
content of the base table STAFF is shown in Fig. 4.112.

Comparing Fig. 4.109 with Fig. 4.112 it is clear that one new row being
included in the base table STAFF. This means that the change in the view
will be reflected in the base table.

Doubt 3: If the view ITSTAFF is dropped, then is it possible to get the content
of the view YOUNGITSTAFF which is derived from ITSTAFF?

Answer : For the view YOUNGITSTAFF, the contents are from another view
ITSTAFF. Hence if ITSTAFF is dropped means it is not possible to get the
contents of the view YOUNGITSTAFF.

4.15 View 185

Fig. 4.112. Content of the base table STAFF after modification in the view
ITSTAFF

Fig. 4.113. Dropping the view

Example

Let us drop the view ITSTAFF as shown in Fig. 4.113. Figure 4.114 ensures
that the view ITSTAFF is successfully dropped.

Now let us try to see the content of the view YOUNGITSTAFF which is
derived from the view ITSTAFF. The SQL command to retrieve the contents
of the view YOUNGITSTAFF is shown in Fig. 4.115.

186 4 Structured Query Language

Fig. 4.114. Contents after dropping the view

Fig. 4.115. Contents of YOUNGITSTAFF after dropping the view ITSTAFF

From Fig. 4.115, it is clear that once the view ITSTAFF is dropped then
it is not possible to retrieve the contents of the view YOUNGITSTAFF which
is derived from the view ITSTAFF.

4.15.4 VIEW with CHECK Constraint

It is possible to create view with CHECK constraint. If we create a view with
CHECK constraint, then it is not possible to update the view if the CHECK
constraint is violated.

Example of View with CHECK Constraint

Let us consider the base relation CITIZEN which has the attributes name,
age, and address. Now let us create the view VOTERS from the base relation

4.15 View 187

Fig. 4.116. Contents of base table CITIZEN

Fig. 4.117. View with check option

CITIZEN. We know that, the citizen of India becomes eligible voter if he/she
attains the age of 18. The base relation CITIZEN is shown in Fig. 4.116. The
view VOTER from base relation CITIZEN is shown in Fig. 4.117.

Case 1: Low let us try to insert value into the view voter who is eligible to
vote, that is the age of the voter is greater than 18. The SQL command and
the corresponding output are shown in Fig. 4.118. From Fig. 4.118, it is clear
that the value is successfully inserted into the view VOTER.

Case 2: Let us try to insert a row into the view VOTER by violating the
check constraint (age of the voter is less than 18). The SQL command and
the corresponding output are shown in Fig. 4.119.

4.15.5 Views with Read-only Option

A view can be created with read only option. Such views cannot be modified
using INSERT, DELETE, and UPDATE commands.

188 4 Structured Query Language

Fig. 4.118. Inserting valuable record into the view VOTER

Fig. 4.119. Violation of check constraint

Example

Consider the base table STAFF as shown in Fig. 4.120. Let us create the view
electronicsstaff from the base table staff with readonly option as shown in
Fig. 4.121.

4.15 View 189

Fig. 4.120. Base table STAFF

Fig. 4.121. View with read only option

From Fig. 4.121 it is clear that the view electronicsstaff is created with
read only option. Now we have to check whether the view electronicsstaff is
updatable, that is whether is it possible to INSERT, DELETE and UPDATE
values in the view electronicsstaff. The content of the view electronicsstaff is
shown in Fig. 4.122.

Case 1: INSERTING Values into the Read-Only View.
Let us try to insert values into the view “electronicsstaff.” The SQL com-

mand and the corresponding output are shown in Fig. 4.123.
From Fig. 4.123, it is clear that it is not possible to insert values into a

read-only view.

190 4 Structured Query Language

Fig. 4.122. Contents of the read only view electronicsstaff

Fig. 4.123. Insertion of values into read-only view

Case 2: Deleting value from a read-only view.
Let us try to delete a value (in our case deleting the record of the electron-

icsstaff “usha”) from the read-only view “electronicsstaff,” the SQL command
and the corresponding output are shown in Fig. 4.124.

From Fig. 4.124, it is evident that it is not possible to delete value from
the read-only view.

Case 3: Updating the record of read-only view.
Let us try to update the record of the read-only view “electronicsstaff” by

modifying the age of “usha” to 30. The SQL command to modify the age of
the staff “usha” and the corresponding output are shown in Fig. 4.125.

From Fig. 4.125, it is clear that it is not possible to update the view since
it is read-only.

4.15 View 191

Fig. 4.124. Deleting a tuple from read-only view

Fig. 4.125. Updating the record in read-only view

4.15.6 Materialized Views

A materialized view is a physical copy of the base table with the results
moved to another schema object. Materialized views are also called snapshots,
because they are a kind of photograph of the base table.

Advantage of VIEW

The main advantages of view are improved security, less complexity, better
convenience, and customization.

1. Improved security. We can restrict the user to access on the data that are
appropriate for the user. Hence views provide improved security.

2. Less complexity. A view can simplify queries, by getting data from several
tables into a single table thus transforming multitable queries into a single
table queries.

192 4 Structured Query Language

3. Convenience. A database may contain much information. All the infor-
mation will not be useful to the users. The users are provided with only
the part of the database that is relevant to them rather than the entire
database; hence views provide great convenience to the users.

4. Customization. Views provide a method to customize the appearance of
the database so that the users need not see full complexity of database.
View creates the illusion of a simpler database customized to the needs of
a particular category of users.

Drawback of VIEW

1. If the base table is modified by adding one or more columns then the
columns added will not be available in the view unless it is recreated.

2. When a view is created from the base table, it is to be noted that all the
views are not updatable. Views created from multiple tables are in general
not updatable when there is a group function, a GROUP BY clause, or
restriction operators.

4.16 Subquery

Subquery is query within a query. A SELECT statement can be nested inside
another query to form a subquery. The query which contains the subquery is
called outer query.

Scalar subquery

A scalar subquery returns single row, single column result.

Example of Scalar Subquery

Scalar subquery returns single row single column result. To understand scalar
subquery, consider two relations STUDENT and COURSE. The attributes of
the STUDENT relation are SID, SNAME, AGE, and GPA. The attributes
of COURSE relation are CID (Course ID), CNAME (Course ID), SID (Stu-
dent ID), and INSTRUCTOR (Name of the Instructor). The two relations are
shown below.

STUDENT

SID SNAME AGE GPA

E100 Anbu 21 9.6
E101 Aravind 21 9.2
E102 Balu 21 9.4
E103 Chitra 22 8.8
E104 Sowmya 21 9.8

4.16 Subquery 193

COURSE

CID CNAME SID INSTRUCTOR

C100 RDBMS E100 Rajan

C101 OS E102 Sumathi

C102 DSP E101 Jayaraman

C103 DSP E104 Jayaraman

Query 1: Find the name of the student who has opted for the course RDBMS?
Solution. From the STUDENT and COURSE table, it is clear that only

one student has opted for RDBMS (just for example). We can get the name of
the student using scalar subquery. The SQL command and the corresponding
output are shown in Fig. 4.126.

Query 2: Find the Names of the Student who have Opted for DSP Course
Solution. From the STUDENT and COURSE table, we can observe that

more than one student has opted for DSP course. Here we cannot use scalar
subquery because scalar subquery gives single row and single column result.
But our result has more than one row. First let us try to get by scalar subquery.
The SQL command and the corresponding output are shown in Fig. 4.127.

Fig. 4.126. Scalar subquery

Fig. 4.127. Wrong use of scalar subquery

194 4 Structured Query Language

From Fig. 4.127, it is clear that scalar subquery cannot be used to retrieve
multiple rows or multiple column result.

The solution to get the name of the student who has opted for DSP course
is to use IN operator. The IN operator is true if value exists in the result
of subquery. The SQL command using IN operator and the corresponding
output are shown in Fig. 4.128.

4.16.1 Correlated Subquery

In the case of correlated subquery, the processing of subquery requires data
from the outer query.

EXISTS Operator in Correlated Subquery

The EXISTS operator is used in correlated subquery to find whether a value
retrieved by the outer query exists in the results set of the values retrieved by
the inner query or subquery.

Example of EXISTS Command

Let us consider two tables ORDER1 and PRODUCT. The attributes
(columns) of the table ORDER1 are orderID, quantity, productID. The
attributes of the table PRODUCT are productID, productname, and price.
The contents of the two table ORDER1 and PRODUCT are shown in
Figs. 4.129 and 4.130.

The orderID which gives the order for the car “Maruti Esteem” can be
found using the SQL command EXISTS. The SQL command and the corre-
sponding output are shown in Fig. 4.131.

From Fig. 4.131, we can observe that the data for the inner query require
the data from the outer query.

Fig. 4.128. Subquery to return multiple row result

4.16 Subquery 195

Fig. 4.129. Table order1

Fig. 4.130. Table product

Fig. 4.131. Data retrieval using EXISTS command

Example of NOT EXISTS Operator

In order to understand NOT EXISTS clause, let us consider two relations
EMPLOYEE and DEPENDENT. Here DEPENDENT refers to those who are
dependent on EMPLOYEE. The attributes of EMPLOYEE relation are eid
(employee ID), ename (employee name). The attributes of the DEPENDENT
relation are name (which refers to dependent name) and eid (employee ID).

196 4 Structured Query Language

Fig. 4.132. EMPLOYEE table

Fig. 4.133. DEPENDENT table

The contents of the table EMPLOYEE and DEPENDENT are shown in
Figs. 4.132 and 4.133.

Query: Find the name of the employee who is not having any dependent?
Solution. The SQL command to get the name of the employee who is not

having any dependent and the corresponding output are shown in Fig. 4.134.
The NOT EXISTS clause is used to retrieve the name of the employee

who is not having dependent.

Comparison Operator ALL

The comparison operators that are used in multiple row subqueries are IN,
ANY, ALL. In this section let us discuss the use of ALL comparison operator.
The ALL comparison operator compare value to every value returned by the
subquery.

4.16 Subquery 197

Fig. 4.134. NOT EXISTS command

Example

In order to understand the ALL comparison operator, let us consider the
relation STAFF. The attributes of the staff relation are shown in table STAFF.

STAFF

EMPID EMPNAME DEPTNAME AGE SALARY

C201 Bhaskar Electrical 24 12,500

C202 Ramakrishnan Electronics 44 24,000

C203 Mathew Electronics 43 23,000

C204 Natrajan IT 38 18,500

C205 Krishnan IT 36 17,000

C206 Usha Electronics 40 20,000

Query: Find the name of the employee in Electronics Department who is
getting the maximum salary?

Solution: The SQL command ALL can be used to find the name of the
STAFF in the Electronics who is getting maximum salary. The SQL command
and the corresponding output are shown in Fig. 4.135.

Here the ALL comparison operator is used to retrieve the name of the staff
from a particular department who is getting maximum salary.

Comparison Operator ANY

The ANY operator compares a value to each value returned by a subquery.
Here <ANY means less than maximum

>ANY means more than the minimum

198 4 Structured Query Language

Fig. 4.135. Use of ALL comparison operator

Case 1: <ANY. Let us use the operator <ANY to retrieve the names of the
staff who are getting salary less than the staff who is getting the maximum
salary (in our case it is “ramakrishnan”).

The SQL command to retrieve the names of the staff who are getting salary
less than the staff who is getting the maximum salary is shown in Fig. 4.136.

The SQL command <ANY is used to retrieve the name of the staff who
are getting the salary less than the staff who is getting the maximum salary.
In our case staff “ramakrishnan” of electronics is getting the maximum salary
(refer STAFF table). Our query should return the name of the staff who are
getting salary less than the staff “ramakrishnan.” From Fig. 4.136, it is evident
the name returned by the query are the staff who are getting salary less than
the staff “ramakrishnan.”

Case 2: >ANY Clause. The operator >ANY returns values that are greater
than the minimum value.

Example

Query: Retrieve the name of the staff who are getting salary greater than the
staff who is getting the least salary?

Solution: The SQL operator >ANY can be used to get answer for the
query mentioned above. The SQL command and the corresponding output
are shown in Fig. 4.137.

From the table STAFF it is clear that the staff who is getting the least
salary is “Bhaskar.” We have to get the names of the staff who are getting
salary greater than “Bhaskar.”

From Fig. 4.137, it is clear that the operator >ANY has returned the names
of the staff who are getting salary greater than “Bhaskar.”

4.16 Subquery 199

Fig. 4.136. Use of <ANY clause

Fig. 4.137. Use of >ANY clause

Dual Table

The dual table contains one row and one column. The datatype associated
with the dual table is varchar2(1). In order to know about dual table, we can
issue DESC command as shown in Fig. 4.138.

200 4 Structured Query Language

Fig. 4.138. Description of dual table

Fig. 4.139. Selection from Dual

From Fig. 4.138, it is clear that the name of the column is DUMMY. If we
want to know how many rows that a DUAL table can return, we can issue
SELECT command as shown in Fig. 4.139. From Fig. 4.139, it is clear that the
dual table can return a row. Dual table can be used to compute a constant
expression.

Determining System Date from Dual

It is possible to determine system date from the dual table. The SQL command
and the corresponding output are shown in Fig. 4.140.

We have evaluated the system date from the dual table. It is also possible
to evaluate constant expression using the dual table.

Evaluation of Constant Expression Using DUAL

It is possible to evaluate constant expressions using DUAL table. Some of the
examples of evaluation of constant expressions are shown in Fig. 4.141.

From Fig. 4.141 it is clear that DUAL table can be used to evaluate con-
stant expressions which will give single row output. For our example we have
taken simple mathematical operations like addition, multiplication, division,
and subtraction.

4.17 Embedded SQL 201

Fig. 4.140. System date from dual

Fig. 4.141. Evaluation of constant expressions

4.17 Embedded SQL

SQL can be used in conjunction with a general purpose programming lan-
guage such as PASCAL, C, C++, etc. The programming language is called
the host language. Embedded SQL statements are SQL statements written
within application programming languages such as C and Java. The embed-
ded SQL statement is distinguished from programming language statements
by prefixing it with a special character or command so that a preprocessor

202 4 Structured Query Language

can extract the SQL statements. These statements are preprocessed by an
SQL precompiler before the application program is compiled. There are two
types of embedded SQL, Static SQL, and Dynamic SQL. Embedded SQL
provides the 3GL (Third Generation Language) with a way to manipulate
a database. Embedded SQL supports highly customized applications. It also
supports background applications running without user intervention.

SQL Precompiler

A precompiler is used to translate SQL statements embedded in a host lan-
guage into DBMS library calls, which can be implemented in the host lan-
guage. The function of the precompiler is shown below:

Sharing Variables

Variables to be shared between the embedded SQL code and the host language
have to be specified in the program.

EXEC SQL begin declare section;
Varchar userid [10], password [10], cname [15];
Int cno;

EXEC SQL end declare section;
We also should declare a link to the DBMS so that database status
information can be accessed.

EXEC SQL include sqlca;
This allows access to a structure sqlca, of which the most common

element sqlca.sqlcode has the value 0 (operation OK), >0 (no data
found), and <0 (an error).

4.17 Embedded SQL 203

Connecting to the DBMS

Before operations can be performed on the database, a valid connection has
to be established. A model is shown below:
EXEC SQL connect :userid identified by :password;

– In all SQL statements, variables with the “:” prefix refer to shared host
variables, as opposed to database variables.

– This assumes that userid and password have been properly declared and
initialized.

When the program is finished using the DBMS, it should disconnect using:
EXEC SQL commit release;

Queries Producing a Single Row

A single piece of data (or row) can be queried from the database so that the
result is accessible from the host program.

EXEC SQL SELECT custname
INTO :cname
FROM customers
WHERE cno = :cno;

Thus the custname with the unique identifier :cno is stored in :cname.
However, a selection query may generate many rows, and a way is needed

for the host program to access results one row at a time.

SELECT with a Single Result

The syntax to select with a single result is shown below:

204 4 Structured Query Language

Static SQL

The source form of a static SQL statement is embedded within an appli-
cation program written in a host language such as COBOL. The statement
is prepared before the program is executed and the operational form of the
statement persists beyond the execution of the program.

A source program containing static SQL statements must be processed by
an SQL precompiler before it is compiled. The precompiler turns the SQL
statements into host language comments, and generates host language state-
ments to invoke the database manager. The syntax of the SQL statements is
checked during the precompile process.

The preparation of an SQL application program includes precompilation,
the binding of its static SQL statements to the target database, and compi-
lation of the modified source program.

Dynamic SQL

Programs containing embedded dynamic SQL statements must be precom-
piled like those containing static SQL, but unlike static SQL, the dynamic SQL
statements are constructed and prepared at run time. The SQL statement text
is prepared and executed using either the PREPARE and EXECUTE state-
ments, or the EXECUTE IMMEDIATE statement. The statement can also
be executed with cursor operations if it is a SELECT statement.

Summary

This chapter has introduced the most popular relational database language
SQL (Structured Query Language). SQL has become the de facto standard
language for interacting with all major database programs. The three main
divisions in SQL are DDL, DML, and DCL. The data definition language
(DDL) commands of SQL are used to define a database which includes creation
of tables, indexes, and views. The data manipulation commands (DML) are
used to load, update, and query the database through the use of the SELECT
command. Data control language (DCL) is used to establish user access to
the database.

This chapter has focused on how to create the table, how to insert data
into the table. Examples are shown to understand the table creation and
manipulation process. The subset of SELECT command described in this
chapter allows the reader to formulate problems involving the project, restrict,
join, union, intersection, and difference operators of relational algebra.

Review Questions 205

Review Questions

4.1. Prove the statement “When the column of a view is directly derived from
a column of a base table, that column inherits any constraints that apply to
the column of the base table” by using suitable example.

To prove this statement, let us create a base table by name t1. The base table
t1 has two columns name and age. Now a constraint is imposed on the age,
that is age should be greater than 18. The syntax to create the base table t1
with the constraint on the age is shown below:

Step 1: Base table creation with the name t1 and constraint on age
(Fig. 4.142).

SQL> create table t1
2 (name varchar(12),
3 age number(3),
4 check(age>18));
Table created.

Step 2: Create a view by name t2 from the base table t1. The SQL command
to create the view t2 is shown in Fig. 4.143.

Step 3: Now try to insert values into view t2 by not violating the constraint
and then by violating the constraint (Fig. 4.144). Then try to insert values
into the view t2 by violating the check constraint.

Note: Since the age is greater than 18 the values are inserted into view t2.
Now insert value into t2 by violating the constraint (by inserting the age less
than or equal to 18).

If we are violating the constraints on the column of the base table we are
getting an error message.

Fig. 4.142. Creation of table t1

206 4 Structured Query Language

Fig. 4.143. Creation of view t2

Fig. 4.144. Insertion of values into t2 without violating and violating constraint

Review Questions 207

4.2. What is the difference between the two SQL commands DROP TABLE
and TRUNCATE TABLE?

Drop table command deletes the definition as well as the contents of the
table, whereas truncate table command deletes only the contents of the table
but not the definition of the table.

Example

We have a table by name t1. The contents of the table are seen by issuing the
select command as shown in Fig. 4.145.

Step 1: Now issue the truncate table command. The syntax is:
TRUNCATE TABLE table name; as shown in Fig. 4.146.

Step 2: After issuing the truncate table command try to see the contents of
the table. You will get the message as no rows selected as shown in Fig. 4.147.

Step 3: Now we have the table t2. See the contents of the table by issuing
select command as shown in Fig. 4.148.

Step 4: Now use the drop command, to drop the table t2 as shown in
Fig. 4.149.

Step 5: Now see the effect of the drop command by using the select command
as shown in Fig. 4.150.

Note: If we issue the drop command, the definition as well as the contents of
the table is deleted and we get the error message as shown in Fig. 4.150.

4.3. Is it possible to create a table from another table. If so give an example

Fig. 4.145. Content of the table t1

208 4 Structured Query Language

Fig. 4.146. Truncation of table t1

Fig. 4.147. Selection after truncation

Fig. 4.148. Contents of the table t2

Review Questions 209

Fig. 4.149. Dropping the table t2

Fig. 4.150. Selection after dropping the table

Fig. 4.151. Contents of table t1

210 4 Structured Query Language

Fig. 4.152. Table t2 from table t1

Fig. 4.153. Contents of table t2

Yes, it is possible to create table from another table using SQL. Consider
table t1 as shown in Fig. 4.151. We can create another table t2 from the table
t1. The SQL command to create the table t2 from the table t1 is shown in
the Fig. 4.152.

Now let us try to view the content of the table t2. The content of the table
t2 is shown in Fig. 4.153.

From Fig. 4.153, it is clear that the contents of the table t2 matches with
the table t1 (refer Fig. 4.151). Hence it is possible to create table from another
table.

4.4. What is the difference between COUNT, COUNT DISTINCT, and
COUNT (*) in SQL?

The command COUNT counts the number of rows in a table by ignoring
all null values. The command COUNT (*) counts the number of rows in a

Review Questions 211

Fig. 4.154. Contents of the table BOOKS

Fig. 4.155. Contents of the table BOOKS deleted using DELETE command

table by including the rows that contains null values. COUNT DISTINCT
counts the number of rows in the table by ignoring duplicate values.

4.5. If we want to delete all the rows in the table, it can be done in two
ways (1) Issue the command DELETE FROM table name (2) TRUNCATE
TABLE table name. What is the difference between these two commands?

We have a table by name BOOKS. The content of the table BOOKS are
shown in the Fig. 4.154.

Step 1: The contents of the table BOOKS are deleted by using DELETE
command as shown in Fig. 4.155.

Step 2: The table BOOKS is again populated with the data and the command
TRUNCATE is used to delete the contents of the table which is shown in
Fig. 4.156.

The advantage offered by the TRUNCATE command is the speed. When
Oracle executes this command, it does not evaluate the existing records within
a table; it basically chops them off. In addition to speed, the TRUNCATE

212 4 Structured Query Language

Fig. 4.156. Contents of the table BOOKS deleted using TRUNCATE command

command provides the added benefit of automatically freeing up the table
space that the truncated records previously occupied.

When the table contents are deleted by using DELETE command, it forces
Oracle to read every row before deleting it. This can be extremely time con-
suming.

4.6. What are subqueries? How will you classify them?

Subquery is query within a query. A SELECT statement can be nested
inside another query to form a subquery. The query which contains the sub-
query is called outer query. It can be classified as (a) scalar subquery and
(b) correlated subquery, and (c) uncorrelated subquery.

5

PL/SQL

Learning Objectives. This chapter focuses on the shortcomings of SQL and how
it is overcome by PL/SQL. An introduction to PL/SQL is given in this chapter. After
completing this chapter the reader should be familiar with the following concepts in
PL/SQL.

– Structure of PL/SQL
– PL/SQL language elements
– Control structure in PL/SQL
– Steps to create PL/SQL program
– Concept of CURSOR
– Basic concepts related to Procedure, Functions
– Basic concept of Trigger

5.1 Introduction

PL/SQL stands for Procedural Language/Structured Query Language, which
is provided by Oracle as a procedural extension to SQL. SQL is a declara-
tive language. In SQL, the statements have no control to the program and
can be executed in any order. PL/SQL, on the other hand, is a procedural
language that makes up for all the missing elements in SQL. PL/SQL arose
from the desire of programmers to have a language structure that was more
familiar than SQL’s purely declarative nature.

5.2 Shortcomings in SQL

We know, SQL is a powerful tool for accessing the database but it suffers from
some deficiencies as follows:

(a) SQL statements can be executed only one at a time. Every time to execute
a SQL statement, a call is made to Oracle engine, thus it results in an
increase in database overheads.

S. Sumathi: PL/SQL, Studies in Computational Intelligence (SCI) 47, 213–282 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

214 5 PL/SQL

(b) While processing an SQL statement, if an error occurs, Oracle generates
its own error message, which is sometimes difficult to understand. If a
user wants to display some other meaningful error message, SQL does not
have provision for that.

(c) SQL is not able to do the conditional query on RDBMS, this means one
cannot use the conditions like if . . . then, in a SQL statement. Also looping
facility (repeating a set of instructions) is not provided by SQL.

5.3 Structure of PL/SQL

PL/SQL is a 4GL (fourth generation) programming language. It offers all fea-
tures of advanced programming language such as portability, security, data
encapsulation, information hiding, etc. A PL/SQL program may consist of
more than one SQL statements, while execution of a PL/SQL program makes
only one call to Oracle engine, thus it helps in reducing the database over-
heads. With PL/SQL, one can use the SQL statements together with the con-
trol structures (like if . . . then) for data manipulation. Besides this, user can
define his/her own error messages to display. Thus we can say that PL/SQL
combines the data manipulation power of SQL with data processing power of
procedural language.

PL/SQL is a block structured language. This means a PL/SQL program
is made up of blocks, where block is a smallest piece of PL/SQL code having
logically related statements and declarations. A block consists of three sections
namely:

Declare, Begin, and Exception followed by an End statement. We will see
the different sections of PL/SQL block.

Declare Section

Declare section declares the variables, constants, processes, functions, etc., to
be used in the other parts of program. It is an optional section.

Begin Section

It is the executable section. It consists of a set of SQL and PL/SQL statements,
which is executed when PL/SQL block runs. It is a compulsory section.

Exception Section

This section handles the errors, which occurs during execution of the PL/SQL
block. This section allows the user to define his/her own error messages. This
section executes only when an error occurs. It is an optional section.

5.4 PL/SQL Language Elements 215

DECLARE

BEGIN

EXCEPTION

END;

Declarations of variables, constants
etc. to be use in PL/SQL.

PL/SQL and SQL Executable
statements

PL/SQL code to handle errors
during execution period.

Fig. 5.1. A PL/SQL block

End Section

This section indicates the end of PL/SQL block.
Every PL/SQL program must consist of at least one block, which may

consist of any number of nested sub-blocks. Figure 5.1 shows a typical PL/SQL
block.

5.4 PL/SQL Language Elements

Let us start from the basic elements of PL/SQL language. Like other pro-
gramming languages PL/SQL also have specific character sets, operators,
indicators, punctuations, identifiers, comments, etc. In the following sections
we will discuss about various language elements of PL/SQL.

Character Set

A PL/SQL program consists of text having specific set of characters. Charac-
ter set may include the following characters:

– Alphabets, both in upper case [A–Z] and lower case [a–z]
– Numeric digits [0–9]
– Special characters () + − * / < > = ! ∼ ˆ ; : . ′ @ % , ′′ # $ & |

{ } ? []
– Blank spaces, tabs, and carriage returns.

PL/SQL is not case sensitive, so lowercase letters are equivalent to corre-
sponding uppercase letters except within string and character literals.

216 5 PL/SQL

Lexical Units

A line of PL/SQL program contains groups of characters known as lexical
units, which can be classified as follows:

– Delimiters
– Identifiers
– Literals
– Comments

Delimiters

A delimiter is a simple or compound symbol that has a special meaning to
PL/SQL. Simple symbol consists of one character, while compound symbol
consists of more than one character. For example, to perform the addition and
exponentiation operation in PL/SQL, simple symbol delimiter + and com-
pound symbol delimiter ** is used, respectively. PL/SQL supports following
simple symbol delimiters:

+ − * / = > < ; % ′ , () @ : ′′

Compound symbol delimiters legal in PL/SQL are as follows:
<> ! =∼= ˆ= <=>= := ** .. || << >>
In the following sections we will discuss about these delimiters.

Identifiers

Identifiers are used in the PL/SQL programs to name the PL/SQL program
items as constants, variables, cursors, cursor variables, subprograms, etc.

Identifiers can consists of alphabets, numerals, dollar signs, underscores,
and number signs only. Any other characters like hyphens, slashes, blank
spaces, etc. are illegal. An identifier must begin with an alphabetic letter
optionally followed by one or more characters (permissible in identifier). An
identifier cannot contain more than 30 characters.

Example

Some of the valid identifiers are as follows:

A – Identifier may consist of a single character
A1 – identifier may consist of numerals after first character
Share$price – dollar sign is permitted
e mail – under score is permitted
phone# – number sign is permitted

The following identifiers are illegal:

mine&yours – ampersand is illegal
debit-amount – hyphen is illegal
on/off – slash is illegal
user id – space is illegal

5.4 PL/SQL Language Elements 217

However, PL/SQL allows space, slash, hyphen, etc. except double quotes if
the identifier is enclosed within double quotes. Thus, the following identifiers
are valid:

“A&B”
“TATA INFOTECH”
“True/false”
“Student(s)”
“*** BEGIN ***”

However, the maximum length of a quoted identifier cannot exceed 30
characters, excluding double quotes.

An identifier can consists of lower, upper, or mixed case letters. PL/SQL
is not case sensitive except within string and character literals. So, if the only
difference between identifiers is the case of corresponding letters, PL/SQL
considers the identifiers to be the same. Take for example, a character string
“HUMAN” as an identifier; it will be equivalent to each of following identifiers:

Human
human
hUMAN
hUmAn.

An identifier cannot be a reserve word, i.e., the words that have special
meaning for PL/SQL. For example, the word DECLARE, which is used for
declaring the variables or constants; words BEGIN and END, which enclose
the executable part of a block or subprogram are reserve words. An attempt
to redefine a reserve word gives an error.

Literals

A literal is an explicitly defined character, string, numeric, or Boolean value,
which is not represented by an identifier. In the following sections we will
discuss about each of these literals in detail:

Numeric Literals

A numeric literal is an integer or a real value. An integer literal may be a
positive, negative, or unsigned whole number without a decimal point. Some
examples of integer numeric literals are as follows:

100 006 −10 0 +10

A real literal is a positive, negative, or unsigned whole or fractional number
with a decimal point. Some examples of real integer literals are as follows:

0.0 −19.0 3.56219 +43.99 .6 7. −4.56

218 5 PL/SQL

PL/SQL treats a number with decimal point as a real numeric literal, even
if the number does not have any numeral after decimal point. Besides integer
and real literals, numeric literals can also contain exponential numbers (an
optionally signed number suffix with an E (or e) followed by an optionally
signed integer). Some examples of exponential numeric literals are as follows:

7E3 2.0E−3 3.14159e1 −2E33 −8.3e−2

where, E stands for “times ten to the power of.” For example the exponential
literal 7E3 is equivalent to following numeric literal:

7E3 = 7 * 10 ** 3 = 7*10*10*10 = 7000

Another exponential literal −8.3e−2 would be equivalent to following
numeric literal:

−8.3e−2 = −8.3 * 10 ** (−2) = −8.3 *0.01 = −0.083

An exponential numeric literal cannot be smaller than 1E−130 and cannot
be greater than 10E125. Note that numeric literals cannot contain dollar signs
or commas.

Character Literals

A character literal is an individual character enclosed by single quotes (apos-
trophes). Character literals include all the printable characters in the PL/SQL
character set: letters, numerals, spaces, and special symbols. Some examples
of character literals are as follows:

“A” “@” “5” “?” “,” “(”

PL/SQL is case sensitive within character literals. For example, PL/SQL con-
siders the literals “A” and “a” to be different. Also, the character literals
“0”. . .“9” are not equivalent to integer literals but can be used in arithmetic
expressions because PL/SQL implicitly converts them to integers.

String Literals

A character string can be represented by an identifier or explicitly written as a
string literal. A string literal is enclosed within single quotes and may consist
of one or more characters. Some examples of string literals are as follows:

“Good Morning!”
“TATA INFOTECH LTD”
“04-MAY-00”
“$15,000,000”

All string literals are of character data type.
PL/SQL is case sensitive within string literals. For example, PL/SQL con-

siders the following literals to be different:

“HUMAN”
“Human”

5.4 PL/SQL Language Elements 219

Boolean Literals

Boolean literals are the predefined values TRUE, FALSE, and NULL. Keep
in mind Boolean literals are values, not strings. For example a condition: if
(x = 10) is TRUE only for the value of x equal to 10, for any other value of
x it is FALSE and for no value of x it is NULL.

Comments

Comments are used in the PL/SQL program to improve the readability and
understandability of a program. A comment can appear anywhere in the pro-
gram code. The compiler ignores comments. Generally, comments are used to
describe the purpose and use of each code segment. A PL/SQL comment may
be a single-line or multiline.

Single-Line Comments

Single-line comments begin with a double hyphen (–) anywhere on a line and
extend to the end of the line.

Example

– start calculations

Multiline Comments

Multiline comments begin with a slash-asterisk (/*) and end with an asterisk-
slash (*/), and can span multiple lines.

Example

/* Hello World! This is an example of multiline comments in PL/SQL */

Variables and Constants

Variables and constants can be used within PL/SQL block, in procedural
statements and in SQL statements. These are used to store the values. As
the program executes, the values of variables can change, but the values of
constants cannot. However, it is must to declare the variables and constants,
before using these in executable portion of PL/SQL. Let us see how to declare
variables and constants in PL/SQL.

Declaration

1Variables and constants are declared in the Declaration section of PL/SQL
block. These can be any of the SQL data type like CHAR, NUMBER,
DATE, etc.

220 5 PL/SQL

I. Variables Declaration

The syntax for declaring a variable is as follows:

identifier datatype;

Example

To declare the variable name, age, and joining date as datatype
VARCHAR2(10), NUMBER(2), DATE, respectively; declaration statement
is as follows:

DECLARE
Name VARCHAR2(10);
Age NUMBER(2);
Joining date DATE;

Initializing the Variable

By default variables are initialized to NULL at the time of declaration. If we
want to initialize the variable by some other value, syntax would be as follows:

Identifier datatype := value;
Or,

Identifier datatype DEFAULT value;

Example

If a number of employees have same joining date, say 01-JULY-99. It is better
to initialize the joining date rather than entering the same value individually,
any of the following declaration can be used:

Joining date DATE := 01-JULY-99; (or)
Joining date DATE DEFAULT 01-JULY-99;

Constraining a Variable

Variables can be NOT NULL constrained at the time of declaring these, for
example to constrain the joining date NOT NULL, the declaration statement
would be as follows:

Joining date DATE NOT NULL: = 01-JULY-99;

(NOT NULL constraint must be followed by an initialization clause)
thus following declaration will give an error:

Joining date DATE NOT NULL; – illegal

5.4 PL/SQL Language Elements 221

Declaring Constants

Declaration of constant is similar to declaration of variable, except the key-
word CONSTANT precedes the datatype and it must be initialized by some
value. The syntax for declaring a constant is as follows:

identifier CONSTANT datatype := value;

Example

To define the age limit as a constant, having value 30; the declaration state-
ment would be as follows: Age limit CONSTANT NUMBER := 30;

Restrictions

PL/SQL imposes some restrictions on declaration as follows:

(a) A list of variables that have the same datatype cannot be declared in the
same row

Example

A, B, C NUMBER (4,2); – illegal
It should be declared in separate lines as follows:

A NUMBER (4,2);
B NUMBER (4,2);
C NUMBER (4,2);

(b) A variable can reference to other variable if and only if that variable is
declared before that variable. The following declaration is illegal:

A NUMBER(2) := B;
B NUMBER(2) := 4;

Correct declaration would be as follows:

B NUMBER(2) := 4;
A NUMBER(2) := B;

(c) In a block same identifier cannot be declared by different datatype. The
following declaration is illegal:

DECLARE
X NUMBER(4,2);
X CHAR(4); – illegal

222 5 PL/SQL

5.5 Data Types

Every constant and variable has a datatype. A datatype specifies the space
to be reserved in the memory, type of operations that can be performed,
and valid range of values. PL/SQL supports all the built-in SQL datatypes.
Apart from those datatypes, PL/SQL provides some other datatypes. Some
commonly used PL/SQL datatypes are as follows:

BOOLEAN

One of the mostly used datatype is BOOLEAN. A BOOLEAN datatype
is assigned to those variables, which are required for logical operations.
A BOOLEAN datatype variable can store only logical values, i.e., TRUE,
FALSE, or NULL. A BOOLEAN variable value cannot be inserted in a table;
also, a table data cannot be selected or fetched into a BOOLEAN variable.

%Type

The %TYPE attribute provides the datatype of a variable or database column.
In the following example, %TYPE provides the datatype of a variable:

balance NUMBER(8,2);
minimum balance balance%TYPE;

In the above example PL/SQL will treat the minimum balance of the same
datatype as that of balance, i.e., NUMBER(8,2). The next example shows
that a %TYPE declaration can include an initialization clause:

balance NUMBER(7,2);
minimum balance balance%TYPE := 500.00;

The %TYPE attribute is particularly useful when declaring variables that
refer to database columns. Column in a table can be referenced by %TYPE
attribute.

Example

To declare a column my empno of the same datatype as that of empno column
of emp table in scott/tiger user, the declaration statement would be as follows:

my empno scott.emp.empno%TYPE;

Using %TYPE to declare my empno has two advantages. First, the knowledge
of exact datatype of empno is not required. Second, if the database definition
of empno changes, the datatype of my empno changes accordingly at run time.
But %TYPE variables do not inherit the NOT NULL column constraint, even
though the database column empno is defined as NOT NULL, one can assign
a null to the variable my empno.

5.6 Operators Precedence 223

%Rowtype

The %ROWTYPE attribute provides a record type that represents a row in a
table (or view). The record can store an entire row of data selected from the
table.

Example

emp rec is declared as a record datatype of emp table. emp rec can store a
row selected from the emp table.

emp rec emp%ROWTYPE;

Expressions

Expressions are constructed using operands and operators. PL/SQL supports
all the SQL operators; in addition to those operators it has one more operator,
named exponentiation (symbol is **). An operand is a variable, constant,
literal, or function call that contributes a value to an expression. An example
of simple expression follows:

A = B ∗ ∗3
where A, B, and 3 are operand; = and ** are operators. B**3 is equivalent to
value of thrice multiplying the B, i.e., B*B*B.

Operators may be unary or binary. Unary operators such as the negation
operator (−) operate on one operand; binary operators such as the division
operator (/) operate on two operands. PL/SQL evaluates (finds the current
value of) an expression by combining the values of operands in ways specified
by the operators. This always yields a single value and datatype. PL/SQL
determines the datatype by examining the expression and the context in which
it appears.

5.6 Operators Precedence

The operations within an expression are done in a particular order depending
on their precedence (priority). Table 5.1 lists the operator’s level of prece-
dence from top to bottom. Operators listed in the same row have equal
precedence.

Operators with higher precedence are applied first, but if parentheses
are used, expression within innermost parenthesis is evaluated first. For
example the expression 8 + 4/2 ∗ ∗2 results in a value 9, because exponen-
tiation has the highest priority followed by division and addition. Now in the
same expression if we put parentheses, the expression 8+((4/2)∗∗2) results in
a value 12 not 9, because now first it will solve the expression within innermost
parentheses.

224 5 PL/SQL

Table 5.1. Order of operations

operator operation

**, NOT exponentiation, logical negation
+, − identity, negation
*, / multiplication, division
+, −, || addition, subtraction, concatenation
=, !=, <, >, <=, >=, IS NULL, comparison
LIKE, BETWEEN, IN
AND conjunction
OR disjunction

5.7 Control Structure

Control structure is an essential part of any programming language. It controls
the flow of process. Control structure is broadly divided into three categories:

– Conditional control,
– Iterative control, and
– Sequential control

In the following sections we will discuss about each of these control structures
in detail.

Conditional Control

A conditional control structure tests a condition to find out whether it is
true or false and accordingly executes the different blocks of SQL statements.
Conditional control is generally performed by IF statement. There are three
forms of IF statement. IF-THEN, IF-THEN-ELSE, IF-THEN-ELSEIF.

IF-THEN

It is the simplest form of IF condition. The syntax for this statement is as
follows:

IF condition THEN
Sequence of statements
END IF;

Example

To compare the values of two variables A and B and to assign the value of A
to HIGH if A is greater than B. The IF construct for this is as follows:

IF A > B THEN
HIGH := A;
ENDIF;

5.7 Control Structure 225

The sequence of statements is executed only if the condition is true. If
the condition is FALSE or NULL, the sequence of statements is skipped and
processing continues from statements following END IF statements.

IF-THEN-ELSE

As it is clear with the IF-THEN construct, if condition is FALSE the control
exits to next statement out of IF-THEN clause. To execute some other set of
statements in case condition evaluates to FALSE, the second form of IF state-
ment is used, it adds the keyword ELSE followed by an alternative sequence
of statements, as follows:

IF condition THEN
sequence of statements1
ELSE
sequence of statements2
END IF;

Example

To become clear about it, take the previous example, to compare the value of
A and B and assign the value of greater number to HIGH. The IF construct
for this is as follows:

IF A > B THEN
HIGH := A;
ELSE
HIGH := B;
ENDIF;

The sequence of statements in the ELSE clause is executed only if the
condition is FALSE or NULL.

IF-THEN-ELSIF

In the previous constructs of IF, we can check only one condition, whether it is
true or false. There is no provision if we want to check some other conditions if
first condition evaluates to FALSE; for this purpose third form of IF statement
is used. It selects an action from several mutually exclusive alternatives. The
third form of IF statement uses the keyword ELSIF (not ELSEIF) to introduce
additional conditions, as follows:

226 5 PL/SQL

IF condition1 THEN
sequence of statements1
ELSIF condition2 THEN
sequence of statements2
ELSE
sequence of statements3
END IF;

5.8 Steps to Create a PL/SQL Program

1. First a notepad file can be created as typing in the Oracle SQL editor.
Figure 5.2 shows the command to create a file,

2. Then a Notepad file will appear and at the same time background Oracle
will be disabled. It is shown in Fig. 5.3

3. We can write our PL/SQL program in that file, save that file, and we can
execute that program in the Oracle editor as in Fig. 5.4. In this program
Cursor (Current Set of Records) concept is used which we will see in
the following pages. Here content of EMP table is opened by the cursor
and they are displayed by the DBMS OUTPUT package. Command IF is
used to check whether the cursor has been opened successfully by using
%Found attribute.

4. Then we can execute that file as follows in Fig. 5.5

Fig. 5.2. Creating a file

5.8 Steps to Create a PL/SQL Program 227

Fig. 5.3. Confirmation for the file created

Fig. 5.4. Program writing to the notepad

228 5 PL/SQL

Fig. 5.5. Program execution

5.9 Iterative Control

In iterative control a group of statements are executed repeatedly till certain
condition is true, and control exits from loop to next statement when the
condition becomes false. There are mainly three types of loop statements:

LOOP, WHILE-LOOP, FOR-LOOP.

LOOP

LOOP is the simplest form of iterative control. It encloses a sequence of state-
ments between the keywords LOOP and END LOOP. The general syntax for
LOOP control is as follows:

LOOP
sequence of statements
END LOOP;

With each iteration of the loop, the sequence of statements gets executed,
then control reaches at the top of the loop. But a control structure like this
gets entrapped into infinite loop. To avoid this it is must to use the key word
EXIT and EXIT-WHEN.

5.9 Iterative Control 229

LOOP – EXIT

An EXIT statement within LOOP forces the loop to terminate unconditionally
and passes the control to next statements. The general syntax for this is as
follows:

LOOP
IF condition1 THEN
Sequence of statements1
EXIT;
ELSIF condition2 THEN
Sequence of statements2
EXIT
ELSE
Sequence of statements3
EXIT;
END IF;
END LOOP;

LOOP – EXIT WHEN

The EXIT-WHEN statement terminates a loop conditionally. When the EXIT
statement is encountered, the condition in the WHEN clause is evaluated.
If the condition is true, the loop terminates and control passes to the next
statement after the loop. The syntax for this is as follows:

LOOP
EXIT WHEN condition
Sequence of statements
END LOOP

Example

Figures 5.4 and 5.5 are also the example of LOOP – EXIT WHEN. Condition
used here is that the cursor does not return anything by using %NOTFOUND
attribute.

WHILE-LOOP

The WHILE statement with LOOP checks the condition. If it is true then
only the sequence of statements enclosed within the loop gets executed. Then
control resumes at the top of the loop and checks the condition again; if it is
true the sequence of statements enclosed within the loop gets executed. The
process is repeated till the condition is true. The control passes to the next
statement outside the loop for FALSE or NULL condition.

230 5 PL/SQL

Fig. 5.6. Example for FOR Loop

WHILE condition LOOP
Sequence of statements
END LOOP;

FOR-LOOP

FOR loops iterate over a specified range of integers. The range is part of
iteration scheme, which is enclosed by the keywords FOR and LOOP. A double
dot (..) serves as the range operator. The syntax is as follows:

FOR counter IN lower limit .. higher limit LOOP
sequence of statements
END LOOP;

The range is evaluated when the FOR loop is first entered and is never
re-evaluated. The sequence of statements is executed once for each integer
in the range. After every iteration, the loop counter is incremented.

Example

To find the sum of natural numbers up to 10, the following program can be
used as in Fig. 5.6.

5.10 Cursors 231

Sequential Control

The sequential control unconditionally passes the control to specified unique
label; it can be in the forward direction or in the backward direction. For
sequential control GOTO statement is used. Overuse of GOTO statement
may increase the complexity, thus as far as possible avoid the use of GOTO
statement.

The syntax is as follows:

GOTO label;
.
.
<<label>>
Statement

5.10 Cursors

Number of rows returned by a query can be zero, one, or many, depending
on the query search conditions. In PL/SQL, it is not possible for an SQL
statement to return more than one row. In such cases we can use cursors.
A cursor is a mechanism that can be used to process the multiple row result
sets one row at a time.

In other words, cursors are constructs that enable the user to name a
private memory area to hold a specific statement for access at a later time.
Cursors are an inherent structure in PL/SQL. Cursors allow users to easily
store and process sets of information in PL/SQL program.

Figure 5.7 shows the simple example for the cursor where two rows
are selected from the query and they are pointed by the cursor namely
All Lifetime.

Fig. 5.7. Cursor example

232 5 PL/SQL

There are two types of cursors in Oracle

1. Implicit cursors
2. Explicit cursors

5.10.1 Implicit Cursors

PL/SQL implicitly declares a cursor for every SQL DML statement, such as
INSERT, DELETE, UPDATE, and SELECT statement that is not a part
of an explicitly declared cursor, even if the statement processes a single row.
PL/SQL allows referencing the most recent cursor or the cursor associated
with the most recently executed SQL statement, as the “SQL” cursor. Cursor
attributes are used to access information about the most recently executed
SQL statement, using SQL cursor.

Implicit Cursor Attributes

In PL/SQL every cursor, implicit or explicit, has four attributes: %NOT-
FOUND, %FOUND, %ROWCOUNT, and %ISOPEN. These cursor attributes
can be used in procedural statements (PL/SQL), but not in SQL statements.
These attributes let user access information about the most recent execution
of INSERT, UPDATE, SELECT INTO, and DELETE commands. These
attributes are associated with the implicit “SQL” cursor and can be accessed
by appending the attribute name to the implicit cursor name (SQL). Syntax
to use cursor attribute is as follows:

SQL %<attribute name>

%Notfound

This attribute is used to determine if any rows were processed by a SQL
DML statement. This attribute evaluates to TRUE if an INSERT, UPDATE,
or DELETE affected no rows or a SELECT INTO returned no rows. Other-
wise, it returns FALSE. %NOTFOUND attribute can be useful in reporting
or processing when no data is affected. If a SELECT statement does not re-
turn any data, the predefined exception NO DATA FOUND is automatically
raised, and program control is sent to an exception handler, if it is present in
the program. If a check is made on %NOTFOUND attribute after a SELECT
statement, it will be completely skipped when the SELECT statement returns
no data.

Example

Figures 5.8 and 5.9 show the example of all the implicit cursor attributes.
The program will return the status of each cursor attribute depending on the
previously executed DML statement.

5.10 Cursors 233

Fig. 5.8. Implicit cursor example program

Fig. 5.9. Implicit cursor example execution

234 5 PL/SQL

%Found

This attribute is used to determine if any rows were processed by a SQL
DML statement. In fact %FOUND works just the opposite of %NOTFOUND
attribute. Until a SQL DML statement is executed, this attribute evaluates
to NULL. It equates to TRUE if an INSERT, UPDATE, or DELETE affects
one or more rows or select returns one row. If a select statement returns more
than one row, the predefined exception TOO MANY ROWS is automatically
raised and %FOUND attribute is set to FALSE.

%Rowcount

This attribute is used to determine the number of rows that are processed
by an SQL statement. It returns the number of rows affected by an INSERT,
UPDATE, or DELETE statement or returned by a SELECT INTO statement.
%ROWCOUNT returns zero if the SQL statement affects or returns no rows.
If a SELECT statement returns more than one row, the predefined exception
TOO MANY ROWS is raised automatically. In such a case %ROWCOUNT
attribute is set to 1 and not the actual number of rows that satisfy the query.

Example

Figures 5.8 and 5.9 show this example.

%Isopen

%ISOPEN is used to determine if a cursor is already open. It always equates
to FALSE in an implicit cursor. Oracle automatically closes implicit cursor
after executing its associated SQL statements.

Example

Figures 5.8 and 5.9 show this example.

5.10.2 Explicit Cursor

Explicit cursors are declared by the user and are used to process query results
that return multiple rows. Multiple rows returned from a query form a set
called an active set. PL/SQL defines the size of the active set as the number
of rows that have met search criteria. Inherent in every cursor is a pointer that
keeps track of the multiple rows being accessed, enabling program to process
the rows one at a time. An explicit cursor points to the current row in the
active set. This allows the program to process one row at a time.

Multirow query processing is somewhat like file processing. For example,
a program opens a file to process records, and then closes the file. Likewise,

5.11 Steps to Create a Cursor 235

Member Table
Member_Id Name

Mohan Y
Y
L

L

Mukesh
Amit
Anuj

DECLAR

OPEN
CURSOR

FETCH

CLOSE

Mem_type
10001
10002
10003
10004

Memory

Cursor

Member_id
Name

10003

10003 Amit

Fig. 5.10. Cursor and memory utilization

a PL/SQL program opens a cursor to process rows returned by a query, and
then closes the cursor. Just as a file pointer marks the current position in an
open file, a cursor marks the current position in an active set.

After a cursor is declared and opened, the user can FETCH, UPDATE,
or DELETE the current row in the active set. The cursor can be CLOSED
to disable it and free up any allocated system resources. Three commands are
used to control the cursor – OPEN, FETCH, and CLOSE. First the cursor
is initialized with an OPEN statement, which identifies the active set. Then,
the FETCH statement is used to retrieve the first row. FETCH statement can
be executed repeatedly until all rows have been retrieved. When the last row
has been processed, the cursor can be released with the CLOSE statement.
Figure 5.10 shows the memory utilization by a cursor when each of these
statements is given.

5.11 Steps to Create a Cursor

Following are the steps to create a cursor:

5.11.1 Declare the Cursor

In PL/SQL a cursor, like a variable, is declared in the DECLARE section of
a PL/SQL block or subprogram. A cursor must be declared before it can be

236 5 PL/SQL

referenced in other statements. A cursor is defined in the declarative part by
naming it and specifying a SELECT query to define the active set.

CURSOR <cursor name> IS
SELECT. . .

The SELECT statement associated with a cursor declaration can reference
previously declared variables.

Declaring Parameterized Cursors

PL/SQL allows declaration of cursors that can accept input parameters which
can be used in the SELECT statement with WHERE clause to select specified
rows. Syntax to declare a parameterized cursor:

CURSOR <cursor name> [(parameter.)] IS
SELECT.
WHERE <column name> = parameter;

Parameter is an input parameter defined with the syntax:

<variable name> [IN] <datatype> [{:= | DEFAULT} value]

The formal parameters of a cursor must be IN parameters. As in the
example above, cursor parameters can be initialized to default values. That
way, different numbers of actual parameters can be passed to a cursor,
accepting or overriding the default values.

Moreover, new formal parameters can be added without having to change
every reference to the cursor. The scope of a cursor parameter is local only
to the cursor. A cursor parameter can be referenced only within the SELECT
statement associated with the cursor declaration. The values passed to the
cursor parameters are used by the SELECT statement when the cursor is
opened.

5.11.2 Open the Cursor

After declaration, the cursor is opened with an OPEN statement for processing
rows in the cursor. The SELECT statement associated with the cursor is
executed when the cursor is opened, and the active set associated with the
cursor is created.

The active set is defined when the cursor is declared, and is created when
cursor is opened.

The active set consists of all rows that meet the SELECT statement
criteria. Syntax of OPEN statement is as follows.

OPEN <cursor name>;

5.11 Steps to Create a Cursor 237

5.11.3 Passing Parameters to Cursor

Parameters to a parameterized cursor can be passed when the cursor is opened.
For example, given the cursor declaration

CURSOR Mem detail (MType VARCHAR2) IS SELECT. . .

Any of the following statements opens the cursor.

OPEN Mem detail(‘L’);
OPEN Mem detail(Mem); where Mem is another variable.

Unless default values are to be accepted, each formal parameter in the
cursor declaration must have a corresponding actual parameter in the OPEN
statement. Formal parameters declared with a default value need not have
a corresponding actual parameter. They can simply assume their default
values when the OPEN statement is executed. The formal parameters of a
cursor must be IN parameters. Therefore, they cannot return values to actual
parameters. Each actual parameter must belong to a datatype compatible
with the datatype of its corresponding formal parameter.

5.11.4 Fetch Data from the Cursor

After a cursor has been opened, the SELECT statement associated with
the cursor is executed and the active set is created. To retrieve the rows
in the active set one row at a time, the rows must be fetched individually
from the cursor. After each FETCH statement, the cursor advances to the
next row in the active set and retrieves it. Syntax of FETCH is:

FETCH <cursor name> INTO <variable name>, <variable name>. . . .

where variable name is the name of a variable to which a column value is
assigned. For each column value returned by the query associated with the
cursor, there must be a corresponding variable in the INTO list. This variable
datatype must be compatible with the corresponding database column.

5.11.5 Close the Cursor

After processing the rows in the cursor, it is released with the CLOSE state-
ment. To change the active set in a cursor or the values of the variables
referenced in the cursor SELECT statement, the cursor must be released with
CLOSE statement. Once a cursor is CLOSEd, it can be reOPENed. The
CLOSE statement disables the cursor, and the active set becomes undefined.
For example, to CLOSE Mem detail close statement will be:

CLOSE <cursor name>;

238 5 PL/SQL

Example

Figures 5.4 and 5.5 show the example of declaring, opening, and fetching the
cursor called SALCUR.

Explicit Cursor Attributes

It is used to access useful information about the status of an explicit cursor.
Explicit cursors have the same set of cursor attributes %NOTFOUND,
%FOUND, %ROWCOUNT, and %ISOPEN. These attributes can be accessed
in PL/SQL statements only, not in SQL statements. Syntax to access an
explicit cursor attributes:

<cursor name>%<attribute name>

%Notfound

When a cursor is OPENed, the rows that satisfy the associated query are
identified and form the active set. Before the first fetch, %NOTFOUND
evaluates to NULL. Rows are FETCHed from the active set one at a time. If
the last fetch returned a row, %NOTFOUND evaluates to FALSE. If the last
fetch failed to return a row because the active set was empty, %NOTFOUND
evaluates to TRUE. FETCH is expected to fail eventually, so when that
happens, no exception is raised.

Example

Figures 5.4 and 5.5 show the example for this attribute. In this example, it is
used for checking whether all the rows have been fetched or not.

%Found

%FOUND is the logical opposite of %NOTFOUND. After an explicit cursor
is open but before the first fetch, %FOUND evaluates to NULL. Thereafter,
it evaluates to TRUE if the last fetch returned a row or to FALSE if no row
was returned. If a cursor is not open, referencing it with %FOUND raises
INVALID CURSOR exception.

Example

Figures 5.4 and 5.5 show the example for this attribute. In this example, it is
used for checking whether the cursor has been opened successfully or not.

%Rowcount

When you open a cursor, %ROWCOUNT is initialized to zero. Before the
first fetch, %ROWCOUNT returns a zero. Thereafter, it returns the number
of rows fetched so far. The number is incremented if the latest fetch returned
a row.

5.11 Steps to Create a Cursor 239

Example

Figures 5.8 and 5.9 show the example of this attribute where cursor updatcur
is used.

%Isopen

%ISOPEN evaluates to TRUE if the cursor is open; otherwise, %ISOPEN
evaluates to FALSE.

Example

Figures 5.11 and 5.12 show the example of this attribute where cursor up-
datcur is used.

Fig. 5.11. Example of FOR UPDATE clause

240 5 PL/SQL

Fig. 5.12. FOR UPDATE clause execution

Using FOR UPDATE and CURRENT

The FOR UPDATE clause is used to specify that the rows in the active set of a
cursor are to be locked for modification. Locking allows the rows in the active
set to be modified exclusively by your program. This protects simultaneous
modifications until update by one transaction is complete.

CURSOR <cursor name> IS SELECT <column name> [.....] FROM.....
FOR UPDATE [OF <column name>];

FOR UPDATE specifies that the rows of the active set are to be exclusively
locked when the cursor is opened and specifies the column names that can be
updated. The FOR UPDATE clause must be used in the cursor declaration
statement whenever UPDATE or DELETE are to be used after the rows are
FETCHed from a cursor.

Syntax of CURRENT clause with UPDATE statement is:

UPDATE <table name> SET <column name> = expression [.....]
WHERE CURRENT OF <cursor name>;

Syntax of CURRENT OF Clause with DELETE Statement is:

DELETE table name WHERE CURRENT OF cursor name;

5.11 Steps to Create a Cursor 241

Example

Figures 5.11 and 5.12 show this example where a row of id E101 is locked for
updation and its name of the Employee is changed to Karthikeyan.

Cursor FOR Loop

PL/SQL provides FOR loop to manage cursors effectively in situations where
the rows in the active set of cursor are to be repeatedly processed in a looping
manner. A cursor FOR loop simplifies all aspects of processing a cursor. Cursor
FOR loop can be used instead of the OPEN, FETCH, and CLOSE statements.

A cursor FOR loop implicitly declares its loop index as a %ROWTYPE
record, opens a cursor, repeatedly fetches rows of values from the active
set into fields in the record, and closes the cursor when all rows have been
processed. Syntax to declare and process a cursor in a cursor FOR loop is:

FOR <record name> IN <cursor name> LOOP
.
END LOOP;

where record name is the cursor FOR loop index implicitly declared as
a record of type %ROWTYPE. Cursor is assumed to be declared in the
DECLARE section. In the FOR loop declaration, the FOR loop index is
uniquely named and implicitly declared as a record of type %ROWTYPE.
This RECORD variable consists of columns referenced in the cursor SELECT
statement.

In the FOR loop, the cursor is implicitly opened for processing. No explicit
OPEN statement is required. Inside the FOR loop, the column values for each
row in the active set can be referenced by the FOR loop index with dot nota-
tion in any PL/SQL or SQL statement. Before any iteration of the FOR loop,
PL/SQL fetches into the implicitly declared record, which is equivalent to a
record declared explicitly. At the end of the active set, the FOR loop implicitly
closes the cursor and exits the FOR loop. No explicit CLOSE statement is
required. A COMMIT statement is still required to complete the operation.
We can pass parameters to a cursor used in a cursor FOR loop. The record
is defined only inside the loop. We cannot refer to its fields outside the loop.
The sequence of statements inside the loop is executed once for each row that
satisfies the query associated with the cursor. On leaving the loop, the cursor
is closed automatically. This is true even if an EXIT or GOTO statement is
used to leave the loop prematurely or if an exception is raised inside the loop.

Example

Figures 5.13 and 5.14 show the example of cursor execution using FOR loop.

242 5 PL/SQL

Fig. 5.13. Cursor using FOR loop

Fig. 5.14. Cursor using FOR loop execution

5.12 Procedure 243

5.12 Procedure

A procedure is a subprogram that performs some specific task, and stored
in the data dictionary. A procedure must have a name, so that it can be
invoked or called by any PL/SQL program that appears within an application.
Procedures can take parameters from the calling program and perform the
specific task. Before the procedure or function is stored, the Oracle engine
parses and compiles the procedure or function. When a procedure is created,
the Oracle automatically performs the following steps:

1. Compiles the procedure
2. Stores the procedure in the data dictionary

If an error occurs during creation of procedure, Oracle displays a message
that procedure is created with compilation errors, but it does not display the
errors. To see the errors following statement is used:

SELECT * FROM user errors;

When the function is invoked, the Oracle loads the compiled procedure in
the memory area called system global area (SGA). Once loaded in the SGA
other users can also access the same procedure provided they have granted
permission for this.

Benefits of Procedures and Functions

Stored procedures and functions have many benefits in addition to modulari-
zing application development.

1. It modifies one routine to affect multiple applications.
2. It modifies one routine to eliminate duplicate testing.
3. It ensures that related actions are performed together, or not at all, by

doing the activity through a single path.
4. It avoids PL/SQL parsing at runtime by parsing at compile time.
5. It reduces the number of calls to the database and database network traffic

by bundling the commands.

Defining and Creating Procedures

A procedure consists of two parts: specification and body. The specification
starts with keyword PROCEDURE and ends with parameter list or procedure
name. The procedures may accept parameters or may not. Procedures that
do not accept parameters are written parentheses.

The procedure body starts with the keyword IS and ends with keyword
END. The procedure body is further subdivided into three parts:

1. Declarative part which consists of local declarations placed between key-
words IS and BEGIN.

244 5 PL/SQL

2. Executable part, which consists of actual logic of the procedure, included
between keywords BEGIN and EXCEPTION. At least one executable
statement is a must in the executable portion of a procedure. Even a
single NULL statement will do the job.

3. Error/Exception handling part, an optional part placed between EXCEP-
TION and END.

The syntax for creating a procedure is follows:

CREATE OR REPLACE PROCEDURE [schema.] package name
[(argument {IN, OUT, IN OUT} data type,.)] {IS, AS}
[local variable declarations]
BEGIN
executable statements
EXCEPTION
exception handlers
END [procedure name];

Create: Creates a new procedure, if a procedure of same name already
exists, it gives an error.

Replace: Creates a procedure, if a procedure of same name already exists,
it replace the older one by the new procedure definition.

Schema: If the schema is not specified then procedure is created in user’s
current schema.

Figure 5.15 shows the procedure to raise the salary of the employee. The
name of the procedure is raise sal.

Fig. 5.15. Procedure creation

5.12 Procedure 245

Argument: It is the name of the argument to the procedure.
IN: Specifies that a value for the argument must be specified when calling

the procedure.
OUT: Specifies that the procedure pass a value for this argument back to

its calling environment after execution.
IN OUT: Specifies that a value for the argument must be specified when

calling the procedure and that the procedure passes a value for this argument
back to its calling environment after execution. If no value is specified then it
takes the default value IN.

Datatype: It is the unconstrained datatype of an argument. It supports
any data type supported by PL/SQL. No constraints like size constraints or
NOT NULL constraints can be imposed on the data type. However, you can
put on the size constraint indirectly.

Example

To raise the salary of an employee, we can write a procedure as follows.

Declaring Subprograms

Subprograms can be declared inside any valid PL/SQL block. The only thing
to be kept in mind is the declaration of programs must be the last part of
declarative section of any PL/SQL block; all other declarations should precede
the subprogram declarations.

Like any other programming language, PL/SQL also requires that any
identifier that is used in PL/SQL program should be declared first before its
use. To avoid problems arising due to such malpractices, forward declarations
are used.

System and Object Privileges for Procedures

The creator of a procedure must have CREATE PROCEDURE system privi-
lege in his own schema, if the procedure being created refers to his own schema.
To create a procedure in other’s schema, the creator must have CREATE ANY
PROCEDURE system privilege.

To create a procedure without errors (compiling it without errors), the
creator of procedure must have required privileges to all the objects he refer
to from his procedure. It must be noted that the owner will not get the required
privileges through roles, he must be granted those privileges explicitly.

As soon as the privileges granted to the owner of procedure change, the
procedure must be reauthenticated in order to bring into picture the new
privileges of the owner. If a necessary privilege to an object referenced by a
procedure is revoked/withdrawn from the owner of the procedure, the proce-
dure cannot be run.

246 5 PL/SQL

To EXECUTE any procedure a user must have EXECUTE ANY PROCE-
DURE privilege. With this privilege he can execute a procedure which belong
to some other user.

Executing/Invoking a Procedure

The syntax used to execute a procedure depends on the environment from
which the procedure is being called. From within SQLPLUS, a procedure can
be executed by using the EXECUTE command, followed by the procedure
name. Any arguments to be passed to the procedure must be enclosed in
parentheses following the procedure name.

Example

Figure 5.16 shows the execution of procedure raise sal.

Removing a Procedure

To remove a procedure completely from the database, following command is
used:

DROP PROCEDURE <PROCEDURE NAME>;

Fig. 5.16. Procedure execution

5.13 Function 247

Fig. 5.17. Dropping of a procedure

To remove a procedure, one must own the procedure he is dropping or he
must have DROP ANY PROCEDURE privilege.

Example

To drop a procedure raise sal. Figure 5.17 indicate the dropping of the proce-
dure raise sal.

5.13 Function

A Function is similar to procedure except that it must return one and only
one value to the calling program. Besides this, a function can be used as part
of SQL expression, whereas the procedure cannot.

Difference Between Function and Procedure

Before we look at functions in deep, let us first discuss the major differences
between a function and a procedure.

1. A procedure never returns a value to the calling portion of code, whereas
a function returns exactly one value to the calling program.

2. As functions are capable of returning a value, they can be used as elements
of SQL expressions, whereas the procedures cannot. However, user-defined
functions cannot be used in CHECK or DEFAULT constraints and cannot
manipulate database values, to obey function purity rules.

3. It is mandatory for a function to have at least one RETURN statement,
whereas for procedures there is no restriction. A procedure may have a
RETURN statement or may not. In case of procedures with RETURN
statement, simply the control of execution is transferred back to the
portion of code that called the procedure.

248 5 PL/SQL

The exact syntax for defining a function is given below:

CREATE OR REPLACE FUNCTION [schema.] functionname
[(argument IN datatype,)] RETURN datatype {IS,AS}
[local variable declarations];
BEGIN
executable statements;
EXCEPTION
exception handlers;
END [functionname];

where RETURN datatype is the datatype of the function’s return value. It
can be any PL/SQL datatype.

Thus a function has two parts: function specification and function body.
The function specification begins with keyword FUNCTION and ends with
RETURN clause which indicates the datatype of the value returned by the
function. Function body is enclosed between the keywords IS and END. Some-
times END is followed by function name, but this is optional. Like procedure,
a function body also is composed of three parts: declarative part, executable
part, and an optional error/exception handling part.

At least one return statement is a must in a function; otherwise PL/SQL
raises PROGRAM ERROR exception at the run time. A function can have
multiple return statements, but can return only one value. In procedures,
return statement cannot contain any expression, it simply returns control
back to the calling code. However in functions, return statement must contain
an expression, which is evaluated and sent to the calling code.

Example

To get a salary of an employee, Fig. 5.18 shows a function.
Figure 5.19 shows that how the calling of a function is different from

procedure calling.

Purity of a Function

For a function to be eligible for being called in SQL statements, it must satisfy
the following requirements, which are known as Purity Rules.

1. When called from a SELECT statement or a parallelized INSERT,
UPDATE, or DELETE statement, the function cannot modify any
database tables.

2. When called from an INSERT, UPDATE, or DELETE statement, the
function cannot query or modify any database tables modified by that
statement.

5.13 Function 249

Fig. 5.18. Function creation

Fig. 5.19. Function execution

3. When called from a SELECT, INSERT, UPDATE, or DELETE state-
ment, the function cannot execute SQL transaction control statements
(such as COMMIT), session control statements (such as SET ROLE), or
system control statements (such as ALTER SYSTEM). Also, it cannot

250 5 PL/SQL

execute DDL statements (such as CREATE) because they are followed by
an automatic commit.

If any of the above rules is violated, the function is said to be not following
the Purity Rules and the program using such functions receives run time error.

Removing a Function

To remove a function, use following command:

DROP FUNCTION <FUNCTION NAME>;

Example

Figure 5.20 illustrates the dropping of a function.
To remove a function, one must own the function to be dropped or he

must have DROP ANY FUNCTION privilege.

Parameters

Parameters are the link between a subprogram code and the code calling the
subprogram. Lot depends on how the parameters are passed to a subprogram.
Hence it is absolutely necessary to know more about parameters, their modes,
their default values, and how subprograms can be called without passing all
the parameters.

Parameter Modes

Parameter modes define the behavior of formal parameters of subprograms.
There are three types of parameter modes: IN, OUT, IN/OUT.

Fig. 5.20. Dropping the function

5.13 Function 251

IN Mode

IN mode is used to pass values to the called subprogram. In short this is an
input to the called subprogram. Inside the called subprogram, an IN parameter
acts like a constant and hence it cannot be assigned a new value.

The IN parameter in actual parameter list can be a constant, literal, ini-
tialized variable, or an expression. IN parameters can be initialized to default
values, which is not the case with IN/OUT or OUT parameters.

It is important to note that IN mode is the default mode of the formal
parameters. If we do not specify the mode of a formal parameter it will be
treated as an IN mode parameter.

OUT Mode

An OUT parameter returns a value back to the caller subprogram. Inside the
subprogram, the parameter specified with OUT mode acts just like any locally
declared variable. Its value can be changed or referenced in expressions, just
like any other local variables.

The points to be noted for an OUT parameter are:

1. The parameter (in actual argument list) corresponding to OUT parameter
must be a variable; it cannot be a constant or literal.

2. Formal OUT parameters are by default initialized to NULL, so we cannot
constraint the formal OUT parameters by NOT NULL constraint.

3. The parameter (in actual argument list) corresponding to OUT parameter
can have a value before a call to subprogram, but the value is lost as soon
as a call is made to the subprogram.

IN/OUT

An IN/OUT parameter performs the duty of both IN parameter as well as
OUT parameter. It first passes input value (through actual argument) to
the called subprogram and then inside subprogram it receives a new value
which will be assigned finally to the actual parameter. In short, inside the
called subprogram, the IN/OUT parameter behaves just like an initialized
local variable.

Like OUT parameter, the parameter in the actual argument list that corre-
sponds to IN/OUT parameter, must be a variable, it cannot be a constant or
an expression. If the subprogram exits successfully, PL/SQL assigns value
to actual parameters, however, if the subprogram exits with unhandled
exception, PL/SQL does not assign values to actual parameters.

252 5 PL/SQL

5.14 Packages

A package can be defined as a collection of related program objects such as
procedures, functions, and associated cursors and variables together as a unit
in the database. In simpler term, a package is a group of related procedures
and functions stored together and sharing common variables, as well as local
procedures and functions. A package contains two separate parts: the package
specification and the package body. The package specification and package
body are compiled separately and stored in the data dictionary as two sepa-
rate objects. The package body is optional and need not to be created if the
package specification does not contain any procedures or functions. Applica-
tions or users can call packaged procedures and functions explicitly similar to
standalone procedures and functions.

Advantages of Packages

Packages offer a lot of advantages. They are as follows.

1. Stored packages allow us to sum up (group logically) related stored pro-
cedures, variables, and data types, and so forth in a single-named, stored
unit in the database. This provides for better orderliness during the
development process. In other words packages and its modules are easily
understood because of their logical grouping.

2. Grouping of related procedures, functions, etc. in a package also make
privilege management easier. Granting the privilege to use a package
makes all components of the package accessible to the grantee.

3. Package helps in achieving data abstraction. Package body hides the
details of the package contents and the definition of private program
objects so that only the package contents are affected if the package body
changes.

4. An entire package is loaded into memory when a procedure within the
package is called for the first time. This load is completed in one opera-
tion, as opposed to the separate loads required for standalone procedures.
Therefore, when calls to related packaged procedures occur, no disk I/O
is necessary to execute the compiled code already in memory. This results
in faster and efficient operation of programs.

5. Packages provide better performance than stored procedures and functions
because public package variables persist in memory for the duration of a
session. So that they can be accessed by all procedures and functions that
try to access them.

6. Packages allow overloading of its member modules. More than one func-
tion in a package can be of same name. The functions are differentiated,
depending upon the type and number of parameters it takes.

5.14 Packages 253

Units of Packages

As described earlier, a package is used to store together, the logically related
PL/SQL units. In general, following units constitute a package.

– Procedures
– Functions
– Triggers
– Cursors
– Variables

Parts of Package

A Package has two parts. They are:

– Package specification
– Package body

Package Specification

The specification declares the types, variables, constants, exceptions, cursors,
and subprograms that are public and thus available for use outside the pack-
age. In case in the package specification declaration there is only types, con-
stants, exception, or variables, then there is no need for the package body
because package specification are sufficient for them. Package body is required
when there is subprograms like cursors, functions, etc.

Package Body

The package body fully defines subprograms such as cursors, functions, and
procedures. All the private declarations of the package are included in the
package body. It implements the package specification. A package specifica-
tion and the package body are stored separately in the database. This allows
calling objects to depend on the specification only, not on both. This separa-
tion enables to change the definition of program object in the package body
without causing Oracle to interfere with other objects that call or reference
the program object. Oracle invalidates the calling object if the package spec-
ification is changed.

Creating a Package

A package consists of package specification and package body. Hence creation
of a package involves creation of the package specification and then creation
of the package body.

The package specification is declared using the CREATE PACKAGE com-
mand.

254 5 PL/SQL

The syntax for package specification declaration is as follows.

CREATE[OR REPLACE] PACKAGE <package name>
[AS/IS]
PL/SQL package specification

All the procedures, sub programs, cursors declared in the CREATE PACK-
AGE command are described and implemented fully in the package body
along with private members. The syntax for declaring a package body is as
follows:

CREATE[OR REPLACE] PACKAGE BODY <package name>
[AS/IS]
PL/SQL package body

Member functions and procedures can be declared in a package and can
be made public or private member using the keywords public and private.
Use of all the private members of the package is restricted within the package
while the public members of the package can be accessed and used outside
the package.

Referencing Package Subprograms

Once the package body is created with all members as public, we can access
them from outside the program. To access these members outside the packages
we have to use the dot operator, by prefixing the package object with the
package name. The syntax for referencing any member object is as follows:

<PACKAGE NAME>.<VARIABLE NAME>

To reference procedures we have to use the syntax as follows:

EXECUTE <package name>.<procedure name(variables)>;

But the package member can be referenced by only its name if we reference
the member within the package. Moreover the EXECUTE command is not
required if procedures are called within PL/SQL. Functions can be referenced
similar to that of procedures from outside the package using the dot operator.

Public and Private Members of a Package

A package can consist of public as well as private members. Public members
are those members which are accessible outside the package, whereas the pri-
vate members are accessible only from within the package. Private members
are just like local members whose are not visible outside the enclosing code
block (in this case, a package).

5.15 Exceptions Handling 255

The place where a package member is declared, also matters in deciding
the visibility of that member. Those members whose declaration is found
in the package specification are the public members. The package members
that are not declared in the package specification but directly defined in the
package body become the private members.

Viewing Existing Procedural Objects

The source code for the existing procedures, functions, and packages can be
queried from the following data dictionary views.

USER SOURCE Procedural objects owned by the user.

ALL SOURCE Procedural objects owned by the user or
to which the user has been granted access.

DBA SOURCE Procedural objects in the database.

Removing a Package

A package can be dropped from the database just like any other table or
database object. The exact syntax of the command to be used for dropping a
package is:

DROP PACKAGE <PACKAGE NAME>;

To drop a package a user either must own the package or he should have
DROP ANY PACKAGE privilege.

5.15 Exceptions Handling

During execution of a PL/SQL block of code, Oracle executes every SQL
sentence within the PL/SQL block. If an error occurs or an SQL sentence
fails, Oracle considers this as an Exception. Oracle engine immediately tries
to handle the exception and resolve it, by raising a built-in Exception handler.

Introduction to Exceptions

One can define an EXCEPTION as any error or warning condition that arises
during runtime. The main intention of building EXCEPTION technique is to
continue the processing of a program even when it encounters runtime error
or warning and display suitable messages on console so that user can handle
those conditions next time.

In absence of exceptions, unless the error checking is disabled, a program
will exit abnormally whenever some runtime error occurs. But with exceptions,

256 5 PL/SQL

if at all some error situation occurs, the exceptional handler unit will flag an
appropriate error/warning message and will continue the execution of program
and finally come out of the program successfully.

An exception handler is a code block in memory that attempts to resolve
the current exception condition. To handle very common and repetitive excep-
tion conditions Oracle has about 20 Named Exception Handlers. In addition
to these for other exception conditions Oracle has about 20,000 Numbered
Exception Handlers, which are identified by four integers preceded by hy-
phen. Each exception handler, irrespective of how it is defined, (i.e., by Name
or Number) has code attached to it that attempts to resolve the exception
condition. This is how Oracle’s Internal Exception handling strategy works.

Oracle’s internal exception handling code can be overridden. When this is
done Oracle’s internal exception handling code is not executed but the code
block that takes care of the exception condition, in the exception section, of
the PL/SQL block is executed. As soon as the Oracle invokes an exception
handler the exception handler goes back to the PL/SQL block from which
the exception condition was raised. The exception handler scans the PL/SQL
block for the existence of exception section within the PL/SQL block. If an
exception section within the PL/SQL block exists the exception handler scans
the first word, after the key word WHEN, within the exception section. If the
first word after the key word WHEN is the exception handler’s name then
the exception handler executes the code contained in the THEN section of
the construct, the syntax follows:

EXCEPTION
WHEN exception name THEN
User defined action to be carried out.

Exceptions can be internally defined (by the run-time system) or user
defined. Internally defined exceptions are raised implicitly (automatically) by
the run-time system. User-defined exceptions must be raised explicitly by
RAISE statements, which can also raise internally defined exceptions. Raised
exceptions are handled by separate routines called exception handlers. After
an exception handler runs, the current block stops executing and the enclosing
block resumes with the next statement. If there is no enclosing block, control
returns to the host environment.

Advantages of Using Exceptions

1. Control over abnormal exits of executing programs on encountering error
conditions, hence the behavior of application becomes more reliable.

2. Meaningful messages can be flagged so that the developer can become
aware of error and warning conditions and act upon them.

3. In traditional error checking system, if same error is to be checked at
several places, you are required to code the same error check at all those

5.15 Exceptions Handling 257

places. But with exception handling technique, we will write the exception
for that particular error only once in the entire code. Whenever that type
error occurs at any place in code, the exceptional handler will automati-
cally raise the defined exception.

4. Being a part of PL/SQL, exceptions can be coded at suitable places and
can be coded isolated like procedures and functions. This improves the
overall readability of a PL/SQL program.

5. Oracle’s internal exception mechanism combined with user-defined
exceptions, considerably reduce the development efforts required for
cumbersome error handling.

Predefined and User-Defined Exceptions

As discussed earlier there are some predefined or internal exceptions, and a
developer can also code user-defined exceptions according to his requirement.
In next session we will be looking closely at these two types of exceptions.

Internally (Predefined) Defined Exceptions

An internal exception is raised implicitly whenever a PL/SQL program vio-
lates an Oracle rule or exceeds a system-dependent limit. Every Oracle error
has a number, but exceptions must be handled by name. So, PL/SQL prede-
fines a name for some common errors to raise them as exception. For example,
if a SELECT INTO statement returns no rows, PL/SQL raises the predefined
exception NO DATA FOUND, which has the associated Oracle error number
ORA-01403.

Example

Figure 5.21 shows the internally defined exception NO DATA FOUND, when
we want to get a salary of an employee who is not in the EMP table.

If we execute this query with some emp name say “XYZ” as input and if
emp name column of employee table does not contain any value “XYZ,” Or-
acle’s internal exception handling mechanism will raise NO DATA FOUND
exception even when we have not coded for it.

PL/SQL declares predefined exceptions globally in package STANDARD,
which defines the PL/SQL environment. Some of the commonly used
exceptions are as follows:

User Defined Exceptions

Unlike internally defined exceptions, user-defined exceptions must be declared
and raised explicitly by RAISE statements. Exceptions can be declared only in
the declarative part of a PL/SQL block, subprogram, or package. An exception
is declared by introducing its name, followed by the keyword EXCEPTION.

258 5 PL/SQL

Name of the exception Raised when ...

ACCESS INTO NULL Your program attempts to assign values to the
attributes of an uninitialized (atomically null)
object.

COLLECTION IS NULL Your program attempts to apply collection
methods, other than EXISTS to an uninitial-
ized (atomically null) nested table or varray,
or the program attempts to assign values to
the elements of an uninitialized nested table or
varray.

CURSOR ALREADY OPEN Your program attempts to open an already
open cursor. A cursor must be closed before it
can be reopened. A cursor FOR loop automat-
ically opens the cursor to which it refers. So,
your program cannot open that cursor inside
the loop.

DUP VAL ON INDEX Your program attempts to store duplicate val-
ues in a database column that is constrained
by a unique index.

INVALID CURSOR Your program attempts an illegal cursor oper-
ation such as closing an unopened cursor.

INVALID NUMBER In a SQL statement, the conversion of a charac-
ter string into a number fails because the string
does not represent a valid number. (In proce-
dural statements, VALUE ERROR is raised.)

LOGIN DENIED Your program attempts to log on to Oracle
with an invalid username and/or password.

NO DATA FOUND A SELECT INTO statement returns no rows,
or your program references a deleted element
in a nested table or an uninitialized element
in an index-by table. SQL aggregate functions
such as AVG and SUM always return a value
or a null. So, a SELECT INTO statement
that calls an aggregate function will never raise
NO DATA FOUND. The FETCH statement
is expected to return no rows eventually, so
when that happens, no exception is raised.

NOT LOGGED ON Your program issues a database call without
being connected to Oracle.

5.15 Exceptions Handling 259

Continued.

Name of the exception Raised when ...

ROWTYPE MISMATCH The host cursor variable and PL/SQL cursor
variable involved in an assignment have incom-
patible return types. For example, when an
open host cursor variable is passed to a stored
subprogram, the return types of the actual and
formal parameters must be compatible.

PROGRAM ERROR PL/SQL has an internal problem.

SELF IS NULL Your program attempts to call a MEMBER
method on a null instance. That is, the built-
in parameter SELF (which is always the first
parameter passed to a MEMBER method) is
null.

STORAGE ERROR PL/SQL runs out of memory or memory has
been corrupted.

SUBSCRIPT BEYOND COUNT Your program references a nested table or var-
ray element using an index number larger than
the number of elements in the collection.

SUBSCRIPT OUTSIDE LIMIT Your program references a nested table or var-
ray element using an index number (−1 for
example) that is outside the legal range.

SYS INVALID ROWID The conversion of a character string into a uni-
versal rowid fails because the character string
does not represent a valid rowid.

TIMEOUT ON RESOURCE A time-out occurs while Oracle is waiting for a
resource.

TOO MANY ROWS A SELECT INTO statement returns more than
one row.

VALUE ERROR An arithmetic, conversion, truncation, or size
constraint error occurs. For example, when
your program selects a column value into
a character variable, if the value is longer
than the declared length of the variable,
PL/SQL aborts the assignment and raises
VALUE ERROR. In procedural statements,
VALUE ERROR is raised if the conversion of
a character string into a number fails. (In SQL
statements, INVALID NUMBER is raised.)

ZERO DIVIDE Your program attempts to divide a number by
zero.

260 5 PL/SQL

Fig. 5.21. Internally defined exception

The syntax is as follows:

DECLARE
<exception name>EXCEPTION;

Exceptions are declared in the same way as the variables. But exceptions
cannot be used in assignments or SQL expressions/statements as they are not
data items. The visibility of exceptions is governed by the same scope rules
which apply to variables also.

Raising User-Defined and Internal Exceptions

As seen in the previous example, one can notice a statement “RAISE Excep-
tion1.” This statement is used to explicitly raise the exception “Exception1,”
the reason being, unlike internally defined exceptions which are automatically
raised by “OracleS” run time engine, user-defined exceptions have to be raised
explicitly by using RAISE statement. However, it is always possible to RAISE
predefined (internally defined) exceptions, if needed, in the same way as do
the user-defined exceptions, which is illustrated in Fig. 5.22

RAISE <exception name>;

5.15 Exceptions Handling 261

Fig. 5.22. Exception example

Example

Create a table as follows,

CREATE TABLE ROOM STATUS (ROOM NO NUMBER(5)
PRIMARY KEY,
CAPACITY NUMBER(2),
ROOMSTATUS VARCHAR2(20),
RENT NUMBER(4),
CHECK (ROOMSTATUS IN (‘VACANT’,‘BOOKED’)));

User-Defined Error Reporting – Use of Raise Application Error

RAISE APPLICATION ERROR lets display the messages we want whenever
a standard internal error occurs. RAISE APPILCATION ERROR associates
an Oracle Standard Error Number with the message we define. The syntax
for RAISE APPLICATION ERROR is as follows:

RAISE APPLICATION ERROR (Oracle Error Number,
Error Message, TRUE/FALSE);

262 5 PL/SQL

Fig. 5.23. Without exception

Fig. 5.24. Execution of exception

Figures 5.23 and 5.24 shows the output for two conditions ‘Room Available’
and ‘Vacant’.

5.15 Exceptions Handling 263

Oracle error number is the standard Oracle error (−20000 to −20999) that
we want to associate with the message (max 2,048 kb) defined, TRUE/FALSE
indicates whether to place the error message on previous error stack (TRUE)
or to replace all the errors with this message (FALSE).

RAISE APPLICATION ERROR can be called only from an executing
subprogram. As soon as the subprogram encounters RAISE APPLICATION
ERROR, the subprogram returns control back to the calling PL/SQL code
thereby displaying the error message. We can handle the exception raised in
the calling portion of PL/SQL block.

Example

Following Fig. 5.25 illustrates the use of RAISE APPLICATION ERROR
command with the procedure named get emp name.

Fig. 5.25. Raise application error example

264 5 PL/SQL

5.16 Database Triggers

A database trigger is a stored PL/SQL program unit associated with a spe-
cific database table. It can perform the role of a constraint, which forces the
integrity of data. It is the most practical way to implement routines and grant-
ing integrity of data. Unlike the stored procedures or functions, which have
to be explicitly invoked, these triggers implicitly get fired whenever the table
is affected by the SQL operation. For any event that causes a change in the
contents of a table, a user can specify an associated action that the DBMS
should carry out. Trigger follows the Event-Condition-Action scheme (ECA
scheme).

Privileges Required for Triggers

Creation or alteration of a TRIGGER on a specific table requires TRIGGER
privileges as well as table privileges. They are:

1. To create TRIGGER in one’s own schema, he must have CREATE TRIG-
GER privilege. To create a trigger in any other’s schema, one must have
CREATE ANY TRIGGER system privilege.

2. To create a trigger on table, one must own the table or should have ALTER
privilege for that table or should have ALTER ANY TABLE privilege.

3. To ALTER a trigger, one must own that trigger or should have ALTER
ANY TRIGGER privilege. Also since the trigger will be operating on
some table, one also requires ALTER privilege on that table or ALTER
ANY TABLE table privilege.

4. To create a TRIGGER on any database level event, one must have AD-
MINISTER DATABASE TRIGGER system privilege.

Context to Use Triggers

Following are the situations to use the triggers efficiently:

– Use triggers to guarantee that when a specific operation is performed,
related actions are performed.

– Do not define triggers that duplicate the functionality already built into
Oracle. For example, do not define triggers to enforce data integrity rules
that can be easily enforced using declarative integrity constraints.

– Limit the size of triggers. If the logic for our trigger requires much more
than 60 lines of PL/SQL code, then it is better to include most of the
code in a stored procedure and call the procedure from the trigger.

– Use triggers only for centralized, global operations that should be fired for
the triggering statement, regardless of which user or database application
issues the statement.

– Do not create recursive triggers which cause the trigger to fire recursively
until it has run out of memory.

5.16 Database Triggers 265

– Use triggers on DATABASE judiciously. They are executed for every user
every time the event occurs on which the trigger is created.

Uniqueness of Trigger

Different types of integrity constraints provide a declarative mechanism to
associate “simple” conditions with a table such as a primary key, foreign
keys, or domain constraints. Complex integrity constraints that refer to several
tables and attributes cannot be specified within table definitions. Triggers, in
contrast, provide a procedural technique to specify and maintain integrity
constraints.

Triggers even allow users to specify more complex integrity constraints
since a trigger essentially is a PL/SQL procedure. Such a procedure is associ-
ated with a table and is automatically called by the database system whenever
a certain modification (event) occurs on that table.

Simply we can say that trigger is less declarative and more pro-

cedural type constraint enforcement. Triggers are used generally to
implement business rules in the database. It is the major difference between
Triggers and Integrity Constraints.

Create Trigger Syntax

The Create trigger syntax is as follows:

CREATE [OR REPLACE] TRIGGER <trigger name>
[BEFORE/AFTER/INSTEAD OF]
[INSERT/UPDATE/DELETE [of column,..]] ON <table name>
[REFERENCING [OLD [AS] <old name> | NEW [AS]
<new name>]
[FOR EACH STATEMENT/FOR EACH ROW]
[WHEN <condition>]
[BEGIN
–PL/SQL block
END];

This syntax can be explained as follows.

Parts of Trigger

A trigger has three basic parts:

– A triggering event or statement
– A trigger restriction
– A trigger action

266 5 PL/SQL

Trigger Event or Statement

A triggering event or statement is the SQL statement, database event, or user
event like update, delete, insert, etc. that causes a trigger to be fired. It also
specifies the table to which the trigger is associated. Trigger statement or an
event can be any of the following:

1. INSERT, UPDATE, or DELETE on a specific table or view.
2. CREATE, ALTER, or DROP on any schema object.
3. Database activities like startup and shutdown.
4. User activities like logon and logoff.
5. A specific error message on any error message.

Figure 5.26 shows a database application with some SQL statements that
implicitly fire several triggers stored in the database. It shows three triggers,
which are associated with the INSERT, UPDATE, and DELETE operation in
the database table. When these data manipulation commands are given, the
corresponding trigger gets automatically fired performing the task described
in the corresponding trigger body.

Trigger Restriction

A trigger restriction is any logical expression whose outcome is TRUE/FALSE/
UNKNOWN. For a trigger to fire, this logical expression must evaluate to
TRUE. Typically, a restriction is a part of trigger declaration that follows the
keyword WHEN.

Database

Table t
Update Trigger

BEGIIT
- - -

Insert Trigger

BEGIIT
- - -

Delete Trigger

BEGIIT
- - -

Applications

UPDATE:SET...:

INSERT INTOt...:

DELETE FROMt...:

Fig. 5.26. Database application with some SQL statements that implicitly fire
several triggers stored in the database

5.17 Types of Triggers 267

Trigger Action

A trigger action is the PL/SQL block that contains the SQL statements and
code to be executed when a triggering statement is issued and the trigger
restriction evaluates to TRUE. It is also called the trigger body. Like stored
procedures, a trigger action can contain SQL and PL/SQL.

Following statements will explain the various keywords used in the syntax.
BEFORE and AFTER keyword indicates whether the trigger should be

executed before or after the trigger event, where a triggering event can be
INSERT, UPDATE, or DELETE. Any combination of triggering events can
be included in the same database trigger.

When referring the old and new values of columns, we can use the defaults
(“old” and “new”) or we can use the REFERENCING clause to specify other
names. FOR EACH ROW clause causes the trigger to fire once for each record
created, deleted, or modified by the triggering statement. When working with
row triggers, the WHEN clause can be used to restrict the records for which
the trigger fires.

We can use INSTEAD OF triggers to tell the database what to do instead
of performing the actions that invoked the trigger. For example, we can use
it on a VIEW to redirect the inserts into a table or to update multiple tables
that are parts of the view.

5.17 Types of Triggers

Type of trigger firing, level at which a trigger is executed, and the types of
events form the basis classification of triggers into different categories. This
section describes the different types of triggers. The broad classification of
triggers is as shown below.

On the Basis of Type of Events
– Triggers on System events
– Trigger on User events

On the Basis of the Level at which Triggers are Executed
– Row Level Triggers
– Statement Level Triggers

On the Basis of Type of Trigger/Firing or Triggering Transaction
– BEFORE Triggers
– AFTER Triggers
– INSTEAD OF

Triggers on System Events

System events that can fire triggers are related to instance startup and shut-
down and error messages. Triggers created on startup and shutdown events
have to be associated with the database; triggers created on error events can
be associated with the database or with a schema.

268 5 PL/SQL

BEFORE Triggers

BEFORE triggers execute the trigger action before the triggering statement is
executed. It is used to derive specific column values before completing a trig-
gering DML, DDL statement or to determine whether the triggering statement
should be allowed to complete.

Example

We can define a BEFORE trigger on the passengers detail table that gets fired
before deletion of any row. The trigger will check the system date and if the
date is Sunday, it will not allow any deletion on the table.

The trigger can be created in Oracle as shown in Fig. 5.27.
The trigger action can be shown as in Fig. 5.28.
As soon as we try to delete a record from passenger detail table, the above

trigger will be fired and due to SUNDAY EXP fired, all the changes will be
rolled back or undone and the record will not be deleted.

AFTER Triggers

AFTER triggers execute the trigger action after the triggering statement is
executed. AFTER triggers are used when we want the triggering statement
to complete before executing the trigger action, or to execute some additional
logic to the before trigger action.

Fig. 5.27. BEFORE trigger creation

5.17 Types of Triggers 269

Fig. 5.28. BEFORE trigger execution

Fig. 5.29. AFTER trigger creation

Example

We can define an AFTER trigger on the reserv det table that gets fired every
time one row is deleted from the table. This trigger will determine the pas-
senger id of the deleted row and subsequently delete the corresponding row
from the passengers det table with same passenger id.

Trigger can be created as shown in Fig. 5.29
Trigger action can be shown as in Fig. 5.30. In this figure, the content of

the relations passenger det and reserve det are shown before and after the
triggering event.

Triggers on LOGON and LOGOFF Events

LOGON and LOGOFF triggers can be associated with the database or with
a schema. Their attributes include the system event and username, and they
can specify simple conditions on USERID and USERNAME.

– LOGON triggers fire after a successful logon of a user.
– LOGOFF triggers fire at the start of a user logoff.

270 5 PL/SQL

Fig. 5.30. AFTER trigger execution

Example

Let us create a trigger on LOGON event called pub log, which will store
the number, date, and user of login done by different user in that particular
database. The trigger will store this information in a table called log detail.
The table log detail must be created before trigger creation by logging into
Administrator login. The trigger can be created as shown in Fig. 5.31.

After logging into another login, if we see the content of the relation
log detail it will show who are all logged into database. The value of the
attribute log times would go on increasing with every login into the database
which is indicated in Fig. 5.32.

Note The log detail relation is visible only in Administrator login.

Triggers on DDL Statements

This trigger gets fired when DDL statement such as CREATE, ALTER, or
DROP command is issued. DDL triggers can be associated with the database
or with a schema. Moreover depending on the time of firing of trigger, this

5.17 Types of Triggers 271

Fig. 5.31. Triggers on LOGON event creation

trigger can be classified into BEFORE and AFTER. Hence the triggers on
DDL statements can be as follows:

– BEFORE CREATE and AFTER CREATE triggers fire when a schema
object is created in the database or schema.

– BEFORE ALTER and AFTER ALTER triggers fire when a schema object
is altered in the database or schema.

– BEFORE DROP and AFTER DROP triggers fire when a schema object
is dropped from the database or schema.

Example

Let us create a trigger called “no drop pass” that fires before dropping any
object on the schema of the user with username “skk.” It checks whether
the object type and name. If the object name is “passenger det” and object
type is table, it raises an application error and prevents the dropping of the

272 5 PL/SQL

Fig. 5.32. Triggers on LOGON event execution

table. The syntax for creating the trigger is as follows. Remember to create
the trigger by logging as administrator in the database. The trigger can be
created as shown in Fig. 5.33.

The trigger is executed as shown in Fig. 5.34.

Triggers on DML Statements

This trigger gets fired when DML statement such as INSERT, UPDATE, or
DELETE command is issued. DML triggers can be associated with the data-
base or with a schema. Depending on the time of firing of trigger, this trigger
can be classified into BEFORE and AFTER. Moreover, when we define a trig-
ger on a DML statement, we can specify the number of times the trigger action
is to be executed: once for every row or once for the triggering statement.

Row Level Triggers

A row level trigger, as its name suggests, is fired for each row that will be
affected by the SQL statement, which fires the trigger. Suppose for example
if an UPDATE statement updates “N” rows of a table, a row level trigger
defined for this UPDATE on that particular table will be fired once for each
of those “N” affected rows. If a triggering SQL statement affects no rows, a
row trigger is not executed at all. To specify a trigger of row type, FOR EACH
ROW clause is used after the name of table.

In row level triggers, the statements in a trigger action have access to
column values (new and old) of the current row being processed by the trigger.
The names of the new and old values are called correlation names. They allow
access to new and old values for each column. By means of new, one refers
to the new value with which the row in the tableis updated or inserted. On

5.17 Types of Triggers 273

Fig. 5.33. Trigger on DDL statement creation

Fig. 5.34. Trigger on DDL statement execution

274 5 PL/SQL

the other hand by means of old, one refers to the old value, which is being
updated or deleted. Row level triggers are useful if the code in the trigger
action depends on data provided by the triggering statement or rows that are
affected.

Example

The AFTER trigger on reserv det table that deletes all corresponding rows
from passenger det table with the same passenger id is a row level trigger as
shown in Figs. 5.29 and 5.30, respectively.

Statement Level Triggers

Unlike row level trigger, a statement level trigger is fired only once on behalf
of the triggering SQL statement, regardless of the number of rows in the table
that the triggering statement affects. Even if the triggering statement affects
no rows, the statement level trigger will execute exactly once. For example,
if a DELETE statement deletes several rows from a table, a statement-level
DELETE trigger is fired only once, regardless of how many rows are deleted
from the table. Default type of any trigger is Statement level trigger. State-
ment level triggers are useful if the code in the trigger action does not depend
on the data provided by the triggering statement or the rows affected.

Example

The BEFORE trigger on passenger det table that checks that no row should
be deleted on Sunday is a statement level trigger as shown in Figs. 5.27 and
5.28, respectively.

INSTEAD-OF Triggers

INSTEAD-OF triggers are used to tell Oracle what to do instead of performing
the actions that executed the trigger. It is applicable to both object views and
standard relational database. This trigger can be used to redirect table inserts
into a different table or to update different tables that are the part of the view.
This trigger is used to perform any action instead of the action that executes
the trigger. In simpler words if the task associated with this trigger fails, the
trigger is fired. It is used mostly for object views rather than tables. This
trigger is used to manipulate the tables through the views.

Enabling and Disabling a Trigger

By default, a trigger is enabled when it is created. Only an enabled trigger gets
fired whenever the trigger restriction evaluates to TRUE. Disabled triggers do

5.17 Types of Triggers 275

not get fired even when the triggering statement is issued. Thus a trigger can
be in either of two distinct modes:

– Enabled (an enabled trigger executes its trigger action if a triggering state-
ment is issued and the trigger restriction (if any) evaluates to TRUE).

– Disabled (a disabled trigger does not execute its trigger action, even if a
triggering statement is issued and the trigger restriction (if any) would
evaluate to TRUE).

The need to disable the trigger is there are some situations like heavy
data load or partially succeeded load operations. In case of heavy data load
condition, disabling trigger may dramatically improve the performance. After
load, one has to do all those data operations manually which otherwise a
trigger would have done. In case of partial succeeded load, since a part of load
is successful, the triggers are already executed for that part. Now when we
start the same load fresh, it may be possible that the same trigger would be
executed twice which may cause some undesirable effects. So the best way is
to disable the trigger and do the operations manually after the entire load is
successful.

For enabled triggers, Oracle automatically does the following:

– Prepares a definite plan for execution of triggers of different types.
– Decides time for integrity constraint checking for each type of trigger and

ensures that none of the triggers is violating integrity constraints.
– Manages the dependencies among triggers and schema objects referenced

in the code of the trigger action.
– No definite order for firing of multiple triggers of same type.

Syntax

ALTER TRIGGER <Trigger name> ENABLE/DISABLE;

Example

The passenger bef del trigger can be disabled and enabled as shown in
Fig. 5.35, it shows how Oracle behaves for enabled/disabled triggers.

Replacing Triggers

Triggers cannot be altered explicitly. Triggers have to be replaced with a new
definition using OR REPLACE option with CREATE TRIGGER command.
In such case the old definition of the trigger is dropped and the new definition
is entered in the data dictionary.

276 5 PL/SQL

Fig. 5.35. Enabling and disabling the trigger

The exact syntax for replacing the trigger is as follows:

Syntax

CREATE OR REPLACE TRIGGER <trigger name> AS/IS
<trigger definition>;

The trigger definition should be as shown in the definition for creating
trigger. Alternately the trigger can be dropped and re-created. On dropping
a trigger all grants associated with the trigger are dropped as well.

Dropping Triggers

Triggers can be dropped like tables using the drop trigger command. The drop
trigger command removes the trigger structure from the database. User needs

5.17 Types of Triggers 277

Fig. 5.36. Dropping the trigger

to have DROP ANY TRIGGER system privilege to drop a trigger. The exact
syntax for dropping a trigger is as follows.

Syntax

DROP TRIGGER <trigger name>

Example

We drop the trigger passenger bef del as shown in Fig. 5.36.

Summary

This chapter has introduced the concept of PL/SQL. The shortcomings of
SQL and the need for PL/SQL are given in detail. PL/SQL combines the
data manipulation power of SQL with data processing power of procedural
language. The PL/SQL language elements like character sets, operators, indi-
cators, punctuation, identifiers, comments, etc. are introduced with examples
in this chapter. The different types of iterative control like FOR loop, WHILE
loop, their syntax and concepts are given through examples.

A cursor is a mechanism that can be used to process the multiple row
result sets one row at a time. Cursors are an inherent structure in PL/SQL.
Cursors allow users to easily store and process sets of information in PL/SQL
program. The concept of cursor and different types of cursors like implicit
cursor, explicit cursor are given through examples.

278 5 PL/SQL

A procedure is a subprogram that performs some specific task, and stored
in the data dictionary. The concept of procedure, function, the difference
between procedure and function are given in this chapter.

A package is a collection of related program objects such as procedures,
functions, and associated cursors and variables together as a unit in the data-
base. In simpler term, a package is a group of related procedures and functions
stored together and sharing common variables, as well as local procedures and
function. In this chapter, the package body and how to create a package are
explained with examples.

An EXCEPTION is any error or warning condition that arises during run-
time. The main intention of building EXCEPTION technique is to continue
the processing of a program even when it encounters runtime error or warn-
ing and display suitable messages on console so that user can handle those
conditions next time. The advantage of using EXCEPTION, different types
of EXCEPTIONS are given through example in this chapter.

A database trigger is a stored PL/SQL program unit associated with a
specific database table. It can perform the role of a constraint, which forces
the integrity of data. The concept of trigger, the uniqueness of trigger, and
the use of trigger are explained with examples in this chapter.

Review Questions

5.1. Mention the key difference between SQL and PL/SQL?

SQL is a declarative language. PL/SQL is a procedural language that
makes up for all the missing elements in SQL.

5.2. Mention two drawbacks of SQL?

– SQL statements can be executed only one at a time. Every time to execute
a SQL statement, a call is made to Oracle engine, thus it results in an
increase in database overheads.

– While processing an SQL statement, if an error occurs, Oracle generates
its own error message, which is sometimes difficult to understand. If a
user wants to display some other meaningful error message, SQL does not
have provision for that.

5.3. Identify which one is not included in PL/SQL Character Set?
(a) * (b)> (c)! (d) \

Answer : (d)

5.4. What are Lexical units related with PL/SQL?

A line of PL/SQL program contains groups of characters known as lexical
units, which can be classified as follows:

Review Questions 279

– Delimiters
– Identifiers
– Literals
– Comments

5.5. What is Delimiter?

A delimiter is a simple or compound symbol that has a special meaning
to PL/SQL.

5.6. Identify which identifier is not permitted in PL/SQL?
(a) Bn12 (b) Girt–1 (c) Hay# (d) I am

Answer : (d)

5.7. Give the syntax for single-line comments and multiline comments?

Single line comment: –
Multiline comment: /* Some text. */

5.8. How you declare a record type variable in PL/SQL?

We can declare record type variable for particular table by using the syn-
tax.

<Variable Name> <Table name>%ROWTYPE.
ROWTYPE is a keyword for defining record type variables.

5.9. Find out the error in the following PL/SQL statement?

IF condition THEN
sequence of statements1
ELSE
sequence of statements2
END IF;

Answer : No Error in the Statement.

5.10. Mention the facilities available for iterating the statements in PL/SQL?

(a) For-loop
(b) While-loop
(c) Loop-Exit

5.11. What is cursor and mention its types in Oracle?

A cursor is a mechanism that can be used to process the multiple row
result sets one row at a time.

In other words, cursors are constructs that enable the user to name a
private memory area to hold a specific statement for access at a later time.
Cursors are an inherent structure in PL/SQL. Cursors allow users to easily
store and process sets of information in PL/SQL program.

280 5 PL/SQL

There are two types of cursors in Oracle

(a) Implicit and
(b) Explicit cursors.

5.12. Mention the syntax for opening and closing a cursor.

For Opening: Open <cursor name>
For Closing: Close <cursor name>

5.13. Mention some implicit and explicit cursor attributes.

Implicit:
%NOTFOUND, %FOUND, % ROWCOUNT, and %ISOPEN

Explicit:
Similar to Implicit.
%NOTFOUND, %FOUND, %ROWCOUNT, and %ISOPEN

5.14. What is Procedure in PL/SQL?

A procedure is a subprogram that performs some specific task, and stored
in the data dictionary. A procedure must have a name so that it can be
invoked or called by any PL/SQL program that appears within an application.
Procedures can take parameters from the calling program and perform the
specific task. Before the procedure or function is stored, the Oracle engine
parses and compiles the procedure or function.

5.15. Mention any four advantages of procedures and function?

1. It modifies one routine to affect multiple applications.
2. It modifies one routine to eliminate duplicate testing.
3. It ensures that related actions are performed together, or not at all, by

doing the activity through a single path.
4. It avoids PL/SQL parsing at runtime by parsing at compile time.

5.16. What is the syntax used in PL/SQL for dropping a procedure?

DROP PROCEDURE <PROCEDURE NAME>

5.17. Mention three differences between functions and procedures?

1. A procedure never returns a value to the calling portion of code, whereas
a function returns exactly one value to the calling program.

2. As functions are capable of returning a value, they can be used as elements
of SQL expressions, whereas the procedures cannot. However, user defined
functions cannot be used in CHECK or DEFAULT constraints and can
not manipulate database values, to obey function purity rules.

Review Questions 281

3. It is mandatory for a function to have at least one RETURN statement,
whereas for procedures there is no restriction. A procedure may have a
RETURN statement or may not. In case of procedures with RETURN
statement, simply the control of execution is transferred back to the por-
tion of code that called the procedure.

5.18. What is Purity rule for functions in PL/SQL?

For a function to be eligible for being called in SQL statements, it must
satisfy following requirements, which are known as Purity Rules.

1. When called from a SELECT statement or a parallelized INSERT,
UPDATE, or DELETE statement, the function cannot modify any data-
base tables.

2. When called from an INSERT, UPDATE, or DELETE statement, the
function cannot query or modify any database tables modified by that
statement.

3. When called from a SELECT, INSERT, UPDATE, or DELETE state-
ment, the function cannot execute SQL transaction control statements
(such as COMMIT), session control statements (such as SET ROLE), or
system control statements (such as ALTER SYSTEM). Also, it cannot
execute DDL statements (such as CREATE) because they are followed by
an automatic commit.

5.19. What is a syntax for deleting a function in PL/SQL?

DROP FUNCTION <FUNCTION NAME>

5.20. What are parameters?

Parameters are the link between a subprogram code and the code calling
the subprogram. Lot depends on how the parameters are passed to a subpro-
gram.

5.21. What are Packages?

A package can be defined as a collection of related program objects such as
procedures, functions, and associated cursors and variables together as a unit
in the database. In simpler term, a package is a group of related procedures
and functions stored together and sharing common variables, as well as local
procedures and functions.

5.22. Mention any two advantages of Packages?

1. Stored packages allow you to sum up (group logically) related stored pro-
cedures, variables, and datatypes, and so forth in a single-named, stored
unit in the database. This provides for better orderliness during the de-
velopment process. In other words packages and its modules are easily
understood because of their logical grouping.

282 5 PL/SQL

2. Grouping of related procedures, functions, etc. in a package also make
privilege management easier. Granting the privilege to use a package
makes all components of the package accessible to the grantee.

5.23. Mention how exception handling is done in Oracle?

During execution of a PL/SQL block of code, Oracle executes every SQL
sentence within the PL/SQL block. If an error occurs or an SQL sentence
fails, Oracle considers this as an Exception. Oracle engine immediately tries
to handle the exception and resolve it, by raising a built-in Exception handler.

5.24. Mention two advantages of using exceptions in Oracle?

1. Control over abnormal exits of executing programs on encountering error
conditions, hence the behavior of application becomes more reliable.

2. In traditional error checking system, if same error is to be checked at
several places, you are required to code the same error check at all those
places. But with exception handling technique, you will write the excep-
tion for that particular error only once in the entire code. Whenever that
type error occurs at any place in code, the exceptional handler will auto-
matically raise the defined exception.

6

Database Design

Learning Objectives. This chapter deals with various phases in database design,
objectives of database design, database design tools. The important concept in
database design like functional dependency and normalization are also discussed
in this chapter. After completing this chapter the reader should be familiar with the
following concepts:

– Various phases in database design
– Database design tools
– Identify modification anomalies in tables
– Functional dependency, Årmstrong’s axioms
– Concept of normalization and different normal forms
– Denormalization

6.1 Introduction

Database design process integrates relevant data in such a manner that it
can be processed through a mechanism for recording the facts. A database of
an organization is an information repository that represents facts about the
organization. It is manipulated by some software to incorporate the changes
that take place in the organization. The database design is a complex process.
The complexity arises mainly because of the identification of relationships
among individual components and their representation for maintaining correct
functionality are highly involved. The degree of complexity increases if there
are many-to-many relationships among individual components. The process
of database design usually requires a number of steps which are in Fig. 6.1.

Feasibility Study

When designing a database, the purpose for which the database is being
designed must be clearly defined. In other words the objective of creating
the database must be crystal clear.

S. Sumathi: Database Design, Studies in Computational Intelligence (SCI) 47, 283–317 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

284 6 Database Design

Feasibility Study

Requirement collection and analysis

Prototyping Design

Implementation

Validation and testing

Operation

Fig. 6.1. Steps in database design

Requirement Collection and Analysis

In requirement collection, one has to decide what data are to be stored, and
to some extent, how that data will be used. The people who are going to use
the database must be interviewed repeatedly. Assumptions about the stated
relationships between various parts of the data must be questioned again and
again. For example, in designing the database about medical records of a
patient, the following queries must be clearly defined.

Does a patient have more than one doctor? Is there a separate billing
number for each drug ordered by a patient?

Prototyping and Design

Design implies a procedure for analyzing and organizing data into a form
suitable to support business requirements and makes use of strategic tech-
nology. The three phases in relational database design are conceptual design,
logical design, and physical design.

Implementation

Database implement involves development of code for database processing,
and also the installation of new database contents, usually form existing data
sources.

6.2 Objectives of Database Design 285

6.2 Objectives of Database Design

The objectives of database design vary from implementation to implementa-
tion. Some of the important factors like efficiency, integrity, privacy, security,
implementability, flexibility have to be considered in the design of the data-
base.

Efficiency

Efficiency is generally considered to be the most important. Given a piece of
hardware on which the database will run and a piece of software (DBMS) to
run it, the design should make full and efficient use of the facilities provided. If
the database is made online, then the users should interact with the database
without any time delay.

Integrity

The term integrity means that the database should be as accurate as possible.
The problem of preserving the integrity of data in a database can be viewed
at a number of levels. At a low level it concerns ensuring that the data are not
corrupted by hardware or software errors. At a higher level, the problem of
preserving database integrity concerns maintaining an accurate representation
of the real world.

Privacy

The database should not allow unauthorized access to files. This is very
important in the case of financial data. For example the bank balance of
one customer should not be revealed to other customers.

Security

The database, once loaded, should be safe from physical corruption whether
from hardware or software failure or from unauthorized access. This is a
general requirement of most databases.

Implementation

The conceptual model should be simple and effective so that mapping from
conceptual model to logical model is easy. Moreover while designing the data-
base, care has to be taken such that application programs should interact
effectively with the database.

286 6 Database Design

Flexibility

The database should not be implemented in a rigid way that assumes the
business will remain constant forever. Changes will occur and the database
must be capable of responding readily to such change.

Other than the factors which were mentioned above, the design of the
database should ensure that data redundancy is not there.

6.3 Database Design Tools

Once the objectives of the database design and the various steps in database
design is known, it is essential to know the database design tools which are
used to automate the task of designing a business system. Using automated
design tools is the process of using a GUI tool to assist in the design of a
database or database application. Many database design tools are available
with a variety of features. The design tools are vendor-specific. CASE tools
are software that provides automated support for some portion of the systems
development process. Database drawing tools are used in enterprise model-
ing, conceptual data modeling, logical database design, and physical data
modeling.

6.3.1 Need for Database Design Tool

The database design tools increase the overall productivity because the
manual tasks are automated and less time is spent in performing tedious tasks
and more time is spent in thinking about the actual design of the database.
The quality of the end product is improved in using database design tools;
because the design tool automates much of the design process as a result the
time taken to design a database is reduced. As a result, more time is available
to interview the customer, conduct user feedback sessions, and naturally the
quality of the product is improved.

6.3.2 Desired Features of Database Design Tools

The database design tools should help the developer to complete the database
model of database application in a timely fashion. Some of the features of the
database design tools are given below:

– The database design tools should capture the user needs.
– The capability to model the flow of data in an organization.
– The database design tool should have the capability to model entities and

their relationships.
– The database design tool should have the capability to generate Data

Definition Language (DDL) to create database object.

6.3 Database Design Tools 287

– The database design tool should support full life cycle database support.
– Database and application version control.
– The database design tool should generate reports for documentation and

user-feedback sessions.

6.3.3 Advantages of Database Design Tools

Some of the advantages of using database design tools for system design or
application development are given as:

– The amount of code to be written is reduced as a result the database
design time is reduced.

– Chances of errors because of manual work are reduced.
– Easy to convert the business model to working database model.
– Easy to ensure that all business requirements are met with.
– A higher quality, more accurate product is produced.

6.3.4 Disadvantages of Database Design Tools

Some of the disadvantages of database design tools are given below:

– More expenses involved for the tool itself.
– Developers might require special training to use the tool.

6.3.5 Commercial Database Design Tools

The database design tools which are commercially popular are given along
with their websites.

1. CASE Studio 2 – Powerful database modeling, management, and reporting
tool.
http://www.casestudio.com/enu/default.aspx

2. Design for Databases V3 – Database development tool using an entity
relationship diagram.
http://www.datanamic.com/dezign

3. DBDesigner4 – Visual database design system that integrates database
design, modeling.

4. ER/Studio – Multilevel data modeling application for logical and physical
database design and construction.
http://www.embarcadero.com/products/erstudio/index.html

5. Happy Fish Database Designer – Visual database design tool supporting
multiple database platforms. Happy Fish generates complete DDL scripts,
defining metadata with table creates, indexes, foreign keys.
http://www.embarcadero.com/products/erstudio/index.html

6. Oracle Designer 2000 – Provides complete toolset to model, generate, and
capture the requirements and design of enterprise applications.
http://www.Oracle.com/technology/products/designer/index.html

288 6 Database Design

7. QDesigner – QDesigner is an enterprise modeling and design solution that
empowers architects, DBAs, developers, and business analysts to produce
IT solutions.
http://www.quest.com/QDesigner

8. Power designer – The PowerDesigner product family offers a modeling
solution that analysts, DBAs, designers, and developers can tailor. Its
modular structure offers affordability and expandability, so the tools can
be applied according to the size and scope of the project.
http://www.sybase.com/products/powerdesigner/

9. Web Objects – A product from Apple. WebObject helps to develop and
deploy enterprise-level web services and java server applications.
http://www.apple.com/webobjects/

10. xCase – Database design tools which provides datamodeling environment.
www.xcase.com

6.4 Redundancy and Data Anomaly

Redundant data means storing the same information more than once, i.e.,
redundant data could be removed without the loss of information. Redundancy
can lead to anomalies. The different anomalies are insertion, deletion, and
updation anomalies.

6.4.1 Problems of Redundancy

Redundancy can cause problems during normal database operations. For
example, when data are inserted into the database, the data must be dupli-
cated wherever redundant versions of that data exist. Also when the data are
updated, all redundant data must be simultaneously updated to reflect that
change.

6.4.2 Insertion, Deletion, and Updation Anomaly

A table anomaly is a structure for which a normal database operation cannot
be executed without information loss or full search of the data table. The table
anomaly can be broadly classified into (1) Insertion Anomaly, (2) Deletion
Anomaly, and (3) Update or Modification Anomaly.

Example 1

Staff no. Job Dept. no. Dept. name City

100 sales man 10 sales Trichy
101 manager 20 accounts Coimbatore
102 clerk 30 accounts Chennai
103 clerk 30 operations Chennai

6.5 Functional Dependency 289

Insertion Anomaly

We cannot insert a department without inserting a member of staff that works
in that department.

Update Anomaly

We could change the name of the department that “100” works in without
simultaneously changing the department that “102” works.

Deletion Anomaly

By removing, employee 100, we have removed all information pertaining to
the sales department.

Repeating Group

A repeating group is an attribute (or set of attributes) that can have more
than one value for a primary key value.

To understand the concept of repeating group, consider the example of
the table STAFF. A staff can have more than one contact number. For each
contact number, we have to store the data of the STAFF which leads to more
storage space (more memory).

STAFF

Staff Job Dept. name DeptID City Contact number
no.

100 sales man sales 01 Coimbatore 5434, 54221, 54241
101 manager accounts 02 Chennai 56332, ————-
102 clerk accounts 03 Chennai ——, ——, ——-
103 clerk operations 04 Chennai ——, ——, ——-

Repeating groups are not allowed in a relational design, since all attributes
have to be atomic, i.e., there can only be one value per cell in a table.

6.5 Functional Dependency

Functional dependencies are the relationships among the attributes within a
relation. Functional dependencies provide a formal mechanism to express con-
straints between attributes. If attribute A functionally depends on attribute B,
then for every instance of B you will know the respective value of A. Attribute
“B” is functionally dependent upon attribute “A” (or collection of attributes)
if a value of “A” determines or single value of attributes “B” at only one time
functional dependency helps to identify how attributes are related to each
other.

290 6 Database Design

(1) Notation of Functional Dependency

The notation of functional dependency is A −→ B.
The meaning of this notation is:

1. “A” determines “B”
2. “B” is functionally dependent on “A”
3. “A” is called determinant

“B” is called object of the determinant

Student ID −→ GPA. The meaning is the grade point average (GPA) can
be determined if we know the student ID.

Let us consider another example of functional dependency,

Student ID Name GPA

Child→Mother

Every child has exactly one mother. The attribute mother is functionally
dependent on the attribute child. If we specify a child, there is only one
possible value for the mother. A functional dependency A−→B is said to be
trivial if B ⊆ A.

(2) Compound Determinants

More than one attribute is necessary to determine another attribute in an
entity, and then such a determinant is termed as composite determinant.

For example, the internal marks and the external marks scored by the
student determine the grade of the student in a particular subject.

Internal mark, external mark→grade.
Since more than one attribute is necessary to determine the attribute grade

it is an example of compound determinant.

(3) Full Functional Dependency

An attribute is fully functionally dependent on a second attribute if and only
if it is functionally dependent on the second attribute but not on any subset
of the second attribute.

(4) Partial Functional Dependency

This is the situation that exists if it is necessary to only use a subset of the
attributes of the composite determinant to identify its object.

6.5 Functional Dependency 291

Roll No Subject Number Hall Number Grade

Full Functional Dependency

The roll number and subject number determines the grade. It implies that a
student may be interested in a particular subject; in that subject the grade
secured by that student will be good. It is not necessary that the same student
get good grade in all the subjects. Hence the grade depends on the subject
number.

Roll No, Subject Number→Grade

Partial Functional Dependency

With respect to examination schedule, it is not necessary that all the subjects
should be held in the same examination hall. Hence hall number depends on
both the subject number and the roll number. Hall number depends on subject
number is only partial functional dependency because the hall number also
depends on the roll number of the student.

Subject Number→Hall Number

(5) Transitive Dependency

A transitive dependency exists when there is an intermediate functional
dependency.

Notation
A→ B, B→ C, and if A→ C then it can be stated that the transitive

dependency exists.
A→ B→C

Example 2

Consider the example of the relation STAFF. The attributes associated with
the STAFF are Staff number which is unique to each staff, the designation
of the staff like Manager, Deputy Manager, and Managing Director, etc. The
last attribute is the salary associated with the staff.

STAFF

STAFF NUMBER DESIGNATION SALARY

292 6 Database Design

It is to be noted that the staff number determines the designation. The
designation obviously determines the salary. For example the manager will get
more salary than the deputy manager. On the other hand the staff number
determines the salary.

STAFF NUMBER −→ DESIGNATION
DESIGNATION −→ SALARY
STAFF NUMBER −→ SALARY
There is a transitive dependency between STAFF NUMBER and SALARY.

6.6 Functional Dependency Inference Rules
(Årmstrong’s Axioms)

(1) Reflexivity

If Y ⊆ X then, X → Y . The axiom of reflexivity indicates that given a set of
attributes the set itself functionally determines any of its own subsets.

(2) Augmentation

If X→Y and Z is a subset of table R (i.e., Z is any set of attributes in R), then
XZ→YZ. The axiom of augmentation indicates that we can augment the left
side of the functional dependency or both sides conveniently with one or more
attributes. The axiom does not allow augmenting the right-hand side alone.
The augmentation rule can be diagrammatically represented as follows:

If X→Y then XZ→Y

X

Z

Y
X->Y

XZ->Y

A second variation of augmentation is diagrammatically shown below:

X

Y

Z

X->Y

XZ->YZ

6.6 Functional Dependency Inference Rules (Årmstrong’s Axioms) 293

(3) Transitivity

If X→Y and Y→Z then X→Z. The axiom of transitivity indicates that if one
attribute uniquely determines a second attribute and this, in turn, uniquely
determines a third one, then the first attribute determines the third one.

Consider three parallel lines X, Y, and Z. The line X is parallel to line Y.
The line Y is parallel to line Z then it implies that line X is parallel to line Z.
This property is called transitivity.

(4) Pseudotransitivity

If X→Y and YW→Z then XW→Z. Transitivity is a special case of pseudotran-
sitivity when W is null. The axiom of pseudotransitivity is a generalization of
the transitivity axiom.

(5) Union

If X→Y and X→Z then X→YZ. The axiom of union indicates that if there
are two functional dependencies with the same determinant it is possible to
form a new functional dependency that preserves the determinant and has
its right-hand side the union of the right-hand sides of the two functional
dependencies.

The union rule can be illustrated with the example of PINCODE. The
PINCODE is used to identify city as well as PINCODE is used to identify
state. This implies that PINCODE determines both city and state

PINCODE

City

State

PINCODE

City

State

If

Then

(6) Decomposition

If X→YZ then X→Y and X→Z. The axiom of decomposition indicates that
the determinant of any functional dependency can uniquely determine any

294 6 Database Design

individual attribute or any combination of attributes of the right-hand side of
the functional dependency.

The decomposition can be illustrated with an example of Book ID. The
BookID determines the title and the author similar to (X→YZ) which implies
that BookID determines title(X→Y) and BookID determines Author (X→Z)

BookID

Title

Author

BookID

Title

Author

6.7 Closure of Set of Functional Dependencies

Given a set F of functional dependencies for a relation R, F+, the closure
of F, be the set of all functional dependencies that are logically implied by
F. Årmstrong’s axioms are sufficient to compute all of F+, which means if
we apply Årmstrong’s rules repeatedly, then we can find all the functional
dependencies in F+.

6.7.1 Closure of a Set of Attributes

Given a set of attributes A and a set of functional dependencies, the closure
of the set of attributes A under F, written as A+, is the set of attributes B
that can be derived from A by applying the inference axioms to the functional
dependencies of F. The closure of A is always nonempty set because A->A
by the axiom of reflexivity.

Algorithm for Determining the Closure of Attribute

The algorithm determines the closure of the attribute A which is denoted
by A+, under a given set F of functional dependencies

6.7 Closure of Set of Functional Dependencies 295

I=0; A[0]=A;
REPEAT

I=I+1;
A[I] = A[I − 1];
FOR ALL Z->W in F

IF Z ⊆ A[I]
THEN A[I] = A[I] ∪ W ;

END FOR
UNTIL A[I] = A[I − 1];
RETURN A+ = A[I];

In the above algorithm I is an integer. In the algorithm A → A[I] and
after finding Z → W in F with Z ⊆ A[I], A[I] can be represented as YZ
where Y = A[I] − Z. We can write A → A[I] as A → Y Z. Since F contains
Z → W , it can be concluded by set accumulation rule that A → Y ZW , or
in other words, A → A[I] ∪ W and the induction hypothesis A → A[I] is
maintained.

Covers

If F and G represents two sets of functional dependencies defined over the same
relational scheme, F and G are equivalent if F+ = G+. Whenever F+ = G+,
F covers G and vice versa.

Nonredundant cover

Consider two sets of functional dependencies F and G defined over the same
relational scheme, if G covers F and no proper subset H of G is such that
H+ = G+, then G is a nonredundant cover of F.

6.7.2 Minimal Cover

A set of nonredundant functional dependencies, which is obtained by remov-
ing all redundant functional dependencies using the functional dependency
inference rule (Årmstrong axiom), is termed as minimal cover.

Use of Functional Dependency

Functional dependency can be used to test relations to see if the relations
are legal under a given set of functional dependencies. If a relation R is legal
under a set F of functional dependencies, then the relation R satisfies F.

Functional dependency specifies constraints on the set of legal relations.
F holds on R if all legal relations on R satisfy the set of functional depen-
dencies of F.

296 6 Database Design

6.8 Normalization

Normalization is the process of organizing data in a database. This includes
creating tables and establishing relationships between those tables according
to rules designed both to protect the data and to make the database more
flexible by eliminating two factors: redundancy and inconsistent dependency.
Redundant data wastes disk space and creates maintenance problems. If data
that exists in more than one place must be changed, the data must be changed
in exactly the same way in all locations. Inconsistent dependencies can make
data difficult to access; the path to find the data may be missing.

Normalization is the analysis of functional dependencies between
attributes. It is the process of decomposing relations with anomalies to
produce well-structured relations. Well-structured relation contains minimal
redundancy and allows insertion, modification, and deletion without errors
or inconsistencies. Normalization is a formal process for deciding which
attributes should be grouped together in a relation. It is the primary tool
to validate and improve a logical design so that it satisfies certain con-
straints that avoid unnecessary duplication of data. Normalization theory is
based on the concepts of normal forms. A relational table is said to be a
particular normal form if it satisfied a certain set of constraints. There are
currently five normal forms that have been defined. Normalization should
remove redundancy but not at the expense of data integrity. In general, the
normalization process generates many simple entity specifications from a few
semantically complex entity specifications. Here entity specification refers to
the declaration of entity attribute.

6.8.1 Purpose of Normalization

Normalization allows us to minimize insert, update, and delete anomalies and
help maintain data consistency in the database.

1. To avoid redundancy by storing each fact within the database only once
2. To put data into the form that is more able to accurately accommodate

change
3. To avoid certain updating “anomalies”
4. To facilitate the enforcement of data constraint
5. To avoid unnecessary coding. Extra programming in triggers, stored

procedures can be required to handle the non-normalized data and this in
turn can impair performance significantly.

6.9 Steps in Normalization

The degree of normalization is defined by normal forms. The normal forms in
an increasing level of normalization, are first normal form (1NF), second nor-
mal form (2NF), 3NF, Boyce-Codd Normal form,4NF and 5NF. Each normal

6.9 Steps in Normalization 297

form is a set of conditions on a schema that guarantees certain properties
relating to redundancy and update anomalies. In general 3NF is considered
good enough. In certain instances, a lower level of normalization, that is the
instance where queries take enormous time to execute.

First Normal Form
(1NF)

Second Normal Form
(2NF)

Third Normal Form
(3NF)

Unnormalised
(UDF)

Remove repeating
groups

Remove practical
dependencies

Remove transitive
deficiencies

Boyce Normal Form
(BCNF)

Fourth Normal Form
(4NF)

Fifth Normal Form
(5NF)

Remove remaining
functional dependency
anomalies

Remove multivalued
dependencies

Remove remaining
anomalies

Relational theory defines a number of structure conditions called normal
forms that assure that certain data anomalies do not occur in a database.

First Normal Form (1NF)

A table is in first normal form (1NF) if and only if all columns contain only
atomic values; that is, there are no repeating groups (columns) within a row.
It is to be noted that all entries in a field must be of same kind and each field
must have a unique name, but the order of the field (column) is irrelevant.
Each record must be unique and the order of the rows is irrelevant.

298 6 Database Design

Second Normal Form (2NF)

A table is in second normal form (2NF) if and only if it is in 1NF and every
nonkey attribute is fully dependent on the primary key.

Third Normal Form (3NF)

To be in Third Normal Form (3NF) the relation must be in 2NF and no
transitive dependencies may exist within the relation.

A transitive dependency is when an attribute is indirectly functionally
dependent on the key (that is, the dependency is through another nonkey
attribute).

Boyce–Codd Normal Form (BCNF)

To be in Boyce–Codd Normal Form (BCNF) the relation must be in 3NF and
every determinant must be a candidate key.

Fifth Normal Form (5NF)

The Fifth Normal Form concerns dependencies that are obscure.

Domain/Key Normal Form (DK/NF)

To be in Domain/Key Normal Form (DK/NF) every constraint on the relation
must be a logical consequence of the definition of keys and domains.

6.10 Unnormal Form to First Normal Form

Consider a table DEPARTMENT, the table DEPARTMENT is not in nor-
mal form because the table DEPARTMENT has repeating group. The table
DEPARTMENT is shown in Table 6.1.

Table 6.1. DEPARTMENT (unnormalized form)

Department Department Location
number name

1 Nilgiris {Coimbatore, Chennai}
2 Subiksha {Chennai, Tirunelveli}
3 Krishna Trichy
4 Kannan Coimbatore

6.10 Unnormal Form to First Normal Form 299

Table 6.2. DEPARTMENT (first normal form)

Department Department Location1 Location2
number name

1 Nilgiris Coimbatore Chennai
2 Subiksha Chennai Tirunelveli
3 Krishna Trichy
4 Kannan Coimbatore

Table 6.1 is not in normal form because the values are not atomic. The in-
tersection of row with the column should have only one value. But in Table 6.1,
the department location value is not atomic. That is the department Nilgiris
is located in more than one location (Coimbatore, Chennai).

To convert Table 6.1 from unnormalized form into a normalized form, we
have three different ways.

Solution 1

The column location in Table 6.1 is having more than one value. One way is
to divide the column location into location1, location2 as shown in Table 6.2.

Drawback of Solution 1

The drawback of solution1 is that if a department is started in many
places then more locations like location1, location2. locationN has to be
included in the table DEPARTMENT. Moreover some departments will be in
only one place, in such a case more NULL values will be there in the table
DEPARTMENT.

Solution 2

The second solution is to insert tuples for each location as shown in Table 6.6.

Drawback of Solution 2

The main draw back of solution 2 is that there are more repeating values,
hence more number of rows in the Table 6.3.

Solution 3

The third solution is to decompose the relation DEPARTMENT into two
tables as shown in Tables 6.4 and 6.5.

300 6 Database Design

Table 6.3. DEPARTMENT table

Department Department Location
number name

1 Nilgiris Coimbatore
1 Nilgiris Chennai
2 Subiksha Chennai
2 Subiksha Tirunelveli
3 Krishna Trichy
4 Kannan Coimbatore

Table 6.4.

Department Department
number name

1 Nilgiris
2 Subiksha
3 Krishna
4 Kannan

Table 6.5.

Department Department
number name

1 Coimbatore
1 Chennai
2 Chennai
2 Tirunelveli
3 Trichy
4 Coimbatore

In the third solution we have divided the DEPARTMENT table into two
tables. The process of splitting the table into more than one table is called
normalization.

6.11 First Normal Form to Second Normal Form

Second Normal Form

A table is said to be in second normal form if it is in first normal form and
all its nonkey attributes depend on all of the key (no partial dependencies).

Consider the relation EMPLOYEE PROJECT, the relation EMPLOYEE
PROJECT consists of the attributes EmployeeID, Employeename, Project ID,
Project name, Total hours. Here total hours imply the time taken to complete
the project.

6.12 Second Normal Form to Third Normal Form 301

E ID E NAME P ID P NAME Total time

EMPLOYEE PROJECT

– E ID stands for EmployeeID
– P ID stands for ProjectID
– P Name stands for Project name
– Total time is the time taken to complete the project

It is to be noted that the “Total Time” attribute depends on the nature
of the project and the Employee. If the project is simple, then it can be
completed easily and also if the employee is very talented then also the total
time required to complete the project is less. Thus total time is determined by
the EmployeeID and ProjectID. Clearly the relation EMPLOYEE PROJECT
is not in second normal form. The reason is we have to key attributes E ID
which refers to EmployeeID and P ID which refers to Project ID. Then each
other attribute in the relation EMPLOYEE PROJECT should dependent on
Employee ID alone, Project ID alone or both EmployeeID and ProjectID.

The relation EMPLOYEE PROJECT can be transformed to second nor-
mal form by breaking the relation into two relations EMPLOYEE and
HOURS ASSIGNED.

EMPLOYEE(E ID, E NAME)
HOURS ASSIGNED(E ID, P ID, TOTALTIME)

In this relation the attribute TOTAL TIME fully depends on the compositekey
E ID and P ID.

6.12 Second Normal Form to Third Normal Form

Third Normal Form

A table is in third normal form if it is in second normal form and contains no
transitive dependencies.

To understand transitive dependency, let us consider three attributes A, B,
and C connected in such a way that A→B and B→C. In other words A→C.
If we know the value of A, we can determine B, which we can use in turn
to determine C. This kind of functional dependency is known as transitive
dependency.

First let us consider a table HOSTEL which is in second normal form. The
attributes of the table HOSTEL are Roll number, Building name, and Fee as
shown in Table 6.6.

The table HOSTEL stores information about building in which a student’s
room is located, and how much that student pays for the room. Here Student

302 6 Database Design

Table 6.6. HOSTEL

Roll number Building Fee

100 main 600
101 additional 500
102 new 650

Table 6.7.

Roll number Building

100 main
101 additional
102 new

Table 6.8.

Roll number Building

main 600
additional 500
new 650

Roll number is the key for the table HOSTEL, since the other two columns
depend on Student Roll number the table is in second normal form.

The table HOSTEL is not in third normal form because of transitive
dependency. Roll Number−→Building, Building−→Fee which implies that
Roll Number Fees. Because of this transitive dependency, the table is not
in third normal form. The table HOSTEL is prone to modification anomalies,
since removing the Roll Number 101 from the table HOSTEL also deletes
the fact that a room in Additional building costs Rs. 500. The modification
anomaly is due to transitive dependency.

Solution to Transitive Dependency

The solution to transitive dependency is to split the HOSTEL table into two
as shown in Tables 6.7 and 6.8.

By splitting the table HOSTEL into two separate relations we can observe
that the transitive dependency Roll Number−→Fees is avoided hence the table
is in third normal form.

Example 3: Converting a Relation Which is in 2NF to 3NF

Consider a relation SALES which has the attributes CustomerID, Customer
name, Sales person, and Region.

SALES (CUSTOMERID, CUSTOMERNAME, SALESPERSON,
REGION)

6.12 Second Normal Form to Third Normal Form 303

In this relation SALES, the CUSTOMERID determines the CUSTOMER-
NAME, SALESPERSON, SALESPERSON, and REGION.

CUSTOMERID −→ CUSTOMERNAME
CUSTOMERID −→ SALESPERSON
CUSTOMERID −→ REGION

It is to be noted that SALESPERSON determines the REGION.
SALESPERSON −→ REGION. Thus the relation SALES has transitive
dependency which is shown by:

CUSTOMER ID SALES PERSON REGION

For a relation to be third normal form it has to be in second normal form
and there should not be any transitive dependency. Hence the relation SALES
has to be splitted into two relations SALES1 and SALES2 to remove transitive
dependency.

SALES1 (CUSTOMERID, CUSTOMERNAME, SALESPERSON)
SALES2 (SALESPERSON, REGION)

Example 4: Converting a Relation which is in 2NF to 3NF

Consider a relation SUBJECT with the attributes SUBJECTID, SUBJECT
NAME, LECTURER, and DEPARTMENT. The relation SUBJECT is in sec-
ond normal form. SUBJECT (SUBJECTID, SUBJECTNAME, LECTURER,
DEPARTMENT).

The relation SUBJECT has transitive dependency, because the SUBJEC-
TID determines the LECTURER, LECTURER determines the DEPART-
MENT. Also the SUBJECTID determines the DEPARTMENT as shown
below.

SUBJECTID LECTURER DEPARTMENT

To remove this transitive dependency the relation SUBJECT has to be
decomposed into two relations SUBJECT and STAFF as shown below:

SUBJECT(SUBJECTID, SUBJECTNAME, LECTURER)
STAFF(LECTURER, DEPARTMENT)

By splitting the SUBJECT relation into two relations SUBJECT and
STAFF, the transitive dependency between the attributes is avoided hence
the relations SUBJECT and STAFF is in third normal form.

304 6 Database Design

6.13 Boyce–Codd Normal Form (BCNF)

A relation R is in Boyce-Codd normal form (BCNF) if for every nontrivial
functional dependency X→A, X is a super key. In other words, a relation is
in BCNF if and only if every determinant is a candidate key.

BCNF is a stronger form of normalization than 3NF because it eliminates
the second condition for 3NF, which allows the right side of the functional
dependency to be a prime attribute.
Third normal form to BCNF:

A relation is in BCNF if and only if every determinant is a candidate key.

Example 5: Converting a Relation to BCNF

Let us consider a relation TEACHING which has three attributes: Student,
Course, and Instructor.

TEACHING (Student, Course, Instructor)

In the above relation TEACHING, Student determines the course (elective
subject) which determines the instructor. Also the instructor determines the
course which he has to handle. If an instructor is having a command in a
particular subject, naturally he would like to handle the subject or course.
The relation TEACHING can be transformed into BCNF by splitting the
relation into two relations R1 and R2.

R1(Instructor, Course) and R2(Instructor, Student). By splitting the
relation TEACHING into two relations R1 and R2 we have transformed the
relation TEACHING into BCNF because for the relation to be in BCNF all
nonprime attributes must be fully dependent on every key. In the relation
R1, the nonprime attribute course is fully dependent on the key attribute
Instructor.

Example 6: Converting a Relation to BCNF

Consider the relation ADDRESS which has three attributes STREET,
CITY, and ZIP (Pin code).

ADDRESS (STREET, CITY, ZIP)

ADDRESS
STREET CITY ZIP

The relation ADDRESS is not in BCNF, the reason is ZIP is not a
superkey.

6.13 Boyce–Codd Normal Form (BCNF) 305

From the relation ADDRESS we can infer that
{CITY, STREET} −→ ZIP
ZIP −→ CITY
The relation ADDRESS has insertion anomaly, that is a city of ZIP code
cannot be stored if the street is not given. To overcome this insertion anomaly,
the relation ADDRESS has to be split into two relations R1 and R2. The
relation R1 has two attributes STREET, ZIP, and the relation R2 has two
attributes ZIP, CITY.

R1(STREET, ZIP) and R2(ZIP, CITY). The splitting of the relation
ADDRESS into two relations R1 and R2 eliminates insertion anomaly.

Example 7: Converting a Relation to BCNF

In this example, let us consider a relation which is in 3NF but not in BCNF.
The relation which we are going to consider is R which has three attributes,
PATIENT, DOCTOR, and HOSPITAL.

R{PATIENT, DOCTOR, HOSPITAL}
In this relation HOSPITAL
{PATIENT, HOSPITAL} −→ DOCTOR
DOCTOR −→ HOSPITAL

The relation R is not in BCNF because DOCTOR is not the superkey. To
convert the relation R into BCNF, split the relation R into two relations R1
and R2 as shown below:

R1{PATIENT, DOCTOR}
R2{DOCTOR, HOSPITAL}
By splitting the relation R into two relations R1 and R2 we have converted
the relation R which is in 3NF to BCNF.

BCNF and Third Normal Form

All BCNF are in 3NF but not all 3NF are in BCNF. BCNF does not make any
reference to the concepts of full or partial dependency. BCNF is a stronger
form of normalization than 3NF because it eliminates the second condition
for 3NF, which allows the right side of the FD to be a prime attribute. Thus,
every left side of a FD in a table must be a super key.

Multivalued Dependency

To understand multivalued dependency, consider a relation R which has three
attributes: A, B, and C. For each value of A there is a set of values for B and set
of values for C. However, the set of values for B and C are independent of each
other, and then there exists multivalued dependency between the attributes
A, B, and C in the relation R. It is represented by

306 6 Database Design

A→B implies that for each value of A there is set of values for B.
A→C implies that for each value of A there is set of values for C.

If we have multivalued dependency in a relation we may have to repeat
values redundantly in the tuples which is clearly undesirable.

Trivial Multivalued Dependency

Consider a relation R with two attributes A and B. The multivalued depen-
dency between the attributes A and B is denoted by A−→B is trivial if B is
a subset of A or A∪B = R.

Multivalued Dependency Inference Rules

The inference rules for multivalued dependency are given below:

Reflexivity

The axiom of reflexivity indicates that given a set of attributes the set itself
functionally determines any of its own subsets. It is represented by

X→X

Augmentation

The axiom of augmentation indicates that we can augment the left side of the
functional dependency or both sides conveniently with one or more attributes.
It is represented by

If X→Y then XZ→Y

Transitivity

The axiom of transitivity indicates that if one attribute uniquely determines
a second attribute and this, in turn, uniquely determines a third one, then
the first attribute determines the third one. It is represented by

If X→Y and Y→Z then X→Z

Pseudotransitivity

The axiom of pseudotransitivity is a generalization of the transitivity axiom.
Transitivity is a special case of pseudotransitivity when W is null. Pseudo-
transitivity is represented by

If X→Y and YW→Z then XW→Z

Union

The axiom of union indicates that if there are two functional dependencies
with the same determinant it is possible to form a new functional dependency
that preserves the determinant and has its right-hand side the union of the
right-hand sides of the two functional dependencies. It is represented by

6.14 Fourth and Fifth Normal Forms 307

If X→Y and X→Z then X→YZ

Decomposition

The axiom of decomposition indicates that the determinant of any functional
dependency can uniquely determine any individual attribute or any combi-
nation of attributes of the right-hand side of the functional dependency. The
decomposition axiom is represented by

If X→Y and X→Z, then X→Y∩Z and X→(Z−Y)

6.14 Fourth and Fifth Normal Forms

Normal forms up to BCNF have been defined solely on functional dependency,
and for most database practitioners, either 3NF or BCNF is a sufficient level
of normalization. However, there are in fact two more normal forms that are
needed to eliminate the rest of the currently known anomalies. If multivalued
dependency and join dependency do not exist in a table, which is the most
common situation, then any table in BCNF is automatically in fourth nor-
mal form (4NF) and fifth normal form (5NF) as well. However, when these
constraints do exist, there may be further update anomalies that need to be
corrected.

6.14.1 Fourth Normal Form

The goal of fourth normal form is to eliminate nontrivial multivalued depen-
dencies from a table by projecting them onto separate smaller tables, thus
eliminating the update anomalies associated with the multivalued dependen-
cies. Under 4NF, a record type should not contain two or more independent
multivalued facts about an entity.

Definition of Fourth Normal Form

A table R is in fourth normal form (4NF) if and only if it is in BCNF and,
whenever there exists an multivalued dependency in R (for example X→Y),
at least one of the following holds: The multivalued dependency is trivial or
X is a super key for relation R.

Example 8: Converting a Relation to Fourth Normal Form

Consider a relation SUBJECT which has the attributes COURSE, INSTRUC-
TOR, and TEXTBOOK

SUBJECT (COURSE, INSTRUCTOR, TEXTBOOK)

308 6 Database Design

The relation SUBJECT is not in fourth normal form because of multivalued
dependency between attributes.
COURSE→INSTRUCTOR which implies that for one course there may be
many instructors.
COURSE→TEXTBOOK which implies that for a course that may be many
textbooks.

Hence there exists multivalued dependency between attributes in SUB-
JECT relation. The relation SUBJECT can be converted to fourth normal
form by splitting the relation SUBJECT into two relations TEACHER AND
TEXT.

TEACHER (COURSE, INSTRUCTOR)
TEXT (COURSE, TEXTBOOK)

The relation TEACHER and TEXT is in fourth normal form.

Example 9: Converting a Relation to Fourth Normal Form

Consider the relation EMPLOYEE with the attributes employee number,
project name, and department name as shown below:

EMPLOYEE (ENO, PNAME, DNAME)

where ENO stands for Employee number, PNAME for project name, and
DNAME for department name.

The relation EMPLOYEE has the following multivalued dependencies:

ENO→PNAME (One employee can work in several projects)
ENO→DNAME.

ENO is not the superkey of the relation EMPLOYEE. To convert the relation
to fourth normal form decompose EMPLOYEE relation into two relations

EMP PROJ and EMP DEPT as shown below.
EMP PROJ (ENO, PNAME) and EMP DEPT (ENO, DNAME)

Now the relations EMP PROJ and EMP DEPT are in fourth normal form.

Preferred Qualities of Decomposition

During normalization, the given relation is split-up into two or more rela-
tions. The splitting up of a given relation into two or more relations is known
as decomposition. The decomposition should always satisfy the properties of
lossless decomposition and dependency preservation

– Lossless decomposition ensures that the information in the original rela-
tion can be accurately reconstructed without spurious information.

6.14 Fourth and Fifth Normal Forms 309

– Dependency preservation ensures that the decomposed relations have the
same capacity to represent the integrity constraints as the original rela-
tions and thus to reveal illegal updates.

Lossless-Join Decomposition

A property of a decomposition that ensures that no spurious rows are gener-
ated when relations are reunited through a natural join operation. A decompo-
sition {R1, R2,. . . ,Rn} of a relation R is lossless decomposition if the natural
join of R1, R2,. . . ,Rn produces exactly the relation R. This is represented by

R = R1 R2 Rn.

The decomposition of the relation R which has three attributes X,Y,Z
that is R(X,Y,Z) into R1(X,Y) and R2(Y,Z) is guaranteed to be nonloss if the
attribute that is common to the two projections, Y in this case, has at least
one of the two attributes dependent upon it. That is, if Y → X, or Y → Z,
the decomposition is nonloss.

Lossless decomposition of a table implies that it can be decomposed by
two or more projections, followed by a natural join of those projections that
results in the original table, without any spurious or missing rows.

Example of Lossy Decomposition

Consider the relation R(X, Y, Z) as shown below:

R(X, Y, Z)

X Y Z

1 2 3
3 2 6
5 4 2

From the neither relation R(X, Y, Z) it is clear that neither X nor Z is
functionally depend on Y. Now the relation R is decomposed into two relations
R1(X,Y) and R2(Y,Z) as shown below:

R1(X, Y)

X Y

1 2
3 2
5 4

R2(Y, Z)

Y Z

2 3
2 6
4 2

310 6 Database Design

Now the natural join of the relation R1 with the relation R2 is shown
below:

X Y Z

1 2 3

1 2 6

3 2 3

3 2 6

5 4 2

Extra tuples

Example of Lossless Decomposition

Consider the relation R(X, Y, Z) as shown below:

X Y Z

1 2 3
3 2 3
5 4 2

From the relation R(X, Y, Z) it is clear that Y → Z.
Now the relation R(X, Y, Z) is decomposed into two relations R1(X, Y) and
R2(Y, Z) as shown below:

R1(X,Y) R2(Y,Z)
X Y
1 2

3 2
5 4

Natural join of
R1 and R2

Y Z
2 3
4 2

X Y Z

1 2 3

3 2 3

5 4 2

From the result of natural join of R1 with R2 it is clear that the decomposition
is lossless due to the fact that Y → Z.

6.15 Denormalization 311

6.14.2 Fifth Normal Form

A table R is in fifth normal form (5NF) or project-join normal form (PJ/NF)
if and only if every join dependency in R is implied by the keys of R. In other
words, a relation is in fifth normal form if it has no join dependency. Join
dependency is the term used to indicate the property of a relation that can be
decomposed losslessly into “m” simpler relations but cannot be decomposed
losslessly into fewer relations.

Domain Key/Normal Form

In 1981 Fagin described a different approach to normalize tables when he pro-
posed domain key/normal form. Domain key/normal form (DKNF) is based
on three concepts domain key and constraint. We know that domain is a set
of all values of the same datatype, a key is a unique identifier and constraint
is a rule governing attribute values. A relation is in domain key/normal form
if and only if every constraint on the relation is a logical consequence of the
domain constraints and the key constraints that apply to the relation. Donald
Fagin was the first person to devise a formal definition in 1981. Domain/key
normal form is considered as the perfect normal form because of no insertion
or deletion anomalies.

Disadvantages of Normalization

The disadvantage of normalization is that it produces many tables. A query
might require retrieval of data from multiple normalized tables. This can result
in complicated table joins. Decomposition of tables has two primary impacts.
The first is performance. All the joins required to merge data will slow down
the process.

6.15 Denormalization

Denormalization is used primarily to improve performance in cases where
over-normalized structures are causing overhead to the query processor.

6.15.1 Basic Types of Denormalization

Five basic types of Denormalization are:

1. Two entities in a many-to-many relationship. The relationship table
resulting from this construct is composed of the primary keys of each

312 6 Database Design

of the associated entities. If we implement the join of this table with one
of the entity tables as a single table instead of the original tables, we can
avoid certain frequent joins that are based on both keys, but only the
nonkey data from one of the original entities.

2. Two entities in a one-to-one relationship. The table for these entities could
be implemented as a single table, thus avoiding frequent joins required by
certain applications.

3. Reference data in a one-to-many relationship. When artificial primary
keys are introduced to tables that either have no primary keys or have
keys that are very large composites, they can be added to the child entity
in a one-to-many relationship as a foreign key and avoid certain joins in
current applications.

4. Entities with the most detailed data. Multivalued attributes are usually
implemented as entities and are thus represented as separate records in
a table. Sometimes it is more efficient to implement them as individu-
ally named columns as an extension of the parent entity when the num-
ber of replications is a small fixed number for all instances of the parent
entity.

5. Derived attributes. If one attribute is derived from another at execution
time, then in some cases it is more efficient to store both the original
value and the derived value directly in the database. This adds at least
one extra column to the original table and avoids repetitive computation.

6.15.2 Table Denormalization Algorithm

The strategy for table Denormalization is to select only the most dominant
process to determine those modifications that will most likely improve perfor-
mance. The basic modification is to add attributes to existing tables to reduce
join operations. The steps of strategy are as follows:

1. Select the dominant processes based on such criteria as high frequency
of execution, high volume of data accessed, response time constraints,
or explicit high priority. It can be considered as a rule of thumb as any
process whose frequency of execution or data volume accessed is ten times
that of another process is considered dominant.

2. Define join tables, when appropriate, for the dominant processes.
3. Evaluate total cost for storage, query, and update for the database schema,

with and without the extended table, and determine which configuration
minimizes total cost.

4. Consider also the possibility of Denormalization due to a join table and
its side effects. If a join table schema appears to have lower storage and
processing cost and insignificant side effects, then consider using that
schema for physical design in addition to the original candidate table
schema. Otherwise, use only the original schema.

Review Questions 313

In general, it is advisable to avoid joins based on nonkeys. They are likely
to produce very large tables, thus greatly increasing storage and update costs.

Summary

This chapter introduced the various steps in database design. The concepts of
functional dependency were discussed with suitable examples. The different
types of functional dependency like full functional dependency, partial func-
tional dependency, and transitive dependency were discussed with practical
examples. This chapter also focused on the concept of normalization, which
is very vital to minimize data redundancy. The different normal forms, like
first normal form, second normal form, third normal form, BCNF, fourth nor-
mal form, fifth normal form, and Domain key normal form, conversion from
one normal form to the other were discussed with suitable examples. Some
of the drawbacks of normalization and its solution like denormalization were
explained in this chapter.

Review Questions

6.1. Explain why the table given below is not in first normal form?

PERSON

PERSON PERSON PERSON PERSON PERSON CONTACT
ID ADDRESS AGE SALARY NUMBER

C100 12, Anna Nagar, 43 15,000 26185649, 23176247
Coimbatore

C101 22, Peelamedu, 34 12,000 28976127
Coimbatore

C102 15, Gandhipuram, 37 13,000 24379012, 21783251
Coimbatore

Answer : The table PERSON is not in first normal form, because for the
table to be in first normal form, the column value has to be atomic (only
one value). Whereas in PERSON table, the column (or) attribute PERSON
CONTACT NUMBER is not atomic (because a person can have more than
contact number). Hence the table PERSON is not in first normal form.

6.2. Describe the purpose of normalizing the data? Describe the types of
anomalies that may occur on a relation that has redundant data?

The purpose of normalization is given below:

1. To avoid redundancy by storing each fact with in the database only once
2. To put data into the form that is more able to accurately accommodate

change

314 6 Database Design

3. To avoid certain updating “anomalies”
4. To facilitate the enforcement of data constraint

The types of anomalies that may occur on a relation that has redundant
data are
(a) Insertion, (b) Deletion, and (c) Update anomalies

6.3. Give an example of a relation which is in 3NF but not in BCNF? How
will you convert that relation to BCNF?

Consider the example of the relation TEAM, which consists of entities
Employee name, team name, and leader name as shown below:

TEAM

Employee name Team name Leader name

Anand Blue star Rajan
Siva Red star Ramakrishnan
Anand Green star Ravi
Madhavan Red star Ramakrishnan

If Anand drops out of Green star team, then we have no record of Ravi lead-
ing the Green star team. This table has deletion anomaly. Even though the
relation TEAM is in third normal form, it has deletion anomaly. To overcome
the deletion anomaly, we have to split the table TEAM into two separate rela-
tions, TEAM1 with attributes Employee name and Team name and TEAM2
with attributes Team name and Leader name.

6.4. Show that every two attribute relation is in BCNF.

Let us consider a relation R with two attributes A and B that is R (A, B).
If A is the sole key of the relation then the nontrivial dependency A → B has
A as a superkey since A ⊂ A. On the other hand, if B is the sole key of the
relation, then the nontrivial dependency B → A has B as a superkey since
B ⊂ B. If both A → B and B → A simultaneously then whatever primary key
we consider for the relation R we will have either A or B as its determinant.
Hence every two attribute relation is in BCNF.

6.5. Given a relation R(S, B, C, D) with key={S, B, D} and F={S → C}.
Identify the normal form of the relation R?

The relation R is in First normal form. The relation R is not in second normal
form because the attribute C does not depend on the whole key. Hence the
relation R is in first normal form.

Review Questions 315

6.6. Given a relation R(S, B, C, D) with key={S B D, CBD} and F={S → C}.
Identify the normal form of the relation R?

The relation R is now in third normal form. The reason is C is now a key
attribute. But the relation R is not in BCNF because the determinant is not
the key.

6.7. A company obtains parts from a number of suppliers. Each supplier is
located in one city. A city can have more than one supplier located there and
each city has a status code associated with it. Each supplier may provide
many parts. The company creates a simple relational table to store this
information

FIRST (s#, status, city, p#, qty)
s# Supplier identification number
status Status code assigned to city
City City where supplier is located
p# Part number of part supplied
Qty Qty of parts supplied to date

Composite primary key is (s#, p#)
Identify in which normal form the table FIRST belongs to and normalize it
to third normal form?

Solution: The table FIRST is shown by:

FIRST
s# city status p# qty

s1 Chennai 20 p1 300
s1 Chennai 20 p2 100
s1 Chennai 20 p3 200
s1 Chennai 20 p4 100
s2 Delhi 10 p1 250
s2 Delhi 10 p3 100
s3 Mumbai 30 p2 300
s3 Mumbai 30 p4 200

Step 1 : First let us analyze whether the relation FIRST is in first normal
form. For the relation FIRST to be in first normal form, all the values of the
columns should be atomic. Since all the values of the column are atomic, the
relation FIRST is atomic and no repeating values the relation FIRST is in
first normal form.

Step 2 : Now let us analyze whether the relation FIRST is in second normal
form. For the relation to be in second normal form, it should be in first normal
form and every nonkey column is fully dependent upon the primary key.

316 6 Database Design

The relation FIRST is in 1NF but not in 2NF because status and city
are functionally dependent upon only on the column s# of the composite key
(s#, p#).

To convert the relation FIRST into second normal form, we split the
relation FIRST into two separate relations PARTS and SECOND as shown
below:

PARTS

s# p# qty

s1 p1 300
s1 p2 100
s1 p3 200
s1 p4 100
s2 p1 250
s2 p3 100
s3 p2 300
s3 p4 200

SUPPLIER

s# city status

s1 Chennai 20
s2 Delhi 10
s3 Mumbai 30

Step 3 : Second normal form to third normal form:
For the relation to be in third normal form, the relation should be in second

normal form and every nonkey column is nontransitively dependent upon its
primary key.

The table supplier is in 2NF but not in 3NF because it contains a transitive
dependency

SUPPLIER.s# —> SUPPLIER.city
SUPPLIER.city —> SUPPLIER.status
SUPPLIER.s# —> SUPPLIER.status

To convert the relation SUPPLIER into third normal form, we split the rela-
tion SUPPLIER into two relations SUPPLIER and CITY STATUS as shown
below to avoid transitive dependency.

Review Questions 317

SUPPLIER CITY STATUS

s# city

s1 Chennai
s2 Delhi
s3 Mumbai
s4 Pune
s5 Madurai

city status

Chennai 20
Delhi 10
Mumbai 30
Madurai 50

PARTS

s# p# qty

s1 p1 300
s1 p2 100
s1 p3 200
s1 p4 100
s2 p1 250
s2 p3 100
s3 p2 300

Thus the given table is split up into three tables PARTS, SUPPLIER, and
CITY STATUS to convert the relation FIRST into third normal form.

7

Transaction Processing and Query
Optimization

Learning Objectives. This chapter deals with various concepts in transaction
processing. The ACID property that is necessary in transaction processing is dis-
cussed in detail. The anomalies in interleaved transactions like Write–Read Conflicts
(WR Conflicts), Read–Write Conflicts (RW Conflicts), and Write–Write Conflicts
(WW Conflicts) are illustrated with examples. This chapter also discusses different
query evaluation plans in query optimization. This chapter throws light on advanced
concept of query optimization using Genetic Algorithm. After completing this chap-
ter the reader should be familiar with the following concepts.

– Principle of Transaction Management System
– Concept of Lock-Based Concurrency Control
– Dead Lock, Two Phase Locking Scheme
– Need for Query Optimization
– Query Optimizer Architecture
– Query Evaluation Plans
– Query Optimization Using Genetic Algorithm

7.1 Transaction Processing

7.1.1 Introduction

Managing Data is the critical role in each and every organization. To achieve
the hike in business they need to manage data efficiently. DBMS provides
a better environment to store and retrieve the data in an economical and
efficient manner. User can store and retrieve data through various sets of
instructions. These sets of instructions do several read and write operations
on database. These processes are denoted by a special term “Transaction” in
DBMS.

Transaction is the execution of user program in DBMS. It is different from
the execution of the program external to DBMS. In other words it can be
stated as the various read and write operations done by the user program on
the DBMS, when it is executed in DBMS environment.

S. Sumathi: Transaction Processing and Query Optimization, Studies in Computational

Intelligence (SCI) 47, 319–352 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

320 7 Transaction Processing and Query Optimization

Transaction Management plays a crucial role in DBMS. It is responsible
for the efficiency and consistency of the DBMS. Partial transaction let the
database in an inconsistency state, so they should be avoided.

7.1.2 Key Notations in Transaction Management

The key notations in transaction management are as follows:

Object. The smallest Data item which is read or updated by the Transaction
is called as Object in this case.

Transaction. Transaction is represented by the symbol T. It is termed as the
execution of query in DBMS.

Read Operation. Read operation on particular object is notated by symbol
R (object-name).

Write Operation. Write operation on particular object is notated by symbol
W (object-name).

Commit. This term used to denote the successful completion of one Trans-
action.

Abort. This term used to denote the unsuccessful interrupted Transaction.

7.1.3 Concept of Transaction Management

User program executed by DBMS may claim several transactions. In the web
environment, there is a possibility to several users’ attempt to access the data
stored in same database. To maintain the accuracy and the consistency of the
database several scheduling algorithms are used.

To improve the effective throughput of the DBMS we need to enforce
certain concurrent executions in DBMS. Transaction Manager is responsible
for scheduling the Transactions and providing the safest path to complete
the task. To maintain the data in the phase of concurrent access and system
failure, DBMS need to ensure four important properties. These properties are
called as ACID properties.

ACID Properties of DBMS

ACID is an acronym for Atomicity, Consistency, Isolation, and Durability.

A – Atomicity
C – Consistency
I – Isolation
D – Durability

Atomicity and Durability are closely related.
Consistency and Isolation are closely related.
The ACID properties are explained as follows.

7.1 Transaction Processing 321

Atomicity and Durability

Atomicity

Either all Transactions are carried out or none are. The meaning is the trans-
action cannot be subdivided, and hence, it must be processed in its entirety
or not at all. Users should not have to worry about the effect of incomplete
Transactions in case of any system crash occurs.

Transactions can be incomplete for three kinds of reasons:

1. Transaction can be aborted, or terminated unsuccessfully. This happens
due to some anomalies arises during execution. If a transaction is aborted
by the DBMS for some internal reason, it is automatically restarted and
executed as new.

2. Due to system crash. This may be happen due to Power Supply failure
while one or more Transactions in execution.

3. Due to unexpected situations. This may be happen due to unexpected data
value or be unable to access some disk. So the transaction will decide to
abort. (Terminate itself).

Durability

If the System crashes before the changes made by a completed Transaction
are written to disk, then it should be remembered and restored during the
system restart phase.

Partial Transaction
If the Transaction is interrupted in the middle way it leaves the database in the

inconsistency state. These types of transactions are called as Partial Transactions.

Partial Transactions should be avoided to gain consistency of database.
To undo the operations done by the Partial Transactions DBMS maintains
certain log files. Each and every moment of disk writes are recorded in this log
files before they are reflected to disk. These are used to undo the operations
done when the system failure occurs.

Consistency and Isolation

Consistency

Users are responsible for ensuring transaction consistency. User who submits
the transaction should make sure the transaction will leave the database in a
consistent state.

322 7 Transaction Processing and Query Optimization

Example 1
If the transaction of money between two accounts “A” and “B” is manually

done by the user, then first thing he has to do is, he deducts the amount (say
$100) from the account “A” and add it with the account “B.” DBMS do not know
whether the user subtracted the exact amount from account “B.”

User has to do it correctly. If the user subtracted $99 from account “B” instead
of $100 DBMS is not responsible for that. This will leave DBMS in inconsistency
state.

Isolation

In DBMS system, there are many transaction may be executed simultaneously.
These transactions should be isolated to each other. One’s execution should
not affect the execution of the other transactions. To enforce this concept
DBMS has to maintain certain scheduling algorithms. One of the scheduling
algorithms used is Serial Scheduling.

Serial Scheduling

In this scheduling method, transactions are executed one by one from the start
to finish. An important technique used in this serial scheduling is interleaved
execution.

Interleaved Execution
In DBMS to enforce concurrent Transactions, several Transactions are ordered

in a serial manner and executed on by one according to the schedule. So there
will be the switching over of execution between the Transactions. This is called as
Interleaved Execution.

Example 2
The example for the serial schedule is illustrated in Fig. 7.1.

T1 T2

R(A)
W(A)

R(A)

R(B)
W(B)

W(A)
R(B)
W(B)

Commit

Commit

Fig. 7.1. Serial scheduling

7.1 Transaction Processing 323

Explanation

In the above example, two Transactions T1, T2 and two Objects A, B are taken
into account. Commit denotes successful completion of both Transactions.

First one read and one write operation are done on the object A by Trans-
action T2. This is followed by T1. It does one write operation on object A.
The same procedure followed by others for further. Finally both Transactions
are ended successfully.

Anomalies due to Interleaved Transactions

If all the transactions in DBMS systems are doing read operation on the
Database then no problem will arise. When the read and write operations
done alternatively there is a possibility of some type of anomalies. These are
classified into three categories.

1. Write–Read Conflicts (WR Conflicts)
2. Read–Write Conflicts (RW Conflicts)
3. Write–Write Conflicts (WW Conflicts)

WR Conflicts

Dirty Read
This happens when the Transaction T2 is trying to read the object A that has

been modified by another Transaction T1, which has not yet completed (commit-
ted). This type read is called as dirty read.

Example 3
Consider two Transactions T1 and T2, each of which, run alone, preserves

database consistency. T1 transfers $200 from A to B, and T2 increments both A
and B by 6%.

If the Transaction is scheduled as illustrated in Fig. 7.2.

T1 T2

R(A)
W(A)

R(A)
W(A)
R(B)

R(B)
W(B)

COMMIT

COMMIT

Fig. 7.2. Reading uncommitted data

324 7 Transaction Processing and Query Optimization

Explanation

Suppose if the transactions are interleaved according to the above schedule
then the account transfer program T1 deducts $100 from account A, then the
interest deposit program T2 reads the current values of accounts A and B and
adds 6% interest to each, and then the account transfer program credits $100
to account B. The outcome of this execution will be different from the normal
execution like if the two instructions are executed one by one. This type of
anomalies leaves the database in inconsistency state.

RW Conflicts

Unrepeatable Read
In this case anomalous behavior could result is that a Transaction T2 could

change the value of an object A that has been read by a Transaction T1, while
T2 is still in progress. If T1 tries to read A again it will get different results. This
type of read is called as Unrepeatable Read.

Example 4
If “A” denotes an account. Consider two Transactions T1 and T2. Duty of T1

and T2 are reducing account A by $100. Consider the following Serial Schedule as
shown in Fig. 7.3.

T1 T2

R(A)

R(A)
W(A)

W(A)

COMMIT

COMMIT

Fig. 7.3. RW conflicts

Explanation

At first, T1 checks whether the money in account A is more than $100.
Immediately it is interleaved and T2 also checks the account for money and

7.1 Transaction Processing 325

reduce it by $100. After T2, T1 is tried to reduce the same account A. If
the initial amount in A is $101 then, after the execution of T2 only $1 will
remain in account A. Now T1 will try to reduce it by $100. This makes the
Database inconsistent.

WW Conflicts

The third type of anomalous behavior is that one Transaction is updating
an object while another one is also in progress.

Example 5
Consider the two Transactions T1, T2.
Consider the two objects A, B.
Consider the following Serial Schedule as illustrated in Fig. 7.4.

T1 T2

R(A)
W(A)

R(A)
W(A)
R(B)

R(B)
W(B)

COMMIT

COMMIT

Fig. 7.4. WW conflicts

Explanation

If A and B are two accounts and their values have to be kept equal always,
Transaction T1 updates both objects to 3,000 and T2 updates both objects
to 2,000. At first T1 updates the value of object A to 3,000. Immediately T2
makes A as 2,000 and B as 2,000 and committed.

After the completion of T2, T1 updates B to 3,000. Now the value of A is
2,000 and value of B is 3,000, they are not equal. Constraint violated in this
case due to serial scheduling.

Durability

Durable means the changes are permanent. Once a transaction is committed,
no subsequent failure of the database can reverse the effect of the transaction.

326 7 Transaction Processing and Query Optimization

7.1.4 Lock-Based Concurrency Control

Concurrency Control is the control on the Database and Transactions which
are executed concurrently to ensure that each Transaction completed healthy.
Concurrency control is concerned with preventing loss of data integrity due
to interference between users in a multiuser environment.

Need for Concurrency Control

In database management system several transactions are executed simultane-
ously. In order to achieve concurrent transactions, the technique of interleaved
execution is used. But in this technique there is a possibility for the occur-
rence of certain anomalies, due to the overriding of one transaction on the
particular Database Object which is already referred by another Transaction.

Lock-Based Concurrency Control

It is the best method to control the concurrent access to the Database Objects
by providing suitable permissions to the Transactions. Also it is the only
method which takes less cost of Time and less program complexity in terms
of code development.

Key Terms in Lock-Based Concurrency Control

Database Object

Database Object is the small data element, the value of which one is altered
during the execution of transactions.

Lock

Lock is a small object associated with Database Object which gives the infor-
mation about the type of operations allowed on a particular Database Object.

Lock can be termed as a type of permission provided by the transaction
manager to the transactions to do a particular operation on a Database Obj-
ect. The transaction must get this permission from Transaction Manager to
access any Database Object for alteration. Locking mechanisms are the most
common type of concurrency control mechanism. With locking, any data that
is retrieved by a user for updating must be locked, or denied to other users,
until the update is complete.

Locking Protocol

It is the set of rules to be followed by each transaction, to ensure that the net
effect of execution of eachTransaction in interleaved fashion will be same as,

7.1 Transaction Processing 327

the result obtained when the Transactions executed in serial fashion. Generally
locks can be classified into two. First one is related to what already told in
the previous paragraph. Next one is the unwanted effect when we implement
lock of the first type.

The two types of Lock are:

1. Strict Two-Phase Locking (Strict 2PL)
2. Deadlock

Strict Two-Phase Locking (Strict 2PL)

It is a most widely used locking protocol. It provides few rules to the Trans-
actions to access the Database Objects. They are:

Rule 1:
If a Transaction “T” wants to read, modify an object, it first requests a shared,

exclusive lock on the Database Object respectively.
Rule 2:

All Locks held by the Transaction will be released when it is completed.

Shared Lock. It is type of lock established on a Database Object. It is like
a component which is sharable within all active transactions. A Database
Object can be shared locked by more than one number of transactions. To
get a shared lock on particular Database Object the Database Object should
satisfy the following condition.

Condition. It should not be exclusively locked by any of the other Trans-
actions.

Example 6
If a person updates his bank account then the Database will lock that Database

Object exclusively to avoid RW conflicts. So the Transactions which are requesting
to read that Database Object will be suspended until the completion of updating.

Exclusive Lock. It is type of lock established on a Database Object. It is
like a component which cannot be shared within all active Transactions. It
is dedicated to particular transaction; only that particular transaction can
access and modify that object.

Condition. It should not be exclusively locked by any one of the other
Transactions.

328 7 Transaction Processing and Query Optimization

Example 7
Assume the situation in reservation of Bus tickets in KPN Travels agencies.

Assume number of tickets remain in bus no. 664 AV is only one. Two persons who
are in different places are trying to reserve that particular ticket. See the situation
here that only one of them should be allowed to access the Database while the other
should wait until previous one is completed. Otherwise one terminal will check the
number of seats available and due to interleaved actions next terminal will do the
same and finally both of them will try to modify the Database (Decrement the
seats available) this leads to more anomalies in Database and finally Database will
be left into inconsistent state.

Deadlock

Deadlock occurs within the Transactions in DBMS system. Due to this neither
one will be committed. This is the dead end to the execution of transactions.
DBMS has to use suitable recovery systems to overcome Deadlocks.

Reasons for Deadlock Occurrence. Deadlock occurs mainly due to the Lock-
Based Concurrency Control. The exclusive lock type will isolate one particular
Database Object from the access of other transactions. This will suspend
all the transactions who request Shared lock on that particular Database
Object until the transaction which holds Exclusive lock on that object is
completed. This will create a loop in Database which leads to Deadlock within
transactions. This will leave the Database in inconsistent state.

Example 8
Assume, Transactions T1, T2, T3 as illustrated in Fig. 7.5. Database Objects

are O1, O2, O3.

T1

T2

T3

O1

O2

O3

has

has

has

requests

requests

Fig. 7.5. Deadlock

7.1 Transaction Processing 329

Explanation

Here we can observe that the loop occurs between T1 and T3. Neither T1 nor
T3 are completed.

Methods to Overcome Deadlock

Mostly it is not possible to avoid the occurrence of Deadlock. Most of the
methods available are detection and recovery based.

Detection from the Average Waiting Time of the Transaction

If more than two transactions are waiting for the long time, then it implies
that at some part of the database, deadlock has occurred. So we can detect
Deadlock easily.

Deadlock Detection algorithm

Deadlock detection algorithms are used to find any loops in the Database.
The main advantage is that we can find the locked transactions quickly and
it is enough to restart only those particular transactions.

Recovery Mechanism

Once if Deadlock is found then we have several methods to release locked
Transactions.

Method 1: Release of Objects from Big Transaction

In this method the transaction which holds more number of Database Object
will be taken and all Database Objects associated with that Big Transaction
will be removed.

Example 9
If Transaction say, T1 holds exclusive lock on four objects, T2 holds same on

three objects and T3 holds same on two objects then if Deadlock occurred within
these transactions then T1 will be restarted.

Method 2: Restarting the Locked Transactions

In this method Database Objects associated with all Transactions are released
and they will be restarted.

330 7 Transaction Processing and Query Optimization

Example 10
If Transaction say, T1 holds exclusive lock on four objects, T2 holds same on

three objects and T3 holds same on two objects then if Deadlock occurred within
these all Transactions are restarted.

Sample Deadlock Detection Program in “C” (Pseudocode)

The sample pseudocode for dead lock detection is as follows. The program flow
and the process block for the dead lock detection are illustrated in Figs. 7.6
and 7.7, respectively.

/* NTRANS = Number of Transactions

NOREQUEST = Number of Objects Requested

OALLOC = Object Allocated

ORTT = Object Requested to Transaction

OATT = Object Allocated to Transaction

*/

Now =0;

m = 0;

n = 0;

LOOPNO = 0;

for (i = 0;i < NTRANS ; i++){
InnerLoop: for (j = now ; j < NOREQUEST[i] ; j++) {

if (OALLOC[ORTT[i][j]] = = TRUE){
for (k = 0 ; k < LOOPNO ; k++){

if (LOOP[k] = = OATT[ORTT[i][j]]){
printf (“DEAD LOCK”);

goto end;}}
LOOP [LOOPNO] = i; JPUSH [m] = j; IPUSH [m] = I;

LOOPNO++; m++; i = OATT [ORTT[i][j]]; j = -1; }}
if (m != 0){

now = JPUSH [m-1] +1; i = IPUSH [m-1]; m –;

LOOPNO –; goto InnerLoop;}}
[18pt] printf(“No Dead Lock”);

end:

7.1 Transaction Processing 331

START

ENTER NO. OF TRANSACTIONS

ENTER NO. OF OBJECTS

ENTER NO. OF OBJECTS ALLOCATED FOR EACH
 TRANSACTION AND ENTER THE OBJECT NAMES

ENTER NO. OF OBJECTS REQUESTED BY EACH
 TRANSACTION AND ENTER THE OBJECT NAMES

PROCESS

RESULT

WANT
TO

REPEAT

END

YES

NO

Fig. 7.6. Program flow

IN THE FLOW CHART:

NTR = No. of Transactions
NOR = No. of Objects Requested
OAL = Object Allocated
ORTT = Object Requested To Transaction
OATT = Object Allocated To Transaction

332 7 Transaction Processing and Query Optimization

PROCESS BLOCK

now = m = n = LOOPNO = i = j = 0;

OAL[ORTT[i][j]=TRUE

i <NTR

j<NOR[i]

k<LOOPNO

LOOP[K]=OATT[ORTT[i][j]

m=0

DEADLOCKNO DEADLOCK

YES; j=now

NO

YES

YES; i+

LOOP[LOOPNO]= i; JPUSH[m]=J;

NO

YES; k=0

YES

NO; k++

NO

 j++

NO

now = JPUSH [m-1]; i = IPUSH [m-1];

NO

Fig. 7.7. Process block

7.2 Query Optimization

As we are in the comfortable age of information technology, databases have
become a necessary and fundamental tool for managing and exploiting the
power of information. Because the amount of data in a database grows larger

7.2 Query Optimization 333

and larger as time passes, one of the most important characteristics of a data-
base is its ability to maintain a consistent and acceptable level of performance.
The principal mechanism through which a database maintains an optimal
level of performances is known as the database query optimizer; without a
well-designed query optimizer, even small databases would be noticeably slug-
gish. The query optimizers for some of the most popular commercial-quality
databases are estimated to have required about 50 man-years of development.
It should therefore go without saying that the specific processes involved in
designing the internal structure of a real-world optimizer can be overwhelm-
ingly complex. Nevertheless, because of the optimizer’s paramount importance
to the robustness and flexibility of a database, it is worthwhile to engage in a
survey of the theory behind the rudimentary components of a basic, cost-based
query optimizer.

7.2.1 Query Processing

The activities involved in retrieving data from the database are called as query
processing. The aims of query processing are to transform a query written in
a high-level language typically SQL, into a correct and efficient execution
strategy expressed in a low-level language (implementing relational algebra),
and to execute the strategy to retrieve the required data. An important aspect
of query processing is Query Optimization.

The activity of choosing an efficient execution strategy for processing a
query is called as query optimization. As there are many equivalent trans-
formations of the same high-level query, the aim of query optimization is to
choose the one that minimizes the resource usage.

A DBMS uses different techniques to process, optimize, and execute high-
level queries (SQL). A query expressed in high-level query language must be
first scanned, parsed, and validated.

The scanner identifies the language components (tokens) in the text of
the query, while the parser checks the correctness of the query syntax. The
query is also validated (by accessing the system catalog) whether the attribute
names and relation names are valid. An internal representation (tree or graph)
of the query is created.

Queries are parsed and then presented to a query optimizer, which is
responsible for identifying an efficient plan. The optimizer generates alter-
native plans and chooses the plan with the least estimated cost.

7.2.2 Need for Query Optimization

In high-level query languages, any given query can be processed in different
ways. Resources required by each query will be different.

DBMS has the responsibility to select the optimized way to process the
query. Query optimizers do not “optimize” – just try to find “reasonably good”
evaluation strategies. Query optimizer uses relational algebra expressions.

334 7 Transaction Processing and Query Optimization

7.2.3 Basic Steps in Query Optimization

The two basic steps involved in query optimization are:

– Enumerating alternative plans for evaluating the expression. Because
number of alternative plans are large.

– Estimating the cost of each enumerated plan and choosing the plan with
least estimated cost.

Taking SQL query for query Optimization, when it is given as input to the
following system of processes, the Query undergoes to the following stages as
illustrated in Fig. 7.8.

As in Fig. 7.8, the DBMS begins by parsing the SQL statement. It breaks
the statement into individual words, makes sure that the statement has a valid
verb, legal clauses, and so on. Syntax errors and misspellings can be detected
in this step. The DBMS validates the statement. It checks the statement
against the system catalog. It checks whether all the tables referred exists in
the database and their definition exists in the catalog.

The optimizer optimizes the statement. It explores various ways to carry
out the statement. After exploring alternatives, it chooses one of them. The

SCANNING, PARSING, AND
VALIDATING

EXECUTION PLAN

CODE TO EXECUTE THE QUERY

QUERY CODE GENERATOR

RESULT OF QUERY

QUERY OPTIMIZER

RUNTIME DATABASE PROCESSOR

INTERMEDIATE FORM OF QUERY

Fig. 7.8. Query processing steps

7.2 Query Optimization 335

optimizer then generates an execution plan for the statement. The plan is a
binary representation of the steps that are required to carry out the statement;
it is the DBMS equivalent of “executable code.” It is carried out in Runtime
Database Processor. Finally, the DBMS carries out the statement by executing
the execution plan.

7.2.4 Query Optimizer Architecture

In the query optimizer architecture we provide an abstraction of the query
optimization process in a DBMS. Given a database and a query on it, several
execution plans exist that can be employed to answer the query. In princi-
ple, all the alternatives need to be considered so that the one with the best-
estimated performance is chosen. An abstraction of the process of generating
and testing these alternatives is shown in Fig. 7.9, which is essentially a mod-
ular architecture of a query optimizer. Based on the figure, the entire query
optimization process involves two stages: Rewriting and Planning. There is
only one module in the first stage, the Rewriter, whereas all other modules
are in the second stage.

Module Functionality

The functionalities of each module in the Query optimizer are discussed in
this section.

Rewriter

This module applies transformations to a given query and produces equivalent
queries that are hopefully more efficient, e.g., replacement of views with their
definition. The transformations performed by the Rewriter depend only on
the declarative, i.e., static characteristics of queries do not take into account
the actual query costs for the specific DBMS and database concerned. If the
rewriting is known or assumed to always be beneficial, the original query is
discarded; otherwise, it is sent to the next stage as well. By the nature of the
rewriting transformations, this stage operates at the declarative level.

Rewriter

Algebraic
Space

Method-Structure
Space

Planner

Cost Model

Size-Distribution
Estimator

Rewriting Stage (Declarative)

Planning Stage (Procedural)

Fig. 7.9. Modular architecture of a query optimizer

336 7 Transaction Processing and Query Optimization

Planner

This is the main module of the ordering stage. It examines all possible
execution plans for each query produced in the previous stage and selects
the overall cheapest one to be used to generate the answer of the original
query. It employs a search strategy, which examines the space of execution
plans in a particular fashion. This space is determined by two other modules
of the optimizer, the Algebraic Space and the Method-Structure Space. For
the most part, these two modules and the search strategy determine the cost,
i.e., running time, of the optimizer itself, which should be as low as possi-
ble. The execution plans examined by the Planner are compared based on
estimates of their cost so that the cheapest may be chosen. These costs are
derived by the last two modules of the optimizer namely the Cost Model and
the Size-Distribution Estimator.

Algebraic Space

This module determines the action execution orders that are to be considered
by the Planner for each query sent to it. All such series of actions produce
the same query answer, but usually differ in performance. They are usually
represented in relational algebra as formulas or in tree form. Because of
the algorithmic nature of the objects generated by this module and sent to
the Planner, the overall planning stage is characterized as operating at the
procedural level.

Method-Structure Space

This module determines the implementation choices that exist for the execu-
tion of each ordered series of actions specified by the Algebraic Space. This
choice is related to the available join methods for each join (e.g., nested loops,
merge scan, and hash join). This choice is also related to the available indices
for accessing each relation, which is determined by the physical schema of each
database stored in its catalogs. Given an algebraic formula or tree from the
Algebraic Space, this module produces all corresponding complete execution
plans, which specify the implementation of each algebraic operator and the
use of any indices.

Cost Model

This module specifies the arithmetic formulas that are used to estimate the
cost of execution plans. For every different join method, for every differ-
ent index type access, and in general for every distinct kind of step that
can be found in an execution plan, there is a formula that gives its cost.
Given the complexity of many of these steps, most of these formulas are
simple approximations of what the system actually does and are based on
certain assumptions regarding issues like buffer management, disk–CPU over-
lap, sequential vs. random I/O, etc. The most important input parameters

7.2 Query Optimization 337

to a formula are the size of the buffer pool used by the corresponding step,
the sizes of relations or indices accessed, and possibly various distributions of
values in these relations. While the first one is determined by the DBMS for
each query, the other two are estimated by the Size-Distribution Estimator.

Size-Distribution Estimator

This module specifies how the sizes (and possibly frequency distributions of
attribute values) of database relations and indices as well as (sub) query results
are estimated. As mentioned above, these estimates are needed by the Cost
Model. The specific estimation approach adopted in this module also deter-
mines the form of statistics that need to be maintained in the catalogs of each
database, if any.

Detailed Description

This section provides a detailed description of the Algebraic Space, the
Planner, and Size-Distribution Estimator, respectively.

Algebraic Space

SQL query corresponds to a select-project-join query in relational algebra.
Typically, such an algebraic query is represented by a query tree whose leaves
are database relations and nonleaf nodes are algebraic operators like selections
(denoted by σ) projections (denoted by π), and joins (denoted by ��). An
intermediate node indicates the application of the corresponding operator on
the relations generated by its children, the result of which is then sent further
up. Thus, the edges of a tree represent data flow from bottom to top, i.e., from
the leaves, which correspond to data in the database, to the root, which is the
final operator producing the query answer. Figure 7.10 gives three examples
of query trees for the query.

SELECT name, floor FROM emp, dept WHERE emp.dno =
dept.dno AND sal > 100 K

For a complicated query, the number of all query trees may be enormous. To
reduce the size of the space that the search strategy has to explore, DBMSs
usually restrict the space in several ways. The first typical restriction deals
with selections and projections:

R1 Selections and projections are processed on the “y” and almost never
generate intermediate relations. Selections are processed as relations are
accessed for the first time. Projections are processed as the results of other
operators are generated.

For example, plan P1 of Sect. 7.1.1 satisfies restriction R1: the index scan
of emp finds emp tuples that satisfy the selection on emp.sal on the “y”

338 7 Transaction Processing and Query Optimization

π
name, floor

sal>100K

dno=dno

DEPT

EMP

T1

σ

π
name, floor

sal>100K

dno=dno

DEPTEMP

T2

σ

π
name, floor

π
name, dno

π
name, sal, dno

π
dno, floor

dno=dno

DEPT

EMP

T3

sal>100K
σ

Fig. 7.10. Examples of general query trees

and attempts to join only those; furthermore, the projection on the result
attributes occurs as the join tuples are generated. For queries with no join, R1
is root. For queries with joins, however, it implies that all operations are dealt
with as part of join execution. Restriction R1 eliminates only suboptimal query
trees, since separate processing of selections and projections incurs additional
costs. Hence, the Algebraic Space module specifies alternative query trees with
join operators only, selections and projections being implicit.

Given a set of relations to be combined in a query, the set of all alternative
join trees is determined by two algebraic properties of join: commutativity
(R1 �� R2 ≡ R2 �� R1) and associativity ((R1 �� R2) �� R3 ≡ R1 �� (R2 ��
R3)). The first determines which relation will be inner and outer in the join
execution. The second determines the order in which joins will be executed.
Even with the R1 restriction, the alternative join trees that are generated
by commutativity and associativity is very large, (N!) for N relations. Thus,
DBMSs usually further restrict the space that must be explored. In particular,
the second typical restriction deals with cross products.

R2 Cross products are never formed, unless the query itself asks for them.
Relations are combined always through joins in the query.

For example, consider the following query:

SELECT name, floor, balance
FROM emp, dept, acnt
WHERE emp.dno=dept.dno AND dept.ano=acnt.ano.

Figure 7.11 shows the three possible join trees (modulo join commutativ-
ity) that can be used to combine the emp, dept, and acnt relations to answer
the query.

7.2 Query Optimization 339

ACNT

ano=ano

dno=dno

DEPTEMP

T1

ACNT

ano=ano

dno=dno

DEPT

EMP

T2

ACNT

ano=ano
dno=dno

DEPT

EMP

T3

Fig. 7.11. Examples of join trees; T3 has a cross product

Of the three trees in the Fig. 7.11, tree T3 has a cross product, since its
lower join involves relations emp and acnt, which are not explicitly joined
in the query. Restriction R2 almost always eliminates suboptimal join trees,
due to the large size of the results typically generated by cross products. The
exceptions are very few and there are cases where the relations forming cross
products are extremely small. Hence, the Algebraic Space module specifies
alternative join trees that involve no cross product. The exclusion of unneces-
sary cross products reduces the size of the space to be explored, but that still
remains very large. Although some systems restrict the space no further (e.g.,
Ingres and DB2-Client/Server), others require an even smaller space (e.g.,
DB2/MVS). In particular, the third typical restriction deals with the shape
of join trees. R3 The inner operand of each join is a database relation, never
an intermediate result.

For example, consider the following query:

SELECT name, floor, balance, address
FROM emp, dept, acnt, bank
WHERE emp.dno=dept.dno AND dept.ano=acnt.ano AND
acnt.bno=bank.bno

Figure 7.12 shows three possible cross-product-free join trees that can be
used to combine the emp, dept, acnt, and bank relations to answer the query.
Tree T1 satisfies restriction R3, whereas trees T2 and T3 do not, since they
have at least one join with an intermediate result as the inner relation. Because
of their shape, join trees that satisfy restriction R3, e.g., tree T1, are called
left-deep. Trees that have their outer relation always being a database relation,
e.g., tree T2, are called right-deep. Trees with at least one join between two
intermediate results, e.g., tree T3 is called bushy. Restriction R3 is of a more
heuristic nature than R1 and R2 and may well eliminate the optimal plan in
several cases. It has been claimed that most often the optimal left-deep tree
is not much more expensive than the optimal tree overall. The two typical
arguments used are:

– Having original database relations as inners increases the use of any pre-
existing indices.

– Having intermediate relations as outers allows sequences of nested loops
joins to be executed in a pipelined fashion.

340 7 Transaction Processing and Query Optimization

ACNT

DEPT

T1

BANK

EMP

dno=dno

ano=ano

bno=bno

ACNTDEPT

T3

BANKEMP

dno=dno

ano=ano

bno=bno

ACNT

DEPT

T2

BANK

EMP

dno=dno

ano=ano

bno=bno

Fig. 7.12. Examples of left-deep (T1), right-deep (T2), and bushy (T3) join trees

Both index usage and pipelining reduce the cost of join trees. Moreover,
restriction R3 significantly reduces the number of alternative join trees, to
O(2N) for many queries with N relations. Hence, the Algebraic Space module
of the typical query optimizer only specifies join trees that are left-deep. In
summary, typical query optimizers make restrictions R1, R2, and R3 to reduce
the size of the space they explore.

Planner

The role of the Planner is to explore the set of alternative execution plans, as
specified by the Algebraic Space and the Method-Structure space, and find
the cheapest one, as determined by the Cost Model and the Size-Distribution
Estimator. This section deals with different types of search strategies that the
Planner may employ for its exploration. The first one focuses on the most
important strategy, dynamic programming, which is the one used by essen-
tially all commercial systems. The second one discusses a promising approach
based on randomized algorithms, and the third one talks about other search
strategies that have been proposed.

Size-Distribution Estimator

The final module of the query optimizer that we examine in detail is the Size-
Distribution Estimator. Given a query, it estimates the sizes of the results of
(sub) queries and the frequency distributions of values in attributes of these
results.

7.2 Query Optimization 341

7.2.5 Basic Algorithms for Executing Query Operations

A query basically consists of following operations. The query can be analyzed
by analyzing these operations separately.

– Selection Operation
– Join Operation
– Projection Operation
– Set Operations

Select Operation

A query can have condition to select the required data. For that selection it
may use several ways to search for the data. The following are some of the
ways to search:

– File Scan
– Index Scan

File Scan

A number of search algorithms are possible for selecting the records from a
file. The selection of records from a file is known as file scan, as the algorithm
scans the records of a file to search for and retrieve records that satisfy the
selection condition.

Index Scan

If the search algorithm uses an index to perform the search, then it is referred
as Index Scan.

– Linear Search: This is also known as Brute Force method. In this method,
every record in the file is retrieved and tested as to whether its attribute
values satisfy the selection condition.

– Binary Search: If a selection condition involves an equality comparison on
a key attribute on which the file is ordered, a binary search can be used.
Binary search is more efficient than linear search.

– Primary Index Single Record Retrieval : If a selection condition involves
an equality comparison on a primary key attribute with a primary index,
we can use the primary index to retrieve that record.

– Secondary Index : This search method can be used to retrieve a single
record if the indexing field has unique values (key field) or to retrieve
multiple records if the indexing field is not a key. This can also be used
for comparisons involving <, >, <= or >=

342 7 Transaction Processing and Query Optimization

– Primary Index Multiple Records Retrieval : A search condition uses com-
parison condition <, >, etc. on a key field with primary index is known
as Primary index multiple records retrieval.

– Clustering Index : If the selection condition involves an equality compari-
son on a nonkey attribute with a clustering index, we can use that index
to retrieve all the records satisfying the condition.

Conjunctive Condition Selection

If the selection condition of the SELECT operation is a conjunctive con-
dition (a condition that is made up of several simple conditions with the
AND operator), then the DBMS can use the following additional methods to
perform the selection.

Conjunctive selection: If an attribute in any single simple condition in the
conjunctive condition has an access path that permits use of binary search or
an index search, use that condition to retrieve the records and then check if
that record satisfies the remaining condition.

Conjunctive selection using composite index : If two or more attributes are
involved in equality conditions in the conjunctive condition and a composite
index exists on the combined fields we can use the index.

Query Optimization for Select Operation

Following method gives query optimization for selection operation:

1. If more than one of the attributes has an access path, then use the one
that retrieves fewer disk blocks.

2. Need to consider the selectivity of a condition: Selectivity of a condition is
the number of tuples that satisfy the condition divided by total number of
tuples. The smaller the selectivity the fewer the number of tuples retrieved
and higher the desirability of using that condition to retrieve the records.

Join Operation

Join is one of the most time-consuming operations in query processing. Here
we consider only equijoin or natural join. Two-way join is a join of two
relations, and there are many ways to perform the join. Multiway join is a
join of more than two relations and number of ways to execute multiway joins
increases rapidly with number of relations.

We use methods for implementing two-way joins of form

RJN(a = b)S

7.2 Query Optimization 343

where, R and S are relations which need to be joined, a and b are attributes
used for conditions, and JN → Type of join.

Methods for Implementing Joins

Following are various methods to implement join operations.

Nested (Inner–Outer) Loop

For each record t in R (outer loop), retrieve every record s from S (inner loop)
and test whether the two records satisfy the join condition t[A] = s[B].

Access Structure Based Retrieval of Matching Records

If an index (or hash key) exists for one of the two join attributes – say, B of S –
retrieve each record t in R, one at a time, and then use the access structure
to retrieve directly all matching records from S that satisfy s[B] = t[A].

Sort-merge join

If the records of R and S are physically sorted (ordered) by value of the join
attributes A and B, respectively, then both the relations are scanned in order
to the join attributes, matching the records that have same values for A and
B. In this case, the relations R and S are only scanned once.

Hash-join

The tuples of relations R and S are both hashed to the same hash file, using
the same hashing function on the join attributes A of R and B of S as hash
keys. A single pass through the relation with fewer records (say, R) hashes its
tuples to the hash file buckets. A single pass through the other relation (S)
then hashes each of its tuples to the appropriate bucket, where the record is
combined with all matching records from R.

In practice all the above techniques are implemented by accessing whole
disk blocks of a relation, rather than individual records. Depending on the
availability of buffer space in memory the number of blocks read in from the
file can be adjusted. It is advantageous to use the relation with fewer blocks
as the outer loop relation in nested loop method.

For method using access structures to retrieve matching tuples, either
the smaller relation or the file that has a match for every record (high join
selection factor) should be used in the outer loop. In some cases an index may
be created specifically for performing the join operation if one does not exist
already.

Sort-Merge algorithm is the most efficient, sometimes the relations are
sorted before merging. Hash join method is efficient if the hash file can be
kept in the main memory.

344 7 Transaction Processing and Query Optimization

Projection Operation

If the projected list of attributes has the key of the relation, then the whole
relation has to be scanned. If the projected list does not have key then dupli-
cate tuples need to be eliminated, this is done by sorting or hashing.

7.2.6 Query Evaluation Plans

Query evaluation plan consists of an extended relational algebra tree, with
additional information at each node indicating the access methods for each
table and implementation method for relational operator.

Example:

Considering this query,

SELECT c.custname
FROM customer c, account a
WHERE c.custid = a.custid and a.balance> 5000;

This query can be expressed in relational algebra as,

Π custname (σ(customer.custid=account.custid) Λ balance>
5000 (customer × account)).

The relational algebra tree representation for the above query is illustrated in
Fig. 7.13.

(On-the-fly) Πcustname

(On-the-fly) σ (customer.custid = account.custid) Λ balance > 5000

(Join)

(File scan) customer account

×

Fig. 7.13. Relational algebra tree representation

7.2 Query Optimization 345

Pipelined Evaluation

From Fig. 7.13, we can visualize that each operation is carried out and inputted
to the next section. In this type of evaluation is called as Pipelined evaluation
which is more efficient than conventional method. In conventional method
we use temporary memory to hold the evaluated operation and from that,
memory next operation will be carried out.

So, pipelined evaluation has the advantage of not using temporary memory
and this method is thus a control strategy.

On-the-fly

When the input table to a unary operator (for e.g., Selection or projection)
is pipelined into it, which is referred as on-the-fly.

The Iterator Interface

To simplify the code responsible for coordinating the execution of a plan,
the relational operators that form the nodes of a plan tree typically support
uniform iterator interface, hiding internal implementation details of each
operator.

The iterator interfaces for an operator includes the functions open, get
next, close.
Open()

It initializes the state of the iterator by allocating buffers for its inputs
and output.
It calls for the operator specific code to process the input tuples.

Close()

To deallocate the memory allocated during the process.
The iterator interface is also used to encapsulate access methods such as
B+ trees and Hash-based indexes.

Pushing Selection Method

In this method, it is considered that the selection operator can be applied
before the join operation to be performed. So, it is only necessary to join the
selected tuples which reduces considerable memory requirement as shown in
Fig. 7.14.

In our previous example we can apply the “balance” condition before
join operation is to be applied. We push the selection before applying join
operation.

346 7 Transaction Processing and Query Optimization

Πcustname

σ (customer.custid=account.custid)

×

customer

account

σ (balance>5000)

Fig. 7.14. Relational algebra tree representation

D

A B

C

Fig. 7.15. Left-deep tree

Queries Over Multiple Relations

As the number of joins increases, the number of alternative plans grows
rapidly; we need to restrict the search space. Left-deep trees have the advan-
tages of reducing search space for the optimum strategy, and allowing the
query optimizer to be based on dynamic processing techniques. Their main
disadvantage is that in reducing the search space many alternative execution
strategies are not considered, some of which may be of lower cost than the
one found using the linear tree. As in Fig. 7.15, where A, B, C, and D are
relations. Left-deep trees allow us to generate all fully pipelined plans. Inter-
mediate results are not written to temporary files and not all left-deep trees
are fully pipelined.

7.2.7 Optimization by Genetic Algorithms

Genetic Algorithms (GAs) are search techniques that are based on the
mechanics of natural selection and genetics, involving a structured yet ran-
domized information exchange resulting in a survival of the fittest amongst a
population of string structures. The GA operates on a population of structures

7.2 Query Optimization 347

Condition
Satisfied

Optimized
Query Encoding

Regenerate
New

Offspring

Evaluate
Fitness's

Selection

Crossover

Mutation

StartEnd

Yes
Initialize

Population

No

Fig. 7.16. Flowchart diagram

that are fixed length strings representing all possible solutions to a problem
domain. A binary expression can be used to encode a parameter as a bit string.
Using such a representation, an initial population is randomly generated. For
each structure in the population, a fitness value is assigned. Each structure is
then assigned a probability measure based on the fitness value that decides the
contribution that structure would make to the next generation. This phase is
called as the Reproduction phase as shown in Fig. 7.16. Each of the offspring
generated by the reproduction phase is then modified using genetic operators
of Crossover and Mutation.

In the Crossover operation, substrings of two individual strings selected
randomly from the population are swapped resulting in new two strings. The
Crossover operation is governed by a crossover probability. The Mutation
operator generates a new string by independently modifying the values at
each location of an existing string with a certain probability of mutation.

GA used Darwinian Evolution to extract optimization strategies nature
and uses successfully and transforms them for application in mathematical
optimization theory to find the global optimum in defined phase space. GA
is used in Information Retrieval problems especially in optimizing a query.
Selection, Fitness function, Crossover, and Mutation are the GA operators
used for Query optimizer.

The GA can be represented by an 8-tuples as follows:
GA = {P(0), λ, l, f, s, c, m, i}

where,

P(0) => Initial Population,
λ => Population Size,
l => Length of Each String,
f => Fitness Function,

348 7 Transaction Processing and Query Optimization

s => Selection Operator,
c => Crossover Operator,
m => Mutation Operator,
i => Inversion Operator.

Flowchart Description

This section deals with the operators of GA, which are Selection, Crossover,
and Mutation.

Selection Operation

The selection string decides which of the strings in a population are selected
for further genetic operations. Each string i of a population is assigned a
fitness value fi. The fitness value fi is used to assign a probability value pi to
each string. The probability value pi assigned to a string is calculated as

pi= fi/Σ fl [l = 1 to λ]

Thus, from the above equation it can be seen that strings with a large
fitness value have a large value of probability of selection. Using the probability
distribution defined by above equation, strings are selected for further genetic
operations.

Crossover Operation

This operation has GAs most of the exploratory power. The parameters defin-
ing the crossover operation are the probability of crossover (pc) and the
crossover point. The crossover operator works as follows:

From a population, two strings are drawn at random. If the crossover
probability is satisfied, a crossover point is selected at random so as to lie
between the defining length of a string, i.e., crossover point in 1 to (L−1)th
range. The substring to the left of the first string and to right of the second
string is swapped to create a new string. A similar operation is performed
with the two remaining substrings. Thus, two new substrings are generated
from the parent string.

The operation is illustrated by means of an example given below:

Before Crossover
0 0 1 1 | 0 1 1
1 1 1 0 | 1 1 0

After Crossover
0 0 1 1 | 1 1 0
1 1 1 0 | 0 1 1

The usual value used for the crossover probability (Pc) lies between 0.6
and 0.8.

Review Questions 349

Mutation Operation

In GAs mutation is usually assigned as secondary role. It is primarily used
as a background operator to guard against total premature loss. Use of the
crossover operation by itself would not recover this loss. The mutation op-
erator allows for this by changing the bit value at each locus with a certain
probability. Thus, every locus on the binary string has a finite probability of
assuming either a value of “0” or “1.”

The probability of this change is the defining parameter of the operation
and is referred to as the probability of mutation (Pm) and is assigned a very
small value of 0.001. The operation is explained below with an example:

Before Mutation
0 0 1 1 0 1 1

After Mutation
1 0 1 1 0 0 1

The bit values that have been affected by the mutation process are shown
in italics. These operators form the basis for GA-based query optimization. As
shown in Fig. 7.16, our query is encoded into any conventional modeling and
then processed into the population step in which all the possible ways of ob-
taining results are produced. Each of the way is being checked for optimization.
They are sent to the GAs Regeneration phase in which selection, crossover
and mutation are processed. When the optimized one is found, required result
can be obtained by the optimized query. Thus Genetic Algorithm can be used
for query optimization effectively.

Summary

This chapter introduced Principle of Transaction Management System. The
concept of Transaction Management System is discussed with suitable exam-
ples. ACID Properties of DBMS such as Atomicity, Durability, Consistency,
and Isolation are discussed clearly. Importance of Crash Recovery and various
methods for Crash Recovery is discussed with Examples. IBM’s System R
Architecture is discussed clearly and various Query facilities such as Data
Manipulation Facilities, Data Definition Facilities, and Data Control Facilities
are described.

In this chapter we have presented the basic idea of query optimization and
different query evaluation schemes. This chapter also gives the basic idea of
the role of Genetic algorithm in query optimization.

Review Questions

7.1. What is Transaction?

Transaction is the execution of user program in DBMS. It is different from
the execution of the program external to DBMS. In other words it can be

350 7 Transaction Processing and Query Optimization

stated as the various read and write operations done by the user program on
the DBMS, when it is executed in DBMS environment.

7.2. What are ACID properties of the DBMS?

ACID is an acronym for Atomicity, Consistency, Isolation, and Durability.
A – Atomicity
C – Consistency
I – Isolation
D – Durability
Atomicity and Durability are closely related. Consistency and Isolation

are closely related.

7.3. What is strict 2PL? Explain its role in Lock-Based Concurrency Control.

It is a most widely used locking protocol.
It provides few rules to the Transactions to access the Database Objects.

They are:
Rule 1
If a Transaction say T wants to read, modify an object, it first requests a

shared, exclusive lock on the Database Object, respectively.
Rule 2
All Locks held by the Transaction will be released when it is completed.

7.4. What is WR conflict?

This happens when the Transaction T2 is trying to read the object A that
has been modified by another Transaction T1, which has not yet completed
(committed). This type read is called as dirty read or Write read conflict.

7.5. What is Deadlock?

It is the lock that occurs within the Transactions in DBMS system. Due
to this neither one will be committed. This is the dead end to the execution
of Transactions. DBMS has to use suitable recovery systems to overcome
Deadlocks.

7.6. Why Deadlock Occurs?

It occurs mainly due to the Lock Based Concurrency Control. In the
exclusive lock type it will isolate one particular Database Object from the
access to the other Transactions. This will suspend all the Transactions who
request Shared lock on that particular Database Object until the Transaction
which holds Exclusive lock on that object is completed. This will create a loop
in Database. This leads to Deadlock within Transactions. This will leave the
Database in inconsistent state.

Review Questions 351

7.7. Mention the three major methods used to handle Deadlock?

(a) Deadlock Prevention
(b) Deadlock Avoidance
(c) Deadlock Detection

Deadlock prevention: Transaction aborts if there is a possibility of deadlock
occurring. If the transaction aborts, it must be rollback and all locks it has
are released.

Deadlock detection: DBMS occasionally checks for deadlock. If there is
deadlock, it randomly picks one of the transactions to kill (i.e., rollback) and
the other continues.

Deadlock avoidance: A transaction must obtain all its locks before it can
begin so deadlock will never occur.

7.8. What is Interleaved Execution?

In DBMS to enforce concurrent Transactions, several Transactions are
ordered in a serial manner and executed one by one according to the schedule.
So there will be switching over of execution between the Transactions. This
is called as Interleaved Execution.

7.9. What is Partial Transaction?

If the Transaction is interrupted in the middle way it leaves the database
in the inconsistency state. These types of transactions are called as Partial
Transactions.

7.10. What is Unrepeatable Read?

In this case anomalous behavior could result in that a transaction T2 could
change the value of an object A that has been read by a Transaction T1, while
T2 is still in progress. If T1 tries to read A again it will get different results.
This type of read is called as Unrepeatable Read.

7.11. Find out whether the following system is in Deadlock or not?

Total Number of Processes 3 (P1, P2, P3)
Total Number of Resources 3 (R1, R2, R3)
P1 holds R1 and waiting for R2.
P2 holds R2 and waiting for R3.
P3 holds nothing and waiting for R3.

Answer : System is in safe state.
Since R3 is not assigned yet it can be assigned to P3 and it can be finished.

After P3, P2, and P1 can be completed sequentially.

7.12. What is meant by query optimization?

The activity of choosing an efficient execution strategy for processing a query
is called as query optimization. As there are many equivalent transformations
of the same high-level query, the aim of query optimization is to choose the
one that minimizes the resource usage.

352 7 Transaction Processing and Query Optimization

7.13. What is the advantage of pipelined query evaluation?

Pipelined evaluation has the advantage of not using temporary memory and
this method is thus a control strategy.

7.14. What is conjunctive condition selection?

A condition that is made up of several simple conditions with the AND oper-
ator can be termed as conjunctive condition selection.

7.15. Mention the pros and cons of Left-deep tree based query evaluation?

Left-deep trees have the advantages of reducing search space for the optimum
strategy, and allowing the query optimizer to be based on dynamic processing
techniques.

The main disadvantage is that in reducing the search space many alterna-
tive execution strategies are not considered, some of which may be of lower
cost than the one found using the linear tree.

7.16. Illustrate the concept of crossover and mutation operation in Genetic
Algorithm.

The operation of crossover is illustrated by means of an example as given
below:

Before Crossover
0 0 1 1 | 0 1 1
1 1 1 0 | 1 1 0
After Crossover
0 0 1 1 | 1 1 0
1 1 1 0 | 0 1 1

Mutation is primarily used as a background operator to guard against
total premature loss. The operation of mutation is explained below with an
example:

Before Mutation
0 0 1 1 0 1 1
After Mutation

1 0 1 1 0 0 1

8

Database Security and Recovery

Learning Objectives. This chapter provides an overview of database security and
recovery. In this chapter the need for database security, the classification of database
security, and different types of database failures are discussed with suitable examples.
Advanced concept in database recovery like ARIES algorithm is illustrated. After
completing this chapter the reader should be familiar with the following concepts:

– Need for database security
– Classification of database security
– Database security at design and maintenance level
– Types of failure
– ARIES recovery algorithm

8.1 Database Security

8.1.1 Introduction

Database security issues are often lumped together with data integrity issues,
but the two concepts are really quite distinct. Security refers to the protection
of data against unauthorized disclosure, alteration, or destruction; integrity
refers to the accuracy or validity of that data. To put it a little glibly:

– Security means protecting the data against unauthorized users.
– Integrity means protecting the data against authorized users.

In both cases, system needs to be aware of certain constraints that users
must not violate; in both cases those constraints must be specified (typically
by the DBA) in some suitable language, and must be maintained in the system
catalog; and in both cases the DBMS must monitor user operations in order to
ensure that the constraints are enforced. The main reason to clearly separate
the discussion of the two topics is that integrity is regarded as absolutely
fundamental but security as more of a secondary issue.

S. Sumathi: Database Security and Recovery, Studies in Computational Intelligence (SCI) 47,

353–379 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

354 8 Database Security and Recovery

Data are the most valuable resource for an organization. Security in a
database involves mechanisms to protect the data and ensure that it is not
accessed, altered, or deleted without proper authorization. The database
in Defense Research Development Organization (DRDO), Atomic Research
Centre, and Space Research Centre contains vital data and it should not be
revealed to unauthorized persons. To protect the secret data there should be
restriction to data access. This ensures the confidentiality of the data. Also
the data should be protected from accidental destruction. Due to advance-
ment in information technology, people share the data through World Wide
Web. As a result the data become vulnerable to hackers. A database should
not only provide the end user with the data needed to function, but also it
should provide protection for the data.

8.1.2 Need for Database Security

The need for database security is given below:

– In the case of shared data, multiple users try to access the data at the same
time. In order to maintain the consistency of the data in the database,
database security is needed.

– Due to the advancement of internet, data are accessed through World
Wide Web, to protect the data against hackers, database security is
needed.

– The plastic money (Credit card) is more popular. The money transaction
has to be safe. More specialized software both to enter the system ille-
gally to extract data and to analyze the information obtained is available.
Hence, it is necessary to protect the data/money.

8.1.3 General Considerations

There are numerous aspects to the security problem, some of them are:

– Legal, social, and ethical aspects
– Physical controls
– Policy questions
– Operational problems
– Hardware control
– Operating system support
– Issues that are the specific concern of the database system itself

There are two broad approaches to data security. The approaches are
known as discretionary and mandatory control, respectively. In both cases,
the unit of data or “data object” that might need to be protected can range
all the way from an entire database on the one hand to a specific component
within a specific tuple on the other. How the two approaches differ is indicated
by the following brief outline.

8.1 Database Security 355

In the case of discretionary control, a given user will typically have different
access rights (also known as privileges) on different objects; further, there are
very few – inherent limitations, that is – regarding which users can have which
rights on which object (for example, user U1 might be able to see A but not
B, while user U2 might be able to see B but not A). Discretionary schemes
are thus very flexible.

In the case of mandatory control, each data object is labeled with a
certain classification level, and each user is given a certain clearance level.
A given data object can then be accessed only by users with the appropriate
clearance. Mandatory schemes thus tend to be hierarchic in nature and are
hence comparatively rigid. (If user U1 can see A but not B, then the classifi-
cation of B must be higher than that of A, and so no user U2 can see B but
not A.)

Regardless of whether we are dealing with a discretionary scheme or a
mandatory one, all decisions as to which users are allowed to perform which
operations on which objects are policy decisions, not technical ones. As such,
they are clearly outside the jurisdiction of the DBMS as such; all the DBMS
can do is enforcing those decisions once they are made. It follows that:

– The results of policy decisions made must be known to the system (this is
done by means of statement in some appropriate definitional language).

– There must be a means of checking a given access request against the
applicable security constraint in the catalog. (By “access request” here
we mean the combination of requested operation plus requested object
plus requesting user, in general.) That checking is done by the DBMS’s
security subsystem, also known as the authorization subsystem.

In order to decide which security constraints are applicable to a given
access request, the system must be able to recognize the source of that request,
i.e., it must be able to recognize the requesting user. For that reason, when
users sign on to the system, they are typically required to supply, not only
their user ID (to say who they are), but also a password (to prove they are
who they say they are). The password is supposedly known only to the system
and to legitimate users of the user ID concerned.

Regarding the last point, incidentally, note that any number of distinct
users might be able to share the same ID. In this way the system can sup-
port user groups, and can thus provide a way of allowing everyone in the
accounting department to share the same privileges on the same objects. The
operations of adding individual users to or removing individual users from a
given group can then be performed independently of the operation of speci-
fying which privileges on which objects apply to that group. Note, however,
that the obvious place to keep a record of which users are in which groups is
once again the catalog (or perhaps the database itself).

356 8 Database Security and Recovery

Database
Administrator

Authorization rules

Access request

Database

Database
security systemUsers

Fig. 8.1. Database security system

8.1.4 Database Security System

The person responsible for security of the database is usually database admini-
strator (DBA). The database administrator must consider variety of potential
threats to the system. Database administrators create authorization rules that
define who can access what parts of database for what operations. Enforce-
ment of authorization rules involves authenticating the user and ensuring that
authorization rules are not violated by access requests. DBMS should support
creation and storage of authorization rules and enforcement of authorization
rules when users access a database. The database security system through the
enforcement of authorization rules is shown in Fig. 8.1.

The database security system stores authorization rules and enforces them
for each database access. The authorization rules define authorized users,
allowable operations, and accessible parts of a database. When a group of
users access the data in the database, then privileges can be assigned to groups
rather than individual users. Users are assigned to groups and given pass-
words. In a nutshell, database security involves allowing and disallowing users
from performing actions on the database and the objects within it. Database
security is about controlling access to information. That is, some information
should be available freely and other information should only be available to
certain authorized people or groups.

8.1.5 Database Security Goals and Threats

Some of the goals and threats of database security are given below:

– Goal. Confidentiality (secrecy or privacy). Data are only accessible (read-
type) by authorized subjects (users or processes).

– Threat. Improper release of information caused by reading of data through
intentional or accidental access by improper users. This includes inferring
of unauthorized data from authorized observations from data.

– Goal. To ensure data integrity which means data can only be modified by
authorized subjects.

– Threat. Improper handling or modification of data.

8.1 Database Security 357

– Goal. Availability (denial of service). Data are accessible to authorized
subjects.

– Threat. Action could prevent subjects from accessing data for which they
are authorized.

Security Threat Classification

Security threat can be broadly classified into accidental, intentional according
to the way they occur.

The accidental threats include human errors, errors in software, and nat-
ural or accidental disasters:

– Human errors include giving incorrect input, incorrect use of applications.
– Errors in software include incorrect application of security policies, denial

of access to authorized users.
– Natural or accidental disasters include the damage of hardware or soft-

ware.

The intentional threat includes authorized users who abuse their privileges
and authority, hostile agents like improper users executing improper reading
or writing of data, legal use of applications can mask fraudulent purpose.

8.1.6 Classification of Database Security

The database security can be broadly classified into physical and logical secu-
rity. Database recovery refers to the process of restoring database to a correct
state in the event of a failure.

Physical security. Physical security refers to the security of the hardware
associated with the system and the protection of the site where the computer
resides. Natural events such as fire, floods, and earthquakes can be consi-
dered as some of the physical threats. It is advisable to have backup copies of
databases in the face of massive disasters.

Logical security. Logical security refers to the security measures residing
in the operating system or the DBMS designed to handle threats to the data.
Logical security is far more difficult to accomplish.

Database Security at Design Level

It is necessary to take care of the database security at the stage of database
design. Few guidelines to build the most secure system are:

1. The database design should be simple. If the database is simple and easier
to use, then the possibility that the data being corrupted by the authorized
user is less.

358 8 Database Security and Recovery

2. The database has to be normalized. The normalized database is almost
free from update anomalies. It is harder to impose normalization on the
relations after the database is in use. Hence, it is necessary to normalize
the database at the design stage itself.

3. The designer of the database should decide the privilege for each group
of users. If no privileges are assumed by any user, there is less likelihood
that a user will be able to gain illegal access.

4. Create unique view for each user or group of users. Although “VIEW”
promotes security by restricting user access to data, they are not adequate
security measures, because unauthorized persons may gain knowledge of
or access to a particular view.

Database Security at the Maintenance Level

Once the database is designed, the database administrator is playing a crucial
role in the maintenance of the database. The security issues with respect to
maintenance can be classified into:

1. Operating system issues and availability
2. Confidentiality and accountability through authorization rules
3. Encryption
4. Authentication schemes

(1) Operating System Issues and Availability

The system administrator normally takes care of the operating system
security. The database administrator is playing a key role in the physical
security issues. The operating system should verify that users and appli-
cation programs attempting to access the system are authorized. Accounts
and passwords for the entire database system are handled by the database
administrator.

(2) Confidentiality and Accountability

Accountability means that the system does not allow illegal entry. Account-
ability is related to both prevention and detection of illegal actions. Ac-
countability is assured by monitoring the authentication and authorization of
users.

Authorization rules are controls incorporated in the data management
system that restrict access to data and also restrict the actions that people
may take when they access data.

Authentication can be carried out by the operating system level or by
the relational database management system (RDBMS). In case, the system
administrator or the database administrator creates for every user an individ-
ual account or username. In addition to these accounts, users are also assigned
passwords.

8.1 Database Security 359

(3) Encryption

Encryption can be used for highly sensitive data like financial data, mili-
tary data. Encryption is the coding of data so that they cannot be read and
understood easily. Some DBMS products include encryption routines that
automatically encode sensitive data when they are stored or transmitted over
communication channel. Any system that provides encryption facilities must
also provide complementary routines for decoding the data. These decoding
routines must be protected by adequate security, or else the advantage of
encryption is lost.

(4) Authentication Schemes

Authentication schemes are the mechanisms that determine whether a user is
who he or she claims to be. Authentication can be carried out at the operating
system level or by the RDBMS. The database administrator creates for every
user an individual account or user name. In addition to these accounts, users
are also assigned passwords. A password is a sequence of characters, numbers,
or a combination of both which is known only to the system and its legiti-
mate user. Since the password is the first line of defense against unauthorized
use by outsiders, it needs to be kept confidential by its legitimate user. It is
highly recommended that users change their password frequently. The pass-
word needs to be hard to guess, but easy for the user to remember. Passwords
cannot, of themselves, ensure the security of a computer and its databases,
because they give no indication of who is trying to gain access.

The password can also be tapped; hence mere password cannot ensure the
security of the database. To circumvent this problem, the industry is devel-
oping devices and techniques to positively identify any prospective user. The
most promising of these appear to be biometric devices, which measure or
detect personal characteristics such as fingerprints, voice prints, retina prints,
or signature dynamics. To implement this approach, several companies have
developed a smart card which is a thin plastic card with an embedded micro-
processor. An individual’s unique biometric data are stored permanently on
the card. To access the database the user inserts the card and the biometric
device reads the person’s unique feature. The actual biometric data are then
compared with the stored data, and the two must match for the user to gain
computer access. A lost or stolen card would be useless to another person,
since biometric data would not match.

Database Security Through Access Control

A database for an enterprise contains a great deal of information and usually
has several groups of users. Most users need to access only a small portion of
the database which is allocated to them. Allowing users unrestricted access

360 8 Database Security and Recovery

to all the data can be undesirable, and a DBMS should provide mechanisms
to access the data. Especially, it is a way to control the data accessible by a
given user.

Two main mechanisms of access control at the DBMS level are:

– Discretionary access control
– Mandatory access control

In fact it would be more accurate to say that most systems support dis-
cretionary control, and some systems support mandatory control as well;
discretionary control is thus more likely to be encountered in practice, and so
we deal with it first.

Discretionary Access Control

Discretionary access control regulates all user access to named objects through
privileges, based on the concept of access rights or privileges for objects
(tables and views), and mechanisms for giving users’ privileges (and revoking
privileges). A privilege allows a user to access some data object in a manner
(to read or modify). Creator of a table or a view automatically gets all privi-
leges on it. DBMS keeps track of who subsequently gains and loses privileges,
and ensures that only requests from users who have the necessary privileges
(at the time the request is issued) are allowed.

There needs to be a language that supports the definition of (discretionary)
security constraints. For fairly obvious reasons, however, it is easier to state
what is allowed rather than what is not allowed; languages therefore typi-
cally support the definition, not of security constraints as such, but rather
of authorities, which are effectively the opposite of security constraints (if
something is authorized, it is not constrained). We therefore begin by briefly
describing a language for defining authorities with a simple example:

AUTHORITY SA3
GRANT RETRIEVE (S#, SNAME, CITY), DELETE
ON S
TO Jim, Fred, Mary;

This example is intended to illustrate the point that (in general) authorities
have four components, as follows:

1. A name (SA3 – “suppliers authority three” – in the example). The autho-
rity will be registered in the catalog under this name.

2. One or more privileges (RETRIEVE – on certain attributes only – and
DELETE, in the example), specified by means of the GRANT clause.

3. The relvar to which the authority applies (relvar S in the example), speci-
fied by means of the ON clause.

8.1 Database Security 361

4. One or more “users” (more accurately, user IDs) who are to be granted
the specified privileges over the specified relvar, specified by means of the
TO clause.

Here is the general syntax:

AUTHORITY <authority name>
GRANT <privilege commalist>
ON <relvar name>
TO <user ID commalist>;

Explanation The <authority name>, <relvar name>, and <user ID
commalist> are self-explanatory (except that we regard ALL, meaning all
known users, as a legal “user ID” in this context). Each <privilege> is one of
the following:

RETRIEVE [(<attribute name commalist>)]
INSERT [(<attribute name commalist>)]
UPDATE [(<attribute name commalist>)]
ALL

RETRIEVE (unqualified), INSERT (unqualified), UPDATE (unqualified),
and DELETE are self-explanatory. If a commalist of attribute names is
specified with RETRIEVE, then the privilege applies only to the attributes
specified; INSERT and UPDATE with a commalist of attribute names are
defined analogously. The specification ALL is shorthand for all privileges:
RETRIEVE (all attributes), INSERT (all attributes), UPDATE (all attri-
butes), and DELETE.

Note. For simplicity, we ignore the question of whether any special privileges
are required in order to perform general relational assignment operations.
Also, we deliberately limit our attention only to data manipulation operations;
in practice, of course, there are many other operations that we would want, to
be subject to authorization checking as well, such as the operations of defining
and dropping relvars and the operations of defining and dropping authorities
themselves. We omit detailed consideration of such operations here which is
beyond the scope of this book.

What should happen if some user attempts some operation on some object
for which he or she is not authorized? The simplest option is obviously just to
reject the attempt (and to provide suitable diagnostic information, of course);
such a response will surely be the one most commonly required in practice. So
we might as well make it as default. In more sensitive situations, however, some
other action might be more appropriate; for example, it might be necessary to
terminate the program or lock the user’s keyboard. It might also be desirable
to record such attempts in a special log (threat monitoring), in order to permit
subsequent analysis of attempted security breaches and also to serve in itself
as a deterrent against illegal infiltration (see the discussion of audit trails at
the end of this section).

362 8 Database Security and Recovery

Of course, we also need a way of dropping authorities:

DROP AUTHORITY <authority name>;

For example:

DROP AUTHORITY SA3;

For simplicity, we assume that dropping a given relvar will automatically drop
any authorities that apply to that relvar.

Here are some further examples of authorities, most of them are fairly
self-explanatory.

1. AUTHORITY EX1
GRANT RETRIEVE (P#, PNAME, WEIGHT)
ON P
TO Jacques, Anne, Charley;

Users Jacques, Anne, and Charley can see a “vertical subset” of base relvar
P. This is an example of a value-independent authority.

2. AUTHORITY EX2
GRANT RETRIEVE, UPDATE (SNAME, STATUS),
DELETE
ON LS
TO Dan, Misha;

Relvar LS here is a view. Users Dan and Misha can thus see a “horizontal
subset” of base relvar S. This is an example is of a value-dependent authority.
Note too that although users Dan and Misha can DELETE certain supplier
tuples (via view LS), they cannot INSERT them, and they cannot UPDATE
attributes S# or CITY.

3. VAR SSPPR VIEW
(S JOIN SP JOIN (P WHERE CITY = ‘Rome’) {P#})

{ALL BUT P#, QTY};
AUTHORITY EX3

GRANT RETRIEVE
ON SSPPR
TO Giovanni;

This is another value-dependent example. User Giovanni can retrieve
supplier information, but only for suppliers who supply some stored in Rome.

4. VAR SSQ VIEW
SUMMARIZE SP PER S {S#} ADD SUM {QTY}
AS SQ;

8.1 Database Security 363

AUTHORITY EX4
GRANT RETRIEVE
ON SSQ
TO Fidel;

User Fidel can see total shipment quantities per supplier, but not individ-
ual shipment quantities. User Fidel thus sees a statistical summary of the
underlying base data.

5. AUTHORITY EX5
GRANT RETRIEVE, UPDATE (STATUS)
ON S
WHEN DAY () IN (‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’)

AND NOW () >=TIME ‘09:00:00’
AND NOW () >=TIME ‘17:00:00’

TO Purchasing;

Here, we are extending our AUTHORITY syntax to include a WHEN
clause to specify certain “context controls”; we are also assuming that the
system provides two niladic operators – i.e., operators that take no operands –
called DAY () and NOW (), with the obvious interpretations. Authority EX5
guarantees that supplier status values can be changed by the user “Purchas-
ing” (presumably meaning anyone in the purchasing department) only on
a weekday, and only during working hours. This is an example of context-
dependent authority, because a given access request will or will not be allowed
depending on the context – here the combination of day of the week and time
of day – in which it is issued.

Other examples of built-in operators, that the system probably ought
to support anyway and could be useful for context-dependent authorities,
include:

TODAY () value = the current date
USER () value = the ID of the current user
TERMINAL value = the ID of the originating terminal for the current

request

By conceptually speaking, authorities are all “ORed” together. In other
words, a given access request (meaning, to repeat, the combination of
requested operation plus requested object plus requesting user) is accept-
able if and only if at least one authority permits it. Note, however, that (for
example) if one authority lets user Nancy retrieve part colors and another lets
her retrieve part weights, it does not follow that she can retrieve part colors
and weights together (a separate authority is required for the combination).

Finally, we have implied, but never quite said as much, that users can do
only the things they are explicitly allowed to do by the defined authorities.
Anything not explicitly authorized is implicitly outlawed.

364 8 Database Security and Recovery

Request Modification In order to illustrate some of the ideas introduced above,
we now briefly describe the security aspects of the university ingress prototype
and its query language QUEL, since they adopt an interesting approach to the
problem. Basically, any given QUEL request is automatically modified before
execution in such a way that it cannot possibly violate any specified security
constraint. For example, suppose user U is allowed to retrieve parts stored in
London only:

DEFINE PERMIT RETRIEVE ON P TO U
WHERE P.CITY = “London”

(See below for details of the DEFINE PERMIT operation.) Now suppose
user U issues the QUEL request:

RETRIEVE (P.P#, P.WEIGHT)
WHERE P.COLOR = “Red”

Using the “Permit” for the combination of relvar P and user U as stored
in the catalog, the system automatically modifies this request so that it looks
like this:

RETRIEVE (P.P#, P.WEIGHT)
WHERE P.COLOR = “Red”
AND P.CITY = “London”

And of course this method request cannot possibly violate the security
constraint. Note, incidentally, that the modification process is “silent”: user
U is not informed that the system has in fact executed a statement that is
somewhat different from the original request, because that fact in itself might
be sensitive (user U might even be allowed to know there are any non-London
parts).

The process of request modification just outlined is actually identical to
the technique used for the implementation of views and also – in the case of
the ingress prototype specially – integrity constraint. So, one advantage of
the scheme is that it is very easy to implement – much of the necessary code
exists in the system already. Another is that it is comparatively efficient – the
security enforcement overhead occurs at compile time instead of run time, at
least in part. Yet another advantage is that some of the awkwardness that
can occur with the SQL approach when a given user needs different privileges
over different portions of the same relvar does not arise.

One disadvantage is that not all security constraints can be handled in this
simple fashion. As a trivial counterexample, suppose user U is not allowed to
access relvar P at all. Then no simple “modified” form of the RETRIEVE
shown above can preserve the illusion that relvar P does not exist. Instead, an
explicit error message along the lines of “You are not allowed to access this
relvar” must necessarily be produced. (Or perhaps the system could simply
lie and say “No such relvar exists.”)

8.1 Database Security 365

Here then is the syntax of DEFINE PERMIT:

DEFINE PERMIT <operation name commalist>
ON <relvar name> [(<attribute name commalist>)]
TO <user ID>

[AT <terminal name commalist>]
[FROM <time> TO <time>]
[ON <day> TO <day>]
[WHERE <Boolean expression>]

This statement is conceptually rather similar to our AUTHORITY state-
ment, except that it supports a WHERE clause. Here is an example.

DEFINE PERMIT APPEND, RETRIEVE, REPLACE
ON S(S#, CITY)
TO Joe
AT TTA4
FROM 9:00 TO 17:00
ON Sat TO Sun
WHERE S.STATUS < 50
AND S.S# = SP.P#
AND SP.P# = P.P#
AND P.COLOR = “Red”

Note. APPEND and REPLACE are the QUEL analogs of our INSERT and
UPDATE, respectively.

Audit Trails It is important not to assume that the security system is perfect.
An infiltrator who is sufficiently determined will usually find a way of breaking
through the controls, especially if the payoff for doing so is high. In situations
where the data are sufficiently sensitive, therefore, or where the processing
performed on the data is sufficiently critical, an audit trail becomes a necessity.
If, for example, data discrepancies lead to a suspicion that the database has
been tampered with, the audit trail can be used to examine what has been
going on and to verify that matters are under control (or to help pinpoint the
wrongdoer if not).

An audit trail is essentially a special file or database in which the system
automatically keeps track of all operations performed by users on the regular
data. In some systems, the audit trail might be physically integrated with the
recovery log, in others the two might be distinct; either way, users should be
able to interrogate the audit trail using their regular query language. A typical
audit trail entry might contain the following information.

Request (source text)
Terminal from which the operation was invoked
User who invoked the operation
Date and time of the operation

366 8 Database Security and Recovery

Relvar(s), tuple(s), attribute(s) affected
Old values
New values

As mentioned earlier in this section, the very fact that an audit trail is
being maintained might be sufficient in itself to detect an infiltrator in some
situations.

SQL supports discretionary access control through the GRANT and
REVOKE commands. The GRANT command gives users privileges to base
tables and tables and REVOKE command takes away privileges.

Grant Command This command is used to give privileges to other users of
the database by the administrator.

Syntax
GRANT privileges ON object TO users [WITH GRANT OPTION]

where objects is either a base table or views.

Mandatory Access Control

It is based on system-wide policies that cannot be changed by individual
users. In this each DB object is assigned a security class. Each subject (user
or user program) is assigned a clearance for a security class. Rules based
on security classes and clearances govern who can read/write which objects.
Most commercial systems do not support mandatory access control. Versions
of some DBMSs do support it; used for specialized (e.g., military) applications.

Mandatory controls are applicable to databases in which the data have a
rather static and rigid classification structure, as might be the case in certain
military or government environments. As explained briefly in previous section
the basic idea is that each data object has a classification level (e.g., top secret,
secret, confidential, etc.), and each user has a clearance level (with the same
possibilities as for the classification levels). The levels are assumed to form
a strict ordering (e.g., top secret> secret > confidential, etc.). The following
simple rules, due to Bell and La Padula, are then imposed:

1. User I can retrieve object j only if the clearance level of I is greater or
equal to the classification level of j (the “simple security property”).

2. User I can update object j only if the clearance of I is equal to the
classification level of j (the “star property”).

The first rule here is obvious enough, but the second requires a word of
explanation. Observe first that another way of stating that second rule is to
say that, by definition, anything written by user I automatically acquires a
classification level equal to I’s clearance level. Such a rule is necessary in order
to prevent a user with, e.g., “secret” classification scheme.

8.1 Database Security 367

Note. From the point of view of pure “write” (INSERT) operations only, it
would be sufficient for the classification for the second rule to say that the
clearance level of I must be less than or equal to the classification level of j,
and the rule is often stated in this form in the literature.

Mandatory controls began to receive a lot of attention in the database
world in the early 1990s, because that was when the US Department of
Defense (DoD) began to require any system it purchased to support such con-
trols. As a consequence, DBMS vendors have been vying with one another to
implement them. The controls in question are documented in two important
DoD publications known informally as the Orange Book and the Lavender
Book, respectively; the Orange Book defines a set of security requirements for
any “Trusted Computing Base” (TCB), and the Lavender Book defines and
“interpretation” of the TCB requirements for database systems specifically.

First of all, the documents define four security classes (D, C, B, and A);
broadly speaking, class D is the least secure, class C is more secure than
class D, and so on. Class D is said to provide minimal protection, class C
discretionary protection, class B mandatory protection, and class A verified
protection.

Discretionary Protection Class C is divided into two subclasses C1 and C2
(where C1 is less secures that C2), each supports discretionary controls, mean-
ing that access is subject to the discretion of the data owner. In addition:

1. Class C1 distinguishes between ownership and access, i.e., it supports the
concept of shared data, while allowing users to have private data of their
own as well.

2. Class C2 additionally requires accountability support through sign-on pro-
cedures, auditing, and resource isolation.

Mandatory Protection Class B is the class that deals mandatory controls. It
is further divided into subclasses B1, B2, and B3, as follows:

1. Class B1 requires “labeled security protection” (i.e., it requires each data
object to be labeled with its classification level – secret, confidential, etc.).
It also requires an informal statement of the security policy in effect.

2. Class B2 additionally requires a formal statement of the same thing. It
also requires that covert channels be identified and eliminated. Examples
of covert channels might be the possibility of inferring the answer to an
illegal query from the answer to a legal one.

3. Class B3 specifically requires audit and recovery support as well as a
designated security administrator.

Verified Protection Class A, the most secure, requires a mathematical proof
that the security mechanism is consistent and that it is adequate to support
the specified security policy.

Several commercial DBMS products currently provide mandatory controls
at the B1 level. They also typically provide discretionary controls at the C2

368 8 Database Security and Recovery

level. Terminology: DBMS’s that support mandatory controls are sometimes
called multilevel secure systems. The term trusted system is also used with
much the same meaning.

Suppose we want to apply the ideas of mandatory access control to the
suppliers relvar S. For definiteness and simplicity, suppose the unit of data we
wish to control access to the individual tuple within that relvar. Then each
tuple needs to be labeled with its classification level.

Advantages of Mandatory Access Control Discretionary control has some
flaws, e.g., the Trojan horse problem. In this, a devious unauthorized user
can trick an authorized user into disclosing sensitive data. The modification
of the code is beyond the DBMSs control, but it can try and prevent the use
of the database as a channel for secret information.

8.2 Database Recovery

Recovery brings the database from the temporary inconsistent state to a
consistent state. Database recovery can also be defined as mechanisms for
restoring a database quickly and accurately after loss or damage. Data-
bases are damaged due to human error, hardware failure, incorrect or invalid
data, program errors, computer viruses, or natural catastrophes. Since the
organization depends on its database, the database management system must
provide mechanisms for restoring a database quickly and accurately after loss
or damage.

8.2.1 Different Types of Database Failures

A wide variety of failures can occur in processing a database, ranging from
the input of an incorrect data value or complete loss or destruction of the
database. Some of the types of failures are listed below:

1. System crashes, resulting in loss of main memory
2. Media failures, resulting in loss of parts of secondary storage
3. Application software errors
4. Natural physical disasters
5. Carelessness or unintentional destruction of data or facilities
6. Sabotage

8.2.2 Recovery Facilities

DBMS should provide following facilities to assist with recovery.

1. Backup mechanism, which makes periodic backup copies of database
2. Logging facilities, which keep track of current state of transactions and

database changes

8.2 Database Recovery 369

3. Checkpoint facility, which enables updates to database in progress to be
made permanent

4. Recovery manager, which allows DBMS to restore the database to a con-
sistent state following a failure

Backup Mechanism

The DBMS should provide backup facilities that produce a backup copy of
the entire database. Typically, a backup copy is produced at least once per
day. The copy should be stored in a secured location where it is protected
from loss or damage. The backup copy is used to restore the database in the
event of hardware failure, catastrophic loss, or damage.

With large databases, regular backups may be impractical, as the time
required to perform the backup may exceed that available. As a result, backups
may be taken of dynamic data regularly but backups of static data, which do
not change frequently, may be taken less often.

Logging Facilities

Basically there are two types of log, “transaction log” and “database change
log.” A transaction log is a record of the essential data for each transaction
that is processed against the database. In database change log, there are before
and after images of records that have been modified.

Transaction log. Transaction log contains a record of the essential data
for each transaction that is processed against the database. Data that are
typically recorded for each transaction include the transaction code or identifi-
cation, action or type of transaction, time of the transaction, terminal number
or user ID, input data values, table and records accessed, records modified,
and possibly the old and new field values.

Database change log. The database change log contains before and after
images of records that have been modified by transactions. A before-image is
a copy of a record before it has been modified, and an after-image is a copy
of the same record after it has been modified.

Checkpoint Facility

A checkpoint facility in a DBMS periodically refuses to accept any new
transactions. All transactions in progress are completed, and the journal files
are brought up to date. At this point, the system is in a quiet state, and
the database and transaction logs are synchronized. The DBMS writes a spe-
cial record (called a checkpoint record) to the log file, which is like a snap-
shot of the state of the database. The checkpoint record contains information
necessary to restart the system. Any dirty data blocks are written from mem-
ory to disk storage, thus ensuring that all changes made prior to taking the

370 8 Database Security and Recovery

checkpoint have been written to long-term storage. A DBMS may perform
checkpoints automatically or in response to commands in user application
programs. Checkpoints should be taken frequently.

Recovery Manager

The recovery manager is a module of the DBMS which restores the database
to a correct condition when a failure occurs and which resumes processing
user requests. The recovery manager uses the logs to restore the database.

8.2.3 Main Recovery Techniques

Three main recovery techniques that are commonly employed are:

1. Deferred update
2. Immediate update
3. Shadow paging

Deferred update. Deferred updates are not written to the database until
after a transaction has reached its commit point. If transaction fails before
commit, it will not have modified database and so no undoing of changes are
required. Deferred update may be necessary to redo updates of committed
transactions as their effect may not have reached database.

Immediate update. In the case of immediate update, updates are applied
to database as they occur. There is a need to redo updates of committed
transactions following a failure. Also there may be need to undo effects of
transactions that had not committed at time of failure. It is essential that
log records are written before write to database. If no “transaction commit”
record in log, then that transaction was active at failure and must be undone.
Undo operations are performed in reverse order in which they were written to
log.

Shadow paging. Shadow paging maintains two page tables during life of a
transaction, current page and shadow page table. When transaction starts, two
pages are the same. Shadow page table is never changed thereafter and is used
to restore database in the event of failure. During transaction, current page
table records all updates to database. When transaction completes, current
page table becomes shadow page table.

8.2.4 Crash Recovery

Crash recovery is the process of protecting the database from catastrophic
system failures and media failures. Recovery manager of a DBMS is respon-
sible for ensuring transaction atomicity and durability. Atomicity is attained
by undoing the actions of transactions that do not commit. Durability is
attained by making sure that all actions of committed transactions survive
system crashes.

8.2 Database Recovery 371

Recovery Manager

Recovery manager is responsible for ensuring transaction atomicity and
durability. To save the state of database for the period of times it performs
few operations. They are:

1. Saving checkpoints
2. Stealing frames
3. Forcing pages

Saving checkpoints. It will save the status of the database in the period
of time duration. So if any crashes occur, then database can be restored into
last saved check point.

Steal approach. In this case, the object can be written into disk before the
transaction which holds the object is committed. This is happening when the
buffer manager chooses the same place to replace by some other page and
at the same time another transaction require the same page. This method is
called as stealing frames.

Forcing pages. In this case, once if the transaction completed the entire
objects associated with it should be forced to disk or written to the disk. But
it will result in more I/O cost. So normally we use only no-force approach.

8.2.5 ARIES Algorithm

ARIES is a recovery algorithm designed to work with a steal, no-force
approach. It is more simple and flexible than other algorithms.

ARIES algorithm is used by the recovery manager which is invoked after
a crash. Recovery manager will perform restart operations.

Main Key Terms Used in ARIES

Log. These are all file which contain several records. These records contain
the information about the state of database at any time. These records are
written by the DBMS while any changes done in the database. Normally copy
of the log file placed in the different parts of the disk for safety.

LSN. The abbreviation of LSN is log sequence number. It is the ID given
to each record in the log file. It will be in monotonically ascending order.

Page LSN. For recovery purpose, every page in the database contains the
LSN of the most recent log record that describes a change to this page. This
LSN is called the page LSN.

CLR. The abbreviation of CLR is compensation log record. It is written
just before the change recorded in an update log record U is undone.

WAL. The abbreviation of WAL is write-ahead log. Before updating a page
to disk, every update log record that describes a change to this page must be
forced to stable storage. This is accomplished by forcing all log records up

372 8 Database Security and Recovery

to and including the one with LSN equal to the page LSN to stable storage
before writing the page to disk.

There are three phases in restarting process, they are:
1. Analysis
2. Redo
3. Undo

Analysis. In this phase, it will identify whether any page present in the
buffer pool is not written into disk and activate the transactions which are in
active at the time of crash.

Redo. In this phase, all the operations are restarted and the state of data-
base at the time of crash is obtained. This is done by the help of log files.

Undo. In this phase, the actions of uncommitted transactions are undone.
So only committed are taken into account.

Example

Consider the following log history as shown in Fig. 8.2.

Explanation. When the system is restarted, the analysis phase identifies T1
and T3 as transactions active at the time of crash and therefore to be undone;
T2 as a committed transaction, and all its actions therefore to be written to

T2 commit

update: T3 writes P1

update: T@ writes P3

crash, restart

T2 end

update: T3 writes P3

update: T! writes P5

LOGLSN

10

20

30

40

50

60

Fig. 8.2. Program flow

8.2 Database Recovery 373

disk, and P1, P3, and P5 as potentially dirty pages (not yet written into
disk). All the updates are reapplied in the order shown during the redo phase.
Finally the actions of T1 and T3 are undone in reverse order during the undo
phase; that is, T3’s write of P3 is undone, T3’s write of P1 is undone, and
then T1’s write of P5 is undone.

ARIES algorithm has three main principles:

1. Write-ahead logging
2. Repeating history during redo
3. Logging changes during undo

Write-ahead logging. This states that any change to a database object is
first recorded in the log; the record in the log must be written to stable storage
before the change to the database object is written to disk.

Repeating history during redo. On restart after a crash, ARIES retraces
all actions of the DBMS before the crash and brings the system back to the
exact state that it was in at the time of crash. Then, it undoes the actions of
transactions still active at the time of crash.

Logging changes during undo. Changes made to the database while undoing
a transaction are logged to ensure such an action is not repeated in the event
of repeated restarts.

Elements of ARIES

1. The log
2. Tables
3. The write-ahead log protocol
4. Checkpointing

The Log

It records a history of actions that are executed by DBMS. The most recent
portion of the log is called as log tail. This page will be kept at main memory
and periodically it will be forced to disk. It contains several records. Each
record is uniquely identified by LSN.

A log record is written for each of the following actions:

1. Updating a page
2. Commit
3. Abort
4. End
5. Undoing an update

Updating a page. After modifying the page, an update type record is ap-
pended to the log tail. The page LSN of this page is then set to the update
log record as illustrated in the Fig. 8.3.

Before-image is the value of the changed bytes before the change. After-
image is the value of the changed bytes after the change.

374 8 Database Security and Recovery

Example

Previous
LSN

Transaction
ID

Type Page
ID

Length Offset Before-
Image

After-
Image

Fig. 8.3. Structure of update type record

Example

Consider the following example as illustrated in Fig. 8.4.

Previous
LSN

Transaction
ID

Type Page
ID

Length Offset Before-
Image

After-
Image

T1 Update P1 4 15 HIL SIL

T2 Update P2 4 23 BIL WIL

T2 Update P1 4 14 TIL VIL

T1 Update P4 4 15 RIL JIL

Fig. 8.4. Log records

Tables

In addition of log ARIES, it maintains the following two tables to maintain
recovery related information:

1. Transaction table
2. Dirty page table

Transaction table. This table contains one entry for each active transaction.
The entry contains the transaction ID, the status and a field called last LSN,
which is the LSN of the most recent log record for this transaction. The status
of a transaction can be that it is in progress, committed, or aborted.

Dirty page table. This table contains one entry for each dirty page in the
buffer pool, i.e., each page with changes not yet reflected on disk. The entry

8.2 Database Recovery 375

Transaction
ID

Last
LSN

T1

T2

TRANSACTION TABLE

Fig. 8.5. Transition table

PAGE ID Record
LSN

P1

P2

DIRTY PAGE TABLE

P4

Fig. 8.6. Dirty page table

contains a field record LSN, which is the LSN of the first log record that
caused the page to become dirty.

Now the content of transaction table will be as illustrated in Fig. 8.5.
Content of dirty page table will be as shown in Fig. 8.6.
Record LSN in the dirty page table and last LSN in the transaction table

are pointing to the corresponding records in the log table.

Write-Ahead Log Protocol

WAL is the fundamental rule that ensures that a record of every change to the
database is available while attempting to recover from crash. If a transaction
made a change and committed, the no-force approach means that some of
these changes may not have been written to disk at the time of a subsequent

376 8 Database Security and Recovery

crash. Without a record of these changes, there would be no way to ensure
that the changes of a committed transaction survive crashes.

According to its rules when a transaction is completed its log tail is forced
to disk, even a no-force approach is used.

Checkpointing

A checkpoint is used to reduce amount of work to be done during restart in
the event of a subsequent crash.

Checkpointing in ARIES has three steps:

1. Begin checkpoint
2. End checkpoint
3. Fuzzy checkpoint

Begin checkpoint. It is written to indicate the checkpoint is starts.
End checkpoint. It is written after begin checkpoint. It contains current

contents of transaction table and the dirty page table, and appended to the log.
Fuzzy checkpoint. It is written after end checkpoint is forced to the disk.

While the end checkpoint is being constructed, the DBMS continues executing
transactions and writing other log records; the only guarantee we have is that
the transaction table and dirty page table are accurate as the time of the
begin checkpoint.

Summary

Database security is concerned with protecting a database against accidental
or intentional loss, destruction, or misuse. A comprehensive data security
plan will address all of these potential threats, partly through the establish-
ment of views, authorization rules, user-defined procedures, and encryption
procedures. DBMS software provides security control through facilities such as
user views, authorization rules, encryption, and authentication schemes. Set
of security mechanisms presented in this chapter includes user with password
and complete authorization, encryption of data.

Database recovery procedures are required to restore a database quickly
after loss or damage. Basic recovery facilities that should be in place include
backup facilities, checkpoint facilities, and a recovery manager. Since the orga-
nization depends so heavily on its database, the database management system
must provide mechanisms for restoring a database quickly and accurately af-
ter loss or damage. In this chapter the concept of crash recovery was presented
in a lucid manner. ARIES recovery algorithm was illustrated with example in
this chapter.

Review Questions 377

Review Questions

8.1. List the security guidelines that a conscientious database designer should
follow?

Some of the guidelines that the database designer should follow to ensure the
security of the database system are:

– Keep the database simple
– Normalize the database
– Always follow the principle of assuming privileges must be explicitly

granted rather than excluded
– Create unique views for each user or group of users

8.2. Why is encryption an important step in securing databases?

Encryption is a method of modifying the original information according to
some code so that it can be read only if the user knows the decryption.
Encryption can be used to transmit information from one computer to an-
other. Information stored on a computer also can be encrypted. Encryption
is important when transmitting data across networks.

8.3. What are the types of authorization?

The database should have sound security system so that each and every trans-
action is carried out by an authorized user. The types of authorization are:

(a) User with password and complete authorization
(b) User with password and limited authorization
(c) Encryption of data

8.4. List four common types of database failure?

The four common types database failures are:

(a) Aborted transactions
(b) Incorrect data
(c) System failure
(d) Database destruction

Aborted transaction refers to a transaction that is in progress terminates
abnormally.

Second common type of database failure is the database has been updated
with incorrect, but valid data.

In system failure, some component of the system fails, but the database
is not damaged. Some causes of system failure are power loss, operator error,
and loss of communication in the case of network transaction.

Database destruction means the database itself is lost, or destroyed, or
cannot be read.

378 8 Database Security and Recovery

Types of failure Recovery techniques

Aborted transaction Rollback
Incorrect data

(1) Backward recovery
(2) Compensating transactions
(3) Restart from checkpoint

System failure

(1) Rollback
(2) Restart from checkpoint

Database destruction Roll forward

8.5. Mention the recovery techniques that can be applied to the common types
of database failure discussed in question 8.3?

8.6. What are the security features that are commonly used in data manage-
ment software?

The important security features in data management software are:

– Views which restrict user views of the database
– Authorization rules which identify users and restrict the actions they may

take against database
– Encryption procedures, which encode data in an unrecognizable form
– Authentication schemes, which positively identify a person attempting to

gain access to a database

8.7. What is meant by crash recovery?

Crash recovery is the process of protecting the database from catastrophic
system failures and media failures. Recovery manager of a DBMS is respon-
sible for ensuring transaction atomicity and durability. Atomicity is attained
by undoing the actions of transactions that do not commit. Durability is
attained by making sure that all actions of committed transactions survive
system crashes.

8.8. What is the role of recovery manager in database recovery?

Recovery manager is a module of DBMS which restores the database to a
correct condition when a failure occurs and which resumes processing user
requests.

Review Questions 379

8.9. Discuss the importance of database recovery?

A database is a centralized facility for the entire organization. When it is
accessed and used by several users of the organizations, several types of failures
are bound to occur. These failures will affect the content of the database which
is highly sensitive. If there is damage to the database, then one can identify
the activities which are performed just prior to the point of failure of the
database system. Based on this, the database is to be restored as quickly as
possible to the state just prior to the occurrence of the damage.

8.10. Distinguish between logical and physical security of the database?

Physical security. Physical security refers to the security of the hardware as-
sociated with the system and the protection of the site where the computer
resides. Natural events such as fire, floods, and earthquakes can be consid-
ered as some of the physical threats. It is advisable to have backup copies of
databases in the face of massive disasters.
Logical security. Logical security refers to the security measures residing in
the operating system or the DBMS designed to handle threats to the data.
Logical security is far more difficult to accomplish.

9

Physical Database Design

Learning Objectives. This chapter describes physical database design which is
the final phase of the database development process. During physical database
design, the designer translates the logical description of data into the technical
specifications for storing and retrieving data. The goal of physical database design
is to create a design for storing data that will provide adequate performance and
ensure database integrity. This chapter also throws light in different types of file
organization. File organization is a technique for physically arranging the records of
a file on secondary storage devices. The different types of file organization discussed
in this chapter include sequential file organization, heap file organization, hash file
organization, and index file organization.

Different types of data storage devices are discussed in this chapter. More
emphasis is given to Redundant Array of Inexpensive Disk (RAID) technology. RAID
is array of physical disk drives that appear to the database set as if they form one
large logical storage unit. Different levels of RAID are illustrated in this chapter.

– Physical database design concept
– Access methods
– Different types of file organization
– Data storage devices
– RAID concepts and different levels of RAID

9.1 Introduction

Physical database design describes the storage structures and access methods
used in system. The goal of physical database design is to specify all iden-
tifying and operational characteristics of the data that will be recorded in
the information system. The physical database design specifies how database
records are stored, accessed, and related to ensure adequate performance. The
physical database design specifies the base relations, file organizations, and
indexes used to achieve efficient access to the data, and any associated inte-
grity constraints and security measures. The physical organization of data
has a major impact on database system performance because it is the level at
which actual implementation takes place in physical storage.

S. Sumathi: Physical Database Design, Studies in Computational Intelligence (SCI) 47, 381–413

(2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

382 9 Physical Database Design

9.2 Goals of Physical Database Design

The goal of physical database design is to create a design providing the
best response time at the lowest cost. Here response time refers to the time
required to access the data, and the cost associated with CPU, memory disk
input/output. The main goals of good physical database design are summa-
rized as:

– A good physical database design should achieve high packing density,
which implies minimum wastage space.

– A good physical database design should achieve fast response time.
– The physical database design should also support a high volume of trans-

actions.

9.2.1 Physical Design Steps

The various steps in physical database design are:

1. Stored record format design
2. Stored record clustering
3. Access method design
4. Program design

Step 1: Stored Record Format Design

The visible component of the physical database structure is the stored record
format design. Stored record format design addresses the problem of format-
ting stored data by analysis of the characteristics of data item types, dis-
tribution of their values, and their usage by various applications. Decisions
on redundancy of data, derived vs. explicitly stored values of data, and data
compression are made here. Certain data items are often accessed far more
frequently than others, but each time a particular piece of data is needed,
the entire stored record, and all stored records in a physical block as well,
must be accessed. Record partitioning defines an allocation of individual data
items to separate physical devices of the same or different type, or separate
extents on the same device, so that total cost of accessing data for a given
set of user applications is minimized. Logically, data items related to a single
entity are still considered to be connected, and physically they can still be
retrieved together when necessary. An extent is a contiguous area of physical
storage on a particular device.

Step 2: Stored Record Clustering

One of the most important physical design considerations is the physical allo-
cations of stored records, as a whole, to physical extents. Record clustering

9.2 Goals of Physical Database Design 383

refers to the allocation of records of different types into physical clusters to
take advantage of physical sequentiality whenever possible. Analysis of record
clustering must take access path configuration into account to avoid access
time degradation due to new placement of records. Associated with both
record clustering and record partitioning is the selection of physical block
size. Blocks in a given clustered extent are influenced to some extent by stored
record size, storage characteristics of the physical devices. Larger blocks are
typically associated with sequential processing and smaller blocks with ran-
dom processing.

Step 3: Access Method Design

The critical components of an access method are storage structure and search
mechanisms. Storage structure defines the limits of possible access paths
through indexes and stored records, and the search mechanisms define which
paths are to be taken for a given applications. Access method design is often
defined in terms of primary and secondary access path structure. The primary
access paths are associated with initial record loading, or placement, and usu-
ally involve retrieval via the primary key. Individual files are first designed
in this manner to process the dominant application most efficiently. Access
time can be greatly reduced through secondary indexes, but at the expense
of increased storage space overhead and index maintenance.

Step 4: Program Design

Standard DBMS routines should be used for all accessing, and query or update
transaction optimization should be performed at the systems software level.
Consequently, application program design should be completed when the log-
ical database structure is known.

9.2.2 Implementation of Physical Model

The implementation of the physical model is dependent on the hardware
and software being used by the company. The hardware can determine what
type of software can be used because software is normally developed accord-
ing to common hardware and operating system platforms. Some database
software might only be available for Windows NT systems, whereas other
software products such as Oracle are available on a wider range of operating
system platforms, such as UNIX. The available hardware is also important
during the implementation of the physical model because data are physi-
cally distributed into one or more physical disk drives. Normally, the more
physical drives available, the better the performance of the database after
the implementation.

384 9 Physical Database Design

9.3 File Organization

A database is stored as collection of files. A file is a set of records or relations
of same type. This definition includes files of text, which can be regarded as
files of 1-byte records. A record can be seen as a collection of related fields
containing elementary data. Data files can exist in both primary and secondary
memory, they are almost always held in secondary memory because data files
are often voluminous, and the capacity of a data file can easily exceed the
capacity of primary memory. Consequently, only portions of large files can
be held in main memory at one time. File organization is a technique for
arranging records of a file in secondary storage.

9.3.1 Factors to be Considered in File Organization

The problem in selecting a particular file organization is to choose a structure
that will satisfy certain requirements. For example, a user may need to retrieve
records in sequence and may also need fast access to a particular record. In
this case, suitable organizations include hash files in which the key order is
preserved, B-trees and indexed sequential access method (ISAM) files.

Some of the factors which are preferred in choosing the file organization
are given below:

– Access should be fast. Here access refers to data access
– Storage space has to be efficiently used
– Minimizing the need for reorganization
– Accommodating growth

It is difficult to determine the best file organization and the most efficient
access technique for a given situation. A good approach is to simulate the
behavior of a number of candidate organizations. The simulator requires
three sets of input parameters: file characteristics, user requirements, and
hardware characteristics. File characteristics are logical properties of the file.
File characteristics include the number of records in the file and the aver-
age attribute length. User requirements are concerned with the accesses and
changes to the file. This includes the number of deletions per day and the
number of times a month the whole file is read serially. Hardware character-
istics are parameters of the available storage devices. These characteristics
include block size, tracks per cylinder, and the storage cost per megabyte.

9.3.2 File Organization Classification

File organization can be broadly classified into two types (1) primary file
organization and (2) secondary file organization as shown below.

9.4 Heap File Organization 385

Classification

Heap/Pile/
Unordered file

Sequential/
Ordered file.

Hash/
Direct

Index file

Internal Primary
External Secondary
Static Single level
Dynamic Multi level

Cluster
Sparse
Bit map

9.4 Heap File Organization

Heap file is otherwise known as random file or pile file. In heap file organiza-
tion, file records are inserted at the end of the file or in any file block with
free space, hence insertion of record is efficient. Data in a file are collected in
the order that it arrives. It is not analyzed, categorized, or forced to fit field
definitions or field sizes. At best, the order of the records may be chronologi-
cal. Records may be of variable length and need not have similar sets of data
elements.

9.4.1 Uses of Heap File Organization

Heap files are used in situations where data are collected prior to processing,
where data are not easy to organize, and in some research on file structures.
Since much of the data collected in real-world situations are in the form of
piles, this file organization is considered as the base for other evaluations.

9.4.2 Drawback of Heap File Organization

In heap file organization, data analysis can become very expensive because of
the time required for retrieval of a statistically adequate number of sample
records:

1. Searching of record is difficult. Normally linear search is used to locate
the record.

2. Deletion of record is difficult. Because if we want to delete a particular
record, first we have to locate the file and delete.

Good in the Following Situations

Heap file is good under the following situations:

– Bulk data have to be loaded.
– Relations which are always few pages long. Because search is easy.

386 9 Physical Database Design

Bad Under Situations

Heap file is bad under the following situation:

– Output is in sorted order.

9.4.3 Example of Heap File Organization

Consider the attendance register maintained by the faculty. Usually in the
attendance register the students name are arranged as per the increasing order
of Roll number. On the other hand if it is arranged, as per their registration
to the course (like first come first serve) as shown in Table 9.1 then it is heap
file organization.

From this table, it is clear that the student names are not arranged in the
increasing order of Roll number. As discussed earlier, the main advantage of
heap file organization is insertion of record is efficient, but if want to retrieve
the data in the increasing order or decreasing order of Roll number of the
student, then it is inefficient. That is searching and retrieving of record are
difficult in heap file organization.

9.5 Sequential File Organization

Sequential files are also called as ordered files. In sequential file, the file records
are kept sorted by the value of an ordering key. The ordering field has unique
value. A sequential file is a set of contiguously stored records on a physical
device such as a disk, tape, or CD-ROM. Let us consider a sequential file of
“n” records. To be stored on disk, these “n” records must be grouped into
physical blocks as shown in Fig. 9.1.

Table 9.1. Example of heap file organization

Roll No. Name

S4 Krishnan
S2 Chitra
S3 Dilip
S1 Alex

block
Logical records

Block factor = 4

Fig. 9.1. Sequential file parameters

9.6 Hash File Organization 387

A block is the basic unit of input/output from disk to RAM. It can range in
size from a fraction of a record to hundreds or thousands of records. Typically
a block size ranges from one to hundred records. If a database has normalized
records, i.e., records of constant size, then the number of records in a block
is called blocking factor. For consistency and ease of programming, block
sizes are usually constant for a whole system. On the other hand, almost all
relational systems allow variable-size records, hence average record size can
be used for simplicity.

9.5.1 Sequential Processing of File

If we have a file of “n” records then the basic performance measures for
sequential search of the entire file is given below:

– Logical record accesses =n, where n is the number of records in a file.
– Sequential block accesses = ceil (n/blocking factor).
– Random block accesses = 0.
– Once a sequential file is created, records can be added at the end of the

file.
– It is not possible to insert records in the middle of the file without rewriting

the file.
– Searching method used in sequential file organization is binary search.

9.5.2 Draw Back

If new record is inserted or some record is deleted the file has to be reorganized,
which is time consuming.

9.6 Hash File Organization

Hash files are also called direct files. Hashing is nothing but a method of
distributing data evenly to different areas of memory. In hash file organization,
the records are organized using hashing algorithm. Hash file organization is
suitable for random access. In hash file organization, a hash function is applied
to each record key, which returns a number which is used to indicate the
position of the record in the file. The hash function must be used for both
reading and writing.

9.6.1 Hashing Function

Hash function is used to locate record for access, insertion, and deletion. The
hash function is given by:
Hashing function = Kmod B.
K−→Key value.
B−→No of buckets.

388 9 Physical Database Design

Example

Consider the example STUDENT RECORD. The attributes in the relation
STUDENT RECORD are student ID, name of the student, age of the student,
and the cumulative grade point average (CGPA) of the student.

In the STUDENT RECORD relation, the key value is the student ID and
the number of buckets which is denoted by B is chosen as 3 as shown in
Sect. 9.6.2.

STUDENT RECORD

Number (integer)

Used to distribute record among buckets.

Student ID Name Age CGPA
EA03
EA21
EA05
EA08
EA04
EA07

ID Name Age CGPA
EA03
EA21
EA05
EA08
EA04(11)
EA07

Hashing
Function

9.6.2 Bucket

A bucket is a unit of storage containing one or more records (a bucket is
typically a disk block). In a hash file organization, the bucket of a record is
obtained directly from its search key value using a hash function.

Hashing function = Kmod B.
K−→Key value.
B−→No of buckets.
If B =3,

9.6 Hash File Organization 389

3 mod 3−→ 0

21 mod 3−→ 0
EA03
EA21 Bucket 0
EA04
EA07 Bucket 1
EA05
EA08 Bucket 2

5 mod 3−→ 2

8 mod 3−→ 2

4 mod 3−→ 1

7 mod 3−→ 1

9.6.3 Choice of Bucket

Here the choice of the bucket refers to the fact that whether the bucket size
is large or small. If the bucket size is large then, storage space required is
large; on the other hand if the bucket size is small, then there is a chance of
overflow.

Choice of Bucket

Large Small

Space
is wasted

Overflow
will occur

As the bucket size increases, the probability of overflow decreases but the
time taken to search for a record in the bucket may increase.

Collision

There is a collision during an insertion when two records hash to the same
bucket address. Two keys that hash to the same address are sometimes
termed synonyms. Collisions are not a problem if the bucket is not full,
because the records are simply stored in available spaces in the bucket. Over-
flow occurs during insertion when a record is hashed to a bucket that is
already full.

Methods to Avoid Overflow

Overflow occurs when a record hashes to a full bucket. In open addressing, the
addresses of buckets to search are calculated dynamically. In chaining, chains
of overflow records are rooted in the home buckets.

390 9 Physical Database Design

To avoid Overflow

Open
addressing

Chaining Multiple
hashing

Find the first
open position
following the
position that
is

Overflow area
is kept and a
point to
overflow area
is used.

Another hash
function is used
to calculated the
offset.

Open Addressing

Open addressing is a technique to avoid overflow. From the name open ad-
dressing it is clear that we have to generate a list of bucket addresses. The list
of bucket addresses is generated from the key of the record. The processes of
generation of list of bucket addresses is denoted by

Ai = f(i, key) i = 0, 1, 2, 3, . . .

where Ai is the list of bucket address and i is an integer.
If the bucket Ai is full, then the bucket Ai+1 are examined. When retrieving

a record, buckets are examined until one is found that either contains the
required record or has an empty space. An empty space indicates that the
record being searched for is not in the file. This method of resolving overflow
was proposed by Peterson who termed it open addressing. A good function
“f” should ensure that each integer 0 to N−1 (where N is the number of home
buckets) appears in the generated list of bucket addresses.

Chaining

A second solution to the problem of overflows is called chaining or closed
addressing. In this method, lists of records that have overflowed are rooted
in appropriate home buckets. The overflow records are put in any convenient
place, perhaps in a separate overflow area or in an arbitrary bucket that
is not full. In contrast to open addressing, the location used does not typi-
cally depend on the contents of the record. Let us consider three variations
of the basic idea outlined above (1) separate lists, (2) coalescing lists, and
(3) directory methods.

Separate lists. In the separate lists method we link together records over-
flowing from the same home bucket. The list is rooted in that bucket. Only
the records on the list need to be examined when searching, and because any
one might be the one looked for, comparisons are minimized. Deletions are
straightforward. If we delete a record from a home bucket, we can replace it
by one on the overflow list. If we delete a record on a list, it is removed from
the list in the conventional way.

9.6 Hash File Organization 391

Coalescing lists. The separate list method requires a comparatively large
amount of space for pointers. A second possibility is to store records in spare
space in home buckets. Each bucket has a single pointer pointing to the next
bucket to try when searching. Pointers are established as records overflow.
This method reduces pointer overhead, but many more records may have to
be examined when searching.

Directory methods. In methods involving directories, room is allocated in a
home bucket beyond that needed to store records. The extra space is used to
hold pointers to records overflowing from the bucket and their keys. As long
as all overflows can be pointed to in this way, this method, is fast.

Hashing

Internal External Static Dynamic
(External hashing)

One record
per bucket.

More than one
Record per
bucket.

Hashing
function is
not based on
current file size.

Hashing function
based on
current file size.

Predictor to
predict to
anticipated size
at same in the
future.

Space will be
wasted initially.

Hash-based index is good for equality search.

9.6.4 Extendible Hashing

Techniques that combine basic hashing with dynamic file expansion are pop-
ular today. In extendible hashing, the number of buckets grows or contracts
depending on the need. When a bucket becomes full, it splits into two buckets,
and records in the bucket are reallocated to the two new buckets. Thus, colli-
sions are resolved immediately and dynamically, and long sequential searches,
long overflow chains, and multiple hashing computations are avoided. The
basic architecture of extendible hashing is shown in Fig. 9.2.

The primary key is sent to a hash function that produces a hash address
pointing to an entry in the bucket address table (BAT), which normally re-
sides in RAM. The BAT contains pointers to the respective physical (disk)
buckets that hold the actual data records. The BAT is initialized with space
for one entry and expands as the database records are inserted and more dif-
ferentiation is needed to allocate records to the buckets. If “k” bits of the
hash address are used to determine the bucket to store or retrieve from, the

392 9 Physical Database Design

Hashing
function

00

01

10

11

Fig. 9.2. Extendible hashing architecture

BAT contains 2k entries. Thus, if the 8-bits are needed to allocate records to
buckets, the BAT contains 256 entries, and therefore up to 256 buckets can
be defined and pointed to from these entries.

9.7 Index File Organization

Index is a collection of data entries plus a way to quickly find entries with
given key values. Index is a mechanism for efficiently locating row(s) without
having to scan entire table.

9.7.1 Advantage of Indexing

Index speeds up selections on the search key field. Search key is an attribute
or set of attributes used to look up records in a file. It is possible to build
more than one index for the same table:

– Index in the book allows us to locate specific page in the book.
– Index in the record allows us to find specific record in the file.

9.7.2 Classification of Index

Indexes can be broadly classified into primary index, secondary index, dense
index, sparse index, bitmap, and single and multilevel as illustrated below:

Classification of Index

Primary index
(Clustering)

Secondary index
(Non clustering index)

Dense Sparse Bitmap Single level Multi-
level.

9.7 Index File Organization 393

Primary index. Primary index is one whose search key specifies the
sequential order of the file.

Secondary index. Secondary index improves the performance of queries
that use keys other than primary search key.

Dense index. Dense index has index entry for each data record.
Sparse index. Sparse index has index entry for each page of data file.

9.7.3 Search Key

Search key is attribute or set attributes used to look up records in a file. In
the example shown below, the Roll number associated with the student is the
search key as it is unique for each and every student.

E001
E002
E003
E004
E005

E001

E002

E003

Roll No Name Age
E001
E002
E003
E004
E005

Roll No Name Age

Dense Vs Sparse Index

1. Fast search. 1. Access time is increase.
2. Space is more. 2. Less storage space.

PRIMARY INDEX
ON EMPID

SECONDARY INDEX
ON NAMEDATA FILE

Search
key

Pointer

C100
C101
C102
C103
C104
C105
C106

EM
ID

NAME AGE

C100 VIJAY 52
C101 RAMESH 50
C102 BALU 48
C103 CHITRA 43
C104 ANAND 38
C105 DINESH 36
C106 SIVA 34

Pointer Search key
ANAND
BALU
CHITRA
DINESH
RAMESH
SIVA
VIJAY

394 9 Physical Database Design

9.8 Tree-Structured Indexes

A tree is a structure in which each node has at most one parent except for
the root or top node. Tree-structured indexes are ideal for range-searches, and
also good for equality searches. This tree-structured indexes can be classified
into (1) ISAM, (2) B-tree and, (3) B+ tree.

9.8.1 ISAM

ISAM stands for indexed sequential access method. ISAM is a static index
structure that is effective when the file is not frequently updated. In ISAM
new entries are inserted in overflow pages.

9.8.2 B-Tree

The B-tree is a very popular structure for organizing and maintaining large
indexes. B-trees were studied in early 1970s by Bayer, McCreight, and Comer.
B-tree is a generalization of binary tree in which two or more branches may
be taken from each node. B-tree is called balanced tree because the access
paths to different records of equal length. B-tree has the ability to quickly
search huge quantities of data. B-tree adapts well to insertions and deletions.
One of the earliest B-tree search mechanisms was used at Boeing Labs. Later,
the original B-tree spawned several variants, including the B+ developed by
Prof. Donald Knuth. An index provides fast access to data when the data can
be searched by the value that is the index key.

B-Tree Properties

A B-tree is a generalization of binary tree in which two or more branches may
be taken from each node. A B-tree of order k has the following properties:

– Each path from the root node to a leaf node has the same length, h, also
called the height of the B-tree (i.e., h is the number of nodes from the
root to the leaf, inclusive).

– Each node, except the root and leaves, has at least k+ 1 child nodes and
no more than 2k+ 1 child nodes.

– The root node may have as few as two child nodes, but no more than
2k+ 1 child nodes.

– Each node, except the root, has at least k keys and no more than 2k keys.
The root may have as few as one key. In general, any nonleaf (branch)
node with j keys must have j+ 1 child nodes.

9.8.3 Building a B+ Tree

The following points are useful in building a B+ tree. In the case of B+

tree, only the nodes at the bottom of the tree point to records, and all

9.8 Tree-Structured Indexes 395

other nodes point to the other nodes. Nodes which point to records are called
leaf nodes:

– If a node is empty, then the data are added on the left.
60

∣
∣

– If a node has one entry, then the left takes the smallest valued key and
the right takes the biggest.

30
∣
∣ 60

In this example, 30 is the small value hence it takes the left position and
60 is the higher value hence it takes the right position.

– If a node is full and is a leaf node, classify the keys as L (lowest), M (middle
value) and H (highest), and split the node.

– If a node is full and is not a leaf node, classify the keys L (Lowest),
M (middle value) and H (highest), and split the node.

M

L M H

Differences Between B and B+ Tree

B-tree B+ tree

In B-tree, nonleaf nodes are larger
than leaf nodes

In B+ tree leaf and nonleaf nodes are
of same size

Deletion in B-tree is complicated In B+ tree, deleted entry always
appears in a leaf, hence it is easy to
delete an entry

Pointers to data records exist at all
levels of the tree

Pointers to data records exist only at
the leaves

Advantages of B-Trees

The major advantages of B-trees are summarized below:

– Secondary storage space utilization is better than 50% at all times. Storage
space is dynamically allocated and reclaimed, and no service degradation
occurs when storage utilization becomes very high.

– Random access requires very few steps and is comparable to hashing and
multiple index methods.

396 9 Physical Database Design

– Record insertions and deletions are efficiently handled on the average,
allowing maintenance of the natural order of keys for sequential processing
and proper tree balance to maintain fast random retrieval.

– Allows efficient batch processing by maintaining key order.

9.8.4 Bitmap Index

Bitmap index is optimal for indexing a column containing few unique values.
For example, a gender column in an application form can take just three
possible values. They are “M,” “F,” and “U.” Here “M” stands for male,
“F” stands for female, and “U” stands for unknown.

In order to understand how bitmap index organizes records let us consider
a database table APPLICANT as shown below and the corresponding bitmap
index:

APPLICANT

ID NAME GENDER

Krishnan M

2 Radha F

3 Mohan M

4 Sudan U

Bitmap index on gender

ID FEMALE MALE UNKNOWN

1 1

2 1

3 1

4 1

The person corresponding to ID 1 is Krishnan who is a male hence a “1” is
inserted in MALE in bitmap index. In a bitmap index, a bitmap for each key
value is used. Each bit in the bit map corresponds to a possible rowed, and
if the bit is set, it means that the row with the corresponding rowed contains
the key value.

Benefits of Bitmap Index

The benefits of bitmap index are summarized as:

– Reduced response time for large classes of ad hoc queries.
– A substantial reduction of space usage compared to other indexing tech-

niques.

9.9 Data Storage Devices 397

Fully indexing a large table with a normal index can be expensive in terms of
space since the index can be several times larger than the data in the table.
Bitmap indexes are typically only a fraction of the size of the indexed data in
the table.

9.9 Data Storage Devices

The data stored by an organization double in every 3 or 4 years. Hence the
selection of data storage devices is a key consideration for data managers.

9.9.1 Factors to be Considered in Selecting Data Storage Devices

The following factors have to be considered while evaluating data storage
options:

– Online storage
– Backup files
– Archival storage

When the device is used to store online data, then one has to give importance
to access speed and capacity, because many firms require rapid response to
large volumes of data.

Backup files are required to provide security against data loss. Ideally,
backup storage is a high volume capacity at low cost.

Archived data may need to be stored for many years; so archival medium
should be highly reliable, with no data decay over extended periods, and low
cost.

The following factors have to be considered in storing the data in a par-
ticular medium:

– Volume of data
– Volatility of data
– Required speed of access to data
– Cost of data storage
– Reliability of data storage medium

9.9.2 Magnetic Technology

Magnetic technology is based on magnetization and demagnetization of spots
on a magnetic recording surface. The same spot can be magnetized and
demagnetized repeatedly. Magnetic recording materials may be coated on rigid
plotters (hard disks), flexible circular substrates (floppy disks), thin ribbons
of material (magnetic tapes), or rectangular sheets (magnetic cards).

The main advantages of magnetic technology are its relative maturity and
widespread use. A major disadvantage is susceptibility to strong magnetic

398 9 Physical Database Design

fields that can corrupt data stored on a disk. Also magnetization decays with
time. Hence it is not a preferable medium to store legal documents, archival
data.

9.9.3 Fixed Magnetic Disk

A fixed magnetic disk contains one or more recording surfaces that are per-
manently mounted in the disk drive and cannot be removed. Fixed disk is the
medium of choice from personal computers to super computers. Fixed disks
gives rapid, direct access to large volumes of data, and is ideal for highly
volatile files. The major disadvantage of magnetic disk is the possibility of
head crash that destroys the disk surface and data hence it is necessary to
regularly make backup copies of hard disk files.

9.9.4 Removable Magnetic Disk

A removable disk comes in two formats: single disk and disk pack. Disk packs
consist of multiple disks mounted together on a common spindle in a stack,
usually on a disk drive with a retractable read/write heads. The disk’s remov-
ability is its primary advantage making it ideal for backup.

9.9.5 Floppy Disk

Floppy low cost makes them ideal for storing and transporting small files and
programs. But the reliability is not so good. A speck of dust can cause read
error.

9.9.6 Magnetic Tape

In magnetic tape, the data storage and retrieval are in sequential manner.
Hence the access time, which refers to data access, is high. Magnetic tape was
used extensively for archiving and backup in early database systems.

9.10 Redundant Array of Inexpensive Disk

RAID stands for Redundant Array of Inexpensive (Independent) Disk. A disk
array comprises of several disks managed by a controller. Disks and controllers
can be joined together in RAID combinations. First, they can provide fault
tolerance by introducing redundancy across multiple disks. Second, they can
provide increased throughput because disk array controller supports parallel
access to multiple disks. Instead of using one massive drive, RAID technology
stores several smaller drives in one container.

9.10 Redundant Array of Inexpensive Disk 399

Stripping. Stripping is an important concept for RAID storage. Stripping
involves the allocation of physical records to different disks. A stripe is the set
of physical records that can be read or written in parallel. Normally, a stripe
contains a set of adjacent physical records.

The different types of disk arrays are known by their RAID Levels. Some
of the RAID Levels are:

(1) RAID Level 0 + 1
(2) RAID Level 0
(3) RAID Level 1
(4) RAID Level 2
(5) RAID Level 3
(4) RAID Level 4
(5) RAID Level 5
(6) RAID Level 6
(7) RAID Level 10
(8) RAID Level 50

9.10.1 RAID Level 0 + 1

RAID Level 0+ 1 requires a minimum of four drives to implement. RAID 0+ 1
is implemented as mirrored arrays as shown in Fig. 9.3 whose segments are
RAID 0 arrays. High input/output rates are achieved due to multiple stripe
segments.

Disadvantages of RAID Level 0+1

The disadvantages of RAID Level 0+ 1 are:

– Limited scalability at a very high inherent cost.
– Very expensive/high overhead.
– A single drive failure will cause the whole array to become RAID Level 0

array.
– All drives must move in parallel to proper track lowering sustained per-

formance.

D H D H

A

B

C

E

F

G

A

B

C

E

F

G=

Fig. 9.3. Mirroring

400 9 Physical Database Design

Recommended Applications of RAID Level 0 +1

The recommended applications of RAID Level 0+ 1 are:

– Imaging applications
– File server

9.10.2 RAID Level 0

RAID Level 0 requires a minimum of two drives to implement. RAID Level 0
implements a stripped disk array, the data are broken down into blocks and
each block is written to a separate disk drive. The stripped disk array concept
is shown in the Fig. 9.4.

Advantages of RAID Level 0

The main advantages of RAID Level 0 are:

– Very simple design and easy to implement.
– No parity calculation overhead is involved.
– Best performance is achieved when data are striped across multiple con-

trollers with only one drive per controller.
– Input/output performance is greatly improved by spreading the

input/output load across many channels and drives.

Drawbacks of RAID Level 0

Some of the drawbacks of RAID Level 0 are:

– RAID Level 0 is not a “true” RAID because it is not fault-tolerant.
– The failure of just one drive will result in all data in an array being lost.
– RAID Level 0 should never be used in mission critical environments.

Recommended Applications of RAID Level 0

– Image, video editing
– Prepress applications
– Applications that require high bandwidth

M

A

E

I

N

B

F

J

O

C

G

K

etc...

D

H

L

Fig. 9.4. Stripped disk array

9.10 Redundant Array of Inexpensive Disk 401

= = =

Mirroring Mirroring Mirroring

D

A

B

C

D

A

B

C

H

E

F

G

H

E

F

G

L

I

J

K

L

I

J

K

Fig. 9.5. Mirroring and duplexing

9.10.3 RAID Level 1

RAID Level 1 requires a minimum of two drives to implement. The
characteristics of RAID Level 1 are mirroring and duplexing which is shown
in Fig. 9.5.

Advantages of RAID Level 1

The main advantages of RAID Level 1 are:

– Simplest RAID storage subsystem design.
– Under certain circumstances, RAID 1 can sustain multiple simultaneous

drive failures.
– One hundred percent redundancy of data means no rebuild is necessary

in case of a disk failure, just a copy to the replacement disk.

Disadvantages of RAID Level 1

Some of the drawbacks of RAID Level 1 are:

– Highest disk overhead.
– May not support hot swap of failed disk when implemented in “software.”
– Hardware implementation is strongly recommended.

Recommended Applications of RAID Level 1

– Accounting
– Payroll
– Financial
– Any application requiring high availability

9.10.4 RAID Level 2

A RAID Level 2 system would normally have as many data disks as the word
size of the computer, typically 32. In addition, RAID 2 requires the use of extra

402 9 Physical Database Design

disks to store an error-correcting code for redundancy. With 32 data disks,
a RAID 2 system would require seven additional disks for a Hamming-code
ECC.

For a number of reasons, including the fact that modern disk drives contain
their own internal ECC, RAID 2 is not a practical disk array scheme.

Advantages of RAID Level 2

The main advantages of RAID Level 2 are:

– Extremely high data transfer rates possible.
– Relatively simple controller design compared to RAID Levels 3–5.

Disadvantages of RAID Level 2

Some of the disadvantages of RAID Level 2 are:

– Entry level cost is very high.
– No practical use; same performance can be achieved by RAID 3 at lower

cost.

9.10.5 RAID Level 3

RAID Level 3 is characterized by parallel transfer with parity. The idea of
parallel transfer with parity is illustrated in the Fig. 9.6.

In RAID Level 1, data are stripped (subdivided) and written on the
data disks. Stripe parity is generated on Writes, recorded on the parity disk,
and checked on Reads. RAID Level 3 requires a minimum of three drives
to implement.

Parity generation

EX-OR
gate

Stripe 0 Stripe 1 Stripe 2 Stripe 3 Stripes 0,1,2,3 parity

D0

A0

B0

C0
D1

A1

B1

C1

D2

A2

B2

C2

D3

A3

B3

C3
Dparity

Aparity
yyy

Bparity

Cparity

Fig. 9.6. Parallel transfer with parity

9.10 Redundant Array of Inexpensive Disk 403

Advantages of RAID Level 3

The advantages of RAID Level 3 are:

– Very high data transfer rate.
– Disk failure has an insignificant impact on throughput.
– High efficiency because of low ratio of parity disks to data disks.

Disadvantages of RAID Level 3

– Controller design is fairly complex.
– Transaction rate is equal to that of a single disk drive at best.
– Very difficult and resource intensive to do as a “software” RAID.

Recommended Applications

– Video production and live streaming
– Image editing, video editing
– Any application requiring high throughput

9.10.6 RAID Level 4

RAID Level 4 is characterized by independent data disks with shared parity
disks as shown in Fig. 9.7. Each entire block is written onto a data disk.
Parity for same rank blocks is generated on Writes, recorded on the parity
disk, and checked on Reads. RAID Level 4 requires a minimum of three drives
to implement.

Advantages of RAID Level 4

Some of the advantages of RAID Level 4 are:

– Very high Read data transaction rate.
– Low ratio of parity disks to data disks means high efficiency.
– High aggregate Read transfer rate.

Parity generation

Block 0 Block 1 Block 2 Block 3 Block 0,1,2,3 parity

D0

A0

B0

C0

D1

A1

B1

C1

D2

A2

B2

C2

D3

A3

B3

C3
Dparity

Aparity
yyy

Bparity

Cparity

Fig. 9.7. Independent disk with shared parity

404 9 Physical Database Design

Disadvantages of RAID Level 4

Some of the disadvantages of RAID Level 4 are:

– Quite complex controller design.
– Worst write transaction rate and Write aggregate transfer rate.
– Difficult and inefficient data rebuild in the event of disk failure.

9.10.7 RAID Level 5

In RAID Level 5, each entire data block is written on a data disk, parity
for blocks in the same rank is generated on Writes, recorded in a distributed
location and checked on Reads. RAID Level 5 requires a minimum of three
drives to implement. RAID Level 5 is characterized by independent data disks
with distributed parity blocks as shown in Fig. 9.8.

Advantages of RAID Level 5

The main advantages of RAID Level 5 are:

– Highest Read transaction rate
– Medium Write data transaction rate
– Good aggregate transfer rate

Disadvantages of RAID Level 5

Some of the disadvantages of RAID Level 5 are:

– Most complex controller design
– Difficult to rebuild in the event of disk failure
– Individual block transfer rate is same as single disk

3 parity

B0

B1

B2

B4

C3

C0

C1

2 parity

C4

D3

D0

1 parity

D2

D4

E3

0 parity

E1

E2

E4

A3

A0

A1

A2

4 parity

Server

Parity generation

A Blocks B Blocks C Blocks D Blocks E Blocks

Fig. 9.8. Independent disk with distributed parity

9.10 Redundant Array of Inexpensive Disk 405

Recommended Applications

– File and application servers
– Database servers
– Intranet servers

9.10.8 RAID Level 6

RAID Level 6 is characterized by independent data disks with two indepen-
dent distributed parity schemes as shown in Fig. 9.9. Two independent parity
computations must be used in order to provide protection against double disk
failure. Two different algorithms are employed to achieve this purpose. RAID
Level 6 requires a minimum of four drives to implement.

Advantages of RAID Level 6

The main advantages of RAID Level 6 are:

– RAID Level 6 provides high fault tolerance and can sustain multiple
simultaneous drive failures.

– Perfect solution for critical applications.

Drawbacks of RAID Level 6

Some of the drawbacks of RAID Level 6 are:

– More complex controller design.
– Controller overhead to compute parity addresses is extremely high.

P3 parity

A0

A1

Q2 parity

etc...

B3

B0

Q1 parity

P2 parity

etc...

C3

Q0 parity

P1 parity

C2

etc...

Q3 parity

P0 parity

D1

D2

etc...

XOR parity
generation (P)

Reed-Solomon code
Generation (Q)

A Blocks B Blocks C Blocks D Blocks

Fig. 9.9. Independent data disks with two independent distributed parity schemes

406 9 Physical Database Design

=

Mirroring Stripping

D

A

B

C

D

A

B

C

G

A

C

E

H

B

D

F

Fig. 9.10. Mirroring and stripping

Recommended Applications

– File and application servers
– Web and E-mail servers
– Intranet servers

9.10.9 RAID Level 10

RAID Level 10 has very high reliability combined with high performance.
RAID Level 10 is implemented as a stripped array whose segments are RAID 1
arrays as shown in Fig. 9.10.

Advantages of RAID Level 10

The main advantages of RAID Level 10 are:

– High input/output rates are achieved by striping RAID 1 segments.

Drawbacks of RAID Level 10

Some of the drawbacks of RAID Level 10 are:

– Very expensive/high overhead
– Very limited scalability at a very high inherent cost

Recommended Application

– Database server requiring high performance and fault tolerance

9.11 Software-Based RAID

Primarily used with entry-level servers, software-based arrays rely on a
standard host adapter and execute all I/O commands and mathematically
intensive RAID algorithms in the host server CPU. This can slow system

9.12 Hardware-Based RAID 407

performance by increasing host PCI bus traffic, CPU utilization, and CPU
interrupts. Some network operating system (NOS) such as NetWare and
Windows NT include embedded RAID software. The chief advantage of this
embedded RAID software has been its lower cost compared to higher-priced
RAID alternatives. However, this advantage is disappearing with the advent
of lower-cost, bus-based array adapters. The major advantages are low cost
and it requires only a standard controller.

9.12 Hardware-Based RAID

Unlike software-based arrays, bus-based array adapters/controllers plug into
a host bus slot (typically a 133 MByte (MB) s−1 PCI bus) and offload some
or all of the I/O commands and RAID operations to one or more secondary
processors as shown in Fig. 9.11. Originally used only with mid- to high-end
servers due to cost, lower-cost bus-based array adapters are now available
specifically for entry-level server network applications.

9.12.1 RAID Controller

The RAID controller is a device in which servers and storage intersect. The
controller can be internal to the server, in which case it is a card or chip,
or external, in which case it is an independent enclosure, such as a network-
attached storage (NAS). In either case, the RAID controller manages the
physical storage units in a RAID system and delivers them to the server in
logical units.

While a RAID controller is almost never purchased separately from the
RAID itself, the controller is a vital piece of the puzzle and therefore not as
much a commodity purchase as the array.

Fig. 9.11. Hardware-based RAID

408 9 Physical Database Design

In addition to offering the fault-tolerant benefits of RAID, bus-based array
adapters/controllers perform connectivity functions that are similar to stan-
dard host adapters. By residing directly on a host PCI bus, they provide the
highest performance of all array types. Bus-based arrays also deliver more
robust fault-tolerant features than embedded NOS RAID software.

9.12.2 Types of Hardware RAID

There are two main types of hardware RAID, differing primarily in how they
interface the array to the system.

Bus-Based or Controller Card Hardware RAID

This is the more conventional type of hardware RAID, and the type most com-
monly used, particularly for lower-end systems. A specialized RAID controller
is installed into the PC or server, and the array drives are connected to it. It
essentially takes the place of the small computer system interface (SCSI) host
adapter or integrated development environment (IDE) controller that would
normally be used for interfacing between the system and the hard disks; it
interfaces to the drives using SCSI or IDE/ATA, and sends data to the rest of
the PC over the system bus. Some motherboards, particularly those intended
for server systems, come with some variant of integrated RAID controller.
These are built into the motherboard, but function is precisely the same man-
ner as an add-in bus-based card. (This is analogous to the way that the inte-
grated IDE/ATA controllers on all modern motherboards function the same
way that add-in IDE/ATA controllers once did on older systems.) The only
difference is that integrated controllers can reduce overall cost at the price of
flexibility.

Intelligent, External RAID Controller

In this higher-end design, the RAID controller is removed completely from the
system to a separate box. Within the box the RAID controller manages the
drives in the array, typically using SCSI, and then presents the logical drives
of the array over a standard interface (again, typically a variant of SCSI) to
the server using the array. The server sees the array or arrays as just one or
more very fast hard disks; the RAID is completely hidden from the machine.
In essence, one of these units really is an entire computer unto itself, with
a dedicated processor that manages the RAID array and acts as a conduit
between the server and the array.

Advantages are data protection and performance benefits of RAID and
more robust fault-tolerant features and increased performance vs. software-
based RAID.

9.13 Optical Technology 409

9.13 Optical Technology

Optical storage systems work by reflecting beams of laser light off a rotating
disk with a minutely pitted surface. As the disk rotates, the amount of light
reflected back to a sensor varies, generating a stream of ones and zeros. The
advantages of optical technology are high storage densities, low cost media,
and direct access.

There are four storage media based on optical technology. They are
CD-ROM, WORM, magneto-optical, and DVD. Optical technology is highly
reliable because it is not susceptible to head crashes.

CD-ROM. CD-ROM stands for compact disk-read only memory. CD-ROM
is a compact, robust, high capacity medium for the storage of permanent data.
Once the data are written, it cannot be altered.

CD-R. CD-R stands for CD-recordable. CD-R writers are used to prepare
disks for CD mastering, test prototype applications, and backup systems.

CD-RW. CD-RW stands for CD-rewritable. This format allows erasing and
rewriting to a disk many times.

WORM. WORM stands for write once read many. WORM is the major
storage device for images. Information once written to a blank disk cannot be
altered. WORM jukeboxes are used to store high volumes of data. A jukebox
may contain up to 2,000 WORM disks. A WORM jukebox makes terabytes
of data available in about 10 s.

9.13.1 Advantages of Optical Disks

The main advantages of optical disk are given below:

1. Physical. An optical disk is much sturdier than tape or a floppy disk. It is
physically harder to break, melt, or warp.

2. Delicacy. It is not sensitive to being touched, though it can get too dirty
or scratched to be read. It can be cleaned.

3. Magnetic. It is entirely unaffected by magnetic fields.
4. Capacity. Optical disks hold much more data than floppy disks.

9.13.2 Disadvantages of Optical Disks

Some of the disadvantages of optical disks are:
Cost. The cost of the optical disk is high. But due to the advancement

in technology, the price has come down drastically. Hence cost cannot be
considered as drawback.

Duplication. It is not easy to copy an optical disk as it is a floppy disk.
Software and hardware is necessary for writing disks. This is balanced by the
fact that it is not as necessary to have extra copies since the disk is so much
sturdier than other media.

410 9 Physical Database Design

Summary

The primary goal of physical database design is data processing efficiency.
Today, with ever-decreasing costs of computer technology per unit of measure,
it is typically important that the physical database design must minimize the
time required by users to interact with the information system. During phys-
ical database design, the database designer translates the logical description
of data into the technical specifications for storing and retrieving data.

A physical file is a named portion of secondary memory allocated for the
purpose of storing physical records. Data within a physical file are organized
through a combination of sequential storage and pointers. A file organization
arranges the records of a file on a secondary storage device. The three major
categories of file organizations are sequential file organization, index file orga-
nization, and hash file organization. In sequential file organization, records are
stored in a sequence to a primary key value. In index file organization, records
are stored sequentially or nonsequentially and an index is used to keep track
of where the records are stored. In hash file organization, the address of each
record is determined using an algorithm that converts a primary key value
into a record address. In this chapter the different types of file organization
are explained through illustrative examples.

File access efficiency and file reliability can be enhanced by the use of
a RAID, which allows blocks of data from one or several programs to be
read and written in parallel to different disks, thus reducing the input/output
delays with traditional sequential I/O operations on a single disk drive. In
this chapter, the basic concept of RAID and different levels of RAID are
explained. Various levels of RAID allow a file and database designer to choose
the combination of access efficiency, space utilization, and fault tolerance best
suited for the database applications.

Review Questions

9.1. What are the main differences between ISAM and B+ tree indexes?

The main difference between ISAM and B+ tree indexes is that ISAM is static
while B+ tree is dynamic. Another difference between the two indexes is that
ISAM’s leaf pages are allocated in sequence.

9.2. What is the order of B+ tree?

The order of a B+ tree is denoted by which is a measure of the capacity of the
tree node. Every node in the B+ tree contains “m” entries where d ≤ m ≤ 2d.

9.3. How many nodes must be examined for equality search in a B+ tree?
How many for a range selection? Compare this with ISAM?

For equality search in a B+ tree, l nodes must be examined, where l =height
of the tree. For range selection, number of nodes examined = l + m− 1, where

Review Questions 411

m is the number of nodes that contains elements in the range selection. For
ISAM, the number of nodes examined is the same as B+ tree plus any overflow
pages that exist.

9.4. Define static, extensible, and linear hashing? Describe the advantages
and disadvantages?

Static hashing is a hashing technique where the buckets that hold data entries
are statically allocated. If too many records are inserted for a given bucket, the
system creates overflow pages. While this technique is simple, it can require
many I/Os to find a specific data record if that record is in a bucket with
many other records.

Extensible hashing is a hashing technique that does not require overflow
pages. Extensible hashing uses a directory of pointers to buckets. When a page
for a bucket overflows, the bucket is split. This splitting occasionally requires
the doubling of the directory structure. As stated above, this technique does
not require overflow pages. However, it requires the space overhead of the
directory, and possibly (but not likely) an extra I/O for the directory lookup.

Linear hashing is a dynamic hashing technique that handles the problem
of long overflow chains without a directory. Linear hashing uses temporary
overflow pages, and chooses the buckets to split in a round-robin fashion.
Linear hashing requires no dynamic directory structure, only a counter for
“next” and “level.” However, it does have some overflow pages, and it may
require more than 1–2 I/Os for a lookup.

9.5. In extensible hashing, why do you use the least significant bits of the
hash value to determine the directory slot of a data item?

If the least significant bits are used, the system can copy the old directory, and
use this new copy as the second half of the new directory. After the copy, only
one of the directory pointers for the bucket that split needs to be updated.

9.6. Compare the merits and demerits of the different types of secondary
storage devices in tabular form?

Type Advantage Disadvantage Typical use

Floppy disk Inexpensive,
direct access,
removable

Low capacity, slow
access

Store files for
word processors
and spreadsheets

Hard disk Fast, direct
access

Limited capacity Store programs
and data

CD-ROM High capacity,
direct access

Slow access Reference
material

Magnetic tape High capacity Slow sequential data
access

Backup programs
and data

412 9 Physical Database Design

9.7. What is RAID system and what are its benefits in a database application?

A relatively recent innovation in disk drives is dramatically improving capa-
bilities of DBMS. In RAID technology, instead of using one massive drive,
several smaller drives are there in one container.

The primary advantage of storing data on separate drives is that each
drive can store or retrieve data at the same time. This parallel processing
significantly improves the system performance. A second advantage to the
system is that it can automatically duplicate each portion of the data and
store it on a different disk. If one of the disks is destroyed, all of the data are
still available on the other disks and can be recovered automatically.

9.8. What are the benefits and costs of using indexes?

Indexed tables provide fast random and sequential access to tables from any
predetermined sort condition. The time taken to retrieve data from the data-
base is considerable reduced by using indexes.

It is not advisable to index each column of the table as it takes more space.
If the index is stored sequentially, then it is necessary to copy huge chunks of
the index whenever a row is inserted into the table.

9.9. Construct a B+ tree for the following set of key values?

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31). Assume that the number of pointers that will
fit in one node is 4. It is also assumed that the tree is initially empty and the
values are added in ascending order.

Solution:
Given data:
Number of pointer in one node =4

=> The number of keys = 3
To ensure the property that everything is at least half full, all leaf nodes

must have at least one key, all nonleaf nodes must have at least two pointers.
Since the values are assumed to be entered in ascending order, insert 2, 3,

and 5.

Insert 7, by splitting into two nodes and adding an index node, copying
middle value up.

Insert 11, insert 17 and split, insert 19, insert 23 and split, insert 29.

Review Questions 413

Finally, insert 31 and split the node, copy up the 29 into the index node
which now needs to be split creating a parent (new root) index node with the
middle index pushed up.

9.10. What is the function of RAID controller?

The RAID controller is a device in which servers and storage intersect. The
controller can be internal to the server, in which case it is a card or chip,
or external, in which case it is an independent enclosure, such as a NAS. In
either case, the RAID controller manages the physical storage units in a RAID
system and delivers them to the server in logical units.

10

Data Mining and Data Warehousing

Learning Objectives. This chapter provides an overview of advanced concepts in
database management system, which includes concepts related to data mining and
data warehousing. This chapter deals with classification of data mining system, data
mining issues, prediction, clustering, association rules, trends, and applications of
data mining system. The data warehouse architectures, design, and user interface
concepts are discussed. After completing this chapter the reader should be familiar
with the following concepts:

– Need for data mining
– Data mining functionalities
– Classification and prediction of data mining
– Performance issues in data mining
– Data mining association rules
– Application and trends in data mining
– Goals of Data Warehousing
– Characteristics of Data in Data Warehouse
– Data Warehouse Architectures
– Data Warehouse Design
– The User Interface

10.1 Data Mining

10.1.1 Introduction

Data mining refers to extracting or “mining” knowledge from large amounts of
data. The data mining is appropriately named as “Knowledge Mining.” There
are many other terms carrying a similar or slightly different meaning to data
mining, such as Knowledge Mining from Databases, Knowledge Extraction,
Data/Pattern Analysis, Data Archaeology, and Data dredge.

Data mining is an essential process where intelligent methods are applied
in order to extract data patterns. Data mining is the process of discovering
interesting knowledge from large amounts of data stored in databases, data
warehouses, or other information repositories.

S. Sumathi: Data Mining and Data Warehousing, Studies in Computational Intelligence

(SCI) 47, 415–475 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

416 10 Data Mining and Data Warehousing

10.1.2 Architecture of Data Mining Systems

Data mining is an essential process where intelligent methods are applied
in order to extract data patterns. The architecture of data mining is shown
in Fig. 10.1. The major components are described as follows.

Data Warehouse. This is one or a set of databases, spreadsheets, or other
kinds of information repositories. Data cleaning and Data integration tech-
niques may be performed on the data.

Database. The database server is responsible for fetching the relevant data
based on the user data-mining request.

Knowledge Base. This can be used to guide the search, or evaluate the
interestingness of the resulting patterns. Such knowledge include concept
hierarchies, used to organize attributes or attribute values into different
levels of abstraction, knowledge such as user beliefs, which can be used to
assess the pattern interestingness based on its unexpectedness may also be
included.

Data Mining Engine. This is essential to the data mining system and
ideally consists of set of functional modules for tasks such as characteri-
zation, association, classification, cluster analysis, evaluation, and deviation
analysis.

Pattern Evaluation Modules. This component typically employs interest-
ingness measures and interacts with the data mining modules so as to focus
the search toward interesting patterns. It may use interestingness thresholds
to filter out discover patterns. Alternatively, this module may be integrated
with the mining module depending on the implementation of the data mining
method used.

Graphical User Interface

Pattern Evaluation

Data Mining Engine

Database Server

Database

Knowledge
Base

Data
Warehouse

Fig. 10.1. Architecture of data mining

10.1 Data Mining 417

Graphical User Interface. This module communicates between the user
and the data mining system, allowing the user to interact with the system
by specifying the data mining query or task, providing the information to
help focus the search, and performing exploratory data mining based on the
intermediate data mining results.

10.1.3 Data Mining Functionalities

Functionalities of data mining are used to specify the kind of patterns to be
found in data mining tasks. It can be classified into two categories such as
Descriptive and Predictive. Descriptive mining task characterize the general
properties of data in the database, whereas predictive mining task perform
inference on the current data in order to make predictions.

These functionalities are classified as follows:

– Characterization and discrimination
– Association analysis
– Classification and prediction
– Cluster analysis
– Outlier analysis
– Evolution analysis

10.1.4 Classification of Data Mining Systems

Data mining is an interdisciplinary field, the confluence of set of disciplines,
including database system statistics, machine learning, visualization, and
information science. Moreover, depending on the data mining approach used,
techniques from other disciplines may be applied. Data mining research is
expected to generate a large variety of data mining systems. It can be descri-
bed as follows.

Classification According to the Kinds of Database Mined

Database system themselves can be classified according to different criteria
such as data models, each of which may require its own data mining tech-
niques. If classifying according to the special types of data handled, we may
have a spatial, time series, text, or world wide mining system.

Classification According to the Kinds of Knowledge Mined

It can be categorized according to the kinds of knowledge they mine, i.e.,
based on data mining functionalities, such as characterization, discrimina-
tion, association, classification, clustering, cluster outlier analysis, and evolu-
tion analysis. It can be based on granularity or levels of abstraction of the
knowledge mined.

418 10 Data Mining and Data Warehousing

Classification According to the Kinds of Techniques Utilized

Data mining techniques can be categorized according to the degree of user
interaction involved or methods of data analysis employed. A sophisticated
data mining system will often adopt multiple data mining techniques or work
out an effective integrated technique that combines the merits of a few indivi-
dual approaches.

10.1.5 Major Issues in Data Mining

Major issues in data mining are mining methodology, user interaction, per-
formance, and diverse data types. These are described follows.

Mining Methodologies and User Interaction Issues

These reflect the kind of knowledge mine, the ability to mined knowledge
at multiple granularities, the user domain knowledge, and knowledge visual-
ization.

Mining Different Kind of Knowledge in Database

Since different users can be interested in different kinds of knowledge, data
mining should cover a wide spectrum of data analysis and knowledge discovery
task, including data characterization discrimination, association, classifica-
tion, clustering, trend and deviation analysis, and similarity analysis. These
tasks may be used in the same database in different ways and require the
development of numerous data mining techniques.

Incorporation of Background Knowledge

Background knowledge or information regarding the domain under study may
be used to guide the discovery process and allows discovered patterns to be
expressed in concise terms and at different levels of abstraction.

Presentation and Visualization of Data Mining Results

Discover knowledge should be expressed in high-level languages, visual rep-
resentations, or other expressive forms so that knowledge can be easily
understood and directly used by humans. This is especially crucial if the data
mining system is to be interactive.

Handling Noisy or Incomplete Data

The data stored in database may reflect noise, exceptional cases, or incomplete
data objects. When mining data regularities, these objects may confuse the
process, causing knowledge model constructed to over fit the data. As a result,
the accuracy of the discovered pattern can be poor.

10.1 Data Mining 419

10.1.6 Performance Issues

The performance issues in data mining include efficiency, scalability, and par-
allelization of data mining algorithms.

Efficiency and Scalability of Data Mining Algorithms

To effectively extract information from a huge amount of data in databases,
data mining algorithm must be efficient and scalable. Many of the issues
are followed under mining methodology, and user interaction must consider
efficiency and scalability.

Parallel, Distributed, and Incremental Mining Algorithms

The huge size of many databases, the wide distribution of data, and compu-
tational complexity of some data mining methods are factors motivating the
development of parallel and distributed data mining algorithm. Such algo-
rithms divide the data into partitions, which are processed in parallel. The
results from the partitions are then merged. Therefore, this algorithm per-
forms the knowledge modification incrementally to amend and strengthened.

Issues Relating to the Diversity of Database Types

The main issues related to the diversity of the database types are handling of
relational and complex types of data and mining information from heteroge-
neous database.

Handling of Relational and Complex Types of Data

Relational databases are widely used, the development of efficient and effective
data mining systems for such data are important. However, other database
may contain complex data object, hypertext and multimedia data, spatial
data, temporal data, or transaction data. It is unrealistic to expect one system
to mine all kinds of data, given the diversity of data types and different goals
of data mining.

Mining Information from Heterogeneous Database and Global
Information Systems

LAN connects many sources of data, forming huge, distributed, and heteroge-
neous databases. The discovery of knowledge from different sources of struc-
ture and semistructured or unstructured data with diverse data semantics
poses great challenges to data mining. Web mining, which uncovers interest-
ing knowledge about Web contents, Web usage became a very challenging and
highly dynamic field in data mining.

420 10 Data Mining and Data Warehousing

10.1.7 Data Preprocessing

Today’s real world databases are highly susceptible to noisy, missing, and
inconsistent data due to their typically huge size, often several giga bytes or
more. To improve the quality of the data and efficiency, data preprocessing is
introduced.

Real world data tends to be dirty incomplete and inconsistent. This tech-
nique can improve the quality of data, thereby improving accuracy and effi-
ciency of the subsequent data mining process. It is an important step in the
knowledge discovery process. Since quality decisions must be based on quality
data. Detecting data anomalies, rectifying them early, and reducing the data
to be analyzed can lead to huge payoffs for decision making.

There are a number of data preprocessing techniques. They are:

– Data Cleaning
– Data Integration
– Data Transformation
– Data Reduction

Data Cleaning

Data cleaning routines attempt to fill in the missing values, smooth out noise
while identifying outliers, and correct inconsistencies in the data.

Noisy Data

Noise is a random error or variance in a measured variable. Smooth out the
data to remove the noise. The smoothing techniques are as follows:
Binning. This method smoothen a sorted data value by consulting its “neigh-
borhood,” that is, the values around it. The sorted values are distributed into
a number of “buckets,” or bins:

A. Smoothing by bin means each value in a bin is replace by the mean
value of the bin.

B. Smoothing by bin medians means each bin value is replaced by bin
median.

Clustering. Outliers may be detected by clustering, where similar values are
organized into groups or clusters. The values outside the set of clusters are
outliers.
Combined Computer and Human Inspection. Outliers may be identified
through a combination of computer and human inspection. A human can sort
through the patterns in the list to identify the actual garbage ones (e.g., Miss
Labeled Character). This is much faster than manually searching through the
entire database.
Regressions. Data can be smoothed by fitting the data to a function such as
with regression.

10.1 Data Mining 421

a. Linear Regression. This involves finding the “best” line to fit two vari-
ables so that one variable can be used to predict the other.

b. Multiple Linear Regression. It is an extension of linear regressions, where
more than two variables are involved and the data are fit to a multi-
dimensional surface.

Inconsistent Data

There may be inconsistencies in the data recorded for some transactions. Some
data inconsistencies may be corrected manually using external references.

Data Integration

Data mining often requires data integration, the merging of data from multiple
data stores. There are a number of issues to consider during data integration,
which combines data from multiple sources into a coherent data store. These
sources may include multiple databases, data cubes, or flat files. The issues
in data integration are:

A. Schema Integration. It is referred to as entity identification problem. So
the databases typically have metadata, that is, data about the data.
The metadata can be used to help avoid errors in Schema integration.

B. Redundancy. An attribute may be redundant if it can be derived from
another table. Inconsistencies in attribute or dimension naming can also
cause redundancies in the resulting data set. Some redundancies can be
detected by correlation analysis. The correlation between attributes A
and B can be measured by:

rA,B =
∑

(A − A)(B − B)
(n − 1)σAσB

where n is the number of tuples, A and B are the respective mean values
of A and B, and σ

Careful integration of the data from multiple sources can help reduce and
avoid redundancies and inconsistencies in the resulting data set.

Data Transformation

In data transformation, the data are transformed or consolidated into forms
appropriate for mining. Data transformations can involve the following:

1. Smoothing. Smoothing works to remove the noise from data, such tech-
nique include binning, clustering, and regression.

422 10 Data Mining and Data Warehousing

2. Aggregation. Aggregation operations are applied to the data, this step
is typically used in constructing a data cube for analysis of the data at
multiple granulaires.

3. Generalization. Generalization of the data, where low-level or “primitive”
data are replaced by higher-level concepts through the use of concept
hierarchies.

4. Normalization. Normalization implies that the attribute data are scaled
so as to fall within a small specified range, such as –1.0–1.0 or 0.0–1.0

5. Attribute Construction. In attribute construction, new attributes are con-
structed and added from the given set of attributes to help the mining
process.

Data Reduction

Data reduction technique can be applied to obtain a reduced representation
of the data set that is much smaller in volume. It maintains the integration
of original data that is mining on the reduced data set more efficiently.

There are several types of data reduction, which are given as follows:

1. Data Cube Aggregation. The aggregation operations are applied to the
data in the construction of a data cube.

2. Dimension Reduction. In dimension reduction, the irrelevant, weakly rele-
vant or redundant attributes or dimensions may be detected and removed.

3. Data Compression. In data compression, the encoding mechanisms are
used to reduce the data set size.

4. Numerosity Reduction. In numerosity reduction, the data are replaced or
estimated by alternative, smaller data representations such as parametric
models or nonparametric methods such as clustering, sampling, and use
of histograms.

5. Discretization and Concept Hierarchy Generation. The raw data values
for attributes are replaced by ranges or higher conceptual levels. Concept
hierarchies allow the mining of data at multiple levels of abstraction and
are a powerful tool for data mining.

Data Mining Primitives

A popular misconception about data mining is to expect that data mining sys-
tems can autonomously dig out all of the valuable knowledge that is embedded
in a given large database, without human intervention or guidance. It may
be the first sound appealing to have an autonomous data mining system. A
more realistic scenario is to expect that users can communicate with the data
mining system using a set of data mining primitives designed in order to faci-
litate efficient and fruitful knowledge discovery. Such primitives include the
specification of the portions of the database.

10.1 Data Mining 423

These primitives allow the user to interactively communicate with the data
mining system during discovery in order to examine the findings from different
angles or depths, and direct the mining process. A data mining query language
can be designed to incorporate these primitives, allowing users to flexibly
interact with data mining systems. Data mining query language provides a
foundation on which user-friendly graphical interfaces can be built.

10.1.8 Data Mining Task

Data mining task can be specified in the form of a data mining query, which
is input to the data mining system. A data mining query is defined in terms
of the following primitives.

The Kinds of Knowledge to be Mined

This specifies the data mining function to be performed, such as characteriza-
tion, discrimination, association, classification, clustering or evaluation analy-
sis. In addition to specifying the kind of knowledge to be mined for a given
data mining task, the user can be more specific and provide pattern templates
that all discovered patterns must match. These templates are Meta patterns
(meta rules or meta queries) and can be used to guide the discovery process.

Background Knowledge

User can specify background knowledge or knowledge about the domain to be
mined. This knowledge is useful for guiding the knowledge discovery process
and evaluating the patterns found. There are several kinds of background
knowledge such as concept hierarchies, schema hierarchies, and operation
derived hierarchies.

Concept hierarchy defines a sequence of mapping from a set of low-level
concepts to higher-level, more general concepts. It is useful to allow the data
to be mined with multiple levels of abstraction. It is represented as a set
of nodes organized in a tree, where each node in itself represents a concept
as illustrated in Fig. 10.2. A special node, all, is reserved for root of tree. It
denotes the most generalized value of the given dimension.

A Schema Hierarchy is a total or partial order among attributes in the
database schema. This hierarchy may formally express existing schematic
relationships between attributes. Typically, it specifies a data warehouse
dimension.

An Operation Derived Hierarchy is based on operation specified by users,
experts, or the data mining system. Operation can include the decoding of
information-encoded strings, information, and extraction from complex data
objects and data clustering.

424 10 Data Mining and Data Warehousing

Country

City

All

Canada USA

British Columbia Ontario New Illinois

Location

State

Level 0

Level 2

Level 1

Vancouver Victoria Toronto Ottawa

Level 3

ChicagoBuffaloNewyork

Fig. 10.2. A concept hierarchy for dimension

Interestingness Measures

These functions are used to separate uninteresting patterns from knowledge.
They may be used to guide the mining process or after discovery to evaluate
discovered patterns. Different kinds of knowledge may have different inter-
estingness measures. Some objective measures pattern interestingness, such
objectives are based on the structures of the patterns and the statistic under-
lying them.

– Simplicity. A factor contributing to the interestingness of a pattern is the
pattern overall simplicity for human comprehension. Objective measures
of patterns simplicity can be viewed as function of the pattern structure
defined in terms of pattern size in bits or the number of attributes or
operator appearing in the pattern.

– Certainty. Each discovered pattern should have a measure of certainty
associated with it that assesses the validity or “Trustworthiness” of a
pattern. Certainty measure for association rules of the form “A ⇒ B,”
where A and B are sets of items, is confidence.

– Novelty. Novel patterns are those that attribute new information or
increase performance to the given pattern set. The strategy for detecting
the novelty is to remove redundant patterns if the discovered rule can be
implied by another rule that is already in the knowledge base or in the
derived rule set, and then either rule should be reexamined in order to
remove the potential redundancy.

Presentation and Visualization of Discovered Patterns

This refers to the form in which discovered patterns are to be displayed. User
can choose from different forms for knowledge presentation, such as rules,
tables, charts, graphs, decision trees, and cubes.

10.1 Data Mining 425

Allowing the visualization of discovered patterns can help users with a
different backgrounds to identify patterns of interest and to interact or guide
the system in further discovery. A user should be able to specify the forms of
presentation to be used for displaying the discover patterns. The use of concept
hierarchies plays an important role in aiding the user to visualize the discover
patterns. The mining with concept hierarchies allows the representation to
discover knowledge in high-level concepts, which may be more understandable
to user than rules expressed in terms of primitive data such as functional or
multivalued dependency rules or integrity constants.

10.1.9 Data Mining Query Language

The importance of design of a good data mining query language can also be
seen by observing history of relational database system. Relational database
systems have dominated the database market for decades. The standardiza-
tion of relational query language, which occurred at early stages of relational
database development, is widely credited for success of the relational database
field. Hence having a good query language may help standardize the develop-
ment of platforms for data mining system. Designing a comprehensive data
mining language is challenging because data mining covers wide spectrum of
task, from data characterization to mining association rules, data classifica-
tion, and evaluation analysis.

Designing the data mining query language is specified by the following
primitives:

– The kind of knowledge to be mined.
– The background knowledge to be used in the discovery process.
– The Interestingness measures and threshold or pattern evaluation.

Syntax for Specifying the Kind of Knowledge to be Mined

This statement is used to specify the kind of knowledge to be mined. Its syntax
is defined later for characterization, association, and classification.

Characterization

〈Mine Knowledge Specification〉 ::=minecharacteristics [as〈pattern name〉]
Analyze 〈measure(s)〉
This specifies the characteristic descriptions are to be mined, the analyzed

class is used for characterization, and specific aggregate measures.

Association

〈Mine Knowledge Specification〉 ::= mine association [as 〈pattern name〉]
[Matching 〈metapattern〉]
This specifies the mining patterns of association, the user providing the

option with the matching clause. The Meta patterns can be used to focus

426 10 Data Mining and Data Warehousing

the discovery toward the patterns that match the given Meta patterns, thereby
enforcing additional syntactic constraints for the mining task.

Classification

〈Mine Knowledge Specification〉 ::= mine classification [as 〈pattern name〉]
Analyze 〈classifying attribute or dimension〉
It specifies that the patterns for data classification are to be mined; the

analyze clause specifies that the classification is performed according to the
values of classifying attribute or dimension.

Syntax for Concept Hierarchy Specification

It allows mining of knowledge at multiple levels of abstraction. To accommo-
date a different viewpoint of uses with regard to the data, there may be more
than one concept hierarchy per attribute or dimension. For instance, some
users prefer organizing branch locations by provinces and states, while others
organizing them according to languages used.
Syntax: use hierarchy 〈hierarchy name〉 for 〈attribute or dimension〉

Syntax for Interestingness Measure Specification

The user can help control the number uninteresting patterns returned by the
data mining system by specifying measures of pattern interestingness and their
corresponding threshold. Interestingness measure includes the confidence, sup-
port, noise, and novelty.
Syntax: with [〈interest measure name〉] threshold = 〈threshold value〉

10.1.10 Architecture Issues in Data Mining System

The architecture and design of data mining system is critically important.
Based on the different architecture designs data mining systems can be inte-
grated with a DB/DW (database/data warehouse) system using the following
coupling schemes:

– No coupling . No coupling means that a data mining system will not uti-
lize any function of a DB/DW system. It may fetch data from a particular
source, process data using some data mining algorithms, and then store
the mining results in another file. Moreover, most data have been or will
be stored in DB/DW system. Without any coupling of such systems, a
data mining system will need to use other tools to extract data, mak-
ing it difficult to integrate such a system into an information processing
environment. This represents a poor design.

10.1 Data Mining 427

– Loose coupling . It means the data mining system will use some facilities
of a DB or DW system, fetching data from a data repository managed
by these systems, performing data mining, and then storing the mining
results either in a file or in a designated place in a database. Loose coupling
is better than no coupling since it can fetch any portion of data stored in a
database by using query processing, indexing, and other system facilities.

– Semitight coupling . It means that besides linking a data mining system to
a DB/DW system, efficient implementations of a few essentials data min-
ing primitives can be provided in the DB/DW system. These primitives
can include sorting, indexing, aggregation, histogram analysis, multiway
joint, and precomputation of some essential statistical measures such as
sum, count, max, minimum, and standard deviation.

– Tight coupling . It means that data mining system is smoothing integrators
in to the DB/DW system. The data mining subsystem is treated as one
functional component of an information system. Data mining queries and
functions are optimized based on mining query analysis, data structures,
indexing scheme, and query process methods of DB or DW system.

This approach is highly desirable since it facilitates efficient implementa-
tion of data mining functions, high system performances, and an integrated
information processing environment.

With these analysis data mining system should be coupled with the
DB/DW system. Loose coupling is, though not efficient, is better than no
coupling. Since it makes use of both delta and system facilities of a DB/DW
system. Tight coupling is highly desirable but its implementation is nontrivial
and more research is needed in this area. Semitight coupling is a compromise
between loose and tight coupling. It is important to identify commonly used
data mining primitives and provide efficient implementation of such primitives
in DB/DW system.

10.1.11 Mining Association Rules in Large Databases

Association rule mining finds interesting association or correlation relation-
ships among a large set of data items, with a massive amounts of data contin-
uously being collected and stored, many industries are becoming interested in
mining association rules from their databases.

The discovery of interesting association relationships among huge amounts
of business transaction records can help in many business decision making
process, such as catalog design, cross marketing, and loss-leader analysis.

Basic Concepts

Let j={i1, i2, im} be a set of items, let D, the task-relevant data, be a set of
database transactions where each transaction T is a set of items such that
T⊆J. Each transaction is associated with an identifier called TID. Let A be
a set of items, A transaction T is said to contain A if and only if A⊆T.

428 10 Data Mining and Data Warehousing

An association rule is an implication of the form A⇒B, where A⊂J, B⊂J,
and A ∩ B = φ, so the rule is an implication of the form A⇒B holds in the
transaction set D with support S, where S is percentage of transactions in D
that contain A∪B.

Association Rule Mining is a Two-step Process

1. Find all frequent itemsets. Each of these itemsets will occur at least as
frequently as a predetermined minimum support count.

2. Generate strong association rules from the frequent itemsets. These rules
must satisfy minimum support and minimum confidence, it is the easi-
est process of the two methods. So, the overall performance of mining
association rule is determined by the first step.

The Apriori Algorithm

A. Finding Frequent Itemsets Using Candidate Generation

The Apriori algorithm is an influential algorithm for mining frequent item
sets for Boolean association rules. This algorithm uses prior knowledge of
frequent itemset properties. Apriori employs an iterative approach known as
level-wise search, where k itemsets are used to explore (k+1) itemsets. It also
improves the efficiency of level-wise generation of frequent itemsets, which is
an important property and is called Apriori property and it is used to reduce
the search space.

Improving the Efficiency of Apriori The techniques for improving the effi-
ciency of Apriori is summarized later:

1. Hash-based technique (Hashing itemset counts). This technique can be
used to reduce the size of the candidate k-itemsets, Ck for k>1.

2. Transaction reduction. A transaction that does not contain any frequent
k-itemsets cannot contain any frequent (k+1) itemsets. Therefore such a
transaction can be marked or removed from further consideration to the
subsequent for j-itemsets, where j>k.

3. Partitioning. A partitioning technique that requires just two database
scans to mine the frequent itemsets can be used. It consists of two phases as
shown in Fig. 10.3, in phase one, the algorithm subdivides the transactions
of D into n nonoverlapping partitions. If the minimum support threshold
for transactions in D is min sup then the minimum itemset support count
for a partition is min sup × number of transaction in the partition. For
each partition, all frequent itemset within the partition are found. This
refers to a local frequent itemsets. These itemsets are candidate itemsets
with respect to D.
In phase two, a second scan of D is conducted in which the actual support
of each candidate is assessed to determine the frequent itemsets. Since the

10.1 Data Mining 429

Phase I Phase II

Transactions
in D

Divide D
into n
partitions

Find the
frequent
itemsets
local to
each
partition

Combine
all local
frequent
itemsets to
form
candidate
itemset

Find global
frequent
itemsets
among
candidates
(1 scan)

Frequent
itemsets
in D

Fig. 10.3. Mining by partitioning the data

partition size and the number of partition are each said to partition to fit
a main memory, they read only once in each memory.

4. Sampling. The basic idea of sampling approach is to pick random sample
S of the given data D, and then search for frequent itemsets in S instead
of D. In this way, we trade off some degree of accuracy against efficiency.
A sample size S search for frequent itemsets S can be done in main memory,
so only one scan of transaction is required overall. A sampling approach
is especially beneficial when efficiency is of utmost importance, such as in
computationally intensive application that must be run on a very frequent
basis.

5. Dynamic Itemset Counting. This technique is proposed in which the data-
base is partitioned into blocks marked by start points. In this variation,
new candidate itemset can be added at any start point, unlike in Apri-
ori, in which determines a new candidate itemset only immediately prior
to each complete database scan. It estimates a support of all the item-
sets that have been counted so far, adding new candidate itemsets to be
frequent.

B. Mining Frequent Itemsets Without Candidate Generation

In many cases, the Apriori candidate generation and test method reduces the
size of the candidate sets significantly and leads to good performance gain. It
may suffer from two nontrivial cost:

1. It may need to generate a huge number of candidate sets. (It must generate
more than 2100 ≈ 1030 candidates in total).

2. It may need to repeatedly scan the database and check the large sets of
candidate by pattern matching. (This is especially the case for long mining
patterns).

Iceberg Queries The Apriori algorithm can be used to improve the efficiency of
answering iceberg queries. Iceberg queries are commonly used in data mining,
particularly for market basket analysis. This query computes an aggregate

430 10 Data Mining and Data Warehousing

function over an attribute or set of attributes in order to find aggregate values
above specified threshold.

10.1.12 Mining Multilevel Association From Transaction
Databases

This section deals with multilevel and multidimensional association rules of
data mining.

Multilevel Association Rules

For many applications, it is difficult to find strong association among data
items at low or primitive levels of abstraction due to the sparsity of data in
multidimensional space. Strong association discovered at high-concept levels
may represent common sense knowledge. However, what may represent com-
mon sense to one user may seem novel to another. Therefore, data mining
system should provide capabilities to mine association rules at multiple levels
of abstraction and traverse easily among different abstraction spaces.

Approaches to Mining Multilevel Association Rules

The approaches to mining multilevel association rules are summarized later:

1. Using Uniform Minimum Support for all Levels. The same minimum sup-
port threshold is used when mining at each level of abstraction. When a
uniform minimum support threshold is used, the search procedure is sim-
plified. The method is also simple in that users are required to specify only
one minimum support threshold. This approach has some difficulties; it is
unlikely that items at lower levels of abstraction will occur as frequently
as those at higher levels of abstraction. If the minimum support threshold
is set to high, it could miss several meaningful associations occurring at
low abstraction levels. If the threshold is set to low, it may generate many
uninteresting associations occurring at high abstraction levels.

2. Using Reduced Minimum Support at Lower Levels. Each level of abstrac-
tion has its own minimum support threshold. The lower the abstraction
level, the smaller the corresponding threshold. For mining multiple level
associations with reduced support, there are numbers of alternative search
strategies:

– Level by level independent. This is a full breadth search, where no
background knowledge of frequent itemsets is used for prunting.

– Level cross-filtering by single item. An item at the ith level is examined
if and only if parent node at the (i − 1)th level is frequent.

– Level cross-filtering by k-itemset. A k-itemset at the ithlevel is exam-
ined if and only if its corresponding parent k-itemsets at the (i− 1)th

level is frequent.

10.1 Data Mining 431

Multidimensional Association Rules

For example, consider a Samsung Electronics database; we may discover the
Boolean association rule, “IBM desktop computer ⇒ Samsung color printer,”
which can be written as:

Buys (X, “IBM Desktop computer”) ⇒ Buys (X, “Samsung Color printer”)
where X is a variable representing customers who purchased items in

Samsung Electronics transactions. Following the terminology used in mul-
tidimensional databases, we refer to each distinct predicate in a rule as a
dimension. Hence, we can refer to rule as a single-dimensional or intradimen-
sional association rule since it contains a single distinct predicate (e.g., buys)
with multiple occurrences (i.e., the predicate occurs more than once within
the rule). Techniques for mining multidimensional association rules can be
categorized according to three basic approaches regarding the treatment of
quantitative attributes.

In the first approach, quantitative attributes are discretized using pre-
defined concept hierarchies. This discretization occurs prior to mining. A
concept hierarchy for income may be used to replace the original numeric
values of this attribute by ranges, such as “0–20 K,” “21–30 K,” “31–40 K,”
and so on. The discretization is static here and it can be predetermined. The
discretized numeric attributes, with their range values, can be treated as cat-
egorical attributes. This is referred as Mining Multidimensional Association
rules using static discretization of quantitative attributes.

In the second approach, quantitative attributes are discretized into “bins”
based on the distribution of the data. These bins may be further combined
during the mining process. The discretization process is dynamic and estab-
lished so as to satisfy some mining criteria, such as maximizing the confi-
dence of the rules mined. This strategy treats the numeric attribute values
as quantities rather than as predefined ranges or categories, association rules
mined from this approach are also referred to as Quantitative Association
Rules.

In the third approach, quantitative attributes are discretized so as to cap-
ture the semantic meaning of such interval data. This dynamic discretization
procedure considers the distance between data points. Hence, such quantita-
tive association rules are also referred to as Distance-Based Association rules.

Mining Quantitative Association Rules

Quantitative association rules are multidimensional association rules in which
the numeric attributes are dynamically discretized during the mining process
so as to satisfy some mining criteria, such as maximizing the confidence or
compactness of the rules mined. The quantitative association rules are focused
by the two quantitative attributes on the left side of the rule and one cate-
gorical attribute on the right side of the rule.

432 10 Data Mining and Data Warehousing

Binning. The grids in the ranges of Quantitative attributes are partitioned
into intervals. These intervals are dynamic in that they may later be further
combined during mining process. This partitioning process is referred to as
Binning and the intervals are referred as bins. The three common binning
strategies are:

1. Equiwidth Binning, where the interval size of each bin is the same.
2. Equidepth Binning, where each bin has approximately the same number

of tuples assigned to it.
3. Homogeneity-based Binning, where bin size is determined so that the tup-

les in each bin are uniformly distributed.

From Association Mining to Correlation Analysis. Most of the association
rule-mining algorithm employs a support-confidence framework. In spite of
using minimum support and confidence thresholds to help weed out or exclude
the exploration of uninteresting rules, many rules that are not interesting to
the user may still be produced. Even the strong association rules can be
uninteresting and misleading, and then discuss additional measures based on
statistical independence and correlation analysis.

Strong Rules are not Necessarily Interesting. In data mining, whether a rule
is interesting or not can be judged subjectively or objectively. Ultimately, only
the user can judge if a given rule is interesting or not, and this judgments,
being subjective, may differ from one user to another. However, objective
interestingness measures, based on the statistics behind the data, can be used
as one step toward the goal of weeding out uninteresting rules from presenta-
tion to the user.

From Association Analysis to Correlation Analysis. Association rules mined
using a support and support-confidence frameworks are useful for many appli-
cations. However, the support-confidence framework can be misleading that
is it may identify a rule A ⇒ B as interesting when, in fact, the occurrence of
A does not imply the occurrence of B.

The occurrence of itemset A is independent of the occurrence of itemset
B if P(A∪B) = P(A)P(B); otherwise itemsets A and B are dependent and
correlated as events. This definition can be easily extended to more item-
sets. The correlation between the occurrence of A and B can be measured by
computing,

corrA,B =
P (A ∪ B)
P (A)P (B)

If the resulting value of the equation is less than 1, then the occurrence of
A is negatively correlated with the occurrence of B. If the resulting value is
greater than 1, then A and B are positively correlated, meaning the occurrence
of the other. If the resulting value is equal to 1, then A and B are independent
and there is no correlation between them.

10.1 Data Mining 433

Constraint-Based Association Mining. For a given set of task-relevant data,
the data mining process may uncover thousands of rules, many of which are
uninteresting to the user. In constraint-based mining, mining is performed
under the guidance of various kinds of constraints provided by the user. These
constraints include the following:

– Knowledge type constraints. These specify the type knowledge to be
mined, such as association.

– Data Constraints. These specify the set of task-relevant data.
– Dimension/level Constraints. These specify the dimension of the data, or

levels of the concept hierarchies, to be used.
– Interestingness Constraints.These specify thresholds on statistical mea-

sures of rule interestingness, such as support and confidence.

10.1.13 Rule Constraints

These specify the form of rules to be mined. Such constraints may be expressed
as metarules (rule templates), as the maximum or minimum number of pred-
icates that can occur in the rule antecedent or consequent, or as relationships
among attributes, attribute values, and/or aggregates. The use of rule con-
straint is to focus the mining task. This form of constraint-based mining allows
the user to specify the rules to be mined according to their intention, thereby
making the data mining process more effective.

Metarules-guided Mining of Association Rules

Metarules allow users to specify the syntactic form of rules that they are
interested in mining. It can be used as constraints to help improve the
efficiency of the mining process. It may be based on the analyst’s experi-
ence, expectations, or intuition regarding the data, or automatically generated
based on the database scheme.

Mining Guided by Additional Rule Constraints

Rule constraints specifying set/subset relationships, constant intuition of vari-
ables, and aggregate functions can be specified by the user. These may be
used together with, or as an alternative to, metarules guided mining. Rule
constraints can be classified into five categories with respect to frequent item-
sets mining, namely as antimonotone, monotone, succinct, convertible, and
inconvertible.

– If an itemsets does not satisfy this rule constraint, none of its supersets can
satisfy the constraint. If rule constraint obeys this property, it is called
antimonotone. Prunting by antimonotone constraints can be applied at
each iteration of Apriori style algorithms to help improve the efficiency of
the overall mining process.

434 10 Data Mining and Data Warehousing

– If itemsets satisfies this rule constraint, so do all of its supersets. If a rule
constraint obeys this property, it is called monotone.

– In this category, we can enumerate all and only those sets that are guaran-
teed to satisfy the constraint. If a rule is succinct we can directly generate
precisely the sets that satisfy it, even before support counting begins. It
avoids the substantial overhead of the generation and test paradigm.

– Some constraints belong to none of the earlier three categories. However, if
the items in the itemsets are arranged in a particular order, the constraint
may become monotone or antimonotone with regard to a frequent itemsets
mining process, these constraints are called as convertible constraints.

For example average price is not more than 100, aside from “avg(s) ≤ v,”
and avg(s) ≥ v,” there are many other convertible constraints, such as “vari-
ance(s) ≥ v,” “standard deviation(s) ≥ v”

– For example, “sum (G) θ v,” where θ ∈{≤, ≥} and each element in G could
be of any real value, which is not convertible and this is called inconvertible
constraints. Although there still exist some tough constraints that are not
convertible. So the SQL aggregate belongs to one of the four categories to
which efficient constraint mining methods can be applied.

10.1.14 Classification and Prediction

Databases are rich with hidden information that can be used for making
intelligent business decisions. Classification and prediction are two forms of
data analysis that can be used to extract models describing important data
classes or predict future data trends. Whereas classification predicts categor-
ical labels, prediction models continuous-valued functions.

Data Classification

It is a two-step process and in the first step, a model is built by describing
a predetermined set of data classes or concepts. The model is constructed by
analyzing database tuples described by attributes. Each tuple is assumed to
belong to a predefined class, as determined by one of the attributes, called the
class-label attribute. The data tuples analyzed to build the model collectively
form the training data set. The individual tuples making up the training set
are referred to as training samples and are randomly selected from the same
population. Since the class label of each training sample is provided, this step
is also known as supervised learning.

In the second step, the model is used for classification. First, the predictive
accuracy of the model is estimated. The hold-out method is a simple technique
for estimating classifier accuracy that uses a test set of class-labeled samples.
These samples are randomly selected and are independent of the training
samples as shown in Fig. 10.4. The accuracy of a model on a given test set is

10.1 Data Mining 435

Name Age Income Credit_rating

Sandy Jones

Bill Lee

Courtney Fox

Susan Lake

………..

< = 30

< = 30

31 to 40

> 40

…….

Low

Low

High

Medium

…….

Fair

Excellent

Excellent

Fair

……..

Classification
Algorithm

Training Data

Classification
Rules

If age = “31…..40”

And income = high

Then

Credit_rating = Excellent

Fig. 10.4. Training data are analyzed by a classification algorithm

the percentage of test set samples that are correctly classified by the model.
For each test sample, the known class label is compared with the learned
model’s class prediction for that sample.

Prediction

It can be viewed as the construction and use of a model to assess the class of an
unlabeled sample, or to assess the value or value ranges of an attribute that a
given sample is likely to have. In this view, classification and regression are the
two major types of prediction problems where classification is used to predict
discrete or nominal values, while regression is used to predict continuous or
ordered values.

Preparing the Data for Classification and Prediction

The following steps are applied to the data for improving the accuracy, effi-
ciency, and scalability of the classification or prediction process.
Data Cleaning This refers to the preprocessing of data in order to remove or
reduce noise and the treatment of missing values. Although most classification
algorithms have some mechanisms for handling noisy or missing data, this step
can help reduce confusion during learning.
Relevance Analysis Many of the attributes in the data may be irrelevant to
the classification or prediction task. For example, data recording the day of the
week on which a bank loan application was filed is unlikely to be relevant to the
success of the application. Furthermore, other attributes may be redundant.
Hence, relevance analysis may be performed on the data with the aim of
removing any irrelevant or redundant attributes from the learning process. In
machine process, this step is known as feature selection.

436 10 Data Mining and Data Warehousing

Data Transformation The data can be generalized to higher-level concepts.
Concept hierarchies may be used for this purpose. This is particularly useful
for continuous-valued attributes. The data may also be normalized, particu-
larly when neural networks or methods involving distance measurements are
used in the learning step. Normalization involves scaling all values for a given
attribute so that they fall within a small-specified range, such as −1.0–1.0
or 0.0–1.0.

10.1.15 Comparison of Classification Methods

Classification and prediction methods can be compared and evaluated accord-
ing to the following criteria:

– Predictive Accuracy. This refers to the ability of the model to correctly
predict the class label of new or previously unseen data.

– Speed. This refers to the computation costs involved in generating and
using the model.

– Robustness. This refers to the ability of the model to make correct pre-
dictions given noisy data or data with missing values.

– Scalability. This refers to the ability to construct the model efficiently
given large amounts of data.

– Interpretability. This refers to the level of understanding and insight that
is provided by the model.

Classification by Decision Tree Induction

A decision tree is a flow-chart-like tree structure, where each internal node
denotes a test on an attribute, each branch represents an outcome of the test,
and leaf nodes represent classes or class distributions. The topmost node is
the root node.

In order to classify an unknown sample, the attribute values of the sample
are tested against the decision tree. A path is traced from the root to a leaf
node that holds the class prediction for that sample. Decision trees can easily
be converted to classification rules.

The basic algorithm for decision-tree induction is a greedy algorithm that
constructs decision trees in a top-down recursive divide and conquer manner.
The basic strategy is as follows:

1. The tree starts as a single node representing the training samples.
2. If the samples are all of the same class, then the node becomes a leaf and

is labeled with that class.
3. Otherwise, the algorithm uses an entropy-based measure known as infor-

mation gain as a heuristic for selecting the attribute that will best separate
the samples into individual classes.

10.1 Data Mining 437

4. This attribute becomes the “test” or “decision” attribute at the node. All
attributes used in this algorithm are categorized into discrete valued. So,
continuous-valued attributes must be discretized.

5. A branch is created for each known value of the test attribute, and the
samples are partitioned.

6. The algorithm uses the same process recursively to form a decision tree
for the samples at each partition. Once an attribute has occurred at a
node, it need not be considered in any of the node’s descendents.

7. The recursive partitioning stops only when any one of the following con-
ditions is true:
(a) All samples for a given node belong to the same class.
(b) There are no remaining attributes on which the samples may be fur-

ther partitioned.
(c) There are no samples for the branch test-attribute = ai. in this case,

a leaf is created with the majority class in samples.

Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies
in the training data due to noise or outliers. Tree-pruning methods address
this problem of over fitting the data. Such methods typically use statistical
measures to remove the least reliable branches, generally resulting in faster
classification and an improvement in the ability of the tree to correctly classify
independent test data.

There are two common approaches to tree pruning. The first approach
is the prepruning approach; a tree is “pruned” by halting its construction
earlier. Upon halting, the node becomes a leaf. The leaf may hold the most
frequent class among the subset samples. If partitioning the samples at a node
would result in a split that falls below a prespecified threshold, then further
partitioning of the given subset is halted. High thresholds would result in over-
simplified trees, while low thresholds could result in very little simplification.

The second approach, postpruning, removes branches from a “fully grown”
tree. A tree node is pruned by removing its branches. The cost complexity
pruning is an example of the postpruning approach. If pruning the node leads
to a greater expected error rate, then the subtree is kept. Otherwise, it is
pruned. Alternatively prepruning and postpruning may be interleaved for a
combined approach. Postpruning requires more computation than prepruning,
yet generally leads to a more reliable tree.

Extracting Classification Rules from Decision Trees

The knowledge represented in decision trees can be extracted and represented
in the form of classification, IF-THEN rules. One rule is created from each
path from the root to a leaf node. Each attribute-value pair along a given
path forms a conjunction in the rule antecedent (“IF” part). The leaf node

438 10 Data Mining and Data Warehousing

holds the class prediction, forming the rule consequent (“THEN” part). The
IF-THEN rules may be easier for humans to understand, particularly if the
given tree is very large.

Scalability and Decision Tree Induction

The efficiency of existing decision tree algorithms, such as ID3 and C4.5, has
been well established for relatively small data sets. Efficiency and Scalability
become issues of concern when these algorithms are applied to the mining
of very large real-world databases. Most decision tree algorithms have the
restriction that the training samples should reside in main memory. In data
mining applications, very large training sets of millions of samples are com-
mon. Hence, this restriction limits the scalability of such algorithms, where
the decision tree construction can become inefficient due to swapping of all
the training samples in and out of main cache memories.

More recent decision tree algorithms that address the scalability issue have
been proposed. Algorithms for the induction of decision trees from very large
training sets include SLIQ and SPRINT, both of which can handle categorical
and continuous-valued attributes. Both algorithms propose presorting tech-
niques on disk-resident data sets that are too large to fit in memory.

Bayesian Classification

Bayesian classifiers are statistical classifiers. They can predict class member-
ship probabilities, that is a given sample belongs to a particular class. Studies
comparing classification algorithms have found a simple Bayesian classifier
known as the native Bayesian classifier to be comparable in performance
with decision tree and neural network classifiers. Bayesian classifiers have also
exhibited high accuracy and speed when applied to large databases.

Bayesian belief networks are graphical models, which unlike native
Bayesian classifiers allow the representation of dependencies among sub-
sets of attributes. Bayesian belief networks can also be used for classification.
Bayesian classification is based on Bayes theorem, described later.

Bayes Theorem

Assume X is a data sample whose class label is unknown and H be some
hypothesis, such that the data sample X belongs to a specified class C. For
classification problems, we want to determine P(H|X), the probability that
the hypothesis H holds for the given observed data sample X. P(H|X) is the
posterior probability, or a posteriori probability, of H conditions on X. In
contrast, P(H) is the prior probability, or a priori probability, of H. P(X),
P(H) and P(X|H) may be estimated from the given data.

P (H|X) =
P (X|H)P (H)

P (X)

10.1 Data Mining 439

Naive Bayesian Classification

The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

– Each data sample is represented by an n-dimensional feature vector,
X = (x1, x2, . . .xn), depicting n measurements made on the sample from
n attributes, respectively, A1,A2,. . .An.

– As P (X) is constant for all classes, only P (X | Ci) P (Ci) needs to
be maximized. If the class prior probabilities, are not known, then it is
commonly assumed that the classes are equally likely, that is P(C1) =
P(C2) = . . . = P(Cn). Therefore maximize P (X | Ci).

Bayesian Belief Networks

This network classifier makes the assumption of class conditional indepen-
dence, that is, given the class label of a sample, the values of the attributes
are conditionally independent of one another, and it simplifies the computa-
tion. When the assumption holds true this network classifier is most accurate
in comparison with all other classifiers. This network specifies joint condi-
tional probability distributions and it is defined by two components. The first
is directed acyclicgraph, where each node represents a random variable and
each arc represents a probabilistic dependence. The second component is defin-
ing a belief network consists of one Conditional Probability Table (CPT). The
CPT for a variable Z specifies the conditional distributions P(Z | Parents (Z)).

Training Bayesian Belief Networks

In the learning or training of this network, a number of scenarios are possible.
In the network, structure may be given in advance inferred from the data. The
network variables may be observable or hidden in all or some of the training
samples. The hidden data are also referred to as missing or incomplete data.

If the network structure is known and the variables are observable, then
the training network is straightforward. It consists of computing the CPT
entries, as is similarly done when computing the probabilities involved in this
network when the network structure is given and some of the variables are
hidden then the method of gradient descent can be used to train this network.

Classification Based on Concepts from Association
Rule Mining (ARC)

Association rule mining is an important and highly active area of data mining
research. Recently, data mining techniques that apply concepts used in asso-
ciation rule mining to the problem of classification have been developed. The
clustered association rules generated by ARCS were applied to classification,
and then accuracy was compared to C4.5.

The first network mines association rules based on clustering and then
employs the rules for classification. In general, ARC is empirically found to

440 10 Data Mining and Data Warehousing

be slightly more accurate than C4.5 when there are outliers in the data. The
accuracy of ARCS is related degree of discretization used. The second method
is referred to as Associative Classification. It mines rules of the form condset
⇒ y, where condset is a set of items and y is a class label. The third method,
Classification by Aggregating Emerging Patterns (CAEP), uses the notation of
itemset support to mine Emerging Patterns (EP), which are used to construct
the classifier. EP is an itemset whose support increases significantly from one
class of data to another. The ratio of two supports is called growth rate of EP.

Other Classification Methods

There are several other classification methods, which are discussed as follows:
K -Nearest Neighbors classifiers. This classifier can also be used for predic-

tion, that is, to return a real-valued prediction for a given unknown sample.
In this case, the classifier returns the average value of the real-valued labels
associated with the k-nearest neighbor of the unknown sample.

Case-Based Reasoning

These classifiers are instance based. The case-based reasoned may employ
background knowledge and problem-solving strategies in order to propose a
feasible combined solution. It include finding a good similarity metric, develop-
ing efficient techniques for indexing training cases, and methods for combining
solutions.

Genetic Algorithm

Genetic algorithms attempt to incorporate ideas of natural evolution. It is
easily parallelizable and has been used for classification as well as optimization
problems. In data mining, they may be used to evaluate the fitness of other
algorithms.

Rough Set Approach

Rough set theory is based on the establishment of equivalence classes within
the given training data. All of the data samples forming an equivalence
class are indiscernible, that is, the samples are identical with respect to the
attributes describing the data. This Rough set can also be used for feature
reduction and relevance analysis, however, algorithms to reduce the compu-
tation intensity have been proposed.

Fuzzy Set Approach

Rule-based Systems for classification have the disadvantage that they involve
sharp cutoffs for continuous attributes, so fuzzy logic is useful for data mining
systems performing classification. It provides the advantage of working at

10.1 Data Mining 441

10K 20K 30K 40K 50K 60K

Borderline
High

Somewhat
Low

1.0

0.5

Income

F

U

Z

Z

Y

M

E

M

B

E

R

S

H

I

P

Fig. 10.5. Fuzzy values for income

a high level of abstraction. For a given new sample, more than one fuzzy rule
may apply. Each applicable rule contributes a vote for membership in the
categories as illustrated with the example of income in Fig. 10.5. Typically,
the truth-values for each predicted category are summed.

10.1.16 Prediction

The prediction of continuous values can be modeled by statistical techniques
of regression. Many problems can be solved by linear regression, and even
more can be tackled by applying transformations to the variables so that a
nonlinear problem can be converted to linear one.

Linear and Multiple Regression. In linear regression, data are modeled
using a straight line. It is a simplest form of regression. Bivariate linear
regression models a random variable, y (response variable), as a linear function
of another random variable, x (predictor variable)

Y = α + βx

where the variance of y is assumed to be constant, and α and β are regression
coefficients.

Multiple Regression

It is an extension of linear regression involving more than one predictor vari-
able. It allows response variable y to be modeled as a linear function of a
multidimensional feature vector

Y = α + β1X1 + β2X2

The method of leastsquares can also be applied here to solve for α, β1, β2.

442 10 Data Mining and Data Warehousing

Nonlinear Regression

Polynomial regression can be modeled by adding polynomial terms to the
basic linear model. By applying transformation to the variables, we convert
the nonlinear model into linear one that can then be solved by method of least
squares.

Other Regression Models

Linear regression is used to model continuous valued functions. It is widely
used, owing largely to its simplicity. Generalized linear model represent the
theoretical foundation on which linear regression can be applied to the mod-
eling of categorical response variables. Common types of generalized linear
models include logistic and poisson regression. Logistic regression models the
probability of some event occurring as a linear function of set of predictor
variables. Count data frequency exhibits a poisson distribution and is com-
monly modeled using poisson regression. Log linear models approximate dis-
crete multidimensional probability distribution. They may be used to estimate
the probability value associated with the data cube cells.

10.1.17 Cluster Analysis

Imagine that we are given a set of data objects for analysis where, unlike in
classification, the class label of each object is not known. Clustering is the
process of grouping the data into classes or clusters so that objects within
a cluster have high similarity in comparison to one another, but are very
dissimilar to objects in other clusters. Dissimilarities are assessed based on
the attribute values describing the objects.

The process of grouping a set of physical or abstract objects into classes of
similar objects is called clustering. A cluster is a collection of data objects that
are similar to one another within the same cluster and are dissimilar to the
objects in other clusters. A cluster of data objects can be treated collectively
as one group in many applications.

Some typical application of clustering are in business, clustering can help
marketers discover distinct groups in their customer bases and characterize
customer groups based on purchasing patterns. In biology, it can be used to
derive plant and animal taxonomies, categorize genes with similar functional-
ity, and gain insight into structures inherent in populations.

As a data mining function, cluster analysis can be used as a stand-alone
tool to gain insight into the distribution of data, to observe the characteristics
of each cluster, and to focus on a particular set of clusters for further analysis.

Data clustering is under vigorous development. Contributing areas of
research include data mining, statistics, machine learning, spatial database
technology, biology, and marketing.

10.1 Data Mining 443

Cluster analysis tools based on k-means, k-medoids, and several other
methods have also been built into many statistical analysis software packages
or systems, such as S-plus, SPSS, and SAS. Clustering is an example for
unsupervised learning.

Requirements of Clustering in Data Mining

Scalability. Many clustering algorithms work well on small data sets containing
fewer than 200 data objects; however, a large database may contain millions
of objects. Clustering on a sample of a given large set may lead to biased
results. Highly scalable clustering algorithms are needed.

Ability to deal with different types of Attributes. Many algorithms are desig-
ned to cluster interval-based (numerical) data. However, applications may
require clustering other types of data, such as binary, categorical (nominal),
and ordinal data, or mixtures of these data types.

Discovery of Clusters with Arbitrary Shape

Many clustering algorithms determine clusters based on Euclidean or Manhat-
tan distance measures. Algorithms based on such distance measures tend to
find spherical clusters with similar size and density. However, a cluster could
be of any shape. It is important to develop algorithms that can detect clusters
of arbitrary shape.

Minimal Requirements for Domain Knowledge to Determine Input
Parameters

Many clustering algorithms require users to input certain parameters in cluster
analysis (such as the number of desired clusters). The clustering results can be
quite sensitive to input parameters. Parameters are often hard to determine,
especially for data sets containing high-dimensional objects. This not only
burdens users, but also makes the quality of clustering difficult to control.

Ability to Deal with Noisy Data

Most real-world databases contain outliers or missing, unknown, or erroneous
data. Some clustering algorithms are sensitive to such data and may lead to
clusters of poor quality.

Insensitivity to the Order of Input Records

Some clustering algorithms are sensitive to the order of input data; for exam-
ple, the same set of data, when presented with different orderings to such
an algorithm, may generate dramatically different clusters. It is important to
develop algorithm that are insensitive to the order of input.

444 10 Data Mining and Data Warehousing

High Dimensionality

A database or a data warehouse can contain several dimensions or attributes.
Many clustering algorithms are good at low-dimensional data, involving only
two or three dimensions. Human eyes are good at judging the quality of clus-
tering for up to three dimensions. It is challenging to cluster data objects
in high-dimensional space, especially considering that such data can be very
sparse and highly skewed.

Types of Data in Cluster Analysis

A data set to be clustered contains n objects, which may represent persons,
houses, documents, countries, and so on. Therefore, we are going to study
the types of data that often occur in cluster analysis and preprocess of them.
Main memory-based clustering algorithms typically operate on either of the
following two data structures.

1. Data matrix (objects-by-variable structure). Data matrix represents
n objects, such as persons, with p variables (also called measurements
or attributes), such as age, height, weight, gender, race, and so on. The
structure is in the form of a relational table, or n-by-p matrix (n objects
× p variables) is shown later in (10.1)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X11 . . . X1f . . . X1p

: : : : :
Xi1 . . . Xif . . . Xip

: : : : :
XN1 . . . XNf . . . XNp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(10.1)

2. Dissimilarity matrix (or object-by-object structure). Dissimilarity matrix
stores a collection of proximities that are available for all pairs of n objects.
It is represented by n-by-n table is shown later in (10.2)

⎡

⎢
⎢
⎢
⎢
⎣

0
d(2,1) 0
d(3,1) d(3,2) 0
: : :
d(n,1) d(n,2) 0

⎤

⎥
⎥
⎥
⎥
⎦

(10.2)

where d (i, j) is the measured difference or dissimilarity between objects
i and j.
The data matrix is often called a one-node matrix, where as the dissimi-
larity matrix is called a one-mode matrix since the rows and columns of
the former represent different entities, while those of the latter represent
the same entity. Many clustering algorithms operate on a dissimilarity
matrix. If the data are presented in the form of a data matrix, it can first
be transformed into dissimilarity matrix before applying such clustering
algorithms.

10.1 Data Mining 445

Computation of Dissimilarity

1. Interval-Scaled Variables. It describes distance measures that are com-
monly used for computing the dissimilarity of objects described by
such variables. These measures include the Euclidean, Manhattan, and
Minkowski distances.
These variables are continuous measurements of a roughly linear scale.
Typical examples include weight, height, latitude and longitude, and
weather temperatures. The measurement unit used can affect the clus-
tering analysis. For example, changing measurement units from meters to
inch for height, or from kilograms to pounds for weight, may lead to a
very different cluster in structure.
To help avoid dependence on the choice of measurement units, the data
should be standardized. The standardizing measurement attempts to give
all variables an equal weight. In the standardizing measurement, one
choice is to convert the original measurements to unit less variable (f):
1. The mean absolute deviation (sf) is calculated by:

sf =
1
n

(∣
∣x1f

− m
f

∣
∣ +

∣
∣x2f

− m
f

∣
∣ + +

∣
∣x

nf
− m

f

∣
∣
)

where X1f Xnf are n measurements of f, and mf is the mean
value of f.

m
f

=
1
n

(
x1f

+ x2f
+ + x

nf

)

2. The standardized measurement or z score is calculated by:

z
if

=
x

if−m
f

s
f

The interval-scaled variables are typically computed based on distance
between each pair of objects. The most popular distance measure is
Euclidean distance, which is defined by:

d (i, j) =
√∣

∣x
i1 − x

j1

∣
∣2 +

∣
∣x

i2 − x
j2

∣
∣2 + +

∣
∣x

ip
− x

jp

∣
∣2

where i = (Xi1,Xi2,Xip) and j = (Xj1,Xj2,Xjp) are two
p-dimensional objects

2. Binary Variable. A binary variable has only two states: 0 or 1 where 0
means the variable is absent, and 1 means the variable is present. Given
the variable smoker describing a patient, for instance, 1 indicates that the
patient smokes, while 0 indicates the patient does not. Treating binary
variables as if they are interval scaled can lead to misleading clustering
results. Therefore, these methods specific to binary data are necessarily
for computing dissimilarities.

446 10 Data Mining and Data Warehousing

The binary variable is symmetric if both of its states are equally valuable
and carry the same weight; that is, there is no preference on which outcome
should be coded as 0 or 1. Similarity based on symmetric binary variables
is called invariant similarity in that the result does not change when some
or all of the binary variables are coded differently.
A binary variable is asymmetric if the outcomes of the states are not
equally important, such as the positive and negative outcomes of a disease
test. It is usually the rarest one by 1(HIV positive) and other by 0 (HIV
negative).

3. Nominal Variables. A nominal variable is a generalization of the binary
variables in that it can take one more than two states. Dissimilarity
between two objects i and j can be computed using simple matching app-
roach,

d (i, j) =
p − m

p

where m is the number of matches, p is the total number of variables.
Nominal variables can be encoded by asymmetric binary variables by crea-
ting a new binary variable for each of the M nominal state. For an object
with a given state value, the binary variable representing that state is set
to 1, while the remaining binary variables are set to 0.

4. Ordinal Variables. A discrete ordinal variable resembles a nominal vari-
able, except that the M states of the ordinal value are ordered in a mean-
ingful sequence. It is very useful for registering subjective assessments of
qualities that cannot be measured objectively. For example, professional
ranks are often enumerated in a sequential order, such as assistant, asso-
ciate, and full.
A continuous ordinal variable looks like a set of continuous data of an
unknown scale that is the relative ordering of the values is essential but
not their actual magnitude. The treatment of ordinal variable is quite simi-
lar to that of interval-scaled variables when computing the dissimilarity
between objects.

5. Ratio-Scaled Variables. A ratio-scaled variable makes a positive measure-
ment on a nonlinear scale such as exponential scale by:
AeBTor Ae−BT,
where A and B are positive constants. Typical examples include the
growth of a bacteria population, or the decay of radioactive element.
There are three methods to handle the ratio scaled variable for computing
the dissimilarity between the objects:

– Treat ratio-scaled variables like interval scaled variables. This is not
usually a good choice since it is likely that scale may be distorted.

– Apply logarithmic transformation to a ratio-scaled variable f having
value xif for object i by using the formula yif = log(xif).

– Treat xif as continuous ordinal data and treat the ranks as interval-
valued.

10.1 Data Mining 447

Major Clustering Methods

There exist a large number of clustering algorithms in the literature. The
choice of clustering algorithm depends both on the type of data available
and on the particular purpose and application. In general, major clustering
methods can be classified as follows

1. Partitioning methods. Given a database of n objects and k the number
of cluster to form a partitioning algorithm organizes the objects into k
partitions (k ≤ n), where each partition represents a cluster. The clusters
are formed to optimize an objective-partitioning criterion, often called a
similarity function, such as distance, so that the objects within a cluster
are “similar,” whereas the objects of different clusters are “dissimilar” in
terms of database attributes

Algorithm

The K-means algorithm for partitioning based on the mean value of the
objects in the cluster

Input: The number of clusters k and a database containing n-objects.
Output: A set of k clusters that minimizes a squared error criterion.

Method:
1. Arbitrarily choose k objects as the initial cluster centers.
2. Repeat.
3. Assign/Reassign each object to the cluster to which the object is the

most similar based on the mean value of the objects in the cluster.
4. Update the cluster means value (Calculate the mean value of each

cluster).
5. Until no change.

The k means algorithm takes the input parameter k and partitions the set
of n objects into k clusters, so that the resulting intercluster similarity is
high but the intercluster similarity is low. Cluster similarity is measured in
regard to the mean value of the objects in a cluster, which can be viewed
as a cluster center of gravity. Typically, the squared error is defined as:

E =
k∑

i=1

∑

pεCi

|p − m
i
|2

where E is the sum of squared error for all objects in the database, p is
point in space representing in a given object, and mi is mean of cluster Ci.
The k-means method is not suitable for discovering with nonconvex shape
or clusters of very different size. Moreover, it is sensitive to noise and
outlier data points since a small number of such data can substantially
influence the mean value.

448 10 Data Mining and Data Warehousing

2. Partitioning Around Medoids (PAM). It is the one of the first k-medoids
algorithms introduced. It attempts to determine k partition for n objects.
After an initial random selection of k-medoids the algorithm repeatedly
tries to make a better choice of medoids.

Algorithm: k-Medoids algorithms for partitioning based on
method or central objects.

Input: The number of clusters k and a database containing n objects.
Output: In a set of k cluster that minimize the sum of the dissimilarities

of all the objects to the nearest medoids.
Methods

1. Arbitrarily choose k objects as the initial medoids.
2. Repeat.
3. Assign each remaining object to the cluster to the nearest medoids.
4. Randomly select the nonmedoid object, Orandom.

5. Complete the total cost S, of swapping Oj with Orandom.
6. If S < 0 then swap Oj with Orandom to form the new set of k-medoids.
7. Until no change.

The set of best objects for each cluster in a single iteration forms the
medoids for the next iteration. For large values of n and k, such compu-
tation becomes very costly. The k medoids method is more robust than
the k means in the presence of noise and outliers because the medoids is
less influenced by outliers or other extreme values than a mean. However
it is processing is more costly than the k means method. Both methods
require the user to specify k, the number of clusters.

3. Partitioning Methods in Large Database. A typical k medoids-partitioning
algorithm like PAM works effectively for small data set, but does not scale
well for large data sets. To deal with large data sets, a sampling-based
method called Clustering LARge Application (CLARA) can be used.
The effectiveness of CLARA depends on sample size to notice that PAM
searches for the best k-medoids among given data set, whereas CLARA
searches for the best k-medoids among the selected sample of the data set.
A k-medoids type algorithm called Clustering Large Application based
upon Randomized Search (CLARANS) was proposed that combines the
sampling technique with PAM.
However unlike, CLARA, CLARANS does not confine itself to any sample
at any given time. While CLARA has fixed sample at each stage of search,
CLARANS draws sample with some randomness in each step of search,
it has been experimentally shown to be more effective than PAM and
CLARA. It can be used to find the most “Natural” number of clusters
using a silhouette coefficient – a property of an object that specifies how
much the object truly belongs to the cluster.

4. Hierarchical Methods. A hierarchical clustering method works on the
grouping data objects into a tree of clusters. This method can be further

10.1 Data Mining 449

classified into agglomerative and divisive hierarchical clustering, depen-
ding on whether the hierarchical decomposition is formed in a bottom-up
or top-down fashion. The quality of this method suffers from its inability
to perform adjustment once a merge or split decision has been executed.

Agglomerative Hierarchical Clustering. This bottom-up strategy starts by
placing each object in its own cluster and then merges these atomic clus-
ters into larger clusters, until all of the objects are in a single cluster or
until certain termination conditions are satisfied. Most hierarchical clus-
tering methods belong to this category. They differ only in their definition
of intercluster similarity.

Divisive Hierarchical Clustering. This top-down strategy does the reverse
of agglomerative hierarchical clustering by starting with all objects in one
cluster. It subdivides the cluster into smaller pieces, until each object
forms a cluster on its own or until it satisfies certain termination con-
ditions, such as a desired number of clusters is obtained or the distance
between the two closest clusters is above a certain threshold distance.

5. CURE: Clustering Using Representatives. Most clustering algorithms
either favor clusters with spherical shape and similar sizes, or are fragile
in the presence of outliers. CURE overcomes this problem by using more
robust spherical shapes and similar sizes with respect to their outliers.
To handle large databases, CURE employs a combination of random sam-
pling and partitioning, a random sample is first partitioned, and each
partition is partially clustered. The partial clusters are then clustered in
a second pass to yield the desired clusters. The following steps outline the
spirit of the CURE algorithm:
1. Draw a random sample, S, of the original objects.
2. Partition sample S into a set of partitions.
3. Partially cluster each partition.
4. Eliminate outliers by random sampling. If a cluster grows too slowly,

remove it.
5. Cluster the partial clusters. The representative points falling in each

newly formed cluster are “shrinked” or moved toward the cluster cen-
ter by a user specified fraction, or shrinking factor, α. These points
then represent and capture the shape of the cluster.

6. Mark the data with the corresponding cluster labels.

10.1.18 Mining Complex Types of Data

An increasing important task in data mining is to mine complex types of data,
including complex objects, spatial data, multimedia data, and worldwide data.
To further, develop the essential data mining techniques (such as Characteri-
zation, Association) and how to develop new ones to cope with complex types
of data and perform fruitful knowledge mining in complex information repo-
sitories.

450 10 Data Mining and Data Warehousing

Multidimensional Analysis and Descriptive Mining
of Complex Data Objects

To introduce data mining and multidimensional data analysis for complex
objects, this examines how to perform generalization on complex structured
objects and construct object cubes for OLAP and mining in object databases.
This system organizes a large set of complex data objects into classes, which
are in turn organize into class/subclass hierarchies. Each object in a class
is associated with an object identifier, a set of attributes that may contain
sophisticated data structures, set or list value data, class composition hierar-
chies, multimedia data, and a set of methods that specify the computational
routines or rules associated with the object class.

Generalization of Structured Data

An important feature of object relational and object oriented database are
their capability of storing, accessing, and modeling complex structured valued
data, such as set valued and list valued data.

A set valued attribute may be of homogeneous or heterogeneous type.
Typically, this can be generalized by generalization of each value in the set into
its corresponding higher level concepts and derivation of the general behavior
of the set, such as number of elements in the types or value ranges in the set
or weighted average for numerical data.

A list valued or sequence valued attribute can be generalized in a manner
similar to that for set valued attributes except that the order of the elements
in the sequence should be observed in the generalization. Each value in the
list can be generalized into its corresponding higher-level concepts.

Generalization of Object Identifiers and Class/Subclass Hierarchies

Objects in an object oriented databases are organized into classes, which in
turn are organized into class/subclass hierarchies. The generalization of an
object can be performed by referring to its associated hierarchy. The object
identifier is generalized to the identifier of the lowest subclass to which the
object belongs. The identifier of the subclass can be generalized into higher-
level class/subclass identifier by climbing up the class/subclass hierarchy. This
method is usually defined by a computational procedure with a set of deduc-
tion rules; it is impossible to perform generalization on the method itself.

Construction and Mining of Object Cubes

Consider that a generalization of base data mining process can be view as
application of a sequence of class-based generalization operators on different
attributes. Generalization can continue until the resulting class contains a
small number of generalized objects that can be summarized as a concise
generalized rule in high-level terms. For efficient implementation, the general-
ization of multidimensional attributes of a complex objects can be performed

10.1 Data Mining 451

by examining each attribute, generalizing each attribute to simple valued data
and constructing multidimensional data cube called an object cube.

Mining Spatial Databases

Spatial data mining refers to the extraction of knowledge, spatial relationship,
or other interesting patterns not explicitly stored in spatial databases. It can
be used for understanding spatial data, discovering spatial relationship and
relationship between spatial and nonspatial data, constructing spatial know-
ledge bases, reorganizing spatial data spaces, and optimizing spatial queries.

A crucial challenge to spatial data mining is the exploration of efficient
spatial data mining techniques due to the huge amount of spatial data the
complexity of spatial data types, and spatial access methods. Spatial data
mining allows the extension of traditional spatial analysis method by plac-
ing emphasis on efficiency, scalability, co-operation with database systems,
improved interaction with the user, and discovery of new types of knowledge.

Spatial Association Analysis

A Spatial association rule is of the form A⇒ B [s%, c%], where A and B are
sets of spatial or nonspatial predicates, s% is the support of the rule, and c%
is the confidence of the rule.

An interesting mining optimization method called progressive refinement
can be adapted in spatial association analysis. This method first mines large
data sets roughly using a fast algorithm and then improves the qualities of
mining in a pruned data sets using a more expensive algorithm, an important
requirement for the rough mining algorithm applied in the early stage superset
coverage property that is it preserve all of the potentials answers. For mining
spatial association related to the spatial predicate, we can first collect the
candidate that pass the minimum of threshold by:

– Applying certain rough spatial evolution algorithm
– Evaluating the relax spatial predicate

Mining Multimedia Databases

The multimedia database system stores and manages a large collection multi-
media objects, such as audio data, image data, video data sequence data, and
hypertext data, which contains text, text markups and linkages. Multimedia
database systems are increasingly common owing to the popular use of audio–
video equipment, CD-ROMs, and the Internet.

Classification and Prediction Analysis of Multimedia Data

Classification and prediction modeling have been used for mining multime-
dia data, especially in scientific research, such as astronomy, seismology, and

452 10 Data Mining and Data Warehousing

geoscientific research. Decision tree classification is an essential data mining
method in reported image data mining applications.

Data preprocessing is important when mining such image data and can
include data cleaning, data focusing, and feature extraction. The image data
are often in huge volumes and may require substantial processing power, para-
llel, and distributed processing. Image data mining classification and cluster-
ing are closely linked to image analysis and scientific data mining, and thus
many image analysis techniques and scientific data analysis methods can be
applied to image data mining.

Mining Associations in Multimedia Data

Association rules involving multimedia objects can be mined in image and
video databases. At least three categories should be observed as follows:

1. Association between image content and nonimage content features. A rule
like “If at least 50% of the upper part of the picture is blue, it is likely to
represent sky” belongs to this category since it links the image content to
the keyword sky.

2. Association among image contents that are not related to spatial relation-
ships. A rule like “If a picture contains two blue squares, it is likely to
contain one red circle as well” belongs to this category since the associa-
tions are regarding image contents.

3. Association among image contents related to spatial relationships. A rule
like “If a red triangle is in between two yellow squares, it is likely there is
a big oval shaped underneath” belongs to this category since it associates
objects in the image with spatial relationships.

A progressive resolution refinement approach is essential in mining the multi-
media data. We should first mine frequently occurring patterns at a relatively
rough resolution level, and then focus only on those that have passed the min-
imum threshold when mining at a finer resolution level. The efficiency will be
improved because the overall data mining cost is reduced without loss of the
quality.

Secondly, the picture containing multiple recurrent objects is an important
feature in image analysis, recurrence of the same objects should not be ignored
in association analysis. Therefore, the definition of multimedia association
and its measurements, such as support and confidence, should be adjusted
accordingly.

Thirdly, there exists an important spatial relationship among multimedia
objects, such as beneath, above, between, nearby, left-of, and so on. These fea-
tures are very useful for exploring object associations and correlations. Thus,
spatial data mining methods and properties of topological spatial relationships
become quite important for multimedia mining.

10.1 Data Mining 453

Mining the World Wide Web

The Web contains a rich and dynamic collection of hyperlink information, Web
page access, and usage information, providing rich sources for data mining.
The Web also poses great challenges for effective resource and knowledge
discovery that are as follows:

– The Web seems to be huge for effective data mining
– The complexity of pages is greater than that of traditional text document

collection
– The Web is a highly dynamic information source
– The Web serves a broad diversity of user communities
– Only a small portion of the information on the Web is truly relevant or

useful

Web Usage Mining

Besides mining Web contents and Web linkage structures, another important
task for Web mining is Web usage mining, which mines Web log records to dis-
cover user access patterns of Web pages. Analyzing and exploring regularities
in Weblog records can identify potential customers for electronic commerce,
enhance the quality and delivery of Internet information services to the end
user, and improve Web server system performance. In developing techniques
for Web usage mining, we should consider three important factors.

First, it is important to know about the application and it depends on
what and how much valid and reliable knowledge can be discovered from the
large raw log data. Often, raw Weblog data need to be cleaned, condensed, and
transformed in order to retrieve and analyze significant and useful information.

Second, with the available URL, time, IP address, and Web page content
information, a multidimensional view can be constructed on the Weblog data-
base, and multidimensional OLAP analysis can be performed to find the top
N users, top N accessed Web pages, most frequently accessed time periods,
and so on, which will help discover potential customers, users, markets, and
others.

Third, data mining can be performed on Weblog records to find associ-
ation patterns, sequential patterns, and trends of Web accessing. For Web
access pattern mining, it is often necessary to take further measures to obtain
additional information of user traversal to facilitate detailed Weblog analysis.
Such additional information may include user-browsing sequences of the Web
pages in the Web server buffer, and so on.

10.1.19 Applications and Trends in Data Mining

Data mining is a young discipline with wide and diverse applications, there is
still a nontrivial gap between general principles of data mining and domain
specific for effective data mining tools for particular applications.

454 10 Data Mining and Data Warehousing

Data Mining for Biomedical and DNA Data Analysis

Biomedical research, ranges from the development of pharmaceutical and
advances in cancer therapies, identification, and study of the human genome
by discovering large-scale sequencing patterns. A gene is usually comprised of
hundreds of individual nucleotides arranged in a particular order. There are
almost an unlimited number of ways that the nucleotides can be ordered and
sequenced to form distinct genes. Data Mining has become a powerful tool
and contributes substantially to DNA analysis in the following ways.

Semantic Integration of Heterogeneous, Distributed Genome
Databases

Due to the highly distributed, uncontrolled generation and use of a wide vari-
ety of DNA data, the semantic integration of such heterogeneous and widely
distributed genome databases becomes an important task for systematic and
coordinated analysis of DNA databases. Data cleaning and data integration
methods will help the integration of genetic data and the construction of data
warehouses for genetic data analysis.

Similarity Search and Comparison Among DNA Sequences

One of the most important search problems in genetic analysis is similarity
search and comparison among DNA sequences. The techniques needed here is
quite different from that used for time series data: For example, data transfor-
mation methods such as scaling, normalization, and window stitching, which
are popularly used in the analysis of time series data, are ineffective for genetic
data.

Association Analysis: Identification of Co-occurring Gene
Sequences

Association analysis methods can be used to help determine the kinds of genes
that are likely to co-occur in target samples. Such analysis would facilitate the
discovery of groups of genes and the study of interactions and relationships
between them.

Path Analysis: Linking Genes to Different Stages of Disease Development

While a group of genes may contribute to a disease process, different genes
may become active at different stages of the disease, therefore achieving more
effective treatment of the disease. Such path analysis is expected to play an
important role in genetic studies.

10.1 Data Mining 455

Visualization Tools and Genetic Data Analysis

Complex structures and sequencing patterns of genes are most effectively pre-
sented in graphs, trees, cuboids, and chains by various kinds of visualiza-
tion tools. Visualization therefore plays an important role in biomedical data
mining.

Data Mining for Financial Data Analysis

Financial data collected in the banking and financial industry is often rela-
tively complete, reliable, and of high quality, which facilitates systematic data
analysis and data mining. Here we present a few typical cases:

Loan payment prediction and customer credit policy analysis

Loan payment prediction and customer credit analysis are critical to the busi-
ness of a bank. Many factors can strongly or weakly influence loan payment
performance and customer credit rating. Data mining methods, such as fea-
ture selection and attribute relevance ranking, may help identify important
factors and eliminate irrelevant ones.

Classification and clustering of customers for customer group identification
targeted marketing

Customers with similar behaviors regarding banking and loan payments may
be grouped together by multidimensional clustering techniques. Effective clus-
tering and collaborative filtering methods can help identify customer groups,
associate a new customer with an appropriate customer group, and facilitate
targeted marketing.

Data Mining for the Retail Industry

The retail industry is a major application area for data mining since it col-
lects huge amounts of data on sales, customer shopping history, goods trans-
portation, consumption and service records, and so on. The quantity of data
collected continues to expand rapidly, especially due to the increasing ease,
availability, and popularity of business conducted on the Web; or e-commerce.

Retail data mining can help identify customer buying behaviors, discover
customer shopping patterns and trend, improve the quality of customer ser-
vice, achieve better customer retention and satisfaction, enhance goods con-
sumption ratios, design more effective goods transportation and distribution
policies, and reduce the cost of business.

A few examples of data mining in the retail industry are:

– Design and construction of data warehouses based on the benefits of data
mining

456 10 Data Mining and Data Warehousing

– Multidimensional analysis of sales, customers, products, time, and religion
– Analysis of the effectiveness of sales campaigns
– Customer retention – analysis of customer loyalty
– Purchase recommendation and cross reference of items

Data Mining for the Telecommunication Industry

The telecommunication industry has quickly evolved from offering local and
long distance telephone services for providing many other comprehensive com-
munication services including voice, fax, pager, cellular phone, images, e-mail,
computer and Web data transmission, and other data traffic. The integration
of telecommunication, computer network, Internet, and numerous other means
of communication and computing is also underway.

The following are a few scenarios where data mining may improve telecom-
munication services.

Multidimensional analysis of telecommunication data

Telecommunication data are intrinsically multidimensional with dimensions
such as calling time, duration, and location of caller, location of called, and
type of call. The multidimensional analysis of such data can be used to identify
and compare the data traffic, system workload, resource usage, user group
behavior, profit, and so on.

Multidimensional association and sequential pattern analysis

The discovery of association and sequential patterns in multidimensional
analysis can be used to promote telecommunication services. The calling
records may be grouped by customer in the following form:

(Customer id, residence, office, time, date, service 1, service 2, . . .)

A sequential pattern can help to promote the sales of specific long distance
and cellular phone combinations, and improve the availability of particular
services in the region.

Use of visualization tools in telecommunication data analysis

Tools for OLAP, linkage, association, clustering, and outlier visualization have
been shown to be very useful for telecommunication and data analysis.

10.1.20 How to Choose a Data Mining System

To choose a data mining system that is appropriate for your task, it is
important to have a multiple dimensional view of data mining systems. In
general, data mining systems should be assessed based on the following multi-
ple dimensional features.

10.1 Data Mining 457

Data Types

Most data mining systems that are available on the market handle formatted,
record-based, relational-like data with numerical, categorical, and symbolic
attributes. The data could be in the form of ASCII text, relational database
data, or data warehouse data. It is important to check what exact format(s)
each system we are considering can handle. Moreover, many data mining
companies offer customized data mining solutions that incorporate essential
data mining functions or methodologies.

System Issues

A given data mining system may run on only one or several operating systems.
The most popular operating systems that host data mining software are UNIX
and Microsoft Windows (including 95, 98, 2000, and NT). There are also data
mining systems that run on OS/2, Macintosh, and Linux.

Data Mining Functions and Methodologies

Data mining functions form the core of a data mining system. Some data
mining systems provide only one data mining function, such as classifica-
tion. Others may support multiple data mining functions, such as description,
discovery-driven OLAP analysis, association, classification, prediction, clus-
tering, outlier analysis, similarly search, sequential paten analysis, and visual
data mining.

Coupling Data Mining with Database and/or Data Warehouse Systems

A data mining system should be coupled with a database and/or data ware-
house system, where the coupled components are seamlessly integrated into a
uniform information-processing environment.

Ideally, a data mining systems should be tightly coupled with a database
system in the sense that the data mining and data retrieval processes are
integrated by optimizing data mining queries deep into the iterative mining
and retrieval process. Tight coupling of data mining with OLAP-based data
warehouse systems is also desirable so that data mining and OLAP operations
can be integrated to provide OLAP mining features.

Scalability. Data mining has two kinds of scalability issues: row (or database
size) and column (or dimension) scalability. A data mining system is consid-
ered row scalable if, when the number of rows is enlarged ten times, it takes no
more than ten times to execute the same data mining queries. A data mining
system is considered column scalable than row scalable.

Visualization tools. “A picture is worth a thousand word” – this is very
true in data mining. Visualization in data mining can be categorized into
data visualization, mining result visualization, mining process visualizations,

458 10 Data Mining and Data Warehousing

and visual data mining. The variety, quality, and flexibility of visualization
tools may strongly influence the usability, interpretability, and attractiveness
of a data mining system.

10.1.21 Theoretical Foundations of Data Mining

Research on the theoretical foundations of data mining has yet to mature.
A solid and systematic theoretical foundation is important because it can help
provide a coherent framework for the development, evaluation, and practice
of data mining technology. There are a number of theories for the basis of
data mining, such as the following.

Data Reduction. In this theory, the basis of data mining is to reduce the
data representation. Data reduction trades accuracy for speed in response to
the need to obtain quick approximate answers to queries on very large data-
bases. Data reduction techniques include singular value decomposition (the
driving element behind principal components analysis), wavelets, regression,
long-linear models, histograms, clustering sampling, and the construction of
index trees.

Data Compression. According to this theory, the basis of data mining is to
discover patterns occurring in the database, such as associations, classification
models, sequential patterns, and so on.

Profitability Theory. This is based on statistical theory. In this theory,
the basis of data mining is to discover joint probability distributions of ran-
dom variables, for example, Bayesian belief networks or hierarchical Bayesian
models.

Microeconomic Views. The microeconomic view considers data mining as
the task of finding patterns that are interesting only to the extent that they
can be used in the decision-making process of some enterprise (e.g., regarding
marketing strategies, production plans, etc.). This view is one of the utilities in
which patterns are considered interesting if they can be acted on. Enterprises
are regarded as facing optimization problems where the object is to maxi-
mize the utility or value of a decision. In this theory, data mining becomes a
nonlinear optimization problem.

Inductive Databases. According to this theory, a database scheme consists
of data and patterns that are stored in the database. Data mining is therefore
the problem of performing induction on databases, where the task is to query
the data and the theory (i.e., patterns) of the database. This view is popular
among many researchers in database systems.

Is Data Mining a Threat to Privacy and Data Security?

With more information accessible in electronic forms and available on the
Web, and with increasingly powerful data mining tools being developed and

10.1 Data Mining 459

put into use. Since data mining may disclose patterns and various kinds of
knowledge that are difficult to find otherwise, it may pose a threat to privacy
and information security if not done or used properly.

Most consumers do not mind providing companies with personal informa-
tion if they think it will enable the companies to better service their needs.

“Will the data be sold to other companies?”
“Can I find out what is recorded about me?”
“Will the information about me be “anonymized,” or will it be traceable

to me ?”
“How to secure are the data?”
“How accountable is the company who collects or stores my data, if these

data are stolen or misused?”

This includes the following principles:

Purpose Specification and Use Limitation

The purposes for which personal data are collected should be specified at
the time of collection, and the data collected should not exceed the stated
purpose. Data mining is typically a secondary purpose of the data collection.

Openness

Individuals have the right to know what information is collected about them
who have access to the data, and how the data are being used.

Companies should provide consumers with multiple opt-out choices, allow-
ing consumers to specify limitations on the use of their personal data, such
as (1) the consumer’s personal data are not to be used at all for data mining;
(2) the consumer’s data can be used for data mining, but the identity of each
consumer or any information that may lead to disclosure of a person’s identity
should be removed.

The field of database systems was initially met with some opposition,
as many individuals were concerned about the security risks associated with
large on-line data storage. Many data security-enhancing techniques have been
developed so that, although some “hacker infractions” do occur, people are
generally secure about the safety of their data and now accept the benefits
offered by database management systems. Such data security enhancing tech-
niques can be used to anonymous information and securely protect privacy in
data mining.

Data mining may pose a threat to our privacy and data security. However,
as we have seen, many solutions are being developed to help prevent misuse
of the data collected. In addition, the field of database systems has many data
security enhancing techniques that can be used to guard the security of data
collected for and resulting from data mining.

460 10 Data Mining and Data Warehousing

Trends in Data Mining

The diversity of data, data mining tasks, and data mining approaches poses
many challenging research issues in data mining. The design of data mining
languages, the development of efficient and effective data mining methods and
systems, the construction of interactive and integrated data mining environ-
ments, and the application of data mining techniques to solve large application
problems are important tasks for data mining researchers and data mining
system and application developers.

Application Exploration

Early data mining applications focused mainly on helping businesses gaining
competitive edge. As data mining became more popular, it is increasingly
used for the exploration of applications in other areas, such as biomedicine,
financial analysis, and telecommunications.

Scalable data mining methods. In contrast with traditional data analysis
methods, data mining must be able to handle huge amounts of data efficiently
and, if possible, interactively. Since the amount of data, being collected con-
tinues to increase rapidly, scalable algorithms for individual and integrated
data mining functions become essential.

Integration of data mining with database, data warehouse, and Web data-
base systems. Database systems, data warehouse systems, and the WWW
have become mainstream information processing systems. It is important to
ensure that data mining serves as an essential data analysis component that
can be smoothly integrated into such an information-processing environment.
This will ensure data availability, data mining portability scalability, high
performance, and an integrated information-processing environment for multi-
dimensional data analysis and exploration.

Standardization of data mining language. A standard data mining language
or other standardization efforts will facilitate the systematic development of
data mining solutions, improve interoperability among multiple data mining
systems and functions, and promote the education and use of data mining
systems in industry and society.

Visual data mining. Visual data mining is an effective way to discover know-
ledge from huge amounts of data. The systematic study and development of
visual data mining techniques will facilitate the promotion and use of data
mining as a tool for data analysis.

New methods for mining complex types of data. Mining complex types of data
are an important research frontier in data mining. Although progress has been
made at mining geospatial, multimedia, time-series, sequence, and text data,
there is still a huge gap between the needs for these applications and the
available technology.

10.2 Data Warehousing 461

Web mining. The huge amounts of information available on the Web and the
increasingly important role that the Web plays in today’s society, Web content
mining, Weblog mining, and data mining services on the Internet will become
one of the most important and flourishing subfields in data mining.

Privacy protection and information security in data mining. With the increas-
ingly popular use of data mining tools and telecommunication and computer
networks, an important issue to face in data mining is privacy protection
and information security. Further methods should be developed to ensure pri-
vacy protection and information security while facilitating proper information
access and mining.

10.2 Data Warehousing

A Data Warehouse (DW) is a database that stores information oriented to
satisfy decision-making requests. It is a database with some particular features
concerning the data it contains and its utilization. A very frequent prob-
lem in enterprises is the impossibility for accessing to corporate, complete,
and integrated information of the enterprise that can satisfy decision-making
requests. A paradox occurs: data exists but information cannot be obtained.
In general, a DW is constructed with the goal of storing and providing all
the relevant information that is generated along the different databases of
an enterprise. A data warehouse helps turn data into information. In today’s
business world, data warehouses are increasingly being used to make strategic
business decisions.

10.2.1 Goals of Data Warehousing

Data warehousing technology comprises a set of new concepts and tools which
support the knowledge worker like executive, manager, and analyst with
information material for decision making. The fundamental reason for building
a data warehouse is to improve the quality of information in the organization.
The key issues are the provision of access to a company-wide view of data
whenever it resides. Data coming from internal and external sources, existing
in a variety of forms form traditional structural data to unstructured data like
text files or multimedia is cleaned and integrated into a single repository. A
data warehouse is the consistent store of this data which is made available to
end users in a way they can understand and use in a business context.

The need for data warehousing originated in the mid-to-late 1980s with
the fundamental recognition that information systems must be distinguished
into operational and informational systems. Operational systems support the
day-to-day conduct of the business, and are optimized for fast response time of
predefined transactions, with a focus on update transactions. Operational data
are a current and real-time representation of the business state. In contrast,

462 10 Data Mining and Data Warehousing

informational systems are used to manage and control the business. They
support the analysis of data for decision making about how the enterprise
will operate now and in the future. They are designed mainly for ad hoc,
complex, and mostly read-only queries over data obtained from a variety of
sources. Information data are historical, i.e., they represent a stable view of
the business over a period of time.

Limitations of current technology to bring together information from many
disparate systems hinder the development of informational systems. Data
warehousing technology aims at providing a solution for these problems.

10.2.2 Characteristics of Data in Data Warehouse

Data in the Data Warehouse is integrated from various, heterogeneous opera-
tional systems like database systems, flat files, etc. Before the integration,
structural and semantic differences have to be reconciled, i.e., data have to be
“homogenized” according to a uniform data model. Furthermore, data values
from operational systems have to be cleaned in order to get correct data
into the data warehouse. Since a data warehouse is used for decision making,
it is important that the data in the warehouse be correct. However, large
volumes of data from multiple sources are involved; there is a high probability
of errors and anomalies in the data. Therefore, tools that help to detect data
anomalies and correct them can have a high payoff. Some examples where
data cleaning becomes necessary are: inconsistent field lengths, inconsistent
descriptions, inconsistent value assignments, missing entries, and violation of
integrity constraints.

The need to access historical data are one of the primary incentives for
adopting the data warehouse approach. Historical data are necessary for busi-
ness trend analysis which can be expressed in terms of understanding the
differences between several views of the real-time data. Maintaining histor-
ical data means that periodical snapshots of the corresponding operational
data are propagated and stored in the warehouse without overriding previ-
ous warehouse states. However, the potential volume of historical data and
the associated storage costs must always be considered in relation to their
business benefits.

Data warehouse contains usually additional data, not explicitly stored in
the operational sources, but derived through some process from operational
data. For example, operational sales data could be stored in several aggrega-
tion levels in the warehouse.

10.2.3 Data Warehouse Architectures

Data warehouses and their architectures vary depending upon the specifics
of an organization’s situation. Three common data warehouse architectures
which are discussed in this section are:

10.2 Data Warehousing 463

1. Basic Data Warehouse Architecture
2. Data Warehouse Architecture with a Staging Area
3. Data Warehouse Architecture with a Staging Area and Data Marts

Basic Data Warehouse Architecture

The basic data warehouse architecture is shown in Fig. 10.1. End users directly
access data derived from several source systems through data warehouse.

The data obtained from the warehouse can be used for analysis, reporting,
and mining information as illustrated in the Fig. 10.6. The data sources include
operational system and flat files. Here a flat file is one in which the fields of
records are simple atomic values.

Data Warehouse Architecture with a Staging Area

The architecture of data warehouse with staging area is shown in Fig. 10.7.
In this architecture, the operational data must be cleaned and processed

before putting into the warehouse. This can be done programmatically
although most data warehouses use a staging instead. A staging area simpli-
fies building summaries and general warehouse management.

Data Warehouse Architecture with Staging Area and Data Marts

The data warehouse architecture with staging area and data marts is illus-
trated in Fig. 10.8. The basic difference between this architecture and the
architecture discussed earlier is the inclusion of data mart. It is necessary
to customize the data warehouse’s architecture for different groups within

Fig. 10.6. Basic data warehouse architecture

464 10 Data Mining and Data Warehousing

Fig. 10.7. Data warehouse architecture with staging area

Fig. 10.8. Data warehouse architecture with staging area and data marts

an organization. This can be done by adding data marts, which are systems
designed for a particular line of business. Figure 10.8 illustrates an exam-
ple where purchasing, sales, and inventories are separated. In this example,
a financial analyst might want to analyze historical data for purchases
and sales.

10.2 Data Warehousing 465

Data Mart

Data marts are complete logical subsets of the complete data warehouse. Data
marts should be consistent in their data representation in order to assure
Data Warehouse robustness. A data mart is a set of tables that focus on a
single task. This may be for a department, such as production or maintenance
department, or a single task such as handling customer products.

Metadata

In general metadata are defined as “data about data” or “data describing the
meaning of data.” In data warehousing, there are various types of metadata.
For example information about the operational sources, the structure and
semantics of the data ware house data, the tasks performed during the con-
struction, maintenance and access of a data ware house, etc. A data warehouse
without adequate metadata are like “a filing cabinet stuffed with papers, but
without any folders or labels.” The quality of metadata and the resulting qual-
ity of information gained using a data warehouse solution are tightly linked.
In a data warehouse metadata are categorized into Business and Technical
metadata. Business metadata describes what is in the ware house, its mean-
ing in business terms. The business metadata lies above technical metadata,
adding some more details to the extracted material. This type of metadata
are important as it facilitates business users and increases the accessibility. In
contrast, technical metadata describes the data elements as they exist in the
ware house. This type of metadata are used for data modeling initially, and
once the warehouse is erected this metadata are frequently used by warehouse
administrator and software tools.

Implementing a concrete Data Warehouse architecture is a complex task
comprising of two major phases. In the configuration phase, a conceptual view
of the ware house is first specified according to user requirements which are
often termed as data warehouse design. Then the involved data sources and
the way data will be extracted and loaded into the warehouse is determined.
Finally, decisions about persistent storage of the warehouse using database
technology and the various ways data will be accessed during analysis are
made.

10.2.4 Data Warehouse Design

Data warehouse design methods consider the read-oriented character of ware-
house data and enables the efficient query processing over huge amounts of
data. The core requirements and principles that guide the design of data ware-
houses are summarized later:

Data Warehouses Should be Organized Around Subject Areas

Subject areas are similar to the concept of functional areas like sales, project
management, employees, etc. Each subject areas are associated with a con-
ceptual schema and these can be represented using one or more entities in

466 10 Data Mining and Data Warehousing

the ER data model or by one or more object classes in the object oriented
data model. For example: In company database the relations like employee,
sales, and project management are represented as entities in ER data model
or object classes in object oriented data model.

Data Warehouses Should have some Integration Capability

A common database should be designed and used so that all the different
individual representations can be mapped to it. This is particularly useful if
the warehouse is implemented as multidatabase or federated database.

Data should be Nonvolatile and Mass Loaded

Data in Data Warehouses should be nonvolatile. For this data extraction from
current database to DW requires that a decision should be made whether to
extract the data using standard relational database techniques at the row
or column level or specialized techniques for mass extraction. Data cleaning
techniques are required to maintain data quality, similarly data migration,
data scrubbing, and data auditing. Refresh techniques propagate updates on
the source data to base data and derived data in the DW. The decision of
when and how to refresh is made by the DW administrator and depends on
user needs (e.g., OLAP needs) and existing traffic to the DW.

Data Tends to Exist at Multiple Levels of Dimensions

Data can be defined not only by time frame but also by geographic region;
type of product manufactured or sold type of store and so on. The complete
size of the databases is a major problem in the design and implementation
of data warehouses, especially for certain queries and updates and sequential
backups. This decides whether to select relational databases or multidimen-
sional database for the implementation of a data warehouse.

Data Warehouse Should be Flexible Enough to Meet Changing
Requirements Rapidly

Insertion, updating, and retrieval of data should be very efficient and flexible
to achieve good and efficient decision.

Data Warehouse Should have a Capability for Rewriting History,
that is, Allowing for “what-if” Analysis

Data Warehouse should allow the administrator to update historical data tem-
porarily for the purpose of “what-if” analysis. Once the analysis is completed,
the data must be correctly rolled back. This assumes that the data must be
at the proper dimension in the first place.

10.2 Data Warehousing 467

Good DW User Interface Should be Selected

The interface should be very user friendly for efficient use of DW. The leading
choices of today are SQL.

Data Should be Either Centralized or Distributed Physically

The DW should have the capability to handle distributed data over a network.
This requirement will become more critical as the use of DWs grows and
sources of data expand.

10.2.5 Classification of Data Warehouse Design

The data warehouse design can be broadly classified into two categories
(1) Logical design and (2) Physical design.

Logical Design

The logical design is more conceptual and abstract than physical design.
In the logical design, the emphasis is on the logical relationship among the
objects. One technique that can be used to model organization’s logical infor-
mation requirements is entity-relationship modeling. Entity-relationship mod-
eling involves identifying the things of importance (entities), the properties
of these things (attributes), and how they are related to one another (rela-
tionships). The process of logical design involves arranging data into a series
of logical relationships called entities and attributes. An entity represents a
chunk of information. In relational databases, an entity often maps to table.
An attribute is a component of an entity that helps define the uniqueness of
the entity. In relational databases, an attribute maps to a column. Whereas
entity-relationship diagramming has traditionally been associated with highly
normalized models such as OLTP applications, the technique is still useful for
data warehouse design in the form of dimensional modeling.

In dimensional modeling, instead of seeking to discover atomic units of
information and all the relationship between them, the focus is on identify-
ing which information belongs to a central fact table and which information
belongs to its associated dimension tables. In a nutshell, the logical design
should result in (a) a set of entities and attributes corresponding to fact ta-
bles and dimension tables and (b) a model of operational data from the source
into subject-oriented information in target data warehouse schema. Some of
the logical warehouse design tools from Oracle are Oracle Warehouse Builder,
Oracle Designer, which is a general purpose modeling tool.

Data Warehousing Schemas

A schema is a collection of database objects, including tables, views, indexes,
and synonyms. The arrangement of schema objects in the schema models

468 10 Data Mining and Data Warehousing

Fig. 10.9. Star schema

designed for data ware house can be done in a variety of ways. Most data
warehouses use a dimensional model.

Star Schema

The star schema is the simplest data warehouse schema. It is called a star
schema because the diagram resembles a star, with points radiating from the
center. The center of the star consists of one or more fact tables and the points
of the star are the dimension tables as illustrated in Fig. 10.9.

A star schema optimizes performance by keeping queries simple and pro-
viding fast response time. All the information about each level is stored in one
row. The most natural way to model a data warehouse is star schema, only
one join establishes the relationship between the fact table and any one of the
dimension tables. Another schema that is sometimes useful is the snowflake
schema, which is a star schema with normalized dimensions in a tree structure.

Data Warehouse Objects

Fact and dimension tables are the two types of objects commonly used in the
dimensional data warehouse schemas. Fact tables are the large tables in ware-
house schema that store business measurements. Fact tables typically contain
facts and foreign keys to the dimension tables. Fact tables represent data,
usually numeric and additive that can be analyzed and examined. Dimension
tables, also known as lookup or reference tables; contain the relatively sta-
tic data in the warehouse. Dimension tables stores the information that is
normally used to contain queries. Dimension tables are usually textual and
descriptive.

Fact Tables A fact table typically has two types of columns: those that contain
numeric facts and those that are foreign keys to dimension tables. A fact table
contains either detail-level facts or facts that have been aggregated. Fact tables
that contain aggregated facts are often called summary tables. A fact table
usually contains facts with the same level of aggregation. Though most facts

10.2 Data Warehousing 469

are additive, they can also be semiadditive or nonadditive. Additive facts
can be aggregated by simple arithmetical addition. Semiadditive facts can be
aggregated along some of the dimensions and not along others.
Dimension Tables A dimension is a structure, often composed of one or more
hierarchies, that categorizes data. Dimensional attributes help to describe the
dimensional value. They are commonly descriptive, textual values. Several
distinct dimensions, combined with facts, enable one to answer business ques-
tions. Dimensional data are typically collected at the lowest level of detail
and then aggregated into higher level totals that are more useful for analysts.
These natural rollups or aggregations within a dimension table are called hi-
erarchies.
Hierarchies Hierarchies are logical structures that use ordered levels as a
means of organizing data. A hierarchy can be used to define data aggregation.
For example, in a time dimension, a hierarchy might aggregate data from the
month level to the quarter level to the year level. A hierarchy can also be used
to define a navigational drill path and to establish a family structure. Within
a hierarchy, each level is logically connected to the levels above and below it.
Data values at lower levels aggregate into the data values at higher levels. A
dimension can be composed of more than one hierarchy. Hierarchies impose a
family structure on dimension values. For a particular level value, a value at
the next higher level is its parent, and values at the next lower level are its
children. These familial relationships enable analysts to access data quickly.

Physical Design

During the physical design process the data gathered during the logical de-
sign phase is converted into a description of the physical database structure.
Physical design decisions are mainly driven by query performance and data-
base maintenance aspects. Figure 10.10 offers a graphical way of looking at
the different ways of logical and physical designs.

Physical Design Structures

Some of the physical design structures that are going to be discussed in this
section include (a) Table spaces (b) Tables and Partitioned Tables (c) Views
(d) Integrity Constraints, and (e) Dimensions

Table Spaces

A table space consists of one or more data files, which are physical structures
within the operating system. A data file is associated with only one table
space. From the design perspective, table spaces are containers for physi-
cal design structures. Table spaces need to be separated by differences. For
example, tables should be separated from their indexes and small tables should
be separated from large tables. Table spaces should also represent logical
business units.

470 10 Data Mining and Data Warehousing

Fig. 10.10. Logical and physical design of data warehouse design

Tables and Partitioned Tables

Tables are the basic unit of data storage. They are the container for the
expected amount of raw data in the data warehouse. Using partitioned tables
instead of nonpartitioned ones addresses the key problem of supporting very
large data volumes by allowing you to decompose them into smaller and more
manageable pieces. The main design criterion for partitioning is manageability.

Data Segment Compression

Disk space can be saved by compressing heap-organized tables. A typical
type of heap-organized table that one should consider for data segment com-
pression is partitioned tables. Data segment compression can also speed up
query execution. There is, however, a cost in CPU overhead. Data segment
compression should be used with highly redundant data, such as tables with
many foreign keys.

Views

A view is a tailored presentation of the data contained in one or more tables
or other views. A view takes the output of a query and treats it as a table.
Views do not require any space in the database.

Integrity Constraints

Integrity constraints are used to enforce business rules associated with the
database and to prevent having invalid information in the tables. Integrity

10.2 Data Warehousing 471

constraints in data warehousing differ from constraints in OLTP environ-
ments. In OLTP environments, they primarily prevent the insertion of invalid
data into a record, which is not a big problem in data warehousing environ-
ments because accuracy has already been guaranteed. In data warehousing
environments, constraints are only used for query rewrite. NOT NULL con-
straints are particularly common in data warehouses. Under some specific
circumstances, constraints need space in the database. These constraints are
in the form of the underlying unique index.

Indexes and Partitioned Indexes

Indexes are optional structures associated with tables or clusters. In addi-
tion to the classical B-tree indexes, bitmap indexes are very common in data
warehousing environments. Bitmap indexes are optimized index structures for
set-oriented operations. Additionally, they are necessary for some optimized
data access methods such as star transformations.

Dimensions

A dimension is a schema object that defines hierarchical relationships between
columns or column sets. A hierarchical relationship is a functional dependency
from one level of a hierarchy to the next one. A dimension is a container of
logical relationships and does not require any space in the database. A typical
dimension is city, state (or province), region, and country.

10.2.6 The User Interface

In this section, we provide a brief introduction to contemporary interfaces for
data warehouses. A variety of tools are available to query and analyze data
stored in data warehouses. These tools can be classified as follows:

(a) Traditional query and reporting tools
(b) On-line analytical processing, MOLAP, and ROLAP tools
(c) Data-mining tools
(d) Data-visualization tools

Traditional Query and Reporting Tools

Traditional query and reporting tools include spreadsheets, personal computer
databases, and report writers and generators

OLAP Tools

On-Line Analytical Processing is the use of a set of graphical tools that
provides users with multidimensional views of their data and allows them
to analyze the data using simple windowing techniques. The term on-line

472 10 Data Mining and Data Warehousing

analytical processing is intended to contrast with the more traditional term
on-line transaction processing. OLAP is a general term for several categories
of data warehouse and data mart access tools. Relational OLAP (ROLAP)
tools use variations of SQL and view the database as a traditional relational
database, in either a star schema or other normalized or denormalized set of
tables. ROLAP tools access the data warehouse or data mart directly. Multidi-
mensional OLAP (MOLAP) loads data into an intermediate structure usually
a three or higher dimensional array.

Data-Mining Tools

Data mining is knowledge discovery using a sophisticated blend of techniques
from traditional statistics, artificial intelligence, and computer graphics. As
the amount of data in data warehouses is growing exponentially, the users
require automated techniques provided by data-mining tools to mine the
knowledge in these data.

Data Visualization Tools

Data-visualization is the representation of data in graphical and multimedia
formats for human analysis. Benefits of data visualization include the ability
to better observe trends and patterns, and to identify correlations and clusters.

Summary

Data mining is a form of knowledge discovery that uses a sophisticated blend
of techniques from traditional statistics, artificial intelligence, and computer
graphics. In this chapter, a brief introduction to data mining is given which
includes need for data mining, data mining functionalities, and classification
of data mining systems. This chapter also discusses major issues in data min-
ing, data mining primitives, and data mining tasks, and gives syntax for data
mining query language. The data mining architecture, data mining association
rules for large database, and multilevel database for transaction are discussed
in depth in this chapter. This chapter also discusses the concepts of classifi-
cation and prediction, which are two forms of data analysis that can be used
to extract models describing important data classes or predict future data
trends. The different types of classification methods are explain in detail.

The process of grouping a set of physical or abstract objects into classes
of similar objects is called clustering. A cluster is a collection of data objects
that are similar to one another within the same cluster and are dissimilar
to the objects in other clusters. This chapter gives brief idea about cluster

Review Questions 473

analysis. This chapter also gives an idea of how to choose data mining system,
applications and trends in data mining.

The purpose of data warehouse is to consolidate and integrate data from a
variety of sources, and to format those data in a context for making accurate
business decisions. A data warehouse is an integrated and consistent store
of subject-oriented data obtained from a variety of sources and formatted
into a meaningful context to support decision making in an organization.
This chapter discusses the goals of data warehousing, characteristics of data
in a data warehouse, and different types of data warehouse architectures.
Two types of data warehouse design like logical and physical data warehouse
design are discussed in depth. Finally, the user interface which gives a brief
introduction to contemporary interfaces for data warehouses is discussed.

Review Questions

10.1. What is the need for data mining?

Data mining is the process of discovering interesting knowledge from large
amounts of data stored in databases, data warehouses, or other information
repositories. The volume of data in an organization increases day by day, in
order to extract useful information from huge volume of data, data mining is
necessary.

10.2. What are the functionalities of data mining system?

Functionalities of data mining are used to specify the kind of patterns to be
found in data mining tasks. It can be classified into two categories such as
Descriptive and Predictive. Descriptive mining task characterize the general
properties of data in the database, whereas predictive mining task perform
inference on the current data in order to make predictions.

10.3. Explain the “binning” method of data cleaning?

Binning method smoothen the sorted data value by consulting its “neighbor-
hood” that is, the values around it. The sorted values are distributed into
number of “buckets,” or bins:

– Smoothing by bin means each value in a bin is replace by the mean value
of the bin.

– Smoothing by bin medians means each bin value replaces bin median.

10.4. What are the performance issues in data mining?

The performance issues in data mining include efficiency, scalability, and
parallelization of data mining algorithms.

474 10 Data Mining and Data Warehousing

10.5. Explain the concept of classification and prediction with respect to data
mining?

Databases are rich with hidden information that can be used for making
intelligent business decisions. Classification and prediction are two forms of
data analysis that can be used to extract models describing important data
classes or predict future data trends. Whereas classification predicts categor-
ical labels, prediction models continuous-valued functions.

10.6. What are the factors to be considered in designing data mining query
language?

Designing a comprehensive data mining language is challenging because data
mining covers wide spectrum of task, from data characterization to mining
association rules, data classification and evaluation analysis.

Designing the data mining query language is specified by the following
primitives:

– The kind of knowledge to be mined.
– The background knowledge to be used in the discovery process.
– The Interestingness measures and threshold or pattern evaluation.

10.7. Mention the challenges involved in mining spatial data?

A crucial challenge to spatial data mining is the exploration of efficient spa-
tial data mining techniques due to the huge amount of spatial data and the
complexity of spatial data types and spatial access methods. Spatial data
mining allows the extension of traditional spatial analysis method by placing
emphasis on efficiency, scalability, and co-operation with database systems,
improved interaction with the user and discovery of new types of knowledge.

10.8. What is the need for Data Warehousing in an organization?

The need for Data Warehousing in most organizations is:

– A business requires an integrated, company-wide view of high-quality in-
formation.

– The information systems department must separate informational from
operational systems in order to dramatically improve performance in man-
aging company data.

10.9. Define the term “data mart”?

A data mart is a data warehouse that is limited in scope, whose data are
obtained by selecting and summarizing data from a data warehouse or from
separate extract, transform, and load processes from source data systems.

Review Questions 475

10.10. Distinguish between data warehouse and data mart?

Data Warehouse Data Mart

Data warehouses are application Data Mart are specific to Decision
independent Support System application
Data warehouses are centralized Data Mart are decentralized by

user area
The data in data warehouse are In data mart some data are historical,
historical, detailed, and summarized detailed, and summarized
The data in data warehouse is lightly The data in data mart is highly
denormalized denormalized
The Data warehouse is flexible, The data mart is restrictive,
data-oriented, and long life. project-oriented, and short life.

10.11. List common tasks performed during data cleaning.

The common tasks performed during data cleaning are:

– Decoding data to make them understandable for data warehousing appli-
cations.

– Adding time stamps to distinguish values for the same attribute over time.
– Generating primary keys for each row of a table.
– Matching and merging separate extractions into one table or file and

matching data to go into the same row of the generated table.
– Logging errors detected, fixing those errors, and reprocessing corrected

data without creating duplicate entries.
– Finding missing data to complete the batch of data necessary for subse-

quent loading.

10.12. Mention the factors that one should consider in the design of Data
Warehouse?

The factors that one should consider in the design of Data Warehouse are
summarized later:

– Data Warehouses should be organized around subject areas
– Data Warehouses should have some integration capability
– Data should be nonvolatile and mass loaded
– Data tends to exist at multiple levels of dimensions
– Data Warehouse should be flexible enough to meet changing requirements

rapidly
– Good DW user interface should be selected
– Data should be either centralized or distributed physically

11

Objected-Oriented and Object Relational
DBMS

Learning Objectives. This chapter provides an overview of object oriented and
object relational database management system. The need for object oriented con-
cepts in DBMS, OODBMS, and ORDBMS are discussed elaborately in this chapter.
The evaluation criteria and targets with respect to OODBMS and comparison of
OODBMS with ORDBMS are also dealt with. After completing this chapter the
reader should be familiar with the following concepts:

– Object oriented programming language
– Availability of OO Technology and applications
– Overview of OODBMS Technology
– Evaluation Criteria for OODBMS
– Evaluation targets
– Overview of ORDBMS
– ORDBMS Design
– Aggregation and Composition in UML
– Comparison of ORDBMS and OODBMS

11.1 Objected oriented DBMS

11.1.1 Introduction

This chapter provides a simple view about the Object-Oriented Database
Management Systems (OODBMS). Each OODBMS will be architected based
on a set of assumptions which make it more or less suited for particular
application domains and usage patterns. Thus, a single OODBMS will not
be the best in all situations. This chapter will also be used as an introduction
to object-oriented database technology.

An evaluation of OODBMS must include analysis in four areas:

– Functionality
– Usability
– Platform
– Performance

S. Sumathi: Objected-Oriented and Object Relational DBMS, Studies in Computational

Intelligence (SCI) 47, 477–558 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

478 11 Objected-Oriented and Object Relational DBMS

Functionality

An analysis of functional capabilities is performed to determine if a given
OODBMS provides sufficient capabilities to meet the current and future needs
of a given development effort. Functional capabilities include basic database
functionality, such as concurrency control and recovery as well as object-
oriented database features, such as inheritance and versioning. Each evalu-
ation will have to identify and weight a set of functional requirements to be
met by the candidate OODBMS. Weighting is an important consideration
since application workarounds may be possible for missing functionality.

Usability

Usability deals with the application development and maintenance process. Is-
sues include development tools and the ease with which database applications
can be developed and maintained. How a developer perceives the database
and the management of persistent objects might also be considered under
the category of usability. Other issues to be considered are database admin-
istration, product maturity, and vendor support. Evaluation of usability is
likely to be highly subjective. Perhaps the most easily measurable evalua-
tion criterion is platform. An OODBMS is either available or not on the
application’s target hardware and operating system. Heterogeneous target
environments require that the OODBMS transparently interoperates within
that environment.

Platform

An OODBMS is typically a multiprocessed software system communicating
over a local area network. Platforms upon which database server processes,
client application processes, additional administration processes (e.g., lock
servers), and development tools can be hosted must be considered. Network
requirements should also be evaluated. Performance may represent the most
important evaluation criteria. The University of Wisconsin has performed a
benchmarking of OODBMS, known as the 007 benchmark. A general purpose
benchmark is only effective in predicting the performance of an OODBMS for
an application which closely mirrors the behavior of that benchmark.

Performance

An effective benchmark must consider the number of interactive users, the
rate of database updates and accesses, the size of the databases, the hardware
and network configurations, and the general access patterns of the database
applications. Thus, in order to provide useful information, a benchmark must
be modeled to closely mimic the expected behavior of the application being

11.1 Objected oriented DBMS 479

developed. Providing a fair and substantive evaluation of OODBMS is a dif-
ficult task. Issues regarding accuracy of marketing information and technical
documentation, completeness of implementation, usability of implementation,
performance, and feature interaction (regarding completeness, usability, and
performance) must be considered when performing the evaluation. The objec-
tive of this chapter is to perform the first part of this evaluation process by
performing an extensive analysis based on technical product documentation.
In particular:

– Functional capabilities have been identified by examination of the
product’s technical manuals as supplied by the vendor. Discussions with
technical representatives of the vendor have been used to clarify our
understandings and descriptions of the evaluated products.

– Usability has been derived by analyzing the documentation for the vendor
supplied tools and by reviewing the application programming interface in
order to understand how an application interacts with the database.

– Information regarding platform and heterogeneous operation has been
supplied by the product vendors.

– Performance is not addressed as part of this evaluation.

Benefits of Object Oriented Programming

There are several benefits of adopting OOP. The following three benefits,
although subjective, are considered by many to be major reasons for adopting
OOP:

– Programs reflect reality.
– The model is more stable than functionality.
– Subclassing and virtuals improve the reusability of code.

11.1.2 Object-Oriented Programming Languages (OOPLs)

The following is a list of some popular OOPLs:

– C++ Language System
– C Talk
– Smalltalk
– Smalltalk-80
– Actor
– Enfin
– Prokappa
– Eiffel
– KnowledgePro
– Classic-Ada with Persistence
– Objective-C
– Trellis/Owl

480 11 Objected-Oriented and Object Relational DBMS

– Flavors
– CLOS
– Common Loops

Most OOPLs can trace their origins to Simula. The concepts of Objects
and Classes are employed by most of these languages.

Comparing OOPLs

Different OOPLs are appropriate for different environments. For corporate
environments Smalltalk is better than C++. Smalltalk is a higher level lan-
guage and will be COBOL of the OO world in the future.

Smalltalk, Flavors, and Objective-C allows free access to inherited instance
variables by descendant classes. Other OOPLs, like C++, restrict access
to inherited instance variables. Where access to inherited instance vari-
ables is needed, it should be provided in the form of operations. Only
CLOS permits specific instances of classes to have behavior independent of
their classes.

Objective-C

Objective-C is considered by some researchers to be a cross between C and
Smalltalk. It is possible to precompile Objective-C code to produce standard
C as output. Objective-C incorporates the concept of an object identifier, id,
which is a handle for referring to an object in a message expression. Object-C
is a compiled language, unlike Smalltalk and CLOS.

C++:

C++ is the most popular OOPL. It is an object-oriented extension to C,
developed at AT&T Bell Laboratories. C++ supports the OOP concepts of
objects, classes, inheritance, polymorphism, and parameterized types. The
C++ class concept can be considered as a generalization of the C feature of
a “struct.”

C++ has been evolving since it was released by AT&T as version of C
with classes in 1984. The latest release is version 3.1, and it provides multi-
ple inheritance, type-safe linkages, abstract classes, and a form of exception
handling.

C++ provides an access control mechanism for the operations on objects.
The operations are called member functions. Member functions can have one
of the following three modes of access:

– Public
– Private
– Protected

11.1 Objected oriented DBMS 481

Public member functions are accessible by all clients of the object. Private
member functions are accessible only by other member functions of the class.
Protected member functions are accessible only by other member functions of
class derived from that class.

11.1.3 Availability of OO Technology and Applications

Some of the OO technologies that are being used to develop software appli-
cation products are:

– Case tools based on OOT
– Analysis and design tools, some with OO capabilities
– Knowledge-based systems
– Hypermedia, Hypertext
– GUI front ends
– Object DBMS
– Radial application development environments

In the commercial CASE environments, vendors are employing OOT for
all their products. GUI tools are mostly designed using OO concepts, and
classes of GUI tools are widely available.

Transition to OOT

OOT has the reputation of requiring a learning curve. This is not only due
to the necessity of learning a new language, but also due to the necessity of
unlearning process oriented programming techniques. Because of the differ-
ence between the top–down structured programming and the OO techniques,
the transition from a traditional structured programming environment to the
object oriented environment requires a high investment of time and energy.

Containing Relationships Between Objects

Quite often, objects that contain other objects need to be represented in such
a way that they are logically regarded as a single object. It is important to
provide for containing relationships by which the composite logical object can
refer to the contained objects. Typically, the contained objects are treated as
private objects of enclosing object. This encapsulation might not be appro-
priate if such a tight coupling is not desired.

Modeling Relationships in C++

Interactions between objects can be captured during OOD by appropriate
relationships. At the implementation level, C++ provides the following mech-
anisms for implementing object relationships:

1. Global Objects
2. Function arguments

482 11 Objected-Oriented and Object Relational DBMS

3. Constructors
4. Base classes
5. Templates

Using Relationship Between Objects

Objects interacting in a system make use of the services offered by other
objects. The using relationship can be used to express a subset of such inter-
actions. Booch and Vilot have identified three roles that each object may play
in using relationships:

Actor objects can operate upon other objects, but are never operated upon
by other objects. Such objects make use of services offered by other objects
but do not themselves provide any service to the objects they make use of.

Server objects never operate upon objects, but are operated upon by other
objects.

Agent objects can both operate upon other objects and be operated upon
by other objects.

Relationships Among Classes

Rumbaugh has identified three types of class relationships:

1. Generalization or “kind-of”
2. Aggregation or “part-of”
3. Association, implying some semantic connection.

Booch and Vilot have identified two more types of relationships between
classes

1. Instantiation relationships
2. Metaclass relationships

Booch and Vilot suggest the following rule of thumb for identifying rela-
tionships: “If an abstraction is more than the sum of its component parts,
then using relationships are more appropriate. If an abstraction is a kind of
some other abstraction or if that abstraction is exactly equal to the sum of
its components, then inheritance is a better approach.”

11.1.4 Overview of OODBMS Technology

This section deals with Need, Evolution, Characteristics, and Applications of
Object Oriented Databases Technology.

The Need for Object-Oriented Databases

The increased emphasis on process integration is a driving force for the adop-
tion of object-oriented database systems. For example, the Computer Inte-
grated Manufacturing (CIM) area is focusing heavily on using object-oriented
database technology as the process integration framework. Advanced office

11.1 Objected oriented DBMS 483

automation systems use object-oriented database systems to handle hyperme-
dia data. Hospital patient care tracking systems use object-oriented database
technologies for ease of use. All of these applications are characterized by hav-
ing to manage complex, highly interrelated information, which is strength of
object-oriented database systems.

Clearly, relational database technology has failed to handle the needs
of complex information systems. The problem with relational database sys-
tems is that they require the application developer to force an information
model into tables where relationships between entities are defined by values.
Mary Loomis, the architect of the Versant OODBMS compares relational and
object-oriented databases. “Relational database design is really a process of
trying to figure out how to represent real-world objects within the confines
of tables in such a way that good performance results and preserving data
integrity is possible. Object database design is quite different. For most parts,
object database design is a fundamental part of the overall application design
process. The object classes used by the programming language are the classes
used by the ODBMS. Because their models are consistent, there is no need to
transform the program’s object model to something unique for the database
manager.

An initial area of focus by several object-oriented database vendors has
been the Computer Aided Design (CAD), Computer Aided Manufacturing
(CAM), and Computer Aided Software Engineering (CASE) applications. A
primary characteristic of these applications is the need to manage very com-
plex information efficiently. Other areas where object-oriented database tech-
nology can be applied include factory and office automation. For example, the
manufacture of an aircraft requires the tracking of millions of interdependent
parts that may be assembled in different configurations. Object-oriented data-
base systems hold the promise of putting solutions to these complex problems
within reach of users.

Object-orientation is yet another step in the quest for expressing solutions
to problems in a more natural, easier to understand way. Michael Brodie in
his book On Conceptual Modeling states “the fundamental characteristic of
the new level of system description is that it is closer to the human con-
ceptualization of a problem domain. Descriptions at this level can enhance
communication between system designers, domain experts and, ultimately,
system end-users.”

The study of database history is centered on the problem of data modeling.
“A data model is a collection of mathematically well defined concepts that
help one to consider and express the static and dynamic properties of data
intensive applications.”

A data model consists of:
– Static properties such as objects, attributes and relationships
– Integrity rules over objects and operations
– Dynamic properties such as operations or rules defining new database

states based on applied state changes

484 11 Objected-Oriented and Object Relational DBMS

Object-oriented databases have the ability to model all three of these com-
ponents directly within the database supporting a complete problem/solution
modeling capability. Prior to object-oriented databases, databases were ca-
pable of directly supporting points 1 and 2 above and relied on applications
for defining the dynamic properties of the model. The disadvantage of del-
egating the dynamic properties to applications is that these dynamic prop-
erties could not be applied uniformly in all database usage scenarios since
they were defined outside the database in autonomous applications. Object-
oriented databases provide a unifying paradigm that allows one to integrate
all three aspects of data modeling and to apply them uniformly to all users
of the database.

The Evolution of Object-Oriented Databases

Object-oriented database research and practice dates back to the late 1970s
and had become a significant research area by the early 1980s, with initial com-
mercial product offerings appearing in the late 1980s. Today, there are many
companies marketing commercial object-oriented databases that are second
generation products. The growth in the number of object-oriented database
companies has been remarkable. As both the user and vendor communities
grow there will be a user pull to mature these products to provide robust data
management systems.

OODBMS’s have established themselves in niches such as e-commerce,
engineering product data management, and special purpose databases in
areas such as securities and medicine. The strength of the object model
is in applications where there is an underlying needed to manage complex
relationships among data objects. Today, it is unlikely that OODBMS are a
threat to the stranglehold that relational database vendors have in the market
place. Clearly, there is a partitioning of the market into databases that are
best suited for handling high volume low complexity data and databases that
are suited for high complexity, reasonable volume, with OODBMS filling the
need for the latter.

Object-oriented databases are following a maturation path similar to
relational databases. Figure 11.1 depicts the evolution of object-oriented
database technologies. On the left, we have object-oriented languages that
have been extended to provide simple persistence allowing application objects
to persist between user sessions. Minimal database functionality is provided
in terms of concurrency control, transactions, recovery, etc. At the mid-point,
we have support for many of the common database features mentioned earlier.
Database products at the mid-point are sufficient for developing reasonably
complex data management applications. Finally, database products with
declarative semantics have the ability to greatly reduce development efforts,
as well to enforce uniformity in the application of these semantics. OODBMS
products today are largely in the middle with a few products exhibiting declar-
ative semantics, such as constraints, referential integrity rules, and security

11.1 Objected oriented DBMS 485

Fig. 11.1. The evolution of object-oriented databases

capabilities. In most OODBMS products, most of the database semantics are
defined by programmers using low-level services provided by the database.

The next stage of evolution is more difficult. As one moves to the right
the database does more for the user requiring less effort to develop appli-
cations. An example of this is that current OODBMS provide a large num-
ber of low-level interfaces for the purpose of optimizing database access. The
onus is entirely on the developer for determining how to optimize his appli-
cation using these features. As the OODBMS database technology evolves,
OODBMS will assume a greater part of the burden for optimization allowing
the user to specify high-level declarative guidance on what kinds of optimiza-
tions need to be performed. A general guideline for gauging database matu-
rity is the degree to which functions such as database access optimization,
integrity rules, schema and database migration, archive, backup and recovery
operations can be tailored by the user using high-level declarative commands
to the OODBMS.

Today, most object-oriented database products require the application
developer to write code to handle these functions. Another sign of maturation
of a new technology is the establishment of industry groups to standardize
on different aspects of technology. Today we see a significant interest in the
development of standards for object-oriented databases. For example, the Ob-
ject Management Group (OMG) is a nonprofit industry sponsored association
whose goal is to provide a set of standard interfaces for interoperable software
components. Interfaces are to be defined in areas of communications (Object
Request Broker), object-oriented databases, object-oriented user interfaces,
etc. An OODBMS application programmers interface (API) specification is
currently being developed (by ODMG, Object Database Management Group,
a group of OODBMS vendors) thus allowing portability of applications across
OODBMS.

Another standards body X3H7, a technical committee under X3, has been
formed to define OODBMS standards in areas such as object-models and
object-extensions to SQL. Today, OODBMS vendors are adding more data-
base features to their products to provide the functionality one would expect
from a mature database management system. This evolution moves us to the
mid-point of the evolutionary scale shown in Fig. 11.1.

486 11 Objected-Oriented and Object Relational DBMS

Fig. 11.2. Makeup of an object-oriented database

Characteristics of Object-Oriented Databases

Object-oriented database technology is a combination of object-oriented
programming and database technologies. Figure 11.2 illustrates how these
programming and database concepts have come together to provide what we
now call object-oriented databases.

Perhaps the most significant characteristic of object-oriented database
technology is that it combines object-oriented programming with database
technology to provide an integrated application development system. There
are many advantages to include the definition of operations with the definition
of data. First, the defined operations apply ubiquitously and are not depen-
dent on the particular database application running at the moment. Second,
the data types can be extended to support complex data such as multimedia
by defining new object classes that have operations to support the new kinds
of information. Other strengths of object-oriented modeling are well known.
For example, inheritance allows one to develop solutions to complex problems
incrementally by defining new objects in terms of previously defined objects.

Polymorphism and dynamic binding allows one to define operations for one
object and then to share the specification of the operation with other objects.
These objects can further extend this operation to provide behaviors that are
unique to those objects. Dynamic binding determines at runtime, which of
these operations is actually executed, depending on the class of the object
requested to perform the operation.Polymorphism and dynamic binding are

11.1 Objected oriented DBMS 487

powerful object-oriented features that allow one to compose objects to pro-
vide solutions without having to write code that is specific to each object.
All of these capabilities come together synergistically to provide significant
productivity advantages to database application developers.

A significant difference between object-oriented databases and relational
databases is that object-oriented databases represent relationships explicitly,
supporting both navigational and associative access to information. As the
complexity of interrelationships between information within the database in-
creases, the greater is the advantages of representing relationships explicitly.
Another benefit of using explicit relationships is the improvement in data
access performance over relational value-based relationships.

A unique characteristic of objects is that they have an identity that is inde-
pendent of the state of the object. For example, if one has a car object and we
remodel the car and change its appearance – the engine, the transmission, the
tires so that it looks entirely different, it would still be recognized as the same
object we had originally. Within an object-oriented database, one can always
ask the question, this is the same object we had previously, assuming one
remembers the object’s identity. Object-identity allows objects to be related
as well as shared within a distributed computing network. All of these ad-
vantages point to the application of object-oriented databases to information
management problems that are characterized by the need to manage:

– A large number of different data types
– A large number of relationships between the objects
– Objects with complex behaviors

An application area where this kind of complexity exists includes engi-
neering, manufacturing, simulations, office automation, and large information
systems.

11.1.5 Applications of an OODBMS

The design of an object-oriented data model is the first step in the application
of object-oriented databases to a particular problem area. Developing a data
model includes the following major steps:

– Object identification
– Object state definition
– Object relationships identification
– Object behavior identification
– Object classification

The following is a cursory overview of these steps.
As one begins to define an object-oriented data model, the first step is to

simply observe and record the objects in the solution space. There are many
techniques that aid this process. For example, one can formulate a descrip-
tion of the solution and identify the nouns that are candidates for being the

488 11 Objected-Oriented and Object Relational DBMS

objects in the data model. Next, one identifies the characteristics of these
objects. These characteristics become the object attributes. In a similar man-
ner, examining the logical dependencies among objects identifies different
kinds of association. For example, the parts relationship can be identified by
analyzing the system decomposition into subparts. Next, one begins to enu-
merate the different responses that an object has to different stimuli. Finally,
one classifies objects into an inheritance structure to factor out common char-
acteristics and behaviors. All of these steps are performed iteratively until one
has a complete data model.

A number of textbooks describe different variations of the earlier approach.
In all cases, these methods culminate in a data model consisting of objects,
attributes, relationships, behavior, and a classification structure. The meth-
ods vary in terms of targeted audience, the level of rigor, and the number and
kinds of intermediate steps required arriving at a data model. Some meth-
ods are targeted to people whose background is structured analysis while
other methods appeal to accomplished object-oriented developers. The practi-
tioner has to select the methods that best match his experience and the target
application.

Figure 11.3 illustrates a data model for a product and its decomposition
into parts. Each part, in turn, may decompose into subparts. These associ-
ations are relationships (bidirectional relationships in this example) between
objects. In an object-oriented database, relationships are maintained between
objects using the object’s unique identity, which means that one can change
the attribute values of objects and not affect the relationships between the
objects.

A significant difference between databases and object-oriented program-
ming languages, such as C++ is that databases typically provide high-level
primitives for defining relationships among objects. Typically, the implemen-
tation of relationships is managed by the OODBMS to maintain referential
integrity. In addition, the OODBMS may allow one to define relationship

Fig. 11.3. Exploded product parts data model

11.1 Objected oriented DBMS 489

Fig. 11.4. Example of object attributes and operations

cardinality and object existence constraints. Semantic richness of relation-
ships is well suited for the management of complex, highly interrelated
information. Unfortunately, these capabilities are not provided uniformly by
different object-oriented database products. An object-oriented data model
also defines attributes and operations for each object as shown in Fig. 11.4.

In this example, the Custom Part and Stock Part inherit the attributes and
operations from Part. The Custom Part object defines additional attributes
and overrides the Total Cost operation. A significant advantage of inheritance
is that it allows one to generalize objects by factoring common attributes and
operations into some common object and then, using inheritance, share these
common properties. As one adds more objects, relationships, and operations,
inheritance helps to reduce the complexity of defining and maintaining this
information.

In the real world, the data model is not static and will change as or-
ganizational information needs change and as missing information is identi-
fied. Consequently, the definition of objects must be changed periodically and
existing databases migrated to conform to the new object definitions. Object-
oriented databases are semantically rich introducing a number of challenges
when changing object definitions and migrating databases. Object-oriented
databases have a greater challenge handling schema migration because it is
not sufficient to simply migrate the data representation to conform to the
changes in class specifications. One must also update the behavioral code as-
sociated with each object. Improved facilities to manage this kind of change is
appearing in a number of products, making it easier to maintain OODBMS-
based solutions over time.

Pragmatics of Using an OODBMS

One needs to weigh a broad range of issues when considering an object-
oriented database as a solution to an information management problem. These
issues include: object models, data modeling tools, application design and
development tools, testing and debugging tools, monitoring and tuning tools,

490 11 Objected-Oriented and Object Relational DBMS

and database maintenance tools. A database application, like any software
system, has a life cycle and requires a complete set of life cycle support tools.
The following is a brief overview of the kinds of capabilities one needs to look
for in these areas.

First, one needs to construct an object model of the information prob-
lem to be solved by the database. With current object-oriented databases,
there are significant variations in the modeling capabilities of these prod-
ucts. For example, relationships in some databases are supported by high-level
declarative capabilities that allow one to define self-maintaining properties of
relationships. In other database products, one must program the semantics
of relationships explicitly.

Some database products support a significantly richer data model provid-
ing powerful data management services that are defined as part of the data
model. For example, one may define the existence of some objects to be de-
pendent on a particular relationship. When one retracts the relationship, then
the related object is also deleted. Other examples of more advanced database
semantics include relationship cardinality constraints, attribute value con-
straints, uniqueness properties of attribute values, initial and default values,
object versioning, and composite objects. All these data model issues affect
how easily one can define the data model using tools provided by the database
vendor. Another benefit is that the richer the data modeling facilities the less
work that is required implementing the database application.

An area that many OODBMS evaluators overlook is the tools to support
the development of the database applications. Since an OODBMS includes a
language for specifying object behaviors, one needs to understand how such
behaviors are developed and tested for a given OODBMS. Testing is particu-
larly important since one need to integrate the compiler testing and debugging
tools with the database persistent object storage manager.

During database maintenance, one often needs to introduce incremental
changes into the database and the database applications. This is one of the
most difficult areas since existing objects must be migrated to a new state
conforming to the new schema definitions. This is a common problem with
all database applications and needs to be anticipated in the design of the
database and its applications. Today most OODBMS provide low level services
for migrating databases, making the process of changing the schema a major
challenge for database developers.

Finally, the problem of optimizing a database implementation for a par-
ticular application is a difficult one. First, there is little experience with
OODBMS on which to base optimization strategies. Second, many of the
optimization features are at a low level, requiring the application developer to
design the application around these features. Both database instrumentation
and monitoring tools are needed, as well as facilities for tuning an existing
application. As with relational databases, object-oriented database systems
also require extensive monitoring and tuning to extract the maximum perfor-
mance for a given application.

11.1 Objected oriented DBMS 491

11.1.6 Evaluation Criteria

This section is a detailed discussion of evaluation criteria that may be con-
sidered when evaluating OODBMS. These criteria are broken into three main
areas:

– Functionality
– Application Development Issues
– Miscellaneous Criteria

Functionality

Functionality, defines evaluation criteria based on functional capabilities pro-
vided by the OODBMS. Subsections include Basic Object-Oriented Mod-
eling, Advanced Object-Oriented Database Topics, Database Architecture,
Database Functionality, Application Programming Interface, and Querying
an OODBMS. The topics discussed in the Basic Object-Oriented Model-
ing subsection are those functions that are expected to be similar in all
OODBMS products, such as the ability to define complex objects using classes,
attributes, and behaviors. In fact, these topics are the object-oriented fea-
tures found in most OO technologies (e.g., languages, design methods). The
Advanced Object-Oriented Database Topics subsection describes functional-
ity that is somewhat unique to object-oriented databases. It is expected that
OODBMS products will differ significantly in these areas. The Database Func-
tionality subsection describes the features that distinguish a database from a
persistent storage manager (e.g., concurrency control and recovery).

Application Development Issues

Application Development Issues considers issues regarding the development
of applications on top of an OODBMS. Miscellaneous Criteria, identifies a
few nonfunctional and nondevelopmental evaluation issues. These issues deal
with vendor and product maturity, vendor support, and current users of the
OODBMS product.

Although the evaluation criteria identified in this chapter will be an
important part of any OODBMS selection process, the issues of platform and
performance will most likely dominate the selection process. Although miss-
ing functionality can often be managed at the application level, inadequate
performance cannot be overcome (assuming optimal use of database facilities
and features).

Miscellaneous Criteria

The list of evaluation criteria defined in this chapter is quite extensive. This
list was developed as a means of covering the spectrum of issues that might

492 11 Objected-Oriented and Object Relational DBMS

merit consideration during an OODBMS evaluation task. It is not expected
that any OODBMS evaluation effort would attempt to consider all of the
listed criteria. Instead, an evaluation effort must select the criteria relevant
to a particular set of application requirements. Evaluation Criteria Overview
is a road map of the criteria evaluation categories that are described in the
remainder of this section.

Functionality

In the process of identifying functional evaluation criteria, we provide an
overview of OODBMS capabilities that are typically found in commercial
products. The list of such capabilities was derived from the many books,
reports, and articles that have appeared in the literature over the past few
years.

This section not only identifies the functionality evaluation criteria but also
provides a high-level overview of DBMS and OODBMS concepts. Evaluation
criteria for this section are broken into the following subsections:

– Basic Object-Oriented Modeling
– Advanced Object-Oriented Database Topics
– Database Architecture
– Database Functionality
– Application Programming Interface
– Query Capabilities

In Table 11.1, Functional Evaluation Criteria, is a road map of the cate-
gories and specific topics covered in the functional evaluation criteria.

Table 11.1. Evaluation criteria overview

Evaluation Area Criteria Categories

Functionality Basic Object-Oriented Modeling
Advanced Object-Oriented Database Topics
Database Architecture
Database Functionality
Application Programming Interface
Querying an OODBMS

Application Development Issues Developer’s View of persistence
Application Development Process
Application Development Tools
Class Library

Miscellaneous Criteria Product Maturity
Product Documentation
Vendor Maturity
Vendor Training
Vendor Supporting and Consultation
Vendor Participation in Standards Activities

11.1 Objected oriented DBMS 493

Basic Object-Oriented Modeling

The evaluation criteria in this section distinguish database as an object-
oriented database. Topics in this section cover the basic object-oriented (OO)
capabilities typically supported in any OO technology (e.g., programming lan-
guage, design method). These basic capabilities are expected to be supported
in all commercial OODBMS. The topics are given a cursory overview here as
shown in Table 11.2 for readers new to OO technology.

Complex Objects. OO systems and applications are unique that the infor-
mation being maintained is organized in terms of the real-world entities be-
ing modeled. This differs from relational database applications that require
a translation from the real-world information structure to the table formats
used to store data in a relational database. Normalizations upon the relational
database tables result in further perturbation of the data from the user’s
perceptual viewpoint. OO systems provide the concept of complex objects to
enable modeling of real-world entities. A complex object contains an arbitrary
number of fields, each storing atomic data values or references to other objects
(of arbitrary types). A complex object exactly models the user perception of
some real-world entity.

Object Identity. OO databases (and programming languages) provide the con-
cept of an object identifier (OID) as a means of uniquely identifying a partic-
ular object. OIDs are system generated. A database application does not have
direct access to the OID. The OID of an object never changes, even across
application executions. The OID is not based on the value stored within the
object. This differs from relational databases, which use the concept of pri-
mary keys to identify a particular table row (i.e., tuple). Primary keys are
based upon data stored in the identified row. The concept of OIDs makes it
easier to control the storage of objects (e.g., not based on value) and to build
links between objects (e.g., they are based on the never changing OID). Com-
plex objects often include references to other objects, directly or indirectly
stored as OIDs.

The size of an OID can substantially affect the overall database size
due to the large number of inter object references typically found within
an OO application. When an object is deleted, its OID may or may not be
reused. Reuse of OIDs reduces the chance of running out of unique OIDs but
introduces the potential for invalid object access due to dangling references.
A dangling reference occurs if an object is deleted, and some other object
retains the deleted object’s OID, typically as an interobject reference. This
second object may later use the OID of the deleted object with unpredictable
results. The OID may be marked as invalid or may have been reassigned.
Typically, an OODBMS will provide mechanisms to ensure dangling refer-
ences between objects are avoided.

Classes. OO modeling is based on the concept of a class. A class defines
the data values stored by, and the functionality associated with, an object

494 11 Objected-Oriented and Object Relational DBMS

Table 11.2. Functional evaluation criteria

Criteria Categories Criteria

Basic Object-Oriented Modeling – Complex Objects
– Object Identity
– Classes
– Attributes
– Behaviors
– Encapsulation
– Inheritance
– Overriding Behaviors and Late Binding
– Persistence
– Naming

Advanced Object-Oriented – Relationships and Referential Integrity
Database Topics – Composite Objects

– Location Transparency
– Object Versioning
– Work Group Support
– Schema Evolution
– Runtime Schema Access/Definition/

Modification
– Integration with Existing DBs and Applications
– Active vs. Passive Object Mgmt. System

Database Architecture – Distributed Client–Server Approach
– Data Access Mechanism
– Object Clustering
– Heterogeneous Operaton

Database Functionality – Access to Unlimited Data
– Integrity
– Concurrency
– Recovery
– Transactions
– Deadlock Detection
– Locking
– Backup and Restore
– Dump and Load
– Constraints
– Notification Model
– Indexing
– Storage Reclamation
– Security

Application Programming Interface – DDL/DML Language
– Computational Completeness
– Language Integration Style
– Data Independence
– Standards

Querying an OODBMS – Associative Query Capability
– Data Independence
– Impedance Mismatch
– Query Invocation
– Invocation of Programmed Behaviors

11.1 Objected oriented DBMS 495

of that class. One of the primary advantages of OO data modeling is this
tight integration of data and behavior through the class mechanism. Each
object belongs to one, and only one, class. An object is often referred to as
an instance of a class. A class specification provides the external view of the
instances of that class. A class has an extent (sometimes called an extension),
which is the set of all instances of the class. Implementation of the extent
may be transparent to an application, but minimally provides the ability to
visit every instance of the class. Within an OODBMS, the class construct is
normally used to define the database schema. Some OODBMS use the term
type instead of class. The OODBMS schema defines what objects may be
stored within the database.

Attributes. Attributes represent data components that make up the content
of a class. Attributes are called data members in the C++ programming
language. Instance attributes are data components that are stored by each
instance of the class. Class attributes (static data members in C++) are data
values stored once for all instances of the class. Attributes may or may not be
visible to external users of the class. Attribute types are typically a subset of
the basic data types supported by the programming language that interfaces to
the OODBMS. Typically this includes enumeration types such as characters
and booleans, numeric types such as integers and floats, and fixed length
arrays of these types such as strings. The OODBMS may allow variable length
arrays, structures (i.e., records), and classes as attribute types.

Pointers are normally not good candidates for attribute types since pointer
values are not valid across application executions.

An OODBMS will provide attribute types that support interobject ref-
erences. OO applications are characterized by a network of interconnected
objects. Object interconnections are supported by attributes that reference
other objects. Other types that might be supported by an OODBMS include
text, graphic, and audio. Often these data types are referred to as Binary
Large OBjectS (BLOBS). Derived attributes are attributes that are not ex-
plicitly stored but instead calculated on demand. Derived attributes require
that attribute access be indistinguishable from behavior invocation.

Behaviors. Behaviors represent the functional component of a class. A
behavior describes how an object operates upon its attributes and how it
interacts with other related objects. Behaviors are called member functions
in the C++ programming language. Behaviors hide their implementation
details from users of a class.

Encapsulation. Classes are said to encapsulate the attributes and behaviors
of their instances. Behavior encapsulation shields the clients of a class (i.e.,
applications or other classes) from seeing the internal implementation of a
behavior. This shielding provides a degree of data independence so that clients
need not be modified when behavior implementations are modified (they will
have to be modified if behavior interfaces change).

496 11 Objected-Oriented and Object Relational DBMS

A class’s attributes may or may not be encapsulated. Attributes that are
directly accessible to clients of a class are not encapsulated (public data mem-
bers in C++ classes). Modifying the definition of a class’s attributes that
are not encapsulated requires modification of all clients that access them.
Attributes that are not accessible to the clients of a class are encapsulated
(private or protected data members in C++ classes). Encapsulated attributes
typically have behaviors that provide clients some form of access to the
attribute. Modifications to these attributes typically do not require modifi-
cation to clients of the class.

Inheritance. Inheritance allows one class to incorporate the attributes and
behaviors of one or more other classes. A subclass is said to inherit from one
or more superclasses. The subclass is a specialization of the superclass in that
it adds additional data or behaviors, or overrides behaviors of the superclass.
Superclasses are generalizations of their subclasses. Inheritance is recursive.
A class inherits the attributes and behaviors from its superclasses, and from
its superclass’s superclasses, etc. In a single inheritance model, a class may
directly inherit from only a single other class. In a multiple inheritance model
a class may directly inherit from more than one other class. Systems support-
ing multiple inheritance must specify how inheritance conflicts are handled.
Inheritance conflicts are attributes or behaviors with the same name in a class
and its superclass, or in two superclasses.

Inheritance is a powerful OO modeling concept that supports reuse and ex-
tensibility of existing classes. The inheritance relationships between a groups
of classes define a class hierarchy. Class hierarchies improve the ability of users
to understand software systems by allowing knowledge of one class (a super-
class) to be applicable to other classes (its subclasses).

Overriding Behaviors and Late Binding. OO applications are typically struc-
tured to perform work on generic classes (e.g., a vehicle) and at runtime
invoke behaviors appropriate for the specific vehicle being executed upon
(e.g., Boeing 747). Applications constructed in such a manner are more eas-
ily maintained and extended since additional vehicle classes may be added
without requiring modification of application code. Overriding behaviors is
the ability for each class to define the functionality unique to itself for a given
behavior. Late binding is the ability for behavior invocation to be selected at
runtime based on the class of an object (instead of at compile time).

Persistence. Persistence is the characteristic that makes data available across
executions. The objective of an OODBMS is to make objects persistent. Per-
sistence may be based on an object’s class, meaning that all objects of a given
class are persistent. Each object of a persistent class is automatically made
persistent. An alternative model is that persistence is a unique characteristic
of each object (i.e., it is orthogonal to class). Under this model, an object’s per-
sistence is normally specified when it is created. A third persistence model is
that any object reachable from a persistent object is also persistent. Such sys-
tems require some way of explicitly stating that a given object is persistent

11.1 Objected oriented DBMS 497

(as a means of starting the network of interconnected persistent objects).
Related to the concept of persistence is object existence. OODBMS may pro-
vide a means by which objects are explicitly deleted. Such systems must ensure
that references to deleted objects are also removed. An alternative strategy
is to maintain an object as long as references to the object exist. Once all
references are removed, the object can be safely deleted.

Naming. OO applications are characterized as being composed of a network
of interconnected objects. An application begins by accessing a few known ob-
jects and then traverses to additional objects via relationships from the known
objects. As objects are created they are linked (i.e., related) to other existing
objects. Given this scenario, the database must provide some mechanism for
identifying one or more objects at application start-up without using relations
from existing objects. This is typically accomplished by allowing objects to be
named and providing a retrieval mechanism based upon name. An application
begins by loading one or two “high-level” objects that it knows by name and
then traverses to other reachable objects. Object names apply within some
name scope. Within a given scope, names must be unique (i.e., the same name
can not refer to two objects). The simplest scope model is for the entire data-
base to act as a single name scope. An alternative scope model is for the
application to identify name scopes. Using multiple name scopes will reduce
the chance for name conflicts.

Advanced Object-Oriented Database Topics

Functional capabilities identified in this section are those that are somewhat
unique to object-oriented database systems. We expect that these topics rep-
resent the most interesting evaluation topics and will provide the greatest
diversity among the evaluated OODBMS.

Relationships and Referential Integrity Relationships are an essential compo-
nent of the object-oriented modeling paradigm. Relationships allow objects to
refer to each other and result in networks of interconnected objects. Relation-
ships are the paths used to perform navigation-based data access typical of
programmed functionality. The ability to directly and efficiently model rela-
tionships is one of the major improvements of the object-oriented data model
over the relational data model.

Conceptually, relationships can be thought of as abstract entities that
allow objects to reference each other. An OODBMS may choose to represent
relationships as attributes of the class (from which the relationships emanate),
as independent objects (in which case relationships may be extensible and
allow attributes to be added to a relationship), or as hidden data structures
attached to the owning object in some fashion.

Relationships are often referred to as references, associations, or links.
Sometimes the term relation is used to mean the schema definition of the
potential for interconnections between objects, and the term relationship
is used to mean actual occurrences of an interconnection between objects.

498 11 Objected-Oriented and Object Relational DBMS

In this document we will use the term relationship interchangeably for both
the schema definition and the object level existence for connections between
objects. Relationships can be characterized by a number of different indepen-
dent parameters, leading to a large number of different relationship behaviors:

– Relationships may be unidirectional or bidirectional. A unidirectional re-
lationship exists in only a single direction, allowing a traversal from one
object to another but no traversal in the reverse direction. A bidirectional
relationship allows traversal in both directions. When a relationship is
established along a bidirectional relationship, that relationship is auto-
matically created in both directions (i.e., the application explicitly cre-
ates the relationship in one direction and the OODBMS implicitly sets
the relationship in the opposite direction).

– Relationships have a cardinality, typically either one-to-one, one-to-many,
or many-to-many. A one-to-one relationship allows one object to be related
to another object (e.g., spouse might typically be modeled as a one-to-one
relationship). Setting a one-to-one relationship deletes any previously ex-
isting relationship. A one-to-many relationship allows a single object to be
related to many objects in one direction, in the reverse direction an object
may be related to only a single object (e.g., when modeling a house, the
house might be composed of many rooms, each room is part of a single
house). One-to-one and one-to-many relationships may be unidirectional
or bidirectional. A many-to-many relationship, which must be bidirec-
tional, allows each object to be related to many objects in both directions
of the relationship (e.g., modeling the relationship between parents and
children might use a many-to-many bidirectional relationship. A person
may have many children; children may have more than one parent.).

– Relationships may have ordering semantics. Ordered relationships are typ-
ically considered as lists (the objects are ordered by the operations that
build the relations, not by the values stored in the related objects). Un-
ordered relationships are either sets or bags. Sets do not allow duplication;
bags do.

– Relationships may support the concept of composite objects.

The existence of relationships gives rise to the need for referential integrity.
Referential integrity ensures that objects do not contain references to deleted
objects. Referential integrity can be automatically provided for bidirectional
relationships. Given a bidirectional relationship, when an object is deleted,
all related objects can be found and have their relationships to the deleted
object removed. Unidirectional relationships cannot be assured of referential
integrity (short of performing complete scans of the database). If an object
which is the target of a unidirectional relationship is deleted, there is no
efficient mechanism to identify all objects that reference the deleted object
(and delete the relationships to the deleted object). Application level solutions

11.1 Objected oriented DBMS 499

to this problem exist (e.g., maintenance of existence dependency lists), but
may result in poor performance and are effectively duplicating much of the
work done by bidirectional relationships.

Alternatively, if the OODBMS does not reuse object identifiers, then a
deleted object may be tomb-stoned, meaning a mark is left denoting that the
object has been deleted. When a reference to a deleted object is made it can
then be trapped as an error, or simply ignored, with an appropriate update
of the referencing object’s relationship (to no longer relate to the deleted
object). Some OODBMS products provide a similar capability by keeping
reference counts to objects, and only deleting an object when all references
have been removed.

Relationship implementation provides a major differentiator between
OODBMS products. On disk, relationships are typically modeled using ob-
ject identifiers. Once brought into memory, relationships may remain as object
identifiers or be swizzled into virtual memory pointers. Swizzling is a process
that converts disk-based relationship representations into memory pointers
for all related objects that are in memory. This may be done on object load
or on demand when a particular relationship is traversed. Swizzling trades
the overhead of performing the conversion to a memory-based pointer tra-
versal in the hopes that multiple future accesses across the relationship will
result in an overall speed improvement. Systems that do not swizzle require
an object identifier lookup for all relationship traversal. This lookup can be
performed efficiently through the use of lookup tables. Hybrid approaches
are also possible. Each application will have to consider its expected object
access and relationship traversal patterns to determine if a swizzled or object
identifier-based relationship approach will best suit its needs.

Composite Objects Composite objects are groupings of interrelated objects
that can be viewed logically as a single object. Composite objects are typi-
cally used to model relationships that have the semantic meaning is-part-of
(e.g., rooms are part of a house). Composite objects are connected by the
relationship mechanisms provided by the OODBMS. Operations applied to
the “root” object of such a grouping can be propagated to all objects within
that group. Operations that might be applied on composite objects include:

– Copy
– Delete
– Lock

Here we are defining Identifier-Equality, Shallow-Equality, and Deep-
Equality operations. These three different forms of equality checks compare
object identifiers, attribute values, and attribute values of component ob-
jects, respectively. Also defined are Shallow-Copy and Deep-Copy operations.
A Shallow-Copy makes a new object and copies attribute values. A Deep-Copy

500 11 Objected-Oriented and Object Relational DBMS

makes a new object, copying nonrelationship attribute values, and then recur-
sively creates new objects for related objects (recursively applying the Deep-
Copy operation). Deep-Copy is an example of an operation being propagated
across a composite object. Propagation of delete and lock operations means
that if the root object is deleted or locked all of its component objects are
also deleted or locked.

Location Transparency Location transparency is the concept that an object
can be referenced (i.e., can use the same syntactic mechanism) regardless of
what database it resides in and where on the network that database is located.
Objects should be able to be moved programmatically and have all references
to the object remain intact (a form of referential integrity). (The ability to
move an object to a new database location will also be considered as part of
database administration capabilities.).

Object Versioning Object versioning is the concept that a single object may
be represented by multiple versions (i.e., instances of that object) at one time.
We can define two forms of versioning, each driven by particular requirements
of the applications which are driving the need for OODBMS products:

– Linear Versioning is the concept of saving prior versions of objects as
an object changes. In design-type applications (e.g., CASE, CAD) prior
versions of objects are essential to maintain the historical progression of
a design and to allow designers to return to earlier design points after
investigating and possibly discarding a given design path. Under linear
versioning, only a single new version can be created from each existing
version of an object.

– Branch Versioning supports concurrency policies where multiple users may
update the same data concurrently. Each user’s work is based upon a con-
sistent, nonchanging base version. Each user can modify his version of an
object (as he proceeds along some design path in a CAD application for
example). At some future point in time, under user/application support,
the multiple branch versions are merged to form a single version of the
object. Branch versioning is important in applications with long transac-
tions so that users are not prevented from access to information for long
periods of time. Under branch versioning, multiple new versions may be
created for an object.

Associated with the idea of versioning is that of configuration. A configu-
ration is a set of object versions that are consistent with each other. In other
words, it is a group of objects whose versions all belong together. OODBMS
needs to provide support so that applications access object versions that be-
long to the same conceptual configuration. This may be achieved by control-
ling the relationships that are formed for versioned objects (i.e., they may be
duplicated in the new object or replaced with relationships to other objects).

An OODBMS may provide low level facilities which application developers
use to control the versioning of objects. Alternatively, the OODBMS may

11.1 Objected oriented DBMS 501

implement a specific versioning policy such as automatically creating a new
object version with each change. An automatic policy may result in rapid and
unacceptable expansion of the database and requires some automated means
of controlling this growth.

Work Group Support In addition to versioning, an OODBMS might support
group applications in other manners. The ability is to designate shared and
private databases with the concept of checking data in and out of these data
spaces. Some databases may allow segments of the database to be taken off-
line, perhaps on a portable computer, used autonomously, and then brought
back on-line at a later time. Long transactions are another mechanism on top
of which group applications can be built.

Schema Evolution Schema evolution is the process by which existing data-
base objects are brought into line with changes to the class definitions of
those objects (i.e., schema changes require all instances of the changed class
to be modified so as to reflect the modified class structure). Schema evolution
is helpful although not essential during system development (as a means of
retaining test data, for example). Schema evolution is essential for mainte-
nance and/or upgrades of fielded applications. Once an application is in the
field (and users are creating large quantities of information), an upgrade or
bug fix cannot require disposal of all existing user databases. Schema evolu-
tion is also essential for applications that support user-level modeling and/or
extension of the application.

Here we have given a framework for schema modifications in an object-
oriented database. Included in this framework are invariants which must be
maintained at all times (e.g., all attributes of a class must have a distinct
name), rules for performing schema modifications (e.g., changing the type
of an attribute in a given class must change the type of that attribute in
all classes which inherit that attribute), and a set of schema changes that
should be supported by an object-oriented database. This set of schema change
operations is:

1. Changes to Definition of a Class:
(a) Changes to an Attribute of a Class (applies to both instance and class

attributes):
– Add an attribute to a class.
– Remove an attribute from a class.
– Change the name of an attribute.
– Change the type of an attribute.
– Change the default value of an attribute.
– Alter the relationship properties for relationship attributes.

(b) Changes to a Behavior of a Class:
– Add a new behavior to the class.
– Remove a behavior from the class.
– Change the name of a behavior.
– Change the implementation of a behavior.

502 11 Objected-Oriented and Object Relational DBMS

2. Changes to the Inheritance of a Class:
– Add a new superclass to a class.
– Remove a superclass for a given class.
– Change the order of superclasses for a class (it is expected that su-

perclass ordering will be used to handle attribute and behavior inher-
itance conflicts).

3. Changes to the Existence of a Class:
– Add a new class.
– Remove an existing class.
– Change the name of a class.

Schema changes will require modification of instances of the changed class
as well as applications that referenced the changed class. Some of these changes
cannot be performed automatically by the OODBMS. Deleting attributes and
superclasses are examples of schema changes that could be performed auto-
matically. Adding attributes and superclasses can only be performed if de-
fault values are acceptable for the initial state of new attributes. This is not
likely, especially for relationship attributes. An OODBMS should provide tools
and/or support routines for aiding programmed schema evolution.

A manual evolution approach requires instance migration to be performed
off-line, probably through a dump of the database and a reload of the data
through an appropriate transformation filter. Systems may perform an ag-
gressive update by automatically adjusting each instance after each schema
change. This approach may be slow due to the overhead of performing the
update on all instances at a single time. This approach is the easiest for an
application to implement since multiple versions of the schema need not be
maintained indefinitely.

Schema changes may be performed in background mode, thus spreading
the update overhead over a longer period of time. A lazy evaluation approach
defers updating objects until they are accessed and found to be in an in-
consistent state. Both the background and lazy approaches require extended
periods where multiple versions of the schema exist and will be complicated
by multiple schema modifications. Applications and stored queries will have
to be updated manually as a result of schema changes. Some forms of schema
changes will not require updates to applications and queries due to data
independence and encapsulation of a class’s data members.

It is expected that all OODBMS products will support some form of
schema evolution for static schema changes. By static, we mean the schema is
changed by manipulations of class definitions outside of application process-
ing (i.e., by reprocessing database schema definitions and modifying applica-
tion programs). Dynamic schema modification, meaning modification of the
schema by the application, is more complex and potentially inconsistent with
the basic C++ header file approach used for schema definitions in many cur-
rent commercial products. Dynamic schema modification is only needed in
applications that require user definable types.

11.1 Objected oriented DBMS 503

Runtime Schema Access/Definition/Modification An OODBMS typically
makes use of a database resident representation of the schema for the data-
base. The existence of such a representation, and a means of accessing it,
provides applications with direct access to schema information. Access to
schema information might be useful in building custom tools which browse
the structure and contents of a database. Modification and definition of the
schema at runtime allows the development of dynamically extensible appli-
cations. Users of this modeling system define the classes, attributes, and
behaviors of the information that they wish to model. Once defined, instances
of these classes may be created and manipulated.

The idea of dynamic schema definition is foreign to the C++ programming
language. In C++, class definitions are defined statically in header files. An
application may not alter these class definitions at runtime. OODBMS can
provide access and modification of their schemata by storing the schema as
instances of predefined classes and then allowing applications to create, mod-
ify, and query the instances which model the schema. An application might
wish to modify the schema in order to extend an application to store new
information or to display information in alternative presentations.
Integration with Existing DBs and Applications Numerous papers have ap-
peared in the literature describing the need for integration of object-oriented
and relational database technologies. Newly developed object-oriented appli-
cations will need to access existing relational databases. Data stored in object-
oriented databases must be accessible to existing Standard Query Language
(SQL) applications. Some applications will require access to both relational
and object-oriented databases.

The process of accessing a relational database from an object program is
given as follows. Defining a mapping of the relational schema into an object
model is the first task. A simple approach is to represent each relation by a
class and replace foreign key fields (in the relational schema) by relationships
(in the object-oriented schema). Given a mapping of tables to classes, a means
of invoking SQL operations from the object program must be defined. This can
be provided by defining methods on the mapped classes for creating, updating,
and deleting instances. These methods are responsible for interacting with the
relational database. Additional methods are required to provide an interface
to query operations that translate the tuples returned from a query into a
set of objects accessible by the object program. Database interface generator
products, providing automated support for interfacing object programs to
relational databases, are currently being developed. These products may work
from a user-developed set of class definitions, or from the relational database’s
data definitions language (DDL). In either case, the result is a set of method
specifications and implementations that provide access to a relational database
from an object program.

OODBMS vendors are moving to support the need for SQL access to their
databases. This need arises due to the large experience base of SQL users and
the desire for existing applications to be continually supported, as OODBMS

504 11 Objected-Oriented and Object Relational DBMS

systems become part of the information infrastructure. The basic approach
to this task is to incorporate an SQL interface in the OODBMS application
programming interface (API) and to provide an SQL query processing capa-
bility.

Active vs. Passive Object Management System. OODBMS may be character-
ized as being an active or a passive object management system. A passive
OODBMS means that the database does not store the implementation of
the methods defined for a class. Applications built on a passive OODBMS
provide in their executable image the code for each method defined in the
system. Application execution results in each object, that is accessed during
that execution, being moved from the database server process to the client
application process. Once the object resides in the application’s address space,
a message may be sent to that object resulting in the object executing one of
its methods. Note that the process of moving the object from the database
server to the application’s address space is typically transparent to the ap-
plication programmer. An active OODBMS means that the database stores
the implementation of object behaviors (i.e., methods) in the database. This
allows objects to execute those behaviors (i.e., respond to messages) in the
database server process. Advantages of an active data model include:

– Objects may be accessed and manipulated by nonobject-oriented pro-
grams. These programs may access objects in the database through a
standard programming language interface. Each such access may result in
a long series of messages being sent between many different objects that
are cooperating to provide some useful service on behalf of the requesting
application.

– Object behaviors are stored in a single location (the database), which
makes it easier to be sure that all applications have the latest version of
those behaviors. This also tends to isolate those applications from changes
to the object behaviors.

– Each object accessed by the application need not be transferred to the
application’s address space.

– Consistency checks (i.e., constraints) can be automatically maintained by
the database. As an object’s state is changed, the database server process
can automatically execute consistency checks to ensure that the new state
does not violate some constraint.

One of the significant differences between an active and a passive
OODBMS becomes apparent when considering the implications of traversing
10,000 objects as part of a query or other database operation. Using a passive
database requires that each of those 10,000 objects be moved from the data-
base server to the client application prior to invoking the methods that access
the objects. An active database can be programmed so that the traversal
and method invocation occurs in the database server process, eliminating the
need to transfer each object across the network to the application process.

11.1 Objected oriented DBMS 505

Database Architecture

This section provides an overview of architectural issues relevant to an
OODBMS. Many papers has been published which will describe an imple-
mentation of a persistent memory system upon which object-oriented data-
bases may be built and describes an implementation of shared database server
architecture suitable as a back-end for an object-oriented database.

Distributed Client–Server Approach Advances in local area network and
workstation technology have given rise to group design type applications
driving the need for OODBMS (e.g., CASE, CAD, and Electronic Offices).
OODBMS typically execute in a multiple process distributed environment.
Server processes provide back-end database services, such as management of
secondary storage and transaction control. Client processes handle applica-
tion specific activities, such as access and update of individual objects. These
processes may be located on the same or different workstations. Typically
a single server will be interacting with multiple clients servicing concurrent
requests for data managed by that server. A client may interact with multiple
servers to access data distributed throughout the network.

The evaluations and benchmarks are the three alternative workstation-
server architectures that have been proposed for use with OODBMS:

– Object server approach. The unit of transfer from server to client is an
object. Both machines cache objects and are capable of executing methods
on objects. Object-level locking is easily performed. The major drawback
of this approach is the overhead associated with the server interaction
required to access every object and the added complexity of the server
software which must provide complete OODBMS functionality (e.g., be
able to execute methods). Keeping client and server caches consistent may
introduce additional overheads.

– Page server approach. The unit of transfer from server to client is a page
(of objects). Page-level transfers reduce the overhead of object access since
server interaction is not always required. Architecture and implementation
of the server is simplified since it needs only to perform the backend data-
base services. A possible drawback of this approach is that methods can
be evaluated only on the client, thus all objects accessed by an application
must be transferred to the client. Object-level locking will be difficult to
implement.

– File server approach. The OODBMS client processes interact with a
network file service (e.g., Sun’s NFS) to read and write database pages.
A separate OODBMS server process is used for concurrency control
and recovery. This approach further simplifies the server implementation
since it need not manage secondary storage. The major drawback of this
approach is that two network interactions are required for data access,
one to the file service and one to the OODBMS server.

506 11 Objected-Oriented and Object Relational DBMS

Many scientists have identified no clear winner when benchmarking the
three approaches. The page server approach seemed best with large buffer
pools and good clustering algorithms. The object server approach performed
poorly if applications scanned lots of data, but was better than the page
server approach for applications performing lots of updates and running on
workstations with small buffer pools.

Data Access Mechanism. An evaluation of OODBMS products should con-
sider the process necessary to move data from secondary storage into a client
application. Typically this requires communication with a server process, pos-
sibly across a network. Objects loaded into a client’s memory may require fur-
ther processing, often referred to as swizzling, to resolve references to other
objects which may or may not already be loaded into the client’s cache. The
overhead and process by which locks are released and updated objects are
returned to the server should also be considered.

Object Clustering. OODBMS which transfer units larger than an object do so
under the assumption that an application’s access to a given object implies a
high probability that other associated objects may also be accessed. By trans-
ferring groups of objects, additional server interaction may not be necessary
to satisfy these additional object accesses. Object clustering is the ability for
an application to provide information to the OODBMS so that objects which
it will typically access together can be stored near each other and thus benefit
from bulk data transfers.

Heterogeneous Operation. An OODBMS provides a mechanism for applica-
tions to cooperate, by sharing access to a common set of objects. A typical
OODBMS will support multiple concurrent applications executing on multi-
ple processors connected via a local area network. Often, the processors will
be from different computer manufacturers; each having its own data represen-
tation formats. For applications to cooperate in such an environment, data
must be translated to the representation format suitable for the processor
upon which that data is stored (both permanently by a server and temporarily
by a client wishing to access the data). To be an effective integration mecha-
nism, an OODBMS must support data access in a heterogeneous processing
environment.

Database Functionality

The primary benefit an application derives from a database is that applica-
tion data persists across application executions. Additional benefits offered
by a database are the ability to share data between applications, provision
of concurrent access to the data by multiple applications, and providing an
application the access to a data space larger than its process address space.
This section reviews the issues that distinguish an OODBMS from a language
with persistence (e.g., Smalltalk). A language with persistence typically pro-
vides for data to exist across executions but does not provide the additional
benefits outlined earlier.

11.1 Objected oriented DBMS 507

Within this section we provide a brief overview of the database topic with
additional issues relevant to object-oriented databases.

Access to Unlimited Data. A database provides an application, the ability to
access a virtually unlimited amount of data. In particular, the application can
address more data than would fit within the application process address space.
Some databases may support the notion of transient data that is maintained
during program execution but not saved in the database. This is useful for
providing access to very large transient data objects that do not map easily
into the application’s address space.

Integrity. A database is required to maintain both structural and logical in-
tegrity. Structural integrity ensures that the database contents are consistent
with its schema. Logical integrity ensures that constraints specifying logical
properties of the data are always true. Many papers describe new concerns for
integrity in OODBMS. A major concern is that OODBMS architectures map
data directly into the applications address space (unlike a typical relational
database that provided direct access to the data only in a separate database
server process).

Mapping data into the application’s address space yields significant perfor-
mance improvements over server-only data access, especially for the applica-
tion areas being targeted by OODBMS. However, once data is mapped into an
application’s address space there is no way to guarantee it is not inadvertently
or maliciously tampered with. This limits a database’s ability to guarantee
integrity of the data. Structural integrity mechanisms include assurances that
references to deleted objects do not exist and that all instances are consistent
with their class definitions. Logical integrity can be supported by encapsu-
lating all the data members of a class and providing access to information
content of an object only through behaviors defined by the class.

Additional integrity constraints can be supported if the database provides
a mechanism for specifying application-level constraints and for ensuring
the execution of those constraints before and/or after behavior invocation.
Constraints executed before a behavior can test the consistency of the req-
uest and the input parameters. Constraints executed after a behavior can
test for logical consistency of the resulting state of the object and any
output parameters.

Concurrency. Databases provide concurrency control mechanisms to ensure
that concurrent access to data does not yield inconsistencies in the database
or in applications due to invalid assumptions made by seeing partially up-
dated data. The problems of lost updates and uncommitted dependencies are
well documented in the database literature. Relational databases solve this
problem by providing a transaction mechanism that ensures atomicity and
serializability. Atomicity ensures that within a given logical update to the
database, either all physical updates are made or none are made. This en-
sures the database is always in a logically consistent state, with the DB being
moved from one consistent state to the next via a transaction. Serializability

508 11 Objected-Oriented and Object Relational DBMS

ensures that running transactions concurrently yields the same result as if
they had been run in some serial (i.e., sequential) order.

Relational databases typically provide a pessimistic concurrency control
mechanism. The pessimistic model allows multiple processes to read data as
long as none update it. Updates must be made in isolation, with no other
processes reading or updating the data. This concurrency model is sufficient
for applications that have short transactions, so that applications are not
delayed for long periods due to access conflicts.

For applications being targeted by OODBMS (e.g., multiperson design
applications), the assumption of short transactions is no longer valid. Opti-
mistic concurrency control mechanisms are based on the assumptions that
access conflicts will rarely occur. Under this scenario, all accesses are allowed
to proceed and, at transaction commit time, conflicts are resolved. OODBMS
have incorporated the idea of optimistic concurrency control mechanisms for
building applications that will have long transaction times.

Handling of conflicts at committed time cannot simply abort a transaction,
however, since one designer may be losing days or weeks of work. OODBMS
must provide techniques to allow multiple concurrent updates to the same
data and support for merging these intermediate results at an appropriate
time (under application control). Most systems use some form of versioning
system in order to handle this situation.

An alternative policy is to allow reading and a single update to occur
in parallel. Readers are made aware that the data they are reading may be
in the midst of an update. Thus readers may be viewing slightly outdated
information. Implementation of this approach fits well in the client–server
architecture typical for an OODBMS. Each client application gets its own
local copy of the data. If an update is made to the data, the server does
not permanently store it until all concurrent read transactions are completed.
Thus, all read transactions execute seeing a consistent data set, albeit one
that is in the process of being updated.

Once all readers have completed, the write transaction is allowed to com-
plete modifying the permanent copy of the data. Some OODBMS may, at
transaction commit, inform reading clients that the data they just read is in
the process of being updated.
Recovery. Recovery is the ability for a database to return to a consistent state
after a software or hardware failure. Similar to concurrency, the transaction
concept is used to implement recovery and to define the boundaries of recovery
activity. One or more forms of database journaling, backup, check-pointing,
logging, shadowing, and/or replication are used to identify what needs to be
recovered and how to perform a recovery.

Databases must typically respond to application failures, system failures,
and media failures. Application failures are typically trapped by the transac-
tion mechanism and recovery is implemented by rolling back the transaction.
System failures, such as loss of power, may require log and/or checkpoint sup-
ported rollback of uncommitted transactions and rollforward of transactions

11.1 Objected oriented DBMS 509

that were committed but not completely flushed to disk. Media failures, such
as a disk head crash, require restoration of the database from a backup version,
and replaying of transactions that have been committed since the backup.

The ability of a database to recover from failures results in a heavy process-
ing and storage overhead. In the process of evaluating an OODBMS, its ability
to recover from faults, and the overhead incurred to provide that recovery ca-
pability, must be carefully considered. Applications envisioned for OODBMS
(e.g., CASE tools) often do not have the same strict recovery requirements as
do relational database applications (e.g., banking systems). In addition, the
amount of data stored in such systems may result in unacceptable storage
overheads for many forms of recovery. For these reasons, an OODBMS eval-
uation effort must carefully select the recovery capabilities needed based on
both the functional and performance requirements of the application.

Transactions. Transactions are the mechanism used to implement concur-
rency and recovery. Within a transaction, data from anywhere in the (dis-
tributed) database must be accessible. A feature found in many OODBMS
products is to commit a transaction but to allow the objects to remain in the
client cache under the expectation that they will soon be referenced again.

Some OODBMS have incorporated the concept of long and/or nested
transactions. A long transaction allows transactions to last for hours or days
without the possibility of system generated aborts (due to lock conflicts for
example). System generated aborts must be avoided for applications targeting
OODBMS since a few hours or days of work cannot be simply discarded. Long
transactions may be composed of nested transactions for purposes of recovery.
Nested transactions allow a single (root) transaction to be decomposed into
multiple subtransactions.

Each subtransaction can be committed or aborted independently of the
other subtransactions contained in the scope of the root transaction. Each
subtransactions commit is dependent upon its immediate superior commit-
ting and the root transaction committing. Nested transactions improve upon
the basic transaction mechanism by providing finer-grained control over the
failure properties of software. Using nested transactions, a portion of a com-
putation can fail and be retried without affecting other parts of that same
computation. Nested transactions were developed to provide concurrency con-
trols for distributed computing systems. Again, an OODBMS evaluation must
carefully consider whether the target application requires nested transactions
and the performance and/or storage impacts of using this facility.

Deadlock Detection. Database systems use deadlock detection algorithms to
determine when applications are deadlocked due to conflicting lock requests.
Relational DBMS typically select an arbitrary transaction and abort it in an
attempt to let the remaining transactions complete. The aborted transaction
is normally restarted automatically by the system. This scheme works well
for the class of applications supported by relational DBMS. As described in
the previous section, applications being targeted by OODBMS cannot afford

510 11 Objected-Oriented and Object Relational DBMS

a system-aborted transaction resulting in the potential loss of hours, days, or
weeks of work. OODBMS provide alternative concurrency control and trans-
action mechanisms to reduce or avoid the possibility of deadlocks. Regardless
of concurrency control protocol, an OODBMS must still detect and resolve
deadlocks.

Locking. Locking of database entities is the typical approach to implementing
transactions. OODBMS may provide locking at the object and/or the page
level. Object-level locking may result in high overheads due to lock manage-
ment. Page-level locking may reduce concurrency, especially for write locks,
since not all objects on a page may be used in the transaction that holds the
lock. OODBMS clustering facilities will aid in reducing the loss of concurrency
due to page-level locking.

An OODBMS will implicitly acquire and release locks as data is accessed
by an application. Application support may be necessary for specifying the
lock mode (e.g., all locks may be acquired in read mode by default and the
application must specify that write access to the object is necessary). The
OODBMS may also provide an interface for explicitly locking data.

Backup and Restore. Backup is the process of copying the state of the data-
base to some other storage medium in case of subsequent failure or simply
for historical record. Ideally backups can be performed while the database is
in use. Backups may be performed only on specific sections of the database.
Incremental backup capabilities reduce the amount of information that must
be saved by storing only changes since a prior backup. Obviously, a database
must be able to be restored from a backup.

Dump and Load. A database may be dumped into a human readable ASCII
format. Specific segments of the database may be dumped. A database may
be recreated by loading from a dump file.

Constraints. Constraints are application-specific conditions that must always
hold true for a database. Logical database integrity can be supported by pro-
viding the application developer with the ability to define constraints and
for those constraints to be automatically executed at the appropriate times.
Although constraints can be directly encoded in behaviors, having a sepa-
rate constraint mechanism reduces duplication and ensures execution of the
constraints. Some OODBMS define a model for constraint definition and invo-
cation but require applications to explicitly invoke the constraint executions.

Constraints executed at behavior invocation can test for validity of the
input parameters and the requested operation. Constraints executed at
the completion of a behavior invocation can test for logical consistency of
the result values and resulting database state.

Notification Model. An OODBMS may provide a passive and/or an active
notification model. A notification model allows an application to be informed
when an object is modified or when some other database event occurs. Passive
notification systems require that the application query the database for state

11.1 Objected oriented DBMS 511

changes. A passive system minimally provides the logic that determines if an
object has changed state or if an event has occurred.

The application is responsible for informing the database of the objects
and events in which it is interested and for periodically querying the database
to see if those objects have been updated or if particular events have occurred.

An active notification system is one in which application routines are in-
voked automatically as a result of some object being updated or some data-
base event was occurring. Active notification systems are similar to database
triggers and constraint systems (whereby constraints are executed when one
of their operands changes state). Presently there is no clear indication that
such mechanisms can be efficiently supported in general purpose database
management systems.

Indexing. Databases make use of indexing to provide optimized data retrieval
based on some aspect of that data. In particular, query evaluations can be
dramatically improved by the presence of indexes. Query optimizers must
dynamically determine if an index is present and, if so, use that index to
provide an efficient query execution.

Indexes in an OODBMS are typically built to provide lookup of all objects
of a given class and its subclasses based on one or more data members of that
class. Indexes may be segregated to some segment of a database or may span
the entire database.

Different indexing implementations result in different time and space per-
formance. Hashing and b-trees are two common index implementation tech-
niques. Indexing add to the overhead associated with creating, deleting, and
modifying objects and thus must be used judiciously.

Storage Reclamation. Data stored within a database is dynamically created
and destroyed by the applications that access that database. Data that is
no longer accessible, whether determined implicitly by the system or as the
result of an explicit delete by an application, results in storage space that is
no longer in use. Reclamation of unused space must be performed so that a
database does not continuously grow. Space reclamation should be performed
incrementally or as a background activity so that performance hiccups are not
encountered by the applications.

Security. Secure database systems protect their data from malicious misuse.
Security requirements are similar to data integrity requirements that protect
data from accidental misuse. Secure databases typically provide a multilevel
security model where users and data are categorized with a specific security
level. Mandatory security controls ensure that users can access data only at
their level and below. Discretionary security controls provide access control
based on explicit authorization of a user’s access to data.

Applications targeted by OODBMS often do not require strict security
controls, although discretionary access controls seem desirable for work-group
design type applications. Little work has been done to add security mecha-
nisms to OODBMS.

512 11 Objected-Oriented and Object Relational DBMS

Application Programming Interface

A major distinction between an object-oriented database application and a
relational database application is the relation between the data manipula-
tion language (DML) and the application programming language. Large scale
commercial database applications are developed in a standard programming
language (e.g., C, C++). In a relational database, SQL is used as the DML,
providing the means to create, update, query, and delete data from the data-
base. Thus, in a relational database application, a significant amount of effort
is spent transforming data between the two different languages.

Critics claim that this impedance mismatch adds to the complexity of
building relational database applications. In an object-oriented database
application, the DML is typically very near to a standard programming lan-
guage. For example, many OODBMS support C++ as their DML, with the
result that C++ can be used for building the entire application. OODBMS
proponents claim that by using a single language, the impedance mismatch is
removed (or significantly reduced) and application development is simplified.
The OODBMS approach is not without its critics. OODBMS applications
traverse the network of interconnected objects to discover information. This
hand-coded navigation of the schema cannot automatically take advantage of
indexes that might be added and requires modification of the application code
as the schema changes.

SQL, on the other hand, is an associative retrieval language, not requiring
any information describing how information is to be found. SQL statements
can be recompiled and/or optimized at runtime to find the best access path
to the requested data.

It is clear that both relational and object-oriented database approaches
have merit and will used for developing particular classes of applications. It is
interesting to note that relational vendors are currently adding object-oriented
features to their products and those OODBMS vendors are adding SQL-like
query capabilities to theirs. In addition, third party companies are developing
automated integration tools that allow SQL applications to access OODBMS
and OODBMS to access relational databases.

This section covers issues relevant to the application programming inter-
face of an OODBMS. As described earlier, OODBMS aim to provide a tight
integration between the data definition/manipulation language and a stan-
dard programming language in an attempt to ease the application develop-
ment task.

DDL/DML Language. An OODBMS provides one or more languages in which
data definitions can be specified and applications can be constructed. A com-
mon example is to use C++ header files for describing the class structures
(i.e., schema) and then to implement the behaviors of those classes and the
remainder of the application in C++. The data description component of the
language often is an extension of some standard programming language to
support specification of relationships and other object-oriented features.

11.1 Objected oriented DBMS 513

Computational Completeness. Relational database query languages, such as
SQL, are typically not computationally complete, meaning general purpose
control and computation structures are not provided. For this reason, appli-
cations are built by embedding the query language statements in a standard
programming language. OODBMS that use a standard programming language
(or an extension of one) for data definition and data manipulation provide
the application developer with a computationally complete language in which
database manipulations and general purpose processing can be accomplished.

Language Integration Style. A number of mechanisms may be used for pro-
viding access to the database from the programming language. These include
library interfaces, language extensions, or for true object-oriented languages,
definition of behaviors for construction, destruction, and access via member
functions. Most authors define loose language integration as one where the
database operations are explicitly programmed, for example by library calls.
This is common for OODBMS interfaces from the C programming language.
Tight language integration makes the database operations transparent, typi-
cally through inherited behaviors in a class hierarchy. For example, C++ in-
tegration might use the standard class constructor and destructor constructs
to create and delete objects from the database. Even in a tight integration,
additional parameters will often be added to control database activity (e.g.,
clustering) and some database operations will be provided by library calls.

Data Independence. Data independence is the ability for the schema of the
database to be modified without impacting the external (i.e., application) view
of that schema. As described earlier, encapsulation is accomplished by the
schema definition language encapsulating the internals of data members and
behaviors. Applications that rely only on the public interfaces of classes will
be protected from changes to the private portions and the implementations
of those classes.

The concept of derived attributes also adds to data independence. A
derived attribute is one that is not stored, but instead calculated on demand.
An application cannot determine whether an attribute is derived or not (i.e., if
it is stored or computed), thus changes to the schema do not affect the appli-
cation. Typically, programming languages do not easily support the concept of
derived attributes. In C++ for example, a function call is syntactically differ-
ent than an attribute reference, so providing transparent derived attributes is
not possible. Eiffel is an object-oriented programming language that directly
supports the concept of a derived attribute.

Standards. Applications can be portable across OODBMS products if all
such products agree on a standard application programming interface (API).
The Object Database Management Group (ODMG) is a working group
of OODBMS vendors tasked with defining a set of interface specifications
aimed at ensuring application portability and interoperability. All members
of OODBMS vendors have agreed to support the standard specification once
it is developed (initial version expected in the fall of 1993). One of these

514 11 Objected-Oriented and Object Relational DBMS

specifications will be a C++ binding for object definition, manipulation, and
query. Currently no standard exists and all OODBMS have a custom API, thus
application programs are not portable across databases. A concern is that any
existing applications will have to be modified when a standard is defined and
implemented by the OODBMS vendors. OODBMS typically integrate with
a standard programming language such as C, C++, or Smalltalk. One issue
is whether the OODBMS works with a standard version of a programming
language (e.g., ANSI C, AT&T compatible C++). A second is whether the
OODBMS uses a custom-built compiler or can use any third party compiler
(e.g., from a compiler vendor).

Querying an OODBMS

Query languages provide access to data within a database without having to
specify how that data is to be found. Thus, query languages provide a level of
data independence. An application or user need not understand the structures
storing the data in order to access the data. This is in strong contrast to
network and hierarchical databases that require programmed navigation of
the database.

Included in these requirements are a flexible-type system, inheritance, as-
sociation of behaviors with data, and the use of rules or constraints. In partic-
ular, hand-coded navigational access has been shown to be less optimal than
an optimized query approach, and changes to schema and indexing require
changes to the navigational segments of application code. In light of this, it is
clearly important for OODBMS to provide a declarative query language that
is closely integrated with an object-oriented programming language.

Associative Query Capability. Standard Query Language (SQL), as defined
by the ANSI X3H2 committee is being revised to incorporate object-oriented
features. In the short term, OODBMS vendors are providing their own object-
oriented extensions to SQL in order to provide reasonable access to their object
databases from an SQL like language.

A range of query capabilities for OODBMS:

– No query language support. All data access must be via programmed data-
base navigation.

– Collection-based queries. Queries operate on some predefined collection of
objects, selecting individual objects based on some predicate, yielding a
resulting collection of objects.

– General queries. Which can have a result of any type (e.g., value, object,
or collection). An additional capability is for a query to return textual
information that is suitable for report generation.

Data Independence. The basic motivation for using a declarative query lan-
guage is to support data independence. Query implementations are expected
to make optimal use of schema associations and indexes at runtime.

11.1 Objected oriented DBMS 515

Impedance Mismatch. One of the main criticisms of relational database pro-
gramming is the impedance mismatch between the data manipulation lan-
guage (DML), normally SQL, and the application programming language,
typically some general purpose language such as C. Relational database ap-
plications have an impedance mismatch, in that database access via the query
language is table-based while application programming is individual value-
based. Extra code and intellectual hurdles are required to translate between
the two.

A presumed benefit of OODBMS is that the application programming
language and the DML are the same. However, as noted earlier, critics claim
this eliminates data independence. Declarative query capabilities, which are
being added to OODBMS, will support the concept of data independence. How
well these query capabilities are integrated with the application programming
language will dictate the level of impedance mismatch between the application
programming language and the use of associative queries.

A range of techniques for integrating queries within an OODBMS:

– Supply a Select method on all persistent classes
– Extend the object programming language to include SQL like predicates

for filtering selection operations
– Embed the SQL Select statement into the object programming language,

providing a preprocessor which translates these statements into an appro-
priate set of runtime calls

A tight integration of query invocation and query result with the selected
OODBMS application language will decrease the impedance mismatch typical
of database applications.

Query Invocation. As described throughout this section, the major emphasis
is to provide an associative query capability from within programmed appli-
cations. An additional requirement is to provide a means for ad hoc query
invocation, possibly from within a database browser tool.

Invocation of Programmed Behaviors. The query language should be able to
invoke object behaviors as part of their predicates. Whether this can be done
from programmed queries and/or ad hoc queries must be investigated.

Application Development Issues

Functionality directly affects application development, for example, language
integration affects how developers perceive the use of the database. Another
functional issue that is extremely important to the application development
process is schema migration. The ability to migrate schema (i.e., to update
objects in response to schema changes) affects the testing process and the
ability to upgrade fielded versions of the software.

This section identifies more specific application development issues. Eval-
uation of application development issues is not as straightforward as that for

516 11 Objected-Oriented and Object Relational DBMS

Table 11.3. Application development evaluation criteria

Criteria Categories Criteria

Developer’s View of Persistence
Application Development Process
Application Development Tools – Database Administration Tools

– Database Design Tools
– Source Processing Tools
– Database Browsing Tools
– Debugging Support
– Performance Tuning Tools

Class Library

functional issues. Functional evaluations can be based on technical documen-
tation and informally verified by reviewing interface specifications of the prod-
uct. Application development issues are more abstract. Review of technical
documentation will provide only a small glimpse of the application develop-
ment process. Only through use of the product, on a large application, with a
team of developers, will a true understanding of the application development
process be derived.

Table 11.3 gives Application Development Evaluation Criteria that define
application development issues to be considered in performing a review of
OODBMS products.

Developer’s View of Persistence

An evaluation should consider how a software developer perceives persistent
objects and what coding constructs are used to access persistent objects. This
issue is closely related to the language integration issue. Of particular interest
is the need for explicit user code to access persistent objects, lock persistent
objects, and to notify the database that a persistent object has been updated
and must be stored back to the database.

Application Development Process

The application development process is the series of steps needed to define and
structure databases, define database schema, process class behaviors, and to
link, execute, and debug applications. An evaluation should consider the need
to use vendor-supplied preprocessors and/or interactive schema development
tools, should describe the integration with debuggers and program builders
(e.g., UNIX make), and should consider the issues relevant to multiple devel-
oper efforts.

Application Development Tools

Both vendor and third party tools must be supplied in the areas described in
the following sections.

11.1 Objected oriented DBMS 517

Database Administration Tools. Database administration tools are used for
creating, deleting, and reorganizing (e.g., moving) databases. Database admin-
istration tasks should be available to applications (i.e., through a programmed
interface) in order to allow applications to hide database administration tasks
from the user.

Database Design Tools. Database design tools are used for interactively defin-
ing the schema or classes which are to be stored within a database. Third party
object-oriented modeling tools may be available which generate source code
suitable for use with the OODBMS.

Source Processing Tools. Source processing tools perform the transformation
of textual descriptions of applications programs into executable code. These
include preprocessors specific to the OODBMS as well as standard language
compilers. Also included might be tools to aid in controlling the process of
application building (e.g., UNIX make facilities). Integration with application
development environments should also be considered.

Database Browsing Tools. Interactive browsing tools allow database schema
and contents to be viewed graphically and possibly modified.

Debugging Support. An OODBMS vendor should supply tools and or utili-
ties that are useful during the debugging process. These facilities should be
inviolable from third party debugging environments.

Performance Tuning Tools. An OODBMS should provide utilities which en-
able a developer to understand the performance parameters of an application
and a means by which performance can be adjusted as a result of this analy-
sis. In addition, any specific design considerations that can affect performance
must be considered.

Class Library

Object-oriented development is based on building a reusable set of classes or-
ganized into a class hierarchy. The class hierarchy mechanism supports reuse
of general data and behaviors in specialized classes. As described earlier,
Language Integration Style, some OODBMS may provide their application
interface through a class library. Inherited behaviors provide support for per-
sistence, object creation, deletion, update, and reference traversal.

In addition to the possibility of providing database interface through the
class library, an OODBMS may deliver application support classes. Such
classes typically provide data abstractions such as sets, lists, dictionaries, etc.
These classes should be extensible just like any other user-defined class. Ide-
ally source code would be provided for these classes. Source is needed since
documentation is often insufficient for determining the effect of invoking each
method under each possible condition. Source is also useful in understand-
ing performance characteristics and in repairing errors that may be found in
the code.

518 11 Objected-Oriented and Object Relational DBMS

Table 11.4. Miscellaneous evaluation criteria

Criteria

Product Maturity
Product Documentation
Vendor Maturity
Vendor Training
Vendor Support and Consultation
Vendor Participation in Standards Activities

Miscellaneous Criteria

A number of nontechnical criteria should also be considered when evaluat-
ing an OODBMS. This section details some of these criteria, as listed in
Table 11.4, Miscellaneous Evaluation Criteria.

Product Maturity

Product maturity may be measured by several criteria including:

– Years under development
– Number of seats licensed
– Number of licensed seats actually in use
– Number of licensed seats in use for purposes other than evaluations (i.e.,

actual development efforts)
– Number and type of applications being built with the OODBMS product
– Number and type of shipped applications built with the OODBMS

product

Product Documentation

Product documentation should be clear, consistent, and complete. The docu-
mentation should include complete examples of typical programmed capabil-
ities (e.g., what is the sequence of calls to access data from the database and
to cause updates to that data to be made permanent in the database).

Vendor Maturity

Vendor maturity may be measured by several criteria including:

– Company’s size and age
– Previous experience of the company’s lead technical and management per-

sonnel in the commercial database market
– Financial stability

Vendor Training

Availability and quality of vendor supplied training classes is an important
consideration when selecting an OODBMS.

11.1 Objected oriented DBMS 519

Vendor Support and Consultation

It is expected that significant support will be required during the OODBMS
evaluation process and to overcome the initial learning curve. OODBMS ven-
dors should provide a willing and capable support staff. Support should be
available via phone and electronically. Consulting support might also be ap-
pealing where the OODBMS vendor provides expert, hands-on assistance in
product use, object-oriented application design (especially in regards to data-
base issues), and in maximizing database application performance.

Vendor Participation in Standards Activities

The vendor should be active in standards efforts in the object-oriented, lan-
guage, CASE, open software, and data exchange areas. In particular:

– Object Management Group (OMG). An organization funded by over
80 international information systems corporations whose charter is to
develop standards for interoperation and portability of software. The
OMG is focusing on object-oriented integration technologies such as
Object Request Broker (ORB), OODBMS interfaces, and object inter-
faces for existing applications.

– Object Database Management Group (ODMG). An organization of
OODBMS vendors chartered to define a standard interface to OODBMS
that will allow application portability and interoperability. Standards
defined by the ODMG will be provided to OMG, ANSI, STEP, PCTE,
etc. to aid in their respective standardization efforts.

– ANSI standardization efforts in languages (C, C++, Smalltalk), SQL, and
object-oriented databases.

– Standards such as Portable Common Tool Environment (PCTE) and
CASE Data Interchange.

– Format (CDIF) providing for common data representations, data
exchange formats, and interoperation of tools.

– PDES/STEP. An effort aimed at standardizing an exchange format for
product model data (product model data, such as CAD data, represents
a prime application area for OODBMS).

11.1.7 Evaluation Targets

This chapter identifies the commercial OODBMS that were evaluated as part
of this effort. For each evaluation target we identify:

– The platforms upon which that OODBMS is hosted
– The level of heterogeneous operation supported by the OODBMS
– The application interface languages provided by the OODBMS
– Third party products that interoperate in some way with the OODBMS

Information provided in this section was provided directly by each vendor.

520 11 Objected-Oriented and Object Relational DBMS

Objectivity/DB

Objectivity/DB is an object-oriented database product developed and mar-
keted by Objectivity, Inc., 800 El Camino Real, Menlo Park, CA 94025, (415)
688-8024. Evaluation information provided in this report was obtained from
the technical documentation set for Objectivity/DB Version 2.0 and from
discussions with technical representatives of Objectivity, Inc.

Objectivity/DB may be executed by client applications hosted in a hete-
rogeneous network of:

– DECstation under Ultrix 4.2
– Sun4/SPARC under SunOS 4.1, Solaris 2.0 or Solaris 2.1
– VAX under Ultrix 4.2 or VMS
– Hewlett Packard 9000 series 300 under HP/UX 8.0
– Hewlett Packard 9000 series 700 or 800 under HP/UX 8.0 or HP/UX 9.0
– IBM RISC System/6000 under AIX
– Silicon Graphics Iris under IRIX 4.0
– NCR System 3300 (i386) under SVR4 Version 2.0

Applications running on any of the earlier platforms, connected via a local
area network, may share access to a single database. Objectivity, Inc., has
announced and released a Beta test subset version of Objectivity/DB for
Windows NT. A version running on DEC/ALPHA under OSF 1.0 is also in
Beta testing.

Objectivity/DB provides application interfaces for:

– AT&T compatible C++
– ANSI C

Objectivity/DB was designed as an open product and is advertised to work
with any ANSI C or AT&T compatible C++ compiler. Objectivity, Inc., has
partnership agreements to develop tool integrations and/or be compatible
with the following products:

1. Program Development Environments:
– SoftBench from Hewlett-Packard
– ObjectCenter from CenterLine Software
– FUSE from DEC
– WorkBench 6000 from IBM
– ObjectWorks from ParcPlace

2. RDBMS Gateways:
– Persistence Software

3. Object-oriented GUIs:
– UIM/X from Visual Software, Ltd.
– XVT from XVT Software, Inc.
– Integrated Computer Solutions, Inc.
– Objective, Inc.
– Micram Classify/DB.

11.1 Objected oriented DBMS 521

4. Analysis and Design Tools:
– PTech from Associative Design Technology
– Paradigm Plus from ProtoSoft
– ROSE from Rational
– Softeam

ONTOS DB

ONTOS DB is an object-oriented database product developed and marketed
by ONTOS, Inc., Three Burlington Woods, Burlington, MA 01803, (617) 272–
7,110. Evaluation information provided in this report was obtained from the
technical documentation set for ONTOS DB 2.2 and from discussions with
technical representatives of ONTOS, Inc.

ONTOS DB may be hosted on the following platforms:

– IBM RISC System/6000 under AIX
– IBM PC under OS2
– Hewlett Packard 9000 series under HP/UX
– SCO 386 Unix
– Sun4/SPARC under SunOS 4.1

ONTOS DB does not support heterogeneous operation between any other
target platforms. ONTOS DB provides a C++ application interface. ONTOS
DB can be used with AT&T compatible C++ compilers.

ONTOS DB developers can debug using gdb or dbx UNIX debugging
environments. ONTOS DB is compatible with the following products:

1. Program Development Environments:
– ObjectCenter from CenterLine Software
– ObjectWorks from ParcPlace

2. Analysis and Design Tools:
– PTech from Associative Design Technology

VERSANT

VERSANT is an object-oriented database product developed and marketed
by Versant Object Technology Corp., 4500 Bohannon Drive, Menlo Park, CA
94025, and (415) 329–7,500. Evaluation information provided in this report
was obtained from the technical documentation for VERSANT Release 2 and
from discussions with technical representatives of Versant Object Technology
Corporation.

VERSANT may be hosted on the following platforms: o Sun4/SPARC
under SunOS 4.0:

– IBM RISC System/6000 under AIX
– Hewlett Packard 9000 series under HP/UX

522 11 Objected-Oriented and Object Relational DBMS

– DECstation 3100 under Ultrix
– Sequent under DYNIX/ptx
– Silicon Graphics under IRIS
– NeXT under NeXTstep
– IBM PC under OS2

VERSANT supports heterogeneous operation between their Sun4, Hewlett
Packard, and IBM RISC System/6000 platforms. Versant is adding additional
platforms to their heterogeneous operation as an ongoing activity. For exam-
ple, the addition of OS2 platforms are expected before the end of this year.

VERSANT provides application interfaces for:

– C++
– ANSI C
– Smalltalk

C++ compilers from AT&T, Sun, Hewlett Packard, Glockenspiel are com-
patible with VERSANT. Versant Object Technologies has partnership agree-
ments to develop tool integrations and/or be compatible with the following
products:

1. Program Development Environments:
– ObjectCenter from CenterLine Software
– ObjectWorks from ParcPlace
– SoftBench from Hewlett-Packard
– WorkBench 6000 from IBM

2. RDBMS Gateways:
– Persistence Software

3. Analysis and Design Tools:
– Paradigm Plus from ProtoSoft
– ROSE from Rational
– ACIS Geometric Modeler from Spatial Technology

ObjectStore

ObjectStore is an object-oriented database product developed and marketed
by Object Design, Inc., One New England Executive Park, Burlington, MA
01803, (617) 270–9,797. Evaluation information provided in this report was
obtained from the technical documentation set for ObjectStore Release 2.0
and from discussions with technical representatives of Object Design, Inc.

ObjectStore may be hosted on the following platforms:

– Sun under Solaris 1.x and Solaris 2.x
– Hewlett Packard under HP/UX
– DEC under Ultrix
– NCR under SVR 4
– Univel under SVR 4

11.1 Objected oriented DBMS 523

– Olivetti under SVR 4
– IBM RISC System/6000 under AIX
– Silicon Graphics
– IBM PC under Windows 3.1 and OS2

ObjectStore supports heterogeneous operation between their Sun,
Hewlett-Packard, IBM RISC System/6000, and Silicon Graphics implementa-
tions. The next release of ObjectStore will support heterogeneous operation
across all their implementations.

ObjectStore provides application interfaces for:

– AT&T compatible C++
– ANSI C

ObjectStore is advertised to work with any ANSI C or AT&T compati-
ble C++ compiler. In addition, Object Design markets a compiler and other
development tools for building ObjectStore applications.

ObjectStore has completed partnership agreements to develop tool inte-
grations and/or be compatible with the following products:

1. Program Development Environments:
– Borland C++ & Application Frameworks.
– CodeCenter and ObjectCenter from CenterLine Software.
– Energize Programming System, Lucid C++, and Lucid C from Lucid,

Inc.
– SynchroWorks from Oberon Software, Inc.
– OpenBase from Prism Technologies, Ltd.
– SPARCworks C++ Professional and ProWorks C++ from SunPro

Marketing.
2. Object-oriented GUIs:

– ViewCenter from CenterLine Software.
– zApp from Inmark Development Corp.
– Devguide from SunSoft, Inc.
– UIM/X from Visual Software, Ltd.

3. Analysis and Design Tools:
– Object Engineering Workbench for C++ from Innovative Software

GmbH.
– HOOPS Graphics Development System from Ithaca Software.
– Paradigm Plus from ProtoSoft, Inc.

GemStone

GemStone is an object-oriented database product developed and marketed
by Servio Corporation, 2085 Hamilton Ave., Suite 200, San Jose, CA 94125,
(408) 879–6,200. Evaluation information provided in this report was obtained
from the technical documentation set for GemStone Version 3.2, from GeODE

524 11 Objected-Oriented and Object Relational DBMS

Version 2.0 (GeODE is a development environment for GemStone applica-
tions) and from discussions with representatives of Servio Corp.

GemStone may be hosted on the following platforms:

– Sun4/SPARC under SunOS 4.1
– IBM RISC System/6000 under AIX
– DEC Station under Ultrix
– Hewlett Packard 9000 under HP/UX
– Sequent under DYNIX/ptx

GeODE is available on all of the platforms listed earlier. Servio provides
Macintosh, PC/Windows 3.1, and S/2 V2.0 Smalltalk application access to
GemStone databases on the previously listed platforms. Applications running
on any of the earlier platforms, connected via a local area network, may share
access to a single database.

GemStone provides application interfaces for:

– GeODE
– C++
– C
– Smalltalk-80, Smalltalk/V
– Smalltalk DB, a multiuser extended dialect of Smalltalk, developed by

Servio for building and executing GemStone applications

Programs written in any of these languages can access GemStone objects
simultaneously. C++ compilers from Sun, HP, Centerline, Sequent, and IBM
are compatible with the C++ interface for GemStone. Smalltalk compilers
from ParcPlace and Digitalk are compatible with the Smalltalk interface for
GemStone.

Servio provides GeODE (GemStone Object Development Environment)
for developing GemStone applications. This environment is a complete appli-
cation development framework, providing both visual and textual construc-
tion of object-oriented database programs. GeODE supports construction
of Motif-based X Windows applications. GeODE includes tools for schema
design, user interface construction, data browsing, reuse, visual software
construction, and software debugging. Servio provides the GemStone Data-
bridge, a product providing access to SYBASE relational databases from
GemStone applications.

ObjectStore PSE Pro

ObjectStore PSE Pro is a Java-based object-oriented database product de-
veloped and marketed by Object Design, Inc., 25 Mall Road Burlington,
MA 01803, (781) 674–5,000. Evaluation information provided in this report
was obtained from the technical documentation set for ObjectStore PSE Pro
Version 2.0.

11.1 Objected oriented DBMS 525

ObjectStore PSE Pro may be hosted on the following platforms that sup-
port Java VMs:

– Windows 95
– Windows NT
– OS/2
– Macintosh
– Unix

ObjectStore PSE Pro supports JDK 1.1 or higher.

IBM San Francisco

IBM San Francisco is an object-oriented framework developed and marketed
by IBM. Evaluation information provided in this report was obtained from the
technical documentation set for IBM San Francisco Version 1.2, along with
discussions with technical representatives of IBM, San Francisco division.

The IBM San Francisco framework may be used to develop client and
server Java-based applications hosted in a heterogeneous network of:

– Windows 95 (client)
– Windows NT Workstation 4.0
– Windows NT Server 4.0
– AIX 3.1
– OS/400

Server applications can interface to ODBC-JDBC supported databases, or
directly through object-relational mapping to:

– Microsoft SQL Server 6.5
– IBM DB2

11.1.8 Object Relational DBMS

In spite of the impact of relational databases in last decades, this kind of
databases has some limitations to support data persistence required by
actual applications. Due to recent hardware improvements more sophis-
ticated applications have emerged, such as CAD/CAM (Computer-Aided
Design/Computer-Aided Manufacturing), CASE (Computer-Aided Software
Engineering), GIS (Geographic Information System), etc. These applications
can be characterized as consisting of complex objects related by complex rela-
tionships. Representing such objects and relationships in the relational model
implies that the objects must be decomposed into a large number of tuples.

Thus, a considerable number of joins is necessary to retrieve an object
and, when tables are too deeply nested, performance is significantly reduced.
A new generation of databases has appeared to solve these problems: the
object-oriented database generation, which includes the object-relational and
object databases. This new technologyis well suited for storing and retrieving

526 11 Objected-Oriented and Object Relational DBMS

complex data because it supports complex data types and relationships, mul-
timedia data, inheritance, etc. Nonetheless, good technology is not enough to
support complex objects and applications. It is necessary to define method-
ologies that guide designers in the object database design task, in the same
way traditionally has been done with relational databases.

Unfortunately, none of these proposals can be considered as “the method,”
neither for object-relational nor for object databases. On the one hand, they
do not consider last versions of the representative standards for both tech-
nologies: ODMG 3.0 for object databases and SQL: 1999 for object-relational
databases. And, on the other hand, some of them are based on techniques as
OMT or, even, on the E/R model. So, they have to be updated considering
UML, SQL: 1999, and ODMG 3.0 as their reference models. Object data-
bases are well suited for storing and retrieving complex data by allowing the
user to navigate through data. However, object-relational technology, that is,
relational technology extended with new capabilities, such as triggers, meth-
ods, user defined types, etc., presents two advantages compared with object
databases: it is compatible with relational technology and provides a better
support for complex applications. Therefore, object-relational databases are
expected to have a bigger impact in the market than object databases. For
these reasons in this section we focus on object-relational databases design.

In this chapter we propose a methodology for object-relational database
design. As conceptual modeling technique we have chosen the UML class dia-
gram. UML, as a Universal Modeling Language is every day more accepted. It
also presents the advantage of being able to model the full system, including
the database model, in a uniform way. Besides, as UML is an extensible lan-
guage, it is possible to define the required stereotypes for specific applications.
The methodology provides some guidelines to translate a conceptual schema
(in UML notation) into a logical schema.

As logical model we use the SQL: 1999 object-relational model so that
the guidelines were not dependent of the different implementations of object-
relational products. We use Oracle8i as an implementation example. In this
section, we focus on aggregation and composition design. In the framework
of our methodology, we propose specific guidelines to design aggregations and
compositions in an object-relational model. Although the methodology, as
we have explained earlier, is mainly based in SQL: 1999, in this section, we
focus on the aggregation and composition implementation in Oracle8i. The
reason is that this product supports a collection data type, the nested table,
which is specially appropriated to implement aggregations and compositions.
This collection data type is not provided neither by SQL: 1999 nor by other
products, such as Informix Universal Server.

11.1.9 Object-Relational Model

In this section we summarize the object model of the current standard for
object-relational databases, SQL: 1999, as well as the main characteristics

11.1 Objected oriented DBMS 527

of Oracle8i object-relational model, as an example of object-relational prod-
uct. SQL: 1999 data model extends the relational data model with some new
constructors to support objects. Most of last versions of relational products in-
clude some object extensions. However, and because in general these products
have appeared in the market before the standard approval, current versions
of object-relational products do not totally adjust to the SQL: 1999 model.

Object Model of the SQL: 1999

SQL: 1999 is the current standard for object-relational databases. Its data
model tries to integrate the relational model with the object model. In ad-
dition to the object extensions, SQL: 1999 provides other extensions to the
SQL92, such as triggers, OLAP extensions, new data types for multimedia
data storage, etc. One of the main differences between the relational and the
object-relational model is that the First Normal Form (1NF), the basic rule
of a relational schema, has been removed from the object-relational model.
So, a column of an object table can contain a collection data type.

SQL: 1999 allows user to define new structured data types according to the
required data types for each application. Structured data types provide SQL:
1999 the main characteristics of the object model. It supports the concept of
strongly typed language, behavior, encapsulation, substitutability, polymor-
phism, and dynamic binding. Structured types can be used as the type of a
table or as the type of column. A structured type used as the base type in
the definition of a column, permits representing complex attributes; in this
case, structured types represent value types. A structured type used as the
base type in the definition of a table corresponds to the definition of an object
type (or a class), being the table the extension of the type. In SQL: 1999 these
kinds of tables are called typed tables. An object in SQL: 1999 is a row of a
typed table.

When a typed table is defined, the system adds a new column representing
the OID (Object Identifier) of each object of the table. The value of this
attribute is system generated, it is unique for each object and the user cannot
modify it. Figure 11.5 shows an example of a structured type defined in SQL:
1999; in (a) the structured type is used as a value type (as the type of a
column of a table) whereas in (b) it is used as an object type (as the type of
a table).

CREATE TYPE employee AS (
 id INTEGER.
 name VARCHAR(20))

column1 column2

(a) Structured type as column type (b) Structured type as object type

employee OID id name

Fig. 11.5. Structured types used as value and object

528 11 Objected-Oriented and Object Relational DBMS

A structured type can include associated methods representing its behav-
ior. A method is an SQL function, whose signature is defined next to the
definition of the structured type. The body specification is defined separately
on the signature of the method.

SQL: 1999 supports simple inheritance for structured types and for typed
tables. A subtype inherits the attributes and the behavior of the supertype.
A subtable inherits the columns, restrictions, triggers, and methods of the
supertable. A row of a typed table is an object and differs from the rest of
objects by its OID. The value of the OID is generated by the system when
a new object is inserted in the table. The type of this column is a reference
type (REF). Therefore, each typed table has a column that contains the OID
value. There are different REF types, one for each object type; that is, the
REF type is a constructor of types rather than a type itself. An attribute
defined as reference type holds the OID of the referred object. So, the REF
type permits implementing relationships without using foreign keys. SQL:
1999 supports another structured type: the ROW type. The ROW type is a
structured type defined by the user. It has neither extension nor OID. So, it
cannot be used as an object type.

SQL: 1999 only supports a collection type ARRAY. The ARRAY can be
used whenever another type can be placed (as the type of an attribute of
a structured type, as the type of a column, etc.). The ARRAY type allows
representing multivolume attributes not forcing tables to be in 1NF.

Object Model of Oracle8i

As well as SQL: 1999, Oracle8i supports structured data types that can be
defined by the user (although, with a different syntax). A structured type can
be used, as in SQL: 1999, as a column type or as a type of a table. A structured
type used as a column type represents a value type and a structured type used
as the type of a table represents an object type, being the table the extension
of the type. Each row of this kind of tables is an object and, in the same way
as in SQL: 1999, they have a special column of reference type (REF) that
allows identifying each object (OID). It is also possible to define an attribute
as a reference to an object type. Oracle8i allows associating behavior to object
types, defining the signature of the methods as part of the type definition. The
body of the method is defined separately.

Oracle8i supports two kinds of collections: VARRAYS, equivalent to the
SQL: 1999 ARRAY and the nested table. A nested table is a table that is
embedded in another table. It is possible to define a table data type and
to use this type as a column type in a table. So, this column contains a
table (called nested table) with a collection of values, objects, or references.
Figure 11.6 shows an example of nested table (C Table).

One of the main differences between Oracle8i and SQL: 1999 object-
relational model is that Oracle8i does not support inheritance, neither of types
nor of tables. There exist, however, some relational products, as for example,

11.1 Objected oriented DBMS 529

Fig. 11.6. A nested table in Oracle8i

Universal Server of Informix, those support the inheritance concept in a simi-
lar way as the standard. However, another difference that makes Oracle8i more
powerful than SQL: 1999 is related with the collection types. The nested table
not supported by SQL: 1999, allows to represent an object collection embed-
ded in another object, that could be a natural way to implement the UML
aggregation.

11.1.10 Aggregation and Composition in UML

An aggregation is a special form of association between classes that represents
the concept of “WHOLE PART.” Each object of one of the classes that belong
to the aggregation (the composed class) is composed of objects of the other
class of the aggregation (the component class). The composed class is often
called “whole” and the component classes are often called “parts.” An intuitive
example of aggregation is the relationship between a wood and its threes. The
wood can be considered as the whole and the threes would be the parts that
belong to the wood. Aggregation has been briefly treated in the literature and
different classifications of aggregations have been proposed. However, UML
distinguishes only between two kinds of aggregation: simple aggregation and
composed aggregation.

Aggregation

A simple aggregation is an aggregation where each part can be part of more
than one whole. This kind of aggregation is very common in the literature and
has been often refereed as logical or catalog aggregation, even in the first drafts
of UML. As an example of simple aggregation we can think in the catalog of
dolls of the “ToysX” store that contains n Barbie models. However, the same
Barbie models can appear in the catalog of dolls of different toy-stores. This
is possible because there exists a logical aggregation, and the dolls do not
compound physically the catalogs. Figure 11.7 shows a simple aggregation. It
is represented by placing a diamond next to the whole class.

Simple aggregation does not imply any kind of restriction over the life of
the parts with regard to its whole.

Composition

A composition, also called composed aggregation, is a special kind of aggrega-
tion in which the parts are physically included in the whole. Once a part has

530 11 Objected-Oriented and Object Relational DBMS

Fig. 11.7. Simple aggregation example

Fig. 11.8. Composition example

Fig. 11.9. Object-relational database design methodology

been created it lives and dies with its whole. A part can be explicitly removed
before removing its associated whole. As it is a physical aggregation, a part
can only belong to a whole. Figure 11.8 shows an example of composition. Uni-
versity is the whole and departments are its parts. The life of a department
depends on the life of the university to which it belongs. If the university
disappears its departments disappear as well. Besides, a department can be
joined only to a university. The representation of the composition is similar to
the representation of the simple aggregation. The only difference is that the
diamond is fulfilled.

11.1.11 Object-Relational Database Design

The proposed methodology for object-relational database design is based on
the proposal of Bertino and Marcos for object-oriented database design and
on the proposal of Marcos and Cáceres. Figure 11.9 summarizes the main steps
of the methodology.

The methodology proposes three phases, such as analysis, design, and
implementation. Nonetheless, as it is shown in Fig. 11.9 differences between
analysis, design, and implementation phases are not as strong as in struc-
tured design. At the analysis phase, we propose to use the UML class diagram

11.1 Objected oriented DBMS 531

to design the conceptual schema instead of the Extended E/R Model (com-
monly used for relational databases), because UML is the standard language
for object-oriented system design. Unlike E/R, UML has the advantage that
it allows to design the entire system making easier the integration between
different system views.

The design phase is divided into two steps:

– Standard design, that is, a logical design independent of any product.
– Specific design, that is, the design for a specific product (Oracle8i,

Informix, etc.) Without considering tuning or optimization tasks.

Standard design is especially important in object-relational database
design because each product implements a different object-relational model.
This phase provides an object-relational specification independent of the prod-
uct improving the database maintainability as well as making easier migration
between products. As it is shown in Fig. 11.9 we propose two alternative tech-
niques for this phase: defining the schema in SQL: 1999, because it does not
depend on any specific product; and/or using a graphical notation describing a
standard object-relational model (the SQL: 1999 model). This graphical nota-
tion corresponds with the relational graph that represents the logical design of
a relational database. As graphical notation and due to UML can be extended,
we propose to use UML extended with the required stereotypes for the SQL:
1999 object-relational model.

For the specific design (intermediate stage between design and imple-
mentation), we have to specify the schema in the SQL (language) of the
chosen product. We use, as an example, Oracle8i. Besides, we also propose
to use optionally a graphical technique to improve the documentation and
the understandability of the generated SQL code. The graphical notation is
also UML substituting the SQL: 1999 stereotypes with the specific stereo-
types for the selected product. Finally, the implementation phase includes
the physical design tasks. In this phase the schema obtained in the previous
phase should be refined, making a tuning to improve the response time and
storage space according to the specific needs of the application.

Relational database methodologies propose some rules to transform a con-
ceptual schema into a standard logical schema. In the same way, we also
propose a technique that allows transforming a schema from one phase to the
next. This technique suggests some rules that have to be considered only as
guidelines as illustrated in Table 11.5.

Class Transformation

Only persistent classes have to be transformed into a class of the database
schema. A persistent class in UML is marked with the stereotype 〈persistent〉
(or, in Rational Rose notation with 〈schema〉). To transform a UML persistent
class into a SQL: 1999 or Oracle8i class, it is necessary to define the object
type as well as its extension. An object type in SQL: 1999 is defined as a

532 11 Objected-Oriented and Object Relational DBMS

Table 11.5. Guidelines for object-relational database design

UML SQL: 1999 Oracle8i

Class Structured Type Object Type
Class Extension Typed Table Table of Object Type

Attribute Attribute Attribute
Multivalued ARRAY VARRAY
Composed ROW/Structured Type in

column
Object Type in column

Calculated Trigger/Method Trigger/Method
Association

One-To-One REF/REF REF/REF
One-To-Many REF/ARRAY REF/Nested Table
Many-To-Many ARRAY/ARRAY Nested Table/Nested Table

Aggregation ARRAY Nested Table
Generalization Types/Typed Tables Oracle cannot represent

directly the generalization
concept

Fig. 11.10. Transformation of class

structured type, and its extension is defined as table of the aforementioned
object type. A UML persistent class is translated into Oracle8i in the same
way as into SQL: 1999. They only differ in the syntax of the structured type
(in Oracle8i the structured type specifies “AS OBJECT”). Figure 11.10 shows
an example of a UML persistent class and its corresponding specification in
SQL: 1999 and Oracle8i.

Attribute and Method Transformation

Each attribute of a UML class is transformed into an attribute of the type.
Nor SQL: 1999 neither Oracle8i support visibility levels, so in design and

11.1 Objected oriented DBMS 533

implementation phases they disappear. Visibility levels should be implemented
by defining views or privileges, etc.

Multivalued attributes are represented in SQL: 1999 and Oracle8i with a
collection type. In SQL: 1999 the collection type is the ARRAY type, because
it is the only collection type supported by the standard, whereas in Oracle8i it
is possible to choose between the VARRAY and the nested table types. Using
the VARRAY is recommended if the maximum number of elements is known;
if the number of values is unknown, or very uncertain, it is recommended to
use a nested table. We can notice that the possibility of defining multivalued
attributes without additional tables eliminates one the first rules in a relational
database design: the first normal form is mandatory in every table.

Composed attributes can be represented in the object-relational model
without creating an associated table, transforming it into a SQL: 1999 ROW
type and into an Oracle8i object type without extension (that is, defining the
object type and not specifying the associated table).

Derived attributes can be implemented by means of a trigger or by means of
a method in both models, SQL: 1999 and Oracle8i. Each UML class method
is transformed into SQL: 1999 and Oracle8i specifying the signature of the
method in the definition of the object type. In this way the method is joined
to the type to which it belongs. The body of the method is defined separately.

Association Transformation

UML associations can be represented in an object-relational schema either as
unidirectional or as bidirectional relationships. A unidirectional association
means that the association can be crossed only in one direction whereas a
bidirectional association can be crossed in the two directions. If we know that
queries require data in both directions of the association then it could be rec-
ommended to implement them as bidirectional relationships improving in this
way the response times. However, we have to take into account that bidirec-
tional relationships are not maintained by the system, so the consistence has
to be guaranteed by means of triggers or methods. Therefore two-way rela-
tionships, despite of improving in some cases the response times, have a higher
maintenance cost. The navigability (if it is represented) in a UML diagram
shows the direction in which the association should be implemented.

Depending on the maximum multiplicity of the two classes involved in
an association, we propose the following transformation rules (considering
bidirectional associations):

– One-to-One. It would be implemented through a REF type attribute in
each object type involved in the association. If the minimum multiplicity
were one, it would be necessary to impose the NOT NULL restriction to
the REF attribute in the corresponding typed table (because the restric-
tions have to be defined in the table rather than in the object type).

534 11 Objected-Oriented and Object Relational DBMS

– One-to-Many. It would be transformed including a REF type attribute is
in the object type that participates in the association with multiplicity
N and including an attribute of collection type in the object type that
participates with multiplicity one. The collection types contain references
(REF type) to the other object type involved in the relationship. In SQL:
1999 the collection type is an ARRAY (because it is the only collection
type supported by the standard). However, in Oracle8i it is possible to
use nested tables instead of VARRAYS because this constructor allows
maintaining collections of elements without a predefined dimension. If the
maximum cardinality were known (for example, suppose that a plain could
not contain more than ten figures) then it would be more advisable to use
a VARRAY.

– Many-to-Many. Following the same reasoning that in the previous case,
a many-to-many association would be transformed into SQL: 1999 defin-
ing an ARRAY attribute in each object type involved in the relationship.
In Oracle8i VARRAYs should be replaced by Nested Tables. If the asso-
ciation represents the navigability then it would be implemented as we
have explained earlier, but just in one direction. Therefore the attribute
of REF type (or the collection of REF type) would be defined only in a
class.

Generalization Transformation

SQL: 1999 supports generalization of types and generalization of typed tables.
The first one allows implementing the inheritance concept associated to a gen-
eralization; the second one allows implementing the subtype concept (every
object that belongs to the subclass also belongs to the superclass) that is also
associated to a generalization. The definition is made including the UNDER
clause in the specification of each subtype indicating its supertype (only sim-
ple inheritance is allowed). It is also necessary to specify the corresponding
hierarchy of tables by means of the UNDER clauses in the corresponding
subtables. Oracle8i does not support inheritance. Therefore, generalizations
are implemented using foreign keys, as in the relational model, or using REF
types. Besides, it is necessary to specify restrictions (CHECK, assertions and
triggers) or operations that permit to simulate their semantics.

There exist, however, some commercial products that implement inheri-
tance such as Informix Universal Server. Although Informix does not support
the entire semantics of the inheritance concept (for example, tables inherit
only attributes), it allows to define it and supports some of its characteristics.
It is expected that future versions of object-relational products will include
inheritance. Meanwhile, when an object relational database is being designed
it is important to specify the SQL: 1999 schema in order to maintain the
semantics that is lost in the implementation phase due to lacks of the product
models.

11.1 Objected oriented DBMS 535

Aggregations and Composition Design

In this section we present the rules to transform UML simple aggregations
and compositions into SQL: 1999 and Oracle8i, discussing the main differences
between both of them.

Simple Aggregation Design

To represent this kind of aggregation in an object-relational model we propose
to include in the definition of the whole type an attribute of collection type.
This collection contains references to its parts, that is, references to the objects
that compound the whole. For example, in Fig. 11.11, we can see an aggre-
gation between a project and its plains. As we can see, it has been defined
in SQL: 1999 and Oracle8i includes an attribute Has plain in the definition
of the class project. This attribute is a collection of references to class plain.
In SQL: 1999 the collection is defined by means of an ARRAY of references.
In Oracle8i the collection should be a nested table. If the maximum number
of components (maximum cardinality) is known (for example, suppose that
in a plain there could not be more than ten figures) then it would be more
advisable to use a VARRAY.

We propose to define the collection as a set of references, because a simple
aggregation is an aggregation where each part can be part of more than one
whole. It does not imply any kind of restriction over the life of the parts with
regard to its whole.

Fig. 11.11. Simple aggregation transformation

536 11 Objected-Oriented and Object Relational DBMS

Composition

The composition is a special kind of aggregation in which the parts are phys-
ically linked to the whole. So, a composition defines three restrictions with
regard the aggregation concept:

Restriction 1. A part cannot simultaneously belong to more than one whole.
Restriction 2. Once a part has been created it lives and dies with its whole.
Restriction 3. A part can be explicitly removed before to remove its associ-

ated whole.

Translating the UML concept of composition into an object-relational
schema depends on the target model. Considering the translation to the SQL:
1999, as the standard object-relational model, there is not any difference with
the aggregation implementation. To represent an aggregation or a composi-
tion in SQL: 1999 we have to introduce an attribute in the specification of the
whole. As SQL: 1999 provides only the ARRAY collection type, this attribute
has to be an ARRAY in both cases. The restrictions mentioned earlier have
to be implemented by means of checks, assertions and/or triggers. This is just
like some object-relational products, such as Informix that provides the set,
list, and multiset collection types. However, in Oracle8i it is possible to im-
plement directly the concept of composition maintaining the differences with
regard to the aggregation concept. This is because Oracle8i besides support-
ing the VARRAY collection type, it also provides the nested table. A nested
table is a collection type but it is also a table. Being a table, it can be defined
as an object table. So, the nested table can contain the parts as objects rather
than as references. At the same time the nested table is embedded in a column
of another object table (the whole). Figure 11.12 shows the specification of a
composition in Oracle8i.

When the composition is represented in the way defined earlier, the three
composition restrictions defined previously are fulfilled. Therefore any check,
assertion, or trigger has to be defined to implement the composition semantics.
So, the nested table allows implementing the composition and the simple
aggregation maintaining their semantics differences, in the same way as in
UML.

Fig. 11.12. Composition transformation

11.1 Objected oriented DBMS 537

Advantages of ORDBMS

The advantages of ORDBMS are summarized below:
1. Resolves many of known weaknesses of RDBMS.
2. Reuse and sharing:

– Reuse comes from ability to extend server to perform standard func-
tionality centrally;

– Gives rise to increased productivity both for developer and end-user.
3. Preserves significant body of knowledge and experience gone into devel-

oping relational applications.

Disadvantages of ORDBMS

The disadvantages of ORDBMS are summarized below:
– Complexity.
– Increased costs.
– Proponents of relational approach believe simplicity and purity of rela-

tional model are lost.
– Some believe RDBMS is being extended for what will be a minority of

applications.
– OO purists not attracted by extensions either.
– SQL now extremely complex.

11.1.12 Comparison of OODBMS and ORDBMS

The comparison of OODBMS and ORDBMS with respect to data model-
ing, data access, and data sharing are shown in Tables 11.6, 11.7, and 11.8
respectively.

Data Modeling Comparison of ORDBMS and OODBMS

Table 11.6. Data modeling comparison of ORDBMS and OODBMS

Feature ORDBMS OODBMS

Object identity (OID) Supported through REF type Supported
Encapsulation Supported through UDT’s Supported but broken

for queries
Inheritance Supported (separate hierarchies Supported

for UDT’s and Tables)
Polymorphism Supported (UDF invocation Supported as in an

based on generic function) object – oriented
programming model
language

Complex Objects Supported through UDT’s Supported
Relationships Strong support with user-defined Supported (for example,

referential integrity constraints using class libraries)

538 11 Objected-Oriented and Object Relational DBMS

Data Access Comparison of ORDBMS and OODBMS

Table 11.7. Data access comparison of ORDBMS and OODBMS

Feature ORDBMS OODBMS

Creating and Supported but not transparent Supported but degree of
accessing transparency differs
persistent data between products
Ad hoc query facility Strong support Supported through

ODMG 3.0
Navigation Supported by REF type Strong Support
Integrity Constraints Strong Support No support
Object server/page Object server Either
server
Schema evolutions Limited support Supported but degree of

support differs between
products

Data Sharing Comparison of ORDBMS and OODBMS

Table 11.8. Data sharing comparison of ORDBMS and OODBMS

Feature ORDBMS OODBMS

ACID transactions Strong support Supported
Recovery Strong support Supported but degree of

support differs between
products

Advanced transaction No support Supported but degree of
models support differs between

products
Security, Integrity and Strong Support Limited support
Views

Summary

The main objective of an OODBMS is to provide consistent, data indepen-
dent, secure, controlled, and extensible data management services to support
the object-oriented modeling paradigm. Today’s OODBMS provide most of
these capabilities. Many of these products are second generation OODBMS
that have incorporated the lessons learned from the first generation products.
Interpreting the database evolution diagram, we are about half way along the
path to having features rich, powerful OODBMS in the market place. Given
the high degree of interest in object-oriented technologies, there is a substan-
tial market pull to put OODBMS products on a fast track where features and
capabilities will continue to advance at a rapid rate.

11.1 Objected oriented DBMS 539

A major strength of the OODBMS technology is its ability to represent
complex behaviors directly. By incorporating behaviors into the database, one
substantially reduces the complexity of applications that use the database. In
the ideal scenario, most of the application code will deal with data entry and
data display. All the functionality associated with data integrity and data
management would be defined within the basic object model. The advantages
of this approach are:

– All operations are defined once and reused by all applications.
– Changes to an operation affect all applications, simplifying database main-

tenance (although most databases require the applications to be recom-
piled).

The benefits of object-oriented database applications development are an
increase in productivity resulting from the high degree of code reuse and an
ability to cope with greater complexity resulting from incremental refinement
of problems. One also gets increased design flexibility due to polymorphism
and dynamic binding. Finally, both developers and users will experience ben-
efits resulting from the naturalness and simplicity of representing data as
objects.

These strengths need to be weighed against the organizational changes
introduced by this new and different way of engineering solutions. Different
engineering considerations contribute to performance and reliability than for
relational DBMS’s. Projects need to be managed differently. Clearly, one needs
to approach this new technology with eyes open, recognizing that the benefits
will be realized after a considerable investment has been made to learn how
to use it effectively.

In this chapter we have summarized a methodology for object-relational
database design focused on the aggregation and composition implementation.
The methodology proposes three phases: analysis, design and implementation.
As conceptual modeling technique we have chosen the UML class diagram.
As logical model we have used the SQL: 1999 object-relational model, so
that the guidelines are not dependent of the different implementations of
each object-relational product. As a product example we have used Oracle8i.
We have briefly explained the rules to transform a UML aggregation into an
object-relational model considering the differences between aggregation and
composition.

We have focused on the implementation in Oracle8i because this product
supports a collection data type, the nested table that is specially appropri-
ated to implement aggregations and compositions. This collection data type
is not provided neither by SQL: 1999 nor by other products. In the method-
ology we have proposed two alternative techniques for the standard design
phase: defining the schema in SQL: 1999, because it does not depend on
a specific product; and/or using a graphical notation describing a standard
object-relational model (the SQL: 1999 model).

540 11 Objected-Oriented and Object Relational DBMS

This graphical notation corresponds with the relational “graph” that rep-
resents the logical design of a relational database. Although there are some
proposals of UML stereotypes for database design, they are focusing on the
relational model. The next step will be completing the methodology taking
into account the UML use cases diagrams to design the behavior of the classes.

Review Questions

11.1. State the benefits of OOP.

There are several benefits of adopting OOP. The following three benefits,
although subjective, are considered by many to be major reasons for adopting
OOP:

– Programs reflect reality.
– The model is more stable than functionality.
– Subclassing and virtuals improve the reusability of code.

11.2. List some OOPLs. Compare different OOP languages.

The following is a list of some popular OOPLs:

– C++ Language System
– C Talk
– Smalltalk
– Smalltalk-80
– Actor
– Enfin
– Prokappa
– Eiffel
– KnowledgePro
– Classic-Ada with Persistence
– Objective-C
– Trellis/Owl
– Flavors
– CLOS
– Common Loops

Most OOPLs can trace their origins to Simula. The concepts of Objects
and Classes are employed by most of these languages.

11.3. Explain different modeling relationships in C++?

Interactions between objects can be captured during OOD by appropriate
relationships. At the implementation level, C++ provides the following mech-
anisms for implementing object relationships:

Review Questions 541

1. Global Objects
2. Function arguments
3. Constructors
4. Base classes
5. Templates

11.4. Compare and contrast the different definitions of Object-oriented data
models.

A data model consists of:

– Static properties such as objects, attributes, and relationships.
– Integrity rules over objects and operations.
– Dynamic properties such as operations or rules defining new database

states based on applied state changes.

Object-oriented databases have the ability to model all three of these com-
ponents directly within the database supporting a complete problem/solution
modeling capability. Prior to object-oriented databases, databases were capa-
ble of directly supporting points 1 and 2 above and relied on applications for
defining the dynamic properties of the model. The disadvantage of delegat-
ing the dynamic properties to applications is that these dynamic properties
could not be applied uniformly in all database usage scenarios since they were
defined outside of the database in autonomous applications. Object-oriented
databases provide a unifying paradigm that allows one to integrate all three
aspects of data modeling and to apply them uniformly to all users of the
database.

11.5. How did the need arise for Object-oriented databases?

The increased emphasis on process integration is a driving force for the adop-
tion of object-oriented database systems. For example, the Computer Inte-
grated Manufacturing (CIM) area is focusing heavily on using object-oriented
database technology as the process integration framework. Advanced office
automation systems use object-oriented database systems to handle hyperme-
dia data. Hospital patient care tracking systems use object-oriented database
technologies for ease of use. All of these applications are characterized by hav-
ing to manage complex, highly interrelated information, which is strength of
object-oriented database systems.

Clearly, relational database technology has failed to handle the needs of
complex information systems. The problem with relational database systems is
that they require the application developer to force an information model into
tables where relationships between entities are defined by values. For the most
part, object database design is a fundamental part of the overall application
design process. The object classes used by the programming language are the
classes used by the ODBMS. Because their models are consistent, there is no

542 11 Objected-Oriented and Object Relational DBMS

need to transform the program’s object model to something unique for the
database manager.

An initial area of focus by several object-oriented database vendors has
been the Computer Aided Design (CAD), Computer Aided Manufacturing
(CAM), and Computer Aided Software Engineering (CASE) applications.
A primary characteristic of these applications is the need to manage very
complex information efficiently. Other areas where object-oriented database
technology can be applied include factory and office automation. For example,
the manufacture of an aircraft requires the tracking of millions of interdepen-
dent parts that may be assembled in different configurations. Object-oriented
database systems hold the promise of putting solutions to these complex prob-
lems within reach of users.

11.6. Explain about the evaluation of OODBMS.

Object-oriented database research and practice dates back to the late 1970s
and had become a significant research area by the early 1980s, with initial com-
mercial product offerings appearing in the late 1980s. Today, there are many
companies marketing commercial object-oriented databases that are second
generation products. OODBMS’s have established themselves in niches such
as e-commerce, engineering product data management, and special purpose
databases in areas such as securities and medicine. The strength of the object
model is in applications where there is an underlying needed to manage com-
plex relationships among data objects. Today, it is unlikely that OODBMS’
are a threat to the stranglehold that relational database vendors have in the
market place. Clearly, there is a partitioning of the market into databases that
are best suited for handling high volume low, complexity data and databases
that are suited for high complexity, reasonable volume, with OODBMS filling
the need for the latter.

Object-oriented databases are following a maturation path similar to re-
lational databases. Figure 11.13 depicts the evolution of object-oriented data-
base technologies. On the left, we have object-oriented languages that have
been extended to provide simple persistence allowing application objects to
persist between user sessions. Minimal database functionality is provided in
terms of concurrency control, transactions, recovery, etc.

Fig. 11.13. The evolution of object-oriented databases

Review Questions 543

The next stage of evolution is more difficult. As one moves to the right
the database does more for the user requiring less effort to develop applica-
tions. An example of this is that current OODBMS provide a large number
of low-level interfaces for the purpose of optimizing database access. As the
OODBMS database technology evolves, OODBMS will assume a greater part
of the burden for optimization allowing the user to specify high-level declara-
tive guidance on what kinds of optimizations need to be performed. A general
guideline for gauging database maturity is the degree to which functions such
as database access optimization, integrity rules, schema and database migra-
tion, archive, backup and recovery operations can be tailored by the user using
high-level declarative commands to the OODBMS.

11.7. With a neat sketch emphasize the characteristics of Object-oriented
databases.

Object-oriented database technology is a combination of object-oriented
programming and database technologies. Figure 11.14 illustrates how these
programming and database concepts have come together to provide what we
now call object-oriented databases.

Perhaps the most significant characteristic of object-oriented database
technology is that it combines object-oriented programming with database
technology to provide an integrated application development system. There
are many advantages to including the definition of operations with the defi-
nition of data. First, the defined operations apply ubiquitously and are not

Fig. 11.14. Makeup of an object-oriented database

544 11 Objected-Oriented and Object Relational DBMS

dependent on the particular database application running at the moment.
Second, the data types can be extended to support complex data such as
multimedia by defining new object classes that have operations to support
the new kinds of information. Other strengths of object-oriented modeling
are well known. For example, inheritance allows one to develop solutions to
complex problems incrementally by defining new objects in terms of previously
defined objects.

Polymorphism and dynamic binding allows one to define operations for
one object and then to share the specification of the operation with other
objects. These objects can further extend this operation to provide behaviors
that are unique to those objects. Dynamic binding determines at runtime,
which of these operations is actually executed, depending on the class of the
object requested to perform the operation. Polymorphism and dynamic bind-
ing are powerful object-oriented features that allow one to compose objects to
provide solutions without having to write code that is specific to each object.
All of these capabilities come together synergistically to provide significant
productivity advantages to database application developers.

11.8. Describe how relationships can be modeled in an OODBMS.

Using Relationship Between Objects

Objects interacting in a system make use of the services offered by other
objects. The using relationship can be used to express a subset of such inter-
actions. Booch and Vilot have identified three roles that each object may play
in using relationships:

Actor objects can operate upon other objects, but are never operated upon
by other objects. Such objects make use of services offered by other objects
but do not themselves provide any service to the objects they make use of.

Server objects never operate upon objects, but are operated upon by other
objects.

Agent objects can both operate upon other objects and be operated upon
by other objects.

Relationships among Classes

Rumbaugh has identified three types of class relationships:

1. Generalization or “kind-of”
2. Aggregation or “part-of”
3. Association, implying some semantic connection
4. Booch and Vilot have identified two more types of relationships between

classes
5. Instantiation relationships
6. Metaclass relationships

Review Questions 545

Booch and Vilot suggests the following rule of thumb for identifying
relationships: “If an abstraction is more than the sum of its component parts,
then using relationships are more appropriate. If an abstraction is a kind of
some other abstraction or if that abstraction is exactly equal to the sum of
its components, then inheritance is a better approach.”

11.9. What functionality would typically be provided by an ORDBMS?

Due to recent hardware improvements more sophisticated applications have
emerged, such as CAD/CAM (Computer-Aided Design/Computer-Aided
Manufacturing), CASE (Computer-Aided Software Engineering), GIS (Geo-
graphic Information System), etc. These applications can be characterized as
consisting of complex objects related by complex relationships. Representing
such objects and relationships in the relational model implies that the objects
must be decomposed into a large number of tuples.

Thus, a considerable number of joins is necessary to retrieve an object
and, when tables are too deeply nested, performance is significantly reduced.
A new generation of databases has appeared to solve these problems: the
object-oriented database generation, which includes the object-relational and
object databases. This new technology is well suited for storing and retrieving
complex data because it supports complex data types and relationships, mul-
timedia data, inheritance, etc. Nonetheless, good technology is not enough to
support complex objects and applications. It is necessary to define method-
ologies that guide designers in the object database design task, in the same
way traditionally has been done with relational databases.

The object model of the current standard for object-relational databases,
SQL: 1999, as well as the main characteristics of Oracle8i object-relational
model, as an example of object-relational product. SQL: 1999 data model
extends the relational data model with some new constructors to support
objects. Most of last versions of relational products include some object
extensions. However, and because in general these products have appeared in
the market before the standard approval, current versions of object-relational
products do not totally. Adjust to the SQL: 1999 model.

11.10. Discuss about the various criteria used to evaluate OODBMS

These criteria are broken into three main areas:

– Functionality
– Application Development Issues
– Miscellaneous Criteria

Functionality, defines evaluation criteria based on functional capabilities
provided by the OODBMS. Subsections include Basic Object-Oriented Mod-
eling, Advanced Object-Oriented Database Topics, Database Architecture,
Database Functionality, Application Programming Interface, and Querying
an OODBMS.

546 11 Objected-Oriented and Object Relational DBMS

Application Development Issues considers issues regarding the develop-
ment of applications on top of an OODBMS.

Miscellaneous Criteria, identifies a few nonfunctional and nondevelopmen-
tal evaluation issues. These issues deal with vendor and product maturity,
vendor support, and current users of the OODBMS product.

11.11. Differentiate OODBMS and ORDBMS with a neat tabular column.

1. Data Modeling Comparison of ORDBMS and OODBMS (Table 11.9)
2. Data Access Comparison of ORDBMS and OODBMS (Table 11.10)
3. Data Sharing Comparison of ORDBMS and OODBMS (Table 11.11)

Table 11.9. Data modeling comparison of ORDBMS and OODBMS

Feature ORDBMS OODBMS

Object identity (OID) Supported through REF type Supported
Encapsulation Supported through UDT’s Supported but broken

for queries
Inheritance Supported (separate hierarchies Supported

for UDT’s and Tables)
Polymorphism Supported (UDF invocation Supported as in an

based on generic function) object – oriented
programming model
language

Complex Objects Supported through UDT’s Supported
Relationships Strong support with user-defined Supported (for example,

referential integrity constraints using class libraries)

Table 11.10. Data Access Comparison of ORDBMS and OODBMS

Feature ORDBMS OODBMS

Creating and accessing Supported but not transparent Supported but degree of
persistent data transparency differs

between products
Ad hoc query facility Strong support Supported through

ODMG 3.0
Navigation Supported by REF type Strong Support
Integrity Constraints Strong Support No support
Object server/page Object server Either
server
Schema evolutions Limited support Supported but degree of

support differs between
products

Review Questions 547

Table 11.11. Data Sharing Comparison of ORDBMS and OODBMS

Feature ORDBMS OODBMS

ACID transactions Strong support Supported
Recovery Strong support Supported but degree of

support differs between
products

Advanced transaction No support Supported but degree of
models support differs between

products
Security, Integrity, and Strong Support Limited support
Views

Table 11.12. Miscellaneous evaluation criteria

Criteria

Product Maturity
Product Documentation
Vendor Maturity
Vendor Training
Vendor Support and Consultation
Vendor Participation in Standards Activities

11.12. List out and briefly explain the nontechnical criteria under miscella-
neous evolution category.

Miscellaneous Criteria

A number of nontechnical criteria should also be considered when evaluat-
ing an OODBMS. This section details some of these criteria, as listed in
Table 11.12, Miscellaneous Evaluation Criteria.

Product Maturity

Product maturity may be measured by several criteria including:

– Years under development
– Number of seats licensed
– Number of licensed seats actually in use
– Number of licensed seats in use for purposes other than evaluations (i.e.,

actual development efforts)
– Number and type of applications being built with the OODBMS product
– Number and type of shipped applications built with the OODBMS

product

548 11 Objected-Oriented and Object Relational DBMS

Product Documentation

Product documentation should be clear, consistent, and complete. The
documentation should include complete examples of typical programmed
capabilities (e.g., what is the sequence of calls to access data from the
database and to cause updates to that data to be made permanent in the
database).

Vendor Maturity

Vendor maturity may be measured by several criteria including:

– Company’s size and age.
– Previous experience of the company’s lead technical and management per-

sonnel in the commercial database market.
– Financial stability.

Vendor Training

Availability and quality of vendor supplied training classes is an important
consideration when selecting an OODBMS.

Vendor Support and Consultation

It is expected that significant support will be required during the OODBMS
evaluation process and to overcome the initial learning curve. OODBMS ven-
dors should provide a willing and capable support staff. Support should be
available via phone and electronically. Consulting support might also be ap-
pealing where the OODBMS vendor provides expert, hands-on assistance in
product use, object-oriented application design (especially in regards to data-
base issues), and in maximizing database application performance.

Vendor Participation in Standards Activities

The vendor should be active in standards efforts in the object-oriented, lan-
guage, CASE, open software, and data exchange areas. In particular:

– Object Management Group (OMG). An organization funded by over 80 in-
ternational information systems corporations whose charter is to develop
standards for interoperation and portability of software. The OMG is fo-
cusing on object-oriented integration technologies such as Object Request
Broker (ORB), OODBMS interfaces, and object interfaces for existing
applications.

– Object Database Management Group (ODMG). An organization of
OODBMS vendors chartered to define a standardinterface to OODBMS

Review Questions 549

that will allow application portability and interoperability. Standards
defined by the ODMG will be provided to OMG, ANSI, STEP, PCTE,
etc. to aid in their respective standardization efforts.

– ANSI standardization efforts in languages (C, C++, Smalltalk), SQL, and
object-oriented databases.

– Standards such as Portable Common Tool Environment (PCTE) and
CASE Data Interchange

– Format (CDIF) providing for common data representations, data ex-
change formats and interoperation of tools.

– PDES/STEP. An effort aimed at standardizing an exchange format for
product model data (product model data, such as CAD data, represents
a prime application area for OODBMS).

11.13. What are the advantages and disadvantages of extending the relational
data model?

Advantages of ORDBMS

1. Resolves many of known weaknesses of RDBMS.
2. Reuse and sharing:

– Reuse comes from ability to extend server to perform standard func-
tionality centrally.

– Gives rise to increased productivity both for developer and end-user.
3. Preserves significant body of knowledge and experience gone into devel-

oping relational applications.

Disadvantages of ORDBMS

– Complexity.
– Increased costs.
– Proponents of relational approach believe simplicity and purity of rela-

tional model are lost.
– Some believe RDBMS is being extended for what will be a minority of

applications.
– OO purists not attracted by extensions either.
– SQL now extremely complex.

11.14. Analyze the concept OODBMS in fundamental four areas

OODBMS can be analyzed in the following four areas:

– Functionality
– Usability
– Platform
– Performance

550 11 Objected-Oriented and Object Relational DBMS

An analysis of functional capabilities is performed to determine if a given
OODBMS provides sufficient capabilities to meet the current and future needs
of a given development effort. Functional capabilities include basic database
functionality such as concurrency control and recovery as well as object-
oriented database features such as inheritance and versioning. Each evaluation
will have to identify and weight a set of functional requirements to be met
by the candidate OODBMS. Weighting is an important consideration since
application workarounds may be possible for missing functionality.

Usability deals with the application development and maintenance process.
Issues include development tools and the ease with which database applica-
tions can be developed and maintained. How a developer perceives the data-
base and the management of persistent objects might also be considered under
the category of usability. Other issues to be considered are database adminis-
tration, product maturity, and vendor support. Evaluation of usability is likely
to be highly subjective. Perhaps the most easily measurable evaluation crite-
rion is platform. An OODBMS is either available or not on the application’s
target hardware and operating system. Heterogeneous target environments
require that the OODBMS transparently interoperates within that environ-
ment.

11.15. Explain concept of Object Versioning

Object versioning is the concept that a single object may be represented by
multiple versions (i.e., instances of that object) at one time. We can define two
forms of versioning, each driven by particular requirements of the applications
which are driving the need for OODBMS products:

– Linear Versioning is the concept of saving prior versions of objects as
an object changes. In design-type applications (e.g., CASE, CAD) prior
versions of objects are essential to maintain the historical progression of
a design and to allow designers to return to earlier design points after
investigating and possibly discarding a given design path. Under linear
versioning, only a single new version can be created from each existing
version of an object.

– Branch Versioning supports concurrency policies where multiple users
may update the same data concurrently. Each user’s work is based upon a
consistent, nonchanging base version. Each user can modify his version of
an object (as he proceeds along some design path in a CAD application for
example). At some future point in time, under user/application support,
the multiple branch versions are merged to form a single version of the
object. Branch versioning is important in applications with long transac-
tions so that users are not prevented access to information for long periods
of time. Under branch versioning, multiple new versions may be created
for an object.

Associated with the idea of versioning is that of configuration. A configu-
ration is a set of object versions that are consistent with each other. In other

Review Questions 551

words, it is a group of objects whose versions all belong together. OODBMS
need to provide support so that applications access object versions that belong
to the same conceptual configuration. This may be achieved by controlling the
relationships that are formed for versioned objects (i.e., they may be dupli-
cated in the new object or replaced with relationships to other objects).

An OODBMS may provide low level facilities which application developers
use to control the versioning of objects. Alternatively, the OODBMS may
implement a specific versioning policy such as automatically creating a new
object version with each change. An automatic policy may result in rapid and
unacceptable expansion of the database and requires some automated means
of controlling this growth.

11.16. Explain about the concept Basic Object-Oriented modeling.

Basic Object-Oriented Modeling

The evaluation criteria in this section distinguish database as an object-
oriented database. Topics in this section cover the basic object-oriented (OO)
capabilities typically supported in any OO technology (e.g., programming lan-
guage, design method). These basic capabilities are expected to be supported
in all commercial OODBMS. The topics are given a cursory overview here for
readers new to OO technology.

Complex Objects

OO systems and applications are unique that the information being main-
tained is organized in terms of the real-world entities being modeled. This
differs from relational database applications that require a translation from
the real-world information structure to the table formats used to store data
in a relational database. Normalizations upon the relational database tables
result in further perturbation of the data from the user’s perceptual viewpoint.
OO systems provide the concept of complex objects to enable modeling of real-
world entities. A complex object contains an arbitrary number of fields, each
storing atomic data values or references to other objects (of arbitrary types).
A complex object exactly models the user perception of some real-world entity.

Object Identity

OO databases (and programming languages) provide the concept of an object
identifier (OID) as a means f uniquely identifying a particular object. OIDs
are system generated. A database application does not have direct access
to the OID. The OID of an object never changes, even across application
executions. The OID is not based on the value stored within the object. This
differs from relational databases, which use the concept of primary keys to
identify a particular table row (i.e., tuple). Primary keys are based upon

552 11 Objected-Oriented and Object Relational DBMS

data stored in the identified row. The concept of OIDs makes it easier to
control the storage of objects (e.g., not based on value) and to build links
between objects (e.g., they are based on the never changing OID). Complex
objects often include references to other objects, directly or indirectly stored
as OIDs.

Classes

OO modeling is based on the concept of a class. A class defines the data values
stored by, and the functionality associated with, an object of that class. One
of the primary advantages of OO data modeling is this tight integration of
data and behavior through the class mechanism. Each object belongs to one,
and only one, class. An object is often referred to as an instance of a class.
A class specification provides the external view of the instances of that class.
A class has an extent (sometimes called an extension), which is the set of all
instances of the class. Implementation of the extent may be transparent to
an application, but minimally provides the ability to visit every instance of
the class. Within an OODBMS, the class construct is normally used to define
the database schema. Some OODBMS use the term type instead of class. The
OODBMS schema defines what objects may be stored within the database.

Attributes

Attributes represent data components that make up the content of a class.
Attributes are called data members in the C++ programming language. In-
stance attributes are data components that are stored by each instance of the
class. Class attributes (static data members in C++) are data values stored
once for all instances of the class. Attributes may or may not be visible to
external users of the class. Attribute types are typically a subset of the ba-
sic data types supported by the programming language that interfaces to the
OODBMS. Typically this includes enumeration types such as characters and
booleans, numeric types such as integers and floats, and fixed length arrays of
these types such as strings. The OODBMS may allow variable length arrays,
structures (i.e., records), and classes as attribute types.

Pointers are normally not good candidates for attribute types since pointer
values are not valid across application executions.

An OODBMS will provide attribute types that support interobject ref-
erences. OO applications are characterized by a network of interconnected
objects. Object interconnections are supported by attributes that reference
other objects. Other types that might be supported by an OODBMS include
text, graphic, and audio. Often these data types are referred to as binary
large objects (BLOBS). Derived attributes are attributes that are not explic-
itly stored but instead calculated on demand. Derived attributes require that
attribute access be indistinguishable from behavior invocation.

Review Questions 553

Behaviors

Behaviors represent the functional component of a class. A behavior describes
how an object operates upon its attributes and how it interacts with other
related objects. Behaviors are called member functions in the C++ program-
ming language. Behaviors hide their implementation details from users of a
class.

Encapsulation

Classes are said to encapsulate the attributes and behaviors of their instances.
Behavior encapsulation shields the clients of a class (i.e., applications or other
classes) from seeing the internal implementation of a behavior. This shielding
provides a degree of data independence so that clients need not be modified
when behavior implementations are modified (they will have to be modified
if behavior interfaces change).

A class’s attributes may or may not be encapsulated. Attributes that are
directly accessible to clients of a class are not encapsulated (public data mem-
bers in C++ classes). Modifying the definition of a class’s attributes that
are not encapsulated requires modification of all clients that access them.
Attributes that are not accessible to the clients of a class are encapsulated
(private or protected data members in C++ classes). Encapsulated attributes
typically have behaviors that provide clients some form of access to the
attribute. Modifications to these attributes typically do not require modifi-
cation to clients of the class.

Inheritance

Inheritance allows one class to incorporate the attributes and behaviors of one
or more other classes. A subclass is said to inherit from one or more super-
classes. The subclass is a specialization of the superclass in that it adds addi-
tional data or behaviors, or overrides behaviors of the superclass. Superclasses
are generalizations of their subclasses. Inheritance is recursive. A class inherits
the attributes and behaviors from its superclasses, and from its superclass’s
superclasses, etc. In a single inheritance model, a class may directly inherit
from only a single other class. In a multiple inheritance model a class may
directly inherit from more than one other class. Systems supporting multiple
inheritance must specify how inheritance conflicts are handled. Inheritance
conflicts are attributes or behaviors with the same name in a class and its
superclass, or in two superclasses.

Inheritance is a powerful OO modeling concept that supports reuse and
extensibility of existing classes. The inheritance relationships between a group
of classes define a class hierarchy. Class hierarchies improve the ability of users
to understand software systems by allowing knowledge of one class (a super-
class) to be applicable to other classes (its subclasses).

554 11 Objected-Oriented and Object Relational DBMS

Overriding Behaviors and Late Binding

OO applications are typically structured to perform work on generic classes
(e.g., a vehicle) and at runtime invoke behaviors appropriate for the specific
vehicle being executed upon (e.g., Boeing 747). Applications constructed in
such a manner are more easily maintained and extended since additional vehi-
cle classes may be added without requiring modification of application code.
Overriding behaviors is the ability for each class to define the functionality
unique to itself for a given behavior. Late binding is the ability for behavior
invocation to be selected at runtime based on the class of an object (instead
of at compile time).

Persistence

Persistence is the characteristic that makes data available across executions.
The objective of an OODBMS is to make objects persistent. Persistence may
be based on an object’s class, meaning that all objects of a given class are
persistent. Each object of a persistent class is automatically made persistent.
An alternative model is that persistence is a unique characteristic of each
object (i.e., it is orthogonal to class). Under this model, an object’s persistence
is normally specified when it is created. A third persistence model is that
any object reachable from a persistent object is also persistent. Such systems
require some way of explicitly stating that a given object is persistent (as a
means of starting the network of interconnected persistent objects). Related
to the concept of persistence is object existence. OODBMS may provide a
means by which objects are explicitly deleted. Such systems must ensure that
references to deleted objects are also removed. An alternative strategy is to
maintain an object as long as references to the object exist. Once all references
are removed, the object can be safely deleted.

Naming

OO applications are characterized as being composed of a network of inter-
connected objects. An application begins by accessing a few known objects
and then traverses to additional objects via relationships from the known
objects. As objects are created they are linked (i.e., related) to other existing
objects. Given this scenario, the database must provide some mechanism for
identifying one or more objects at application start-up without using relations
from existing objects. This is typically accomplished by allowing objects to be
named and providing a retrieval mechanism based upon name. An application
begins by loading one or two “high-level” objects that it knows by name and
then traverses to other reachable objects. Object names apply within some
name scope. Within a given scope, names must be unique (i.e., the same name
can not refer to two objects). The simplest scope model is for the entire data-
base to act as a single name scope. An alternative scope model is for the

Review Questions 555

application to identify name scopes. Using multiple name scopes will reduce
the chance for name conflicts.

11.17. Describe the features of Schema Evolution.

Schema Evolution

Schema evolution is the process by which existing database objects are brought
into line with changes to the class definitions of those objects (i.e., schema
changes require all instances of the changed class to be modified so as to
reflect the modified class structure). Schema evolution is helpful although not
essential during system development (as a means of retaining test data, for
example). Schema evolution is essential for maintenance and/or upgrades of
fielded applications. Once an application is in the field (and users are creating
large quantities of information), an upgrade or bug fix cannot require disposal
of all existing user databases. Schema evolution is also essential for applica-
tions that support user-level modeling and/or extension of the application.

Here we have given a framework for schema modifications in an object-
oriented database. Included in this framework are invariants which must be
maintained at all times (e.g., all attributes of a class must have a distinct
name), rules for performing schema modifications (e.g., changing the type
of an attribute in a given class must change the type of that attribute in
all classes which inherit that attribute), and a set of schema changes that
should be supported by an object-oriented database. This set of schema change
operations is:

1. Changes to Definition of a Class:
(a) Changes to an Attribute of a Class (applies to both instance and class

attributes):
– Add an attribute to a class.
– Remove an attribute from a class.
– Change the name of an attribute.
– Change the type of an attribute.
– Change the default value of an attribute.
– Alter the relationship properties for relationship attributes.

(b) Changes to a Behavior of a Class:
– Add a new behavior to the class.
– Remove a behavior from the class.
– Change the name of a behavior.
– Change the implementation of a behavior.

2. Changes to the Inheritance of a Class:
– Add a new superclass to a class.
– Remove a superclass for a given class.
– Change the order of superclasses for a class (it is expected that

superclass ordering will be used to handle attribute and behavior in-
heritance conflicts).

556 11 Objected-Oriented and Object Relational DBMS

3. Changes to the Existence of a Class:
– Add a new class.
– Remove an existing class.
– Change the name of a class.

Schema changes will require modification of instances of the changed class
as well as applications that referenced the changed class. Some of these changes
cannot be performed automatically by the OODBMS. Deleting attributes
and superclasses are examples of schema changes that could be performed
automatically. Adding attributes and superclasses can only be performed if
default values are acceptable for the initial state of new attributes. This is
not likely, especially for relationship attributes. An OODBMS should provide
tools and/or support routines for aiding programmed schema evolution.

A manual evolution approach requires instance migration to be performed
off-line, probably through a dump of the database and a reload of the
data through an appropriate transformation filter. Systems may perform an
aggressive update by automatically adjusting each instance after each schema
change. This approach may be slow due to the overhead of performing the
update on all instances at a single time. This approach is the easiest for an
application to implement since multiple versions of the schema need not be
maintained indefinitely.

Schema changes may be performed in background mode, thus spreading
the update overhead over a longer period of time. A lazy evaluation approach
defers updating objects until they are accessed and found to be in an in-
consistent state. Both the background and lazy approaches require extended
periods where multiple versions of the schema exist and will be complicated
by multiple schema modifications. Applications and stored queries will have
to be updated manually as a result of schema changes. Some forms of schema
changes will not require updates to applications and queries due to data in-
dependence and encapsulation of a class’s data members.

It is expected that all OODBMS products will support some form of
schema evolution for static schema changes. By static, we mean the schema is
changed by manipulations of class definitions outside of application process-
ing (i.e., by reprocessing database schema definitions and modifying applica-
tion programs). Dynamic schema modification, meaning modification of the
schema by the application, is more complex and potentially inconsistent with
the basic C++ header file approach used for schema definitions in many
current commercial products. Dynamic schema modification is only needed
in applications that require user definable types.

11.18. What are the architecture issues relevant to the OODBMS

Database Architecture

1. Distributed Client–Server Approach
Advances in local area network and workstation technology have given
rise to group design type applications driving the need for OODBMS

Review Questions 557

(e.g., CASE, CAD, and Electronic Offices). OODBMS typically execute
in a multiple process distributed environment. Server processes provide
back-end database services, such as management of secondary storage and
transaction control. Client processes handle application specific activities,
such as access and update of individual objects. These processes may be
located on the same or different workstations. Typically a single server
will be interacting with multiple clients servicing concurrent requests for
data managed by that server. A client may interact with multiple servers
to access data distributed throughout the network.
The evaluations and benchmarks are the three alternative workstation-
server architectures that have been proposed for use with OODBMS:

– Object server approach. The unit of transfer from server to client is
an object. Both machines cache objects and are capable of execut-
ing methods on objects. Object-level locking is easily performed. The
major drawback of this approach is the overhead associated with the
server interaction required to access every object and the added com-
plexity of the server software which must provide complete OODBMS
functionality (e.g., be able to execute methods). Keeping client and
server caches consistent may introduce additional overheads.

– Page server approach. The unit of transfer from server to client is a
page (of objects). Page-level transfers reduce the overhead of object
access since server interaction is not always required. Architecture
and implementation of the server is simplified since it needs only to
perform the backend database services. A possible drawback of this
approach is that methods can be evaluated only on the client, thus all
objects accessed by an application must be transferred to the client.
Object-level locking will be difficult to implement.

– File server approach. The OODBMS client processes interact with a
network file service (e.g., Sun’s NFS) to read and write database pages.
A separate OODBMS server process is used for concurrency control
and recovery. This approach further simplifies the server implementa-
tion since it need not manage secondary storage. The major drawback
of this approach is that two network interactions are required for data
access, one to the file service and one to the OODBMS server.

Many scientists have identified no clear winner when benchmarking the
three approaches. The page server approach seemed best with large buffer
pools and good clustering algorithms. The object server approach per-
formed poorly if applications scanned lots of data, but was better than
the page server approach for applications performing lots of updates and
running on workstations with small buffer pools.

2. Data Access Mechanism
An evaluation of OODBMS products should consider the process neces-
sary to move data from secondary storage into a client application. Typi-
cally this requires communication with a server process, possibly across
a network. Objects loaded into a client’s memory may require further

558 11 Objected-Oriented and Object Relational DBMS

processing, often referred to as swizzling, to resolve references to other
objects which may or may not already be loaded into the client’s cache.
The overhead and process by which locks are released and updated objects
are returned to the server should also be considered.

3. Object Clustering
OODBMS which transfer units larger than an object do so under the as-
sumption that an application’s access to a given object implies a high
probability that other associated objects may also be accessed. By trans-
ferring groups of objects, additional server interaction may not be neces-
sary to satisfy these additional object accesses. Object clustering is the
ability for an application to provide information to the OODBMS so that
objects which it will typically access together can be stored near each
other and thus benefit from bulk data transfers.

4. Heterogeneous Operation
An OODBMS provides a mechanism for applications to cooperate, by
sharing access to a common set of objects. A typical OODBMS will sup-
port multiple concurrent applications executing on multiple processors
connected via a local area network. Often, the processors will be from dif-
ferent computer manufacturers; each having its own data representation
formats. For applications to cooperate in such an environment, data must
be translated to the representation format suitable for the processor upon
which that data is stored (both permanently by a server and temporar-
ily by a client wishing to access the data). To be an effective integration
mechanism, an OODBMS must support data access in a heterogeneous
processing environment.

12

Distributed and Parallel Database
Management Systems

Learning Objectives. This chapter is dedicated to distributed and parallel
database management system. The distributed database design, architecture,
concurrency control, and reliability concepts are discussed in this chapter. This
chapter also deals with parallel database architecture; components and benefits of
parallel processing. After completing this chapter the reader should be familiar with
the following concepts:

1. Distributed database management system
2. Distributed DBMS architecture
3. Distributed database design
4. Semantic data control
5. Distributed concurrency control
6. Distributed DBMS reliability
7. Parallel database management system

12.1 Distributed Database

Distributed database provides a number of advantages of distributed
computing to the DBMS domain. A distributed computing system consists
of a number of processing elements that are interconnected by a computer
network, and that cooperate in performing certain application tasks. The
distributed database is a collection of multiple logically interrelated databases
distributed over a computer network. Parallel processing divides a complex
task into many smaller tasks, and executes the smaller tasks simultaneously
in several tasks. Thus the complex task is completed with better performance
and also quickly. The parallel database system makes use of the parallelism in
DBMS and achieves high performance and high availability database servers
at much lower price.

A distributed database is a collection of data which belong logically to
the same system but are spread over the sites of a computer network. This
definition emphasizes two equally important aspects of a distributed database
as follows:

S. Sumathi: Distributed and Parallel Database Management Systems, Studies in Computational

Intelligence (SCI) 47, 559–609 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

560 12 Distributed and Parallel Database Management Systems

1. Distribution. The fact that the data are not resident at the same site
(processor), so that we can distinguish a distributed database from a
single, centralized database.

2. Logical correlation. The fact that the data have some properties which
tie them together, so that we can distinguish a distributed database from
a set of local databases or files which are resident at different sites of a
computer network.

A distributed database is a collection of data which are distributed over
different computers of a computer network. Each site of the network has
autonomous processing capability and can perform local applications. Each
site also participates in the execution of at least one global application, which
requires accessing data at several sites using a communication subsystem.
A simple distributed database on a local network is shown in Fig. 12.1.

Database 1 Database 1

Computer 1 Computer 2

Local N/W

Branch 2
T
T
T

Branch 1
T
T
T

Computer 3

Database 3

T T T

Branch 3

Computer Center

Fig. 12.1. A distributed database on a local network

12.1 Distributed Database 561

12.1.1 Features of Distributed vs. Centralized Databases

The features which characterize the traditional database approach are cen-
tralized control, data independence, and reduction of redundancy, complex
physical structures for efficient access, integrity, recovery, concurrency control,
privacy, and security.

– Centralized control. The possibility of providing centralized control of the
information resources of a whole enterprise or organization was considered
as one of the strongest motivations for introducing databases; they were
developed as the evolution of information systems in which each applica-
tion had its own private files.

In general, in distributed databases it is possible to identify a hierar-
chical control structure based on a global database administrator, who
has the central responsibility of the whole database, and on local data-
base administrators, who have the responsibility of their respective local
databases.

– Data independence. It means that the actual organization of data is
transparent to the application programmer. Programs are written having
a conceptual view of the data, the so-called conceptual schema. The main
advantage of data independence is that programs are unaffected by
changes in the physical organization of data.

– Reduction of redundancy. In traditional databases, redundancy was
reduced as far as possible for two reasons: first, inconsistencies among
several copies of the same logical data are automatically avoided by
having only one copy, and second, storage space is saved by eliminating
redundancy. In distributed databases, however, there are several reasons
for considering data redundancy as desirable features. First, the locality
of applications can be increased if the data are replicated at all sites
where applications need it, and second, the availability of the system
can be increased, because a site failure does not stop the execution of
applications at other sites if the data are replicated.

– Complex physical structures and efficient access. In distributed data-
bases, complex accessing structures are not the right tool for efficient
access. Therefore, while efficient access is a main problem in distrib-
uted databases, physical structures are not a relevant technological issue.
Efficient access to a distributed database cannot be provided by using
intersite physical structures, because it is very difficult to build and main-
tain such structures and because it is not convenient to navigate at a
record level in distributed databases.

The software components which are typically necessary for building a
distributed database in this case are:

1. The database management component (DB)
2. The data communication component (DC)

562 12 Distributed and Parallel Database Management Systems

3. The data dictionary (DD), which is extended to represent information
about distribution of data in the network

4. The distributed database component (DDC)

An important property of distributed database management systems
(DDBMSs) is whether they are homogeneous or heterogeneous. Homogeneous
DDBMS refers to a DDBMS with the same DBMS at each site, even if the
computers and/or the operating systems are not the same. A heterogeneous
DDBMS uses instead at least two different DBMSs. Heterogeneous DDBMS
adds the problem of translating between the different data models of the
different local DBMSs to the complexity of homogeneous DDBMSs.

12.2 Distributed DBMS Architecture

The architecture of a system defines its structure. This means that the
components of the system are identified, the function of each component is
specified, and the interrelationships and interactions among these components
are defined.

12.2.1 DBMS Standardization

The standardization efforts related to DBMSs because of the close relationship
between the architecture of a system and the reference model of that system,
which is developed as a precursor to any standardization activity. It is defined
as “a conceptual framework whose purpose is to divide standardization work
into manageable pieces and to show at a general level how these pieces are
related with each other.” A reference model can be described according to
three different approaches:

1. Based on components. The components of the system are defined together
with the interrelationships between components. Thus a DBMS consists of
a number of components, each of which provides some functionality. Their
orderly and well-defined interaction provides total system functionality.

2. Based on functions. The different classes of users are identified and the
functions that the system will perform for each class are defined. The
system specifications within this category typically specify a hierarchical
structure for user classes. This results in hierarchical system architecture
with well-defined interfaces between the functionalities of different layers.

3. Based on data. The different types of data are identified, and an architec-
tural framework is specified which defines the functional units that will
realize or use data according to these different views. Since data are the
central resource that a DBMS manages, this approach is claimed to be the
preferable choice for standardization activities. The advantage of the data
approach is the central importance it associates with the data resource.

12.2 Distributed DBMS Architecture 563

12.2.2 Architectural Models for Distributed DBMS

Let us consider the possible ways in which multiple databases may be put
together for sharing by multiple DBMSs. We use a classification that organizes
the systems as characterized with respect to (1) the autonomy of local systems,
(2) their distribution, and (3) their heterogeneity.

Autonomy

It refers to the distribution of control, not of data. It indicates the degree
to which individual DBMS can operate independently. Autonomy is a func-
tion of a number of factors such as whether they can independently execute
transactions, and whether one is allowed to modify them. Requirements of an
autonomous system have been specified in a variety of ways.

1. The local operations of the individual DBMSs are not affected by their
participation in the multidatabase system.

2. The manner in which the individual DBMSs process queries and optimize
them should not be affected by the execution of global queries that access
multiple databases.

3. System consistency or operation should not be compromised when indi-
vidual DBMSs join or leave the multidatabase confederation.

The dimensions of autonomy are specified as follows:

1. Design autonomy. Individual DBMSs are free to use the data models and
transaction management techniques that they prefer.

2. Communication autonomy. Each of the individual DBMSs is free to make
its own decision as to what type of information it wants to provide to the
other DBMSs or to the software that controls their global execution.

3. Execution autonomy. Each DBMS can execute the transactions that are
submitted to it in any way that it wants to do.

Distribution

There are a number of ways DBMSs can be distributed. We abstract the
alternatives into two classes: client/server distribution and peer-to-peer
distribution. The client/server distribution concentrates data management
duties at servers while the clients focus on providing the application envi-
ronment including the user interface. The communication duties are shared
between the client machines and servers. Client/server DBMSs represent the
first attempt at distributing functionality. There are a variety of ways of struc-
turing them, each providing a different level of distribution. In peer-to-peer
systems, there is no distinction of client machines vs. servers. Each machine
has full DBMS functionality and can communicate with other machines to
execute queries and transactions.

564 12 Distributed and Parallel Database Management Systems

Heterogeneity

It may occur in various forms in distributed systems, ranging from hard-
ware heterogeneity and differences in networking protocols to variations in
data managers. Heterogeneity in query languages not only involves the use of
completely different data access paradigms in different data models, but also
covers difference in languages even when the individual systems use the same
data model. Different query languages that use the same data model often
select very different methods for expressing identical requests.

12.2.3 Types of Distributed DBMS Architecture

The distributed DBMS architecture types namely client server and peer-to-
peer systems are discussed below.

Client/Server Systems

The general idea of this architecture is simple and elegant: distinguish the
functionality that needs to be provided and divide these functions into two
classes as server functions and client functions. This provides a two level
architecture which makes it easier to manage the complexity of modern
DBMSs and the complexity of distribution.

As with any highly popular term, client/server has been much abused and
has come to mean different things. If one takes a process-centric view, then
any process that requests the services of another process is its client and vice
versa. In this sense, “client/server computing” and “client/server DBMS,” as
it is used in its more modern context, do not refer to processes, but to actual
machines.

The architecture shown in Fig. 12.2 is quite common in relational systems
where the communication between the clients and the server without trying to
understand or optimize them. The server does most of the work and returns
the result relation to the client. There are a number of different types of
client/server architecture. The simplest is the case where there is only one
server which can be accessed by multiple clients. We call this as “multiple
client–single server.” From a data management perspective, this is not much
different from centralized databases since the database is stored on only one
machine (the server) which also hosts the software to manage it.

There are two management strategies in multiple client–multiple server:
either each client manages its own connection to the appropriate server or
each client knows of only its “home server” which then communicates with
the other servers as required. The former approach simplifies server code, but
loads the client machines with additional responsibilities. This leads to what
has been called as “heavy client” systems. The latter approach, on the other
hand, concentrates the data management functionality at the servers. Thus,
the transparency of data access is provided at the server interface, leading to
“light clients.”

12.3 Distributed Database Design 565

SQL
queries

Result
relation

O
pe

ra
ti
ng

 s
ys

te
m User

Interface
Application
Program …

Client DBMS

Communication Software

 Communication Software

Semantic Data Controller

Query Optimizer

Transaction Manager

Recovery Manager

Runtime Support Processor

System

Database

O
p

e
r

a
t

i
n

g

Fig. 12.2. Client/server reference architecture

Peer-to-Peer Distributed Systems

The architecture of this model shown in Fig. 12.3 provides the levels of trans-
parency. Data independence is supported since the model is an extension
of ANSI/SPARC, which provides such independence naturally. Location and
replication transparencies are supported by the definition of the local and
global conceptual schemas and the mapping in between.

Network transparency, on the other hand, is supported by the definition of
the global conceptual schema. The user queries data irrespective of its location
or of which local component of the distributed database system will service
it. As mentioned before, the distributed DBMS components at different sites
communicate with one another.

12.3 Distributed Database Design

Designing a distributed database is very difficult, since many technical and
organizational issues, which are crucial in the design of single-site databases,
become more difficult in a multiple-site system. Fromthe technical viewpoint,

566 12 Distributed and Parallel Database Management Systems

ES1 ES2 ESn

GCS

LCS1 LCS2 LCSn

LIS1 LIS2 LISn

Fig. 12.3. Distributed database reference architecture

new problems arise such as the interconnection of sites by a computer network
and the optimal distribution of data and applications to the sites for meeting
the requirements of applications and for optimizing performances. From the
optimization viewpoint, the issue of decentralization is crucial, since distrib-
uted systems typically substitute for large, centralized systems, and in thus
case distributing an application has a major impact on the organization.

The mathematical problem of optimally distributing data over a computer
network has been widely analyzed in the context of distributed file systems
and, more recently, in the context of distributed databases. The major out-
comes of this research are twofold:

1. Several design criteria have been established about how data can be
conveniently distributed.

2. Mathematical foundation has been given to design aids that, in the near
future, will help the designer in determining data distribution.

12.3.1 Framework for Distributed Database Design

The design of a centralized database amounts to the following factors:

– Designing the conceptual schema which describes the integrated database,
i.e., all the data which are used by the database applications.

– Designing the physical database, i.e., mapping the conceptual schema
storage areas and determining appropriate access methods.

– Designing the fragmentation, i.e., determining how global relations are
subdivided into horizontal, vertical, or mixed fragments.

– Designing the allocation of fragments, i.e., determining how fragments are
mapped to physical images; in this way, also the replication of fragment
is determined.

12.3 Distributed Database Design 567

The distinction between these two problems (related to fragmentation) is
conceptually relevant, since the first one deals with the logical criteria which
motivate the fragmentation of a global relation, while the second one deals
with the physical placement of data at various sites. However, this distinction
must be introduced with extreme care.

The application requirements include:

1. The site from which the application is issued (also called site of origin of
application).

2. The frequency of activation of the application (i.e., the number of activa-
tion requests in the unit time); in the general case of applications which
can be issued at multiple sites, we need to know the frequency of activation
of each application at each site.

3. The number, type, and the statistical distribution of accesses made by
each application to each required data “object.”

12.3.2 Objectives of the Design of Data Distribution

– Processing locality. Distributing data to maximize processing locality
corresponds to the simple of placing data as close as possible to the appli-
cations with which use them. Designing data distribution for maximizing
processing locality (or, conversely, for minimizing remote references) can
be done by adding the number of local and remote references correspond-
ing to each candidate fragmentation and fragment allocation, and selecting
the best solution among them.

– Availability and reliability of distributed data. A high degree of availability
for read-only application is achieved by storing multiple copies of the same
information. Reliability is also achieved by storing multiple copies of the
same information since it is possible to recover from crashes or from the
physical destruction of one of the copies by using the other, still available
copies.

– Workload distribution. Distributing the work load over the sites is an
important feature of distributed computer systems. Workload is done in
order to take advantage of the different powers or utilizations of compu-
ters at each site, and to maximize the degree of parallelism of execution
of applications.

– Storage costs and availability. Database distribution should reflect the
cost and availability of storage at the different sites. It is possible to have
specialized sites in the network for data storage, or conversely to have
sites which do not support mass storage at all. Typically, the cost of data
storage is not relevant compared with CPU, I/O, and transmission costs
of applications, but the limitation of available storage at each site must
be considered.

568 12 Distributed and Parallel Database Management Systems

12.3.3 Top-Down and Bottom-Up Approaches to the Design
of Data Distribution

In the top-down approach, we start by designing the global schema, and we
proceed by designing the fragmentation of the database, and then by allocat-
ing the fragments to the sites, creating the physical images. The approach is
completed fragments by performing, at each site, the physical design of the
data which are allocated to it.

When the distributed database is developed as the aggregation of existing
databases, it is not easy to follow the top-down approach. In fact, in this
case the global schema is often produced as a compromise between existing
data descriptions. It is even possible that each pair of existing databases is
independently interfaced using a different translation schema, without the
notion of a global schema.

When existing databases are aggregated, a bottom-up approach to the
design of data distribution can be used. This approach is based on the inte-
gration of existing schemata into a single global schema. By integration, we
mean the merging of common data definitions and the resolution of conflicts
among different representations given to the same data.

A heterogeneous system adds to the complexity of data integration the
need for a translation between different representations. In this case, it is
possible to make a one-to-one translation between each pair of different
DBMSs; however, the approach which is mostly used in the prototypes of
heterogeneous systems is to select a common data model, and then to trans-
late into this unique representation all the different schemata of the involved
DBMSs.

12.3.4 Design of Database Fragmentation

The design of fragmentation is the first problem that must be solved in the
top-design of data distribution. The purpose of fragmentation design is to
determine nonoverlapping fragments which are “logical units of allocation,”
i.e., that are appropriate start points for the following data allocation problem.

Horizontal Fragmentation

Determining the horizontal fragmentation of a database amounts to deter-
mining both “logical” properties of data, such as the number of references of
applications to fragments; this coordination of logical and statistical aspects
is rather difficult.

Primary Horizontal Fragmentation

The primary horizontal fragments are defined using selections on global
relations. The correctness of primary fragmentation requires that each tuple

12.3 Distributed Database Design 569

of the global relation be selected in one and only one fragment. Thus, deter-
mining the primary fragmentation of a global relation requires determining a
set of disjoint and complete selection prediction. The property that we require
for each fragment is that the elements of them must be referenced homoge-
neously by all the applications. Let R be the global relation for which we want
to produce a horizontal primary fragmentation.

We introduce the following definitions:

1. A simple predicate is a predicate of the type:

Attribute = Value

2. A minterm predicate y for a set P of simple predicates is the conjunction
of all predicates appearing in P, either taken in natural form or negated,
provided that this expression or contradiction. Thus

y = ∧
pi∈p

p∗i

where (p∗
i = pi or p∗

i = NOT pi) and y �= false.
3. A fragment is the set of all tuples for which a minterm predicate holds.

Derived Horizontal Fragmentation

The derived horizontal fragmentation of a global relation R is not based on
properties of its own attributes, but it is derived from the horizontal fragmen-
tation of another relation. Derived fragmentation is used to facilitate the join
between fragments.

A distributed join is a join between horizontally fragmented relations.
When an application requires the join between two global relations R and S, all
the tuples of R and S need to be compared. Thus, in principal, it is necessary
to compare all the fragments Ri of R with all the fragments Sj of S. However,
sometimes it is possible to deduce that some of the partial joins Ri JN Sj are
intrinsically empty. This happens when, for a given data distribution, values
of the join attribute in Ri and Sj are disjoint.

A distributed join is represented efficiently using join graphs. The join
graph G of the distributed join R JN S is a graph (N, E), where nodes N
represent fragments of R and S and nondirected edges between nodes represent
joins between fragments which are not intrinsically empty. For simplicity, we
do not include in N those fragments of R or S which have an empty join with
all fragments of the other relation.

There are two types of reduced join graphs (as shown in Fig. 12.4) that
are particularly relevant:

1. A reduced join graph is partitioned if the graph is composed of two or
more subgraphs without edges between them as shown in Fig. 12.4.

2. A reduced join graph is simple if it is partitioned and each subgraph has
just only one edge as shown in Fig. 12.4.

570 12 Distributed and Parallel Database Management Systems

R2

R1

R3

R4

R1

R2

S2

S1

R3

S3

R4

R5

S1 R1

R2

S2 R3

S3 R4

S1

S2

S3

S4

(a) Join Graph (b) Partitioned Graph (c) Simple join Graph

Fig. 12.4. Join graphs

Vertical Fragmentation

The purpose of vertical fragmentation is to identify fragments Ri such that
many applications can be executed using just one fragment. Determining a
fragmentation for a global relation R is not easy, since the number of possible
partitioning grows combinatorial with the number of attributes of R, and
the number of possible clusters is even larger. Thus, in the presence of a
large relation, heuristic approaches are necessary to determine the partitions
of clusters. We briefly indicate how such methods operate. Two alternate
approaches are possible for attribute partitioning:

1. The split approach in which global relations are progressively split into
fragments.

2. The grouping approach in which attributes are progressively aggregated
to constitute fragments.

Vertical clustering introduces replication within fragments, since values of
overlapping attributes are replicated. Replications have a different effect on
read-only and update applications. Read-only applications take advantage of
replication, because it is more likely that they can reference data locally. For
update applications replications are not convenient, since they must all be
same in order to preserve consistency.

Mixed Fragmentation

The simplest way of building mixed fragmentation consists of:

1. Applying horizontal fragmentation to vertical fragments.
2. Applying vertical fragmentation to horizontal fragments.

12.3 Distributed Database Design 571

Although these operations can be recursively repeated, in generating
fragmentation trees of any complexity, it seems that having more than two
levels of fragmentation is not of practical interest. Horizontal fragmentation
is applied just to one fragment produced by vertical fragmentation as shown
in Fig. 12.5. Vertical fragmentation is applied just to one fragment produced
by horizontal fragmentation as shown in Fig. 12.5.

Allocation of Fragments

The data allocation problem is widely in the context of file allocation problem.
The easiest way to apply this work to the fragment allocation problem is
to consider each fragment as a separate file. However, this approach is not
convenient due to the following reasons:

– Fragments are not properly modeled as individual files; since in this way
we do not take into account the fact that they have the same structure or
behavior.

– There are many more fragments than original global relations, and many
analytic models cannot compute the solution of problems involving too
many variables.

– Modeling application behavior in file systems is very simple, while in dis-
tributed databases applications can make a sophisticated use of data.

The correct approach would be to evaluate data distribution is to measure how
optimized applications behave with it. This, however, requires optimizing all
the important applications for each data allocation.

A1

A2 A3 A4 A5A1

A2 A3 A4 A5

(a) Vertical Fragmentation followed by Horizontal Fragmentation

(b) Horizontal Fragmentation followed by Vertical Fragmentation

Fig. 12.5. Mixed fragmentation

572 12 Distributed and Parallel Database Management Systems

General Criteria for Fragment Allocation

Determining a nonredundant final allocation is easier. The simplest method
is “best-fit” approach; a measure is associated with each possible allocation,
and the site with best measure is selected. Replication introduces further
complexity in the design, because of the following reasons:

– The degree of replication of each fragment becomes a variable of the
problem.

– Modeling read applications is complicated by the fact that the applications
can now select among several alternatives sites for accessing fragments.

For determining the redundant allocation of fragments, either of the following
two methods can be used:

– Determine the set of all sites where the benefit of allocating one copy of
the fragment is higher than the cost, and allocate a copy of the fragment
to each element of this set; this method selects “all beneficial sites.”

– Determine first the solution of the nonreplicated problem, and then
progressively introduce replicated copies starting from the most beneficial;
the process is terminated when no “additional replication” is beneficial.

Both methods have some disadvantages. In the “all beneficial sites”
method, quantifying costs and benefits for each individual fragment allocation
is more critical than in the nonredundant case. The “additional replication”
method is a typical heuristic approach; with this method, it is possible to take
into account that the increase in the degree of redundancy is progressively less
beneficial.

12.4 Semantic Data Control

An important requirement of a centralized or a distributed DBMS is the ability
to support data control. Data control typically includes view management,
security control, and semantic integrity control. Informally, these functions
must ensure that authorized users perform correct operations on the data-
base, contributing to the maintenance of database integrity. There are several
ways to store data control definitions, according to the way the directory
is managed. Directory information can be stored differently according to its
type; in other words, some information might be fully duplicated whereas
other information might be distributed.

12.4.1 View Management

One of the main advantages of the relational model is that it provides full
logical data independence. External schemas enable user groups to have their

12.4 Semantic Data Control 573

particular view of the database. In a relational system, a view is a virtual
relation, defined as the result of a query on base relations (or real relations),
but not materialized like a base relation, which is stored in the database.
A view is a dynamic window in the sense that it reflects all updates to the
database. An external schema can be defined as a set of views and/or base
relations. Besides their use in external schemas, views are useful for ensuring
data security in a simple way. By selecting a subset of the database, views
hide some data. If users may only access the database through views, they
cannot see or manipulate the hidden data, which are therefore secure.

12.4.2 Views in Centralized DBMSs

A view is a relation derived from base relations as the result of a relational
query. It is defined by associating the name of the view with the retrieval query
that specifies it. For example, a view of system analysts (SYSAN) derived from
relation EMP (ENO, ENAME, and TITLE) can be defined by the following
SQL query:

CREATE VIEW SYSAN (ENO, ENAME)
AS SELECT ENO, ENAME

FROM EMP
WHERE TITLE = “Syst.Anal.”

The single effect of this statement is the storage of this view definition in
the catalog. No other information needs to be recorded. Therefore, the result
to the query defining the view (i.e., a relation having the attributes ENO and
ENAME for the SYSAN as shown in table below) is not produced. However,
the view SYSAN can be manipulated as a base relation.

SYSAN

ENO ENAME

E1 M. John
E3 C. Mark
E7 R. Peter

12.4.3 Update Through Views

Views can be defined using arbitrarily complex relational queries involving
selection, projection, join, aggregate functions, and so on. All views can be
interrogated as base relations, but not all views can be manipulated as such.
Updates through views can be handled automatically only if they can be
propagated correctly to the base relations. We can classify views as being up-
datable and not updatable. A view is updatable only if the updates to the view
can be propagated to the base relation without ambiguity. The view SYSAN
in the above example is updatable. The insertion of a new system analyst

574 12 Distributed and Parallel Database Management Systems

<101, John> will be mapped into the new employee <101, John, Syst.Anal>.
If attributes other than TITLE were hidden by the view, they would be
assigned null values.

12.4.4 Views in Distributed DBMS

The definition of a view is similar in a distributed DBMS and in a centralized
system. However, a view in a distributed system may be derived from fragment
relations stored at different sites. When a view is defined, its name and its
retrieval query are stored in the catalog. Since views may be used as base
relations by application programs, their definitions should be stored in the
directory in the same way as the base relation descriptions. Depending on
the degree of site autonomy offered by the system, view definitions can be
centralized at one site, partially duplicated, or fully duplicated. If the view
definition is not present at the site where query is issued, remote access to the
view definition site is necessary.

Views derived from distributed relations may be costly to evaluate. Since
in a given organization it is likely that many users access the same views, some
proposals have been made to optimize view derivation. The view derivation
is done by merging the view qualification with the query qualification. An
alternate solution is to avoid view derivation by maintaining actual versions
of the views, called snapshots. A snapshot represents a particular state of the
database and is therefore static, meaning that it does not reflect updates to
base relations. Snapshots are useful when users are not particularly interested
in seeing the most recent version of the database.

12.4.5 Data Security

It is an important function of a database system that protects data against
unauthorized access. Data security includes two aspects: data protection and
authorization control.

Data protection is required to prevent unauthorized users from under-
standing the physical content of data. This function is typically provided by
file systems in the context of centralized and distributed operating systems.
The main data protection approach is data encryption, which is useful for
both information stored on a disk and information exchanged on a network.
Encrypted (encoded) data can be decrypted (decoded) only by authorized
users who “know the code.”

Authorization control must guarantee that only authorized users perform
operations they are allowed to perform on the database. Many different users
may have access to a large collection of data under the control of a single
centralized or distributed system. In relational systems, authorizations can be
uniformly controlled by database administrators using high-level constructs.
For example, controlled objects can be specified by predicates in the same
way as a query qualification.

12.4 Semantic Data Control 575

12.4.6 Centralized Authorization Control

Three main aspects are involved in authorization control: the users, who
trigger the execution of the application programs; the operations, which are
embedded in application programs; and the database objects, on which the
operations are performed. Authorization control consists of checking whether
a given triple can be allowed to proceed (i.e., the user can execute the oper-
ation of the object). An authorization can be viewed as a triple (user, opera-
tion type, and object definition) which specifies that the user has the right to
perform an operation of operation type on an object. To control authorizations
properly, the DBMS requires users, objects, and rights to be defined.

In a relational system, objects can be defined by their type (view, relation,
tuple, and attribute) as well as by their content using selection predicates.
A right expresses a relationship between a user and an object for a particular
set of operations. In a SQL-based relational DBMS, an operation is a high-
level statement such as SELECT, INSERT, UPDATE, or DELETE, and rights
are defined (granted or revoked) using the following statements:

GRANT <operation type(s)> ON <object> TO <user(s)>
REVOKE<operation type(s)> FROM<object> TO<user(s)>

The keyword public can be used to mean all users. Authorization control
can be characterized based on who (the grantors) can grant the rights. In
its simplest form, the control is centralized: a single user or user class, the
database administrators have all privileges on the database objects and are
the only one allowed to use the GRANT and REVOKE statements.

A more flexible but complex form of control is decentralized; the creator
of an object becomes its owner and is granted all privileges on it. In partic-
ular, there is the additional operation type GRANT. Granting the GRANT
privilege means that all rights of the grantor performing the statement are
given to the specified users. Therefore the person receiving the right (the
grantee) may subsequently grant privileges on that object. The main diffi-
culty with this approach is that the revoking process must be recursive.

12.4.7 Distributed Authorization Control

The additional problem of authorization control is a distributed environment
system from the fact that the objects and subjects are distributed. These
problems are remote user authentication, management of distributed autho-
rization rules, as well as handling of views and of user groups. Remote user
authentication is necessary since any sites of a distributed DBMS may accept
programs initiated, and authorized, at remote sites. Two solutions are possible
in preventing unauthorized users in remote accessing as follows:

1. The information for authenticating users (user name and password) is
replicated at all sites in the catalog. Local programs, initiated at a remote
site, must also indicate the user name and password.

576 12 Distributed and Parallel Database Management Systems

2. All sites of the distributed DBMS identify and authenticate themselves
similarly to the way users do. Intersite communication is thus protected
by the use of the site password.

Distributed authorization rules are expressed in the same way as centralized
ones. They can be either in fully replicated at each site or stored at the sites of
the reference objects. The main advantage of fully replicated approach is that
authorization can be processed by query modification at compile time. How-
ever, directory management is more costly because of data duplication. The
second solution is better if locality of reference is high. However, distributed
authorization cannot be controlled at compile time.

12.4.8 Semantic Integrity Control

Another important and difficult problem for a database system is how to
guarantee database consistency. A database state is said to be consistent
if the database satisfies a set of constraints, called semantic integrity con-
straints. Maintaining a consistent database requires various mechanisms such
as concurrency control, reliability, protection, and semantic integrity control.
Semantic integrity control ensures database consistency by rejecting update
programs which lead to inconsistent database states, or by activating specific
actions on the database state, which compensate for the effects of the update
programs.

Semantic integrity constraints are rules that represent the knowledge about
the properties of an application. They define static or dynamic application
properties which cannot be directly captured by the object and operation
concepts of a data model. Thus the concept of an integrity rule is strongly
connected with that of a data model in the sense that more semantic infor-
mation about the application can be captured by means of these rules.

Two main types of integrity constraints can be distinguished: structural
constraints and behavioral constraints. Structural constraints express basic
semantic properties inherent to a model. Examples of such constraints are
unique key constraints in the relational model, or one-to-many associations
between objects in the network model. Behavioral constraints, on the other
hand, regulate the application behavior. Thus they are essential in the data-
base design process. They can express associations between objects, such as
inclusion dependency in the relational model, or describe object properties
and structures. The increasing variety of database applications and the recent
development of database design aid tools call for powerful integrity constraints
which can enrich the data model.

The main problem in supporting automatic semantic integrity control is
that the cost of checking assertions can be prohibitive. Enforcing integrity
assertions is costly because it generally requires access to a large amount of
data which are not involved in the database updates. The problem is more
difficult when assertions are defined over a distributed database.

12.4 Semantic Data Control 577

12.4.9 Distributed Semantic Integrity Control

The method obviously works with replicated directories. The two main prob-
lems of designing an integrity subsystem for a distributed DBMS are the
definition and storage of assertions, and the enforcement of these assertions.

Definition of Distributed Integrity Assertions

An integrity assertion is supposed to be expressed in tuple relational calculus.
Each assertion is seen as a query qualification which is either true or false
for each tuple in the Cartesian product of the relations determined by tuple
variables. Since assertions can involve data stored at different sites, their stor-
age must be decided so as to minimize the cost of integrity checking. There
is a strategy based on integrity assertions that distinguishes three classes of
assertions:

1. Individual assertions. Single-relation single-variable assertions. They refer
only to tuples to be updated independently of the rest of the database.

2. Set-oriented assertions. Includes single-relation multivariable constraints
such as functional dependency and multirelation multivariable constraints.

3. Assertions involving aggregates. Requires special processing because of the
cost of evaluating the aggregates.

Enforcement of Distributed Integrity Assertions

Enforcing distributed integrity assertions is more complex than needed in
centralized DBMSs. The main problem is to decide where to enforce the in-
tegrity assertions. The choice depends on the class of the assertion, the type
of update, and the nature of the site where the update is issued:

1. Individual assertions. Two cases are considered. If the update is an insert
statement, all the tuples to be inserted are explicitly provided by the user.
In this case, all individual assertions can be enforced at the site where the
update is submitted. If the update is a qualified update (delete or modify
statements), it is sent to the sites storing the relation that will be updated.

2. Assertions involving aggregates. These assertions are among the most
costly to test because they require the calculation of the aggregate func-
tions. The aggregate functions generally manipulated are MIN, MAX,
SUM, and COUNT. Each aggregate function contains a projection part
and a selection part. To enforce these assertions efficiently, it is possible
to produce compiled assertions that isolate redundant data which can be
stored at each site storing the associated relation. This data are called
views.

578 12 Distributed and Parallel Database Management Systems

12.5 Distributed Concurrency Control

Distributed concurrency control mechanism of a distributed DBMS ensures
the consistencies of the database. It is maintained in a multiuser distrib-
uted environment. If transactions are internally consistent, the simplest way
of achieving this objective is to execute each transaction alone, one after
another. It is obvious that such an alternate is only of theoretical interest and
cannot be implemented in practical systems, since it minimizes the system
throughput. The level of concurrency is probably that most important para-
meter in distributed systems. Therefore, the concurrency control mechanisms
attempts to find a suitable trade-off between maintaining the consistency of
the database and maintaining a high-level of concurrency.

The distributed system is fully reliable and does not experience any failures
even though this is an entirely unrealistic assumption; there is a reason for
making it. It permits as to delineate the issues related to the management
of concurrency from those related to the operation of the reliable distributed
system.

12.5.1 Serializability Theory

If the concurrent execution of transactions leaves the database in a state that
can be achieved by their serial execution in some order, problems such as
last updates will be resolved. This is exactly that the point of serializability
argument. A schedule S is defined over a set of transaction T = (T1,T2 . . .Tn)
and specifies an interleaved order of execution of this transaction operations.
Two operations Oij(X) and Ojk(X) accessing the same database entity X are
said to be in conflict if at least is a right. From this definition, first, read
operations do not conflict each other. Therefore, the two types of conflicts are
read–write and write–write.

12.5.2 Taxonomy of Concurrency Control Mechanism

There are number of ways that the concurrency control approaches can be
classified. One obvious classification criterion is the mode of database distri-
bution. Some algorithms that have been proposed require a fully replicated
database, while others can operate on partially replicated or partitioned data-
base. The concurrency control algorithms may also be classified according to
the network topology, such as those requiring a communication subnet with
broadcasting capability or those working in a star type network or circu-
larly connected network. The most common classification criterion, however,
is synchronization primitives. The corresponding breakdown of concurrency
control algorithms results in two classes, algorithms that are based on
mutually exclusive access to shared data and those that attempt to order the
execution of transactions according to the set of rules.

12.5 Distributed Concurrency Control 579

The concurrency control mechanism is grouped into two broad classes
namely, pessimistic control methods and optimistic control methods as shown
in Fig. 12.6. Pessimistic algorithm synchronizes the concurrent execution
of transaction early in their execution life cycles, whereas optimistic algo-
rithms delay the synchronization of transactions until their termination. The
pessimistic group consists of locking-based algorithm, ordering-based algo-
rithm, and hybrid algorithm. The optimistic group can be similarly classified
as locking based or timestamp ordering (TO) based.

In the locking-based approach, the synchronization of transaction is
achieved by employing physical or logical locks on some portion or granule
of the database. The class is subdivided further according to where the lock
management activities are performed:

1. Centralized locking, one of the sites in the network, is designated as the
primary site where the lock tables for the entire database are stored and
charged with the responsibility of granting locks to transaction.

2. Primary copy locking is one of the copies each lock unit is designated as
the primary copy, and it is a copy that has to be locked for the purpose
of particular unit.

3. Decentralized blocking, the lock management, is shared by all the sides
of the network. In this case, the execution of transaction involves the
participation and coordination of schedulers at more than site. Each local
scheduler is responsible for the lock units local to the site.

The timestamp ordering class involves organizing the execution order of
transaction so that they maintain mutual and interconsistency. This ordering

Concurrency Control
Algorithms

Pessimistic Optimistic

Locking Timestamp Hybrid Locking Timestamp

Basic Centralized

Multi-version
Primary
Copy

Distributed Conservative

Fig. 12.6. Classification of concurrency control

580 12 Distributed and Parallel Database Management Systems

is maintained by assigning timestamps to both the transactions and the data
items that are stored in the database.

12.5.3 Locking-Based Concurrency Control

The main idea of this control is to ensure that the data that are shared
by conflicting operations are accessed by one operation at a time. This is
accomplished by associating a “lock” with each lock unit. This lock is set by
a transaction before it is accessed and is reset at the end of its use. Obviously
the lock unit cannot be accessed by an operation if it is locked by another.
Thus, a lock request by a transaction is granted only if the associated lock
is not being held by any other transaction. The distributed DBMS not only
manages locks but also handles the lock management responsibilities behalf
of the transaction. In other words, the users do not need to specify when data
need to be locked, the distributed DBMS takes care of the every time the
transaction issues read or write operations.

In a locking-based system, the scheduler is a lock manager. The transac-
tion manager (TM) passes to the lock manager, the database operation and
associated information. The lock manager then checks if the lock unit that
contains the data item is already locked. If so, and if the existing lock mode
is incompatible with that of the current transaction, the current operation is
delayed. Otherwise, the lock is set to desired mode and database operation is
passed on to the data processor for actual database access. The transaction
manager is then informing of the results of the operations. The termination of
transaction results in the release of its locks and initiation of another trans-
action that might be waiting for the access to be same data item.

Centralized 2PL Algorithm

These algorithm can be easily extended (replicated or partitioned) to the
distributed database environment. One way of doing this is to delegate lock
management responsibility to a single site only. This means that only of the
sites has a lock manager, the transaction manager at the other sites commu-
nicates with rather than with the own lock managers. This is also known as
primary site 2PL algorithm. The communication between the operating sites
in order to execute a transaction according to a centralized 2PL is shown in
Fig. 12.7. This communication between transaction manager at the site where
the transaction is initiated, the lock manager at the central site, and the data
processor at other participating sites are those at which the operation is to
be carried out.

An important difference between the centralized TM algorithm and the
TM algorithm of locking is that the distributed TM has to implement the
replica control protocol if the database is replicated. The central lock manager
does not send the operations to the respective data processors; that is done
by the coordinating TM.

12.5 Distributed Concurrency Control 581

Data Processors at
participating sites

Coordinating TM Central site LM

1

Lock Request

Lock Granted

2

3

4

5

Operation

End of Operation

Release Locks

Fig. 12.7. Communication structure of distributed 2PL

Primary Copy 2PL (PC2PL)

It is a straightforward extension of centralized 2PL in an attempt to counter
the latter’s potential performance problems. Basically, it implements lock
managers at a number of sites and makes each lock manager responsible for
managing the locks for a given set of lock units. The TMs then send their
lock and unlock requests to the lock managers that are responsible for specific
lock unit. Thus the algorithm treats one copy of each data item as its primary
copy.

Basically, the one change from centralized 2PL is that the primary copy
locations have to be determined for each data item prior to sending a lock or
unlock request to the local manager at the site. The load of the central site
is also reduced without causing a large amount of communication among the
TMs and lock managers.

Distributed 2PL (D2PL)

It expects the availability of lock managers at each site. If the database
is not replicated, distributed 2PL degenerates into the primary copy 2PL
algorithm. If data are replicated, the transaction implements the ROWA
replica control protocol. The communication between cooperating sites that
execute a transaction according to the distributed 2PL is shown in Fig. 12.8.

The D2PL transaction management algorithm is similar to the C2PL-TM
with two major modifications. The messages that are sent to the central site
lock manager in C2PL-TM are sent to the lock managers at all participating

582 12 Distributed and Parallel Database Management Systems

Data Processors at
participating sites

Coordinating TM Central site LM

1

Operations2

3

4

Operations
Lock Requests

End of Operation

Release Locks

Fig. 12.8. Communication structure of distributed 2PL

sites in D2PL-TM. The second difference is that the operations are not passed
to the data processors by the coordinating TM, but by the participating local
managers. This means that the coordinating TM does not wait for a “lock
request granted” message.

12.5.4 Timestamp-Based Concurrency Control Algorithms

A timestamp is a simple identifier that serves to identify each transaction
uniquely and to permit ordering. Uniqueness is only one of the properties of
timestamp generation. The second property is monotonicity. Two timestamps
generated by the same transaction manager should be monotonically increas-
ing. Thus timestamps are values derived from a totally ordered domain. It
is the second property that differentiates a timestamp from a transaction
identifier.

There are a number of ways that timestamps can be assigned. One method
is to use a global (system wide) monotonically increasing counter. However,
the maintenance of global counters is a problem in distributed systems. There-
fore, it is preferable that each site autonomously assigns timestamps based on
its local counter. To maintain uniqueness, each site appends its own identifier
to the counter value. Thus the timestamp is a two-tuple of the form 〈local
counter value, site identifier〉. Note that the site identifier is appended in the
least significant position. Hence it serves only to order the timestamps of two
transactions that might have been assigned the same local counter value. In

12.5 Distributed Concurrency Control 583

each system clock, it is possible to use system clock values instead of counter
values.

12.5.5 Optimistic Concurrency Control Algorithms

The concurrency control algorithms discussed so far are pessimistic in na-
ture. In other words, they assume that the conflicts between transactions are
quite frequent and do not permit a transaction to accesses that data item.
Thus the execution of any operation of a transaction follows the sequence of
phases: validation (V), read (R), computation (C), and write (W) as shown
in Fig. 12.9.

Optimistic algorithms, on the other hand, delay the validation phase until
just before the write phase as shown in Fig. 12.10. Thus an operation submit-
ted to an optimistic scheduler is never delayed. The read, compute, and write
operations of each transactions are processed freely without updating the ac-
tual database. Each transaction initially makes its updates on local copies of
data items. The validation phase consists of checking if these updates would
maintain the consistency of the database. If the answer is affirmative, the
changes are made global (i.e., written into the actual database). Otherwise,
the transaction is aborted and has to restart. It is possible to design locking-
based optimistic concurrency control algorithms.

However, the original optimistic proposals are based on timestamp order-
ing. Therefore, we describe only the optimistic approach using timestamps.
Optimistic algorithms have not been implemented in any commercial or
prototype DBMS. Therefore, the information regarding their implement-
ation trade-offs is insufficient. As a matter of fact, the only centralized
implementation of optimistic concepts (not the full algorithm) is in IBM’s
IMS-FASTPATH, which provides primitives that permit the programmer to
access the database in an optimistic manner.

12.5.6 Deadlock Management

A deadlock can occur because transactions wait for one another. Informally,
a deadlock situation is a set of requests that can never be granted by the

Validate Read Compute Write

Fig. 12.9. Phases of pessimistic transaction execution

Read Compute Validate Write

Fig. 12.10. Phases of optimistic transaction execution

584 12 Distributed and Parallel Database Management Systems

concurrency control mechanism. A deadlock is a permanent phenomenon. If
one exists in a system, it will not go away unless outside intervention takes
place. This outside interference may come from the user, the system operator,
or the software system (the operating system or the distributed DBMS).

Deadlock Prevention

This method guarantee that deadlocks cannot occur in the first place. Thus
the TM checks a transaction when it is first initiated and does not permit it to
proceed if it may cause a deadlock. To perform this check, it is required that
all of the data items that will be accessed by a transaction be predeclared.
The TM then permits a transaction to proceed if all the data items that will
access are available. The fundamental problem is that it is usually difficult to
know precisely which data items will be accessed by a transaction. Access to
certain data items may depend on conditions that may not be resolved until
run time.

Deadlock Avoidance

This scheme either employs concurrency control techniques that will never
result in deadlocks or requires that schedulers detect potential deadlock
situations in advance and ensures that they will not occur. We consider both of
these cases. The simplest means of avoiding deadlocks is to order the resources
and insist that each process requests access to these resources in that order.
This solution was long ago proposed for operating systems.

Accordingly, the lock units in the distributed database are ordered and
transactions always request locks in that order. This ordering of lock units
may be done either globally or locally at each site. Another alternative is
to make use of transaction timestamps to prioritize transactions and resolve
deadlocks by aborting transactions with higher (or lower) priorities. To imple-
ment this type of prevention method, the lock method is modified as follows.
If a lock request of a transaction Ti is denied, the lock manager does not
automatically force Ti to wait. Instead, it applies a prevention test to the
requesting transaction that currently holds the lock (say Tj). If the test is
passed, Ti is permitted to wait for Tj; otherwise, one transaction or the other
is aborted.

Deadlock Detection and Resolution

Detection is done by studying GWFG for the formulation of cycles. Reso-
lution of deadlocks is typically done by the selection of one or more victim
transactions that will be preempted and aborted in order to break the cycles
in GWFG. Some of the factors affecting in selection of the minimum total-cost
set for the breaking the deadlock cycle are:

12.5 Distributed Concurrency Control 585

1. The amount of effort that has already been invested in the transaction.
This effort will be lost if the transaction is aborted.

2. The cost of aborting the transaction. This cost generally depends on the
number of updates that the transaction has already performed.

3. The amount of effort it will take to finish executing the transaction. The
scheduler wants to avoid aborting a transaction that is almost finished.
To do this, it must be able to predict the future behavior of active trans-
actions.

4. The number of cycles that contain the transaction. Since aborting a trans-
action breaks all cycles that contain it, it is the best to abort transactions
that are part of more than one cycle.

Centralized Deadlock Detection

In this approach, one site is designated as the deadlock detector for the entire
system. Periodically, each lock manager transmits its GWFG and looks for
cycles in it. Actually, the lock managers need to send only messages in their
graphs (i.e., the newly created or deleted edges) to the deadlock detector.
The length of intervals for transmitting this information is a system design
decision; the smaller the interval, the smaller the delays due to undetected
deadlocks, but the larger the communication cost.

Hierarchical Deadlock Detection

An alternative to centralized deadlock detection is the building of a hierarchy
of deadlock detectors. Deadlocks that are local to a single site would be
detected at that site using the local WFG. Each site also sends it local WFG
to the deadlock detector at the next level. Thus, distributed deadlocks involv-
ing two or more sites would be detected by a deadlock in the next lowest level
that has control over these sites.

The hierarchical deadlock detection (as shown in Fig. 12.11) method
reduces the dependence on the central site, thus reducing the communica-
tion cost. It is, however, considerably more complicated to implement and
would involve nontrivial modifications to the lock and transaction manager
algorithms.

Distributed Deadlock Detection

This algorithm delegates the responsibility of detecting deadlocks to individ-
ual sites. Thus, as in the hierarchical deadlock detection, there are deadlock
detectors at each sites which communicate their local WFGs with one another
(in fact, only the potential deadlock cycles are transmitted). The local WFGs
at each site are formed and modified as follows:

586 12 Distributed and Parallel Database Management Systems

Site 2 Site 3
Site 1 Site 4

DDox

DD14
DD11

DD21 DD22 DD23 DD24

Fig. 12.11. Hierarchical deadlock detection

1. Since each site receives the potential deadlock cycles from other sites,
these edges are added to the local WFGs.

2. The edges in the local WFG, which show that local transactions are
waiting for transactions at other sites, are joined with edges in the local
WFGs which show that remote transactions are waiting for local ones.

12.6 Distributed DBMS Reliability

A number of protocols need to be implemented within the DBMS to exploit
the distribution of the database and replication of data items in order to
make operations more reliable. A reliable distributed management system is
one that can continue to process user request when the underlying system is
unreliable. In other words, even when component of the distributed computing
environment is failed, a reliable distributed DBMS should be able to continue
executing user request without violating database consistency.

It is possible to discuss database reliability in isolation. However, the
distributed DBMS is only one component of a distributed computing system.
Its reliability is strongly dependent on the reliability of the hardware and
software components that make up the distributed environment.

12.6.1 Reliability Concepts and Measures

The terms reliability and availability are used loosely in literature. Even
among the researchers in the area of reliable computer systems, there is no
consensus on the definitions of these terms.

System, State, and Failure

In the context of reliability, system refers to a mechanism that consists of a
collection of components and interacts with its environment by responding to

12.6 Distributed DBMS Reliability 587

stimuli from the environment with a recognizable pattern of behavior. Each
component of a system is itself a system, commonly called a subsystem. The
environment of a component is the system of which it is a part. The way the
components of a system are put together is called the design of the system.

There are a number of ways of modeling the interaction between the soft-
ware and the hardware in a computer system. One possible modeling method
is to treat the program text as the design of an abstract system whose compo-
nents are the hardware and software objects that are manipulated during the
execution of the program. An external state of a system can be defined as the
response that a system gives to an external stimulus. It is therefore possible
to talk about a system changing external states according to repeated stimuli
from the environment. We can define the internal state of the system similarly.
It is convenient to define the internal state as the union of the external states
of the components that make up the system. Again, the system changes its
internal state in response to stimuli from the environment.

The behavior of the system in providing response to all the possible stimuli
from the environment needs to be laid out in an authoritative specification
of its behavior. The specification indicates the valid behavior of each system
state. Such a specification is not only necessary for a successful system design
but it is also essential to define the following reliability concepts. Any deviation
of a system from the behavior in the specification is considered a failure.

Each failure obviously needs to be traced back to its cause. Failures in a
system can be attributed to deficiencies either in the components that make
up, or in the design, i.e., how these components are put together. Each states
that reliable system goes through valid in the sense that the state fully meets
its specification. However, in an unreliable system, it is possible that the
system may get to an internal that may not obey its specification. Further
transitions from this state would eventually cause a system failure. Such states
are called erroneous states ; the part of the state that is incorrect is called an
error in the system. Any error in the internal states of the components of a
system is called a fault in the system. Thus a fault that causes an error result
in a system failure is shown in Fig. 12.12.

Fault Error Failure

Causes

Results in

Fig. 12.12. Chain of events leading to system failure

588 12 Distributed and Parallel Database Management Systems

We differentiate between errors that are permanent and those are not
permanent. Permanents can apply to a failure, a fault, or an error, although
we typically use the term with respective to a fault. The permanent faults
also commonly called a hard fault, is one that reflects the irreversible change
in the behavior of the system. This fault causes permanent errors that result
in permanent failures. The characteristic of this failure is that the recovery
from them requires intervention to “repair” the fault.

Reliability and Availability

Reliability refers to the probability that the system under consideration does
not experience many failures in the given time interval. It is typically used
to describe system that cannot be repaired or where the operation of the
system is so critical that no down time for repair can be tolerated. Formally
the reliability, R(t), is defined the following conditional probability. Reliability
theory, as it applies to hardware systems, has been developed significantly.

R(t) = Pr{0 failures in time [0,t] | no failures at t = 0}

Availability, A(t), refers to the probability that the system is operational
according to its specification at a given point in time t. A number of failures
may have occurred prior to time t, but if they have all been repaired, the
system is available at time t. It is apparent that availability refers to system
that can be repaired. It can be used as some measure of “goodness” for those
systems that can be repaired and which can be out of service for short periods
of time during repair. Reliability and availability of a system are considered to
be contradictory objectives. It is usually accepted that it is easier to develop
highly available systems as oppose to highly reliable systems.

12.6.2 Failures in Distributed DBMS

Designing a reliable system that can record for failures requires identifying the
types of failures with which the system has to deal. It indicates that the data-
base recovery manager has to deal four types of failures namely, transaction
failure (abort), site failure (system), media failure (disk), and communication
line failure:

1. Transaction (abort) failure. It can fail for number of reasons. It can be
due to an error in the transaction caused by incorrect input data as well
as the detection of a present or potential deadlock. The frequency of this
failure is not easy to measure. It is indicated that in system R, 3% of the
transaction abort abnormally, in general it can be stated that:

– Within a single application, the ratio of transaction that abort them
is rather constant, being a function of the incorrect data, the available
semantic data control feature and so on.

– The number of transactions aborts by the DBMS due to concurrency.

12.6 Distributed DBMS Reliability 589

2. Site (system) failure. It can be traced back to a hardware failure (proces-
sor, main memory, etc.) or to a software failure (bug in the operating
system or in the DBMS code). The important point from the perspec-
tive is that a system failure is always assumed to result in the loss of main
memory contents. In distributed database terminology, system failures are
typically referred to as site failure, since they result in the failed site being
unreachable from other sites in the distributed system.

3. Media (disk) failures. It refers to the failures of the secondary storage
devices that store the database. Such failures may be due to operating
system errors, as well as to hardware faults such as head crashes or
controller failures. The important feature from the perspective of DBMS
reliability is that all or part of the database that is on the secondary
storage is considered to be destroyed and inaccessible. These failures are
frequently treated as problems local to one site and therefore not specifi-
cally addressed in the reliability mechanisms of distributed DBMSs.

4. Communication failures. The communication failures are unique to dis-
tributed DBMS (not centralized DBMS). Lost or undeliverable messages
are typically the consequence of communication line failures or site fail-
ures. If a communication line fails, in addition to losing messages in transit,
it may also divide the network into two or more disjoint groups. This is
called network partitioning. If the network is partitioned, the sites in each
partition may continue to operate.

The detection of undeliverable massages is facilitated by the use of
timers and a timeout mechanism that keeps track of how long it has
been since the sender site has not received any confirmation from the
destination site about the receipt of the message. The term for the failure
of the communication network to deliver messages and the confirmations
within this period is performance failure. It needs to be handled within
the reliability protocols for distributed DBMSs.

Reasons for Failures in Distributed Systems

Soft failures make up more than 90% of all hardware system failures. It is
interesting note that this percentage has not changed significantly since the
early days of computing. More recent studies indicate that the occurrence
of soft failures is significantly higher than that of hard failures. Most of the
software failures are transient hence a dump and restart may be sufficient to
recover without any need to repair the software. Software failures are most
difficult to discuss because there is no agreement on a classification scheme.
The software failures due to communication and database are by far the
dominant causes. These are followed by operating system failures, which
are then followed by failures in the application code and in the transaction
management software.

590 12 Distributed and Parallel Database Management Systems

When one investigates hardware causes of failures, 49% of hardware
failures are disk failures, 23% are due to communication, 17% due to processor
failure, 9% due to wiring, and 1% due to the failure of spares.

12.6.3 Basic Fault Tolerance Approaches and Techniques

The two fundamental approaches to constructing a reliable system are fault
tolerance and fault prevention. Fault tolerance refers to a system design
approach which recognizes that faults will occur; it tries to build mechanisms
into the system so that the faults can be detected and removed or compen-
sated for before they can result in a system failure. Fault prevention has two
aspects. The first is fault avoidance, which refers to the techniques used to
make sure that faults are not introduced into the system. These techniques
involve detailed design methodologies and quality control. The second aspect
is fault removal, which refers to the techniques that are employed to detect
any faults that might have been remained in the system despite the applica-
tion of fault avoidance and removes these faults. The fault removal techniques
can be applied only during the system implementation prior to field use of
the system.

Fault detection techniques are not coupled with fault tolerance features,
they issue a warning when a failure occurs but do not provide any means
of tolerating the failure. Therefore, it might be appropriate to separate fault
detection from strictly fault tolerant approaches.

12.6.4 Distributed Reliability Protocols

Similar to local reliability protocols, the distribution versions aim to maintain
the atomicity and durability of distributed transactions that execute over a
number of databases. To facilitate the description of the distributed reliability
protocols, we resort to a commonly used abstraction. We assume that at the
originating site of a transaction there is a process that executes its operations.
This process is called the coordinator. The coordinator communicates with the
participant processes at the other sites which assist in the execution of the
transaction’s operations.

Components of Distributed Reliability Protocols

The reliability techniques in distributed database systems consist of commit
and recovery protocols. Recall from the preceding section that the commit and
recovery protocols specify how the commit and the recover commands are
executed. Both of these commends need to be executed differently in a
distributed DBMS than in a centralized DBMS. The primary requirement
of commit protocols is that they maintain the atomicity of distributed
transactions. This means that even though the execution of the distributed
transaction involves multiple sites, some of whichmight fail while executing,

12.6 Distributed DBMS Reliability 591

the effects of the transaction on the distributed database are all-or-nothing.
This is called as atomic commitment. Independent recovery protocols deter-
mine how to terminate a transaction that was executing at the time of a failure
without having to consult any other site. Existence of such protocols would
reduce the number of messages that need to be exchanged during recovery.

Two-Phase Commit Protocol (2PC)

It is a simple and elegant protocol that ensures the atomic commitment of
distributed transactions. It extends the effects of local atomic actions of dis-
tributed transactions by insisting that all sites involved in the execution of
a distributed transaction agree to commit the transaction before its effects
are made permanent. A brief description of the 2PC protocol that does not
consider failures is as follows. Initially, the coordinator writes a begin commit
record in its log, sends a “prepare” message, it checks if it could commit the
transaction.

Another alternative is linear 2PC (as shown in Fig. 12.13), where partici-
pants can communicate each other. There is an ordering between the sites in
the system for the purposes of communication. Let us assume that the ordering
among the sites that participate in the execution of a transaction is 1, . . . ,N,
where the coordinator is the first one in the order. The 2PC protocol is imple-
mented by a forward communication from the coordinator (number 1) to N,
during which the first phase is completed, and by a backward communication
from N to the coordinator, during which the second phase is completed.

The coordinator sends the “prepare” message to participant 2. If partic-
ipant 2 is not ready to commit transaction, it sends a “vote-abort” message
(VA) to participant 3 and the transaction is aborted at this point. If, on
the other hand, participant 2 agrees to commit transaction, it sends a “vote-
commit” message (VC) to participant 3 and enters the READY state. This
process continues until a vote-commit message reaches N. This is the end of
the first phase. If N decides to commit, it sends back to N-1 “global-commit”
(GC); otherwise, it sends a “global-abort” message (GA). Accordingly, the
participants enter the appropriate state (COMMIT or ABORT) and propa-
gate the message back to the coordinator.

1 2 3 N54

Prepare VC/VA VC/VA VC/VA VC/VA

GC/GA GC/GA GC/GA GC/GA GC/GA

Phase 1

Phase 2

Fig. 12.13. Linear 2PC communication structure

592 12 Distributed and Parallel Database Management Systems

Architectural Considerations

Here the protocols are implemented within the framework of our architectural
model. This involves specification of the interface between the concurrency
control algorithms and the reliability protocols. It is quite difficult to specify
precisely the execution of these commands. The difficulty is twofold. First,
a significantly more detailed model of the architecture than the one we have
presented needs to be considered for correct implementation of these com-
mands. Second, the overall scheme of implementation is quite dependent on
the recovery procedures that the local recovery manager implements.

One possible implementation of the commit protocols within our architec-
tural model is to perform both the coordinator and participant algorithms
within the transaction managers at each site. This provides some uniformity
in executing the distribution commit operations. However, it entails unnec-
essary communication between the participation transaction manager and its
scheduler; this is because the scheduler has to decide whether a transaction
can be committed or aborted.

Storing the commit protocol records in the database log maintained by the
LRM and the buffer manager requires some changes to the LRM algorithms.
This is the third architectural issue we address. Unfortunately, these changes
are dependent on the type of the algorithm that the LRM uses. The LRM
has to determine whether the failed site is the host of the coordinator or of
a participant. This information can be stored together with the begin trans-
action record. The LRM then has to search for the last record written in the
log record during execution of the commit protocol.

12.7 Parallel Database

The distribution database implies a number of computers connected by a wide
area or a local area network. The increasing use of powerful personal comput-
ers, work stations, and parallel computers in distributed systems has a major
impact on distributed database technology. The integration of workstations
in a distributed environment enables a more efficient function distribution in
which application programs run on workstations, called application servers,
while database functions are handled by dedicated computers, called database
servers.

A parallel computer, or multiprocessor, is itself a distributed system made
of a number of nodes connected by a fast network within a cabinet. Distrib-
uted database technology can be naturally revised and extended to implement
parallel database systems. It exploits the parallelism data management in or-
der to deliver high performance and high availability. Database serves at much
lower price than equivalent main frame computers.

12.7 Parallel Database 593

12.7.1 Database Server and Distributed Databases

The centralized server approach enables distributed application to access a
single database server efficiently. So, it is often a cost-effective alternative to
distributed database whereby all the difficult problems are distributed data-
base management that disappears at the local database server level. The add-
ition of new application server in a local network is technically easy but may
require the expansion of database server’s processing power and storage ca-
pacity. Furthermore, the access to a single data server from geographically
distant application servers is inefficient because communication over a wide
area network is relatively slow.

The natural solution to these problems is to combine the database server,
and distributed database technologies are to be termed distributed database
server organization. Figure 12.14 shows the example of this organization, in
which application servers and database servers are extended with distributed
DBMS component. The distributed database server organization can accom-
modate a large variety of configurations, each being application dependent.
Consider a geographically distributed database whose sites are connected by a
wide area network, each site can consist of a single database server connected
by a local network to a cluster of workstations. Any workstation could access
the data at any database server through either the local network.

In the distributed server organization, each database server is fully dedi-
cated to distributed and centralized database management. The first solution
to improve performance is to implement the DBMS and distributed DBMS

Application

DBMS Server Interface

Application

DBMS Server Interface

Distributed DBMS
Layer

DBMS Function

Network

Distributed DBMS
Layer

DBMS Function

Fig. 12.14. Distributed database server

594 12 Distributed and Parallel Database Management Systems

modules on top of a distributed database operating system running on a tradi-
tional computer. Another solution is to go one step further and use a parallel
database system.

Parallel processing exploits multiprocessor computers to run application
programs by using several processors cooperatively, in order to improve
performance. Its prominent use has long been in scientific computing by
improving the response time of numerical applications. Recent develop-
ment in both the general purpose MIMD parallel computers using standard
microprocessors and parallel programming techniques has enabled parallel
processing to increase performance and availability.

The problem faced by conventional database management has long been
known as “I/O bottleneck,” induced by high disk access time with respect
to main memory access time (typically hundreds of thousands times faster).
Initially, DBM designers tackled this problem by introducing the data filtering
devices within the disk. They too failed due to poor price/performance when
compared to the software solution which can easily benefit from hardware
progress in silicon technology.

An important result of DBM research is in the general solution of the I/O
bottleneck. If we store a database of size D on a single disk with throughput T,
the system throughput is bounded by T. On the contrary, if we partition the
database across n disks, each with capacity D/n and throughput T′ (nearly
equivalent to T), we get an ideal throughput of n * T′ which can be better
consumed by multiple processors. Note that main memory database system
solution which tries to maintain the database in main memory is complimen-
tary rather than alternative.

Parallel database system designers strived to develop software-oriented
solutions in order to exploit multiprocessor hardware. The objective of par-
allel database system can be achieved by extending distributed database
technology.

Parallel database software must effectively deploy the system’s processing
power to handle diverse applications, online transaction processing (OLTP)
applications, decision support system (DSS) applications, as well as a mixed
OLTP and DSS workload. OLTP applications are characterized by short
transactions, which have low CPU and I/O usage. DSS applications are
characterized by long transactions, with high CPU and I/O usage.

Parallel database software is often specialized usually to serve as query
processors. Since they are designed to serve a single function, however,
specialized servers do not provide a common foundation for integrated opera-
tions. These include online decision support, batch reporting, data warehous-
ing, OLTP, distributed operations, and high availability systems. Specialized
servers have been used most successfully in the area of very large databases.

Consider the versatile parallel software should offer excellent price/perfor-
mance on open systems hardware, and be designed to serve a wide variety of
enterprise computing needs. Features such as online backup, data replication,
portability, interoperability, and support for a wide variety of client tools can

12.7 Parallel Database 595

enable a parallel to support application integration, distributed operations,
and mixed application workloads.

There are a number of hardware architectures allow multiple computers
to share access to data, software, or peripheral devices. A parallel database
is designed to take advantage of such architectures by running multiple in-
stances, which share a single physical database. In appropriate applications,
a parallel server can allow access to single database by users on multiple ma-
chines with increased performance. A parallel server processes transaction in
parallel by servicing a stream of transactions using multiple CPUs on differ-
ent nodes, and each CPU processes an entire transaction. This is an efficient
approach because many applications consist of online insert and update trans-
actions that tend to have short data access requirements.

12.7.2 Main Components of Parallel Processing

The main components of parallel processing are speedup and scale-up, syn-
chronization, locking, and messaging.

Speedup and Scale-up

Speedup is the extent to which more hardware can perform the same task in
less time than the original system. With added hardware, speedup holds the
task constant and measures the time saved. With good speedup, additional
processors reduce system response time. You can measure speedup by using
the following formulae:

Speedup =
Original Processing Time
Parallel Processing Time

The original processing time is the elapsed time spent by a small system on
the given task and parallel processing time is the elapsed time spent by a
larger, parallel system on the given task. For example, if the original system
took 100 s to perform a task, and two parallel systems took 50 s, then the
value of speedup would be equal to 2.

Scale-up is the ability of a system n times larger to perform a job n times
larger, in the same period as the original system. With good scale-up, if trans-
action volumes grow, you can keep response time constant by adding hardware
resources such as CPUs. We can measure the scale-up by using the formulae:

Scale-up =
Parallel Processing Volume
Original Processing Volume

The original processing volume is the transaction volume processed in a given
amount of time on a small system. The parallel processing volume is the
transaction volume processed in a given amount of time on a parallel system.
If the value of scale-up is 2, then it indicates the ideal of linear scale-up, i.e.,
twice as much as the hardware can process twice the data volume in the same
amount of time.

596 12 Distributed and Parallel Database Management Systems

Synchronization

Coordination of concurrent tasks is called synchronization. Synchronization is
necessary for correctness. The key to successful parallel processing is to divide
up tasks so that very little synchronization is necessary. If the synchronization
necessary is less, then the speedup and scale-up are better.

In parallel processing between nodes, a high-speed communication net-
works are required among the parallel processors. The overhead of this
synchronization can be very expensive if a great deal of internode commu-
nication is necessary. For parallel processing within a node, messaging is not
required instead a shared-memory can be used. A task, in fact, may require
multiple messages. If tasks must continually wait to synchronize, then several
messages may be needed per task. In most database management systems,
messaging and locking between nodes are handled by the distributed lock
manager (DLM).

The amount of synchronization depends on the amount of resources and
the number of users and tasks working on the resources. Little synchronization
may be needed to coordinate a small number of concurrent tasks, but lots of
synchronization may be necessary to coordinate many concurrent tasks.

A great deal of time spent in synchronization indicates high contention for
resources. Too much time spent in synchronization can diminish the benefits
of parallel processing. With less time spent in synchronization, better speedup
and scale-up can be achieved.

Locking

Locks are fundamentally a way of synchronizing tasks. Many different locking
mechanisms are necessary to enable the synchronization of tasks required by
parallel processing. External locking facilities as well as mechanisms internal
to the database are necessary. A DLM is the external locking facility used by
many parallel databases. A DLM is an operating software, which coordinates
resource sharing between nodes running a parallel server.

The instances of a parallel server use the DLM to communicate with
each other and coordinate the modification of database resources. Each node
operates independently of other nodes, except when contending for the same
source. The DLM allows applications to synchronize access to resource such
as data, software, and peripheral devices, so that concurrent requests for
the same resource are coordinated between applications running on different
nodes. The DLM performs the following services for applications:

1. Keeps track of the current ownership of a resource.
2. Accepts lock requests for resources from application process.
3. Notifies the requesting process when a lock on a resource is available.
4. Gets access to a resource for a process.

12.7 Parallel Database 597

Messaging

Parallel processing requires fast and efficient communication between nodes.
So, a system with high bandwidth and low latency, which efficiently commu-
nicates with the DLM, is used. Bandwidth is the total size of messages, which
can be sent per second. Latency is the time required to locate the first bit or
character in a storage location, expressed as access time minus word time. It
is the time it takes place a message on the network. Latency thus indicates
the number of messages, which can be put on the network per second.

A communication network with high bandwidth is like a wide highway
with many lanes to accommodate heavy traffic. The number of lanes affects
the speed at which the traffic can move. A network with low latency is like
a highway with an entrance ramp, which permits vehicles to enter without
delay. Massively parallel processing (MPP) is a parallel computing architec-
ture that uses hundreds and thousands of processors. In clustering we use two
or more systems that work together. The difference between MPP and clusters
is that the MPP uses many more processors than clustering. MPP systems
characteristically use networks with high bandwidth and low latency. Clusters
use Ethernet connections with relatively low bandwidth and high latency.

12.7.3 Functional Aspects

A parallel database system acts as a database server for multiple application
server in the common client server organization in computer network. This
system supports the database functions and the client server interface and
possibly general purpose functions. A parallel database system should provide
the following advantages:

– High performance. This can be obtained through several complimentary
solutions such as database-oriented operating system support, parallelism,
optimization, and load balancing. Having the operating system con-
strained and aware of the specific database requirements simplifies the
implementation of low-level database function and therefore decreasing
the cost. Parallelism can increase throughput, using interquery parallel-
ism, and decrease transaction response time, intraquery parallelism.
However, decreasing the response time of complex time query through
large-scale parallelism may well increase in total time and hurt through-
put as a side effect. Therefore, it is crucial to optimize and parallelize
queries in order to minimize the overhead of parallelism.

– High availability. Since the parallel database system consists of many
similar components, it can exploit data replication to increase database
availability. In a highly parallel system with many small disks, the proba-
bility of a disk failure at any time can be higher. Therefore, it is essential
that the disk failure does not imbalance the load.

598 12 Distributed and Parallel Database Management Systems

– Extensibility. In a parallel database, accommodating increasing database
size or increasing performance demands should be easier. It is the ability of
smooth expansion of the system by adding processing and storage power
to the system. Basically, the parallel database system has two advantages:

1. Linear scale-up
2. Linear speedup

General architecture of parallel database system. The general architecture
of parallel database system is shown in Fig. 12.15. Depending on the architec-
ture the processor can support all of the subsystems.

– Session manager. It plays the role of a transaction monitor, providing the
support for client interactions with the server. In particular, it performs
the connections and disconnections between the client processes and the
two other subsystems. Therefore, it initiates and closes user sessions. In
case of OLTP sessions, the session manager is able to trigger the execution
of preloaded transaction code within data manager modules.

– Request manager. It receives client requests related to query compilation
and execution. It can access the database directory which holds all metain-
formation about data and programs. The directory itself should be man-
aged as a database in the server. Depending on the request, it activates
the various compilation places, triggers query execution, and returns the
results as well as error quotes to the client application. To speedup the

User
Task1

Request Mngr
Task1

User
Task2

Request Mngr
Task2

User
Taskn

Request Mngr
Taskn

Session
Manager

Data Mngr
Task1

Data Mngr
Task2

Data Mngr
Taskm-1

Data Mngr
Taskm

Database Server

Connect

Fig. 12.15. General architecture of parallel database system

12.7 Parallel Database 599

query execution, it may optimize and parallelize the query at the compile
time.

– Data manager. It provides all the low-level functions needed to run compile
queries in parallel. If the request manager is able to compile data flow
control, then synchronization and communication among data manager
modules are possible; otherwise, transaction control and synchronization
must be done by a request manager module.

12.7.4 Various Parallel System Architectures

A parallel system represents a compromise in design choices in order to provide
the advantages with better cost and performance. This architecture ranges
between two extremes, a shared-memory and shared-nothing architecture, and
useful intermediate point is the shared-disk architecture. More recently, hybrid
architectures such as hierarchical architecture try to combine the benefits of
shared-memory and shared-nothing.

Shared-Memory Architecture

In the shared-memory approach (shown in Fig. 12.16), any processor has
access to any memory module or disk unit through a fast interconnect.

Most shared-memory commercial products today can exploit interquery
parallelism to provide high transaction throughput and intraquery parallelism
can reduce response time of decision support queries. This memory has two
advantages namely, simplicity and load balancing. Since metainformation and
control information can be shared by all process, writing database software is
not very different than for a single processor computer and also this memory
has three problems namely, cost, imitated extensibility, and low availability.

Shared-Disk Architecture

In this approach any processor has access to any disk unit through the inter-
connect but exclusive access to its main memory as shown in Fig. 12.17. Then,
each processor can access database pages on the shared-disk and copy them

P1

Cache

Pn

Cache

Memory1 Memoryn Disk1 Diskn

Fig. 12.16. Shared-memory architecture

600 12 Distributed and Parallel Database Management Systems

Interconnection Network

P1 P2 Pn

Local
Memory

Local
Memory

Local
Memory

Disk Disk Disk

Fig. 12.17. Shared-disk architecture

into its own cache. To avoid conflicting accesses to the same pages, global
locking and protocol for the maintenance of cache coherency are needed.

This disk has number of advantages namely, cost, extensibility, load
balancing, availability, and easy migration from uniprocessor system. The
cost of interconnect is significantly less than with shared-memory, since
standard bus technology may be used. For a given processor has enough cache
memory, interference on the shared-disk can be minimized. Thus extensibil-
ity can be better since memory faults can be isolated from other processor
memory nodes, availability can be higher.

This architecture suffers from higher complexity and potential performance
problems. It requires distributed database protocols (distributed locking and
two-phase commit).

Shared-Nothing Architecture

In this approach, each processor has exclusive access to its main memory and
disk unit as shown in Fig. 12.18. Then, each node can be viewed as a local
site in a distributed database system. Therefore, most solution designed for
distributed database, such as database fragmentation, distributed transaction
management, and distributed query processing, may be reused.

This approach is also more complex than shared-memory. Higher complex-
ity is due to the necessary implementation of distributed database function
assuming large number of nodes. In addition, load balancing is more difficult
to achieve because it relies on the effectiveness of database partitioning for
the query workloads.

12.7 Parallel Database 601

Local

Memory

Disk

P1 P1 P1

Local

Memory

Interconnection Network

Disk

Local

Memory

Disk

Fig. 12.18. Shared-nothing architecture

Disk

Disk

Disk

Disk

P1

P2

P3

Pn

P1

P2

P3

Pn

P1

P2

P3

Pn

Memory Memory Memory

Disk

Interconnection Network

Disk

Disk

Disk

Disk

Disk

Disk

Disk

Fig. 12.19. Hierarchical architecture

Hierarchical Architecture

This architecture (or cluster architecture) is a combination of shared-nothing
and shared-memory architecture. This idea is to build a shared-nothing
machines whose nodes are shared-memory. This architecture is shown in
Fig. 12.19.

The advantages of this architecture are evident. It combines flexibility
and performance of shared-memory with high extensibility of shared-nothing.
In each shared-memory node (S-M node), communication is done efficiently

602 12 Distributed and Parallel Database Management Systems

using the shared-memory, thus increasing performance. Finally load balancing
is eased by shared-memory component of this architecture.

12.7.5 Parallel DBMS Techniques

Implementation of parallel database systems naturally relies on distribu-
tion database techniques. The critical issues for such architectures are data
placement, query parallelism, parallel data processing, and parallel query
optimization.

Data Placement

Data placement in parallel database system exhibits similarities with data
fragmentation in distributed databases. An obvious similarity is that fragmen-
tation can be used to increase parallelism. There are two important differences
with distributed databases from parallel database approach. First, there is no
need to maximize local processing (at each node) since users are not associ-
ated with particular nodes. Second, load balancing is much more difficult to
achieve in the presence of a large number of nodes. The main problem is to
avoid resource contention, which may result in thrashing the entire system.
Since programs are executed where the data reside, data placement is a critical
performance issue.

Data placement must be done to maximize system performance, which can
combine the total amount of work done by the system and the response time of
individual queries. An alternative solution to data placement is full partition-
ing used in the DBC/1012, GAMMA, and nonstop SQL. There are three basic
strategies for data partitioning: round-robin, hash, and range partitioning as
shown in Fig. 12.20:

a - g h - m u - z

(a) Round-robin (b) Hashing

(c) Interval

Fig. 12.20. Different partitioning schemes

12.7 Parallel Database 603

1. Round-robin partitioning. It is the simplest strategy, it ensures uniform
data distribution. With n partitions, the ith tuple in insertion order is
assigned to partition (I mod n). This strategy enables the sequential access
to a relation to be done in parallel. Direct access of individual tuples
requires accessing the entire relation.

2. Hash partitioning. It applies a hash function to some attribute which yields
the partition number. This strategy allows exact match queries on the
selection attribute to be processed by exactly one node and all other
queries to be processed by all the nodes in parallel.

3. Range partitioning. It distributes tuples based on the value intervals
(ranges) of some attribute. In addition to supporting exact match queries
as with hashing, it is well suited for range queries. This partitioning results
in high variation in partition size.

The performance of full partitioning is compared to that of the clustering
the relations on a single disk. The results indicate that for a wide variety of
multiuser workloads, partitioning is consistently better. However, clustering
may dominate in processing the complex queries. So, the solution to data
placement is variable partitioning. It is defined as the degree of partitioning,
or, the number of nodes over which a relation is fragmented, is a function
of the size and access frequency of the relation. This strategy is much more
involved than either clustering or full partitioning because changes in data
distribution may result in reorganization.

In a highly parallel system with variable partitioning, periodic reorgani-
zations for load balancing are essential and should be frequent unless the
workload is fairly static and experiences only a few updates. Such reorga-
nizations should remain transparent to compiled programs that run on the
database server.

Query Parallelism

– Intraoperator parallelism. Intraoperator parallelism is based on the decom-
position of one operator in a set of independent suboperators, called
operator instances. This decomposition is done using static and/or
dynamic partitioning of relations. Each operator instance will then
process one relation partition also called bucket. The operator decom-
position frequently benefits from the initial partitioning of the data. The
select operator can be directly decomposed into several select operators,
each on a different partition and no redistribution is required. Figure 12.21
shows that if the relation is partitioned on the select attribute, partition-
ing properties can be used to eliminate some select instances.

The partitioning function is independent of local algorithm which is used
to join operator. For instance, a hash join using a hash partitioning needs two
hash functions.

604 12 Distributed and Parallel Database Management Systems

partitioning properties can be used to eliminate some select instances.

Sel. Sel. Sel. Sel. Sel.

S S1 S2 S3 SN

R R1 R2 R3 RN

Fig. 12.21. Intraoperator parallelism

Join

Select Select

Fig. 12.22. Interoperator parallelism

– Interoperator parallelism. Two forms of interoperator parallelism can be
exploited. With pipeline parallelism, several operators with a producer–
consumer link are executed in parallel. The select operator shown in
Fig. 12.22 will be executed in parallel with the subsequent operator. The
advantage of such execution is that the intermediate result is not material-
ized, thus saving memory and disk accesses.

Independent parallelism is achieved when there is no dependency between
the operators executed in parallel. This type of parallelism is very attractive
because there is no interference between the processors. However, it is only
possible for bushy execution and may consume more resources.

Parallel Data Processing

Partitioned data placement is the basis for the parallel execution of database
queries. For efficient processing of database operators and database queries
in the design of parallel algorithms, partitioned data placement is used. This
task is very difficult because a good trade-off between parallelism and commu-
nication must be reached. Parallel algorithms for relational algebra operators
are the building blocks necessary for parallel query processing. The parallel

12.7 Parallel Database 605

processing of join is significantly more involved than that of select. The distrib-
uted join algorithms designed for high-speed networks can be applied success-
fully in a partitioned database context. However, the availability of a global
index at run time provides more opportunities for efficient parallel execution.

Parallel Query Optimization

Parallel query optimization takes the advantage of both interoperator and
intraoperator parallelism. This can be achieved by some of the techniques
used for distributed DBMSs. Parallel query optimization refers to the process
of producing an execution plan for a given query that minimizes an objective
cost function. A query optimizer contains three components, they are search
space, cost model, and search strategy.

The search space is the set of alternative execution plans to represent the
input query. These plans give same result but differ on the execution order
of operators and the way these operators are implemented. The cost model
predicts the cost of given execution plan. To be accurate, the cost model
should have good knowledge about the parallel execution environment.

– Search space. Execution plans are abstracted, as usual, by means of
operator trees, which define the order in which the operators are executed.
Operator trees are enriched with annotations, which indicate additional
execution aspects, such as the algorithm of each operator. An important
execution aspect to be reflected by annotations is the fact that two sub-
sequent operators can be executed in pipeline. Pipeline and store annota-
tions constrain the scheduling of execution of execution plans. They split
an operator tree into nonoverlapping subtrees, called phases. Pipelined
operators are executed in same phase, whereas a storing indication estab-
lishes the boundary between one phase and the subsequent phase.

– Cost model. The optimizer cost model is responsible for estimating the
cost of a given execution plan. It is viewed by two parts: architecture
dependent and architecture independent. The architecture-independent
part is constituted by the cost functions for operator algorithms. If we
ignore the concurrency issues, only the cost functions for data repartition-
ing a relation’s tuples in a shared-nothing system imply transfers of data
across the interconnect, whereas it reduces to hashing in shared-memory
systems. Memory consumption in the shared-nothing case is complicated
by interoperator parallelism.

– Search strategy. This does not need to be different from either central-
ized or distributed query optimization. However, the search space tends
to be much larger because there are more alternative parallel execution
plans. Thus, randomized search strategies generally outperform determin-
istic strategies in parallel query optimization.

606 12 Distributed and Parallel Database Management Systems

Benefits of Parallel Processing and Parallel Database

Parallel processing can benefit certain kinds of application by providing
enhanced throughput (scale-up) and improved response time (speedup).
Improved response time can be achieved either by breaking up a larger
task into smaller components or by reducing wait time. Parallel database
technology can benefit in numerous applications by:

– Higher performance
– Higher availability
– Greater flexibility
– More users

Summary

In this chapter, we discussed the distributed databases and parallel databases
architecture and some of the basic techniques involved. First, we have seen
that distributed database is having a number of advantages over centralized
systems. We then discussed the various fragmentation involved in distributed
databases. In semantic data control, we discussed the view management,
security control, and semantic integrity control. The two main issues for
efficiently performing data control are the definition and storage of rules.
Concurrency control provides the isolation and consistency properties of
transaction, and then we discussed various algorithms in locking. Finally, in
distributed database we discussed reliability and availability. The various
failures in distributed database are listed and the different protocols used to
overcome the failures are discussed. In parallel database, better performance
and high availability are achieved. Various architectures and techniques of
parallel database are discussed and finally the benefits are also listed.

Review Questions

12.1. What is meant by distributed databases?

A distributed database is a collection of data which belong logically to the
same system but are spread over the sites of a computer network. This
definition emphasizes two equally important aspects of a distributed data-
base as follows:

– Distribution. The fact that the data are not resident at the same site
(processor), so that we can distinguish a distributed database from a sin-
gle, centralized database.

Review Questions 607

– Logical correlation. The fact that the data have some properties which
tie them together, so that we can distinguish a distributed database from
a set of local databases or files which are resident at different sites of a
computer network.

12.2. What are special features of distributed database over the centralized
database?

The features, which characterize the traditional database approach, are
centralized control, data independence, and reduction of redundancy, complex
physical structures for efficient access, integrity, recovery, concurrency control,
privacy, and security.

12.3. Explain primary horizontal fragmentation?

The primary horizontal fragments are defined using selections on global
relations. The correctness of primary fragmentation requires that each tuple of
the global relation be selected in one and only one fragment. Thus, determin-
ing the primary fragmentation of a global relation requires determining a set
of disjoint and complete selection prediction. The property that we require for
each fragment is that the elements of them must be referenced homogeneously
by all the applications.

12.4. What are the methods to prevent unauthorized users in remote access-
ing in distributed database?

Two solutions are possible in preventing unauthorized users in remote access-
ing as follows:

1. The information for authenticating users (user name and password) is
replicated at all sites in the catalog. Local programs, initiated at a remote
site, must also indicate the user name and password.

2. All sites of the distributed DBMS identify and authenticate themselves
similarly to the way users do. Intersite communication is thus protected
by the use of the site password.

12.5. Explain the concurrency control mechanisms?

The concurrency control mechanism is grouped into two broad classes as
pessimistic control methods and optimistic control methods. Pessimistic
algorithm synchronizes the concurrent execution of transaction early in their
execution life cycles, whereas optimistic algorithms delay the synchroniza-
tion of transactions until their termination. The pessimistic group consists of
locking-based algorithm, ordering-based algorithm, and hybrid algorithm. The
optimistic group can, similarly, be classified as locking based or timestamp
ordering based.

608 12 Distributed and Parallel Database Management Systems

12.6. Explain distributed 2PL algorithm?

It expects the availability of lock managers at each site. If the database
is not replicated, distributed 2PL degenerates into the primary copy 2PL
algorithm. If data are replicated, the transaction implements the ROWA
replica control protocol. The communication between cooperating sites that
execute a transaction according to the distributed 2PL.

12.7. Define the terms reliability and availability?

Reliability refers to the probability that the system under consideration does
not experience many failures in the given time interval. It is typically used to
describe system that cannot be repaired or where the operation of the system
is so critical that no down time for repair can be tolerated. Availability refers
to the probability that the system is operational according to its specification
at a given point in time t. A number of failures may have occurred prior to
time t, but if they have all been repaired, the system is available at time t. It
is apparent that availability refers to system that can be repaired. It can be
used as some measure of “goodness” for those systems that can be repaired
and which can be out of service for short periods of time during repair.

12.8. What are the reasons for failure in distributed DBMS?

Designing a reliable system that can record for failures requires identifying the
types of failures with which the system has to deal. It indicates that the data-
base recovery manager has to deal four types of failures namely, transaction
failure (abort), site failure (system), media failure (disk), and communication
line failure.

12.9. What is meant by parallel processing and what are the benefits of
parallel processing?

Parallel processing divides a complex task into many smaller tasks, and
executes the smaller tasks simultaneously in several tasks. Thus the complex
task is completed with better performance and also quickly. Parallel process-
ing can benefit certain kinds of application by providing enhanced throughput
(scale-up) and improved response time (speedup).

12.10. Explain hierarchical architecture in parallel databases?

This architecture (or cluster architecture) is a combination of shared-nothing
and shared-memory architecture. This idea is to build a shared-nothing
machine whose nodes are shared-memory. It combines flexibility and perform-
ance of shared-memory with high extensibility of shared-nothing. In each
shared-memory node (S-M node), communication is done efficiently using the
shared-memory, thus increasing performance. Finally load balancing is eased
by shared memory component of this architecture.

Review Questions 609

12.11. Need for parallel databases?

Parallel processing exploits multiprocessor computers to run application
programs by using several processors cooperatively, in order to improve
performance. Its prominent use has long been in scientific computing by
improving the response time of numerical applications. Recent develop-
ment in both the general purpose MIMD parallel computers using standard
microprocessors and parallel programming techniques has enabled parallel
processing to increase performance and availability.

12.12. What are the main components of parallel processing? Explain
speedup?

The main components of parallel processing are speedup and scale-up,
synchronization, locking, and messaging. Speedup is the extent to which
more hardware can perform the same task in less time than the original
system. With added hardware, speedup holds the task constant and measures
the time saved. With good speedup, additional processors reduce system
response time. You can measure speedup by using the following formulae:

Speedup =
Original Processing Time
Parallel Processing Time

13

Recent Challenges in DBMS

Learning Objectives. This chapter provides an overview of recent challenges
database management system (DBMS), which includes concepts, related to genome
database management system, spatial database management system, multimedia
database, mobile database management system, and XML. In this chapter, the basic
idea of genome, genetic code, genome directory system project, concept of mobile
database, and mobile database architecture are discussed. In spatial database man-
agement system, spatial data types (SDTs), implementation of spatial database
management system and in multimedia database, multimedia data model concept,
issues, and architectures are described. The basic concept of XML, XML family,
XML, and database applications are also discussed. After completing this chapter
the reader should be familiar with the following concepts:

– Need for genome database
– Building block of deoxyribonucleic acid (DNA)
– Genetic Code, Genome Map
– Mobile Database
– Concept of Mobile Database Center
– Distributed Database for Mobile
– Spatial Database Management System
– Spatial Data Type
– Spatial Database Modeling
– Spatial DBMS Implementation
– Multimedia Data Model
– Architecture of Multimedia System
– Characterization of Multimedia Data
– Multimedia Database Management System Development
– Issues in Multimedia DBMS
– Basic concepts of XML
– XML Family
– XML and Database Applications

S. Sumathi: Recent Challenges in DBMS, Studies in Computational Intelligence (SCI) 47,

611–643 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

612 13 Recent Challenges in DBMS

13.1 Genome Databases

13.1.1 Introduction

Genomic databases stores information on DNA sequences. Although other
sources of information (e.g., protein sequences and proteins structures) are
important in the area; tools for generating large quantities of information have
only recently been developed. Therefore, databases organized around DNA
had a “head start” and still represents the largest single source of information.

13.1.2 Basic Idea of Genome

The cell is the fundamental unit of life. All living organisms are made of cells.
There are about 75–100 trillion cells in the human body. Nearly all cells of an
organism contain the genome. An exception is the red blood cell which lacks
DNA. In human beings and animals the genomes are often very long and
are divided into packets called chromosomes. The number of chromosomes in
human being is 46, while in mouse and dog the number of chromosomes are
40 and 78, respectively. Genomic information is encoded in the form of DNA
inside the nuclei of cells. A DNA molecule is a long linear polymeric chain,
composed of four types of subunits. Each subunit is called a base. The four
bases in DNA are Adenine (A), Thymine (T), Guanine (G), and Cytosine
(C). DNA occurs as a pair of strands. Bases pair up across the two strands.
A always pairs with T and G always pairs with C. Hence, the two strands are
called complementary.

A gene is a fundamental constituent of any living organism. Sequence of
genes in a human body represents the signature of the person. The genes are
portions of DNA. DNA consists of two strands or chains. Each of these chains
is composed of phosphate and deoxyribose sugar molecules joined together by
covalent bonds. A nitrogenous base is attached to each sugar molecules. There
are four bases: Adenine (A), Cytosine(C), Guanine (G), and Thymine (T). In
the human body there are approximately three billion such base pairs. The
whole stretch of DNA is called genome of an organism. DNA is a linear chain
of four different small molecules called nucleotide bases linked together. Genes
are made up of linear chain of the bases, except different genes comprise of
different sequence of the bases as different.

13.1.3 Building Block of DNA

The basic building blocks of DNA are sugar, phosphate, and base which
together constitute nucleotide as shown in Fig. 13.1. The single-stranded and
double-stranded DNA are shown in Figs. 13.2 and 13.3, respectively.

In 1953, James D. Watson and Francis Crick proposed the double heli-
cal structure of DNA through their landmark paper in the British journal

13.1 Genome Databases 613

Fig. 13.1. Building blocks of DNA

Fig. 13.2. DNA single-stranded

Fig. 13.3. Straightened out double-stranded DNA

“Nature.” For this discovery, they shared the 1962 Nobel Prize for physiology
and medicine with Maurice Wilkins. The double helical structure of DNA is
shown in Fig. 13.4.

Genes

Genes are regions in the genome that carry instructions to make proteins.
Genes are inherited from parent to offspring, and thus are preserved across
generations. Genes determine the traits of an organism.

Genes are divided into many fragments called exons. The exons are sepa-
rated by noncoding regions called introns. This is shown in Fig. 13.5.

614 13 Recent Challenges in DBMS

Fig. 13.4. Double helical structure of DNA

Fig. 13.5. Exons and introns in genes

13.1.4 Genetic Code

Genetic code is the rule by which genes code for proteins. There are groups
of three bases called codons that code for the individual amino acids. The
number of codons is greater than the number of amino acids, more than one
codon can code for an amino acid. The genetic code is said to be degenerative.
The genetic code is shown in Fig. 13.6.

A DNA sequence may be 40,000–100,000 base pairs long. In practice, such
a long stretch of DNA is first broken up into 400–2,000 small fragments.
Each such small fragment typically consists of approximately 1,000 base pairs.
These fragment are sequenced experimentally and then reassembled together
to reconstruct the original DNA sequence. Genes are encoded in these frag-
ments of DNA. The huge volume of such data and their high dimensions make
gene in expression data to be suitable candidates for the application of data
mining functions like clustering, visualization, and string matching.

13.1.5 GDS (Genome Directory System) Project

Bioinformatics requires handling large volumes of data, involving natural in-
teraction with information science. One needs to consider problem of data
storage, analysis, and retrieval along with the computational modeling and

13.1 Genome Databases 615

Fig. 13.6. Genetic code

simulation. Data mining, image processing, and visualization are the other
important constituents required to help the user with a visual environment
that facilitates high-dimensional data dependent on any parameter. Informa-
tion theory-based loss less data compression techniques can play a vital role
in management of this high volume of data.

We know that genome is the collection of all the genes within an organism.
Genomic database is a database that houses the entire genomic sequence
of an organism. These types of databases will typically have relatively few
copies of any particular region of DNA, but their information spans the entire
genome. A mutational database is a database that focuses on a narrow region
of DNA by cataloging all of the known differences that have been found in that
region. These databases will typically have many copies of the same region
of DNA from many different individuals. They will often include comparative
information for all the copies. One description of the difference between a
genomic database and a mutational one is “a genomic database is a mile wide
and an inch deep, while a mutational database is an inch wide and a mile
deep.”

Genome Directory System is used to provide a distributed search and
retrieval system for genome databases, federating and automating the finding
and fetching of genome data across different formats and systems. The main
objectives of the system are:

– Allow searching/retrieval of information spread across different database
systems.

616 13 Recent Challenges in DBMS

– Facilitate bulk retrieval of large data sets that are selected by customer
needs through query, in a quick and easy manner.

– Development will be focused on life science genome databases but it will
draw on and interoperate with general information technology standards
and common practices.

– Include flexible adaptors for different data storage and management sys-
tems.

– Utilize existing standards, technologies, and available bioinformatics data
systems while keeping the licensing as open as possible.

– Implement use of the life science identifier (LSID) for genome, gene, and
related object naming and retrieval.

A large collaboration of model organism databases around the academic
community is called the Generic Model Organism Database (GMOD). The
purpose of GMOD is to develop reusable components suitable for creating
new community databases of biology. The Genome Directory System (GDS)
project has come about because of the need to query multiple organism data-
bases without worrying about where the data reside or what format it exists
in. Although GDS is being developed with model organism genome databases
in mind it can also be used with other life science databases where a need for
federated queries exist. This document will briefly outline the overall layout
of the GDS system and describe each components purpose and technologies
used at each level. An overview of the data flow for the GDS project is shown
in Fig. 13.7.

Data Provider Layer

The Data Provider Layer is comprised of the components that hold the raw
data and can utilize multiple systems for data access to each of the data types.
The data types most commonly encountered in the life sciences include flat file,
relational database management systems (RDBMS), and XML. In addition to
existing in different data management systems, the format of the data itself
can vary between data sources. To get around this, the Data Provider Layer
also includes some external packages.

Data Directory Layer

This layer is the most important piece in the system as it bridges the disparate
data sources and the client. The purpose of this layer is to accept queries
from clients, manage the federation of the queries if needed, and know how
and where to retrieve the information from the various data sources. The
results from these queries will be returned in the form of data objects that
can be further manipulated by the clients. The Data Directory Layer will be
responsible for all communication going to the Data Provider Layer.

13.1 Genome Databases 617

Data client Layer
Genomic maps, Databases, Other directories,
spread sheets, Data miners, Web reports

Data directory layer
Interoperable Standard directory protocols
Grid services (OGSA), LDAP, LSID, Moby,
web Services

SRS Lucene JDBC IBM DL

Genomic Data

Flat file Others(XML)RDBMS

Fig. 13.7. An overview of the data flow for the GDS project

Client Layer

This layer provides the main interaction between the end user and the Genome
Directory System. Its purpose is to interact with the bioinformaticians and/or
bench scientists to allow them to issue queries for data retrieval. When the
Data Directory Layer has processed the request it returns data objects in
a form that the client can understand and process. There will be multiple
points of entry into the Data Directory Layer so the type of clients should
not be limited. It should work with web scripts, java clients other directory
services, etc.

The molecular biology community faces an inundation of data. This implies
that most of the contents of databanks will be recently determined data, and
features, such as quality, will be characteristic of the newest methods of mea-
surement. New experimental techniques will increase the amount and diversity
of data; for example, the functional genomic, Proteome and expression profiles
projects.

A genome is the entire genetic material of an organism, meaning the entire
DNA that makes up the organism (which is replicated in every cell). The
human genome is divided into 22 separate somatic (nonsex) chromosomes as

618 13 Recent Challenges in DBMS

well as the X and Y chromosomes. Within the genome are genes – regions
of chromosomes that serve as templates for the production of proteins. Thus
genes code for proteins. A dysfunctional gene and/or gene product can have
a harmful effect on the organism (e.g., Duchenne Muscular Dystrophy). How-
ever, the entire genome of higher organisms is not dedicated only to encoding
for proteins. In fact, only a small portion (genes) is used as a template for
protein production. Much of the intervening areas are still of use for analysis
through the use of genetic markers. A genetic marker is a unique site within
the genome that can be used to determine the “state” of a region of the
genome, known as the “genotype.”

Genome, this is referred to as “linkage,” i.e., the disease gene is “linked”
to a region (genetic marker) on a chromosome. Linkage analysis requires a set
of genetically related subjects (a family), the phenotypes of the subjects with
respect to a disease, and the genotypes of the subjects for a genetic marker.
The likelihood that the data (family structure, phenotypes, and genotypes)
correlates with a model of inheritance for the disease and with the actual
inheritance patterns (observed by genotypes) provides a measure of the evi-
dence for “linkage.” Thus, a linkage analysis calculates the likelihood that the
disease-causing gene is located near a genetic marker based on the given set
of subjects, phenotypes, and genotypes.

Geno Map

Geno Map is a suite of independent, yet inter-related tools primarily devel-
oped in Java. These tools manipulate data from a domain-specific networked
database, allowing sharing of information among multiple distributed clients
without replication and coherency problems. The main goal of Geno Map is to
provide a portable, intuitive interface for managing the information associated
with the gene location/discovery process.

The Geno Map system is designed to support a diverse collection of users
in a wide-area network environment. The data objects being managed are
of the most sensitive nature – usually identifying family relationships among
members, some of who may carry stigmatizing genetic diseases. The Geno
Map Database is an essential component and is used to form an administra-
tive domain; i.e., only users belonging to that domain can access the data.
Database access requires a separate level of authentication.

Geno Map is a large-scale, distributed, heterogeneous, client/server appli-
cation to support the systematic exploration of the genome to narrow, and
ultimately identify, the locus of a particular gene (or set of genes) involved in
a disease or trait. In contrast to many applications developed in support of
the Human Genome Project (HGP).

13.2 Mobile Database 619

13.1.6 Conclusion

The conflicting requirements of security and heterogeneity are at the heart of
the approach taken in Geno Map. The Database itself is physically partition-
able across lab boundaries, and access to a database is encapsulated within
well-defined APIs. Geno Map has been implemented primarily in Java with a
socket-oriented, client/server design employing recent applet security features.
Geno Map is currently being used in the collection of data for, and analysis
of, a number of relatively small gene identification studies. It is also being
used in one large genome-wide screening for the locus (loci) of the gene(s)
involved in autism. The former shows its usefulness in supporting users who
want to employ the analysis features of Geno Map, while not needing the
large-scale data collection and management facilities, while the latter shows
the usefulness in managing gene identification studies that would have been
unmanageable without such a system.

13.2 Mobile Database

Recent advances in wireless networking technologies and the growing success
of mobile computing devices are enabling new issues that are challenging to
mobile database designers. One idea is disconnected database, where mobile
hosts are strong connected, weak connected with or disconnected from fixed
network. They hoard replicas before disconnection, read/write on the local
replicas, and then synchronize updates when they get reconnected with the
fixed network. There is no communication among mobile hosts. One idea is
disconnected database, where mobile hosts are strong connected, weak con-
nected with or disconnected from fixed network. They hoard replicas before
disconnection, read/write on the local replicas, and then synchronize updates
when they get reconnected with the fixed network. There is no communication
among mobile hosts, where mobile hosts weak connected in pair-wise manner
or disconnected with each other. They hoard replicas from their peers and syn-
chronize updates upon connection. When disconnected, local data accesses are
performed.

13.2.1 Concept of Mobile Database

A mobile database should be defined as the union of distributed database,
disconnected database, ad hoc database and broadcast disks. The distributed
database is treated as the home of mobile database, and the others deal with
the access of mobile users. Figure 13.8 demonstrates the concept of mobile
database.

Traditional database design is static and limits the flexibility of database
applications, while mobility is changing the way we design databases and

620 13 Recent Challenges in DBMS

Fig. 13.8. Mobile database: a whole image

their DBMS. In mobile database everything is dynamic, varying from spo-
radic accesses by individual users to particular data to continuous access of a
particular data by a large group of user. This is the case from disconnected
database access to broadcast disks. Mobile hosts have to deal with planned or
unexpected disconnections when they mobile; they are likely to have scarce
resources such as low battery life, slow processor speed and limited memory;
their applications are required to react to frequent changes in the environment
such as new location, high variability of network bandwidth; their data inter-
ests are changing from time to time and from location to location; even data
semantics in mobile hosts are varying according to data access patterns, con-
nection duration and disconnection frequencies, etc. Data partition, location,
and replication are always dynamic. All of these require a dynamic database
design and reconfigure scheme.

13.2.2 General Block Diagram of Mobile Database Center

A client/server mobile database environment as illustrated in Fig. 13.9 consists
of a central server database residing at a fixed location and one or more local
databases on mobile clients.

The client software is used to access the database in very efficient manner.
Many securities can be carried out in data connectivity. Data recovery algo-
rithms can also be used. The very important concept in mobile database is
data synchronization, in which client and server should be synchronized.

13.2.3 Mobile Database Architecture

The basic architecture for mobile database is shown in Fig. 13.10. Three im-
portant sections for mobile database are:

Fixed Hosts, perform the transaction and data management functions with
the help of database servers.

13.2 Mobile Database 621

Fig. 13.9. General block diagram

A cell Wireless link

MU

MU

MU

MU

BS
Fixed Host

DBS

Fixed Host

DBSBS

Fig. 13.10. Basic architecture of mobile database

Mobile Units, portable computers, move around a geographical region that
is a collection of mobile cells:

– Mobile hosts retains network connection through the support of base
stations

– Role of mobile hosts depend on the capacity

Base Stations

– Capturing mobility by hand-off processes
– When a mobile unit leaves a mobile cell serviced by a base station,

transfer the responsibility for mobile transaction and data support to
the new base station.

– Transparent processes?

622 13 Recent Challenges in DBMS

Fig. 13.11. Modes of operation

13.2.4 Modes of Operations of Mobile Database

The mobile network database can be operated in four different modes as shown
in Fig. 13.11. They are:

– Fully connected
– Totally disconnected
– Partially connected
– Doze state

Several protocols are available for controlling the flow between these con-
nections. They are:

– Disconnection
– Partially disconnection
– Recovery
– Hands-off

13.2.5 Mobile Database Management

Database management in mobile is most tedious process. The different data
management available in mobile database is:

– Cache consistency
– Data replication
– Query processing

Cache Consistency

Caching of last recently used data will improve the overall performance of the
system:

– Increases the level of data availability
– Cope with weak connection or disconnection

13.2 Mobile Database 623

Data Replication

The data replication or data duplication will reduce redundancy and minimize
the amount of memory space needed. It increases the level of data availability
and performance.

Query Processing

The efficient processing of user queries is very important in data management.
It is of two types:

– Involve only the context of the database
– Locate dependent query

13.2.6 Mobile Transaction Processing

A mobile transaction is a transaction where at least one mobile host is in-
volved. Mobile database involves lot of transaction traffic. Efficient method
should be employed for controlling data traffic. Some of the characteristics of
mobile transaction processing are:

– Split computations among mobile hosts and stationary hosts
– Due to disconnection and mobility, mobile transactions shares their state

and partial results to other transactions
– Mobile transactions require support from stationary hosts in computations

and communications
– Movement of mobile hosts during the execution of mobile transactions
– Movement of transaction states and accessed data
– Long-lived transactions due to mobility and frequent disconnections
– Support concurrency, recovery, disconnection, etc.

Requirements for Mobile Transaction

The basic requirements of mobile transaction are summarized:

– Accommodate the limitations of mobile computing environments
– Minimize aborts due to disconnections
– Correctness of distributed transaction processing
– Minimize blocking of ongoing transactions
– Support local autonomy
– Disconnection processing
– Ability to distribute the transaction’s processing
– Share the state and the partial results
– Capture the movement of mobile transactions
– Support long-lived transactions
– Support long disconnection periods
– Support partial failure and provide different recovery strategies

624 13 Recent Challenges in DBMS

Dynamic Data/Currency Protocol for Mobile Database Design

Traditional database design is static and limits the flexibility of database app-
lications, while mobility is changing the way we design databases and their
DBMS. In mobile database everything is dynamic, varying from sporadic acc-
esses by individual users to particular data to continuous access of a particular
data by a large group of users. This is the case from disconnected database
access to broadcast disks. Mobile hosts have to deal with planned or unex-
pected disconnections when they are mobile; they are likely to have scarce
resources such as low battery life, slow processor speed, and limited memory;
their applications are required to react to frequent changes in the environ-
ment such as new location, high variability of network bandwidth; their data
interests are changing from time to time and from location to location; even
data semantics in mobile hosts vary according to data access patterns, con-
nection duration and disconnection frequencies, etc. Data partition, location,
and replication are always dynamic. All of these require a dynamic database
design and reconfigure scheme.

13.2.7 Distributed Database for Mobile

A distributed database is a single logical database that is spread physically
across computers in multiple locations that are connected by a data communi-
cations network. We emphasize that a distributed database is truly a database
and not a loose collection of files. The distributed database is still centrally
administered, work must allow the users to share the data; thus a user or
program at location A must be able to access (and perhaps update) data at
location B.

The distributed database requires multiple database management systems,
running at each remote site. The degree to which these different DBMSs co-
operate, to work in partnership, and whether there is master site that coor-
dinated request involving data from multiple sites distinguish different types
of distributed database environments.

Distributed database framework for mobile environments is made entirely
by mobile components. Mobile hosts communicate together in an ad hoc man-
ner. Communication networks are formed on demand.

Modes of Operation of Distributed Database

There are four modes of operation of distributed database. They are:

– Sign-off mode
– Check-out mode

– DB partition
– Check-out with mobile read
– Check-out with system read

13.2 Mobile Database 625

Fig. 13.12. Sign-off mode architecture

– Relaxed check-out mode
– Optimistic check-out mode

Sign-Off Mode Architecture

Sign-off mode architecture is shown in Fig. 13.12 which performs the following
operations. They are:

– Sign-off protocol
– Sign-on protocol
– Correctness

– Read-only transactions of the disconnected site can be serialized at
the time of disconnection

– Broadcast communication
– Point-to-Point communication

Check-Out Mode Operation

The mobile database at mobile host is shown in Fig. 13.13:

– Pseudotransaction
– Cannot be aborted in order to release lock

– DB-partition
– Check-out with mobile read

– Not necessary to obtain read locks before disconnection
– Read version at disconnection is consistent

– Transactions are serialized at the point in time of disconnection
– Check-out with system read

– Pseudotransaction obtains read locks but data items are writable
– Upgrade read locks to write locks at reconnection

626 13 Recent Challenges in DBMS

Fig. 13.13. Mobile database at a mobile host

Mobile Database Research Directions

As the mobile system technology matures further, more people will become
mobile users communicating with one another and accessing various informa-
tion resources using portable computers, personal digital assistants, wireless
radio, and cellular equipment. In business environments, the ability to access
critical data regardless of location is even more crucial because corporate data
must be available to applications running on mobile workstations. Some of the
areas are:

– Location-dependent query processing
– View maintenance in mobile computing
– Work flows in mobile environment
– Digital library services in mobile computing
– Mobile web and e-commerce
– Mobile data security

13.3 Spatial Database

Modern applications are both data and computationally intensive and req-
uire storage and manipulation of voluminous traditional (alphanumeric) and
nontraditional (images, text, geometric objects, etc.). Examples of such app-
lication domains are Geographical Information Systems(GIS), Multimedia
Information Systems, CAD/CAM applications, Medical Information Systems.

Spatial database management systems store data like points, lines, regions,
volumes, and aim at supporting queries that involve the space characteristics
of these data. In order to handle such queries, special techniques and tools
enhance a spatial database system. These include new data types and models,
sophisticated data structures and algorithms for efficient query processing that
differ from their counterparts in a conservative alphanumeric database. When

13.3 Spatial Database 627

a spatial database is enhanced by temporal characteristics we get spatiotem-
poral database system. In such a system, the time of insertions, deletions, and
updates is of great importance, since it must be able to store and manipulate
the evolution of spatial objects.

Spatial database systems are database systems for the management of
spatial data. Spatial data are point objects or spatially extended objects in a
2D or 3D space or in some high-dimensional vector space. Knowledge discovery
becomes more and more important in spatial databases since increasingly large
amounts of data obtained from satellite images, X-ray crystallography or other
automatic equipment are stored in spatial databases.

In various fields there is a need to manage geometric, geographic, or spa-
tial data, which means data related to space. The space of interest can be,
for example, the 2D abstraction of (parts of) the surface of the earth that
is, geographic space, the most prominent example like the layout of a VLSI
design, a volume containing a model of the human brain, or another 3D space
representing the arrangement of chains of protein molecules. At least since
the advent of relational database systems there have been attempts to man-
age such data in database systems. Characteristic for the technology emerging
to address these needs is the capability to deal with large collections of rela-
tively simple geometric objects, for example, a set of 100,000 polygons. This
is somewhat different from areas like CAD databases (solid modeling, etc.)
where geometric entities are composed hierarchically into complex structures,
although the issues are certainly related.

A spatial database system is a database system which offers SDTs in its
data model and query language. It supports SDTs in its implementation,
providing at least spatial indexing and efficient algorithms for spatial join.

13.3.1 Spatial Data Types

SDTs or time series data types is mainly for 2D operations.

2D Data Types

For 2D application, the relevant data types would include the following:

– A point defined by (x, y) coordinates
– A line defined by its two end points
– A polygon defined by an ordered list of n points that form its vertices
– A path defined by a sequence (ordered list) of points
– A circle defined by its center point and radius

Given the above as data type, a function such as distance may be de-
fined between two points, a point and a line, a line and a circle, and so on,
by implementing the appropriate mathematical expressions for distance in a

628 13 Recent Challenges in DBMS

programming language. Similarly, a Boolean cross function which returns true
or false depending on whether two geometric object cross (or intersect) can
be defined between a line and a polygon, a path and a polygon, a line and a
circle, so on.

13.3.2 Spatial Database Modeling

For modeling single objects, the fundamental abstractions are point, line, and
region. A point represents an object for which only its location in space. A line
(meaning a curve in space, usually represented by a polyline, a sequence of
line segments) is the basic abstraction for connections in space. A region is the
abstraction for something having an extent in 2D space. A region may consist
of several disjoint pieces. Figure 13.14 shows the three basic abstractions for
single objects.

The two most important instances of spatially related collections of objects
are partitions (of the plane) and networks. A partition can be viewed as a set
of region objects that are required to be disjoint. A network can be viewed as
a graph embedded into the plane, consisting of a set of point objects, forming
its nodes, and a set of line objects describing the geometry of the edges.

13.3.3 Discrete Geometric Spaces

For geometric modeling very often Euclidean space is used which means that
a point in the plane is given by a pair of real numbers. As computers can
deal with only finite computations, geometric calculations become difficult.
Thus methods have been suggested to introduce a discrete geometric basis for
modeling as well as implementation. The approach is based on combinatorial
topology. Basic concepts are those of a simplex, and a simplicial complex. For
each dimension d, a d-simplex is a minimal object in that dimension, hence
a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex a triangle, a
3-simplex a tetrahedron, etc. Any d-simplex is composed of (d+1) simplices
of dimension d-1. The components used in the composition of a simplex are
called its faces (for a triangle its edges and vertices). A simplicial complex is

Fig. 13.14. Partitions and networks

13.3 Spatial Database 629

Fig. 13.15. Two simplicial complexes

Fig. 13.16. Realm

a finite set of simplices such that the intersection of any two simplices in the
set is a face. Figure 13.15 shows a 1-complex and a 2-complex.

An alternative proposal of a discrete geometric basis is the concept of a
realm. Formally, a realm is a finite set of points and line segments over a
discrete grid such that (a) each point or end point of a line segment is a grid
point, (b) each end point of a line segment is also a point of the realm, (c) no
realm point lies within a line segment (which means on it without being an
end point), and (d) no two realm segments intersect except at their end points.
Figure 13.16 illustrates a realm.

13.3.4 Querying

Querying is to connect the operations of a spatial algebra to the facilities
of a DBMS query language. Spatial data require a graphical presentation
of results as well as graphical input of queries. In the following sections,
we consider the fundamental operations needed for manipulating sets of
database objects.

Fundamental Operations (Algebra)

Fundamental operations can be classified as spatial selection, spatial join,
spatial function application, and other set operations.

630 13 Recent Challenges in DBMS

Spatial Selection

A selection is an operation that returns from a set of objects those fulfilling
a predicate. Some examples are:

“Find all cities in Bavaria” (assuming Bavaria exists as a REGION value
and inside is available in the spatial algebra)

cities select[center inside Bavaria]

Spatial Join

Similarly to a spatial selection, a spatial join is a join which compares any two
objects through a predicate on their spatial attribute values. Some examples
are:

Combine cities with their states.

cities states join[center inside area]

Spatial Function Application

In a set-oriented query a new SDT value is computed for each object in a
set. Various object algebra operators allow such an embedding of a function
application, for example, the filter operator of FAD, a replace operator, or the
λ or extend operator.

For each river going through Bavaria, return the name, the part of its
geometry lying inside Bavaria, and the length of that part.

rivers select[route intersects Bavaria]
extend[intersection(route, Bavaria) {part}]
extend[length(part) {plength}]
project[rname, part, plength]

13.3.5 Integrating Geometry into a Query Language

Integrating geometry into a query language has the following three main as-
pects:

(a) Denoting SDT values as constants in a query and graphical input of such
constants.

(b) Expressing the four classes of fundamental operations for an embedded
spatial algebra.

(c) Describing the presentation of results.

Denoting SDT values/graphical input. SDT constants may be entered through
a graphical input device. In the georelational algebra atomic values are “first
class citizens,” so one can introduce a named REGION value Bavaria as
follows:

states extract[sname = “Bavaria”; area] {Bavaria}

13.3 Spatial Database 631

Expressing the four classes of fundamental operations. Spatial function appli-
cation, although not possible in classical relational algebra, is also in practice
provided by query languages (in SQL by allowing expressions in the SELECT
clause).

SELECT * FROM rivers WHERE route intersects Window

13.3.6 Spatial DBMS Implementation

From the point of view of the spatial algebra implementation which is done in
some programming language, most likely the DBMS implementation language,
the representation:

– Is a value of some programming language data type, e.g., region
– Is some arbitrary data structure which is possibly quite complex
– Supports efficient computational geometry algorithms for spatial algebra

operations
– Is not geared only to one particular algorithm but is balanced to support

many operations well enough

To fulfill the requirements of the DBMS, the representation must be a
paged data structure compatible with the DBMS support for long fields or
large attribute values. To support efficient loading and storing on disk, it
should consist of a single contiguous byte block as long as it is small enough
to fit into one page or implement a more complex paging strategy to access
the value. For the case that a value representation happens to be large, a good
strategy is to split it into a small info part. The info part might be contained
in the DBMS object representation and contain a logical pointer to a separate
page sequence holding the exact geometry part. The generic operations needed
by the DBMS may concern, for example, transforming from/to a textual or
graphic representation for input/output at the user interface, or transforming
from/to an ASCII format for bulk loading or external data exchange. More
specifically, for SDTs, generic approximations may be needed to interface with
spatial access methods, for example, each data type must provide access to a
bounding box (also called minimum bounding rectangle (MBR)).

From the spatial algebra and also the programming language point of view,
the representation should be such that it is mapped by the compiler into a
single or perhaps a few contiguous areas (to support the DBMS loading). The
representation can support operations as follows:

Plane Sweep Sequence . Very often, algorithms on the exact geometry use a
plane-sweep. The sweep needs the components of the object (e.g., the vertices)
in some fixed order.

Approximations . The implementation of many operations starts with a rough
test on an approximation of the object as that of the bounding box. Hence
these should be part of the representation.

632 13 Recent Challenges in DBMS

Stored Unary Function Values . Some operations of the spatial algebra com-
pute properties of a spatial value, e.g., the area or perimeter of a region. They
are computed after the creation of the value and then stored with it.

13.4 Multimedia Database Management System

13.4.1 Introduction

A database management system (DBMS) is a general-purpose software sys-
tem that facilitates the processes of defining, constructing, and manipulating
databases for various applications. DBMSs, and in particular those based on
the relational data model, have been very successful at the management of ad-
ministrative data. However, handling large collections of digitized multimedia
data is still a major challenge. Current database systems are not equipped to
represent the entire multimedia data flow, nor may it be desirable for them to
support the plethora of retrieval types required to support multimedia data.
Thus, continuous media data must be parsed into represent able segments,
which we term media objects. In order to represent the original data stream
to users, synchronization constraints among media objects must be specified
and maintained.

A multimedia database management system (MMDBMS) must support
multimedia data types in addition to providing facilities for traditional DBMS
functions like database creation, data modeling, data retrieval, data access and
organization, and data independence. The area and applications have experi-
enced tremendous growth. Especially with the rapid development of network
technology, multimedia database system gets more tremendous development
and multimedia information exchange becomes very important.

13.4.2 Multimedia Data

Multimedia data refers to the simultaneous use of data in different media
forms, including images, audio, video, text, and numerical data. Many mul-
timedia applications, such as recording and playback of motion video and
audio, slide presentations, and video conferencing, require continuous presen-
tation of a media data stream and the synchronized display of multiple media
data streams. Such synchronization requirements are generally specified by
either spatial or temporal relationships among multiple data streams. For ex-
ample, a motion video and its caption must be synchronized spatially at the
appropriate position in a movie, and, in a slide presentation, a sequence of
images and speech fragments must be temporally combined and presented to
compose one unified and meaningful data stream.

13.4 Multimedia Database Management System 633

Characterization of Multimedia Data

Multimedia systems are able to deal with multimedia data like audio, still
images, graphics, animation, text, etc. The most significant features of
multimedia data come from the observation that its representation can
be much closer to the physical or a virtual physical reality that the usual
alphanumeric data which in general is used to represent symbolic information.
For example, a video is a recording of the visual information over a period of
time at a point in space. The classification of multimedia data can be made
as time-dependent data like audio, video, and animation or time-independent
data which includes data types like text, still images, and alphanumeric
data types. Time-dependent data has only a meaningful interpretation with
respect to a constantly progressing time scale. A timescale is needed to asso-
ciate with a time-dependent data its correct interpretation at each point of
time expressed by the atomic constituents of the data. Due to the closeness
to physical reality a further characteristic of multimedia data is its high
density of information in one datum. Due to high density of information in
multimedia data the amounts of data can be huge. As long as data is static
in time and size like symbols, pictures, or images no serious problems in
terms of processing speed are imposed on networks, on storage devices, and
on main memories of current computer technology. Also dynamic data in size
can be handled efficiently by suing the abstraction of files as provided by
operating systems. Serious problems with such data occur only in connection
with applications where extreme high numbers of data elements are involved,
example, processing of satellite images for weather forecast.

When dealing with huge amount of data under real time constraints it may
be convenient or even necessary to perform the processing not on the data
values themselves but on the references to the values. A good example for this
is video script editing. Certain applications of dynamic data may need oper-
ations which cannot be performed over references, for example, copying. In
this case some form of dynamic data management has to be provided, which a
kind of spreads the process over time such that at each distinct moment only a
limited amount of physical resources needed. When processing dynamic data,
typically parallel tasks occur. This comes from the nature of this data since
in contrast to processing static data operations taken nonnegligible periods of
time. Also it often is necessary to process data in parallel.

13.4.3 Multimedia Data Model

A multimedia data stream consists of a set of data upon which some time
constraints are defined. The time constraints may specify discrete, continuous,
or stepwise constant time flow relationships among the data. For example,
some multimedia streams, such as audio and video, are continuous in nature, in
that they flow across time; other data streams, such as slide presentations and
animation, have discrete or stepwise time constraints. The multimedia streams

634 13 Recent Challenges in DBMS

may not have convenient boundaries for data representation. To facilitate
retrieval of such data in databases, we must break each media stream into a set
of media objects. Each media object represents a minimum chunk of the media
stream that bears some semantic meaning. Media objects in different media
streams may have different internal structures. For example, a continuous
video stream can be segmented into a set of media objects, each of which
contains a set of video frames with specific semantic meaning. Similarly, a
continuous audio stream can be segmented into a set of media objects, each of
which contains a set of audio samples with specific semantic meaning. Without
loss of generality, we assume that basic data elements delivered from the
transportation layer are media objects.

Media objects from different data streams may need to be linked through
time constraints to specify their synchronization. For example, in slide pre-
sentation applications, an audio object must be played along with a slide
object. We define a multimedia unit Oi, to be the composition of a set of
media objects O1i,...,Oni, where Oni represents ith media object of the nth
media stream participating in the synchronized stream. Thus, a composite
data stream made up of multiple media streams consists of a set of multi-
media units, where each multimedia unit unifies media objects from multiple
media streams. Such multimedia units may also be considered as composite
objects. Furthermore, a collection of objects from either a single data stream
or a composite data stream may be conceptually modeled as a hierarchical
structure. At each increasing level, a set of media objects may be considered
to be a super class object which may then, in turn, be a component of another
super class at a higher level.

Constraints on Media Objects

We will now address the synchronization requirements that need be placed
on media data streams. There are two types of constraints that need to be
specified on media objects, intra- and interstream constraints. Intrastream
constraints specify the synchronization requirements to be placed on a single
media stream and interstream constraints specify the synchronization require-
ments to be placed on more than one media stream.

Let mi be a single media stream which consists of a set of media objects
Oi1,...Oil. Intrastream constraints on Oi1,...Oil define time flow relationships
among these objects. The intrastream constraints may be continuous, dis-
crete, or stepwise constant. Unlike temporal constraints, media objects are
not typically statically associated with independent time constraints. Owing
to the sequential character of media objects in a single media stream, each
media object must be associated with a relative start time and a time inter-
val which specifies the duration of its retrieval, assuming that the first media
object in the media stream starts at time zero. The actual start time of a
media object is usually dynamically determined. Once a media stream is in-
voked, it is associated with an actual start time; the start time of each media

13.4 Multimedia Database Management System 635

object within that stream will similarly be associated with the actual start
time. Let < o, t,∆t > denote the intrastream constraint on object O that is
presented at time t and lasts a time period ∆t. Let u be a composite data
stream of media streams m1,...mn. u can then be considered as consisting of
a set of multimedia units u1,...ul, with each multimedia unit ui. Interstream
constraints on u1,...ul define synchronization requirements among the partic-
ipating component media streams. Time-related interstream constraints are
defined implicitly in each media object.

13.4.4 Architecture of Multimedia System

The architecture of multimedia system is shown in Fig. 13.17. In this architec-
ture, MTL refers to Multimedia Transaction Language, MM is the acronym
for Media Manager, OODBMS stands for Object Oriented Database Man-
agement System. The multimedia transaction manager contains two main
modules, a multimedia transaction language (MTL) interpreter and a media
manager (MM).

The multimedia transaction language MTL interpreter allows users to
specify a set of transactions associated with a multimedia transaction, includ-
ing intra- and intersynchronization requirements on component transactions.
A multimedia transaction specified in MTL is the MM and the underlying
processed by the interpreter, and data accesses are sent to both MM and the
underlying OODBMS for processing. The design strategies can be applied to

user

MTL

MTL

OODBMS

Multimedia DB

MTLMM

MM

MM

Client

NETWORK

Server

user

Fig. 13.17. Architecture of multimedia system

636 13 Recent Challenges in DBMS

any OODBMS environment that support a C++ interface. Currently existing
object-oriented database systems that fit into this category include Object-
Store and ODE.

13.4.5 Multimedia Database Management System Development

The first MMDBMS rely mainly on the operating system for storing and
querying files. These were ad hoc systems that served mostly as reposito-
ries. The first multimedia database system ORION was developed in 1987.
In the mid 1990s, some of the commercial MMDBMS developed are Media-
DB, JASMINE, and ITASCA that is the commercial successor of ORION.
They were all able to handle diverse kind of data and provided mechanisms
for querying, retrieving, inserting, and updating data. Most of these products
disappeared from the market after some years of existence, and only some
of them continued and adapted themselves successfully to the hardware and
software advances as well as application changes.

From 1996 to 1998, commercial systems were proposed which handle mul-
timedia content by providing complex object types for various kinds of media.
The object-oriented style provides the facility to define new data types and
operators appropriate for the new kinds of media, such as video, image, and
audio. Therefore, broadly used commercial MMDBMSs are extensible Object-
Relational DBMS.

The most advanced solutions are marketed by Oracle 10g, IBM DB2,
and IBM Informix. They propose a similar approach for extending the basic
system. DB2 Image Extender defines the distinct data type DB2IMAGE
with associated user-defined functions for storing and manipulating image
files. MIRROR, an acronym for Multimedia Information Retrieval Reducing
Information Overload developed at the University of Twente, is a research
MMDBMS that is developed to better understand the kind of data manage-
ment that is required in the context of multimedia digital libraries. MARS, an
acronym for Multimedia Analysis and Retrieval System is a project carried
out at the University of Illinois. MARS realizes an integrated multimedia
information retrieval and database management system, that supports multi-
media information as first class object suited for storage and retrieval based
on their semantic content. The MPEG-7 Multimedia Data Cartridge is a sys-
tem extension of the Oracle 9i DBMS providing a multimedia query language,
access to media, processing and optimization of queries, and indexing
capacities relying on multimedia database schema derived from MPEG-7.

13.4.6 Issues in Multimedia DBMS

The key issue in a multimedia database is how to access and how to exchange
multimedia information effectively. The key to retrieval process is similar-
ity between two objects. The content of the object is analyzed and used to

13.5 XML 637

evaluate specified selection predicates which are termed as content-based ret-
rieval. In order to have an accurate representation of the multimedia objects
in the database and the query object, different features like texture, shape,
and color have to be combined. The results are high dimensional vectors. The
efficiency of the similarity search must be supported by the use of multidi-
mensional indexing structures and by dimension reduction methods.

In order to retrieve multimedia data from a database system, a query
language must be provided. A multimedia query language must have abili-
ties to handle complex spatial and temporal relationships. A powerful query
language should have to deal with keywords, index on keywords, and seman-
tic contents of multimedia objects. The key to efficient communication is to
rely on standards for communicating metadata and associated media data. In
multimedia database management system, there is a need to retrieve compos-
ite objects. In addition, the multimedia database system should use multiple
representations of data for different users and profiles.

13.5 XML

13.5.1 Introduction

Extensible Markup Language (XML) is a simplified version of SGML (Stan-
dard Generalized Markup Language defined by ISO 8879) designed for Web
Applications. It retains all SGML advantages of extensibility, structure, and
validation in a language that is designed to be vastly easier to learn, use,
and implement than full SGML. The World Wide Web Consortium, the
standards body for all web technologies, describes XML as a “method for
putting structured data in a text file.” XML is a standard for the defini-
tion of markup languages for the Web. XML was designed to describe data.
XML uses a Document Type Definition (DTD) or an XML Schema to de-
scribe the data. It is not itself the successor to HTML as the language of
the web, but successors will follow the XML standard. Like HTML, XML is
built on the SGML standard, but as a refinement of the standard, not a set
of tags. That is a key distinction that gives XML particular value. XML is a
W3C recommendation.

13.5.2 Origin of XML

XML was developed by an XML Working Group (originally known as the
SGML Editorial Review Board) formed under the auspices of the World
Wide Web Consortium (W3C) in 1996. It was chaired by Jon Bosak of
Sun Microsystems with the active participation of an XML Special Inter-
est Group (previously known as the SGML Working Group) also organized
by the W3C.

638 13 Recent Challenges in DBMS

13.5.3 Goals of XML

The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.
2. XML shall support a wide variety of applications.
3. XML shall be compatible with SGML.
4. It shall be easy to write programs which process XML documents.
5. The number of optional features in XML is to be kept to the absolute

minimum, ideally zero.
6. XML documents should be human-legible and reasonably clear.
7. The XML design should be prepared quickly.
8. The design of XML shall be formal and concise.
9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

13.5.4 XML Family

XML is actually family of standards and technologies which are given in
Table 13.1. XML 1.0 defines what elements, attributes, and entities are. Other
standards include:

– XLink describes a standard way to add hyperlinks to an XML file.
– XPointer is a syntax in development for pointing to parts of an XML

document. An XPointer is a bit like a URL, but instead of pointing to
documents on the Web, it points to pieces of data inside an XML file.

– CSS (Cascade Style Sheets) describes formatting rules, same as it does
for HTML.

– XSL is the advanced language for expressing stylesheets.
– XML Namespaces describes a facility for including tags from different

tagsets in a single document.
– XML Schemas describes an alternative to the DTD for defining the ele-

ments and attributes in a document. XML Schemas help developers to
precisely define the structures of their own XML-based formats.

– DOM (Document Object Model) is a standard set of function calls for
manipulating XML files from a programming language.

13.5.5 XML and HTML

XML is not a replacement for HTML. XML and HTML were designed with
different goals. XML was designed to describe data and to focus on what data
is. HTML was designed to display data and to focus on how data looks. HTML
is about displaying information, while XML is about describing information.

XML tags are not predefined. The user must invent their own tags. On the
other hand, the tags used to mark up HTML documents and the structure of

13.5 XML 639

Table 13.1. Summary of XML terminology

XML Extensible Markup Language. A document markup language
that started the following:

XSL XSLT Stylesheet. The document that provides the {match,
action} pairs and other data for XSLT to use when transform-
ing an XML document

XPath A sublanguage within XSLT that is used to identify parts of
an XML document to be transformed. It can also be used for
calculations and string manipulation.

XPointer A standard for linking one document to another. XPath has
many elements from XPointer

SAX Simple API (Application Program Interface) for XML. An
event based parser that notifies a program when the elements
of an XML document have been encountered during document
parsing

DOM Document Object Model. An API that represents an XML
document as a tree. Each node of the tree represents a piece
of the XML document. A program can directly access and ma-
nipulate a node of the DOM representation

XQL A standard for expressing database queries as XML docu-
ments. The structure of the query uses XPath facilities and
the result of the query is represented in an XML format

XML A standard for allocating terminology to defined collections
Namespaces
XML Schema An XML compliant language for constraining the structure of

an XML document. Extends and replaces DTDs.

HTML documents is predefined. The author of HTML documents can only
use tags that are defined in the HTML standard (like <h1>, <p>, etc). XML
is a cross platform, software- and hardware-independent tool for transmitting
information.

13.5.6 XML Document

A data object is an XML document if it is well-formed, as defined in this
specification. A well-formed XML document may in addition be valid if it
meets certain further constraints.

Each XML document has both a logical and a physical structure. Physi-
cally, the document is composed of units called entities. An entity may refer to
other entities to cause their inclusion in the document. A document begins in
a “root” or document entity. Logically, the document is composed of declara-
tions, elements, comments, character references, and processing instructions,
all of which are indicated in the document by explicit markup. The logical
and physical structures must nest properly.

640 13 Recent Challenges in DBMS

13.5.7 Document Type Definitions (DTD)

The purpose of DTD is to define legal building blocks of an XML document.
It defines the document structure with a list of legal elements. A DTD can be
declared inline in XML document or as an external reference.

A DTD is a structural specification of a type of document. DTDs are made
up primarily of element definitions. Each element corresponds to a component
of information in the document. Elements define the tagging of the document.
They also define the content allowed for each tag.

XML provides an application independent way of sharing data. With a
DTD, independent groups of people can agree to use a common DTD for
interchanging data. A lot of forums are emerging to define standard DTDs for
almost everything in the areas of data exchange.

Internal DTD

An example of internal DTD is:

<?xml version=“1.0” ?>
<!DOCTYPE note(View Source for full doctype. . .)>

<note>
<to>Senthil</to>
<from>Rajan</from>
<heading>Reminder</heading>
<body>Don’t forget viva is there in this weekend!</body>

</note>

The DTD can be interpreted as
!ELEMENT note (in line 2) defines the element “note” as having four
elements: “to, from, heading, body.”
!ELEMENT to (in line 3) defines the “to” element to be of the type
“CDATA.”
!ELEMENT from (in line 4) defines the “from” element to be of the type
“CDATA”
and so on.....

13.5.8 Extensible Style Sheet Language (XSL)

XML document has no visual appearance, one approach is to write a script
that loads XML document into a parser, reads the data, and writes HTML.
Another approach involves loading an XML document into a parser on the
browser and then, rather than creating a complete HTML stream, simply re-
placing portions of a web page already on display. The third approach involves
loading an XML document into a XML data source object (DSO) within the

13.5 XML 641

web page. The advantages of this approach are script code can access the XML
data using familiar ADO recordset methods and properties. Each bound ele-
ment then displays automatically the current value of the bound node.

The fourth approach is the one actually proposed by W3C using Extensible
Sytlesheet Language. XSL encompasses two main components, a transforma-
tion language and a formatting language. The transformation language con-
verts one XML document to another. Typical transformations include adding,
recalculating, excluding, renaming, or reordering nodes. The XSL transforma-
tion language is organized around the concept of templates. An XSL template
is basically a model collections of statements interspersed with XSL tags that
repeat blocks of statements for each selected node in an XML document.
Additional XSL tags substitute the values of specified nodes into the model
statements. An XSL style sheet is itself a valid XML document. To run the
style sheet, the data are first loaded into one XML document object and the
style sheet into another. The first object’s transform node method is invoked
to create the text of a new XML document.

13.5.9 XML Namespaces

A namespace contain a list of valid element names and has also a distinctive
prefix and an identifying name.

Name Conflicts

Since element names in XML are not predefined, a name conflict will occur
when two different documents use the same element names. The way to solve
this name conflict is using a prefix. This prefix is the table’s name creates for
each XML document.

Example

This XML document carries information about fruits

<h:table>
<h:tr>
<h:td>Orange</h:td>
<h:td>Mango</h:td>
</h:tr>

</h:table>

This XML document carries information about a piece of furniture

<f:table>
<f:name>Teak wood Table</f:name>

642 13 Recent Challenges in DBMS

<f:width>80</f:width>
<f:length>120</f:length>

< /f:table>

There will not be any conflict between these two tables because the two
documents use a different name for their table element.

Instead of using only prefixes, it is also possible to add an xmlns attribute
to the <table> tag to give the prefix a qualified name associated with a
namespace.

Example

xmlns:namespace-prefix=namespaceURI.
When a namespace is defined in the start tag of an element, all child elements
with the same prefix are associated with the same namespace.

Comments may appear anywhere in a document outside other markup. In
addition, they may appear within the document type declaration at places
allowed by the grammar. They are not part of the document’s character data;
an XML processor may, but need not, make it possible for an application
to retrieve the text of comments. For compatibility, the string “- -” (double-
hyphen) must not occur within comments.

An example of comment,

<!−declarations for <head>&<body>–>

Document Type Declaration

XML documents may, and should, begin with an XML declaration which spec-
ifies the version of XML being used. For example, the following is a complete
XML document, well-formed but not valid:

<?xml version=“1.0”?>
<greeting>Hello, How are you!</greeting>
and so is this:
<greeting>Hello, How are you!</greeting>

The version number “1.0” should be used to indicate conformance to this
version of this specification; it is an error for a document to use the value
“1.0” if it does not conform to this version of this specification. It is the intent
of the XML working group to give later versions of this specification numbers
other than “1.0,” but this intent does not indicate a commitment to produce
any future versions of XML, nor if any are produced, to use any particular
numbering scheme. Since future versions are not ruled out, this construct is
provided as a means to allow the possibility of automatic version recognition,
should it become necessary. Processors may signal an error if they receive
documents labeled with versions they do not support.

13.5 XML 643

The function of the markup in an XML document is to describe its storage
and logical structure and to associate attribute-value pairs with its logical
structures. XML provides a mechanism, the document type declaration, to
define constraints on the logical structure and to support the use of predefined
storage units. An XML document is valid if it has an associated document
type declaration and if the document complies with the constraints expressed
in it.

13.5.10 XML and Datbase Applications

XML Schema provides a standardized way of representing domains. The ben-
efits of XML are:

Tagged Information. Structured documents allow the user to specify unique
and specific content tags that makes it possible to retrieve any piece of tagged
information. A format tag would not allow a user to access the structure
of the document. For example, if the format tag for the abstract was italic,
the format tag for a glossary entry might also be italic. There would be no
way to retrieve the information because the format tags were not unique and
identifiable. However, the structural tag would allow a user to retrieve the
abstract or a series of abstracts.

Reusable Components. It is possible to tag the information based on the
use of the individual pieces of information or components. Components are
pieces of information that can be used individually or combined to form larger
components. Components include: paragraphs, chapters, warnings, notes, in-
structions, introductions, and examples.

Structured Documentation. Structured documentation provides a great
deal of power in organizing a document:

– Consistent organization and structure across documents.
– Reusability of segments (modules).
– Increased accessibility.

Separation of Content and Formatting. The separation of content from
formatting makes it very easy to create multiple outputs from a single XML
file. The format is defined in style sheets that can be linked to the file.

14

Projects in DBMS

Learning Objectives. Here we have given list of projects which we have
implemented using Oracle as the back-end and Visual Basic as the front-end
and the concepts from DBMS. The projects described in this chapter are generally
simpler than real-life projects but complex enough to illustrate common problems
that the students will encounter.

14.1 List of Projects

1. Bus Transport Management System
2. Course Administration System
3. Election Voting System
4. Hospital Management System
5. Library Management System
6. Railway Management System

14.2 Overview of the Projects

14.2.1 Front-End: Microsoft Visual Basic

Visual Basic was derived from BASIC, and is an event-driven programming
language. Programming in Visual Basic is done visually, which means that as
we design we will know how our application will look on execution. We can,
therefore, change and experiment with the design to meet our requirement.

The Visual Basic Professional edition provides the features like:

– Allows creating powerful 32-bit applications for Microsoft Windows 9x
and Windows NT.

– Includes intrinsic controls, as well as grid, tab, and data-bound controls.

S. Sumathi: Projects in DBMS, Studies in Computational Intelligence (SCI) 47, 645–697 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

646 14 Projects in DBMS

– Includes Microsoft Developer Network CDs containing full online docu-
mentation.

– Active X controls, including Internet control.
– Internet Information Server Application Designer.
– Dynamic HTML Page Designer.

14.2.2 Back-End: Oracle 9i

Oracle is the first DBMS language that supported SQL in 1979. It is an
object-relational database. A relational database is an extremely simple way
of managing data in the form of a collection of tables. An object-relational
database supports all the features of a relational database while also support-
ing object-oriented concepts and features. This language generally follows a
cooperative approach.

Organized data can be called information. Oracle is also a means of easily
turning data into information. Oracle will sort through and manipulate data
and their relationships with each other.

A relational database management system such as Oracle basically does
the following three things:

1. Acquire data
2. Store the data
3. Retrieve the data

Oracle supports this in-keep-out approach and provides tools that allow
sophistication in how data are captured, edited, modified, and put in; how
to maintain security; and how to manipulate. An object-relational database
management system (ORDBMS) extends the capabilities of the RDBMS to
support object-oriented concepts. Thus Oracle is used as an RDBMS to take
advantage of its object-oriented features.

Oracle follows a familiar language used in everyday conversations. The
information stored in Oracle is kept in tables. Also Oracle is a shared language.

Oracle was the first company to release a product that used the English-
based Structured Query Language (SQL). Oracle’s query language has struc-
ture and a set of rules and syntax that are basically the normal rules that can
be easily understood.

14.2.3 Interface: ODBC

Open Database Connectivity (ODBC) is an industry standard programming
interface that enables applications to access a variety of database manage-
ment system residing on many different platforms. ODBC provides a large
degree of database independence through a standard SQL syntax, which can
be translated by database-specific drivers to the native SQL of the DBMS.

14.3 First Project: Bus Transport Management System 647

Client
Application

ODBC Data
Source

ODBC Driver
Manager ODBC Driver Database

Fig. 14.1. Open database connectivity architecture

Database independence and ease of use are the primary advantages of using
ODMS. Many popular development tools such as Visual Basic and Delphi
support ODBC. These tools and numerous others provide their own interface
to ODBC.

ODBC is a windows technology that lets a database client application
connect to an external database. To use ODBC the database vendor must
provide an ODBC driver for data access. Once this driver is available the
client machine should be configured with the driver. The destination of the
database, login ID, and password is also to be configured on every client
machine. This is called a data source.

ODBC is composed of three parts, they are (Fig. 14.1):

1. A Driver Manager
2. One or more Driver
3. One or more Data Sources

14.3 First Project: Bus Transport Management System

14.3.1 Description

By using this project, we can reserve tickets from any part of the world,
through telephone lines, via internet. This project provides and checks all
sorts of constraints so that user does give only useful data and thus validation
is done in an effective way (Figs. 14.2–14.8).

14.3.2 Features of the Project

– User friendliness
– Occupies less space
– Validation of data
– Can be used for other means of transports by slight modification like

railways and airline reservation system
– Can be used for online transactions

6
4
8

1
4

P
ro

jects
in

D
B

M
S

S_NO

F_WHERE

BUS_NO

TYPE

F_DATE

I_NO

I_DATE

S_DATE

F_TO

KMS

D_TIME

R_TIME

J_TIME

W_DAY

FARE

S_NO

SERVICE

CUSTOMER DISPLAY

BUS DATA SHEDULE

DAT_E

TYPE

SEAT

F_WHERE

F_TO

DAT_E

TYPE

SEAT

RESERVES

PROVIDED

ER DIAGRAM

NAME

DOOR

CON_NO

CRE_NO

ERROR HAS

Fig. 14.2. ER diagram

14.3 First Project: Bus Transport Management System 649

Fig. 14.3. User desktop

14.3.3 Source Code

Code Sample for Integrating Main Window to Subwindows

Private Sub CmdAdmin Click()
Adminwindow.Show
Mainwindow.Hide
End Sub

Private Sub CmdAbout Click()
Aboutwindow.Show
Mainwindow.Hide
End Sub

Private Sub Timer1 Timer()
Label2.Caption = FormatDateTime(Date, vbLongDate)
Label3.Caption = FormatDateTime(Time, vbLongTime)
End Sub

650 14 Projects in DBMS

Fig. 14.4. Timing details

Code Sample for Manipulating Timing Details

Set DataGrid1.DataSource = Adodc1

Private Sub Form Load()
Dim A As String
A = “SELECT F WHERE, F TO, KMS, D TIME, J TIME, R TIME,
W DAY FROM SERVICE”
Set DataGrid1.DataSource = Adodc2

With Adodc2
.ConnectionString = “DSN=proect”
.UserName = “scott”
.Password = “tiger”
.CursorLocation = adUseClient
.CursorType = adOpenStatic
.CommandType = adCmdText
.RecordSource = A
.Refresh

End With
End Sub

14.3 First Project: Bus Transport Management System 651

Fig. 14.5. Route details

Code Sample for Manipulating Route Details

Private Sub Form Load()
Dim A As String
Set DataGrid1.DataSource = Adodc1
A = “SELECT ROUTE NO, F WHERE, F TO, KMS FROM SERVICE”

With Adodc1
.ConnectionString = “DSN=proect”
.UserName = “scott”
.Password = “tiger”
.CursorLocation = adUseClient
.CursorType = adOpenStatic
.CommandType = adCmdText
.RecordSource = A
.Refresh

End With
End Sub

Code Sample for Manipulating Bus Details

Private Sub Form Load()
Dim A As String

652 14 Projects in DBMS

Fig. 14.6. Bus details

Set DataGrid1.DataSource = Adodc1
A = “SELECT bus no, type, seats FROM busdata”

With Adodc1
.ConnectionString = “DSN=project”
.UserName = “scott”
.Password = “tiger”
.CursorLocation = adUseClient
.CursorType = adOpenStatic
.CommandType = adCmdText
.RecordSource = A
.Refresh

End With
End Sub

Code Sample for Manipulating Tariff Chart

Private Sub Form Load()
Dim A As String
Adodc1.Visible = False
Set DataGrid1.DataSource = Adodc1
A = “SELECT F WHERE, F TO, KMS, ROUNDKMS*.40 AS FARE
FROM SERVICE”

14.3 First Project: Bus Transport Management System 653

Fig. 14.7. Tariff chart

With Adodc1
.ConnectionString = “DSN=project”
.UserName = “scott”
.Password = “tiger”
.CursorType = adOpenStatic
.CommandType = adCmdText
.RecordSource = A
.Refresh

End With
End Sub

Code Sample for Manipulating Reservation Index

Private Sub Command1 Click()
Dim source As String
Dim dest As String

IfCombo1.Text = Combo2.Text Then
MsgBox “INCORRECT DESTINATION!!”, vbCritical, “ERROR

MESSAGE:”
Call Form Activate

654 14 Projects in DBMS

Fig. 14.8. Reservation index

Else
Dim A As String
DataGrid1.Visible = True
Set DataGrid1.DataSource = Adodc1
A = “SELECT SERVICE.D WHERE, SERVICE.F TO,

SERVICE.KMS, BUSDATA.BUS NO FROM SERVICE,
BUSDATA WHERE (F WHERE=‘“ & Combo1.Text & ”’ AND
F TO =‘“ & Combo2.Text & ”’ AND SERVICE.S NO
= BUSDATA.S NO)

With Adodc1
.ConnectionString = “DSN=project”
.UserName = “scott”.Password = “tiger”
.CursorLocation = adUseClient
.CursorType = adOpenStatic
.CommandType = adCmdText
.RecordSource = A
.Refresh

End With

If DataGrid1.ApproxCount = 0 Then
MsgBox “SERVICE IS NOT AVAILABLE NOW”, vbInformation,
“NAREN TRAVELS”

14.3 First Project: Bus Transport Management System 655

Combo1.Visible = True
Combo2.Visible = True
Label1.Visible = True
Label2.Visible = True
Label3.Visible = True
Command1.Visible = True
Command3.Visible = False
Option1.Visible = False
Option2.Visible = False
Option3.Visible = False
Option4.Visible = False
Command4.Visible = False
Shape1.Visible = True
DataGrid1.Visible = False

Else
source = Combo1.Text
dest = Combo2.Text
cn.ConnectionString = “DSN=project”
cn.Open “DSN=project”, “scott”, “tiger”
rs.Open “UPDATE DEST SET F WHERE=‘“ & dest & ”’;”, cn,

adOpenDynamic, adLockOptimistic, adCmdText
rs.Open “UPDATE SOURCE SET F TO=‘“ & source & ”’;”,
cn, adOpenDynamic,

adLockOptimistic, adCmdText rs.Open “COMMIT;”,
cn, adOpenDynamic, adLockOptimistic, adCmdText
cn.Close
Option1.Visible = True
Option2.Visible = True
Option3.Visible = True
Option4.Visible = True
Option1.Value = False
Option2.Value = False
Option3.Value = False
Option4.Value = False
Command4.Visible = True
Command4.Enabled = False
Combo1.Visible = False
Combo2.Visible = False
Label1.Visible = False
Label2.Visible = False
Label3.Visible = False
Command1.Visible = False
Command3.Visible = True
Shape1.Visible = False

End If

656 14 Projects in DBMS

14.4 Second Project: Course Administration System

14.4.1 Description

The primary objective of this project is to maintain the reliable data storage
for “Course Administration of PSGTECH.” This project gives facility for
storing the staff detail, student detail, lecture schedule detail, and updating
the same.

This project uses Oracle for reliable data storage and Visual Basic 6.0 for
user friendliness. Simply Oracle is used as back-end tool and Visual Basic is
used as front-end tool.

Entity-relationship model is chosen for its implementation (Figs. 14.9–
14.15).

14.4.2 Source Code

Code Sample for Manipulating Login Details

Private Sub Command1 Click()
If (Trim(Text1.Text) = “EEE” Or Trim(Text1.Text) = “eee”) And
Trim(Text2.Text)=“eee” Then
Unload Me
Form1.Show
Else
MsgBox (“Invalid UserName/Password”), vbCritical, “INFODESK”
Text1.Text = “”
Text2.Text = “”
Text1.SetFocus
End If
End Sub
Private Sub Command2 Click()
Unload Me
End Sub
Private Sub Form Load()
Set Skinner1.Forms = Forms
End Sub

Code Sample for Manipulating Academic Details

Dim fla As Integer
Private Sub Form Load()
fla = 0
End Sub
Private Sub Form Unload(Cancel As Integer)
Form3.Show
End Sub

14.4 Second Project: Course Administration System 657

Fig. 14.9. ER diagram

658 14 Projects in DBMS

COLLEGE

NAME

HAS

HOD ID

WORKS FOR

NAME

DEPT

STAFFDET

STAFFID

JOINED DATE

DESG

DATE OF BIRTH

QUALIFICATION IELD OF INTEREST

EMAIL ID

PHONE NO

DEPARTMENT

HODNAME

DEPTNAME

ROLLNO DOB

SEMESTER

BELON
-GS TO

NAME

STUDENTS

COURSE NAME

CONTACT PHONE NO

HOSTELLER

DEPT

TOTAL
STUDENTS TOTAL STAFFS

Fig. 14.9. Continued

Private Sub Image1 Click()
Unload Me
Form3.Show
End Sub
Private Sub Label7 Click()
Form6.Show
Me.Hide
End Sub
Private Sub Label2 Click()
MsgBox “NO DETAIL FOUND”, vbInformation, “INFODESK”
End Sub

14.4 Second Project: Course Administration System 659

Fig. 14.10. Schema diagram

660 14 Projects in DBMS

Fig. 14.11. Login details

Fig. 14.12. Academic details

14.4 Second Project: Course Administration System 661

Fig. 14.13. Student details

Code Sample for Manipulating Student Details

Dim rs1 As New ADODB.Recordset
Dim rs2 As New ADODB.Recordset

Private Sub Combo1 Click()
Command1.Enabled = True
End Sub

Private Sub Combo2 Click()
Combo1.Clear
If Combo2.ListIndex <> −1 Then
If Combo2.Text = “EEE” Then
Combo1.AddItem “BE(EEE)–REGULAR”
Combo1.AddItem “BE(EEE)–SW”
Combo1.AddItem “ME(EEE)–ELECTRICAL MACHINES”
Combo1.AddItem “ME(EEE)–POWERSYSTEM”
Combo1.AddItem “ME(EEE)–CONTROL SYSTEM”
Combo1.AddItem “ME(EEE)–APPLIED ELECTRONICS”
Else
Combo1.AddItem (“BE” & (Combo2.Text) & “–REGULAR”)

662 14 Projects in DBMS

Fig. 14.14. Staff details

End If
End If
Combo1.SetFocus
End Sub

Private Sub Combo3 Click()
Command1.Enabled = True
End Sub

Private Sub Command1 Click()
If Trim(Text1.Text) = ““ Or Trim(Text2.Text) = ”” Or

Trim(Text3.Text) = ”” Or

Trim(dob.Text) = ““ Or
Trim(Text6.Text) = ”” Or Combo1.ListIndex = −1 Or

Combo3.ListIndex = −1 Then
MsgBox “Please Enter All Details”, vbInformation, “INFODESK”
Else
rs2.Open “select * from student where

rollno=‘“&UCase(Trim(Text1.Text)) & ”’ ”, db,
adOpenDynamic, adLockOptimistic

14.4 Second Project: Course Administration System 663

Fig. 14.15. Lecture schedule details

If rs2.EOF = True And rs2.BOF = True Then
rs1.AddNew
rs1.Fields(“rollno”) = UCase(Trim(Text1.Text))
rs1.Fields(“name”) = UCase(Trim(Text2.Text))
rs1.Fields(“course name”) = UCase(Trim(Combo1.Text))
rs1.Fields(“sem”) = UCase(Val(Trim(Text3.Text)))
rs1.Fields(“hosteller”) = UCase(Trim(Combo3.Text))
rs1.Fields(“dob”) = UCase(Trim(dob.Text))
rs1.Fields(“phone”) = UCase(Val(Trim(Text6.Text)))
rs1.Fields(“dept”) = UCase(Trim(Combo2.Text))
rs1.Update
MsgBox “DETAILS ENTERED TO THE DATABASE SUCCESSFULLY”,

vbInformation, “INFODESK”
Else
MsgBox “STUDENT ID ALREADY EXIST”, vbInformation, “INFODESK”
Text1.Text = “”
Text1.SetFocus
End If
rs2.Close
End If
Command1.Enabled = False
End Sub

664 14 Projects in DBMS

Private Sub Command2 Click()
Form6.Show
Unload Me
End Sub

Code Sample for Manipulating Staff Details

Dim rs1 As New ADODB.Recordset
Dim rs2 As New ADODB.Recordset
Private Sub Combo1 Click()
Command1.Enabled = True
End Sub
Private Sub Command1 Click()
If Trim(Text1.Text) = ““ Or Trim(Text2.Text) = ”” Or
Trim(dob.Text) = ““ Or Trim(yss.Text) = ”” Or
Trim(Text5.Text) = ““ Or Trim(Text6.Text) = ”” Or
Combo1.ListIndex = −1 Or
Trim(ID.Text) = ““ Or

Text8.Text = ”” Then
MsgBox “Please Enter All Details”, vbInformation, “INFODESK”
Else

rs2.Open “select * from STAFFDET where STAFFID=‘“ &
UCase(Trim(ID.Text)) & ”’ ”, db, adOpenDynamic,
adLockOptimistic

If rs2.EOF = True And rs2.BOF = True Then
rs1.AddNew
rs1.Fields(0) = UCase(Trim(ID.Text))
rs1.Fields(1) = UCase(Trim(Text8.Text))
rs1.Fields(2) = UCase(Trim(Combo1.Text))
rs1.Fields(3) = UCase(Trim(Text1.Text))
rs1.Fields(4) = UCase(Trim(Text2.Text))
rs1.Fields(5) = UCase(Trim(dob.Text))
rs1.Fields(6) = UCase(Trim(yss.Text))
rs1.Fields(7) = UCase(Trim(Text5.Text))
rs1.Fields(8) = UCase(Trim(Text6.Text))
rs1.Update
MsgBox “DETAILS ENTERED TO THE DATABASE SUCCESSFULLY”,

vbInformation, “INFODESK”
Else
MsgBox “STAFF ID ALREADY EXIST”, vbInformation, “INFODESK”
rs2.Close
ID.Text = “”
ID.SetFocus

14.4 Second Project: Course Administration System 665

End If
End If
Command1.Enabled = False
End Sub

Code Sample for Manipulating Lecture Schedule Details

Dim rs1 As New ADODB.Recordset
Dim rs2 As New ADODB.Recordset
Dim rs3 As New ADODB.Recordset
Dim rs4 As New ADODB.Recordset
Dim rs5 As New ADODB.Recordset
Dim rs6 As New ADODB.Recordset
Dim rs7 As New ADODB.Recordset
Dim rs8 As New ADODB.Recordset

Private Sub Combo1-Click()
Combo2.Clear
If Combo1.ListIndex <> −1 Then
rs1.Filter = “dept= ‘“ & Trim(Combo1.Text) & ”’ ”
If rs1.EOF = False And rs1.BOF = False Then
Do Until rs1.EOF
Combo2.AddItem UCase(rs1.Fields(“staffid”))
rs1.MoveNext
Loop
Else
MsgBox “NO STAFFID EXIST”, vbInformation, “INFODESK”
End If
Command1.Enabled = True
End If
End Sub

Private Sub Combo2-Click()
Combo3.Clear
Combo3.AddItem “MONDAY”, 0
Combo3.AddItem “TUESDAY”, 1
Combo3.AddItem “WEDNESDAY”, 2
Combo3.AddItem “THURSDAY”, 3
Combo3.AddItem “FRIDAY”, 4
rs2.Filter = “staffid=‘“ & Trim(Combo2.Text) & ”’ ”
If rs2.EOF = False And rs1.BOF = False Then
Text1.Text = rs2.Fields(“staff name”)
End If
Command1.Enabled = True
End Sub

666 14 Projects in DBMS

14.5 Third Project: Election Voting System

14.5.1 Description

This project provides a software for the Election Voting System to maintain
the information about the voters list, candidate list, election schedule, polling
process, election result, and announcement, and to access the general informa-
tion about political parties, alliances, election big B’s, and election cartoons.
It also holds the details about eligibility of voters and election facts and figures
(Figs. 14.16–14.19).

14.5.2 Source Code

Code Sample for Manipulating Candidates Details

Option Explicit
Dim A As New ADODB.Connection
Dim r As New ADODB.Recordset
Private Sub Command1-Click()
If Combo1 = “COIMBATORE” Then
A.Open “Provider=MSDAORA.1;Password=sathya;
User ID=SCOTT;Persist Security Info=False”
r.Open “select * from cand”, A, adOpenDynamic, adLockOptimistic

PARTY

POLL

VOTER LIST CANDIDATES LIST

AGE

SEX

DISTRICT

ADDRESS

CONSTITUENCY

NAME

ID

NAME SEX

SYMBOL

AGE

ADDRESS

OCCUPATION
PARTY

NATIVE DISTRICT

ELECTION SCHEDULE

RESULT UPDATE

POLL DATE

CONSTITUENCY

POLL DAY

NO OF VOTES

CANDIDATE ’ S NAME

Polling
Process

1

N

N

1

1

Fig. 14.16. ER diagram

14.5 Third Project: Election Voting System 667

Fig. 14.17. Candidates details

MSHFlexGrid1.Visible = True
Set MSHFlexGrid1.DataSource = r
MSHFlexGrid1.ColWidth(0) = 2000
MSHFlexGrid1.ColWidth(1) = 500
MSHFlexGrid1.ColWidth(2) = 4000
MSHFlexGrid1.ColWidth(3) = 500
MSHFlexGrid1.ColWidth(4) = 1500
MSHFlexGrid1.ColWidth(5) = 2000
MSHFlexGrid1.ColWidth(6) = 1700
MSHFlexGrid1.ColWidth(7) = 1750
MSHFlexGrid1.ColWidth(8) = 1500

r.Close
A.Close

ElseIf Combo1 = “MADURAI” Then
A.Open “Provider=MSDAORA.1;Password=sathya;User ID=SCOTT;
Persist Security Info=False”
r.Open “select * from candm”, A, adOpenDynamic, adLockOptimistic
MSHFlexGrid1.Visible = True
Set MSHFlexGrid1.DataSource = r
MSHFlexGrid1.ColWidth(0) = 2000
MSHFlexGrid1.ColWidth(1) = 500

668 14 Projects in DBMS

Fig. 14.18. Polling details

MSHFlexGrid1.ColWidth(2) = 4000
MSHFlexGrid1.ColWidth(3) = 500
MSHFlexGrid1.ColWidth(4) = 1500
MSHFlexGrid1.ColWidth(5) = 2000
MSHFlexGrid1.ColWidth(6) = 1700
MSHFlexGrid1.ColWidth(7) = 1750
MSHFlexGrid1.ColWidth(8) = 1500

r.Close
A.Close

ElseIf Combo1 = “CHENNAI” Then
A.Open “Provider=MSDAORA.1;Password=sathya;User ID=SCOTT;
Persist Security Info=False”
r.Open “select * from candm”, A, adOpenDynamic, adLockOptimistic
MSHFlexGrid1.Visible = True
Set MSHFlexGrid1.DataSource = r
MSHFlexGrid1.ColWidth(0) = 2000

14.5 Third Project: Election Voting System 669

Fig. 14.19. Results

MSHFlexGrid1.ColWidth(1) = 500
MSHFlexGrid1.ColWidth(2) = 4000
MSHFlexGrid1.ColWidth(3) = 500
MSHFlexGrid1.ColWidth(4) = 1500
MSHFlexGrid1.ColWidth(5) = 2000
MSHFlexGrid1.ColWidth(6) = 1700
MSHFlexGrid1.ColWidth(7) = 1750
MSHFlexGrid1.ColWidth(8) = 1500

r.Close
A.Close

End If
End Sub

670 14 Projects in DBMS

Private Sub Command2 Click()
Form2.Show
End Sub

Private Sub Form Load()
Combo1.AddItem “COIMBATORE”
Combo1.AddItem “CHENNAI”
Combo1.AddItem “MADURAI”
End Sub

Code Sample for Manipulating Polling Details

Option Explicit
Dim aw As New ADODB.Connection
Dim r2 As New ADODB.Recordset
Dim r3 As New ADODB.Recordset
Dim e As Integer
Dim i As Integer
Dim fie As Field
Private Sub Command1-Click()
aw.Open “Provider=MSDAORA.1;Password=sathya;User ID=SCOTT;
Persist Security Info=True”
r3.Open “select * from cv”, aw, adOpenDynamic, adLockOptimistic
e = 0
Do While Not r3.EOF
e = e + 1
r3.MoveNext
Loop
r3.MoveFirst
For i = 0 To e − 1
If r3.Fields(“SNO”) = Text2.Text Then
Text1.Text = r3.Fields(“NAME”)
Text3.Text = r3.Fields(“AGE”)
Combo1.Text = r3.Fields(“CONSTITUENCY”)
‘aw.Execute “insert into votee values(’” & Text1.Text &
”’,’” & Text2.Text & ”’,’” & Text3.Text & ”’,’” & Combo1.Text & ”’)”
End If
If i = e Then
r3.MoveLast
Else
r3.MoveNext
End If
Next
aw.Execute “insert into votee values(’” & Text1.Text & ”’,’” &
Text2.Text & ”’,’” & Text3.Text & ”’,’” & Combo1.Text & ”’)”

14.5 Third Project: Election Voting System 671

r3.Close
aw.Close
End Sub

Private Sub Command2 Click()
Form2.Show
End Sub

Private Sub Command3 Click()
If Combo1 = “COIMBATORE” Then
Form4.Show
ElseIf Combo1 = “MADURAI” Then
Form3.Show
ElseIf Combo1 = “CHENNAI” Then
Form14.Show
End If
Text1.Text = “”
Text2.Text = “”
Text3.Text = “”
Combo1.Text = “”
End Sub

Private Sub Form Load()
Combo1.AddItem “COIMBATORE”
Combo1.AddItem “MADURAI”
Combo1.AddItem “CHENNAI”
End Sub

Private Sub Text2 KeyPress(KeyAscii As Integer)
If Chr(KeyAscii) = vbBack Then Exit Sub
If Not IsNumeric(Chr(KeyAscii)) Then
KeyAscii = 0
MsgBox “Enter Ur Correct ID”, vbOKOnly, “Stop!”
End If
End Sub

Code Sample

Private Sub Form Load()
a2.Open “Provider=MSDAORA.1;Password=sathya;User ID=scott;
Persist Security Info=True”
rr1.Open “select * from POLCH order by NO OF VOTES”,
a2, adOpenDynamic, adLockOptimistic
rr1.MoveLast
Label16.Caption = rr1.Fields(“CANDIDATES NAME”)
Label12.Caption = rr1.Fields(“PARTY”)

672 14 Projects in DBMS

Label13.Caption = rr1.Fields(“NO OF VOTES”)
rr1.MovePrevious
Label11.Caption = rr1.Fields(“CANDIDATES NAME”)
Label14.Caption = rr1.Fields(“PARTY”)
Label15.Caption = rr1.Fields(“NO OF VOTES”)
rr1.MoveLast
rr1.Close
a2.Close
a2.Open “Provider=MSDAORA.1;Password=sathya;User ID=scott;Persist
Security Info=True”
r1.Open “select * from POLMA order by NO OF VOTES”,
a2, adOpenDynamic, adLockOptimistic
r1.MoveLast
Label17.Caption = r1.Fields(“CANDIDATES NAME”)
Label19.Caption = r1.Fields(“PARTY”)
Label20.Caption = r1.Fields(“NO OF VOTES”)
r1.MovePrevious
Label21.Caption = r1.Fields(“CANDIDATES NAME”)
Label22.Caption = r1.Fields(“PARTY”)
Label23.Caption = r1.Fields(“NO OF VOTES”)
r1.MoveLast
r1.Close
a2.Close
a2.Open “Provider=MSDAORA.1;Password=sathya;User ID=scott;
Persist Security Info=True”
rr1.Open “select * from res order by NO OF VOTES”,
a2, adOpenDynamic, adLockOptimistic
rr1.MoveLast
Label3.Caption = rr1.Fields(“CANDIDATES NAME”)
Label4.Caption = rr1.Fields(“PARTY”)
Label7.Caption = rr1.Fields(“NO OF VOTES”)
rr1.MovePrevious
Label8.Caption = rr1.Fields(“CANDIDATES NAME”)
Label9.Caption = rr1.Fields(“PARTY”)
Label10.Caption = rr1.Fields(“NO OF VOTES”)
rr1.MoveLast
rr1.Close
a2.Close
End Sub

14.6 Fourth Project: Hospital Management System 673

14.6 Fourth Project: Hospital Management System

14.6.1 Description

This project allows the user to enter and edit the patient’s information. Since
all activities are carried out online there will be less time consumption. This
project has developed a design for the same. The entity-relationship diagram
of this project shows common roles and responsibilities of the entities that
provide the system’s architecture.

The project is implemented using the Oracle 9i and Visual Basic 6.0. This
software provides the entire information about the hospital and patient. It
also allows us to view various details like patient’s information, doctor in
charge, staffs, and information about institution. The different modules like
information center and enquiry center are developed in the front-end Visual
Basic.

Corresponding tables are developed in the back-end and the connectivity
is established. The analysis and feasibility study gives the entire information
about the project (Figs. 14.20–14.24).

ER DIAGRAM FOR HOSPITAL
MANAGEMENT

SEMISPECIAL

SPECIAL GENERAL

SALARY QUALIFICATION

APPEARANCE

AVAILABILITY

DOCTOR ID

MARTIAL STATUS

ADDRESS

PATIENTS

GENERAL INFORMATION

FORROOM FACILITIES

DOCTOR

OF

TREAT

AGE

AGE

NAME

NAME

PATIENT ID

BLOOD PRESSURE

WEIGHT

HEIGHT

RENT

Fig. 14.20. ER diagram

674 14 Projects in DBMS

Fig. 14.21. Blood donor’s details

14.6.2 Source Code

Sample Code for Manipulating Blood Donor’s Details

Private Sub Command2 Click()
Me.Hide
MDIForm1.Show
End Sub

Private Sub Command3 Click()
Text1.Text = “”
Text2.Text = “”
Text3.Text = “”
Text4.Text = “”
Text5.Text = “”
End Sub

Private Sub Command4 Click()
Dim st As String
If Adodc1.Recordset.RecordCount = 0 Then

Exit Sub

14.6 Fourth Project: Hospital Management System 675

Fig. 14.22. Staff details

End If
If Adodc1.Recordset.EOF = True Then

Adodc1.Recordset.MoveFirst
End If
Adodc1.Recordset.Delete adAffectCurrent
Adodc1.Refresh
Dim ans As Integer

Private Sub Command1 Click()
If Trim(Text1.Text) = “” Or Trim(Text2.Text) =
“” Or Trim(Text3.Text) =
“” Or Trim(Text4.Text) = “” Or Trim(Text5.Text) = “” Then

MsgBox “Please Enter All Details”, vbOKOnly, “Information”
Text1.SetFocus

End If
With Adodc1
.RecordSource = “BLGR”
.Recordset.AddNew
.Recordset.Fields(0) = Trim(Text1.Text)
.Recordset.Fields(1) = Val(Trim(Text2.Text))
.Recordset.Fields(2) = Val(Trim(Text3.Text))
.Recordset.Fields(3) = Trim(Text4.Text)

676 14 Projects in DBMS

Fig. 14.23. Facilities

.Recordset.Fields(4) = Trim(Text5.Text)

.Recordset.Update

.Refresh
End With
End Sub

Private Sub Form Activate()
Text1.SetFocus
End Sub

Private Sub Form Load()
bloodbank.Enabled = True
If Button = 2 Then

PopupMenu mnudisp, vbpoupmenurightbutton
End If
End Sub

Code Sample for Manipulating Staff Details

Private Sub Command1 Click()
With Adodc1
.Recordset.MoveFirst
End Sub

14.6 Fourth Project: Hospital Management System 677

Fig. 14.24. Patient details

Private Sub Command2 Click()
If Trim(Text1(0).Text) = “” Or Trim(Text1(2).Text) =
“” Or Trim(Text1(3).Text) = “” Or Trim(Text1(4).Text) =
“” Or Trim(Text1(5).Text) = “” Or Trim(Text1(6).Text) = “” Then
MsgBox “Please Enter All Details”, vbOKOnly, “patient”
Exit Sub
End If
With Adodc1
.RecordSource = “staff”
.Recordset.AddNew
.Recordset.Fields(0) = Text1(0).Text
.Recordset.Fields(1) = Text1(1).Text
.Recordset.Fields(2) = Text1(2).Text
.Recordset.Fields(3) = Text1(3).Text
.Recordset.Fields(4) = Text1(4).Text
.Recordset.Fields(5) = Text1(5).Text
.Recordset.Fields(6) = Text1(6).Text
If Option1.Value = True Then

678 14 Projects in DBMS

.Recordset.Fields(7) = “MALE”
Else
.Recordset.Fields(7) = “FEMALE”
End If
.Recordset.Update
End With
End Sub

Private Sub Command3 Click()
With Adodc1
.RecordSource = “staff”
.Recordset.Delete adAffectCurrent
.Recordset.Update
End With
End Sub

Private Sub Command4 Click()
Me.Hide
MDIForm1.Show
End Sub

Private Sub Command5 Click()
With Adodc1
.Recordset.MovePrevious
End Sub

Private Sub Command6 Click()
With Adodc1
.Recordset.MoveNext
End Sub

Code Sample for Manipulating Facilities

Private Sub Form Load()
db.ConnectionString = “DSN=patient”
db.Open “DSN=patient”, “scott”, “tiger”
rs.Open “roomlist”, db, adOpenDynamic, adLockOptimistic,

adCmdTable
Combo1.Text = “”
Combo1.AddItem “special”
Combo1.AddItem “semi-special”
Combo1.AddItem “general ward”
Combo1.ListIndex = 0

End Sub

Private Sub Command1 Click()
If Trim(Text2.Text) = “” Or Trim(Text3.Text) =

14.6 Fourth Project: Hospital Management System 679

“” Or Trim(Text4.Text) = “” Then
MsgBox “Please Enter All Details”, vbExclamation,
“Information”
Text2.SetFocus
Exit Sub
End If
With Adodc1
.RecordSource = “roomlist”
.Recordset.AddNew
.Recordset.Fields(0) = Trim(Text2.Text)
.Recordset.Fields(1) = Val(Trim(Text3.Text))
.Recordset.Fields(2) = Trim(Text4.Text)
.Recordset.Fields(3) = Combo1.Text
.Recordset.Fields(4) = Combo2.Text
.Recordset.Fields(5) = Val(Trim(Text1.Text))
.Recordset.Fields(6) = Trim(Text5.Text)
.Recordset.Update
.Refresh
End With
End Sub

Private Sub Form Unload(Cancel As Integer)
rs.Close
Set rs = Nothing
db.Close
Set db = Nothing
End Sub

Code Sample for Manipulating Patient Details

Private Sub Form Load()
cn.ConnectionString = “DSN=patient”
cn.Open “DSN=bulletin”, “scott”, “tiger”
rs.Open “stin”, cn, adOpenDynamic, adLockOptimistic, adCmdTable
Do While Not rs.EOF
Combo2.AddItem rs.Fields(0)
rs.MoveNext
Loop
Combo1.AddItem “special”
Combo1.AddItem “general”

End Sub

Private Sub Form Unload(Cancel As Integer)
rs.Close
cn.Close
Set cn = Nothing

680 14 Projects in DBMS

Set rs = Nothing
End Sub

Private Sub Text1 LostFocus(Index As Integer)
With Adodc1
End With
End Sub

14.7 Fifth Project: Library Management System

14.7.1 Description

The primary objective of this project is to design a Library Database Manage-
ment System to store and maintain the various details of the books, journals,
and magazines available in library. It also involves additional features like staff
and student databases which are important to maintain records of materials
available and lent. This software is developed using Oracle as back-end and
Visual Basic as front-end tool. This project is implemented by using entity-
relationship model for its implementation.

This project gives the details about the library, staff, and student records.
This project has been carried out with a view to provide students, staff, and all
other concerned people with an easy way to access the library. As an example,
we can retrieve information regarding book status, staff, or student profiles
concerned (Figs. 14.25–14.31).

14.7.2 Source Code

Code Sample for Manipulating Login Details

Dim con As New ADODB.Connection
Dim rs As New ADODB.Recordset
Dim i As Integer
Dim k As Integer
Private Sub cmdCancel Click()

Timer1.Enabled = False
ProgressBar1.Value = 0
End

End Sub

Private Sub cmdOK Click()
Timer1.Enabled = True

End Sub

1
4
.7

F
ifth

P
ro

ject:
L
ib

ra
ry

M
a
n
a
g
em

en
t

S
y
stem

6
8
1

Lec_id

Lec_name designing

dept
passwd

staff

gender

Lec_id

refers

day

Time table

Period 1

Period 2

Period 5

Period 4

Period 3

Period 6

Period 7
publisher

price

Issue_date

given

section

uses

Book_id

class

student

Libn_name

Libn_id

Managed
by

librarian

passwd

Borrowed_stud

audio

Non book material

gift

floppy

video

CDROM

Book_id

Stud_id

dept

design

gender

id

name

Book_name

author

issued

Issued_id

Borrows
book

main

ISBN

guides

maintains

Fig. 14.25. ER diagram

682 14 Projects in DBMS

Id
Name
Class

Librarian id

Librarian name
Gender

Designation
Department
Password

Book id

Book name
Author
Issued

Issued id
Section
Given

Issue date
Price

Publisher
ISBNTIME TABLE

Lecturer id
Day

Period 1
Period 2
Period 3
Period 4
Period 5
Period 5
Period 6
Period 7

BOORR STUD

Stud_id
Book_id

AUDIO

Id
Name
Issued
Given

Issued id

CD ROM FLOPPY VIDEO GIFT

Gift_id
Name
Issued
Given

Issued id
price

Lecturer id
Lecturer name

Gender
Designation
Department
Password

STAFFS STUDENT LIBRARIAN MAIN

Id
Name
Issued
Given

Issued id

Id
Name
Issued
Given

Issued id

Id
Name
Issued
Given
Issued

Fig. 14.26. Schema diagram

Fig. 14.27. Login details

14.7 Fifth Project: Library Management System 683

Fig. 14.28. Staff details: addition

Fig. 14.29. Staff details: modification

684 14 Projects in DBMS

Fig. 14.30. Librarian details

Fig. 14.31. Book details

14.7 Fifth Project: Library Management System 685

Private Sub Command1 Click()
Unload Me
uid = “Administrator”
frmLogin3.Show
End Sub

Private Sub Form Activate()
txtUserName = “”
txtPassword = “”
txtUserName.SetFocus
End Sub

Private Sub Form Load()
con.ConnectionString = Oracledsn
con.Open Oracledsn, Oracleuser, Oraclepass
rs.Open “staffs”, con, adOpenDynamic, adLockOptimistic, adCmdTable
End Sub

Private Sub Form Unload(Cancel As Integer)
con.Close
End Sub

Private Sub Timer1 Timer()
k = k + 3
If k > 100 Then
If txtUserName = “” Or txtPassword = “” Then

MsgBox “The boxes should not be empty”,
vbExclamation, “Periods”
txtUserName.SetFocus
Timer1.Enabled = False
GoTo last
End If
rs.Filter = “Lecturer ID=’” & txtUserName &
“’ and Password= ’” & txtPassword & “’”
If rs.BOF = False And rs.EOF = False Then

uid = txtUserName
lib.Show
Unload Me
Timer1.Enabled = False
k = 0
ProgressBar1.Value = 0

Else
MsgBox “Username or password may be wrong or account may

not exist contact administrator. Re-enter”, vbExclamation,
“Periods”

Timer1.Enabled = False

686 14 Projects in DBMS

txtPassword.SetFocus
ProgressBar1.Value = 0
k = 0

End If
last:
Else
ProgressBar1.Value = k
End If
End Sub

Private Sub txtPassword KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
If txtUserName = “” Or txtPassword = “” Then

MsgBox “The boxes should not be empty”, vbExclamation,
“Periods”

txtUserName.SetFocus
GoTo last
End If
rs.Filter = “Lecturer ID=’” & txtUserName &

“’ and Password= ’”& txtPassword & “’”
last:
End If
End Sub

Code Sample for Manipulating Staff Details

Dim db As New ADODB.Connection
Dim rs1 As New ADODB.Recordset
Dim rs2 As New ADODB.Recordset

Private Sub Command1 Click()
ProgressBar1.Value = 0
If Trim(Text1.Text) = “” Or Trim(Text2.Text) =
“” Or Trim(Text3.Text) = “”Or Trim(Text4.Text) =
“” Or Trim(Text5.Text) = “” Then

MsgBox “Please Enter All The Data”, vbInformation,
“Information”

Text1.SetFocus
Exit Sub

End If

rs1.Filter = “Lecturer ID=’” & Trim(UCase(Text1)) & “’”
If rs1.EOF = True And rs1.BOF = True Then
Else

MsgBox “ID already exist. Re-enter”, vbInformation,

14.7 Fifth Project: Library Management System 687

“Periods”
Text1 = “”
Text1.SetFocus
Exit Sub

End If
ProgressBar1.Value = 50

rs2.AddNew
rs2.Fields(0) = Trim(UCase(Text1.Text))
rs2.Fields(1) = Trim(UCase(Text2.Text))

If Option1.Value = True Then
rs2.Fields(2) = “M”

Else
rs2.Fields(2) = “F”

End If
rs2.Fields(3) = Trim(UCase(Text3.Text))
rs2.Fields(4) = Trim(UCase(Text4.Text))
rs2.Fields(5) = Trim(UCase(Text5.Text))
rs2.Update
rs1.Close
rs1.Open “staffs”, db, adOpenDynamic, adLockOptimistic,

adCmdTable

ProgressBar1.Value = 99
MsgBox “Details Added Successfully”, vbInformation,
“Information” ProgressBar1.Value = 0
End Sub

Private Sub Command2 Click()
Unload Form2
End Sub

Private Sub Command3 Click()
ProgressBar1.Value = 0
Option1.Value = True
Text1.Text = “”
Text2.Text = “”
Text3.Text = “”
Text4.Text = “”
Text5.Text = “”
End Sub

Code Sample for Manipulating Librarian Details

Dim db As New ADODB.Connection
Dim rs1 As New ADODB.Recordset

688 14 Projects in DBMS

Dim rs2 As New ADODB.Recordset
Private Sub Command1 Click()
ProgressBar1.Value = 0
If Trim(Text1.Text) = “” Or Trim(Text2.Text) =
“” Or Trim(Text3.Text) = “” Or Trim(Text4.Text) =
“” Or Trim(Text5.Text) = “” Then

MsgBox “Please Enter All The Data”, vbInformation,
“Information”

Text1.SetFocus
Exit Sub

End If
rs1.Filter = “librarian id=’” &
Trim(UCase(Text1)) & “’”
If rs1.EOF = True And rs1.BOF = True Then
Else

MsgBox “ID already exist. Re-enter”, vbInformation,
“Periods”

Text1 = “”
Text1.SetFocus
Exit Sub

End If
ProgressBar1.Value = 50

rs2.AddNew
rs2.Fields(0) = Trim(UCase(Text1.Text))
rs2.Fields(1) = Trim(UCase(Text2.Text))

If Option1.Value = True Then
rs2.Fields(2) = “M”

Else
rs2.Fields(2) = “F”

End If
rs2.Fields(3) = Trim(UCase(Text3.Text))
rs2.Fields(4) = Trim(UCase(Text4.Text))
rs2.Fields(5) = Trim(UCase(Text5.Text))
rs2.Update
rs1.Close
rs1.Open “librarian”, db, adOpenDynamic,

adLockOptimistic, adCmdTable
ProgressBar1.Value = 99
MsgBox “Details Added Successfully”, vbInformation,
“Information”
ProgressBar1.Value = 0
End Sub

14.7 Fifth Project: Library Management System 689

Code Sample for Manipulating Book Details

Dim db As New ADODB.Connection
Dim rs1 As New ADODB.Recordset
Dim rs2 As New ADODB.Recordset
Private Sub Command1 Click()
ProgressBar1.Value = 0
If Trim(Text1.Text) = “” Or Trim(Text2.Text) =
“” Or Trim(Text3.Text) = “” Or Trim(Text4.Text) =
“” Or Trim(Text5.Text) = “” Or Trim(Text6.Text) =
“” Or Trim(Text7.Text) = “” Then

MsgBox “Please Enter All The Data”, vbInformation,
“Information”

Text1.SetFocus
Exit Sub

End If
rs1.Filter = “book id=’” &
Trim(UCase(Text1)) & “’”
If rs1.EOF = True And rs1.BOF = True Then
Else
MsgBox “ID already exist. Re-enter”, vbInformation,
“Periods”

Text1 = “”
Text1.SetFocus
Exit Sub

End If
ProgressBar1.Value = 50

rs2.AddNew
rs2.Fields(0) = Trim(UCase(Text1.Text))
rs2.Fields(1) = Trim(UCase(Text2.Text))
rs2.Fields(2) = Trim(UCase(Text3.Text))
rs2.Fields(3) = “NO”
rs2.Fields(4) = “NIL”
rs2.Fields(5) = Trim(UCase(Text4.Text))
rs2.Fields(6) = “NIL”
rs2.Fields(7) = “NIL”
rs2.Fields(8) = Trim(UCase(Text5.Text))
rs2.Fields(9) = Trim(UCase(Text6.Text))
rs2.Fields(10) = Trim(UCase(Text7.Text))
rs2.Update
rs1.Close
rs1.Open “main”, db, adOpenDynamic, adLockOptimistic,

adCmdTable
ProgressBar1.Value = 99

690 14 Projects in DBMS

MsgBox “Details Added Successfully”, vbInformation,
“Information”
ProgressBar1.Value = 0
End Sub

14.8 Sixth Project: Railway Management System

14.8.1 Description

The main aim of this project is to allow the clients to gather information
regarding railways and to book and cancel the tickets online. This project has
been designed in such a way that all the activities are carried out online. This
enhances the speed of the project which leads to less time consumption.

The project is conceptually viewed using the entity-relationship diagram
which shows common roles and responsibilities of the entities that provide
the system’s architecture. The actual implementation of the project is done
using relational model with Oracle8i as the back-end and Visual Basic 6.0 as
the front-end.

The different modules like information center, enquiry center, and reser-
vation and cancellation center are developed in the front-end and the cor-
responding tables are developed in the back-end. Finally the connectivity is
established. The analysis and feasibility study gives the entire information
about the project (Figs. 14.32–14.36).

14.8.2 Source Code

Code Sample for Viewing Train Details

Option Explicit
Private Sub Picture1 Click()
Form1.Show
Form3.Hide
End Sub

Code Sample for Manipulating Reservation Details

Private Sub Command1 Click()
Dim a As Integer

If Trim(Combo1.Text) = “” Then
Exit Sub

End If
If Trim(Text3.Text) = “” Or Trim(Text5.Text) =

“” Or Trim(Text6.Text) = “” Or Trim(Text10.Text) =
“” Or Trim(Text11.Text) = ” Or Trim(Combo2.Text) =

14.8 Sixth Project: Railway Management System 691

RESERVATION

PNR_NO

TRAIN_NAME

STARTPLACE

DESTINATION

SEX
AGE

CONTACT_NO

CLASS

DATE OF
RESERVATION

PASSENGER
_NAME

TRAIN_NO

TRAIN_DETAILS

TRAIN_NO

TRAIN_NAME START_PLACE

DESTINATION
PLACE

DEPENDS
ON

Fig. 14.32. ER diagram

“” Then
MsgBox “Please Enter All Details”
Text3.SetFocus
Exit Sub

End If

Adodc1.CommandType = adCmdUnknown
Adodc1.RecordSource = “select * from reservation”
Adodc1.Refresh

If Adodc1.Recordset.RecordCount = 0 Then
a = 1

Else
Adodc1.CommandType = adCmdUnknown
Adodc1.RecordSource = “select max(pnr) from reservation”

692 14 Projects in DBMS

Fig. 14.33. Train details

Adodc1.Refresh
a = Adodc1.Recordset.Fields(0) + 1

End If

rs4.AddNew
rs4.Fields(0) = Trim(Combo1.Text)
rs4.Fields(1) = Trim(Text1.Text)
rs4.Fields(2) = Trim(Text2.Text)
rs4.Fields(3) = Trim(Text7.Text)
rs4.Fields(4) = Val(Trim(Text3.Text))
If Option3.Value = True Then

rs4.Fields(5) = “M”
Else

rs4.Fields(5) = “F”
End If

rs4.Fields(6) = Trim(Combo2.Text)
rs4.Fields(7) = Trim(Text10.Text)
rs4.Fields(8) = Trim(Text11.Text)
rs4.Fields(9) = a
rs4.Update

14.8 Sixth Project: Railway Management System 693

Fig. 14.34. Reservation details

rs4.Close
rs4.Open “reservation”, db, adOpenDynamic, adLockOptimistic,
adCmdTable
MsgBox “Successfully Reserved”, vbExclamation,
“Information”
End Sub

Private Sub Command2 Click()
Text1.Text = “”
Text2.Text = “”
Text3.Text = “”
Text7.Text = “”
Text11.Text = “”
Text10.Text = “”
Text5.Text = “”
Text6.Text = “”
Option2.Value = True
Option3.Value = False

End Sub

694 14 Projects in DBMS

Fig. 14.35. Availability details

Code Sample for Viewing Availability Details

Dim con As New ADODB.Connection
Dim rs As New ADODB.Recordset

Private Sub Command1 Click()
Text1.Text = “”
Text3.Text = “”
Text2.Text = “”
Text4.Text = “”
Text5.Text = “”
End Sub

Private Sub Command2 Click()
con.Open “Provider=MSDAORA.1;Password=tiger;User
ID=system;Persist Security Info=True”
Dim str As String
str = “select count(*) from reservation where tno=’” &
CInt(Trim(Text3.Text)) & “’ and class=’” &
(Trim(Text2.Text)) & “’”
Set rs = con.Execute(str)
Dim i As Integer

14.8 Sixth Project: Railway Management System 695

Fig. 14.36. Cancellation details

i = rs.Fields(0)
Text5.Text = CStr(5 − i)
con.Close
End Sub

Private Sub Picture1 Click()
Form1.Show
Form5.Hide
End Sub

Code Sample for Manipulating Cancellation Details

Option Explicit
Dim con As New ADODB.Connection
Dim rs As New ADODB.Recordset
Private Sub Picture2 Click()
End Sub

Private Sub Picture3 Click()
End Sub

696 14 Projects in DBMS

Private Sub Command1 Click()
rs.Filter = “pnr = ’” &
Trim(Text2.Text) & “’”
If rs.EOF = False And rs.BOF = False Then
rs.Delete
rs.Update
MsgBox “Ticket canceled”
End If
End Sub

Private Sub Command2 Click()
Text1.Text = “”
Text2.Text = “”
Text3.Text = “”
End Sub

Private Sub Form Load()
con.Open “DSN=railway”, “system”, “tiger”
rs.Open “reservation”, con, adOpenDynamic, adLockOptimistic,
adCmdTable
End Sub
Private Sub Picture1 Click(Index As Integer)
Form8.Hide
Form1.Show
End Sub

14.9 Some Hints to Do Successful Projects in DBMS

Class projects are slightly different from real-world applications, but they have
many features in common. One of the most challenging aspects is that any
project contains a level of uncertainty and ambiguity. In real-life situations, the
problems are solved through experience and discussions with project manager.
With class projects, the students can get some advice from the faculty members,
but they need to make their own decisions and interpretations many times.

The desired steps that students should take during the initial phase of the
projects are:

– Identify the goals and objectives of the proposed project.
– Additional research of the industry and similar firms will help to get an

overall idea of the project.
– After collecting sufficient details develop the conceptual idea of the project

by developing the ER model of the project.
– The ER model will help to analyze individual forms and reports. It is

also necessary to identify the overall purpose of each form. The students
should be able to describe the purpose of each form.

14.9 Some Hints to Do Successful Projects in DBMS 697

The following steps the students should consider during the implementation
phase:

– After collecting sufficient details about the project the next step in the
implementation phase is to select proper front-end, the back-end, and
suitable interface.

– Some of the front-end the students can opt for is Visual Basic and Power
Builder.

– As the back-end, the students can select either SQL or ACCESS. The
students can also go for Oracle forms and reports.

– The students should try to develop good normalized list before creating
tables using SQL or ACCESS.

– Start with an initial set of tables and keys that correct. Add columns
and tables as you need them. If your initial tables are correct then you
should be able to add new columns and tables without altering the existing
design.

– While developing forms, take care that the forms are user-friendly. At the
same time, the user should not alter important data (secret data). For
this, make use of the concept of “views” wherever necessary.

– Do not forget to take backup copy of your work periodically. Always keep
backup copy of your project on a different disk.

A

Dictionary of DBMS Terms

Access Plan

Access plans are generated by the optimization component to implement
queries submitted by users.

ACID Properties

ACID properties are transaction properties supported by DBMSs. ACID is
an acronym for atomic, consistent, isolated, and durable.

Address

A location in memory where data are stored and can be retrieved.

Aggregation

Aggregation is the process of compiling information on an object, thereby
abstracting a higher-level object.

Aggregate Function

A function that produces a single result based on the contents of an entire set
of table rows.

Alias

Alias refers to the process of renaming a record. It is alternative name used
for an attribute.

700 A Dictionary of DBMS Terms

Anomaly

The inconsistency that may result when a user attempts to update a table
that contains redundant data.

ANSI

American National Standards Institute, one of the groups responsible for SQL
standards.

Application Program Interface (API)

A set of functions in a particular programming language is used by a client
that interfaces to a software system.

ARIES

ARIES is a recovery algorithm used by the recovery manager which is invoked
after a crash.

Armstrong’s Axioms

Set of inference rules based on set of axioms that permit the algebraic mani-
pulation of dependencies. Armstrong’s axioms enable the discovery of minimal
cover of a set of functional dependencies.

Associative Entity Type

A weak entity type that depends on two or more entity types for its primary
key.

Attribute

The differing data items within a relation. An attribute is a named column of
a relation.

Authorization

The operation that verifies the permissions and access rights granted to a
user.

Base Table

Base table is a named relation corresponding to an entity in the conceptual
schema, whose tuples (rows) are physically stored in the database.

A Dictionary of DBMS Terms 701

Bitmap Index

A compact, high speed indexing method where the key values and the condi-
tions are compressed to a small size that can be stored and searched rapidly.

BLOB

BLOB is an acronym for Binary Large Object. BLOB is a data type for fields
containing large binary data such as images.

Boyce–Codd Normal Form

A relation in third normal form in which every determinant is a candidate
key.

Bucket

With reference to hash file, Bucket is the unit of a file having a particular
address.

Buffer

Buffer an area in main memory containing physical database records trans-
ferred from disk.

Candidate Key

Any data item or group of data items which identify uniquely tuples in a
relation.

Cardinality

The number of tuples in a relation.

Cartesian Product

All of the possible combinations of the rows from each of the tables involved
in a join operation.

CASE Tool

CASE is an acronym for computer-aided software engineering. CASE tools
support features for drawing, analysis, prototyping, and data dictionary.
CASE tool facilitate database development.

702 A Dictionary of DBMS Terms

Chasm Trap

A chasm trap exists where a model suggests the existence of relationship
between entity types, but the pathway does not exist between certain entity
occurrences.

Client

An individual user workstation that represents the front end of a DBMS.

Client/Server Architecture

Client/Server architecture is an arrangement of components among computers
connected by a network.

Clustered Index

An index in which the logical or indexed order of the key values is the same
as the physical stored order of the corresponding rows.

CODASYL

Conference on Data System Languages.

Concurrent Access

Performing two or more operations on the same data at the same time.

Concurrency Control

Concurrency control is the control on the database and transactions which
are executed concurrently to ensure that each transaction completed healthy.

Composite Key

A candidate key comprising more than one attribute

Composite Index

An index that uses more than one column in a table to index data.

COMMIT

To control transactions, SQL provides this command to save recent DML
changes to the database.

A Dictionary of DBMS Terms 703

Condition Box

A special box used by QBE to store logical conditions that are not easily
expressed in the table skeleton.

Constraints

Constraints are conditions that are used to impose rules on the table.

Conceptual View

The logical database description in ANSI/SPARC DBMS architecture.

Concurrent Access

Two or more users operating on the same rows in a database table at the
same time.

Correlated Subquery

In SQL, a sub query in which processing the inner query depends on data
from the outer query.

COUNT

An aggregate function that returns the number of values in a column.

Cursor

An SQL feature that specifies a set of rows, an ordering of those rows and a
current row within that ordering.

Data

Data is a representation of facts, concepts or instructions in a formalized
manner suitable for communication, interpretation or processing by humans
or automatic means.

Data Abstraction

Data abstraction means the storage details of the data are hidden from the
user and the user is provided with the conceptual view of the database.

704 A Dictionary of DBMS Terms

Database

Database is the collection of interrelated data.

Data Definition Language (DDL)

The language component of a DBMS that is used to describe the logical
structure of a database.

Data Manipulation Language (DML)

A language component of a DBMS that is used by a programmer to access
and modify the contents of a database.

Database Instance

The actual data stored in a database at a particular moment in time.

Database State

Database state refers to the content of a database at a moment in time.

Database Management System

General purpose software used to maintain the database.

Database System

A database system means both a DBMS plus a database.

Database Administrator

A person or group of people responsible for the design and supervision of a
data base.

Database Recovery

The process of restoring the database to a correct state in the event of a
failure.

Database Security

Protection of the database against accidental or intentional loss, destruction,
or misuse.

A Dictionary of DBMS Terms 705

Data Mining

Data mining is the process of discovering implicit patterns in data stored
in data warehouse and using those patterns for business advantage such as
predicting future trends.

Data Model

Collection of conceptual tools for describing data and relationship between
data.

Data Dictionary

Centralized store of information about database.

Data Warehouse

Data warehouse is a central repository for summarized and integrated data
from operational databases and external data sources.

DB2

An IBM relational database system.

DBTG

Database Task Group.

Deadlock

The situation where each of two transactions are waiting indefinitely for the
other transaction to release the resources it requests.

Degree of a Relation

The number of attributes in the relation.

Denormalization

Denormalization is the process of combining tables so that they are easier to
query. Denormalization is opposite to normalization. Denormalization is done
to improve query performance.

706 A Dictionary of DBMS Terms

Derived Attribute

Derived attributes are the attributes whose values are derived from other
related attribute.

Determinant

An attribute or set of attributes on which the value of one or more attributes
depend.

Distributed Database

A database located at more than one site.

Domain

The set of all possible values for a given data item.

Domain Integrity

Data integrity that enforces valid entries for a given column

Domain Relational Calculus

Domain Relational Calculus is a calculus that was introduced by Edgar F.
Codd as a declarative database query language for the relational data model.

DDL

Data Definition Language is used to define the schema of a relation.

DML

Data Manipulation Language is basically used to manipulate a relation.

Dual

A virtual table automatically created by Oracle along with the data dictionary.
It has one column, DUMMY, defined to be VARCHAR2(1), and contains one
row with a value of “X”.

Embedded SQL

An application structure in which SQL statements are embedded within pro-
grams written in a host language like C, JAVA.

A Dictionary of DBMS Terms 707

Encapsulation

Hiding the representation of an object is encapsulation.

Entity

An object that exist and is distinguishable from other objects.

Entity Class

A set of entities of the same type.

Entity Instance

Entity instance is a particular occurrence of an entity.

Entity Integrity (Table Integrity)

Integrity that defines a row as a unique entity for a particular table and
ensures that the column cannot contain duplicate values.

Equijoin

A join operator where the join condition involves equality.

ER Model

ER stands for Entity-Relationship model. ER Model is based on a perception
of a real world that consists of collection of basic objects called entities and
relationships among these objects.

EER Model

EER stands for Enhanced ER model. EER model is the extension of origi-
nal model with new modeling constructs. The new modeling constructs are
supertype, subtype.

Exclusive Lock

A lock that prevents other users from accessing a database item. Exclusive
locks conflict with all other kids of locks such as shared locks.

708 A Dictionary of DBMS Terms

Fantrap

A fantrap exists where a model represents a relationship between entity types
but the pathway between certain entity occurrences is ambiguous.

File

A file is a collection of records of the same type.

File Organization

Methods used in organizing data for storage and retrieval such as sequential,
indexed sequential, or direct.

First Normal Form

A relation is in first normal form if it contains no repeating groups.

Flat File

A file in which the fields of records are simple atomic values.

Foreign Key

Attribute or set of attributes that identifies the entity with which another
entity is associated.

Fourth Normal Form

A relation is in fourth normal form if it is in BCNF and contains no multi-
valued dependencies.

Function

A set of instructions that operates as a single logical unit.

Functional Dependency

A constraint between two attributes or two sets of attributes in a relation.

Generalization

In extended ER model (EER model), generalization is a structure in which
one object generally describes more specialized objects.

A Dictionary of DBMS Terms 709

GRANT

An SQL command for granting privileges to a user/users.

Graphical User Interface (GUI)

An interface that uses pictures and graphic symbols to represent commands
and actions.

Hashing

A mathematical technique for assigning a unique number to each record in a
file.

Hash Function

A function that maps a set of keys onto a set of addresses.

Hierarchical Database

A DBMS type that organizes data in hierarchies that can be rapidly searched
from top to bottom.

Identifier

An attribute or collection of attributes that uniquely distinguishes an entity.

Index

A data structure used to decrease file access time.

Inheritance

Object-oriented systems have a concept of inheritance which permits class X
to derive much of its code and attributes from another class Y. Class X will
contain the data attributes and operations of class Y.

Intersection

A relational algebra operation performed on two union-compatible relations
so as to produce a relation which contains rows that appear in both the union-
compatible relations.

710 A Dictionary of DBMS Terms

ISA Relationship

The relationship between each subtype and its supertype.

ISO

ISO stands for International Standards Organization. ISO in conjuction with
ANSI to provide standard SQL for relational databases.

JOIN

An operation that combines data from more than one table.

JDBC

JDBC stands for Java Database Connectivity. A standard interface between
Java applet or application and a database.

Key

Key is a data item that helps to identify individual occurrences of an entity
type.

Leaf

In a tree structure, an element that has no subordinate elements.

Lock

A procedure used to control concurrent access to data.

Log

A file containing a record of database changes.

Logical Database Design

A part of database design that is concerned with modeling the business re-
quirements and data.

Logical Data Independence

Application programs and terminal activities remain logically unimpaired
when information preserving changes of any kind that theoretically permit
unimpairment are made to the base tables.

A Dictionary of DBMS Terms 711

Meta Data

Data about data is meta data. In other words, metadata is the data about
the structure of the data in a database.

Mirrored Disk

Set of disks that are synchronized as follows: **each write to one disk goes to
all disks in the mirrored set; reads can access any of the disk.

Mobile Database

A database that is portable and physically separate from a centralized data-
base server but is capable of communicating with that server from remote
sites.

Modification Anomaly

An unexpected side effect that occurs when changing the data in a table with
excessive redundancies.

Multivalued Attribute

A multivalued attribute is an attribute to which more than one value is asso-
ciated.

Multiple Tier Architecture

A client/server architecture with more than three layers a PC client, database
server an intervening middleware server and application servers. The applica-
tion servers perform business logic and manage specialized kinds of data such
as images.

Multivalued Dependency

A type of dependency that exists when there are at least three attributes (for
example X, Y, and Z) in a relation, and for each value of X there is a well-
defined set of values for Y and a well-defined set of values for Z, but the set
of values of Y is independent of set Z.

Natural Join

In a natural join, the matching condition is equality condition; one of the
matching columns is discarded in the result table.

712 A Dictionary of DBMS Terms

Normal Form

A set of conditions defined on entity specification.

Normalization

The design process for generating entity specifications to minimize both data
redundancy and update anomalies.

NULL Value

A value that is either unknown or not applicable.

Object

An object is a collection of data, an identity, and a set of operations sometimes
called methods.

Object-Oriented Database

An object-oriented database combines database capabilities with an object
oriented analysis and design.

Object-Relational Database

Object-relational database combines RDBMS features with object-oriented
features like inheritance and encapsulation.

ODBC

ODBC stands for Open Data Base Connectivity. A standard interface by
which application programs can access and process SQL databases in a DBMS
independent manner.

OLAP

Online Analytical Processing systems, contrary to the regular, conventional
online transaction processing systems, are capable of analyzing online a large
number of past transactions or large number of data records (ranging from
mega bytes to gigabytes and terabytes).

OLTP

OLTP stands for Online Transaction Processing which supports large number
of concurrent transactions without imposing excessive delays.

A Dictionary of DBMS Terms 713

One-to-Many Relationship

A relationship between two tables in which a single row in the first table can
be related to one or more rows in the second table, but a row in the second
table can be related only to one row in the first table.

One-to-One Relationship

A relationship between two tables in which a single row in the first table can
be related to only one row in the second table, and a row in the second table
can be related to only one row in the first table.

Oracle

A relational database management system marketed by Oracle Corporation.

Outer Join

Outer join is a relational algebra operator which combines two tables. In an
outer join, the matching and nonmatching rows are retained in the result.

Overflow

Overflow occurs when an insertion is attempted into a bucket or node that is
full.

Partial Functional Dependency

A dependency in which one or more nonkey attributes are functionally depen-
dent on part (but not all) of the primary key.

Physical Data Independence

Application programs and terminal activities remain logically unimpaired
whenever any changes are made in either storage representation or access
methods.

Polymorphism

Polymorphism is a principle of object-oriented computing in which a com-
puting system has the ability to choose among multiple implementations of a
method.

714 A Dictionary of DBMS Terms

Primary Key

An attribute or set of attributes that uniquely identifies a tuple in a relation.

Procedural Language Interface

Procedural Language Interface is a method to combine a nonprocedural lan-
guage such as SQL with programming language such as Visual Basic. Embed-
ded SQL is an example for procedural language interface.

QBE

QBE stands for Query By Example. QBE uses a terminal display with at-
tribute names as table headings for queries.

Query

Query is a request to extract useful data.

Query Plan

The plan produced by an optimizer for processing a query

Query Processing

The activities involved in retrieving data from the database are called as query
processing.

Query Optimization

The activity of choosing an efficient execution strategy for processing a query
is called as Query optimization.

RAID

RAID is an acronym for Redundant Array of Independent Disks. RAID is a
collection of disks that operates as a single disk.

Range Query

Range query refers to selection on an interval. For example, select the name
of players whose age is between thirty and thirty five.

A Dictionary of DBMS Terms 715

Recursive Relationship

A relationship type where the same entity type participates more than once
in different roles.

Redundant Data

Redundant data refers to the same data that is stored in more than one
location in the database.

Referential Integrity

The referential integrity imposes the constraint that if a foreign key exists in
a relation, either the foreign key value must match a candidate key value of
some tuple in its home relation or the foreign key value must be wholly null.

Relation

A relation is a table with rows and columns.

Relationship Type

Relationship type is a set of meaningful associations among entity types.

Relational Algebra

Procedural language based on algebraic concepts. It consists of collection of
operators that are defined on relations, and that produce relations as results.

Relational Calculus

A query language based on first order predicate calculus.

Relational Database

A database that organizes data in the form of tables.

Relational Database Management System (RDBMS)

Software that organizes manipulates and retrieves data stored in a relational
database.

Recursive Relationship

A relationship in which one entity references itself.

716 A Dictionary of DBMS Terms

Repository

A repository is a collection of resources that can be accessed to retrieve in-
formation. Repositories often consist of several databases tied together by a
common search engine.

REVOKE

An SQL statement for removing privileges from a user/users.

ROLLBACK

A DBMS recovery technique that aborts active applications and attempts to
reinstate the state of the database prior to initiating the applications active
at the time the database failed.

Root

The top record, row, or node in a tree. A root has no parent.

Schema

Schema is the collection of named object.

Scalar Function

A function operating on a single value. Scalar functions return a single value.

Second Normal Form (2NF)

A relation schema R is in 2 NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R.

Self Join

A join that merges data from a table with data in the same table, based on
columns in a table that are related to one another.

Semantic Data Model

Semantic data model provides a vocabulary for expressing the meaning as well
as the structure of database data.

A Dictionary of DBMS Terms 717

Semijoin

A dyadic relational operator yielding the tuples of one operand that con-
tributes to the join of both.

Sequential File Organization

The records in the file are stored in sequence according to a primary key value.

SGML

SGML stands for Standard Generalized Markup Language. A standard means
for tagging and marking the format, structure, and content of documents.
HTML is a subset of SGML.

Shared Lock

Lock that allows concurrent transactions to read a resource.

Sparse Index

Index in which the underlying data structure contains exactly one pointer to
each data page.

Stripe

Stripping is an important concept for RAID storage. Stripping involves the
allocation of physical records to different disks.

Structured Query Language (SQL)

A standard language used to manipulate data in a database.

Subquery

Query within a query.

Subtype

A subtype represents a subset or subgroup of super class entity type’s ins-
tances. Subtype inherit the attributes and relationships associated with their
super type.

718 A Dictionary of DBMS Terms

SUM

An aggregate function that returns the sum of all values. Sum can be used
with numeric columns only. NULL values are ignored.

Super Type

Super type is a generic entity type that has a relationship with one or more
subtype.

Table

Table is a 2D arrangement of data. The table consists of rows and columns.

Ternary Relationship

A relationship which involves three entity types. It is a simultaneous relation-
ship among the instances of three entity types.

Three-Tier Architecture

Three-Tier architecture is client/server architecture with three layers: a PC
client, database server and an application server.

Transaction

Transaction is the execution of user program in DBMS. In other words it can
be stated as the various read and write operations done by the user program
on the DBMS, when it is executed in DBMS environment.

Transaction Log

File that records transactional changes occurring in a database, providing a
basis for updating a master file and establishing an audit trail.

Transitive Dependency

If the attribute X is dependent on Y and the attribute Y is dependent on Z
then the attribute X is transitively dependent on Z

Trigger

Action that causes a procedure to be carried out automatically when a user
attempts to modify data.

A Dictionary of DBMS Terms 719

Trivial Dependency

The dependency of an attribute on itself.

Tuple

A row in the tabular representation of the relation.

Tuple Relational Calculus

The tuple relational calculus is based on specifying a number of tuple vari-
ables. Each tuple variable usually ranges over a particular database relation,
meaning that the variable may take as its value any individual tuple from
that relation.

Two Phase Locking

A locking scheme with two distinct phases. During the first phase the DBMS
may set licks, during the second it is allowed only to release locks.

Two Phase Commit

Process that ensures transactions applying to more than one server are com-
pleted on either all servers or none.

Two-Tier Architecture

Two-Tier architecture is a client/server architecture in which a PC client and
a database server interact directly to request and transfer data. The PC client
contains the user interface code, the server contains the data access logic, and
the PC client and the server share the validation and business logic.

Union

A relational algebra operation performed on two union-compatible relations
to produce a third relation which contains every row in the union-compatible
relations minus any duplicate rows.

Union Compatible

Two relations are union compatible if they have same number of attributes
and the attributes in the corresponding columns arise from the same domain.

720 A Dictionary of DBMS Terms

Update Anomaly

An undesirable side effect caused by an insertion, deletion, or modification.

Updatable View

When the rows of an updatable view is modified then DBMS translates the
view modifications into the modifications to the rows of the base tables.

Variable

A location in memory used to hold temporary values. Variables have a scope
and a lifetime depending on where they are created and how they are defined.

View

A virtual table which is derived from base table using a query.

Visual Basic (VB)

A product of Microsoft that is used to develop applications for the windows
environment. The professional version supports database connections.

Volatile Storage

Volatile storage loses its state when the power is disconnected.

VSAM

VSAM stands for Virtual Storage Access Method. It is IBM’s implementation
of the B-tree concept.

Weak Entity

An entity whose existence depends on other entity.

Write–write Conflict

The situation in which two write actions operate on the same data item.

World Wide Web (WWW)

A first attempt to set up an international database of information.

XML

A language for defining the structure and the content of documents on the
World Wide Web.

B

Overview of Commands in SQL

Some of the commonly used data types, SQL*Plus commands, Aggregate
functions, SQL*Plus commands summary, built-in scalar functions are given
in this appendix.
Commonly Used Data Types

Data type Description

char(n) Fixed length character data, n characters long.
varchar2(n) Variable length character string.
number(o,d) Numeric data type for integers and real,

where o = overall number of digits and
d = number of digits to the right of decimal point.

date Date data type for storing date and time. The default
format for date is DD-MMM-YY. Example “13-oct-94.”

SQL*Plus Editing Commands

Command Abbreviation Purpose

APPEND text A text Adds text at the end of a line.
CHANGE
/old/new

C /old/new Changes old to new in a line.

CHANGE /text C /text Deletes text from a line.
CHANGE /text C /text Deletes text from a line.
CLEAR
BUFFER

CL BUFF Deletes all lines.

DEL (none) Deletes the current line.
DEL n (none) Deletes line n.
DEL * (none) Deletes the current line.
DEL n * (none) Deletes line n through the current line.
DEL LAST (none) Deletes the last line.
DEL m n (none) Deletes a range of lines (m to n).

722 B Overview of Commands in SQL

Command Abbreviation Purpose

DEL * n (none) Deletes the current line through line n.
INPUT text I text Adds a line consisting of text.
LIST L Lists all lines in the SQL buffer.
LIST n L n or n Lists line n.
LIST * L * Lists the current line.
LIST n * L n * Lists line n through the current line.
LIST LAST L LAST Lists the last line.
LIST m n L m n Lists a range of lines (m to n).
LIST * n L * n Lists the current line through line n.

Aggregate Functions

Function Usage

AVG(expression) Computes the average value of a column by
the expression.

COUNT(expression) Counts the rows defined by the expression.
COUNT(*) Counts all rows in the specified table or view.
MIN(expression) Finds the minimum value in a column by the

expression.
MAX(expression) Finds the maximum value in a column by the

expression.
SUM(expression) Computes the sum of column values by the

expression.

Built-in Scalar Functions

Function Usage

CURRENT DATE Identifies the current date.
CURRENT TIME Identifies the current time.
CURRENT TIMESTAMP Identifies the current date and time.
CURRENT USER Identifies the currently active user within the

database server.
SESSION USER Identifies the currently active Authorization ID

if it differs from the user.
SYSTEM USER Identifies the currently active user within the

host operating system.

B Overview of Commands in SQL 723

SQL*Plus Command Summary

Command Description

@ (“at” sign) Runs the SQL*PLus statements in the specified com-
mand file. The command file can be called from the
local file system or from a web server.

@@ (double “at” sign) Runs a command file. This command is identical to
the @ (“at” sign) command. It is useful for running
nested command files because it looks for the speci-
fied command file in the same path as the command
file from which it was called.

/ (slash) Executes the SQL command or PL/SQL block.
ACCEPT Reads a line of input and stores it in a given user

variable.
APPEND Adds specified text to the end of the current line in

the buffer.
ARCHIVE LOG Starts or stops the automatic archiving of online redo

log files manually (explicitly) archives specified redo
log files or displays the information about redo log
files.

ATTRIBUTE Specifies display characteristics for a given attribute
of an Object Type column and lists the current
display characteristics for a single attribute or all
attributes.

BREAK Specifies where and how formatting will change in a
report or lists the current break definition.

BTITLE Places and formats a specified title at the bottom of
each report page or lists the current BTITLE defin-
ition.

CHANGE Changes text on the current line in the buffer.
CLEAR Resets or erases the current clause or setting for the

specified option such as BREAKS or COLUMNS.
COLUMN Specifies display characteristics for a given column

or lists the current display characteristics for a single
column or for all columns.

COMPUTE Calculates and prints summary lines using various
standard computations on subsets of selected rows
or lists all COMPUTE definitions.

CONNECT Connects a given user to Oracle.
COPY Copies results from a query to a table in a local or

remote database.
DEFINE Specifies a user variable and assigns it a CHAR value

or lists the value and variable type of a single variable
or all variables.

724 B Overview of Commands in SQL

Command Description

DEL Deletes one or more lines of the buffer.
DESCRIBE Lists the column definitions for the specified table view

or synonym or the specifications for the specified func-
tion or procedure.

DISCONNECT Commits pending changes to the database and logs the
current user off Oracle but does not exit SQL*Plus.

EDIT Invokes a host operating system text editor on the con-
tents of the specified file or on the contents of the buffer.

EXECUTE Executes a single PL/SQL statement.
EXIT Terminates SQL*Plus and returns control to the opera-

ting system.
GET Loads a host operating system file into the SQL buffer.
HELP Accesses the SQL*Plus help system.
HOST Executes a host operating system command without

leaving SQL*Plus.
INPUT Adds one or more new lines after the current line in the

buffer.
LIST Lists one or more lines of the SQL buffer.
PASSWORD Allows a password to be changed without echoing the

password on an input device.
PAUSE Displays the specified text then waits for the user to

press [Return].
PRINT Displays the current value of a bind variable.
PROMPT Sends the specified message to the user’s screen.
EXIT Terminates SQL*Plus and returns control to the opera-

ting system. QUIT is identical to EXIT.
RECOVER Performs media recovery on one or more tablespaces

one or more datafiles or the entire database.
REMARK Begins a comment in a command file.
REPFOOTER Places and formats a specified report footer at the bot-

tom of each report or lists the current REPFOOTER.
REPHEADER Places and formats a specified report header at the top

of each report or lists the current REPHEADER defin-
ition.

RUN Lists and executes the SQL command or PL/SQL block
currently stored in the SQL buffer.

SAVE Saves the contents of the SQL buffer in a host operating
system file (a command file).

SET Sets a system variable to alter the SQL*Plus environ-
ment for your current session.

B Overview of Commands in SQL 725

Command Description

SHOW Shows the value of a SQL*Plus system vari-
able or the current SQL*Plus environment.

SHUTDOWN Shuts down a currently running Oracle
instance.

SPOOL Stores query results in an operating system
file and optionally sends the file to a printer.

START Executes the contents of the specified com-
mand file.

STARTUP Starts an Oracle instance and optionally
mounts and opens a database.

STORE Saves attributes of the current SQL*Plus
environment in a host operating system file
(a command file).

TIMING Records timing data for an elapsed period of
time lists the current timer’s title and timing
data or lists the number of active timers.

TITLE Places and formats a specified title at the
top of each report page or lists the current
TITLE definition.

UNDEFINE Deletes one or more user variables that is
defined either explicitly (with the DEFINE
command) or implicitly (with an argument
to the START command).

VARIABLE Declares a bind variable that can be refer-
enced in PL/SQL.

WHENEVER OSERROR Exits SQL*Plus if an operating system com-
mand generates an error.

WHENEVER SQLERROR Exits SQL*Plus if a SQL command or
PL/SQL block generates an error.

C

Pioneers in DBMS

This appendix looks at the pioneers in field of database management system.
Even though many great people have contributed for the development of
database management system, we consider here the work of Dr. Edgar
F. Codd, Peter Chen, and Ronald Fagin. The pioneers’ biography would
certainly motivate the readers to work in the database management system
development.

Author: Dr. Edgar F. Codd (1923–2003)

728 C Pioneers in DBMS

C.1 About Dr. Edgar F. Codd

Ted Codd was a genuine computing pioneer. He was also an inspiration to
all of us who had the fortune to know him and work with him. He began
his career in 1949 as a programming mathematician for IBM on the Selective
Sequence Electronic Calculator. He subsequently participated in the devel-
opment of several important IBM products, including its first commercial
electronic computer (IBM 701) and the STRETCH machine, which led to
IBM’s 7090 mainframe technology. Then, in the 1960s, he turned his atten-
tion to the problem of managing large commercial databases – and over the
next few years he created, single handed, the invention with which his name
will forever be associated: the relational model of data.

The relational model is widely recognized as one of the great technical
innovations of the twentieth century. Codd described it and explored its
implications in a series of research papers – staggering in their origina-
lity – which he published throughout the period 1969–1979. The effect of those
papers was twofold: they changed for good the way the Information Technol-
ogy (IT) world (including the academic component of that world in particular)
perceived the database management problem; and they laid the foundation
for an entire new industry, the relational database industry, now worth many
billions of dollars a year. In fact, not only did Codd’s relational model set the
entire discipline of database management on a solid scientific footing, but it
also formed the basis for a technology that has had, and continues to have,
a major impact on the very fabric of our society. It is no exaggeration to say
that Ted Codd is the intellectual father of the modern database field.

Codd’s supreme achievement with the relational model should not be
allowed to eclipse the fact that he made major original contributions in several
other important areas as well, including multiprogramming, natural language
processing, and more recently Enterprise Delta (a relational approach to busi-
ness rules management), for which he and his wife were granted a US patent.
The depth and breadth of his contributions were recognized by the long list of
honors and elected positions that were conferred on him during his lifetime:
including IBM Fellow, elected ACM Fellow, elected Fellow of the Britain Com-
puter Society, elected member of the National Academy of Engineering, and
elected member of the American Academy of Arts and Sciences. In 1981 he re-
ceived the ACM Turing Award, the most prestigious award in the field of Com-
puter Science. He also received an outstanding recognition award from IEEE:
the very first annual achievement award from the international DB2 Users
Group, and another annual achievement award from DAMA in 2001. Com-
puterworld, in celebration of the 25th anniversary of its publication, selected
him as one of 25 individuals in or related to the field of computing who have
had the most effect on our society. And Forbes magazine, which in December
2002 published a list of the most important innovations and contributions
for each of the 85 years of its existence, was selected for the year 1970 the
relational model of data by E.F. Codd.

C.1 About Dr. Edgar F. Codd 729

Ted Codd was a native of England and a Royal Air Force veteran of World
War II. He moved to the United States in 1946 and became a naturalized US
citizen. He held MA degrees in Mathematics and Chemistry from Oxford
University and MS and Ph.D. degrees in Communication Sciences from the
University of Michigan. He is survived by his wife Sharon and her parents, Sol
and Nora Boroff, of Williams Island, FL; a brother David Codd and his wife,
Barbara and a sister, Katherine Codd, all of England; and a second sister
Lucy Pickard of Hamilton, Ontario. He also leaves four children and their
families; Katherine Codd Clark, her husband Lawrence, and their daughters,
Shannon and Allison, of Palo Alto, CA; Ronald E.F. Codd, his wife Susie,
and their son Ryan and daughter Alexis of Alamo, CA; Frank Codd and his
wife Aydes of Castro Valley, CA; and David Codd, his wife Ileana, and their
daughter Melissa and son Andrew of Boca Raton, FL. He also leaves nieces and
nephews in England, Canada, and Australia, as well as many, many friends
and colleagues worldwide.

Prof. Peter Chen is the originator of the entity-relationship model
(ER model), which serves as the foundation of many system analysis and

Author: Dr. Peter Chen

730 C Pioneers in DBMS

design methodologies, computer-aided software engineering (CASE) tools,
and repository systems including IBM’s Repository Manager/MVS and
DEC’s CDD/Plus. After years of efforts of many people in developing
and implementing the ideas, now “entity-relationship model (ER model),”
“entity-relationship diagram (ER diagram),” and “Peter Chen” have become
commonly used terms in “online” dictionaries, books, articles, web pages,
course syllabi, and commercial product brochures.

Dr. Peter Chen’s original paper on the ER model is one of the most cited
papers in the computer software field. Prof. Peter Chen was honored by the
selection of his original ER model paper as one of the 38 most influential
papers in Computer Science. Based on one particular citation database,
Chen’s paper is the 35th most cited article in Computer Science. It is the
fourth most downloaded paper from the ACM Digital Library in January
2005 (Communications of ACM, March 2005).

The ER model was adopted as the metamodel for the American National
Standards Institute (ANSI) Standard in Information Resource Directory Sys-
tem (IRDS), and the ER approach has been ranked as the top methodology
for database design and one of the top methodologies in systems development
by several surveys of FORTUNE 500 companies.

Dr. Chen’s work is a cornerstone of software engineering, in particular
CASE. In the late 1980s and early 1990s, IBM’s Application Development
Cycle (AD/Cycle) framework and DB2 repository (RM/MVS) were based on
the ER model. Other vendors’ repository systems such as Digital’s CDD+
were also based on the ER model. Prof. Chen has made significant impact
on the CASE industry by his research work and by his lecturing around the
world on structured system development methodologies. Most of the major
CASE tools including Computer Associates’ ERWIN, Oracle’s Designer/2000,
and Sybase’s PowerDesigner (and even a general drawing tool like Microsoft’s
VISIO) are influenced by the ER model.

The ER model also serves as the foundation of some of the recent work
on object-oriented analysis and design methodologies and Semantic Web. The
UML modeling language has its roots in the ER model.

The hypertext concept, which makes the World Wide Web extremely pop-
ular, is very similar to the main concept in the ER model. Dr. Peter Chen
is currently investigating this linkage as an invited expert of several XML
working groups of the World Wide Web Consortium (W3C).

Prof. Peter Chen’s work is cited heavily in a book published in 1993 for
general public called Software Challenges published by Time-Life Books as a
part of the series on “Understanding Computers.”

Dr. Chen is a Fellow of the IEEE, the ACM, and the AAAS. He is a
member of the European Academy of Sciences. He has been listed in Who’s
Who in America and Who’s Who in the World for more than 15 years. He is
the recipient of prestigious awards in several fields of IT: data management,
information management, software engineering, and general information
science/technology:

C.1 About Dr. Edgar F. Codd 731

– The Data Resource Management Technology Award from the Data
Administration Management Association (NYC) in 1990.

– The Achievement Award in Information Management in 2000 from DAMA
International, an international professional organization of data manage-
ment professionals, managers, and Chief Information Officers (CIOs).
Dr. E.F. Codd (the inventor of the relational data model) is the winner
of the same award in 2001.

– Inductee, the Data Management Hall of Fame in 2000.
– The Stevens Award in Software Method Innovation in 2001, and the award

was presented at IEEE International Conference on Software Maintenance
in Florence, Italy on 8 November 2001.

– The IEEE Harry Goode Award at the IEEE-CS Board of Governors Meet-
ing in San Diego, February 2003. The previous winners of the Harry Goode
Award include the inventors of computers, core memory, and semiconduc-
tors.

– The ACM/AAAI Allen Newell Award at the ACM Award Banquet in
San Diego, June 2003. He was introduced at the opening ceremony in the
2003 International Joint Conference on Artificial Intelligence (IJACI-03)
on 11 August 2003 in Acapulco, Mexico. The previous seven winners of
the Allen Newell Award include a Nobel Prize and National Medal of
Science winner, two National Medal of Technology winners (one of them is
also an ACM Turing Award winner), and other very distinguished scien-
tists who either have made significant contributions to several disciplines
in computer science or have bridged computer science with other disci-
plines.

– The Pan Wen-Yuan Outstanding Research Award in 2004. Starting 1997,
the awards have been given to usually three individuals each year (one
in Taiwan, one in Mainland China, and one in “overseas” – outside of
Taiwan and Mainland China) in the high-tech fields (including elec-
tronics, semiconductors, telecommunications, computer science, computer
hardware/software, IT, and IS). In 2003, the overseas winner was Prof.
Andrew C.C. Yao of Princeton University, who is also a winner of the
ACM Turing Award.

Dr. Peter Chen was recognized as a “software pioneer” in the “Software
Pioneers” Conference, Bonn, Germany, 27–28 June 2001, together with a
group of very distinguished scientists including winners of President’s Medals
of Technology, ACM Turing Awards, ACM/AAAI Allen Newell Awards, or
IEEE distinguished awards such as Harry Goode Awards. The streamed video
and slides of the talks in the “Pioneers” Conference may be available at the
conference website. All the speeches in the conference are documented in a
book (with four DVDs) published by Springer, and how to order the book can
be found in the section on Papers Online.

Prof. Peter Chen is a member of the Advisory Committee of the Computer
and Information Science and Engineering (CISE) Directorate of the National

732 C Pioneers in DBMS

Science Foundation (NSF). He was a member of the Airlie Software Coun-
cil, which consists of software visionaries/gurus and very-high-level software
organization executives, organized by US Department of Defense (DoD). He
was an advisor to the President of Taiwan’s largest R&D organization, Indus-
trial Technology Research Institute (ITRI), with over 6,000 employees, which
has been the driving force of Taiwan’s high-tech growth in the past three
decades.

Dr. Peter Chen was one of five main US delegates to participate in the
first IEEE USA–China International Conference, which was held in Beijing,
in 1984 and to meet with PRC leaders and government officers in the Science
and Technology fields and the Education area. Since 1984, he has been an
Honorary Professor of Huazhong University of Science and Technology in
Wuhan, China.

Dr. Peter Chen is also the Editor-in-Chief of Data & Knowledge Engi-
neering, the Associate Editor for the Journal of Intelligent Robotic Systems,
Electronic Government, and other journals. In the past, he was the Associate
Editor for IEEE Computer, Information Sciences, and other journals.

At MIT, UCLA, and Harvard, Prof. Peter Chen taught various courses in
Information Systems and Computer Science. At LSU, he has been doing
research and teaching on Information Modeling, Software Engineering,
Data/Knowledge Engineering, Object-Oriented Programming, Internet/Web,
Java, XML, Data Warehousing, E-commerce (B2B and B2C), Homeland
Security, Identity Theft, System Architecture, Digital Library, and Intelligent
Systems for Networking (Sensors Networks, Wi-Fi, and Cellular).

Prof. Peter Chen is the Principal Investigator of a large NSF-funded mul-
tidisciplined project on profiling of terrorists and malicious cyber transac-
tions for counter terrorisms and crimes. Dr. Peter Chen is also the Executive
Director of the China–US Million Book Project (funded by NSF through CMU
and the Ministry of Education of PRC), which is in the process of creating
a large digital library of over one million books in English and Chinese. He
has been the Principal Investigator of various research projects in system
architecture, information/knowledge management, software engineering, and
performance analysis sponsored by many government agencies and commer-
cial companies.

Dr. Peter Chen holds the position of M.J. Foster Distinguished Chair Pro-
fessor of Computer Science in Louisiana State University since 1983.

Charles W. Bachman attended Michigan State College and graduated in
1948 with a Bachelor’s degree in Mechanical Engineering (Tau Beta Phi). He
graduated in 1950 with a Master’s degree in Mechanical Engineering from
University of Pennsylvania. He attended Wharton School of Business in the
University of Pennsylvania at the same time and completed three quarters of
the requirements for an MBA.

He worked for the Dow Chemical Company in Midland Michigan. He
started in Engineering Department working on engineering economics prob-
lems (operation research). In 1962 he transferred to the Finance Department

C.1 About Dr. Edgar F. Codd 733

Author: Charles W. Bachman

to establish a decision support project to assist in the evaluation of the
return on capital of new and old production plants and product profitability.
In 1955 he transferred to the Plastics Product Division as a process engineer
and later as an assistant plant manager. In 1957 he started the first Computer
Department for business data processing for Dow. As Chairman of the SHARE
Data Processing Committee, that launched the SHARE 9PAC project for the
IBM 709 computer in 1958. The tape-oriented File Maintenance and Report
Generation System created was an early version of what is now called a 4GL
with a “WYSIWYG” user interface. At the same time, Bachman pioneered
the introduction of probability into the CPM/PERT scheduling that was used
for Dow new plant construction.

He worked for the General Electric Company. First assignment (1961–
1964) for GE’s Manufacturing Services (New York City) was to design and
build a generic manufacturing information and control system. The MIACS
application system that came from this project contained many elements,
which underlay most, current day, manufacturing control systems. It did
manufacturing planning, parts explosion, factory dispatching, handled fac-
tory feedback, and replanning as required to handle new orders and correct
for changing factory circumstances.

The MIACS system contained the first version of the Integrated Data
Store (IDS) database management system which was the basis for General

734 C Pioneers in DBMS

Electrics IDS and IDS II, Cullinet’s IDMS, and a host of other DBMS based
on Bachman’s Network Data Model. IDS was the first disk-based database
management system used in production. It seized a number of new oppor-
tunities available at that time and created a unique product. It was built
upon a “virtual memory” system that was being applied to the storage and
retrieval of dynamic and permanent data. It provided a page-turning buffer
management system that provided almost instantaneous access to the data
most recently accessed. It provided for the declaration and processing data
organized in application-specific network structures. It fully integrated its,
record-at-a-time, STORE, RETRIEVE, MODIFY, and DELETE language
statements into the GE GECOM programming language. IDS created a new
paradigm for the application programmers. It changed their I/O vantage point
from data fowing “IN and OUT of the program” to the program moving “IN
and OUT of the database.” Once a record was stored, it remained available in
the database, forever, unless it was explicitly deleted. IDS was characterized
as a “network model” database management system, because it provided for
the direct construction and navigation of the semantic graphs that underlie
most business applications systems.

The MIACS system also contained a transaction-oriented operating system
that accepted the input of new “problem control cards,” with their associated
data cards, and stored them until they could be dispatched. It dispatched each
such problem in priority sequence, following the completion of the prior prob-
lem. It loaded the required program blocks into the buffer area, allocated all
unneeded buffer blocks to the IDS page-turning system, and then dispatched
the computer to the program. The solving of one problem might engender the
creation of one or more new problem statements with their associated data
records. The storage and retrieval of problem statements and their associated
data were handled by the IDS database management system, along with all
of the application requirements.

Bachman developed data structure diagrams (ER diagrams), commonly
known as Bachman diagrams, as a graphical representation of semantic struc-
tures within the data.

In 1964, Bachman transferred to GE’s Computer Department in Phoenix,
Arizona with assignment to convert the GE 225 version of IDS to a commercial
product for GE’s 400 and 600 computer lines. At the same time, Bachman
worked with the ANSI SPARC Study Group on DBMS, in creating their
report of Network Databases. This task group was responsible for creating
the specification for the integration of IDS into the COBOL programming
language. This report formed the basis for GE’s IDS II and many other DBMS
based on the specification.

Later Bachman started the GE-Weyerhaeuser project team that created
first “nonstop” operating system (WEYCOS) for the GE 600 computer. This
team also created the first multiprogramming version of IDS, which allowed
many programs to access to a common database with transparent locking,
deadlock (interference) detection, recovery, and restart.

C.1 About Dr. Edgar F. Codd 735

Bachman developed a database-oriented version (dataBASIC) of the
BASIC programming language. Its integrated database facility was based on
the “universal relation” concept (before the concept was formerly described).
The product was shipped for both the GE 400 and 600 product lines. The
City of Tulsa, OK used dataBASIC to construct their public safety and police
system.

Honeywell Information Systems, Inc. acquired the General Electric’s Com-
puter Division. Bachman’s first assignment was to manage a group to specify
and implement a version of IDS for Honeywell’s advanced product line, to be
built by the newly merged company. In 1973 Bachman transferred to Honey-
well’s Advanced System Project as Chief Staff Engineer.

He has given the Association of Computer Machinery’s Alan M. Turing
Award in 1973 for pioneering work in database management systems. The
Turing Award is the software industry’s equivalent of the Nobel Prize. The
1973 Turing Lecture by Bachman was entitled “The Programmer as Naviga-
tor.” He published the “extended network” data model in 1973.

He served as Vice Chairman with the ANSI SPARC’s Study Group on
DBMS, to explore the possible standardization database management lan-
guages. Group report spelled out the first architectural statement about the
various interfaces and protocols required to support the data independence
concept and established what is now broadly known as the “three schema
approach.” He elected a “Distinguished Fellow” of the British Computer
Society in 1978 for database research. Only 22 people have been so honored
today. He published the “role” data model in 1978.

He began work in 1976 as leader of Honeywell’s Distributed System Archi-
tecture Project. This work served as the prototype of the later ANSI SPARC
Study Group – Distributed System Architecture and the International Stan-
dard Organization’s (ISO) Open System Interconnection Project. He became
Chairman of the ANSI Study Group in 1978 and Chairman of the ISO Open
Systems Interconnection Subcommittee in 1979.

In 1980 he began working on concepts more recently called computer-aided
software engineering. He was awarded 16 US patents while at Honeywell for
database inventions and one British patent for pioneering work on model-
driven development (executable functional specifications).

In Cullinane (Cullinet) Database Systems, he joined Cullinet as Vice Presi-
dent of Product Management, while retaining responsibility as Chairman for
the ISO Open Systems Interconnection Subcommittee. He also continued work
on prototype CASE systems. Cullinet’s IDMS system is a direct copy of
Bachman’s original IDS DBMS. During the 2 years with Cullinet, the role
data model, which had been developed at Honeywell, was enhanced to facili-
tate its integration with the existing Cullinet IDMS software. The result was
the “Partnership” Data Model which was published in 1983 and which was
awarded a software patent in the US.

Bachman Information Systems, Inc. was created on 1 April 1983 to pro-
ductize the CASE concepts, which had been developed while at Honeywell

736 C Pioneers in DBMS

and Cullinet. Key concepts’ use included the establishment of a clear sepa-
ration between the specification of the business level (logical) rules charac-
terized as the business model and the specification of the physical level rules
characterized by existing database languages, communication languages, and
programming languages.

This distinction between logical and physical levels became very important
as the implementation rules from existing COBOL, PL/I, IDMS, IMS, and
Relational DBMS could be “reverse engineered” into an enhanced data model
based on the Partnership Data Model, extended with some object-oriented
concepts.

Bachman Information Systems received it first round of venture capital
funding in 1986, and after several additional rounds went public in 1990.
Bachman Information Systems did business on a worldwide basis and was
highly respected for its products supporting data modeling and database
administrator professionals. In this period, a number of patents were awarded
to Bachman Information Systems dealing with aspects of the CASE products.
Mr. Bachman was a co-inventor on six of these.

Bachman Information Systems, Inc. of Boston, MA and Cadre Technology,
Inc. of Providence, RI merged to form a new company, named “Cayenne Soft-
ware, Inc.” Bachman and Cadre developed and marketed similar products,
i.e., CAD/CAM products to help the software professionals in carrying
out their tasks. The largest difference in the two former companies is
that Bachman marketed its products to the commercial market and Cadre
marketed theirs to the engineering/scientific market.

In June 1996, Charlie was given a Life Achievement Award by the Massa-
chusetts Software Council. In August 1996, he and his wife, Connie, moved to
Tucson, Arizona. In the fall of 1997, Charlie was showcased as one of the
“wizards” in the Association of Computer Machinery and The Computer
Museums exhibition, “The Wizards and Their Wonders.” This was a photo-
graphic exhibit and its contents were published in a book of the same name.
That same fall, Mr. Bachman retired as an employee and the Chairman of the
Board of Cayenne Software (formerly Bachman Information Systems) after
14 years service.

Mr. Bachman lives with his wife of 52 years, Connie Hadley, and continues
his consulting work. He has worked on metamodeling and software engineer-
ing projects with Constellar Corp. and The Webvan Group. He is currently
working on the story of the development of IDS.

C.2 Ronald Fagin

Ronald Fagin’s article: “A normal form for relational databases that is based
on domains and keys” published in ACM Transactions on Database Systems
(volume 6, issue 3, September 1981).

C.2 Ronald Fagin 737

C.2.1 Abstract of Ronald Fagin’s Article

A new normal form for relational databases, called “domain–key normal form
(DK/NF),” is defined. Also, formal definitions of insertion anomaly and dele-
tion anomaly are presented. It is shown that a schema is in DK/NF if and only
if it has no insertion or deletion anomalies. Unlike previously defined normal
forms, DK/NF is not defined in terms of traditional dependencies (functional,
multivalued, or join). Instead, it is defined in terms of the more primitive
concepts of domain and key, along with the general concept of a “constraint.”
We also consider how the definitions of traditional normal forms might be
modified by taking into consideration, for the first time, the combinatorial
consequences of bounded domain sizes. It is shown that after this modifica-
tion, these traditional normal forms are all implied by DK/NF. In particular,
if all domains are infinite, then these traditional normal forms are all implied
by DK/NF.

D

Popular Commercial DBMS

Some of the popular commercial DBMS like System R, DB2, and Informix,
their features and applications are given in this appendix.

D.1 System R

D.1.1 Introduction to System R

SYSTEM R is a Database Management System which implements the
concept of Relational Data Architecture. It is introduced by Codd in 1970
as an approach toward providing solution to various problems in database
management systems. The system provides a high-level data independence
by isolating the end user as much as possible from underlying storage struc-
tures. The system permits definition of a variety of relational views on
common underlying data. Data control features are provided including autho-
rization, integrity assertions, triggered transactions, a logging and recovery
subsystem, and facilities for maintaining data consistency in a shared-update
environment.

D.1.2 Keywords Used

Database

Database is an ordered collection of useful information in such a way that
storing and retrieval of information is more easy, accurate, and much efficient.

Data Model

A data model is a collection of high-level data description constructs that hide
many low-level storage details.

740 D Popular Commercial DBMS

Relational Model

In this model a database is a collection of one or more relations, where each
relation is a table with rows and columns.

The main construct for representing data in the relational model is a
relation. A relation consists of a relation schema and a relation instance.
The relation instance is a table, and the relation schema describes the column
heads for the table.

RSI

It is the abbreviation of Relational Storage Interface. It is the external inter-
face which handles access to single tuples of base relations.

RSS

It is the abbreviation of Relational Storage System. It is a complete storage
subsystem of RSI. It manages devices, space allocation, storage buffers,
transaction consistency and locking, deadlock detection, back out, transaction
recovery, system recovery and it maintains indexes on selected fields of base
relations, and pointer chains across relations.

RDI

It is the abbreviation of Relational Data Interface. It is the external interface
which can be called directly from a programming language, or used to support
various emulators and other interfaces.

RDS

It is the abbreviation of Relational Data System. It supports RDI, provides
authorization, integrity enforcement, and support for alternative views of
data.

D.1.3 Architecture and System Structure

Architecture and system structure includes major interfaces and components
as illustrated in Fig. D.1. They are:

1. RSI (Relational Storage Interface)
2. RDI (Relational Data Interface)
3. SEQUEL
4. VM (Virtual Machines)

D.1 System R 741

RELATIONAL DATA
SYSTEM

(RDS)

RELATIONAL STORAGE
INTERFACE

(RSI)

RELATIONAL DATA
INTERFACE

(RDI)

PROGRAM TO SUPPORT
VARIOUS

INTERFACES
(SEQUEL, QBE)

ARCHITECTURE OF SYSTEM R

RELATIONAL STORAGE
SYSTEM

(RSS)

Fig. D.1. Architecture of system R

Relational storage interface takes care about the devices, space allocation,
storage buffers, transaction consistency and locking, deadlock detection and
backout, transaction recovery and system recovery with the help of RSS.

Relational data interface takes care about the authorization, integrity
enforcement, and supports for alternative data views with the help of RDS.

SEQUEL is the high-level Language which is embedded within the RDI,
and is used as the basis for all data definition and manipulation.

Virtual machines concept is successfully implemented in SYSTEM R. The
main goal of this implementation is to effectively support for Concurrent
Transactions on shared data and support the Multiuser Environment. Each
VM is dedicated to particular user who is logged on to the computer. RDS
and RSS on that particular VM will take care about all accesses and autho-
rizations.

The provision for many database machines, each executing shared, re-
entrant code and sharing control information, means that the database system
need not provide its own multitasking to handle concurrent transactions.
Rather, one can use the host operating system to multithread at the level of
VM. Furthermore, the operating system can take advantage of multiprocessors
allocated to several VM, since each machine is capable of providing all data
management services.

742 D Popular Commercial DBMS

D.1.4 Relational Data Interface

Query Facilities in RDI

Similar to other Database Sublanguages SEQUEL also provides most of the
data manipulation facilities as described earlier.

EXAMPLE 1:
Consider the following block of query.
SELECT NAME
FROM EMP

WHERE ID= ‘1234’;

Explanation

This is the simple query which will give the Names of the employees who have
the ID as 1234. This query has no problem in execution. It is efficient too.
But consider the following Nested Query:

Example 2:
SELECT NAME
FROM EMP
WHERE SAL >
SELECT SAL
FROM EMP

WHERE EMPNO = B1.MGR

Explanation

This query is formed by combining two simple queries. Experience has shown
that this block label notation has three disadvantages:

– It is not possible to select quantities from the inner block, such as: “For
all employee who earn more than their manager, list the employee’s name
and his manager’s name.”

– Since the query is asymmetrically expressed, the optimizer is biased
toward making an outer loop for the first block and an inner loop for the
second block. Since this may not be the optimum method for interpreting
the query, the optimization process is made difficult.

– Human factors studies have shown that the block label notation is hard
for nonprogrammers to learn.

Because of these disadvantages, the block label notation has been replaced
by the following more symmetrical notation, which allows several tables to be
listed in the FROM clause and optionally referred to by variable names.

D.1 System R 743

EXAMPLE 3:
SELECT DNO
FROM EMP
WHERE JOB = ‘CLERK’
GROUP BY DNO
HAVING COUNT (*) > 10

Explanation

In the above block of statements three new terms are used they are GROUP
BY, HAVING, and COUNT().

GROUP BY is used to grouping the selected tuples according to particular
field value.
HAVING is used to select the tuples which satisfy the give condition form
the grouped tuples.
COUNT will provide number of tuples in each group.

D.1.5 Data Manipulation Facilities in SEQUEL

The RDI facilities for insertion, deletion, and update of tuples are also
provided via the SEQUEL data sublanguage. SEQUEL can be used to mani-
pulate either one tuple at a time or a set of tuples with a single command.
The current tuple of a particular cursor may be selected for some operation by
means of the special predicate CURRENT TUPLE OF CURSOR. The values
of a tuple may be set equal to constants, or to new values computed from their
old values, or to the contents of a program variable suitably identified by a
BIND command. These facilities will be illustrated by a series of examples.
Since no result is returned to the calling program in these examples, no cursor
name is included in the calls to SEQUEL.

EXAMPLE 4:
CALL SEQUEL (‘UPDATE EMP SET SAL = SAL * 1.1

WHERE DNO = 50’);

Explanation

This command will update the salary value of the employees who are having
ID as 50 to 1.1 times of his salary. This type of update is called as ORIENTED
UPDATE.

Example 5:
CALL BIND (‘PVSAL’, ADDR (PVSAL));
CALL SEQUEL (‘UPDATE EMP SET SAL = PVSAL WHERE

CURRENT TUPLE OF CURSOR C3’);

744 D Popular Commercial DBMS

Explanation

This will update the tuple which is pointed by the cursor. This will update
only one tuple. This type of update is called as INDIVIDUAL UPDATE.

Example 6:
CALL BIND (‘PVEMPNO’, ADDR (PVEMPNO));
CALL BIND (‘PVNAME’, ADDR (PVNAME));
CALL BIND (‘PVMGR’, ADDR (PVMGR));
CALL SEQUEL (‘INSERT INTO EMP:

< PVEMPNO, PVNAME, 50, “TRAINEE”, 8500,
PVMGR>’);

Explanation

This example inserts a new employee tuple into EMP. The new tuple is
constructed partly from constants and partly from the contents of program
variables.

This type of insertion is called INDIVIDUAL INSERTION.

Example 7:
CALL SEQUEL (‘DELETE EMP

WHERE DNO =
SELECT DNO
FROM DEPT
WHERE LOC = “EVANSTON”);

Explanation

The SEQUEL assignment statement allows the result of a query to be copied
into a new permanent or temporary relation in the database. This has the
same effect as a query followed by the RDI operator KEEP. This type of
deletion is called as set ORIENTED DELETION.

Example 8:
CALL SEQUEL (‘UNDERPAID (NAME, SAL)

SELECT NAME, SAL
FROM EMP
WHERE JOB = “PROGRAMMER”
AND SAL < 10000’);

Explanation

The new table UNDERPAID represents a snapshot taken from EMP at
the moment the assignment was executed. UNDERPAID then becomes an
independent relation and does not reflect any later changes to EMP.

D.1 System R 745

D.1.6 Data Definition Facilities

System R takes a unified approach to data manipulation, definition, and
control. Like queries and set oriented updates, the data definition facilities
are invoked by means of the RDI operator SEQUEL.

The SEQUEL statement CREATE TABLE is used to create a new
base relation. For each field of the new relation, the field name and datatype
are specified. If desired, it may be specified at creation time that null values are
not permitted in one or more fields of the new relation. A query executed on
the relation will deliver its results in system-determined order (which depends
upon the access path which the optimizer has chosen), unless the query has
an ORDER BY clause. When a base relation is no longer useful, it may be
deleted by issuing a DROP TABLE statement.

System R currently relies on the user to specify not only the base tables
to be stored but also the RSS access paths to be maintained on them. Access
oaths include images and binary links. They may be specified by means of
the SEQUEL verbs CREATE and DROP. Briefly, images are value ordering
maintained on base relation by the RSS, using multilevel index structures. The
index structures associate a value with one or more Tuple Identifiers (TID). A
TID is an internal address which allows rapid access to a tuple. Images provide
associative and sequential access on one or more fields which are called the
sort fields of the image. An image may be declared to be UNIQUE, which
forces each combination of sort field values to be unique in the relation. At
most one image per relation may have the clustering property, which causes
tuples whose sort field values are close to be physically stored near each other.

Binary links are access paths in the RSS which link tuples of one relation to
related tuples of another relation through pointer chains. In System R, binary
links are always employed in a value dependent manner: the user specifies
that each tuple of relation 1 is to be linked to the tuples in relation 2 which
have matching values in some field(s), and that the tuples on the link are to
be ordered in some value-dependent way.

Example 9:
A user may specify a link from DEPT to EMP by matching DNO, and

that EMP tuples on the link are to be ordered by JOB and SAL. This link
is maintained automatically by the system. By declaring a link from DEPT
to EMP on matching DNO, the user implicitly declares this to be a one-
to-many relationship. Any attempts to define links or to insert or update
tuples in violation of this rule will be refused. Like an image, a link may
be declared to have the clustering property, which causes each tuple to be
physically stored near its neighbor in the link.

746 D Popular Commercial DBMS

It should be clearly noted that none of the access paths (images and binary
links) contain any logical information other than that derivable from the data
values themselves.

The query power of SEQUEL may be used to define a view as a relation
derived from one or more other relations. This view may then be used in the
same ways as a base table: queries may be written against it, other views
may be defined on it, and in certain circumstances described below, it may
be updated. Any SEQUEL query may be used as a view definition by means
of a DEFINE VIEW statement.

Views are dynamically windows on the database, in that updates made
to base tables become immediately visible via the views defined on these
base tables. Where updates to views are supported, they are implemented
in terms of updates to the underlying base tables. The SEQUEL statement
which defines a view is recorded in a system-maintained catalog where it may
be examined by authorized users. When an authorized user issues a DROP
VIEW statement, the indicated view and all the other views defined in terms
of it disappear from the system for this user and all other users.

If a modification is issued against a view, it can be supported only if the
tuples of the view are associated one-to-one with tuples of an underlying base
relation. In general, this means that the view must involve a single base rela-
tion and contain a key of that relation; otherwise, the modification statement
is rejected. If the view satisfies the one-to-one rule, the WHERE clause of the
SEQUEL modification statement is merged into the view definition; the result
is optimized and the indicated update is made on the relevant tuples of the
base relation.

Two final SEQUEL commands complete the discussion of the data
definition facility. The first is KEEP TABLE, which causes a temporary table
created, for example, by assignment0 to become permanent. (Temporary
tables are destroyed when the user who created them logs off.). The second
command is EXPAND TABLE, which adds new fields to an existing tuples,
and are interpreted as having null values in the expanded fields until they are
explicitly updated.

D.1.7 Data Control Facilities

Data control facilities at the RDI have four aspects:

1. Transaction
2. Authorization
3. Integrity assertions
4. Triggers

Transaction

A Transaction is a series of RDI calls which the user wishes to be processed
as an atomic act. The meaning of “atomic” depends on the level of consis-

D.1 System R 747

tency specified by the user. The highest level of consistency, Level 3, requires
that a user’s transactions appear to be serialized with the transactions of
other concurrent users. The user controls transactions by the RDI opera-
tors BEGIN TRANS and END TRANS. The user may specify save points
within a transaction by the RDI operator SAVE. As long as a transac-
tion is active, the user may back up to the beginning of the transaction
or to any internal save point by the operator RESTORE. This operator
restores all changes made to the data transaction. No cursors may remain
active (open) beyond the end of a transaction. The RDI transactions are imple-
mented directly by RSI transactions, so the TDI commands BEGIN TRANS,
END TRANS, SAVE, and RESTORE are passed through to the RSI with
some RDS bookkeeping to permit the restoration of its internal state.

System R does not require a particular individual to be the database ad-
ministrator, but allows each user to create his own data objects by executing
the SEQUEL statements CREATE TABLE and DEFINE VIEW. The creator
of a new object receives full authorization to perform all operations on the
object (subject, of course, to his authorization for the underlying tables, if it is
a view). The user may then grant selected capabilities may be independently
granted for each table or view: READ, INSERT, DELETE, UPDATE, DROP,
EXPAND, IMAGE specification, LINK specification, and CONTROL.

For each capability which a user possesses for a given table, he may op-
tionally have GRANT authority (the authority to further grant or revoke the
capability to/from other users).

Authorization

System R relies primarily on its view mechanism for read authorization. If
it is desired to allow a user to read only tuples of employees in department
50, and not to see their salaries, then this portion of the EMP table can be
defined as a view and granted to the user. No special statistical access is
distinguished, since the same effect can be achieved by defining a view. To
make the view mechanism more useful for authorization purposes, the reserved
word USER is always interpreted as the user-id of the current user. Thus the
following SEQUEL statement defines a view of all those employees in the same
department as the current user:

Example 10: To view all Employees in the same Department.
DEFINE VIEW VEMP AS:

SELECT *
FROM EMP
WHERE DNO =

SELECT DNO
FROM EMP
WHERE NAME=USER

748 D Popular Commercial DBMS

Integrity Assertions

The third important aspect of data control is that of integrity assertions. Any
SEQUEL predicate may be stated as an assertion about the integrity of data in
a base table or view. At the time the assertion is made (by an ASSERT state-
ment in SEQUEL), its truth is checked; if true, the assertion is automatically
enforced until it is explicitly dropped by a DROP ASSERTION statement.
Any data modification, by any user, which violates an active integrity asser-
tion is rejected. Assertion may apply to individual tuples (e.g., “No employee’s
salary exceeds $5000”) or to sets of tuples (e.g., “The average salary of each
department is less than $2000”). Assertions may be describe permissible
states of the database (as in the examples above) or permissible transitions in
the database. For this latter purpose the keywords OLD and NEW are used
in SEQUEL to denote data values before and after modification.

Example 11:
Consider the situation that, each employee’s salary must be nondecrea-

sing.
ASSERT ON UPDATE TO EMP::NEW SAL ≥ OLD SAL

Explanation

Unless otherwise specified, integrity assertions are checked and enforced at
the end of each transaction. Transaction assertions compare the state before
the transaction began with the state after the transaction concluded. If some
assertion is not satisfied, the transaction is backed out to its beginning point.
This permits complex updates to be done in several steps (several calls to
SEQUEL, bracketed by BEGIN TRANS and END TRANS), which may cause
the database to pass through intermediate states which temporarily violate
one or more assertions. However, if an assertion is specified as IMMEDI-
ATE, it cannot be suspended within a transaction, but is enforced after each
data modification. In addition, “Integrity points” within a transaction may be
established by the SEQUEL command ENFORCE INTEGRITY. This com-
mand allows user to guard against having a ling transaction is backed out its
most recent integrity point.

Triggers

The fourth aspect of data control, triggers, is a generalization of the concept
of assertions. A trigger causes a prespecified sequence of SEQUEL statements
to be executed whenever some triggering event occurs. The triggering event
may be retrieval, insertion, deletion, or update of a particular base table or
view. For example, suppose that in our example database, the NEMPS field of
the DEPT table denotes the number of employees in each department. This

D.2 Relational Data System 749

value might be kept up to date automatically by the following three triggers
(as in assertions, the keywords OLD and NEW denote data values before and
after the change which invoked the trigger):

Example 12:
DEFINE TRIGGER EMPINS

ON INSERTION OF EMP:
(UPDATE DEPT
SET NEMPS = NEMPS +1
WHERE DNO = NEW EMP.DNO)

DELETE TRIGGER EMPDEL
ON DELETION OF EMP:

(UPDATE DEPT
SET NEMPS = NEMPS -1
WHERE DNO = OLD EMP.DNO)

DEFINE TRIGGER EMPUPD
ON UPDATE OF EMP:

(UPDATE DEPT
SET NEMPS = NEMPS -1
WHERE DNO = OLD EMP.DNO;
UPDATE DEPT
SET NEMPS = NEMPS +1
WHERE DNO = NEW EMP.DNO)

Explanation

The RDS automatically maintains a set of catalog relations which describe
the other relations, views, images, links, assertions, and triggers known to the
system. Each user may access a set of views of the system catalogs which
contain information pertinent to him. Access to catalog relations is made
in exactly the same way as other relations are accessed (i.e., by SEQUEL
queries). Of course, no user is authorized to modify the contents of a catalog
directly, but any authorized user may modify a catalog indirectly by actions
such as creating a table. In addition, a user may enter comments into his
various catalog entries by means of the COMMENT statement.

D.2 Relational Data System

RDI is the principal external interface of the System R. It provides high level,
data independence facilities for data retrieval, manipulation, definition, and
control. The data definition facilities of the RDI allow a variety of alternative
relational views to be defined on common underlying data. The Relational
Data System (RDS) is the subsystem which implements the RDI. The RDS

750 D Popular Commercial DBMS

contains an optimizer which plans the execution of each RDI command,
choosing a low cost access path to data from among those provided by the
RSS. The RDI consists of a set of operators which may be called from PL/I
or other host programming languages. All the facilities of the SEQUEL data
sublanguage are available at the RDI by means of the RDI operator called
SEQUEL. The SEQUEL language can be supported as a stand-alone inter-
face by a simple program, written on top of the RDI, which handles terminal
communications. In addition, programs may be written on top of the RDI to
support other relational interfaces, such as Query By Example (QBE) or to
simulate nonrelational interfaces.

The facilities of the RDI are basically those of the SEQUEL data sublan-
guage. Several changes have been made to SEQUEL since the earlier publica-
tion of the language; they are described below.

Example 13:
Consider the following database of employees and their departments:

EMP (EMPNO, NAME, DNO, JOB, SAL, MGR)
DEPT (DNO, DNAME, LOC, NEMPS)

Explanation

The RDI interface SEQUEL to a host programming language by means of a
concept called a cursor. A cursor is a name which is used at the RDI to identify
a set of tuples called its active set (e.g., the result of a query) and furthermore
to maintain a position on the tuple of the set. The cursor is associated with
a set of tuples by means of the RDI operator FETCH.

Consider the following commands:

Example 14:
CALL BIND (‘X’, ADDR(X));
CALL BIND (‘Y’, ADDR(Y));
CALL SEQUEL (C1, ‘SELECT NAME: X, SAL: Y FROM EMP

WHERE JOP =
“PROGRAMMER” ’);

Explanation

The SEQUEL call has the effect of associating the cursor C1 with the set
of tuples which satisfy the query and positioning it just before the first such
tuple. The optimizer is invoked to choose an access path whereby the tuples
may be materialized. However, no tuples are actually materialized in response
to the SEQUEL call. The materialization of tuples is done as they are called
for, one at a time, by the FETCH operator. Each call to FETCH delivers the
next tuple of the active set into program variables X and Y.

CALL FETCH (C1);

D.2 Relational Data System 751

A program may wish to write a SEQUEL predicate based on the contents
of a program variable.

Example 15:
To find the programmers whose department number matches the con-

tents of program variable Z. This facility is also provided by the RDI BIND
operator, as follows:

CALL BIND (‘X’, ADDR (X));
CALL BIND (‘Y’, ADDR (Y));
CALL BIND (‘Z’, ADDR (Z));
CALL SEQUEL (C1, ‘SELECT NAME: X FROM EMP WHERE JOB

= “PROGRAMMER” AND DNO = Z’);
CALL FETCH (C1);

Explanation

Some programs may not know in advance the degree and datatypes of the
tuples to be returned by a query. An example of such a program is one which
supports an interactive user by allowing him to type in queries and display the
results. This type of program need not specify in its SEQUEL call the variable
into which the result is to be delivered. The program may issue a SEQUEL
query, followed by the DESCRIBE operator which returns the degree and
datatypes. The program then specifies the destination of the tuples in its
FETCH commands. The following example illustrates these techniques:

Example 16:
CALL SEQUEL (C1, ‘SELECT * FORM EMP WHERE DNO = 50’);

Explanation

This statement invokes the optimizer to choose an access path for the given
query and associates cursor C1 with its active set.

Example 17:
CALL DESCRIBE (C1, DEGREE, P);

Explanation

P is a pointer to an array in which the description of the active set of C1 is to
be returned. The RDI returns the degree of the active set in DEGREE, and the
datatypes and lengths of the tuple components in the elements of the array.
If the array (which contains an entry describing its own length) is too short
to hold the description of a topic, the calling program must allocate a larger
array and make another call to DESCRIBE. Having obtained a description

752 D Popular Commercial DBMS

of the tuples to be returned, the calling program may proceed to allocate a
structure to hold the tuples and may specify the location of this structure in
its FETCH command:

Example 18:
CALL FETCH (C1, Q);

Explanation

Q is a pointer to an array of pointers which specify where the individual
components of the tuple are to be delivered. If this “destination” parameter is
present in a FETCH command, it overrides any destination which may have
been specified in the SEQUEL command which defined the active set of C1.

A special RDI operator Open is provided as a shorthand method to asso-
ciate a cursor with an entire relation. For example, the command:

Example 19:
CALL OPEN (C1, ‘EMP’);
is exactly equivalent to
CALL SEQUEL (C1, ‘SELECT * FROM EMP’);

Explanation

The use of OPEN is slightly preferable to the use of SEQUEL to open a cursor
on a relation, since OPEN avoids the use of the SEQUEL parser.

D.3 DB2

D.3.1 Introduction to DB2

DB2 is a strategic product from IBM. It is available on all of IBM’s key
platforms. IBM’s Information Warehouse architecture employs DB2 as a key
component. DB2 is a relational database management system. The relational
model is founded on the mathematics of set theory, thereby providing a solid
theoretical base for the management of data. Relational databases are typi-
cally easier to use and maintain than databases based on nonrelational tech-
nology. An IBM relational database management system that is available as
a licensed program on several operating systems. Programmers and users of
DB2 can create, access, modify, and delete data in relational tables using a
variety of interfaces.

DB2’s foundation in the relational model also provides it with improved
data availability, data integrity, and data security because the relational model
rigorously defines as part of the database. Programmers and users of DB2 can
create, access, modify, and delete data in relational tables using a variety
of interfaces. Because DB2 is a relational database management system, it is

D.3 DB2 753

more easily lends itself to a distributed implementation. Tables can be located
at desperate locations across a network and application can seamlessly access
information in those tables from within a single program using DB2. DB2
uses SQL, which is the standard language for maintaining and querying rela-
tional databases. DB2 was one of the first databases to uses SQL exclusively
to access data. SQL provides the benefits of quick data retrieval, modification,
definition, and control. It is also transportable from environment to environ-
ment.

DB2 Universal Database Enterprise – Extended Edition (DB2 UDB EEE)
was designed to support the very large databases that business intelligence
applications often require. IBM DB2 can work with Windows, Linux, AIX,
and Solaris.

D.3.2 Definition of DB2 Data Structures

DB2 data structures are referred to as objects. We can use SQL to define DB2
data structure. Each DB2 object is used to support the structure of the data
being stored. A description of each type of DB2 object follows:

These objects are created with the DCL verbs of SQL and must be created
in a specific order. The hierarchy of DB2 objects is listed in Fig. D.2.

D.3.3 DB2 Stored Procedure

Stored procedures are specialized programs that are stored in relational data-
base management system instead of an external code library. Stored procedure
must be directly and explicitly invoked before it can execute.

DB2 equips user to perform a variety of tasks on existing stored procedures,
such as:

STOGROUP

DATABASE

TABLSPACE

COLUMN

TABLE INDEX

VIEW

ALIAS

SYNONYM

Fig. D.2. The DB2 object hierarchy

754 D Popular Commercial DBMS

ALIAS A locally defined name for a table or view in the same local DB2
subsystems or in a remote DB2 subsystem.

COLUMN A single, nondecomposable data element in a DB2 table.
DATABASE A logical grouping of DB2 objects related by common

characteristics such as logical functionality, relation to an
application system or subsystem, or type of data.

INDEX A DB2 object that consist of one or more VSAM data sets.
STOGROUP A series of DASD volumes assigned a unique name and used to

allocate VSAM data sets for DB2 objects.
TABLE A DB2b object that consists of columns and rows that define the

physical characteristics of the data to be stored.
TABLE SPACE A DB2 object that defines the physical structure of the data sets

used to house the DB2 table data.
VIEW A virtual table consisting of a SQL SELECT statement that

accesses data from one or more tables or views.

– Viewing
– Modifying
– Running and testing
– Copying and pasting stored procedures across connections
– Building, in one step, stored procedures on target databases
– Customizing settings to enable remote debugging of installed procedures.

Stored procedures run in a separate DB2 address space known as the stored
procedure address space. To execute a stored procedure, a program must issue
the SQL call statement. When the call is issued, the name of the stored proce-
dure and its list of parameters are send to DB2. DB2 searches SYSIBM.SYS
PROCEDURES for the appropriate row that 1 defines the stored procedure
to be executed.

DB2 Stored Procedure Builder provides a single development environ-
ment that supports multiple languages – including Java and SQL procedure
language – and the entire DB2 Universal DatabaseTM. DB2 Stored Procedure
Builder can launch from the DB2 Program Group or from add-in menus on
IBM VisualAge R© for Java, Microsoft R© Visual C++, and Microsoft Visual
Basic. After start-up, the wizards in DB2 Stored Procedure Builder take user
through each task, one step at a time. The first step is to define user project.
Simply follow the wizards, which will ask user to provide a project name and
decide how user want to connect to the database. User also will be asked for
a logon name and password. Once user project is defined, users are ready to
create a new stored procedure or work on an existing one. Launching a new
procedure, The Stored Procedure Builder Project View window, gives user
a picture of all users existing stored procedures and their connections. This
is the window where user can select existing procedures for modification or,
using the menu or toolbar command, create a new stored procedure.

D.3 DB2 755

D.3.4 DB2 Processing Environment

When accessing DB2 data an application program is not limited to a specific
technological platform. The different environments are Time Sharing Option
(TSO), Customer Information Control System (CICS), IMS/VS, Call Attach
Facility (CAF), and RRSAF as shown in Fig. D.3. Each of this environment
acts as a door that provides access to DB2 data. Each DB2 program must be
connected to DB2 by an attachment facility, which is the mechanism by which
an environment is connected to a DB2 subsystem. Additionally, a thread must
be established for each embedded SQL program that is executing. A thread is
control structure used by DB2 to communicate with an application program.
The thread is used to send requests to DB2, to send data from DB2 to the
program, and to communicate the states of each SQL statement after it is
executed.

Time Sharing Option

TSO is one of the five basic environments from which DB2 data can be
accessed. TSO enables users to interact with Multiple Virtual Storage (MVS)
using an online interface . The Interactive System Productivity facility (ISPF),
provides the mechanism for communicating by panels, which is the common
method for interaction between TSO application and users. The TSO Attach-
ment Facility provides access to DB2 resources in two ways.

– Online in the TSO foreground, driven by application programs, CLISTs,
or REXX EXECs coded to communicate with DB2 and TSO, possibly
using ISPF panels.

Thread Thread

Thread

Thread

QMF or
DB21

TSO Online
Program

TSO Batch
Program

IMS/DC
Program

IMS Batch
Program

DB2

DB2
Utility Call attach

Program

CICS
Program

Fig. D.3. DB2 processing environment

756 D Popular Commercial DBMS

– In batch mode using the TSO Terminal Monitor Program, IKJEFT01 (or
IKJEFT1B), to invoke the DSN command and run a DB2 application
program.

Customer Information Control System

CICS is a teleprocessing monitor that enables programmers to develop online,
translation-based programs. By means of Basic Mapping Support (BMS) and
the data communications facilities of CICS, programs can display formatted
data on screens and receive formatted data from users. When DB2 data are
accessed using CICS, multiple threads can be active simultaneously, giving
multiple users concurrent access to a DB2 subsystems of a single CICS region.

Information Management System

Information Management System (IMS) is IBM’s prerelational database man-
agement system offering. It is based on the structuring of related data items
in inverted tree or hierarchies. IMS is combination of two components:

– IMS/DB the database management systems
– IMS/TM, the transaction management environment, also known as

IMS/DC.

IMS programs are categorized, based on the environment in which they run
and the types of databases they can access. The four types of IMS programs
are batch programs, batch message processors, message processing programs,
and fast path programs.

Query Management Facility

IBM’s Query Management Facility (QMF) is an interactive query tool used
to produce formatted query output. QMF forms enable user to perform the
following:

– Code a different column heading
– Specify control breaks
– Code control-break heading and footing text
– Specify edit codes to transform column data
– Compute averages, percentages, standard deviations, and totals for spe-

cific columns.
– Display summary results across a row, suppressing the supporting detail

rows
– Omit columns in the query from the report.

D.3 DB2 757

Call Attach Facility

CAF is used to manage connections between DB2 and batch and online TSO
application programs. CAF programs can be executed as one of the following:

– An MVS batch job
– A started task
– A TSO batch job
– An online TSO application

CAF is used to control a program’s connection to DB2. The DB2 program
communicates to DB2 through the CAF language interface, DSNALI. Five
CAF calls are used to control the connections.

CONNECT Establishes a connection between the programs MVS
address space and DB2

DISCONNECT Eliminates the connection between the programs MVS
address space and DB2

OPEN Establishes a thread for the program to communicate with
DB2

CLOSE Terminates the thread
TRANSLATE Provides the program with DB2 error message information,

placing it in the SQLCA

D.3.5 DB2 Commands

DB2 commands are operator issued request that administer DB2 resources
and environments. There are six categories of DB2 commands, which are
delineated by the environment from which they are issued. These are:

– DB2 environment command
– DSN commands
– IMS commands
– CICS commands
– TSO commands
– IRLM commands

DB2 Environment Command

There are three types of environment commands:

– Information gathering command. It is used to monitor DB2 objects and
resources.

758 D Popular Commercial DBMS

– Administrative commands. These are provided to assist the user with the
active administration, resources specification, and environment modifica-
tion of DB2 sub systems.

– Environment control commands. These commands affect the status of the
DB2 subsystem and the distributed data facility.

All DB2 environment commands have a common structure as follows:
cp command operand

DSN Commands

DSN commands are actually the subcommands of the DSN command proces-
sor. DSN is a control program that enables users to issue DB2 environment
commands, plan management commands, and commands to develop and run
application development programs.

IMS Commands

IMS commands affect the operation of DB2 and IMS/TM. IMS commands
must be issued from a valid terminal connected to IMS/TM and the issuer
must have the appropriate IMS authority.

CISS Command

The CICS commands affect the operation of DB2 and CICS. CICS commands
must be issued from a valid terminal connected to CICS and the issuer must
have the appropriate CICS authority.

TSO Command

The DB2 TSO commands are CLISTS that can be used to help compile and
run DB2 programs or build utility JCL. There are two TSO commands:

DSNH Can be used to precompiled, translate, compile, link, bind, and run
DB2 application programs.

DSNU Can be used to generate JCL for any online DB2 utility.

IRLM Commands

The IRLM commands affect the operation of the IRLM defined to a DB2
subsystem. IRLM commands must originate from an MVS console, and the
issuer must have the appropriate security.

D.3 DB2 759

D.3.6 Data Sharing in DB2

DB2 data sharing allows applications running on multiple DB2 subsystems
to concurrently read and write to the same data set. Data sharing enables
multiple DB2 subsystems to behave as one. DB2 data sharing provides many
benefits. The primary benefit of data sharing is to provide increased avail-
ability to data. An additional benefit is expanded capacity. Each data-sharing
group may consist of multiple members, application programs are provided
with enhanced data availability. Data sharing increases the flexibility of con-
figuring DB2.

DB2 and the INTERNET

There are two main reasons for DB2 professionals to use the Internet:

– To develop applications that allow for Web-based access to DB2 data
– To search for DB2 product, technical, and training information

IBM provides two options for accessing DB2 data over the web: DB2WWW
and Net.Data.

DB2 WWW

DB2 WWW is an IBM product for connecting DB2 databases to the Web.
Using a Web browser and DB2 WWW, companies can use the Internet as a
front end to DB2 databases. Using DB2 WWW, data stored in DB2 tables is
presented to users in style of a Web page. DB2WWW provides two-tier and
three-tier client/server environment.

Net. Data

Net. Data, another IBM product, is an upwardly compatible follow-on version
of DB2 WWW. DB2 WWW applications are compatible with Net. Data.

Data Warehousing with DB2

A data warehouse is best defined by the type and the manner of data stored in
it and the people who use the data. Data warehousing enable the end users to
have the access to corporate operational data to follow and respond to busi-
ness trends. Data warehousing enables an organization to make information
available for analytical processing and decision making.

A data warehouse is a collection of data that are

– Separate from operational systems
– Accessible and available for queries
– Subject oriented by business

760 D Popular Commercial DBMS

– Integrated and consistently named and defined
– Associated with defined period of time
– Static, or nonvolatile, such that updates are not made

The data warehouse defines the manner in which data

– Are systematically constructed and cleansed
– Are transformed in to a consistent view
– Are distributed wherever it is needed
– Are made easily accessible
– Are manipulated for optimal access by disparate processes

DB2’s hardware-based data compression techniques are optimal for the data-
warehousing environment.

D.3.7 Conclusion

Today’s competitive business climate dictates that companies derive more
information out of their databases. Analysts looking for business trends in
their company’s database pose increasingly complex queries, often through
query generator front-end tools. Businesses must extract as much useful
information as possible from the large volumes of data that they keep,
making parallel database technology a key component of such business intelli-
gence applications. Enterprises and independent software vendors continue to
require support for more application productivity and capability. And many
growing enterprises have data stored in many systems, often both tile systems
and database systems from a variety of vendors. All of these areas contribute
to high performance at low cost. Being able to access and manage these data
with high performance, fast response time and low total cost of ownership is
a compelling advantage in business today.

D.4 Informix

D.4.1 Introduction to Informix

In 1980, Roger Sippl and Laura King founded Relational Database Systems
(RDS) in Sunnyvale, California. In February 1988, RDS merged with Innov-
ative Software of Overland Park, Kansas, which had been founded by Mike
Brown and Mark Callegari in 1979. The 1988 merger, which was the first
major acquisition by Informix, was an effort to broaden platform coverage
for the Informix DBMS and add needed end-user tools. The tools (initially
Macintosh-based) never did exactly meet the executives’ expectations, but the
acquisition could be interpreted as a welcome gesture of support for the end
user.

D.4 Informix 761

Roger Sippl and Laura King founded Relational Database Systems at a
time when both relational database management and the UNIX operating
system were just beginning to be encountered on mini- and micro-computers:
Rather than tailoring the DBMS for mainframe hardware and proprietary
operating systems, RDS built a product that used an open operating system,
ran on small, general-purpose hardware, used a standard programming inter-
face (SQL), and supplied a number of end-user tools and utilities. RDS was
among the first companies to bring enterprise-level database management out
of the computer room and onto the desktop.

Informix based its relational database management products on open
systems and standards such as industry-standard Structured Query Lan-
guage (SQL) and the UNIX operating system. Two notable innovations
have propelled Informix to an industry-leading position in database man-
agement technology: the parallel processing capabilities of Informix Dynamic
Scalable Architecture (DSA) and the ability to extend relational database
management to new, complex datatypes using the object-relational powers
of INFORMIX-Universal Server. Informix introduced its first RDBMSs –
INFORMIX-Standard Engine and INFORMIX-OnLine.

There are four major types of Informix RDBMS product users. These users
include the database administrator or DBA, the system administrator or SA,
the application developer, and the application user. The DBA is the person
generally responsible for keeping the Informix RDBMS running. The SA is
responsible for the operating system and the machine on which the RDBMS
is running. An application developer builds the applications that access the
Informix RDBMS. Finally, the application user is the person who runs the
application to access the data in the Informix RDBMS and performs specific
tasks on that data.

All user applications that access the Informix RDBMS are considered
clients, and the actual Informix RDBMS is considered the server. The
client/server process is natural in the RDBMS world because the RDBMS is
its own software process, running throughout the day and waiting for tasks
to perform. A client can have the Informix RDBMS server to perform one of
four basic tasks. These tasks are select, insert, update, or delete. A select is
considered a query because it looks at a specific set of data. An insert actually
adds new information, usually an entire row, into the database. An update
task changes existing data. A delete actually removes an entire row of data;
consider it the opposite of an insert.

D.4.2 Informix SQL and ANSI SQL

The SQL version that Informix products support is compatible with standard
SQL (it is also compatible with the IBM version of the language). However, it
does contain extensions to the standard; that is, extra options or features for
certain statements, and looser rules for others. Most of the differences occur

762 D Popular Commercial DBMS

in the statements that are not in everyday use. For example, few differences
occur in the SELECT statement, which accounts for 90% of the SQL use for a
typical person. However, the extensions do exist and create a conflict. Thou-
sands of Informix customers have embedded Informix-style SQL in programs
and stored procedures. They rely on Informix to keep its language the same.
Other customers require the ability to use databases in a way that conforms
exactly to the ANSI standard. They rely on Informix to change its language
to conform.

– Informix resolves the conflict with the following compromise: The Informix
version of SQL, with its extensions to the standard, is available by default.

– User can ask any Informix SQL language processor to check the use of
SQL and post a warning flag whenever user use an Informix extension.

D.4.3 Software Dependencies

IBM Informix � Dynamic Server TM 9.30 (IDS) delivers a first-in-class data-
base that combines the robustness, high performance, and scalability of the
IBM Informix flagship relational database management system (RDBMS)
with advanced object-relational technology to store, retrieve, and manage
rich data intelligently and efficiently. IBM IDS is built on the IBM Informix
Dynamic Scalable Architecture TM (DSA) – the goal of which is to provide
the most effective parallel database architecture available – to help manage in-
creasingly large and complex databases while substantially improving overall
system performance and scalability. IBM IDS delivers proven technology that
efficiently integrates new and complex data directly into the server. It handles
time-series, geospatial, geodetic, XML, video, image, and other user-defined
data – side by side with traditional legacy data – to meet the most rigorous
data and business demands. IBM IDS allows user to lower the total-cost-of-
ownership by leveraging existing standards for development tools, systems
infrastructure, and customer skill sets as well as its development-neutral envi-
ronment and comprehensive array of application development tools for rapid
deployment of applications under Linux, Windows, and UNIX (Fig. D.4).

The dynamic scalable architecture of IBM IDS provides the ability to fully
exploit the processing power available in SMP environments by performing
database activities in parallel (such as I/O, complex queries, index builds, log
recovery, inserts, and backups and restores). It was designed from the ground
up to provide built-in multithreading and parallel processing capabilities, thus
providing the most efficient use of all available system resources.

Virtual processors and multithreading. IBM IDS gives user the unique abil-
ity to scale user database system by employing a dynamically configurable
pool of database server processes (virtual processors) and dividing large tasks
into subtasks for rapid processing. The virtual processors schedule and man-
age user requests and parallel subtasks using multiple concurrent threads.

D.4 Informix 763

IBM Informix MaxConnectDatabase clients

Multiplexed SQL
sessions up to

100 to 1

UNIX server UNIX server IBM Informix
Dynamic Server database

SQL sessions

SQL sessio
ns

IBM Informix
ESQL/C

Java
database

client

Open
database

client

Fig. D.4. IBM Informix Max Connect multiplexes a number of SQL sessions into
a much smaller number of communication sessions at the IBM Informix database
level maximizing scalability and performance

A thread represents a discrete task within a database server process and
many threads may execute in parallel across the pool of virtual processors.
When a thread is waiting for a resource, a virtual processor can work on
behalf of another thread. Not only can one virtual processor respond to a large
number of user requests, but one user request can also be distributed across
multiple virtual processors. For example, for a processing-intensive request,
such as a multitable join, the database server divides the task into multi-
ple subtasks and then spreads these subtasks across all the available virtual
processors.

D.4.4 New Features in Version 7.3

Most of the new features for Version 7.3 of Informix Dynamic Server fall into
five major areas:

– Reliability, availability, and serviceability
– Performance
– Windows NT-specific features
– Application migration
– Manageability

Several additional features affect connectivity, replication, and the optical
subsystem. The features are:

– Performance: Enhancements to the SELECT statement to allow selection
of the first n rows.

– Application migration:

764 D Popular Commercial DBMS

1. New functions for case-insensitive search (UPPER, LOWER, INITCAP)
2. New functions for string manipulations (REPLACE, SUBSTR, LPAD,

RPAD)
3. New CASE expression
4. New NVL and DECODE functions
5. New date-conversion functions (TO CHAR and TO DATE)
6. New options for the DBINFO function
7. Enhancements to the CREATE VIEW and EXECUTE PROCEDURE

statements

New Features in Version 8.2

Following are new features that have been implemented in Version 8.2 of
Dynamic Server with AD and XP Options:

– Global Language Support (GLS)
– New aggregates: STDEV, RANGE, and VARIANCE
– New TABLE lock mode for the LOCK MODE clause of ALTER TABLE

and CREATE TABLE statement
– Support for specifying a lock on one or more rows for the Cursor Stability

isolation level

Following features, which were introduced in Version 8.1 of Dynamic Server
with AD and XP Options:

– The CASE expression in certain Structured Query Language (SQL) state-
ments

– New join methods for use across multiple computers
– Nonlogging tables
– External tables for high-performance loading and unloading

Command-Line Conventions

This section defines the format of commands that are available in Informix
products. These commands have their own conventions, which might include
alternative forms of a command, required and optional parts of the command,
and so forth. Each diagram displays the sequences of required and optional
elements that are valid in a command. A diagram begins at the upper-left
corner with a command. It ends at the upper-right corner with a vertical line.
Between these points, user can trace any path that does not stop or back up.
Each path describes a valid form of the command. User must supply a value
for words that are in italics.

D.4 Informix 765

Element Description
command This required element is usually the product name or other short

word that invokes the product or calls the compiler or preprocessor
script for a compiled Informix product. It might appear alone or
precede one or more options. User must spell a command exactly
as shown and use lowercase letters.

Variable A word in italics represents a value that user must supply, such as
a database, file, or program name. A table following the diagram
explains the value.

-flag A flag is usually an abbreviation for a function, menu, or option
name or for a compiler or preprocessor argument. User must enter
a flag exactly as shown, including the preceding hyphen.

.ext A filename extension, such as .sql or .cob, might follow a variable
that represents a filename. Type this extension exactly as shown,
immediately after the name of the file. The extension might be
optional in certain products.

(. , ; + * - /) Punctuation and mathematical notations are literal symbols that
user must enter exactly as shown.

’ ’ Single quotes are literal symbols that user must enter as shown.

Privileges
p. 5-17

Privileges

A reference in a box represents a subdiagram. Imagine that
the subdiagram is spliced into the main diagram at this
point. When a page number is not specified, the subdiagram
appears on the same page.

A shaded option is the default action.

Syntax within a pair of arrows indicates a subdiagram.

ALL

The vertical line terminates the command.

How to Read a Command-Line Diagram

Figure D.5 shows a command-line diagram. To construct a command correctly,
start at the top left with the command. Then follow the diagram to the right,
including the elements that user want. The elements in the diagram are case
sensitive.

setenv INFORMIXC compiler

pathname

Fig. D.5. Example of a command line diagram

766 D Popular Commercial DBMS

To construct a command correctly, start at the top left with the command.
Then follow the diagram to the right, including the elements that user want.
The elements in the diagram are case sensitive.

These are the steps to be followed:

1. Type the word setenv.
2. Type the word INFORMIXC.
3. Supply either a compiler name or pathname. After user choose compiler

or pathname, user come to the terminator. User command is complete.
4. Press RETURN to execute the command.

Informix’s current application development products, are INFORMIX-
NewEra and INFORMIX-4GL, have been incorporated into the Universal
Tools Strategy announced in March of 1997. The Universal Tools Strategy
gives application developers a wide choice of application development tools
for Informix database servers, permitting developers to take a modular,
component-based, open tools approach. The INFORMIX-Data Director fam-
ily of plug-in modules lets developers extend, manage, and deploy applications
for INFORMIX-Universal Server using their choice of Informix and other
industry-standard tools.
The following products are included under the Universal Tools Strategy:

INFORMIX-Data Director for Visual Basic
INFORMIX-Data Director for Java (formerly J works)
INFORMIX-New Era
INFORMIX-4GL
INFORMIX-Java Object Interface (JOI) (formerly Java API)
INFORMIX-JDBC
INFORMIX-C++ Object Interface (COI)
INFORMIX-CLI
INFORMIX-ESQL/C
INFORMIX-Developer SDK

D.4.5 Conclusion

The powerful and extensible IBM Informix Database Server is designed to
deliver breakthrough scalability, manageability, and performance. IBM IDS
enables user to manage business logic, create and access rich data, and define
complex database functions in an integrated, intelligent information manage-
ment system. With IBM IDS, user benefit from the performance and scala-
bility offered by the proven Dynamic Server Architecture, while gaining all
the advantages of object-oriented technology and unlimited extensibility –
resulting in an immense capacity to grow and adapt to ever-changing needs.

Bibliography

1. Abiteboul, S., Hull, R., and Vianu, V., Foundations of Databases, Addison-
Wesley, Reading, MA, 1995

2. Aho, A., Beeri, C., and Ullman, J., The Theory of Joins in Relational Data-
bases, ACM Transactions on Database Systems, 4:3, 1979

3. Aho, A., Sagiv, Y., and Ullman, J., Efficient Optimization of a Class of Rela-
tional Expressions, ACM Transactions on Database Systems, 4:4, 1979

4. Aho, A., and Ullman, J., Universality of Data Retrieval Languages, Proceedings
of the POPL Conference, San Antonio, TX, ACM, 1979

5. Albano, A., De Antonellis, V., and Di Leva, A. (Eds.), Computer-Aided Data-
base design: The DATAID Project, North-Holland, Amsterdam, 1985

6. Atzeni, P., and De Antonellis, V., Relational Database Theory, Benjamin-
Cummings, Menlo Park, CA, 1993

7. Atzeni, P., Mecca, G., and Merialdo, P., To Weave the Web, Proceedings of 23rd
International Conference on Very Large Data Bases, Athens, Greece, Morgan
Kaufmann, San Francisco, 1997

8. Atzeni, P., Mecca, G., and Merialdo, P., Design and Maintenance of Data-
Intensive Web Sites, Proceedings of 6th International Conference on Extending
Database Technology, Valencia, Spain, Lecture Notes in Computer Science, Vol.
1377, pp. 436–450, Springer, Berlin Heidelberg New York, 1998

9. Astrahan, M., et al., System R: A Relational Approach to Data Base Manage-
ment, ACM Transactions on Database Systems, 1:2, 1976

10. Armstrong, W., Dependency Structures of Data Base Relationships, Proceed-
ings of the IFIP Congress, 1974

11. Arkinson, M., and Buneman, P., Types and Persistence in Database Program-
ming Languages, ACM Computing Surveys, 19:2, 1987

12. Atzeni, P., and De Antonellis, V., Relational Database Theory, Benjamin/
Cummings, Menlo Park, CA, 1993

13. ANSI, American National Standards Institute: The Database Language SQL,
Document ANSI X3.135, 1986

14. Bachman, C., The Data Structure Set Model. In: Rustin (Ed.), Proceedings
of 1974 ACM-SIGMOD Workshop on Data Description, Access and Control,
Ann Arbor, MI, May 1–3, 1974

15. Baeza-Yates, R., and Larson, P.A., Performance of B1-trees with Partial Ex-
pansions, IEEE Transactions on Knowledge and Data Engineering, 1:2, 1989

768 Bibliography

16. Baeza-Yates, R., and Ribero-Neto, B., Modern Information Retrieval, Addison-
Wesley, Reading, MA, 1999

17. Bancilhon, F., Delobel, C., and Kanellakis, P. (Eds.), Building an Object-
Oriented Database System: The Story of O2, Morgan Kaufmann, San Mateo,
CA, 1992

18. Batini, C., Ceri, S., and Navathe, S.B., Conceptual Database Design, an Entity-
Relationship Approach, Benjamin-Cummings, Menlo Park, CA, 1992

19. Bernstein, P.A., Hadzilacos, V., and Goodman, N., Concurrency Control and
Recovery in Database Systems, Addison-Wesley, Reading, MA, 1987

20. Bernstein, P.A., Middleware: A Model for Distributed System Services. Com-
munications of the ACM, 39:2, 89–98, 1996

21. Bertino, E., and Martino, L., Object-oriented Database Systems: Concepts and
Architectures, Addison-Wesley, Reading, MA, 1993

22. Brodie, M.L., and Stonebraker, M., Legacy Systems: Gateways, Interfaces &
the Incremental Approach, Morgan Kaufmann, San Mateo, CA, 1995

23. Bachman, C., Data Structure Diagrams, Data Base (Bulletin of ACM SIG-
FIDET), 1:2, 1969

24. Bachman, C., The Programmer as a Navigator, The California Association of
Community Managers, 16:1, 1973

25. Bachman, C., The Data Structure Set Model. In: Rustin (Ed.), Proceedings
of 1974 ACM-SIGMOD Workshop on Data Description, Access and Control,
Ann Arbor, MI, 1974

26. Bachman, C., and Williams, S., A General Purpose Programming System for
Random Access Memories, Proceedings of the Fall Joint Computer Conference,
AFIPS, 26, 1964

27. Cannan, S.J., and Otten. G.A.M., SQL-The Standard Handbook, McGraw-Hill,
New York, 1992

28. Cattel, R.G.G., Object Data Management – Object Oriented and Extended Re-
lational Database Systems, revised edition, Addison-Wesley, Reading, MA, 1994

29. Ceri, S. (Ed.), Methodology and Tools for Database Design, North-Holland,
Amsterdam, 1983

30. Ceri, S., and Fraternali, P., Designing Database Applications with Objects and
Rules: The IDEA Methodology, Addison-Wesley, Reading, MA, 1997

31. Ceri, S., Fraternali, P., and Paraboschi, S., Design Principles for Data-Intensive
Web Sites, ACM SIGMOD Record, 28:1, 1999

32. Ceri, S., Gottlob, G., and Tanea, L., Logic Programming and Data Bases,
Springer, Berlin Heidelberg New York, 1989

33. Ceri, S., and Pelagatti, G., Distributed Databases: Principles and Systems,
McGraw-Hill, New York, 1984

34. Ceri, S., and Widom, J., Deriving Production Rules for Constraint Mainte-
nance, Proceedings of the International Conference on Very Large Data Bases,
Brisbane, Australia, pp. 566–577, Morgan Kaufmann, San Francisco, 1990

35. Chamberlin, D.D., A Complete Guide to DB2 Universal Database, Morgan
Kaufmann, San Francisco, CA, 1998

36. Chamberlin, D.D., Astrahan, M.M., Eswaran, P.P., Lorie, R.A., Mehl, J.W.,
Reisner, P., and Wade, B.W., SEQUEL 2: A Unified Approach to Data Defini-
tion, Manipulation and Control, IBM Journal of Research and Development,
20:6, 97–137, 1976

37. Chamberlin, D.D., and Boyce, R.F., SEQUEL: A Structured English Query
Language, Proceedings of ACM Sigmoid Workshop, 1, 249–264, 1974

Bibliography 769

38. Chakravarthy, S., Active Database Management Systems: Requirements, State-
of-the-Art, and an Evaluation. In: Entity-Relationship Approach: The Core of
Conceptual Modeling 1991

39. Chakravarthy, S., Divide and Conquer: A Basis for Augmenting a Conventional
Query Optimizer with Multiple Query Processing Capabilities, Proceedings of
the Seventh International Conference on Data Engineering, 1991

40. Chakravarthy, S., Anwar, E., Maugis, L., and Mishra, D., Design of Sentinel:
An Object-oriented DBMS with Event-based Rules, Information and Software
Technology, 36:9, 1994

41. Chakravarthy, U., Grant, J., and Minker, J., Logic-Based Approach to Seman-
tic Query Optimization, ACM Transactions on Database Systems, 15:2, 1990

42. Chen, P.P., The Entity-Relationship Model: Toward a Unified View of Data,
ACM Transactions on Database Systems, 1:1, 9–36, 1976

43. Cheng, J., and Malaika, S. (Eds.), Web Gateway Tools: Connecting IBM and
Lotus Applications to the Web, Wiley, New York, 1997

44. Cochrane, R., Pirahesh, H., and Mattos, N., Integrating Triggers and Declara-
tive Constraints in SQL Database Systems, Proceedings of the International
Conference on Very Large Data Bases, Mumbai (Bombay), pp. 567–578,
Morgan Kaufmann, San Francisco, 1996

45. Codd, E.F., A Relational Model for Large Shared Data Banks, Communica-
tions of the ACM, 13:6, 377–387, 1970

46. Codd, E.F., Further Normalization of the Data Base Relational Model. In:
Rustin, R. (Ed.), Database Systems, pp. 33–64, Prentice Hall, Eaglewood Cliffs,
NJ, 1972

47. Codd, E.F., Relational Competencies of Database Sublanguages. In: Rustin,
R. (Ed.), Database Systems, pp. 65–98, Prentice Hall, Eaglewood Cliffs, NJ,
1972

48. Codd, E.F., Extending the Database Relational Model to Capture More Mean-
ing, ACM Transactions on Database Systems, 4:4, 397–434, 1979

49. Codd, E.F., Relational Database: A practical Foundation for Productivity,
Communications of the ACM, 25:2, 109–117, 1982

50. Codd, E.F., Twelve Rules for On-Line Analytical Processing, Computerworld,
April 1995

51. Comer, D.E., Internetworking with TCP/IP, Volume 1: Principles, Protocols,
and Architecture, 3rd edition, Prentice Hall, Eaglewood Cliffs, NJ, 1995

52. Date, C.J., An Introduction to Database Systems, 6th edition, Addison-Wesley,
Reading, MA, 1995

53. Date, C.J., and Darwen, H., A Guide to the SQL Standard, 3rd edition,
Addison-Wesley, Reading, MA, 1993

54. Date, C., A Critique of the SQL Database Language, ACM SIGMOD Record,
14:3, 1984

55. Date, C., and White, C., A Guide to DB2, 3rd edition, Addison-Wesley, Read-
ing, MA, 1989

56. Date, C., and White, C., A Guide to SQL/DS, Addison-Wesley, Reading, MA,
1988

57. Davies, C., Recovery Semantics for a DB/DC System, Proceedings of the ACM
National Conference, 1973

58. Davis, W., System Analysis and Design, Addison-Wesley, Reading, MA, 1983
59. Dhavan, C., Mobile Computing, McGraw-Hill, New York, 1997

770 Bibliography

60. Dittrich, K., Object-Oriented Database Systems: The Notion and the Issues.
In: Dittrich and Dayal (Eds.), Proceedings of the International Workshop on
Object-Oriented Database Systems, 1986

61. Dittrich, K., and Dayal, U., (Eds.), Proceedings of the International Workshop
on Object-Oriented Database Systems, IEEE CS, Pacific Grove, CA, September
1986

62. Dittrich, K., Kotz, A., and Mulle, J., An Event/Trigger Mechanism to Enforce
Complex Consistence Constraints in Design Databases. In: SIGMOD Record,
15:3, 1986

63. Eisenberg, A., and Melton, J., Standards in Practice, ACM SIGMOD Record,
27:3, 53–58, 1998

64. Elmagarmid, A.K. (Ed.), Database Transaction Models for Advanced Applica-
tions, Morgan Kauffmann, San Mateo, CA, 1992

65. Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M., A Multidatabase
Transaction Model for Interbase. In: International Conference on Very Large
Data Bases, 1990

66. Elmasri, R., James, S., and Kouramajian, V., Automatic Class and Method
Generation for Object-Oriented Databases, Proceedings of the Third Interna-
tional Conference on Database and Object-Oriented Databases (DOOOD-93),
Phoenix, AZ, December 1993

67. Elmasri, R., Kouramajian, V., and Fernando, S., Temporal Database Modeling:
An Object-Oriented Approach, International Conference on Information and
Knowledge Management, November 1993

68. Elmasri, R., Larson, J., and Navathe, S., Schema Integration Algorithms for
Federated Databases and Logical Database Design, Honeywell CSDD, Technical
Report CSC-86-9:8212, January 1986

69. Elmasri, R.A., and Navathe, S.B., Fundamentals of Database Systems, 2nd
edition, Benjamin-Cummings, Menlo Park, CA, 1994

70. Fairly, R., Software Engineering Concepts, McGraw-Hill, New York, 1985
71. Fagin, R., Multivalued Dependencies and a New Normal Form for Relational

Databases, ACM Transactions on Database Systems, 2:3, 1977
72. Fagin, R., Normal Forms and Relational Database Operators, Proceedings of

the 1979 ACM SIGMOD International Conference on Management of Data,
1979

73. Fagin, R., A Normal Form for Relational Databases That is Based on Domains
and Keys, ACM Transactions on Database Systems, 6:3, 1981

74. Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H., Extendible Hashing-
A Fast Access Method for Dynamic Files, ACM Transactions on Database
Systems, 4:3, 1979

75. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (Eds.),
Advances in Knowledge Discovery and Data Mining, AAAI /MIT, Cambridge,
MA, 1996

76. Fleming, C.C., and von Halle, B., Handbook of Relational Database Design,
Addison-Wesley, Reading, MA, 1989

77. Florescu, D., Levy, A., and Mendelzon, A., Database Techniques for the World-
Wide Web: A Survey. ACM SIGMOD Record, 27:3, 59–74, 1998

78. Gogolla, M., and Hohenstein, U., Towards a Semantic View of an Extended
Entity-Relationship Model, ACM Transactions on Database Systems, 16:3,
1991

Bibliography 771

79. Goldberg, A., and Robson, D., Smalltalk-80: The Language and Its Implemen-
tation, Addison-Wesley, Redaing, MA, 1983

80. Goldfine, A., and Konig, P., A Technical Overview of the Information Resource
Dictionary System (IRDS), 2nd edition, NBS IR 88-3700, National Bureau of
Standards, 1988

81. Gotlieb, L., Computing Joins of Relations. In: Proceedings of the ACM SIG-
MOD International Conference on Management of Data, 1975

82. Graham, I.S., HTML Sourcebook, 2nd edition, Wiley, New York, 1996
83. Gray, J., and Anderton, M., Distributed Computer Systems: Four Case Studies,

IEEE Proceedings, 75:5, 719–726, 1987
84. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,

Fellow, F., and Pirahesh, H., Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross-Tab, and Sub Totals, Data Mining and Knowledge
Discovery, 1:1, 29–53, 1997

85. Gray, J., and Reuter, A., Transaction Processing Concepts and Techniques,
Morgan Kauffmann, San Mateo, CA, 1994

86. Greenspun, P., Philip & Alex’s Guide to Web Publishing, Morgan Kaufmann,
San Mateo, CA, 1999

87. Hamilton, G., Catteli, R., and Fisher, M., JDBC Database Access with Java-A
Tutorial and Annotated Reference, Addison Wesley, Reading, MA, 1997

88. Hammer, M., and McLeod, D., Semantic Integrity in a Relational Database
System, Proceedings of 23rd International Conference on Very Large Data
Bases 1975

89. Hammer, M., and McLeod, D., Database Descriptions with SDM: A Semantic
Data Model, ACM Transactions on Database Systems, 6:3, 1981

90. Hammer, M., and Sarin, S., Efficient Monitoring of Database Assertions. In:
Proceedings of the 1978 ACM SIGMOD International Conference on Manage-
ment of Data, 1978

91. Harald Kosh, Distributed Multimedia Database Technologies supported by
MPEG-7 and MPEG-21, CRC, West Palm Beach, FL, 2003

92. Hull, R., and King, R., Semantic Database Modeling: Survey, Applications and
Research Issues, ACM Computing Surveys, 19:3, 201–260, 1987

93. Inmon, B., Building the Data Warehouse, Wiley, New York, 1996
94. Ioannidis, Y., and Kang, Y., Randomized Algorithms for Optimizing Large Join

Queries. In: Proceedings of the 1990 ACM SIGMOD International Conference
on Management of Data 1990

95. Ioannidis, Y., and Kang, Y., Left-Deep vs. Bushy Trees: An Analysis of Strat-
egy Spaces and Its Implications for Query Optimization. In: Proceedings of the
1991 ACM SIGMOD International Conference on Management of Data, 1991

96. Ioannidis, Y., and Wong, E., Transforming Nonlinear Recursion to Linear Re-
cursion. In: International Conference on Expert Database Systems, 1988

97. Irani, K., Purkayastha, S., and Teorey, T., A Designer for DBMS-Processable
Logical Database Structures, Proceedings of 23rd International Conference on
Very Large Data Bases, 1979

98. Isakowitz, T., Bieber, and M., Vitali, F. (Guest Eds.), Web Information Sys-
tems, Communications of the ACM, 41:7, 78–117, 1998

99. Ju, P., Databases on the Web: Designing and Programming for Network Access,
IDG Books Worldwide, Foster City, CA, 1997

100. Kim, W., Object-Oriented Databases: Definition and Research Directions,
IEEE Transactions on Knowledge and Data Engineering, 2:3, September 1990

772 Bibliography

101. Kim, W. (Ed.), Modern Database Systems: the Object Model, Interoperability,
and Beyond, ACM and Addison-Wesley, New York, 1995

102. Kimball, R., The Data Warehouse Toolkit: Practical Techniques for Building
Dimensional Data Warehouses, Wiley, New York, 1996

103. Kumar, A., and Segev, A., Cost and Availability Tradeoffs in Replicated Con-
currency Control, ACM Transactions on Database Systems, 18:1, 1993

104. Kumar, A., and Stonebraker, M., Semantics Based Transaction Management
Techniques for Replicated Data, in Proceedings of the 1987 ACM SIGMOD
International Conference on Management of Data, 1987

105. Kumar, V., and Hsu, M., Database Recovery, Kluwer Academic, Dordrecht
1998

106. Kung, H., and Robinson, J., Optimistic Concurrency Control, ACM Transac-
tions on Database Systems, 6:2, 1981

107. Lacroix, M., and Pirotte, A., Domain-Oriented Relational Languages, Proceed-
ings of 23rd International Conference on Very Large Data Bases, 1977

108. Lacroix, M., and Pirotte, A., ILL: An English Structured Query Language
for Relational Data Bases. In: Nijssen (Ed.), Proceedings of the IFIP TC-2
Working Conference on Modelling in Data Base Management Systems, 1977

109. Lamport, L., Time, Clocks and the Ordering of Events in a Distributed System,
Communications of the ACM, 21:7, 558–565, 1978

110. Liu, C., Peek, J., Jones, R., Buus, B., and Nye, A., Managing Internet Infor-
mation Services, O’Reilly & Associates, Sebastopol, CA, 1994

111. Loomis, M.E.S., Object Databases: the Essentials, Addison-Wesley, Reading,
MA, 1995

112. Lucyk, B., Advanced Topics in DB2, Addison-Wesley, Reading, MA, 1993
113. Lum, V.Y., Ghosh, S.P., Schkolnik, M., Taylor, R.W., Jefferson, D., Su. S., Fry,

J.P., Teorey, T.J., Yao, B., Rund, D.S., Kahn, B., Navathe, S.B., Smith, D.,
Aguilar, L., Barr, W.J., and Jones, P.E., 1978 New Orleans Data Base Design
Workshop Report, Proceedings of the International Conference on Very Large
Data Bases, Rio de Janeiro, Brazil, 328–339, 1979

114. Maier, D., Stein, J., Otis, A., and Purdy, A., Development of an Object-
Oriented DBMS, Object-Oriented Programming, Systems, Languages, and Ap-
plications, 1986

115. Maier, D., The Theory of Relational Databases, Computer Science Press,
Potomac, MD, 1983

116. Mannila, H., and Raiha, K.J., The Design of Relational Databases, Addison-
Wesley, Reading, MA, 1992

117. McFadden, F.R., and Hoffer, J.A., Modern Database Management, 4th edition,
Benjamin Cummings, Menlo Park, CA, 1994

118. Melton, J., SQL3 Update, Proceedings of the IEEE International Conference
on Data Engineering 1996, 566–672, 1996

119. Melton, J., and Simon, A.R., Understanding the New SQL, Morgan Kaufmann,
San Mateo, CA, 1993

120. Mohan, C., and Narang, I., Algorithms for Creating Indexes for Very Large
Tables without Quiescing Updates, in Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data, 1992

121. Mohan, C. et al., ARIEL: A Transaction Recovery Method Supporting Fine-
Granularity Locking an Partial Rollbacks Using Write-Ahead Logging, ACM
Transactions on Database Systems, 17:1, March, 1992

Bibliography 773

122. Moss, J., Nested Transactions and Reliable Distributed Computing, Proceed-
ings of the Symposium on Reliability in Distributed Software and Database
Systems, IEEE CS, July 1982

123. Mylopolous, J., Bernstein, P., and Wong, H., A Language Facility for Designing
Database-Intensive Applications, ACM Transactions on Database Systems, 5:2,
1980

124. Ng, P., Further Analysis of the Entity-Relationship Approach to Database
Design, IEEE Transactions on Software Engineering, 7:1, 1981

125. Nievergelt, J., Binary Search Trees and File Organization, ACM Computing
Surveys, 6:3, 1974

126. Nijssen, G. (Ed.), Modelling in Data Base Management Systems, North-
Holland, Amsterdam, 1976

127. Nijssen, G. (Ed.), Architecture and Models in Data Base Management Systems,
North-Holland, Amsterdam, 1977

128. Obermarck, R., Distributed Deadlock Detection Algorithm, ACM Transactions
on Database Systems, 7:2, 1982

129. Olle, T., The CODASYL Approach to Data Base Management, Wiley, 1978
130. O’Neil, P., Database Principles, Programming, Performance, Morgan

Kaufmann, Sun Mateo, CA, 1994
131. Oracle, RDBMS Database Administrator’s Guide, Oracle, 1992
132. Oracle, Performing Tuning Guide, Version 7.0, Oracle, 1992
133. Oracle, Oracle 8 Server Concepts, Vols. 1 and 2, Release 8.0, Oracle Corpora-

tion, 1997
134. Oracle Corporation, Oracle 8 Server: Concepts Manual, Redwood City, CA,

1998
135. Oracle Corporation, Oracle 8 Server: SQL Language Reference Manual,

Redwood City, CA, 1998
136. Ozsu, M.T., and Valduriez, P., Principles of Distributed Database Systems, 2nd

edition, Prentice Hall, Eaglewood Cliffs, NJ, 1999
137. Papadimitriou, C., The Serializability of Concurrent Database Updates, Jour-

nal of the ACM, 26:4, 1979
138. Papadimitriou, C., The Theory of Database Concurrency Control, Computer

Science Press, New York, 1986
139. Papazoglou, M., and Valder, W., Relational Database Management: A Systems

Programming Approach, Prentice-Hall, Englewood Cliffs, NJ, 1989
140. Paredaens, J., De Bra, P., Gysses, M., and Van Gucht, D., The Structure of

the Relational Database Model, Springer, Berlin Heidelberg New York, 1989
141. Pazandak, P., and Srivatsava, J., Evaluating Object DBMSs for Multimedia,

IEEE Multimedia, 4:3, 34–49, 1997
142. Pressman, R.S., Software Engineering, a Practitioner’s Approach, 3rd edition,

McGraw-Hill, New York, 1992
143. Ramakrishnan, R. (Ed.), Applications of Logic Databases, Kluwer Academic,

Dordrecht, 1995
144. Ramakrishnan, R., Database Management Systems, McGraw-Hill, New York,

1997
145. Reisner, P., Human Factors Studies of Database Query Languages: A Survey

and Assessment, ACM Computing Surveys, 13:1, 1981
146. Rosenfeld, L., and Morville, P., Information Architecture for the World Wide

Web, O’Reilly and Associates, Sebastopol, CA, 1998

774 Bibliography

147. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object
Oriented Modelling and Design, Prentice Hall, Eaglewood Cliffs, NJ, 1991

148. Rustin, R. (Ed.), Data Base Systems, Prentice-Hall, Englewood Cliffs, NJ, 1972
149. Rustin, R. (Ed.), Proceedings of the BJNAV2, 1974
150. Samaras, G., Britton, K., Citton, A., and Mohan, C., Two-Phase Optimizations

in a Commercial Distributed Environment, Journal of Distributed and Parallel
Databases, 3:4, 325–360, 1995

151. Samet, H., The Design and Analysis of Spatial Data Structures, Addison-
Wesley, Reading, MA, 1989

152. Selinger, P. et al., Access Path Selection in a Relational Database Management
System. In: Proceedings of the 1979 ACM SIGMOD International Conference
on Management of Data, 1979

153. Senko, M., Specification of Stored Data Structures and Desired Output in
DIAM II with FORAL, Proceedings of 23rd International Conference on Very
Large Data Bases, 1975

154. Senko, M., A Query Maintenance Language for the Data Independent Access-
ing Model II, Information Systems, 5:4, 1980

155. Senn, J.A., Analysis & Design of Information Systems, 2nd edition, McGraw-
Hill, New York, 1989

156. Shasha, D., Database Tuning: A Principled Approach, Morgan Kaufmann, San
Mateo, CA, 1994

157. Shasha, D., and Goodman, N., Concurrent Search Structure Algorithms, ACM
Transactions on Database Systems, 13:1, 1988

158. Sheth, A.P., and Larson, J.A., Federated Database Systems for Managing Dis-
tributed, Heterogenous, and Autonomous Databases, ACM Computing Sur-
veys, 22:3, 183–236, 1990

159. Siegel, J. (Ed.), CORBA: Fundamentals and Programming, Wiley, New York,
1996

160. Silberschatz, A., Korth, H.F., and Sudarshan, S., Database System Concepts,
McGraw-Hill, New York, 1996

161. Stonebraker, M., Object-Relational DBMSs – The Next Great Wave, Morgan
Kauffmann, San Mateo, CA, 1994

162. Stonebraker, M. (Ed.), Readings in Database Systems, 2nd edition, Morgan
Kauffmann, San Mateo, CA, 1994

163. Stonebraker, M., Rowe, L.A., Lindsay, B.G., Gray, J., Carey, M.J., Brodie,
M.L., Bernstein, P.A., and Beech, D., Third-Generation Database System
Manifesto, ACM SIGMOD Record, 19:3, 31–44, 1990

164. Smith, J.M., and Smith, D.C.P., Database Abstractions: Aggregation and
Generalization, Proceedings of the 1977 ACM Transactions on Database Sys-
tems, 2:1, 105–133, 1977

165. Subrahmanian, V.S., Principles of Multimedia Database Systems, Morgan
Kaufmann, San Mateo, CA, 1998

166. Tansel, A., et al., (Eds.) Temporal Databases: Theory, Design, and Implemen-
tation, Benjamin Cummings, Menlo Park, CA, 1993

167. Teorey, T., Database Modeling and Design: The Fundamental Principles, 2nd
edition, Morgan Kauffmann, Los Altos, CA, 1994

168. Teorey, T., Yang, D., and Fry, J., A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model, ACM Computing
Surveys, 18:2, 1986

Bibliography 775

169. Teorey, T.J., Database Modeling and Design: the E-R Approach, Morgan
Kaufmann, San Mateo, CA, 1990

170. Teorey, T.J., and Fry, J.P., Design of Database Structures, Prentice Hall,
Eaglewood Cliffs, NJ, 1982

171. Teorey, T.J., Yang, D., and Fry, J.P., A Logical Design Methodology for Rela-
tional Databases Using the Extended Entity-Relational Approach, ACM Com-
puting Surveys, 18:2, 201–260, 1986

172. Tsichritzis, D., and Lochovsky, F.H., Data Models, Prentice Hall, Eaglewood
Cliffs, NJ, 1982

173. Tsou, D.M., and Fischer, P.C., Decomposition of a Relation Scheme into Boyce
Codd Normal Form, SIGACT News, 14:3, 23–29, 1982

174. Ullman, J., Implementation of Logical Query Languages for Databases, ACM
Transactions on Database Systems, 10:3, 1985

175. Ullman, J.D., Principles of Database and Knowledge Base Systems, Vol. 1,
Computer Science Press, Potomac, MD, 1988

176. Ullman, J.D., Principles of Database and Knowledge Base Systems, Vol. 2,
Computer Science Press, Potomac, MD, 1989

177. Ullman, J.D., and Widom, J., A First Course in Database Systems, Prentice
Hall, Upper Saddle River, NJ, 1997

178. Valduriez, P., and Gardarin, G., Analysis and Comparison of Relational Data-
base Systems, Addison-Wesley, Reading, MA, 1989

179. Vassiliou, Y., Functional Dependencies and Incomplete Information, Proceed-
ings of 23rd International Conference on Very Large Data Bases, 1980

180. Verheijen, G., and VanBekkum, J., NIAM: An Information Analysis Method.
In: Olle et al. (Eds.), Proceedings of the CRIS Conference, 1982

181. Verhofstadt, J., Recovery Techniques for Database Systems, ACM Computing
Surveys, 10:2, 1978

182. Vielle, L., Recursive Axioms in Deductive Databases: The Query-Subquery Ap-
proach. In: Proceedings International Conference on Expert Database Systems,
1986

183. Vossen, G., Data Models, Database Languages, and Database Management Sys-
tems, Addison-Wesley, Reading, MA, 1990

184. Wang, Y., and Madnick, S., The Inter-Database Instance Identity Problem in
Integrating Autonomous Systems. In: Proceedings of the Fifth IEEE Interna-
tional Conference on Data Engineering, 1989

185. Wang, Y., and Rowe, L., Cache Consistency and Concurrency Control in a
Client/Server DBMS Architecture. In: Proceedings of the 1991 ACM SIGMOD
International Conference on Management of Data, 1991

186. Wallace, D., William Allan Award Address: Mitochondrial DNA Variation in
Human Evolution, Degenerative Disease, and Aging, American Journal of Hu-
man Genetics, 1994

187. Weddell, G., Reasoning About Functional Dependencies Generalized for Se-
mantic Data Models, ACM Transactions on Database Systems, 17:1, 1992

188. Weikum, G., Principles and Realization Strategies of Multilevel Transaction
Management, ACM Transactions on Database Systems, 16:1, 1991

189. Widom, J., Research Problems in Data Warehousing, Proceedings of the 4th
International Conference on Information and Knowledge Management, Novem-
ber 1995

190. Widom, J.,and Ceri, S., Active Database Systems, Morgan Kauffmann, San
Mateo, CA, 1996

776 Bibliography

191. Wiederhold, G., Database Design, McGraw-Hill, New York, 1983
192. Wiorkowski, G., and Kull, D., DB2-Design and Development Guide, 3rd edi-

tion, Addison-Wesley, Reading, MA, 1992
193. Wong, E., and Youssefi, K., Decomposition-A Strategy for Query Processing,

ACM Transactions on Database Systems, 1:3, 1976
194. Yannakakis, Y., Serializability by Locking, Journal of the ACM, 31:2, 1984
195. Yao, S., Optimization of Query Evaluation Algorithms, ACM Transactions on

Database Systems, 4:2, 1979
196. Yao, S. (Ed.), Principles of Database Design, Vol. 1: Logical Organizations,

Prentice-Hall, Englewood Cliffs, NJ, 1985
197. Youssefi, K., and Wong, E., Query Processing in a Relational Database Man-

agement System, Proceedings of 23rd International Conference on Very Large
Data Bases, 1979

198. Zaniolo, C., Analysis and Design of Relational Schemata for Database Systems,
Ph.D. dissertation, University of California, LA, 1976

199. Zaniolo, C., Design and Implementation of a Logic Based Language for Data
Intensive Applications, MCC Technical Report#ACA-ST-199-88, June, 1988

200. Zaniolo, C., Database Relations with Null Values, Journal of Computer and
System Science, 28:1, 142–166, 1984

201. Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., and
Zicari, R., Introduction to Advanced Database Systems, Morgan Kaufmann,
San Mateo, CA, 1997

202. Zaniolo, C. et al., Advanced Database Systems, Morgan Kaufmann, San Mateo,
CA, 1997

203. Zloof, M., Query by Example, Proceedings of the National Computer Confer-
ence, American Federation of Information Processing Societies, 44, 1975

204. Zobel, J., Moffat, A., and Sacks-Davis, R., An Efficient Indexing Technique for
Full-Text Database Systems, Proceedings of 23rd International Conference on
Very Large Data Bases, 1992

	Contents
	1 Overview of Database Management System
	1.1 Introduction
	1.2 Data and Information
	1.3 Database
	1.4 Database Management System
	1.4.1 Structure of DBMS

	1.5 Objectives of DBMS
	1.5.1 Data Availability
	1.5.2 Data Integrity
	1.5.3 Data Security
	1.5.4 Data Independence

	1.6 Evolution of Database Management Systems
	1.7 Classification of Database Management System
	1.8 File-Based System
	1.9 Drawbacks of File-Based System
	1.9.1 Duplication of Data
	1.9.2 Data Dependence
	1.9.3 Incompatible File Formats
	1.9.4 Separation and Isolation of Data

	1.10 DBMS Approach
	1.11 Advantages of DBMS
	1.11.1 Centralized Data Management
	1.11.2 Data Independence
	1.11.3 Data Inconsistency

	1.12 Ansi/Spark Data Model
	1.12.1 Need for Abstraction
	1.12.2 Data Independence

	1.13 Data Models
	1.13.1 Early Data Models

	1.14 Components and Interfaces of Database Management System
	1.14.1 Hardware
	1.14.2 Software
	1.14.3 Data
	1.14.4 Procedure
	1.14.5 People Interacting with Database
	1.14.6 Data Dictionary
	1.14.7 Functional Components of Database System Structure

	1.15 Database Architecture
	1.15.1 Two-Tier Architecture
	1.15.2 Three-tier Architecture
	1.15.3 Multitier Architecture

	1.16 Situations where DBMS is not Necessary
	1.17 DBMS Vendors and their Products

	2 Entity–Relationship Model
	2.1 Introduction
	2.2 The Building Blocks of an Entity–Relationship Diagram
	2.2.1 Entity
	2.2.2 Entity Type
	2.2.3 Relationship
	2.2.4 Attributes
	2.2.5 ER Diagram

	2.3 Classification of Entity Sets
	2.3.1 Strong Entity
	2.3.2 Weak Entity

	2.4 Attribute Classification
	2.4.1 Symbols Used in ER Diagram

	2.5 Relationship Degree
	2.5.1 Unary Relationship
	2.5.2 Binary Relationship
	2.5.3 Ternary Relationship
	2.5.4 Quaternary Relationships

	2.6 Relationship Classification
	2.6.1 One-to-Many Relationship Type
	2.6.2 One-to-One Relationship Type
	2.6.3 Many-to-Many Relationship Type
	2.6.4 Many-to-One Relationship Type

	2.7 Reducing ER Diagram to Tables
	2.7.1 Mapping Algorithm
	2.7.2 Mapping Regular Entities
	2.7.3 Converting Composite Attribute in an ER Diagram to Tables
	2.7.4 Mapping Multivalued Attributes in ER Diagram to Tables
	2.7.5 Converting "Weak Entities" in ER Diagram to Tables
	2.7.6 Converting Binary Relationship to Table
	2.7.7 Mapping Associative Entity to Tables
	2.7.8 Converting Unary Relationship to Tables
	2.7.9 Converting Ternary Relationship to Tables

	2.8 Enhanced Entity–Relationship Model (EER Model)
	2.8.1 Supertype or Superclass
	2.8.2 Subtype or Subclass

	2.9 Generalization and Specialization
	2.10 ISA Relationship and Attribute Inheritance
	2.11 Multiple Inheritance
	2.12 Constraints on Specialization and Generalization
	2.12.1 Overlap Constraint
	2.12.2 Disjoint Constraint
	2.12.3 Total Specialization
	2.12.4 Partial Specialization

	2.13 Aggregation and Composition
	2.14 Entity Clusters
	2.15 Connection Traps
	2.15.1 Fan Trap
	2.15.2 Chasm Trap

	2.16 Advantages of ER Modeling

	3 Relational Model
	3.1 Introduction
	3.2 CODD'S Rules
	3.3 Relational Data Model
	3.3.1 Structural Part
	3.3.2 Integrity Part
	3.3.3 Manipulative Part
	3.3.4 Table and Relation

	3.4 Concept of Key
	3.4.1 Superkey
	3.4.2 Candidate Key
	3.4.3 Foreign Key

	3.5 Relational Integrity
	3.5.1 Entity Integrity
	3.5.2 Null Integrity
	3.5.3 Domain Integrity Constraint
	3.5.4 Referential Integrity

	3.6 Relational Algebra
	3.6.1 Role of Relational Algebra in DBMS

	3.7 Relational Algebra Operations
	3.7.1 Unary and Binary Operations
	3.7.2 Rename operation (ρ)
	3.7.3 Union Operation
	3.7.4 Intersection Operation
	3.7.5 Difference Operation
	3.7.6 Division Operation
	3.7.7 Cartesian Product Operation
	3.7.8 Join Operations

	3.8 Advantages of Relational Algebra
	3.9 Limitations of Relational Algebra
	3.10 Relational Calculus
	3.10.1 Tuple Relational Calculus
	3.10.2 Set Operators in Relational Calculus

	3.11 Domain Relational Calculus (DRC)
	3.11.1 Queries in Domain Relational Calculus
	3.11.2 Queries and Domain Relational Calculus Expressions

	3.12 QBE

	4 Structured Query Language
	4.1 Introduction
	4.2 History of SQL Standard
	4.2.1 Benefits of Standardized Relational Language

	4.3 Commands in SQL
	4.4 Datatypes in SQL
	4.5 Data Definition Language (DDL)
	4.6 Selection Operation
	4.7 Projection Operation
	4.8 Aggregate Functions
	4.8.1 COUNT Function
	4.8.2 MAX, MIN, and AVG Aggregate Function

	4.9 Data Manipulation Language
	4.9.1 Adding a New Row to the Table
	4.9.2 Updating the Data in the Table
	4.9.3 Deleting Row from the Table

	4.10 Table Modification Commands
	4.10.1 Adding a Column to the Table
	4.10.2 Modifying the Column of the Table
	4.10.3 Deleting the Column of the Table

	4.11 Table Truncation
	4.11.1 Dropping a Table

	4.12 Imposition of Constraints
	4.12.1 NOT NULL Constraint
	4.12.2 UNIQUE Constraint
	4.12.3 Primary Key Constraint
	4.12.4 CHECK Constraint
	4.12.5 Referential Integrity Constraint
	4.12.6 ON DELETE CASCADE
	4.12.7 ON DELETE SET NULL

	4.13 Join Operation
	4.13.1 Equijoin

	4.14 Set Operations
	4.14.1 UNION Operation
	4.14.2 INTERSECTION Operation
	4.14.3 MINUS Operation

	4.15 View
	4.15.1 Nonupdatable View
	4.15.2 Views from Multiple Tables
	4.15.3 View From View
	4.15.4 VIEW with CHECK Constraint
	4.15.5 Views with Read-only Option
	4.15.6 Materialized Views

	4.16 Subquery
	4.16.1 Correlated Subquery

	4.17 Embedded SQL

	5 PL/SQL
	5.1 Introduction
	5.2 Shortcomings in SQL
	5.3 Structure of PL/SQL
	5.4 PL/SQL Language Elements
	5.5 Data Types
	5.6 Operators Precedence
	5.7 Control Structure
	5.8 Steps to Create a PL/SQL Program
	5.9 Iterative Control
	5.10 Cursors
	5.10.1 Implicit Cursors
	5.10.2 Explicit Cursor

	5.11 Steps to Create a Cursor
	5.11.1 Declare the Cursor
	5.11.2 Open the Cursor
	5.11.3 Passing Parameters to Cursor
	5.11.4 Fetch Data from the Cursor
	5.11.5 Close the Cursor

	5.12 Procedure
	5.13 Function
	5.14 Packages
	5.15 Exceptions Handling
	5.16 Database Triggers
	5.17 Types of Triggers

	6 Database Design
	6.1 Introduction
	6.2 Objectives of Database Design
	6.3 Database Design Tools
	6.3.1 Need for Database Design Tool
	6.3.2 Desired Features of Database Design Tools
	6.3.3 Advantages of Database Design Tools
	6.3.4 Disadvantages of Database Design Tools
	6.3.5 Commercial Database Design Tools

	6.4 Redundancy and Data Anomaly
	6.4.1 Problems of Redundancy
	6.4.2 Insertion, Deletion, and Updation Anomaly

	6.5 Functional Dependency
	6.6 Functional Dependency Inference Rules (Årmstrong's Axioms)
	6.7 Closure of Set of Functional Dependencies
	6.7.1 Closure of a Set of Attributes
	6.7.2 Minimal Cover

	6.8 Normalization
	6.8.1 Purpose of Normalization

	6.9 Steps in Normalization
	6.10 Unnormal Form to First Normal Form
	6.11 First Normal Form to Second Normal Form
	6.12 Second Normal Form to Third Normal Form
	6.13 Boyce–Codd Normal Form (BCNF)
	6.14 Fourth and Fifth Normal Forms
	6.14.1 Fourth Normal Form
	6.14.2 Fifth Normal Form

	6.15 Denormalization
	6.15.1 Basic Types of Denormalization
	6.15.2 Table Denormalization Algorithm

	7 Transaction Processing and Query Optimization
	7.1 Transaction Processing
	7.1.1 Introduction
	7.1.2 Key Notations in Transaction Management
	7.1.3 Concept of Transaction Management
	7.1.4 Lock-Based Concurrency Control

	7.2 Query Optimization
	7.2.1 Query Processing
	7.2.2 Need for Query Optimization
	7.2.3 Basic Steps in Query Optimization
	7.2.4 Query Optimizer Architecture
	7.2.5 Basic Algorithms for Executing Query Operations
	7.2.6 Query Evaluation Plans
	7.2.7 Optimization by Genetic Algorithms

	8 Database Security and Recovery
	8.1 Database Security
	8.1.1 Introduction
	8.1.2 Need for Database Security
	8.1.3 General Considerations
	8.1.4 Database Security System
	8.1.5 Database Security Goals and Threats
	8.1.6 Classification of Database Security

	8.2 Database Recovery
	8.2.1 Different Types of Database Failures
	8.2.2 Recovery Facilities
	8.2.3 Main Recovery Techniques
	8.2.4 Crash Recovery
	8.2.5 ARIES Algorithm

	9 Physical Database Design
	9.1 Introduction
	9.2 Goals of Physical Database Design
	9.2.1 Physical Design Steps
	9.2.2 Implementation of Physical Model

	9.3 File Organization
	9.3.1 Factors to be Considered in File Organization
	9.3.2 File Organization Classification

	9.4 Heap File Organization
	9.4.1 Uses of Heap File Organization
	9.4.2 Drawback of Heap File Organization
	9.4.3 Example of Heap File Organization

	9.5 Sequential File Organization
	9.5.1 Sequential Processing of File
	9.5.2 Draw Back

	9.6 Hash File Organization
	9.6.1 Hashing Function
	9.6.2 Bucket
	9.6.3 Choice of Bucket
	9.6.4 Extendible Hashing

	9.7 Index File Organization
	9.7.1 Advantage of Indexing
	9.7.2 Classification of Index
	9.7.3 Search Key

	9.8 Tree-Structured Indexes
	9.8.1 ISAM
	9.8.2 B-Tree
	9.8.3 Building a B[sup(+)] Tree
	9.8.4 Bitmap Index

	9.9 Data Storage Devices
	9.9.1 Factors to be Considered in Selecting Data Storage Devices
	9.9.2 Magnetic Technology
	9.9.3 Fixed Magnetic Disk
	9.9.4 Removable Magnetic Disk
	9.9.5 Floppy Disk
	9.9.6 Magnetic Tape

	9.10 Redundant Array of Inexpensive Disk
	9.10.1 RAID Level 0+1
	9.10.2 RAID Level 0
	9.10.3 RAID Level 1
	9.10.4 RAID Level 2
	9.10.5 RAID Level 3
	9.10.6 RAID Level 4
	9.10.7 RAID Level 5
	9.10.8 RAID Level 6
	9.10.9 RAID Level 10

	9.11 Software-Based RAID
	9.12 Hardware-Based RAID
	9.12.1 RAID Controller
	9.12.2 Types of Hardware RAID

	9.13 Optical Technology
	9.13.1 Advantages of Optical Disks
	9.13.2 Disadvantages of Optical Disks

	10 Data Mining and Data Warehousing
	10.1 Data Mining
	10.1.1 Introduction
	10.1.2 Architecture of Data Mining Systems
	10.1.3 Data Mining Functionalities
	10.1.4 Classification of Data Mining Systems
	10.1.5 Major Issues in Data Mining
	10.1.6 Performance Issues
	10.1.7 Data Preprocessing
	10.1.8 Data Mining Task
	10.1.9 Data Mining Query Language
	10.1.10 Architecture Issues in Data Mining System
	10.1.11 Mining Association Rules in Large Databases
	10.1.12 Mining Multilevel Association From Transaction Databases
	10.1.13 Rule Constraints
	10.1.14 Classification and Prediction
	10.1.15 Comparison of Classification Methods
	10.1.16 Prediction
	10.1.17 Cluster Analysis
	10.1.18 Mining Complex Types of Data
	10.1.19 Applications and Trends in Data Mining
	10.1.20 How to Choose a Data Mining System
	10.1.21 Theoretical Foundations of Data Mining

	10.2 Data Warehousing
	10.2.1 Goals of Data Warehousing
	10.2.2 Characteristics of Data in Data Warehouse
	10.2.3 Data Warehouse Architectures
	10.2.4 Data Warehouse Design
	10.2.5 Classification of Data Warehouse Design
	10.2.6 The User Interface

	11 Objected-Oriented and Object Relational DBMS
	11.1 Objected oriented DBMS
	11.1.1 Introduction
	11.1.2 Object-Oriented Programming Languages (OOPLs)
	11.1.3 Availability of OO Technology and Applications
	11.1.4 Overview of OODBMS Technology
	11.1.5 Applications of an OODBMS
	11.1.6 Evaluation Criteria
	11.1.7 Evaluation Targets
	11.1.8 Object Relational DBMS
	11.1.9 Object-Relational Model
	11.1.10 Aggregation and Composition in UML
	11.1.11 Object-Relational Database Design
	11.1.12 Comparison of OODBMS and ORDBMS

	12 Distributed and Parallel Database Management Systems
	12.1 Distributed Database
	12.1.1 Features of Distributed vs. Centralized Databases

	12.2 Distributed DBMS Architecture
	12.2.1 DBMS Standardization
	12.2.2 Architectural Models for Distributed DBMS
	12.2.3 Types of Distributed DBMS Architecture

	12.3 Distributed Database Design
	12.3.1 Framework for Distributed Database Design
	12.3.2 Objectives of the Design of Data Distribution
	12.3.3 Top-Down and Bottom-Up Approaches to the Design of Data Distribution
	12.3.4 Design of Database Fragmentation

	12.4 Semantic Data Control
	12.4.1 View Management
	12.4.2 Views in Centralized DBMSs
	12.4.3 Update Through Views
	12.4.4 Views in Distributed DBMS
	12.4.5 Data Security
	12.4.6 Centralized Authorization Control
	12.4.7 Distributed Authorization Control
	12.4.8 Semantic Integrity Control
	12.4.9 Distributed Semantic Integrity Control

	12.5 Distributed Concurrency Control
	12.5.1 Serializability Theory
	12.5.2 Taxonomy of Concurrency Control Mechanism
	12.5.3 Locking-Based Concurrency Control
	12.5.4 Timestamp-Based Concurrency Control Algorithms
	12.5.5 Optimistic Concurrency Control Algorithms
	12.5.6 Deadlock Management

	12.6 Distributed DBMS Reliability
	12.6.1 Reliability Concepts and Measures
	12.6.2 Failures in Distributed DBMS
	12.6.3 Basic Fault Tolerance Approaches and Techniques
	12.6.4 Distributed Reliability Protocols

	12.7 Parallel Database
	12.7.1 Database Server and Distributed Databases
	12.7.2 Main Components of Parallel Processing
	12.7.3 Functional Aspects
	12.7.4 Various Parallel System Architectures
	12.7.5 Parallel DBMS Techniques

	13 Recent Challenges in DBMS
	13.1 Genome Databases
	13.1.1 Introduction
	13.1.2 Basic Idea of Genome
	13.1.3 Building Block of DNA
	13.1.4 Genetic Code
	13.1.5 GDS (Genome Directory System) Project
	13.1.6 Conclusion

	13.2 Mobile Database
	13.2.1 Concept of Mobile Database
	13.2.2 General Block Diagram of Mobile Database Center
	13.2.3 Mobile Database Architecture
	13.2.4 Modes of Operations of Mobile Database
	13.2.5 Mobile Database Management
	13.2.6 Mobile Transaction Processing
	13.2.7 Distributed Database for Mobile

	13.3 Spatial Database
	13.3.1 Spatial Data Types
	13.3.2 Spatial Database Modeling
	13.3.3 Discrete Geometric Spaces
	13.3.4 Querying
	13.3.5 Integrating Geometry into a Query Language
	13.3.6 Spatial DBMS Implementation

	13.4 Multimedia Database Management System
	13.4.1 Introduction
	13.4.2 Multimedia Data
	13.4.3 Multimedia Data Model
	13.4.4 Architecture of Multimedia System
	13.4.5 Multimedia Database Management System Development
	13.4.6 Issues in Multimedia DBMS

	13.5 XML
	13.5.1 Introduction
	13.5.2 Origin of XML
	13.5.3 Goals of XML
	13.5.4 XML Family
	13.5.5 XML and HTML
	13.5.6 XML Document
	13.5.7 Document Type Definitions (DTD)
	13.5.8 Extensible Style Sheet Language (XSL)
	13.5.9 XML Namespaces
	13.5.10 XML and Database Applications

	14 Projects in DBMS
	14.1 List of Projects
	14.2 Overview of the Projects
	14.2.1 Front-End: Microsoft Visual Basic
	14.2.2 Back-End: Oracle 9i
	14.2.3 Interface: ODBC

	14.3 First Project: Bus Transport Management System
	14.3.1 Description
	14.3.2 Features of the Project
	14.3.3 Source Code

	14.4 Second Project: Course Administration System
	14.4.1 Description
	14.4.2 Source Code

	14.5 Third Project: Election Voting System
	14.5.1 Description
	14.5.2 Source Code

	14.6 Fourth Project: Hospital Management System
	14.6.1 Description
	14.6.2 Source Code

	14.7 Fifth Project: Library Management System
	14.7.1 Description
	14.7.2 Source Code

	14.8 Sixth Project: Railway Management System
	14.8.1 Description
	14.8.2 Source Code

	14.9 Some Hints to Do Successful Projects in DBMS

	A. Dictionary of DBMS Terms
	B. Overview of Commands in SQL
	C. Pioneers in DBMS
	C.1 About Dr. Edgar F. Codd
	C.2 Ronald Fagin
	C.2.1 Abstract of Ronald Fagin's Article

	D. Popular Commercial DBMS
	D.1 System R
	D.1.1 Introduction to System R
	D.1.2 Keywords Used
	D.1.3 Architecture and System Structure
	D.1.4 Relational Data Interface
	D.1.5 Data Manipulation Facilities in SEQUEL
	D.1.6 Data Definition Facilities
	D.1.7 Data Control Facilities

	D.2 Relational Data System
	D.3 DB2
	D.3.1 Introduction to DB2
	D.3.2 Definition of DB2 Data Structures
	D.3.3 DB2 Stored Procedure
	D.3.4 DB2 Processing Environment
	D.3.5 DB2 Commands
	D.3.6 Data Sharing in DB2
	D.3.7 Conclusion

	D.4 Informix
	D.4.1 Introduction to Informix
	D.4.2 Informix SQL and ANSI SQL
	D.4.3 Software Dependencies
	D.4.4 New Features in Version 7.3
	D.4.5 Conclusion

	Bibliography

