Studies in Computational Intelligence 47

S.Sumathi - S. Esakkirajan

Fundamentals
of Relational Database
Management Systems

@ Springer

S. Sumathi, S. Esakkirajan

Fundamentals of Relational Database Management Systems

Studies in Computational Intelligence, Volume 47

Editor-in-chief

Prof. Janusz Kacprzyk

Systems Research Institute
Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 29. Sai Sumathi, S.N. Sivanandam
Introduction to Data Mining and its
Application, 2006

ISBN 978-3-540-34350-9

Vol. 30. Yukio Ohsawa, Shusaku Tsumoto (Eds.)
Chance Discoveries in Real World Decision Making,
2006

ISBN 978-3-540-34352-3

Vol. 31. Ajith Abraham, Crina Grosan, Vitorino
Ramos (Eds.)

Stigmergic Optimization, 2006

ISBN 978-3-540-34689-0

Vol. 32. Akira Hirose
Complex-Valued Neural Networks, 2006
ISBN 978-3-540-33456-9

Vol. 33. Martin Pelikan, Kumara Sastry, Erick
Cantd-Paz (Eds.)

Scalable Optimization via Probabilistic
Modeling, 2006

ISBN 978-3-540-34953-2

Vol. 34. Ajith Abraham, Crina Grosan, Vitorino
Ramos (Eds.)

Swarm Intelligence in Data Mining, 2006

ISBN 978-3-540-34955-6

Vol. 35. Ke Chen, Lipo Wang (Eds.)
Trends in Neural Computation, 2007
ISBN 978-3-540-36121-3

Vol. 36. Ildar Batyrshin, Janusz Kacprzyk, Leonid
Sheremetor, Lotfi A. Zadeh (Eds.)

Preception-based Data Mining and Decision Making
in Economics and Finance, 2006

ISBN 978-3-540-36244-9

Vol. 37. Jie Lu, Da Ruan, Guangquan Zhang (Eds.)
E-Service Intelligence, 2007
ISBN 978-3-540-37015-4

Vol. 38. Art Lew, Holger Mauch
Dynamic Programming, 2007
ISBN 978-3-540-37013-0

Vol. 39. Gregory Levitin (Ed.)
Computational Intelligence in Reliability
Engineering, 2007

ISBN 978-3-540-37367-4

Vol. 40. Gregory Levitin (Ed.)
Computational Intelligence in Reliability
Engineering, 2007

ISBN 978-3-540-37371-1

Vol. 41. Mukesh Khare, S.M. Shiva Nagendra (Eds.)
Artificial Neural Networks in Vehicular Pollution
Modelling, 2007

ISBN 978-3-540-37417-6

Vol. 42. Bernd J. Krdmer, Wolfgang A. Halang (Eds.)
Contributions to Ubiquitous Computing, 2007
ISBN 978-3-540-44909-6

Vol. 43. Fabrice Guillet, Howard J. Hamilton (Eds.)
Quality Measures in Data Mining, 2007
ISBN 978-3-540-44911-9

Vol. 44. Nadia Nedjah, Luiza de Macedo
Mourelle, Mario Neto Borges, Nival Nunes
de Almeida (Eds.)

Intelligent Educational Machines, 2007
ISBN 978-3-540-44920-1

Vol. 45. Vladimir G. Ivancevic, Tijana T. Ivancevic
Neuro-Fuzzy Associative Machinery for
Comprehensive Brain and Cognition Modelling,
2007

ISBN 978-3-540-47463-0

Vol. 46. Valentina Zharkova, Lakhmi C. Jain (Eds.)
Artificial Intelligence in Recognition and
Classification of Astrophysical and Medical
Images, 2007

ISBN 978-3-540-47511-8

Vol. 47. S. Sumathi, S. Esakkirajan

Fundamentals of Relational Database Management
Systems, 2007

ISBN 978-3-540-48397-7

S. Sumathi
S. Esakkirajan

Fundamentals of Relational
Database Management
Systems

With 312 Figures and 30 Tables

@ Springer

Dr. S. Sumathi

Assistant Professor

Department of Electrical and Electronics Engineering
PSG College of Technology

P.O. Box 1611

Peelamedu

Coimbatore 641 004

Tamil Nadu, India

E-mail: ss_eeein@yahoo.com

S. Esakkirajan

Lecturer

Department of Electrical and Electronics Engineering
PSG College of Technology

P.O. Box 1611

Peelamedu

Coimbatore 641 004

Tamil Nadu, India

E-mail: ser@mail.psgtech.ac.in

Library of Congress Control Number: 2006935984

ISSN print edition: 1860-949X

ISSN electronic edition: 1860-9503

ISBN-10 3-540-48397-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48397-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
(© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin
Typesetting by SPi using a Springer BTEX macro package
Printed on acid-free paper SPIN: 11820970 89/SPi 543210

Preface

Information is a valuable resource to an organization. Computer software
provides an efficient means of processing information, and database systems
are becoming increasingly common means by which it is possible to store and
retrieve information in an effective manner. This book provides comprehen-
sive coverage of fundamentals of database management system. This book is
for those who wish a better understanding of relational data modeling, its
purpose, its nature, and the standards used in creating relational data model.

Relational databases are the most popular database management systems
in the world and are supported by a variety of vendor implementations.
Majority of the practical tasks in industry require applying relatively not
complex algorithms to huge amounts of well-structured data. The efficiency
of the application depends on the quality of data organization. Advances in
database technology and processing offer opportunities for using information
flexibility and efficiently when data is organized and stored in relational struc-
tures. The relational DBMS is a success in the commercial market place with
respect to business data processing and related applications. This success is
a result of cost effective application development combined with high data
consistency. The success has led to the use of relational DBMS technology in
other application environments requesting its traditional virtues, while at the
same time adding new requirements.

SQL is the standard computer language used to communicate with rela-
tional database management systems. Chapter 4 gives an introduction to SQL
with illustrative examples. The limitations of SQL and how to overcome that
limitations using PL/SQL are discussed in Chap. 5.

The current trends in hardware like RAID technology made relational
DBMSs to support high transmission rates, very high availability, and a soft
real-time transaction a cost effective possibility. The basics of RAID technol-
ogy, different levels of RAID are discussed in this book.

Object-oriented databases are also becoming important. As object-
oriented programming continues to increase in popularity, the demand for

VI Preface

such databases will grow. Due to this reason a separate chapter is being
devoted to object-oriented DBMS and object-relational DBMS.

This text discusses a number of new technologies and challenges in
database management systems like Genome Database Management System,
Mobile Database Management System, Multimedia Database Management
System, Spatial Database Management Systems, and XML.

Finally, there is no substitute for experience. To ensure that every
student can have experience for creating data models and database design,
list of projects along with codes in VB and Oracle are given. The goal in
providing the list of projects is to ensure that students should have atleast
one commercial product at their disposal.

About the Book

The book is meant for wide range of readers from College, University Students
who wish to learn basics as well as advanced concepts in Database Manage-
ment System. It can also be meant for the programmers who may be involved
in the programming based on the Oracle and Visual Basic applications.

Database Management System, at present is a well-developed field, among
academicians as well as between program developers. The principles of Data-
base Management System are dealt in depth with the information and the
useful knowledge available for computing processes. The various approaches
to data models and the relative advantages of relational model are given in
detail.

Relational databases are the most popular database management systems
in the world and are supported by a variety of vendor implementations. The
solutions to the problems are programmed using Oracle and the results are
given. The overview of Oracle and Visual Basic is provided for easy reference
to the students and professionals. This book also provides introduction to
commercial DBMS, pioneers in DBMS, and dictionary of DBMS terms in
appendix.

The various worked out examples and the solutions to the problems are
well balanced pertinent to the RDBMS Projects, Labs, and for College and
University Level Studies.

This book provides data models, database design, and application-oriented
structures to help the reader to move in to the database management world.
The book also presents application case studies on a wide range of connected
fields to facilitate the reader for better understanding. This book can be used
from Under Graduation to Post-Graduate Level. Some of the projects done are
also added in the book. The book contains solved example problems, review
questions, and solutions.

This book can be used as a ready reference guide for computer professionals
who are working in DBMS field. Most of the concepts, solved problems and

Preface VII

applications for wide variety of areas covered in this book, which can fulfill as
an advanced academic book.

We hope that the reader will find this book a truly helpful guide and a
valuable source of information about the database management principles for
their numerous practical applications.

Salient Features

The salient features of this book includes:

— Detailed description on relational database management system concepts

— Variety of solved examples

— Review questions with solutions

— Worked out results to understand the concepts of relational database man-
agement Systems using Oracle Version 8.0.

— Application case studies and projects on database management system
in various fields like Transport Management, Hospital Management, and
Academic Institution Management, Hospital Management, Railway Man-
agement and Election Voting System.

Organization of the Book

The book covers 14 chapters altogether. The fundamentals of relational data-

base management systems are discussed with basic principles, advanced con-

cepts, and recent challenges. The application case studies are also discussed.
The chapters are organized as follows:

— Chapter 1 gives an overview of database management system, Evolution
of Database Management System, ANSI/SPARK data model, Two-tier,
Three-tier and Multi-tier database architecture.

— The preliminaries of the Entity Relation (ER) data model are described in
Chap. 2. Different types of entities, attributes and relations are discussed
with examples. Mapping from ER model to relational model, Enhanced
ER model, which includes generalization, specialization, are given with
relevant examples.

— Chapter 3 deals with relational data model. In this chapter E.F. Codd rule,
basic definition of relation, cardinality of the relation, arity of the rela-
tion, constraints in relation are given with suitable examples. Relational
algebra, tuple relational calculus, domain relational calculus and different
operations involved are explained with lucid examples. This chapter also
discusses the features of QBE with examples.

— Chapter 4 exclusively deals with Structured Query Language. The data
definition language, data manipulation language and the data control lan-
guage were explained with suitable examples. Views, imposition of con-
straints in a relation are discussed with examples.

VIII Preface

— Chapter 5 deals with PL/SQL. The shortcomings of SQL and how they
are overcome in PL/SQL, the structure of PL/SQL are given in detail. The
iterative control like FOR loop, WHILE loop are explained with exam-
ples. The concept of CURSOR and the types of CURSORS are explained
with suitable examples. The concept of PROCEDURE, FUNCTION, and
PACKAGE are explained in detail. The concept of EXCEPTION HAN-
DLING and the different types of EXCEPTION HANDLING are given
with suitable examples. This chapter also gives an introduction to data-
base triggers and the different types of triggers.

— Chapter 6 deals with various phases in database design. The concept of
database design tools and the different types of database design tools
are given in this chapter. Functional dependency, normalization are also
discussed in this chapter. Different types of functional dependency, normal
forms, conversion from one normal form to the other are explained with
examples. The idea of denormalization is also introduced in this chapter.

— Chapter 7 gives details on transaction processing. Detailed descrip-
tion about deadlock condition and two phase locking are given through
examples. This chapter also discusses the concept of query optimization,
architecture of query optimizer and query optimization through Genetic
Algorithm.

— Chapter 8 deals with database security and recovery. The need for data-
base security, different types of database security is explained in detail.
The different types of database failures and the method to recover the
database is given in this chapter. ARIES recovery algorithm is explained
in a simple manner in this chapter.

— Chapter 9 discusses the physical database design. The different types
of File organization like Heap file, sequential file, and indexed file are
explained in this chapter. The concept of B tree and BY tree are explained
with suitable example. The different types of data storage devices are dis-
cussed in this chapter. Advanced data storage concept like RAID, different
levels of RAID, hardware and software RAID are explained in detail.

— Advanced concepts like data mining, data warehousing, and spatial data-
base management system are discussed in Chap. 10. The data mining con-
cept and different types of data mining systems are given in this chapter.
The performance issues, data integration, data mining rules are explained
in this chapter.

— Chapter 11 throws light on the concept of object-oriented and object
Relational DBMS. The benefits of object-oriented programming, object-
oriented programming languages, characteristics of object-oriented data-
base, application of OODBMS are discussed in detail. This chapter
also discusses the features of ORDBMS, comparison of ORDBMS with
OODBMS.

— Chapter 12 deals with distributed and parallel database management sys-
tem. The features of distributed database, distributed DBMS architecture,
distributed database design, distributed concurrency control are discussed

Preface IX

in depth. This chapter also discusses the basics of parallel database man-
agement, parallel database architecture, parallel query optimization.

— Recent challenges in DBMS are given in Chap. 13 which includes genome
database management, mobile database management, spatial database
management system and XML. In genome database management, the
concept of genome, genetic code, genome directory system project is
discussed. In mobile database, mobile database center, mobile database
architecture, mobile transaction processing, distributed database for mo-
bile are discussed in detail. In spatial database, spatial data types, spatial
database modeling, querying spatial data, spatial DBMS implementation
are analyzed. In XML, the origin of XML, XML family, XSL, XML, and
database applications are discussed.

— Few projects related to bus transport management system, hospital man-
agement, course administration system, Election voting system, library
management system and railway management system are implemented
using Oracle as front end and Visual Basic as back end are discussed in
Chap. 14. This chapter also gives an idea of how to do successful projects
in DBMS.

— Four appendices given in this book includes dictionary of DBMS terms,
overview of commands in SQL, pioneers in DBMS, commercial DBMS.
Dictionary of DBMS terms gives the definition of commonly used terms
in DBMS. Overview of commands in SQL gives the commonly used com-
mands and their function. Pioneers in DBMS introduce great people like
E.F. Codd, Peter Chen who have contributed for the development of data-
base management system. Commercial DBMS introduces some of the pop-
ular commercial DBMS like System R, DB2 and Informix.

— The bibliography is given at the end after the appendix chapter.

About the Authors

S. Sumathi, B.E. in Electronics and Communication Engineering and
Masters degree in Applied Electronics, Government College of Technology,
Coimbatore, TamilNadu and Ph.D. in the area of Data Mining, is currently
working as Assistant Professor in the Department of Electrical and Elec-
tronics Engineering, PSG College of Technology, Coimbatore with teaching
and research experience of 16 years. She received the prestigious Gold Medal
from the Institution of Engineers Journal Computer Engineering Division, for
the research paper titled, “Development of New Soft Computing Models for
Data Mining” and also Best project award for UG Technical Report, “Self-
Organized Neural Network Schemes: As a Data mining tool”. She received
Dr. R. Sundramoorthy award for Outstanding Academic of PSG College of
Technology in the year 2006. She has guided a project which received Best
M.Tech Thesis award from Indian Society for Technical Education, New Delhi.
In appreciation of publishing various technical articles the she has received

X Preface

National and International Journal Publication Awards. She has also pre-
pared manuals for Electronics and Instrumentation Laboratory and Electrical
and Electronics Laboratory of EEE Department, PSG College of Technology,
Coimbatore, has organized second National Conference on Intelligent and
Efficient Electrical Systems and has conducted short-term courses on “Neuro
Fuzzy System Principles and Data Mining Applications.” She has published
several research articles in National and International Journals/Conferences
and guided many UG and PG projects. She has also reviewed papers in
National/International Journals and Conferences. She has published three
books on “Introduction to Neural Networks with Matlab,” “Introduction to
Fuzzy Systems with Matlab,” and “Introduction to Data Mining and its Ap-
plications.” The research interests include neural networks, fuzzy systems and
genetic algorithms, pattern recognition and classification, data warehousing
and data mining, operating systems and parallel computing, etc.

S. Esakkirajan has a B.Tech Degree from Cochin University of Science
and Technology, Cochin and M.E. Degree from PSG College of Technology,
Coimbatore, with a Rank in M.E. He has received Alumni Award in his
M.E. He has presented papers in International and National Conferences. His
research areas include database management system, neural network, genetic
algorithm, and digital image processing.

Acknowledgment

The authors are always thankful to the Almighty for perseverance and achieve-
ments.

Sumathi and Esakkirajan wish to thank Mr. Rangaswamy, Managing
Trustee, PSG Institutions, Mr. C.R. Swaminathan, Chief Executive, and
Dr. R. Rudramoorthy, Principal, PSG College of Technology, Coimbatore, for
their whole-hearted cooperation and great encouragement given in this suc-
cessful endeavor. The authors appreciate and acknowledge Mr. Karthikeyan,
Mr. Ponson, Mr. Manoj Kumar, Mr. Afsar Ahmed, Mr. Harikumar,
Mr. Abdus Samad, Mr. Antony and Mr. Balumahendran who have been
with them in their endeavors with their excellent, unforgettable help, and
assistance in the successful execution of the work.

Dr. Sumathi owe much to her daughter Priyanka, who has helped her and
to the support rendered by her husband, brother, and family. Mr. Esakkirajan
like to thank his wife Akila, who shouldered a lot of extra responsibilities and
did this with the long-term vision, depth of character, and positive outlook
that are truly befitting of her name. He like to thank his father Sankaralingam
for providing moral support and constant encouragement.

DEDICATED TO ALMIGHTY

Contents

1 Overview of Database Management System................ 1
1.1 Imtroduction 1
1.2 Data and Information i 2
1.3 Database 2
1.4 Database Management System 3

1.4.1 Structure of DBMS 3
1.5 Objectives of DBMS 4
1.5.1 Data Availability i 4
1.5.2 Data Integrity i 4
1.5.3 Data Securityo 4
1.5.4 Data Independence 5
1.6 Evolution of Database Management Systems 5
1.7 Classification of Database Management System.............. 6
1.8 File-Based System i, 7
1.9 Drawbacks of File-Based System 8
1.9.1 Duplication of Data 8
1.9.2 Data Dependence 8
1.9.3 Incompatible File Formats......................... 8
1.9.4 Separation and Isolation of Data 9
1.10 DBMS Approach 9
1.11 Advantages of DBMS i 10
1.11.1 Centralized Data Management, 10
1.11.2 Data Independenceo, 10
1.11.3 Data Inconsistency 10
1.12 Ansi/Spark Data Model i, 11
1.12.1 Need for Abstraction 11
1.12.2 Data Independence, 12
1.13 Data Models 13
1.13.1 Early Data Models 14
1.14 Components and Interfaces of Database Management

SYStEIM . . .o 14

Contents

1.14.1 Hardwareouiuininimrer i
1.14.2 Software
1143 Data. ...
1.14.4 Proceduret
1.14.5 People Interacting with Database...................
1.14.6 Data Dictionary..............c ...
1.14.7 Functional Components of Database System
Structure.
1.15 Database Architecture
1.15.1 Two-Tier Architecture
1.15.2 Three-tier Architecture................
1.15.3 Multitier Architecture
1.16 Situations where DBMS is not Necessary
1.17 DBMS Vendors and their Products
Entity—Relationship Model
2.1 Imtroduction
2.2 The Building Blocks of an Entity—Relationship Diagram
221 Entity ...
2.22 Entity Type
2.2.3 Relationship
2.2.4 Attributes
225 ERDiagram i
2.3 Classification of Entity Sets........ i ..
2.3.1 Strong Entity
232 Weak Entity ...
2.4 Attribute Classification.,
2.4.1 Symbols Used in ER Diagram......................
2.5 Relationship Degree i,
2.5.1 Unary Relationship
2.5.2 Binary Relationship
2.5.3 Ternary Relationship
2.5.4 Quaternary Relationships
2.6 Relationship Classification oo...
2.6.1 One-to-Many Relationship Type....................
2.6.2 One-to-One Relationship Type
2.6.3 Many-to-Many Relationship Type
2.6.4 Many-to-One Relationship Type....................
2.7 Reducing ER Diagram to Tables
2.7.1 Mapping Algorithm..........
2.7.2 Mapping Regular Entities
2.7.3 Converting Composite Attribute in an ER Diagram
toTables

2.74 Mapping Multivalued Attributes in ER Diagram
toTables

Contents XIII

2.7.5 Converting “Weak Entities” in ER Diagram

toTables 45

2.7.6 Converting Binary Relationship to Table 46
2.7.7 Mapping Associative Entity to Tables............... 47
2.7.8 Converting Unary Relationship to Tables............ 49
2.7.9 Converting Ternary Relationship to Tables 50

2.8 Enhanced Entity—Relationship Model (EER Model).......... 51
2.8.1 Supertype or Superclass 51
2.8.2 Subtype or Subclass i 52

2.9 Generalization and Specialization.......................... 52
2.10 ISA Relationship and Attribute Inheritance................. 53
2.11 Multiple Inheritance 53
2.12 Constraints on Specialization and Generalization 54
2.12.1 Overlap Constraint, 54
2.12.2 Disjoint Constraint i, 55
2.12.3 Total Specialization........... ... i, 55
2.12.4 Partial Specialization 56

2.13 Aggregation and Compositioncooviiin.... 56
2.14 Entity Clusters. 57
2.15 Connection Trapsouiii i, 58
2151 Fan Trap 59
2.15.2 Chasm Trapot 59

2.16 Advantages of ER Modeling, 60
Relational Model 65
3.1 Imtroductiont 65
3.2 CODD’S Rulesot 65
3.3 Relational Data Model, 67
3.3.1 Structural Part 67
3.3.2 Imtegrity Part 67
3.3.3 Manipulative Part i 68
3.3.4 Tableand Relation 69

34 Conceptof Key ... oo 69
341 Superkey 69
342 Candidate Keyo i 70
343 Foreign Key 70

3.5 Relational Integrity i 70
3.5.1 Entity Integrity L 70
3.5.2 Null Imtegrity i i 71
3.5.3 Domain Integrity Constraint 71
3.5.4 Referential Integrity 71

3.6 Relational Algebra......... i 72
3.6.1 Role of Relational Algebra in DBMS................ 72

3.7 Relational Algebra Operations 72

3.7.1 Unary and Binary Operations...................... 72

XIV

Contents

3.7.2 Rename operation (P)..........oouiiiiiiiiiinan 76
3.7.3 Union Operation, 77
3.7.4 Intersection Operation 78
3.7.5 Difference Operation............., 79
3.7.6 Division Operation i, 80
3.7.7 Cartesian Product Operation 82
3.7.8 Join Operations, 83
3.8 Advantages of Relational Algebra.......................... 89
3.9 Limitations of Relational Algebra.......................... 89
3.10 Relational Calculus o i, 90
3.10.1 Tuple Relational Calculus 90
3.10.2 Set Operators in Relational Calculus................ 92
3.11 Domain Relational Calculus (DRC) 97
3.11.1 Queries in Domain Relational Calculus: 98

3.11.2 Queries and Domain Relational Calculus
Expressions. 98
3102 QBE . oo 102
Structured Query Language 111
4.1 Introduction 111
4.2 History of SQL Standard 112
4.2.1 Benefits of Standardized Relational Language 113
4.3 Commands in SQL 113
4.4 Datatypes in SQL 114
4.5 Data Definition Language (DDL), 117
4.6 Selection Operationouiiiiiinaa... 121
4.7 Projection Operationcooiiiiiiiiiiii... 122
4.8 Aggregate Functions i 124
4.81 COUNT Functionc..ouiiiiniininann... 124
4.8.2 MAX, MIN, and AVG Aggregate Function........... 127
4.9 Data Manipulation Language 135
4.9.1 Adding a New Row to the Table 136
4.9.2 Updating the Data in the Table 137
4.9.3 Deleting Row from the Table 138
4.10 Table Modification Commands, 138
4.10.1 Adding a Column to the Table 139
4.10.2 Modifying the Column of the Table................. 141
4.10.3 Deleting the Column of the Table 142
4.11 Table Truncation i, 143
4.11.1 Dropping a Table.........o .. 145
4.12 Imposition of Constraints. 146
4.12.1 NOT NULL Constraintcoooeeio.... 147
4.12.2 UNIQUE Constrainto .. 149
4.12.3 Primary Key Constraint............... 151

4.12.4 CHECK Constraint........... 154

Contents XV

4.12.5 Referential Integrity Constraint 155
4.12.6 ON DELETE CASCADE 159
4.12.7 ONDELETE SET NULL 161
4.13 Join Operationo 163
4.13.1 Equijoin...........o i 165
4.14 Set Operationsttt 166
4.14.1 UNION Operation.ouueuieiininennann... 166
4.14.2 INTERSECTION Operationc...coooon .. 168
4.14.3 MINUS Operationo.veuieinnennenn .. 169
405 VIeW o ot 169
4.15.1 Nonupdatable View............ 172
4.15.2 Views from Multiple Tables........................ 176
4.15.3 View From View 179
4.15.4 VIEW with CHECK Constraint 186
4.15.5 Views with Read-only Option 187
4.15.6 Materialized Views i i 191
416 SUDQUETY . . oot 192
4.16.1 Correlated Subquery......... 194
4.17 Embedded SQLo 201
PL/SQL ..o 213
5.1 Imtroduction i 213
5.2 Shortcomings in SQL 213
5.3 Structure of PL/SQL 214
5.4 PL/SQL Language Elements, 215
5.5 Data Types.o 222
5.6 Operators Precedence i, 223
5.7 Control Structure i 224
5.8 Steps to Create a PL/SQL Program 226
5.9 Tterative Control i 228
B.10 CUTSOTS vttt ittt e e e e e e e e e 231
5.10.1 TImplicit Cursors.ouiuinnennenn.. 232
5.10.2 Explicit Cursor i 234
5.11 Steps to Create a Cursorc.covuiiinnennennennan.. 235
5.11.1 Declare the Cursorcooiiiiiininan... 235
5.11.2 Openthe Cursorooiiiiiiiniann.. 236
5.11.3 Passing Parameters to Cursor 237
5.11.4 Fetch Data from the Cursor 237
5.11.5 Close the Cursor 237
5.12 Procedure 243
5.13 Function i 247
5.14 Packages . ..ot 252
5.15 Exceptions Handlingo i 255
5.16 Database Triggerso, 264
5.17 Types of Triggers.ooo it e 267

XVI

Contents
Database Design.......... i i 283
6.1 Introduction 283
6.2 Objectives of Database Design 285
6.3 Database Design Tools 286
6.3.1 Need for Database Design Tool..................... 286
6.3.2 Desired Features of Database Design Tools 286
6.3.3 Advantages of Database Design Tools 287
6.3.4 Disadvantages of Database Design Tools............. 287
6.3.5 Commercial Database Design Tools................. 287
6.4 Redundancy and Data Anomaly 288
6.4.1 Problems of Redundancy 288
6.4.2 Insertion, Deletion, and Updation Anomaly.......... 288
6.5 Functional Dependency 289
6.6 Functional Dependency Inference Rules
(Armstrong’s AXiOMS)iui i 292
6.7 Closure of Set of Functional Dependencies 294
6.7.1 Closure of a Set of Attributes 294
6.7.2 Minimal Cover i 295
6.8 Normalization.......... 296
6.8.1 Purpose of Normalization 296
6.9 Steps in Normalization o i, 296
6.10 Unnormal Form to First Normal Form 298
6.11 First Normal Form to Second Normal Form................. 300
6.12 Second Normal Form to Third Normal Form 301
6.13 Boyce-Codd Normal Form (BCNF) 304
6.14 Fourth and Fifth Normal Forms 307
6.14.1 Fourth Normal Form............. 307
6.14.2 Fifth Normal Form 311
6.15 Denormalization. 311
6.15.1 Basic Types of Denormalization 311
6.15.2 Table Denormalization Algorithm 312
Transaction Processing and Query Optimization 319
7.1 Transaction Processing i .. 319
7.1.1 Introduction il 319
7.1.2 Key Notations in Transaction Management 320
7.1.3 Concept of Transaction Management................ 320
7.1.4 Lock-Based Concurrency Control 326
7.2 Query Optimization i, 332
7.2.1 Query Processing........... ... i, 333
7.2.2 Need for Query Optimization 333
7.2.3 Basic Steps in Query Optimization 334
7.2.4 Query Optimizer Architecture 335

7.2.5 Basic Algorithms for Executing Query Operations 341

Contents XVII

7.2.6 Query Evaluation Plans 344
7.2.7 Optimization by Genetic Algorithms................ 346
Database Security and Recovery 353
8.1 Database Security 353
8.1.1 Imtroduction i 353
8.1.2 Need for Database Security 354
8.1.3 General Considerations.o, 354
8.1.4 Database Security System 356
8.1.5 Database Security Goals and Threats 356
8.1.6 Classification of Database Security 357
8.2 Database Recovery i 368
8.2.1 Different Types of Database Failures................ 368
8.2.2 Recovery Facilities. L 368
8.2.3 Main Recovery Techniques......................... 370
8.2.4 Crash Recovery i ... 370
8.2.5 ARIES Algorithm 371
Physical Database Design 381
9.1 Imtroductionot 381
9.2 Goals of Physical Database Design......................... 382
9.2.1 Physical Design Steps...........c.oiiiiii ... 382
9.2.2 Implementation of Physical Model 383
9.3 File Organization........o i, 384
9.3.1 Factors to be Considered in File Organization. 384
9.3.2 File Organization Classification 384
9.4 Heap File Organization., 385
9.4.1 Uses of Heap File Organization 385
9.4.2 Drawback of Heap File Organization................ 385
9.4.3 Example of Heap File Organization 386
9.5 Sequential File Organization 386
9.5.1 Sequential Processing of File....................... 387
952 Draw Back 387
9.6 Hash File Organization......... 387
9.6.1 Hashing Function 387
9.6.2 Bucket 388
9.6.3 Choice of Bucket il 389
9.6.4 Extendible Hashing.......... 391
9.7 Index File Organization cciiiiennin... 392
9.7.1 Advantage of Indexing, 392
9.7.2 Classification of Index 392
9.73 Search Key 393
9.8 Tree-Structured Indexesot 394

9.8.1 ISAM ... 394

XVIII Contents

10

9.8.2 B-Tree .. .o 394
9.8.3 BuildingaBT Tree............................... 394
9.84 BitmapIndex......... il 396
9.9 Data Storage Devices i 397
9.9.1 Factors to be Considered in Selecting Data Storage
Devices . ..ot 397
9.9.2 Magnetic Technology, 397
9.9.3 Fixed Magnetic Disk......... 398
9.9.4 Removable Magnetic Disk 398
9.95 Floppy Disk ... 398
9.9.6 Magnetic Tape i 398
9.10 Redundant Array of Inexpensive Disk 398
9.10.1 RAID Level O+ 1. ... oo 399
9.10.2 RAID Level 0. ...ovvni e 400
9103 RAID Level 1... ..o 401
9.104 RAID Level 2..... ... i 401
9.10.5 RAID Level 3.... ... i 402
9.10.6 RAID Level 4.o 403
9.10.7 RAID Level 5. ..o 404
9.10.8 RAID Level 6. ...ovviiii i 405
9.10.9 RAID Level 10 oot 406
9.11 Software-Based RAID i, 406
9.12 Hardware-Based RAID 407
9.12.1 RAID Controllero, 407
9.12.2 Types of Hardware RAID 408
9.13 Optical Technology i i, 409
9.13.1 Advantages of Optical Disks 409
9.13.2 Disadvantages of Optical Disks..................... 409
Data Mining and Data Warehousing 415
10.1 Data Miningot 415
10.1.1 Imtroduction i, 415
10.1.2 Architecture of Data Mining Systems 416
10.1.3 Data Mining Functionalities 417
10.1.4 Classification of Data Mining Systems 417
10.1.5 Major Issues in Data Mining....................... 418
10.1.6 Performance Issues, 419
10.1.7 Data Preprocessing 420
10.1.8 Data Mining Tasko .. 423
10.1.9 Data Mining Query Language...................... 425
10.1.10 Architecture Issues in Data Mining System 426
10.1.11 Mining Association Rules in Large Databases 427

10.1.12 Mining Multilevel Association From Transaction
Databases 430

Contents XIX

10.1.13 Rule Constraintso .. 433
10.1.14 Classification and Prediction....................... 434
10.1.15 Comparison of Classification Methods............... 436
10.1.16 Prediction oo, 441
10.1.17 Cluster Analysis.oo i 442
10.1.18 Mining Complex Types of Data 449
10.1.19 Applications and Trends in Data Mining 453
10.1.20 How to Choose a Data Mining System 456
10.1.21 Theoretical Foundations of Data Mining............. 458
10.2 Data Warehousingt 461
10.2.1 Goals of Data Warehousing 461
10.2.2 Characteristics of Data in Data Warehouse 462
10.2.3 Data Warehouse Architectures 462
10.2.4 Data Warehouse Design 465
10.2.5 Classification of Data Warehouse Design 467
10.2.6 The User Interface........... 471
11 Objected-Oriented and Object Relational DBMS 477
11.1 Objected oriented DBMS i 477
11.1.1 Introductiono it 477
11.1.2 Object-Oriented Programming Languages (OOPLs). . . 479
11.1.3 Availability of OO Technology and Applications. 481
11.1.4 Overview of OODBMS Technology 482
11.1.5 Applications of an OODBMS 487
11.1.6 Evaluation Criteria, 491
11.1.7 Evaluation Targets 519
11.1.8 Object Relational DBMS 525
11.1.9 Object-Relational Model 526
11.1.10 Aggregation and Composition in UML 529
11.1.11 Object-Relational Database Design 530
11.1.12 Comparison of OODBMS and ORDBMS 537
12 Distributed and Parallel Database Management Systems .. 559
12.1 Distributed Database i 559
12.1.1 Features of Distributed vs. Centralized Databases561
12.2 Distributed DBMS Architecture 562
12.2.1 DBMS Standardization 562
12.2.2 Architectural Models for Distributed DBMS 563
12.2.3 Types of Distributed DBMS Architecture............ 564
12.3 Distributed Database Design............. 565
12.3.1 Framework for Distributed Database Design 566
12.3.2 Objectives of the Design of Data Distribution 567
12.3.3 Top-Down and Bottom-Up Approaches to the Design
of Data Distribution, 568

12.3.4 Design of Database Fragmentation.................. 568

XX

13

12.4 Semantic Data Control
12.4.1 View Management...............
12.4.2 Views in Centralized DBMSs
12.4.3 Update Through Views
12.4.4 Views in Distributed DBMS
12.4.5 Data Securityc.ooiiiiii i
12.4.6 Centralized Authorization Control
12.4.7 Distributed Authorization Control
12.4.8 Semantic Integrity Control
12.4.9 Distributed Semantic Integrity Control.............
12.5 Distributed Concurrency Control
12.5.1 Serializability Theory
12.5.2 Taxonomy of Concurrency Control Mechanism
12.5.3 Locking-Based Concurrency Control
12.5.4 Timestamp-Based Concurrency Control Algorithms. ..
12.5.5 Optimistic Concurrency Control Algorithms
12.5.6 Deadlock Management
12.6 Distributed DBMS Reliability
12.6.1 Reliability Concepts and Measures.................
12.6.2 Failures in Distributed DBMS.....................
12.6.3 Basic Fault Tolerance Approaches and Techniques
12.6.4 Distributed Reliability Protocols
12.7 Parallel Database
12.7.1 Database Server and Distributed Databases.........
12.7.2 Main Components of Parallel Processing
12.7.3 Functional Aspects
12.7.4 Various Parallel System Architectures..............
12.7.5 Parallel DBMS Techniques

Recent Challenges in DBMS
13.1 Genome Databases
13.1.1 Imtroduction
13.1.2 Basic Idea of Genome
13.1.3 Building Block of DNA
13.1.4 GeneticCode
13.1.5 GDS (Genome Directory System) Project
13.1.6 Conclusionouiiiriiiinnnan...
13.2 Mobile Database
13.2.1 Concept of Mobile Database
13.2.2 General Block Diagram of Mobile Database Center . . .
13.2.3 Mobile Database Architecture.....................
13.2.4 Modes of Operations of Mobile Database
13.2.5 Mobile Database Management
13.2.6 Mobile Transaction Processing
13.2.7 Distributed Database for Mobile

Contents

Contents XXI

13.3 Spatial Database i 626
13.3.1 Spatial Data Types 627
13.3.2 Spatial Database Modeling 628
13.3.3 Discrete Geometric Spaces.c.oouviueen... 628
1334 QUEIYING . ..o vt e 629
13.3.5 Integrating Geometry into a Query Language 630
13.3.6 Spatial DBMS Implementation 631

13.4 Multimedia Database Management System 632
13.4.1 Imtroduction i i, 632
13.4.2 Multimedia Data L. 632
13.4.3 Multimedia Data Model 633
13.4.4 Architecture of Multimedia System 635
13.4.5 Multimedia Database Management System

Development. i i 636
13.4.6 Issues in Multimedia DBMS 636

13.5 XML . 637
13.5.1 Imtroduction, 637
13.5.2 Originof XMLo i 637
1353 Goalsof XML i 638
13.5.4 XML Family ... 638
1355 XMLand HTML 638
13.5.6 XML Document, 639
13.5.7 Document Type Definitions (DTD) 640
13.5.8 Extensible Style Sheet Language (XSL) 640
13.5.9 XML Namespacesc.ouuiinininneinennen .. 641
13.5.10 XML and Datbase Applications 643

14 Projects in DBMS 645

14.1 List of Projects 645

14.2 Overview of the Projects i .. 645
14.2.1 Front-End: Microsoft Visual Basic 645
14.2.2 Back-End: Oracle 91 646
14.2.3 Imnterface: ODBC 646

14.3 First Project: Bus Transport Management System 647
14.3.1 Descriptiont 647
14.3.2 Features of the Project 647
14.3.3 Source Codeot 649

14.4 Second Project: Course Administration System.............. 656
14.4.1 Description 656
14.4.2 Source Codeot 656

14.5 Third Project: Election Voting System 666
14.5.1 Descriptionot 666
14.5.2 Source Code it 666

14.6 Fourth Project: Hospital Management System............... 673
14.6.1 Descriptiont 673

14.6.2 Source Code 674

XXII Contents

14.7 Fifth Project: Library Management System 680
14.7.1 DeScriptionouiui i 680

14.7.2 Source Code 680

14.8 Sixth Project: Railway Management System 690
14.8.1 Description 690

14.8.2 Source Code 690

14.9 Some Hints to Do Successful Projects in DBMS 696

A Dictionary of DBMS Terms, 699
B Overview of Commands in SQL 721
C Pioneers in DBMS 727
C.1 About Dr. Edgar F. Codd 728

C.2 Ronald Fagin 736
C.2.1 Abstract of Ronald Fagin’s Article.................. 737

D Popular Commercial DBMS............ 739
D.1 System R....oo 739
D.1.1 Introduction to System R 739

D.1.2 Keywords Used 739

D.1.3 Architecture and System Structure 740

D.1.4 Relational Data Interface.......................... 742

D.1.5 Data Manipulation Facilities in SEQUEL............ 743

D.1.6 Data Definition Facilities 745

D.1.7 Data Control Facilities 746

D.2 Relational Data System o .. 749

D.3 DB . 752
D.3.1 Introductionto DB2 752

D.3.2 Definition of DB2 Data Structures.................. 753

D.3.3 DB2 Stored Procedure 753

D.3.4 DB2 Processing Environment 755

D.3.5 DB2 Commandscouiiniriinininain.. 757

D.3.6 Data SharinginDB2 759

D.3.7 Conclusion 760

D4 Informix e 760
D.4.1 Introduction to Informix 760

D.4.2 Informix SQL and ANSI SQL 761

D.4.3 Software Dependencies 762

D.4.4 New Features in Version 7.3 763

D.45 Conclusionc.iiiiiirn . 766

Bibliography 767

Abbreviations

ACM
ACID
ANSI

Association of Computing Machinery
Atomicity, Consistency, Isolation, and Durability
American National Standard Institute

ANSI/SPARK American National Standard Institute/Standards Planning

API
ARIES
ASCII
ASP
BCNF
BLOB
CAD/CAM
CAEP
CASE
CLOB
CD
CD-ROM
CD-RW
CLARA
CLARANS
CODASYL
CPT

CSs
CURE
CURSOR
DB

DB2
DBMS
DBA

And Requirements Committee

Application Program Interface

Algorithms for Recovery and Isolation Exploiting -Semantics
American Standard Code for Information Interchange
Active Server Page

Boyce-Codd Normal Form

Binary Large Object

Computer Aided Design/Computer Aided Manufacturing
Classification by Aggregating Emerging Patterns
Computer Aided Software Engineering

Character Large Object

Compact Disk

Compact Disk Read Only Memory

Compact Disk ReWritable

Clustering LARge Application

Clustering Large Application based upon Randomized Search
Conference On Data System Language

Conditional Probability Table

Cascade Style Sheet

Clustering Using Representatives

Current Set of Records

Database

Database 2 (an IBM Relational DBMS)

Database Management System

Database Administrator

XXIV Abbreviations

DBTG
DCL
DD
DDBMS
DDL
DKNF
DLM
DL/I
DM
DML
DOM
DRC
DSS
DTD
DW

ER Model

Database Task Group

Data Control Language

Data Dictionary

Distributed Database Management Systems
Data Description Language
Domain Key Normal Form
Distributed Lock Manager
Data Language I

Data Manager

Data Manipulation Language
Document Object Model
Domain Relational Calculus
Decision Support System
Document Type Definition
Data Warehouse

Entity Relationship Model

EER Model Enhanced Entity Relationship Model

ERD
FD
GDS
GIS
GLS
GMOD
GUAM
GUI
HGP
HTML
NAS
IBM
IDE
IMS
ISAM
ISO
JDBC
LAN
MARS
MMDBMS
MM
MOLAP
MPEG
MTL
ODBC
ODMG

Entity Relationship Diagram

Functional Dependency

Genome Directory System

Geographical Information System

Global Language Support

Generic Model Organism Database
Generalized Update Access Method
Graphical User Interface

Human Genome Project

Hyper Text Markup Language

Network Attached Storage

International Business Machines
Integrated Development Environment
Information Management System

Indexed Sequential Access Method
International Standard Organization

Java Database Connectivity

Local Area Network

Multimedia Analysis and Retrieval System
Multimedia Database Management System
Media Manager

Multidimensional Online Analytical Processing
Motion Picture Expert Group

Multimedia Transaction Language

Open Database Connectivity

Object Database Management Group

Abbreviations

OLAP Online Analytical Processing

OLTP Online Transaction Processing

OMG Object Management Group

OOPL Object Oriented Programming Language
ORDBMS Object Relational Database Management System
OODBMS Object Oriented Database Management System
0S Operating System

PAM Partitioning Around Medoids

PCTE Portable Common Tool Environment

PL/SQL Programming Language/Structured Query Language
QBE Query By Example

RAID Redundant Array of Inexpensive/Independent Disk
RDBMS Relational Database Management System

ROLAP Relational Online Analytical Processing

SCSI Small Computer System Interface

SEQUEL Structured Query English Language

SGML Standard Generalized Markup Language

SQL Structured Query Language

SQL/DS Structured Query Language/Data System
™ Transaction Manager

TRC Tuple Relational Calculus

UML Unified Modeling Language

VB Visual Basic

VSAM Virtual Storage Access Method
WORM Write Once Read Many
WWW World Wide Web

W3C World Wide Web Consortium
XML Extended Markup Language

XSL Extensible Style Sheet Language
2PL Two Phase Lock

4GL Fourth Generation Language

1:1 One-to-One

1:M One-to-Many

INF First Normal Form

2NF Second Normal Form

3NF Third Normal Form

4NF Fourth Normal Form

5NF Fifth Normal Form

XXV

List of Symbols

Meaning

1000 o= <" xxxaceny

Projection operator
Selection operator

Union operator
Intersection operator
Cartesian product operator
Join operator

Left outer join operator
Right outer join operator
Full outer join operator
Semi join operator
Rename operator
Universal quantifier
Existential quantifier
Entity

Attribute

Multivalued attribute
Relationship

Associative entity
Identifying relationship type
Derived attribute

Weak entity type

1

Overview of Database Management System

Learning Objectives. This chapter provides an overview of database management
system which includes concepts related to data, database, and database management
system. After completing this chapter the reader should be familiar with the
following concepts:

— Data, information, database, database management system

— Need and evolution of DBMS

— File management vs. database management system
ANSI/SPARK data model

— Database architecture: two-, three-, and multitier architecture

1.1 Introduction

Science, business, education, economy, law, culture, all areas of human deve-
lopment “work” with the constant aid of data. Databases play a crucial role
within science research: the body of scientific and technical data and infor-
mation in the public domain is massive and factual data are fundamental to
the progress of science. But the progress of science is not the only process
affected by the way people use databases. Stock exchange data are absolutely
necessary to any analyst; access to comprehensive databases of large scale
is an everyday activity of a teacher, an educator, an academic or a lawyer.
There are databases collecting all sorts of different data: nuclear structure and
radioactive decay data for isotopes (the Evaluated Nuclear Structure Data
File) and genes sequences (the Human Genome Database), prisoners’ DNA
data (“DNA offender database”), names of people accused for drug offenses,
telephone numbers, legal materials and many others. In this chapter, the ba-
sic idea about database management system, its evolution, its advantage over
conventional file system, database system structure is discussed.

S. Sumathi: Overview of Database Management System, Studies in Computational Intelligence
(SCT) 47, 1-30 (2007)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

2 1 Overview of Database Management System

1.2 Data and Information

Data are raw facts that constitute building block of information. Data are
the heart of the DBMS. It is to be noted that all the data will not convey
useful information. Useful information is obtained from processed data. In
other words, data has to be interpreted in order to obtain information. Good,
timely, relevant information is the key to decision making. Good decision
making is the key to organizational survival.

Data are a representation of facts, concepts, or instructions in a formalized
manner suitable for communication, interpretation, or processing by humans
or automatic means. The data in DBMS can be broadly classified into two
types, one is the collection of information needed by the organization and the
other is “metadata” which is the information about the database. The term
“metadata” will be discussed in detail later in this chapter.

Data are the most stable part of an organization’s information system.
A company needs to save information about employees, departments, and
salaries. These pieces of information are called data. Permanent storage of
data are referred to as persistent data. Generally, we perform operations on
data or data items to supply some information about an entity. For example
library keeps a list of members, books, due dates, and fines.

1.3 Database

A database is a well-organized collection of data that are related in a meaning-
ful way, which can be accessed in different logical orders. Database systems are
systems in which the interpretation and storage of information are of primary
importance. The database should contain all the data needed by the organi-
zation as a result, a huge volume of data, the need for long-term storage of
the data, and access of the data by a large number of users generally charac-
terize database systems. The simplified view of database system is shown in
Fig. 1.1. From this figure, it is clear that several users can access the data in an

Users

Users

Database

Users

Fig. 1.1. Simplified database view

1.4 Database Management System 3

organization still the integrity of the data should be maintained. A database
is integrated when same information is not recorded in two places.

1.4 Database Management System

A database management system (DBMS) consists of collection of interrelated
data and a set of programs to access that data. It is software that is helpful
in maintaining and utilizing a database.

A DBMS consists of:

— A collection of interrelated and persistent data. This part of DBMS is
referred to as database (DB).

— A set of application programs used to access, update, and manage data.
This part constitutes data management system (MS).

— A DBMS is general-purpose software i.e., not application specific. The
same DBMS (e.g., Oracle, Sybase, etc.) can be used in railway reservation
system, library management, university, etc.

— A DBMS takes care of storing and accessing data, leaving only application
specific tasks to application programs.

DBMS is a complex system that allows a user to do many things to data
as shown in Fig. 1.2. From this figure, it is evident that DBMS allows user to
input data, share the data, edit the data, manipulate the data, and display
the data in the database. Because a DBMS allows more than one user to share
the data; the complexity extends to its design and implementation.

1.4.1 Structure of DBMS

An overview of the structure of database management system is shown in
Fig. 1.3. A DBMS is a software package, which translates data from its logical
representation to its physical representation and back.

The DBMS uses an application specific database description to define this
translation. The database description is generated by a database designer

MANIPULATE

Fig. 1.2. Capabilities of database management system

4 1 Overview of Database Management System

Data Definition
Language or
Interface

Conceptual
Schema

4

Database
Description

A

Database
Management
System

User’s View
of Database

Database

Fig. 1.3. Structure of database management system

from his or her conceptual view of the database, which is called the Con-
ceptual Schema. The translation from the conceptual schema to the database
description is performed using a data definition language (DDL) or a graphical
or textual design interface.

1.5 Objectives of DBMS

The main objectives of database management system are data availability,
data integrity, data security, and data independence.

1.5.1 Data Availability

Data availability refers to the fact that the data are made available to wide
variety of users in a meaningful format at reasonable cost so that the users
can easily access the data.

1.5.2 Data Integrity
Data integrity refers to the correctness of the data in the database. In other
words, the data available in the database is a reliable data.

1.5.3 Data Security

Data security refers to the fact that only authorized users can access the data.
Data security can be enforced by passwords. If two separate users are accessing
a particular data at the same time, the DBMS must not allow them to make
conflicting changes.

1.6 Evolution of Database Management Systems 5
1.5.4 Data Independence

DBMS allows the user to store, update, and retrieve data in an efficient
manner. DBMS provides an “abstract view” of how the data is stored in the
database.

In order to store the information efficiently, complex data structures are
used to represent the data. The system hides certain details of how the data
are stored and maintained.

1.6 Evolution of Database Management Systems

File-based system was the predecessor to the database management system.
Apollo moon-landing process was started in the year 1960. At that time, there
was no system available to handle and manage large amount of information. As
a result, North American Aviation which is now popularly known as Rock-
well International developed software known as Generalized Update Access
Method (GUAM). In the mid-1960s, IBM joined North American Aviation
to develop GUAM into Information Management System (IMS). IMS was
based on Hierarchical data model. In the mid-1960s, General Electric released
Integrated Data Store (IDS). IDS were based on network data model. Charles
Bachmann was mainly responsible for the development of IDS. The network
database was developed to fulfill the need to represent more complex data
relationships than could be modeled with hierarchical structures. Conference
on Data System Languages formed Data Base Task Group (DBTG) in 1967.
DBTG specified three distinct languages for standardization. They are Data
Definition Language (DDL), which would enable Database Administrator to
define the schema, a subschema DDL, which would allow the application pro-
grams to define the parts of the database and Data Manipulation Language
(DML) to manipulate the data.

The network and hierarchical data models developed during that time had
the drawbacks of minimal data independence, minimal theoretical foundation,
and complex data access. To overcome these drawbacks, in 1970, Codd of IBM
published a paper titled “A Relational Model of Data for Large Shared Data
Banks” in Communications of the ACM, vol. 13, No. 6, pp. 377-387, June
1970. As an impact of Codd’s paper, System R project was developed dur-
ing the late 1970 by IBM San Jose Research Laboratory in California. The
project was developed to prove that relational data model was implementable.
The outcome of System R project was the development of Structured Query
Language (SQL) which is the standard language for relational database man-
agement system. In 1980s IBM released two commercial relational database
management systems known as DB2 and SQL/DS and Oracle Corporation re-
leased Oracle. In 1979, Codd himself attempted to address some of the failings
in his original work with an extended version of the relational model called
RM/T in 1979 and RM/V2 in 1990. The attempts to provide a data model

6 1 Overview of Database Management System

that represents the “real world” more closely have been loosely classified as
Semantic Data Modeling.

In recent years, two approaches to DBMS are more popular, which are
Object-Oriented DBMS (OODBMS) and Object Relational DBMS (OR-
DBMS).

The chronological order of the development of DBMS is as follows:

— Flat files — 1960s—1980s

— Hierarchical — 1970s-1990s
Network — 1970s-1990s

— Relational — 1980s—present
Object-oriented — 1990s—present

— Object-relational — 1990s—present
— Data warehousing — 1980s—present
— Web-enabled — 1990s—present

Early 1960s. Charles Bachman at GE created the first general purpose DBMS
Integrated Data Store. It created the basis for the network model which was
standardized by CODASYL (Conference on Data System Language).

Late 1960s. I1BM developed the Information Management System (IMS). IMS
used an alternate model, called the Hierarchical Data Model.

1970. Edgar Codd, from IBM created the Relational Data Model. In 1981
Codd received the Turing Award for his contributions to database theory.
Codd Passed away in April 2003.

1976. Peter Chen presented Entity-Relationship model, which is widely used
in database design.

1980. SQL developed by IBM, became the standard query language for data-
bases. SQL was standardized by ISO.

1980s and 1990s. IBM, Oracle, Informix and others developed powerful
DBMS.

1.7 Classification of Database Management System

The database management system can be broadly classified into (1) Passive
Database Management System and (2) Active Database Management System:

1. Passive Database Management System. Passive Database Management
Systems are program-driven. In passive database management system the
users query the current state of database and retrieve the information cur-
rently available in the database. Traditional DBMS are passive in the sense
that they are explicitly and synchronously invoked by user or application
program initiated operations. Applications send requests for operations to
be performed by the DBMS and wait for the DBMS to confirm and return
any possible answers. The operations can be definitions and updates of
the schema, as well as queries and updates of the data.

1.8 File-Based System 7

2. Active Database Management System. Active Database Management Sys-
tems are data-driven or event-driven systems. In active database manage-
ment system, the users specify to the DBMS the information they need.
If the information of interest is currently available, the DBMS actively
monitors the arrival of the desired information and provides it to the rele-
vant users. The scope of a query in a passive DBMS is limited to the past
and present data, whereas the scope of a query in an active DBMS addi-
tionally includes future data. An active DBMS reverses the control flow
between applications and the DBMS instead of only applications calling
the DBMS, the DBMS may also call applications in an active DBMS.

Active databases contain a set of active rules that consider events that
represent database state changes, look for TRUE or FALSE conditions as
the result of a database predicate or query, and take an action via a data
manipulation program embedded in the system. Alert is extension archi-
tecture at the IBM Almaden Research, for experimentation with active
databases.

1.8 File-Based System

Prior to DBMS, file system provided by OS was used to store information.
In a file-based system, we have collection of application programs that per-
form services for the end users. Each program defines and manages its own
data.

Consider University database, the University database contains details
about student, faculty, lists of courses offered, and duration of course, etc.
In File-based processing for each database there is separate application pro-
gram which is shown in Fig. 1.4.

Files of
Application 1

7
Group 1 of users Application 1
7
inati Files of
Group 2 of users Application 2 Application 2

Files of
Application n

A {
Application n

Fig. 1.4. File-based System

Group n of users

8 1 Overview of Database Management System

One group of users may be interested in knowing the courses offered by
the university. One group of users may be interested in knowing the faculty
information. The information is stored in separate files and separate applica-
tions programs are written.

1.9 Drawbacks of File-Based System

The limitations of file-based approach are duplication of data, data depen-
dence, incompatible file formats, separation, and isolation of data.

1.9.1 Duplication of Data

Duplication of data means same data being stored more than once. This can
also be termed as data redundancy. Data redundancy is a problem in file-
based approach due to the decentralized approach. The main drawbacks of
duplication of data are:

— Duplication of data leads to wastage of storage space. If the storage space
is wasted it will have a direct impact on cost. The cost will increase.

— Duplication of data can lead to loss of data integrity; the data are no
longer consistent. Assume that the employee detail is stored both in the
department and in the main office. Now the employee changes his contact
address. The changed address is stored in the department alone and not
in the main office. If some important information has to be sent to his
contact address from the main office then that information will be lost.
This is due to the lack of decentralized approach.

1.9.2 Data Dependence

Data dependence means the application program depends on the data. If some
modifications have to be made in the data, then the application program has to
be rewritten. If the application program is independent of the storage structure
of the data, then it is termed as data independence. Data independence is
generally preferred as it is more flexible. But in file-based system there is
program-data dependence.

1.9.3 Incompatible File Formats

As file-based system lacks program data independence, the structure of the file
depends on the application programming language. For example, the struc-
ture of the file generated by FORTRAN program may be different from the
structure of a file generated by “C” program. The incompatibility of such files
makes them difficult to process jointly.

1.10 DBMS Approach 9

1.9.4 Separation and Isolation of Data

In file-based approach, data are isolated in separate files. Hence it is difficult
to access data. The application programmer must synchronize the processing
of two files to ensure that the correct data are extracted. This difficulty is
more if data has to be retrieved from more than two files.

The draw backs of conventional file-based approach are summarized later:

. We have to store the information in a secondary memory such as a disk.
If the volume of information is large; it will occupy more memory space.

. We have to depend on the addressing facilities of the system. If the data-
base is very large, then it is difficult to address the whole set of records.

. For each query, for example the address of the student and the list of
electives that the student has chosen, we have to write separate programs.
. While writing several programs, lot of variables will be declared and it
will occupy some space.

. It is difficult to ensure the integrity and consistency of the data when
more than one program accesses some file and changes the data.

. In case of a system crash, it becomes hard to bring back the data to a
consistent state.

. “Data redundancy’
ous files.

. Data distributed in various files may be in different formats hence it is
difficult to share data among different application (Data Isolation).

)

occurs when identical data are distributed over vari-

1.10 DBMS Approach

DBMS is software that provides a set of primitives for defining, accessing, and
manipulating data. In DBMS approach, the same data are being shared by
different application programs; as a result data redundancy is minimized. The
DBMS approach of data access is shown in Fig. 1.5.

Group 1 of users Application 1
A
Group 2 of users Application 2 !

DBMS

A

Fig. 1.5. Data access through DBMS

10 1 Overview of Database Management System

1.11 Advantages of DBMS

There are many advantages of database management system. Some of the
advantages are listed later:

1. Centralized data management.
2. Data Independence.
3. System Integration.

1.11.1 Centralized Data Management

In DBMS all files are integrated into one system thus reducing redundancies
and making data management more efficient.

1.11.2 Data Independence

Data independence means that programs are isolated from changes in the
way the data are structured and stored. In a database system, the database
management system provides the interface between the application programs
and the data. Physical data independence means the applications need not
worry about how the data are physically structured and stored. Applications
should work with a logical data model and declarative query language.

If major changes were to be made to the data, the application programs
may need to be rewritten. When changes are made to the data representation,
the data maintained by the DBMS is changed but the DBMS continues to
provide data to application programs in the previously used way.

Data independence is the immunity of application programs to changes
in storage structures and access techniques. For example if we add a new
attribute, change index structure then in traditional file processing system,
the applications are affected. But in a DBMS environment these changes are
reflected in the catalog, as a result the applications are not affected. Data
independence can be physical data independence or logical data independence.

Physical data independence is the ability to modify physical schema with-
out causing the conceptual schema or application programs to be rewritten.

Logical data independence is the ability to modify the conceptual schema
without having to change the external schemas or application programs.

1.11.3 Data Inconsistency

Data inconsistency means different copies of the same data will have different
values. For example, consider a person working in a branch of an organization.
The details of the person will be stored both in the branch office as well as in
the main office. If that particular person changes his address, then the “change
of address” has to be maintained in the main as well as the branch office.

1.12 Ansi/Spark Data Model 11

For example the “change of address” is maintained in the branch office but
not in the main office, then the data about that person is inconsistent.

DBMS is designed to have data consistency. Some of the qualities achieved
in DBMS are:

Data redundancy — Reduced in DBMS.

Data independence — Activated in DBMS.

Data inconsistency — Avoided in DBMS.

Centralizing the data — Achieved in DBMS.

Data integrity — Necessary for efficient Transaction.
Support for multiple views — Necessary for security reasons.

AN

— Data redundancy means duplication of data. Data redundancy will occupy
more space hence it is not desirable.

— Data independence means independence between application program and
the data. The advantage is that when the data representation changes, it
is not necessary to change the application program.

— Data inconsistency means different copies of the same data will have dif-
ferent values.

— Centralizing the data means data can be easily shared between the users
but the main concern is data security.

— The main threat to data integrity comes from several different users
attempting to update the same data at the same time. For example, “The
number of booking made is larger than the capacity of the aircraft/train.”

— Support for multiple views means DBMS allows different users to see
different “views” of the database, according to the perspective each one
requires. This concept is used to enhance the security of the database.

1.12 Ansi/Spark Data Model (American National
Standard Institute/ Standards Planning
and Requirements Committee)

The distinction between the logical and physical representation of data were
recognized in 1978 when ANSI/SPARK committee proposed a generalized
framework for database systems. This framework provided a three-level archi-
tecture, three levels of abstraction at which the database could be viewed.

1.12.1 Need for Abstraction

The main objective of DBMS is to store and retrieve information efficiently;
all the users should be able to access same data. The designers use complex
data structure to represent the data, so that data can be efficiently stored
and retrieved, but it is not necessary for the users to know physical database
storage details. The developers hide the complexity from users through several
levels of abstraction.

12 1 Overview of Database Management System
1.12.2 Data Independence

Data independence means the internal structure of database should be
unaffected by changes to physical aspects of storage. Because of data in-
dependence, the Database administrator can change the database storage
structures without affecting the users view.
The different levels of data abstraction are:

1. Physical level or internal level
2. Logical level or conceptual level
3. View level or external level

Physical Level

It is concerned with the physical storage of the information. It provides the
internal view of the actual physical storage of data. The physical level
describes complex low-level data structures in detail.

Logical Level

Logical level describes what data are stored in the database and what rela-
tionships exist among those data.

Logical level describes the entire database in terms of a small number of
simple structures. The implementation of simple structure of the logical level
may involve complex physical level structures; the user of the logical level
does not need to be aware of this complexity. Database administrator use the
logical level of abstraction.

View Level

View level is the highest level of abstraction. It is the view that the individual
user of the database has. There can be many view level abstractions of the
same data. The different levels of data abstraction are shown in Fig. 1.6.

Database Instances

Database change over time as information is inserted and deleted. The collec-
tion of information stored in the database at a particular moment is called an
instance of the database.

Database Schema

The overall design of the database is called the database schema. A schema is
a collection of named objects. Schemas provide a logical classification of ob-
jects in the database. A schema can contain tables, views, triggers, functions,
packages, and other objects.

1.13 Data Models 13

External View 1 | | External View 2 | | External View 3 | External level
%{ to e@n&/ mappi
: Logical Schema Logical level

internal to Iog@:l mapping

Internal Schema Internal level

Fig. 1.6. ANSI/SPARK data model

A schema is also an object in the database. It is explicitly created using the
CREATE SCHEMA statement with the current user recorded as the schema
owner. It can also be implicitly created when another object is created,
provided the user has IMPLICIT_.SCHEMA authority.

Data base schemas

Physical schema Logical schema Subschema
Describes the Database Describes the database Describes different
Design at the design at the logical views of the
Physical level level database

1.13 Data Models

Data model is collection of conceptual tools for describing data, relationship
between data, and consistency constraints. Data models help in describing
the structure of data at the logical level. Data model describe the structure of
the database. A data model is the set of conceptual constructs available for
defining a schema. The data model is a language for describing the data and
database, it may consist of abstract concepts, which must be translated by the

14 1 Overview of Database Management System

designer into the constructs of the data definition interface, or it may consist of
constructs, which are directly supported by the data definition interface. The
constructs of the data model may be defined at many levels of abstraction.

Data model
Conceptual data model Physical data model
Object based Record based
Logical model model
E-R model # Relational model
(Entity-Relationship model)
Object-oriented model # Network model
Functional data model # Hierarchical data model

1.13.1 Early Data Models

Three historically important data models are the hierarchical, network, and
relational models. These models are relevant for their contributions in estab-
lishing the theory of data modeling and because they were all used as the
basis of working and widely used database systems. Together they are often
referred to as the “basic” data models. The hierarchical and network models,
developed in the 1960s and 1970s, were based on organizing the primitive data
structures in which the data were stored in the computer by adding connec-
tions or links between the structures. As such they were useful in presenting
the user with a well-defined structure, but they were still highly coupled to
the underlying physical representation of the data. Although they did much
to assist in the efficient access of data, the principle of data independence was
poorly supported.

1.14 Components and Interfaces of Database
Management System

A database management system involves five major components: data, hard-
ware, software, procedure, and users. These components and the interface
between the components are shown in Fig. 1.7.

1.14.1 Hardware

The hardware can range from a single personal computer, to a single main-
frame, to a network of computers. The particular hardware depends on the

1.14 Components and Interfaces of Database Management System 15

g
Nefve users Casual users Applicarion
" i g Adealilstrator
Forms Application DML Interface DDL
Front ends
CONHANDS
DERNS Query Evaluation DDL
Engine Compiler
|
Transaction -
. | File and Access L Recovery
And Lock Methods |
v Manager
Manager | Buffer Manager
‘“—»
|
A 4
<« »| Disk Space T
Manager
7y
v

Indexes System

Catalog

Data
Files

Fig. 1.7. Database management system components and interfaces

requirements of the organization and the DBMS used. Some DBMSs run only
on particular operating systems, while others run on a wide variety of opera-
ting systems. A DBMS requires a minimum amount of main memory and
disk space to run, but this minimum configuration may not necessarily give
acceptable performance.

1.14.2 Software

The software includes the DBMS software, application programs together with
the operating systems including the network software if the DBMS is being
used over a network. The application programs are written in third-generation
programming languages like “C,” COBOL, FORTRAN, Ada, Pascal, etc. or
using fourth-generation language such as SQL, embedded in a third-generation
language. The target DBMS may have its own fourth-generation tools which
allow development of applications through the provision of nonprocedural
query languages, report generators, graphics generators, and application gen-
erators. The use of fourth-generation tools can improve productivity signifi-
cantly and produce programs that are easier to maintain.

16 1 Overview of Database Management System

1.14.3 Data

A database is a repository for data which, in general, is both integrated and
shared. Integration means that the database may be thought of as a unifi-
cation of several otherwise distinct files, with any redundancy among those
files partially or wholly eliminated. The sharing of a database refers to the
sharing of data by different users, in the sense that each of those users may
have access to the same piece of data and may use it for different purposes.
Any given user will normally be concerned with only a subset of the whole
database. The main features of the data in the database are listed later:

1. The data in the database is well organized (structured)
2. The data in the database is related
3. The data are accessible in different orders without great difficulty

The data in the database is persistent, integrated, structured, and shared.
Integrated Data

A data can be considered to be a unification of several distinct data files and
when any redundancy among those files is eliminated, the data are said to be
integrated data.

Shared Data

A database contains data that can be shared by different users for different
application simultaneously. It is important to note that in this way of sharing
of data, the redundancy of data are reduced, since repetitions are avoided, the
possibility of inconsistencies is reduced.

Persistent Data

Persistent data are one, which cannot be removed from the database as a side
effect of some other process. Persistent data have a life span that is not limited
to single execution of the programs that use them.

1.14.4 Procedure

Procedures are the rules that govern the design and the use of database. The
procedure may contain information on how to log on to the DBMS, start
and stop the DBMS, procedure on how to identify the failed component, how
to recover the database, change the structure of the table, and improve the
performance.

1.14.5 People Interacting with Database

Here people refers to the people who manages the database, database admin-
istrator, people who design the application program, database designer and
the people who interacts with the database, database users.

1.14 Components and Interfaces of Database Management System 17

A DBMS is typically run as a back-end server in a local or global network,
offering services to clients directly or to Application Servers.

People interacting with database

Database Database Database Database user
Administrator Designer manager
Application Enduser
Programmer * Sophisticated
* Naive.

Specialized.

Database Administrator

Database Administrator is a person having central control over data and pro-
grams accessing that data. The database administrator is a manager whose
responsibilities are focused on management of technical aspects of the data-
base system. The objectives of database administrator are given as follows:

1. To control the database environment

2. To standardize the use of database and associated software

3. To support the development and maintenance of database application
projects

4. To ensure all documentation related to standards and implementation is
up-to-date

The summarized objectives of database administrator are shown in Fig.1.8.

The control of the database environment should exist from the planning
right through to the maintenance stage. During application development the
database administrator should carry out the tasks that ensure proper control
of the database when an application becomes operational. This includes review
of each design stage to see if it is feasible from the database point of view.
The database administrator should be responsible for developing standards to
apply to development projects. In particular these standards apply to system
analysis, design, and application programming for projects which are going
to use the database. These standards will then be used as a basis for training
systems analysts and programmers to use the database management system
efficiently.

Responsibilities of Database Administrator (DBA)

The responsibility of the database administrator is to maintain the in-
tegrity, security, and availability of data. A database must be protected from

18 1 Overview of Database Management System

Database

Applications

/ Stamaards

\

Control Document Standardize Support

Fig. 1.8. Objectives of database administration

accidents, such as input or programming errors, from malicious use of the
database and from hardware or software failures that corrupt data. Protection
from accidents that cause data inaccuracy is a part of maintaining data in-
tegrity. Protecting the database from unauthorized or malicious use is termed
as database security. The responsibilities of the database administrator are
summarized as follows:

Authorizing access to the database.

Coordinating and monitoring its use.

Acquiring hardware and software resources as needed.

Backup and recovery. DBA has to ensure regular backup of database, in-
case of damage, suitable recovery procedure are used to bring the database
up with little downtime as possible.

=W

Database Designer

Database designer can be either logical database designer or physical database
designer. Logical database designer is concerned with identifying the data, the
relationships between the data, and the constraints on the data that is to be
stored in the database. The logical database designer must have thorough
understanding of the organizations data and its business rule.

The physical database designer takes the logical data model and decides
the way in which it can be physically implemented. The logical database
designer is responsible for mapping the logical data model into a set of tables
and integrity constraints, selecting specific storage structure, and designing

1.14 Components and Interfaces of Database Management System 19

security measures required on the data. In a nutshell, the database designer
is responsible for:

1. Identifying the data to be stored in the database.
2. Choosing appropriate structure to represent and store the data.

Database Manager

Database manager is a program module which provides the interface between
the low level data stored in the database and the application programs and
queries submitted to the system:

— The database manager would translate DML statement into low level
file system commands for storing, retrieving, and updating data in the
database.

— Integrity enforcement. Database manager enforces integrity by checking
consistency constraints like the bank balance of customer must be main-
tained to a minimum of Rs. 300, etc.

— Security enforcement. Unauthorized users are prohibited to view the in-
formation stored in the data base.

— Backup and recovery. Backup and recovery of database is necessary to en-
sure that the database must remain consistent despite the fact of failures.

Database Users

Database users are the people who need information from the database to
carry out their business responsibility. The database users can be broadly
classified into two categories like application programmers and end users.

Database users

TN

Application programmers End users
Application programmers write * Sophisticated end users
application programs and interacts * Specialized end users
with the data base through host * Naive end users

Language like Pascal, C and Cobol

Sophisticated End Users

Sophisticated end users interact with the system without writing programs.
They form requests by writing queries in a database query language. These
are submitted to query processor. Analysts who submit queries to explore
data in the database fall in this category.

20 1 Overview of Database Management System
Specialized End Users

Specialized end users write specialized database application that does not fit
into data-processing frame work. Application involves knowledge base and
expert system, environment modeling system, etc.

Naive End Users

Naive end user interact with the system by using permanent application pro-
gram Example: Query made by the student, namely number of books borrowed
in library database.

System Analysts

System analysts determine the requirements of end user, and develop specifi-
cation for canned transaction that meets this requirement.

Canned Transaction

Ready made programs through which naive end users interact with the data-
base is called canned transaction.

1.14.6 Data Dictionary

A data dictionary, also known as a “system catalog,” is a centralized store of
information about the database. It contains information about the tables, the
fields the tables contain, data types, primary keys, indexes, the joins which
have been established between those tables, referential integrity, cascades up-
date, cascade delete, etc. This information stored in the data dictionary is
called the “Metadata.” Thus a data dictionary can be considered as a file
that stores Metadata. Data dictionary is a tool for recording and processing
information about the data that an organization uses. The data dictionary
is a central catalog for Metadata. The data dictionary can be integrated
within the DBMS or separate. Data dictionary may be referenced during
system design, programming, and by actively-executing programs. One of
the major functions of a true data dictionary is to enforce the constraints
placed upon the database by the designer, such as referential integrity and
cascade delete.

Metadata

The information (data) about the data in a database is called Metadata. The
Metadata are available for query and manipulation, just as other data in the
database.

1.14 Components and Interfaces of Database Management System 21
1.14.7 Functional Components of Database System Structure

The functional components of database system structure are:

1. Storage manager.
2. Query processor.

Storage Manager

Storage manager is responsible for storing, retrieving, and updating data in
the database. Storage manager components are:

1. Authorization and integrity manager.
2. Transaction manager.

3. File manager.

4. Buffer manager.

Transaction Management

— A transaction is a collection of operations that performs a single logical
function in a database application.

— Transaction-management component ensures that the database remains
in a consistent state despite system failures and transaction failure.

— Concurrency control manager controls the interaction among the concur-
rent transactions, to ensure the consistency of the database.

Authorization and Integrity Manager
Checks the integrity constraints and authority of users to access data.
Transaction Manager

It ensures that the database remains in a consistent state despite system fail-
ures. The transaction manager manages the execution of database manipula-
tion requests. The transaction manager function is to ensure that concurrent
access to data does not result in conflict.

File Manager

File manager manages the allocation of space on disk storage. Files are
used to store collections of similar data. A file management system man-
ages independent files, helping to enter and retrieve information records.
File manager establishes and maintains the list of structure and indexes
defined in the internal schema. The file manager can:

Create a file
— Delete a file
— Update the record in the file
— Retrieve a record from a file

22 1 Overview of Database Management System
Buffer

The area into which a block from the file is read is termed a buffer. The
management of buffers has the objective of maximizing the performance or the
utilization of the secondary storage systems, while at the same time keeping
the demand on CPU resources tolerably low. The use of two or more buffers
for a file allows the transfer of data to be overlapped with the processing of
data.

Buffer Manager

Buffer manager is responsible for fetching data from disk storage into main
memory. Programs call on the buffer manager when they need a block from
disk. The requesting program is given the address of the block in main memory,
if it is already present in the buffer. If the block is not in the buffer, the buffer
manager allocates space in the buffer for the block, replacing some other block,
if required, to make space for new block. Once space is allocated in the buffer,
the buffer manager reads in the block from the disk to the buffer, and passes
the address of the block in main memory to the requester.

Indices

Indices provide fast access to data items that hold particular values. An index
is a list of numerical values which gives the order of the records when they
are sorted on a particular field or column of the table.

1.15 Database Architecture

Database architecture essentially describes the location of all the pieces of
information that make up the database application. The database architecture
can be broadly classified into two-, three-, and multitier architecture.

1.15.1 Two-Tier Architecture

The two-tier architecture is a client—server architecture in which the client
contains the presentation code and the SQL statements for data access. The
database server processes the SQL statements and sends query results back to
the client. The two-tier architecture is shown in Fig. 1.9. Two-tier client/server
provides a basic separation of tasks. The client, or first tier, is primarily re-
sponsible for the presentation of data to the user and the “server,” or second
tier, is primarily responsible for supplying data services to the client.

1.15 Database Architecture 23

First Tier: Tasks/Services
Client ﬂ e User Interface

_—' e Presentation services

) /—\ e Application services

-

_________________________ B S
Second Tier: ¥ Tasks/Services
Data Server e Application services

® Business services

e Data services

Fig. 1.9. Two-tier client—server architecture

Presentation Services

“Presentation services” refers to the portion of the application which presents
data to the user. In addition, it also provides for the mechanisms in which the
user will interact with the data. More simply put, presentation logic defines
and interacts with the user interface. The presentation of the data should
generally not contain any validation rules.

Business Services/objects

“Business services” are a category of application services. Business services
encapsulate an organizations business processes and requirements. These rules
are derived from the steps necessary to carry out day-today business in an
organization. These rules can be validation rules, used to be sure that the
incoming information is of a valid type and format, or they can be process
rules, which ensure that the proper business process is followed in order to
complete an operation.

Application Services

“Application services” provide other functions necessary for the application.

Data Services

“Data services” provide access to data independent of their location. The
data can come from legacy mainframe, SQL RDBMS, or proprietary data
access systems. Once again, the data services provide a standard interface for
accessing data.

24 1 Overview of Database Management System
Advantages of Two-tier Architecture

The two-tier architecture is a good approach for systems with stable require-
ments and a moderate number of clients. The two-tier architecture is the
simplest to implement, due to the number of good commercial development
environments.

Drawbacks of Two-tier Architecture

Software maintenance can be difficult because PC clients contain a mixture of
presentation, validation, and business logic code. To make a significant change
in the business logic, code must be modified on many PC clients. Moreover
the performance of two-tier architecture can be poor when a large number of
clients submit requests because the database server may be overwhelmed with
managing messages. With a large number of simultaneous clients, three-tier
architecture may be necessary.

1.15.2 Three-tier Architecture

A “Multitier,” often referred to as “three-tier” or “N-tier,” architecture pro-
vides greater application scalability, lower maintenance, and increased reuse
of components. Three-tier architecture offers a technology neutral method of
building client/server applications with vendors who employ standard inter-
faces which provide services for each logical “tier.” The three-tier architecture
is shown in Fig. 1.10. From this figure, it is clear that in order to improve the
performance a second-tier is included between the client and the server.

Through standard tiered interfaces, services are made available to the ap-
plication. A single application can employ many different services which may
reside on dissimilar platforms or are developed and maintained with different
tools. This approach allows a developer to leverage investments in existing
systems while creating new application which can utilize existing resources.

Although the three-tier architecture addresses performance degradations
of the two-tier architecture, it does not address division-of-processing con-
cerns. The PC clients and the database server still contain the same division
of code although the tasks of the database server are reduced. Multiple-tier
architectures provide more flexibility on division of processing.

1.15.3 Multitier Architecture

A multi-tier, three-tier, or N-tier implementation employs a three-tier logi-
cal architecture superimposed on a distributed physical model. Application
Servers can access other application servers in order to supply services to the
client application as well as to other Application Servers. The multiple-tier
architecture is the most general client—server architecture. It can be most
difficult to implement because of its generality. However, a good design and

1.15 Database Architecture 25

First Tier: Tasks/Services
Client

® User Interface

e Presentation Services
———————————————————— L
Second Tier: ¥ Tasks/Services

Application Server Business e Application services
Object/Component

® Business services/objects

Business Business
Object/Component Object/Component

s

L]
.................... D e PR EE PR
Third Tier: b Tasks/Services
Data Server ® Data services

e Data validation

Fig. 1.10. Three-tier client—server architecture

Multi-Tier Architecture Client Client —
- l; —\%
[» p
>
Application
Server
*
*
Legacy
R Application
Data Server
Server

Fig. 1.11. Multiple-tier architecture

implementation of multiple-tier architecture can provide the most benefits in
terms of scalability, interoperability, and flexibility.

For example, in the diagram shown in Fig.1.11, the client application
looks to Application Server #1 to supply data from a mainframe-based appli-
cation. Application Server #1 has no direct access to the mainframe applica-
tion, but it does know, through the development of application services, that

26 1 Overview of Database Management System

Application Server #2 provides a service to access the data from the main-
frame application which satisfies the client request. Application Server #1
then invokes the appropriate service on Application Server #2 and receives
the requested data which is then passed on to the client.

Application Servers can take many forms. An Application Server may be
anything from custom application services, Transaction Processing Monitors,
Database Middleware, Message Queue to a CORBA/COM based solution.

1.16 Situations where DBMS is not Necessary

It is also necessary to specify situations where it is not necessary to use a
DBMS. If traditional file processing system is working well, and if it takes
more money and time to design a database, it is better not to go for the
DBMS. Moreover if only one person maintains the data and that person is
not skilled in designing a database as well as not comfortable in using the
DBMS then it is not advisable to go for DBMS.

DBMS is undesirable under following situations:

— DBMS is undesirable if the application is simple, well-defined, and not
expected to change.

— Runtime overheads are not feasible because of real-time requirements.

— Multiple accesses to data are not required.

Compared with file systems, databases have some disadvantages:

1. High cost of DBMS which includes:
— Higher hardware costs
— Higher programming costs
— High conversion costs
2. Slower processing of some applications
3. Increased vulnerability
4. More difficult recovery

1.17 DBMS Vendors and their Products

Some of the popular DBMS vendors and their corresponding products are
given Table 1.1.

Summary

The main objective of database management system is to store and mani-
pulate the data in an efficient manner. A database is an organized collection
of related data. All the data will not give useful information. Only processed
data gives useful information, which helps an organization to take important

Review Questions 27

Table 1.1. DBMS vendors and their products

vendor product

IBM -DB2/MVS
-DB2/UDB
-DB2/400

—Informix Dynamic

Server (IDS)

Microsoft —Access
—SQL Server
—DesktopEdition(MSDE)
Open Source —MySQL
—PostgreSQL
Oracle —Oracle DBMS
-RDB
Sybase —Adaptive Server

Enterprise (ASE)
—Adaptive Server

Anywhere (ASA)
—~Watcom

decisions. Before DBMS, computer file processing systems were used to store,
manipulate, and retrieve large files of data. Computer file processing systems
have limitations such as data duplications, limited data sharing, and no
program data independence. In order to overcome these limitations database
approach was developed. The main advantages of DBMS approach are
program-data independence, improved data sharing, and minimal data
redundancy. In this chapter we have seen the evolution of DBMS and
broad introduction to DBMS. The responsibilities of Database administrator,
ANSI/SPARK, two-tier, three-tier architecture were analyzed in this chapter.

Review Questions

1.1. What are the drawbacks of file processing system?

The drawbacks of file processing system are:

— Duplication of data, which leads to wastage of storage space and data
inconsistency.

— Separation and isolation of data, because of which data cannot be used
together.

— No program data independence.

1.2. What is meant by Metadata?

Metadata are data about data but not the actual data.

28 1 Overview of Database Management System

1.3. Define the term data dictionary?

Data dictionary is a file that contains Metadata.

1.4. What are the responsibilities of database administrator?

1.5. Mention three situations where it is not desirable to use DBMS?

The situations where it is not desirable to use DBMS are:

— The database and applications are not expected to change.
— Data are not accessed by multiple users.

1.6. What is meant by data independence?

Data independence renders application programs (e.g., SQL scripts) immune
to changes in the logical and physical organization of data in the system.
Logical organization refers to changes in the Schema. Example adding a col-
umn or tuples does not stop queries from working.

Physical organization refers to changes in indices, file organizations, etc.

1.7. What is meant by Physical and Logical data independence?

In logical data independence, the conceptual schema can be changed with-
out changing the external schema. In physical data independence, the internal
schema can be changed without changing the conceptual schema.

1.8. What are some disadvantages of using a DBMS over flat file system?

— DBMS initially costs more than flat file system
— DBMS requires skilled staff

1.9. What are the steps to design a good database?

— First find out the requirements of the user

— Design a view for each important application

— Integrate the views giving the conceptual schema, which is the union of
all views

— Map to the data model provided by the DBMS (usually relational)

— Design external views

— Choose physical structures (indexes, etc.)

1.10. What is Database? Give an example.

A Database is a collection of related data. Here, the term “data” means that
known facts that can be record. Examples of database are library information
system, bus, railway, and airline reservation system, etc.

Review Questions 29
1.11. Define — DBMS.

DBMS is a collection of programs that enables users to create and maintain
a database.

1.12. Mention various types of databases?

The different types of databases are:

— Multimedia database

Spatial database (Geographical Information System Database)
— Real-time or Active Database

Data Warehouse or On-line Analytical Processing Database

1.13. Mention the advantages of using DBMS?
The advantages of using DBMS are:

— Controlling Redundancy

— Enforcing Integrity Constraints so as to maintain the consistency of the
database

— Providing Backup and recovery facilities

— Restricting unauthorized access

— Providing multiple user interfaces

— Providing persistent storage of program objects and datastructures

1.14. What is “Snapshot” or “Database State”?

The data in the database at a particular moment is known as “Database
State” or “Snapshot” of the Database.

1.15. Define Data Model.

It is a collection of concepts that can be used to describe the structure of a
database.

The datamodel provides necessary means to achieve the abstraction i.e.,
hiding the details of data storage.

1.16. Mention the various categories of Data Model.

The various categories of datamodel are:

High Level or Conceptual Data Model (Example: ER model)
— Low Level or Physical Data Model

— Representational or Implementational Data Model
Relational Data Model

— Network and Hierarchal Data Model

Record-based Data Model

— Object-based Data Model

30 1 Overview of Database Management System

1.17. Define the concept of “database schema.” Describe the types of schemas
that exist in a database complying with the three levels ANSI/SPARC archi-
tecture.

Database schema is nothing but description of the database. The types of
schemas that exist in a database complying with three levels of ANSI/SPARC
architecture are:

— External schema
— Conceptual schema
— Internal schema

2

Entity—Relationship Model

Learning Objectives. This chapter presents a top-down approach to data model-
ing. This chapter deals with ER and Enhanced ER (EER) model and conversion of
ER model to relational model. After completing this chapter the reader should be
familiar with the following concepts:

— Entity, Attribute, and Relationship.

Entity classification — Strong entity, Weak entity, and Associative entity.

— Attribute classification — Single value, Multivalue, Derived, and Null attribute.
— Relationship — Unary, binary, and ternary relationship.

— Enhanced ER model — Generalization, Specialization.

— Mapping ER model to relation model or table.

— Connection traps.

2.1 Introduction

Peter Chen first proposed modeling databases using a graphical technique
that humans can relate to easily. Humans can easily perceive entities and
their characteristics in the real world and represent any relationship with
one another. The objective of modeling graphically is even more profound
than simply representing these entities and relationship. The database de-
signer can use tools to model these entities and their relationships and then
generate database vendor-specific schema automatically. Entity—Relationship
(ER) model gives the conceptual model of the world to be represented in the
database. ER Model is based on a perception of a real world that consists of
collection of basic objects called entities and relationships among these ob-
jects. The main motivation for defining the ER model is to provide a high
level model for conceptual database design, which acts as an intermediate
stage prior to mapping the enterprise being modeled onto a conceptual level.
The ER model achieves a high degree of data independence which means that
the database designer do not have to worry about the physical structure of
the database. A database schema in ER model can be pictorially represented
by Entity—Relationship diagram.

S. Sumathi: Entity—Relationship Model, Studies in Computational Intelligence (SCI) 47, 31-63
(2007)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

32 2 Entity-Relationship Model

2.2 The Building Blocks of an Entity—Relationship
Diagram

ER diagram is a graphical modeling tool to standardize ER modeling. The
modeling can be carried out with the help of pictorial representation of
entities, attributes, and relationships. The basic building blocks of Entity-
Relationship diagram are Entity, Attribute and Relationship.

2.2.1 Entity

An entity is an object that exists and is distinguishable from other objects.
In other words, the entity can be uniquely identified.
The examples of entities are:

— A particular person, for example Dr. A.P.J. Abdul Kalam is an entity.

— A particular department, for example Electronics and Communication
Engineering Department.

— A particular place, for example Coimbatore city can be an entity.

2.2.2 Entity Type

An entity type or entity set is a collection of similar entities. Some examples
of entity types are:

— All students in PSG, say STUDENT.
— All courses in PSG, say COURSE.
— All departments in PSG, say DEPARTMENT.

An entity may belong to more than one entity type. For example, a staff
working in a particular department can pursue higher education as part-time.
Hence the same person is a LECTURER at one instance and STUDENT at
another instance.

2.2.3 Relationship

A relationship is an association of entities where the association includes one
entity from each participating entity type whereas relationship type is a mean-
ingful association between entity types.

The examples of relationship types are:

— Teaches is the relationship type between LECTURER and STUDENT.
— Buying is the relationship between VENDOR and CUSTOMER.
— Treatment is the relationship between DOCTOR and PATTENT.

2.2.4 Attributes

Attributes are properties of entity types. In other words, entities are described
in a database by a set of attributes.

2.2 The Building Blocks of an Entity—Relationship Diagram 33

The following are example of attributes:

— Brand, cost, and weight are the attributes of CELLPHONE.

— Roll number, name, and grade are the attributes of STUDENT.

— Data bus width, address bus width, and clock speed are the attributes of
MICROPROCESSOR.

2.2.5 ER Diagram

The ER diagram is used to represent database schema. In ER diagram:

— A rectangle represents an entity set.

An ellipse represents an attribute.

— A diamond represents a relationship.

Lines represent linking of attributes to entity sets and of entity sets to

relationship sets.

Entity sets ==--=----- >

Attributes =====n====- >

Relationship -=-=------ > <>

Example of ER diagram

Let us consider a simple ER diagram as shown in Fig. 2.1.

In the ER diagram the two entities are STUDENT and CLASS. Two
simple attributes which are associated with the STUDENT are Roll number
and the name. The attributes associated with the entity CLASS are Subject
Name and Hall Number. The relationship between the two entities STUDENT
and CLASS is Attends.

Come D

STUDENT

CLASS
Subject @
Name

Fig. 2.1. ER diagram

34 2 Entity-Relationship Model
2.3 Classification of Entity Sets

Entity sets can be broadly classified into:

1. Strong entity.
2. Weak entity.
3. Associative entity.

Entity Set
Strong entity Weak entity Associative entity

Representation

2.3.1 Strong Entity

Strong entity is one whose existence does not depend on other entity.

Example

Consider the example, student takes course. Here student is a strong entity.

Student

Course

In this example, course is considered as weak entity because, if there are
no students to take a particular course, then that course cannot be offered.
The COURSE entity depends on the STUDENT entity.

2.3.2 Weak Entity

Weak entity is one whose existence depends on other entity. In many cases,
weak entity does not have primary key.

Example

Consider the example, customer borrows loan. Here loan is a weak entity.
For every loan, there should be at least one customer. Here the entity loan
depends on the entity customer hence loan is a weak entity.

2.4 Attribute Classification 35

Customer Borrows Loan

2.4 Attribute Classification

Attribute is used to describe the properties of the entity. This attribute can be
broadly classified based on value and structure. Based on value the attribute
can be classified into single value, multivalue, derived, and null value attribute.
Based on structure, the attribute can be classified as simple and composite
attribute.

Attribute Classification

'

l l

Value based classification Structure based classification

v v

[T 17 1 :

Single Value Multivalue Derived Null Simple Composite
Attribute Attribute Attribute Attribute Attribute Attribute

2.4.1 Symbols Used in ER Diagram

The elements in ER diagram are Entity, Attribute, and Relationship. The
different types of entities like strong, weak, and associative entity, different
types of attributes like multivalued and derived attributes and identifying
relationship and their corresponding symbols are shown later.

Basic symbols

Strong entity Associative entity
Weak entity Attribute
Relationship Multivalued attribute
> - T — < <
e \

Identifying relationship) Derived attribute

\ /

36 2 Entity-Relationship Model

Single Value Attribute

Single value attribute means, there is only one value associated with that
attribute.

Example

The examples of single value attribute are age of a person, Roll number of
the student, Registration number of a car, etc.

Representation of Single Value Attribute in ER Diagram O

Multivalued Attribute

In the case of multivalue attribute, more than one value will be associ-
ated with that attribute.

Representation of Multivalued Attribute in ER Diagram

Examples of Multivalued Attribute

1. Consider an entity EMPLOYEE. An Employee can have many skills;
hence skills associated to an employee are a multivalue attribute.

Employee
Age

Employee EMPLOYEE
Name

ofo

2. Number of chefs in a hotel is an example of multivalue attribute. Moreover,
a hotel will have variety of food items. Hence food items associated with
the entity HOTEL is an example of multivalued attribute.

Hotel HOTEL
Name

Food
items

o0

2.4 Attribute Classification 37

3. Application associated with an IC (Integrated Circuit). An IC can be used
for several applications. Here IC stands for Integrated Circuit.

IC

Applications
Using IC

4. Subjects handled by a staff. A staff can handle more than one subject in
a particular semester; hence it is an example of multivalue attribute.

STAFF

Subjects

handled

Area of
specialization

Moreover a staff can be an expert in more than one area, hence area of
specialization is considered as multivalued attribute.

Derived Attribute

The value of the derived attribute can be derived from the values of other
related attributes or entities.
In ER diagram, the derived attribute is represented by dotted ellipse.

- ~

Representation of Derived Attribute in ER Diagram ‘ !

Example of Derived Attribute

1. Age of a person can be derived from the date of birth of the person. In
this example, age is the derived attribute.

Person PERSON ~—-
Name

38 2 Entity-Relationship Model

2. Experience of an employee in an organization can be derived from date of
joining of the employee.

AT T T~
s N

{ .
/\ Experience /)
N _

Employee EMPLOYEE -——
Name

3. CGPA of a student can be derived from GPA (Grade Point Average).

Student
Name

STUDENT

In some cases, a particular entity may not have any applicable value for an
attribute. For such situation, a special value called null value is created.

Null Value Attribute

Null value situations

/\

Not applicable Not known

Example

In application forms, there is one column called phone no. if a person do not
have phone then a null value is entered in that column.

Composite Attribute

Composite attribute is one which can be further subdivided into simple at-
tributes.

Example

Consider the attribute “address” which can be further subdivided into Street
name, City, and State.

2.5 Relationship Degree 39

As another example of composite attribute consider the degrees earned
by a particular scholar, which can range from undergraduate, postgraduate,
doctorate degree, etc. Hence degree can be considered as composite attribute.

Postgraduate

2.5 Relationship Degree

Under-
graduate

Relationship degree refers to the number of associated entities. The rela-
tionship degree can be broadly classified into unary, binary, and ternary
relationship.

2.5.1 Unary Relationship

The unary relationship is otherwise known as recursive relationship. In the
unary relationship the number of associated entity is one. An entity related
to itself is known as recursive relationship.

Captain_of

PLAYER

Roles and Recursive Relation

When an entity sets appear in more than one relationship, it is useful to add
labels to connecting lines. These labels are called as roles.

Example

In this example, Husband and wife are referred as roles.

40 2 Entity-Relationship Model

PERSON

usloand Wi

Married
to

2.5.2 Binary Relationship

In a binary relationship, two entities are involved. Consider the example; each
staff will be assigned to a particular department. Here the two entities are
STAFF and DEPARTMENT.

Is
Staff Assigned Department

2.5.3 Ternary Relationship

In a ternary relationship, three entities are simultaneously involved. Ternary
relationships are required when binary relationships are not sufficient to ac-
curately describe the semantics of an association among three entities.

Example

Consider the example of employee assigned a project. Here we are considering
three entities EMPLOYEE, PROJECT, and LOCATION. The relationship is
“assigned-to.” Many employees will be assigned to one project hence it is an
example of one-to-many relationship.

LOCATION

EMPLOYEE

Assigned-to

PROJECT

2.5.4 Quaternary Relationships

Quaternary relationships involve four entities. The example of quaternary
relationship is “A professor teaches a course to students using slides.” Here

the four entities are PROFESSOR, SLIDES, COURSE, and STUDENT. The
relationships between the entities are “Teaches.”

2.6 Relationship Classification 41

SLIDES

PROFESSOR STUDENT

COURSE

2.6 Relationship Classification

Relationship is an association among one or more entities. This relationship
can be broadly classified into one-to-one relation, one-to-many relation, many-
to-many relation and recursive relation.

2.6.1 One-to-Many Relationship Type

The relationship that associates one entity to more than one entity is called
one-to-many relationship. Example of one-to-many relationship is Country
having states. For one country there can be more than one state hence it
is an example of one-to-many relationship. Another example of one-to-many
relationship is parent—child relationship. For one parent there can be more
than one child. Hence it is an example of one-to-many relationship.

2.6.2 One-to-One Relationship Type

One-to-one relationship is a special case of one-to-many relationship. True
one-to-one relationship is rare. The relationship between the President and the
country is an example of one-to-one relationship. For a particular country
there will be only one President. In general, a country will not have more
than one President hence the relationship between the country and the Presi-
dent is an example of one-to-one relationship. Another example of one-to-one
relationship is House to Location. A house is obviously in only one location.

2.6.3 Many-to-Many Relationship Type

The relationship between EMPLOYEE entity and PROJECT entity is an
example of many-to-many relationship. Many employees will be working in
many projects hence the relationship between employee and project is many-
to-many relationship.

42 2 Entity-Relationship Model

Table 2.1. Relationship types

Relationship type | Representation Example

One-to-one PRESIDENT |¢» COUNTRY

One-to-many

DEPARTME < EMPLOYEES

1]

NT
Many-to-many EMPLOYEE PROJECT
Many-to-one

EMPLOYEE » DEPARTMENT

2.6.4 Many-to-One Relationship Type

The relationship between EMPLOYEE and DEPARTMENT is an example of
many-to-one relationship. There may be many EMPLOYEES working in one
DEPARTMENT. Hence relationship between EMPLOYEE and DEPART-
MENT is many-to-one relationship. The four relationship types are summa-
rized and shown in Table 2.1.

2.7 Reducing ER Diagram to Tables

To implement the database, it is necessary to use the relational model. There
is a simple way of mapping from ER model to the relational model. There is
almost one-to-one correspondence between ER constructs and the relational
ones.

2.7.1 Mapping Algorithm

The mapping algorithm gives the procedure to map ER diagram to tables.
The rules in mapping algorithm are given as:

— For each strong entity type say E, create a new table. The columns of the
table are the attribute of the entity type E.

— For each weak entity W that is associated with only one 1-1 identifying
owner relationship, identify the table T of the owner entity type. Include
as columns of T, all the simple attributes and simple components of the
composite attributes of W.

— For each weak entity W that is associated with a 1-N or M-N identifying
relationship, or participates in more than one relationship, create a new
table T and include as its columns, all the simple attributes and simple
components of the composite attributes of W. Also form its primary key
by including as a foreign key in R, the primary key of its owner entity.

2.7 Reducing ER Diagram to Tables 43

— For each binary 1-1 relationship type R, identify the tables S and T of
the participating entity types. Choose S, preferably the one with total
participation. Include as foreign key in S, the primary key of T. Include
as columns of S, all the simple attributes and simple components of the
composite attributes of R.

— For each binary 1-N relationship type R, identify the table S, which is at
N side and T of the participating entities. Include as a foreign key in S, the
primary key of T. Also include as columns of S, all the simple attributes
and simple components of composite attributes of R.

— For each M-N relationship type R, create a new table T and include as
columns of T, all the simple attributes and simple components of com-
posite attributes of R. Include as foreign keys, the primary keys of the
participating entity types. Specify as the primary key of T, the list of
foreign keys.

— For each multivalued attribute, create a new table T and include as
columns of T, the simple attribute or simple components of the attribute
A. Include as foreign key, the primary key of the entity or relationship
type that has A. Specify as the primary key of T, the foreign key and the
columns corresponding to A.

Regular Entity

Regular entities are entities that have an independent existence and generally
represent real-world objects such as persons and products. Regular entities
are represented by rectangles with a single line.

2.7.2 Mapping Regular Entities

— Each regular entity type in an ER diagram is transformed into a relation.
The name given to the relation is generally the same as the entity type.

— Each simple attribute of the entity type becomes an attribute of the rela-
tion.

— The identifier of the entity type becomes the primary key of the corre-
sponding relation.

Example 1

Mapping regular entity type tennis player

PLAYER

Number of
Grand slams
won

44 2 Entity-Relationship Model

This diagram is converted into corresponding table as

Player Name Nation Position Number of Grand
slams won

Roger Federer Switzerland 1 5

Roddick USA 2 4

Here,

— Entity name = Name of the relation or table.
In our example, the entity name is PLAYER which is the name of the table
— Attributes of ER diagram = Column name of the table.
In our example the Name, Nation, Position, and Number of Grand slams won
which forms the column of the table.
2.7.3 Converting Composite Attribute in an ER Diagram to Tables
When a regular entity type has a composite attribute, only the simple com-
ponent attributes of the composite attribute are included in the relation.
Example

In this example the composite attribute is the Customer address, which con-
sists of Street, City, State, and Zip.

Customer
name

Customer

CUSTOMER address

CUSTOMER

Customer-ID | Customer name Street City State Zip

When the regular entity type contains a multivalued attribute, two new
relations are created.

2.7 Reducing ER Diagram to Tables 45

The first relation contains all of the attributes of the entity type except
the multivalued attribute.

The second relation contains two attributes that form the primary key of
the second relation. The first of these attributes is the primary key from the
first relation, which becomes a foreign key in the second relation. The second
is the multivalued attribute.

2.7.4 Mapping Multivalued Attributes in ER Diagram to Tables
A multivalued attribute is having more than one value. One way to map a
multivalued attribute is to create two tables.

Example

In this example, the skill associated with the EMPLOYEE is a multivalued
attribute, since an EMPLOYEE can have more than one skill as fitter, elec-
trician, turner, etc.

Employee
Address

Employee-ID EMPLOYEE

Employee

Name

EMPLOYEE

Employee-ID Employee-Name Employee-Address

EMPLOYEE-SKILL

EMPLOYEE-ID Skill

2.7.5 Converting “Weak Entities” in ER Diagram to Tables

Weak entity type does not have an independent existence and it exists only
through an identifying relationship with another entity type called the owner.

46 2 Entity-Relationship Model

For each weak entity type, create a new relation and include all of the
simple attributes as attributes of the relation. Then include the primary key
of the identifying relation as a foreign key attribute to this new relation.

The primary key of the new relation is the combination of the primary key
of the identifying and the partial identifier of the weak entity type. In this
example DEPENDENT is weak entity.

Employee-
Employee-ID Name

EMPLOYEE
DEPENDENT

Date of
Birth Dependent Relation with
Name employee

The corresponding table is given by
EMPLOYEE

Employee-ID | Employee-Name Date of Birth

'

DEPENDENT

Dependent-Name | Gender | Employee-ID Relation with
Employee

2.7.6 Converting Binary Relationship to Table

A relationship which involves two entities can be termed as binary relation-
ship. This binary relationship can be one-to-one, one-to-many, many-to-one,
and many-to-many.

Mapping one-to-Many Relationship

For each 1-M relationship, first create a relation for each of the two entity
type’s participation in the relationship.

Example

One customer can give many orders. Hence the relationship between the two
entities CUSTOMER and ORDER is one-to-many relationship. In one-to-
many relationship, include the primary key attribute of the entity on the

2.7 Reducing ER Diagram to Tables 47

one-side of the relationship as a foreign key in the relation that is on the

many side of the relationship.
Customer-
Name
Customer-

Here we have two entities CUSTOMER and ORDER. The relationship
between CUSTOMER and ORDER is one-to-many. For two entities CUS-
TOMER and ORDER, two tables namely CUSTOMER and ORDER are cre-
ated as shown later. The primary key CUSTOMER_ID in the CUSTOMER
relation becomes the foreign key in the ORDER relation.

CUSTOMER
Customer-ID Customer-Name Customer-Address
A
ORDER
Order-ID Order-Date Customer-ID

Binary one-to-one relationship can be viewed as a special case of one-to-
many relationships.

The process of mapping one-to-one relationship requires two steps. First,
two relations are created, one for each of the participating entity types. Sec-
ond, the primary key of one of the relations is included as a foreign key in the
other relation.

2.7.7 Mapping Associative Entity to Tables

Many-to-many relationship can be modeled as an associative entity in the ER
diagram.

48 2 Entity-Relationship Model
Example 1. (Without Identifier)

Here the associative entity is ORDERLINE, which is without an identifier.
That is the associative entity ORDERLINE is without any key attribute.

Order-1D ORDER Order-
Qrcer-"1 Date

ORDER
LINE
P D PRODUCT Standard-
roduct- Ul Price

Product-
Finish

Product-

Description

The first step is to create three relations, one for each of the two par-
ticipating entity types and the third for the associative entity. The relation
formed from the associative entity is associative relation.

ORDER

Order-ID Order-Date

ORDER LINE T—‘

Product-ID Order-Date Quantity
PRODUCT !
Product-ID Product- Product- Standard-
Description Finish Price

Example 2. (With Identifier)

Sometimes data models will assign an identifier (surrogate identifier) to the
associative entity type on the ER diagram. There are two reasons to motivate
this approach:

1. The associative entity type has a natural identifier that is familiar to end
user.

2. The default identifier may not uniquely identify instances of the associa-
tive entity.

2.7 Reducing ER Diagram to Tables

? Vendor-ID ?

SHIPMENT VENDOR

CUSTOMER

Shipment-No

(a) Shipment-No is a natural identifier to end user.

(b) The default identifier consisting of the combination of Customer-ID
and Vendor-ID does not uniquely identify the instances of SHIP-
MENT.

CUSTOMER

Customer-ID Name Other Attributes

SHIPMENT

Shipment-No Customer-ID Vendor-ID Date Amount

VENDOR

!

Vendor-ID Address Other Attributes

2.7.8 Converting Unary Relationship to Tables

Unary relationships are also called recursive relationships. The two most im-
portant cases of unary relationship are one-to-many and many-to-many.

One-to-many Unary Relationship

Each employee has exactly one manager. A given employee may manage zero
to many employees. The foreign key in the relation is named Manager-ID.
This attribute has the same domain as the primary key Employee-1D.

50 2 Entity-Relationship Model

Birth
Employee-ID

EMPLOYEE

Employee-ID Name Birth date Manager-1D

Y

2.7.9 Converting Ternary Relationship to Tables

A ternary relationship is a relationship among three entity types. The three en-
tities given in this example are PATIENT, PHYSICIAN, and TREATMENT.
The PATIENT-TREATMENT is an associative entity.

—Pa;';“t' Patient-
- Name
PATIENT PHYSICIAN

Physician-
Name

Physician-
ID

PATIENT
TREATMENT

Treatment-
Code

TREATMENT

2.8 Enhanced Entity—Relationship Model (EER Model) 51

The primary key attributes — Patient ID, Physician ID, and Treatment
Code — become foreign keys in PATIENT TREATMENT. These attributes
are components of the primary key of PATIENT TREATMENT.

PATIENT TREATMENT

Patient-ID Patient-Name

PHYSICIAN

Physician-ID Physician-Name

PATIENT TREATMENT

Patient-ID Physician-ID Treatment-Code Date Time Results

TREATMENT

Treatment-Code Description

2.8 Enhanced Entity—Relationship Model (EER Model)

The basic concepts of ER modeling are not powerful enough for some complex
applications. Hence some additional semantic modeling concepts are required,
which are being provided by Enhanced ER model. The Enhanced ER model
is the extension of the original ER model with new modeling constructs. The
new modeling constructs introduced in the EER model are supertype (su-
perclass) /subtype (subclass) relationships. The supertype allows us to model
general entity type whereas the subtype allows us to model specialized entity

types.

Enhanced ER model = ER model + hierarchical relationships.

EER modeling is especially useful when the domain being modeled is
object-oriented in nature and the use of inheritance reduces the complex-
ity of the design. The extended ER model extends the ER model to allow
various types of abstraction to be included and to express constraints more
clearly.

2.8.1 Supertype or Superclass

Supertype or superclass is a generic entity type that has a relationship with
one or more subtypes. For example PLAYER is a generic entity type which has

52 2 Entity-Relationship Model

a relationship with one or more subtypes like CRICKET PLAYER, FOOT-
BALL PLAYER, HOCKEY PLAYER, TENNIS PLAYER, etc.

2.8.2 Subtype or Subclass

A subtype or subclass is a subgrouping of the entities in an entity type that
is meaningful to the organization. A subclass entity type is a specialized type
of superclass entity type. A subclass entity type represents a subset or sub-
grouping of superclass entity type’s instances. Subtypes inherit the attributes
and relationships associated with their supertype.

Consider the entity type ENGINE, which has two subtypes PETROL
ENGINE and DIESEL ENGINE.

Consider the entity type STUDENT, which has two subtypes UNDER-
GRADUATE and POSTGRADUATE.

2.9 Generalization and Specialization

Generalization and specialization are two words for the same concept, viewed
from two opposite directions. Generalization is the bottom-up process of defin-
ing a generalized entity type from a set of more specialized entity types.
Specialization is the top-down process of defining one or more subtypes of a
supertype.

Generalization is the process of minimizing the differences between enti-
ties by identifying common features. It can also be defined as the process of
defining a generalized entity type from a set of entity types.

Specialization is a process of identifying subsets of an entity set (the
superset) that share some distinguishing characteristics. In specialization
the superclass is defined first and the subclasses are defined next. Speciali-
zation is the process of viewing an object as a more refined, specialized object.
Specialization emphasizes the differences between objects.

For example consider the entity type STUDENT, which can be further
classified into FULLTIME STUDENT and PARTTIME STUDENT. The
classification of STUDENT into FULLTIME STUDENT and PARTTIME
STUDENT is called Specialization.

STUDENT

Speclalization

FULLTIME STUDENT PARTTIME STUDENT

2.11 Multiple Inheritance 53

2.10 ISA Relationship and Attribute Inheritance

IS_A relationship supports attribute inheritance and relationship participa-
tion. In the EER diagram, the subclass relationship is represented by ISA
relationship. Attribute inheritance is the property by which subclass entities
inherit values for all attributes of the superclass.

Consider the example of EMPLOYEE entity set in a bank. The EMPLOYEE
in a bank can be CLERK, MANAGER, CASHIER, ACCOUNTANT, etc. It
is to be observed that the CLERK, MANAGER, CASHIER, ACCOUNTANT
inherit some of the attributes of the EMPLOYEE.

Circle
represents
EMPLOYEE ISA
relationship
CLERK CASHIER
MANAGER

In this example the superclass is EMPLOYEE and the subclasses are
CLERK, MANAGER, and CASHIER. The subclasses inherit the attributes
of the superclass. Since each member of the subclass is an ISA member of
the superclass, the circle below the EMPLOYEE entity set represents ISA
relationship.

2.11 Multiple Inheritance

A subclass with more than one superclass is called a shared subclass. A sub-
class inherits attributes not only of its direct superclass, but also of all its pre-
decessor superclass, that is it has multiple inheritance from its superclasses. In
multiple inheritance a subclass can be subclass of more than one superclass.

Example of Multiple Inheritance

Consider a person in an educational institution. The person can be employee,
alumnus, and student. The employee entity can be staff or faculty. The stu-
dent can be a graduate student or a postgraduate student. The postgraduate
student can be a teaching assistant. If the postgraduate student is a teach-
ing assistant, then he/she inherits the characteristics of the faculty as well
as student class. That is the teaching assistant subclass is a subclass of more
than one superclass (faculty, student). This phenomenon is called multiple
inheritance and is shown in the Fig. 2.2.

54 2 Entity-Relationship Model

PERSON

EMPLOYEE STUDENT

UNDER POST
GRADUATE GRADUATE

STAFF FACULTY
m
TEACHING

CLASS ASSISTANT

Fig. 2.2. Multiple inheritance

2.12 Constraints on Specialization and Generalization

The constraints on specialization and generalization can be broadly classified
into disjointness and completeness. The disjointness constraint allows us to
specify whether an instance of a supertype may simultaneously be a member of
two or more subtypes. In disjointness we have two categories (1) Overlap and
(2) Disjoint. In completeness we have two categories (1) Total and (2) Partial.
The completeness constraint addresses the question whether an instance of a
supertype must also be a member of at least one subtype.

2.12.1 Overlap Constraint

Overlap refers to the fact that the same entity instance may be a member of
more than one subclass of the specialization.

Example of Overlap Constraint

Consider the example of ANIMAL entity, which can be further subdivided
into LAND ANIMAL and WATER ANIMAL. Consider the example of Frog
and Crocodile which can live in both land and water hence the division of
ANIMAL into LAND and WATER animals is an example of overlap con-

straint.

2.12 Constraints on Specialization and Generalization 55

ANIMAL

LAND ANIMAL WATER ANIMAL

2.12.2 Disjoint Constraint

Disjoint refers to the fact that the same entity instance may be a member of
only one subclass of the specialization.

Example of Disjointness Constraint

Consider the example of CATALOGUE. The CATALOGUE is a superclass,
which can be further subdivided into BOOKS, JOURNALS, and PERIOD-
ICALS. This falls under disjointness because a BOOK entity can be neither
JOURNAL nor PERIODICAL.

CATALOGUE

N

BOOKS JOURNALS PERIODICALS

2.12.3 Total Specialization

Total completeness refers to the fact that every entity instance in the super-
class must be a member of some subclass in the specialization. With total
specialization, an instance of the supertype must be a member of at least one
subtype.

Example of Total Specialization

Consider the example of TEACHER; the teacher is a general term, which can
be further specialized into LECTURER, TUTOR, and DEMONSTRATOR.
Here every member in the superclass participates as a member of a subclass,
hence it is an example of total participation.

56 2 Entity-Relationship Model

TEACHER

Double arrow / d within circle
mdlga}es Fotal d represents
participation disjointness
N
LECTURER TUTOR DEMONSTRATOR

WORKED

2.12.4 Partial Specialization

Partial completeness refers to the fact that an entity instance in the superclass
need not be a member of any subclass in the specialization. With partial
specialization, an instance of a supertype may or may not be a member of
any subtype.

Example of Partial Specialization

Consider the PERSON specialization into EMPLOYEE and STUDENT. This
is an example of partial specialization because there can be a person who is
unemployed and does not study.

PERSON
O indicates Single line
overlapping indicates partial
constraint participation
(0}
EMPLOYEE STUDENT

2.13 Aggregation and Composition

Relationships among relationships are not supported by the ER model. Groups
of entities and relationships can be abstracted into higher level entities using
aggregation. Aggregation represents a “HAS-A” or “IS-PART-OF” relation-
ship between entity types. One entity type is the whole, the other is the part.
Aggregation allows us to indicate that a relationship set participates in an-
other relationship set.

2.14 Entity Clusters 57

Consider the example of a driver driving a car. The car has various compo-
nents like tires, doors, engine, seat, etc., which varies from one car to another.
Relationship drives is insufficient to model the complexity of this system. Part-
of relationships allow abstraction into higher level entities. In this example
engine, tires, doors, and seats are aggregated into car.

@

Part-of

| Piston | | Valves |

Composition is a stronger form of aggregation where the part cannot exist
without its containing whole entity type and the part can only be part of one
entity type.

Consider the example of DEPARTMENT has PROJECT. Each project is
associated with a particular DEPARTMENT. There cannot be a PROJECT
without DEPARTMENT. Hence DEPARTMENT has PROJECT is an exam-
ple of composition.

2.14 Entity Clusters

EER diagrams are difficult to read when there are many entities and relation-
ships. One possible solution is to group entities and relationships into entity
clusters. Entity cluster is a set of one or more entity types and associated
relationships grouped into a single abstract entity type. Entity cluster be-
haves like an entity type; hence entity clusters and entity types can be further
grouped to form a higher level entity cluster. Entity clustering is a hierarchi-
cal decomposition of a macrolevel view of the data model into finer and finer
views, eventually resulting in the full detailed data model.

To understand entity cluster, consider the example of Hospital Manage-
ment. In hospital, the DOCTORS treat the PATIENT. The DOCTORS are
paid by the MANAGEMENT which builds buildings. The DOCTORS can

58 2 Entity-Relationship Model

be either general physician or specialist like those with MS or MD. The pa-
tient can be either inpatient or outpatient. It is to be noted that only outpa-
tient will be allotted bed. If we have to represent the earlier ideas, it can be
done using EER diagram as shown in Fig. 2.3. The EER diagram is found to
be complex; the same idea is represented using Entity Clusters as shown in
Fig. 2.4. Here the DOCTOR specialization is clustered into DOCTORS entity
and the PATIENT specialization is clustered into simply PATIENT. At the
first glance, it may look like reduction of EER model to ER model, but it
is not so. Here the entities as well as relationships are clustered into simply
entity set.

2.15 Connection Traps

Connection trap is the misinterpretation of the meaning of certain relation-
ships. This connection traps can be broadly classified into fan and chasm trap.
Any conceptual model will contain potential connection traps. An error in the
interpretation of the meaning of the relationship may cause the database to
be incapable of storing certain information. Both the fan and chasm trap arise
when the relationships appear to exist between entity types, but the links be-
tween occurrences may be ambiguous or not exist. Related groups of entities

could become clusters.
Management B“ildiﬂgs

DOCTOR

PATIENT |
GENERAL SPECIALIST INPATIENT OUTPATIENT
PHYSICIAN
Patient ID
Specialization
Bed Number

Fig. 2.3. EER diagram of Hospital Management

2.15 Connection Traps 59

MANAGEMENT
<>
DOCTORS
HOSPITAL
PATIENT

Fig. 2.4. Entity Cluster

2.15.1 Fan Trap

Fan trap occurs when the model represents a relationship between entity types
but the pathway between certain entity occurrences is ambiguous. Fan trap
occurs when 1-M relationships fan out from a single entity. In order to un-
derstand the concept of Fan trap, consider the following example

Contractor works in a team......... Statement (1)
Team develops projects............ Statement (2)

Statement (1) represents M—1 relationship. Statement (2) represents 1-M
relationship. But the information about which contractors are involved in
developing which projects is not clear.

Consider another example of Fan trap.

Department is on Site......... Statement (1)
Site employs Staff............... Statement (2)

Statement (1) represents M—1 relationship, because many departments may
be in a single site. Statement (2) represents 1-M relationships. However which
staff works in a particular department is ambiguous. The fan trap is resolved
by reconstructing the original ER model to represent the correct association.

works for

Department }

2.15.2 Chasm Trap

A chasm trap occurs when a model suggests the existence of a relationship
between entity types, but the pathway does not exist between certain entity

60 2 Entity-Relationship Model

occurrences. It occurs where there is a relationship with partial participation,
which forms part of the pathway between entities that are related. Consider
the relationship shown later.

is_allocated oversees
Branch < Staff < Property
n O (0]

A single branch may be allocated to many staff who oversees the man-
agement of properties for rent. It should be noted that not all staff oversee
property and not all property is managed by a member of staff. Hence there
exist a partial participation of Staff and Property in the relation “oversees,”
which means that some properties cannot be associated with a branch office
through a member of staff. Hence the model has to modified as shown later.

. oversees
is_allocated n

(6}

Branch Property
has

2.16 Advantages of ER Modeling

An ER model is derived from business specifications. ER models separate
the information required by a business from the activities performed within a
business. Although business can change their activities, the type of informa-
tion tends to remain constant. Therefore, the data structures also tend to be
constant. The advantages of ER modeling are summarized later:

1. The ER modeling provides an easily understood pictorial map for the
database design.

2. It is possible to represent the real world problems in a better manner in
ER modeling.

3. The conversion of ER model to relational model is straightforward.

4. The enhanced ER model provides more flexibility in modeling real world
problems.

5. The symbols used to represent entity and relationships between entities
are simple and easy to follow.

Summary

This chapter has described the fundamentals of ER modeling of data. An
ER model is a logical representation of data. The ER model was introduced

Review Questions 61

by Peter Chen in 1976. An ER model is usually expressed in the form of
ER diagram. The basic constructs of ER model are entity types, relation-
ships, and attributes. This chapter also described the types of entities like
strong and weak entity, types of relationships like one-to-one, one-to-many,
and many-to-many relationship. Attributes can also be classified as single
valued, multivalued and derived attribute. In this chapter different types of
entities, attributes, and relationship were explained with simple examples.

Review Questions

2.1. Construct an ER diagram of tennis player.

PLAYER age
Number
of titles
ATP
ranking

2.2. Construct an ER diagram of Indian cricket team.

One way of constructing ER diagram for Indian cricket team is shown later.

TEAM PLAYERS
Managed
by
CRICKET .
BOARD Appoints COACH

experience

Here skills refers to player’s skill which may be batting, bowling, and
fielding. All-rounders can have many skills.

2.3. What is Weak entity type?

Entity types that do not have key attribute of their own are called Weak
entity type.

62 2 Entity-Relationship Model

2.4. Define entity with example?

An entity is an object with a physical existence.
Examples of entity is a person, a car, an organization, a house, etc.

2.5. Define Entity type, Entity set?

An entity type defines a collection of entities that have same attribute
Entity Set

Entity set is the collection of a particular entity type that are grouped into
an “Entity Set.”

2.6. Should a real world object be modeled as an entity or as an attribute?

Object should be an entity if a number of attributes could be associated with
it for proper identification and description, either now or later. Object should
be an attribute, if it has an atomic nature. For example, Color should be an
attribute, unless we identify Color either as a process (e.g., painting) where a
number of attributes codes are to be recorded (e.g., type, shade, gray-scale,
manufacturer, or as an object with properties (e.g., car-color with details).

2.7. When composite attribute usage is preferred than set of attributes?

Composite attribute is chosen when a meaningful name can be assigned to
the set of attributes, e.g., data, address. Otherwise a set of simple attributes
should be chosen.

2.8. Distinguish between strong and weak entity?

Strong entity Weak entity

Exists independently of other entities Dependent on a strong entity,
cannot exist on its own

Strong entity has its own unique Does not have a unique

identifier identifier

Represented by a single line rectangle in Represented with a double-line

ER diagram rectangle in ER diagram

2.9. What is inheritance in generalization hierarchies?

Inheritance is a data modeling feature that supports sharing of attributes
between a supertype and a subtype. Subtype inherits attributes from their
supertype.

2.10. Give an example of supertype/subtype relationship where the overlap
rule applies?

Overlap refers to the fact that the same entity instance may be a member
of more than one subclass of the specialization. Consider the example of
CRICKET PLAYER. Here CRICKET PLAYER is the supertype. The sub-
type can be BOWLER, BATSMAN.

Review Questions 63

CRICKET PLAYER

BATSMAN BOWLER

Same player can be both batsman and bowler. Hence overlap rule holds
good in this example.

2.11. Give an example of supertype/subtype relationship where the disjoint

rule applies?

Let us consider the example of CRICKET PLAYER again. Here the super type
is CRICKET PLAYER. The subtypes are BOWLER and WICKETKEEPER.
We know that the same cricket player cannot be both bowler and wicket keeper
hence disjoint rule applies for this example.

CRICKET PLAYER

BOWLER

WICKET KEEPER

II. Match the following

(1) Relation
(2) Tuples

(3) Cardinality
(4) Degree

(5) Domain

a) Rows
b) Number of Rows of a Relation
¢) Number of Columns of a Relation

d) Columns or Range of values a column may have

(
(
(
(
(e) Table

3

Relational Model

Learning Objectives. This chapter is dedicated to relational model which is in
use since late 1970s. Various operations in relational algebra and relational calculus
are given in this chapter. After completing this chapter the reader should be familiar
with the following concepts:

— Evolution and importance of relational model

— Terms in relational model like tuple, domain, cardinality, and degree of a relation
— Operations in relational algebra and relational calculus

— Relational algebra vs relational calculus

— QBE and various operations in QBE

3.1 Introduction

E.F. Codd (Edgar Frank Codd) of IBM had written an article “A relational
model for large shared data banks” in June 1970 in the Association of Com-
puter Machinery (ACM) Journal, Communications of the ACM. His work
triggered people to work in relational model. One of the most significant
implementations of the relational model was “System R,” which was develo-
ped by IBM during the late 1970s. System R was intended as a “proof of
concept” to show that relational database systems could really build and
work efficiently. It gave rise to major developments such as a structured query
language called SQL which has since become an ISO standard and de facto
standard relational language. Various commercial relational DBMS products
were developed during the 1980s such as DB2, SQL/DS, and Oracle. In rela-
tional data model the data are stored in the form of tables.

3.2 CODD’S Rules

In 1985, Codd published a list of rules that became a standard way of eval-
uating a relational system. After publishing the original article Codd stated
that there are no systems that will satisfy every rule. Nevertheless the rules
represent relational ideal and remain a goal for relational database designers.

S. Sumathi: Relational Model, Studies in Computational Intelligence (SCI) 47, 65-110 (2007)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

66 3 Relational Model

Note: The rules are numbered from 1 to 12 whereas the statements preceded
by the bullet mark are interpretations of the Codd’s rule:

1. The Information Rule. All information in a relational database is repre-
sented explicitly at the logical level and in exactly one way-by values in
tables:

e Data should be presented to the user in the tabular form.

2. Guaranteed Access Rule. Each and every datum (atomic value) in a rela-
tional database is guaranteed to be logically accessible by resorting to a
combination of table name, primary key value, and column name:

e Every data element should be unambiguously accessible.

3. Systematic Treatment of Null Values. Null values (distinct from the empty
character string or a string of blank characters and distinct from zero or
any other number) are supported in fully relational DBMS for representing
missing information and inapplicable information in a systematic way,
independent of data type.

4. Dynamic On-line Catalog Based on the Relational Model. The database
description is represented at the logical level in the same way as ordinary
data, so that authorized users can apply the same relational language to
its interrogation as they apply to the regular data:

e The database description should be accessible to the users.

5. Comprehensive Data Sublanguage Rule. A relational system may support
several languages and various modes of terminal use (for example the
fill-in-the-blanks mode). However, there must be at least one language
whose statements are expressible, per some well-defined syntax, as char-
acter strings and whose ability to support all the following is comprehen-
sive: data definition, view definition, data manipulation (interactive and
by program), integrity constraints, and transaction boundaries:

e A database supports a clearly defined language to define the database,
view the definition, manipulate the data, and restrict some data values
to maintain integrity.

6. View Updating Rule. All views that are theoretically updatable are also
updatable by the system:

e Data should be able to be changed through any view available to the
user.

7. High-level Insert, Update, and Delete. The capacity of handling a base
relation or a derived relation as a single operand applies not only to the
retrieval of data but also to the insertion, update, and deletion of data:
e All records in a file must be able to be added, deleted, or updated with

singular commands

8. Physical Data Independence. Application programs and terminal activities
remain logically unimpaired whenever any changes are made in either
storage representations or access methods:

10.

11.

12.

3.3 Relational Data Model 67

e Changes in how data are stored or retrieved should not affect how a
user accesses the data.

Logical Data Independence. Application programs and terminal activities

remain logically unimpaired whenever information-preserving changes of

any kind that theoretically permit unimpairment are made to the base

tables:

e A user’s view of data should be unaffected by its actual form in files.

Integrity Independence. Integrity constraints specific to a particular rela-

tional database must be definable in a relational data sublanguage and

storable in the catalog, not in the application programs.

e Constraints on user input should exist to maintain data integrity.

Distribution Independence. A relational DBMS has distribution indepen-

dence. Distribution independence implies that users should not have to

be aware of whether a database is distributed.

e A database design should allow for distribution of data over several
computer sites.

Nonsubversion Rule. If a relational system has a low-level (single-record-

at-a-time) language, that low level cannot be used to subvert or bypass

the integrity rules and constraints expressed in the higher level relational

language (multiple-records-at-a-time):

e Data fields that affect the organization of the database cannot be
changed.

There is one more rule called Rule Zero which states that “For any system

that is claimed to be a relational database management system, that system
must be able to manage data entirely through capabilities.”

3.3 Relational Data Model

The relational model uses a collection of tables to represent both data and
the relationships among those data. Tables are logical structures maintained
by the database manager. The relational model is a combination of three
components, such as Structural, Integrity, and Manipulative parts.

3.3.1 Structural Part

The structural part defines the database as a collection of relations.

3.3.2 Integrity Part

The database integrity is maintained in the relational model using primary
and foreign keys.

68 3 Relational Model
3.3.3 Manipulative Part

The relational algebra and relational calculus are the tools used to manipu-
late data in the database. Thus relational model has a strong mathematical
background. The key features of relational data model are as follows:

— Each row in the table is called tuple.

— Each column in the table is called attribute.

— The intersection of row with the column will have data value.

— In relational model rows can be in any order.

— In relational model attributes can be in any order.

— By definition, all rows in a relation are distinct. No two rows can be exactly
the same.

— Relations must have a key. Keys can be a set of attributes.

— For each column of a table there is a set of possible values called its
domain. The domain contains all possible values that can appear under
that column.

— Domain is the set of valid values for an attribute.

— Degree of the relation is the number of attributes (columns) in the relation.

— Cardinality of the relation is the number of tuples (rows) in the relation.

The terms commonly used by user, model, and programmers are given
later.

User Model Programmer
Row Tuple Record
Column Attribute Field
Table Relation File
Attribute
TUPLE0 -
TUPLH 1

A\

— Field

Entity

3.4 Concept of Key 69
3.3.4 Table and Relation

The general doubt that will rise when one reads the relational model is the
difference between table and relation. For a table to be relation, the following
rules holds good:

The intersection row with the column should contain single value (atomic
value).

All entries in a column are of same type.

— Each column has a unique name (column order not significant).

— No two rows are identical (row order not significant).

Example of Relational Model

Representation of Movie data in tabular form is shown later.

MOVIE
Movie Name Director Actor Actress
Titanic James Cameron Leonardo DiCapiro Kate Winslet
Autograph Cheran Cheran Gopika
Roja Maniratnam AravindSwamy Madubala

In the earlier relation:
The degree of the relation (i.e., is the number of column in the relation) = 4.
The cardinality of the relation (i.e., the number of rows in the relation) = 3.

3.4 Concept of Key

Key is an attribute or group of attributes, which is used to identify a row in
a relation. Key can be broadly classified into (1) Superkey (2) Candidate key,
and (3) Primary key

Key Classification

I

Superkey Candidate key Primary key

3.4.1 Superkey

A superkey is a subset of attributes of an entity-set that uniquely identifies
the entities. Superkeys represent a constraint that prevents two entities from
ever having the same value for those attributes.

70 3 Relational Model
3.4.2 Candidate Key

Candidate key is a minimal superkey. A candidate key for a relation schema
is a minimal set of attributes whose values uniquely identify tuples in the
corresponding relation.

Primary Key

The primary key is a designated candidate key. It is to be noted that the
primary key should not be null.

Example

Consider the employee relation, which is characterized by the attributes,
employee 1D, employee name, employee age, employee experience, employee
salary, etc. In this employee relation:

Superkeys can be employee ID, employee name, employee age, employee
experience, etc.

Candidate keys can be employee ID, employee name, employee age.

Primary key is employee ID.

Note: If we declare a particular attribute as the primary key, then that attri-
bute value cannot be NULL. Also it has to be distinct.

3.4.3 Foreign Key

Foreign key is set of fields or attributes in one relation that is used to “refer”
to a tuple in another relation.

3.5 Relational Integrity

Data integrity constraints refer to the accuracy and correctness of data in
the database. Data integrity provides a mechanism to maintain data con-
sistency for operations like INSERT, UPDATE, and DELETE. The different
types of data integrity constraints are Entity, NULL, Domain, and Referential
integrity.

3.5.1 Entity Integrity

Entity integrity implies that a primary key cannot accept null value. The
primary key of the relation uniquely identifies a row in a relation. Entity
integrity means that in order to represent an entity in the database it is
necessary to have a complete identification of the entity’s key attributes.

3.5 Relational Integrity 71

Consider the entity PLAYER; the attributes of the entity PLAYER are
Name, Age, Nation, and Rank. In this example, let us consider PLAYER’s
name as the primary key even though two players can have same name. We
cannot insert any data in the relation PLAYER without entering the name of
the player. This implies that primary key cannot be null.

3.5.2 Null Integrity

Null implies that the data value is not known temporarily. Consider the
relation PERSON. The attributes of the relation PERSON are name, age,
and salary. The age of the person cannot be NULL.

3.5.3 Domain Integrity Constraint

Domains are used in the relational model to define the characteristics of the
columns of a table. Domain refers to the set of all possible values that attribute
can take. The domain specifies its own name, data type, and logical size.
The logical size represents the size as perceived by the user, not how it is
implemented internally. For example, for an integer, the logical size represents
the number of digits used to display the integer, not the number of bytes used
to store it. The domain integrity constraints are used to specify the valid
values that a column defined over the domain can take. We can define the
valid values by listing them as a set of values (such as an enumerated data
type in a strongly typed programming language), a range of values, or an
expression that accepts the valid values. Strictly speaking, only values from
the same domain should ever be compared or be integrated through a union
operator. The domain integrity constraint specifies that each attribute must
have values derived from a valid range.

Example 1
The age of the person cannot have any letter from the alphabet. The age
should be a numerical value.

Example 2

Consider the relation APPLICANT. Here APPLICANT refers to the person
who is applying for job. The sex of the applicant should be either male (M)
or female (F). Any entry other than M or F violates the domain constraint.

3.5.4 Referential Integrity

In the relational data model, associations between tables are defined through
the use of foreign keys. The referential integrity rule states that a database

72 3 Relational Model

must not contain any unmatched foreign key values. It is to be noted that
referential integrity rule does not imply a foreign key cannot be null. There
can be situations where a relationship does not exist for a particular instance,
in which case the foreign key is null. A referential integrity is a rule that states
that either each foreign key value must match a primary key value in another
relation or the foreign key value must be null.

3.6 Relational Algebra

The relational algebra is a theoretical language with operations that work on
one or more relations to define another relation without changing the orig-
inal relation. Thus, both the operands and the results are relations; hence
the output from one operation can become the input to another operation.
This allows expressions to be nested in the relational algebra. This property
is called closure. Relational algebra is an abstract language, which means that
the queries formulated in relational algebra are not intended to be executed
on a computer. Relational algebra consists of group of relational operators
that can be used to manipulate relations to obtain a desired result. Knowl-
edge about relational algebra allows us to understand query execution and
optimization in relational database management system.

3.6.1 Role of Relational Algebra in DBMS

Knowledge about relational algebra allows us to understand query execu-
tion and optimization in relational database management system. The role of
relational algebra in DBMS is shown in Fig. 3.1. From the figure it is evident
that when a SQL query has to be converted into an executable code, first it
has to be parsed to a valid relational algebraic expression, then there should
be a proper query execution plan to speed up the data retrieval. The query
execution plan is given by query optimizer.

3.7 Relational Algebra Operations

Operations in relational algebra can be broadly classified into set operation
and database operations.

3.7.1 Unary and Binary Operations

Unary operation involves one operand, whereas binary operation involves two
operands. The selection and projection are unary operations. Union, differ-
ence, Cartesian product, and Join operations are binary operations:

3.7 Relational Algebra Operations 73

SQL Query

A

y

Relational algebra
expression

. Cuery
A Optimiser

Query execution plan

)

y

Executable Code

Fig. 3.1. Relational algebra in DBMS

— Unary operation operate on one relation
— Binary operation operate on more than one relation
Relational algebra operations

Set Operations Database operations
* Union * Selection
* |ntersection * Projection
* Difference % Join

+ Cartesian product

Three main database operations are SELECTION, PROJECTION, and
JOIN.

Selection Operation

The selection operation works on a single relation R and defines a relation that
contains only those tuples of R that satisfy the specified condition (Predicate).
Selection operation can be considered as row wise filtering. This is pictorially
represented in Fig. 3.2

Syntaz of Selection Operation

The syntax of selection operation is: Gpredicate (R). Here R refers to relation
and predicate refers to condition.

74 3 Relational Model

Fig. 3.2. Pictorial representation of SELECTION operation

Hllustration of Selection Operation

To illustrate the SELECTION operation consider the STUDENT relation
with the attributes Roll number, Name, and GPA (Grade Point Average).

Example

Consider the relation STUDENT shown later:

STUDENT

Student Name GPA
Roll. No

001 Aravind 7.2
002 Anand 7.5
003 Balu 8.2
004 Chitra 8.0
005 Deepa 8.5
006 Govind 7.2
007 Hari 6.5

Query 1: List the Roll. No, Name, and GPA of those students who are having
GPA of above 8.0

Query expressed in relational algebra as cgpa > 8 (Student).

The result of the earlier query is:

Student Name GPA
Roll. No
003 Balu 8.2

005 Deepa 8.5

3.7 Relational Algebra Operations 75

Query 2: Give the details of first four students in the class.
Relational algebra expression is Orol. No < (student).
Table as a result of query 2 is

Student Name GPA
Roll. No

001 Aravind 7.2
002 Anand 7.5
003 Balu 8.2
004 Chitra 8.0

Projection Operation

The projection operation works on a single relation R and defines a rela-
tion that contains a vertical subject of R, extracting the values of specified
attributes and elimination duplicates. The projection operation can be con-
sidered as column wise filtering. The projection operation is pictorially repre-
sented in Fig. 3.3.

Syntax of Projection Operation

The syntax of projection operation is given by: [],; .o .. (R).
Where al, a2, an are attributes and R stands for relation.
STAFF
Staff No Name Gender Date of birth Salary
SL21 Raghavan M 1-5-76 15,000
SL22 Raghu M 1-5-77 12,000
SL55 Babu M 1-6-76 12,500
SL66 Kingsly M 1-8-78 10,000

Fig. 3.3. Pictorial representation of Projection operation

76 3 Relational Model
Hllustration of Projection Operation

To illustrate projection operation consider the relation STAFF, with the
attributes Staff number, Name, Gender, Date of birth, and Salary.

Query 1: Produce the list of salaries for all staff showing only the Name and
salary detail. Relational algebra expression: [[\,me satary (Staff)

Output for the Query 1

Name Salary
Raghavan 15,000
Raghu 12,000
Babu 12,500
Kingsly 10,000

Query 2: Give the name and Date of birth of the all the staff in the STAFF
relation.
Relational algebra expression for query 2: HName’ date of biren (staff)

Name Date of birth
Raghavan 1-5-76
Raghu 1-5-77
Babu 1-6-76
Kingsly 1-8-78

3.7.2 Rename operation (p)

The rename operator returns an existing relation under a new name. p,(B)
is the relation B with its name changed to A. The results of operation in the
relational algebra do not have names. It is often useful to name such results
for use in further expressions later on. The rename operator can be used to
name the result of relational algebra operation.

Example of Rename Operation

Consider the relation BATSMAN with the attributes name, nation, and BA.

BATSMAN
Name Nation BA
Sachin Tendulkar India 45.5
Brian Lara West Indies 43.5

Inzamamulhaq Pakistan 42.5

3.7 Relational Algebra Operations 77

The attributes of the relation BATSMAN can be renamed as name, nation
and batting average as name, nation, batting average (BATSMAN) so that
the relation BATSMAN after rename operation as shown later.

BATSMAN
Name Nation Batting average
Sachin Tendulkar India 45.5
Brian Lara West Indies 43.5
Inzamamulhaq Pakistan 42.5

From the earlier operation it is clear that rename operation changes the
schema of the database and it does not change the instance of the database.

Union Compatibility

In order to perform the Union, Intersection, and the Difference operations on
two relations, the two relations should be union compatible. Two relations are
union compatible if they have same number of attributes and belong to the
same domain. Mathematically UNION COMPATIBILITY it is given as:

Let R(A1, Ay .. A,) and S(B1,Bs B,) be the two relations. The
relation R has the attributes A; Ay
attributes B1 Ba ... B,. The two relations R and S are union compatible
if dom(A;) =dom(B;) for i = 1 to n.

..............

3.7.3 Union Operation

The union of two relations R and S defines a relation that contains all the
tuples of R or S or both R and S, duplicate tuples being eliminated.

Relational Algebra Expression

The union of two relations R and S are denoted by R U S. R U S is pictorially
represented in the Fig. 3.4.

Illustration of UNION Operation

To illustrate the UNION operation consider the two relations Customer 1 and
Customer 2 with the attributes Name and city.

Customer 1 Customer 2
Name City Name City
Anand Coimbatore Gopu Tirunelveli
Aravind Chennai Balu Kumbakonam
Gopu Tirunelveli Rahu Chidambaram

Helan Palayankottai Helan Palayamkottai

78 3 Relational Model

R S

RUS

S

Fig. 3.4. Union of two relations R and S

Example

Query Determine Customer 1 U Customer 2
Result of Customer 1 U Customer 2

Customer 1 U Customer 2

Name City

Anand Coimbatore
Aravind Chennai

Balu Kumbakonam
Gopu Tirunelveli
Rahu Chidambaram
Helan Palayamkottai

3.7.4 Intersection Operation

The intersection operation defines a relation consisting of the set of all tuples
that are in both R and S.

Relational Algebra Expression

The intersection of two relations R and S is denoted by RN S.

Illustration of Intersection Operation

The intersection between the two relations R and S is pictorially shown in
Fig. 3.5.

3.7 Relational Algebra Operations 79

S

Fig. 3.5. Intersection of two relations R and S

Example
Find the intersection of Customer 1 with Customer 2 in the following table.

Customer 1 N Customer 2

Name City
Gopu Tirunelveli
Helan Palayamkottai

3.7.5 Difference Operation

The set difference operation defines a relation consisting of the tuples that are
in relation R but not in S.

Relational Algebra Expression

The difference between two relations R and S is denoted by R—S.

Illustration of Difference Operation

The difference between two relations R and S is pictorially shown in Fig. 3.6.

Example

Compute RS for the relation shown in the following table.

80 3 Relational Model

R -

Fig. 3.6. Difference between two relations R and S

Customer 1 — Customer 2

Name City
Anand Coimbatore
Aravind Chennai

3.7.6 Division Operation

The division of the relation R by the relation S is denoted by R + S, where
R + S is given by:

R+8S=Tgr__g¢) — Ir——s((Mr——_g() X 8) — 1)

To illustrate division operations consider two relations STUDENT and
MARK. The STUDENT relation has the attributes Student Name and the
mark in particular subject say mathematics. The MARK relation consists of
only one column mark and only one row.

Student Mark
Name Mark Mark
Arul 97 100
Banu 100
Christi 98
Dinesh 100
Krishna 95
Ravi 95
Lakshmi 98

Case (1)

If we divide the STUDENT relation by the MARK relation, the resultant
relation is shown as:

Case (2)

3.7 Relational Algebra Operations

81

Now modify the relation MARK that is change the mark to be 98. So that
the entry in the MARK relation is modified as 98.

Answer
Name
Banu
Dinesh
Student
Name Mark
Arul 97
Banu 100
Christi 98
Dinesh 100
Krishna 95
Ravi 95
Lakshmi 98

Mark

Mark
98

If we divide the relation STUDENT by MARK relation then the resultant
relation is given by ANSWER

Case (3)

Answer

Name

Christi

Lakshmi

Now the MARK relation is modified in such a way that the entry in the
MARK relation is 99. If we divide the STUDENT relation with the MARK
relation, the result is NULL. Because there is no student in the STUDENT
relation with the mark 99.

Student Mark
Name Mark Mark
Arul 97 99
Banu 100
Christi 98
Dinesh 100
Krishna 95
Ravi 95

Lakshmi 98

82 3 Relational Model

The division of the STUDENT relation with the MARK relation is given
by the ANSWER relation.

The division operation extracts records and fields from one table on the
basis of data in the second table.

Answer
Name
NULL

3.7.7 Cartesian Product Operation

The Cartesian product operation defines a relation that is the concatenation
of every tuples of relation R with every tuples of relation S. The result of
Cartesian product contains all attributes from both relations R and S.

Relational Algebra Symbol for Cartesian Product:

The Cartesian product between the two relations R and S is denoted by
R x S.

Note: If there are nl tuples in relation R and n2 tuples in S, then the number
of tuples in R x S is n1*n2.

Example

If there are 5 tuples in relation “R” and 2 tuples in relation “S” then the
number of tuples in R x S is 5% 2 = 10.

Illustration of Cartesian Product

To illustrate Cartesian product operation, consider two relations R and S as
given later:

R S
1
a 2
3
b

3.7 Relational Algebra Operations 83

Determine R x S:

T oo v o |93

Note:

No. of tuplesin RxS=2%x3=6
No. of attributes in R x S = 2

3.7.8 Join Operations

W~ Wk~ |

Join operation combines two relations to form a new relation. The tables
should be joined based on a common column. The common column should be

compatible in terms of domain.

Types of Join Operation

JOIN
|
Natural Equi Theta Semi Outer
join join join join join

Natural Join

Left outer Right outer
join join

The natural join performs an equi join of the two relations R and S over all
common attributes. One occurrence of each common attribute is eliminated
from the result. In other words a natural join will remove duplicate attribute.
In most systems a natural join will require that the attributes have the same
name to identity the attributes to be used in the join. This may require
a renaming mechanism. Even if the attributes do not have same name, we
can perform the natural join provided that the attributes should be of same

domain.

84 3 Relational Model

Input: Two relations (tables) R and S
Notation: R D] S

Purpose: Relate rows from second table and

— Enforce equality on all column attributes
— Eliminate one copy of common attribute

* Short hand for [r(R xS):

— L is the union of all attributes from R and S with duplicate removed
— P equates all attributes common to R and S

Example of Natural Join Operation

Consider two relations EMPLOYEE and DEPARTMENT. Let the common

attribute to the two relations be DEPTNUMBER. The two relations are
shown later:

It is worth to note that Natural join operation is associative. (i.e.,) If R,
S, and T are three relations then

Rx(SxT)=(R<xS)xT

Employee Department
Employee Designation Dept Dept name Dept Number
ID Number - ol -
t
C100 Lecturer E1l > C()e;;iftaer 1
C101 Assistant Professor E2
C102 Professor C1

Employee D<| Department
Employee Designation Dept Number Dept name

1D

C100 Lecturer El Electrical

C102 Professor C1 Computer
Equi Join

A special case of condition joins where the condition C contains only
equality.

Example of Equi Join

Given the two relations STAFF and DEPT, produce a list of staff and the
departments they work in.

3.7 Relational Algebra Operations 85

STAFF DEPT
Staff No Job Dept Dept Name
1 salesman 100 100 marketing
2 draftsman 101 101 civil

Answer for the earlier query is equi-join of STAFF and DEPT:
STAFF EQUI JOIN DEPARTMENT

Staff No Job dept dept Name
1 salesman 100 100 marketing
2 draftsman 101 101 civil

Theta Join

A conditional join in which we impose condition other than equality condition.
If equality condition is imposed then theta join become equi join. The symbol
0 stands for the comparison operator which could be >, <, >=, <=.

Expression of Theta Join
(o] (R X S)
Tllustration of Theta Join

To illustrate theta join consider two relations FRIENDS and OTHERS with
the attributes Name and age.

FRIENDS OTHERS
Name Age Alias Size
Joe 4 Bob 3
Sam) Gim 10
Sue 10 -
Result of theta join
Name Age Alias Size
Joe 4 Bob 8
Sam 9 Gim 10

Sue 10

Outer Join

In outer join, matched pairs are retained unmatched values in other tables are
left null.

86 3 Relational Model

1. Full puter join D(]

Left outer join M

3. Right outer join <

=)

Left outer Right outer
Join Join

matched rows
from left table Matg¢hed rows Unmatched rows from right

table

Fig. 3.7. Representation of left and right outer join

Types of Outer Join

The pictorial representation of the left and the right outer join of two relations
R and S are shown in Fig. 3.7:

1. Left Outer Join. Left outer joins is a join in which tuples from R that do
not have matching values in the common column of S are also included in
the result relation.

2. Right Outer Join. Right outer join is a join in which tuples from S that do
not have matching values in the common column of R are also included
in the result relation.

3. Full Outer Join. Full outer join is a join in which tuples from R that do
not have matching values in the common columns of S still appear and
tuples in S that do not have matching values in the common columns of
R still appear in the resulting relation.

Example of Full Outer Left Outer and Right Outer Join

Consider two relations PEOPLE and MENU determine the full outer, left
outer, and right outer join.

3.7 Relational Algebra Operations

Table 3.1. Left outer join of PEOPLE and MENU relation

PEOPLE M PEOPLE. Food = MENU. Food MENU

Name Age People.Food Menu.Food Day

Raja 21 Idly Idly Tuesday
Ravi 22 Dosa Dosa Wednesday
Rani 20 Pizza NULL NULL
Devi 21 Pongal Pongal Monday

Table 3.2. Right outer join of PEOPLE and MENU relation

PEOPLE D{ PEOPLE.Food = Menu.Food MENU

Name Age People.Food Menu.Food Day
Devi 21 Pongal Pongal Monday
Raja 21 Idly Idly Tuesday
Ravi 22 Dosa Dosa Wednesday
NULL NULL NULL Fried rice Thursday
NULL NULL NULL Parotta Friday
PEOPLE MENU

Name Age Food Food Day
Raja 91 Idly Pongal Monday

. Idly Tuesday
Ravi 22 Dosa

. . Dosa Wednesday
Rani 20 Pizza Fried rice Thursda
Devi 21 Pongal Y

Parotta

Friday

87

1. The left outer join of PEOPLE and MENU on Food is represented as

PEOPLE. M PEOPLE.Food = MENU.Food MENU. The result of

the left outer join is shown in Table 3.1.
From this table, it is to be noted that all the tuples from the left table
(in our case it is PEOPLE relation) appears in the result. If there is any

unmatched value then a NULL value is returned.
The right outer join of PEOPLE and MENU on Food is represented in

the relational algebra as PEOPLE D{ PEOPLE.Food = Menu.Food
MENU. The result of the right outer join is shown in Table 3.2.

88 3 Relational Model

Table 3.3. Full outer join of PEOPLE and MENU relation

Name Age People.Food Menu.Food Day

Raja 21 Idly Idly Tuesday
Ravi 22 Dosa Dosa Wednesday
Rani 20 Pizza NULL NULL
Devi 21 Pongal Pongal Monday
NULL NULL NULL Fried rice Thursday
NULL NULL NULL Parotta Friday

From this table, it is clear that all tuples from the right-hand side re-
lation (in our case the right hand relation is MENU) appears in the
result.

3. The full outer join of PEOPLE and MENU on Food is represented in

the relational algebra as PEOPLE M PEOPLE.Food = MENU.Food
MENU. The result of the full outer join is shown in Table 3.3.

From this table, it is clear that tuples from both the PEOPLE and the
MENU relation appears in the result.

Semi-Join

The semi-join of a relation R, defined over the set of attributes A, by relation
S, defined over the set of attributes B, is the subset of the tuples of R that
participate in the join of R with S. The advantage of semi-join is that it
decreases the number of tuples that need to be handled to form the join. In
centralized database system, this is important because it usually results in a
decreased number of secondary storage accesses by making better use of the
memory. It is even more important in distributed databases, since it usually
reduces the amount of data that needs to be transmitted between sites in
order to evaluate a query.

Expression for Semi-Join

RxpS= H AR xpS) where F is the predicate.

Example of Semi-Join

In order to understand semi-join consider two relations EMPLOYEE and PAY

3.9 Limitations of Relational Algebra 89

EMPLOYEE PAY
Employee Employee Name Designation Designation Salary
Number

- Programmer 25,000
El Rajan Programmer Consultant 70,000
E2 Krishnan System Analyst :
E3 Devi Database

Administrator

E4 Vidhya Consultant

The semi-join of EMPLOYEE with the PAY is denoted by:
EMPLOYEE XEMPLOYE.DESIGNATION=PAY.DESIGNATION PAY. The result of
this semi-join is given later:

Employee Number Employee Name Designation

E1l Rajan Programmer
E4 Vidhya Consultant

From the result of the semi-join it is clear that a semi-join is half of a join:
the rows of one table that match with at least one row of another table. Only
the rows of the first table appear in the result.

3.8 Advantages of Relational Algebra

The relational algebra has solid mathematical background. The mathematical
background of relational algebra is the basis of many interesting developments
and theorems. If we have two expressions for the same operation and if the
expressions are proved to be equivalent, then a query optimizer can automat-
ically substitute the more efficient form. Moreover, the relational algebra is
a high level language which talks in terms of properties of sets of tuples and
not in terms of for-loops.

3.9 Limitations of Relational Algebra

The relational algebra cannot do arithmetic. For example, if we want to know
the price of 101 of petrol, by assuming a 10% increase in the price of the
petrol, which cannot be done using relational algebra.

The relational algebra cannot sort or print results in various formats. For
example we want to arrange the product name in the increasing order of their
price. It cannot be done using relational algebra.

Relational algebra cannot perform aggregates. For example we want to
know how many staff are working in a particular department. This query
cannot be performed using relational algebra.

90 3 Relational Model

The relational algebra cannot modify the database. For example we want
to increase the salary of all employees by 10%. This cannot be done using
relational algebra.

The relational algebra cannot compute “transitive closure.” In order to
understand the term transitive closure consider the relation RELATIONSHIP,
which describes the relationship between persons.

Consider the query, Find all direct and indirect relatives of Gopal? It is
not possible to express such kind of query in relational algebra. Here transitive
means, if the person A is related to the person B and if the person B is related
to the person C means indirectly the person A is related to the person C. But
relational algebra cannot express the transitive closure.

RELATIONSHIP
Personl Person2 Relationship

Gopal Nandini Father
Siva Raja Brother
Gopal Neena Husband
Deepa Lakshmi Sister

3.10 Relational Calculus

The purpose of relational calculus is to provide a formal basis for defining
declarative query languages appropriate for relational databases. Relational
Calculus comes in two flavors (1) Tuple Relational Calculus (TRC) and
(2) Domain Relational Calculus (DRC). The basic difference between rela-
tional algebra and relational calculus is that the former gives the procedure
of how to evaluate the query whereas the latter gives only the query without
giving the procedure of how to evaluate the query:

— The variable in tuple relational calculus formulae range over tuples.

— The variable in domain relational calculus formulae range over individual
values in the domains of the attributes of the relations.

— Relational calculus is nonoperational, and users define queries in terms of
what they want, not in terms of how to compute it. (Declarativeness.)

Relational Calculus and Relational Algebra:
The major difference between relational calculus and relational algebra is
summarized later:

— A relational calculus query specifies what information is retrieved
— A relational algebra query specifies how information is retrieved
3.10.1 Tuple Relational Calculus

Tuple relational calculus is a logical language with variables ranging over
tuples. The general form of tuple relational calculus is given by:

3.10 Relational Calculus 91

{<tuple variable list> | <conditions>}
{t | COND(t)}

Here t is the tuple variable, which stands for tuples of relation. COND
(t) is a formula that describes t. The meaning of the earlier expression is to
return all tuples T that satisfy the condition COND:

— T/R(T)} means return all tuples T such that T is a tuple in relation R.

— For example, {T.name/FACULTY(T)} means return all the names of fac-
ulty in the relation FACULTY.

— {T.name/ FACULTY(T) AND T.deptid = ‘EEE’} means return the value
of the name of the faculty who are working in EEE department.

Quantifiers

Quantifiers are words that refer to quantities such as “some” or “all” and tell
for how many elements a given predicate is true. A predicate is a sentence that
contains a finite number of variables and becomes a statement when specific
values are substituted for the variables. Quantifiers can be broadly classified
into two types (1) Universal Quantifier and (2) Existential Quantifier.

Existential Quantifier

symbol: 4
3T ¢ Cond (R)
It will succeed if the condition succeeds for at least one tuple in T.

— (3t)(C) — Existential operator — True if there exists a tuple t such that
the condition(s) C are true.
— Example of existential quantifier is 3(m) such that m? =m.(i.e., m=1).

Universal Quantifier
symbol: V

— (V) (C) — Universal operator — True if C is true for every tuple t.
— Example of universal quantifier is V(2), sin? (2) + cos? (2) = 1.
The example refers to the fact that for all values of 2sin? (2) + cos? (2) = 1.

Free Variable

Any variable that is not bound by a quantifier is said to be free.

Bound Variable

Any variable which is bounded by universal or existential quantifier is called
bound variable.

92 3 Relational Model

Example of selection operation in TRC:

1. To find details of all staff earning more than Rs. 10,000:
{S | Staff(S) A S.salary > 10000}

Example of projection operation in TRC:
2. To find a particular attribute, such as salary, write:

{S.salary | Staff(S) A S.salary > 10000}

Quantifier Example

Client(ID, fName, IName, Age)
Matches(Client1, Client2, Type)

— List the first and last names of clients that appear as clientl in a match
of any type.
RAlg: p(fName, IName)(Client (ID = Client1) Matches)
RCalc: {c.fName, c.IName | CLIENT(c) AND (3m)(MATCHES(m) AND
c.ID = m.Client1)}

Joins in Relational Calculus

Consider the two relations Client and Matches as
Client(ID, fName, IName, Age)
Matches(Client1, Client2, Type)

— List all information about clients and the corresponding matches
that appear as clientl in a match of any type.

The earlier query can be expressed both in Relational Algebra and Tuple
relational Calculus as:

— RAlg: Client (ID = Client1) Matches
— RCalc:

{¢, m | CLIENT(c) AND MATCHES(m) AND c¢.ID = m.Client1}

3.10.2 Set Operators in Relational Calculus

The set operations like Union, Intersection, difference, and Cartesian Product
can be expressed in Tuple Relational Calculus as:

3.10 Relational Calculus 93

Union

- R1(A,B,C) UR2(A, B, C)
- {r | R1(r) OR R2(r)}

Intersection

- R1(A,B,C) N R2(A, B, C)
— {r | R1(r) AND R2(r)}

Cartesian Product

- R(A, B, C) x S(D, E, F)
— {r, s | R(r) AND S(s)} // same as join without the select condition

Subtraction

- R1(A,B,C) — R2(A, B, C)
— {r | R1(r) AND NOT R2(r)}

Queries and Tuple Relational Calculus Expressions

Some of the queries and the corresponding relational calculus and their expla-
nations are given later. Here we have given set of queries like SET 1, SET 2,
and SET 3.

— Query set 1 deals with Railway Reservation Management
— Query set 2 deals with Library Database Management
— Query set 3 deals with Hostel Database Management

Query Setl: Query set 1 deals with railway reservation system.

Query 1: Find all the train details for the trains where starting place is
“Chennai.”

Relational calculus expression: {t | t € train_details A start place
= “Chennai”}

Ezplanation: Set of all tuples “t” that belong to the relation “train details”
and also the starting place is “Chennai” is found by the query.

Query 2: Find all train names whose destination is “Salem.”

Relational calculus expression

{t|3 s € train_details (t [train.no] = s [train.no| A s [destination] = “Salem”)}

FEzxplanation: There exist a tuple “t” in the relation “r” such that the predicate
is true.

94 3 Relational Model

The set of all tuples “t” such that, there exists a tuple “s” in relation train
details for which the values of “t” and “s” for the train_no attribute are equal
and the value of “s” for the destination is “Salem.”

Query 3: Find the names of all passengers who have canceled the ticket and
whose age is above 40.

Relational calculus expression {t | 3 s € cancel (t [train_no] = s
[train_no] A3 u € passen_details (u [name| = s [name| A u[age] >

40))}

Ezxplanation: Set of all passenger names tuples for which the age is above 40
and the ticket is canceled. The tuple variable “s” ensures that the passenger
canceled the ticket. The tuple “u” is restricted to having the same passenger

name as “s.”

Query 4: List the train numbers of all trains which has no cancelation and
only reservation.

Relational Calculus Expression

{t |3 s € reserve (t [train.no] = s [train.no]) -3 u € cancel
(t [train_no| = uftrain_no])}

Ezxplanation: Set of all tuples “t” such that there exists a tuple “s” that
belongs to reserve such that the train_no attribute is equal for “t” and “s”
()]

and there exists a tuple “u” that belongs to cancel where the values of “t”
and “u” for the train_-no attribute is the same.

Query 5: List all female passengers name who are traveling by the train “Blue
Mountain.”

Relational Calculus Expression
{t | 3 s € passen_details (t [p_-name] = s [p_name]| A s[sex]| = “female”
A s[train_name] = “Blue mountain”)}.

FEzxplanation: Set of all tuples “t” such that there exists a tuple “s” that
belongs to passen_details for which the values of “t” and “s” for the p_name
attribute is same and the sex attribute = “female” and train_name attribute =
“Blue mountain.”

Query Set 2: Query set 2 deals with frequent queries in library database
management.

Query 1: Find the accno/- for each book whose price >1000.

Relational Calculus Expression

{t |3 s € book (t[acc_no/-] =s[acc_no/-] A s[price] >1000)}

3.10 Relational Calculus 95

LL =

FEzxplanation: The set of all tuples “t” such that there exists a tuple in
relation book for which the values “t” and “s” for the acc_no/- attribute are
equal an the value of the s for the price attribute is greater than 1000.

Query 2: Find the name of all the students who have borrowed a book and
price of those book is greater than 1000.

Relational Calculus Expression

{t|3 s € books_borrowed(t[std_name] =s[std_name] A 3 u € book
(u[acc_no/-] =slacc_no/-] A u[price] >1000))}

“ ”

Ezxplanation: The set of all tuples “t” such that there exists a tuple in
relation books_borrowed for which the values “t” and “s” for the student name
attribute are equal and “u” tuple variable on book relation for which “u” and
“g” for the accmno/- attribute are equal and the value of “u” for the price
attribute is greater than 1000.

Query 3: Find the name of the students who borrowed book, have book in
his account or both.

Relational Calculus Expression

{t |3 s € books_borrowed (t[stud_name]=s[std_name]) VI u €
books_remaining (t[std_name] = su[std_name])}

“ ”

Ezxplanation: The set of all tuples “t” such that there exists a tuple in
relation books_ borrowed for which the values “t” and “s” for the student
name attribute are equal and “u” tuple variable on books_remaining relation
for which “u” and “s” for the stud_name attribute are equal.

Query 4: Find only those students’ names who are having both the books in
their account as well as the books borrowed from their account.

Relational Calculus Expression

{t |3 s € books_borrowed (t[std_name] = s[std_name])A 3 u € books_
remaining (t[std_name] = s[std_name])}

(39}

Ezxplanation: The set of all tuples “t” such that there exists a tuple “s” such

that in relation books_borrowed for which the values “t” and “s” for the

student name attribute are equal and “u” tuple variable on books_remaining
[T} (195}

relation for which “u” and “s” for the student name attribute are
equal.

Query 5: Query that uses implication symbol p = ¢ find all students belongs
to EEE department who borrowed the books.

96 3 Relational Model
Relational Calculus Expression

{t |3 r € books_borrowed (r[std_name]=t[std_name] A (V u €
department (u(dept_name] = “EEE”)))} = {t |3 r& books_borrowed
(r [std_name] = t[std_name] A3 we student (w[roll_.no/-] =r[roll_no/-
] A w[dept_name | =u [dept_name]))}

FEzxplanation: The set of all tuples “t” such that there exists a tuple “s” such
that in relation books_borrowed for which the values “t” and “s” for the stu-
dent name attribute are equal and “u” tuple variable on department relation
must be equal to “EEE.” And this must be equal to the set of all tuple “t”

[

such that there exists a tuple “r” in relation books_borrowed for which the

[T}

values “r” and “t” for the student name attribute are equal and “w” the vari-
able on relation student for which “w” and “r” are equal for the roll no/-
attribute and “w” and “u” are equal for the dept_name.

Query Set 3: Query set 3 deals with hostel management.
Query 1: Find all the students id who are staying in hostel.

Tuple Relational Calculus Expression

{t |3 s € student_detail (t[roll no] =s[rollno])}

FEzxplanation: Here t is the set of tuples in the relation student_detail such
that there exists a tuple s which consists of students ID who are staying in
the hostel.

Query 2: Find all the details of the student who are belonging to EEE branch.

Tuple Relational Calculus Expression

{t | t € student_detail A t[course name] = “EEE”

Ezxplanation: Here t is the set of tuples in the relation student_detail such that
it consists of all the details of the student who are belonging to the “EEE”
branch.

Query 3: Find all the third semester BE-EEE students.

Tuple Relational Calculus Expression

{t | t € student_detail A t[coursename] = “EEE” A t[semester] =3}

Ezxplanation: Here t is the set of tuples in the relation student_detail such that
it consists of all the details of the student who belongs to the third semester
BE-EEE branch.

Query 4: Find all the lecturers name belonging to the EEE department.

3.11 Domain Relational Calculus (DRC) 97

Tuple Relational Calculus Expression

{t |3 se staff_detail (t[staffname] = s[staffname])}

Ezxplanation: Here t is the set of tuples in the relation staff_detail and there
exists a tuple s which consists of lecturers name who belongs to the “EEE”
department.

Query 5: Find all the staff who are having leisure period at third hour on
Monday.

Tuple Relational Calculus Expression

{t | 3s € staff_detail (t[staffname] = s[staffname] A Ju € lecturersched-
ule_monday (s[staffid] = u[staffid] A u[third hour] = “EEE”))}
FEzxplanation: Here t is the set of tuples in the relation staff_detail and there
exists a tuple s which consists of staff name who are all having leisure period
at third hour on Monday for every week.

Safety of Expression

It is possible to write tuple calculus expressions that generate infinite relations.
For example {t/~tcR} results in an infinite relation if the domain of any
attribute of relation R is infinite. To guard against the problem, we restrict
the set of allowable expressions to safe expressions. An expression {t/P(t)}
in the tuple relational calculus is safe if every component of t appears in one of
the relations, tuples, or constants that appear in P (Here P refers to Predicate
or condition).

Limitations of TRC

TRC cannot express queries involving:
— Aggregations.
— Groupings.
— Orderings.

3.11 Domain Relational Calculus (DRC)

Domain relational calculus is a nonprocedural query language equivalent in
power to tuple relational calculus. In domain relational calculus each query is
an expression of the form:

X, represent domain variables
— P represents a formula similar to that of the predicate calculus.

Domain variable: A domain variable is a variable whose value is drawn from
the domain of an attribute.

98 3 Relational Model
3.11.1 Queries in Domain Relational Calculus:

Consider the ER diagram:

STUDENT COURSE
STUDENT CLASS TAKES
ID Name Address CID CNAME location ID CID GRADE
123 Anbu
456 Anu

Query 1:

Get the details of all students?
This query can be expressed in DRC as
{<In,a>/<In,a>e STUDENT}

Query 2: (Selection operation)

Find the details of the student whose roll no (or) ID is 1237
{<123n,a>/<123,n,a> ¢ STUDENT}
(OR)
{<Ina>/<Ina> e STUDENT Q I=123}
(Here I,n,a are referred to as domain variables)

Query 3: (Projection)

Find the name of the student whose roll no. is 4567
{<I>/<Imn,a>e STUDENT Q I=456}

3.11.2 Queries and Domain Relational Calculus Expressions

Some of the queries and the corresponding relational calculus and their
explanations are given later. Here we have given set of queries like SET 1,
SET 2, and SET 3:

— Query set 1 deals with Railway Reservation Management
— Query set 2 deals with Library Database Management
— Query set 3 deals with Department Database Management

Query Set 1: Query set 1 deals with railway reservation system.

Query 1: List the details of the passengers traveling by the train “Intercity
express.”

3.11 Domain Relational Calculus (DRC) 929

Domain Relational Calculus Expression
{< name, age, sex, train_no, “blue mountain”> | <name, age, sex, train_no,
train_name>¢€ passen_details}

Ezplanation: The attributes of the passen_details are listed where the
train_name attribute = “Intercity express.”

Query 2: Select names of passengers whose sex = “female” and age > 20.

Domain Relational Calculus Expression

{< p-name > |3 p_age, p_sex, p_trainno. (< p_name, p_age, p_sex, p_trainno
>¢€ passen_details A p_sex = “female” A p_age > 20)}

Ezxplanation: Lists the names of passengers from the relation passenger_details
where there are two constraints which are sex =female and age > 20.

Query 3: Find all the names of passengers who have “Salem” as start place
and find their train names.

Domain Relational Calculus Expression

{< p-name, train_name> |3 p_name > p_name, p_age, p_trainno, (< p_name,
p-age, p_sex, p_train_no, p_trainname >€ passen_details

A3 t_start, t_dest, t_route, t_no (< t_name, t_no, t_start, t_dest, t_route
>¢ train_details A t_start = “salem”))}

FEzxplanation: Two relations — passen_details and train_details are involved in
this query. The train names and the passenger names whose start place =
Salem is displayed.

Query 4: Find all train names which has reservation and no cancelation.

Domain Relational Calculus Expression

{<t-name> | 3 t_name,p_name,p_source, p-dest(<t_name,t_no, p-name,
p-source, p_-dest>

.€ reserve A3 ticket_no, t_no, s_no, p_-name (<t_name, t_no, tick_no, p_name,
sno>¢€ cancel))}

FEzxplanation: The reserve and cancel relations are involved here. The train
names which satisfies both the conditions are displayed.

Query 5: Find names of all trains whose destination is “CHENNAI” and
source is “COIMBATORE.”
Domain Relational Calculus Expression

{<tmame> | 3 t._no,t_start,t_dest,t_route (<t_name,t no,t_start,t dest,
t_route>€ train_details A t_source=*“coimbatore” A t_desti=“chennai”)}

100 3 Relational Model

Ezplanation: The name of the trains that start from Coimbatore and reach
Chennai are listed from the relations train_details.

Query Set 2:

Query set 2 deals with Library Management.

Query 1: Find the student name, roll_no. for those belongs to “EEE” depart-
ment.

Domain Relational Calculus Expression

{<std_name, std_roll.no> | dept_name (<std_name, roll_no, depart_name>€
student Adepart_name=“EEE”)}

Ezplanation: Student relation is involved in this. Std_name, roll.no are the
attribute belongs to the student relation whose department name is “EEE.”

Query 2: Find the accmno, books_cal no, and author name for the books of
price >120.

Domain Relational Calculus Expression

{< acc_no, book_call no, author_name>/ 3 book name, price (<book name,
acc-no, call .no, author_name, price > € books A price >120)}

FEzxplanation: Books relation is involved here. In this expression acc_no,
book_call_no, and author name are selected for the book for which the price
is greater than 120.

Query 3: Find the roll.no of all the students who have borrowed book from
library and find the no/- of books they borrowed an that books belongs to
“EEE” department.

Domain Relational Calculus Expression

{<roll.no/->| 3 stdname, book_accno (<std_name, roll_no, book_accc_no,
number of books borrowed >€books_borrowed A 3 name, dept_name(<name,
roll_no, dept_name>¢€ student Adept_name=“EEE”))}

Ezxplanation: Here two relations are involved (1) books_borrowed and
(2) student. The roll.no/- of the students who borrowed “EEE” depart-
ment book involves both the earlier relations. Roll.no/- are selected from
the both the relation of the student who borrowed book from library which
belongs to “EEE” department.

Query 4: Find the std_name and their depart_name who have borrowed a
book which is less than 2 in number.

3.11 Domain Relational Calculus (DRC) 101
Domain Relational Calculus Expression

{<dept-name, name>|3 roll.no/-, book_accno/-, no_of_books_borrowed
(< roll.no/-, book_accno/-, no/- of books borrowed, std_name >€& books_
borrowed A no/- of books borrowed <2 A3J roll.no/-(roll.no/-, name,
dept_name>¢€

student))}

Ezxplanation: Here two relations are involved (1) books_borrowed and
(2) student. For student name the relation involved is books_borrowed and
for depart_name the relation involved is student and the constraint is no/- of
books_borrowed is less than two.

Query 5: Find the name of all the students who have borrowed, having books
in his account or both in the department EEE.

Domain Relational Calculus Expression

{<name>/3roll.no/-, book.accno/-, no.of books borrowed(<name, roll_
no/-, book_accno/-, no/- of books_borrowed>€ books_borrowed A3 roll
no/-, depart_name(<name, roll_no/-, dept_-name > € student A dept_name =
“eee”)) V3 rollno/-, no/- of booksremaining(<name, roll.no/-, no/- of
books_remaining>€ books_remaining A3 roll.no/-, dept_name(<name,
roll.no/-, dept_name >€ student A dept_name= “EEE”))}

Ezplanation: Here three relations are involved (1) books_remaining, (2) books_
borrowed, and (3) student. Name is an attribute belonging to books_borrowed
and books_remaining relations, dept_name belongs to student relation. The
student borrowed books or having books in his account or both which belongs
to “EEE” department is selected.

Query Set 3: Query set 2 deals with Department Database Management
system.

Query 1: Find all the student name belongs to fifth sem ECE branch.

Domain Relational Calculus Expression
{<stud_name> |3 < r,en,s,h,dob,pn,b > €student_detailAs = “V’Ab =
LLECE”}

Ezxplanation: Students name domain is formed from relation V semester
“ECE” branch.
Domain variables used:

r - roll no.; cn - course name; s — semester; h - hosteller
dob - date of birth; pn - phone no.; b - branch name

Query 2: Find all the details of students belonging to CSE branch.

102 3 Relational Model

Domain Relational Calculus Expression
{<sn,r,cn,s,h,dob,pn,b> | <sn,r,en,s,h,dob,pn,b>€ student—detail A b=
LLCSE”}

Ezxplanation: All domain variables included from student-detail table which
consists of all details about students belonging to the CSE branch.

Query 3: Find all the students id whose date of birth is above 1985.

Domain Relational Calculus Expression
{<r>|3 sn,en,s,h,dob,pn,b (<r,sn,cn,b,s,h,dob,pn>€ student_detail |A
dob>“1985")}

Ezplanation: Domain variable r (roll no) is included from student_detail rela-
tion, which consists of students ID whose date of birth is above 1985.

Query 4: Find all the lecturers id belonging to production dept.

Domain Relational Calculus Expression
{<sid> |3 sn,dob,desg,y,foi,e,d | <sid,sn,dob,desg,y,foi,e,d € staff_detail A
d= “prod”)}
Ezplanation: Domain variables from staff_detail:

sid - staff_ID; dob - date of birth; sn - staff name; desg - designation

y - year since serving; foi - field of interest; e - email id; d - department
The sid (staff id) from staff detail belonging to production department.

Query 5: Find all the lecturers’ names who are having fifth period as leisure
period on Friday.

Domain Relational Calculus Expression

{<sn> |3 sed,dob,desg,y,foi,e,d | <sn,sid,dob,desg,y,foi,e,d> € staff_detail
AT <sid,i,ii,ii,iv,v,vi,vii) (<sid,sn,i,ii,iil,iv,v,vi,vii> € rev_schedul_friday A v
—“frec”)))}

Ezplanation: Staff name domain variable from staff detail relation with fifth
period as leisure which is checked using lecture schedule relation on Friday.
Thus, in this, we have used two relations: staff detail and lecture schedule for
Friday.

3.12 QBE

QBE stands for Query By Example. QBE uses a terminal display with
attribute names as table headings for queries. This looks a little strange in
textbooks, but people like it when they have worked with it for a while on a

3.12 QBE 103

terminal screen. It is very easy to list the entire schema, simply by scrolling in-
formation on the screen. QBE was developed originally by IBM in the 1970s
to help users in their retrieval of data from a database. QBE represents a
visual approach for accessing data in a database through the use of query
templates. QBE can be considered as GUI (Graphical User Interface) based
on domain calculus. QBE allows users to key in their input requests by filling
in empty tables on the screen, and the system will also display its response in
tabular form. QBE is user-friendly because the users are not required to for-
mulate sentences for query requests with rigid query-language syntax. In QBE
the request is entered in the form of tables whose skeletons are initially con-
structed by QBE.

Some of the QBE query template examples:

Example 1. Projection operation

In this template P. implies “Print.” The meaning is: Print the PLAYER_
ADDRESS who belong to the country INDIA. To make a projection only put
P. in any column of the projection. QBE will enforce uniqueness of projections
automatically.

PLAYER_ADDRESS NAME CITY COUNTRY
P. INDIA

FEzample 2. Selection operation

To make a selection, put quantifiers in the columns of the attributes in the
question. To print a whole record, put P. in the column with the name of the
record.

PLAYER_ADDRESS NAME CITY COUNTRY
P. INDIA

The meaning is to print the PLAYER_ADDRESS who belong to the country
INDIA.

Ezxzample 3. AND condition

To understand the AND condition consider the following template.

PLAYER_ADDRESS NAME CITY COUNTRY
p. CHENNAI INDIA

The meaning of the earlier template is: Print the PLAYER_ADDRESS who
live in INDIA and belong to the city CHENNAL

104 3 Relational Model

FEzxzample 4. OR condition

To understand the OR condition consider the following template:

PLAYER_ADDRESS NAME CITY COUNTRY
p. CHENNAI INDIA
p. DELHI INDIA

The meaning of the earlier template is “Print the name of the Player who
belongs to the country INDIA and city either CHENNAT or DELHI”.

Ezxample 5. Query involving more than one table

Let us consider a query which involves data from more than one table.
Let us consider two tables PLAYER_ADDRESS and PLAYER_RANK. Here
we have two tables PLAYER_ADDRESS and PLAYER_RANK, the template
meaning is: Print the name of the player who belong to the country INDIA
and rank less than 50. The clue for understanding the query is the fact the
variable NAME is the same in all rows of the display.

PLAYER_ADDRESS NAME CITY COUNTRY
P.. NAME INDIA

PLAYER_RANK NAME RANK COUNTRY
P.. NAME <50 INDIA

Ezxample 6. Comparison operation

Consider the EMPLOYEE table with the columns EMPLOYEE_ID,
EMPLOYEE_NAME, SALARY, and MANAGER_ID. If one wants to know
the name of the employees who make more money than their managers, it
can be shown in QBE as:

EMPLOYEE EMPLOYEE. EMPLOYEE. SALARY MANAGER._
ID NAME ID

P._.N XY -X
X <Y

Ezxample 7. Ordering of records

The records can be arranged either in the ascending order or in the descending
order using the operator AO. and DO., respectively.

— AO. implies arrange the records in ascending order.
— DO. implies arrange the records in descending order.

3.12 QBE 105

— AO.ALL. implies arrange the records in ascending order by preserving
duplicate records.

— DO.ALL. implies arrange the records in descending order by preserving
duplicate records.

Both AO. and DO. operators automatically eliminates duplicate responses.
However, if one wishes to have all duplicate records displayed, an ALL.
Operator must be added.

Consider the relation VEGETABLE which has three attributes VEGE-
TABLENAME, QUANTITY, and PRICE.

VEGETABLE
VEGETABLENAME QUANTITY (in Kg) PRICE(in Rs)
Brinjal 1 13
Potato 1 17
Ladies Finger 1 12
Carrot 1 16
Tomato 1 14

The QBE template to print the VEGETABLE in the increasing order of
price is given later:

VEGETABLE VEGETABLENAME QUANTITY PRICE
P.AO.

The QBE template to print the VEGETABLE in the decreasing order of
price is given later:

VEGETABLE VEGETABLENAME QUANTITY PRICE
P.DO.

Example 8. Retrieval using Negation

The symbol used for negation is 4. For example print the quantity and
price of the VEGETABLE that do not belong to Brinjal is given by:

VEGETABLE VEGETABLENAME QUANTITY PRICE
+ Brinjal P. P.

Condition Box:

The condition box is used to store logical conditions that are not easily
expressed in the table skeleton. A condition box can be obtained by pressing
a special function key.

106 3 Relational Model
Example 9. Retrieval using condition box:

For example, if we want to print the quantity and price of the VEGE-
TABLE, which is either Ladies Finger or Carrot, the condition box is used.

VEGETABLE VEGETABLENAME QUANTITY PRICE
VN P. P.

CONDITIONS
VN = Ladies Finger OR Carrot

Ezxzample 10. QBE Built-In Functions

QBE provides MIN, MAX, CNT, SUM, and AVG built-in functions:

MIN.ALL implies the computation of minimum value of an attribute.
— MAX.ALL implies the computation of maximum value of an attribute.
— CNT.ALL implies COUNT the number of tuples in the relation.

— SUM.ALL implies the computation of sum of an attribute.

— AVG.ALL implies the computation of average value of an attribute.

Note: UNQ. which stands for unique operator is used to eliminate duplicates.
For example, CNT.UNQ.ALL computes the number of tuples in the relation
by eliminating duplicate values.

Example 10.1. MIN and MAX command

The QBE template to get the minimum and maximum vegetable price is
given later:

VEGETABLE VEGETABLE QUANTITY PRICE
NAME

P.MIN.ALL.CX
PMAX.ALL.CY

Example 10.2. AVG command

The QBE template to get the average price of the vegetable is given later.

VEGETABLE VEGETABLENAME QUANTITY PRICE
P.AVG.CX

Ezample 10.3. CNT command

The QBE template to count the number of unique vegetables in the VEGE-
TABLE relation is shown later.

3.12 QBE 107

VEGETABLE VEGETABLENAME QUANTITY PRICE
P.CNT.UNQ.ALL

FEzxzample 11. Update operation

The QBE template to increase the price of all vegetables by 10% is given
as:

Here U. implies Update. The price UX of the vegetable is increased by
10% which is denoted by 1.1 * UX

VEGETABLE VEGETABLENAME QUANTITY PRICE
U. UX 1.1 * UX

Example 12. Record deletion
The QBE template to delete the record of all vegetables is shown later:

VEGETABLE VEGETABLENAME QUANTITY PRICE
D.

Here D. implies deletion of the entire relation.

Single Record Deletion

The QBE form to delete the record of the vegetable “Brinjal” is shown
later:

VEGETABLE VEGETABLENAME QUANTITY PRICE
D. Brinjal

Summary

In relational model, the data are stored in the form of tables or relations.
Each table or relation has a unique name. Tables consist of a given number of
columns or attributes. Every column of a table must have a name and no two
columns of the same table may have identical names. The rows of the table
are called tuples. The total number of columns or attributes that comprises
a table is known as the degree of the table. The chapter has introduced the
basic terminology used in relational model. Specific importance is given to
E.F. Codd’s rule.

This chapter also introduced different integrity rules. Relational algebra
concepts, different operators like SELECTION, PROJECTION, UNION,
INTERSECTION, and JOIN operators were discussed with suitable exam-
ples. Relational calculus and its two branches, tuple relational calculus and
domain relational calculus, were discussed in this chapter.

Finally, graphical user interface QBE, its relative advantage, different
operations in QBE, concept of condition box in QBE, and aggregate func-
tions in QBE were explained with suitable examples.

108 3 Relational Model

Review Questions

3.1. What is the degree and cardinality of the “Tennis Player” relation shown
later:

Position Player Points Nation

1 Federer 1117 Switzerland
2 Roddick, A. 671 USA

3 Hewitt, L. 638 Australia

4 Safin, M 497 Russia

5 Moya, C. 484 Spain

Hint: Degree of the relation = Number of columns in the relation.
Cardinality of the relation = Number of rows in the relation.

3.2. A relation has a degree of 5 and cardinality of 7. How many attributes
and tuples does the relation have?

3.3. A relation R has a degree of 3 and cardinality of 2 and the relation S has
a degree of 2 and cardinality of 3, then what will be the degree and cardinality
of the Cartesian product of R and S?

Ans: Cardinality = 6, Degree = 5.

3.4. What is the key of the following EMPLOYEE table?

EMPLOYEE

EMPLOYEE EMPLOYEE DEPARTMENT AGE DESIG-
NUMBER NAME NATION
C100 Dr. Vijayarangan Mechanical 51 Principal
C202 Dr. S. Jayaraman ECE 50 Head
C203 Dr. Murugesh EEE 50 Head
C204 Dr. Sivanandam ComputerScience 53 Head
C208 Dr. Selvan IT 51 Head

Ans: In the earlier table, EMPLOYEE NUMBER is the primary key.
Because keys are used to enforce that no two rows are identical.

3.5. Define the operators in the core relational algebra?
3.6. Explain the following concepts in relational databases:

(a) Entity integrity constraint

(b) Foreign key and how it can specify a referential integrity constraint
between two relations

(¢) Semantic integrity constraint

Review Questions 109
3.7. Mention the pros and cons of relational data model?

Pros of relational data model:

1. The relational data model is a well formed and data independent model
which is easy to use for applications which fit well into the model.

2. The data used by most business applications fits this model, and that
business applications were the first large customers of database system
explains the popularity of the model.

Cons of relational data model:

1. The simplicity of the model restricts the amount of semantics, which can
be expressed directly by the database.

2. Different groups of information, or tables, must be joined in many cases
to retrieve data.

3.8. Bring out the reasons, why relational model became more popular?

1. Relational model was based on strong mathematical background.
2. Relational model used the power of mathematical abstraction. Operations
do not require user to know storage structures used.
. Strong mathematical theory provides tool for improving design.
4. Basic structure of the relation is simple, easy to understand and imple-
ment.

w

3.9. A union, intersection or difference can only be performed between two
relations if they are type compatible. What is meant by type compatibility?
Give an example of two type compatible and two nontype compatible rela-
tions?

Two relations are type compatible if they have same set of attributes.
Example of two type compatible relations is:

Men {<name:varchar>, <dob:date>, <address:varchar>}
Women {<name:varchar>, <dob:date>, <address:varchar>}
Example of two relations which are nontype compatible is:
Husband {<name:varchar>, <dob:date>, <salary: number>}
Wife {<name:varchar>, <dob:date>, <address:varchar>}

3.10. What are the advantages of QBE?

QBE can be considered as GUI (Graphical User Interface) based on domain
calculus. QBE allows users to key in their input requests by filling in empty
tables on the screen, and the system will also display its response in tabular
form. QBE is user-friendly because the users are not required to formulate
sentences for query requests with rigid query-language syntax.

110 3 Relational Model
3.11. What do you understand by domain integrity constraint?

The domain integrity constraints are used to specify the valid values that a
column defined over the domain can take. We can define the valid values by
listing them as a set of values (such as an enumerated data type in a strongly
typed programming language), a range of values, or an expression that accepts
the valid values.

3.12. What do you understand by “safety of expressions”?

It is possible to write tuple calculus expressions that generate infinite relations.
For example {t/~teR} results in an infinite relation if the domain of any
attribute of relation R is infinite. To guard against the problem, we restrict
the set of allowable expressions to safe expressions.

3.13. What are “quantifiers”? How will you classify them?

Quantifiers are words that refer to quantities such as “some” or “all” and tell
for how many elements a given predicate is true. A predicate is a sentence that
contains a finite number of variables and becomes a statement when specific
values are substituted for the variables. Quantifiers can be broadly classified
into two types (1) Universal Quantifier and (2) Existential Quantifier.

4

Structured Query Language

Learning Objectives. This chapter focuses on how to access the data within a
DBMS. An introduction to SQL, an international standard language for manipula-
ting relational database is given in this chapter. After completing this chapter the
reader should be familiar with the following concepts in SQL.
— Evolution and benefits of SQL
— Datatypes in SQL
— SQL commands to create a table, inserting records into the table, and extracting
information from the table
— Aggregate functions, GROUP BY clause
— Implementation of constraints in SQL using CHECK, PRIMARY KEY,
FOREIGN KEY, NOT NULL, UNIQUE commands
— Concepts of sub query, view, and trigger

4.1 Introduction

SQL stands for “Structured Query Language.” The Structured Query Lan-
guage is a relational database language. By itself, SQL does not make a DBMS.
SQL is a medium which is used to communicate to the DBMS. SQL commands
consist of English-like statements which are used to query, insert, update,
and delete data. English-like statements mean that SQL commands resemble
English language sentences in their construction and use and therefore are
easy to learn and understand.

SQL is referred to as nonprocedural database language. Here nonproce-
dural means that, when we want to retrieve data from the database it is
enough to tell SQL what data to be retrieved, rather than how to retrieve it.
The DBMS will take care of locating the information in the database.

Commercial database management systems allow SQL to be used in two
distinct ways. First, SQL commands can be typed at the command line
directly. The DBMS interprets and processes the SQL commands immedi-
ately, and the results are displayed. This method of SQL processing is called
interactive SQL. The second method is called programmatic SQL. Here, SQL

S. Sumathi: Structured Query Language, Studies in Computational Intelligence (SCI) 47,
111-212 (2007)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

112 4 Structured Query Language

statements are embedded in a host language such as COBOL, FORTRAN, C,
etc. SQL needs a host language because SQL is not a really complete computer
programming language as such because it has no statements or constructs that
allow branch or loop. The host language provides the necessary looping and
branching structures and the interface with the user, while SQL provides the
statements to communicate with the DBMS.

Some of the features of SQL are:

— SQL is a language used to interact with the database.

— SQL is a data access language.

— SQL is based on relational tuple calculus.

— SQL is a standard relational database management language.

— The first commercial DBMS that supported SQL was Oracle in 1979.
— SQL is a “nonprocedural” or “declarative” language.

4.2 History of SQL Standard

The origin of the SQL language date back to a research project conducted by
IBM at their research laboratories in San Jose, California in the early 1970s.
The aim of the project was to develop an experimental RDBMS which would
eventually lead to a marketable product. At that time, there was a lot of inter-
est in the relational model for databases at the academic level, in conferences
and seminars. IBM, which already had a large share of the commercial data-
base market with hierarchical and network model DBMSs, realized that the
relational model would dominate the future database products. The project
at IBM’s San Jose labs was started in 1974 and was named System R. A
language called SEQUEL (Structured English QUEry Language) was chosen
as the relational database language for System R. A version of SEQUEL was
developed at the IBM San Jose research facilities and tested with college stu-
dents.

In November 1976, specifications for SEQUEL2 were published. In 1980
minor revisions were made to SEQUEL, and it was renamed “SQL.” SEQUEL
was renamed to SQL because the name SEQUEL had already been used for
hardware product. In order to avoid confusion and legal problems SEQUEL
was renamed to SQL. In the first phase of the System R project, researchers
concentrated on developing a basic version of the RDBMS. The main aim
at this stage was to verify that the theories of the relational model could be
translated into a working, commercially viable product. This first phase was
successfully completed by the end of 1975, and resulted in a single-user DBMS
based on the relational model. The System R project was completed in 1979.
The theoretical work of the System R project resulted in the development
and release of IBM’s first commercial relational database management system
in 1981. The product was called SQL/DS (Structured Query Language/Data
Store) and ran under the DOS/VSE operating system environment. Two years
later, IBM announced a version of SQL/DS for VM /CMS operating system.

4.3 Commands in SQL 113

In 1983, IBM released a second SQL-based RDBMS called DB2, which ran
under the MVS operating system. DB2 quickly gained widespread popularity
and even today, versions of DB2 form the basis of many database systems
found in large corporate data-centers. During the development of System R
and SQL/DS, other companies were also at work creating their own relational
database management systems. Some of them, Oracle being an example, even
implemented SQL as the relational database language for their DBMSs con-
currently with IBM. Later on, SQL language was standardized by ANSI and
ISO. The ANSI SQL standards were first published in 1986 and updated in
1989, 1992, and 1999.

4.2.1 Benefits of Standardized Relational Language
The main advantages of standardized language are given below.

1. Reduced training cost

2. Enhanced productivity

3. Application portability
Application portability means applications can be moved from
machine to machine when each machine uses SQL.

4. Application longevity
A standard language tends to remain so for a long time, hence there
will be little pressure to rewrite old applications.

5. Reduced dependence on a single vendor

SQL language development is given in a nutshell below:

1. In 1970 E.F. Codd of IBM released a paper “A relational model of data for
large shared data banks.” IBM started the project System R to demon-
strate the feasibility of implementing the relational model in a database
management system. The language used in system R project was SE-
QUEL. SEQUEL was renamed SQL during the project, which took place
from 1974 to 1979.

2. The first commercial RDBMS from IBM was SQL/DS. It was available in
1981.

3. Oracle from relational software (now Oracle corporation) was on the mar-
ket before SQL/DS, i.e., 1979.

4. Other products included INGRES from relational Technology Sybase from
Sybase, Inc. (1986), DG/SQL from Data General Corporation (1984).

4.3 Commands in SQL

SQL commands can be classified in to three types:

1. Data Definition Language commands (DDL)
2. Data Manipulation Language commands (DML)
3. Data Control Language commands (DCL)

114 4 Structured Query Language
DDL

DDL commands are used to define a database, including creating, altering,
and dropping tables and establishing constraints.

DML

DML commands are used to maintain and query a database, including up-
dating, inserting, modifying, and querying data.

DCL

DCL commands are used to control a database including administering privi-
leges and saving of data. DCL commands are used to determine whether a
user is allowed to carry out a particular operation or not. The ANSI standard
groups these commands as being part of the DDL.

The classification of commands in SQL is shown below.

GRAND
DCL REVOKE

CREATE
saL [——— | DDL ALTER

DROP

DELETE
INSERT

SELECT
UPDATE

DML

4.4 Datatypes in SQL

In relational model the data are stored in the form of tables. A table is com-
posed of rows and columns. When we create a table we must specify a datatype
for each of its columns. These datatypes define the domain of values that
each column can take. Oracle provides a number of built-in datatypes as well
as several categories for user-defined types that can be used as datatypes.
Some of the built-in datatypes are string datatype to store characters, num-
ber datatype to store numerical value, and date and time datatype to store
when the event happened (history, date of birth, etc.).

4.4 Datatypes in SQL 115
STRING

In string we have CHAR and VARCHAR datatypes. Character datatype store
data which are words and free-form text, in the database character set.

CHAR Datatype

The CHAR datatype specifies a fixed-length character string. The syntax of
CHAR datatype declaration is:

CHAR (n) — Fixed length character data, “n” characters long.

Here “n” specifies the character length. If we insert a value that is shorter
than the column length, then Oracle blank-pads the value to column length.
If we try to insert a value that is too long for the column then Oracle returns
error message.

VARCHAR2 Datatype

The VARCHAR2 datatype specifies a variable-length character string. The
syntax of VARCHAR2 datatype declaration is:

VARCHARZ2 (n) — Variable length character of “n” length.

Here “n” specifies the character length.

VARCHAR vs. VARCHAR2

The VARCHAR datatype behaves like VARCHAR?2 datatype in the current
version of Oracle.

In order to justify the above statement, let us create a table CHAMPION,
which refers to Wimbledon Champions. The attributes of the table CHAM-
PION are Name, Nation, Year (the year in which the sportsman has won the
title). For our example, let us use the datatype VARCHAR for the attribute
Name and VARCHAR2 for the datatype Nation. The SQL command to create
CHAMPION is shown in Fig.4.1.

Now let us try to see the description of the table. The description of the
table is shown in Fig. 4.2.

From Fig. 4.2, it is clear that both name and nation are stored as VAR-
CHAR2(12). This means that VARCHAR datatype in the Oracle 8i version
behaves the same as VARCHAR2.

NUMBER Datatype

The NUMBER datatype stores zero, positive, and negative fixed and floating
point numbers.

116 4 Structured Query Language

File Edit Search Options Help -

Name attribute data
type is varchar,

SOL> create table CHAMPION
2 (name varchar(12);
3 nation varchar2(12),
4 year date);

nation atribute

data type is \-:IlCll{ll:/
\\-

Table created.

soL> | - S

4 | oz
X Diacle SOL*Plus
Ele Edt Search Options Help
SOQL> desc CHAMPION; -
Hame Hull? Type
NAME UARCHAR2(12)
NATION UARCHAR2(12)
YEAR DATE

SQL>

Fig. 4.2. Table description

The syntax to store fixed-point number is NUMBER (p, q) where “p” is
the total number of digits and “q” is the number of digits to the right of
decimal point.

The syntax to specify an integer is NUMBER (p).

DATE Datatype

The DATE datatype is used to store the date and time information. For each
DATE value, Oracle stores the century, year, month, date, hour, minute, and
second information. The ANSI date literal contains no time portion, and must
be specified in YYYY-MM-DD format where Y stands for Year, M for month,
and D for date.

TIME STAMP Datatype

The TIME STAMP datatype is used to store both date and time. It stores
the year, month, and day of the DATE datatype, and also hour, minute, and
second values.

LOB Datatype

Multimedia data like sound, picture, and video need more storage space. The
LOB datatypes such as BLOB, CLOB, and BFILE allows us to store large
block of data.

4.5 Data Definition Language (DDL) 117

BLOB Datatype

The BLOB datatype stores unstructured binary data in the database. BLOBs
can store up to 4 GB of binary data.

CLOB Datatype

The CLOB datatype can store up to 4 GB of character data in the database.

BFILE Datatype

The BFILE datatype stores unstructured binary data in operating system
files outside the database. A BFILE can store up to 4 GB of data.

4.5 Data Definition Language (DDL)

The Data Definition Language is

— Used to define schemas, relations, and other database structures
— Also used to update these structures as the database evolves

Examples of Structure Created by DDL

The different structures that are created by DDL are Tables, Views, Seque-
nces, Triggers, Indexes, etc.

1. Tables
The main features of table are:

— It is a relation that is used to store records of related data. It is a
logical structure maintained by the database manager.

— It is made up of columns and rows.

— At the intersection of every column and row there is a specific data
item called a value.

— A base table is created with the CREATE TABLE statement and is
used to hold persistent user data.

2. Views
The basic concepts of VIEW are:

— It is a stored SQL query used as a “Virtual table.”

— It provides an alternative way of looking at the data in one or more
tables.

— It is a named specification of a result table. The specification is a
SELECT statement that is executed whenever the view is referenced
in an SQL statement. Consider a view to have columns and rows just
like a base table. For retrieval, all views can be used just like base
tables.

118 4 Structured Query Language

— When the column of a view is directly derived from the column of
a base table, that column inherits any constraints that apply to the
column of the base table. For example, if a view includes a foreign key
of its base table, INSERT and UPDATE operations using that view
are subject to the same referential constraints as the base table. Also,
if the base table of a view is a parent table, DELETE and UPDATE
operations using that view are subject to the same rule as DELETE
and UPDATE operations on the base table.
3. Sequences
— A sequence is an integer that varies by a given constant value. Typi-
cally used for unique ID assignment
4. Triggers
— Trigger automatically executes certain commands when given condi-
tions are met.
5. Indexes
— Indexes are basically used for performance tuning. Indexes play a cru-
cial role in fast data retrieval.

Create Table Command

— The CREATE TABLE command is used to implement the schemas of
individual relations.

Steps in Table Creation

1. Identify datatypes for attributes

2. Identify columns that can and cannot be null
3. Identify columns that must be unique

4. Identify primary key—foreign key mates

5. Determine default values

6. Identify constraints on columns (domain specifications)
7. Create the table
Syntax
CREATE TABLE table name

(column-namel data-type-1 [constraint],
column-name2 data-type-2 [constraint],
column-nameN data-type-N [constraint]

);

Example Table

See Table 4.1.

4.5 Data Definition Language (DDL) 119
Table 4.1. Peaks of the world
Serial Peak Mountain Place Height
number range
1 Everest Himalayas Nepal 8,848
2 Godwin Karakoram India 8,611
Austin

3 Kanchenjunga Himalayas Nepal 8,579

File Edit Search Options Help

SQL> create table peaks -
{(serial_no number(2),
mountain varchar{i12),
height number(5),

place varchar(12),

range varchar{12));

WM

o

Table created.

sqQL>

I

-
N A

Fig. 4.3. Table creation example

Syntax to Create the Table

The general syntax to create the table is given below. Here the key words are

shown in bold and capital letters.

CREATE TABLE table name

(column namel data type
column name2 data type
column name N data type

Example

(size),
(size)

(size)’);

The SQL command to define Table 4.1 is shown in Fig.4.3. In this example
the name of the table is peaks. The table has five columns which are serial
number, name of the mountain (peak), height, place where the mountain is

situated, range of the mountain.

To see the description of the table

To see the description of the table we have created we have the command
DESC. Here DESC stands for description of the table. The syntax of DESC

command is:

120 4 Structured Query Language

% Oracle SOL*Plus =10 x|
Eie Edt Sewch QOptions Help
SOL> desc peaks; -
Hame Hull? Type
SERIAL_NO NUMBER(2)
HOUNTAIHN UARCHAR2(12)
HEIGHT HUMBER(5)
PLACE UARCHAR2(12)
RANGE UARCHAR2(12)
s> |
-
24 o

Fig. 4.4. Table description

Dracle SAL*Plus

File Edt Search Options Help
SQL> insert into peaks
2 wvalues('&serial_no',"'&mountain’,'&height’,'&place’','&range’);
Enter value for serial no: 1
Enter value for mountain: everest
Enter value for height: 8848
Enter value for place: nepal
Enter value for range: himalayas
old 2: values{'&serial no','&mountain’,'&height’,'&place’,'&range’)
new 2: values{'1','everest’,'8848°', 'nepal’, 'himalayas’)

1 row created.

sqL> |

Fig. 4.5. Inserting values into the table

Syntax: DESC table name;

The DESC command returns the attributes (columns) of the table, the
datatype associated with the column, and also any constraint (if any) im-
posed on the column. Figure 4.4 shows the description of the table PEAKS.

To insert values into the table

Syntax: Insert into <tablename> values (‘&columnnamel’,
‘&columnname?2’, &col3,...);

(e.g.) The SQL syntax and the corresponding output are shown in Fig.4.5.
Now to insert the next set of values, use the slash as shown in Fig. 4.6.

To view the entire table

The SQL syntax to see all the columns of the table is:

SELECT * FROM table name;

Here the asterisk symbol indicates the selection of all the columns of the table.

4.6 Selection Operation 121

* iacle SOL*Plus

Fle Edi Seach Optons Help

sqQL> / -
Enter value for serial_no: 2

Enter value for mountain: godwinaustin

Enter value for height: 8611

Enter value for place: india

Enter value for range: karakoram

old 2: values('Gserial_no','&mountain’, &height’, '&place’, ' &range’)

new 2: values('2','godwinaustin','8611','india’,'karakoram')

1 row created.

sQL> |

Ef= P

Fig. 4.6. Inserting successive values into the table

¥ Oracle SQL*Plus S [=] E3

File Edit Search Dplions Help

SQL> select * from peaks; ﬂ
SERIAL_NHO MOUNTAIN HEIGHT PLACE RANGE

1 everest 8848 nepal himalayas

2 godwinaustin 8611 india karakoram

3 kanchenjunga 8579 nepal himalayas
soL> | -
2l Mz

Fig. 4.7. SELECTION of all columns of the table

Example

The SQL command to see all the columns of the table PEAKS and the cor-
responding output are shown in Fig. 4.7.

SQL> select * from peaks;

4.6 Selection Operation

Selection operation can be considered as row wise filtering. We can select
specific row(s) using condition.

Syntax of SELECTION Operation

SELECT * FROM table name
WHERE condition;

122 4 Structured Query Language

+ Oracle SQL*Plus M =] E3

Ele Edt Seach Oplions Help

SQL> select = from peaks -~
2 where height=8848;

— 0@ Here the

SERIAL_MND MOUNTAIN HEIGHT PLACE RANGE condition

-------- 1 everest o848 nepal himalagas chosen
is the

sqL> | height of

the peaks

Fig. 4.8. SELECTION operation

Example of SELECTION operation

In the example Table 4.1, there are three rows. Let us filter two rows so
that only one row will appear in the result. Here the condition used to filter
the rows is the “height” of the PEAKS. The SQL command to implement
SELECTION operation and the corresponding output are shown in Fig. 4.8.
From Fig.4.8 it is clear that even though there are three rows in the
Table 4.1, it is reduced to one using the condition the height of the peaks.
This operation which filters the rows of the relation is called SELECTTION.

4.7 Projection Operation

The projection operation performs column wise filtering. Specific columns are
selected in projection operation.

Syntax of PROJECTION Operation

SELECT column namel, column name2, Column name N FROM table
name;

If all the columns of the table are selected, then it cannot be considered
as PROJECTION.

The SQL command to perform PROJECTION operation on the relation
PEAKS and the corresponding results are shown in Fig. 4.9.

From Fig. 4.9, it is clear that only three columns are selected in the result,
even though there are five columns in the Table 4.1.

SELECTION and PROJECTION Operation

We can perform both selection and projection operation in a relation. If we
combine selection and projection operation means naturally we are restricting
the number of rows and the columns of the relation.

4.7 Projection Operation 123

4 Dracle SOL*Plus

File Edit Search Options Help
SQL> select serial_no, mountain, height -
2 from peaks;

SERIAL_NO HOUNTAIN HEIGHT
1 everest 8848
2 godwinaustin 8611
3 kanchenjunga 8579
sQL> | -

Fig. 4.9. PROJECTION operation

Oracle SQL*Plus

File Edt Seach QOptions Help
SQL> select serial_no, mountain, height f"
2 from peaks
3 where place='india‘;

SERIAL_NO MOUNTAIN HEIGHT

2 godwinaustin 8611

sqQL> |

A o,

Fig. 4.10. SELECTION and PROJECTION operation

Syntax for Selection and Projection

SELECT column namel, column name 2. column name N
FROM table name
WHERE condition;

The selection and projection operation applied to the peaks relation is
shown in Fig. 4.10.

From Fig.4.10, we can observe that the selection operation is based on
the “place” of the peaks. As a result only one row is obtained as the result.
Because of projection operation only three columns are obtained in the result
as shown in Fig. 4.10.

124 4 Structured Query Language

4.8 Aggregate Functions

SQL provides seven built-in functions to facilitate query processing. The
seven built-in functions are COUNT, MAX, MIN, SUM, AVG, STDDEV,
and VARIANCE. The uses of the built-in functions are shown in Table 4.2.

4.8.1 COUNT Function

The built-in function returns the number of rows of the table. There are varia-
tions of COUNT function. First let us consider COUNT (*) function. In order
to understand the COUNT (*) function consider the relation PERSON_SKILL
as shown in Table 4.3, the relation PERSON has only two columns, name of
the person and skills associated with the person. It is to be noted that some
persons may have more than one skill and some persons may not have any
skills.

From Table 4.3, we can observe that the table PERSON_SKILL has six
rows and two columns and the person Ashok has more than one skill and Sam
has no skill hence a NULL is inserted against Sam.

(A) COUNT (*) Function
The syntax of Count (*) function is:

SELECT COUNT (*)
FROM table name;

Table 4.2. Built-in functions

Serial Built-in Use

number function

1 COUNT to count the number of rows of the
relation

2 MAX to find the maximum value of the
attribute (column)

3 MIN to find the minimum value of the
attribute

4 SUM to find the sum of values of the

attribute provided the datatype of the
attribute is number

5 AVG to find the average of n values,
ignoring null values

6 STDDEV standard deviation of n values
ignoring null values

7 VARIANCE variance of n values ignoring null

values

4.8 Aggregate Functions 125

Table 4.3. PERSON_SKILL

Name Skill
Ashok fitter
Ashok welder
Kumar piping
Rajan electrician
Ravi turner
Sam NULL

¥ Oracle SQL*Plus O] x|

File Edit Search Options Help

S0L> select * from person; ﬁ
NAME SKILL

ashok fFitter

ashok welder

kumar piping

rajan electrician

ravi turner

sam NULL

6 rows selected.
sSqQL>
Al 1P

Fig. 4.11. PERSON table

Now let us try to view the table PERSON, and the contents of the table
PERSON as shown in Fig.4.11. From this figure, it is clear that the number
of rows of the table is six.

Now let us use the COUNT (*) function to view the number of rows of the
relation PERSON. The SQL command and the corresponding output are
shown in Fig.4.12.

From Fig.4.12, we can observe that the number of rows returned is
six, which means that the COUNT(*) function takes into account the NULL
values.

(B) COUNT (attribute name) Function

A slight variation of COUNT (*) function is COUNT (attribute name) func-
tion. The syntax of this function is given by:

SELECT COUNT (attribute name)
FROM table name;

126 4 Structured Query Language

%+ Oracle SQL*Plus O] x|

File Edt Search Options Help

SOL> select count(=) -
2 from person;

COUNT (%) 4__’-_,/

6

Se¢ the number of
rows returned is six,
This means NULL
values are taken
mto account,

n
e

Fig. 4.12. COUNT (*) Function

+ Oracle SQL"Plus [_ (O x|
Eile Edit Search Options Help
SOL> select count{name) ﬂ

2 from person; COUNT (attribute name)
command also returns
the number of rows of
the relation without
taking into consideration
the NULL values.

COUNT (NAME)

Fig. 4.13. SELECT (attribute name) command

The application of COUNT (attribute name) to the PERSON table and the
corresponding output are shown in Fig.4.13.

From Fig.4.13, it is clear that count (attribute name) command will take
NULL values into account as a result the number of rows selected is six.

(C) COUNT (DISTINCT attribute name)

The COUNT (DISTINCT attribute name) command returns the number of

rows of the relation, by eliminating duplicate values. The syntax of COUNT
(DISTINCT attribute name) is:

SELECT COUNT (DISTINCT attribute name)
FROM table name;

The usage of COUNT (DISTINCT attribute name) in the table PERSON
and the corresponding output is shown in Fig. 4.14.

It is worthwhile to note that the DISTINCT command will not take into
consideration the NULL value. In order to prove this, let us select the attribute

be skill rather than the attribute name. The result of choosing the attribute
as skill is show in Fig. 4.15.

4.8 Aggregate Functions 127

+ Oracle 5OL*Plus HFIB! L
Fie Edt Search Qptions Help -
SQL> select count(distinct name) =

2 from person; DISTINCT key word

eliminates the

COUNT(DISTINCTHAME) duplicate value as a

_______________ ; result the number of
rows returned is five,

sqLy |

Ki| *

Fig. 4.14. COUNT (DISTINCT attribute name)

~——

[+ OoclesalPke MBI
File Edt Search Options Help The result of COUNT
SQL» select count{distinct skill) ﬂ (DISTINCT skill)

2 from person; statement returns the
COUNT(DISTINCTSKILL) _n_umh-.-r of rows 1o be six.
____________________ I'his shows that

3 DISTINCT command will
ks not ta\klc into consideration
=4 the NULL value.
Al I

Fig. 4.15. COUNT command

4.8.2 MAX, MIN, and AVG Aggregate Function

In order to understand MAX, MIN, and AVG aggregate function consider the
relation CONSUMER PRODUCTS. The relation CONSUMER PRODUCTS
has two attributes, the name of the product and the price associated with the
product as shown in Table 4.4.

(A) MAX Command

The MAX command stands for maximum value. The MAX command
returns the maximum value of an attribute. The syntax of MAX command is:

SELECT MAX (attribute name)
FROM table name;

Let us apply the MAX command to Table 4.4 to get the maximum price
of the product, the SQL command and the corresponding output are shown
in Fig.4.16.

Let us try to find the name of the product which has maximum price by
using PROJECTION operation and the IN operator as shown in Fig.4.17.

128 4 Structured Query Language

Table 4.4. Consumer product

Name Price (in Rs.)
TV 15,000
refrigerator 10,000
washing machine 17,000
mixie 3,500

* Oracle SQL*Plus !E]m

File Edit Search QOptions Help

SOL> select max{price) -]
2 from consumerproduct;

The MAX command
returns the maximum
price of the product
which 15 17000
(Refer table 4.4)

HAX(PRIGE)

\

Fig. 4.16. MAX command

* Oracle SQL*Plus

File Edit Search Options Help _
SQL> select name Al
2 from consumerproduct
3 where price in(select max(price) from consumerproduct);

washingmachine

soL> | ~|

Al of 2

Fig. 4.17. Maximum price product name

(B) MIN Command

The MIN command is used to return the minimum value of an attribute. The
syntax of MIN command is same as MAX command.
Syntax of MIN Command is

SELECT MIN (attribute name)
FROM table name;

The use of MIN command and the corresponding result are shown in
Fig.4.18.

From Table 4.4 the minimum price of the product is 3,500 which are re-
turned as the result.

4.8 Aggregate Functions 129

4 Dracle SOL*Plus

File Edit Search Options Help
SQL> select min{price) ﬂ

2 from consumerproduct; MIN

command

MIN{PRICE) returns the
__________ minimuum
3500 value of the
attribute.
sqQL>

Fig. 4.18. MIN command applied to Table 4.4

File Edt Seaich ﬂm:ﬁeb"_’_,_,————
SOL> select name -
2 from consumerproduct
3 where price in

4 (select min{price)from consumerproduct);

Projection
operation which
selects only

name atiribute

| LAl 7

Fig. 4.19. Minimum price product name

To know the name of the product which has minimum price, we can use
IN operator as shown in Fig.4.19.

From Fig. 4.19, it is clear that we can use IN operator along with PRO-
JECTION operation to get the name of the product with minimum price.

(C) AVG Command

The AVG command is used to get the average value of an attribute. The
syntax of AVG command is:

SELECT AVG (attribute name)
FROM table name;

Let us apply AVG command to the Table4.4, to get the average price of
the product. The result of applying AVG command is shown in Fig. 4.20. The

average price of the product is (15,000 4 10,000 + 17,000 + 3,500)/4 which
is 11,375 as shown in Fig. 4.20.

130 4 Structured Query Language

* Oracle SQL*Plus M [=]E3

File Edit Search Options Help

SQL> select avg(price) -
2 from consumerproduct;

AUG(PRICE)

Fig. 4.20. AVG command

(D) STDDEV Function

The STDDEV function is used to compute the standard deviation of the
attribute values. The syntax of the standard deviation function is:

SELECT STDDEV (attribute name)
FROM table name;

The STDDEV function applied to the relation CONSUMERPRODUCT
(Table 4.4) is shown in Fig. 4.21.

(E) VARIANCE Function

The variance function is used to get the variance of the attribute values. The
syntax of VARTANCE function is:

VARIANCE (attribute name)
FROM table name;

Let us apply the VARIANCE to the consumer product table; the result
is shown in Fig.4.22. We know that the variance is the square of the stan-
dard deviation. We have obtained the standard deviation from Fig.4.21 as
6019.0669; the square of this value is approximately 36229167 which is ob-
tained in Fig. 4.22.

(F) GROUP BY Function

The GROUP BY clause is used to group rows to compute group-statistics. It
is to be noted that when the GROUP BY clause is present, then the SELECT
clause may include only the columns that appear in the GROUP BY clause
and aggregate functions.

4.8 Aggregate Functions 131

4 Oracle 5QL*Plus

File Edit Search Options Help
SQL> select stddev(price) a
2 from consumerproduct;

STDDEU(PRICE)

6019.0669
sqL> |

A o

Fig. 4.21. STDDEV function

+ Oracle SQL*Plus _[ofx]
File Edt Search Options Help |
SQL> select variance(price) 4;

2 from consumerproduct; |

UARIANCE(PRICE)

E
v
N

Fig. 4.22. Variance function

In order to understand the GROUP BY Function let us consider the table
PLACEMENT as shown in Table 4.5 which refers to the number students
placed in different companies. The table PLACEMENT consists of three at-
tributes (columns) which are company name, department name which refers
to the curriculum stream and strength which refers to the number of students
placed.

Now we want to know the total number of students placed in each branch.
For this we can use the GROUP BY command. The syntax of GROUP BY
command is:

SELECT attribute name, aggregate function
FROM table name
GROUP BY attribute name;

132 4 Structured Query Language

Table 4.5. Placement

Company name Department Strength
TCS CSE 54
TCS ECE 40
TCS EEE 32
GE CSE 5
GE ECE 8
GE EEE 20
L&T CSE 12
L&T ECE 20
L&T EEE 18
IBM CSE 24
IBM ECE 20
IBM EEE 12

It is to be noted that the attribute name after SELECT command should
match with the attribute name after GROUP BY command. The GROUP
BY command which is used to find the total number of students placed in
each branch is shown in Fig. 4.23.

(G) HAVING Command

The HAVING command is used to select the group. In other words HAVING
restricts the groups according to a specified condition. The syntax of HAVING
command is:

SELECT attribute name, aggregate function
FROM table name

GROUP BY attribute name

HAVING condition;

Let us use the HAVING command as shown in Fig. 4.24 to find the details
of the department in which more than 90 students got placement.

From Fig.4.24, we are able to get the details of the department where
more than 90 students were placed.

(H) SORTING of Results

The SQL command ORDER BY is used to sort the result in ascending or
descending order.

The table used to understand ORDER BY command is BESTCRICK-
ETER. The table BESTCRICKETER as shown in Table 4.6 gives the details
of best batsman of the world. The attributes of the BESTCRICKETER are
the name of the batsman, the country they belong to, and the number of
centuries they scored.

4 Oracle SQL*Plus

Fle Edt Seach Oplions Help

SQL> select departmentname, sum{strength)

4.8 Aggregate Functions 133

Attribute name

2 Ffrom placement = after SELECT

3 greup by departwentnane; command should
DEPARTMENTNAME SUM(STRENGTH) match with the

altribute name

CSE 95 (departmentname)
ECE 88 after GROUP BY
EEE 82 commang.
sqL> |

4 |

Fig. 4.23. GROUP BY command

* Oracle SQL*Plus 8] x|

File Edit Search Options Help

SOL> select departmentname, sum{strength) ﬂ

2 from placement

3 group by departmentname
4 having sum{strength)>98;

DEPARTHENTNAME

SUM(STRENGTH)

Fig. 4.24. GROUP BY and HAVING command

Table 4.6. BESTCRICKETER

Name Country Centuries
Gavaskar India 34
Sobers Westindies 26
Chappel Australia 24
Bradman Australia 29
Border Australia 27
Gooch England 20

Case 1: The syntax of ORDER BY command to arrange the result in ascend-

ing order is:

SELECT *
FROM table name

ORDER BY attribute name ASC;

134 4 Structured Query Language

#* Dracle SOL"Plus = [=] B3 |

File Edt Seach Options Help
SOL> select = -

2 from bestcricketer | -

3 order by centuries asc; ASC keyword

. is used to
NAME COUNTRY CENTURIES arrange Lhe
o centuries n

gooch england 20 ascending
chappel australia 2y order
sobers westindies 26
border australia 27
bradman australia 29
gavaskar india 34
6 rows selected.
sQL> | -
i 2,

Fig. 4.25. Sorting in ascending order

Here ASC stands for ascending order.
Let us apply the command to the Table 4.6, the result of using ORDER
BY command and the corresponding results are shown in Fig. 4.25.

Case 2: The syntax to arrange the result in descending order is:

SELECT *
FROM table name
ORDER BY attribute name DESC.

Here DESC stands for descending order.
Let us apply this DESC keyword to arrange the centuries in descending or-
der. The SQL command and the corresponding output are shown in Fig. 4.26.

Case 3: If we do not specify as ASC or DESC after ORDER BY key word,
by default, the results will be arranged in ascending order.

From Fig.4.27, it is evident that if nothing is specified as ASC or DESC
then by default, the results will be displayed in ascending order.

(I) Range Queries Using Between

The SQL has built-in command BETWEEN which is used to perform range
queries.

Let us try to find the details of the batsman who has scored centuries
greater than 20 and less than 30. The SQL command to accomplish this task
and the corresponding output are shown in Fig. 4.28.

4.9 Data Manipulation Language 135

4 Oracle SUL"Plus

File Edt Search Options Help
SQL> select =
2 from bestcricketer
3 order by centuries desc;

L1

DESC keyword is

HAME COUNTRY CENTURIES
gavaskar india 113
bradman australia 29
border australia 27
sobers westindies 26
chappel australia 24
gooch england 20

6 rows selected.

sqL> |
4|

2 4

used to arrange the
results in
descending order.
See the centuries
are arranged in
descending order

Fig. 4.26. Sorting in descending order

#* Oracle SQL*Plus _ O] X

File Edit Search Options Help
SQL> select =
2 from bestcricketer
3 order by centuries;

-

CENTURIES

NAME COUNTRY
gooch england
chappel australia
sobers westindies
border australia
bradman australia
gavaskar india

6 rows selected.

sqQL> |

KIS

4

N

Fig. 4.27. Ascending order

4.9 Data Manipulation Language

The data manipulation language is used to add, update, and delete data in the
database. The SQL command INSERT is used to add data into the database,
the SQL command UPDATE is used to modify the data in the database, and
the SQL command DELETE is used to delete data in the database. Here the

term database refers to the table.

136 4 Structured Query Language

Oracle SQL*Plus

File Edt Seach Options Help

SQL> SELECT = FROM a
2 BESTCRICKETER
3 WHERE CENTURIES BETWEEN 28 AND 25;

NAME COUNTRY CENTURIES
chappel australia 2y
gooch england 20

sSqL> -
2 | v 4

Fig. 4.28. Range query using BETWEEN command

% Dracle SAL*Plus

File Edt Seach Options Help

SQL> insert into bestcricketer -
2 wvalues('&name’,'&country’ ,&cenfuries);

Enter value for name: sachintendulkar

Enter value for country: india

Enter value for centuries: 34

old 2: values('&name',’'&country’ ,¢uries)

new 2: values('sachintendulkar','india‘’,34)

Note there is no
apostrophe for
the centuries
which is a
numeric data
type

1 row created.

soL> | -

Fig. 4.29. Inserting a new row to the table

4.9.1 Adding a New Row to the Table

The INSERT command is to add new row to the table. The syntax of INSERT

command is:

INSERT INTO table name
VALUES (‘&columnl-name’, ‘&column2-name’. . . &columnN-name);

It is to be noted that apostrophe is not required for numeric datatype.

Let us try to insert a new row to the Table 4.6 (which has already six
rows) to include the little master Sachin Tendulkar. The SQL command and
the corresponding output are shown in Fig. 4.29.

To verify whether the new row has been added to the Table 4.6 which
had six rows before inserting the new row, let us issue SELECT command as
shown in Fig. 4.30.

From Fig. 4.30, it is clear that little master Sachin Tendulkar record being
added to the best cricketer table so that the total number of rows is seven.

4.9 Data Manipulation Language 137

Fle Edit Seaich Options Help
SQLY select =
2 From bestcricketer;

NAHE COUNTRY CENTURIES
gavaskar india 34
sobers westindies 26
chappel australia 2y
bradman australia 29
border australia 27
gooch england 20
sachintendulkar india 34

7 rows selected. ‘_———/_

SQL>
|

Fig. 4.30. Modified table

Alter adding a
new row, see
the number of
rows in the
best cricketer
table is

seven, earlier

il was six

4 Oracle SQL*Plus O] x|

File Edt Search Options Help

SQL> update bestcricketer

2 set centuries=35
3 where name='sachintendulkar®;

1 row updated.

sqL>

2l

-

Fig. 4.31. Table updation using UPDATE command

4.9.2 Updating the Data in the Table

The data in the table can be updated by using UPDATE command. The

syntax of the UPDATE command is:

UPDATE table name

SET attribute value=new value

WHERE condition;

Let us apply this UPDATE command to the table BESTCRICKETER.
The motive is to modify the number of centuries hit by Sachin Tendulkar to
35. The corresponding SQL command and the output are shown in Fig. 4.31.

138 4 Structured Query Language

4 Oracle SQL*Plus =] E3
Eile Edit Search Options Help
SQL> select = -

2 from bestcricketer;
NAME COUNTRY CENTURIES
[e T The number of
gavaskar india 34 :
sobers westindies 26 E;nlunas scored
chappel australia 24 =
bradman australia 29 Sachin Tendulkar
border australia 27 has been
gooch england 20 updated to
sachintendulkar india 35+—— 35 which were

34 earlier.
7 rows selected.

sQL> »
< | L 7

Fig. 4.32. Updated table BESTCRICKETER

To see whether the table has been updated or not use SELECT statement
to view the content of the table BESTCRICKETER. The updated table is
shown in Fig. 4.32.

4.9.3 Deleting Row from the Table

The DELETE command in SQL is used to delete row(s) from the table. The
syntax of DELETE command is

DELETE FROM table name
WHERE condition;

Let us delete the record of a particular player (say Gooch) from the table
BESTCRICKETER. The SQL command to delete a particular row and the
corresponding output are shown in Fig. 4.33.

To verify whether the player Gooch record has been deleted, let us use
SELECT command to view the content of the table as shown in Fig. 4.34. From
this figure it is evident that the player Gooch record has been successfully
deleted.

4.10 Table Modification Commands

We can use ALTER command to alter the structure of the table, that is we
can add a new column to the table. It is also possible to delete the column
from the table using DROP COLUMN command.

4.10 Table Modification Commands 139

4 Oracle SQL*Plus M[=] B3

File Edit Search Options Help

SQL> delete from bestcricketer a
2 where name="gooch';

1 row deleted.

sqL> |

T M

Fig. 4.33. Deletion of row from table

* racle SQL*Plus

File Edt Search Option: Help
SOL> select = =

2 from bestcricketer; =
HAHE COUNTRY CENTURIES Because of
——————————————————————————————————————— deletion of the
gavaskar india 11 player gooch
sobers westindies 26 record the
chappel australia 2y number 6F
bradman austral:!.a 29 rows selected
border australia 27 s
sachintendulkar india as —
6 rows selected. k_,—»—'-‘_'/—
sqL> |

-

KiN| 1

Fig. 4.34. Modified table

4.10.1 Adding a Column to the Table

We can add a column to the table by using ADD command. The syntax to
add a new column to the table is:

ALTER TABLE table name
ADD column name datatype;

Example to Add a New Column

Let us consider the Table 4.6 BESTCRICKETER, which has three columns
which are name of the player, country the player belong to, and the cen-
turies which refer to the number of centuries scored by the player. Now try

140 4 Structured Query Language

to add one more column to the table BESTCRICKETER. The new column
to be added is age which refers to player age. The SQL command to add the
new column age and the corresponding output are shown in Fig. 4.35.

To see the description of the table after adding the new column age to the
table bestcricketer, let us use DESC command as shown in Fig. 4.36.

From Fig. 4.36 we can observe that a new column age of datatype number
has been added to the table bestcricketer.

After successfully inserting the column age, we will be interested to know
the content of the table to see any value is assigned to the column age.
Figure 4.37 shows the content of the table after adding a new column.

From Fig. 4.37, it is clear that the table already contains rows when the
column age is added, then the new column age is initially null for all the
TOWS.

To Insert Values into the New Column

Data can be inserted to the newly added column (in our example it is age) by
using UPDATE command.

For example, we want to insert the age of Sachin Tendulkar to be 33. This
is done using UPDATE command as shown in Fig. 4.38.

+ Oracle SQL*Plus _ [0 x|

Ele Edt Seach Options Help
SQL> alter table bestcricketer
2 add agg number{3);

A new column
age of data type
number has been
added to the table
bestericketer

Table altered.

soQL>

IS

Fig. 4.35. Adding a column to the table

+ Oracle SOL"Plus

Fie Edt Seach Qplions Help

SQL> desc bestcricketer; -
Hame Hull? Type

NAME UARCHARZ(15)
COUNTRY UARCHARZ(15)
CENTURIES NUMBER(3)

RGE NUMBER(3)

sqQL> -
i1 5] 4 77

Fig. 4.36. Table descriptions after the addition of new column

4.10 Table Modification Commands 141

% Oracle SOL*Plus M[=1E3 I
File Edit Seach Options Help
SQL> select » from -

2 Dbestcricketer;

No values

NAME COUNTRY CENTURIES AGE P
gavaskar india 34 :'ss:flfcd
sobers westindies 26 - 0. 10
chappel australia 24 column
bradman australia 29 age.
border australia 27
sachintendulkar india 35
6 rows selected. ¥

Fig. 4.37. Content of the table after the insertion of new column

4 Oracle SQL*Plus

File Edt Search Options Help
SQL> update bestcricketer -

2 set age=33
3 where name="sachintendulkar’;

1 row updated.

sQL>

4

RN »

Fig. 4.38. Insertion of data to the new column age

:

To verify whether the age of sachintendulkar has been added as 33, see
Fig. 4.39.

4.10.2 Modifying the Column of the Table

We can modify the width of the datatype of the column by using ALTER and
MODIFY command. The syntax to change the datatype of the column is:

ALTER table name
MODIFY column-name datatype;

Example to Modify the Width of the Datatype of the Column

For example, we want to modify the width of the datatype age which is
three as shown in Fig. 4.36 to four. The SQL command and the corresponding
output are shown in Fig. 4.40.

142 4 Structured Query Language

+ Oracle SQL*Plus
Fle Edt Seach Options Help
SQL> select = -
2 from bestcricketer;
NAME COUNTRY CENTURIES AGE
gavaskar india 3
sobers westindies 26 2 -
See the age of
chappel australia 24 RM' s .]H n”
bir-a dsini australia 29 sachimtendulkar
border australia 27 has been added
sachintendulkar india 35 33 as 33
-
6 rows selected.
SqL> -
A H

Fig. 4.39. Modified table

¥ Oracle SQL"Plus

Fle Edt Seach Options Help

SOL> alter table bestcricketer -
2 modify age number(h);

Table altered.

SOL> desc hestcricketer;

Hame Null? Type
HAME UARCHAR2(15)
COUNTRY UARCHAR2(15)
CENTURIES NUMBER (3)
AGE NUMBER (&)

sQL>

RIN o4

Fig. 4.40. Modified width of the datatype

From Fig. 4.40 we can observe that the width of the datatype age modified
as four which was three earlier as shown in Fig. 4.36.

4.10.3 Deleting the Column of the Table

The DROP COLUMN command can be used along with the ALTER table
command to delete the column of the table. The syntax to delete the column
from the table is:

ALTER table name
DROP COLUMN column name;

4.11 Table Truncation 143
Example

Let us try to delete the column age from the BESTCRICKETER by using
DROP COLUMN command. The syntax to drop the column and the corre-
sponding output are shown in Fig.4.41.

After dropping the column age, the description of the table will be as
shown in Fig. 4.42.

From Fig.4.42, it is evident that the column age is not included in the
table description.

The content of the table after dropping the column age is shown in
Fig.4.43.

4.11 Table Truncation

The TRUNCATE TABLE command removes all the rows from the table. The

truncate table also releases the storage space used by the table. The syntax
of TRUNCATE command is:

TRUNCATE TABLE table name;

Oracle SQL*Plus

File Edit Seach Options Help

SQL> alter table bestcricketer -~
2 drop column age;

Table altered.

soL>

Ji 1| A

Fig. 4.41. Dropping a column from the table

& Oracle SOL*Plus

File Edt Semch Options Help
SOL> desc bestcricketer; &
Name Hull? Type

NAME UARCHARZ2(15)
COUNTRY UARCHARZ(15)
CENTURIES NUMBER(3)

soL>
A4 2

Fig. 4.42. Table descriptions after dropping the column age

144 4 Structured Query Language

4 Oracle SQL*Plus _ (O] x|
File Edit Search Options Help
SOL> select = il

2 from bestcricketer;

NAME COUNTRY CENTURIES
gavaskar india 34
sobers westindies 26
chappel australia 2y
bradman australia 29
border australia 27
sachintendulkar india 35

6 rouws selected.

sSQL>
RIN >

Fig. 4.43. Table content after dropping the column age

4 Oracle SQL*Plus - 10 x|
File Edit Seach Options Help
SQL> truncate table bestcricketer; ﬂ

™ 4

Table truncated.

sQL>

A

Fig. 4.44. Table truncation

Example

Let us try to delete all the rows of the table bestcricketer by issuing TRUN-
CATE TABLE command. The SQL command and the corresponding output
are shown in Fig. 4.44.

After table truncation, if we try to select the rows, what will be the output?
To answer this question, let us try to see the content of the table by using
SELECT command as shown in Fig. 4.45.

4.11 Table Truncation 145

1

4 Oracle SQL*Plus

File Edt Seach Options Help
SOL> truncate table bestcricketer; ﬂ

Table truncated.
SOL> select * from bestcricketer;
no rows selected

sQL> -

T 37

Fig. 4.45. Table content after truncation

* Oracle SOL"Plus

Fie Edt Seach Options Help
SOL> desc bestcricketer; =
Name Null? Type

NAME UARCHARZ2(15)
COUNTRY UARCHAR2(15)
CENTURIES NUMBER(3)

sqL>
K1 o[

Fig. 4.46. Table descriptions after table truncation

From Fig.4.45, it is clear that all the rows are deleted by issuing TRUN-
CATE TABLE command. After the TRUNCATE TABLE command if we try

to see the description of the table by issuing DESC command as shown in
Fig. 4.46.

From Fig. 4.46, it is clear that the TRUNCATE TABLE command deletes
the content (all rows) of the table but not the table definition.

Note Another way to delete all the rows of the table is to use DELETE
command. The syntax is:

DELETE FROM table name;

4.11.1 Dropping a Table

The definition of the table as well as the contents of the table is deleted by
issuing DROP TABLE command. The syntax of DROP TABLE command is:

DROP TABLE table name;

146 4 Structured Query Language
Example

Let us issue the DROP TABLE command to the table BESTCRICKETER
as shown in Fig. 4.47.

After issuing the DROP TABLE command if we try to see the description
of the table, we will get the result as shown in Fig. 4.48.

From Fig.4.48 it is clear that DROP TABLE command deletes both the
content and the descriptions of the table.

4.12 Imposition of Constraints
Constraints are basically used to impose rules on the table, whenever a row is

inserted, updated, or deleted from the table. Constraints prevent the deletion
of a table if there are dependencies. The different types of constraints that

4 Oracle SQL*Plus FE =
File Edit Search Options Help
SQL> drop table bestcricketer; ﬂ

Table dropped.

sQL>

Al o

Fig. 4.47. Dropping a table

4 Oracle SQL*Plus

Fie Edit Seach Options Help
SQL> drop table bestcricketer; il

Table dropped.
SQL> desc bestcricketer;

ERROR:
ORA-B84843: object bestcricketer does not exist

saL>

Al »

Fig. 4.48. Table descriptions after dropping the table

S"

4.12 Imposition of Constraints 147

can be imposed on the table are NOT NULL, UNIQUE, PRIMARY KEY,
FOREIGN KEY, and CHECK.

Whenever an attribute is declared as NOT NULL then it specifies that
the attribute cannot contain a NULL value.

The UNIQUE constraint specifies that whenever an attribute or set of
attributes are specified as UNIQUE, then the values of the attribute should
be unique for all the rows of the table. For example, consider the Roll number
of the student in the class, every student should have UNIQUE roll number.

PRIMARY KEY constraint is used to identify each row of the table
uniquely.

FOREIGN KEY constraint specifies that the value of an attribute in one
table depends on the value of the same attribute in another table.

CHECK constraint defines a condition that each row must satisfy. Also
there is no limit to the number of CHECK constraints that can be imposed
on a column.

4.12.1 NOT NULL Constraint

If one is very much particular that the column is not supposed to take NULL
value then we can impose NOT NULL constraint on that column. The syntax
of NOT NULL constraint is:

CREATE TABLE table name

(column namel, data-type of the columnl, NOT NULL
column name2, data-type of the column2,
column nameN, data-type of the columnN);

The above syntax indicates that columnl is declared as NOT NULL.

Example

Consider the relation PERSON, which has the attributes name of the person,
salary of the person, phone number of the person. Let us try to declare the
column name as NOT NULL. This implies that every person should have
a name. The syntax to declare the column name as NOT NULL is shown in
Fig. 4.49.

From Fig.4.49, it is clear that the attribute name is declared as NOT
NULL. Now let us try to insert NOT NULL values and NULL value to the
attribute name.

Case 1: Inserting a NOT NULL value to the attribute name.

From Fig. 4.50, it is clear that when we try to insert a NOT NULL name
into the name attribute, the name is included in the relation PERSONI1.
Case 2: A NULL value to the attribute name.

From Fig.4.51, it is clear that when we try to insert a NULL value into

the PERSONT1 relation, we get the error message as shown in Fig. 4.51 since
the attribute name is declared as NOT NULL.

148 4 Structured Query Language

4 Oracle SQL*Plus

File Edit Seach Options Help

SQL> create table personi ﬂ
2 (name varchar(12) NOT HNULL,
3 salary number{?,3),
] phonenumber number{12});

Table created.
sqL> |

o | »

Fig. 4.49. NOT NULL constraint

Oracle SQL*Plus _ (o] x|
File Edit Search Options Help
SQL> insert into personi ﬂ

N

2 values('&name’ ,&salary,&phonenunber) ;
Enter value for name: ravi
Enter value for salary: 2680
Enter value for phonenumber: 9443421
old 2: values('&name’ ,&salary,&phonenunber)
new 2: values{'ravi',9600,9443421)

1 row created.

sqL> |

o :

4

N

Fig. 4.50. A NOT NULL value to the attribute name

¥ Oracle SQL*Plus

Fle Edt Seach Options Help
SQL> insert inte personi

2 values('&name’,&salary,&phonen
Enter value for name:
Enter value for salary: 8868
Enter value for phonenumber: 433219
old 2: values('&name"’ ,ksalary,&phonenumber)
new 2: values('',8800,433219)
insert into persont

L

A NULL
value for
the attribute
name

NOT NULL
constriant

violated and
we gel error
message

ERROR at line 1:
ORA-01400: cannot insert MULL into (“SCOTT",“PERSON1"."MNAME")

0 e

Fig. 4.51. NOT NULL constraint violated

4.12 Imposition of Constraints 149
4.12.2 UNIQUE Constraint

The UNIQUE constraint imposes that every value in a column or set of
columns be unique. It means that no two rows of a table can have duplicate
values in a specified column or set of columns.

Example

In order to understand unique constraint, let us create the table CELL-
PHONE, which has three attributes. The three attributes are model of the
cellphone, make which refers to manufacturer, and the price.

The relation CELLPHONE is created as shown in Fig.4.52 with unique
constraint on model. When a unique constraint is imposed on the attribute
model, then no two models should have same number.

The values are inserted into the table CELLPHONE. The resulting tables
after inserting the values are shown in Fig. 4.53.

From Fig.4.53, we can observe that the table CELLPHONE has three
TOWS.

Case 1: Now let us try to insert a row in the relation CELLPHONE by vio-
lating the UNIQUE constraint, i.e., we are trying to insert a row with model
number 1100 which already exists. The insertion and the corresponding result
are shown in Fig. 4.54. From this figure, we can observe that there is an error
message “unique constraint (SCOTT.SYS_C00820) violated.” The reason for
getting this error message is we tried to enter the model (1100) which exists
already in the CELLPHONE relation as shown in Fig. 4.53.

Case 2: Insertion of NULL Value to the Model Attribute. Let us try to insert
a null value to the attribute model. The SQL command to insert a null value
to the attribute model and the corresponding result are shown in Fig. 4.55.

File Edit Seach Options Help

SQL> create table cellphone
2 (model number{é) unique,¢
3 make varchar(12),
4 price number(6));

Unigue constraint
is imposed on the
attribute model

Table created.

sQL>

KT

Fig. 4.52. Unique constraint on a column

150 4 Structured Query Language

4 Oracle 5QL*Plus M[=1E3

File Edit Search Options Help
SQL> select = _:_"

2 from cellphone;

MODEL HAKE PRICE
1100 nokia 4000
3300 nokia 3500
6618 nokia 2088
sqL> |

b

i J | H

Fig. 4.53. Values inserted into the table CELLPHONE

4 Oracle SOL*Plus

Fie Edt Search Options Help
SQL> insert into cellphone

2 values{&model, '&nake’ ,&price);
Enter value for model: 1180
Enter value for make: nokia
Enter value for price: 38880
old 2: values{&model,'&make® ,&price)
new 2: values{1100,'nokia‘,3000)
insert into cellphone

»

ERROR at line 1:
ORA-00001: unique constraint {(SCOTT.SYS_C00820) violated

sqL> |

I

Fig. 4.54. Violation of UNIQUE constraint

Difference Between NOT NULL and UNIQUE Constraint

The unique constraint accepts NULL value as shown in Fig. 4.55, whereas the

NOT NULL constraint will not accept NULL values.

Note NOT NULL constraint accepts duplicate values, whereas UNIQUE con-
straint will not accept null values. Moreover when a UNIQUE constraint is im-
posed on an attribute means that attribute can accept NULL values. Whereas

NOT NULL constraint will not accept NULL values.

4.12 Imposition of Constraints 151

+ Dracle SQL"Plus HE-JEH
Fle Edt Search Options Help
sQL> / 2]

Enter value for model: NULL

Enter value for make: samsung

Enter value for price: 5580

old 2: values(&model,'&make’ ,&price)
new 2: values(HULL,'samsung’,5500)

A NULL value is
mserted into the
attribute make.

1 row created.
Observe the result;
the NULL value is
successfully

inserted into the
table CELLPHONE

SQL> select = from cellphone;

MODEL MAKE PRICE

1188 nokia
3300 nokia
6618

an' o6

Fig. 4.55. Insertion of NULL value into CELLPHONE

4.12.3 Primary Key Constraint

When an attribute or set of attributes is declared as the primary key, then the
attribute will not accept NULL value moreover it will not accept duplicate
values. It is to be noted that “only one primary key can be defined for each
table.”

Example

Consider the relation EMPLOYEE with the attributes ID which refers to
Employee identity, NAME of the employee, and SALARY of the employee.
Each employee will have unique ID hence ID is declared as the primary key
as shown in Fig. 4.56.

From Fig. 4.56, it is clear that the attribute employee ID is declared as the
primary key.

Case 1: Insertion of NULL Value to the Primary Key Attribute.

It is to be noted that the primary key will not take any NULL value.
This is called entity integrity. Now let us try to insert a NULL value to the
employee ID in the SQL syntax, and the corresponding output is shown in
Fig.4.57. From Fig.4.57, it is evident that an attribute or set of attributes
declared as primary key will not accept NULL values.

Case 2: Insertion of Duplicate Values into an Attribute Declared as Primary
Key.

152 4 Structured Query Language

0Oracle SQL*Plus

Fie Edt Search Options Help

S$QL> create table employee -
2 (ID varchar(12),
3 name varchar{12),
4 salary number(8),

5 primary key(ID)); The attnibute 1D 15

declared as
primary key.

Table created.

sqQL>

e

* Oracle SQL*Plus

Eile Edit Search Options Help
SOL> insert into employee ﬂ
2 wvalues(&ID', &name’ ,&salary);
Enter value for id:
Enter value for name: Kumar
Enter value for salary: 7650
old 2: values('&ID','&name' ,&salary)
new 2: values('', 'kumar"' ,7650)
insert into employee
E 3
ERROR at line 1:
ORA-01480: cannot insert NULL into ("SCOTT"."EMPLOYEE"."ID")

SQL> |

A o

Fig. 4.57. Inserting NULL value into primary key attribute

When an attribute is declared as primary key, all the values of the attri-
bute should be UNIQUE. The primary key attribute will not accept duplicate
values.

Let us try to insert duplicate values to the attribute employee ID which
is declared as primary key. The SQL command and the corresponding output
are shown in Fig. 4.58.

We got an error message in Fig. 4.54, because we have tried to insert the
employee ID €101 twice. From this we can understand that when an attribute
is declared as primary key, the values of the attribute should be UNIQUE.

4.12 Imposition of Constraints 153

[+ 0mocle SaLPs S|

Fie Edt Search Options Help |

SQL> insert into employee -1
2 wvalues('&ID', &name’ ,&salary); |

Enter value for id: e181 l

Enter value for name: rajan

Enter value for salary: 1200

old 2: values('&ID','&name" ,&salary)

new 2: values('e181','rajan’',12008)

1 row created.

sqQL> /
Enter value for id: e161
Enter value for name: ravi
Enter value for salary: 1500
old 2: values('&ID','&name" ,&salary)
new 2: values('e181','ravi’,1508)
insert into employee
E 3
ERROR at line 1:
ORA-00001: unique constraint (SCOTT.SYS _COBB25) violated

sqL> | |

i ||

< | 'é

Fig. 4.58. Insertion of duplicate values to an attribute declared as primary key

Difference Between UNIQUE and NOTNULL Constraint

The difference between UNIQUE and NOTNULL constraint is given in the
tabular form as

NOTNULL constraint UNIQUE constraint

an attribute declared as NOTNULL an attribute declared as UNIQUE can
will not accept NULL values accept NULL values

an attribute declared as NOTNULL an attribute declared as UNIQUE will
will accept duplicate values not accept duplicate values

Difference Between UNIQUE and PRIMARY KEY Constraint

The difference between UNIQUE and PRIMARY KEY is given in tabular
form as

154 4 Structured Query Language

+ Oracle SQL*Plus
Fie Edit Search Options Help
SQL> create table voters

2 (name varchar({15),
3 age number(3),

4 address varchar(15),

5 check{age>19));
Table created.

sqL> |
4 |

Check constraint 1s
imposed on the atiribute
age. The age of the
person should be
greater than 19 for
cligible voter.

Fig. 4.59. Check constraint on an attribute

PRIMARY KEY constraint

UNIQUE constraint

an attribute declared as primary
key will not accept NULL values

only one PRIMARY KEY can be

an attribute declared as UNIQUE will
accept NULL values

more than one UNIQUE constraint can

defined for each table be defined for each table

4.12.4 CHECK Constraint

CHECK constraint is added to the declaration of the attribute. The CHECK
constraint may use the name of the attribute or any other relation or attribute
name may in a subquery. Attribute value check is checked only when the value
of the attribute is inserted or updated.

Syntax of CHECK Constraint

In order to understand check constraint, consider the relation VOTERS. In
India, only those who have completed the age of 19 are eligible to vote. Let
us impose this constraint on age in our relation VOTERS. The VOTERS
relation has the attributes name, which refers to the name of the voter, age
of the voter, address of the voter.

The creation of the table VOTERS with CHECK constraint imposed
on age is shown in Fig. 4.59.

From Fig. 4.59, we can observe that CHECK constraint is imposed on the
attribute age.

Case 1: Insertion of Data Without Violating the Constraint.

Let us try to insert the values into the table VOTERS without violating
the constraint, that is the age of the voter is greater than 19. The SQL syntax
and the corresponding output are shown in Fig.4.60. From this figure, it is
evident that the data are successfully inserted into the table VOTERS because
the age of the voter is greater than 19.

4.12 Imposition of Constraints 155

4 Oracle 5QL*Plus _ 0] x|
File Edt Search Options Help
SQL> create table voters -
2 (name varchar(15),
3 age number(3),
4 address varchar(15),
5 check{age>19));

Table created.

SQL> insert into voters

2 wvalues('&name’ ,&age, &address');
Enter value for name: sivaraj
Enter value for age: 24
Enter value for address: tirupur
old 2: values('&name"’ ,&age, " &address")
new 2: values('sivaraj*,24,"tirupur’)

1 row created.

g | o

Fig. 4.60. Data insertion without violating the constraint

Case 2: Insertion of Data into the Table VOTERS by Violating the CHECK
Constraint.

Now let us try to insert data into the table VOTERS by violating the
CHECK constraint, that is inserting the record of the voter with age less
than 19. The SQL command to insert the data and the corresponding output
are shown in Fig.4.61.

From Fig. 4.61, we can observe that we try to insert a value which violates
the CHECK constraint, we get error message.

Case 3: CHECK Constraint During Updation of Record.

The content of the VOTER table is given in Fig. 4.62.

For simplicity, there is only one record in the VOTERS table. Now let us
try to update the record by changing the age of the voter to less than 19, as
shown in Fig. 4.63.

From Fig. 4.63, we can observe that it is not possible to update the record
by violating the CHECK constraint.

4.12.5 Referential Integrity Constraint

According to referential integrity constraint, when a foreign key in one rela-
tion references primary key in another relation, the foreign key value must

156 4 Structured Query Language

Ele Edt Search QOptions Help

saL> -

SQL> insert into voters j
2 values('&name' ,&age, '&address');

Enter value for name: madhavan

Enter value for age: 18

Enter value for address: trichy

old 2: wvalues('&name’ ,&age, ' &address”)

new 2: values{'madhavan',18,"'trichy')

insert into voters

*
ERROR at line 1:
ORA-02290: check constraint {SCOTT.SYS_C@6821) violated

sQL> |

A 1
Fig. 4.61. Data insertion by violating the CHECK constraint

Oracle SQL*Plus _ O] x|

File Edit Search Options Help
SQL> select = i"

2 from voters;

NAME AGE ADDRESS
sivaraj 24 tirupur
SQL>

Al o

Fig. 4.62. The content of VOTERS table

match with the primary key value. In other words, the referential integrity
says “pointed to” information must exist.

Example

In order to understand referential constraint, consider two relation DEPART-
MENT and EMPLOYEE. Here the DEPARTMENT relation forms the parent
table. The meaning is the DEPARTMENT table contains the primary key. The
relation EMPLOYEE forms the child table. The meaning is the relation EM-
PLOYEE has foreign key which references to primary key in DEPARTMENT
table. Figure 4.64 shows parent—child relationship.

File Edit Search Oplions Help
SQL> update voters

2 set age=17

3 where name='sivaraj’;
update voters

ERROR at line 1:

4.12 Imposition of Constraints 157

#+ Oracle 5QL*Plus o] x]

-

ORA-82298: check constraint (SCOTT.SYS_CBB821) violated

soL> |

LIS

Fig. 4.63. Updation of record voters by violating CHECK constraint

Parent table

Primary
key

Child table

Foreign
key

'K—’_//

References

Fig. 4.64. Primary key and foreign key relationship

In our example, the relation DEPARTMENT is the parent table which
holds the parent table, and the relation EMPLOYEE forms the child table
which has foreign key which references primary key in DEPARTMENT table.
It is to be noted that the parent table should be created first, then the child

table.
DEPARTMENT EMPLOYEE
DeptID Dname Location EID DID Ename
D100 electrical B E201 D100 Raman
D101 civil A E202 D101 Ravi
D102 computer C E203 D101 Krishnan

158 4 Structured Query Language

Eile Edit Search Options Help
SQL> create table department -
2 (deptid varchar(12),
3 deptname varchar(12), i
4 deptlocation varchar(12), created with)
5 primary key(deptid)); department 1D, deptid
as primary key.

I'able department is

Table created.

sqL> | =
| 2V

* Oracle SQL*Plus
file Edt Search QOptions Help

did in

SQL> crealte table employee -~ employee
2 (eid varchar(12), table
3 did varchar(12), i
4 ename varchar(12), i
5 foreign key(did) references department(deptid)); deptid in
department

Table created. table

saL> | -
K| o[,

Fig. 4.66. EMPLOYEE table

The SQL syntax to create the two relations DEPARTMENT and EM-
PLOYEE with primary key and foreign key constraints is shown in Fig. 4.65
and Fig. 4.66, respectively.

Case 1: Now let us try to insert a value into DepartmentID of the employee
table which is not in department table. The department relation has only
three department IDs D100, D101, D102. Now we are trying to insert D103
in the DID (which stands for department ID) of employee table. The SQL
command and the corresponding output are shown in Fig. 4.67.

From Fig. 4.67, it is evident that the values are not able to insert into the
employee table. The reason for not able to insert value into the employee
table is: we have tried to insert the DID (department id) into the employee
table (child table) which is not matching with DeptID (department id) of the
department table (parent table). In other words the foreign key value in the
child table does not match with the primary key value in the parent relation.

The referential integrity rule says that the foreign key value should match
with the primary key value.

Case 2: NULL Value into Foreign Key Attribute.
Now let us try to insert a null value into the foreign key attribute. The
SQL command and the corresponding output are shown in Fig. 4.68.

4.12 Imposition of Constraints 159

+ Oracke SOL-Plus

Fie Edt Seach Oplions Help
SOL> insert into employee -l
2 wvalues('&eid’,"&did", '&ename’);
Enter value For eid: E204
Enter value for did: D105
Enter value For ename: kumar
0ld 2: values({'&eid',"&did’, '&ename")
new 2: values('E284°,°D105° ,"kumar')
insert into employee
-

ERROR at line 1:
ORA-02291: integrity constraint (SCOTT.SYS_CO8827) violated - parent key not found

soLy |

-
‘II o

Fig. 4.67. Violation of referential integrity

* Oracle SOL*Plus

Fle Edt Search Opbons Help

SQL> insert into employee il
2 values('teid’,'6tdid’','tenane’);

Enter value for eid: E205

Enter value for did: HULL

Enter value For ename: kannan

old 2: values('Bkeid','&did’,"’'tename’)

new 2: values(*E205','NULL®,"kannan’)

insert into employee

ERROR at line 1:
DRA-02291: integrity constraint (SCOTT.SYS_COU827) violated - parent key not Found

sqL>

Al M
Fig. 4.68. NULL value to the foreign key attribute

From Fig.4.68, it is evident that NULL value cannot be inserted into
foreign key attribute unless it matches with the primary key attribute.

4.12.6 ON DELETE CASCADE

When the clause ON DELETE CASCADE is included in the child table, and
if a row is deleted from the parent table then the corresponding referenced
value in the child table will also be deleted.

Example

Let us consider the DEPARTMENT (parent table) and EMPLOYEE (child
table) relation. The employee relation is modified as shown in Fig. 4.69. From
this figure, it is clear that we have included the clause ON DELETE CAS-
CADE in the child table.

160 4 Structured Query Language

+ Dracle SQL*Plus

File Edt Search Options Help
SQL> drop table employee; ﬂ

Table dropped.

SQL) create table enployee
2 (eid varchar(12),
3 did varchar(12),
4 ename varchar{12),
5 foreign key(did) references department(deptid)
6 ON DELETE CASCADE);

Table created.

soL> |
A AW

Fig. 4.69. Modified EMPLOYEE relation

The content of the table DEPARTMENT and EMPLOYEE are shown
below.

DEPARTMENT EMPLOYEE
DeptID Dname Location EID DID Ename
D100 electrical B E201 D100 Raman
D101 civil A E202 D101 Ravi
D102 computer C E203 D101 Krishnan

Now let us try to delete the department “Civil” in the DEPARTMENT
table. If we delete the row “civil” in the DEPARTMENT table, what will be
the impact in the EMPLOYEE table?

First the content of employee table is shown in Fig.4.70. The number of
tuples in the EMPLOYEE relation is three.

Now we are going to delete the department “civil” in the table DE-
PARTMENT. The SQL command and the corresponding output are shown
in Fig.4.71.

Now let us see the impact of deleting the record “civil” in the child table
which is EMPLOYEE in our case. The modified table EMPLOYEE is shown
in Fig. 4.72.

By carefully analyzing the Figs.4.71 and 4.72, we can observe that the
record “civil” in the child table (employee) being deleted.

4.12 Imposition of Constraints 161

4 Oracle SQL*Plus _ O] x|

File Edit Search Options Help

SQL> select = -~
2 from employee;

EID DID ENAME

E2061 D166 raman

E202 D161 ravi

E203 D161 krishnan

4 Oracle 50L*Plus

File Edit Search Options Help
SQL> delete from department -
2 where deptname=‘'civil’;

1 row deleted.

SQL> select =
2 from department;

DEPTID DEPTHNAME DEPTLOCATION
D100 electrical B

D162 computer c

sqQL> -

o | o 4

Fig. 4.71. DEPARTMENT table without “civil” department

If ON DELETE CASCADE clause is included in the child table
means whatever record deleted in the parent table will be deleted in the
child table.

4.12.7 ON DELETE SET NULL

If ON DELETE SET NULL clause is include in the child table means, when-
ever a row in the parent table is deleted, then the corresponding referenced
value in the child table will be set null.

162

4 Structured Query Language

4 Dracle SQL*Plus

File Edt Search QOptions Help

SQL> select = from employee; ﬂ
EID DID ENAHE

E201 D100 raman

sqL> |

kI 2

Fig. 4.72. Modified EMPLOYEE table

+ Oracle SQL*Plus

Eile Edit Seach Options Help
SQL> create table employee

SViEmnN

{eid varchar(12),

did varchar{12),
ename varchar(12),

foreign key{did) references department{deptid)

ON DELETE SET NULL);

Table created.

sqL>

[T

Fig. 4.73. Modified employee table definition

Example

Let us consider the parent table as DEPARTMENT and the child table as
EMPLOYEE as before. The child table is created with ON DELETE SET

NULL as shown in Fig.4.73.
The EMPLOYEE table before modification is shown below.

EID DID Ename
E201 D100 Raman
E202 D101 Ravi

E203 D101 Krishnan

4.13 Join Operation 163

¥ Oracle SQL*Plus o [=] E3

Fie Edit Seach Options Help

SQL> delete from department -
2 where deptname=‘electrical’;

1 row deleted.

SQL> select = from department;

DEPTID DEPTHAME DEPTLOCATION
D162 computer C

D181 civil c

sqL> |

A o

Fig. 4.74. Modified table DEPARTMENT

* Oracle SAL*Plus
File Edit Search Options Help
SQL> select =

2 from employee;

NULL value
due to ON

DELETE SE1

EID DID NULL clause
= in the child
E201 raman table.
E202 D101 ravi
E283 D1m krishnan
saL>
-

| 2y

Fig. 4.75. Modified child table (EMPLOYEE)

Now modify the table DEPARTMENT by deleting the “electrical”
department record. The SQL command to delete the record “electrical” and
the corresponding output are shown in Fig. 4.74.

The impact of deleting the record “electrical” in parent table DEPART-
MENT on the child table EMPLOYEE is shown in Fig. 4.75.

From Fig.4.75, we can observe that a NULL value is there corresponding
to the ID of the “electrical” department. This is due to inclusion of the clause
ON DELETE NULL in the child table (EMPLOYEE).

4.13 Join Operation

Join operation is used to retrieve data from more than one table. Before pro-
ceeding to JOIN operation let us discuss first the Cartesian product. Cartesian

product with suitable selection and projection operation forms different types
of join.

164 4 Structured Query Language
Cartesian Product

If we have two tables A and B, then Cartesian product combines all rows in
the table A with all rows in the table B. If nl is the number of rows in the
table A and n2 is the number of rows in the table B. Then the Cartesian
product between A and B will have nl X n2 rows.

Example

In order to understand Cartesian product, let us consider two relations doctor
and nurse. The relation doctor has the attribute ID which refers to identity
of the doctor, name and department. Similarly, the relation nurse has three
attributes NID, which refers to nurse identity, name and department. The
doctor relation is shown in Fig. 4.76.

Similarly the nurse relation is shown in Fig. 4.77.

* Oracle SQL*Plus

Fle Edt Search Options Help

SQL> select * from doctor; -

ID NAME DEPARTHENT

D168 vinayagam radiology Notice the
D181 krishnan cardiology doctor relation
D162 lakshmi pediatrics has 4 rows.
D183 jayaraman cardiology

soL> -
1] ap

Fig. 4.76. DOCTOR relation

* Oracle SOL*Plus

Ele Edt Search QOplions Help
SQL> select = from nurse; ﬂ

HID HAME DEPARTHMENT

Notice the

N160 devi pediatrics nurse relation
162 radha psychology has 3 rows.
H101 deepthi radiology

sqQL>

< |

Fig. 4.77. NURSE relation

4.13 Join Operation 165

From Figs. 4.76 and 4.77 we can observe that the number of rows in doctor
and nurse relation is 4. Now let us try to find the Cartesian product between
the two relations doctor and nurse. The Cartesian product should return 4 x 3
= 12 rows. The SQL command to perform Cartesian product between the
two relations doctor and nurse and the corresponding output are shown in
Fig.4.78. From this figure, it is evident that the Cartesian product between
two relations has 12 tuples (rows).

4.13.1 Equijoin

In equijoin, the join condition is based on equality between values in the
common columns. Moreover the common columns appear redundantly in the
result. Equijoins are also called as simple joins or inner joins. The equijoin
between the two relations doctor and nurse (The relations doctor and nurse
are shown in Figs. 4.76 and 4.77, respectively) is shown in Fig. 4.79.

£ Oracle SOL*Plus HF!IE

Fle Edt Semch Dptions Heb
5Ly select = From doctor, nurse; ﬂ

i HANE DEPARTHENT NID HAME DEPARTHENT
D100 uvinayagam radioloqy Hi0@ devi pediatrics)
D16 krishnan cardiology Hi00 devi pediatrics
D182 lakshmi pediatrics H1DDR devi pediatrics 12
D163 jayaraman cardiology HN100 devi pediatrics i
D100 vinayagam radiology Hinz2 radha psychology rows
D1 krishnan cardiology Ni@2 radha psychology F_ in the
p1e2 lakshmi pediatrics H102 radha psychology 3
D183 jayaraman cardiology H102 radha psychology result
D100 vinayagam radiology Wi deepthi radiology
prm krishnan cardiology MH1M deepthi radiology
pie2 lakshmi pediatrics H1D1 deepthi radiology
D163 jayaraman cardiology M1 deepthi radioloqy J
12 rows selected.
souy |
-
a1 H s

Fig. 4.78. Cartesian product between the relations doctor and nurse

* Diacle SQL*Plus

Ele Edit Seach QOptions Help

SQL> select = -
2 from doctor, nurse
3 where doctor.department=nurse.department;

1D HAME DEPARTHENT HID MAME DEPARTHENT

D162 lakshmi pediatrics H100 devi pediatrics

D108 vinayagam radiology N101 deepthi radiology

sQL> -

A Wz

Fig. 4.79. Equijoin between doctor and nurse relation

166 4 Structured Query Language

From Fig. 4.79, it is evident that the join condition is equality condition
on the attribute department. We can also observe that the common columns
appear redundantly in the result.

4.14 Set Operations

The UNION, INTERSECTION, and the MINUS (Difference) operations are
considered as SET operations. Out of these three set operations, UNION,
INTERSECTION operations are commutative, whereas MINUS (Difference)
operation is not commutative. All the three operations are binary operations.
The relations that we are going to consider for UNION, DIFFERENCE, and
MINUS operations are IBM_DESKTOP and DELL_DESKTOP as shown in
Figs. 4.80 and 4.81, respectively.

4.14.1 UNION Operation

If we have two relations R and S then the set UNION operation contains
tuples that either occurs in R or S or both.

Case 1: UNION command.

The union of two relations IBM_DESKTOP, DELL_DESKTOP is given
in Fig. 4.80. From Fig.4.81, it is clear that the UNION command eliminates
duplicate values.

Case 2: UNION ALL command.

The UNION command removes duplicate values. In order to get the du-
plicate values, we can use UNION ALL command. The use of UNION ALL
command and the corresponding results are shown in Fig. 4.83.

4 Oracle SQL*Plus

File Edt Search Options Help

SQL> SELECT = FROM IBM_DESKTOP; i'
HARDDISK SPEED 0s

206 CO06MHz Linux

406 16Hz windows

866 16Hz windouws

sqL> | —
Al | 4 7

Fig. 4.80. IBM_DESKTOP

Oracle SQL*Plus

File Edit Search Options Help
SQL> SELECT * FROM DELL DESKTOP; i"

4.14 Set Operations 167

HARDDISK SPEED 0s
206 seomiz Linux
406 1.2GHz windous
SQL>
Ay o[/
Fig. 4.81. DELL_DESKTOP
Oracle SQL*Plus =10 x|

File Edit Search Options Help
SQL> select =

2 from IBM_DESKTOP

3 UNION

4 select =

5 from DELL_DESKTOP;
HARDDISK SPEED 0s
266 5868HHz Linux
406 1.2GHz windows
406 16Hz windows
806 16Hz windows
sQL>

Fig. 4.82. UNION command

N 4

By carefully looking into the Figs.4.82 and 4.83, the number of tuples
in the Fig.4.82 is four; whereas the number of tuples in Fig.4.83 is five.
The difference in two results is due to the fact that UNION command
rejects duplicate values, whereas UNION ALL command includes duplicate

values.

168 4 Structured Query Language

4 Oracle SQL*Plus M [=] B3
File Edit Search Options Help
2 from IBM_DESKTOP :I
3 UNIODN ALL
4 select *
5 from DELL_DESKTOP;
HARDDISK SPEED o0s
206 508MHZ Linux
LBG 1GHz windows
806 1GHz windows
206 S80MHZ Linux
LOG 1.2GHz windows
sQL>
Sl

Fig. 4.83. UNION ALL command

* Oracle SQL*Plus

Fie Edt Seach Optons Help

SQL> select = -
2 from IBM_DESKTOP
3 intersect
4 select =
5 from DELL_DESKTOP;
HARDDISK SPEED 0s
206 S00MHZ Linux
sQL> -
2| vl 4

Fig. 4.84. INTERSECTION operation

4.14.2 INTERSECTION Operation

The intersection operation returns the tuples that are common to the
two relations. The intersection of the two relations IBM_DESKTOP and
DELL_DESKTOP is shown in Fig. 4.84.

4.15 View 169
4.14.3 MINUS Operation

If R and S are two union compatible relations then R—S returns the tuples
that are present in R but not in S. S—R returns the tuples that are present in
S but not in R. It is to be noted that MINUS operation is not commutative.
That is R-S # S—R.

Case 1: IBM_DESKTOP-DELL_DESKTOP.
Let us first determine IBM_DESKTOP-DELL_DESKTOP. The SQL com-
mand and the corresponding output are shown in Fig. 4.85.

From Fig. 4.85, we can observe that the result contains the tuples that are
present in IBM_DESKTOP and not in DELL_DESKTOP.

Case 2: DELL_DESKTOP-IBM_DESKTOP.

Let us try to compute DELL_DESKTOP-IBM_DESKTOP. The SQL com-
mand and the corresponding output are shown in Fig. 4.86. From Fig. 4.86, it
is clear that the result contains tuple that are present in DELL_DESKTOP
but not in IBM_DESKTOP.

Note From Figs. 4.85 and 4.86 it is clear that MINUS operation is not com-
mutative.

4.15 View

View is a pseudotable or virtual table. View is called as “pseudotable” because
view does not actually store data. View just displays the data. The data are
derived from one or more base tables. View table can be used like any other
table for querying. View can be considered as a window to the database. The
view can also be considered as customized presentation of data from one or
more tables. It is to be noted that all views are not updatable.

4 Oracle 5QL*Plus =] E3
File Edt Search Options Help
2 from IBM_DESKTOP A
3 HMINUS
4 select =
5 from DELL_DESKTOP;
HARDDISK SPEED 0s
406 1GHz windouws
806G 1GHZz windows
sqQL> -
T M 4

Fig. 4.85. IBM_DESKTOP-DELL_DESKTOP

170 4 Structured Query Language

4 Oracle SQL*Plus - O] x|

Eile Edit Seach Options Help

SOL> select = from DELL_DESKTOP -
2 MINUS
3 select * from IBM_DESKTOP;

HARDDISK SPEED 0s

L06 1.2GHz windows

sqQL>

2 r

Fig. 4.86. DELL_DESKTOP-IBM_DESKTOP

The Syntax of VIEW is given as

CREATE VIEW view name
AS SELECT attribute list
FROM table(s)

WHERE condition(s)

Case 1: VIEW from a Single Table.

Consider the base table RECORD which gives the record of the student
such as his/her Roll Number, Age, GPA (Grade Point Average), and institu-
tion which refers to the institution where he/she has got the degree (Fig. 4.87).
The base table RECORD is shown below.

RECORD
S.I. No Name Age GPA Institution
1 Anbalagan 22 9.2 PSG
2 Balu 22 9.4 PSG
3 Dinesh 22 8.4 CIT
4 Karthik 21 8.5 REC
5 Kumar 22 8.7 MIT
6 Kishore 22 8.8 MIT
7 Rajan 22 9.1 PSG
8 Lavanya 21 9.1 CIT

4.15 View 171

4 Oracle SQL*Plus

Fie Edt Search Options Help

SOL> select = from RECORD; -
SINO HAME AGE GPA INSTITUTION
1 Anbalagan 22 9.2 PSG
2 Balu 22 9.4 PSG
3 Dinesh 22 8.4 CIT
4 Karthick 21 8.5 REC
5 Kumar 22 8.7 MIT
6 Kishore 22 8.8 MIT
7 Rajan 22 9.1 PSG
8 Lavanya 21 9.1 CIT

8 rows selected.
soL> |
e M 4

Fig. 4.87. Base table RECORD

Now we want to create a view by name PLACED, which gives the list
of students placed in a particular organization (say IBM). The attribute
associated with the view PLACED are Name, Age, and Institution. The view
PLACED is shown below.

PLACED
Name Age Institution
Anbalagan 22 PSG
Balu 22 PSG
Rajan 22 PSG
Lavanya 21 CIT

From the table PLACED, it is obvious that only those students with GPA
greater than nine are placed. The SQL command to create the view PLACED
from the base table RECORD and the output are shown in Fig.4.88. From
Fig.4.88, it is clear that the view PLACED has only three columns Name,
Age, and Institution.

172 4 Structured Query Language

* Oracle SOL*Plus

File Edt Search Options Help

SQL> create view PLACED il
2 as select Name, Age, Institution
3 from RECORD
4 where gpa>9.0;

View created.

SOL> select = from placed;

NAME AGE INSTITUTION

Anbalagan 22 PSG

Balu 22 P3G

Rajan 22 PSG

Lavanya 21 CIT

soL> |

A o 4

Fig. 4.88. View PLACED from base table RECORD

4.15.1 Nonupdatable View

Case 1: A view created using DISTINCT clause is usually nonupdatable.

Example

To prove that the view created using DISTINCT clause is nonupdatable,
consider the base relation SAMPLE, which has two attributes Name and
Age. Let us create a view UPSAMPLE from the base relation SAMPLE using
DISTINCT clause. The base relation SAMPLE and the view UPSAMPLE is

shown below:

SAMPLE
Roll No Name Age
1 Anand 20
2 Anandi 19
3 Banu 20
4 Chandran 20
5 Ravi 21
6 Chandran 21
7 Anand 20

4.15 View 173

UPSAMPLE
Name Age
Anand 20
Anandi 19
Banu 20
Chandran 20
Chandran 21
Ravi 21

The SQL command to create the view UPSAMPLE from the base relation
SAMPLE using DISTINCT clause is shown in Fig. 4.89.

The created view UPSAMPLE is shown in Fig.4.90. Now let us try to
update the view UPSAMPLE, the SQL command to update the view and the
corresponding output are shown in Fig.4.91.

From Fig.4.91, it is clear that the view defined by DISTINCT clause is
nonupdatable.

Case 2: 1t is not possible to update the view if it contains group function or
if it contains group by clause.

Example

In order to prove that the view is nonupdatable if it contains group function
or group by clause, let us consider the base relation BOOKS. The attributes of
the relation BOOKS are author, title, price. The content of the base relation
BOOKS is shown in Fig.4.92. Now let us define the view COUNTS, which
gives the number of books written by the author. The SQL syntax to create
the view is shown in Fig. 4.93. The contents of the view COUNTS are shown
in Fig.4.94.

+ Oracle SQL"Plus M= E3
File Edt Seach Options Help
SQL> create view upsample -
2 as select distinct(name), age
3 from sample;

VIEW
upsample is
created using
distinet clause.

Uiew created.

sQL> |

4 | H

Fig. 4.89. VIEW creation using DISTINCT

174 4 Structured Query Language

4 Oracle SQL*Plus - |3} x|
Eile Edit Search Options Help
SQL> select * from upsample; ﬂ

NAME AGE
Anand 20
Anandi 19
Banu 28
Chandran 20
Chandran 21
Ravi 21
6 rows selected.

SgL> v
| o 4

Fig. 4.90. Contents of the view UPSAMPLE

* Oracle SAL*Plus

File Edt Search Options Help

SQL> update upsample ﬂ
2 set name='Anu’
3 where name="Banu';
update upsample
E 3

ERROR at line 1:
ORA-81732: data manipulation operation not legal on this view

sQL>] |
< | 2l Z

Fig. 4.91. Result of update operation in nonupdatable view

* Oracle SOL*Plus

Fle Edt Seach Option: Help

SQL> select = from BOOKS; iI
AUTHOR TITLE PRICE
nalvino digital principles 158
maluino] electronicdevice 225
floyd digitalfundamentals 250
floyd electric circuits aze
ogata controlsystemn 150
sQL> | ~|
Al o

Fig. 4.92. The base relation BOOKS

4.15 View 175

4 Oracle SQL*Plus

File Edit Search Qptions Help

SOL> create view counts il
2 as select author, count(*) as CNT
3 from books
4 group by author;

UView created.
sOL>

Al Y

Fig. 4.93. View COUNTS from BOOKS

#* Oracle SQL*Plus

File Edit Search Options Help
SQOL> select = from counts; ﬂ

AUTHOR CHNHT

floyd 2
malvino 2
ogata 1

sqL> |

o | o

Fig. 4.94. Contents of COUNTS

Tryl

First let us try to delete a row from the view COUNTS. The SQL command
to delete a row from the view COUNTS and the corresponding output are
shown in Fig.4.95. From Fig. 4.95, it is clear that it is not possible to delete
a row from the view if it is created using group function or group by clause.

Try2

Now let us try to update the view COUNTS by modifying the name malvino
to malvinoleech. The SQL command to modify the name in the view COUNTS
and the corresponding output are shown in Fig. 4.96.

176 4 Structured Query Language

* Oracle SQL*Plus

fie Edt Search QOptions Help
SQL> delete from counts -
2 where author="ogata‘;
delete from counts
Ed

ERROR at line 1:
ORA-01732: data manipulation operation not legal on this view

sqL> |

Al -

Fig. 4.95. Deletion of row in the view COUNTS

N

From Fig. 4.96, it is clear it is not possible to update the view if it contains
group function or group by clause.

4.15.2 Views from Multiple Tables

Views from multiple tables are termed as complex views, whereas views from

single table are termed as simple views. View from multiple tables is illustrated
as follows:

BASE TABLE 1 BASE TABLE 2
A1 | A2 | A3 | A4 | A5 B1 |B2 | B3 |B4 |B5
A1 A3 B3 B5

View from two base tables

4.15 View 177

+ Dracle 5QL*Plus P [=] B
File Edt Seach Options Help
S0L> update counts -
2 set author='malvinoleech®’
3 where author="malvino';

update counts
*

ERROR at line 1:
ORA-01732: data manipulation operation not legal on this view

saL> -

2

N

Fig. 4.96. View updation

Example

Let us try to create view from two tables. Here one table is COURSE and
the other table is STAFF. The attribute of the COURSE table are cour-
seID, course name, LectID (which refers to Lecturer Identity number). The
attributes of STAFF table are name, LectID, and position.

STAFF
Name LectID Position
Rajan E121 lecturer
Sridevi E122 lecturer
Jayaraman E123 professor
Navaneethan E124 professor
COURSE
CourselD Course Name LectID
C200 RDBMS E121
C201 GraphTheory E122
C202 DSP E123
C203 OS(Operating System) E124

The view COURSE_STAFF is created by selecting course name from
course and Name from staff as shown in Fig. 4.97.

The SQL command to create the view COURSE_STAFF from COURSE
and STAFF is shown in Fig.4.98. From Fig.4.98 it is evident that the view
COURSE_STAFF is created from two tables COURSE and STAFF.

178 4 Structured Query Language

COURSE STAFF
Pl N
CourseID | Zourse Name | LectID | Name \ LectID Position
C200 RDBMS \E121 Rajan El121 Lecturer
C201 GraphTheory |[E122 Snidew1 E122 Lecturer
c202 DSP ’E123 Jayaraman || E123 Professor
C203 OS(Operating/| E124 Navanecthag | E124 Professor
ystem)

COURSE_STAFF

Course Name Name
RDBMS Rajan
Graph Theory Sridevi
DSP Jayaraman
08 Navaneethan

Fig. 4.97. View COURSE_STAFF from COURSE and STAFF

* Dracle SQL*Plus

File Edt Seach Opbons Hep
S0L> create view COURSE_STAFF -

View

2 as select coursename, staff.name COURSE STAFF

3 from course, staff R

4 where course.lectID=staff.lec Is created from
two tables course

Uiew created. and staff

sqL>

I |

Fig. 4.98. VIEW from two tables

Let us try to see the contents of the view COURSE_STAFF by using
SELECT command as shown in Fig. 4.99.

Note The view COURSE_STAFF is created from two tables, hence it can be
considered as complex views. Complex views are in general not updatable. Let

4.15 View 179

4 Oracle SQL*Plus

File Edit Search Options Help

SQL> select * from COURSE_STAFF; i"
COURSENAME NAME

RDBHS Rajan

Graphtheory Sridevi

DSP Jayaraman

0s Navaneethan

sQL> | -

Al o[4

Fig. 4.99. Contents of the view COURSE_STAFF

* Oracle SQL*Plus

Fie Edi Seach Oplions Help

SOL> insert into COURSE_STAFF -
?2 values{'Bcoursename’ ,‘Gname*);

Enter value for coursename: ULSI DPSigﬂ

Enter value for name: Bhuvaneswari

old 2: values('&coursename’ ' &nane’)

new 2: values('ULSI Design','Bhuvaneswari®)

insert into COURSE_STAFF

-
ERROR at line 1:
ORA-01779: cannot modify a column which maps to a non key-preserved table

soL> | =

sl 2
Fig. 4.100. View nonupdatable

us check whether the view COURSE_STAFF is updatable or not by trying to
insert tuples into the view COURSE_STAFF as shown in Fig. 4.100.

From Fig.4.100, it is clear that it is not possible to insert tuples into
complex view (COURSE_STAFF). Now let us try to update the view
COURSE_STAFF by modifying the name Rajan as Siva as shown in
Fig.4.101.

From Fig. 4.101, it is clear that the complex view (view created from more
than one table) is usually nonupdatable.

4.15.3 View From View

It is possible to create view from another view. This is diagrammatically shown
in Fig. 4.102. From Fig. 4.102, it is clear that the view2 is created from viewl
and not from the base table. Viewl, View2 can be queried similar to the base
table.

180 4 Structured Query Language

4 Oracle SQL*Plus

Fle Edt Seach Options Help
SOL> update COURSE_STAFF ﬂ
2 SET name='siva’
3 where name="Rajan-;
vhere name='Rajan*
-

ERROR at line 3:
ORA-01779: cannot modify a column which maps to a non key-preserved table

sqL>
sl iy
Fig. 4.101. Nonupdatable view COURSE_STAFF
BASE TABLE
VIEW 1
VIEW 2
Fig. 4.102. View from a view
Example

Let us consider base table STAFF as shown in Fig.4.103, the view ITSTAFF
is created from the base table STAFF (Fig. 4.104). Then the view YOUNGIT-
STAFF is created from the view ITSTAFF (Fig.4.105). The view ITSTAFF
is shown in Fig.4.106 and the view YOUNGITSTAFF is shown in Fig.4.107.

Figure 4.104 shows the SQL command to create the view ITSTAFF from
the base table STAFF. The view ITSTAFF contains only the details of the
staff who belong to the IT department as shown in Fig. 4.104.

The contents of the view YOUNGITSTAFF is shown in Fig. 4.107. We can
observe that the view YOUNGITSTAFF contains only the details of IT staff
whose age is less than 30.

Doubt 1: Whether the view YOUNGSTAFF which is created from another
view ITSTAFF can be queried like the base table?

4.15 View 181

* Oracle SQL*Plus

Fle Edt Seach Qptions Help

SQL> select = from STAFF; ﬂ
EMPID EMPNAME DEPTNAME SALARY AGE
c282 ramakrishnan electronics 24008 iy
c201 Bhaskar electrical 12500 24
c203 Hathew electronics 23000 43
c204 Matrajan IT 185808 38
c205 Krishnan IT 17000 36
C206 Usha electronics 20000 40
c207 Radha IT 16000 24
c208 Jayakumar IT 17000 26
8 rows selected.

saL>

ol

Fig. 4.103. Base table STAFF

& Dracle SQL*Plus

File Edt Search DOptions Help
SQL> create view ITSTAFF il

2 as select =
3 from staff
4 uwhere deptname="1IT";

Uiew created.
SqQL>

AL

Fig. 4.104. View ITSTAFF from base table STAFF

File Edt Search Options Help
SQL> create view \‘UUHBITSTHFFﬂ

2 as select =
3 from ITSTAFF
4 wvhere age<30;

View created.

sqL> |

==

Fig. 4.105. View YOUNGITSTAFF from the view ITSTAFF

182 4 Structured Query Language

Oracle SQL*Plus

File Edt Search Options Help

SQL> select * from ITSTAFF; ﬂ
EMPID EMPNAHE DEPTNAME SALARY AGE
c284 Natrajan IT 18500 38
c205 Krishnan IT 17000 36
c2e7 Radha IT 16000 24
c208 Jayakumar IT 17000 26
sQL> -
Al

Fig. 4.106. Contents of the view ITSTAFF

+ Dracle SAL*Plus

Fie Edt Seaich Options Help

SQL> select * from YOUNGITSTAFF; ﬂl
EMPID EMPNAME DEPTHNAME SALARY AGE
C287 Radha IT 16000 2y
c208 Jayakumar IT 176608 26
sqL> |

1| l » A

Fig. 4.107. Contents of the view YOUNGITSTAFF

Answer : Yes. The view YOUNGITSTAFF, which is created from another
view ITSTAFF can be queried like the base table.

Example

Let us consider the query: What is the pay offered to the YOUNGITSTAFF
Radha? The SQL command to answer the query is shown in Fig. 4.108.

From Fig.4.108, it is clear that the view YOUNGITSTAFF which is cre-
ated from another view ITSTAFF can be queried similar to the base table
STAFF

Doubt 2: If it is possible to make any change in the view ITSTAFF which was
created from the base table STAFF, will it reflect in the base table STAFF.

Answer : Yes, if it is possible to make any change in the view which was
derived from the base table then the change will be reflected in the base
table.

4.15 View 183

#* Dracle SAL*Plus

File Edt Search Options Help
SOL> select salary from YOUNGITSTAFF al
2 where empname='Radha‘;

SALARY

File Edt Search Options Help

SOL> select = from staff; il
EMPID EMPNAME DEPTHAME SALARY AGE
c262 ramakrishnan electronics 24000 4y
c2e1 Bhaskar electrical 12588 24
c283 Mathew electronics 23008 83
c2ey4 Natrajan IT 18500 38
c2es5 Krishnan IT 17000 36
C286 Usha electronics 20008 L]
ca2e7 Radha IT 16000 24
c208 Jayakumar IT 17000 26
8 rows selected.

sqQL> -
4] | Al

Fig. 4.109. Contents of the base table before any updation in the view ITSTAFF

Example

Let us modify the view ITSTAFF by including one row. Before modification
the contents of the base table STAFF is shown in Fig. 4.109.

From Fig. 4.109, we can observe that there are eight rows in the base table
STAFF.

Now let us update the view ITSTAFF by including one row in the view
ITSTAFF. The SQL command to insert the row in the view ITSTAFF is
shown in Fig. 4.110.

Contents of the ITSTAFF after inserting a row are shown in Fig.4.111.
From Fig.4.111, we can observe that the new row being included in the IT-
STAFF view.

184 4 Structured Query Language

* Oracle SOL"Plus =] k3 I
File Edit Seach QOptions Help |
SQL> insert into ITSTAFF -l

2 wvalues('&enmpid','&empname’,'&deptname’ ,&salary,kage); |

Enter value for empid: C289

Enter value for empname: fAkila |
Enter value for deptname: IT

Enter value for salary: 13500 |
Enter value for age: 31

old 2: values{'&empid’, ' &empname’,’'&deptname’,&salary,tage)

new 2: values('C209','Akila",'IT",13500,31) |

1 row created. '

sqL> | v

Al M

Fig. 4.110. Insertion of a row into the view ITSTAFF

4 Oracle SQL*Plus

File Edt Search QOpltions Help

SQL> select = from ITSTAFF; i'
EMPID EHPNAHE DEPTNAME SALARY AGE
c264 Natrajan IT 185688 38
c285 Krishnan IT 17088 36
c207 Radha IT 16008 2y
c208 Jayakumar IT 17000 26
c209 Akila IT 13500 a1
saL> -
T o

Fig. 4.111. Content of the view ITSTAFF after inserting a row

Now let us see the content of the base table STAFF to find whether the
change made in the view ITSTAFF is reflected in the base table STAFF. The
content of the base table STAFF is shown in Fig.4.112.

Comparing Fig.4.109 with Fig.4.112 it is clear that one new row being
included in the base table STAFF. This means that the change in the view
will be reflected in the base table.

Doubt 3: If the view ITSTAFF is dropped, then is it possible to get the content
of the view YOUNGITSTAFF which is derived from ITSTAFF?

Answer : For the view YOUNGITSTAFF, the contents are from another view
ITSTAFF. Hence if ITSTAFF is dropped means it is not possible to get the
contents of the view YOUNGITSTAFF.

4.15 View 185

Oracle SQL*Plus

file Edit Search QOptions Help

SOL> select = from staff; ﬂ
EMPID EMPNAME DEPTNAME SALARY AGE
c202 ramakrishnan electronics 24000 uy
czem Bhaskar electrical 12500 24
c203 Hathew electronics 23000 43
C204 Natrajan 1T 185080 a8
c205 Krishnan 1T 1708008 36
C206 Usha electronics 20000 40
C207 Radha IT 16000 2y
cC208 Jayakumar IT 17000 26
c209 Akila 1T 13500 31
9 rows selected.

soL> | -

4 | of

Fig. 4.112. Content of the base table STAFF after modification in the view
ITSTAFF

4 Oracle SQL*Plus H=] E3

Eile Edit Search Options Help
SQL> drop view ITSTAFF; ﬂ|

View dropped.

sqQL> |

i =) vl

Fig. 4.113. Dropping the view

Example

Let us drop the view ITSTAFF as shown in Fig.4.113. Figure4.114 ensures
that the view ITSTAFF is successfully dropped.

Now let us try to see the content of the view YOUNGITSTAFF which is
derived from the view ITSTAFF. The SQL command to retrieve the contents
of the view YOUNGITSTAFF is shown in Fig.4.115.

186 4 Structured Query Language

4 Oracle 5QL*Plus Mi=]E3
File Edit Search Options Help
SQL> select * from ITSTAFF; 'S
select = from ITSTAFF

*

ERROR at line 1:
ORA-088942: table or view does not exist

sqL> |

2| o 4

Fig. 4.114. Contents after dropping the view

4 Oracle SQL*Plus

File Edt Search Options Help
SQL> select * From YOUNGITSTAFF; -
select = from YOUNGITSTAFF
*
ERROR at line 1:
ORA-04063: view “SCOTT.YOUNGITSTAFF'"™ has errors

sqQL>

Al W

Fig. 4.115. Contents of YOUNGITSTAFF after dropping the view ITSTAFF

From Fig.4.115, it is clear that once the view ITSTAFF is dropped then

it is not possible to retrieve the contents of the view YOUNGITSTAFF which
is derived from the view ITSTAFF.

4.15.4 VIEW with CHECK Constraint
It is possible to create view with CHECK constraint. If we create a view with

CHECK constraint, then it is not possible to update the view if the CHECK
constraint is violated.

Example of View with CHECK Constraint

Let us consider the base relation CITIZEN which has the attributes name,
age, and address. Now let us create the view VOTERS from the base relation

4.15 View 187

4 Oracle SOL*Plus |0 X]
File Edit Search QOptions Help
SQL> select * from citizen; il
NAHE AGE ADDRESS
Anand 23 45, Main road, Trichy.
Anbu 25 55,Kallurinagar ,Coimbatore
Babu 22 52 ,Peelamedu,Coimbatore
Chitra 45 32,Anbunagar,Trichy
sQL>
RN 4

Fig. 4.116. Contents of base table CITIZEN

+ Oracle SQL*Plus

Eie Edt Seach Options Help

SQL> create view voter &

The view voter is

2 as select » = created with check
3 from citizen ion that i |
4 where age>18 Qpeion: hes . Ry
[those who have

with check option;
completed the age of

View created. 18 are eligible to vote

sQL> %
4 | 3 7

Fig. 4.117. View with check option

CITIZEN. We know that, the citizen of India becomes eligible voter if he/she
attains the age of 18. The base relation CITIZEN is shown in Fig.4.116. The
view VOTER from base relation CITIZEN is shown in Fig.4.117.

Case 1: Low let us try to insert value into the view voter who is eligible to
vote, that is the age of the voter is greater than 18. The SQL command and
the corresponding output are shown in Fig.4.118. From Fig.4.118, it is clear
that the value is successfully inserted into the view VOTER.

Case 2: Let us try to insert a row into the view VOTER by violating the
check constraint (age of the voter is less than 18). The SQL command and
the corresponding output are shown in Fig.4.119.

4.15.5 Views with Read-only Option

A view can be created with read only option. Such views cannot be modified
using INSERT, DELETE, and UPDATE commands.

188 4 Structured Query Language

#* Dracle SOL*Plus

File Edt Search Options Help

SQL> insert into voter -
2 wvalues('&name’ ,kage,’'&address'); :l

Enter value for name: Krishnan

Enter value for age: 24

Enter value for address: 32,Teachercolony,Chennai

old 2: values('Gname',Gage,'Gaddress')

new 2: values{'Krishnan',24,'32,Teachercolony,Chennai')

1 row created.

SOL> select = from voter;

NAME AGE ADDRESS

Anand 23 45, Main road, Trichy.

Anbu 25 55,Kallurinagar,Coimbatore

Babu 22 52,Peelanedu,Coimbatore

Chitra 45 32,Anbunagar,Trichy

Krishnan 24 32,Teachercolony,Chennai

sSQL> | -

K| 1%

Fig. 4.118. Inserting valuable record into the view VOTER

% Oiacle SOL*Plus

File Edt Search Options Help

$QL> insert into voter -
2 wvalues('&name’,&age,&address’);

Enter value for name: Kumar

Enter value for age: 17 4

Enter value for address: 32,Sakthinagar,Madurai

Since the
age 18 less
than 17,

o0ld 2: values('&name', Rage,'Baddress’) check L
new 2: values('Kumar',617,'32,Sakthinagar,Madurai’) constraint 1s
insert into voter violated,

. hence error

ERROR at line 1:

ORA-01482: view WITH CHECK OPTION where-clause violation message

QL -

Al ¥

Fig. 4.119. Violation of check constraint

Example

Consider the base table STAFF as shown in Fig. 4.120. Let us create the view
electronicsstaff from the base table staff with readonly option as shown in
Fig. 4.121.

4.15 View 189

+ Oracle SQL*Plus _|Of x|
Eile Edit Search QOptions Help

SOL> select * from staff; il
EMPID EMPNAME DEPTNAME SALARY AGE
c2e2 ramakrishnan electronics 248080 Iy
c201 Bhaskar electrical 125080 25
c2e3 Mathew electronics 23000 43
c204 Matrajan IT 18500 38
Cc205 Krishnan IT 17000 36
c206 Usha electronics 208000 ue

6 rows selected.

sSQL> -
| 4

Fig. 4.120. Base table STAFF

Oracle SQL*Plus

File Edt Search Options Help

SQL> create view electronicsstaff «
as select =

from staff

where deptname=‘electronics’
with read only;

ViEwN

Uiew created.

sqL> |

] »

Fig. 4.121. View with read only option

N 4

From Fig.4.121 it is clear that the view electronicsstaff is created with
read only option. Now we have to check whether the view electronicsstaff is
updatable, that is whether is it possible to INSERT, DELETE and UPDATE
values in the view electronicsstaff. The content of the view electronicsstaff is
shown in Fig.4.122.

Case 1: INSERTING Values into the Read-Only View.

Let us try to insert values into the view “electronicsstaff.” The SQL com-
mand and the corresponding output are shown in Fig. 4.123.

From Fig.4.123, it is clear that it is not possible to insert values into a
read-only view.

190 4 Structured Query Language

+ Oracle SAL*Plus _ O] x|

Eie Edit Search Qptions Help

SQL> select = from electronicsstaff; il
EMPID EMPNAME DEPTHNAME SALARY AGE
czez2 ramakrishnan electronics 24008 Ly
€203 Mathew electronics 230008 43
C2086 Usha electronics 20000 48
soL> | -

Fig. 4.122. Contents of the read only view electronicsstaff

#* Dracle SAQL*Plus =] B3

Fie Edt Search Options Help

SQL> insert into electronicsstaff -
2 wvalues('&empid','&empname’,’'&deptname’ ,&salary,&age);

Enter value for empid: C208

Enter value for empname: Bhuvaneswari

Enter value for deptname: electronics

Enter value for salary: 25000

Enter value for age: 36

old 2: values('Gempid’','&kempname’,’'t&deptname’,&salary,bage)
new 2: values('C208','Bhuvaneswari’,'electronics’,25000,36)
insert into electronicsstaff

»*

ERROR at line 1:

ORA-B81733: virtual column not allowed here

sqQL> -

sl ,

Fig. 4.123. Insertion of values into read-only view

AN

Case 2: Deleting value from a read-only view.

Let us try to delete a value (in our case deleting the record of the electron-
icsstaff “usha”) from the read-only view “electronicsstaff,” the SQL command
and the corresponding output are shown in Fig. 4.124.

From Fig.4.124, it is evident that it is not possible to delete value from
the read-only view.

Case 3: Updating the record of read-only view.

Let us try to update the record of the read-only view “electronicsstaft” by
modifying the age of “usha” to 30. The SQL command to modify the age of
the staff “usha” and the corresponding output are shown in Fig. 4.125.

From Fig. 4.125, it is clear that it is not possible to update the view since
it is read-only.

4.15 View 191

% Oracle SAL*Plus

Fie Edt Search QOptions Help |
SOQL> delete From electronicsstaff -]
2 where empname=‘usha‘; i

delete From electronicsstaff
"

ERROR at line 1:
DRA-81752: cannot delete from view without exactly one key-preserved table

soL>

A v

Fig. 4.124. Deleting a tuple from read-only view

4 Oracle SQL*Plus

File Edit Search Options Help
SQL> update electronicsstaff -
2 set age=38
3 where empname='usna';
set age=30
*
ERROR at line 2:
ORA-01733: virtual column not allowed here

sqQL>

R o

Fig. 4.125. Updating the record in read-only view

4.15.6 Materialized Views

A materialized view is a physical copy of the base table with the results
moved to another schema object. Materialized views are also called snapshots,
because they are a kind of photograph of the base table.

Advantage of VIEW

The main advantages of view are improved security, less complexity, better
convenience, and customization.

1. Improved security. We can restrict the user to access on the data that are
appropriate for the user. Hence views provide improved security.

2. Less complexity. A view can simplify queries, by getting data from several
tables into a single table thus transforming multitable queries into a single
table queries.

192 4 Structured Query Language

3. Convenience. A database may contain much information. All the infor-
mation will not be useful to the users. The users are provided with only
the part of the database that is relevant to them rather than the entire
database; hence views provide great convenience to the users.

4. Customization. Views provide a method to customize the appearance of
the database so that the users need not see full complexity of database.
View creates the illusion of a simpler database customized to the needs of
a particular category of users.

Drawback of VIEW

1. If the base table is modified by adding one or more columns then the
columns added will not be available in the view unless it is recreated.

2. When a view is created from the base table, it is to be noted that all the
views are not updatable. Views created from multiple tables are in general
not updatable when there is a group function, a GROUP BY clause, or
restriction operators.

4.16 Subquery

Subquery is query within a query. A SELECT statement can be nested inside
another query to form a subquery. The query which contains the subquery is
called outer query.

Scalar subquery

A scalar subquery returns single row, single column result.

Example of Scalar Subquery

Scalar subquery returns single row single column result. To understand scalar
subquery, consider two relations STUDENT and COURSE. The attributes of
the STUDENT relation are SID, SNAME, AGE, and GPA. The attributes
of COURSE relation are CID (Course ID), CNAME (Course ID), SID (Stu-
dent ID), and INSTRUCTOR (Name of the Instructor). The two relations are
shown below.

STUDENT
SID SNAME AGE GPA
E100 Anbu 21 9.6
E101 Aravind 21 9.2
E102 Balu 21 9.4
E103 Chitra 22 8.8

E104 Sowmya 21 9.8

4.16 Subquery 193

COURSE
CID CNAME SID INSTRUCTOR
C100 RDBMS E100 Rajan

Cc101 OS E102 Sumathi
C102 DSP E101 Jayaraman
C103 DSP E104 Jayaraman

Query 1: Find the name of the student who has opted for the course RDBMS?

Solution. From the STUDENT and COURSE table, it is clear that only
one student has opted for RDBMS (just for example). We can get the name of
the student using scalar subquery. The SQL command and the corresponding
output are shown in Fig. 4.126.

Query 2: Find the Names of the Student who have Opted for DSP Course
Solution. From the STUDENT and COURSE table, we can observe that
more than one student has opted for DSP course. Here we cannot use scalar
subquery because scalar subquery gives single row and single column result.
But our result has more than one row. First let us try to get by scalar subquery.
The SQL command and the corresponding output are shown in Fig. 4.127.

+ Diacle SOL Plus HFIE{

File Edt Search Ophions Help

SOL> select sname from student -
2 where sid-(selett sid from course where cna-e-'HDEHS');

result

Fig. 4.126. Scalar subquery

* Oracle SQL*Plus M [=] B3 |

File Edit Search Options Help
SQL> select sname from student ~|
2 where sid =(select sid from course where cname="'DSP'); I

where sid =({select sid from course where cname=‘DSP‘)
-

ERROR at line 2:
ORA-01427: single-row subquery returns more than one row

sQL> %
2| o 4

Fig. 4.127. Wrong use of scalar subquery

194 4 Structured Query Language

From Fig. 4.127, it is clear that scalar subquery cannot be used to retrieve
multiple rows or multiple column result.

The solution to get the name of the student who has opted for DSP course
is to use IN operator. The IN operator is true if value exists in the result
of subquery. The SQL command using IN operator and the corresponding
output are shown in Fig. 4.128.

4.16.1 Correlated Subquery

In the case of correlated subquery, the processing of subquery requires data
from the outer query.

EXISTS Operator in Correlated Subquery

The EXISTS operator is used in correlated subquery to find whether a value
retrieved by the outer query exists in the results set of the values retrieved by
the inner query or subquery.

Example of EXISTS Command

Let us consider two tables ORDER1 and PRODUCT. The attributes
(columns) of the table ORDERI are orderID, quantity, productID. The
attributes of the table PRODUCT are productID, productname, and price.
The contents of the two table ORDER1 and PRODUCT are shown in
Figs. 4.129 and 4.130.

The orderID which gives the order for the car “Maruti Esteem” can be
found using the SQL command EXISTS. The SQL command and the corre-
sponding output are shown in Fig. 4.131.

From Fig.4.131, we can observe that the data for the inner query require
the data from the outer query.

#+ Oracle 50L*Plus

Eile Edit Search QOptions Help
SOL> select sname from student -
2 where sid IN(select sid from course where cname='DSP');

SHAME

Aravind

Sowmya

sqQL> -l
| AW

Fig. 4.128. Subquery to return multiple row result

4.16 Subquery 195

+ Diacle SOL*Plus

Fie Edt Seach [ptions Hep
SQL> select » From orderi; |

ORDERID QUANTITY PRODUCTID

c121 3 P122
c122 2 P132
c123 5 Pin2

s> | «f

A a7
Fig. 4.129. Table orderl

ODracle SOL*Plus

Eie Edt Seach (Options Help
SQL> select » from product; -

PRODUCTID PRODUCTNAME PRODUCTPRICE

P122 Harutiesteem 200000
P132 Santro ELLLLL
P42 Fordicon 400000
sqL> | -
KIN| LA 7

Fig. 4.130. Table product

Oracle SQL*Plus

File Edit Search Oplions Help

SQL> select orderID from order1 -
2 where exists
3 (select =
% from product
5 where orderi.productID=product.productID
6 AND product.productname='Harutiesteem');
ORDERID
C121
soL> | %

Al o

Fig. 4.131. Data retrieval using EXISTS command

Example of NOT EXISTS Operator

In order to understand NOT EXISTS clause, let us consider two relations
EMPLOYEE and DEPENDENT. Here DEPENDENT refers to those who are
dependent on EMPLOYEE. The attributes of EMPLOYEE relation are eid
(employee ID), ename (employee name). The attributes of the DEPENDENT
relation are name (which refers to dependent name) and eid (employee ID).

196 4 Structured Query Language

File Edit Search DOptions Help
SQL> select * from employee; iI

EID ENAME

c1e1 Rangan

c102 Mohan

c103 Kumar

c184 Jayaraman

c1e5 Selvam

soL> | v
A » &l

Fig. 4.132. EMPLOYEE table

[+ Oracle SQLPs K3 |
File Edit Search QOptions Help
SQL> select = from dependent;il

NAME EID
Radha 105
Subha 103
chitra c1m
sQL> ¥
2 Mo

Fig. 4.133. DEPENDENT table

The contents of the table EMPLOYEE and DEPENDENT are shown in
Figs.4.132 and 4.133.

Query: Find the name of the employee who is not having any dependent?
Solution. The SQL command to get the name of the employee who is not
having any dependent and the corresponding output are shown in Fig. 4.134.
The NOT EXISTS clause is used to retrieve the name of the employee
who is not having dependent.

Comparison Operator ALL

The comparison operators that are used in multiple row subqueries are IN,
ANY, ALL. In this section let us discuss the use of ALL comparison operator.
The ALL comparison operator compare value to every value returned by the
subquery.

4 Oracle SQL*Plus M =] E3

File Edit Search Options Help

sqQL>
2

select ename from employee

where not exists(

select eid from dependent
vhere dependent.eid=employee.eid);

Mohan
Jayaraman

sqQL>

j-1

4.16 Subquery

Example

Fig. 4.134. NOT EXISTS command

-

N\

197

In order to understand the ALL comparison operator, let us consider the
relation STAFF. The attributes of the staff relation are shown in table STAFF.

STAFF
EMPID EMPNAME DEPTNAME AGE SALARY
C201 Bhaskar Electrical 24 12,500
C202 Ramakrishnan Electronics 44 24,000
C203 Mathew Electronics 43 23,000
C204 Natrajan 1T 38 18,500
C205 Krishnan 1T 36 17,000
C206 Usha Electronics 40 20,000

Query: Find the name of the employee in Electronics Department who is
getting the maximum salary?

Solution: The SQL command ALL can be used to find the name of the
STAFF in the Electronics who is getting maximum salary. The SQL command

and the corresponding output are shown in Fig. 4.135.

Here the ALL comparison operator is used to retrieve the name of the staff

from a particular department who is getting maximum salary.

Comparison Operator ANY

The ANY operator compares a value to each value returned by a subquery.
Here <ANY means less than maximum
>ANY means more than the minimum

198 4 Structured Query Language

Ede Edt Search Qptions Help
SQL> select empname il
2 from stafFf
3 where salary >=ALL
4 (select salary from staff
5 where deptname=‘electronics®);

ramakrishnan

sQL> -
4] | v

Fig. 4.135. Use of ALL comparison operator

Case 1: <ANY. Let us use the operator <ANY to retrieve the names of the
staff who are getting salary less than the staff who is getting the maximum
salary (in our case it is “ramakrishnan”).

The SQL command to retrieve the names of the staff who are getting salary
less than the staff who is getting the maximum salary is shown in Fig. 4.136.

The SQL command <ANY is used to retrieve the name of the staff who
are getting the salary less than the staff who is getting the maximum salary.
In our case staff “ramakrishnan” of electronics is getting the maximum salary
(refer STAFF table). Our query should return the name of the staff who are
getting salary less than the staff “ramakrishnan.” From Fig. 4.136, it is evident
the name returned by the query are the staff who are getting salary less than
the staff “ramakrishnan.”

Case 2: >ANY Clause. The operator >ANY returns values that are greater
than the minimum value.

Example

Query: Retrieve the name of the staff who are getting salary greater than the
staff who is getting the least salary?

Solution: The SQL operator >ANY can be used to get answer for the
query mentioned above. The SQL command and the corresponding output
are shown in Fig.4.137.

From the table STAFF it is clear that the staff who is getting the least
salary is “Bhaskar.” We have to get the names of the staff who are getting
salary greater than “Bhaskar.”

From Fig. 4.137, it is clear that the operator >ANY has returned the names
of the staff who are getting salary greater than “Bhaskar.”

4.16 Subquery 199

File Edit Search Options Help

SQL> select empname il
2 from staff
3 where salary <ANY
4 (select salary from staff);

Bhaskar
Mathew
Natrajan
Krishnan
Usha

sqL> | -
A of 4

#* Dracle SAL*Plus

Fie Edt Search Options Help

SQL> select empname i'
2 from staff
3 where salary>ANY
4 (select salary from staff);

ramakrishnan
Mathew
Natrajan
Krishnan
Usha

sqL> | -

Al o 4

Fig. 4.137. Use of >ANY clause

Dual Table

The dual table contains one row and one column. The datatype associated
with the dual table is varchar2(1). In order to know about dual table, we can
issue DESC command as shown in Fig. 4.138.

200 4 Structured Query Language

File Edt Seach Oplions Help |
SQL> desc dual; -
Hame Hull? Type

DUMMY UARCHAR2(1)
soL> |

CI l v

Fig. 4.138. Description of dual table

#* Dracle SQL-FPlus

File Edit Search Options Help
SOL> select +» from dual; i"
D

L4

sQL>

-
<l o | L3l P

Fig. 4.139. Selection from Dual

From Fig. 4.138, it is clear that the name of the column is DUMMY. If we
want to know how many rows that a DUAL table can return, we can issue
SELECT command as shown in Fig. 4.139. From Fig. 4.139, it is clear that the
dual table can return a row. Dual table can be used to compute a constant
expression.

Determining System Date from Dual

It is possible to determine system date from the dual table. The SQL command
and the corresponding output are shown in Fig. 4.140.

We have evaluated the system date from the dual table. It is also possible
to evaluate constant expression using the dual table.

Evaluation of Constant Expression Using DUAL

It is possible to evaluate constant expressions using DUAL table. Some of the
examples of evaluation of constant expressions are shown in Fig. 4.141.

From Fig.4.141 it is clear that DUAL table can be used to evaluate con-
stant expressions which will give single row output. For our example we have
taken simple mathematical operations like addition, multiplication, division,
and subtraction.

4.17 Embedded SQL 201

4 Oracle SQL*Plus

File Edit Search Options Help
SQL> select sysdate from dual;ﬂl

SYSDATE

File Edit Search Options Help
SQL> select 15+15 from dual; ﬂ

sgL> | -
<. i | L3 P

Fig. 4.141. Evaluation of constant expressions
4.17 Embedded SQL

SQL can be used in conjunction with a general purpose programming lan-
guage such as PASCAL, C, C++, etc. The programming language is called
the host language. Embedded SQL statements are SQL statements written
within application programming languages such as C and Java. The embed-
ded SQL statement is distinguished from programming language statements
by prefixing it with a special character or command so that a preprocessor

202 4 Structured Query Language

can extract the SQL statements. These statements are preprocessed by an
SQL precompiler before the application program is compiled. There are two
types of embedded SQL, Static SQL, and Dynamic SQL. Embedded SQL
provides the 3GL (Third Generation Language) with a way to manipulate
a database. Embedded SQL supports highly customized applications. It also
supports background applications running without user intervention.

SQL Precompiler

A precompiler is used to translate SQL statements embedded in a host lan-
guage into DBMS library calls, which can be implemented in the host lan-
guage. The function of the precompiler is shown below:

Editor

l Host program + Embedded SQL

Precompiler

_Ll:lnﬂ_pl:ngram + Translated SQL

Compiler

i QObject (Binary) program
Linker
DBMS and other libraries

l Executable program

Sharing Variables

Variables to be shared between the embedded SQL code and the host language
have to be specified in the program.

EXEC SQL begin declare section;
Varchar userid [10], password [10], cname [15];
Int cno;
EXEC SQL end declare section;
We also should declare a link to the DBMS so that database status
information can be accessed.
EXEC SQL include sqlca;
This allows access to a structure sqlca, of which the most common
element sqlca.sqlcode has the value 0 (operation OK), >0 (no data
found), and <0 (an error).

4.17 Embedded SQL 203

Connecting to the DBMS

Before operations can be performed on the database, a valid connection has
to be established. A model is shown below:
EXEC SQL connect :userid identified by :password;

— In all SQL statements, variables with the “:” prefix refer to shared host
variables, as opposed to database variables.
— This assumes that userid and password have been properly declared and
initialized.
When the program is finished using the DBMS, it should disconnect using:
EXEC SQL commit release;

Queries Producing a Single Row

A single piece of data (or row) can be queried from the database so that the
result is accessible from the host program.

EXEC SQL SELECT custname
INTO :cname

FROM customers

WHERFE cno = :cno;

Thus the custname with the unique identifier :cno is stored in :cname.
However, a selection query may generate many rows, and a way is needed
for the host program to access results one row at a time.

SELECT with a Single Result

The syntax to select with a single result is shown below:

Host Program (eg C++)

EXEC SQL BEGIN
DECLARE SECTION;
varchar cname[15];
int eno; DB
EXEC SQL END

/ get customer number from
cout << "customer number please <>,
cin >> eno;
EXEC SQL SELECT
cusiname
INTO :cname
FROM customers SELE
WHERE cnum = :cno; 3
mto

Data
base

// output customer
cout <= "the customer's name is * << cname.ar,

204 4 Structured Query Language
Static SQL

The source form of a static SQL statement is embedded within an appli-
cation program written in a host language such as COBOL. The statement
is prepared before the program is executed and the operational form of the
statement persists beyond the execution of the program.

A source program containing static SQL statements must be processed by
an SQL precompiler before it is compiled. The precompiler turns the SQL
statements into host language comments, and generates host language state-
ments to invoke the database manager. The syntax of the SQL statements is
checked during the precompile process.

The preparation of an SQL application program includes precompilation,
the binding of its static SQL statements to the target database, and compi-
lation of the modified source program.

Dynamic SQL

Programs containing embedded dynamic SQL statements must be precom-
piled like those containing static SQL, but unlike static SQL, the dynamic SQL
statements are constructed and prepared at run time. The SQL statement text
is prepared and executed using either the PREPARE and EXECUTE state-
ments, or the EXECUTE IMMEDIATE statement. The statement can also
be executed with cursor operations if it is a SELECT statement.

Summary

This chapter has introduced the most popular relational database language
SQL (Structured Query Language). SQL has become the de facto standard
language for interacting with all major database programs. The three main
divisions in SQL are DDL, DML, and DCL. The data definition language
(DDL) commands of SQL are used to define a database which includes creation
of tables, indexes, and views. The data manipulation commands (DML) are
used to load, update, and query the database through the use of the SELECT
command. Data control language (DCL) is used to establish user access to
the database.

This chapter has focused on how to create the table, how to insert data
into the table. Examples are shown to understand the table creation and
manipulation process. The subset of SELECT command described in this
chapter allows the reader to formulate problems involving the project, restrict,
join, union, intersection, and difference operators of relational algebra.

Review Questions 205
Review Questions

4.1. Prove the statement “When the column of a view is directly derived from
a column of a base table, that column inherits any constraints that apply to
the column of the base table” by using suitable example.

To prove this statement, let us create a base table by name t1. The base table
t1 has two columns name and age. Now a constraint is imposed on the age,
that is age should be greater than 18. The syntax to create the base table t1
with the constraint on the age is shown below:

Step 1: Base table creation with the name tl1 and constraint on age
(Fig. 4.142).

SQL> create table t1
2 (name varchar(12),
3 age number(3),

4 check(age>18));
Table created.

Step 2: Create a view by name t2 from the base table t1. The SQL command
to create the view t2 is shown in Fig. 4.143.

Step 8: Now try to insert values into view t2 by not violating the constraint
and then by violating the constraint (Fig.4.144). Then try to insert values
into the view t2 by violating the check constraint.

Note: Since the age is greater than 18 the values are inserted into view t2.
Now insert value into t2 by violating the constraint (by inserting the age less
than or equal to 18).

If we are violating the constraints on the column of the base table we are
getting an error message.

File Edit Search Options Help
SOL> create table t1 -~
2 (name varchar(12),

3 age number(3),
L check(age>18));

Table created.
sQL>

&= |

Fig. 4.142. Creation of table t1

206 4 Structured Query Language

4 Oracle SQL*Plus M =] E3

File Edit Search Options Help

SQL> create view t2 -
2 as select * from t1;

Uiew created.

sQL>

2 | o 4

Fig. 4.143. Creation of view t2

4+ Oracle SQL*Plus _ O] x|

File Edit Search Options Help

SQL> insert into t2 a
2 wvalues(‘'&name’,‘&age’);

Enter value for name: Anand
Enter value for age: 19

old 2: values('&name"’ ,"&age")
new 2: values('fAnand’,"19")

1 row created.

sqQL> /
Enter value for name: Arul
Enter value for age: 17
old 2: values('&name’ ,"&age")
new 2: values('Arul’,"17")
insert into t2
*
ERROR at line 1:
ORA-02290: check constraint (SCOTT.SYS_CO0840) violated

sqQL>

-
Al M

Fig. 4.144. Insertion of values into t2 without violating and violating constraint

Review Questions 207

4.2. What is the difference between the two SQL commands DROP TABLE
and TRUNCATE TABLE?

Drop table command deletes the definition as well as the contents of the
table, whereas truncate table command deletes only the contents of the table
but not the definition of the table.

Example
We have a table by name t1. The contents of the table are seen by issuing the
select command as shown in Fig. 4.145.

Step 1: Now issue the truncate table command. The syntax is:
TRUNCATE TABLE table name; as shown in Fig. 4.146.

Step 2: After issuing the truncate table command try to see the contents of
the table. You will get the message as no rows selected as shown in Fig. 4.147.

Step 3: Now we have the table t2. See the contents of the table by issuing
select command as shown in Fig. 4.148.

Step 4: Now use the drop command, to drop the table t2 as shown in
Fig. 4.149.

Step 5: Now see the effect of the drop command by using the select command
as shown in Fig. 4.150.

Note: If we issue the drop command, the definition as well as the contents of
the table is deleted and we get the error message as shown in Fig. 4.150.

4.3. Is it possible to create a table from another table. If so give an example

4 Oracle SQL*Plus _ O] x|
File Edit Seaich Options Help
SOQL> select * from t1; ﬂ

NAME AGE
Aparna 18
Akila 22
SQL>

RN o 4

Fig. 4.145. Content of the table t1

208

4 Structured Query Language

4 Oracle SQL*Plus =] B3
File Edit Seach Options Help
SQL> truncate table t1; i"

Table truncated.

sqQL> |

Fig. 4.146. Truncation of table t1

4 Oracle SQL*Plus 10 |
Fle Edt Seach Options Help
SQL> select * from t1; ﬂ

no rows selected

sQL>

gt Jo] v

Fig. 4.147. Selection after truncation

Oracle SQL*Plus

File Edit Search Options Help
SQL> select * from t2;

NAME AGE
Lakshmi 22
Devi 23
sqL> |

ps J

Fig. 4.148. Contents of the table t2

Review Questions 209

Oracle SQL*Plus =] g3
File Edt Search Options

Help

SQL> drop table t2; i"

Table dropped.

soL> |

0 o)

Fig. 4.149. Dropping the table t2

#+ Oracle SQL*Plus - O] x|
File Edit Search Options Help
SQL> select = from t2; -
select * from t2

*

ERROR at line 1:
ORA-0A942: table or view does not exist

sQL>

T M

Fig. 4.150. Selection after dropping the table

4 Oracle SQL*Plus

File Edit Search Options Help
SQL> select * from t1; ﬂ

NAME AGE
Sania 21
Sharapova 20
sQL>

Bt o 4

Fig. 4.151. Contents of table t1

210 4 Structured Query Language

4 Oracle SQL*Plus _ | O] x|

File Edit Search Options Help
SQL> create table t2 -
2 as select |
3 from t1;
Table created.

sqL> |

T v

Fig. 4.152. Table t2 from table t1

4 Oracle SQL*Plus

File Edit Search Options Help

SQLY> select * from t2; _:_Il
NAME AGE

Sania 21

Sharapova 28

soL> |

2l | o 4

Fig. 4.153. Contents of table t2

Yes, it is possible to create table from another table using SQL. Consider
table t1 as shown in Fig.4.151. We can create another table t2 from the table
t1. The SQL command to create the table t2 from the table t1 is shown in
the Fig.4.152.

Now let us try to view the content of the table t2. The content of the table
t2 is shown in Fig. 4.153.

From Fig.4.153, it is clear that the contents of the table t2 matches with
the table t1 (refer Fig. 4.151). Hence it is possible to create table from another
table.

4.4. What is the difference between COUNT, COUNT DISTINCT, and
COUNT (*) in SQL?

The command COUNT counts the number of rows in a table by ignoring
all null values. The command COUNT (*) counts the number of rows in a

Review Questions 211

4 Oracle 5QL*Plus

File Edit Search Dptions Help

SOQL> select * from books; :Ajl
BOOKID BOOKHAKME PUBLISHER

h181 datahasesystem pearsan

b102 signals & system prenticehall
b162 compilerdesign prenticehall
sqL> |

2 o

Fig. 4.154. Contents of the table BOOKS

Oracle SQL*Plus M [=] £
Fie Edt Seach Options Help
SQL> delete from books; ﬂl

3 rows deleted.
SOL> select * from books;

no rows selected

sSqQL>
-
1 o

Fig. 4.155. Contents of the table BOOKS deleted using DELETE command

table by including the rows that contains null values. COUNT DISTINCT
counts the number of rows in the table by ignoring duplicate values.

4.5. If we want to delete all the rows in the table, it can be done in two
ways (1) Issue the command DELETE FROM table name (2) TRUNCATE
TABLE table name. What is the difference between these two commands?

We have a table by name BOOKS. The content of the table BOOKS are
shown in the Fig.4.154.

Step 1: The contents of the table BOOKS are deleted by using DELETE
command as shown in Fig. 4.155.

Step 2: The table BOOKS is again populated with the data and the command
TRUNCATE is used to delete the contents of the table which is shown in
Fig. 4.156.

The advantage offered by the TRUNCATE command is the speed. When
Oracle executes this command, it does not evaluate the existing records within
a table; it basically chops them off. In addition to speed, the TRUNCATE

212 4 Structured Query Language

File Edit Search Options Help
SOL> truncate table books; i"

Table truncated.
SQL> select * from books;

no rows selected

sqL>

-

< | 47

Fig. 4.156. Contents of the table BOOKS deleted using TRUNCATE command

command provides the added benefit of automatically freeing up the table
space that the truncated records previously occupied.

When the table contents are deleted by using DELETE command, it forces
Oracle to read every row before deleting it. This can be extremely time con-
suming.

4.6. What are subqueries? How will you classify them?

Subquery is query within a query. A SELECT statement can be nested
inside another query to form a subquery. The query which contains the sub-
query is called outer query. It can be classified as (a) scalar subquery and
(b) correlated subquery, and (c¢) uncorrelated subquery.

5

PL/SQL

Learning Objectives. This chapter focuses on the shortcomings of SQL and how
it is overcome by PL/SQL. An introduction to PL/SQL is given in this chapter. After
completing this chapter the reader should be familiar with the following concepts in
PL/SQL.

— Structure of PL/SQL

PL/SQL language elements

Control structure in PL/SQL

— Steps to create PL/SQL program

— Concept of CURSOR

— Basic concepts related to Procedure, Functions
— Basic concept of Trigger

5.1 Introduction

PL/SQL stands for Procedural Language/Structured Query Language, which
is provided by Oracle as a procedural extension to SQL. SQL is a declara-
tive language. In SQL, the statements have no control to the program and
can be executed in any order. PL/SQL, on the other hand, is a procedural
language that makes up for all the missing elements in SQL. PL/SQL arose
from the desire of programmers to have a language structure that was more
familiar than SQL’s purely declarative nature.

5.2 Shortcomings in SQL

We know, SQL is a powerful tool for accessing the database but it suffers from
some deficiencies as follows:

(a) SQL statements can be executed only one at a time. Every time to execute
a SQL statement, a call is made to Oracle engine, thus it results in an
increase in database overheads.

S. Sumathi: PL/SQL, Studies in Computational Intelligence (SCI) 47, 213-282 (2007)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

214 5 PL/SQL

(b) While processing an SQL statement, if an error occurs, Oracle generates
its own error message, which is sometimes difficult to understand. If a
user wants to display some other meaningful error message, SQL does not
have provision for that.

(¢) SQL is not able to do the conditional query on RDBMS, this means one
cannot use the conditions like if . . . then, in a SQL statement. Also looping
facility (repeating a set of instructions) is not provided by SQL.

5.3 Structure of PL/SQL

PL/SQL is a 4GL (fourth generation) programming language. It offers all fea-
tures of advanced programming language such as portability, security, data
encapsulation, information hiding, etc. A PL/SQL program may consist of
more than one SQL statements, while execution of a PL/SQL program makes
only one call to Oracle engine, thus it helps in reducing the database over-
heads. With PL/SQL, one can use the SQL statements together with the con-
trol structures (like if...then) for data manipulation. Besides this, user can
define his/her own error messages to display. Thus we can say that PL/SQL
combines the data manipulation power of SQL with data processing power of
procedural language.

PL/SQL is a block structured language. This means a PL/SQL program
is made up of blocks, where block is a smallest piece of PL/SQL code having
logically related statements and declarations. A block consists of three sections
namely:

Declare, Begin, and Exception followed by an End statement. We will see
the different sections of PL/SQL block.

Declare Section

Declare section declares the variables, constants, processes, functions, etc., to
be used in the other parts of program. It is an optional section.

Begin Section

It is the executable section. It consists of a set of SQL and PL/SQL statements,
which is executed when PL/SQL block runs. It is a compulsory section.

Exception Section

This section handles the errors, which occurs during execution of the PL/SQL
block. This section allows the user to define his/her own error messages. This
section executes only when an error occurs. It is an optional section.

5.4 PL/SQL Language Elements 215

DECLARE

Declarations of variables, constants
etc. to be use in PL/SQL.

BEGIN
PL/SQL and SQL Executable
statements

EXCEPTION

PL/SQL code to handle errors
during execution period.

END;

Fig. 5.1. A PL/SQL block

End Section

This section indicates the end of PL/SQL block.

Every PL/SQL program must consist of at least one block, which may
consist of any number of nested sub-blocks. Figure 5.1 shows a typical PL/SQL
block.

5.4 PL/SQL Language Elements

Let us start from the basic elements of PL/SQL language. Like other pro-
gramming languages PL/SQL also have specific character sets, operators,
indicators, punctuations, identifiers, comments, etc. In the following sections
we will discuss about various language elements of PL/SQL.

Character Set

A PL/SQL program consists of text having specific set of characters. Charac-
ter set may include the following characters:

— Alphabets, both in upper case [A-Z] and lower case [a—z]

— Numeric digits [0-9]

— Special characters () + —* /< >=!~";:."7Q%," #3$ & _|
{1710

— Blank spaces, tabs, and carriage returns.

PL/SQL is not case sensitive, so lowercase letters are equivalent to corre-
sponding uppercase letters except within string and character literals.

216 5 PL/SQL

Lexical Units

A line of PL/SQL program contains groups of characters known as lexical
units, which can be classified as follows:

— Delimiters
— Identifiers
— Literals

— Comments

Delimiters

A delimiter is a simple or compound symbol that has a special meaning to
PL/SQL. Simple symbol consists of one character, while compound symbol
consists of more than one character. For example, to perform the addition and
exponentiation operation in PL/SQL, simple symbol delimiter + and com-
pound symbol delimiter ** is used, respectively. PL/SQL supports following
simple symbol delimiters:

bo* = <%, ()@:”

Compound symbol delimiters legal in PL/SQL are as follows:

<Sl=r="=<=>= =% || << >>

In the following sections we will discuss about these delimiters.

Identifiers

Identifiers are used in the PL/SQL programs to name the PL/SQL program
items as constants, variables, cursors, cursor variables, subprograms, etc.

Identifiers can consists of alphabets, numerals, dollar signs, underscores,
and number signs only. Any other characters like hyphens, slashes, blank
spaces, etc. are illegal. An identifier must begin with an alphabetic letter
optionally followed by one or more characters (permissible in identifier). An
identifier cannot contain more than 30 characters.

Example

Some of the valid identifiers are as follows:

A — Identifier may consist of a single character

A1l - identifier may consist of numerals after first character
Share$price — dollar sign is permitted

e_mail — under score is permitted

phone# — number sign is permitted

The following identifiers are illegal:

mine&yours — ampersand is illegal
debit-amount — hyphen is illegal
on/off — slash is illegal

user id — space is illegal

5.4 PL/SQL Language Elements 217

However, PL/SQL allows space, slash, hyphen, etc. except double quotes if
the identifier is enclosed within double quotes. Thus, the following identifiers
are valid:

“A&B”

“TATA INFOTECH”
“True/false”
“Student(s)”

wikk BRQIN *%%7

However, the maximum length of a quoted identifier cannot exceed 30
characters, excluding double quotes.

An identifier can consists of lower, upper, or mixed case letters. PL/SQL
is not case sensitive except within string and character literals. So, if the only
difference between identifiers is the case of corresponding letters, PL/SQL
considers the identifiers to be the same. Take for example, a character string
“HUMAN?” as an identifier; it will be equivalent to each of following identifiers:

Human
human
hUMAN
hUmAn.

An identifier cannot be a reserve word, i.e., the words that have special
meaning for PL/SQL. For example, the word DECLARE, which is used for
declaring the variables or constants; words BEGIN and END, which enclose
the executable part of a block or subprogram are reserve words. An attempt
to redefine a reserve word gives an error.

Literals

A literal is an explicitly defined character, string, numeric, or Boolean value,
which is not represented by an identifier. In the following sections we will
discuss about each of these literals in detail:

Numeric Literals

A numeric literal is an integer or a real value. An integer literal may be a
positive, negative, or unsigned whole number without a decimal point. Some
examples of integer numeric literals are as follows:

100 006 —-10 O +10

A real literal is a positive, negative, or unsigned whole or fractional number
with a decimal point. Some examples of real integer literals are as follows:

0.0 —19.0 3.56219 44399 6 7. —4.56

218 5 PL/SQL

PL/SQL treats a number with decimal point as a real numeric literal, even
if the number does not have any numeral after decimal point. Besides integer
and real literals, numeric literals can also contain exponential numbers (an
optionally signed number suffix with an E (or e) followed by an optionally
signed integer). Some examples of exponential numeric literals are as follows:

7TE3 2.0E-3 3.14159e¢l —2E33 —8.3e—2

where, E stands for “times ten to the power of.” For example the exponential
literal 7TE3 is equivalent to following numeric literal:

TE3 = 7 * 10 ** 3 = 7*10*10*10 = 7000

Another exponential literal —8.3e—2 would be equivalent to following
numeric literal:

—8.3¢—2 = —8.3 ¥ 10 ** (—2) = —8.3 *0.01 = —0.083

An exponential numeric literal cannot be smaller than 1E—130 and cannot
be greater than 10E125. Note that numeric literals cannot contain dollar signs
or commas.

Character Literals

A character literal is an individual character enclosed by single quotes (apos-
trophes). Character literals include all the printable characters in the PL/SQL
character set: letters, numerals, spaces, and special symbols. Some examples
of character literals are as follows:

“A77 “@’7 “5” “‘?’7 W LL(”
*)

PL/SQL is case sensitive within character literals. For example, PL/SQL con-
siders the literals “A” and “a” to be different. Also, the character literals
“0”...“9” are not equivalent to integer literals but can be used in arithmetic
expressions because PL/SQL implicitly converts them to integers.

String Literals

A character string can be represented by an identifier or explicitly written as a
string literal. A string literal is enclosed within single quotes and may consist
of one or more characters. Some examples of string literals are as follows:

“Good Morning!”

“TATA INFOTECH LTD”
“04-MAY-00”
“$15,000,000”

All string literals are of character data type.
PL/SQL is case sensitive within string literals. For example, PL/SQL con-
siders the following literals to be different:

“HUMAN”

“Human”

5.4 PL/SQL Language Elements 219

Boolean Literals

Boolean literals are the predefined values TRUE, FALSE, and NULL. Keep
in mind Boolean literals are values, not strings. For example a condition: if
(x = 10) is TRUE only for the value of x equal to 10, for any other value of
x it is FALSE and for no value of x it is NULL.

Comments

Comments are used in the PL/SQL program to improve the readability and
understandability of a program. A comment can appear anywhere in the pro-
gram code. The compiler ignores comments. Generally, comments are used to
describe the purpose and use of each code segment. A PL/SQL comment may
be a single-line or multiline.

Single-Line Comments

Single-line comments begin with a double hyphen (~) anywhere on a line and
extend to the end of the line.

Example

— start calculations

Multiline Comments

Multiline comments begin with a slash-asterisk (/*) and end with an asterisk-
slash (*/), and can span multiple lines.

Example

/* Hello World! This is an example of multiline comments in PL/SQL */

Variables and Constants

Variables and constants can be used within PL/SQL block, in procedural
statements and in SQL statements. These are used to store the values. As
the program executes, the values of variables can change, but the values of
constants cannot. However, it is must to declare the variables and constants,
before using these in executable portion of PL/SQL. Let us see how to declare
variables and constants in PL/SQL.

Declaration

1Variables and constants are declared in the Declaration section of PL/SQL
block. These can be any of the SQL data type like CHAR, NUMBER,
DATE, etc.

220 5 PL/SQL
1. Variables Declaration

The syntax for declaring a variable is as follows:

identifier datatype;

Example

To declare the variable name, age, and joining date as datatype
VARCHAR2(10), NUMBER(2), DATE, respectively; declaration statement
is as follows:

DECLARE

Name VARCHAR2(10);
Age NUMBER(2);
Joining_date DATE;

Initializing the Variable
By default variables are initialized to NULL at the time of declaration. If we
want to initialize the variable by some other value, syntax would be as follows:

Identifier datatype := value;
Or,
Identifier datatype DEFAULT value;

Example

If a number of employees have same joining_date, say 01-JULY-99. It is better
to initialize the joining_date rather than entering the same value individually,
any of the following declaration can be used:

Joining_date DATE := 01-JULY-99; (or)
Joining_date DATE DEFAULT 01-JULY-99;

Constraining a Variable

Variables can be NOT NULL constrained at the time of declaring these, for
example to constrain the joining_date NOT NULL, the declaration statement
would be as follows:

Joining_date DATE NOT NULL: = 01-JULY-99;

(NOT NULL constraint must be followed by an initialization clause)
thus following declaration will give an error:

Joining_date DATE NOT NULL; — illegal

5.4 PL/SQL Language Elements 221
Declaring Constants

Declaration of constant is similar to declaration of variable, except the key-
word CONSTANT precedes the datatype and it must be initialized by some
value. The syntax for declaring a constant is as follows:

identifier CONSTANT datatype := value;

Example

To define the age_limit as a constant, having value 30; the declaration state-
ment would be as follows: Age_limit CONSTANT NUMBER := 30;

Restrictions

PL/SQL imposes some restrictions on declaration as follows:

(a) A list of variables that have the same datatype cannot be declared in the
same row

Example

A, B, C NUMBER (4,2); — illegal
It should be declared in separate lines as follows:

A NUMBER (4,2);

B NUMBER (4,2);
C NUMBER (4,2);

(b) A variable can reference to other variable if and only if that variable is
declared before that variable. The following declaration is illegal:

A NUMBER(2) := B;
B NUMBER(2) := 4;
Correct declaration would be as follows:
B NUMBER(2) := 4;
A NUMBER(2) := B;

(¢) In a block same identifier cannot be declared by different datatype. The
following declaration is illegal:

DECLARE
X NUMBER(4,2);
X CHAR(4); — illegal

222 5 PL/SQL

5.5 Data Types

Every constant and variable has a datatype. A datatype specifies the space
to be reserved in the memory, type of operations that can be performed,
and valid range of values. PL/SQL supports all the built-in SQL datatypes.
Apart from those datatypes, PL/SQL provides some other datatypes. Some
commonly used PL/SQL datatypes are as follows:

BOOLEAN

One of the mostly used datatype is BOOLEAN. A BOOLEAN datatype
is assigned to those variables, which are required for logical operations.
A BOOLEAN datatype variable can store only logical values, i.e., TRUE,
FALSE, or NULL. A BOOLEAN variable value cannot be inserted in a table;
also, a table data cannot be selected or fetched into a BOOLEAN variable.

%Type

The %ATYPE attribute provides the datatype of a variable or database column.
In the following example, % TYPE provides the datatype of a variable:

balance NUMBER(8,2);
minimum_balance balance%TYPE;

In the above example PL/SQL will treat the minimum_balance of the same
datatype as that of balance, i.e., NUMBER(8,2). The next example shows
that a %ATYPE declaration can include an initialization clause:

balance NUMBER(7,2);
minimum_balance balance%TYPE := 500.00;

The %TYPE attribute is particularly useful when declaring variables that
refer to database columns. Column in a table can be referenced by %TYPE
attribute.

Example

To declare a column my_empno of the same datatype as that of empno column
of emp table in scott/tiger user, the declaration statement would be as follows:

my_empno scott.emp.empno%TYPE;

Using %TYPE to declare my_empno has two advantages. First, the knowledge
of exact datatype of empno is not required. Second, if the database definition
of empno changes, the datatype of my_empno changes accordingly at run time.
But %TYPE variables do not inherit the NOT NULL column constraint, even
though the database column empno is defined as NOT NULL, one can assign
a null to the variable my_empno.

5.6 Operators Precedence 223
%Rowtype

The %ZROWTYPE attribute provides a record type that represents a row in a
table (or view). The record can store an entire row of data selected from the
table.

Example

emp_rec is declared as a record datatype of emp table. emp_rec can store a
row selected from the emp table.

emp_rec emp%ROWTYPE;

Expressions

Expressions are constructed using operands and operators. PL/SQL supports
all the SQL operators; in addition to those operators it has one more operator,
named exponentiation (symbol is **). An operand is a variable, constant,
literal, or function call that contributes a value to an expression. An example
of simple expression follows:

A=Bxx3

where A, B, and 3 are operand; = and ** are operators. B¥*3 is equivalent to
value of thrice multiplying the B, i.e., B¥B*B.

Operators may be unary or binary. Unary operators such as the negation
operator (—) operate on one operand; binary operators such as the division
operator (/) operate on two operands. PL/SQL evaluates (finds the current
value of) an expression by combining the values of operands in ways specified
by the operators. This always yields a single value and datatype. PL/SQL
determines the datatype by examining the expression and the context in which
it appears.

5.6 Operators Precedence

The operations within an expression are done in a particular order depending
on their precedence (priority). Table5.1 lists the operator’s level of prece-
dence from top to bottom. Operators listed in the same row have equal
precedence.

Operators with higher precedence are applied first, but if parentheses
are used, expression within innermost parenthesis is evaluated first. For
example the expression 8 4+ 4/2 x x2 results in a value 9, because exponen-
tiation has the highest priority followed by division and addition. Now in the
same expression if we put parentheses, the expression 8+ ((4/2) **2) results in
a value 12 not 9, because now first it will solve the expression within innermost
parentheses.

224 5 PL/SQL

Table 5.1. Order of operations

operator operation

** NOT exponentiation, logical negation

+, — identity, negation

*/ multiplication, division

+, — | addition, subtraction, concatenation
=, 1=, <, >, <=, >=, IS NULL, comparison

LIKE, BETWEEN, IN

AND conjunction

OR disjunction

5.7 Control Structure

Control structure is an essential part of any programming language. It controls
the flow of process. Control structure is broadly divided into three categories:

— Conditional control,
— Iterative control, and
— Sequential control

In the following sections we will discuss about each of these control structures
in detail.

Conditional Control

A conditional control structure tests a condition to find out whether it is
true or false and accordingly executes the different blocks of SQL statements.
Conditional control is generally performed by IF statement. There are three
forms of IF statement. IF-THEN, IF-THEN-ELSE, IF-THEN-ELSEIF.

IF-THEN

It is the simplest form of IF condition. The syntax for this statement is as
follows:

IF condition THEN
Sequence of statements
END IF;

Example

To compare the values of two variables A and B and to assign the value of A
to HIGH if A is greater than B. The IF construct for this is as follows:

IF A > B THEN
HIGH := A;
ENDIF;

5.7 Control Structure 225

The sequence of statements is executed only if the condition is true. If
the condition is FALSE or NULL, the sequence of statements is skipped and
processing continues from statements following END IF statements.

IF-THEN-ELSE

As it is clear with the IF-THEN construct, if condition is FALSE the control
exits to next statement out of IF-THEN clause. To execute some other set of
statements in case condition evaluates to FALSE, the second form of IF state-
ment is used, it adds the keyword ELSE followed by an alternative sequence
of statements, as follows:

IF condition THEN
sequence_of_statementsl
ELSE
sequence_of_statements2
END IF;

Example

To become clear about it, take the previous example, to compare the value of
A and B and assign the value of greater number to HIGH. The IF construct
for this is as follows:

IF A > B THEN

HIGH := A;
ELSE
HIGH := B;
ENDIF;

The sequence of statements in the ELSE clause is executed only if the
condition is FALSE or NULL.

IF-THEN-ELSIF

In the previous constructs of IF, we can check only one condition, whether it is
true or false. There is no provision if we want to check some other conditions if
first condition evaluates to FALSE; for this purpose third form of IF statement
is used. It selects an action from several mutually exclusive alternatives. The
third form of IF statement uses the keyword ELSIF (not ELSEIF) to introduce
additional conditions, as follows:

226 5 PL/SQL

IF conditionl THEN
sequence_of_statementsl
ELSIF condition2 THEN
sequence_of_statements2
ELSE
sequence_of_statements3
END IF;

5.8 Steps to Create a PL/SQL Program

1. First a notepad file can be created as typing in the Oracle SQL editor.
Figure 5.2 shows the command to create a file,

2. Then a Notepad file will appear and at the same time background Oracle
will be disabled. It is shown in Fig. 5.3

3. We can write our PL/SQL program in that file, save that file, and we can
execute that program in the Oracle editor as in Fig.5.4. In this program
Cursor (Current Set of Records) concept is used which we will see in
the following pages. Here content of EMP table is opened by the cursor
and they are displayed by the DBMS_OUTPUT package. Command IF is
used to check whether the cursor has been opened successfully by using
%Found attribute.

4. Then we can execute that file as follows in Fig. 5.5

File Edit Search Options Help

A
[SQL*Plus: Release 8.1.7.0.8 - Production on Sun Aug 14 17:59:15 2005 |-

(c) Copyright 2008 Oracle Corporation. A1l rights reserved.

Connected to:

[Ooracle8i Enterprise Edition Release 8.1.7.0.0 - Production
With the Partitioning option

JServer Release 8.1.7.8.0 - Production

[sgL> edit Ifelse;|

Figure 5.2 Creating a file v
< I i | |)t ik

Fig. 5.2. Creating a file

5.8 Steps to Create a PL/SQL Program 227

8 Untitlad - Notepad Q@

Fie Edit Formot View Help

D) Cannot find the ifelse.sql file.
. Do you want to create a new file?

Fig. 5.3. Confirmation for the file created

& Oracle SOL*Plus E]@
)
"ISQI.> EDIT IFELSE;

Flle Edit Format Yiew Help
SET SERVEROUTPUT ON
DECLARE

SALARY SKK.EMPXROWTYPE;
CURSOR SALCUR IS SELECT ¥ FROM EMP;

BEGIN

OPEN SALCUR;

LOOP

FETCH SALCUR INTO SALARY;
EXIT WHEN SALCUR¥NOTFOUND;

DBMS_OUTPUT. PUT_LINE('EMPID: '|| SALARY.EMPID ||' EMPNAME: '||
SALARY.EMPNAME ||' SALARY: ‘|| SALARY.SAL J;

IF SALCUR%FOUND THEMN

DBMS_OUTPUT. PUT_LINE('CURSOR HAS OPENED SUCCESSFULLY');
ELSE

DBMS_OUTPUT. PUT_LINE('CURSOR HAS NOT OPENED');|

END IF;

END LOOP;
END;

/
SET SERVEROUTPUT OFF

Fig. 5.4. Program writing to the notepad

228 5 PL/SQL

& Oracte SOL*Plus M=)
File Edit Search Options Help
SQL> select * from emp;

me3

EMPID EMPNAME SAL

SQL> START IFELSE;

EMPID: E181 EMPNAME: SKK SALARY: 5068
CURSOR HAS OPENED SUCCESSFULLY

EMPID: E162 EMPNAME: ANAND SALARY: 2580
CURSOR HAS OPENED SUCCESSFULLY

EMPID: E103 EMPNAME: RAJA SALARY: 1900
CURSOR HAS OPENED SUCCESSFULLY

PL/SOL procedure successfully completed.

SQL>

.'(_]am' ..>]..:

Fig. 5.5. Program execution

5.9 Iterative Control

In iterative control a group of statements are executed repeatedly till certain
condition is true, and control exits from loop to next statement when the
condition becomes false. There are mainly three types of loop statements:

LOOP, WHILE-LOOP, FOR-LOOP.

LOOP

LOOP is the simplest form of iterative control. It encloses a sequence of state-
ments between the keywords LOOP and END LOOP. The general syntax for
LOOP control is as follows:

LOOP
sequence_of_statements
END LOOP;

With each iteration of the loop, the sequence of statements gets executed,
then control reaches at the top of the loop. But a control structure like this
gets entrapped into infinite loop. To avoid this it is must to use the key word
EXIT and EXIT-WHEN.

5.9 Iterative Control 229

LOOP - EXIT

An EXIT statement within LOOP forces the loop to terminate unconditionally
and passes the control to next statements. The general syntax for this is as
follows:

LOOP

IF conditionl THEN
Sequence of statementsl
EXIT;

ELSIF condition2 THEN
Sequence of statements2
EXIT

ELSE

Sequence of statements3
EXIT;

END IF;

END LOOP;

LOOP - EXIT WHEN

The EXIT-WHEN statement terminates a loop conditionally. When the EXIT
statement is encountered, the condition in the WHEN clause is evaluated.
If the condition is true, the loop terminates and control passes to the next
statement after the loop. The syntax for this is as follows:

LOOP

EXIT WHEN condition
Sequence of statements
END LOOP

Example

Figures 5.4 and 5.5 are also the example of LOOP — EXIT WHEN. Condition
used here is that the cursor does not return anything by using %2NOTFOUND
attribute.

WHILE-LOOP

The WHILE statement with LOOP checks the condition. If it is true then
only the sequence of statements enclosed within the loop gets executed. Then
control resumes at the top of the loop and checks the condition again; if it is
true the sequence of statements enclosed within the loop gets executed. The
process is repeated till the condition is true. The control passes to the next
statement outside the loop for FALSE or NULL condition.

230 5 PL/SQL
a Oracle SOL*Plus

Ism.> EDIT FORLOOP;

SET SERVEROUTPUT ON

DECLARE

C NUMBER(4);

SUMN NUMBER(S6) :=0;

BEGIN

FOR C IN 1 .. 10 LOOP

SUMN = SUMN + C;

END LOOP;

DBMS_OUTPUT. PUT_LINEC'SUM UPTO 10 :'||"' 11 sSumnD:

END;

z
SET SERVEROUTPUT OFF

Fig. 5.6. Example for FOR Loop

WHILE condition LOOP
Sequence of statements
END LOOP;

FOR-LOOP

FOR loops iterate over a specified range of integers. The range is part of
iteration scheme, which is enclosed by the keywords FOR and LOOP. A double

dot (..) serves as the range operator. The syntax is as follows:

sequence_of_statements
END LOOP;

FOR counter IN lower_limit .. higher_limit LOOP

The range is evaluated when the FOR loop is first entered and is never
re-evaluated. The sequence of statements is executed once for each integer
in the range. After every iteration, the loop counter is incremented.

Example

To find the sum of natural numbers up to 10, the following program can be

used as in Fig. 5.6.

5.10 Cursors 231
Sequential Control

The sequential control unconditionally passes the control to specified unique
label; it can be in the forward direction or in the backward direction. For
sequential control GOTO statement is used. Overuse of GOTO statement
may increase the complexity, thus as far as possible avoid the use of GOTO
statement.

The syntax is as follows:

GOTO label;

oooooooo

Statement

5.10 Cursors

Number of rows returned by a query can be zero, one, or many, depending
on the query search conditions. In PL/SQL, it is not possible for an SQL
statement to return more than one row. In such cases we can use cursors.
A cursor is a mechanism that can be used to process the multiple row result
sets one row at a time.

In other words, cursors are constructs that enable the user to name a
private memory area to hold a specific statement for access at a later time.
Cursors are an inherent structure in PL/SQL. Cursors allow users to easily
store and process sets of information in PL/SQL program.

Figure 5.7 shows the simple example for the cursor where two rows
are selected from the query and they are pointed by the cursor namely
All_Lifetime.

Member Table 3| Cursor Data Set
Member _id | Name Mem _type Fetch | Member id | Name
10001 Mohan Y 19003 Amit
10002 Mukesh ¥ 10004 Anuj
10003 Amit L
10004 Anuj L DECLARE
CURSOR All_Lifetime IS
Record SELECT Member_id. Name
FROM Member
'WHERE Mem_type =‘L";

Fig. 5.7. Cursor example

232 5 PL/SQL

There are two types of cursors in Oracle

1. Implicit cursors
2. Explicit cursors

5.10.1 Implicit Cursors

PL/SQL implicitly declares a cursor for every SQL DML statement, such as
INSERT, DELETE, UPDATE, and SELECT statement that is not a part
of an explicitly declared cursor, even if the statement processes a single row.
PL/SQL allows referencing the most recent cursor or the cursor associated
with the most recently executed SQL statement, as the “SQL” cursor. Cursor
attributes are used to access information about the most recently executed
SQL statement, using SQL cursor.

Implicit Cursor Attributes

In PL/SQL every cursor, implicit or explicit, has four attributes: %NOT-
FOUND, %ZFOUND, %ROWCOUNT, and %ISOPEN. These cursor attributes
can be used in procedural statements (PL/SQL), but not in SQL statements.
These attributes let user access information about the most recent execution
of INSERT, UPDATE, SELECT INTO, and DELETE commands. These
attributes are associated with the implicit “SQL” cursor and can be accessed
by appending the attribute name to the implicit cursor name (SQL). Syntax
to use cursor attribute is as follows:

SQL %<attribute name>
%Notfound

This attribute is used to determine if any rows were processed by a SQL
DML statement. This attribute evaluates to TRUE if an INSERT, UPDATE,
or DELETE affected no rows or a SELECT INTO returned no rows. Other-
wise, it returns FALSE. %NOTFOUND attribute can be useful in reporting
or processing when no data is affected. If a SELECT statement does not re-
turn any data, the predefined exception NO_DATA_FOUND is automatically
raised, and program control is sent to an exception handler, if it is present in
the program. If a check is made on %ZNOTFOUND attribute after a SELECT
statement, it will be completely skipped when the SELECT statement returns
no data.

Example

Figures5.8 and 5.9 show the example of all the implicit cursor attributes.
The program will return the status of each cursor attribute depending on the
previously executed DML statement.

5.10 Cursors 233

&& Oracle SOL*Plus E]
o~

SQL> EDIT IMPLICIT; =

rmﬁ
File Edit Format Yiew Help
SET SERVEROUTPUT ON 2_

DECLARE
EMPRECORD SKK.EMPXROWTYPE;}

BEGIN
SELECT % INTO EMPRECORD FROM EMP WHERE SAL=5000;
IF SQL¥FOUND THEN

DBMS_OUTPUT. PUT_LINE(' SQL¥FOUND CURSOR IS TRUE');
END IF;

1l

SELECT ¥ INTO EMPRECORD FROM EMP WHERE EMPID='E102';

IF NOT(SQL¥NOTFOUND) THEN
DBMS_OUTPUT. PUT_LINE(SQL¥NOTFOUND CURSOR IS TRUE');
END IF;

DELETE FROM EMP WHERE EMPNAME='RAJA';
DBMS_OUTPUT. PUT_LINE('NO OF ROWS AFFECTED BY THE IMMEDIATE
DELETE COMMAND IS ' ||SQL%ROWCOUNT);

IF NOT(SQL¥ISOPEN) THEN

DBMS_OUTPUT. PUT_LINE(' ' SQL¥ISOPEN CURSOR IS FALSE'):;
END IF;

END;

A
SET SERVEROUTPUT OFF

Fig. 5.8. Implicit cursor example program

SQL> SELECT = FROM EHP; ~
EMPID EMPNAME SAL =
E101 SKK 5000
E1082 ANAND 2500
E103 RAJA 1900

SQL> START IWPLICIT;

ISQLZFOUND CURSDR IS TRUE

SQLZNOTFOUND CURSOR IS TRUE

NO OF ROWS AFFECTED BY THE IMMEPIATE DELETE COMMAND IS 1
SQLZISOPEN CURSOR IS FALSE

PL/SQL procedure successfully completed.

sqL> | 4
<l Bl

Fig. 5.9. Implicit cursor example execution

234 5 PL/SQL
%Found

This attribute is used to determine if any rows were processed by a SQL
DML statement. In fact %AFOUND works just the opposite of %WNOTFOUND
attribute. Until a SQL DML statement is executed, this attribute evaluates
to NULL. It equates to TRUE if an INSERT, UPDATE, or DELETE affects
one or more rows or select returns one row. If a select statement returns more
than one row, the predefined exception TOO_MANY_ROWS is automatically
raised and %FOUND attribute is set to FALSE.

% Rowcount

This attribute is used to determine the number of rows that are processed
by an SQL statement. It returns the number of rows affected by an INSERT,
UPDATE, or DELETE statement or returned by a SELECT INTO statement.
%ROWCOUNT returns zero if the SQL statement affects or returns no rows.
If a SELECT statement returns more than one row, the predefined exception
TOO_MANY_ROWS is raised automatically. In such a case %ROWCOUNT
attribute is set to 1 and not the actual number of rows that satisfy the query.

Example
Figures 5.8 and 5.9 show this example.
%Isopen

%ISOPEN is used to determine if a cursor is already open. It always equates
to FALSE in an implicit cursor. Oracle automatically closes implicit cursor
after executing its associated SQL statements.

Example

Figures 5.8 and 5.9 show this example.

5.10.2 Explicit Cursor

Explicit cursors are declared by the user and are used to process query results
that return multiple rows. Multiple rows returned from a query form a set
called an active set. PL/SQL defines the size of the active set as the number
of rows that have met search criteria. Inherent in every cursor is a pointer that
keeps track of the multiple rows being accessed, enabling program to process
the rows one at a time. An explicit cursor points to the current row in the
active set. This allows the program to process one row at a time.

Multirow query processing is somewhat like file processing. For example,
a program opens a file to process records, and then closes the file. Likewise,

5.11 Steps to Create a Cursor 235

Member Table
Member_Id Name Mem_type
10001 Mohan Y
10002 Mukesh Y
10003 Amit L
10004 Anuj L
Memory
-
Cursor DECLAR
Member_id
Name <~ OPEN
10003 Amit CURSOR
o] e []
-

Fig. 5.10. Cursor and memory utilization

a PL/SQL program opens a cursor to process rows returned by a query, and
then closes the cursor. Just as a file pointer marks the current position in an
open file, a cursor marks the current position in an active set.

After a cursor is declared and opened, the user can FETCH, UPDATE,
or DELETE the current row in the active set. The cursor can be CLOSED
to disable it and free up any allocated system resources. Three commands are
used to control the cursor — OPEN, FETCH, and CLOSE. First the cursor
is initialized with an OPEN statement, which identifies the active set. Then,
the FETCH statement is used to retrieve the first row. FETCH statement can
be executed repeatedly until all rows have been retrieved. When the last row
has been processed, the cursor can be released with the CLOSE statement.
Figure5.10 shows the memory utilization by a cursor when each of these
statements is given.

5.11 Steps to Create a Cursor

Following are the steps to create a cursor:

5.11.1 Declare the Cursor

In PL/SQL a cursor, like a variable, is declared in the DECLARE section of
a PL/SQL block or subprogram. A cursor must be declared before it can be

236 5 PL/SQL

referenced in other statements. A cursor is defined in the declarative part by
naming it and specifying a SELECT query to define the active set.

CURSOR <cursor_name> IS
SELECT...

The SELECT statement associated with a cursor declaration can reference
previously declared variables.

Declaring Parameterized Cursors

PL/SQL allows declaration of cursors that can accept input parameters which
can be used in the SELECT statement with WHERE clause to select specified
rows. Syntax to declare a parameterized cursor:

CURSOR <cursor_name> [(parameter.)] IS
SELECT......
WHERE <column_name> = parameter;

Parameter is an input parameter defined with the syntax:
<variable_name> [IN] <datatype> [{:= | DEFAULT} value]

The formal parameters of a cursor must be IN parameters. As in the
example above, cursor parameters can be initialized to default values. That
way, different numbers of actual parameters can be passed to a cursor,
accepting or overriding the default values.

Moreover, new formal parameters can be added without having to change
every reference to the cursor. The scope of a cursor parameter is local only
to the cursor. A cursor parameter can be referenced only within the SELECT
statement associated with the cursor declaration. The values passed to the
cursor parameters are used by the SELECT statement when the cursor is
opened.

5.11.2 Open the Cursor

After declaration, the cursor is opened with an OPEN statement for processing
rows in the cursor. The SELECT statement associated with the cursor is
executed when the cursor is opened, and the active set associated with the
cursor is created.

The active set is defined when the cursor is declared, and is created when
cursor is opened.

The active set consists of all rows that meet the SELECT statement
criteria. Syntax of OPEN statement is as follows.

OPEN <cursor_name>;

5.11 Steps to Create a Cursor 237
5.11.3 Passing Parameters to Cursor

Parameters to a parameterized cursor can be passed when the cursor is opened.
For example, given the cursor declaration

CURSOR Mem _detail (MType VARCHAR2) IS SELECT. ..
Any of the following statements opens the cursor.

OPEN Mem detail (‘L’);
OPEN Mem _detail(Mem); where Mem is another variable.

Unless default values are to be accepted, each formal parameter in the
cursor declaration must have a corresponding actual parameter in the OPEN
statement. Formal parameters declared with a default value need not have
a corresponding actual parameter. They can simply assume their default
values when the OPEN statement is executed. The formal parameters of a
cursor must be IN parameters. Therefore, they cannot return values to actual
parameters. Each actual parameter must belong to a datatype compatible
with the datatype of its corresponding formal parameter.

5.11.4 Fetch Data from the Cursor

After a cursor has been opened, the SELECT statement associated with
the cursor is executed and the active set is created. To retrieve the rows
in the active set one row at a time, the rows must be fetched individually
from the cursor. After each FETCH statement, the cursor advances to the
next row in the active set and retrieves it. Syntax of FETCH is:

FETCH <cursor_name> INTO <variable_name>, <variable_name>. ...

where variable_name is the name of a variable to which a column value is
assigned. For each column value returned by the query associated with the
cursor, there must be a corresponding variable in the INTO list. This variable
datatype must be compatible with the corresponding database column.

5.11.5 Close the Cursor

After processing the rows in the cursor, it is released with the CLOSE state-
ment. To change the active set in a cursor or the values of the variables
referenced in the cursor SELECT statement, the cursor must be released with
CLOSE statement. Once a cursor is CLOSEd, it can be reOPENed. The
CLOSE statement disables the cursor, and the active set becomes undefined.
For example, to CLOSE Mem_detail close statement will be:

CLOSE <cursor_name>;

238 5 PL/SQL

Example

Figures 5.4 and 5.5 show the example of declaring, opening, and fetching the
cursor called SALCUR.

Explicit Cursor Attributes

It is used to access useful information about the status of an explicit cursor.
Explicit cursors have the same set of cursor attributes %NOTFOUND,
%FOUND, %ZROWCOUNT, and %ISOPEN. These attributes can be accessed
in PL/SQL statements only, not in SQL statements. Syntax to access an
explicit cursor attributes:

’ <cursor_name>%<attribute_name>

%Notfound

When a cursor is OPENed, the rows that satisfy the associated query are
identified and form the active set. Before the first fetch, %ANOTFOUND
evaluates to NULL. Rows are FETCHed from the active set one at a time. If
the last fetch returned a row, %ZNOTFOUND evaluates to FALSE. If the last
fetch failed to return a row because the active set was empty, %W NOTFOUND
evaluates to TRUE. FETCH is expected to fail eventually, so when that
happens, no exception is raised.

Example

Figures 5.4 and 5.5 show the example for this attribute. In this example, it is
used for checking whether all the rows have been fetched or not.

% Found

%FOUND is the logical opposite of %ANOTFOUND. After an explicit cursor
is open but before the first fetch, %ZFOUND evaluates to NULL. Thereafter,
it evaluates to TRUE if the last fetch returned a row or to FALSE if no row
was returned. If a cursor is not open, referencing it with %FOUND raises
INVALID_CURSOR exception.

Example

Figures 5.4 and 5.5 show the example for this attribute. In this example, it is
used for checking whether the cursor has been opened successfully or not.

%Rowcount

When you open a cursor, %AROWCOUNT is initialized to zero. Before the
first fetch, %AROWCOUNT returns a zero. Thereafter, it returns the number
of rows fetched so far. The number is incremented if the latest fetch returned
a row.

5.11 Steps to Create a Cursor 239
Example

Figures 5.8 and 5.9 show the example of this attribute where cursor updatcur
is used.

%Isopen

%ISOPEN evaluates to TRUE if the cursor is open; otherwise, %ISOPEN
evaluates to FALSE.

Example

Figures5.11 and 5.12 show the example of this attribute where cursor up-
datcur is used.

'alfh acle SOL*Plus i;]@

SQL> EDPIT FORUPDATE;

ma

File Edit Format View Help
SET SERVEROUTPUT ON

DECLARE

CURSOR UPDATCUR IS SELECT % FROM EMP WHERE EMPID='E10l' FOR
UPDATE OF EMPNAME;

UPDATE_REC EMP%ROWTYPE;

BEGIN

OPEN UPDATCUR;

LOOP

FETCH UPDATCUR INTO UPDATE_REC;

EXIT WHEN UPDATCUR%NOTFOUND;

UPDATE EMP SET EMPNAME='KARTHIKEYAN' WHERE CURRENT OF
UPDATCUR;

END LOOP;

DEMS_OUTPUT. PUT_LINE('NO OF ROWS AFFECTED BY THE IMMEDIATE
UPDATE COMMAND IS ' | |UPDATCURXROWCOUNT);

IF UPDATCUR%ISOPEN THEN
DBMS_OUTPUT. PUT_LINE(' SQL¥ISOPEN CURSOR IS TRUE');
END IF;

CLOSE UPDATCUR;
END;
/

Fig. 5.11. Example of FOR UPDATE clause

240 5 PL/SQL

File Edit Search Options Help

SQL> SELECT = FROM EMP; |~
[E

|EHPlD EMPNAME SAL T
E101 SKK 5000
E102 ANAND 2500
E183 RAJA 1900
SQL> START FORUPDATE;
NO OF ROWS AFFECTED BY THE IMMEDIATE UPDATE COMMAND IS 1
SQLZISOPEN CURSOR IS TRUE
IPL/SQL procedure successfully completed.
'SQL> SELECT * FROM EMP;
EHMPID EMPNAME SAL

101 KARTHIKEYAN 5000

182 ANAND 2500

183 RAJA 1908

L>

o | |»
(Illli [)|

Fig. 5.12. FOR UPDATE clause execution

Using FOR UPDATE and CURRENT

The FOR UPDATE clause is used to specify that the rows in the active set of a
cursor are to be locked for modification. Locking allows the rows in the active
set to be modified exclusively by your program. This protects simultaneous
modifications until update by one transaction is complete.

CURSOR <cursor_name> IS SELECT <column_name> [.....] FROM.....
FOR UPDATE [OF <column_name> l;

FOR UPDATE specifies that the rows of the active set are to be exclusively
locked when the cursor is opened and specifies the column names that can be
updated. The FOR UPDATE clause must be used in the cursor declaration
statement whenever UPDATE or DELETE are to be used after the rows are
FETCHed from a cursor.

Syntax of CURRENT clause with UPDATE statement is:

UPDATE <table_name> SET <column name> = expression |.....]
WHERE CURRENT OF <cursor_name>;

Syntax of CURRENT OF Clause with DELETE Statement is:
DELETE table.name WHERE CURRENT OF cursor_name;

5.11 Steps to Create a Cursor 241
Example

Figures5.11 and 5.12 show this example where a row of id E101 is locked for
updation and its name of the Employee is changed to Karthikeyan.

Cursor FOR Loop

PL/SQL provides FOR loop to manage cursors effectively in situations where
the rows in the active set of cursor are to be repeatedly processed in a looping
manner. A cursor FOR loop simplifies all aspects of processing a cursor. Cursor
FOR loop can be used instead of the OPEN, FETCH, and CLOSE statements.
A cursor FOR loop implicitly declares its loop index as a %ROWTYPE
record, opens a cursor, repeatedly fetches rows of values from the active
set into fields in the record, and closes the cursor when all rows have been
processed. Syntax to declare and process a cursor in a cursor FOR loop is:

FOR <record_name> IN <cursor_-name> LOOP

END LOOP:;

where record name is the cursor FOR loop index implicitly declared as
a record of type ZROWTYPE. Cursor is assumed to be declared in the
DECLARE section. In the FOR loop declaration, the FOR loop index is
uniquely named and implicitly declared as a record of type ZROWTYPE.
This RECORD variable consists of columns referenced in the cursor SELECT
statement.

In the FOR loop, the cursor is implicitly opened for processing. No explicit
OPEN statement is required. Inside the FOR loop, the column values for each
row in the active set can be referenced by the FOR loop index with dot nota-
tion in any PL/SQL or SQL statement. Before any iteration of the FOR loop,
PL/SQL fetches into the implicitly declared record, which is equivalent to a
record declared explicitly. At the end of the active set, the FOR loop implicitly
closes the cursor and exits the FOR loop. No explicit CLOSE statement is
required. A COMMIT statement is still required to complete the operation.
We can pass parameters to a cursor used in a cursor FOR loop. The record
is defined only inside the loop. We cannot refer to its fields outside the loop.
The sequence of statements inside the loop is executed once for each row that
satisfies the query associated with the cursor. On leaving the loop, the cursor
is closed automatically. This is true even if an EXIT or GOTO statement is
used to leave the loop prematurely or if an exception is raised inside the loop.

Example

Figures5.13 and 5.14 show the example of cursor execution using FOR loop.

242 5 PL/SQL

& Oracle SOL*Plus @
=
|S|]L) EDIT FORCUR;

File Edit Format VYiew Help

SET SERVEROUTPUT ON

DECLARE

CURSOR DISPLAYCUR IS SELECT % FROM EMP ORDER BY EMPNAME;
BEGIN

FOR RECORDEMP IN DISPLAYCUR LOOP

DBMS_OUTPUT. PUT_LINE(RECORDEMP. EMPID| | '

'| | RECORDEMP, EMPNAME | | ' ' | | RECORDEMP, SAL);

END LOOP;

END;
/

SET SERVEROUTPUT OFF

Fig. 5.13. Cursor using FOR loop

File Edit Search Options Help
QL> SELECT = FROM EMP;

MPID EMPNAME SAL
181 KARTHIKEYAN 5008
182 ANAND 2508
183 RAJA 1900

QL> START FORCUR;

182 ANAND 2500

101 KARTHIKEYAN 5000
183 RAJA 1988

L/SQL procedure successfully completed.

sqL> |

(] [2].::

Fig. 5.14. Cursor using FOR loop execution

5.12 Procedure 243

5.12 Procedure

A procedure is a subprogram that performs some specific task, and stored
in the data dictionary. A procedure must have a name, so that it can be
invoked or called by any PL/SQL program that appears within an application.
Procedures can take parameters from the calling program and perform the
specific task. Before the procedure or function is stored, the Oracle engine
parses and compiles the procedure or function. When a procedure is created,
the Oracle automatically performs the following steps:

1. Compiles the procedure
2. Stores the procedure in the data dictionary

If an error occurs during creation of procedure, Oracle displays a message
that procedure is created with compilation errors, but it does not display the
errors. To see the errors following statement is used:

SELECT * FROM user_errors;

When the function is invoked, the Oracle loads the compiled procedure in
the memory area called system global area (SGA). Once loaded in the SGA
other users can also access the same procedure provided they have granted
permission for this.

Benefits of Procedures and Functions

Stored procedures and functions have many benefits in addition to modulari-
zing application development.

1. It modifies one routine to affect multiple applications.

2. It modifies one routine to eliminate duplicate testing.

3. It ensures that related actions are performed together, or not at all, by
doing the activity through a single path.

4. Tt avoids PL/SQL parsing at runtime by parsing at compile time.

5. It reduces the number of calls to the database and database network traffic
by bundling the commands.

Defining and Creating Procedures

A procedure consists of two parts: specification and body. The specification
starts with keyword PROCEDURE and ends with parameter list or procedure
name. The procedures may accept parameters or may not. Procedures that
do not accept parameters are written parentheses.

The procedure body starts with the keyword IS and ends with keyword
END. The procedure body is further subdivided into three parts:

1. Declarative part which consists of local declarations placed between key-
words IS and BEGIN.

244 5 PL/SQL

2. Executable part, which consists of actual logic of the procedure, included
between keywords BEGIN and EXCEPTION. At least one executable
statement is a must in the executable portion of a procedure. Even a
single NULL statement will do the job.

3. Error/Exception handling part, an optional part placed between EXCEP-
TION and END.

The syntax for creating a procedure is follows:

CREATE OR REPLACE PROCEDURE [schema.] package name
[(argument {IN, OUT, IN OUT} data type,.........)] {IS, AS}
[local variable declarations]

BEGIN

executable statements

EXCEPTION

exception handlers

END [procedure name];

Create: Creates a new procedure, if a procedure of same name already
exists, it gives an error.

Replace: Creates a procedure, if a procedure of same name already exists,
it replace the older one by the new procedure definition.

Schema: If the schema is not specified then procedure is created in user’s
current schema.

Figure 5.15 shows the procedure to raise the salary of the employee. The
name of the procedure is raise_sal.

Jracle SOL*Plus =l 0 E"

File Edit Search Options Help

SQL> DESC EMWP; |~
Name Null? Type E]
EMPID NOT NULL VARCHAR2(6)
EHPNAME UARCHAR2(38)
SAL NUMBER (6)

SQL> CREATE OR REPLACE PROCEDURE raise_sal
(EID IN EMP.EMPIDZTYPE)

IS

BEGIN

UPDATE EHP

SET SAL = SAL = 1.25 WHERE EWPID=EID;
END raise_sal;

/

@NSVI LN

Procedure created.

lsqn | -
Zam| (2.

Fig. 5.15. Procedure creation

5.12 Procedure 245

Argument: It is the name of the argument to the procedure.

IN: Specifies that a value for the argument must be specified when calling
the procedure.

OUT: Specifies that the procedure pass a value for this argument back to
its calling environment after execution.

IN OUT: Specifies that a value for the argument must be specified when
calling the procedure and that the procedure passes a value for this argument
back to its calling environment after execution. If no value is specified then it
takes the default value IN.

Datatype: It is the unconstrained datatype of an argument. It supports
any data type supported by PL/SQL. No constraints like size constraints or
NOT NULL constraints can be imposed on the data type. However, you can
put on the size constraint indirectly.

Example

To raise the salary of an employee, we can write a procedure as follows.

Declaring Subprograms

Subprograms can be declared inside any valid PL/SQL block. The only thing
to be kept in mind is the declaration of programs must be the last part of
declarative section of any PL/SQL block; all other declarations should precede
the subprogram declarations.

Like any other programming language, PL/SQL also requires that any
identifier that is used in PL/SQL program should be declared first before its
use. To avoid problems arising due to such malpractices, forward declarations
are used.

System and Object Privileges for Procedures

The creator of a procedure must have CREATE PROCEDURE system privi-
lege in his own schema, if the procedure being created refers to his own schema.
To create a procedure in other’s schema, the creator must have CREATE ANY
PROCEDURE system privilege.

To create a procedure without errors (compiling it without errors), the
creator of procedure must have required privileges to all the objects he refer
to from his procedure. It must be noted that the owner will not get the required
privileges through roles, he must be granted those privileges explicitly.

As soon as the privileges granted to the owner of procedure change, the
procedure must be reauthenticated in order to bring into picture the new
privileges of the owner. If a necessary privilege to an object referenced by a
procedure is revoked/withdrawn from the owner of the procedure, the proce-
dure cannot be run.

246 5 PL/SQL

To EXECUTE any procedure a user must have EXECUTE ANY PROCE-
DURE privilege. With this privilege he can execute a procedure which belong
to some other user.

Executing/Invoking a Procedure

The syntax used to execute a procedure depends on the environment from
which the procedure is being called. From within SQLPLUS, a procedure can
be executed by using the EXECUTE command, followed by the procedure
name. Any arguments to be passed to the procedure must be enclosed in
parentheses following the procedure name.

Example

Figure 5.16 shows the execution of procedure raise_sal.

Removing a Procedure

To remove a procedure completely from the database, following command is
used:

DROP PROCEDURE <PROCEDURE NAME>;

[Fle Edt Search Options Help

QL> SELECT = FROM EWP; g:
HPID EMPHAME SAL L
1im KARTHIKEYAN 5008

182 ANAND 2500

103 RAJA 1900

QL> EXECUTE raise_sal('E101');

L/SQL procedure successfully completed.

QL> SELECT = FROM EMP;

MPID EMPHAME saL

1801 KARTHIKEYAN 62580

182 ANAND 2580

163 RAJA 1900

oL> [:,
u @

Fig. 5.16. Procedure execution

5.13 Function 247

& Oracle SOL*Plus BCIX]

File Edit Search Options Help
SQL> DROP PROCEDURE raise_sal; ~

|Procedure dropped.

sSqQL>

E3 [.::

Fig. 5.17. Dropping of a procedure

To remove a procedure, one must own the procedure he is dropping or he
must have DROP ANY PROCEDURE privilege.

Example

To drop a procedure raise_sal. Figure 5.17 indicate the dropping of the proce-
dure raise_sal.

5.13 Function

A Function is similar to procedure except that it must return one and only
one value to the calling program. Besides this, a function can be used as part
of SQL expression, whereas the procedure cannot.

Difference Between Function and Procedure

Before we look at functions in deep, let us first discuss the major differences
between a function and a procedure.

1. A procedure never returns a value to the calling portion of code, whereas
a function returns exactly one value to the calling program.

2. As functions are capable of returning a value, they can be used as elements
of SQL expressions, whereas the procedures cannot. However, user-defined
functions cannot be used in CHECK or DEFAULT constraints and cannot
manipulate database values, to obey function purity rules.

3. It is mandatory for a function to have at least one RETURN statement,
whereas for procedures there is no restriction. A procedure may have a
RETURN statement or may not. In case of procedures with RETURN
statement, simply the control of execution is transferred back to the
portion of code that called the procedure.

248 5 PL/SQL

The exact syntax for defining a function is given below:

CREATE OR REPLACE FUNCTION [schema.] functionname
[(argument IN datatype,)] RETURN datatype {IS,AS}
[local variable declarations;

BEGIN

executable statements;

EXCEPTION

exception handlers;

END [functionname];

where RETURN datatype is the datatype of the function’s return value. It
can be any PL/SQL datatype.

Thus a function has two parts: function specification and function body.
The function specification begins with keyword FUNCTION and ends with
RETURN clause which indicates the datatype of the value returned by the
function. Function body is enclosed between the keywords IS and END. Some-
times END is followed by function name, but this is optional. Like procedure,
a function body also is composed of three parts: declarative part, executable
part, and an optional error/exception handling part.

At least one return statement is a must in a function; otherwise PL/SQL
raises PROGRAM_ERROR exception at the run time. A function can have
multiple return statements, but can return only one value. In procedures,
return statement cannot contain any expression, it simply returns control
back to the calling code. However in functions, return statement must contain
an expression, which is evaluated and sent to the calling code.

Example

To get a salary of an employee, Fig. 5.18 shows a function.
Figure 5.19 shows that how the calling of a function is different from
procedure calling.

Purity of a Function

For a function to be eligible for being called in SQL statements, it must satisfy
the following requirements, which are known as Purity Rules.

1. When called from a SELECT statement or a parallelized INSERT,
UPDATE, or DELETE statement, the function cannot modify any
database tables.

2. When called from an INSERT, UPDATE, or DELETE statement, the
function cannot query or modify any database tables modified by that
statement.

5.13 Function 249

File Edt Search Options Help

QL> DESC EHWP; ~
Name Null? Type =
EMPID HOT HULL UARCHARZ(6)
EMPNAME UARCHAR2{380)

SAL NUMBER(6)

SQL> CREATE OR REPLACE FUNCTION get_sal
(EID IN EMP.EMPID%TYPE)
RETURN NUMBER

1S

EHPSAL EHWP.SAL%ATYPE :=8:
BEGIN

SELECT SAL INTO EMPSAL
FROM EMP WHERE EMPID=EID;
RETURN(EMPSAL) ;

END;

/

S DOVONONEWN

- -

Function created.

QL> [1]
t]un| {’-].:5

Fig. 5.18. Function creation

SQL> SELECT * FROM EMP; |
EMPID EMPNAME saL “'
E101 KARTHIKEVAN 6258

102 ANAND 2500

103 RAJA 1900

SQL> SELECT GET_SAL('E162') FROM DUAL;

|GET_SAL("E102°)

2588

SQL> |]
A [@] .

Fig. 5.19. Function execution

3. When called from a SELECT, INSERT, UPDATE, or DELETE state-
ment, the function cannot execute SQL transaction control statements
(such as COMMIT), session control statements (such as SET ROLE), or
system control statements (such as ALTER SYSTEM). Also, it cannot

250 5 PL/SQL

execute DDL statements (such as CREATE) because they are followed by
an automatic commit.

If any of the above rules is violated, the function is said to be not following
the Purity Rules and the program using such functions receives run time error.

Removing a Function

To remove a function, use following command:

DROP FUNCTION <FUNCTION NAME>;

Example

Figure 5.20 illustrates the dropping of a function.
To remove a function, one must own the function to be dropped or he
must have DROP ANY FUNCTION privilege.

Parameters

Parameters are the link between a subprogram code and the code calling the
subprogram. Lot depends on how the parameters are passed to a subprogram.
Hence it is absolutely necessary to know more about parameters, their modes,
their default values, and how subprograms can be called without passing all
the parameters.

Parameter Modes

Parameter modes define the behavior of formal parameters of subprograms.
There are three types of parameter modes: IN, OUT, IN/OUT.

(& oracte soL*Plus @@-

File Edt Search Options Help
SQL> DROP FUNCTION GET_SAL; ol

Function dropped.

SQL> SELECT GET_SAL('E162') FROM DUAL;
SELECT GET_SAL('E182") FROHW DUAL

*

ERROR at line 1:
ORA-0098%: invalid column name

SQLY>

<] >

Fig. 5.20. Dropping the function

5.13 Function 251
IN Mode

IN mode is used to pass values to the called subprogram. In short this is an
input to the called subprogram. Inside the called subprogram, an IN parameter
acts like a constant and hence it cannot be assigned a new value.

The IN parameter in actual parameter list can be a constant, literal, ini-
tialized variable, or an expression. IN parameters can be initialized to default
values, which is not the case with IN/OUT or OUT parameters.

It is important to note that IN mode is the default mode of the formal
parameters. If we do not specify the mode of a formal parameter it will be
treated as an IN mode parameter.

OUT Mode

An OUT parameter returns a value back to the caller subprogram. Inside the
subprogram, the parameter specified with OUT mode acts just like any locally
declared variable. Its value can be changed or referenced in expressions, just
like any other local variables.

The points to be noted for an OUT parameter are:

1. The parameter (in actual argument list) corresponding to OUT parameter
must be a variable; it cannot be a constant or literal.

2. Formal OUT parameters are by default initialized to NULL, so we cannot
constraint the formal OUT parameters by NOT NULL constraint.

3. The parameter (in actual argument list) corresponding to OUT parameter
can have a value before a call to subprogram, but the value is lost as soon
as a call is made to the subprogram.

IN/OUT

An IN/OUT parameter performs the duty of both IN parameter as well as
OUT parameter. It first passes input value (through actual argument) to
the called subprogram and then inside subprogram it receives a new value
which will be assigned finally to the actual parameter. In short, inside the
called subprogram, the IN/OUT parameter behaves just like an initialized
local variable.

Like OUT parameter, the parameter in the actual argument list that corre-
sponds to IN/OUT parameter, must be a variable, it cannot be a constant or
an expression. If the subprogram exits successfully, PL/SQL assigns value
to actual parameters, however, if the subprogram exits with unhandled
exception, PL/SQL does not assign values to actual parameters.

252 5 PL/SQL

5.14 Packages

A package can be defined as a collection of related program objects such as
procedures, functions, and associated cursors and variables together as a unit
in the database. In simpler term, a package is a group of related procedures
and functions stored together and sharing common variables, as well as local
procedures and functions. A package contains two separate parts: the package
specification and the package body. The package specification and package
body are compiled separately and stored in the data dictionary as two sepa-
rate objects. The package body is optional and need not to be created if the
package specification does not contain any procedures or functions. Applica-
tions or users can call packaged procedures and functions explicitly similar to
standalone procedures and functions.

Advantages of Packages

Packages offer a lot of advantages. They are as follows.

1. Stored packages allow us to sum up (group logically) related stored pro-
cedures, variables, and data types, and so forth in a single-named, stored
unit in the database. This provides for better orderliness during the
development process. In other words packages and its modules are easily
understood because of their logical grouping.

2. Grouping of related procedures, functions, etc. in a package also make
privilege management easier. Granting the privilege to use a package
makes all components of the package accessible to the grantee.

3. Package helps in achieving data abstraction. Package body hides the
details of the package contents and the definition of private program
objects so that only the package contents are affected if the package body
changes.

4. An entire package is loaded into memory when a procedure within the
package is called for the first time. This load is completed in one opera-
tion, as opposed to the separate loads required for standalone procedures.
Therefore, when calls to related packaged procedures occur, no disk I/0O
is necessary to execute the compiled code already in memory. This results
in faster and efficient operation of programs.

5. Packages provide better performance than stored procedures and functions
because public package variables persist in memory for the duration of a
session. So that they can be accessed by all procedures and functions that
try to access them.

6. Packages allow overloading of its member modules. More than one func-
tion in a package can be of same name. The functions are differentiated,
depending upon the type and number of parameters it takes.

5.14 Packages 253
Units of Packages

As described earlier, a package is used to store together, the logically related
PL/SQL units. In general, following units constitute a package.

— Procedures
— Functions
— Triggers

— Cursors

— Variables

Parts of Package

A Package has two parts. They are:

— Package specification
— Package body

Package Specification

The specification declares the types, variables, constants, exceptions, cursors,
and subprograms that are public and thus available for use outside the pack-
age. In case in the package specification declaration there is only types, con-
stants, exception, or variables, then there is no need for the package body
because package specification are sufficient for them. Package body is required
when there is subprograms like cursors, functions, etc.

Package Body

The package body fully defines subprograms such as cursors, functions, and
procedures. All the private declarations of the package are included in the
package body. It implements the package specification. A package specifica-
tion and the package body are stored separately in the database. This allows
calling objects to depend on the specification only, not on both. This separa-
tion enables to change the definition of program object in the package body
without causing Oracle to interfere with other objects that call or reference
the program object. Oracle invalidates the calling object if the package spec-
ification is changed.

Creating a Package

A package consists of package specification and package body. Hence creation
of a package involves creation of the package specification and then creation
of the package body.

The package specification is declared using the CREATE PACKAGE com-
mand.

254 5 PL/SQL

The syntax for package specification declaration is as follows.

CREATE[OR REPLACE| PACKAGE <package name>
[AS/IS]
PL/SQL package specification

All the procedures, sub programs, cursors declared in the CREATE PACK-
AGE command are described and implemented fully in the package body
along with private members. The syntax for declaring a package body is as
follows:

CREATE[OR REPLACE] PACKAGE BODY <package name>
[AS/IS]
PL/SQL package body

Member functions and procedures can be declared in a package and can
be made public or private member using the keywords public and private.
Use of all the private members of the package is restricted within the package
while the public members of the package can be accessed and used outside
the package.

Referencing Package Subprograms

Once the package body is created with all members as public, we can access
them from outside the program. To access these members outside the packages
we have to use the dot operator, by prefixing the package object with the
package name. The syntax for referencing any member object is as follows:

<PACKAGE_NAME>.<VARIABLE_NAME>
To reference procedures we have to use the syntax as follows:
EXECUTE <package-name>.<procedure_name(variables)>;

But the package member can be referenced by only its name if we reference
the member within the package. Moreover the EXECUTE command is not
required if procedures are called within PL/SQL. Functions can be referenced
similar to that of procedures from outside the package using the dot operator.

Public and Private Members of a Package

A package can consist of public as well as private members. Public members
are those members which are accessible outside the package, whereas the pri-
vate members are accessible only from within the package. Private members
are just like local members whose are not visible outside the enclosing code
block (in this case, a package).

5.15 Exceptions Handling 255

The place where a package member is declared, also matters in deciding
the visibility of that member. Those members whose declaration is found
in the package specification are the public members. The package members
that are not declared in the package specification but directly defined in the
package body become the private members.

Viewing Existing Procedural Objects

The source code for the existing procedures, functions, and packages can be
queried from the following data dictionary views.

USER_SOURCE Procedural objects owned by the user.

ALL_SOURCE Procedural objects owned by the user or
to which the user has been granted access.

DBA_SOURCE Procedural objects in the database.

Removing a Package

A package can be dropped from the database just like any other table or
database object. The exact syntax of the command to be used for dropping a
package is:

DROP PACKAGE <PACKAGE_NAME>;

To drop a package a user either must own the package or he should have
DROP ANY PACKAGE privilege.

5.15 Exceptions Handling

During execution of a PL/SQL block of code, Oracle executes every SQL
sentence within the PL/SQL block. If an error occurs or an SQL sentence
fails, Oracle considers this as an Exception. Oracle engine immediately tries
to handle the exception and resolve it, by raising a built-in Exception handler.

Introduction to Exceptions

One can define an EXCEPTION as any error or warning condition that arises
during runtime. The main intention of building EXCEPTION technique is to
continue the processing of a program even when it encounters runtime error
or warning and display suitable messages on console so that user can handle
those conditions next time.

In absence of exceptions, unless the error checking is disabled, a program
will exit abnormally whenever some runtime error occurs. But with exceptions,

256 5 PL/SQL

if at all some error situation occurs, the exceptional handler unit will flag an
appropriate error/warning message and will continue the execution of program
and finally come out of the program successfully.

An exception handler is a code block in memory that attempts to resolve
the current exception condition. To handle very common and repetitive excep-
tion conditions Oracle has about 20 Named Exception Handlers. In addition
to these for other exception conditions Oracle has about 20,000 Numbered
Exception Handlers, which are identified by four integers preceded by hy-
phen. Each exception handler, irrespective of how it is defined, (i.e., by Name
or Number) has code attached to it that attempts to resolve the exception
condition. This is how Oracle’s Internal Exception handling strategy works.

Oracle’s internal exception handling code can be overridden. When this is
done Oracle’s internal exception handling code is not executed but the code
block that takes care of the exception condition, in the exception section, of
the PL/SQL block is executed. As soon as the Oracle invokes an exception
handler the exception handler goes back to the PL/SQL block from which
the exception condition was raised. The exception handler scans the PL/SQL
block for the existence of exception section within the PL/SQL block. If an
exception section within the PL/SQL block exists the exception handler scans
the first word, after the key word WHEN, within the exception section. If the
first word after the key word WHEN is the exception handler’s name then
the exception handler executes the code contained in the THEN section of
the construct, the syntax follows:

EXCEPTION
WHEN exception-name THEN
User defined action to be carried out.

Exceptions can be internally defined (by the run-time system) or user
defined. Internally defined exceptions are raised implicitly (automatically) by
the run-time system. User-defined exceptions must be raised explicitly by
RAISE statements, which can also raise internally defined exceptions. Raised
exceptions are handled by separate routines called exception handlers. After
an exception handler runs, the current block stops executing and the enclosing
block resumes with the next statement. If there is no enclosing block, control
returns to the host environment.

Advantages of Using Exceptions

1. Control over abnormal exits of executing programs on encountering error
conditions, hence the behavior of application becomes more reliable.

2. Meaningful messages can be flagged so that the developer can become
aware of error and warning conditions and act upon them.

3. In traditional error checking system, if same error is to be checked at
several places, you are required to code the same error check at all those

5.15 Exceptions Handling 257

places. But with exception handling technique, we will write the exception
for that particular error only once in the entire code. Whenever that type
error occurs at any place in code, the exceptional handler will automati-
cally raise the defined exception.

4. Being a part of PL/SQL, exceptions can be coded at suitable places and
can be coded isolated like procedures and functions. This improves the
overall readability of a PL/SQL program.

5. Oracle’s internal exception mechanism combined with user-defined
exceptions, considerably reduce the development efforts required for
cumbersome error handling.

Predefined and User-Defined Exceptions

As discussed earlier there are some predefined or internal exceptions, and a
developer can also code user-defined exceptions according to his requirement.
In next session we will be looking closely at these two types of exceptions.

Internally (Predefined) Defined Exceptions

An internal exception is raised implicitly whenever a PL/SQL program vio-
lates an Oracle rule or exceeds a system-dependent limit. Every Oracle error
has a number, but exceptions must be handled by name. So, PL/SQL prede-
fines a name for some common errors to raise them as exception. For example,
if a SELECT INTO statement returns no rows, PL/SQL raises the predefined
exception NO_DATA_FOUND, which has the associated Oracle error number
ORA-01403.

Example

Figure 5.21 shows the internally defined exception NO_DATA_FOUND, when
we want to get a salary of an employee who is not in the EMP table.

If we execute this query with some emp_name say “XYZ” as input and if
emp_name column of employee table does not contain any value “XYZ,” Or-
acle’s internal exception handling mechanism will raise NO_DATA_FOUND
exception even when we have not coded for it.

PL/SQL declares predefined exceptions globally in package STANDARD,
which defines the PL/SQL environment. Some of the commonly used
exceptions are as follows:

User Defined Exceptions

Unlike internally defined exceptions, user-defined exceptions must be declared
and raised explicitly by RAISE statements. Exceptions can be declared only in
the declarative part of a PL/SQL block, subprogram, or package. An exception
is declared by introducing its name, followed by the keyword EXCEPTION.

258 5 PL/SQL

Name of the exception

Raised when ...

ACCESS_INTO_NULL

COLLECTION_IS_NULL

CURSOR-ALREADY_OPEN

DUP_VAL_ON_INDEX

INVALID_CURSOR

INVALID_NUMBER

LOGIN_DENIED

NO_DATA_FOUND

NOT_LOGGED-ON

Your program attempts to assign values to the
attributes of an uninitialized (atomically null)
object.

Your program attempts to apply collection
methods, other than EXISTS to an uninitial-
ized (atomically null) nested table or varray,
or the program attempts to assign values to
the elements of an uninitialized nested table or
varray.

Your program attempts to open an already
open cursor. A cursor must be closed before it
can be reopened. A cursor FOR loop automat-
ically opens the cursor to which it refers. So,
your program cannot open that cursor inside
the loop.

Your program attempts to store duplicate val-
ues in a database column that is constrained
by a unique index.

Your program attempts an illegal cursor oper-
ation such as closing an unopened cursor.

In a SQL statement, the conversion of a charac-
ter string into a number fails because the string
does not represent a valid number. (In proce-
dural statements, VALUE_ERROR is raised.)

Your program attempts to log on to Oracle
with an invalid username and/or password.

A SELECT INTO statement returns no rows,
or your program references a deleted element
in a nested table or an uninitia