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Introduction to The DQSign &
The most valuable acquisitions in a scientific or technical education are the _ An a IYSi s Of Al go rith m s

general-purpose mental tools which remain serviceable for a life-time. 3 RD EDITION
—George Forsythe, “What to do till the computer scientist comes.” (1968)

lgorithms play the central role both in the science and practice of computing.

Recognition of this fact has led to the appearance of a considerable number
of textbooks on the subject. By and large, they follow one of two alternatives
in presenting algorithms. One classifies algorithms according to a problem type.
Such a book would have separate chapters on algorithms for sorting, searching,
graphs, and so on. The advantage of this approach is that it allows an immediate
comparison of, say, the efficiency of different algorithms for the same problem.
The drawback of this approach is that it emphasizes problem types at the expense
of algorithm design techniques.

The second alternative organizes the presentation around algorithm design
techniques. In this organization, algorithms from different areas of computing are
grouped together if they have the same design approach. I share the belief of many
(e.g., [BaY95]) that this organization is more appropriate for a basic course on the
design and analysis of algorithms. There are three principal reasons for emphasis
on algorithm design techniques. First, these techniques provide a student with
tools for designing algorithms for new problems. This makes learning algorithm
design techniques a very valuable endeavor from a practical standpoint. Second,
they seek to classify multitudes of known algorithms according to an underlying
design idea. Learning to see such commonality among algorithms from different
application areas should be a major goal of computer science education. After all,
every science considers classification of its principal subject as a major if not the
central point of its discipline. Third, in my opinion, algorithm design techniques
have utility as general problem solving strategies, applicable to problems beyond
computing.
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New to the Third Edition

Reordering of chapters to introduce decrease-and-conquer before divide-
and-conquer

Restructuring of chapter 8 on dynamic programming, including all new intro-
ductory material and new exercises focusing on well-known applications

More coverage of the applications of the algorithms discussed

Reordering of select sections throughout the book to achieve a better align-
ment of specific algorithms and general algorithm design techniques

Addition of the Lomuto partition and Gray code algorithms

Seventy new problems added to the end-of-chapter exercises, including algo-
rithmic puzzles and questions asked during job interviews
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usage often yields more succinct algorithm descriptions. Surprisingly, computer
scientists have never agreed on a single form of pseudocode, leaving textbook
authors with a need to design their own “dialects.” Fortunately, these dialects are
so close to each other that anyone familiar with a modern programming language
should be able to understand them all.

This book’s dialect was selected to cause minimal difficulty for a reader. For
the sake of simplicity, we omit declarations of variables and use indentation to
show the scope of such statements as for, if, and while. As you saw in the previous
section, we use an arrow “<" for the assignment operation and two slashes “//”
for comments.

In the earlier days of computing, the dominant vehicle for specifying algo-
rithms was a flowchart, a method of expressing an algorithm by a collection of
connected geometric shapes containing descriptions of the algorithm’s steps. This
representation technique has proved to be inconvenient for all but very simple
algorithms; nowadays, it can be found only in old algorithm books.

The state of the art of computing has not yet reached a point where an
algorithm’s description—be it in a natural language or pseudocode—can be fed
into an electronic computer directly. Instead, it needs to be converted into a
computer program written in a particular computer language. We can look at such
a program as yet another way of specifying the algorithm, although it is preferable
to consider it as the algorithm’s implementation.

Proving an Algorithm’s Correctness

Once an algorithm has been specified, you have to prove its correctness. That is,
you have to prove that the algorithm yields a required result for every legitimate
input in a finite amount of time. For example, the correctness of Euclid’s algorithm
for computing the greatest common divisor stems from the correctness of the
equality gcd(m, n) = gcd(n, m mod n) (which, in turn, needs a proof; see Problem
7 in Exercises 1.1), the simple observation that the second integer gets smaller on
every iteration of the algorithm, and the fact that the algorithm stops when the
second integer becomes 0.

For some algorithms, a proof of correctness is quite easy; for others, it can be
quite complex. A common technique for proving correctness is to use mathemati-
cal induction because an algorithm’s iterations provide a natural sequence of steps
needed for such proofs. It might be worth mentioning that although tracing the
algorithm’s performance for a few specific inputs can be a very worthwhile activ-
ity, it cannot prove the algorithm’s correctness conclusively. But in order to show
that an algorithm is incorrect, you need just one instance of its input for which the
algorithm fails.

The notion of correctness for approximation algorithms is less straightforward
than it is for exact algorithms. For an approximation algorithm, we usually would
like to be able to show that the error produced by the algorithm does not exceed
a predefined limit. You can find examples of such investigations in Chapter 12.

XX
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Unfortunately, the traditional classification of algorithm design techniques
has several serious shortcomings, from both theoretical and educational points
of view. The most significant of these shortcomings is the failure to classify many
important algorithms. This limitation has forced the authors of other textbooks
to depart from the design technique organization and to include chapters dealing
with specific problem types. Such a switch leads to a loss of course coherence and
almost unavoidably creates a confusion in students’ minds.

New taxonomy of algorithm design techniques

My frustration with the shortcomings of the traditional classification of algorithm
design techniques has motivated me to develop a new taxonomy of them [Lev99],
which is the basis of this book. Here are the principal advantages of the new
taxonomy:

®  The new taxonomy is more comprehensive than the traditional one. Itincludes
several strategies—brute-force, decrease-and-conquer, transform-and-con-
quer, space and time trade-offs, and iterative improvement—that are rarely
if ever recognized as important design paradigms.

B The new taxonomy covers naturally many classic algorithms (Euclid’s algo-
rithm, heapsort, search trees, hashing, topological sorting, Gaussian elimi-
nation, Horner’s rule—to name a few) that the traditional taxonomy cannot
classify. As a result, the new taxonomy makes it possible to present the stan-
dard body of classic algorithms in a unified and coherent fashion.

® It naturally accommodates the existence of important varieties of several
design techniques. For example, it recognizes three variations of decrease-
and-conquer and three variations of transform-and-conquer.

B It is better aligned with analytical methods for the efficiency analysis (see
Appendix B).

Design techniques as general problem solving strategies

Most applications of the design techniques in the book are to classic problems of
computer science. (The only innovation here is an inclusion of some material on
numerical algorithms, which are covered within the same general framework.)
But these design techniques can be considered general problem solving tools,
whose applications are not limited to traditional computing and mathematical
problems. Two factors make this point particularly important. First, more and
more computing applications go beyond the traditional domain, and there are
reasons to believe that this trend will strengthen in the future. Second, developing
students’ problem solving skills has come to be recognized as a major goal of
college education. Among all the courses in a computer science curriculum, a
course on the design and analysis of algorithms is uniquely suitable for this task
because it can offer a student specific strategies for solving problems.

I am not proposing that a course on the design and analysis of algorithms
should become a course on general problem solving. But I do believe that the
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unique opportunity provided by studying the design and analysis of algorithms
should not be missed. Toward this goal, the book includes applications to puzzles
and puzzle-like games. Although using puzzles in teaching algorithms is certainly
not a new idea, the book tries to do this systematically by going well beyond a few
standard examples.

Textbook pedagogy

My goal was to write a text that would not trivialize the subject but would still be
readable by most students on their own. Here are some of the things done toward
this objective.

®m  Sharing the opinion of George Forsythe expressed in the epigraph, I have
sought to stress major ideas underlying the design and analysis of algorithms.
In choosing specific algorithms toillustrate these ideas, I limited the number of
covered algorithms to those that demonstrate an underlying design technique
or an analysis method most clearly. Fortunately, most classic algorithms satisfy
this criterion.

B In Chapter 2, which is devoted to efficiency analysis, the methods used for
analyzing nonrecursive algorithms are separated from those typically used for
analyzing recursive algorithms. The chapter also includes sections devoted to
empirical analysis and algorithm visualization.

®  The narrative is systematically interrupted by questions to the reader. Some
of them are asked rhetorically, in anticipation of a concern or doubt, and are
answered immediately. The goal of the others is to prevent the reader from
drifting through the text without a satisfactory level of comprehension.

®  Each chapter ends with a summary recapping the most important concepts
and results discussed in the chapter.

®  The book contains over 600 exercises. Some of them are drills; others make
important points about the material covered in the body of the text or intro-
duce algorithms not covered there at all. A few exercises take advantage of
Internet resources. More difficult problems—there are not many of them—
are marked by special symbols in the Instructor’s Manual. (Because marking
problems as difficult may discourage some students from trying to tackle them,
problems are not marked in the book itself.) Puzzles, games, and puzzle-like
questions are marked in the exercises with a special icon.

®  The book provides hints to all the exercises. Detailed solutions, except for
programming projects, are provided in the Instructor’s Manual, available
to qualified adopters through Pearson’s Instructor Resource Center. (Please
contact your local Pearson sales representative or go to www.pearsonhighered
.com/irc to access this material.) Slides in PowerPoint are available to all
readers of this book via anonymous ftp at the CS Support site: http://cssupport
.pearsoncmg.com/.
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Introduction

to fish as opposed to being given a fish caught by somebody else. It is not true, of
course, that each of these general techniques will be necessarily applicable to every
problem you may encounter. But taken together, they do constitute a powerful
collection of tools that you will find quite handy in your studies and work.

Second, algorithms are the cornerstone of computer science. Every science is
interested in classifying its principal subject, and computer science is no exception.
Algorithm design techniques make it possible to classify algorithms according
to an underlying design idea; therefore, they can serve as a natural way to both
categorize and study algorithms.

Designing an Algorithm and Data Structures

While the algorithm design techniques do provide a powerful set of general ap-
proaches to algorithmic problem solving, designing an algorithm for a particular
problem may still be a challenging task. Some design techniques can be simply
inapplicable to the problem in question. Sometimes, several techniques need to
be combined, and there are algorithms that are hard to pinpoint as applications
of the known design techniques. Even when a particular design technique is ap-
plicable, getting an algorithm often requires a nontrivial ingenuity on the part of
the algorithm designer. With practice, both tasks—choosing among the general
techniques and applying them—get easier, but they are rarely easy.

Of course, one should pay close attention to choosing data structures appro-
priate for the operations performed by the algorithm. For example, the sieve of
Eratosthenes introduced in Section 1.1 would run longer if we used a linked list
instead of an array in its implementation (why?). Also note that some of the al-
gorithm design techniques discussed in Chapters 6 and 7 depend intimately on
structuring or restructuring data specifying a problem’s instance. Many years ago,
an influential textbook proclaimed the fundamental importance of both algo-
rithms and data structures for computer programming by its very title: Algorithms
+ Data Structures = Programs [Wir76]. In the new world of object-oriented pro-
gramming, data structures remain crucially important for both design and analysis
of algorithms. We review basic data structures in Section 1.4.

Methods of Specifying an Algorithm

Once you have designed an algorithm, you need to specify it in some fashion. In
Section 1.1, to give you an example, Euclid’s algorithm is described in words (in a
free and also a step-by-step form) and in pseudocode. These are the two options
that are most widely used nowadays for specifying algorithms.

Using a natural language has an obvious appeal; however, the inherent ambi-
guity of any natural language makes a succinct and clear description of algorithms
surprisingly difficult. Nevertheless, being able to do this is an important skill that
you should strive to develop in the process of learning algorithms.

Pseudocode is a mixture of a natural language and programming language-
like constructs. Pseudocode is usually more precise than natural language, and its
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Should you worry about the speed and amount of memory of a computer at
your disposal? If you are designing an algorithm as a scientific exercise, the answer
is a qualified no. As you will see in Section 2.1, most computer scientists prefer to
study algorithms in terms independent of specification parameters for a particular
computer. If you are designing an algorithm as a practical tool, the answer may
depend on a problem you need to solve. Even the “slow” computers of today are
almost unimaginably fast. Consequently, in many situations you need not worry
about a computer being too slow for the task. There are important problems,
however, that are very complex by their nature, or have to process huge volumes
of data, or deal with applications where the time is critical. In such situations,
it is imperative to be aware of the speed and memory available on a particular
computer system.

Choosing between Exact and Approximate Problem Solving

The next principal decision is to choose between solving the problem exactly or
solving it approximately. In the former case, an algorithm is called an exact algo-
rithm; in the latter case, an algorithm is called an approximation algorithm. Why
would one opt for an approximation algorithm? First, there are important prob-
lems that simply cannot be solved exactly for most of their instances; examples
include extracting square roots, solving nonlinear equations, and evaluating def-
inite integrals. Second, available algorithms for solving a problem exactly can be
unacceptably slow because of the problem’s intrinsic complexity. This happens, in
particular, for many problems involving a very large number of choices; you will
see examples of such difficult problems in Chapters 3, 11, and 12. Third, an ap-
proximation algorithm can be a part of a more sophisticated algorithm that solves
a problem exactly.

Algorithm Design Techniques

Now, with all the components of the algorithmic problem solving in place, how do
you design an algorithm to solve a given problem? This is the main question this
book seeks to answer by teaching you several general design techniques.

‘What is an algorithm design technique?

An algorithm design technique (or “strategy” or “paradigm”) is a general
approach to solving problems algorithmically that is applicable to a variety
of problems from different areas of computing.

Check this book’s table of contents and you will see that a majority of its
chapters are devoted to individual design techniques. They distill a few key ideas
that have proven to be useful in designing algorithms. Learning these techniques
is of utmost importance for the following reasons.

First, they provide guidance for designing algorithms for new problems, i.e.,
problems for which there is no known satisfactory algorithm. Therefore—to use
the language of a famous proverb—Ilearning such techniques is akin to learning

xxii

Preface

Changes for the third edition

There are a few changes in the third edition. The mostimportant is the new order of
the chapters on decrease-and-conquer and divide-and-conquer. There are several
advantages in introducing decrease-and-conquer before divide-and-conquer:

Decrease-and-conquer is a simpler strategy than divide-and-conquer.
Decrease-and-conquer is applicable to more problems than divide-and-con-
quer.

®  The new order makes it possible to discuss insertion sort before mergesort
and quicksort.

B The idea of array partitioning is now introduced in conjunction with the
selection problem. I took advantage of an opportunity to do this via the one-
directional scan employed by Lomuto’s algorithm, leaving the two-directional
scan used by Hoare’s partitioning to a later discussion in conjunction with
quicksort.

B Binary search is now considered in the section devoted to decrease-by-a-
constant-factor algorithms, where it belongs.

The second important change is restructuring of Chapter 8 on dynamic pro-
gramming. Specifically:

B The introductory section is completely new. It contains three basic examples
that provide a much better introduction to this important technique than
computing a binomial coefficient, the example used in the first two editions.

B All the exercises for Section 8.1 are new as well; they include well-known
applications not available in the previous editions.

B Talso changed the order of the other sections in this chapter to get a smoother
progression from the simpler applications to the more advanced ones.

The other changes include the following. More applications of the algorithms
discussed are included. The section on the graph-traversal algorithms is moved
from the decrease-and-conquer chapter to the brute-force and exhaustive-search
chapter, where it fits better, in my opinion. The Gray code algorithm is added to the
section dealing with algorithms for generating combinatorial objects. The divide-
and-conquer algorithm for the closest-pair problem is discussed in more detail.
Updates include the section on algorithm visualization, approximation algorithms
for the traveling salesman problem, and, of course, the bibliography.

I also added about 70 new problems to the exercises. Some of them are algo-
rithmic puzzles and questions asked during job interviews.

Prerequisites

The book assumes that a reader has gone through an introductory programming
course and a standard course on discrete structures. With such a background,
he or she should be able to handle the book’s material without undue difficulty.
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Still, fundamental data structures, necessary summation formulas, and recurrence
relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively.
Calculus is used in only three sections (Section 2.2, 11.4, and 12.4), and to a very
limited degree; if students lack calculus as an assured part of their background, the
relevant portions of these three sections can be omitted without hindering their
understanding of the rest of the material.

Use in the curriculum

The book can serve as a textbook for a basic course on design and analysis of
algorithms organized around algorithm design techniques. It might contain slightly
more material than can be covered in a typical one-semester course. By and large,
portions of Chapters 3 through 12 can be skipped without the danger of making
later parts of the book incomprehensible to the reader. Any portion of the book
can be assigned for self-study. In particular, Sections 2.6 and 2.7 on empirical
analysis and algorithm visualization, respectively, can be assigned in conjunction
with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting
format.

Lecture  Topic Sections
1 Introduction 1.1-1.3
2,3 Analysis framework; O, 2, ® notations 21,22
4 Mathematical analysis of nonrecursive algorithms 23
5,6 Mathematical analysis of recursive algorithms 2.4,2.5 (+ App. B)
7 Brute-force algorithms 3.1,32(+33)
8 Exhaustive search 3.4
9 Depth-first search and breadth-first search 35
10,11 Decrease-by-one: insertion sort, topological sorting 41,42
12 Binary search and other decrease-by-a-constant- 4.4
factor algorithms
13 Variable-size-decrease algorithms 45
14,15 Divide-and-conquer: mergesort, quicksort 51-52
16 Other divide-and-conquer examples 53orS54o0r5.S
17-19 Instance simplification: presorting, Gaussian elimi- 6.1-6.3
nation, balanced search trees
20 Representation change: heaps and heapsort or 6.4 0r 6.5
Horner’s rule and binary exponentiation
21 Problem reduction 6.6
22-24 Space-time trade-offs: string matching, hashing, B- 7.2-7.4
trees

25-27 Dynamic programming algorithms 3 from 8.1-8.4
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FIGURE 1.2 Algorithm design and analysis process.

algorithms in use today are still destined to be programmed for a computer closely
resembling the von Neumann machine—a computer architecture outlined by
the prominent Hungarian-American mathematician John von Neumann (1903-
1957), in collaboration with A. Burks and H. Goldstine, in 1946. The essence of
this architecture is captured by the so-called random-access machine (RAM).
Its central assumption is that instructions are executed one after another, one
operation at a time. Accordingly, algorithms designed to be executed on such
machines are called sequential algorithms.

The central assumption of the RAM model does not hold for some newer
computers that can execute operations concurrently, i.e., in parallel. Algorithms
that take advantage of this capability are called parallel algorithms. Still, studying
the classic techniques for design and analysis of algorithms under the RAM model
remains the cornerstone of algorithmics for the foreseeable future.
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Fundamentals of Algorithmic Problem Solving

Let us start by reiterating an important point made in the introduction to this
chapter:

We can consider algorithms to be procedural solutions to problems.

These solutions are not answers but specific instructions for getting answers. It is
this emphasis on precisely defined constructive procedures that makes computer
science distinct from other disciplines. In particular, this distinguishes it from the-
oretical mathematics, whose practitioners are typically satisfied with just proving
the existence of a solution to a problem and, possibly, investigating the solution’s
properties.

We now list and briefly discuss a sequence of steps one typically goes through
in designing and analyzing an algorithm (Figure 1.2).

Understanding the Problem

From a practical perspective, the first thing you need to do before designing an
algorithm is to understand completely the problem given. Read the problem’s
description carefully and ask questions if you have any doubts about the problem,
do a few small examples by hand, think about special cases, and ask questions
again if needed.

There are a few types of problems that arise in computing applications quite
often. We review them in the next section. If the problem in question is one of
them, you might be able to use a known algorithm for solving it. Of course, it
helps to understand how such an algorithm works and to know its strengths and
weaknesses, especially if you have to choose among several available algorithms.
But often you will not find a readily available algorithm and will have to design
your own. The sequence of steps outlined in this section should help you in this
exciting but not always easy task.

An input to an algorithm specifies an instance of the problem the algorithm
solves. It is very important to specify exactly the set of instances the algorithm
needs to handle. (As an example, recall the variations in the set of instances for
the three greatest common divisor algorithms discussed in the previous section.)
If you fail to do this, your algorithm may work correctly for a majority of inputs
but crash on some “boundary” value. Remember that a correct algorithm is not
one that works most of the time, but one that works correctly for all legitimate
inputs.

Do not skimp on this first step of the algorithmic problem-solving process;
otherwise, you will run the risk of unnecessary rework.

Ascertaining the Capabilities of the Computational Device

Once you completely understand a problem, you need to ascertain the capabilities
of the computational device the algorithm is intended for. The vast majority of
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5. Design an algorithm to find all the common elements in two sorted lists of
numbers. For example, for the lists 2, 5, 5, 5 and 2, 2, 3, 5, 5, 7, the output
should be 2,5, 5. What is the maximum number of comparisons your algorithm
makes if the lengths of the two given lists are m and n, respectively?

6. a. Find gcd(31415, 14142) by applying Euclid’s algorithm.
b. Estimate how many times faster it will be to find ged(31415, 14142) by
Euclid’s algorithm compared with the algorithm based on checking con-
secutive integers from min{m, n} down to gcd(m, n).

-
Introduction to The Des‘gn & 7. Prove the equality ged(m, n) = ged(n, m mod n) for every pair of positive

integers m and n.

- L]
Ana IYS'S Of Algo rlth ms 8. What does Euclid’s algorithm do for a pair of integers in which the first is
3 RD EDITION smaller than the second? What is the maximum number of times this can
happen during the algorithm’s execution on such an input?

9. a. What is the minimum number of divisions made by Euclid’s algorithm
among all inputs 1 <m, n <10?

b. What is the maximum number of divisions made by Euclid’s algorithm
among all inputs 1 <m, n <10?

10. a. Euclid’s algorithm, as presented in Euclid’s treatise, uses subtractions
rather than integer divisions. Write pseudocode for this version of Euclid’s
algorithm.

"i‘gj b. Euclid’s game (see [Bog]) starts with two unequal positive integers on the
board. Two players move in turn. On each move, a player has to write on
the board a positive number equal to the difference of two numbers already
on the board; this number must be new, i.e., different from all the numbers
already on the board. The player who cannot move loses the game. Should
you choose to move first or second in this game?

11. The extended Euclid’s algorithm determines not only the greatest common
divisor d of two positive integers m and n but also integers (not necessarily
positive) x and y, such that mx + ny =d.

a. Look up a description of the extended Euclid’s algorithm (see, e.g., [Knul,
p- 13]) and implement it in the language of your choice.

b. Modify your program to find integer solutions to the Diophantine equation
ax + by = ¢ with any set of integer coefficients a, b, and c.

,'fg': 12. Locker doors There are n lockers in a hallway, numbered sequentially from
1 to n. Initially, all the locker doors are closed. You make n passes by the
lockers, each time starting with locker #1. On the ith pass,i =1, 2, ..., n,you
toggle the door of every ith locker: if the door is closed, you open it; if it is
open, you close it. After the last pass, which locker doors are open and which
are closed? How many of them are open?
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for p < 2tondo A[p] < p
for p < 2to | /n]do //see note before pseudocode
if A[p] #0 //p hasn’t been eliminated on previous passes
J< pxp
while j < ndo
A[j]< 0 //mark element as eliminated
j<Jji+tp
/lcopy the remaining elements of A to array L of the primes
i<0
for p < 2 ton do
if A[p] #0
Lli] < A[p]
i<—i+1
return L

So now we can incorporate the sieve of Eratosthenes into the middle-school
procedure to get a legitimate algorithm for computing the greatest common divi-
sor of two positive integers. Note that special care needs to be exercised if one or
both input numbers are equal to 1: because mathematicians do not consider 1 to
be a prime number, strictly speaking, the method does not work for such inputs.

Before we leave this section, one more comment is in order. The exam-
ples considered in this section notwithstanding, the majority of algorithms in use
today—even those that are implemented as computer programs—do not deal with
mathematical problems. Look around for algorithms helping us through our daily
routines, both professional and personal. May this ubiquity of algorithms in to-
day’s world strengthen your resolve to learn more about these fascinating engines
of the information age.

Exercises 1.1

1. Do some research on al-Khorezmi (also al-Khwarizmi), the man from whose
name the word “algorithm” is derived. In particular, you should learn what
the origins of the words “algorithm” and “algebra” have in common.

2. Given that the official purpose of the U.S. patent system is the promotion
of the “useful arts,” do you think algorithms are patentable in this country?
Should they be?

3. a. Write down driving directions for going from your school to your home
with the precision required from an algorithm’s description.
b. Write down a recipe for cooking your favorite dish with the precision
required by an algorithm.
4. Design an algorithm for computing | +/z | for any positive integer n. Besides

assignment and comparison, your algorithm may only use the four basic
arithmetical operations.

This page intentionally left blank



Introduction

Two ideas lie gleaming on the jeweler’s velvet. The first is the calculus, the
second, the algorithm. The calculus and the rich body of mathematical
analysis to which it gave rise made modern science possible; but it has been
the algorithm that has made possible the modern world.

—David Berlinski, The Advent of the Algorithm, 2000

hy do you need to study algorithms? If you are going to be a computer

professional, there are both practical and theoretical reasons to study algo-
rithms. From a practical standpoint, you have to know a standard set of important
algorithms from different areas of computing; in addition, you should be able to
design new algorithms and analyze their efficiency. From the theoretical stand-
point, the study of algorithms, sometimes called algorithmics, has come to be
recognized as the cornerstone of computer science. David Harel, in his delightful
book pointedly titled Algorithmics: the Spirit of Computing, put it as follows:

Algorithmics is more than a branch of computer science. It is the core of
computer science, and, in all fairness, can be said to be relevant to most of
science, business, and technology. [Har92, p. 6]

But even if you are not a student in a computing-related program, there are
compelling reasons to study algorithms. To put it bluntly, computer programs
would not exist without algorithms. And with computer applications becoming
indispensable in almost all aspects of our professional and personal lives, studying
algorithms becomes a necessity for more and more people.

Another reason for studying algorithms is their usefulness in developing an-
alytical skills. After all, algorithms can be seen as special kinds of solutions to
problems—not just answers but precisely defined procedures for getting answers.
Consequently, specific algorithm design techniques can be interpreted as problem-
solving strategies that can be useful regardless of whether a computer is involved.
Of course, the precision inherently imposed by algorithmic thinking limits the
kinds of problems that can be solved with an algorithm. You will not find, for
example, an algorithm for living a happy life or becoming rich and famous. On
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require a list of prime numbers, and I strongly suspect that your middle-school
math teacher did not explain how to obtain such a list. This is not a matter
of unnecessary nitpicking. Unless this issue is resolved, we cannot, say, write a
program implementing this procedure. Incidentally, Step 3 is also not defined
clearly enough. Its ambiguity is much easier to rectify than that of the factorization
steps, however. How would you find common elements in two sorted lists?

So, let us introduce a simple algorithm for generating consecutive primes not
exceeding any given integer n > 1. It was probably invented in ancient Greece
and is known as the sieve of Eratosthenes (ca. 200 B.c.). The algorithm starts by
initializing a list of prime candidates with consecutive integers from 2 to n. Then,
on its first iteration, the algorithm eliminates from the list all multiples of 2, i.e., 4,
6, and so on. Then it moves to the next item on the list, which is 3, and eliminates
its multiples. (In this straightforward version, there is an overhead because some
numbers, such as 6, are eliminated more than once.) No pass for number 4 is
needed: since 4 itself and all its multiples are also multiples of 2, they were already
eliminated on a previous pass. The next remaining number on the list, which is
used on the third pass, is 5. The algorithm continues in this fashion until no more
numbers can be eliminated from the list. The remaining integers of the list are the
primes needed.

As an example, consider the application of the algorithm to finding the list of
primes not exceeding n = 25:

234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
23 5 7 9 11 13 15 17 19 21 23 25
23 5 7 11 13 17 19 23 25
23 5 7 11 13 17 19 23

For this example, no more passes are needed because they would eliminate num-
bers already eliminated on previous iterations of the algorithm. The remaining
numbers on the list are the consecutive primes less than or equal to 25.

What is the largest number p whose multiples can still remain on the list
to make further iterations of the algorithm necessary? Before we answer this
question, let us first note that if p is a number whose multiples are being eliminated
on the current pass, then the first multiple we should consider s p - p because all its
smaller multiples2p, . .., (p — 1) p have been eliminated on earlier passes through
the list. This observation helps to avoid eliminating the same number more than
once. Obviously, p - p should not be greater than n, and therefore p cannot exceed
/n rounded down (denoted | /n | using the so-called floor function). We assume
in the following pseudocode that there is a function available for computing Lﬁj ;
alternatively, we could check the inequality p - p < n as the loop continuation
condition there.

ALGORITHM  Sieve(n)
//Implements the sieve of Eratosthenes
/[Input: A positive integer n > 1
/[Output: Array L of all prime numbers less than or equal to n
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Just as with many other problems, there are several algorithms for computing
the greatest common divisor. Let us look at the other two methods for this prob-
lem. The first is simply based on the definition of the greatest common divisor of
m and n as the largest integer that divides both numbers evenly. Obviously, such
a common divisor cannot be greater than the smaller of these numbers, which we
will denote by t = min{m, n}. So we can start by checking whether ¢ divides both
m and n: if it does, ¢ is the answer; if it does not, we simply decrease ¢ by 1 and
try again. (How do we know that the process will eventually stop?) For example,
for numbers 60 and 24, the algorithm will try first 24, then 23, and so on, until it
reaches 12, where it stops.

Consecutive integer checking algorithm for computing ged(m, n)
Step 1 Assign the value of min{m, n} to r.
Step 2 Divide m by ¢. If the remainder of this division is 0, go to Step 3;
otherwise, go to Step 4.
Step 3 Divide n by ¢. If the remainder of this division is 0, return the value of
t as the answer and stop; otherwise, proceed to Step 4.
Step 4 Decrease the value of ¢ by 1. Go to Step 2.

Note that unlike Euclid’s algorithm, this algorithm, in the form presented,
does not work correctly when one of its input numbers is zero. This example
illustrates why it is so important to specify the set of an algorithm’s inputs explicitly
and carefully.

The third procedure for finding the greatest common divisor should be famil-
iar to you from middle school.

Middle-school procedure for computing gcd(m, n)

Step 1 Find the prime factors of m.

Step 2 Find the prime factors of n.

Step 3 Identify all the common factors in the two prime expansions found in
Step 1 and Step 2. (If p is a common factor occurring p,, and p, times
in m and n, respectively, it should be repeated min{p,,, p,} times.)

Step 4 Compute the product of all the common factors and return it as the
greatest common divisor of the numbers given.

Thus, for the numbers 60 and 24, we get

60=2-2-3.5
24=2.2.2.3
2cd(60,24) =2-2-3=12.

Nostalgia for the days when we learned this method should not prevent us
from noting that the last procedure is much more complex and slower than Euclid’s
algorithm. (We will discuss methods for finding and comparing running times
of algorithms in the next chapter.) In addition to inferior efficiency, the middle-
school procedure does not qualify, in the form presented, as a legitimate algorithm.
Why? Because the prime factorization steps are not defined unambiguously: they
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the other hand, this required precision has an important educational advantage.
Donald Knuth, one of the most prominent computer scientists in the history of
algorithmics, put it as follows:

A person well-trained in computer science knows how to deal with algorithms:
how to construct them, manipulate them, understand them, analyze them.
This knowledge is preparation for much more than writing good computer
programs; it is a general-purpose mental tool that will be a definite aid to
the understanding of other subjects, whether they be chemistry, linguistics,
or music, etc. The reason for this may be understood in the following way:
It has often been said that a person does not really understand something
until after teaching it to someone else. Actually, a person does not really
understand something until after teaching it to a computer, i.e., expressing
it as an algorithm . . . An attempt to formalize things as algorithms leads to
a much deeper understanding than if we simply try to comprehend things in
the traditional way. [Knu96, p. 9]

We take up the notion of algorithm in Section 1.1. As examples, we use three
algorithms for the same problem: computing the greatest common divisor. There
are several reasons for this choice. First, it deals with a problem familiar to ev-
erybody from their middle-school days. Second, it makes the important point that
the same problem can often be solved by several algorithms. Quite typically, these
algorithms differ in their idea, level of sophistication, and efficiency. Third, one of
these algorithms deserves to be introduced first, both because of its age—it ap-
peared in Euclid’s famous treatise more than two thousand years ago—and its
enduring power and importance. Finally, investigation of these three algorithms
leads to some general observations about several important properties of algo-
rithms in general.

Section 1.2 deals with algorithmic problem solving. There we discuss several
important issues related to the design and analysis of algorithms. The different
aspects of algorithmic problem solving range from analysis of the problem and the
means of expressing an algorithm to establishing its correctness and analyzing its
efficiency. The section does not contain a magic recipe for designing an algorithm
for an arbitrary problem. It is a well-established fact that such a recipe does not
exist. Still, the material of Section 1.2 should be useful for organizing your work
on designing and analyzing algorithms.

Section 1.3 is devoted to a few problem types that have proven to be partic-
ularly important to the study of algorithms and their application. In fact, there
are textbooks (e.g., [Sed11]) organized around such problem types. I hold the
view—shared by many others—that an organization based on algorithm design
techniques is superior. In any case, it is very important to be aware of the princi-
pal problem types. Not only are they the most commonly encountered problem
types in real-life applications, they are used throughout the book to demonstrate
particular algorithm design techniques.

Section 1.4 contains a review of fundamental data structures. It is meant to
serve as a reference rather than a deliberate discussion of this topic. If you need
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a more detailed exposition, there is a wealth of good books on the subject, most
of them tailored to a particular programming language.

What Is an Algorithm?

Although there is no universally agreed-on wording to describe this notion, there
is general agreement about what the concept means:

An algorithm is a sequence of unambiguous instructions for solving a
problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time.

This definition can be illustrated by a simple diagram (Figure 1.1).

The reference to “instructions” in the definition implies that there is some-
thing or someone capable of understanding and following the instructions given.
We call this a “computer,” keeping in mind that before the electronic computer
was invented, the word “computer” meant a human being involved in perform-
ing numeric calculations. Nowadays, of course, “computers” are those ubiquitous
electronic devices that have become indispensable in almost everything we do.
Note, however, that although the majority of algorithms are indeed intended for
eventual computer implementation, the notion of algorithm does not depend on
such an assumption.

As examples illustrating the notion of the algorithm, we consider in this
section three methods for solving the same problem: computing the greatest
common divisor of two integers. These examples will help us to illustrate several
important points:
®  The nonambiguity requirement for each step of an algorithm cannot be com-

promised.

The range of inputs for which an algorithm works has to be specified carefully.

The same algorithm can be represented in several different ways.

There may exist several algorithms for solving the same problem.

problem

l

algorithm

"computer" output

FIGURE 1.1 The notion of the algorithm.
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®  Algorithms for the same problem can be based on very different ideas and
can solve the problem with dramatically different speeds.

Recall that the greatest common divisor of two nonnegative, not-both-zero
integers m and n, denoted ged(m, n), is defined as the largest integer that divides
both m and n evenly, i.e., with a remainder of zero. Euclid of Alexandria (third
century B.c.) outlined an algorithm for solving this problem in one of the volumes
of his Elements most famous for its systematic exposition of geometry. In modern
terms, Euclid’s algorithm is based on applying repeatedly the equality

ged(m, n) = ged(n, m mod n),

where m mod n is the remainder of the division of m by n, until m mod n is equal
to 0. Since ged(m, 0) = m (why?), the last value of m is also the greatest common
divisor of the initial m and n.

For example, ged(60, 24) can be computed as follows:

gcd(60, 24) = ged (24, 12) = ged(12, 0) = 12.

(If you are not impressed by this algorithm, try finding the greatest common divisor
of larger numbers, such as those in Problem 6 in this section’s exercises.)
Here is a more structured description of this algorithm:

Euclid’s algorithm for computing ged(m, n)
Step 1 If n =0, return the value of m as the answer and stop; otherwise,
proceed to Step 2.
Step 2 Divide m by n and assign the value of the remainder to r.
Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

Alternatively, we can express the same algorithm in pseudocode:

ALGORITHM  Euclid(m, n)
//Computes ged(m, n) by Euclid’s algorithm
/[Input: Two nonnegative, not-both-zero integers m and n
//Output: Greatest common divisor of m and n
while n # 0 do
r <—mmod n
m<—n
n<r
return m

How do we know that Euclid’s algorithm eventually comes to a stop? This
follows from the observation that the second integer of the pair gets smaller with
each iteration and it cannot become negative. Indeed, the new value of n on the
next iteration is m mod n, which is always smaller than n (why?). Hence, the value
of the second integer eventually becomes 0, and the algorithm stops.



1.4 Fundamental Data Structures 33

Rooted trees play a very important role in computer science, a much more
important one than free trees do; in fact, for the sake of brevity, they are often
referred to as simply “trees.” An obvious application of trees is for describing
hierarchies, from file directories to organizational charts of enterprises. There are
many less obvious applications, such as implementing dictionaries (see below),
efficient access to very large data sets (Section 7.4), and data encoding (Section
9.4). As we discuss in Chapter 2, trees also are helpful in analysis of recursive
algorithms. To finish this far-from-complete list of tree applications, we should
mention the so-called state-space trees that underline two important algorithm
design techniques: backtracking and branch-and-bound (Sections 12.1 and 12.2).

For any vertex v in a tree T, all the vertices on the simple path from the root
to that vertex are called ancestors of v. The vertex itself is usually considered its
own ancestor; the set of ancestors that excludes the vertex itself is referred to as
the set of proper ancestors. If (u, v) is the last edge of the simple path from the
root to vertex v (and u # v), u is said to be the parent of v and v is called a child
of u; vertices that have the same parent are said to be siblings. A vertex with no
children is called a leaf’; a vertex with at least one child is called parental. All the
vertices for which a vertex v is an ancestor are said to be descendants of v; the
proper descendants exclude the vertex v itself. All the descendants of a vertex v
with all the edges connecting them form the subtree of T rooted at that vertex.
Thus, for the tree in Figure 1.11b, the root of the tree is a; vertices d, g, f, h,and i
are leaves, and vertices a, b, e, and ¢ are parental; the parent of b is a; the children
of b are c and g; the siblings of b are d and ¢; and the vertices of the subtree rooted
atb are {b, c, g, h, i}.

The depth of a vertex v is the length of the simple path from the root to v. The
height of a tree is the length of the longest simple path from the root to a leaf. For
example, the depth of vertex c of the tree in Figure 1.11b is 2, and the height of
the tree is 3. Thus, if we count tree levels top down starting with 0 for the root’s
level, the depth of a vertex is simply its level in the tree, and the tree’s height is the
maximum level of its vertices. (You should be alert to the fact that some authors
define the height of a tree as the number of levels in it; this makes the height of
a tree larger by 1 than the height defined as the length of the longest simple path
from the root to a leaf.)

Ordered Trees An ordered tree is a rooted tree in which all the children of each
vertex are ordered. It is convenient to assume that in a tree’s diagram, all the
children are ordered left to right.

A binary tree can be defined as an ordered tree in which every vertex has
no more than two children and each child is designated as either a left child or a
right child of its parent; a binary tree may also be empty. An example of a binary
tree is given in Figure 1.12a. The binary tree with its root at the left (right) child
of a vertex in a binary tree is called the left (right) subtree of that vertex. Since
left and right subtrees are binary trees as well, a binary tree can also be defined
recursively. This makes it possible to solve many problems involving binary trees
by recursive algorithms.

14
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Analyzing an Algorithm

We usually want our algorithms to possess several qualities. After correctness,
by far the most important is efficiency. In fact, there are two kinds of algorithm
efficiency: time efficiency, indicating how fast the algorithm runs, and space ef-
ficiency, indicating how much extra memory it uses. A general framework and
specific techniques for analyzing an algorithm’s efficiency appear in Chapter 2.

Another desirable characteristic of an algorithm is simplicity. Unlike effi-
ciency, which can be precisely defined and investigated with mathematical rigor,
simplicity, like beauty, is to a considerable degree in the eye of the beholder. For
example, most people would agree that Euclid’s algorithm is simpler than the
middle-school procedure for computing ged(m, n), but it is not clear whether Eu-
clid’s algorithm is simpler than the consecutive integer checking algorithm. Still,
simplicity is an important algorithm characteristic to strive for. Why? Because sim-
pler algorithms are easier to understand and easier to program; consequently, the
resulting programs usually contain fewer bugs. There is also the undeniable aes-
thetic appeal of simplicity. Sometimes simpler algorithms are also more efficient
than more complicated alternatives. Unfortunately, it is not always true, in which
case a judicious compromise needs to be made.

Yet another desirable characteristic of an algorithm is generality. There are,
in fact, two issues here: generality of the problem the algorithm solves and the
set of inputs it accepts. On the first issue, note that it is sometimes easier to
design an algorithm for a problem posed in more general terms. Consider, for
example, the problem of determining whether two integers are relatively prime,
i.e., whether their only common divisor is equal to 1. It is easier to design an
algorithm for a more general problem of computing the greatest common divisor
of two integers and, to solve the former problem, check whether the ged is 1 or
not. There are situations, however, where designing a more general algorithm is
unnecessary or difficult or even impossible. For example, it is unnecessary to sort
alist of n numbers to find its median, which is its [n/27th smallest element. To give
another example, the standard formula for roots of a quadratic equation cannot
be generalized to handle polynomials of arbitrary degrees.

As to the set of inputs, your main concern should be designing an algorithm
that can handle a set of inputs that is natural for the problem at hand. For example,
excluding integers equal to 1 as possible inputs for a greatest common divisor
algorithm would be quite unnatural. On the other hand, although the standard
formula for the roots of a quadratic equation holds for complex coefficients, we
would normally not implement it on this level of generality unless this capability
is explicitly required.

If you are not satisfied with the algorithm’s efficiency, simplicity, or generality,
you must return to the drawing board and redesign the algorithm. In fact, even if
your evaluation is positive, it is still worth searching for other algorithmic solutions.
Recall the three different algorithms in the previous section for computing the
greatest common divisor: generally, you should not expect to get the best algorithm
on the first try. At the very least, you should try to fine-tune the algorithm you
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already have. For example, we made several improvements in our implementation
of the sieve of Eratosthenes compared with its initial outline in Section 1.1. (Can
you identify them?) You will do well if you keep in mind the following observation
of Antoine de Saint-Exupéry, the French writer, pilot, and aircraft designer: “A
designer knows he has arrived at perfection not when there is no longer anything
to add, but when there is no longer anything to take away.”!

Coding an Algorithm

Most algorithms are destined to be ultimately implemented as computer pro-
grams. Programming an algorithm presents both a peril and an opportunity. The
peril lies in the possibility of making the transition from an algorithm to a pro-
gram either incorrectly or very inefficiently. Some influential computer scientists
strongly believe that unless the correctness of a computer program is proven
with full mathematical rigor, the program cannot be considered correct. They
have developed special techniques for doing such proofs (see [Gri8l1]), but the
power of these techniques of formal verification is limited so far to very small
programs.

As a practical matter, the validity of programs is still established by testing.
Testing of computer programs is an art rather than a science, but that does not
mean that there is nothing in it to learn. Look up books devoted to testing
and debugging; even more important, test and debug your program thoroughly
whenever you implement an algorithm.

Also note that throughout the book, we assume that inputs to algorithms
belong to the specified sets and hence require no verification. When implementing
algorithms as programs to be used in actual applications, you should provide such
verifications.

Of course, implementing an algorithm correctly is necessary but not sufficient:
you would not like to diminish your algorithm’s power by an inefficient implemen-
tation. Modern compilers do provide a certain safety net in this regard, especially
when they are used in their code optimization mode. Still, you need to be aware
of such standard tricks as computing a loop’s invariant (an expression that does
not change its value) outside the loop, collecting common subexpressions, replac-
ing expensive operations by cheap ones, and so on. (See [Ker99] and [Ben00] for
a good discussion of code tuning and other issues related to algorithm program-
ming.) Typically, such improvements can speed up a program only by a constant
factor, whereas a better algorithm can make a difference in running time by orders
of magnitude. But once an algorithm is selected, a 10-50% speedup may be worth
an effort.

1 found this call for design simplicity in an essay collection by Jon Bentley [Ben00]; the essays deal
with a variety of issues in algorithm design and implementation and are justifiably titled Programming
Pearls. I wholeheartedly recommend the writings of both Jon Bentley and Antoine de Saint-Exupéry.
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FIGURE 1.10 (a) Tree. (b) Forest.
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FIGURE 1.11 (a) Free tree. (b) Its transformation into a rooted tree.

Trees have several important properties other graphs do not have. In par-
ticular, the number of edges in a tree is always one less than the number of its
vertices:

|E|=|V]|—1.

As the graph in Figure 1.9 demonstrates, this property is necessary but not suffi-
cient for a graph to be a tree. However, for connected graphs it is sufficient and
hence provides a convenient way of checking whether a connected graph has a
cycle.

Rooted Trees Another very important property of trees is the fact that for every
two vertices in a tree, there always exists exactly one simple path from one of these
vertices to the other. This property makes it possible to select an arbitrary vertex
in a free tree and consider it as the root of the so-called rooted tree. A rooted tree
is usually depicted by placing its root on the top (level 0 of the tree), the vertices
adjacent to the root below it (level 1), the vertices two edges apart from the root
still below (level 2), and so on. Figure 1.11 presents such a transformation from a
free tree to a rooted tree.
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FIGURE 1.9 Graph that is not connected.

In the case of a directed graph, we are usually interested in directed paths.
A directed path is a sequence of vertices in which every consecutive pair of the
vertices is connected by an edge directed from the vertex listed first to the vertex
listed next. For example, a, ¢, e, f is a directed path from a to f in the graph in
Figure 1.6b.

A graph is said to be connected if for every pair of its vertices u and v there
is a path from u to v. If we make a model of a connected graph by connecting
some balls representing the graph’s vertices with strings representing the edges,
it will be a single piece. If a graph is not connected, such a model will consist
of several connected pieces that are called connected components of the graph.
Formally, a connected component is a maximal (not expandable by including
another vertex and an edge) connected subgraph? of a given graph. For example,
the graphs in Figures 1.6a and 1.8a are connected, whereas the graph in Figure 1.9
is not, because there is no path, for example, from a to f. The graph in Figure
1.9 has two connected components with vertices {a, b, ¢, d, e} and {f, g, h, i},
respectively.

Graphs with several connected components do happen in real-world appli-
cations. A graph representing the Interstate highway system of the United States
would be an example (why?).

It is important to know for many applications whether or not a graph under
consideration has cycles. A cycle is a path of a positive length that starts and ends at
the same vertex and does not traverse the same edge more than once. For example,
f,h,i, g, fisacycle in the graph in Figure 1.9. A graph with no cycles is said to
be acyclic. We discuss acyclic graphs in the next subsection.

Trees

A tree (more accurately, a free tree) is a connected acyclic graph (Figure 1.10a).
A graph that has no cycles but is not necessarily connected is called a forest: each
of its connected components is a tree (Figure 1.10b).

A subgraph of a given graph G = (V, E) is a graph G’ = (V’, E) such that V' C V and E' C E.
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A working program provides an additional opportunity in allowing an em-
pirical analysis of the underlying algorithm. Such an analysis is based on timing
the program on several inputs and then analyzing the results obtained. We dis-
cuss the advantages and disadvantages of this approach to analyzing algorithms
in Section 2.6.

In conclusion, let us emphasize again the main lesson of the process depicted
in Figure 1.2:

As arule, a good algorithm is a result of repeated effort and rework.

Even if you have been fortunate enough to get an algorithmic idea that seems
perfect, you should still try to see whether it can be improved.

Actually, this is good news since it makes the ultimate result so much more
enjoyable. (Yes, I did think of naming this book The Joy of Algorithms.) On the
other hand, how does one know when to stop? In the real world, more often than
not a project’s schedule or the impatience of your boss will stop you. And so it
should be: perfection is expensive and in fact not always called for. Designing
an algorithm is an engineering-like activity that calls for compromises among
competing goals under the constraints of available resources, with the designer’s
time being one of the resources.

In the academic world, the question leads to an interesting but usually difficult
investigation of an algorithm’s optimality. Actually, this question is not about the
efficiency of an algorithm but about the complexity of the problem it solves: What
is the minimum amount of effort any algorithm will need to exert to solve the
problem? For some problems, the answer to this question is known. For example,
any algorithm that sorts an array by comparing values of its elements needs about
n log, n comparisons for some arrays of size n (see Section 11.2). But for many
seemingly easy problems such as integer multiplication, computer scientists do
not yet have a final answer.

Another important issue of algorithmic problem solving is the question of
whether or not every problem can be solved by an algorithm. We are not talking
here about problems that do not have a solution, such as finding real roots of
a quadratic equation with a negative discriminant. For such cases, an output
indicating that the problem does not have a solution is all we can and should
expect from an algorithm. Nor are we talking about ambiguously stated problems.
Even some unambiguous problems that must have a simple yes or no answer are
“undecidable,” i.e., unsolvable by any algorithm. An important example of such
a problem appears in Section 11.3. Fortunately, a vast majority of problems in
practical computing can be solved by an algorithm.

Before leaving this section, let us be sure that you do not have the
misconception—possibly caused by the somewhat mechanical nature of the
diagram of Figure 1.2—that designing an algorithm is a dull activity. There is
nothing further from the truth: inventing (or discovering?) algorithms is a very
creative and rewarding process. This book is designed to convince you that this is
the case.
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Exercises 1.2

1. Old World puzzle A peasant finds himself on a riverbank with a wolf, a goat,
and a head of cabbage. He needs to transport all three to the other side of the
river in his boat. However, the boat has room for only the peasant himself
and one other item (either the wolf, the goat, or the cabbage). In his absence,
the wolf would eat the goat, and the goat would eat the cabbage. Solve this
problem for the peasant or prove it has no solution. (Note: The peasant is a
vegetarian but does not like cabbage and hence can eat neither the goat nor
the cabbage to help him solve the problem. And it goes without saying that
the wolf is a protected species.)

2. New World puzzle There are four people who want to cross a rickety bridge;
they all begin on the same side. You have 17 minutes to get them all across
to the other side. It is night, and they have one flashlight. A maximum of two
people can cross the bridge at one time. Any party that crosses, either one or
two people, must have the flashlight with them. The flashlight must be walked
back and forth; it cannot be thrown, for example. Person 1 takes 1 minute
to cross the bridge, person 2 takes 2 minutes, person 3 takes 5 minutes, and
person 4 takes 10 minutes. A pair must walk together at the rate of the slower
person’s pace. (Note: According to a rumor on the Internet, interviewers at a
well-known software company located near Seattle have given this problem
to interviewees.)

3. Which of the following formulas can be considered an algorithm for comput-
ing the area of a triangle whose side lengths are given positive numbers a, b,
and ¢?

a. S= \/p(p —a)(p—b)(p—c),where p=(a+b+c)/2

b. §= %hc sin A, where A is the angle between sides b and ¢

c S= %ah,,, where h,, is the height to base a

4. Write pseudocode for an algorithm for finding real roots of equation ax? +
bx + ¢ =0 for arbitrary real coefficients a, b, and c. (You may assume the
availability of the square root function sqrz(x).)

5. Describe the standard algorithm for finding the binary representation of a
positive decimal integer
a. in English.
b. in pseudocode.

6. Describe the algorithm used by your favorite ATM machine in dispensing
cash. (You may give your description in either English or pseudocode, which-
ever you find more convenient.)

7. a. Can the problem of computing the number 7 be solved exactly?
b. How many instances does this problem have?
¢. Look up an algorithm for this problem on the Internet.
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adjacency lists indicate columns of the adjacency matrix that, for a given vertex,
contain 1’s.

If a graph is sparse, the adjacency list representation may use less space
than the corresponding adjacency matrix despite the extra storage consumed by
pointers of the linked lists; the situation is exactly opposite for dense graphs. In
general, which of the two representations is more convenient depends on the
nature of the problem, on the algorithm used for solving it, and, possibly, on the
type of input graph (sparse or dense).

Weighted Graphs A weighted graph (or weighted digraph) is a graph (or di-
graph) with numbers assigned to its edges. These numbers are called weights or
costs. An interest in such graphs is motivated by numerous real-world applica-
tions, such as finding the shortest path between two points in a transportation or
communication network or the traveling salesman problem mentioned earlier.

Both principal representations of a graph can be easily adopted to accommo-
date weighted graphs. If a weighted graph is represented by its adjacency matrix,
then its element A[i, j] will simply contain the weight of the edge from the ith to
the jth vertex if there is such an edge and a special symbol, e.g., oo, if there is no
such edge. Such a matrix is called the weight matrix or cost matrix. This approach
is illustrated in Figure 1.8b for the weighted graph in Figure 1.8a. (For some ap-
plications, it is more convenient to put 0’s on the main diagonal of the adjacency
matrix.) Adjacency lists for a weighted graph have to include in their nodes not
only the name of an adjacent vertex but also the weight of the corresponding edge
(Figure 1.8c).

Paths and Cycles Among the many properties of graphs, two are important for a
great number of applications: connectivity and acyclicity. Both are based on the
notion of a path. A path from vertex u to vertex v of a graph G can be defined as a
sequence of adjacent (connected by an edge) vertices that starts with u and ends
with v. If all vertices of a path are distinct, the path is said to be simple. The length
of a path is the total number of vertices in the vertex sequence defining the path
minus 1, which is the same as the number of edges in the path. For example, a, c,
b, f is a simple path of length 3 from a to f in the graph in Figure 1.6a, whereas
a, c, e, c, b, fisapath (not simple) of length 5 from a to f.

[a] »bB5-c1

n —4a5->c¢7 > d4
-al1->b754d2
n - b4 —>c2
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FIGURE 1.8 (a) Weighted graph. (b) Its weight matrix. (c) Its adjacency lists.
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Our definition of a graph does not forbid loops, or edges connecting vertices
to themselves. Unless explicitly stated otherwise, we will consider graphs without
loops. Since our definition disallows multiple edges between the same vertices of
an undirected graph, we have the following inequality for the number of edges |E|
possible in an undirected graph with | V| vertices and no loops:

O<|EI=VI(VI-1/2.

(We get the largest number of edges in a graph if there is an edge connecting
each of its |V| vertices with all |V | — 1 other vertices. We have to divide product
[VI(]V| — 1) by 2, however, because it includes every edge twice.)

A graph with every pair of its vertices connected by an edge is called complete.
A standard notation for the complete graph with |V| vertices is Ky|. A graph
with relatively few possible edges missing is called dense; a graph with few edges
relative to the number of its vertices is called sparse. Whether we are dealing with
a dense or sparse graph may influence how we choose to represent the graph and,
consequently, the running time of an algorithm being designed or used.

Graph Representations Graphs for computer algorithms are usually repre-
sented in one of two ways: the adjacency matrix and adjacency lists. The adjacency
matrix of a graph with n vertices is an n x n boolean matrix with one row and one
column for each of the graph’s vertices, in which the element in the ith row and
the jth columnis equal to 1 if there is an edge from the ith vertex to the jth vertex,
and equal to 0 if there is no such edge. For example, the adjacency matrix for the
graph of Figure 1.6a is given in Figure 1.7a.

Note that the adjacency matrix of an undirected graph is always symmetric,
ie., Ali, j]=A[j, i]forevery 0 <i, j <n —1(why?).

The adjacency lists of a graph or a digraph is a collection of linked lists,
one for each vertex, that contain all the vertices adjacent to the list’s vertex
(i.e., all the vertices connected to it by an edge). Usually, such lists start with a
header identifying a vertex for which the list is compiled. For example, Figure 1.7b
represents the graph in Figure 1.6a via its adjacency lists. To put it another way,

a b cde f
al0 01T 1 00 - ¢ = d
b0 0O 1 0 0 1 - ¢ - f
c|1 1 0 0 1 0 - a — b - e
dlf1 0 0 0 10 - a - e
e|0 0O 1T 1 0 1 - ¢ - d - f
fl{0 1 0 0 1 0 - b = e
(a) (b)

FIGURE 1.7 (a) Adjacency matrix and (b) adjacency lists of the graph in Figure 1.6a.
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8. Give an example of a problem other than computing the greatest common
divisor for which you know more than one algorithm. Which of them is
simpler? Which is more efficient?

9. Consider the following algorithm for finding the distance between the two
closest elements in an array of numbers.

ALGORITHM MinDistance(A[0..n — 1])
//Input: Array A[0..n — 1] of numbers
//Output: Minimum distance between two of its elements
dmin < oo
fori <~ Oton —1do
for j < Oton —1do
ifi # j and |A[i] — A[j]| < dmin
dmin < |A[i]— A[Jj]|
return dmin

Make as many improvements as you can in this algorithmic solution to the
problem. If you need to, you may change the algorithm altogether; if not,
improve the implementation given.

10. One of the most influential books on problem solving, titled How To Solve
It [Pol57], was written by the Hungarian-American mathematician George
Poélya (1887-1985). PSlya summarized his ideas in a four-point summary. Find
this summary on the Internet or, better yet, in his book, and compare it with
the plan outlined in Section 1.2. What do they have in common? How are they
different?

Important Problem Types

In the limitless sea of problems one encounters in computing, there are a few
areas that have attracted particular attention from researchers. By and large,
their interest has been driven either by the problem’s practical importance or by
some specific characteristics making the problem an interesting research subject;
fortunately, these two motivating forces reinforce each other in most cases.

In this section, we are going to introduce the most important problem types:

Sorting

Searching

String processing

Graph problems
Combinatorial problems
Geometric problems
Numerical problems



1.3 Important Problem Types 19

These problems are used in subsequent chapters of the book to illustrate
different algorithm design techniques and methods of algorithm analysis.

Sorting

The sorting problem is to rearrange the items of a given list in nondecreasing
order. Of course, for this problem to be meaningful, the nature of the list items
must allow such an ordering. (Mathematicians would say that there must exist
a relation of total ordering.) As a practical matter, we usually need to sort lists
of numbers, characters from an alphabet, character strings, and, most important,
records similar to those maintained by schools about their students, libraries about
their holdings, and companies about their employees. In the case of records, we
need to choose a piece of information to guide sorting. For example, we can choose
to sort student records in alphabetical order of names or by student number or by
student grade-point average. Such a specially chosen piece of information is called
akey. Computer scientists often talk about sorting a list of keys even when the list’s
items are not records but, say, just integers.

‘Why would we want a sorted list? To begin with, a sorted list can be a required
output of a task such as ranking Internet search results or ranking students by their
GPA scores. Further, sorting makes many questions about the list easier to answer.
The most important of them is searching: it is why dictionaries, telephone books,
class lists, and so on are sorted. You will see other examples of the usefulness of
list presorting in Section 6.1. In a similar vein, sorting is used as an auxiliary step
in several important algorithms in other areas, e.g., geometric algorithms and data
compression. The greedy approach—an important algorithm design technique
discussed later in the book—requires a sorted input.

By now, computer scientists have discovered dozens of different sorting algo-
rithms. In fact, inventing a new sorting algorithm has been likened to designing
the proverbial mousetrap. And I am happy to report that the hunt for a better
sorting mousetrap continues. This perseverance is admirable in view of the fol-
lowing facts. On the one hand, there are a few good sorting algorithms that sort
an arbitrary array of size n using about n log, n comparisons. On the other hand,
no algorithm that sorts by key comparisons (as opposed to, say, comparing small
pieces of keys) can do substantially better than that.

There is a reason for this embarrassment of algorithmic riches in the land
of sorting. Although some algorithms are indeed better than others, there is no
algorithm that would be the best solution in all situations. Some of the algorithms
are simple but relatively slow, while others are faster but more complex; some
work better on randomly ordered inputs, while others do better on almost-sorted
lists; some are suitable only for lists residing in the fast memory, while others can
be adapted for sorting large files stored on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algo-
rithm is called stable if it preserves the relative order of any two equal elements in
its input. In other words, if an input list contains two equal elements in positions
i and j where i < j, then in the sorted list they have to be in positions i’ and j,
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integer or real numbers). The principal operations on a priority queue are find-
ing its largest element, deleting its largest element, and adding a new element.
Of course, a priority queue must be implemented so that the last two operations
yield another priority queue. Straightforward implementations of this data struc-
ture can be based on either an array or a sorted array, but neither of these options
yields the most efficient solution possible. A better implementation of a priority
queue is based on an ingenious data structure called the heap. We discuss heaps
and an important sorting algorithm based on them in Section 6.4.

Graphs

As we mentioned in the previous section, a graph is informally thought of as
a collection of points in the plane called “vertices” or “nodes,” some of them
connected by line segments called “edges” or “arcs.” Formally, a graph G = (V, E)
is defined by a pair of two sets: a finite nonempty set V of items called vertices
and a set E of pairs of these items called edges. If these pairs of vertices are
unordered, i.e., a pair of vertices (u, v) is the same as the pair (v, u), we say that
the vertices u and v are adjacent to each other and that they are connected by the
undirected edge (u, v). We call the vertices u and v endpoints of the edge (u, v)
and say that u and v are incident to this edge; we also say that the edge (u, v) is
incident to its endpoints # and v. A graph G is called undirected if every edge in
it is undirected.

If a pair of vertices (u, v) is not the same as the pair (v, u), we say that the
edge (u, v) is directed from the vertex u, called the edge’s tail, to the vertex v,
called the edge’s head. We also say that the edge (u, v) leaves u and enters v. A
graph whose every edge is directed is called directed. Directed graphs are also
called digraphs.

It is normally convenient to label vertices of a graph or a digraph with letters,
integer numbers, or, if an application calls for it, character strings (Figure 1.6). The
graph depicted in Figure 1.6a has six vertices and seven undirected edges:

V={a,b,c d e [}, E={(a c), (a d), (b o) b [) (ce), e,
The digraph depicted in Figure 1.6b has six vertices and eight directed edges:
V={a,b,cd e f},E={@a,c), (b 0,0 [) (ce) da)de),le o), N}

—C—O (D—r—O
(a) (b)
FIGURE 1.6 (a) Undirected graph. (b) Digraph.
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FIGURE 1.5 Doubly linked list of n elements.

not require any preliminary reservation of the computer memory, and insertions
and deletions can be made quite efficiently in a linked list by reconnecting a few
appropriate pointers.

We can exploit flexibility of the linked list structure in a variety of ways. For
example, it is often convenient to start a linked list with a special node called the
header. This node may contain information about the linked list itself, such as its
current length; it may also contain, in addition to a pointer to the first element, a
pointer to the linked list’s last element.

Another extension is the structure called the doubly linked list,in which every
node, except the first and the last, contains pointers to both its successor and its
predecessor (Figure 1.5).

The array and linked list are two principal choices in representing a more
abstract data structure called a linear list or simply a list. A list is a finite sequence
of data items, i.e., a collection of data items arranged in a certain linear order. The
basic operations performed on this data structure are searching for, inserting, and
deleting an element.

Two special types of lists, stacks and queues, are particularly important. A
stack is a list in which insertions and deletions can be done only at the end. This
end is called the top because a stack is usually visualized not horizontally but
vertically—akin to a stack of plates whose “operations” it mimics very closely.
As a result, when elements are added to (pushed onto) a stack and deleted from
(popped off) it, the structure operates in a “last-in-first-out” (LIFO) fashion—
exactly like a stack of plates if we can add or remove a plate only from the top.
Stacks have a multitude of applications; in particular, they are indispensable for
implementing recursive algorithms.

A queue, on the other hand, is a list from which elements are deleted from
one end of the structure, called the front (this operation is called dequeue),
and new elements are added to the other end, called the rear (this operation is
called enqueue). Consequently, a queue operates in a “first-in-first-out” (FIFO)
fashion—akin to a queue of customers served by a single teller in a bank. Queues
also have many important applications, including several algorithms for graph
problems.

Many important applications require selection of an item of the highest pri-
ority among a dynamically changing set of candidates. A data structure that seeks
to satisfy the needs of such applications is called a priority queue. A priority
queue is a collection of data items from a totally ordered universe (most often,
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respectively, such that i’ < j’. This property can be desirable if, for example, we
have a list of students sorted alphabetically and we want to sort it according to
student GPA: a stable algorithm will yield a list in which students with the same
GPA will still be sorted alphabetically. Generally speaking, algorithms that can
exchange keys located far apart are not stable, but they usually work faster; you
will see how this general comment applies to important sorting algorithms later
in the book.

The second notable feature of a sorting algorithm is the amount of extra
memory the algorithm requires. An algorithm is said to be in-place if it does
not require extra memory, except, possibly, for a few memory units. There are
important sorting algorithms that are in-place and those that are not.

Searching

The searching problem deals with finding a given value, called a search key, in a
given set (or a multiset, which permits several elements to have the same value).
There are plenty of searching algorithms to choose from. They range from the
straightforward sequential search to a spectacularly efficient but limited binary
search and algorithms based on representing the underlying set in a different form
more conducive to searching. The latter algorithms are of particular importance
for real-world applications because they are indispensable for storing and retriev-
ing information from large databases.

For searching, too, there is no single algorithm that fits all situations best.
Some algorithms work faster than others but require more memory; some are
very fast but applicable only to sorted arrays; and so on. Unlike with sorting
algorithms, there is no stability problem, but different issues arise. Specifically,
in applications where the underlying data may change frequently relative to the
number of searches, searching has to be considered in conjunction with two other
operations: an addition to and deletion from the data set of an item. In such
situations, data structures and algorithms should be chosen to strike a balance
among the requirements of each operation. Also, organizing very large data sets
for efficient searching poses special challenges with important implications for
real-world applications.

String Processing

In recent decades, the rapid proliferation of applications dealing with nonnumer-
ical data has intensified the interest of researchers and computing practitioners in
string-handling algorithms. A string is a sequence of characters from an alphabet.
Strings of particular interest are text strings, which comprise letters, numbers, and
special characters; bit strings, which comprise zeros and ones; and gene sequences,
which can be modeled by strings of characters from the four-character alphabet {A,
C, G, T}. It should be pointed out, however, that string-processing algorithms have
been important for computer science for a long time in conjunction with computer
languages and compiling issues.



1.3 Important Problem Types 21

One particular problem—that of searching for a given word in a text—has
attracted special attention from researchers. They call it string matching. Several
algorithms that exploit the special nature of this type of searching have been
invented. We introduce one very simple algorithm in Chapter 3 and discuss two
algorithms based on a remarkable idea by R. Boyer and J. Moore in Chapter 7.

Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms.
Informally, a graph can be thought of as a collection of points called vertices, some
of which are connected by line segments called edges. (A more formal definition
is given in the next section.) Graphs are an interesting subject to study, for both
theoretical and practical reasons. Graphs can be used for modeling a wide variety
of applications, including transportation, communication, social and economic
networks, project scheduling, and games. Studying different technical and social
aspects of the Internet in particular is one of the active areas of current research
involving computer scientists, economists, and social scientists (see, e.g., [Eas10]).

Basic graph algorithms include graph-traversal algorithms (how can one reach
all the points in a network?), shortest-path algorithms (what is the best route be-
tween two cities?), and topological sorting for graphs with directed edges (is a set
of courses with their prerequisites consistent or self-contradictory?). Fortunately,
these algorithms can be considered illustrations of general design techniques; ac-
cordingly, you will find them in corresponding chapters of the book.

Some graph problems are computationally very hard; the most well-known
examples are the traveling salesman problem and the graph-coloring problem.
The traveling salesman problem (TSP) is the problem of finding the shortest tour
through n cities that visits every city exactly once. In addition to obvious appli-
cations involving route planning, it arises in such modern applications as circuit
board and VLSI chip fabrication, X-ray crystallography, and genetic engineer-
ing. The graph-coloring problem seeks to assign the smallest number of colors to
the vertices of a graph so that no two adjacent vertices are the same color. This
problem arises in several applications, such as event scheduling: if the events are
represented by vertices that are connected by an edge if and only if the correspond-
ing events cannot be scheduled at the same time, a solution to the graph-coloring
problem yields an optimal schedule.

Combinatorial Problems

From a more abstract perspective, the traveling salesman problem and the graph-
coloring problem are examples of combinatorial problems. These are problems
that ask, explicitly or implicitly, to find a combinatorial object—such as a permu-
tation, a combination, or a subset—that satisfies certain constraints. A desired
combinatorial object may also be required to have some additional property such
as a maximum value or a minimum cost.
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are stored contiguously in computer memory and made accessible by specifying a
value of the array’s index (Figure 1.3).

In the majority of cases, the index is an integer either between 0 and n — 1
(as shown in Figure 1.3) or between 1 and n. Some computer languages allow an
array index to range between any two integer bounds /ow and high, and some even
permit nonnumerical indices to specify, for example, data items corresponding to
the 12 months of the year by the month names.

Each and every element of an array can be accessed in the same constant
amount of time regardless of where in the array the element in question is located.
This feature positively distinguishes arrays from linked lists, discussed below.

Arrays are used for implementing a variety of other data structures. Promi-
nent among them is the string, a sequence of characters from an alphabet termi-
nated by a special character indicating the string’s end. Strings composed of zeros
and ones are called binary strings or bit strings. Strings are indispensable for pro-
cessing textual data, defining computer languages and compiling programs written
in them, and studying abstract computational models. Operations we usually per-
form on strings differ from those we typically perform on other arrays (say, arrays
of numbers). They include computing the string length, comparing two strings to
determine which one precedes the other in lexicographic (i.e., alphabetical) or-
der, and concatenating two strings (forming one string from two given strings by
appending the second to the end of the first).

A linked list is a sequence of zero or more elements called nodes, each
containing two kinds of information: some data and one or more links called
pointers to other nodes of the linked list. (A special pointer called “null” is used
to indicate the absence of a node’s successor.) In a singly linked list, each node
except the last one contains a single pointer to the next element (Figure 1.4).

To access a particular node of a linked list, one starts with the list’s first node
and traverses the pointer chain until the particular node is reached. Thus, the time
needed to access an element of a singly linked list, unlike that of an array, depends
on where in the list the element is located. On the positive side, linked lists do

Item [0] Item [1] EEEI Item [n-1]

FIGURE 1.3 Array of n elements.

— [temO » Iltem1 ——» . . . —f [tem n-1 |null

FIGURE 1.4 Singly linked list of n elements.
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a. The problem’s statement is somewhat vague, which is typical of real-life
problems. In particular, what reasonable criterion can be used for defining
the “best” route?

b. How would you model this problem by a graph?
7. a. Rephrase the traveling-salesman problem in combinatorial object terms.
b. Rephrase the graph-coloring problem in combinatorial object terms.

8. Consider the following map:

a. Explain how we can use the graph-coloring problem to color the map so
that no two neighboring regions are colored the same.

b. Use your answer to part (a) to color the map with the smallest number of
colors.

9. Design an algorithm for the following problem: Given a set of n points in the
Cartesian plane, determine whether all of them lie on the same circumference.

10. Write a program that reads as its inputs the (x, y) coordinates of the endpoints
of two line segments P;Q; and P,Q, and determines whether the segments

have a common point.

Fundamental Data Structures

Since the vast majority of algorithms of interest operate on data, particular ways of
organizing data play a critical role in the design and analysis of algorithms. A data
structure can be defined as a particular scheme of organizing related data items.
The nature of the data items is dictated by the problem at hand; they can range
from elementary data types (e.g., integers or characters) to data structures (e.g., a
one-dimensional array of one-dimensional arrays is often used for implementing
matrices). There are a few data structures that have proved to be particularly
important for computer algorithms. Since you are undoubtedly familiar with most
if not all of them, just a quick review is provided here.

Linear Data Structures

The two most important elementary data structures are the array and the linked
list. A (one-dimensional) array is a sequence of n items of the same data type that
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Generally speaking, combinatorial problems are the most difficult problems in
computing, from both a theoretical and practical standpoint. Their difficulty stems
from the following facts. First, the number of combinatorial objects typically grows
extremely fast with a problem’s size, reaching unimaginable magnitudes even
for moderate-sized instances. Second, there are no known algorithms for solving
most such problems exactly in an acceptable amount of time. Moreover, most
computer scientists believe that such algorithms do not exist. This conjecture has
been neither proved nor disproved, and it remains the most important unresolved
issue in theoretical computer science. We discuss this topic in more detail in
Section 11.3.

Some combinatorial problems can be solved by efficient algorithms, but they
should be considered fortunate exceptions to the rule. The shortest-path problem
mentioned earlier is among such exceptions.

Geometric Problems

Geometric algorithms deal with geometric objects such as points, lines, and poly-
gons. The ancient Greeks were very much interested in developing procedures
(they did not call them algorithms, of course) for solving a variety of geometric
problems, including problems of constructing simple geometric shapes—triangles,
circles, and so on—with an unmarked ruler and a compass. Then, for about 2000
years, intense interest in geometric algorithms disappeared, to be resurrected in
the age of computers—no more rulers and compasses, just bits, bytes, and good old
human ingenuity. Of course, today people are interested in geometric algorithms
with quite different applications in mind, such as computer graphics, robotics, and
tomography.

We will discuss algorithms for only two classic problems of computational
geometry: the closest-pair problem and the convex-hull problem. The closest-pair
problem is self-explanatory: given n points in the plane, find the closest pair among
them. The convex-hull problem asks to find the smallest convex polygon that
would include all the points of a given set. If you are interested in other geometric
algorithms, you will find a wealth of material in such specialized monographs as
[deB10], [OR098], and [Pre85].

Numerical Problems

Numerical problems, another large special area of applications, are problems
that involve mathematical objects of continuous nature: solving equations and
systems of equations, computing definite integrals, evaluating functions, and so on.
The majority of such mathematical problems can be solved only approximately.
Another principal difficulty stems from the fact that such problems typically
require manipulating real numbers, which can be represented in a computer only
approximately. Moreover, a large number of arithmetic operations performed on
approximately represented numbers can lead to an accumulation of the round-off
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error to a point where it can drastically distort an output produced by a seemingly
sound algorithm.

Many sophisticated algorithms have been developed over the years in this
area, and they continue to play a critical role in many scientific and engineering
applications. But in the last 30 years or so, the computing industry has shifted
its focus to business applications. These new applications require primarily algo-
rithms for information storage, retrieval, transportation through networks, and
presentation to users. As a result of this revolutionary change, numerical analysis
has lost its formerly dominating position in both industry and computer science
programs. Still, it is important for any computer-literate person to have at least a
rudimentary idea about numerical algorithms. We discuss several classical numer-
ical algorithms in Sections 6.2, 11.4, and 12.4.

Exercises 1.3

1. Consider the algorithm for the sorting problem that sorts an array by counting,
for each of its elements, the number of smaller elements and then uses this
information to put the element in its appropriate position in the sorted array:

ALGORITHM ComparisonCountingSort(A[0..n — 1])
/[Sorts an array by comparison counting
//Input: Array A[0..n — 1] of orderable values
//Output: Array S[0..n — 1] of A’s elements sorted
/I in nondecreasing order
fori <~ Oton —1do
Count[i] <0
fori <~ Oton—2do
for j <i+1ton—1do
if A[i] < A[j]
Count[j] < Count[j]+1
else Count[i] < Count[i]+ 1
fori <~ Oton —1do
S[Countli]] < Ali]
return §

a. Apply this algorithm to sorting the list 60, 35, 81, 98, 14, 47.
b. Is this algorithm stable?
c. Isitin-place?
2. Name the algorithms for the searching problem that you already know. Give

a good succinct description of each algorithm in English. If you know no such
algorithms, use this opportunity to design one.

3. Design a simple algorithm for the string-matching problem.

Introduction

4. Konigsberg bridges The Konigsberg bridge puzzle is universally accepted

as the problem that gave birth to graph theory. It was solved by the great
Swiss-born mathematician Leonhard Euler (1707-1783). The problem asked
whether one could, in a single stroll, cross all seven bridges of the city of
Konigsberg exactly once and return to a starting point. Following is a sketch
of the river with its two islands and seven bridges:

a. State the problem as a graph problem.

b. Does this problem have a solution? If you believe it does, draw such a stroll;
if you believe it does not, explain why and indicate the smallest number of
new bridges that would be required to make such a stroll possible.

. Icosian Game A century after Euler’s discovery (see Problem 4), another

famous puzzle—this one invented by the renowned Irish mathematician Sir
William Hamilton (1805-1865)—was presented to the world under the name
of the Icosian Game. The game’s board was a circular wooden board on which
the following graph was carved:

Find a Hamiltonian circuit—a path that visits all the graph’s vertices exactly
once before returning to the starting vertex—for this graph.

. Consider the following problem: Design an algorithm to determine the best

route for a subway passenger to take from one designated station to another in
a well-developed subway system similar to those in such cities as Washington,
D.C., and London, UK.
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Indeed, the first two functions are linear and hence have a lower order of growth
than g(n) = n2, while the last one is quadratic and hence has the same order of
growth as n2. On the other hand,

n’ & 0n?), 0.000017° ¢ O (n?), nt+n+1¢0md.

Indeed, the functions #® and 0.00001%3 are both cubic and hence have a higher
order of growth than n2, and so has the fourth-degree polynomial n* + n + 1.

The second notation, Q(g(n)), stands for the set of all functions with a higher
or same order of growth as g(n) (to within a constant multiple, as n goes to infinity).
For example,

n®eQ@n?), %n(n —Deqmd, but 1002 + 5 ¢ Q(1?).

Finally, ©(g(n)) is the set of all functions that have the same order of growth
as g(n) (to within a constant multiple, as n goes to infinity). Thus, every quadratic
function an? + bn + ¢ with a > 0 is in ©(»n?), but so are, among infinitely many
others, n? 4 sin n and n? + log n. (Can you explain why?)

Hopefully, this informal introduction has made you comfortable with the idea
behind the three asymptotic notations. So now come the formal definitions.

O-notation

DEFINITION A function ¢(n) is said to be in O(g(n)), denoted t(n) € O(g(n)),
if #(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if
there exist some positive constant ¢ and some nonnegative integer n( such that

t(n) <cg(n) foralln>ng.
The definition is illustrated in Figure 2.1 where, for the sake of visual clarity, n is
extended to be a real number.
As an example, let us formally prove one of the assertions made in the
introduction: 100n + 5 € O (n?). Indeed,
100n + 5 <100n + n (for alln > 5) =101n < 10112,

Thus, as values of the constants ¢ and n, required by the definition, we can take
101 and 5, respectively.

Note that the definition gives us a lot of freedom in choosing specific values
for constants ¢ and n(. For example, we could also reason that

100n + 5 < 100n + 5n (for all n > 1) = 105n

to complete the proof with ¢ = 105 and ny = 1.
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(2)

FIGURE 1.12 (a) Binary tree. (b) Binary search tree.
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null null 7 null null 10 null

FIGURE 1.13 Standard implementation of the binary search tree in Figure 1.12b.

In Figure 1.12b, some numbers are assigned to vertices of the binary tree in
Figure 1.12a. Note that a number assigned to each parental vertex is larger than all
the numbers in its left subtree and smaller than all the numbers in its right subtree.
Such trees are called binary search trees. Binary trees and binary search trees have
a wide variety of applications in computer science; you will encounter some of
them throughout the book. In particular, binary search trees can be generalized
to more general types of search trees called multiway search trees, which are
indispensable for efficient access to very large data sets.

As you will see later in the book, the efficiency of most important algorithms
for binary search trees and their extensions depends on the tree’s height. There-
fore, the following inequalities for the height 4 of a binary tree with n nodes are
especially important for analysis of such algorithms:

logyn| <h<n-1
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A binary tree is usually implemented for computing purposes by a collection
of nodes corresponding to vertices of the tree. Each node contains some informa-
tion associated with the vertex (its name or some value assigned to it) and two
pointers to the nodes representing the left child and right child of the vertex, re-
spectively. Figure 1.13 illustrates such an implementation for the binary search
tree in Figure 1.12b.

A computer representation of an arbitrary ordered tree can be done by simply
providing a parental vertex with the number of pointers equal to the number of
its children. This representation may prove to be inconvenient if the number of
children varies widely among the nodes. We can avoid this inconvenience by using
nodes with just two pointers, as we did for binary trees. Here, however, the left
pointer will point to the first child of the vertex, and the right pointer will point
to its next sibling. Accordingly, this representation is called the first child-next
sibling representation. Thus, all the siblings of a vertex are linked via the nodes’
right pointers in a singly linked list, with the first element of the list pointed to
by the left pointer of their parent. Figure 1.14a illustrates this representation for
the tree in Figure 1.11b. It is not difficult to see that this representation effectively
transforms an ordered tree into a binary tree said to be associated with the ordered
tree. We get this representation by “rotating” the pointers about 45 degrees
clockwise (see Figure 1.14b).

Sets and Dictionaries

The notion of a set plays a central role in mathematics. A sef can be described as
an unordered collection (possibly empty) of distinct items called elements of the

o
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(a)

FIGURE 1.14 (a) First child—next sibling representation of the tree in Figure 1.11b. (b) Its
binary tree representation.
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9. For each of the following pairs of functions, indicate whether the first function
of each of the following pairs has a lower, same, or higher order of growth (to
within a constant multiple) than the second function.

a. n(n+1)and 2000n>  b. 10022 and 0.01n3

d. log% n and log, n?

f. (n—1)!and n!

¢c. log,nandInn
e. 2"~1and 2"

10. Invention of chess

a. According to a well-known legend, the game of chess was invented many
centuries ago in northwestern India by a certain sage. When he took his
invention to his king, the king liked the game so much that he offered the
inventor any reward he wanted. The inventor asked for some grain to be
obtained as follows: just a single grain of wheat was to be placed on the
first square of the chessboard, two on the second, four on the third, eight
on the fourth, and so on, until all 64 squares had been filled. If it took just
1 second to count each grain, how long would it take to count all the grain
due to him?

b. How long would it take if instead of doubling the number of grains for each
square of the chessboard, the inventor asked for adding two grains?

2.2

Asymptotic Notations and Basic Efficiency Classes

As pointed out in the previous section, the efficiency analysis framework con-
centrates on the order of growth of an algorithm’s basic operation count as the
principal indicator of the algorithm’s efficiency. To compare and rank such orders
of growth, computer scientists use three notations: O (big oh), €2 (big omega), and
© (big theta). First, we introduce these notations informally, and then, after sev-
eral examples, formal definitions are given. In the following discussion, #(n) and
g(n) can be any nonnegative functions defined on the set of natural numbers. In
the context we are interested in, 7(n) will be an algorithm’s running time (usually
indicated by its basic operation count C(n)), and g(n) will be some simple function
to compare the count with.

Informal Introduction

Informally, O(g(n)) is the set of all functions with a lower or same order of growth
as g(n) (to within a constant multiple, as n goes to infinity). Thus, to give a few
examples, the following assertions are all true:

neomnd, 100n + 5 € 0(n?), %n(n —Deomd.
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3. Consider a variation of sequential search that scans a list to return the number
of occurrences of a given search key in the list. Does its efficiency differ from
the efficiency of classic sequential search?

4. a. Glove selection There are 22 gloves in a drawer: 5 pairs of red gloves, 4
pairs of yellow, and 2 pairs of green. You select the gloves in the dark and
can check them only after a selection has been made. What is the smallest
number of gloves you need to select to have at least one matching pair in
the best case? In the worst case?

b. Missing socks Imagine that after washing 5 distinct pairs of socks, you
discover that two socks are missing. Of course, you would like to have
the largest number of complete pairs remaining. Thus, you are left with
4 complete pairs in the best-case scenario and with 3 complete pairs in
the worst case. Assuming that the probability of disappearance for each
of the 10 socks is the same, find the probability of the best-case scenario;
the probability of the worst-case scenario; the number of pairs you should
expect in the average case.

on
®

Prove formula (2.1) for the number of bits in the binary representation of
a positive decimal integer.

b. Prove the alternative formula for the number of bits in the binary repre-
sentation of a positive integer n:

b=Tlog,(n +1)].

What would be the analogous formulas for the number of decimal digits?

ty

d. Explain why, within the accepted analysis framework, it does not matter
whether we use binary or decimal digits in measuring »’s size.

I

Suggest how any sorting algorithm can be augmented in a way to make the
best-case count of its key comparisons equal to just n — 1 (n is a list’s size,
of course). Do you think it would be a worthwhile addition to any sorting
algorithm?

bl

Gaussian elimination, the classic algorithm for solving systems of n linear

equations in n unknowns, requires about %n3 multiplications, which is the

algorithm’s basic operation.

a. How much longer should you expect Gaussian elimination to work on a
system of 1000 equations versus a system of 500 equations?

b. You are considering buying a computer that is 1000 times faster than the
one you currently have. By what factor will the faster computer increase
the sizes of systems solvable in the same amount of time as on the old
computer?

8. For each of the following functions, indicate how much the function’s value
will change if its argument is increased fourfold.
a.logyn b.yn en don? en £27
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set. A specific set is defined either by an explicit listing of its elements (e.g., S = {2,
3, 5,7}) or by specifying a property that all the set’s elements and only they must
satisfy (e.g., S = {n: n is a prime number smaller than 10}). The most important set
operations are: checking membership of a given item in a given set; finding the
union of two sets, which comprises all the elements in either or both of them; and
finding the intersection of two sets, which comprises all the common elements in
the sets.

Sets can be implemented in computer applications in two ways. The first
considers only sets that are subsets of some large set U, called the universal
set. If set U has n elements, then any subset S of U can be represented by a bit
string of size n, called a bit vector, in which the ith element is 1 if and only if
the ith element of U is included in set S. Thus, to continue with our example, if
U=1{1,2,3,4,5,6,7,8,9}, then S ={2, 3, 5, 7} is represented by the bit string
011010100. This way of representing sets makes it possible to implement the
standard set operations very fast, but at the expense of potentially using a large
amount of storage.

The second and more common way to represent a set for computing purposes
is to use the list structure to indicate the set’s elements. Of course, this option, too,
is feasible only for finite sets; fortunately, unlike mathematics, this is the kind of
sets most computer applications need. Note, however, the two principal points of
distinction between sets and lists. First, a set cannot contain identical elements;
a list can. This requirement for uniqueness is sometimes circumvented by the
introduction of a multiset, or bag, an unordered collection of items that are not
necessarily distinct. Second, a set is an unordered collection of items; therefore,
changing the order of its elements does not change the set. A list, defined as an
ordered collection of items, is exactly the opposite. This is an important theoretical
distinction, but fortunately it is not important for many applications. It is also
worth mentioning that if a set is represented by a list, depending on the application
at hand, it might be worth maintaining the list in a sorted order.

In computing, the operations we need to perform for a set or a multiset most
often are searching for a given item, adding a new item, and deleting an item
from the collection. A data structure that implements these three operations is
called the dictionary. Note the relationship between this data structure and the
problem of searching mentioned in Section 1.3; obviously, we are dealing here
with searching in a dynamic context. Consequently, an efficient implementation
of a dictionary has to strike a compromise between the efficiency of searching and
the efficiencies of the other two operations. There are quite a few ways a dictionary
can be implemented. They range from an unsophisticated use of arrays (sorted or
not) to much more sophisticated techniques such as hashing and balanced search
trees, which we discuss later in the book.

A number of applications in computing require a dynamic partition of some
n-element set into a collection of disjoint subsets. After being initialized as a
collection of n one-element subsets, the collection is subjected to a sequence
of intermixed union and search operations. This problem is called the set union
problem. We discuss efficient algorithmic solutions to this problem in Section 9.2,
in conjunction with one of its important applications.
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You may have noticed that in our review of basic data structures we almost al-
ways mentioned specific operations that are typically performed for the structure
in question. This intimate relationship between the data and operations has been
recognized by computer scientists for a long time. It has led them in particular
to the idea of an abstract data type (ADT): a set of abstract objects represent-
ing data items with a collection of operations that can be performed on them. As
illustrations of this notion, reread, say, our definitions of the priority queue and
dictionary. Although abstract data types could be implemented in older procedu-
ral languages such as Pascal (see, e.g., [Aho83]), it is much more convenient to
do this in object-oriented languages such as C++ and Java, which support abstract
data types by means of classes.

Exercises 1.4

1. Describe how one can implement each of the following operations on an array
so that the time it takes does not depend on the array’s size n.

a. Delete the ith element of an array (1 <i <n).
b. Delete the ith element of a sorted array (the remaining array has to stay
sorted, of course).

2. If you have to solve the searching problem for a list of » numbers, how can you
take advantage of the fact that the list is known to be sorted? Give separate
answers for

a. lists represented as arrays.

b. lists represented as linked lists.

3. a. Show the stack after each operation of the following sequence that starts
with the empty stack:

push(a), push(b), pop, push(c), push(d), pop

b. Show the queue after each operation of the following sequence that starts
with the empty queue:

enqueue(a), enqueue(b), dequeue, enqueue(c), enqueue(d), dequeue

>
®

Let A be the adjacency matrix of an undirected graph. Explain what prop-
erty of the matrix indicates that

i. the graph is complete.
ii. the graph has a loop, i.e., an edge connecting a vertex to itself.
iii. the graph has an isolated vertex, i.e., a vertex with no edges incident
toit.
b. Answer the same questions for the adjacency list representation.

5. Give a detailed description of an algorithm for transforming a free tree into
a tree rooted at a given vertex of the free tree.
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Recapitulation of the Analysis Framework

Before we leave this section, let us summarize the main points of the framework
outlined above.

B Both time and space efficiencies are measured as functions of the algorithm’s
input size.

®  Time efficiency is measured by counting the number of times the algorithm’s
basic operation is executed. Space efficiency is measured by counting the
number of extra memory units consumed by the algorithm.

®  The efficiencies of some algorithms may differ significantly for inputs of the
same size. For such algorithms, we need to distinguish between the worst-case,
average-case, and best-case efficiencies.

®  The framework’s primary interest lies in the order of growth of the algorithm’s
running time (extra memory units consumed) as its input size goes to infinity.

In the next section, we look at formal means to investigate orders of growth. In
Sections 2.3 and 2.4, we discuss particular methods for investigating nonrecursive
and recursive algorithms, respectively. It is there that you will see how the analysis
framework outlined here can be applied to investigating the efficiency of specific
algorithms. You will encounter many more examples throughout the rest of the
book.

Exercises 2.1

1. For each of the following algorithms, indicate (i) a natural size metric for its
inputs, (ii) its basic operation, and (iii) whether the basic operation count can
be different for inputs of the same size:

a. computing the sum of n numbers

b. computing n!

c. finding the largest element in a list of » numbers

d. Euclid’s algorithm

e. sieve of Eratosthenes

f. pen-and-pencil algorithm for multiplying two n-digit decimal integers

2. a. Consider the definition-based algorithm for adding two n x n matrices.

What is its basic operation? How many times is it performed as a function
of the matrix order n? As a function of the total number of elements in the
input matrices?

b. Answer the same questions for the definition-based algorithm for matrix
multiplication.
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This general formula yields some quite reasonable answers. For example, if p =1
(the search must be successful), the average number of key comparisons made
by sequential search is (n + 1)/2; that is, the algorithm will inspect, on average,
about half of the list’s elements. If p =0 (the search must be unsuccessful), the
average number of key comparisons will be n because the algorithm will inspect
all n elements on all such inputs.

As you can see from this very elementary example, investigation of the
average-case efficiency is considerably more difficult than investigation of the
worst-case and best-case efficiencies. The direct approach for doing this involves
dividing all instances of size n into several classes so that for each instance of the
class the number of times the algorithm’s basic operation is executed is the same.
(What were these classes for sequential search?) Then a probability distribution
of inputs is obtained or assumed so that the expected value of the basic operation’s
count can be found.

The technical implementation of this plan is rarely easy, however, and prob-
abilistic assumptions underlying it in each particular case are usually difficult to
verify. Given our quest for simplicity, we will mostly quote known results about
the average-case efficiency of algorithms under discussion. If you are interested
in derivations of these results, consult such books as [Baa00], [Sed96], [Knul],
[KnullI], and [KnulII].

It should be clear from the preceding discussion that the average-case ef-
ficiency cannot be obtained by taking the average of the worst-case and the
best-case efficiencies. Even though this average does occasionally coincide with
the average-case cost, it is not a legitimate way of performing the average-case
analysis.

Does one really need the average-case efficiency information? The answer is
unequivocally yes: there are many important algorithms for which the average-
case efficiency is much better than the overly pessimistic worst-case efficiency
would lead us to believe. So, without the average-case analysis, computer scientists
could have missed many important algorithms.

Yet another type of efficiency is called amortized efficiency. It applies not to
a single run of an algorithm but rather to a sequence of operations performed
on the same data structure. It turns out that in some situations a single operation
can be expensive, but the total time for an entire sequence of n such operations is
always significantly better than the worst-case efficiency of that single operation
multiplied by n. So we can “amortize” the high cost of such a worst-case occur-
rence over the entire sequence in a manner similar to the way a business would
amortize the cost of an expensive item over the years of the item’s productive life.
This sophisticated approach was discovered by the American computer scientist
Robert Tarjan, who used it, among other applications, in developing an interest-
ing variation of the classic binary search tree (see [Tar87] for a quite readable
nontechnical discussion and [Tar85] for a technical account). We will see an ex-
ample of the usefulness of amortized efficiency in Section 9.2, when we consider
algorithms for finding unions of disjoint sets.
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6. Prove the inequalities that bracket the height of a binary tree with n vertices:

llogyn| <h<n-1

bl

Indicate how the ADT priority queue can be implemented as

a. an (unsorted) array.

b. asorted array.

¢. abinary search tree.

8. How would you implement a dictionary of a reasonably small size n if you

knew that all its elements are distinct (e.g., names of the 50 states of the United
States)? Specify an implementation of each dictionary operation.

9. For each of the following applications, indicate the most appropriate data
structure:
a. answering telephone calls in the order of their known priorities
b. sending backlog orders to customers in the order they have been received
¢. implementing a calculator for computing simple arithmetical expressions

10. Anagram checking Design an algorithm for checking whether two given
words are anagrams, i.e., whether one word can be obtained by permuting

the letters of the other. For example, the words tea and eat are anagrams.

SUMMARY

B An algorithm is a sequence of nonambiguous instructions for solving a
problem in a finite amount of time. An input to an algorithm specifies an
instance of the problem the algorithm solves.

B Algorithms can be specified in a natural language or pseudocode; they can
also be implemented as computer programs.

" Among several ways to classify algorithms, the two principal alternatives are:
e to group algorithms according to types of problems they solve
e to group algorithms according to underlying design techniques they are
based upon

®  The important problem types are sorting, searching, string processing, graph
problems, combinatorial problems, geometric problems, and numerical
problems.

B Algorithm design techniques (or “strategies” or “paradigms”) are general
approaches to solving problems algorithmically, applicable to a variety of
problems from different areas of computing.
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Although designing an algorithm is undoubtedly a creative activity, one can
identify a sequence of interrelated actions involved in such a process. They
are summarized in Figure 1.2.

A good algorithm is usually the result of repeated efforts and rework.

The same problem can often be solved by several algorithms. For example,
three algorithms were given for computing the greatest common divisor of
two integers: Euclid’s algorithm, the consecutive integer checking algorithm,
and the middle-school method enhanced by the sieve of Eratosthenes for
generating a list of primes.

Algorithms operate on data. This makes the issue of data structuring critical
for efficient algorithmic problem solving. The most important elementary data
structures are the array and the linked list. They are used for representing
more abstract data structures such as the /ist, the stack, the queue, the graph
(via its adjacency matrix or adjacency lists), the binary tree, and the set.

An abstract collection of objects with several operations that can be per-
formed on them is called an abstract data type (ADT). The list, the stack, the
queue, the priority queue, and the dictionary are important examples of ab-
stract data types. Modern object-oriented languages support implementation
of ADTs by means of classes.

48

Fundamentals of the Analysis of Algorithm Efficiency

words, it guarantees that for any instance of size n, the running time will not exceed
Cors: (n), its running time on the worst-case inputs.

The best-case efficiency of an algorithm is its efficiency for the best-case input
of size n, which is an input (or inputs) of size n for which the algorithm runs the
fastest among all possible inputs of that size. Accordingly, we can analyze the best-
case efficiency as follows. First, we determine the kind of inputs for which the count
C(n) will be the smallest among all possible inputs of size n. (Note that the best
case does not mean the smallest input; it means the input of size n for which the
algorithm runs the fastest.) Then we ascertain the value of C(n) on these most
convenient inputs. For example, the best-case inputs for sequential search are lists
of size n with their first element equal to a search key; accordingly, Cp,, (n) =1
for this algorithm.

The analysis of the best-case efficiency is not nearly as important as that
of the worst-case efficiency. But it is not completely useless, either. Though we
should not expect to get best-case inputs, we might be able to take advantage of
the fact that for some algorithms a good best-case performance extends to some
useful types of inputs close to being the best-case ones. For example, there is a
sorting algorithm (insertion sort) for which the best-case inputs are already sorted
arrays on which the algorithm works very fast. Moreover, the best-case efficiency
deteriorates only slightly for almost-sorted arrays. Therefore, such an algorithm
might well be the method of choice for applications dealing with almost-sorted
arrays. And, of course, if the best-case efficiency of an algorithm is unsatisfactory,
we can immediately discard it without further analysis.

It should be clear from our discussion, however, that neither the worst-case
analysis nor its best-case counterpart yields the necessary information about an
algorithm’s behavior on a “typical” or “random” input. This is the information that
the average-case efficiency seeks to provide. To analyze the algorithm’s average-
case efficiency, we must make some assumptions about possible inputs of size n.

Let’s consider again sequential search. The standard assumptions are that
(a) the probability of a successful search is equal to p (0 < p <1) and (b) the
probability of the first match occurring in the ith position of the list is the same
for every i. Under these assumptions—the validity of which is usually difficult to
verify, their reasonableness notwithstanding—we can find the average number
of key comparisons C,,,(n) as follows. In the case of a successful search, the
probability of the first match occurring in the ith position of the list is p/n for
every i, and the number of comparisons made by the algorithm in such a situation
is obviously i. In the case of an unsuccessful search, the number of comparisons
will be n with the probability of such a search being (1 — p). Therefore,

Cavgm=[1-L42. L i 2y Py = p)
n n n n

=Phgotqit a0 -p
n

=£n(n+1)

5 +n(l—p)

= 7”("; Doy na-p.
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eightfold, respectively (because (2n)? = 4n? and (2n)> = 8n3); the value of 2" gets
squared (because 22 = (2")2); and n! increases much more than that (yes, even
mathematics refuses to cooperate to give a neat answer for n!).

Worst-Case, Best-Case, and Average-Case Efficiencies

In the beginning of this section, we established that it is reasonable to measure
an algorithm’s efficiency as a function of a parameter indicating the size of the
algorithm’s input. But there are many algorithms for which running time depends
not only on an input size but also on the specifics of a particular input. Consider,
as an example, sequential search. This is a straightforward algorithm that searches
for a given item (some search key K) in a list of n elements by checking successive
elements of the list until either a match with the search key is found or the list
is exhausted. Here is the algorithm’s pseudocode, in which, for simplicity, a list is
implemented as an array. It also assumes that the second condition A[i] # K will
not be checked if the first one, which checks that the array’s index does not exceed
its upper bound, fails.

ALGORITHM  SequentialSearch(A[0..n — 1], K)
/[Searches for a given value in a given array by sequential search
//Input: An array A[0..n — 1] and a search key K
//Output: The index of the first element in A that matches K
1 or —1if there are no matching elements
i<0
while i <n and A[i]# K do
i<—i+1
if i <nreturni
else return —1

Clearly, the running time of this algorithm can be quite different for the
same list size n. In the worst case, when there are no matching elements or
the first matching element happens to be the last one on the list, the algorithm
makes the largest number of key comparisons among all possible inputs of size
n: Cwor.s't(n) =n.

The worst-case efficiency of an algorithm is its efficiency for the worst-case
input of size n, which is an input (or inputs) of size n for which the algorithm
runs the longest among all possible inputs of that size. The way to determine
the worst-case efficiency of an algorithm is, in principle, quite straightforward:
analyze the algorithm to see what kind of inputs yield the largest value of the basic
operation’s count C(n) among all possible inputs of size n and then compute this
worst-case value C,,,,,(n). (For sequential search, the answer was obvious. The
methods for handling less trivial situations are explained in subsequent sections of
this chapter.) Clearly, the worst-case analysis provides very important information
about an algorithm’s efficiency by bounding its running time from above. In other
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1 often say that when you can measure what you are speaking about and
express it in numbers you know something about it; but when you cannot
express it in numbers your knowledge is a meagre and unsatisfactory
kind: it may be the beginning of knowledge but you have scarcely, in your
thoughts, advanced to the stage of science, whatever the matter may be.

—Lord Kelvin (1824-1907)

Not everything that can be counted counts, and not everything that counts
can be counted.

—Albert Einstein (1879-1955)

his chapter is devoted to analysis of algorithms. The American Heritage Dic-

tionary defines “analysis” as “the separation of an intellectual or substantial
whole into its constituent parts for individual study.” Accordingly, each of the prin-
cipal dimensions of an algorithm pointed out in Section 1.2 is both a legitimate and
desirable subject of study. But the term “analysis of algorithms” is usually used in
a narrower, technical sense to mean an investigation of an algorithm’s efficiency
with respect to two resources: running time and memory space. This emphasis on
efficiency is easy to explain. First, unlike such dimensions as simplicity and gen-
erality, efficiency can be studied in precise quantitative terms. Second, one can
argue—although this is hardly always the case, given the speed and memory of
today’s computers—that the efficiency considerations are of primary importance
from a practical point of view. In this chapter, we too will limit the discussion to
an algorithm’s efficiency.
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TABLE 2.1 Values (some approximate) of several functions important for
analysis of algorithms

n log, n n nlog, n n? n’ 2" n!

10 33 100 33.10! 102 103 103 3.6-10°
102 6.6 102 66102 104 100 1310 93.107
103 10 10 1.010* 100 10°

10* 13 10* 1.3-10% 108 10!2

10° 17 105 1.7-10° 1010 10%

100 20 100 20107 1012 108

implementing an algorithm with a logarithmic basic-operation count to run practi-
cally instantaneously on inputs of all realistic sizes. Also note that although specific
values of such a count depend, of course, on the logarithm’s base, the formula

log, n =log, blog, n

makes it possible to switch from one base to another, leaving the count logarithmic
but with a new multiplicative constant. This is why we omit a logarithm’s base and
write simply log » in situations where we are interested just in a function’s order
of growth to within a multiplicative constant.

On the other end of the spectrum are the exponential function 2" and the
factorial function n! Both these functions grow so fast that their values become
astronomically large even for rather small values of n. (This is the reason why we
did not include their values for n > 10% in Table 2.1.) For example, it would take
about 4 - 1010 years for a computer making a trillion (10'2) operations per second
to execute 2!% operations. Though this is incomparably faster than it would have
taken to execute 100! operations, it is still longer than 4.5 billion (4.5 - 10%) years—
the estimated age of the planet Earth. There is a tremendous difference between
the orders of growth of the functions 2" and n!, yet both are often referred to as
“exponential-growth functions” (or simply “exponential”) despite the fact that,
strictly speaking, only the former should be referred to as such. The bottom line,
which is important to remember, is this:

Algorithms that require an exponential number of operations are practical
for solving only problems of very small sizes.

Another way to appreciate the qualitative difference among the orders of
growth of the functions in Table 2.1 is to consider how they react to, say, a
twofold increase in the value of their argument n. The function log, n increases in
value by just 1 (because log, 2n =log, 2 + log, n =1 + log, n); the linear function
increases twofold, the linearithmic function n log, n increases slightly more than
twofold; the quadratic function n? and cubic function »> increase fourfold and
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the running time 7 (n) of a program implementing this algorithm on that computer
by the formula

T(n)~ copC(n).

Of course, this formula should be used with caution. The count C(n) does not
contain any information about operations that are not basic, and, in fact, the
count itself is often computed only approximately. Further, the constant c,, is
also an approximation whose reliability is not always easy to assess. Still, unless
n is extremely large or very small, the formula can give a reasonable estimate of
the algorithm’s running time. It also makes it possible to answer such questions as
“How much faster would this algorithm run on a machine that is 10 times faster
than the one we have?” The answer is, obviously, 10 times. Or, assuming that
C(n) = %n(n — 1), how much longer will the algorithm run if we double its input
size? The answer is about four times longer. Indeed, for all but very small values
of n,

C(n)=%n(n71)= n?—

N | =

1
2
and therefore
T(2n) _ cpCQn) 32
T  cpCy 12

Note that we were able to answer the last question without actually knowing
the value of ¢,,: it was neatly cancelled out in the ratio. Also note that %, the
multiplicative constant in the formula for the count C(n), was also cancelled out.
Itis for these reasons that the efficiency analysis framework ignores multiplicative
constants and concentrates on the count’s order of growth to within a constant

multiple for large-size inputs.

Orders of Growth

Why this emphasis on the count’s order of growth for large input sizes? A differ-
ence in running times on small inputs is not what really distinguishes efficient
algorithms from inefficient ones. When we have to compute, for example, the
greatest common divisor of two small numbers, it is not immediately clear how
much more efficient Euclid’s algorithm is compared to the other two algorithms
discussed in Section 1.1 or even why we should care which of them is faster and
by how much. It is only when we have to find the greatest common divisor of two
large numbers that the difference in algorithm efficiencies becomes both clear and
important. For large values of n, it is the function’s order of growth that counts: just
look at Table 2.1, which contains values of a few functions particularly important
for analysis of algorithms.

The magnitude of the numbers in Table 2.1 has a profound significance for
the analysis of algorithms. The function growing the slowest among these is the
logarithmic function. It grows so slowly, in fact, that we should expect a program
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‘We start with a general framework for analyzing algorithm efficiency in Sec-
tion 2.1. This section is arguably the most important in the chapter; the funda-
mental nature of the topic makes it also one of the most important sections in the
entire book.

In Section 2.2, we introduce three notations: O (“big oh”), Q (“big omega”),
and © (“big theta”). Borrowed from mathematics, these notations have become
the language for discussing the efficiency of algorithms.

In Section 2.3, we show how the general framework outlined in Section 2.1 can
be systematically applied to analyzing the efficiency of nonrecursive algorithms.
The main tool of such an analysis is setting up a sum representing the algorithm’s
running time and then simplifying the sum by using standard sum manipulation
techniques.

In Section 2.4, we show how the general framework outlined in Section 2.1
can be systematically applied to analyzing the efficiency of recursive algorithms.
Here, the main tool is not a summation but a special kind of equation called a
recurrence relation. We explain how such recurrence relations can be set up and
then introduce a method for solving them.

Although we illustrate the analysis framework and the methods of its appli-
cations by a variety of examples in the first four sections of this chapter, Section
2.5 is devoted to yet another example—that of the Fibonacci numbers. Discov-
ered 800 years ago, this remarkable sequence appears in a variety of applications
both within and outside computer science. A discussion of the Fibonacci sequence
serves as a natural vehicle for introducing an important class of recurrence rela-
tions not solvable by the method of Section 2.4. We also discuss several algorithms
for computing the Fibonacci numbers, mostly for the sake of a few general obser-
vations about the efficiency of algorithms and methods of analyzing them.

The methods of Sections 2.3 and 2.4 provide a powerful technique for analyz-
ing the efficiency of many algorithms with mathematical clarity and precision, but
these methods are far from being foolproof. The last two sections of the chapter
deal with two approaches—empirical analysis and algorithm visualization—that
complement the pure mathematical techniques of Sections 2.3 and 2.4. Much
newer and, hence, less developed than their mathematical counterparts, these ap-
proaches promise to play an important role among the tools available for analysis
of algorithm efficiency.

The Analysis Framework

In this section, we outline a general framework for analyzing the efficiency of algo-
rithms. We already mentioned in Section 1.2 that there are two kinds of efficiency:
time efficiency and space efficiency. Time efficiency, also called time complexity,
indicates how fast an algorithm in question runs. Space efficiency, also called space
complexity, refers to the amount of memory units required by the algorithm in ad-
dition to the space needed for its input and output. In the early days of electronic
computing, both resources—time and space—were at a premium. Half a century
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of relentless technological innovations have improved the computer’s speed and
memory size by many orders of magnitude. Now the amount of extra space re-
quired by an algorithm is typically not of as much concern, with the caveat that
there is still, of course, a difference between the fast main memory, the slower
secondary memory, and the cache. The time issue has not diminished quite to the
same extent, however. In addition, the research experience has shown that for
most problems, we can achieve much more spectacular progress in speed than in
space. Therefore, following a well-established tradition of algorithm textbooks, we
primarily concentrate on time efficiency, but the analytical framework introduced
here is applicable to analyzing space efficiency as well.

Measuring an Input’s Size

Let’s start with the obvious observation that almost all algorithms run longer on
larger inputs. For example, it takes longer to sort larger arrays, multiply larger
matrices, and so on. Therefore, it is logical to investigate an algorithm’s efficiency
as a function of some parameter n indicating the algorithm’s input size.! In most
cases, selecting such a parameter is quite straightforward. For example, it will be
the size of the list for problems of sorting, searching, finding the list’s smallest
element, and most other problems dealing with lists. For the problem of evaluating
apolynomial p(x) =a,x" + - - - + aj of degree n, it will be the polynomial’s degree
or the number of its coefficients, which is larger by 1 than its degree. You’ll see from
the discussion that such a minor difference is inconsequential for the efficiency
analysis.

There are situations, of course, where the choice of a parameter indicating
an input size does matter. One such example is computing the product of two
n x n matrices. There are two natural measures of size for this problem. The first
and more frequently used is the matrix order n. But the other natural contender
is the total number of elements N in the matrices being multiplied. (The latter
is also more general since it is applicable to matrices that are not necessarily
square.) Since there is a simple formula relating these two measures, we can easily
switch from one to the other, but the answer about an algorithm’s efficiency will
be qualitatively different depending on which of these two measures we use (see
Problem 2 in this section’s exercises).

The choice of an appropriate size metric can be influenced by operations of
the algorithm in question. For example, how should we measure an input’s size
for a spell-checking algorithm? If the algorithm examines individual characters of
its input, we should measure the size by the number of characters; if it works by
processing words, we should count their number in the input.

We should make a special note about measuring input size for algorithms
solving problems such as checking primality of a positive integer n. Here, the input
is just one number, and it is this number’s magnitude that determines the input

Some algorithms require more than one parameter to indicate the size of their inputs (e.g., the number
of vertices and the number of edges for algorithms on graphs represented by their adjacency lists).
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size. In such situations, it is preferable to measure size by the number b of bits in
the n’s binary representation:

b= llogyn| +1. @1

This metric usually gives a better idea about the efficiency of algorithms in ques-
tion.

Units for Measuring Running Time

The next issue concerns units for measuring an algorithm’s running time. Of
course, we can simply use some standard unit of time measurement—a second,
or millisecond, and so on—to measure the running time of a program implement-
ing the algorithm. There are obvious drawbacks to such an approach, however:
dependence on the speed of a particular computer, dependence on the quality of
a program implementing the algorithm and of the compiler used in generating the
machine code, and the difficulty of clocking the actual running time of the pro-
gram. Since we are after a measure of an algorithm’s efficiency, we would like to
have a metric that does not depend on these extraneous factors.

One possible approach is to count the number of times each of the algorithm’s
operations is executed. This approach is both excessively difficult and, as we
shall see, usually unnecessary. The thing to do is to identify the most important
operation of the algorithm, called the basic operation, the operation contributing
the most to the total running time, and compute the number of times the basic
operation is executed.

As arule, it is not difficult to identify the basic operation of an algorithm: it
is usually the most time-consuming operation in the algorithm’s innermost loop.
For example, most sorting algorithms work by comparing elements (keys) of a
list being sorted with each other; for such algorithms, the basic operation is a key
comparison. As another example, algorithms for mathematical problems typically
involve some or all of the four arithmetical operations: addition, subtraction,
multiplication, and division. Of the four, the most time-consuming operation is
division, followed by multiplication and then addition and subtraction, with the
last two usually considered together.?

Thus, the established framework for the analysis of an algorithm’s time ef-
ficiency suggests measuring it by counting the number of times the algorithm’s
basic operation is executed on inputs of size n. We will find out how to compute
such a count for nonrecursive and recursive algorithms in Sections 2.3 and 2.4,
respectively.

Here is an important application. Let c,,, be the execution time of an algo-
rithm’s basic operation on a particular computer, and let C(n) be the number of
times this operation needs to be executed for this algorithm. Then we can estimate

On some computers, multiplication does not take longer than addition/subtraction (see, for example,
the timing data provided by Kernighan and Pike in [Ker99, pp. 185-186]).
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3. Check whether the number of times the basic operation is executed can vary
on different inputs of the same size; if it can, the worst-case, average-case, and
best-case efficiencies must be investigated separately.

4. Set up a recurrence relation, with an appropriate initial condition, for the
number of times the basic operation is executed.

5. Solve the recurrence or, at least, ascertain the order of growth of its solution.

EXAMPLE 2 As our next example, we consider another educational workhorse
of recursive algorithms: the Tower of Hanoi puzzle. In this puzzle, we (or mythical
monks, if you do not like to move disks) have n disks of different sizes that can
slide onto any of three pegs. Initially, all the disks are on the first peg in order of
size, the largest on the bottom and the smallest on top. The goal is to move all the
disks to the third peg, using the second one as an auxiliary, if necessary. We can
move only one disk at a time, and it is forbidden to place a larger disk on top of a
smaller one.

The problem has an elegant recursive solution, which is illustrated in Fig-
ure 2.4. To move n > 1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), we first
move recursively n — 1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), then
move the largest disk directly from peg 1 to peg 3, and, finally, move recursively
n — 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary). Of course, if n = 1, we
simply move the single disk directly from the source peg to the destination peg.

= | |

2

FIGURE 2.4 Recursive solution to the Tower of Hanoi puzzle.
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FIGURE 2.2 Big-omega notation: 7(n) € Q(g(n)).

Q-notation

DEFINITION A function #(n) is said to be in Q(g(n)), denoted 7 (n) € Q(g(n)), if
t(n) is bounded below by some positive constant multiple of g(n) for all large n,
i.e., if there exist some positive constant ¢ and some nonnegative integer ng such
that

t(n) > cg(n) foralln > ng.
The definition is illustrated in Figure 2.2.
Here is an example of the formal proof that n® € Q (1n?):
3

n®>n? foralln>0,

i.e., we can select c =1 and ny = 0.
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FIGURE 2.3 Big-theta notation: 7(n) € O(g(n)).

®-notation

DEFINITION A function (n) is said to be in ®(g(n)), denoted #(n) € O(g(n)),
if #(n) is bounded both above and below by some positive constant multiples of
g(n) for all large n, i.e., if there exist some positive constants ¢; and ¢, and some
nonnegative integer ng such that

cg(n) <t(n) <cig(n) foralln > ng.

The definition is illustrated in Figure 2.3.

For example, let us prove that %n(n — 1) € ©(n?). First, we prove the right
inequality (the upper bound):

ln(n -1 = 1n2 — 1n < l112 foralln > 0.
2 2 2 2
Second, we prove the left inequality (the lower bound):
1, 11,

1n(nfl)=fn - -n>
2 2 2 2

— 1nln (foralln >2)= 1nz.
2 2 4

Hence, we can select ¢, = %, = % and ny=2.

Useful Property Involving the Asymptotic Notations

Using the formal definitions of the asymptotic notations, we can prove their
general properties (see Problem 7 in this section’s exercises for a few simple
examples). The following property, in particular, is useful in analyzing algorithms
that comprise two consecutively executed parts.

Fundamentals of the Analysis of Algorithm Efficiency

As we just showed, M (n) is defined by recurrence (2.2). And it is recurrence (2.2)
that we need to solve now.

Though it is not difficult to “guess” the solution here (what sequence starts
with 0 when n =0 and increases by 1 on each step?), it will be more useful to
arrive at it in a systematic fashion. From the several techniques available for
solving recurrence relations, we use what can be called the method of backward
substitutions. The method’s idea (and the reason for the name) is immediately
clear from the way it applies to solving our particular recurrence:

Mn)=Mmn—-1+1 substitute M(n — 1) =Mn —2) +1
=[Mn—-2)+1]4+1=Mm —2)+2 substitute Mn —2)=Mmn —3)+1
=[Mmn-3)+1]+2=Mn—-3)+3.

After inspecting the first three lines, we see an emerging pattern, which makes it
possible to predict not only the next line (what would it be?) but also a general
formula for the pattern: M (n) = M (n — i) + i. Strictly speaking, the correctness of
this formula should be proved by mathematical induction, but it is easier to get to
the solution as follows and then verify its correctness.

‘What remains to be done is to take advantage of the initial condition given.
Since it is specified for n = 0, we have to substitute ; = n in the pattern’s formula
to get the ultimate result of our backward substitutions:

Mn)=Mn—-D+1=---=Mmn—-i)+i=---=Mn—n)+n=n.

You should not be disappointed after exerting so much effort to get this
“obvious” answer. The benefits of the method illustrated in this simple example
will become clear very soon, when we have to solve more difficult recurrences.
Also, note that the simple iterative algorithm that accumulates the product of n
consecutive integers requires the same number of multiplications, and it does so
without the overhead of time and space used for maintaining the recursion’s stack.

The issue of time efficiency is actually not that important for the problem of
computing n!, however. As we saw in Section 2.1, the function’s values get so large
so fast that we can realistically compute exact values of n! only for very small n’s.
Again, we use this example just as a simple and convenient vehicle to introduce
the standard approach to analyzing recursive algorithms. |

Generalizing our experience with investigating the recursive algorithm for
computing n!, we can now outline a general plan for investigating recursive algo-
rithms.

General Plan for Analyzing the Time Efficiency of Recursive Algorithms
1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation.
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the number of multiplications M (n) needed to compute it must satisfy the equality

Mn)y=Mmn—-1) + 1 forn > 0.
to compute to multiply
F(n—1) F(n—1) by n

Indeed, M(n — 1) multiplications are spent to compute F(n — 1), and one more
multiplication is needed to multiply the result by n.

The last equation defines the sequence M (n) that we need to find. This equa-
tion defines M (n) not explicitly, i.e., as a function of n, but implicitly as a function
of its value at another point, namely n — 1. Such equations are called recurrence
relations or, for brevity, recurrences. Recurrence relations play an important role
not only in analysis of algorithms but also in some areas of applied mathematics.
They are usually studied in detail in courses on discrete mathematics or discrete
structures; a very brief tutorial on them is provided in Appendix B. Our goal now
is to solve the recurrence relation M(n) = M(n — 1) + 1, i.e., to find an explicit
formula for M (n) in terms of n only.

Note, however, that there is not one but infinitely many sequences that satisfy
this recurrence. (Can you give examples of, say, two of them?) To determine a
solution uniquely, we need an initial condition that tells us the value with which
the sequence starts. We can obtain this value by inspecting the condition that
makes the algorithm stop its recursive calls:

if n =0 return 1.

This tells us two things. First, since the calls stop when n = 0, the smallest value
of n for which this algorithm is executed and hence M (n) defined is 0. Second, by
inspecting the pseudocode’s exiting line, we can see that when n = 0, the algorithm
performs no multiplications. Therefore, the initial condition we are after is

M(0) =0

the calls stop when n=0 T T no multiplications when n =0

Thus, we succeeded in setting up the recurrence relation and initial condition
for the algorithm’s number of multiplications M (n):

Mm)=Mmn—-1)4+1 forn>0, 2.2)
M(0) =0.

Before we embark on a discussion of how to solve this recurrence, let us
pause to reiterate an important point. We are dealing here with two recursively
defined functions. The first is the factorial function F(n) itself; it is defined by the
recurrence

Fn)y=Fm—1)-n foreveryn >0,

F0)=1.
The second is the number of multiplications M (n) needed to compute F(n) by the
recursive algorithm whose pseudocode was given at the beginning of the section.
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THEOREM If t1(n) € O(g1(n)) and 1,(n) € O(g,(n)), then

1(n) + () € O(max{g;(n), g(n)}).

(The analogous assertions are true for the €2 and ® notations as well.)

PROOF The proof extends to orders of growth the following simple fact about
four arbitrary real numbers aq, by, ay, by: if a; < by and a, < by, then ay + a, <
2 max{by, by}.

Since #1(n) € O(g1(n)), there exist some positive constant ¢; and some non-
negative integer n; such that

t1(n) <c1g1(n) foralln >ny.
Similarly, since #,(n) € O(gy(n)),
ty(n) < crgy(n) foralln > n,.

Let us denote ¢3 = max{cy, ¢,} and consider n > max{ny, n,} so that we can use
both inequalities. Adding them yields the following:

1(n) + 1(n) < c181(n) + c282(n)
< c381(n) + c382(n) = c3[g1(n) + g2 (n)]
< c32 max{g(n), g2(n)}.

Hence, 11(n) + 1,(n) € O(max{g(n), g>(n)}), with the constants ¢ and n( required
by the O definition being 2c; = 2 max{cy, ¢} and max{ny, n,}, respectively. |

So what does this property imply for an algorithm that comprises two consec-
utively executed parts? It implies that the algorithm’s overall efficiency is deter-
mined by the part with a higher order of growth, i.e., its least efficient part:

H(n) € 0(g1(n)) }
1(n) € O(gr(n))

For example, we can check whether an array has equal elements by the following
two-part algorithm: first, sort the array by applying some known sorting algorithm;
second, scan the sorted array to check its consecutive elements for equality. If, for
example, a sorting algorithm used in the first part makes no more than %n(n -1

1(n) + () € O(max{g;(n), g(M)}).

comparisons (and hence is in O (n2)) while the second part makes no more than
n — 1 comparisons (and hence is in O(n)), the efficiency of the entire algorithm
will be in O(max({n?, n}) = 0(n?).

Using Limits for Comparing Orders of Growth

Though the formal definitions of O, €, and ® are indispensable for proving their
abstract properties, they are rarely used for comparing the orders of growth of
two specific functions. A much more convenient method for doing so is based on



2.2 Asymptotic Notations and Basic Efficiency Classes 57

computing the limit of the ratio of two functions in question. Three principal cases
may arise:

0  implies that #(n) has a smaller order of growth than g(n),
lim —= =1 ¢ implies that 7(n) has the same order of growth as g(n),
oo implies that 7(n) has a larger order of growth than g(n).?

Note that the first two cases mean that 7(n) € O(g(n)), the last two mean that
t(n) € Q(g(n)), and the second case means that 7(n) € ©(g(n)).

The limit-based approach is often more convenient than the one based on
the definitions because it can take advantage of the powerful calculus techniques
developed for computing limits, such as L'Hopital’s rule

t(n) t'(n)

lim —= = lim
n—o00 g(n) n—00 g’(n)

and Stirling’s formula
n!~~2mn (ﬁ) for large values of n.
e

Here are three examples of using the limit-based approach to comparing
orders of growth of two functions.

EXAMPLE 1 Compare the orders of growth of %n(n — 1) and 2. (This is one of
the examples we used at the beginning of this section to illustrate the definitions.)

1
Lo =1 2_
fim 220D Ly o L gL
N—>00 n2 2 n—oo  p2 2 n—oo n 2
Since the limit is equal to a positive constant, the functions have the same order
of growth or, symbolically, %n(n —1) eOm. [ |

EXAMPLE 2 Compare the orders of growth of log, n and v/n. (Unlike Exam-
ple 1, the answer here is not immediately obvious.)

I lo, ! lo 1
tim 9827 _ iy (0821) BB 5y L
n—o00 n n—00 (ﬁ) n—o00 NG n—00 \/n
Since the limit is equal to zero, log, n has a smaller order of growth than /n. (Since

lim,,_, o l°gi" =0, we can use the so-called little-oh notation: log, n € o(/n).

Unlike the big-Oh, the little-oh notation is rarely used in analysis of algorithms.)
[

The fourth case, in which such a limit does not exist, rarely happens in the actual practice of analyzing
algorithms. Still, this possibility makes the limit-based approach to comparing orders of growth less
general than the one based on the definitions of O, Q, and ©.
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. 4

n=0 n=1 n=2

13. Page numbering Find the total number of decimal digits needed for num-
bering pages in a book of 1000 pages. Assume that the pages are numbered
consecutively starting with 1.

Mathematical Analysis of Recursive Algorithms

In this section, we will see how to apply the general framework for analysis
of algorithms to recursive algorithms. We start with an example often used to
introduce novices to the idea of a recursive algorithm.

EXAMPLE 1 Compute the factorial function F (n) = n! for an arbitrary nonneg-
ative integer n. Since

nl=1-...-mn—1)-n=m—-1D!'n forn>1

and 0! =1 by definition, we can compute F(n) = F(n — 1) - n with the following
recursive algorithm.

ALGORITHM F(n)

//Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!

if n =0 return 1

else return F(n — 1) xn

For simplicity, we consider # itself as an indicator of this algorithm’s input size
(rather than the number of bits in its binary expansion). The basic operation of the
algorithm is multiplication,5 whose number of executions we denote M (n). Since
the function F(n) is computed according to the formula

Fny=F(mn—-1)-n forn>0,

Alternatively, we could count the number of times the comparison n = 0 is executed, which is the same
as counting the total number of calls made by the algorithm (see Problem 2 in this section’s exercises).



2.3 Mathematical Analysis of Nonrecursive Algorithms 69

10. Mental arithmetic A 10x10 table is filled with repeating numbers on its
diagonals as shown below. Calculate the total sum of the table’s numbers in
your head (after [Cra07, Question 1.33]).

11213 9|10
213 9110 M
3 9 (110| M
9110 M
9 (10| M1
9 10| M1
9 10| M1

9 (10| M1 17
9 10| M 17118
0N 17118119

11. Consider the following version of an important algorithm that we will study
later in the book.

ALGORITHM GE(A[0..n — 1, 0..n])
//Input: An n x (n + 1) matrix A[0..n — 1, 0..n] of real numbers
fori <~ Oton —2do
forj<—i+1ton—1do
for k < i ton do
Alj, k] < A[j, k1 — A[i, k] * A[j, i]/ A[i, i]

a. Find the time efficiency class of this algorithm.

b. What glaring inefficiency does this pseudocode contain and how can it be
eliminated to speed the algorithm up?

12. von Neumann’s neighborhood Consider the algorithm that starts with a
single square and on each of its n iterations adds new squares all around the
outside. How many one-by-one squares are there after n iterations? [Gar99]
(In the parlance of cellular automata theory, the answer is the number of cells
in the von Neumann neighborhood of range n.) The results for n =0, 1, and
2 are illustrated below.
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EXAMPLE 3 Compare the orders of growth of n! and 2". (We discussed this
informally in Section 2.1.) Taking advantage of Stirling’s formula, we get

n

. n! . 2nn (%) . n
lim — = lim ——— = lim V27n

n—o00 n n—00 omn n—00 neh

n
= lim v27r <i> = 0.
n—00 Qe

Thus, though 2" grows very fast, n! grows still faster. We can write symbolically that
n! e ©(2"); note, however, that while the big-Omega notation does not preclude
the possibility that n! and 2" have the same order of growth, the limit computed
here certainly does. [ |

Basic Efficiency Classes

Even though the efficiency analysis framework puts together all the functions
whose orders of growth differ by a constant multiple, there are still infinitely many
such classes. (For example, the exponential functions a” have different orders of
growth for different values of base a.) Therefore, it may come as a surprise that
the time efficiencies of a large number of algorithms fall into only a few classes.
These classes are listed in Table 2.2 in increasing order of their orders of growth,
along with their names and a few comments.

You could raise a concern that classifying algorithms by their asymptotic effi-
ciency would be of little practical use since the values of multiplicative constants
are usually left unspecified. This leaves open the possibility of an algorithm in a
worse efficiency class running faster than an algorithm in a better efficiency class
for inputs of realistic sizes. For example, if the running time of one algorithm is n>
while the running time of the other is 1022, the cubic algorithm will outperform
the quadratic algorithm unless n exceeds 10°. A few such anomalies are indeed
known. Fortunately, multiplicative constants usually do not differ that drastically.
As arule, you should expect an algorithm from a better asymptotic efficiency class
to outperform an algorithm from a worse class even for moderately sized inputs.
This observation is especially true for an algorithm with a better than exponential
running time versus an exponential (or worse) algorithm.

Exercises 2.2

1. Use the most appropriate notation among O, ©, and  to indicate the time
efficiency class of sequential search (see Section 2.1)

a. in the worst case.
b. in the best case.
c¢. in the average case.

2. Use the informal definitions of O, ®, and €2 to determine whether the follow-
ing assertions are true or false.
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TABLE 2.2 Basic asymptotic efficiency classes

Class Name Comments

1 constant Short of best-case efficiencies, very few reasonable
examples can be given since an algorithm’s running
time typically goes to infinity when its input size grows
infinitely large.

logn logarithmic Typically, a result of cutting a problem’s size by a
constant factor on each iteration of the algorithm (see
Section 4.4). Note that a logarithmic algorithm cannot
take into account all its input or even a fixed fraction
of it: any algorithm that does so will have at least linear
running time.

n linear Algorithms that scan a list of size n (e.g., sequential
search) belong to this class.

nlogn linearithmic Many divide-and-conquer algorithms (see Chapter 5),
including mergesort and quicksort in the average case,
fall into this category.

n quadratic Typically, characterizes efficiency of algorithms with
two embedded loops (see the next section). Elemen-
tary sorting algorithms and certain operations onn x n
matrices are standard examples.

n’ cubic Typically, characterizes efficiency of algorithms with
three embedded loops (see the next section). Several
nontrivial algorithms from linear algebra fall into this
class.

2" exponential Typical for algorithms that generate all subsets of an
n-element set. Often, the term “exponential” is used
in a broader sense to include this and larger orders of
growth as well.

n! factorial Typical for algorithms that generate all permutations
of an n-element set.

ann+1)/2e0m) b.ann+1)/2e€0mn?
. nn+1/2e0@) d nn+1)/2eQn)

3. For each of the following functions, indicate the class ®(g(n)) the function

belongs to. (Use the simplest g(n) possible in your answers.) Prove your
assertions.

a. (N2 + 110 b. V10n24+7n 43
¢ 2nlgn+272+ @ +2)7>1g4  d. 2"+ 437!
e. [log, n|
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5.

6.

bl

ol

Consider the following algorithm.

ALGORITHM  Secret(A[0..n — 1])
//Input: An array A[0..n — 1] of n real numbers
minval < A[0]; maxval < A[0]
fori <~ 1ton—1do
if A[i] < minval
minval < Ali]
if A[i] > maxval
maxval < Ali]
return maxval — minval

Answer questions (a)—(e) of Problem 4 about this algorithm.

Consider the following algorithm.

ALGORITHM  Enigma(A[0..n — 1, 0..n — 1])
//Input: A matrix A[0..n — 1, 0..n — 1] of real numbers
fori < Oton —2do
forj«<i+1ton—1do
if A[i. j]# A[j. i]
return false
return true

Answer questions (a)—-(e) of Problem 4 about this algorithm.

Improve the implementation of the matrix multiplication algorithm (see Ex-
ample 3) by reducing the number of additions made by the algorithm. What
effect will this change have on the algorithm’s efficiency?

Determine the asymptotic order of growth for the total number of times all
the doors are toggled in the locker doors puzzle (Problem 12 in Exercises 1.1).

Prove the formula

n
Dli=1+42+4--+n
i=1

_n(n+1)
)

either by mathematical induction or by following the insight of a 10-year-old
school boy named Carl Friedrich Gauss (1777-1855) who grew up to become
one of the greatest mathematicians of all times.
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1. Compute the following sums.

a 1+34+5+7+---4999

b.2+4+4+8+16+---+1024

e Y d Y e Y iG+1)

£33 e YL Y i b YL i+ D

. Find the order of growth of the following sums. Use the ®(g(n)) notation with
the simplest function g(n) possible.

a. Y li2+1)? b. Y g i
o LG D2 d I Y+ )
. The sample variance of n measurements xy, . . . , x, can be computed as either
" — X)? "X
72’:]( i %) where X = 72’:1 d
n—1 n
or

Y= (i %) n
n—1 '

Find and compare the number of divisions, multiplications, and additions/
subtractions (additions and subtractions are usually bunched together) that
are required for computing the variance according to each of these formulas.

. Consider the following algorithm.

ALGORITHM  Mystery(n)
//Input: A nonnegative integer n
S0
fori < 1tondo
S<—S+ixi
return S

. What does this algorithm compute?

. What is its basic operation?

. How many times is the basic operation executed?
. What is the efficiency class of this algorithm?

e a0 T e

. Suggest an improvement, or a better algorithm altogether, and indicate its
efficiency class. If you cannot do it, try to prove that, in fact, it cannot be
done.
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4.

10.

a. Table 2.1 contains values of several functions that often arise in the analysis
of algorithms. These values certainly suggest that the functions

logn, n, nlogyn, n, nd, 2%,

are listed in increasing order of their order of growth. Do these values
prove this fact with mathematical certainty?

b. Prove that the functions are indeed listed in increasing order of their order
of growth.

. List the following functions according to their order of growth from the lowest

to the highest:
(n=2)!, Slg(n+100)1° 22" 0.001n* + 30> +1, In’>n, In, 3.

. a. Prove thatevery polynomial of degree k, p(n) = agn* + a_in* 1+ - +a

with a; > 0, belongs to © (1¥).
b. Prove that exponential functions «” have different orders of growth for
different values of base a > 0.

. Prove the following assertions by using the definitions of the notations in-

volved, or disprove them by giving a specific counterexample.

a. If r(n) € O(g(n)), then g(n) € Q(¢(n)).

b. ®©(ag(n)) = O(g(n)), where o > 0.

c. O(gn) =0(g(n)) NQ(gn)).

d. For any two nonnegative functions 7(n) and g(n) defined on the set of
nonnegative integers, either 7(n) € O(g(n)), or t(n) € Q(g(n)), or both.

. Prove the section’s theorem for

a. Q notation. b. ©® notation.

. We mentioned in this section that one can check whether all elements of an

array are distinct by a two-part algorithm based on the array’s presorting.

a. Ifthe presorting is done by an algorithm with a time efficiency in © (n log n),
what will be a time-efficiency class of the entire algorithm?

b. If the sorting algorithm used for presorting needs an extra array of size n,
what will be the space-efficiency class of the entire algorithm?

The range of a finite nonempty set of n real numbers § is defined as the differ-
ence between the largest and smallest elements of S. For each representation
of S given below, describe in English an algorithm to compute the range. Indi-
cate the time efficiency classes of these algorithms using the most appropriate
notation (O, O, or Q).

a. An unsorted array

b. A sorted array

¢. A sorted singly linked list

d. A binary search tree
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11. Lighter or heavier? You have n > 2 identical-looking coins and a two-pan
balance scale with no weights. One of the coins is a fake, but you do not know
whether it is lighter or heavier than the genuine coins, which all weigh the
same. Design a ©(1) algorithm to determine whether the fake coin is lighter
or heavier than the others.

12. Door in a wall You are facing a wall that stretches infinitely in both direc-
tions. There is a door in the wall, but you know neither how far away nor in
which direction. You can see the door only when you are right next to it. De-
sign an algorithm that enables you to reach the door by walking at most O (n)
steps where n is the (unknown to you) number of steps between your initial
position and the door. [Par95]

Mathematical Analysis of Nonrecursive Algorithms

In this section, we systematically apply the general framework outlined in Section
2.1 to analyzing the time efficiency of nonrecursive algorithms. Let us start with
a very simple example that demonstrates all the principal steps typically taken in
analyzing such algorithms.

EXAMPLE 1 Consider the problem of finding the value of the largest element
in a list of » numbers. For simplicity, we assume that the list is implemented as
an array. The following is pseudocode of a standard algorithm for solving the
problem.

ALGORITHM  MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if A[i]> maxval

maxval < Ali]

return maxval

The obvious measure of an input’s size here is the number of elements in the
array, i.e., n. The operations that are going to be executed most often are in the
algorithm’s for loop. There are two operations in the loop’s body: the comparison
Ali] > maxval and the assignment maxval <— A[i]. Which of these two operations
should we consider basic? Since the comparison is executed on each repetition
of the loop and the assignment is not, we should consider the comparison to be
the algorithm’s basic operation. Note that the number of comparisons will be the
same for all arrays of size n; therefore, in terms of this metric, there is no need to
distinguish among the worst, average, and best cases here.
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where ¢, is the time of one addition. Note that the estimates differ only by their
multiplicative constants and not by their order of growth. [ |

You should not have the erroneous impression that the plan outlined above
always succeeds in analyzing a nonrecursive algorithm. An irregular change in a
loop variable, a sum too complicated to analyze, and the difficulties intrinsic to
the average case analysis are just some of the obstacles that can prove to be insur-
mountable. These caveats notwithstanding, the plan does work for many simple
nonrecursive algorithms, as you will see throughout the subsequent chapters of
the book.

As a last example, let us consider an algorithm in which the loop’s variable
changes in a different manner from that of the previous examples.

EXAMPLE 4 The following algorithm finds the number of binary digits in the
binary representation of a positive decimal integer.

ALGORITHM Binary(n)

/[Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
count <1
while n > 1 do
count < count + 1
n < |n/2]
return count

First, notice that the most frequently executed operation here is not inside the
while loop but rather the comparison n > 1 that determines whether the loop’s
body will be executed. Since the number of times the comparison will be executed
is larger than the number of repetitions of the loop’s body by exactly 1, the choice
is not that important.

A more significant feature of this example is the fact that the loop variable
takes on only a few values between its lower and upper limits; therefore, we
have to use an alternative way of computing the number of times the loop is
executed. Since the value of n is about halved on each repetition of the loop,
the answer should be about log, n. The exact formula for the number of times
the comparison n > 1 will be executed is actually [log, n| 4+ 1—the number of bits
in the binary representation of n according to formula (2.1). We could also get
this answer by applying the analysis technique based on recurrence relations; we
discuss this technique in the next section because it is more pertinent to the analysis
of recursive algorithms. |
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‘We measure an input’s size by matrix order n. There are two arithmetical
operations in the innermost loop here—multiplication and addition—that, in
principle, can compete for designation as the algorithm’s basic operation. Actually,
we do not have to choose between them, because on each repetition of the
innermost loop each of the two is executed exactly once. So by counting one
we automatically count the other. Still, following a well-established tradition, we
consider multiplication as the basic operation (see Section 2.1). Let us set up a sum
for the total number of multiplications M (n) executed by the algorithm. (Since this
count depends only on the size of the input matrices, we do not have to investigate
the worst-case, average-case, and best-case efficiencies separately.)

Obviously, there is just one multiplication executed on each repetition of the
algorithm’s innermost loop, which is governed by the variable k ranging from the
lower bound 0 to the upper bound n — 1. Therefore, the number of multiplications
made for every pair of specific values of variables i and j is

n—1
2L
k=0
and the total number of multiplications M (n) is expressed by the following

triple sum:
n—1n-1n-1

M(n):ZZZL

i=0 j=0 k=0
Now, we can compute this sum by using formula (S1) and rule (R1) given
above. Starting with the innermost sum ZZ;& 1, which is equal to n (why?), we get

n—1n-1n-1 n—1n—1 n—1

M(n):ZZZl:ZZn:ZnZ:n3.

i=0 j=0 k=0 i=0 j=0 i=0
This example is simple enough so that we could get this result without all
the summation machinations. How? The algorithm computes n2 elements of the
product matrix. Each of the product’s elements is computed as the scalar (dot)
product of an n-element row of the first matrix and an n-element column of the
second matrix, which takes n multiplications. So the total number of multiplica-
tions is n - n2 = n3. (It is this kind of reasoning that we expected you to employ
when answering this question in Problem 2 of Exercises 2.1.)
If we now want to estimate the running time of the algorithm on a particular
machine, we can do it by the product

T(n) ~ c,, M(n) = c,,n>,

where c,, is the time of one multiplication on the machine in question. We would
get a more accurate estimate if we took into account the time spent on the
additions, too:

T (n)~c,M(n)+c,An) = cmn3 + cg,n3 =(c, + ca)nS,

62

Fundamentals of the Analysis of Algorithm Efficiency

Let us denote C(n) the number of times this comparison is executed and try
to find a formula expressing it as a function of size n. The algorithm makes one
comparison on each execution of the loop, which is repeated for each value of the
loop’s variable i within the bounds 1 and n — 1, inclusive. Therefore, we get the
following sum for C(n):

n—1

C(n) = 21.
i=1

This is an easy sum to compute because it is nothing other than 1 repeated n — 1
times. Thus,
n—1
C(n):Zl:nfleG(n). (]

i=1
Here is a general plan to follow in analyzing nonrecursive algorithms.

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation. (As a rule, it is located in the inner-
most loop.)

3. Check whether the number of times the basic operation is executed depends
only on the size of an input. If it also depends on some additional property,
the worst-case, average-case, and, if necessary, best-case efficiencies have to
be investigated separately.

4. Setup a sum expressing the number of times the algorithm’s basic operation
is executed.*

5. Using standard formulas and rules of sum manipulation, either find a closed-
form formula for the count or, at the very least, establish its order of growth.

Before proceeding with further examples, you may want to review Appen-
dix A, which contains a list of summation formulas and rules that are often useful
in analysis of algorithms. In particular, we use especially frequently two basic rules
of sum manipulation

i ca;=c¢ i a;, (R1)
. i=l uh:[ .
YaEb)=Y a+y b, (R2)
i=l i=l

i=l

Sometimes, an analysis of a nonrecursive algorithm requires setting up not a sum but a recurrence
relation for the number of times its basic operation is executed. Using recurrence relations is much
more typical for analyzing recursive algorithms (see Section 2.4).
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and two summation formulas

u

Z 1=u—1+4+1 where!l <u are some lower and upper integer limits, (S1)

i=l

ii:ii=1+2+-»-+n="(n+1)~

1o om?). (S2)
i=0 i=1 2 2

Note that the formula Z:.”;ll 1=n — 1, which we used in Example 1, is a special
case of formula (S1) for/ =landu=n — 1.

EXAMPLE 2 Consider the el t uniq ss problem: check whether all the
elements in a given array of n elements are distinct. This problem can be solved
by the following straightforward algorithm.

ALGORITHM  UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
1 and “false” otherwise
fori < Oton —2do

forj«<i+1ton—1do

if A[i]= A[j] return false

return true

The natural measure of the input’s size here is again n, the number of elements
in the array. Since the innermost loop contains a single operation (the comparison
of two elements), we should consider it as the algorithm’s basic operation. Note,
however, that the number of element comparisons depends not only on n but also
on whether there are equal elements in the array and, if there are, which array
positions they occupy. We will limit our investigation to the worst case only.

By definition, the worst case input is an array for which the number of element
comparisons C,,,,(n) is the largest among all arrays of size n. An inspection of
the innermost loop reveals that there are two kinds of worst-case inputs—inputs
for which the algorithm does not exit the loop prematurely: arrays with no equal
elements and arrays in which the last two elements are the only pair of equal
elements. For such inputs, one comparison is made for each repetition of the
innermost loop, i.e., for each value of the loop variable j between its limits i + 1
and n — 1; this is repeated for each value of the outer loop, i.e., for each value of
the loop variable i between its limits 0 and n — 2. Accordingly, we get
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n—2 n—1 n—2 n=2
Coorse =" Y 1=> =D =G+ D+1]=) n—1-10)
i=0 j=i+1 i=0 i=0

n—-2 n—-2 n—2
_ o o =1
—Z(rz 1 Zl—(n 1)21 —

i=0 i=0 i=0
n=2)(n—=1 (—Dn ~1
2 ) 2

We also could have computed the sum Z:’;g (n — 1 —1i) faster as follows:

=(n-17- n? e Om).

n-2
Ni—1-i=-D+m—-2)+-+1=
i=0

(n—1Dn
2

s

where the last equality is obtained by applying summation formula (S2). Note
that this result was perfectly predictable: in the worst case, the algorithm needs to
compare all n(n — 1)/2 distinct pairs of its n elements. |

EXAMPLE 3 Given two n x n matrices A and B, find the time efficiency of the
definition-based algorithm for computing their product C = AB. By definition, C
is an n x n matrix whose elements are computed as the scalar (dot) products of
the rows of matrix A and the columns of matrix B:

A B C

vowi | [T TTT] Cli.jl

col. j

where C[i, j]= A[i, 0]B[O, j]+ - - -+ A[i, k]Blk, j]1+ -+ Ali,n —1]B[n — 1, j]
for every pair of indices 0 <i, j <n — 1.

ALGORITHM  MatrixMultiplication(A[0..n — 1, 0..n — 1], B[0.n — 1, 0..n. — 1])
//Multiplies two square matrices of order n by the definition-based algorithm
//Input: Two n x n matrices A and B
//Output: Matrix C = AB
fori <~ Oton —1do

for j < Oton—1do
C[i, j]< 0.0
fork <~ 0Oton —1do
Cli, j] < C[i, j]1+ A[i, k] = B[k, j]
return C
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FIGURE 2.9 Initial and final screens of a typical visualization of a sorting algorithm using
the scatterplot representation.

World Wide Web in the 1990s. They range in scope from one particular algorithm
to a group of algorithms for the same problem (e.g., sorting) or the same applica-
tion area (e.g., geometric algorithms) to general-purpose animation systems. At
the end of 2010, a catalog of links to existing visualizations, maintained under the
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Let us apply the general plan outlined above to the Tower of Hanoi problem.
The number of disks n is the obvious choice for the input’s size indicator, and so is
moving one disk as the algorithm’s basic operation. Clearly, the number of moves
M (n) depends on n only, and we get the following recurrence equation for it:

Mmn)y=Mmn—-1)+1+Mmn—-1) forn>1.
With the obvious initial condition M (1) =1, we have the following recurrence
relation for the number of moves M (n):
Mmn)=2Mn —-1)+1 forn>1, 2.3)
M) =1.

‘We solve this recurrence by the same method of backward substitutions:
M@n)=2Mn —1)+1 sub. M(n — 1) =2M(n —2) +1
=22M(n —2) +1]+1=2>M(n —2) +2+1 sub. M(n —2) =2M(n — 3) + 1
=22M(n —3) +1]+2+1=2Mn -3) +22+2+1.

The pattern of the first three sums on the left suggests that the next one will be
22M@m —4)+23+224+2+1,and generally, after i substitutions, we get

M@n)=2M@n—i)+27 42772 4 424 1=2 M@ —i)+2 -1

Since the initial condition is specified for n = 1, which is achieved fori =n — 1, we
get the following formula for the solution to recurrence (2.3):

M) =2"""M@n—(n—1)+2"" -1
— 211—1M(1) _,’_211—1 _ 1:211—1 +2n—l —1=2"_1.

Thus, we have an exponential algorithm, which will run for an unimaginably
long time even for moderate values of n (see Problem 5 in this section’s exercises).
This is not due to the fact that this particular algorithm is poor; in fact, it is not
difficult to prove that this is the most efficient algorithm possible for this problem.
It is the problem’s intrinsic difficulty that makes it so computationally hard. Still,
this example makes an important general point:

One should be careful with recursive algorithms because their succinctness
may mask their inefficiency.

When a recursive algorithm makes more than a single call to itself, it can be
useful for analysis purposes to construct a tree of its recursive calls. In this tree,
nodes correspond to recursive calls, and we can label them with the value of the
parameter (or, more generally, parameters) of the calls. For the Tower of Hanoi
example, the tree is given in Figure 2.5. By counting the number of nodes in the
tree, we can get the total number of calls made by the Tower of Hanoi algorithm:

n—1
C(n) = Z 2! (where I is the level in the tree in Figure 2.5) =2" — 1.
1=0
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FIGURE 2.5 Tree of recursive calls made by the recursive algorithm for the Tower of
Hanoi puzzle.

The number agrees, as it should, with the move count obtained earlier. [ ]

EXAMPLE 3 As our next example, we investigate a recursive version of the
algorithm discussed at the end of Section 2.3.

ALGORITHM BinRec(n)
//Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
if n =1return 1
else return BinRec(|n/2]) + 1

Let us set up a recurrence and an initial condition for the number of addi-
tions A(n) made by the algorithm. The number of additions made in computing
BinRec(|n/2]) is A(ln/2]), plus one more addition is made by the algorithm to
increase the returned value by 1. This leads to the recurrence

A@m)=A(ln/2))+1 forn>1. 2.4)

Since the recursive calls end when 7 is equal to 1 and there are no additions made
then, the initial condition is

A(l) =0.

The presence of |n/2] in the function’s argument makes the method of back-
ward substitutions stumble on values of n that are not powers of 2. Therefore, the
standard approach to solving such a recurrence is to solve it only for n = 2% and
then take advantage of the theorem called the smoothness rule (see Appendix B),
which claims that under very broad assumptions the order of growth observed for
n = 2* gives a correct answer about the order of growth for all values of n. (Alter-
natively, after getting a solution for powers of 2, we can sometimes fine-tune this
solution to get a formula valid for an arbitrary n.) So let us apply this recipe to our
recurrence, which for n = 2* takes the form
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FIGURE 2.8 Initial and final screens of a typical visualization of a sorting algorithm using
the bar representation.

work by comparing and exchanging two given items at a time—an event that can
be animated relatively easily.

Since the appearance of Sorting Out Sorting, a great number of algorithm
animations have been created, especially after the appearance of Java and the
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Produce a scatterplot of D,,,(n) and indicate the algorithm’s likely average-
case efficiency class.

9. Run an experiment to ascertain the efficiency class of the sieve of Eratos-
thenes (see Section 1.1).

10. Run a timing experiment for the three algorithms for computing ged(m, n)
presented in Section 1.1.

Algorithm Visualization

In addition to the mathematical and empirical analyses of algorithms, there is yet
a third way to study algorithms. It is called algorithm visualization and can be
defined as the use of images to convey some useful information about algorithms.
That information can be a visual illustration of an algorithm’s operation, of its per-
formance on different kinds of inputs, or of its execution speed versus that of other
algorithms for the same problem. To accomplish this goal, an algorithm visualiza-
tion uses graphic elements—points, line segments, two- or three-dimensional bars,
and so on—to represent some “interesting events” in the algorithm’s operation.
There are two principal variations of algorithm visualization:

B Static algorithm visualization
®  Dynamic algorithm visualization, also called algorithm animation

Static algorithm visualization shows an algorithm’s progress through a series
of still images. Algorithm animation, on the other hand, shows a continuous,
movie-like presentation of an algorithm’s operations. Animation is an arguably
more sophisticated option, which, of course, is much more difficult to implement.

Early efforts in the area of algorithm visualization go back to the 1970s. The
watershed event happened in 1981 with the appearance of a 30-minute color sound
film titled Sorting Out Sorting. This algorithm visualization classic was produced
at the University of Toronto by Ronald Baecker with the assistance of D. Sherman
[Bae81, Bae98]. It contained visualizations of nine well-known sorting algorithms
(more than half of them are discussed later in the book) and provided quite a
convincing demonstration of their relative speeds.

The success of Sorting Out Sorting made sorting algorithms a perennial fa-
vorite for algorithm animation. Indeed, the sorting problem lends itself quite
naturally to visual presentation via vertical or horizontal bars or sticks of different
heights or lengths, which need to be rearranged according to their sizes (Figure
2.8). This presentation is convenient, however, only for illustrating actions of a
typical sorting algorithm on small inputs. For larger files, Sorting Out Sorting used
the ingenious idea of presenting data by a scatterplot of points on a coordinate
plane, with the first coordinate representing an item’s position in the file and the
second one representing the item’s value; with such a representation, the process
of sorting looks like a transformation of a “random” scatterplot of points into the
points along a frame’s diagonal (Figure 2.9). In addition, most sorting algorithms
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ACH=ACK Y +1 fork >0,
AQ% =0.
Now backward substitutions encounter no problems:
ACH =402 +1 substitute A2F) = A2 +1
=[AQ" ) +1]+1=AC"2) +2 substitute AQ¥2) = A3 +1
=[AC ) +1]+2=402"3) +3
=AQ i
=AM + k.
Thus, we end up with
ACH = A +k =k,
or, after returning to the original variable n = 2* and hence k = log, ,
A(n) =log, n € ©(log n).

In fact, one can prove (Problem 7 in this section’s exercises) that the exact solution
for an arbitrary value of n is given by just a slightly more refined formula A(n) =
[log, n]. [ ]

This section provides an introduction to the analysis of recursive algorithms.
These techniques will be used throughout the book and expanded further as
necessary. In the next section, we discuss the Fibonacci numbers; their analysis
involves more difficult recurrence relations to be solved by a method different
from backward substitutions.

Exercises 2.4

1. Solve the following recurrence relations.
a x(n)=x(n—1+5forn>1, x(1)=0
b. x(n)=3x(n—-1) forn>1, x(1)=4
c. x(n)=x(mn—1)+n forn>0, x0)=0
d. x(n) =x(n/2) +n forn>1, x(1)=1(solve for n =2¥)
e. x(n)=x(n/3)+1 forn>1, x(1) =1 (solve for n = 3%)
2. Set up and solve a recurrence relation for the number of calls made by F(n),
the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the first
ncubes: S(n) =13+ 23+ +n.
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ALGORITHM  S(n)
//Input: A positive integer n
//Output: The sum of the first n cubes
if n =1return 1
elsereturn S(n — 1) +n*xnx*n

a. Set up and solve a recurrence relation for the number of times the algo-
rithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive
algorithm for computing this sum?

. Consider the following recursive algorithm.

ALGORITHM Q(n)
/[Input: A positive integer n
if n = 1return 1
elsereturn Q(n — 1) +2xn — 1

a. Set up a recurrence relation for this function’s values and solve it to deter-
mine what this algorithm computes.

b. Setup arecurrence relation for the number of multiplications made by this
algorithm and solve it.

c. Setup arecurrence relation for the number of additions/subtractions made
by this algorithm and solve it.

. Tower of Hanoi

a. In the original version of the Tower of Hanoi puzzle, as it was published in
the 1890s by Edouard Lucas, a French mathematician, the world will end
after 64 disks have been moved from a mystical Tower of Brahma. Estimate
the number of years it will take if monks could move one disk per minute.
(Assume that monks do not eat, sleep, or die.)

b. How many moves are made by the ith largest disk (1 <i <n) in this
algorithm?

¢. Find a nonrecursive algorithm for the Tower of Hanoi puzzle and imple-
ment it in the language of your choice.

. Restricted Tower of Hanoi Consider the version of the Tower of Hanoi
puzzle in which n disks have to be moved from peg A to peg C using peg
B so that any move should either place a disk on peg B or move a disk from
that peg. (Of course, the prohibition of placing a larger disk on top of a smaller
one remains in place, too.) Design a recursive algorithm for this problem and
find the number of moves made by it.
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v < Ali]

j<«—i—1

while j >0 and A[j]> v do
count < count + 1
Al + 1] < A[j]
j<i-1

Alj+ 1]«

return count

Is the comparison counter inserted in the right place? If you believe it is, prove
it; if you believe it is not, make an appropriate correction.
2. a. Run the program of Problem 1, with a properly inserted counter (or coun-

ters) for the number of key comparisons, on 20 random arrays of sizes 1000,
2000, 3000, . . . ,20,000.

b. Analyze the data obtained to form a hypothesis about the algorithm’s
average-case efficiency.

¢. Estimate the number of key comparisons we should expect for a randomly
generated array of size 25,000 sorted by the same algorithm.

3. Repeat Problem 2 by measuring the program’s running time in milliseconds.

4. Hypothesize a likely efficiency class of an algorithm based on the following
empirical observations of its basic operation’s count:

size 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 9000 | 10000

count | 11,966 | 24,303 | 39,992 | 53,010 | 67,272 | 78,692 | 91,274 | 113,063 | 129,799 | 140,538

5. What scale transformation will make a logarithmic scatterplot look like a
linear one?

6. How can one distinguish a scatterplot for an algorithm in ©(Iglgn) from a
scatterplot for an algorithm in ®@(Ign)?
7. a. Find empirically the largest number of divisions made by Euclid’s algo-
rithm for computing ged(m, n) for 1<n <m < 100.

b. For each positive integer &, find empirically the smallest pair of integers
1< n <m <100 for which Euclid’s algorithm needs to make k divisions in
order to find ged(m, n).

8. The average-case efficiency of Euclid’s algorithm on inputs of size n can be

measured by the average number of divisions D,,,, () made by the algorithm
in computing ged(n, 1), ged(n, 2), . . ., ged(n, n). For example,

1
Dyye(5) = §(1+2+3+2+1):1.8.
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FIGURE 2.7 Typical scatter plots. (a) Logarithmic. (b) Linear. (c) One of the convex

Exercises 2.6

functions.

1. Consider the following well-known sorting algorithm, which is studied later
in the book, with a counter inserted to count the number of key comparisons.

ALGORITHM  SortAnalysis(A[0..n — 1])

/lInput: An array A[0..n — 1] of n orderable elements
//Output: The total number of key comparisons made
count <0

fori < 1ton—1do
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d.

. Prove that the exact number of additions made by the recursive algorithm

BinRec(n) for an arbitrary positive decimal integer n is [log, n].

. Set up a recurrence relation for the number of additions made by the

nonrecursive version of this algorithm (see Section 2.3, Example 4) and
solve it.

. Design a recursive algorithm for computing 2" for any nonnegative integer

n that is based on the formula 2" = 2~ 4 271,

. Set up a recurrence relation for the number of additions made by the

algorithm and solve it.

. Draw a tree of recursive calls for this algorithm and count the number of

calls made by the algorithm.
Is it a good algorithm for solving this problem?

9. Consider the following recursive algorithm.

ALGORITHM  Riddle(A[0..n —1])

a.
b.

//Input: An array A[0..n — 1] of real numbers
if n = 1 return A[0]
else temp <« Riddle(A[0..n —2])

if temp < A[n — 1] return temp

else return A[n — 1]

What does this algorithm compute?

Set up a recurrence relation for the algorithm’s basic operation count and
solve it.

10. Consider the following algorithm to check whether a graph defined by its
adjacency matrix is complete.

ALGORITHM  GraphComplete(A[0..n — 1, 0..n — 1])

//Input: Adjacency matrix A[0..n — 1, 0..n — 1]) of an undirected graph G
/[Output: 1 (true) if G is complete and O (false) otherwise
if n =1return 1 //one-vertex graph is complete by definition
else

if not GraphComplete(A[0..n — 2, 0..n — 2]) return 0

else for j < Oton —2 do

if A[n — 1, j]=0return 0
return 1

What is the algorithm’s efficiency class in the worst case?

11. The determinant of an n x n matrix
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apo "t Aop—1
A ﬂ%o alf:—l i
Ap_10 " Gp_1n-1

denoted det A, can be defined as g for n = 1 and, for n > 1, by the recursive
formula

n—1
det A= Z sjag j det Aj,
=0

where s; is +1if j is even and —1if j is odd, ay ; is the element in row 0 and

column j, and A} is the (n — 1) x (n — 1) matrix obtained from matrix A by

deleting its row 0 and column ;.

a. Setup arecurrence relation for the number of multiplications made by the
algorithm implementing this recursive definition.

b. Withoutsolving the recurrence, what can you say about the solution’s order
of growth as compared to n!?

. von Neumann'’s neighborhood revisited Find the number of cells in the von
Neumann neighborhood of range n (Problem 12 in Exercises 2.3) by setting
up and solving a recurrence relation.

. Frying hamburgers There are n hamburgers to be fried on a small grill that
can hold only two hamburgers at a time. Each hamburger has to be fried
on both sides; frying one side of a hamburger takes 1 minute, regardless of
whether one or two hamburgers are fried at the same time. Consider the
following recursive algorithm for executing this task in the minimum amount
of time. If n <2, fry the hamburger or the two hamburgers together on each
side. If n > 2, fry any two hamburgers together on each side and then apply
the same procedure recursively to the remaining n — 2 hamburgers.

a. Setup and solve the recurrence for the amount of time this algorithm needs

to fry n hamburgers.

b. Explain why this algorithm does not fry the hamburgers in the minimum
amount of time for all n > 0.

c. Give a correct recursive algorithm that executes the task in the minimum
amount of time.

. Celebrity problem A celebrity among a group of n people is a person who
knows nobody but is known by everybody else. The task is to identify a
celebrity by only asking questions to people of the form “Do you know
him/her?” Design an efficient algorithm to identify a celebrity or determine
that the group has no such person. How many questions does your algorithm
need in the worst case?
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The principal advantage of tabulated data lies in the opportunity to manip-
ulate it easily. For example, one can compute the ratios M (n)/g(n) where g(n) is
a candidate to represent the efficiency class of the algorithm in question. If the
algorithm is indeed in ®(g(n)), most likely these ratios will converge to some pos-
itive constant as n gets large. (Note that careless novices sometimes assume that
this constant must be 1, which is, of course, incorrect according to the definition
of ®(g(n)).) Or one can compute the ratios M (2n)/M (n) and see how the running
time reacts to doubling of its input size. As we discussed in Section 2.2, such ratios
should change only slightly for logarithmic algorithms and most likely converge
to 2, 4, and 8 for linear, quadratic, and cubic algorithms, respectively—to name
the most obvious and convenient cases.

On the other hand, the form of a scatterplot may also help in ascertaining
the algorithm’s probable efficiency class. For a logarithmic algorithm, the scat-
terplot will have a concave shape (Figure 2.7a); this fact distinguishes it from
all the other basic efficiency classes. For a linear algorithm, the points will tend
to aggregate around a straight line or, more generally, to be contained between
two straight lines (Figure 2.7b). Scatterplots of functions in ©(n Ign) and © (%)
will have a convex shape (Figure 2.7c), making them difficult to differentiate. A
scatterplot of a cubic algorithm will also have a convex shape, but it will show a
much more rapid increase in the metric’s values. An exponential algorithm will
most probably require a logarithmic scale for the vertical axis, in which the val-
ues of log, M(n) rather than those of M(n) are plotted. (The commonly used
logarithm base is 2 or 10.) In such a coordinate system, a scatterplot of a truly
exponential algorithm should resemble a linear function because M (n) ~ ca” im-
plies log;, M (n) ~ log, ¢ + n log,, a, and vice versa.

One of the possible applications of the empirical analysis is to predict the al-
gorithm’s performance on an instance not included in the experiment sample. For
example, if you observe that the ratios M(n)/g(n) are close to some constant ¢
for the sample instances, it could be sensible to approximate M (n) by the prod-
uct cg(n) for other instances, too. This approach should be used with caution,
especially for values of n outside the sample range. (Mathematicians call such
predictions extrapolation, as opposed to interpolation, which deals with values
within the sample range.) Of course, you can try unleashing the standard tech-
niques of statistical data analysis and prediction. Note, however, that the majority
of such techniques are based on specific probabilistic assumptions that may or may
not be valid for the experimental data in question.

It seems appropriate to end this section by pointing out the basic differ-
ences between mathematical and empirical analyses of algorithms. The princi-
pal strength of the mathematical analysis is its independence of specific inputs;
its principal weakness is its limited applicability, especially for investigating the
average-case efficiency. The principal strength of the empirical analysis lies in its
applicability to any algorithm, but its results can depend on the particular sample
of instances and the computer used in the experiment.
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Much more often than not, an empirical analysis requires generating random
numbers. Even if you decide to use a pattern for input sizes, you will typically
want instances themselves generated randomly. Generating random numbers on
a digital computer is known to present a difficult problem because, in principle,
the problem can be solved only approximately. This is the reason computer scien-
tists prefer to call such numbers pseudorandom. As a practical matter, the easiest
and most natural way of getting such numbers is to take advantage of a random
number generator available in computer language libraries. Typically, its output
will be a value of a (pseudo)random variable uniformly distributed in the interval
between 0 and 1. If a different (pseudo)random variable is desired, an appro-
priate transformation needs to be made. For example, if x is a continuous ran-
dom variable uniformly distributed on the interval 0 < x < 1, the variable y =1+
|x(r — )] will be uniformly distributed among the integer values between integers
landr —1( <r).

Alternatively, you can implement one of several known algorithms for gener-
ating (pseudo)random numbers. The most widely used and thoroughly studied of
such algorithms is the linear congruential method.

ALGORITHM Random(n, m, seed, a, b)

//Generates a sequence of n pseudorandom numbers according to the linear
1 congruential method
//Input: A positive integer n and positive integer parameters m, seed, a, b
/[Output: A sequence rq, .. ., r, of n pseudorandom integers uniformly
1 distributed among integer values between 0 and m — 1
//Note: Pseudorandom numbers between 0 and 1 can be obtained
1 by treating the integers generated as digits after the decimal point
ro < seed
fori <~ 1tondo

r; < (a*r;_1+b)modm

The simplicity of this pseudocode is misleading because the devil lies in the
details of choosing the algorithm’s parameters. Here is a partial list of recommen-
dations based on the results of a sophisticated mathematical analysis (see [Knull,
pp. 184-185] for details): seed may be chosen arbitrarily and is often set to the
current date and time; m should be large and may be conveniently taken as 2%,
where w is the computer’s word size; a should be selected as an integer between
0.01m and 0.99m with no particular pattern in its digits but such that « mod 8 =5;
and the value of b can be chosen as 1.

The empirical data obtained as the result of an experiment need to be recorded
and then presented for an analysis. Data can be presented numerically in a table or
graphically in a scatterplot, i.e., by points in a Cartesian coordinate system. It is a
good idea to use both these options whenever it is feasible because both methods
have their unique strengths and weaknesses.
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Example: Computing the nth Fibonacci Number

In this section, we consider the Fibonacci numbers, a famous sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... (2.5)
that can be defined by the simple recurrence
Fn)=Fn—-1)+Fn-2) forn>1 (2.6)
and two initial conditions
F(0)=0, F(H)=1 2.7

The Fibonacci numbers were introduced by Leonardo Fibonacci in 1202 as
a solution to a problem about the size of a rabbit population (Problem 2 in this
section’s exercises). Many more examples of Fibonacci-like numbers have since
been discovered in the natural world, and they have even been used in predicting
the prices of stocks and commodities. There are some interesting applications of
the Fibonacci numbers in computer science as well. For example, worst-case inputs
for Euclid’s algorithm discussed in Section 1.1 happen to be consecutive elements
of the Fibonacci sequence. In this section, we briefly consider algorithms for
computing the nth element of this sequence. Among other benefits, the discussion
will provide us with an opportunity to introduce another method for solving
recurrence relations useful for analysis of recursive algorithms.

To start, let us get an explicit formula for F (n). If we try to apply the method
of backward substitutions to solve recurrence (2.6), we will fail to get an easily
discernible pattern. Instead, we can take advantage of a theorem that describes
solutions to a homogeneous second-order linear recurrence with constant co-
efficients

ax(n) +bx(n —1) +cx(n —2) =0, 2.8)

where a, b, and ¢ are some fixed real numbers (a # 0) called the coefficients of
the recurrence and x(n) is the generic term of an unknown sequence to be found.
Applying this theorem to our recurrence with the initial conditions given—see
Appendix B—we obtain the formula

1
NG

where ¢ = (1+ +/3)/2 ~1.61803 and ¢ = —1/¢ ~ —0.61803.° It is hard to believe
that formula (2.9), which includes arbitrary integer powers of irrational numbers,
yields nothing else but all the elements of Fibonacci sequence (2.5), but it does!
One of the benefits of formula (2.9) is that it immediately implies that F(n)
grows exponentially (remember Fibonacci’s rabbits?), i.e., F(n) € ©(¢"). This

F(n) = —=@@" — ¢"), 29)

Constant ¢ is known as the golden ratio. Since antiquity, it has been considered the most pleasing ratio
of a rectangle’s two sides to the human eye and might have been consciously used by ancient architects
and sculptors.
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follows from the observation that ¢ is a fraction between —1 and 0, and hence
$" gets infinitely small as n goes to infinity. In fact, one can prove that the impact
of the second term is(f)" on the value of F(n) can be obtained by rounding off the
value of the first term to the nearest integer. In other words, for every nonnegative
integer n,

F(n) = %d)” rounded to the nearest integer. (2.10)

In the algorithms that follow, we consider, for the sake of simplicity, such oper-
ations as additions and multiplications at unit cost. Since the Fibonacci numbers
grow infinitely large (and grow very rapidly), a more detailed analysis than the
one offered here is warranted. In fact, it is the size of the numbers rather than a
time-efficient method for computing them that should be of primary concern here.
Still, these caveats notwithstanding, the algorithms we outline and their analysis
provide useful examples for a student of the design and analysis of algorithms.

To begin with, we can use recurrence (2.6) and initial conditions (2.7) for the
obvious recursive algorithm for computing F(n).

ALGORITHM F(n)

//Computes the nth Fibonacci number recursively by using its definition
/[Input: A nonnegative integer n

//Output: The nth Fibonacci number

if n < 1returnn

elsereturn F(n — 1) + F(n — 2)

Before embarking on its formal analysis, can you tell whether this is an effi-
cient algorithm? Well, we need to do a formal analysis anyway. The algorithm’s ba-
sic operation is clearly addition, so let A(n) be the number of additions performed
by the algorithm in computing F(n). Then the numbers of additions needed for
computing F(n — 1) and F(n — 2) are A(n — 1) and A(n — 2), respectively, and
the algorithm needs one more addition to compute their sum. Thus, we get the
following recurrence for A(n):

An)=An—-1D+An—-2)+1 forn>1, 2.11)

A(0) =0, A(l) =0.
The recurrence A(n) — A(n — 1) — A(n — 2) =1 is quite similar to recurrence
F(n) — F(n—1) — F(n — 2) =0, but its right-hand side is not equal to zero. Such
recurrences are called inhomogeneous. There are general techniques for solving
inhomogeneous recurrences (see Appendix B or any textbook on discrete mathe-
matics), but for this particular recurrence, a special trick leads to a faster solution.
We can reduce our inhomogeneous recurrence to a homogeneous one by rewriting
it as

[An) +1]—[An =1 +1]—-[A(n —=2)+1]=0
and substituting B(n) = A(n) + 1:
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your program. (In UNIX, this time is called the “user time,” and it is automatically
provided by the time command.)

Thus, measuring the physical running time has several disadvantages, both
principal (dependence on a particular machine being the most important of them)
and technical, not shared by counting the executions of a basic operation. On the
other hand, the physical running time provides very specific information about
an algorithm’s performance in a particular computing environment, which can
be of more importance to the experimenter than, say, the algorithm’s asymptotic
efficiency class. In addition, measuring time spent on different segments of a
program can pinpoint a bottleneck in the program’s performance that can be
missed by an abstract deliberation about the algorithm’s basic operation. Getting
such data—called profiling—is an important resource in the empirical analysis of
an algorithm’s running time; the data in question can usually be obtained from
the system tools available in most computing environments.

Whether you decide to measure the efficiency by basic operation counting or
by time clocking, you will need to decide on a sample of inputs for the experiment.
Often, the goal is to use a sample representing a “typical” input; so the challenge
is to understand what a “typical” input is. For some classes of algorithms—e.g., for
algorithms for the traveling salesman problem that we are going to discuss later in
the book—researchers have developed a set of instances they use for benchmark-
ing. But much more often than not, an input sample has to be developed by the
experimenter. Typically, you will have to make decisions about the sample size (it
is sensible to start with a relatively small sample and increase it later if necessary),
the range of instance sizes (typically neither trivially small nor excessively large),
and a procedure for generating instances in the range chosen. The instance sizes
can either adhere to some pattern (e.g., 1000, 2000, 3000, . . . , 10,000 or 500, 1000,
2000, 4000, . . . , 128,000) or be generated randomly within the range chosen.

The principal advantage of size changing according to a pattern is that its
impact is easier to analyze. For example, if a sample’s sizes are generated by
doubling, you can compute the ratios M(2n)/M (n) of the observed metric M
(the count or the time) to see whether the ratios exhibit a behavior typical of
algorithms in one of the basic efficiency classes discussed in Section 2.2. The
major disadvantage of nonrandom sizes is the possibility that the algorithm under
investigation exhibits atypical behavior on the sample chosen. For example, if all
the sizes in a sample are even and your algorithm runs much more slowly on odd-
size inputs, the empirical results will be quite misleading.

Another important issue concerning sizes in an experiment’s sample is
whether several instances of the same size should be included. If you expect the
observed metric to vary considerably on instances of the same size, it would be
probably wise to include several instances for every size in the sample. (There
are well-developed methods in statistics to help the experimenter make such de-
cisions; you will find no shortage of books on this subject.) Of course, if several
instances of the same size are included in the sample, the averages or medians of
the observed values for each size should be computed and investigated instead of
or in addition to individual sample points.
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5. Generate a sample of inputs.

6. Run the algorithm (or algorithms) on the sample’s inputs and record the data
observed.

7. Analyze the data obtained.

Let us discuss these steps one at a time. There are several different goals
one can pursue in analyzing algorithms empirically. They include checking the
accuracy of a theoretical assertion about the algorithm’s efficiency, comparing the
efficiency of several algorithms for solving the same problem or different imple-
mentations of the same algorithm, developing a hypothesis about the algorithm’s
efficiency class, and ascertaining the efficiency of the program implementing the
algorithm on a particular machine. Obviously, an experiment’s design should de-
pend on the question the experimenter seeks to answer.

In particular, the goal of the experiment should influence, if not dictate, how
the algorithm’s efficiency is to be measured. The first alternative is to insert a
counter (or counters) into a program implementing the algorithm to count the
number of times the algorithm’s basic operation is executed. This is usually a
straightforward operation; you should only be mindful of the possibility that
the basic operation is executed in several places in the program and that all its
executions need to be accounted for. As straightforward as this task usually is,
you should always test the modified program to ensure that it works correctly, in
terms of both the problem it solves and the counts it yields.

The second alternative is to time the program implementing the algorithm in
question. The easiest way to do this is to use a system’s command, such as the time
command in UNIX. Alternatively, one can measure the running time of a code
fragment by asking for the system time right before the fragment’s start (¢y,,,) and
just after its completion (#,;s), and then computing the difference between the
tWO (tfinish— tyar)- In C and C++, you can use the function clock for this purpose;
in Java, the method currentTimeMi11is() in the System class is available.

It is important to keep several facts in mind, however. First, a system’s time
is typically not very accurate, and you might get somewhat different results on
repeated runs of the same program on the same inputs. An obvious remedy is
to make several such measurements and then take their average (or the median)
as the sample’s observation point. Second, given the high speed of modern com-
puters, the running time may fail to register at all and be reported as zero. The
standard trick to overcome this obstacle is to run the program in an extra loop
many times, measure the total running time, and then divide it by the number of
the loop’s repetitions. Third, on a computer running under a time-sharing system
such as UNIX, the reported time may include the time spent by the CPU on other
programs, which obviously defeats the purpose of the experiment. Therefore, you
should take care to ask the system for the time devoted specifically to execution of

If the system time is given in units called “ticks,” the difference should be divided by a constant
indicating the number of ticks per time unit.
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B(n)— B(n —1) — B(n —2) =0,

B(0) =1, B(l)=1.
This homogeneous recurrence can be solved exactly in the same manner as recur-
rence (2.6) was solved to find an explicit formula for F(n). But it can actually be

avoided by noting that B(n) is, in fact, the same recurrence as F(n) except that it
starts with two 1’s and thus runs one step ahead of F(n). So B(n) = F(n + 1), and

Am)=Bmn)—1=Fn+1)—1= %@"*‘ —¢th — 1.

Hence, A(n) € ®(¢"), and if we measure the size of n by the number of bits
b = |log, n] + linits binary representation, the efficiency class will be even worse,
namely, doubly exponential: A(b) € G)(q)zh).

The poor efficiency class of the algorithm could be anticipated by the nature of
recurrence (2.11). Indeed, it contains two recursive calls with the sizes of smaller
instances only slightly smaller than size n. (Have you encountered such a situation
before?) We can also see the reason behind the algorithm’s inefficiency by looking
at a recursive tree of calls tracing the algorithm’s execution. An example of such
a tree for n =5 is given in Figure 2.6. Note that the same values of the function
are being evaluated here again and again, which is clearly extremely inefficient.

We can obtain a much faster algorithm by simply computing the successive
elements of the Fibonacci sequence iteratively, as is done in the following algo-
rithm.

ALGORITHM  Fib(n)
//Computes the nth Fibonacci number iteratively by using its definition
//Input: A nonnegative integer n
//Output: The nth Fibonacci number
F[0] < 0; F[1] <1
fori <~ 2tondo
Fli] < F[i — 1]+ F[i — 2]
return F[n]

/F(5)\
F(3)

F(4)
F(3)/ \F(Z) F(2) \F(H
F(Z)/\FH) F(1)/\F(0) F(H/\F(O)
F(1) F(0)

FIGURE 2.6 Tree of recursive calls for computing the 5th Fibonacci number by the
definition-based algorithm.
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This algorithm clearly makes n — 1 additions. Hence, it is linear as a function
of n and “only” exponential as a function of the number of bits b in »’s binary
representation. Note that using an extra array for storing all the preceding ele-
ments of the Fibonacci sequence can be avoided: storing just two values is neces-
sary to accomplish the task (see Problem 8 in this section’s exercises).

The third alternative for computing the nth Fibonacci number lies in using
formula (2.10). The efficiency of the algorithm will obviously be determined by
the efficiency of an exponentiation algorithm used for computing ¢”. If it is done
by simply multiplying ¢ by itself » — 1 times, the algorithm will be in © (n) = ©(2°).
There are faster algorithms for the exponentiation problem. For example, we
will discuss ©(log n) = ©(b) algorithms for this problem in Chapters 4 and 6.
Note also that special care should be exercised in implementing this approach
to computing the nth Fibonacci number. Since all its intermediate results are
irrational numbers, we would have to make sure that their approximations in the
computer are accurate enough so that the final round-off yields a correct result.

Finally, there exists a ®(log n) algorithm for computing the nth Fibonacci
number that manipulates only integers. It is based on the equality

Fm—1 Fm |_Jo0o 17
|:F(n) F(n+1)i|_|:1 1] forn =1

and an efficient way of computing matrix powers.

Exercises 2.5

1. Find a Web site dedicated to applications of the Fibonacci numbers and
study it.

2. Fibonacci’s rabbits problem A man put a pair of rabbits in a place sur-
rounded by a wall. How many pairs of rabbits will be there in a year if the
initial pair of rabbits (male and female) are newborn and all rabbit pairs are
not fertile during their first month of life but thereafter give birth to one new
male/female pair at the end of every month?

3. Climbing stairs Find the number of different ways to climb an n-stair stair-

case if each step is either one or two stairs. For example, a 3-stair staircase can
be climbed three ways: 1-1-1, 1-2, and 2-1.

4. How many even numbers are there among the first n Fibonacci numbers, i.e.,
among the numbers F(0), F(1), ..., F(n — 1)? Give a closed-form formula
valid for every n > 0.

5. Check by direct substitutions that the function ﬁ(q)" — ¢") indeed satisfies
recurrence (2.6) and initial conditions (2.7).

6. The maximum values of the Java primitive types int and Tong are 23! — 1 and
263 _ 1, respectively. Find the smallest n for which the nth Fibonacci number
is not going to fit in a memory allocated for
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a. the type int. b. the type Tong.

7. Consider the recursive definition-based algorithm for computing the nth Fi-
bonacci number F(n). Let C(n) and Z(n) be the number of times F(1) and
F(0) are computed, respectively. Prove that

a. C(n) = F(n). b. Zn)=F(n —1).
8. Improve algorithm Fib of the text so that it requires only ®(1) space.
9. Prove the equality

Fin—1) F(n) _ 0o 17"
|: F(n) F(n+1):|7|:1 1] forn > 1.

10. How many modulo divisions are made by Euclid’s algorithm on two consec-
utive Fibonacci numbers F(n) and F(n — 1) as the algorithm’s input?

11. Dissecting a Fibonacci rectangle Given a rectangle whose sides are two con-
secutive Fibonacci numbers, design an algorithm to dissect it into squares with
no more than two squares being the same size. What is the time efficiency class
of your algorithm?

12. In the language of your choice, implement two algorithms for computing the
last five digits of the nth Fibonacci number that are based on (a) the recursive
definition-based algorithm F(n); (b) the iterative definition-based algorithm
Fib(n). Perform an experiment to find the largest value of n for which your
programs run under 1 minute on your computer.

Empirical Analysis of Algorithms

In Sections 2.3 and 2.4, we saw how algorithms, both nonrecursive and recursive,
can be analyzed mathematically. Though these techniques can be applied success-
fully to many simple algorithms, the power of mathematics, even when enhanced
with more advanced techniques (see [Sed96], [Pur04], [Gra94], and [Gre07]), is
far from limitless. In fact, even some seemingly simple algorithms have proved
to be very difficult to analyze with mathematical precision and certainty. As we
pointed out in Section 2.1, this is especially true for the average-case analysis.

The principal alternative to the mathematical analysis of an algorithm’s ef-
ficiency is its empirical analysis. This approach implies steps spelled out in the
following plan.

General Plan for the Empirical Analysis of Algorithm Time Efficiency

1. Understand the experiment’s purpose.

2. Decide on the efficiency metric M to be measured and the measurement unit
(an operation count vs. a time unit).

3. Decide on characteristics of the input sample (its range, size, and so on).

4. Prepare a program implementing the algorithm (or algorithms) for the exper-
imentation.
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only if all the other points of the set lie on the same side of the straight line through
these two points? (Verify this property for the set in Figure 3.6.) Repeating this
test for every pair of points yields a list of line segments that make up the convex
hull’s boundary.

A few elementary facts from analytical geometry are needed to implement
this algorithm. First, the straight line through two points (xy, y;), (x5, y,) in the
coordinate plane can be defined by the equation

ax +by=c,

where a =y, — y1, b = x1 — x5, ¢ = X1y, — y1X2.

Second, such a line divides the plane into two half-planes: for all the points
in one of them, ax + by > ¢, while for all the points in the other, ax + by < c.
(For the points on the line itself, of course, ax + by = c.) Thus, to check whether
certain points lie on the same side of the line, we can simply check whether the
expression ax + by — ¢ has the same sign for each of these points. We leave the
implementation details as an exercise.

What is the time efficiency of this algorithm? It is in O(n%): for each of
n(n — 1)/2 pairs of distinct points, we may need to find the sign of ax + by — ¢
for each of the other n — 2 points. There are much more efficient algorithms for
this important problem, and we discuss one of them later in the book.

Exercises 3.3

1. Assuming that sqrt takes about 10 times longer than each of the other oper-
ations in the innermost loop of BruteForceClosestPoints, which are assumed
to take the same amount of time, estimate how much faster the algorithm will
run after the improvement discussed in Section 3.3.

2. Can you design a more efficient algorithm than the one based on the brute-
force strategy to solve the closest-pair problem for n points xy, x, ..., x,, on
the real line?

3. Letx; < x; < - - - < x, be real numbers representing coordinates of n villages
located along a straight road. A post office needs to be built in one of these
villages.

a. Design an efficient algorithm to find the post-office location minimizing
the average distance between the villages and the post office.

b. Design an efficient algorithm to find the post-office location minimizing
the maximum distance from a village to the post office.

For the sake of simplicity, we assume here that no three points of a given set lic on the same line. A
modification needed for the general case is left for the exercises.
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NSF-supported AlgoVizProject, contained over 500 links. Unfortunately, a survey
of existing visualizations found most of them to be of low quality, with the content
heavily skewed toward easier topics such as sorting [Sha07].

There are two principal applications of algorithm visualization: research and
education. Potential benefits for researchers are based on expectations that algo-
rithm visualization may help uncover some unknown features of algorithms. For
example, one researcher used a visualization of the recursive Tower of Hanoi algo-
rithm in which odd- and even-numbered disks were colored in two different colors.
He noticed that two disks of the same color never came in direct contact during
the algorithm’s execution. This observation helped him in developing a better non-
recursive version of the classic algorithm. To give another example, Bentley and
Mcllroy [Ben93] mentioned using an algorithm animation system in their work
on improving a library implementation of a leading sorting algorithm.

The application of algorithm visualization to education seeks to help students
learning algorithms. The available evidence of its effectiveness is decisively mixed.
Although some experiments did register positive learning outcomes, others failed
to do so. The increasing body of evidence indicates that creating sophisticated
software systems is not going to be enough. In fact, it appears that the level of
student involvement with visualization might be more important than specific
features of visualization software. In some experiments, low-tech visualizations
prepared by students were more effective than passive exposure to sophisticated
software systems.

To summarize, although some successes in both research and education have
been reported in the literature, they are not as impressive as one might expect. A
deeper understanding of human perception of images will be required before the
true potential of algorithm visualization is fulfilled.

SUMMARY

®  There are two kinds of algorithm efficiency: time efficiency and space
efficiency. Time efficiency indicates how fast the algorithm runs; space
efficiency deals with the extra space it requires.

®  Analgorithm’s time efficiency is principally measured as a function of its input
size by counting the number of times its basic operation is executed. A basic
operation is the operation that contributes the most to running time. Typically,
it is the most time-consuming operation in the algorithm’s innermost loop.

B For some algorithms, the running time can differ considerably for inputs of
the same size, leading to worst-case efficiency, average-case efficiency, and
best-case efficiency.

B The established framework for analyzing time efficiency is primarily grounded
in the order of growth of the algorithm’s running time as its input size goes to
infinity.
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The notations O, €2, and ® are used to indicate and compare the asymptotic
orders of growth of functions expressing algorithm efficiencies.

The efficiencies of a large number of algorithms fall into the following
few classes: constant, logarithmic, linear, linearithmic, quadratic, cubic, and
exponential.

The main tool for analyzing the time efficiency of a nonrecursive algorithm
is to set up a sum expressing the number of executions of its basic operation
and ascertain the sum’s order of growth.

The main tool for analyzing the time efficiency of a recursive algorithm is to
set up a recurrence relation expressing the number of executions of its basic
operation and ascertain the solution’s order of growth.

Succinctness of a recursive algorithm may mask its inefficiency.

The Fibonacci numbers are an important sequence of integers in which every
element is equal to the sum of its two immediate predecessors. There are
several algorithms for computing the Fibonacci numbers, with drastically
different efficiencies.

Empirical analysis of an algorithm is performed by running a program
implementing the algorithm on a sample of inputs and analyzing the data
observed (the basic operation’s count or physical running time). This
often involves generating pseudorandom numbers. The applicability to any
algorithm is the principal strength of this approach; the dependence of results
on the particular computer and instance sample is its main weakness.

Algorithm visualization is the use of images to convey useful information
about algorithms. The two principal variations of algorithm visualization are
static algorithm visualization and dynamic algorithm visualization (also called
algorithm animation).

Brute Force and Exhaustive Search
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FIGURE 3.6 The convex hull for this set of eight points is the convex polygon with
vertices at py, ps, pe, p7, and ps.

The convex-hull problem is the problem of constructing the convex hull for
a given set S of n points. To solve it, we need to find the points that will serve as
the vertices of the polygon in question. Mathematicians call the vertices of such
a polygon “extreme points.” By definition, an extreme point of a convex set is a
point of this set that is not a middle point of any line segment with endpoints in
the set. For example, the extreme points of a triangle are its three vertices, the
extreme points of a circle are all the points of its circumference, and the extreme
points of the convex hull of the set of eight points in Figure 3.6 are py, ps, pg, p7,
and pj3.

Extreme points have several special properties other points of a convex set
do not have. One of them is exploited by the simplex method, a very important
algorithm discussed in Section 10.1. This algorithm solves linear programming
problems, which are problems of finding a minimum or a maximum of a linear
function of n variables subject to linear constraints (see Problem 12 in this section’s
exercises for an example and Sections 6.6 and 10.1 for a general discussion). Here,
however, we are interested in extreme points because their identification solves
the convex-hull problem. Actually, to solve this problem completely, we need to
know a bit more than just which of n points of a given set are extreme points of the
set’s convex hull: we need to know which pairs of points need to be connected to
form the boundary of the convex hull. Note that this issue can also be addressed
by listing the extreme points in a clockwise or a counterclockwise order.

So how can we solve the convex-hull problem in a brute-force manner? If you
do not see an immediate plan for a frontal attack, do not be dismayed: the convex-
hull problem is one with no obvious algorithmic solution. Nevertheless, there is a
simple but inefficient algorithm that is based on the following observation about
line segments making up the boundary of a convex hull: a line segment connecting
two points p; and p; of asetof n points is a part of the convex hull’s boundary if and
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FIGURE 3.4 (a) Convex sets. (b) Sets that are not convex.

- [

FIGURE 3.5 Rubber-band interpretation of the convex hull.

points not on the same line, its convex hull is the triangle with the vertices at the
three points given; if the three points do lie on the same line, the convex hull is
the line segment with its endpoints at the two points that are farthest apart. For
an example of the convex hull for a larger set, see Figure 3.6.

A study of the examples makes the following theorem an expected result.

THEOREM The convex hull of any set S of n > 2 points not all on the same line
is a convex polygon with the vertices at some of the points of S. (If all the points
do lie on the same line, the polygon degenerates to a line segment but still with
the endpoints at two points of S.)
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Brute Force and
Exhaustive Search

Science is as far removed from brute force as this sword from a crowbar.
—Edward Lytton (1803-1873), Leila, Book II, Chapter I

Doing a thing well is often a waste of time.
—Robert Byrne, a master pool and billiards player and a writer

fter introducing the framework and methods for algorithm analysis in the

preceding chapter, we are ready to embark on a discussion of algorithm
design strategies. Each of the next eight chapters is devoted to a particular design
strategy. The subject of this chapter is brute force and its important special case,
exhaustive search. Brute force can be described as follows:

Brute force is a straightforward approach to solving a problem, usually
directly based on the problem statement and definitions of the concepts
involved.

The “force” implied by the strategy’s definition is that of a computer and
not that of one’s intellect. “Just do it!” would be another way to describe the
prescription of the brute-force approach. And often, the brute-force strategy is
indeed the one that is easiest to apply.

As an example, consider the exponentiation problem: compute a” for a
nonzero number a and a nonnegative integer n. Although this problem might
seem trivial, it provides a useful vehicle for illustrating several algorithm design
strategies, including the brute force. (Also note that computing a” mod m for some
large integers is a principal component of a leading encryption algorithm.) By the

definition of exponentiation,
a"=ax---xa.
& =2

n times
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this problem needs to be solved, either by itself or as a part of a larger task. Sev-
eral such applications are based on the fact that convex hulls provide convenient
approximations of object shapes and data sets given. For example, in computer an-
imation, replacing objects by their convex hulls speeds up collision detection; the
same idea is used in path planning for Mars mission rovers. Convex hulls are used
in computing accessibility maps produced from satellite images by Geographic
Information Systems. They are also used for detecting outliers by some statisti-
cal techniques. An efficient algorithm for computing a diameter of a set of points,
which is the largest distance between two of the points, needs the set’s convex hull
to find the largest distance between two of its extreme points (see below). Finally,
convex hulls are important for solving many optimization problems, because their
extreme points provide a limited set of solution candidates.
We start with a definition of a convex set.

DEFINITION A set of points (finite or infinite) in the plane is called convex if
for any two points p and ¢ in the set, the entire line segment with the endpoints
at p and g belongs to the set.

All the sets depicted in Figure 3.4a are convex, and so are a straight line,
a triangle, a rectangle, and, more generally, any convex polygon,! a circle, and
the entire plane. On the other hand, the sets depicted in Figure 3.4b, any finite
set of two or more distinct points, the boundary of any convex polygon, and a
circumference are examples of sets that are not convex.

Now we are ready for the notion of the convex hull. Intuitively, the convex
hull of a set of n points in the plane is the smallest convex polygon that contains
all of them either inside or on its boundary. If this formulation does not fire up
your enthusiasm, consider the problem as one of barricading n sleeping tigers by
a fence of the shortest length. This interpretation is due to D. Harel [Har92]; it is
somewhat lively, however, because the fenceposts have to be erected right at the
spots where some of the tigers sleep! There is another, much tamer interpretation
of this notion. Imagine that the points in question are represented by nails driven
into a large sheet of plywood representing the plane. Take a rubber band and
stretch it to include all the nails, then let it snap into place. The convex hull is the
area bounded by the snapped rubber band (Figure 3.5).

A formal definition of the convex hull that is applicable to arbitrary sets,
including sets of points that happen to lie on the same line, follows.

DEFINITION The convex hull of a set S of points is the smallest convex set
containing S. (The “smallest” requirement means that the convex hull of § must
be a subset of any convex set containing S.)

If S is convex, its convex hull is obviously § itself. If S is a set of two points,
its convex hull is the line segment connecting these points. If S is a set of three

By “a triangle, a rectangle, and, more generally, any convex polygon,” we mean here a region, i.e., the
set of points both inside and on the boundary of the shape in question.
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Pseudocode below computes the distance between the two closest points;
getting the closest points themselves requires just a trivial modification.

ALGORITHM  BruteForceClosestPair(P)
/[Finds distance between two closest points in the plane by brute force

/Input: A list P of n (n > 2) points py(x1, y1), ..., P,(X,, ¥,)
/IOutput: The distance between the closest pair of points
d < o0

fori <~ 1ton—1do
for j < i+ 1tondo
d < min(d, sqrt((x; — xj)2 + (y; — yj)z)) /Isqrt is square root
return d

The basic operation of the algorithm is computing the square root. In the age
of electronic calculators with a square-root button, one might be led to believe
that computing the square root is as simple an operation as, say, addition or
multiplication. Of course, it is not. For starters, even for most integers, square roots
are irrational numbers that therefore can be found only approximately. Moreover,
computing such approximations is not a trivial matter. But, in fact, computing
square roots in the loop can be avoided! (Can you think how?) The trick is to
realize that we can simply ignore the square-root function and compare the values
(x; — x;)?+ (y; — y;)* themselves. We can do this because the smaller a number of
which we take the square root, the smaller its square root, or, as mathematicians
say, the square-root function is strictly increasing.

Then the basic operation of the algorithm will be squaring a number. The
number of times it will be executed can be computed as follows:

n—1

n n—1
Cmy=>" > 2=2) -1
i=1

i=1 j=i+1
=2[n—-D+@n—-2)+---+1]=0 —DneO@>).

Of course, speeding up the innermost loop of the algorithm could only de-
crease the algorithm’s running time by a constant factor (see Problem 1 in this
section’s exercises), but it cannot improve its asymptotic efficiency class. In Chap-
ter 5, we discuss a linearithmic algorithm for this problem, which is based on a
more sophisticated design technique.

Convex-Hull Problem

On to the other problem—that of computing the convex hull. Finding the convex
hull for a given set of points in the plane or a higher dimensional space is one of
the most important—some people believe the most important—problems in com-
putational geometry. This prominence is due to a variety of applications in which
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This suggests simply computing «” by multiplying 1 by a n times.

We have already encountered at least two brute-force algorithms in the book:
the consecutive integer checking algorithm for computing gcd(m, n) in Section 1.1
and the definition-based algorithm for matrix multiplication in Section 2.3. Many
other examples are given later in this chapter. (Can you identify a few algorithms
you already know as being based on the brute-force approach?)

Though rarely a source of clever or efficient algorithms, the brute-force ap-
proach should not be overlooked as an important algorithm design strategy. First,
unlike some of the other strategies, brute force is applicable to a very wide va-
riety of problems. In fact, it seems to be the only general approach for which it
is more difficult to point out problems it cannot tackle. Second, for some impor-
tant problems—e.g., sorting, searching, matrix multiplication, string matching—
the brute-force approach yields reasonable algorithms of at least some practi-
cal value with no limitation on instance size. Third, the expense of designing a
more efficient algorithm may be unjustifiable if only a few instances of a prob-
lem need to be solved and a brute-force algorithm can solve those instances with
acceptable speed. Fourth, even if too inefficient in general, a brute-force algo-
rithm can still be useful for solving small-size instances of a problem. Finally,
a brute-force algorithm can serve an important theoretical or educational pur-
pose as a yardstick with which to judge more efficient alternatives for solving a
problem.

Selection Sort and Bubble Sort

In this section, we consider the application of the brute-force approach to the
problem of sorting: given a list of n orderable items (e.g., numbers, characters
from some alphabet, character strings), rearrange them in nondecreasing order.
As we mentioned in Section 1.3, dozens of algorithms have been developed for
solving this very important problem. You might have learned several of them in
the past. If you have, try to forget them for the time being and look at the problem
afresh.

Now, after your mind is unburdened of previous knowledge of sorting algo-
rithms, ask yourself a question: “What would be the most straightforward method
for solving the sorting problem?” Reasonable people may disagree on the answer
to this question. The two algorithms discussed here—selection sort and bubble
sort—seem to be the two prime candidates.

Selection Sort

We start selection sort by scanning the entire given list to find its smallest element
and exchange it with the first element, putting the smallest element in its final
position in the sorted list. Then we scan the list, starting with the second element,
to find the smallest among the last n — 1 elements and exchange it with the second
element, putting the second smallest element in its final position. Generally, on the
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ith pass through the list, which we number from 0 to n — 2, the algorithm searches
for the smallest item among the last n — i elements and swaps it with A;:

AgSAp<--- <A | App oo Ay - -5 A
in their final positions the last n — i elements

After n — 1 passes, the list is sorted.
Here is pseudocode of this algorithm, which, for simplicity, assumes that the
list is implemented as an array:

ALGORITHM  SelectionSort(A[0..n — 1])

/[Sorts a given array by selection sort
/Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori <~ Oton—2do

min < i

for j < i+1ton—1do

if A[j] < A[min] min < j
swap A[i] and A[min]

As an example, the action of the algorithm on the list 89, 45, 68, 90, 29, 34, 17
is illustrated in Figure 3.1.

The analysis of selection sort is straightforward. The input size is given by the
number of elements n; the basic operation is the key comparison A[j] < A[min].
The number of times it is executed depends only on the array size and is given by
the following sum:

n—2 n—1 n—2 n—2
Cm=y Y 1= [n-D=G+D+1]=) (n—1-1).
i=0 j=i+1 i=0 i=0

|89 45 68 90 29 34 17
17145 68 90 29 34 89
17 29|68 90 45 34 89
17 29 34190 45 68 89
17 29 34 45|90 68 89
17 29 34 45 68|90 89
17 29 34 45 68 89| 90

FIGURE 3.1 Example of sorting with selection sort. Each line corresponds to one
iteration of the algorithm, i.e., a pass through the list’s tail to the right
of the vertical bar; an element in bold indicates the smallest element
found. Elements to the left of the vertical bar are in their final positions and
are not considered in this and subsequent iterations.
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result of every shot is displayed as either a hit or a miss. In case of a hit, the
player gets to go again and keeps playing until missing. The goal is to sink all
the opponent’s ships before the opponent succeeds in doing it first. To sink a
ship, all squares occupied by the ship must be hit.

Closest-Pair and Convex-Hull Problems
by Brute Force

In this section, we consider a straightforward approach to two well-known prob-
lems dealing with a finite set of points in the plane. These problems, aside from
their theoretical interest, arise in two important applied areas: computational ge-
ometry and operations research.

Closest-Pair Problem

The closest-pair problem calls for finding the two closest points in a set of n
points. It is the simplest of a variety of problems in computational geometry that
deals with proximity of points in the plane or higher-dimensional spaces. Points
in question can represent such physical objects as airplanes or post offices as well
as database records, statistical samples, DNA sequences, and so on. An air-traffic
controller might be interested in two closest planes as the most probable collision
candidates. A regional postal service manager might need a solution to the closest-
pair problem to find candidate post-office locations to be closed.

One of the important applications of the closest-pair problem is cluster analy-
sis in statistics. Based on n data points, hierarchical cluster analysis seeks to orga-
nize them in a hierarchy of clusters based on some similarity metric. For numerical
data, this metricis usually the Euclidean distance; for text and other nonnumerical
data, metrics such as the Hamming distance (see Problem 5 in this section’s ex-
ercises) are used. A bottom-up algorithm begins with each element as a separate
cluster and merges them into successively larger clusters by combining the closest
pair of clusters.

For simplicity, we consider the two-dimensional case of the closest-pair prob-
lem. We assume that the points in question are specified in a standard fashion by
their (x, y) Cartesian coordinates and that the distance between two points p; (x;,
y;) and p;(x;, y;) is the standard Euclidean distance

d(pi, pp) =/ (6 — x> + (i — ¥)2

The brute-force approach to solving this problem leads to the following ob-
vious algorithm: compute the distance between each pair of distinct points and
find a pair with the smallest distance. Of course, we do not want to compute the
distance between the same pair of points twice. To avoid doing so, we consider
only the pairs of points (p;, p;) for whichi < j.
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. Determine the number of character comparisons made by the brute-force
algorithm in searching for the pattern GANDHI in the text

THERE_IS_MORE_TO_LIFE_THAN_INCREASING_ITS_SPEED

Assume that the length of the text—it is 47 characters long—is known before
the search starts.

. How many comparisons (both successful and unsuccessful) will be made by
the brute-force algorithm in searching for each of the following patterns in
the binary text of one thousand zeros?

a. 00001  b. 10000  ¢. 01010

. Give an example of a text of length n and a pattern of length m that constitutes
a worst-case input for the brute-force string-matching algorithm. Exactly how
many character comparisons will be made for such input?

. In solving the string-matching problem, would there be any advantage in
comparing pattern and text characters right-to-left instead of left-to-right?

. Consider the problem of counting, in a given text, the number of substrings

that start with an A and end with a B. For example, there are four such

substrings in CABAAXBYA.

a. Design a brute-force algorithm for this problem and determine its effi-
ciency class.

b. Design a more efficient algorithm for this problem. [Gin04]
. Write a visualization program for the brute-force string-matching algorithm.

. Word Find A popular diversion in the United States, “word find” (or “word
search”) puzzles ask the player to find each of a given set of words in a square
table filled with single letters. A word can read horizontally (left or right),
vertically (up or down), or along a 45 degree diagonal (in any of the four
directions) formed by consecutively adjacent cells of the table; it may wrap
around the table’s boundaries, but it must read in the same direction with no
zigzagging. The same cell of the table may be used in different words, but, in a
given word, the same cell may be used no more than once. Write a computer
program for solving this puzzle.

. Battleship game Write a program based on a version of brute-force pattern
matching for playing the game Battleship on the computer. The rules of the
game are as follows. There are two opponents in the game (in this case,
a human player and the computer). The game is played on two identical
boards (10 x 10 tables of squares) on which each opponent places his or her
ships, not seen by the opponent. Each player has five ships, each of which
occupies a certain number of squares on the board: a destroyer (two squares),
a submarine (three squares), a cruiser (three squares), a battleship (four
squares), and an aircraft carrier (five squares). Each ship is placed either
horizontally or vertically, with no two ships touching each other. The game
is played by the opponents taking turns “shooting” at each other’s ships. The

Brute Force and Exhaustive Search

Since we have already encountered the last sum in analyzing the algorithm of
Example 2 in Section 2.3, you should be able to compute it now on your own.
Whether you compute this sum by distributing the summation symbol or by
immediately getting the sum of decreasing integers, the answer, of course, must
be the same:

n—=2 n—1 n—=2

cm=y > 1:2@—1—:’):@.

i=0 j=i+1 i=0

Thus, selection sort is a ® (n?) algorithm on all inputs. Note, however, that the
number of key swapsis only © (n), or, more precisely, n — 1 (one for each repetition
of the i loop). This property distinguishes selection sort positively from many other
sorting algorithms.

Bubble Sort

Another brute-force application to the sorting problem is to compare adjacent
elements of the list and exchange them if they are out of order. By doing it
repeatedly, we end up “bubbling up” the largest element to the last position on
the list. The next pass bubbles up the second largest element, and so on, until
after n — 1 passes the list is sorted. Pass i (0 <i <n — 2) of bubble sort can be
represented by the following diagram:

?
Apy o Aj o Ajy, A Ay S S A
in their final positions

Here is pseudocode of this algorithm.

ALGORITHM BubbleSort(A[0..n — 1])
/[Sorts a given array by bubble sort
//Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori <~ Oton —2do
forj <~ Oton—2—ido
if A[j +1] < A[j] swap A[j]and A[j + 1]

The action of the algorithm on the list 89, 45, 68, 90, 29, 34, 17 is illustrated
as an example in Figure 3.2.

The number of key comparisons for the bubble-sort version given above is
the same for all arrays of size n; it is obtained by a sum that is almost identical to
the sum for selection sort:
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89 & 45 68 20 29 34 17
45 g9 & 68 90 29 34 17
45 68 89 & 90 & 29 34 17
45 68 89 29 90 & 34 17
45 68 89 29 34 90 & 17
45 68 89 29 34 17 | 90
45 & 68 S g & 29 34 17 | 90
45 68 29 g0 & a4 17 1 90
45 68 29 34 g9 & 17 | 9
45 68 29 34 17 | 89 90
etc.

FIGURE 3.2 First two passes of bubble sort on the list 89, 45, 68, 90, 29, 34, 17. A new
line is shown after a swap of two elements is done. The elements to the
right of the vertical bar are in their final positions and are not considered in
subsequent iterations of the algorithm.

n—2n—2—i n-2
Cm=Y > 1= [n-2-i)—-0+1]
i=0 j=0 i=0

n—2
:Z(n—l—i):weé)(nz).
=0 2

The number of key swaps, however, depends on the input. In the worst case of
decreasing arrays, it is the same as the number of key comparisons:

Syorst(n) =C(n) = (l’l;J € @(l’lz).

As is often the case with an application of the brute-force strategy, the first
version of an algorithm obtained can often be improved upon with a modest
amount of effort. Specifically, we can improve the crude version of bubble sort
given above by exploiting the following observation: if a pass through the list
makes no exchanges, the list has been sorted and we can stop the algorithm
(Problem 12a in this section’s exercises). Though the new version runs faster on
some inputs, it is still in ©(n?) in the worst and average cases. In fact, even among
elementary sorting methods, bubble sort is an inferior choice, and if it were not for
its catchy name, you would probably have never heard of it. However, the general
lesson you just learned is important and worth repeating:

A first application of the brute-force approach often results in an algorithm
that can be improved with a modest amount of effort.

106

Brute Force and Exhaustive Search

N OB ODY _ NOTTIO CEDTL_HTIMWM
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T

FIGURE 3.3 Example of brute-force string matching. The pattern’s characters that are
compared with their text counterparts are in bold type.

m(n —m + 1) character comparisons, which puts it in the O (nm) class. For a typical
word search in a natural language text, however, we should expect that most shifts
would happen after very few comparisons (check the example again). Therefore,
the average-case efficiency should be considerably better than the worst-case
efficiency. Indeed it is: for searching in random texts, it has been shown to be linear,
i.e., ®(n). There are several more sophisticated and more efficient algorithms for
string searching. The most widely known of them—by R. Boyer and J. Moore—is
outlined in Section 7.2 along with its simplification suggested by R. Horspool.

Exercises 3.2

1. Find the number of comparisons made by the sentinel version of sequential
search

a. in the worst case.

b. in the average case if the probability of a successful searchis p (0 < p <1).
2. As shown in Section 2.1, the average number of key comparisons made by

sequential search (without a sentinel, under standard assumptions about its

inputs) is given by the formula

Cavg(n) = +n(l - p),

pn+1

2
where p is the probability of a successful search. Determine, for a fixed n, the
values of p (0 < p <1) for which this formula yields the maximum value of
Cgyg(n) and the minimum value of C,,,(n).

3. Gadget testing A firm wants to determine the highest floor of its n-story
headquarters from which a gadget can fall without breaking. The firm has two
identical gadgets to experiment with. If one of them gets broken, it cannot be
repaired, and the experiment will have to be completed with the remaining
gadget. Design an algorithm in the best efficiency class you can to solve this
problem.
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Brute-Force String Matching

Recall the string-matching problem introduced in Section 1.3: given a string of n
characters called the text and a string of m characters (m < n) called the pattern,
find a substring of the text that matches the pattern. To put it more precisely, we
want to find i—the index of the leftmost character of the first matching substring

in the text—such that ; = py, ..., iy ;= pj, -, ligm_1 = Pm—1
o ... L T T S t_1 text T
? $ ¢
pPo -+ Pj -+ DPm- pattern P

If matches other than the first one need to be found, a string-matching algorithm
can simply continue working until the entire text is exhausted.

A brute-force algorithm for the string-matching problem is quite obvious:
align the pattern against the first m characters of the text and start matching the
corresponding pairs of characters from left to right until either all the m pairs
of the characters match (then the algorithm can stop) or a mismatching pair is
encountered. In the latter case, shift the pattern one position to the right and
resume the character comparisons, starting again with the first character of the
pattern and its counterpart in the text. Note that the last position in the text that
canstill be a beginning of a matching substring is n — m (provided the text positions
areindexed from O ton — 1). Beyond that position, there are not enough characters
to match the entire pattern; hence, the algorithm need not make any comparisons
there.

ALGORITHM  BruteForceStringMatch(T[0..n — 1], P[0..m — 1])

/Implements brute-force string matching
//Input: An array T[0..n — 1] of n characters representing a text and

1l an array P[0..m — 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
1 matching substring or —1if the search is unsuccessful
fori < Oton —mdo

Jj<0

while j <m and P[j]=TJ[i + j]do

j<—Jj+1

if j = m return i

return —1

An operation of the algorithm is illustrated in Figure 3.3. Note that for this
example, the algorithm shifts the pattern almost always after a single character
comparison. The worst case is much worse: the algorithm may have to make
all m comparisons before shifting the pattern, and this can happen for each of
the n —m + 1 tries. (Problem 6 in this section’s exercises asks you to give a
specific example of such a situation.) Thus, in the worst case, the algorithm makes

102

Brute Force and Exhaustive Search

Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an appli-
cation of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force
algorithm.

2. a. What is the time efficiency of the brute-force algorithm for computing
a" as a function of n? As a function of the number of bits in the binary
representation of n?

b. Ifyouare to compute a” mod m where a > 1and nisalarge positive integer,
how would you circumvent the problem of a very large magnitude of a"?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell whether
or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p) = a,x" +a, x"!

+ - +ax +ag
at a given point x, and determine its worst-case efficiency class.

b. If the algorithm you designed is in © (#2), design a linear algorithm for this
problem.

c. Isit possible to design an algorithm with a better-than-linear efficiency for
this problem?

5. A network topology specifies how computers, printers, and other devices
are connected over a network. The figure below illustrates three common
topologies of networks: the ring, the star, and the fully connected mesh.

ring star fully connected mesh

You are given a boolean matrix A[0..n — 1, 0..n — 1], where n > 3, which is
supposed to be the adjacency matrix of a graph modeling a network with one
of these topologies. Your task is to determine which of these three topologies,
if any, the matrix represents. Design a brute-force algorithm for this task and
indicate its time efficiency class.

6. Tetromino tilings Tetrominoes are tiles made of four 1 x 1 squares. There
are five types of tetrominoes shown below:
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] | | |

HEEN ] O |

straight tetromino  square tetromino L-tetromino T-tetromino Z-tetromino

7.

Isit possible to tile—i.e., cover exactly without overlaps—an 8 x 8 chessboard
with
a. straight tetrominoes? b. square tetrominoes?

c. L-tetrominoes? d. T-tetrominoes?

e. Z-tetrominoes?

A stack of fake coins There are n stacks of n identical-looking coins. All of

the coins in one of these stacks are counterfeit, while all the coins in the other

stacks are genuine. Every genuine coin weighs 10 grams; every fake weighs

11 grams. You have an analytical scale that can determine the exact weight of

any number of coins.

a. Devise a brute-force algorithm to identify the stack with the fake coins and
determine its worst-case efficiency class.

b. What is the minimum number of weighings needed to identify the stack
with the fake coins?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

10.

11.
12.

13.
14.

. Isselection sort stable? (The definition of a stable sorting algorithm was given

in Section 1.3.)

Is it possible to implement selection sort for linked lists with the same © (12)
efficiency as the array version?

Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

a. Prove that if bubble sort makes no exchanges on its pass through a list, the
list is sorted and the algorithm can be stopped.

b. Write pseudocode of the method that incorporates this improvement.

¢. Prove that the worst-case efficiency of the improved version is quadratic.

Is bubble sort stable?

Alternating disks You have arow of 2n disks of two colors, n dark and n light.
They alternate: dark, light, dark, light, and so on. You want to get all the dark
disks to the right-hand end, and all the light disks to the left-hand end. The
only moves you are allowed to make are those that interchange the positions
of two neighboring disks.

 © 0 O O 20000

Design an algorithm for solving this puzzle and determine the number of
moves it takes. [Gar99]
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Sequential Search and Brute-Force String Matching

‘We saw in the previous section two applications of the brute-force approach to the
sorting porblem. Here we discuss two applications of this strategy to the problem
of searching. The first deals with the canonical problem of searching for an item
of a given value in a given list. The second is different in that it deals with the
string-matching problem.

Sequential Search

We have already encountered a brute-force algorithm for the general searching
problem: it is called sequential search (see Section 2.1). To repeat, the algorithm
simply compares successive elements of a given list with a given search key until
either a match is encountered (successful search) or the list is exhausted without
finding a match (unsuccessful search). A simple extra trick is often employed
in implementing sequential search: if we append the search key to the end of
the list, the search for the key will have to be successful, and therefore we can
eliminate the end of list check altogether. Here is pseudocode of this enhanced
version.

ALGORITHM  SequentialSearch2(A[0..n], K)

/Implements sequential search with a search key as a sentinel
//Input: An array A of n elements and a search key K
//Output: The index of the first element in A[0..n — 1] whose value is
1l equal to K or —1if no such element is found
Aln]l < K
i<0
while A[i] # K do
i<—i+1
if i <nreturni
else return —1

Another straightforward improvement can be incorporated in sequential
search if a given list is known to be sorted: searching in such a list can be stopped
as soon as an element greater than or equal to the search key is encountered.

Sequential search provides an excellent illustration of the brute-force ap-
proach, with its characteristic strength (simplicity) and weakness (inferior effi-
ciency). The efficiency results obtained in Section 2.1 for the standard version of
sequential search change for the enhanced version only very slightly, so that the
algorithm remains linear in both the worst and average cases. We discuss later in
the book several searching algorithms with a better time efficiency.
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problem of size n

subproblem
of size n/2

solution to
the subproblem

v

solution to
the original problem

FIGURE 4.2 Decrease-(by half)-and-conquer technique.

(@"/%? if n is even and positive,
a"=q @22 .4 ifnisodd, @2)
1 ifn=0.

If we compute a” recursively according to formula (4.2) and measure the algo-
rithm’s efficiency by the number of multiplications, we should expect the algorithm
to be in O (log n) because, on each iteration, the size is reduced by about a half at
the expense of one or two multiplications.

A few other examples of decrease-by-a-constant-factor algorithms are given
in Section 4.4 and its exercises. Such algorithms are so efficient, however, that
there are few examples of this kind.

Finally, in the variable-size-decrease variety of decrease-and-conquer, the
size-reduction pattern varies from one iteration of an algorithm to another. Eu-
clid’s algorithm for computing the greatest common divisor provides a good ex-
ample of such a situation. Recall that this algorithm is based on the formula

ged(m, n) = ged(n, m mod n).
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4. a. There are several alternative ways to define a distance between two points
pi1(x1, yp) and py(x,, ¥,) in the Cartesian plane. In particular, the Manhat-
tan distance is defined as

dy(p1, p2) = |x1 — x3| + [y1 — ¥2l.

Prove that d,; satisfies the following axioms, which every distance function
must satisfy:
i. dy(p1, pp) = 0 for any two points p; and p,, and dy,(py, pp) =0if and
only if py = pp
ii. dy(p1, p2) =du(p2, 1
iii. dy(p1, p2) <du(p1, p3) +du(ps, py) for any py, py, and p;
b. Sketch all the points in the Cartesian plane whose Manhattan distance to
the origin (0, 0) is equal to 1. Do the same for the Euclidean distance.

c. True or false: A solution to the closest-pair problem does not depend on
which of the two metrics—dj (Euclidean) or dj; (Manhattan)—is used?

5. The Hamming distance between two strings of equal length is defined as the
number of positions at which the corresponding symbols are different. It is
named after Richard Hamming (1915-1998), a prominent American scientist
and engineer, who introduced it in his seminal paper on error-detecting and
error-correcting codes.

a. Does the Hamming distance satisfy the three axioms of a distance metric
listed in Problem 4?

b. Whatis the time efficiency class of the brute-force algorithm for the closest-
pair problem if the points in question are strings of m symbols long and the
distance between two of them is measured by the Hamming distance?

6. Odd piefight There aren > 3 people positioned on a field (Euclidean plane)
so that each has a unique nearest neighbor. Each person has a cream pie. Ata
signal, everybody hurls his or her pie at the nearest neighbor. Assuming that
n is odd and that nobody can miss his or her target, true or false: There always
remains at least one person not hit by a pie. [Car79]

7. The closest-pair problem can be posed in the k-dimensional space, in which
the Euclidean distance between two points p’(x{, ..., x;) and p”(x{, ..., x/

is defined as
oI k ’ m2
d(p’, p") = E L

What is the time-efficiency class of the brute-force algorithm for the k-
dimensional closest-pair problem?

8. Find the convex hulls of the following sets and identify their extreme points
(if they have any):
a. aline segment
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b. asquare
¢. the boundary of a square
d. astraight line

®

Design a linear-time algorithm to determine two extreme points of the convex
hull of a given set of n > 1 points in the plane.

10. What modification needs to be made in the brute-force algorithm for the
convex-hull problem to handle more than two points on the same straight

line?

11. Write a program implementing the brute-force algorithm for the convex-hull

problem.

12. Consider the following small instance of the linear programming problem:

maximize 3x + Sy

subjectto  x+ y<4
x+3y<6
x>0,y>0.

a. Sketch, in the Cartesian plane, the problem’s feasible region, defined as
the set of points satisfying all the problem’s constraints.

b. Identify the region’s extreme points.

¢. Solve this optimization problem by using the following theorem: A linear
programming problem with a nonempty bounded feasible region always
has a solution, which can be found at one of the extreme points of its
feasible region.

Exhaustive Search

Many important problems require finding an element with a special property in a
domain that grows exponentially (or faster) with an instance size. Typically, such
problems arise in situations that involve—explicitly or implicitly—combinatorial
objects such as permutations, combinations, and subsets of a given set. Many such
problems are optimization problems: they ask to find an element that maximizes
or minimizes some desired characteristic such as a path length or an assignment
cost.

Exhaustive search is simply a brute-force approach to combinatorial prob-
lems. It suggests generating each and every element of the problem domain, se-
lecting those of them that satisfy all the constraints, and then finding a desired
element (e.g., the one that optimizes some objective function). Note that although
the idea of exhaustive search is quite straightforward, its implementation typically
requires an algorithm for generating certain combinatorial objects. We delay a dis-
cussion of such algorithms until the next chapter and assume here that they exist.

Decrease-and-Conquer

problem of size n

subproblem
of size n -1

solution to
the subproblem

A 4

solution to
the original problem

FIGURE 4.1 Decrease-(by one)-and-conquer technique.

_Jfe=1-a ifn>0,
f(")_{l itn =0, @n

or “bottom up” by multiplying 1 by a n times. (Yes, it is the same as the brute-force
algorithm, but we have come to it by a different thought process.) More interesting
examples of decrease-by-one algorithms appear in Sections 4.1-4.3.

The decrease-by-a-constant-factor technique suggests reducing a problem
instance by the same constant factor on each iteration of the algorithm. In most
applications, this constant factor is equal to two. (Can you give an example of such
an algorithm?) The decrease-by-half idea is illustrated in Figure 4.2.

For an example, let us revisit the exponentiation problem. If the instance of
size n is to compute a”, the instance of half its size is to compute a"/2, with the
obvious relationship between the two: a” = (a"/%)?. But since we consider here
instances with integer exponents only, the former does not work for odd n. If n is
odd, we have to compute a”~! by using the rule for even-valued exponents and
then multiply the result by a. To summarize, we have the following formula:



Decrease-and-Conquer

Plutarch says that Sertorius, in order to teach his soldiers that perseverance
and wit are better than brute force, had two horses brought before them,
and set two men to pull out their tails. One of the men was a burly Hercules,
who tugged and tugged, but all to no purpose; the other was a sharp, weasel-
faced tailor, who plucked one hair at a time, amidst roars of laughter, and
soon left the tail quite bare.

—E. Cobham Brewer, Dictionary of Phrase and Fable, 1898

he decrease-and-conquer technique is based on exploiting the relationship

between a solution to a given instance of a problem and a solution to its
smaller instance. Once such a relationship is established, it can be exploited either
top down or bottom up. The former leads naturally to a recursive implementa-
tion, although, as one can see from several examples in this chapter, an ultimate
implementation may well be nonrecursive. The bottom-up variation is usually
implemented iteratively, starting with a solution to the smallest instance of the
problem; it is called sometimes the incremental approach.

There are three major variations of decrease-and-conquer:

B decrease by a constant
decrease by a constant factor
variable size decrease

In the decrease-by-a-constant variation, the size of an instance is reduced
by the same constant on each iteration of the algorithm. Typically, this constant
is equal to one (Figure 4.1), although other constant size reductions do happen
occasionally.

Consider, as an example, the exponentiation problem of computing a” where
a # 0 and n is a nonnegative integer. The relationship between a solution to an
instance of size n and an instance of size n — 1 is obtained by the obvious formula
a"=a""1-a. So the function f(n) = a" can be computed either “top down” by
using its recursive definition

131

116

Brute Force and Exhaustive Search

We illustrate exhaustive search by applying it to three important problems: the
traveling salesman problem, the knapsack problem, and the assignment problem.

Traveling Salesman Problem

The traveling salesman problem (TSP) has been intriguing researchers for the
last 150 years by its seemingly simple formulation, important applications, and
interesting connections to other combinatorial problems. In layman’s terms, the
problem asks to find the shortest tour through a given set of n cities that visits each
city exactly once before returning to the city where it started. The problem can be
conveniently modeled by a weighted graph, with the graph’s vertices representing
the cities and the edge weights specifying the distances. Then the problem can be
stated as the problem of finding the shortest Hamiltonian circuit of the graph. (A
Hamiltonian circuit is defined as a cycle that passes through all the vertices of the
graph exactly once. It is named after the Irish mathematician Sir William Rowan
Hamilton (1805-1865), who became interested in such cycles as an application of
his algebraic discoveries.)

Itis easy to see that a Hamiltonian circuit can also be defined as a sequence of
n + ladjacent vertices v, v;, ..., v;,_,, V;,, where the first vertex of the sequence
is the same as the last one and all the other n — 1 vertices are distinct. Further,
we can assume, with no loss of generality, that all circuits start and end at one
particular vertex (they are cycles after all, are they not?). Thus, we can get all
the tours by generating all the permutations of n — 1 intermediate cities, compute
the tour lengths, and find the shortest among them. Figure 3.7 presents a small
instance of the problem and its solution by this method.

An inspection of Figure 3.7 reveals three pairs of tours that differ only by
their direction. Hence, we could cut the number of vertex permutations by half.
We could, for example, choose any two intermediate vertices, say, b and ¢, and then
consider only permutations in which b precedes c. (This trick implicitly defines a
tour’s direction.)

This improvement cannot brighten the efficiency picture much, however.
The total number of permutations needed is still %(n — 1!, which makes the
exhaustive-search approach impractical for all but very small values of n. On the
other hand, if you always see your glass as half-full, you can claim that cutting
the work by half is nothing to sneeze at, even if you solve a small instance of the
problem, especially by hand. Also note that had we not limited our investigation
to the circuits starting at the same vertex, the number of permutations would have
been even larger, by a factor of n.

Knapsack Problem

Here is another well-known problem in algorithmics. Given n items of known
weights wyq, w,, ..., w, and values vy, v,, . .., v, and a knapsack of capacity W,
find the most valuable subset of the items that fit into the knapsack. If you do not
like the idea of putting yourself in the shoes of a thief who wants to steal the most
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a-—>b-—>c—>d-—>a I =2+8+1+7=18
a-—>b-—>d—->c-—>a I =2+3+1+5=11 optimal
a—>c—>b-—>d-—>a /| =6+8+3+7=23
a-—>c-—>d->b-—>a /' =5+1+3+2=11  optimal
a—>d-—>b-—>c—>a I =7+3+8+5=23
a—>d->c—>b-—>a I =7+1+8+2=18

FIGURE 3.7 Solution to a smallinstance of the traveling salesman problem by exhaustive
search.

valuable loot that fits into his knapsack, think about a transport plane that has to
deliver the most valuable set of items to a remote location without exceeding the
plane’s capacity. Figure 3.8a presents a small instance of the knapsack problem.
The exhaustive-search approach to this problem leads to generating all the
subsets of the set of n items given, computing the total weight of each subset in
order to identify feasible subsets (i.e., the ones with the total weight not exceeding
the knapsack capacity), and finding a subset of the largest value among them. As
an example, the solution to the instance of Figure 3.8a is given in Figure 3.8b. Since
the number of subsets of an n-element set is 2", the exhaustive search leads to a
€2(2") algorithm, no matter how efficiently individual subsets are generated.
Thus, for both the traveling salesman and knapsack problems considered
above, exhaustive search leads to algorithms that are extremely inefficient on
every input. In fact, these two problems are the best-known examples of so-
called NP-hard problems. No polynomial-time algorithm is known for any NP-
hard problem. Moreover, most computer scientists believe that such algorithms
do not exist, although this very important conjecture has never been proven.
More-sophisticated approaches—backtracking and branch-and-bound (see Sec-
tions 12.1 and 12.2)—enable us to solve some but not all instances of these and
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b. Which traversal—DFS or BFS—would you use if you found yourself in a
maze and why?

11. ThreeJugs Siméon Denis Poisson (1781-1840), a famous French mathemati-
cian and physicist, is said to have become interested in mathematics after
encountering some version of the following old puzzle. Given an 8-pint jug
full of water and two empty jugs of 5- and 3-pint capacity, get exactly 4 pints
of water in one of the jugs by completely filling up and/or emptying jugs into
others. Solve this puzzle by using breadth-first search.

SUMMARY

B Brute forceis astraightforward approach to solving a problem, usually directly
based on the problem statement and definitions of the concepts involved.

®  The principal strengths of the brute-force approach are wide applicability and
simplicity; its principal weakness is the subpar efficiency of most brute-force
algorithms.

B A first application of the brute-force approach often results in an algorithm
that can be improved with a modest amount of effort.

B The following noted algorithms can be considered as examples of the brute-
force approach:

definition-based algorithm for matrix multiplication

selection sort

sequential search

straightforward string-matching algorithm

B Exhaustive search is a brute-force approach to combinatorial problems. It
suggests generating each and every combinatorial object of the problem,
selecting those of them that satisfy all the constraints, and then finding a
desired object.

®m  The traveling salesman problem, the knapsack problem, and the assignment
problem are typical examples of problems that can be solved, at least
theoretically, by exhaustive-search algorithms.

= Exhaustive search is impractical for all but very small instances of problems
it can be applied to.

B Depth-first search (DFS) and breadth-first search (BFS) are two principal
graph-traversal algorithms. By representing a graph in a form of a depth-first
or breadth-first search forest, they help in the investigation of many important
properties of the graph. Both algorithms have the same time efficiency:
A(|V[?) for the adjacency matrix representation and @(|V| + |E|) for the
adjacency list representation.
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5. Prove that a cross edge in a BFS tree of an undirected graph can connect
vertices only on either the same level or on two adjacent levels of a BFS tree.

6. a. Explain how one can check a graph’s acyclicity by using breadth-first
search.

b. Does either of the two traversals—DFS or BFS—always find a cycle faster
than the other? If you answer yes, indicate which of them is better and
explain why it is the case; if you answer no, give two examples supporting 10
your answer.

7. Explain how one can identify connected components of a graph by using

a. a depth-first search.
- wy =7 w, =3 wy =4 w,=5
b. a breadth-first search. vy = $42 vy = $12 Vs = $40 vy = $25
8. A graph is said to be bipartite if all its vertices can be partitioned into two
disjoint subsets X and Y so that every edge connects a vertex in X with a vertex knapsack itemn 1 item 2 item 3 item 4
in Y. (One can also say that a graph is bipartite if its vertices can be colored in
two colors so that every edge has its vertices colored in different colors; such @
graphs are also called 2-colorable.) For example, graph (i) is bipartite while
graph (ii) is not. Subset Total weight  Total value
——) @ oy ! b2
2} 3 $12
() (i) (3} 4 $40
. . . o {4} 5 $25
a. Design a DFS-based algorithm for checking whether a graph is bipartite. .2 1 $54
b. Design a BFS-based algorithm for checking whether a graph is bipartite. “’ 3) 1 not feasible
9. Write a program that, for a given graph, outputs: {1, 4} 12 not feasible
a. vertices of each connected component 2,3} 7 $52
b. its cycle or a message that the graph is acyclic 2.4 8 $37
. . . o . 3.4 9 $65
*"‘ 10. One can model a maze by having a vertex for a starting point, a finishing point, (3.4) .
£ Jave {1,2,3) 14 not feasible
— dead ends, and all the points in the maze where more than one path can be 124 1s ¢ feasibl
taken, and then connecting the vertices according to the paths in the maze. {1‘ 3’ 4} 1% not feas?ble
a. Construct such a graph for the following maze. {[2’ 3’ 4§ . EZt fZ::blz
{1,2,3,4} 19 not feasible

The information about the optimal selection is in bold.

—
J L v
FIGURE 3.8 (a) Instance of the knapsack problem. (b) Its solution by exhaustive search.
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similar problems in less than exponential time. Alternatively, we can use one of
many approximation algorithms, such as those described in Section 12.3.

Assignment Problem

In our third example of a problem that can be solved by exhaustive search, there
are n people who need to be assigned to execute n jobs, one person per job. (That
is, each person is assigned to exactly one job and each job is assigned to exactly
one person.) The cost that would accrue if the ith person is assigned to the jth job
is a known quantity C[i, j] for each pair i, j =1,2, ..., n. The problem is to find
an assignment with the minimum total cost.

A small instance of this problem follows, with the table entries representing
the assignment costs C[i, j]:

Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8
Person 2 6 4 3 7
Person 3 5 8 1 8
Person 4 7 6 9 4

It is easy to see that an instance of the assignment problem is completely
specified by its cost matrix C. In terms of this matrix, the problem is to select one
element in each row of the matrix so that all selected elements are in different
columns and the total sum of the selected elements is the smallest possible. Note
that no obvious strategy for finding a solution works here. For example, we cannot
select the smallest element in each row, because the smallest elements may happen
to be in the same column. In fact, the smallest element in the entire matrix need
not be a component of an optimal solution. Thus, opting for the exhaustive search
may appear as an unavoidable evil.

We can describe feasible solutions to the assignment problem as n-tuples
(J1 - - - » Ju) in which the ith component, i =1, . . ., n, indicates the column of the
element selected in the ith row (i.e., the job number assigned to the ith person).
For example, for the cost matrix above, (2, 3, 4, 1) indicates the assignment of
Person 1 to Job 2, Person 2 to Job 3, Person 3 to Job 4, and Person 4 to Job 1.
The requirements of the assignment problem imply that there is a one-to-one
correspondence between feasible assignments and permutations of the first n
integers. Therefore, the exhaustive-search approach to the assignment problem
would require generating all the permutations of integers 1, 2, . .., n, computing
the total cost of each assignment by summing up the corresponding elements of
the cost matrix, and finally selecting the one with the smallest sum. A few first
iterations of applying this algorithm to the instance given above are shown in
Figure 3.9; you are asked to complete it in the exercises.

128 Brute Force and Exhaustive Search

TABLE 3.1 Main facts about depth-first search (DFS)
and breadth-first search (BFS)

DFS

BFS

Data structure

Number of vertex orderings
Edge types (undirected graphs)
Applications

Efficiency for adjacency matrix
Efficiency for adjacency lists

a stack

two orderings

tree and back edges
connectivity,
acyclicity,
articulation points
(V2]
O(VI+IED

a queue
one ordering

tree and cross edges
connectivity,
acyclicity,
minimum-edge paths
(v

O(IVI+ED

Exercises 3.5

a. Write down the adjacency matrix and adjacency lists specifying this graph.
(Assume that the matrix rows and columns and vertices in the adjacency

b. Starting at vertex a and resolving ties by the vertex alphabetical order,
traverse the graph by depth-first search and construct the corresponding
depth-first search tree. Give the order in which the vertices were reached
for the first time (pushed onto the traversal stack) and the order in which

If we define sparse graphs as graphs for which |E| € O(]V|), which implemen-
tation of DFS will have a better time efficiency for such graphs, the one that

a. True or false: All its DFS forests (for traversals starting at different ver-

b. True or false: All its DFS forests will have the same number of tree edges

1. Consider the following graph.
lists follow in the alphabetical order of the vertex labels.)
the vertices became dead ends (popped off the stack).
2.
uses the adjacency matrix or the one that uses the adjacency lists?
3. Let G be a graph with n vertices and m edges.
tices) will have the same number of trees?
and the same number of back edges?
4.

Traverse the graph of Problem 1 by breadth-first search and construct the
corresponding breadth-first search tree. Start the traversal at vertex a and
resolve ties by the vertex alphabetical order.
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(a) (b)

FIGURE 3.12 lllustration of the BFS-based algorithm for finding a minimum-edge path.
(a) Graph. (b) Part of its BFS tree that identifies the minimum-edge path
froma to g.

Breadth-first search has the same efficiency as depth-first search: it is in
A(|V[?) for the adjacency matrix representation and in @ (|V| + |E|) for the adja-
cency list representation. Unlike depth-first search, it yields a single ordering of
vertices because the queue is a FIFO (first-in first-out) structure and hence the
order in which vertices are added to the queue is the same order in which they
are removed from it. As to the structure of a BFS forest of an undirected graph,
it can also have two kinds of edges: tree edges and cross edges. Tree edges are the
ones used to reach previously unvisited vertices. Cross edges connect vertices to
those visited before, but, unlike back edges in a DFS tree, they connect vertices
either on the same or adjacent levels of a BES tree.

BFS can be used to check connectivity and acyclicity of a graph, essentially
in the same manner as DFS can. It is not applicable, however, for several less
straightforward applications such as finding articulation points. On the other hand,
it can be helpful in some situations where DFS cannot. For example, BFS can
be used for finding a path with the fewest number of edges between two given
vertices. To do this, we start a BFS traversal at one of the two vertices and stop
it as soon as the other vertex is reached. The simple path from the root of the
BFS tree to the second vertex is the path sought. For example, patha —b —c— g
in the graph in Figure 3.12 has the fewest number of edges among all the paths
between vertices a and g. Although the correctness of this application appears to
stem immediately from the way BFS operates, a mathematical proof of its validity
is not quite elementary (see, e.g., [Cor09, Section 22.2]).

Table 3.1 summarizes the main facts about depth-first search and breadth-first
search.
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<1,2,3, 4> cost=9+4+1+4=18

9 2 7 8 <1,2,4,3> cost=9+4+8+9=30

o 6 4 3 7 <1,3,2, 4> cost=9+3+8+4=24
58 1 8 <1,3,4,2> cost=9+3+8+6=26 etc.
7 6 9 4 <1,4,2,3> cost=9+7+8+9=33

<1,4,8,2> cost=9+7+1+6=23

FIGURE 3.9 First few iterations of solving a small instance of the assignment problem
by exhaustive search.

Since the number of permutations to be considered for the general case of the
assignment problem is n!, exhaustive search is impractical for all but very small
instances of the problem. Fortunately, there is a much more efficient algorithm for
this problem called the Hungarian method after the Hungarian mathematicians
Konig and Egervary, whose work underlies the method (see, e.g., [Kol95]).

This is good news: the fact that a problem domain grows exponentially or
faster does not necessarily imply that there can be no efficient algorithm for solving
it. In fact, we present several other examples of such problems later in the book.
However, such examples are more of an exception to the rule. More often than
not, there are no known polynomial-time algorithms for problems whose domain
grows exponentially with instance size, provided we want to solve them exactly.
And, as we mentioned above, such algorithms quite possibly do not exist.

Exercises 3.4

o=y

. a. Assuming that each tour can be generated in constant time, what will be
the efficiency class of the exhaustive-search algorithm outlined in the text
for the traveling salesman problem?

b. If this algorithm is programmed on a computer that makes ten billion
additions per second, estimate the maximum number of cities for which
the problem can be solved in

i. 1 hour. ii. 24 hours.  iii. 1year. iv. 1century.

2. Outline an exhaustive-search algorithm for the Hamiltonian circuit problem.

3. Outline an algorithm to determine whether a connected graph represented
by its adjacency matrix has an Eulerian circuit. What is the efficiency class of
your algorithm?

>

Complete the application of exhaustive search to the instance of the assign-
ment problem started in the text.

o

Give an example of the assignment problem whose optimal solution does not
include the smallest element of its cost matrix.
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Consider the partition problem: given n positive integers, partition them into
two disjoint subsets with the same sum of their elements. (Of course, the prob-
lem does not always have a solution.) Design an exhaustive-search algorithm
for this problem. Try to minimize the number of subsets the algorithm needs
to generate.

Consider the clique problem: given a graph G and a positive integer k, deter-
mine whether the graph contains a clique of size k, i.e., a complete subgraph
of k vertices. Design an exhaustive-search algorithm for this problem.

Explain how exhaustive search can be applied to the sorting problem and
determine the efficiency class of such an algorithm.

Eight-queens problem Consider the classic puzzle of placing eight queens on
an 8 x 8 chessboard so that no two queens are in the same row or in the same
column or on the same diagonal. How many different positions are there so
that

a. no two queens are on the same square?

b. no two queens are in the same row?

¢. no two queens are in the same row or in the same column?

Also estimate how long it would take to find all the solutions to the problem by
exhaustive search based on each of these approaches on a computer capable
of checking 10 billion positions per second.

Magic squares A magic square of order # is an arrangement of the integers

from 1 to n? in an n x n matrix, with each number occurring exactly once, so

that each row, each column, and each main diagonal has the same sum.

Prove that if a magic square of order n exists, the sum in question must be

equal to nn?+ 1/2.

b. Design an exhaustive-search algorithm for generating all magic squares of
order n.

a

¢. Gotothe Internet or your library and find a better algorithm for generating
magic squares.

d. Implement the two algorithms—the exhaustive search and the one you
have found—and run an experiment to determine the largest value of n
for which each of the algorithms is able to find a magic square of order n
in less than 1 minute on your computer.

Famous alphametic A puzzle in which the digits in a correct mathematical
expression, such as a sum, are replaced by letters is called cryptarithm; if, in
addition, the puzzle’s words make sense, it is said to be an alphametic. The
most well-known alphametic was published by the renowned British puzzlist
Henry E. Dudeney (1857-1930):
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a; Cy a3 €4 fg bg
97 hgja o

(2) (®) (©

FIGURE 3.11 Example of a BFS traversal. (a) Graph. (b) Traversal queue, with the
numbers indicating the order in which the vertices are visited, i.e., added
to (and removed from) the queue. (c) BFS forest with the tree and cross
edges shown with solid and dotted lines, respectively.

Here is pseudocode of the breadth-first search.

ALGORITHM BFS(G)
/Implements a breadth-first search traversal of a given graph
/Mnput: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
I in the order they are visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count <0
for each vertex vin V do
if v is marked with 0

bfs(v)

bfs(v)
/Ivisits all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are visited
/Ivia global variable count
count < count +1; mark v with count and initialize a queue with v
while the queue is not empty do
for each vertex w in V adjacent to the front vertex do
if w is marked with 0
count < count + 1; mark w with count
add w to the queue
remove the front vertex from the queue
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nected by a path to the starting vertex, checking a graph’s connectivity can be
done as follows. Start a DFS traversal at an arbitrary vertex and check, after
the algorithm halts, whether all the vertices of the graph will have been vis-
ited. If they have, the graph is connected; otherwise, it is not connected. More
generally, we can use DFS for identifying connected components of a graph
(how?).

As for checking for a cycle presence in a graph, we can take advantage of the
graph’s representation in the form of a DFS forest. If the latter does not have back
edges, the graph is clearly acyclic. If there is a back edge from some vertex u to its
ancestor v (e.g., the back edge from d to a in Figure 3.10c), the graph has a cycle
that comprises the path from v to u via a sequence of tree edges in the DFS forest
followed by the back edge from u to v.

You will find a few other applications of DFS later in the book, although
more sophisticated applications, such as finding articulation points of a graph,
are not included. (A vertex of a connected graph is said to be its articulation
point if its removal with all edges incident to it breaks the graph into disjoint
pieces.)

Breadth-First Search

If depth-first search is a traversal for the brave (the algorithm goes as far from
“home” as it can), breadth-first search is a traversal for the cautious. It proceeds in
a concentric manner by visiting first all the vertices that are adjacent to a starting
vertex, then all unvisited vertices two edges apart from it, and so on, until all
the vertices in the same connected component as the starting vertex are visited.
If there still remain unvisited vertices, the algorithm has to be restarted at an
arbitrary vertex of another connected component of the graph.

It is convenient to use a queue (note the difference from depth-first search!)
to trace the operation of breadth-first search. The queue is initialized with the
traversal’s starting vertex, which is marked as visited. On each iteration, the
algorithm identifies all unvisited vertices that are adjacent to the front vertex,
marks them as visited, and adds them to the queue; after that, the front vertex is
removed from the queue.

Similarly to a DFS traversal, it is useful to accompany a BFS traversal by con-
structing the so-called breadth-first search forest. The traversal’s starting vertex
serves as the root of the first tree in such a forest. Whenever a new unvisited vertex
is reached for the first time, the vertex is attached as a child to the vertex it is being
reached from with an edge called a tree edge. If an edge leading to a previously
visited vertex other than its immediate predecessor (i.e., its parent in the tree)
is encountered, the edge is noted as a cross edge. Figure 3.11 provides an exam-
ple of a breadth-first search traversal, with the traversal queue and corresponding
breadth-first search forest shown.
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Two conditions are assumed: first, the correspondence between letters and
decimal digits is one-to-one, i.e., each letter represents one digit only and dif-
ferent letters represent different digits. Second, the digit zero does not appear
as the left-most digit in any of the numbers. To solve an alphametic means
to find which digit each letter represents. Note that a solution’s uniqueness
cannot be assumed and has to be verified by the solver.

a. Write a program for solving cryptarithms by exhaustive search. Assume

that a given cryptarithm is a sum of two words.

b. Solve Dudeney’s puzzle the way it was expected to be solved when it was
first published in 1924.

Depth-First Search and Breadth-First Search

The term “exhaustive search” can also be applied to two very important algorithms
that systematically process all vertices and edges of a graph. These two traversal
algorithms are depth-first search (DFS) and breadth-first search (BFS). These
algorithms have proved to be very useful for many applications involving graphs in
artificial intelligence and operations research. In addition, they are indispensable
for efficient investigation of fundamental properties of graphs such as connectivity
and cycle presence.

Depth-First Search

Depth-first search starts a graph’s traversal at an arbitrary vertex by marking it
as visited. On each iteration, the algorithm proceeds to an unvisited vertex that
is adjacent to the one it is currently in. (If there are several such vertices, a tie
can be resolved arbitrarily. As a practical matter, which of the adjacent unvisited
candidates is chosen is dictated by the data structure representing the graph. In
our examples, we always break ties by the alphabetical order of the vertices.) This
process continues until a dead end—a vertex with no adjacent unvisited vertices—
is encountered. At a dead end, the algorithm backs up one edge to the vertex
it came from and tries to continue visiting unvisited vertices from there. The
algorithm eventually halts after backing up to the starting vertex, with the latter
being a dead end. By then, all the vertices in the same connected component as the
starting vertex have been visited. If unvisited vertices still remain, the depth-first
search must be restarted at any one of them.

It is convenient to use a stack to trace the operation of depth-first search. We
push a vertex onto the stack when the vertex is reached for the first time (i.e., the
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FIGURE 3.10 Example of a DFS traversal. (a) Graph. (b) Traversal's stack (the first
subscript number indicates the order in which a vertex is visited, i.e.,
pushed onto the stack; the second one indicates the order in which it
becomes a dead-end, i.e., popped off the stack). (c) DFS forest with the
tree and back edges shown with solid and dashed lines, respectively.

visit of the vertex starts), and we pop a vertex off the stack when it becomes a
dead end (i.e., the visit of the vertex ends).

It is also very useful to accompany a depth-first search traversal by construct-
ing the so-called depth-first search forest. The starting vertex of the traversal
serves as the root of the first tree in such a forest. Whenever a new unvisited vertex
is reached for the first time, it is attached as a child to the vertex from which it is
being reached. Such an edge is called a tree edge because the set of all such edges
forms a forest. The algorithm may also encounter an edge leading to a previously
visited vertex other than its immediate predecessor (i.e., its parent in the tree).
Such an edge is called a back edge because it connects a vertex to its ancestor,
other than the parent, in the depth-first search forest. Figure 3.10 provides an ex-
ample of a depth-first search traversal, with the traversal stack and corresponding
depth-first search forest shown as well.

Here is pseudocode of the depth-first search.

ALGORITHM DFS(G)
/Mmplements a depth-first search traversal of a given graph
/Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
Il in the order they are first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count <0
for each vertex vin V do
if v is marked with 0

dfs(v)
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dfs(v)
/Ivisits recursively all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are encountered
/Ivia global variable count
count < count +1; mark v with count
for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)

The brevity of the DFS pseudocode and the ease with which it can be per-
formed by hand may create a wrong impression about the level of sophistication
of this algorithm. To appreciate its true power and depth, you should trace the
algorithm’s action by looking not at a graph’s diagram but at its adjacency matrix
or adjacency lists. (Try it for the graph in Figure 3.10 or a smaller example.)

How efficient is depth-first search? It is not difficult to see that this algorithm
is, in fact, quite efficient since it takes just the time proportional to the size of the
data structure used for representing the graph in question. Thus, for the adjacency
matrix representation, the traversal time is in ©(|V|?), and for the adjacency list
representation, it is in ®(|V|+ |E|) where |V| and |E| are the number of the
graph’s vertices and edges, respectively.

A DFS forest, which is obtained as a by-product of a DFS traversal, deserves a
few comments, too. To begin with, it is not actually a forest. Rather, we can look at
it as the given graph with its edges classified by the DFS traversal into two disjoint
classes: tree edges and back edges. (No other types are possible for a DFS forest
of an undirected graph.) Again, tree edges are edges used by the DFS traversal to
reach previously unvisited vertices. If we consider only the edges in this class, we
will indeed get a forest. Back edges connect vertices to previously visited vertices
other than their immediate predecessors in the traversal. They connect vertices to
their ancestors in the forest other than their parents.

A DFS traversal itself and the forest-like representation of the graph it pro-
vides have proved to be extremely helpful for the development of efficient al-
gorithms for checking many important properties of graphs.® Note that the DFS
yields two orderings of vertices: the order in which the vertices are reached for the
first time (pushed onto the stack) and the order in which the vertices become dead
ends (popped off the stack). These orders are qualitatively different, and various
applications can take advantage of either of them.

Important elementary applications of DFS include checking connectivity and
checking acyclicity of a graph. Since dfs halts after visiting all the vertices con-

The discovery of several such applications was an important breakthrough achieved by the two
American computer scientists John Hopcroft and Robert Tarjan in the 1970s. For this and other
contributions, they were given the Turing Award—the most prestigious prize in the computing field
[Hop87, Tar87].
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piles on the scale. If the piles weigh the same, the coin put aside must be fake;
otherwise, we can proceed in the same manner with the lighter pile, which must
be the one with the fake coin.

We can easily set up a recurrence relation for the number of weighings W (n)
needed by this algorithm in the worst case:

Wn)=W(n/2))+1 forn>1, W()=0.

This recurrence should look familiar to you. Indeed, it is almost identical to the one
for the worst-case number of comparisons in binary search. (The difference is in
the initial condition.) This similarity is not really surprising, since both algorithms
are based on the same technique of halving an instance size. The solution to the
recurrence for the number of weighings is also very similar to the one we had for
binary search: W (n) = [log, n].

This stuff should look elementary by now, if not outright boring. But wait: the
interesting point here is the fact that the above algorithm is not the most efficient
solution. It would be more efficient to divide the coins not into two but into three
piles of about n/3 coins each. (Details of a precise formulation are developed
in this section’s exercises. Do not miss it! If your instructor forgets, demand the
instructor to assign Problem 10.) After weighing two of the piles, we can reduce
the instance size by a factor of three. Accordingly, we should expect the number
of weighings to be about logs n, which is smaller than log, n.

Russian Peasant Multiplication

Now we consider a nonorthodox algorithm for multiplying two positive integers
called multiplication a la russe or the Russian peasant method. Let n and m
be positive integers whose product we want to compute, and let us measure the
instance size by the value of n. Now, if n is even, an instance of half the size has
to deal with n/2, and we have an obvious formula relating the solution to the
problem’s larger instance to the solution to the smaller one:

n

n-m=—-2m.
2
If n is odd, we need only a slight adjustment of this formula:
n-m=n_1-2m+m.

Using these formulas and the trivial case of 1 - m = m to stop, we can compute
product n - m either recursively or iteratively. An example of computing 50 - 65
with this algorithm is given in Figure 4.11. Note that all the extra addends shown
in parentheses in Figure 4.11a are in the rows that have odd values in the first
column. Therefore, we can find the product by simply adding all the elements in
the m column that have an odd number in the n column (Figure 4.11b).

Also note that the algorithm involves just the simple operations of halving,
doubling, and adding—a feature that might be attractive, for example, to those
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Though the value of the second argument is always smaller on the right-hand side
than on the left-hand side, it decreases neither by a constant nor by a constant
factor. A few other examples of such algorithms appear in Section 4.5.

Insertion Sort

In this section, we consider an application of the decrease-by-one technique to
sorting an array A[0..n — 1]. Following the technique’s idea, we assume that the
smaller problem of sorting the array A[0..n — 2] has already been solved to give
us a sorted array of size n — 1: A[0] < - - - < A[n — 2]. How can we take advantage
of this solution to the smaller problem to get a solution to the original problem
by taking into account the element A[n — 1]? Obviously, all we need is to find an
appropriate position for A[n — 1] among the sorted elements and insert it there.
This is usually done by scanning the sorted subarray from right to left until the
first element smaller than or equal to A[n — 1] is encountered to insert A[n — 1]
right after that element. The resulting algorithm is called straight insertion sort
or simply insertion sort.

Though insertion sort is clearly based on a recursive idea, it is more efficient
to implement this algorithm bottom up, i.e., iteratively. As shown in Figure 4.3,
starting with A[1]and ending with A[n — 1], A[i]is inserted in its appropriate place
among the first i elements of the array that have been already sorted (but, unlike
selection sort, are generally not in their final positions).

Here is pseudocode of this algorithm.

ALGORITHM  InsertionSort(A[0..n — 1])
/[Sorts a given array by insertion sort
/Input: An array A[0..n — 1] of n orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori <~ 1ton—1do
v < Ali]
j<«i—1
while j > 0and A[j]> v do
Alj +1] < Alj]
jeJj-1
Alj+ 1]«

I
Al0] S-S A[jI<A[j+1]<---<A[i - 1] ‘A[i]-“A[n—l]

smaller than or equal to A[i] greater than A[i]

FIGURE 4.3 [teration of insertion sort: A[i] is inserted in its proper position among the
preceding elements previously sorted.
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89145 68 90 29 34 17
45 89168 90 29 34 17
45 68 89190 29 34 17
45 68 89 90129 34 17
29 45 68 89 90134 17
29 34 45 68 89 90 117
17 29 34 45 68 89 90

FIGURE 4.4 Example of sorting with insertion sort. A vertical bar separates the sorted
part of the array from the remaining elements; the element being inserted
is in bold.

The operation of the algorithm is illustrated in Figure 4.4.

The basic operation of the algorithm is the key comparison A[j] > v. (Why not
J = 0? Because it is almost certainly faster than the former in an actual computer
implementation. Moreover, it is not germane to the algorithm: a better imple-
mentation with a sentinel—see Problem 8 in this section’s exercises—eliminates
it altogether.)

The number of key comparisons in this algorithm obviously depends on the
nature of the input. In the worst case, A[j] > v is executed the largest number
of times, i.e., for every j =i — 1, ..., 0. Since v = A[i], it happens if and only if
Alj]> Ali]for j =i —1,...,0. (Note that we are using the fact that on the ith
iteration of insertion sort all the elements preceding A[i] are the first i elements in
the input, albeit in the sorted order.) Thus, for the worst-case input, we get A[0] >
A[l] (for i =1), A[1]> A[2] (for i =2), ..., A[n —2] > A[n — 1] (for i =n — 1).
In other words, the worst-case input is an array of strictly decreasing values. The
number of key comparisons for such an input is

n—1i-1 n—1 1
Cuorge =YY 1= i= % cOm?).
i=1 j=0 i=1

Thus, in the worst case, insertion sort makes exactly the same number of compar-
isons as selection sort (see Section 3.1).

In the best case, the comparison A[j]> v is executed only once on every
iteration of the outer loop. It happens if and only if A[i — 1] < A[i] for every
i=1,...,n—1,ie, if the input array is already sorted in nondecreasing order.
(Though it “makes sense” that the best case of an algorithm happens when the
problem is already solved, it is not always the case, as you are going to see in our
discussion of quicksort in Chapter 5.) Thus, for sorted arrays, the number of key
comparisons is

n—1
Cbe:t(n) = Z l=n-1€0(@).
i=1
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fully expected: since the algorithm simply reduces the size of the remaining array
by about half on each iteration, the number of such iterations needed to reduce the
initial size n to the final size 1 has to be about log, n. Third, to reiterate the point
made in Section 2.1, the logarithmic function grows so slowly that its values remain
small even for very large values of n. In particular, according to formula (4.5),
it will take no more than [log,(10% + 1)] = 10 three-way comparisons to find an
element of a given value (or establish that there is no such element) in any sorted
array of one thousand elements, and it will take no more than |'10,g2(106 +1)71=20
comparisons to do it for any sorted array of size one million!

What can we say about the average-case efficiency of binary search? A so-
phisticated analysis shows that the average number of key comparisons made by
binary search is only slightly smaller than that in the worst case:

Cavg(n) ~ 1082 n.

(More accurate formulas for the average number of comparisons in a successful
and an unsuccessful search are Cé’f;(n) ~log, n — 1 and C:;’g(n) ~log,(n + 1),
respectively.)

Though binary search is an optimal searching algorithm if we restrict our op-
erations only to comparisons between keys (see Section 11.2), there are searching
algorithms (see interpolation search in Section 4.5 and hashing in Section 7.3) with
a better average-case time efficiency, and one of them (hashing) does not even re-
quire the array to be sorted! These algorithms do require some special calculations
in addition to key comparisons, however. Finally, the idea behind binary search
has several applications beyond searching (see, e.g., [Ben00]). In addition, it can be
applied to solving nonlinear equations in one unknown; we discuss this continuous
analogue of binary search, called the method of bisection, in Section 12.4.

Fake-Coin Problem

Of several versions of the fake-coin identification problem, we consider here
the one that best illustrates the decrease-by-a-constant-factor strategy. Among n
identical-looking coins, one is fake. With a balance scale, we can compare any two
sets of coins. That is, by tipping to the left, to the right, or staying even, the balance
scale will tell whether the sets weigh the same or which of the sets is heavier than
the other but not by how much. The problem is to design an efficient algorithm
for detecting the fake coin. An easier version of the problem—the one we discuss
here—assumes that the fake coin is known to be, say, lighter than the genuine
one.!

The most natural idea for solving this problem is to divide n coins into two
piles of |n/2] coins each, leaving one extra coin aside if n is odd, and put the two

A much more challenging version assumes no additional information about the relative weights of the
fake and genuine coins or even the presence of the fake coin among n given coins. We pursue this more
difficult version in the exercises for Section 11.2.
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ALGORITHM  BinarySearch(A[0..n — 1], K)
//Implements nonrecursive binary search
/Input: An array A[0..n — 1] sorted in ascending order and
1 asearch key K
//Output: An index of the array’s element that is equal to K
Il or —1if there is no such element
[<0; r<n-—1
while [ <r do
m <« [(I+7r)/2]
if K = A[m] return m
elseif K < A[m] r <m—1
else/ < m+1
return —1

The standard way to analyze the efficiency of binary search is to count the number
of times the search key is compared with an element of the array. Moreover, for
the sake of simplicity, we will count the so-called three-way comparisons. This
assumes that after one comparison of K with A[m], the algorithm can determine
whether K is smaller, equal to, or larger than A[m].

How many such comparisons does the algorithm make on an array of n
elements? The answer obviously depends not only on n but also on the specifics of
a particular instance of the problem. Let us find the number of key comparisons
in the worst case C,,,,,(n). The worst-case inputs include all arrays that do not
contain a given search key, as well as some successful searches. Since after one
comparison the algorithm faces the same situation but for an array half the size,
we get the following recurrence relation for C,,,., (n):

Cuorsi) = Cor(In/2]) +1 forn>1, Cppr() =1. 4.3)

(Stop and convince yourself that n/2 must be, indeed, rounded down and that the
initial condition must be written as specified.)

We already encountered recurrence (4.3), with a different initial condition, in
Section 2.4 (see recurrence (2.4) and its solution there for n = 2¥). For the initial
condition C,,,,, (1) = 1, we obtain

Cporst @) =k +1=logyn + 1. 4.4)

Further, similarly to the case of recurrence (2.4) (Problem 7 in Exercises 2.4), the
solution given by formula (4.4) for n = 2¥ can be tweaked to get a solution valid
for an arbitrary positive integer n:

Cwor:t(n) = UOgZ n|+1= f10gz(n +D1. 4.5)

Formula (4.5) deserves attention. First, it implies that the worst-case time
efficiency of binary search is in ®(log n). Second, it is the answer we should have
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This very good performance in the best case of sorted arrays is not very useful by
itself, because we cannot expect such convenient inputs. However, almost-sorted
files do arise in a variety of applications, and insertion sort preserves its excellent
performance on such inputs.

A rigorous analysis of the algorithm’s average-case efficiency is based on
investigating the number of element pairs that are out of order (see Problem 11 in
this section’s exercises). It shows that on randomly ordered arrays, insertion sort
makes on average half as many comparisons as on decreasing arrays, i.e.,

n2 2
Carg(n) = - € O(2).

This twice-as-fast average-case performance coupled with an excellent efficiency
on almost-sorted arrays makes insertion sort stand out among its principal com-
petitors among elementary sorting algorithms, selection sort and bubble sort. In
addition, its extension named shellsort, after its inventor D. L. Shell [She59], gives
us an even better algorithm for sorting moderately large files (see Problem 12 in
this section’s exercises).

Exercises 4.1

1. Ferrying soldiers A detachment of n soldiers must cross a wide and deep
river with no bridge in sight. They notice two 12-year-old boys playing in a
rowboat by the shore. The boat is so tiny, however, that it can only hold two
boys or one soldier. How can the soldiers get across the river and leave the
boys in joint possession of the boat? How many times need the boat pass from
shore to shore?

2. Alternating glasses
a. There are 2n glasses standing next to each other in a row, the first n of them
filled with a soda drink and the remaining n glasses empty. Make the glasses
alternate in a filled-empty-filled-empty pattern in the minimum number of
glass moves. [Gar78]

vevw U= v ww

b. Solve the same problem if 2n glasses—n with a drink and n empty—are
initially in a random order.

3. Marking cells Design an algorithm for the following task. For any even n,
mark n cells on an infinite sheet of graph paper so that each marked cell has an
odd number of marked neighbors. Two cells are considered neighbors if they
are next to each other either horizontally or vertically but not diagonally. The
marked cells must form a contiguous region, i.e., a region in which there is a
path between any pair of marked cells that goes through a sequence of marked
neighbors. [Kor05]
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4. Design a decrease-by-one algorithm for generating the power set of a set of n
elements. (The power set of a set S is the set of all the subsets of S, including
the empty set and S itself.)

5. Consider the following algorithm to check connectivity of a graph defined by
its adjacency matrix.

ALGORITHM  Connected(A[0..n — 1, 0..n — 1])

/[Input: Adjacency matrix A[0..n — 1, 0..n — 1]) of an undirected graph G
//Output: 1 (true) if G is connected and 0 (false) if it is not
if n =1return 1 //one-vertex graph is connected by definition
else

if not Connected(A[0..n — 2, 0..n — 2]) return 0

else for j < Oton —2do

if A[n — 1, j] return 1
return 0

Does this algorithm work correctly for every undirected graph with n > 0
vertices? If you answer yes, indicate the algorithm’s efficiency class in the
worst case; if you answer no, explain why.

'f‘g] 6. Team ordering You have the results of a completed round-robin tournament
in which n teams played each other once. Each game ended either with a
victory for one of the teams or with a tie. Design an algorithm that lists the
teams in a sequence so that every team did not lose the game with the team
listed immediately after it. What is the time efficiency class of your algorithm?

7. Apply insertion sort to sort the list E, X, A, M, P, L, E in alphabetical order.

8. a. What sentinel should be put before the first element of an array being
sorted in order to avoid checking the in-bound condition j > 0 on each
iteration of the inner loop of insertion sort?

b. Is the sentinel version in the same efficiency class as the original version?

9. Is it possible to implement insertion sort for sorting linked lists? Will it have
the same O (n?) time efficiency as the array version?

10. Compare the text’s implementation of insertion sort with the following ver-
sion.

ALGORITHM InsertSort2(A[0..n — 1))
fori < 1ton —1do
j<«—i—1
while j > 0 and A[j] > A[j + 1] do
swap(A[j], A[j +1])
j<ij-1
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4.4 Decrease-by-a-Constant-Factor Algorithms

You may recall from the introduction to this chapter that decrease-by-a-constant-
factor is the second major variety of decrease-and-conquer. As an example of an
algorithm based on this technique, we mentioned there exponentiation by squar-
ing defined by formula (4.2). In this section, you will find a few other examples of
such algorithms.. The most important and well-known of them is binary search.
Decrease-by-a-constant-factor algorithms usually run in logarithmic time, and, be-
ing very efficient, do not happen often; a reduction by a factor other than two is
especially rare.

Binary Search

Binary search is a remarkably efficient algorithm for searching in a sorted array. It
works by comparing a search key K with the array’s middle element A[m]. If they
match, the algorithm stops; otherwise, the same operation is repeated recursively
for the first half of the array if K < A[m], and for the second half if K > A[m]:

K
¢
A[0]... A[m —1] A[m] A[m—+1]...A[n—1].
search here if search here if
K <A[m] K>A[m]

As an example, let us apply binary search to searching for K =70 in the array

[3]14]27

31[39[42]55[70]74[81]85]93

98 |

The iterations of the algorithm are given in the following table:

index 0 1 2 3 4 5 6 7 8 9 10 11 12
value [ 3 [14]27]31[39[42[55[70[74]81]85]93]98]

iteration 1 l m r
iteration 2 1 m r
iteration 3 Lm r

Though binary search is clearly based on a recursive idea, it can be easily
implemented as a nonrecursive algorithm, too. Here is pseudocode of this nonre-
cursive version.
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else
fori < 1tondo
Heap Permute(n — 1)
if n is odd
swap A[1] and A[n]
else swap A[i] and A[n]

a. Trace the algorithm by hand for n =2, 3, and 4.
b. Prove the correctness of Heap’s algorithm.
c. What is the time efficiency of Heap Permute?

. Generate all the subsets of a four-element set A = {ay, a,, a3, a4} by each of

the two algorithms outlined in this section.

. What simple trick would make the bit string—based algorithm generate subsets

in squashed order?

. Write pseudocode for a recursive algorithm for generating all 2" bit strings of

length n.

. Write a nonrecursive algorithm for generating 2" bit strings of length n that

implements bit strings as arrays and does not use binary additions.

. a. Generate the binary reflexive Gray code of order 4.

b. Trace the following nonrecursive algorithm to generate the binary re-
flexive Gray code of order 4. Start with the n-bit string of all 0’s. For
i=1,2,...,2"1, generate the ith bit string by flipping bit b in the previ-
ous bit string, where b is the position of the least significant 1 in the binary
representation of i.

Design a decrease-and-conquer algorithm for generating all combinations of
k items chosen from n, i.e., all k-element subsets of a given n-element set. Is
your algorithm a minimal-change algorithm?

Gray code and the Tower of Hanoi
a. Show that the disk moves made in the classic recursive algorithm for the

Tower of Hanoi puzzle can be used for generating the binary reflected Gray
code.

b. Show how the binary reflected Gray code can be used for solving the Tower
of Hanoi puzzle.

. Fair attraction In olden days, one could encounter the following attraction

at a fair. A light bulb was connected to several switches in such a way that it
lighted up only when all the switches were closed. Each switch was controlled
by a push button; pressing the button toggled the switch, but there was no
way to know the state of the switch. The object was to turn the light bulb on.
Design an algorithm to turn on the light bulb with the minimum number of
button pushes needed in the worst case for n switches.
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11.

‘What is the time efficiency of this algorithm? How is it compared to that
of the version given in Section 4.1?
Let A[0..n — 1] be an array of n sortable elements. (For simplicity, you may
assume that all the elements are distinct.) A pair (A[i], A[;]) is called an
inversion if i < j and A[i] > A[j].
a. What arrays of size n have the largest number of inversions and what is this
number? Answer the same questions for the smallest number of inversions.
b. Show that the average-case number of key comparisons in insertion sort is
given by the formula

2
n
Cavg(") ~ ?

. Shellsort (more accurately Shell’s sort) is an important sorting algorithm that

works by applying insertion sort to each of several interleaving sublists of a
given list. On each pass through the list, the sublists in question are formed
by stepping through the list with an increment 4; taken from some predefined
decreasing sequence of step sizes, iy > - - - > h; > - - - > 1, which must end with
1. (The algorithm works for any such sequence, though some sequences are
known to yield a better efficiency than others. For example, the sequence 1,
4,13,40,121, . . . , used, of course, in reverse, is known to be among the best
for this purpose.)

a. Apply shellsort to the list
S,H E,L,L,S,O0,R, T,1,S,U,S,E,F,U,L

b. Is shellsort a stable sorting algorithm?

¢. Implement shellsort, straight insertion sort, selection sort, and bubble sort
in the language of your choice and compare their performance on random
arrays of sizes 10" for n =2, 3, 4, 5, and 6 as well as on increasing and
decreasing arrays of these sizes.

Topological Sorting

In this section, we discuss an important problem for directed graphs, with a
variety of applications involving prerequisite-restricted tasks. Before we pose this
problem, though, let us review a few basic facts about directed graphs themselves.
A directed graph, or digraph for short, is a graph with directions specified for all
its edges (Figure 4.5a is an example). The adjacency matrix and adjacency lists are
still two principal means of representing a digraph. There are only two notable
differences between undirected and directed graphs in representing them: (1) the
adjacency matrix of a directed graph does not have to be symmetric; (2) an edge
in a directed graph has just one (not two) corresponding nodes in the digraph’s
adjacency lists.
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FIGURE 4.5 (a) Digraph. (b) DFS forest of the digraph for the DFS traversal started at a.

Depth-first search and breadth-first search are principal traversal algorithms
for traversing digraphs as well, but the structure of corresponding forests can be
more complex than for undirected graphs. Thus, even for the simple example of
Figure 4.5a, the depth-first search forest (Figure 4.5b) exhibits all four types of
edges possible in a DFS forest of a directed graph: tree edges (ab, bc, de), back
edges (ba) from vertices to their ancestors, forward edges (ac) from vertices to
their descendants in the tree other than their children, and cross edges (dc), which
are none of the aforementioned types.

Note that a back edge in a DFS forest of a directed graph can connect a vertex
to its parent. Whether or not it is the case, the presence of a back edge indicates
that the digraph has a directed cycle. A directed cycle in a digraph is a sequence
of three or more of its vertices that starts and ends with the same vertex and in
which every vertex is connected to its immediate predecessor by an edge directed
from the predecessor to the successor. For example, a, b, a is a directed cycle in
the digraph in Figure 4.5a. Conversely, if a DFS forest of a digraph has no back
edges, the digraph is a dag, an acronym for directed acyclic graph.

Edge directions lead to new questions about digraphs that are either meaning-
less or trivial for undirected graphs. In this section, we discuss one such question.
As a motivating example, consider a set of five required courses {C1, C2, C3, C4,
C5} a part-time student has to take in some degree program. The courses can be
taken in any order as long as the following course prerequisites are met: C1 and
C2 have no prerequisites, C3 requires C1 and C2, C4 requires C3, and CS5 requires
C3 and C4. The student can take only one course per term. In which order should
the student take the courses?

The situation can be modeled by a digraph in which vertices represent courses
and directed edges indicate prerequisite requirements (Figure 4.6). In terms of
this digraph, the question is whether we can list its vertices in such an order that
for every edge in the graph, the vertex where the edge starts is listed before the
vertex where the edge ends. (Can you find such an ordering of this digraph’s
vertices?) This problem is called topological sorting. It can be posed for an
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in telegraphy. Here is pseudocode that generates the binary reflected Gray code
recursively.

ALGORITHM BRGC(n)
/IGenerates recursively the binary reflected Gray code of order n
/[Input: A positive integer n
/[Output: A list of all bit strings of length n composing the Gray code
if n = 1 make list L containing bit strings 0 and 1 in this order
else generate list L1 of bit strings of size n — 1 by calling BRGC(n — 1)
copy list L1 to list L2 in reversed order
add 0 in front of each bit string in list L1
add 1 in front of each bit string in list L2
append L2 to L1to get list L
return L

The correctness of the algorithm stems from the fact that it generates 2" bit
strings and all of them are distinct. Both these assertions are easy to check by
mathematical induction. Note that the binary reflected Gray code is cyclic: its last
bit string differs from the first one by a single bit. For a nonrecursive algorithm for
generating the binary reflected Gray code see Problem 9 in this section’s exercises.

Exercises 4.3

1. Is it realistic to implement an algorithm that requires generating all permu-
tations of a 25-element set on your computer? What about all the subsets of
such a set?

2. Generate all permutations of {1, 2, 3, 4} by
a. the bottom-up minimal-change algorithm.

b. the Johnson-Trotter algorithm.
c. the lexicographic-order algorithm.

3. Apply LexicographicPermute to multiset {1, 2, 2, 3}. Does it generate correctly
all the permutations in lexicographic order?

4. Consider the following implementation of the algorithm for generating per-
mutations discovered by B. Heap [Hea63].

ALGORITHM Heap Permute(n)
//Implements Heap’s algorithm for generating permutations
//Input: A positive integer n and a global array A[l..n]
//Output: All permutations of elements of A
ifn=1
write A
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n subsets

0 %]

1 %] {a}

2 2] {ar} {az} {a1, az}

3 o Hag  Aa} Aapa} ezt fanasl {apa3l {ay, ap, a3}

FIGURE 4.10 Generating subsets bottom up.

and all 2" bit strings by, ..., b, of length n. The easiest way to establish such a
correspondence is to assign to a subset the bit string in which b; = 1 if g; belongs
to the subset and b; = 0 if @; does not belong to it. (We mentioned this idea of bit
vectors in Section 1.4.) For example, the bit string 000 will correspond to the empty
subset of a three-element set, 111 will correspond to the set itself, i.e., {ay, ay, a3},
and 110 will represent {ay, a,}. With this correspondence in place, we can generate
all the bit strings of length n by generating successive binary numbers from 0 to
2" — 1, padded, when necessary, with an appropriate number of leading 0’s. For
example, for the case of n = 3, we obtain

bit strings 000 001 010 011 100 101 110 111
subsets @ Haz} {ap) {ap, a3} {ay} A{ay, a3} {ay, an} {ay, ay, az}

Note that although the bit strings are generated by this algorithm in lexico-
graphic order (in the two-symbol alphabet of 0 and 1), the order of the subsets
looks anything but natural. For example, we might want to have the so-called
squashed order, in which any subset involving a; can be listed only after all the
subsets involving ay, . . ., a;_;, as was the case for the list of the three-element set
in Figure 4.10. It is easy to adjust the bit string—based algorithm above to yield a
squashed ordering of the subsets involved (see Problem 6 in this section’s exer-
cises).

A more challenging question is whether there exists a minimal-change algo-
rithm for generating bit strings so that every one of them differs from its immediate
predecessor by only a single bit. (In the language of subsets, we want every subset
to differ from its immediate predecessor by either an addition or a deletion, but
not both, of a single element.) The answer to this question is yes. For example, for
n =3, we can get

000 001 011 010 110 111 101 100.

Such a sequence of bit strings is called the binary reflected Gray code. Frank Gray,
a researcher at AT&T Bell Laboratories, reinvented it in the 1940s to minimize
the effect of errors in transmitting digital signals (see, e.g., [Ros07], pp. 642—
643). Seventy years earlier, the French engineer Emile Baudot used such codes
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FIGURE 4.6 Digraph representing the prerequisite structure of five courses.

@ @ C5, The popping-off order:

@ C4, C5,C4,C3,C1,C2
C33 The topologically sorted list:
@) D) C1, C25 C2 C1-C3—»Ca>C5
D N
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FIGURE 4.7 (a) Digraph for which the topological sorting problem needs to be solved.
(b) DFS traversal stack with the subscript numbers indicating the popping-
off order. (c) Solution to the problem.

arbitrary digraph, but it is easy to see that the problem cannot have a solution
if a digraph has a directed cycle. Thus, for topological sorting to be possible, a
digraph in question must be a dag. It turns out that being a dag is not only necessary
but also sufficient for topological sorting to be possible; i.e., if a digraph has no
directed cycles, the topological sorting problem for it has a solution. Moreover,
there are two efficient algorithms that both verify whether a digraph is a dag
and, if it is, produce an ordering of vertices that solves the topological sorting
problem.

The first algorithm is a simple application of depth-first search: perform a DFS
traversal and note the order in which vertices become dead-ends (i.e., popped
off the traversal stack). Reversing this order yields a solution to the topological
sorting problem, provided, of course, no back edge has been encountered during
the traversal. If a back edge has been encountered, the digraph is not a dag, and
topological sorting of its vertices is impossible.

Why does the algorithm work? When a vertex v is popped off a DFS stack,
no vertex # with an edge from u to v can be among the vertices popped off before
v. (Otherwise, (u, v) would have been a back edge.) Hence, any such vertex u will
be listed after v in the popped-off order list, and before v in the reversed list.

Figure 4.7 illustrates an application of this algorithm to the digraph in Fig-
ure 4.6. Note that in Figure 4.7c, we have drawn the edges of the digraph, and
they all point from left to right as the problem’s statement requires. It is a con-
venient way to check visually the correctness of a solution to an instance of the
topological sorting problem.
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€ 9 9 9

®‘ delete C1 ®‘ delete C2 ®‘

&) 9 &) €9 9

delete C3 @ delete C4 delete C5

&) €

The solution obtained is C1,C2, C3, C4, C5

FIGURE 4.8 lllustration of the source-removal algorithm for the topological sorting
problem. On each iteration, a vertex with no incoming edges is deleted
from the digraph.

The second algorithm is based on a direct implementation of the decrease-(by
one)-and-conquer technique: repeatedly, identify in a remaining digraph a source,
which is a vertex with no incoming edges, and delete it along with all the edges
outgoing from it. (If there are several sources, break the tie arbitrarily. If there
are none, stop because the problem cannot be solved—see Problem 6a in this
section’s exercises.) The order in which the vertices are deleted yields a solution
to the topological sorting problem. The application of this algorithm to the same
digraph representing the five courses is given in Figure 4.8.

Note that the solution obtained by the source-removal algorithm is different
from the one obtained by the DFS-based algorithm. Both of them are correct, of
course; the topological sorting problem may have several alternative solutions.

The tiny size of the example we used might create a wrong impression about
the topological sorting problem. But imagine a large project—e.g., in construction,
research, or software development—that involves a multitude of interrelated tasks
with known prerequisites. The first thing to do in such a situation is to make sure
that the set of given prerequisites is not contradictory. The convenient way of
doing this is to solve the topological sorting problem for the project’s digraph.
Only then can one start thinking about scheduling tasks to, say, minimize the total
completion time of the project. This would require, of course, other algorithms that
you can find in general books on operations research or in special ones on CPM
(Critical Path Method) and PERT (Program Evaluation and Review Technique)
methodologies.

As to applications of topological sorting in computer science, they include
instruction scheduling in program compilation, cell evaluation ordering in spread-
sheet formulas, and resolving symbol dependencies in linkers.
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der—which is the order in which they would be listed in a dictionary if the numbers
were interpreted as letters of an alphabet. For example, for n =3,

123 132 213 231 312 321

So how can we generate the permutation following aya; . . . a,_ja, in lexi-
cographic order? If a,_; < a,, which is the case for exactly one half of all the
permutations, we can simply transpose these last two elements. For example, 123
is followed by 132.If a,,_; > a,,, we find the permutation’s longest decreasing suffix
a1 > a4y > - - > a, (buta; <a;,q);increase a; by exchanging it with the smallest
element of the suffix that is greater than ¢;; and reverse the new suffix to put it in
increasing order. For example, 362541 is followed by 364125. Here is pseudocode
of this simple algorithm whose origins go as far back as 14th-century India.

ALGORITHM  LexicographicPermute(n)

/IGenerates permutations in lexicographic order

/Input: A positive integer n

//Output: A list of all permutations of {1, . .., n} in lexicographic order

initialize the first permutation with 12.. . n

while last permutation has two consecutive elements in increasing order do
let i be its largest index such that a; < a;,y /la; 1 >a; 5> >a,
find the largest index j such thata; <a; //j >i+ 1since ¢; <a; 1
swap a; witha; /la; 14,45 . . . a, will remain in decreasing order
reverse the order of the elements from a; | to a, inclusive
add the new permutation to the list

Generating Subsets

Recall that in Section 3.4 we examined the knapsack problem, which asks to find
the most valuable subset of items that fits a knapsack of a given capacity. The
exhaustive-search approach to solving this problem discussed there was based on
generating all subsets of a given set of items. In this section, we discuss algorithms
for generating all 2" subsets of an abstract set A = {ay, . .., a,}. (Mathematicians
call the set of all subsets of a set its power set.)

The decrease-by-one idea is immediately applicable to this problem, too. All
subsets of A ={ay, ..., a,} can be divided into two groups: those that do not
contain a, and those that do. The former group is nothing but all the subsets of
{ay, ..., a,_1}, while each and every element of the latter can be obtained by
adding a,, to a subset of {ay, . .., a,_1}. Thus, once we have a list of all subsets of
{ay, ..., a,_q}, we can get all the subsets of {ay, ..., a,} by adding to the list all
its elements with a, put into each of them. An application of this algorithm to
generate all subsets of {ay, a,, a3} is illustrated in Figure 4.10.

Similarly to generating permutations, we do not have to generate power sets of
smaller sets. A convenient way of solving the problem directly is based on a one-to-
one correspondence between all 2" subsets of an n element set A = {ay, ..., a,}
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Check this for the permutations generated in Figure 4.9.) The minimal-change re-
quirement is beneficial both for the algorithm’s speed and for applications using
the permutations. For example, in Section 3.4, we needed permutations of cities
to solve the traveling salesman problem by exhaustive search. If such permuta-
tions are generated by a minimal-change algorithm, we can compute the length of
a new tour from the length of its predecessor in constant rather than linear time
(how?).

It is possible to get the same ordering of permutations of n elements without
explicitly generating permutations for smaller values of n. It can be done by
associating a direction with each element k in a permutation. We indicate such
a direction by a small arrow written above the element in question, e.g.,

3241
The element k is said to be mobile in such an arrow-marked permutation if its
arrow points to a smaller number adjacent to it. For example, for the permutation
3241, 3 and 4 are mobile while 2 and 1 are not. Using the notion of a mobile

element, we can give the following description of the Johnson-Trotter algorithm
for generating permutations.

ALGORITHM JohnsonTrotter(n)

/Implements Johnson-Trotter algorithm for generating permutations
/Input: A positive integer n
/[Output: A list of all permutations of {1, ..., n}
initialize the first permutation with 12...n
while the last permutation has a mobile element do
find its largest mobile element k
swap k with the adjacent element k’s arrow points to
reverse the direction of all the elements that are larger than &
add the new permutation to the list

Here is an application of this algorithm for n = 3, with the largest mobile
element shown in bold:

123 132 312 321 231 213

This algorithm is one of the most efficient for generating permutations; it can
be implemented to run in time proportional to the number of permutations, i.e.,
in ®(n!). Of course, it is horribly slow for all but very small values of n; however,
this is not the algorithm’s “fault” but rather the fault of the problem: it simply asks
to generate too many items.

One can argue that the permutation ordering generated by the Johnson-
Trotter algorithm is not quite natural; for example, the natural place for permu-
tation n(n — 1) ... 1 seems to be the last one on the list. This would be the case
if permutations were listed in increasing order—also called the lexicographic or-
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Exercises 4.2

1. Apply the DFS-based algorithm to solve the topological sorting problem for
the following digraphs:

2. a. Prove that the topological sorting problem has a solution if and only if it is
a dag.
b. Foradigraph withn vertices, whatis the largest number of distinct solutions
the topological sorting problem can have?

3. a. What is the time efficiency of the DFS-based algorithm for topological
sorting?
b. How can one modify the DFS-based algorithm to avoid reversing the
vertex ordering generated by DFS?

4. Can one use the order in which vertices are pushed onto the DFS stack
(instead of the order they are popped off it) to solve the topological sorting
problem?

5. Apply the source-removal algorithm to the digraphs of Problem 1 above.
6. a. Prove that a nonempty dag must have at least one source.

b. How would you find a source (or determine that such a vertex does not
exist) in a digraph represented by its adjacency matrix? What is the time
efficiency of this operation?

¢. How would you find a source (or determine that such a vertex does not
exist) in a digraph represented by its adjacency lists? What is the time
efficiency of this operation?

7. Can you implement the source-removal algorithm for a digraph represented
by its adjacency lists so that its running time is in O(|V| + |E|)?

8. Implement the two topological sorting algorithms in the language of your
choice. Run an experiment to compare their running times.

9. A digraph is called strongly connected if for any pair of two distinct vertices u
and v there exists a directed path from u to v and a directed path from v tou. In
general, a digraph’s vertices can be partitioned into disjoint maximal subsets
of vertices that are mutually accessible via directed paths; these subsets are
called strongly connected components of the digraph. There are two DFS-
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based algorithms for identifying strongly connected components. Here is the 4.3 Algorith ms for Generating Combinatorial Objects
simpler (but somewhat less efficient) one of the two:

In this section, we keep our promise to discuss algorithms for generating combi-
natorial objects. The most important types of combinatorial objects are permuta-
tions, combinations, and subsets of a given set. They typically arise in problems
that require a consideration of different choices. We already encountered them in
Chapter 3 when we discussed exhaustive search. Combinatorial objects are stud-
ied in a branch of discrete mathematics called combinatorics. Mathematicians, of
course, are primarily interested in different counting formulas; we should be grate-

Step 1 Perform a DFS traversal of the digraph given and number its
vertices in the order they become dead ends.

Step 2 Reverse the directions of all the edges of the digraph.

Step 3 Perform a DFS traversal of the new digraph by starting (and, if
necessary, restarting) the traversal at the highest numbered vertex
among still unvisited vertices.

The strongly connected components are exactly the vertices of the DFS ful for such formulas because they tell us how many items need to be generated. In
trees obtained during the last traversal. particular, they warn us that the number of combinatorial objects typically grows
a. Apply this algorithm to the following digraph to determine its strongly exponentially or even faster as a function of the problem size. But our primary

connected components: interest here lies in algorithms for generating combinatorial objects, not just in
counting them.

Generating Permutations

We start with permutations. For simplicity, we assume that the underlying set
whose elements need to be permuted is simply the set of integers from 1 to n;
more generally, they can be interpreted as indices of elements in an n-element set
{ay, ..., a,}. What would the decrease-by-one technique suggest for the problem
of generating all n! permutations of {1, . .., n}? The smaller-by-one problem is to
generate all (n — 1)! permutations. Assuming that the smaller problem is solved,
we can get a solution to the larger one by inserting n in each of the n possible
positions among elements of every permutation of n — 1 elements. All the permu-
tations obtained in this fashion will be distinct (why?), and their total number will

b. What is the time efficiency class of this algorithm? Give separate answers
for the adjacency matrix representation and adjacency list representation
of an input digraph.

¢. How many strongly connected components does a dag have?

ii: 10. Spider’s web A spider sits at the bottom (point S) of its web, and a fly sits at be n(n — 1)! = n!. Hence, we will obtain all the permutations of {1, . .., n}.
== the top (F). How many different ways can the spider reach the fly by moving We can insert n in the previously generated permutations either left to right
along the web’s lines in the directions indicated by the arrows? [Kor05] or right to left. It turns out that it is beneficial to start with inserting n into
12...(n — 1) by moving right to left and then switch direction every time a new
E permutation of {1, . .., n — 1} needs to be processed. An example of applying this

approach bottom up for n = 3 is given in Figure 4.9.

The advantage of this order of generating permutations stems from the fact
that it satisfies the minimal-change requirement: each permutation can be ob-
tained from its immediate predecessor by exchanging just two elements in it. (For
the method being discussed, these two elements are always adjacent to each other.

start 1

insert 2 into 1 right to left 12 21

insert 3 into 12 right to left 123 132 312
insert 3 into 21 left to right 321 231 213

FIGURE 4.9 Generating permutations bottom up.
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FIGURE 5.2 Example of mergesort operation.
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How efficient is mergesort? Assuming for simplicity that » is a power of 2, the
recurrence relation for the number of key comparisons C(n) is

C(1) =2C(1/2) + Cporgem) forn>1, C(1)=

Let us analyze C,,,,¢.(n), the number of key comparisons performed during the
merging stage. At each step, exactly one comparison is made, after which the total
number of elements in the two arrays still needing to be processed is reduced
by 1. In the worst case, neither of the two arrays becomes empty before the
other one contains just one element (e.g., smaller elements may come from the
alternating arrays). Therefore, for the worst case, C,,¢g.(n) = n — 1, and we have
the recurrence

Cuorst (1) =2Cyorsi(n/2) +n =1 forn>1, Cyppy(1) =0

Hence, according to the Master Theorem, C,,,,(,(n) € ®(n log n) (why?). In fact,
it is easy to find the exact solution to the worst-case recurrence for n = 2k

Cyorsi(n) =nlogyn —n+1.
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n m n m

50 65 50 65
25 130 25 130 130

12 260 (+130) 12 260

6 520 6 520
3 1040 3 1040 1040
1 2080 (4+1040) 1 2080 2080
2080 +(130 + 1040) = 3250 3250

(a) (®)

FIGURE 4.11 Computing 50 - 65 by the Russian peasant method.

who do not want to memorize the table of multiplications. It is this feature of the
algorithm that most probably made it attractive to Russian peasants who, accord-
ing to Western visitors, used it widely in the nineteenth century and for whom the
method is named. (In fact, the method was known to Egyptian mathematicians as
early as 1650 B.c. [Cha98, p. 16].) It also leads to very fast hardware implementa-
tion since doubling and halving of binary numbers can be performed using shifts,
which are among the most basic operations at the machine level.

Josephus Problem

Our last example is the Josephus problem, named for Flavius Josephus, a famous
Jewish historian who participated in and chronicled the Jewish revolt of 66-70
C.E. against the Romans. Josephus, as a general, managed to hold the fortress of
Jotapata for 47 days, but after the fall of the city he took refuge with 40 diehards in
a nearby cave. There, the rebels voted to perish rather than surrender. Josephus
proposed that each man in turn should dispatch his neighbor, the order to be
determined by casting lots. Josephus contrived to draw the last lot, and, as one
of the two surviving men in the cave, he prevailed upon his intended victim to
surrender to the Romans.

So let n people numbered 1 to n stand in a circle. Starting the grim count with
person number 1, we eliminate every second person until only one survivor is left.
The problem is to determine the survivor’s number J(n). For example (Figure
4.12), if n is 6, people in positions 2, 4, and 6 will be eliminated on the first pass
through the circle, and people in initial positions 3 and 1 will be eliminated on the
second pass, leaving a sole survivor in initial position 5—thus, J(6) = 5. To give
another example, if n is 7, people in positions 2, 4, 6, and 1 will be eliminated on
the first pass (it is more convenient to include 1 in the first pass) and people in
positions 5 and, for convenience, 3 on the second—thus, J(7) =7
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FIGURE 4.12 Instances of the Josephus problem for (a) n =6 and (b) n = 7. Subscript
numbers indicate the pass on which the person in that position is
eliminated. The solutions are J(6) =5 and J(7) =7, respectively.

It is convenient to consider the cases of even and odd n’s separately. If n is
even, i.e., n = 2k, the first pass through the circle yields an instance of exactly the
same problem but half its initial size. The only difference is in position numbering;
for example, a person in initial position 3 will be in position 2 for the second pass,
a person in initial position 5 will be in position 3, and so on (check Figure 4.12a). It
is easy to see that to get the initial position of a person, we simply need to multiply
his new position by 2 and subtract 1. This relationship will hold, in particular, for
the survivor, i.e.,

J(Q2k)=2J(k) — 1.

Let us now consider the case of an odd n (n > 1), i.e., n = 2k + 1. The first pass
eliminates people in all even positions. If we add to this the elimination of the
person in position 1 right after that, we are left with an instance of size k. Here, to
get the initial position that corresponds to the new position numbering, we have
to multiply the new position number by 2 and add 1 (check Figure 4.12b). Thus,
for odd values of n, we get

JQk+1) =2J(k) + 1.

Can we get a closed-form solution to the two-case recurrence subject to the
initial condition J(1) = 1? The answer is yes, though getting it requires more
ingenuity than just applying backward substitutions. In fact, one way to find a
solution is to apply forward substitutions to get, say, the first 15 values of J(n),
discern a pattern, and then prove its general validity by mathematical induction.
We leave the execution of this plan to the exercises; alternatively, you can look it
up in [GKPY4], whose exposition of the Josephus problem we have been following.
Interestingly, the most elegant form of the closed-form answer involves the binary
representation of size n: J(n) can be obtained by a 1-bit cyclic shift left of n itself!
For example, J(6) = J(110,) =101, =5and J(7) = J(111,) =111, =7.
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Mergesort

Mergesort is a perfect example of a successful application of the divide-and-
conquer technique. It sorts a given array A[0..n — 1] by dividing it into two halves
A[0..ln/2] — 1] and A[|n/2]..n — 1], sorting each of them recursively, and then
merging the two smaller sorted arrays into a single sorted one.

ALGORITHM Mergesort(A[0..n — 1])

/ISorts array A[0..n — 1] by recursive mergesort
/Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
ifn>1
copy A[0..|n/2] —1]to B[0..|n/2] — 1]
copy A[|n/2]..n — 1]to C[0..[n/2] — 1]
Mergesort(B[0..|n/2] —1])
Mergesort(C[0..[n/2] — 1])
Merge(B, C, A) //see below

The merging of two sorted arrays can be done as follows. Two pointers (array
indices) are initialized to point to the first elements of the arrays being merged.
The elements pointed to are compared, and the smaller of them is added to a new
array being constructed; after that, the index of the smaller element is incremented
to point to its immediate successor in the array it was copied from. This operation
is repeated until one of the two given arrays is exhausted, and then the remaining
elements of the other array are copied to the end of the new array.

ALGORITHM  Merge(B[0..p — 1], C[0..g — 1], A[0..p +¢q —1])

/IMerges two sorted arrays into one sorted array
/[Input: Arrays B[0..p — 1] and C[0..q — 1] both sorted
/IOutput: Sorted array A[0..p 4+ g — 1] of the elements of B and C
i<«0;, j<«<0, k<0
whilei < pand j < g do

if B[i] < C[ ]

Alk] < B[i]; i «i+1

else A[k] < C[j], j«<Jj+1

k<—k+1
ifi=p

copy C[j..g —1]to Alk..p+q —1]
else copy Bli..p — 1]to Alk..p + g — 1]

The operation of the algorithm on the list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated in
Figure 5.2.
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As mentioned above, in the most typical case of divide-and-conquer a prob-
lem’s instance of size n is divided into two instances of size n/2. More generally,
an instance of size n can be divided into b instances of size n/b, with a of them
needing to be solved. (Here, @ and b are constants; a > 1 and b > 1.) Assuming
that size n is a power of b to simplify our analysis, we get the following recurrence
for the running time 7 (n):

T(n)=aT(n/b) + f(n), (5.1)

where f(n) is a function that accounts for the time spent on dividing an instance
of size n into instances of size n/b and combining their solutions. (For the sum
example above, a =b =2 and f(n) =1.) Recurrence (5.1) is called the general
divide-and-conquer recurrence. Obviously, the order of growth of its solution 7 ()
depends on the values of the constants @ and b and the order of growth of the
function f(n). The efficiency analysis of many divide-and-conquer algorithms is
greatly simplified by the following theorem (see Appendix B).

Master Theorem If f(n) € ©(n?) where d > 0 in recurrence (5.1), then

Ond) ifa <b?,
T(n) e on? logn) ifa= b,
O (n'o2 ) ifa > be.

Analogous results hold for the O and Q notations, too.

For example, the recurrence for the number of additions A(n) made by the
divide-and-conquer sum-computation algorithm (see above) on inputs of size
n=2kis

A(n) =2A(n)2) + 1.
Thus, for this example, a =2, b =2, and d = 0; hence, since a > b,
An) € O('°% %) = O(1'°22) = O(n).

Note that we were able to find the solution’s efficiency class without going through
the drudgery of solving the recurrence. But, of course, this approach can only es-
tablish a solution’s order of growth to within an unknown multiplicative constant,
whereas solving a recurrence equation with a specific initial condition yields an
exact answer (at least for n’s that are powers of b).

It is also worth pointing out that if « =1, recurrence (5.1) covers decrease-
by-a-constant-factor algorithms discussed in the previous chapter. In fact, some
people consider such algorithms as binary search degenerate cases of divide-and-
conquer, where just one of two subproblems of half the size needs to be solved.
It is better not to do this and consider decrease-by-a-constant-factor and divide-
and-conquer as different design paradigms.
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Exercises 4.4

1. Cutting a stick A stick n inches long needs to be cut into n 1-inch pieces.
Outline an algorithm that performs this task with the minimum number of
cuts if several pieces of the stick can be cut at the same time. Also give a
formula for the minimum number of cuts.

2. Design a decrease-by-half algorithm for computing |log, 7] and determine its
time efficiency.

3. a. What is the largest number of key comparisons made by binary search in
searching for a key in the following array?

[3]14]27]31[39 [42]55 7074 81]85]93 [ 98]

b. List all the keys of this array that will require the largest number of key
comparisons when searched for by binary search.

¢. Find the average number of key comparisons made by binary search in a
successful search in this array. Assume that each key is searched for with
the same probability.

d. Find the average number of key comparisons made by binary search in an
unsuccessful search in this array. Assume that searches for keys in each of
the 14 intervals formed by the array’s elements are equally likely.

4. Estimate how many times faster an average successful search will be in a
sorted array of one million elements if it is done by binary search versus
sequential search.

5. The time efficiency of sequential search does not depend on whether a list is
implemented as an array or as a linked list. Is it also true for searching a sorted
list by binary search?

6. a. Design a version of binary search that uses only two-way comparisons such
as < and =. Implement your algorithm in the language of your choice and
carefully debug it: such programs are notorious for being prone to bugs.

b. Analyze the time efficiency of the two-way comparison version designed
in part a.

7. Picture guessing A version of the popular problem-solving task involves pre-
senting people with an array of 42 pictures—seven rows of six pictures each—
and asking them to identify the target picture by asking questions that can be
answered yes or no. Further, people are then required to identify the picture
with as few questions as possible. Suggest the most efficient algorithm for this
problem and indicate the largest number of questions that may be necessary.

8. Consider ternary search—the following algorithm for searching in a sorted
array A[0..n — 1]. If n = 1, simply compare the search key K with the single
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element of the array; otherwise, search recursively by comparing K with
A[|n/3]], and if K is larger, compare it with A[|2n/3]] to determine in which
third of the array to continue the search.

a. What design technique is this algorithm based on?

b. Set up a recurrence for the number of key comparisons in the worst case.
You may assume that n = 3%,

c. Solve the recurrence for n = 3.
d. Compare this algorithm’s efficiency with that of binary search.

°

An array A[0..n — 2] contains n — 1 integers from 1 to » in increasing order.
(Thus one integer in this range is missing.) Design the most efficient algorithm
you can to find the missing integer and indicate its time efficiency.

10. a. Write pseudocode for the divide-into-three algorithm for the fake-coin
problem. Make sure that your algorithm handles properly all values of n,
not only those that are multiples of 3.

b. Setup arecurrence relation for the number of weighings in the divide-into-
three algorithm for the fake-coin problem and solve it for n = 3.

]

For large values of n, about how many times faster is this algorithm than
the one based on dividing coins into two piles? Your answer should not
depend on n.

11. a. Apply the Russian peasant algorithm to compute 26 - 47.

b. From the standpoint of time efficiency, does it matter whether we multiply
n by m or m by n by the Russian peasant algorithm?

12. a. Write pseudocode for the Russian peasant multiplication algorithm.
b. What is the time efficiency class of Russian peasant multiplication?

13

14

Find J (40)—the solution to the Josephus problem for n = 40.

Prove that the solution to the Josephus problem is 1 for every n that is a power
of 2.

For the Josephus problem,
a. compute J(n) forn=1,2,...,15.

15

b. discern a pattern in the solutions for the first fifteen values of n and prove
its general validity.

¢. prove the validity of getting J(n) by a 1-bit cyclic shift left of the binary
representation of n.

Variable-Size-Decrease Algorithms

In the third principal variety of decrease-and-conquer, the size reduction pattern
varies from one iteration of the algorithm to another. Euclid’s algorithm for
computing the greatest common divisor (Section 1.1) provides a good example

Divide-and-Conquer

problem of size n

subproblem 2
of size n/2

subproblem 1
of size n/2

solution to solution to
subproblem 1 subproblem 2

A

solution to
the original problem

FIGURE 5.1 Divide-and-conquer technique (typical case).

small example of summing, say, four numbers by this algorithm, a formal analysis
(which follows), and common sense (we do not normally compute sums this way,
do we?) all lead to a negative answer to this question.!

Thus, not every divide-and-conquer algorithm is necessarily more efficient
than even a brute-force solution. But often our prayers to the Goddess of
Algorithmics—see the chapter’s epigraph—are answered, and the time spent on
executing the divide-and-conquer plan turns out to be significantly smaller than
solving a problem by a different method. In fact, the divide-and-conquer approach
yields some of the most important and efficient algorithms in computer science.
We discuss a few classic examples of such algorithms in this chapter. Though we
consider only sequential algorithms here, it is worth keeping in mind that the
divide-and-conquer technique is ideally suited for parallel computations, in which
each subproblem can be solved simultaneously by its own processor.

Actually, the divide-and-conquer algorithm, called the pairwise summation, may substantially reduce
the accumulated round-off error of the sum of numbers that can be represented only approximately
in a digital computer [Hig93].
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Divide-and-Conquer

Whatever man prays for, he prays for a miracle. Every prayer reduces itself
to this—Great God, grant that twice two be not four.

—Ivan Turgenev (1818-1883), Russian novelist and short-story writer

Divide-and-conquer is probably the best-known general algorithm design
technique. Though its fame may have something to do with its catchy name, it
is well deserved: quite a few very efficient algorithms are specific implementations
of this general strategy. Divide-and-conquer algorithms work according to the
following general plan:

1. A problem is divided into several subproblems of the same type, ideally of
about equal size.

2. The subproblems are solved (typically recursively, though sometimes a dif-
ferent algorithm is employed, especially when subproblems become small
enough).

3. If necessary, the solutions to the subproblems are combined to get a solution
to the original problem.

The divide-and-conquer technique is diagrammed in Figure 5.1, which depicts
the case of dividing a problem into two smaller subproblems, by far the most widely
occurring case (at least for divide-and-conquer algorithms designed to be executed
on a single-processor computer).

As an example, let us consider the problem of computing the sum of » numbers
ag, ..., a,_1. If n > 1, we can divide the problem into two instances of the same
problem: to compute the sum of the first |#/2] numbers and to compute the sum
of the remaining [n/2] numbers. (Of course, if n = 1, we simply return q as the
answer.) Once each of these two sums is computed by applying the same method
recursively, we can add their values to get the sum in question:

ag+- - +a,_1=C(ag+ -+ app )+ @up -t a,.

Is this an efficient way to compute the sum of » numbers? A moment of
reflection (why could it be more efficient than the brute-force summation?), a
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of this kind of algorithm. In this section, we encounter a few more examples of
this variety.

Computing a Median and the Selection Problem

The selection problem is the problem of finding the kth smallest element in a list
of n numbers. This number is called the kth order statistic. Of course, for k =1 or
k = n, we can simply scan the list in question to find the smallest or largest element,
respectively. A more interesting case of this problem is for k = [n/27, which asks to
find an element that is not larger than one half of the list’s elements and not smaller
than the other half. This middle value is called the median, and it is one of the
most important notions in mathematical statistics. Obviously, we can find the kth
smallest element in a list by sorting the list first and then selecting the kth element
in the output of a sorting algorithm. The time of such an algorithm is determined
by the efficiency of the sorting algorithm used. Thus, with a fast sorting algorithm
such as mergesort (discussed in the next chapter), the algorithm’s efficiency is in
O(nlogn).

You should immediately suspect, however, that sorting the entire list is most
likely overkill since the problem asks not to order the entire list but just to find its
kth smallest element. Indeed, we can take advantage of the idea of partitioning
a given list around some value p of, say, its first element. In general, this is a
rearrangement of the list’s elements so that the left part contains all the elements
smaller than or equal to p, followed by the pivot p itself, followed by all the
elements greater than or equal to p.

(o] | => [ allare<p [p[ allarexp |

Of the two principal algorithmic alternatives to partition an array, here we
discuss the Lomuto partitioning [Ben00, p. 117]; we introduce the better known
Hoare’s algorithm in the next chapter. To get the idea behind the Lomuto parti-
tioning, it is helpful to think of an array—or, more generally, a subarray A[/..r]
(0 <1 <r <n—1)—under consideration as composed of three contiguous seg-
ments. Listed in the order they follow pivot p, they are as follows: a segment with
elements known to be smaller than p, the segment of elements known to be greater
than or equal to p, and the segment of elements yet to be compared to p (see Fig-
ure 4.13a). Note that the segments can be empty; for example, it is always the case
for the first two segments before the algorithm starts.

Starting with i =/ + 1, the algorithm scans the subarray A[/..r] left to right,
maintaining this structure until a partition is achieved. On each iteration, it com-
pares the first element in the unknown segment (pointed to by the scanning index
i in Figure 4.13a) with the pivot p. If A[i] > p, i is simply incremented to expand
the segment of the elements greater than or equal to p while shrinking the un-
processed segment. If A[i] < p, it is the segment of the elements smaller than p
that needs to be expanded. This is done by incrementing s, the index of the last
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FIGURE 4.13 lllustration of the Lomuto partitioning.

element in the first segment, swapping A[i] and A[s], and then incrementing i to
point to the new first element of the shrunk unprocessed segment. After no un-
processed elements remain (Figure 4.13b), the algorithm swaps the pivot with A[s]
to achieve a partition being sought (Figure 4.13c).

Here is pseudocode implementing this partitioning procedure.

ALGORITHM  LomutoPartition(A[l..r])
/[Partitions subarray by Lomuto’s algorithm using first element as pivot
/[Input: A subarray A[l..r] of array A[0..n — 1], defined by its left and right
/I indices/ and r (I <r)
//Output: Partition of A[/..r] and the new position of the pivot
p < A[l]
s <1
fori <[+ 1tor do
ifAli]<p
s« s+1; swap(A[s], Ali])
swap(A[l], A[s])
return s

How can we take advantage of a list partition to find the kth smallest element
in it? Let us assume that the list is implemented as an array whose elements
are indexed starting with a 0, and let s be the partition’s split position, i.e., the
index of the array’s element occupied by the pivot after partitioning. If s =k — 1,
pivot p itself is obviously the kth smallest element, which solves the problem. If
s >k — 1, the kth smallest element in the entire array can be found as the kth
smallest element in the left part of the partitioned array. And if s <k — 1, it can
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® A digraph is a graph with directions on its edges. The topological sorting
problem asks to list vertices of a digraph in an order such that for every edge
of the digraph, the vertex it starts at is listed before the vertex it points to.
This problem has a solution if and only if a digraph is a dag (directed acyclic
graph), i.e., it has no directed cycles.

®  There are two algorithms for solving the topological sorting problem. The first
one is based on depth-first search; the second is based on a direct application
of the decrease-by-one technique.

B The decrease-by-one technique is a natural approach to developing algo-
rithms for generating elementary combinatorial objects. The most efficient
class of such algorithms are minimal-change algorithms. However, the num-
ber of combinatorial objects grows so fast that even the best algorithms are
of practical interest only for very small instances of such problems.

B Binary search is a very efficient algorithm for searching in a sorted array. It
is a principal example of a decrease-by-a-constant-factor algorithm. Other
examples include exponentiation by squaring, identifying a fake coin with a
balance scale, Russian peasant multiplication, and the Josephus problem.

®  For some decrease-and-conquer algorithms, the size reduction varies from
one iteration of the algorithm to another. Examples of such variable-size-
decrease algorithms include Euclid’s algorithm, the partition-based algorithm
for the selection problem, interpolation search, and searching and insertion in
a binary search tree. Nim exemplifies games that proceed through a series of
diminishing instances of the same game.
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10. Misére one-pile Nim Consider the so-called misére version of the one-pile
Nim, in which the player taking the last chip loses the game. All the other
conditions of the game remain the same, i.e., the pile contains n chips and on
each move a player takes at least one but no more than m chips. Identify the
winning and losing positions (for the player to move next) in this game.

11. a. Moldy chocolate Two players take turns by breaking an m x n chocolate
bar, which has one spoiled 1 x 1 square. Each break must be a single
straight line cutting all the way across the bar along the boundaries between
the squares. After each break, the player who broke the bar last eats the
piece that does not contain the spoiled square. The player left with the
spoiled square loses the game. Is it better to go first or second in this game?

b. Write an interactive program to play this game with the computer. Your
program should make a winning move in a winning position and a random
legitimate move in a losing position.

12. Flipping pancakes There are n pancakes all of different sizes that are stacked
on top of each other. You are allowed to slip a flipper under one of the
pancakes and flip over the whole stack above the flipper. The purpose is to
arrange pancakes according to their size with the biggest at the bottom. (You
can see a visualization of this puzzle on the Interactive Mathematics Miscellany
and Puzzles site [Bog].) Design an algorithm for solving this puzzle.

13. You need to search for a given number in an n x n matrix in which every
row and every column is sorted in increasing order. Can you design a O (n)
algorithm for this problem? [Laal0]

SUMMARY

B Decrease-and-conquer is a general algorithm design technique, based on
exploiting a relationship between a solution to a given instance of a problem
and a solution to a smaller instance of the same problem. Once such a
relationship is established, it can be exploited either top down (usually
recursively) or bottom up.

B There are three major variations of decrease-and-conquer:
o decrease-by-a-constant, most often by one (e.g., insertion sort)
e decrease-by-a-constant-factor, most often by the factor of two (e.g., binary
search)
e variable-size-decrease (e.g., Euclid’s algorithm)

B [nsertion sort is a direct application of the decrease-(by one)-and-conquer
technique to the sorting problem. It is a @ (n2) algorithm both in the worst
and average cases, butitis about twice as fast on average than in the worst case.
The algorithm’s notable advantage is a good performance on almost-sorted
arrays.

Decrease-and-Conquer

be found as the (k — s)th smallest element in its right part. Thus, if we do not solve
the problem outright, we reduce its instance to a smaller one, which can be solved
by the same approach, i.e., recursively. This algorithm is called quickselect.

To find the kth smallest element in array A[0..n — 1] by this algorithm, call
Quickselect(A[0..n — 1], k) where

ALGORITHM  Quickselect(A[l..r], k)
/ISolves the selection problem by recursive partition-based algorithm
//Input: Subarray A[l..r] of array A[0..n — 1] of orderable elements and
/! integerk (1<k<r—1I1+1)
//Output: The value of the kth smallest element in A[/..r]
s < LomutoPartition(A[l..r]) //or another partition algorithm
if s =k — 1return A[s]
elseif s > [ + k — 1 Quickselect(A[l..s — 1], k)
else Quickselect(Als + 1.r], k — 1 —)

In fact, the same idea can be implemented without recursion as well. For the
nonrecursive version, we need not even adjust the value of & but just continue
untils =k — 1.

EXAMPLE Apply the partition-based algorithm to find the median of the fol-
lowing list of nine numbers: 4, 1, 10, 8,7, 12,9, 2, 15. Here, k = [9/2] = 5 and our
task is to find the Sth smallest element in the array.

‘We use the above version of array partitioning, showing the pivots in bold.

N
— o~

10 8 7 12 9 2 15
s

4 1 10 8 7 12 9 2 15
s
1 10 8 7 12 9 2 15

s
4 1 2 8 7 12 9 10 15
5 1

4 1 2 8 7 12 9 10 15
2 1 4 8 7 12 9 10 15

Since s =2 is smaller than k — 1 =4, we proceed with the right part of the array:
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8 7 12 9 10 15
s i

8 7 12 9 10 15
s i

8 7 12 9 10 15

7 8 12 9 10 15

Now s =k — 1 =4, and hence we can stop: the found median is 8, which is greater
than 2, 1, 4, and 7 but smaller than 12, 9, 10, and 15. [ |

How efficient is quickselect? Partitioning an n-element array always requires
n — 1 key comparisons. If it produces the split that solves the selection problem
without requiring more iterations, then for this best case we obtain Cp,,(n) =
n — 1 € ®(n). Unfortunately, the algorithm can produce an extremely unbalanced
partition of a given array, with one part being empty and the other containingn — 1
elements. In the worst case, this can happen on each of the n — 1 iterations. (For
a specific example of the worst-case input, consider, say, the case of k =n and a
strictly increasing array.) This implies that

Cwors[(”) =(n-— 1) + (- 2) +-+1= (n— 1)ﬂ/2 € @(112),

which compares poorly with the straightforward sorting-based approach men-
tioned in the beginning of our selection problem discussion. Thus, the usefulness of
the partition-based algorithm depends on the algorithm’s efficiency in the average
case. Fortunately, a careful mathematical analysis has shown that the average-case
efficiency is linear. In fact, computer scientists have discovered a more sophisti-
cated way of choosing a pivot in quickselect that guarantees linear time even in
the worst case [Blo73], but it is too complicated to be recommended for practical
applications.

It is also worth noting that the partition-based algorithm solves a somewhat
more general problem of identifying the k smallest and n — k largest elements of
a given list, not just the value of its kth smallest element.

Interpolation Search

As the next example of a variable-size-decrease algorithm, we consider an algo-
rithm for searching in a sorted array called interpolation search. Unlike binary
search, which always compares a search key with the middle value of a given sorted
array (and hence reduces the problem’s instance size by half), interpolation search
takes into account the value of the search key in order to find the array’s element
to be compared with the search key. In a sense, the algorithm mimics the way we
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011
100
101
010

Since this sum contains a 1, the instance is a winning one for the player moving
first. To find a winning move from this position, the player needs to change one of
the three bit strings so that the new nim sum contains only 0’s. It is not difficult to
see that the only way to accomplish this is to remove two chips from the first pile.
This ingenious solution to the game of Nim was discovered by Harvard math-
ematics professor C. L. Bouton more than 100 years ago. Since then, mathemati-
cians have developed a much more general theory of such games. An excellent
account of this theory, with applications to many specific games, is given in the
monograph by E. R. Berlekamp, J. H. Conway, and R. K. Guy [Ber03].

Exercises 4.5

1. a. If we measure an instance size of computing the greatest common divisor
of m and n by the size of the second number n, by how much can the size
decrease after one iteration of Euclid’s algorithm?

b. Prove that an instance size will always decrease at least by a factor of two
after two successive iterations of Euclid’s algorithm.

2. Apply quickselect to find the median of the list of numbers 9, 12, 5, 17, 20,
30, 8.

3. Write pseudocode for a nonrecursive implementation of quickselect.
4. Derive the formula underlying interpolation search.

5. Give an example of the worst-case input for interpolation search and show
that the algorithm is linear in the worst case.
6. a. Find the smallest value of n for which log, log, n + 1is greater than 6.
b. Determine which, if any, of the following assertions are true:
i. loglogn € o(logn) ii. loglogn € ®(logn) iii. loglogn € Q(logn)
7. a. Outline an algorithm for finding the largest key in a binary search tree.
Would you classify your algorithm as a variable-size-decrease algorithm?
b. What is the time efficiency class of your algorithm in the worst case?

8. a. Outline an algorithm for deleting a key from a binary search tree. Would
you classify this algorithm as a variable-size-decrease algorithm?

b. What is the time efficiency class of your algorithm in the worst case?

9. Outline a variable-size-decrease algorithm for constructing an Eulerian circuit
in a connected graph with all vertices of even degrees.
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FIGURE 4.16 lllustration of one-pile Nim with the maximum number of chips that may
be taken on each move m =4. The numbers indicate n, the number of
chips in the pile. The losing positions for the player to move are circled.
Only winning moves from the winning positions are shown (in bold).

position. 2m + 2 =2(m + 1) chips is the next losing position, and so on. It is not
difficult to see the pattern that can be formally proved by mathematical induction:
an instance with n chips is a winning position for the player to move next if and only
if n is not a multiple of m + 1. The winning strategy is to take n mod(m + 1) chips
on every move; any deviation from this strategy puts the opponent in a winning
position.

One-pile Nim has been known for a very long time. It appeared, in particular,
as the summation game in the first published book on recreational mathematics,
authored by Claude-Gaspar Bachet, a French aristocrat and mathematician, in
1612: a player picks a positive integer less than, say, 10, and then his opponent and
he take turns adding any integer less than 10; the first player to reach 100 exactly
is the winner [Dud70].

In general, Nim is played with / > 1 piles of chips of sizes ny, ny, ..., n;. On
each move, a player can take any available number of chips, including all of them,
from any single pile. The goal is the same—to be the last player able to make a
move. Note that for 7 =2, it is easy to figure out who wins this game and how.
Here is a hint: the answer for the game’s instances with ny = n, differs from the
answer for those with ny # n,.

A solution to the general case of Nim is quite unexpected because it is based
on the binary representation of the pile sizes. Let by, b, .. ., b; be the pile sizes
in binary. Compute their binary digital sum, also known as the nim sum, defined
as the sum of binary digits discarding any carry. (In other words, a binary digit
s; in the sum is 0 if the number of 1’s in the ith position in the addends is even,
and it is 1 if the number of 1’s is odd.) It turns out that an instance of Nim is a
winning one for the player to move next if and only if its nim sum contains at least
one 1; consequently, Nim’s instance is a losing instance if and only if its nim sum
contains only zeros. For example, for the commonly played instance with n; =3,
n, =4, n3 =75, the nim sum is
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FIGURE 4.14 Index computation in interpolation search.

search for a name in a telephone book: if we are searching for someone named
Brown, we open the book not in the middle but very close to the beginning, unlike
our action when searching for someone named, say, Smith.

More precisely, on the iteration dealing with the array’s portion between the
leftmost element A[/] and the rightmost element A[r], the algorithm assumes
that the array values increase linearly, i.e., along the straight line through the
points (/, A[{]) and (r, A[r]). (The accuracy of this assumption can influence the
algorithm’s efficiency but not its correctness.) Accordingly, the search key’s value
v is compared with the element whose index is computed as (the round-off of)
the x coordinate of the point on the straight line through the points (/, A[/]) and
(r, A[r]) whose y coordinate is equal to the search value v (Figure 4.14).

Writing down a standard equation for the straight line passing through the
points (I, A[l]) and (r, A[r]), substituting v for y, and solving it for x leads to the
following formula:

_ w—A[DE =D
R v Tl @0

The logic behind this approach is quite straightforward. We know that the
array values are increasing (more accurately, not decreasing) from A[/] to A[r],
but we do not know how they do it. Had these values increased linearly, which is
the simplest manner possible, the index computed by formula (4.4) would be the
expected location of the array’s element with the value equal to v. Of course, if v
is not between A[/] and A[r], formula (4.4) need not be applied (why?).

After comparing v with A[x], the algorithm either stops (if they are equal)
or proceeds by searching in the same manner among the elements indexed either
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between / and x — 1 or between x + 1 and r, depending on whether A[x]is smaller
or larger than v. Thus, the size of the problem’s instance is reduced, but we cannot
tell a priori by how much.

The analysis of the algorithm’s efficiency shows that interpolation search uses
fewer than log, log, n + 1key comparisons on the average when searching in a list
of n random keys. This function grows so slowly that the number of comparisons
is a very small constant for all practically feasible inputs (see Problem 6 in this
section’s exercises). But in the worst case, interpolation search is only linear, which
must be considered a bad performance (why?).

Assessing the worthiness of interpolation search versus that of binary search,
Robert Sedgewick wrote in the second edition of his Algorithms that binary search
is probably better for smaller files but interpolation search is worth considering
for large files and for applications where comparisons are particularly expensive
or access costs are very high. Note that in Section 12.4 we discuss a continuous
counterpart of interpolation search, which can be seen as one more example of a
variable-size-decrease algorithm.

Searching and Insertion in a Binary Search Tree

Let us revisit the binary search tree. Recall that this is a binary tree whose nodes
contain elements of a set of orderable items, one element per node, so that for
every node all elements in the left subtree are smaller and all the elements in the
right subtree are greater than the element in the subtree’s root. When we need to
search for an element of a given value v in such a tree, we do it recursively in the
following manner. If the tree is empty, the search ends in failure. If the tree is not
empty, we compare v with the tree’s root K (). If they match, a desired element
is found and the search can be stopped; if they do not match, we continue with
the search in the left subtree of the root if v < K(r) and in the right subtree if
v > K (r). Thus, on each iteration of the algorithm, the problem of searching in a
binary search tree is reduced to searching in a smaller binary search tree. The most
sensible measure of the size of a search tree is its height; obviously, the decrease in
a tree’s height normally changes from one iteration to another of the binary tree
search—thus giving us an excellent example of a variable-size-decrease algorithm.

In the worst case of the binary tree search, the tree is severely skewed.
This happens, in particular, if a tree is constructed by successive insertions of an
increasing or decreasing sequence of keys (Figure 4.15).

Obviously, the search for a,_; in such a tree requires n comparisons, making
the worst-case efficiency of the search operation fall into ®(n). Fortunately, the
average-case efficiency turns out to be in © (log n). More precisely, the number of
key comparisons needed for a search in a binary search tree built from n random
keys is about 2In n ~ 1.39 log, n. Since insertion of a new key into a binary search
tree is almost identical to that of searching there, it also exemplifies the variable-
size-decrease technique and has the same efficiency characteristics as the search
operation.
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FIGURE 4.15 Binary search trees for (a) an increasing sequence of keys and (b) a
decreasing sequence of keys.

The Game of Nim

There are several well-known games that share the following features. There are
two players, who move in turn. No randomness or hidden information is permitted:
all players know all information about gameplay. A game is impartial: each player
has the same moves available from the same game position. Each of a finite
number of available moves leads to a smaller instance of the same game. The
game ends with a win by one of the players (there are no ties). The winner is the
last player who is able to move.

A prototypical example of such games is Nim. Generally, the game is played
with several piles of chips, but we consider the one-pile version first. Thus, there is
a single pile of n chips. Two players take turns by removing from the pile at least
one and at most m chips; the number of chips taken may vary from one move to
another, but both the lower and upper limits stay the same. Who wins the game
by taking the last chip, the player moving first or second, if both players make the
best moves possible?

Let us call an instance of the game a winning position for the player to
move next if that player has a winning strategy, i.e., a sequence of moves that
results in a victory no matter what moves the opponent makes. Let us call an
instance of the game a losing position for the player to move next if every move
available for that player leads to a winning position for the opponent. The standard
approach to determining which positions are winning and which are losing is to
investigate small values of n first. It is logical to consider the instance of n =0 as
a losing one for the player to move next because this player is the first one who
cannot make a move. Any instance with 1 <n < m chips is obviously a winning
position for the player to move next (why?). The instance with n =m + 1 chips
is a losing one because taking any allowed number of chips puts the opponent in
a winning position. (See an illustration for m =4 in Figure 4.16.) Any instance
with m +2 <n <2m + 1 chips is a winning position for the player to move next
because there is a move that leaves the opponent with m + 1 chips, which is a losing
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FIGURE 5.7 (a) Idea of the divide-and-conquer algorithm for the closest-pair problem.
(b) Rectangle that may contain points closer than d,,;, to point p.

recursively for subsets P, and P,. Let d; and d, be the smallest distances between
pairs of points in P, and P,, respectively, and let d = min{d}, d,}.

Note that d is not necessarily the smallest distance between all the point pairs
because points of a closer pair can lie on the opposite sides of the separating
line. Therefore, as a step combining the solutions to the smaller subproblems, we
need to examine such points. Obviously, we can limit our attention to the points
inside the symmetric vertical strip of width 2d around the separating line, since
the distance between any other pair of points is at least d (Figure 5.7a).
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The number of key comparisons made by mergesort in the worst case comes
very close to the theoretical minimum? that any general comparison-based sorting
algorithm can have. For large n, the number of comparisons made by this algo-
rithm in the average case turns out to be about 0.25n less (see [Gon91, p. 173])
and hence is also in ® (n log ). A noteworthy advantage of mergesort over quick-
sort and heapsort—the two important advanced sorting algorithms to be discussed
later—is its stability (see Problem 7 in this section’s exercises). The principal short-
coming of mergesort is the linear amount of extra storage the algorithm requires.
Though merging can be done in-place, the resulting algorithm is quite complicated
and of theoretical interest only.

There are two main ideas leading to several variations of mergesort. First, the
algorithm can be implemented bottom up by merging pairs of the array’s elements,
then merging the sorted pairs, and so on. (If n is not a power of 2, only slight
bookkeeping complications arise.) This avoids the time and space overhead of
using a stack to handle recursive calls. Second, we can divide a list to be sorted
in more than two parts, sort each recursively, and then merge them together. This
scheme, which is particularly useful for sorting files residing on secondary memory
devices, is called multiway mergesort.

Exercises 5.1

1. a. Write pseudocode for a divide-and-conquer algorithm for finding the po-
sition of the largest element in an array of n numbers.
b. What will be your algorithm’s output for arrays with several elements of
the largest value?
c. Set up and solve a recurrence relation for the number of key comparisons
made by your algorithm.
d. How does this algorithm compare with the brute-force algorithm for this
problem?
2. a. Write pseudocode for a divide-and-conquer algorithm for finding values
of both the largest and smallest elements in an array of n» numbers.
b. Set up and solve (for n = 2¥) a recurrence relation for the number of key
comparisons made by your algorithm.

<

How does this algorithm compare with the brute-force algorithm for this
problem?

d
®

Write pseudocode for a divide-and-conquer algorithm for the exponenti-
ation problem of computing a” where n is a positive integer.

b. Set up and solve a recurrence relation for the number of multiplications
made by this algorithm.

As we shall see in Section 11.2, this theoretical minimum is [log, n!] ~ [n log, n — 1.44n].
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¢. How does this algorithm compare with the brute-force algorithm for this
problem?

. As mentioned in Chapter 2, logarithm bases are irrelevant in most contexts

arising in analyzing an algorithm’s efficiency class. Is this true for both asser-
tions of the Master Theorem that include logarithms?

. Find the order of growth for solutions of the following recurrences.

a Tn)=4T(n/2)+n, T(H =1
b. T(n) =4T(n/2) +n* T(1) =1
c. Tn)=4Tn/2)+n? T =1

6. Apply mergesort to sort the list E, X, A, M, P, L, E in alphabetical order.

7. Is mergesort a stable sorting algorithm?

8. a. Solve the recurrence relation for the number of key comparisons made by

mergesort in the worst case. You may assume that n = 2%,

b. Set up a recurrence relation for the number of key comparisons made by
mergesort on best-case inputs and solve it for n = 2.

¢. Set up a recurrence relation for the number of key moves made by the
version of mergesort given in Section 5.1. Does taking the number of key
moves into account change the algorithm’s efficiency class?

. Let A[0..n — 1] be an array of n real numbers. A pair (A[i], A[/]) is said to

be an inversion if these numbers are out of order, i.e., i < j but A[i] > A[j].
Design an O (n log n) algorithm for counting the number of inversions.

. Implement the bottom-up version of mergesort in the language of your choice.

. Trominopuzzle A tromino (more accurately, a right tromino) is an L-shaped

tile formed by three 1 x 1squares. The problem is to cover any 2" x 2" chess-
board with a missing square with trominoes. Trominoes can be oriented in an
arbitrary way, but they should cover all the squares of the board except the
missing one exactly and with no overlaps. [Gol94]

Design a divide-and-conquer algorithm for this problem.
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7. Apply Strassen’s algorithm to compute

*

_—NN o
0N = O O

21 1 1
10 1 4
30 0 1
21 3 0

N O K~ =
O == O

exiting the recursion when n = 2, i.e., computing the products of 2 x 2 matrices
by the brute-force algorithm.

8. Solve the recurrence for the number of additions required by Strassen’s algo-
rithm. Assume that n is a power of 2.

9. V. Pan [Pan78] has discovered a divide-and-conquer matrix multiplication
algorithm that is based on multiplying two 70 x 70 matrices using 143,640
multiplications. Find the asymptotic efficiency of Pan’s algorithm (you may
ignore additions) and compare it with that of Strassen’s algorithm.

10. Practical implementations of Strassen’s algorithm usually switch to the brute-
force method after matrix sizes become smaller than some crossover point.
Run an experiment to determine such a crossover point on your computer
system.

The Closest-Pair and Convex-Hull Problems
by Divide-and-Conquer

In Section 3.3, we discussed the brute-force approach to solving two classic prob-
lems of computational geometry: the closest-pair problem and the convex-hull
problem. We saw that the two-dimensional versions of these problems can be
solved by brute-force algorithms in ©(n?) and O (n3) time, respectively. In this sec-
tion, we discuss more sophisticated and asymptotically more efficient algorithms
for these problems, which are based on the divide-and-conquer technique.

The Closest-Pair Problem

Let P be a set of n > 1 points in the Cartesian plane. For the sake of simplicity,
we assume that the points are distinct. We can also assume that the points are
ordered in nondecreasing order of their x coordinate. (If they were not, we could
sort them first by an efficeint sorting algorithm such as mergesort.) It will also be
convenient to have the points sorted in a separate list in nondecreasing order of
the y coordinate; we will denote such a list Q.

If 2 < n < 3, the problem can be solved by the obvious brute-force algorithm.
If n > 3, we can divide the points into two subsets P, and P, of [n/2] and |n/2]
points, respectively, by drawing a vertical line through the median m of their x
coordinates so that [n/2] points lie to the left of or on the line itself, and [n/2]
points lie to the right of or on the line. Then we can solve the closest-pair problem
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simply multiplied. These observations yield the following recurrence relation:
A(n) =TA(n)2) +18(n/2)> forn>1, A(l)=0.

Though one can obtain a closed-form solution to this recurrence (see Problem 8
in this section’s exercises), here we simply establish the solution’s order of growth.
According to the Master Theorem, A(n) € ©(n'%7). In other words, the number
of additions has the same order of growth as the number of multiplications. This
puts Strassen’s algorithm in © (n'°227), which is a better efficiency class than @ (n3)
of the brute-force method.

Since the time of Strassen’s discovery, several other algorithms for multiplying
two n x n matrices of real numbers in O(n®) time with progressively smaller
constants « have been invented. The fastest algorithm so far is that of Coopersmith
and Winograd [Coo87] with its efficiency in O (1n>37%). The decreasing values of
the exponents have been obtained at the expense of the increasing complexity
of these algorithms. Because of large multiplicative constants, none of them is of
practical value. However, they are interesting from a theoretical point of view. On
one hand, they get closer and closer to the best theoretical lower bound known
for matrix multiplication, which is n2 multiplications, though the gap between this
bound and the best available algorithm remains unresolved. On the other hand,
matrix multiplication is known to be computationally equivalent to some other
important problems, such as solving systems of linear equations (discussed in the
next chapter).

Exercises 5.4

1. What are the smallest and largest numbers of digits the product of two decimal
n-digit integers can have?

N

Compute 2101 * 1130 by applying the divide-and-conquer algorithm outlined
in the text.
3. a. Prove the equality a'°% ¢ = ¢1°% ¢ which was used in Section 5.4.

b. Why is n'°%23 better than 3'°%2” as a closed-form formula for M (n)?

4. a. Why did we not include multiplications by 10" in the multiplication count
M (n) of the large-integer multiplication algorithm?

b. In addition to assuming that n is a power of 2, we made, for the sake of
simplicity, another, more subtle, assumption in setting up the recurrences
for M(n) and A(n), which is not always true (it does not change the final
answers, however). What is this assumption?

5. How many one-digit additions are made by the pen-and-pencil algorithm in
multiplying two n-digit integers? You may disregard potential carries.

2

Verify the formulas underlying Strassen’s algorithm for multiplying 2 x 2
matrices.
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Quicksort

Quicksort is the other important sorting algorithm that is based on the divide-and-
conquer approach. Unlike mergesort, which divides its input elements according
to their position in the array, quicksort divides them according to their value.
We already encountered this idea of an array partition in Section 4.5, where we
discussed the selection problem. A partition is an arrangement of the array’s
elements so that all the elements to the left of some element A[s] are less than
or equal to A[s], and all the elements to the right of A[s] are greater than or equal
to it:

A[0]... A[s —1] A[s] Als+1]...A[r—1]

all are <A[s] all are > A[s]

Obviously, after a partition is achieved, A[s] will be in its final position in the
sorted array, and we can continue sorting the two subarrays to the left and to the
right of A[s] independently (e.g., by the same method). Note the difference with
mergesort: there, the division of the problem into two subproblems is immediate
and the entire work happens in combining their solutions; here, the entire work
happens in the division stage, with no work required to combine the solutions to
the subproblems.
Here is pseudocode of quicksort: call Quicksort(A[0..n — 1]) where

ALGORITHM  Quicksort(A[l..r])
/[Sorts a subarray by quicksort
//Input: Subarray of array A[0..n — 1], defined by its left and right
1 indices / and r
//Output: Subarray A[l..r] sorted in nondecreasing order
ifl <r
s <« Partition(A[l..r]) //s is a split position
Quicksort(A[l..s — 1])
Quicksort(Als + 1..r])

As a partition algorithm, we can certainly use the Lomuto partition discussed
in Section 4.5. Alternatively, we can partition A[0..n — 1] and, more generally, its
subarray A[l..r] (0 <[ < r <n — 1) by the more sophisticated method suggested by
C.A.R. Hoare, the prominent British computer scientist who invented quicksort.3

C.A.R. Hoare, at age 26, invented his algorithm in 1960 while trying to sort words for a machine
translation project from Russian to English. Says Hoare, “My first thought on how to do this was
bubblesort and, by an amazing stroke of luck, my second thought was Quicksort.” It is hard to disagree
with his overall assessment: “I have been very lucky. What a wonderful way to start a career in
Computing, by discovering a new sorting algorithm!” [Hoa96]. Twenty years later, he received the
Turing Award for “fundamental contributions to the definition and design of programming languages™;
in 1980, he was also knighted for services to education and computer science.
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As before, we start by selecting a pivot—an element with respect to whose value
we are going to divide the subarray. There are several different strategies for
selecting a pivot; we will return to this issue when we analyze the algorithm’s
efficiency. For now, we use the simplest strategy of selecting the subarray’s first
element: p = A[l].

Unlike the Lomuto algorithm, we will now scan the subarray from both ends,
comparing the subarray’s elements to the pivot. The left-to-right scan, denoted
below by index pointer i, starts with the second element. Since we want elements
smaller than the pivot to be in the left part of the subarray, this scan skips over
elements that are smaller than the pivot and stops upon encountering the first
element greater than or equal to the pivot. The right-to-left scan, denoted below
by index pointer j, starts with the last element of the subarray. Since we want
elements larger than the pivot to be in the right part of the subarray, this scan
skips over elements that are larger than the pivot and stops on encountering the
first element smaller than or equal to the pivot. (Why is it worth stopping the scans
after encountering an element equal to the pivot? Because doing this tends to yield
more even splits for arrays with a lot of duplicates, which makes the algorithm run
faster. For example, if we did otherwise for an array of n equal elements, we would
have gotten a split into subarrays of sizes n — 1 and 0, reducing the problem size
just by 1 after scanning the entire array.)

After both scans stop, three situations may arise, depending on whether or not
the scanning indices have crossed. If scanning indices i and j have not crossed, i.e.,
i < j, we simply exchange A[i] and A[j] and resume the scans by incrementing i
and decrementing j, respectively:

= —J
‘p‘ allare <p ‘Zp‘ ‘Sp‘ allare > p

1

If the scanning indices have crossed over, i.e., i > j, we will have partitioned the
subarray after exchanging the pivot with A[/]:

— i—
‘ p‘ allare<p ‘Sp‘ 2,0‘ allare > p ‘
Finally, if the scanning indices stop while pointing to the same element, i.e., i = j,
the value they are pointing to must be equal to p (why?). Thus, we have the
subarray partitioned, with the split position s =i = j:
—j=i—>
‘p‘ allare<p ‘:p‘ allare > p ‘

We can combine the last case with the case of crossed-over indices (i > j) by
exchanging the pivot with A[j] wheneveri > j.
Here is pseudocode implementing this partitioning procedure.
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my = (agp + ayy) * (boo + b11),

my = (a1 + ary) * boo,

m3 = ag * (bor — b11),

my = ayy * (b — boo),

ms = (agy + a1 * by,

me = (a1 — ago) * (boo + boy),

mq = (apr — ay) * (big + bp).
Thus, to multiply two 2 x 2 matrices, Strassen’s algorithm makes seven multipli-
cations and 18 additions/subtractions, whereas the brute-force algorithm requires
eight multiplications and four additions. These numbers should not lead us to
multiplying 2 x 2 matrices by Strassen’s algorithm. Its importance stems from its
asymptotic superiority as matrix order n goes to infinity.

Let A and B be two n x n matrices where n is a power of 2. (If n is not a power

of 2, matrices can be padded with rows and columns of zeros.) We can divide A,
B, and their product C into four n/2 x n/2 submatrices each as follows:

|:C00 | Cm:| |:A00 | A01i| |:Br)0 | 301]
= * .
Cio ‘ Cn Aqo ‘ Ay Bio ‘ By

It is not difficult to verify that one can treat these submatrices as numbers to
get the correct product. For example, Cy, can be computed either as Ay, * By +
A1 * Byy or as My + My, — Ms + M; where My, My, M5, and M; are found by
Strassen’s formulas, with the numbers replaced by the corresponding submatrices.
If the seven products of n/2 x n/2 matrices are computed recursively by the same
method, we have Strassen’s algorithm for matrix multiplication.

Let us evaluate the asymptotic efficiency of this algorithm. If M(n) is the
number of multiplications made by Strassen’s algorithm in multiplying two n x n
matrices (where n is a power of 2), we get the following recurrence relation for it:

M(n)=7TMn/2) forn>1, M) =1.

Since n = 2k,
M2 =TMQ* Y =7[TM D) =M =
=7MQ =T =T,
Since k = log, n,
M(n) = 7log2 n_ nlog27 A~ n2.8()7’
which is smaller than 1> required by the brute-force algorithm.
Since this savings in the number of multiplications was achieved at the expense
of making extra additions, we must check the number of additions A(n) made by
Strassen’s algorithm. To multiply two matrices of order n > 1, the algorithm needs

to multiply seven matrices of order n/2 and make 18 additions/subtractions of
matrices of size n/2; when n = 1, no additions are made since two numbers are
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require five additions and one subtraction. Hence, we have the recurrence
A(n)=3An/2)+cn forn>1, A1) =1.

Applying the Master Theorem, which was stated in the beginning of the chapter,
we obtain A(n) € ©(n'°%23), which means that the total number of additions and
subtractions have the same asymptotic order of growth as the number of multipli-
cations.

The asymptotic advantage of this algorithm notwithstanding, how practical is
it? The answer depends, of course, on the computer system and program quality
implementing the algorithm, which might explain the rather wide disparity of
reported results. On some machines, the divide-and-conquer algorithm has been
reported to outperform the conventional method on numbers only 8 decimal digits
long and to run more than twice faster with numbers over 300 decimal digits
long—the area of particular importance for modern cryptography. Whatever this
outperformance “crossover point” happens to be on a particular machine, it is
worth switching to the conventional algorithm after the multiplicands become
smaller than the crossover point. Finally, if you program in an object-oriented
language such as Java, C++, or Smalltalk, you should also be aware that these
languages have special classes for dealing with large integers.

Discovered by 23-year-old Russian mathematician Anatoly Karatsuba in
1960, the divide-and-conquer algorithm proved wrong the then-prevailing opinion
that the time efficiency of any integer multiplication algorithm must be in Q (1?).
The discovery encouraged researchers to look for even (asymptotically) faster
algorithms for this and other algebraic problems. We will see such an algorithm
in the next section.

Strassen’s Matrix Multiplication

Now that we have seen that the divide-and-conquer approach can reduce the
number of one-digit multiplications in multiplying two integers, we should not be
surprised that a similar feat can be accomplished for multiplying matrices. Such
an algorithm was published by V. Strassen in 1969 [Str69]. The principal insight
of the algorithm lies in the discovery that we can find the product C of two 2 x 2
matrices A and B with just seven multiplications as opposed to the eight required
by the brute-force algorithm (see Example 3 in Section 2.3). This is accomplished
by using the following formulas:

[Coo Cm] :[aoo um]*[boo bm]
clo ayp ap byy by
_ | mit+my—ms+my ms +ms
my + ny my+m3—my+mg |’

where

Divide-and-Conquer

ALGORITHM  HoarePartition(A[l..r])
/[Partitions a subarray by Hoare’s algorithm, using the first element
I as a pivot
//Input: Subarray of array A[0..n — 1], defined by its left and right
/ indices/ and r (I <r)
//Output: Partition of A[l..r], with the split position returned as
1 this function’s value
p < All]
i<l j<r+1
repeat
repeat i < i + luntil A[i]> p
repeat j < j — luntil A[j]<p
swap(A[i], A[j])
until i > j
swap(A[i], A[j]) //undo last swap wheni > j
swap(A[l], A[j])
return j

Note that index i can go out of the subarray’s bounds in this pseudocode.
Rather than checking for this possibility every time index i is incremented, we can
append to array A[0..n — 1]a “sentinel” that would prevent index i from advancing
beyond position n. Note that the more sophisticated method of pivot selection
mentioned at the end of the section makes such a sentinel unnecessary.

An example of sorting an array by quicksort is given in Figure 5.3.

We start our discussion of quicksort’s efficiency by noting that the number
of key comparisons made before a partition is achieved is n + 1 if the scanning
indices cross over and n if they coincide (why?). If all the splits happen in the
middle of corresponding subarrays, we will have the best case. The number of key
comparisons in the best case satisfies the recurrence

Chesi(n) =2Cpei(n/2) +n forn>1, Cp.e(1) =0.

According to the Master Theorem, Cy,, (1) € ®(n log, n); solving it exactly for
n = 2% yields Cp,y (n) = n log, n.

In the worst case, all the splits will be skewed to the extreme: one of the
two subarrays will be empty, and the size of the other will be just 1 less than the
size of the subarray being partitioned. This unfortunate situation will happen, in
particular, for increasing arrays, i.e., for inputs for which the problem is already
solved! Indeed, if A[0..n — 1] is a strictly increasing array and we use A[0] as the
pivot, the left-to-right scan will stop on A[1] while the right-to-left scan will go all
the way to reach A[0], indicating the split at position 0:
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FIGURE 5.3 Example of quicksort operation. (a) Array’s transformations with pivots
shown in bold. (b) Tree of recursive calls to Quicksort with input values [
and r of subarray bounds and split position s of a partition obtained.
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a0 [ am [ Jan]

So, after making n + 1 comparisons to get to this partition and exchanging the
pivot A[0] with itself, the algorithm will be left with the strictly increasing array
A[1..n — 1]to sort. This sorting of strictly increasing arrays of diminishing sizes will
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Now we apply this trick to multiplying two n-digit integers a and b where n is
a positive even number. Let us divide both numbers in the middle—after all, we
promised to take advantage of the divide-and-conquer technique. We denote the
first half of the a’s digits by a; and the second half by ay; for b, the notations are b;
and by, respectively. In these notations, a = aja, implies that a = a;10"/2 + g, and
b = byby implies that b = b;10"/2 4 by. Therefore, taking advantage of the same
trick we used for two-digit numbers, we get

c=axb=(a;10"? + ag) * (b;10"? + by)
= (ay % b 10" + (ay % by + ag * b)) 10" 4 (aq * by)
= ¢,10" 4 ¢,10"% + ¢,
where
¢, = ay * by is the product of their first halves,
¢ = ag * by is the product of their second halves,
c1 = (a1 + ag) * (b + by) — (¢ + ¢p) is the product of the sum of the
a’s halves and the sum of the b’s halves minus the sum of ¢, and ¢.
If n/2 is even, we can apply the same method for computing the products ¢,, ¢,
and cy. Thus, if n is a power of 2, we have a recursive algorithm for computing the
product of two n-digit integers. In its pure form, the recursion is stopped when n
becomes 1. It can also be stopped when we deem n small enough to multiply the
numbers of that size directly.
How many digit multiplications does this algorithm make? Since multiplica-

tion of n-digit numbers requires three multiplications of n/2-digit numbers, the
recurrence for the number of multiplications M (n) is

M@n)=3M@n/2) forn>1 M) =1
Solving it by backward substitutions for n = 2% yields
M5 =3M@2Y =3BM@2* 2] =FM2?)
=...=3MQ) = . =3 mE =35
Since k =log, n,
M(n) = 30227 — ylog23 x 1585

(On the last step, we took advantage of the following property of logarithms:
alogb c_ Clogb a.)

But what about additions and subtractions? Have we not decreased the num-
ber of multiplications by requiring more of those operations? Let A(n) be the
number of digit additions and subtractions executed by the above algorithm in
multiplying two n-digit decimal integers. Besides 3A(n/2) of these operations
needed to compute the three products of n/2-digit numbers, the above formulas
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achieve a better asymptotic efficiency by ingenious application of the divide-and-
conquer technique.

Multiplication of Large Integers

Some applications, notably modern cryptography, require manipulation of inte-
gers that are over 100 decimal digits long. Since such integers are too long to fit in
a single word of a modern computer, they require special treatment. This practi-
cal need supports investigations of algorithms for efficient manipulation of large
integers. In this section, we outline an interesting algorithm for multiplying such
numbers. Obviously, if we use the conventional pen-and-pencil algorithm for mul-
tiplying two n-digit integers, each of the n digits of the first number is multiplied by
each of the n digits of the second number for the total of n? digit multiplications.
(If one of the numbers has fewer digits than the other, we can pad the shorter
number with leading zeros to equalize their lengths.) Though it might appear that
it would be impossible to design an algorithm with fewer than 2 digit multiplica-
tions, this turns out not to be the case. The miracle of divide-and-conquer comes
to the rescue to accomplish this feat.

To demonstrate the basic idea of the algorithm, let us start with a case of
two-digit integers, say, 23 and 14. These numbers can be represented as follows:

23=2-10'+3-10° and 14=1-10'+4-10°
Now let us multiply them:
23%14=2-10'+3-10% % (1- 10" +4-10%)
=2+ D10+ 2 *4+3% D101+ 3x4)10°

The last formula yields the correct answer of 322, of course, but it uses the same
four digit multiplications as the pen-and-pencil algorithm. Fortunately, we can
compute the middle term with just one digit multiplication by taking advantage
of the products 2 * 1 and 3 * 4 that need to be computed anyway:

2%443x1=2+3)x(1+4)—2x1-3x4.

Of course, there is nothing special about the numbers we just multiplied.
For any pair of two-digit numbers a = ajay and b = b b, their product ¢ can be
computed by the formula

c=axb= 02102 + 01101 + ¢,
where
¢, = ay * by is the product of their first digits,
co = dag * by is the product of their second digits,
c1 = (ay + agp) * (b1 + by) — (c; + ¢p) is the product of the sum of the

a’s digits and the sum of the b’s digits minus the sum of ¢, and ¢.
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continue until the last one A[n — 2..n — 1] has been processed. The total number
of key comparisons made will be equal to

_ (n+ D@ +2)
B 2

Thus, the question about the utility of quicksort comes down to its average-
case behavior. Let C,,, (1) be the average number of key comparisons made by
quicksort on a randomly ordered array of size n. A partition can happen in any
positions (0 <s <n — 1) after n + 1 comparisons are made to achieve the partition.
After the partition, the left and right subarrays will have s and n — 1 — s elements,
respectively. Assuming that the partition split can happen in each position s with
the same probability 1/n, we get the following recurrence relation:

Coorst) =@+ +n4---+3 —3e0md.

n—1

Cangm) =~ D[+ 1) + Coyg(s) + Capg(n — 1= )] forn>1,
s=0

Cavg(o) =0, Cavg(1) =0.

Its solution, which is much trickier than the worst- and best-case analyses, turns
out to be

Capg(m) ~2nInn ~1.39n log, n.

Thus, on the average, quicksort makes only 39% more comparisons than in the
best case. Moreover, its innermost loop is so efficient that it usually runs faster than
mergesort (and heapsort, another n log n algorithm that we discuss in Chapter 6)
on randomly ordered arrays of nontrivial sizes. This certainly justifies the name
given to the algorithm by its inventor.

Because of quicksort’s importance, there have been persistent efforts over the
years to refine the basic algorithm. Among several improvements discovered by
researchers are:

B better pivot selection methods such as randomized quicksort that uses a
random element or the median-of-three method that uses the median of the
leftmost, rightmost, and the middle element of the array

®  switching to insertion sort on very small subarrays (between S and 15 elements
for most computer systems) or not sorting small subarrays at all and finishing
the algorithm with insertion sort applied to the entire nearly sorted array

®  modifications of the partitioning algorithm such as the three-way partition
into segments smaller than, equal to, and larger than the pivot (see Problem 9
in this section’s exercises)

According to Robert Sedgewick [Sed11, p. 296], the world’s leading expert on
quicksort, such improvements in combination can cut the running time of the
algorithm by 20%-30%.

Like any sorting algorithm, quicksort has weaknesses. It is not stable. It
requires a stack to store parameters of subarrays that are yet to be sorted. While
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the size of this stack can be made to be in O(log n) by always sorting first the
smaller of two subarrays obtained by partitioning, it is worse than the O (1) space
efficiency of heapsort. Although more sophisticated ways of choosing a pivot make
the quadratic running time of the worst case very unlikely, they do not eliminate
it completely. And even the performance on randomly ordered arrays is known
to be sensitive not only to implementation details of the algorithm but also to
both computer architecture and data type. Still, the January/February 2000 issue of
Computing in Science & Engineering, a joint publication of the American Institute
of Physics and the IEEE Computer Society, selected quicksort as one of the 10
algorithms “with the greatest influence on the development and practice of science
and engineering in the 20th century.”

Exercises 5.2

1. Apply quicksort to sort the list E, X, A, M, P, L, E in alphabetical order.
Draw the tree of the recursive calls made.
2. For the partitioning procedure outlined in this section:

a. Prove that if the scanning indices stop while pointing to the same element,
i.e., i = j, the value they are pointing to must be equal to p.

b. Prove that when the scanning indices stop, j cannot point to an element
more than one position to the left of the one pointed to by i.

3. Give an example showing that quicksort is not a stable sorting algorithm.

4. Give an example of an array of n elements for which the sentinel mentioned
in the text is actually needed. What should be its value? Also explain why a
single sentinel suffices for any input.

5. For the version of quicksort given in this section:

a. Are arrays made up of all equal elements the worst-case input, the best-
case input, or neither?

b. Are strictly decreasing arrays the worst-case input, the best-case input, or
neither?

6. a. For quicksort with the median-of-three pivot selection, are strictly increas-

ing arrays the worst-case input, the best-case input, or neither?
b. Answer the same question for strictly decreasing arrays.
7. a. Estimate how many times faster quicksort will sort an array of one million
random numbers than insertion sort.
b. True or false: For every n > 1, there are n-element arrays that are sorted
faster by insertion sort than by quicksort?

8. Design an algorithm to rearrange elements of a given array of n real num-
bers so that all its negative elements precede all its positive elements. Your
algorithm should be both time efficient and space efficient.
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6. Write pseudocode for one of the classic traversal algorithms (preorder, in-
order, and postorder) for binary trees. Assuming that your algorithm is recur-
sive, find the number of recursive calls made.

7. Which of the three classic traversal algorithms yields a sorted list if applied to
a binary search tree? Prove this property.

8. a. Draw a binary tree with 10 nodes labeled 0, 1, . .., 9 in such a way that the
inorder and postorder traversals of the tree yield the following lists: 9, 3,
1,0,4,2,7,6,8,5 (inorder) and 9, 1, 4,0, 3,6, 7, 5, 8, 2 (postorder).

b. Give an example of two permutations of the same n labels 0, 1, ..., n —1
that cannot be inorder and postorder traversal lists of the same binary tree.

¢. Design an algorithm that constructs a binary tree for which two given
lists of n labels 0, 1, ..., n — 1 are generated by the inorder and postorder
traversals of the tree. Your algorithm should also identify inputs for which
the problem has no solution.

9. The internal path length I of an extended binary tree is defined as the sum
of the lengths of the paths—taken over all internal nodes—from the root to
each internal node. Similarly, the external path length E of an extended binary
tree is defined as the sum of the lengths of the paths—taken over all external
nodes—f{rom the root to each external node. Prove that E = I + 2n where n
is the number of internal nodes in the tree.

10. Write a program for computing the internal path length of an extended binary
tree. Use it to investigate empirically the average number of key comparisons
for searching in a randomly generated binary search tree.

11. Chocolate bar puzzle Given an n x m chocolate bar, you need to break it
into nm 1 x 1 pieces. You can break a bar only in a straight line, and only one
bar can be broken at a time. Design an algorithm that solves the problem with
the minimum number of bar breaks. What is this minimum number? Justify
your answer by using properties of a binary tree.

Multiplication of Large Integers and
Strassen’s Matrix Multiplication

In this section, we examine two surprising algorithms for seemingly straightfor-
ward tasks: multiplying two integers and multiplying two square matrices. Both
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preorder: a, b, d g e c f
inorder:  d, g b, e afc
postorder: g, d, e, b, f, ¢, a

FIGURE 5.6 Binary tree and its traversals.

Exercises 5.3

1. Design a divide-and-conquer algorithm for computing the number of levels in
a binary tree. (In particular, the algorithm must return 0 and 1 for the empty
and single-node trees, respectively.) What is the time efficiency class of your
algorithm?

2. The following algorithm seeks to compute the number of leaves in a binary
tree.

ALGORITHM  LeafCounter(T)
//Computes recursively the number of leaves in a binary tree
//Input: A binary tree T
//Output: The number of leaves in 7
if 7 = @ return 0
else return LeafCounter(T;,s,)+ LeafCounter(T,;g,,)

Is this algorithm correct? If it is, prove it; if it is not, make an appropriate
correction.

3. Can you compute the height of a binary tree with the same asymptotic ef-
ficiency as the section’s divide-and-conquer algorithm but without using a
stack explicitly or implicitly? Of course, you may use a different algorithm
altogether.

4. Prove equality (5.2) by mathematical induction.
5. Traverse the following binary tree

a. in preorder.

b. in inorder.

¢. in postorder.
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9. a. The Dutch national flag problem is to rearrange an array of characters R,
W, and B (red, white, and blue are the colors of the Dutch national flag) so
that all the R’s come first, the W’s come next, and the B’s come last. [Dij76]
Design a linear in-place algorithm for this problem.

b. Explain how a solution to the Dutch national flag problem can be used in
quicksort.

10. Implement quicksort in the language of your choice. Run your program on
a sample of inputs to verify the theoretical assertions about the algorithm’s
efficiency.

11. Nuts and bolts  You are given a collection of n bolts of different widths and
n corresponding nuts. You are allowed to try a nut and bolt together, from
which you can determine whether the nut is larger than the bolt, smaller than
the bolt, or matches the bolt exactly. However, there is no way to compare
two nuts together or two bolts together. The problem is to match each bolt
to its nut. Design an algorithm for this problem with average-case efficiency
in ©(n log n). [Raw9l]

Binary Tree Traversals and Related Properties

In this section, we see how the divide-and-conquer technique can be applied to
binary trees. A binary tree T is defined as a finite set of nodes that is either empty
or consists of a root and two disjoint binary trees 7; and Ty, called, respectively, the
left and right subtree of the root. We usually think of a binary tree as a special case
of an ordered tree (Figure 5.4). (This standard interpretation was an alternative
definition of a binary tree in Section 1.4.)

Since the definition itself divides a binary tree into two smaller structures of
the same type, the left subtree and the right subtree, many problems about binary
trees can be solved by applying the divide-and-conquer technique. As an example,
let us consider a recursive algorithm for computing the height of a binary tree.
Recall that the height is defined as the length of the longest path from the root to
a leaf. Hence, it can be computed as the maximum of the heights of the root’s left

FIGURE 5.4 Standard representation of a binary tree.
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and right subtrees plus 1. (We have to add 1 to account for the extra level of the
root.) Also note that it is convenient to define the height of the empty tree as —1.
Thus, we have the following recursive algorithm.

ALGORITHM  Height(T)
//Computes recursively the height of a binary tree
/[Input: A binary tree T
//Output: The height of T
if 7 = @ return —1
else return max{Height(T,,g,), Height(T,;z,,)} + 1

‘We measure the problem’s instance size by the number of nodes n(7T) in a
given binary tree 7. Obviously, the number of comparisons made to compute
the maximum of two numbers and the number of additions A(n(7)) made by the
algorithm are the same. We have the following recurrence relation for A(n(7)):

A(T)) = A(n(Tyepp)) + An(Tigp)) + 1 forn(T) >0,
A(0) =0.

Before we solve this recurrence (can you tell what its solution is?), let us note
that addition is not the most frequently executed operation of this algorithm. What
is? Checking—and this is very typical for binary tree algorithms—that the tree is
not empty. For example, for the empty tree, the comparison T = & is executed
once but there are no additions, and for a single-node tree, the comparison and
addition numbers are 3 and 1, respectively.

It helps in the analysis of tree algorithms to draw the tree’s extension by
replacing the empty subtrees by special nodes. The extra nodes (shown by little
squares in Figure 5.5) are called external; the original nodes (shown by little
circles) are called internal. By definition, the extension of the empty binary tree
is a single external node.

Itis easy to see that the Height algorithm makes exactly one addition for every
internal node of the extended tree, and it makes one comparison to check whether

(a) (b)

FIGURE 5.5 Binary tree (on the left) and its extension (on the right). Internal nodes are
shown as circles; external nodes are shown as squares.

Divide-and-Conquer

the tree is empty for every internal and external node. Therefore, to ascertain the
algorithm’s efficiency, we need to know how many external nodes an extended
binary tree with n internal nodes can have. After checking Figure 5.5 and a few
similar examples, it is easy to hypothesize that the number of external nodes x is
always 1 more than the number of internal nodes n:

x=n+1 5.2)

To prove this equality, consider the total number of nodes, both internal and
external. Since every node, except the root, is one of the two children of an internal
node, we have the equation

2n+1=x+n,

which immediately implies equality (5.2).

Note that equality (5.2) also applies to any nonempty full binary tree, in
which, by definition, every node has either zero or two children: for a full binary
tree, n and x denote the numbers of parental nodes and leaves, respectively.

Returning to algorithm Height, the number of comparisons to check whether
the tree is empty is

Cny=n+x=2n+1,
and the number of additions is
A(n) =n.

The most important divide-and-conquer algorithms for binary trees are the
three classic traversals: preorder, inorder, and postorder. All three traversals visit
nodes of a binary tree recursively, i.e., by visiting the tree’s root and its left and
right subtrees. They differ only by the timing of the root’s visit:

In the preorder traversal, the root is visited before the left and right subtrees
are visited (in that order).

In the inorder traversal, the root is visited after visiting its left subtree but
before visiting the right subtree.

In the postorder traversal, the root is visited after visiting the left and right
subtrees (in that order).

These traversals are illustrated in Figure 5.6. Their pseudocodes are quite
straightforward, repeating the descriptions given above. (These traversals are also
a standard feature of data structures textbooks.) As to their efficiency analysis, it
is identical to the above analysis of the Height algorithm because a recursive call
is made for each node of an extended binary tree.

Finally, we should note that, obviously, not all questions about binary trees
require traversals of both left and right subtrees. For example, the search and insert
operations for a binary search tree require processing only one of the two subtrees.
Accordingly, we considered them in Section 4.5 not as applications of divide-and-
conquer but rather as examples of the variable-size-decrease technique.
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2 -1 1
A=|4 1 -1
111

Consider the lower-triangular matrix L made up of 1’s on its main diagonal and
the row multiples used in the forward elimination process

100
L=|2 10
11
2 2 1
and the upper-triangular matrix U that was the result of this elimination

2 -1 1
v=|0 3 -3
0o 0 2

It turns out that the product LU of these matrices is equal to matrix A. (For this
particular pair of L and U, you can verify this fact by direct multiplication, but as
a general proposition, it needs, of course, a proof, which we omit here.)

Therefore, solving the system Ax = b is equivalent to solving the system
LUx = b. The latter system can be solved as follows. Denote y = Ux, then Ly = b.
Solve the system Ly = b first, which is easy to do because L is a lower-triangular
matrix; then solve the system Ux =y, with the upper-triangular matrix U, to find
x. Thus, for the system at the beginning of this section, we first solve Ly = b:

1 00 A2 1
2 10 »|=1|5
31 1Lw 0
Its solution is
1 1
n=1 »=5-2y;=3, )’3=0—EY|—§}’2=—2~
Solving Ux = y means solving
2 -1 1 X1 1
0 3 -3 X | = 31,
0o 0 2 X3 -2

and the solution is

x3=(=2)/2=-1, x,=0B—(-3)x3)/3=0, x;=(1—x3— (=Dxy)/2=1. [ |

Note that once we have the LU decomposition of matrix A, we can solve
systems Ax = b with as many right-hand side vectors b as we want to, one at a time.
This is a distinct advantage over the classic Gaussian elimination discussed earlier.
Also note that the LU decomposition does not actually require extra memory,
because we can store the nonzero part of U in the upper-triangular part of A
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Let S be the list of points inside the strip of width 2d around the separating
line, obtained from Q and hence ordered in nondecreasing order of their y coor-
dinate. We will scan this list, updating the information about d,;,, the minimum
distance seen so far, if we encounter a closer pair of points. Initially, dy,;, = d, and
subsequently dp,;, < d. Let p(x, y) be a point on this list. For a point p’(x’, y’) to
have a chance to be closer to p than d,;,, the point must follow p on list S and the
difference between their y coordinates must be less than d;, (why?). Geometri-
cally, this means that p’ must belong to the rectangle shown in Figure 5.7b. The
principal insight exploited by the algorithm is the observation that the rectangle
can contain just a few such points, because the points in each half (left and right)
of the rectangle must be at least distance d apart. It is easy to prove that the total
number of such points in the rectangle, including p, does not exceed eight (Prob-
lem 2 in this section’s exercises); a more careful analysis reduces this number to
six (see [Joh04, p. 695]). Thus, the algorithm can consider no more than five next
points following p on the list S, before moving up to the next point.

Here is pseudocode of the algorithm. We follow the advice given in Section 3.3
to avoid computing square roots inside the innermost loop of the algorithm.

ALGORITHM  EfficientClosestPair(P, Q)
//Solves the closest-pair problem by divide-and-conquer
/[Input: An array P of n > 2 points in the Cartesian plane sorted in
Il nondecreasing order of their x coordinates and an array Q of the
1 same points sorted in nondecreasing order of the y coordinates
//Output: Euclidean distance between the closest pair of points
ifn<3
return the minimal distance found by the brute-force algorithm
else
copy the first [n/2] points of P to array P,
copy the same [n/2] points from Q to array Q;
copy the remaining |n/2] points of P to array P,
copy the same |n/2] points from Q to array Q,
d; < EfficientClosestPair(P;, Q;)
d, < EfficientClosestPair(P,, Q,)
d <—min{d,, d,}
m < P[[n/2] —1].x
copy all the points of Q for which |x — m| < d into array S[0..num — 1]
dminsq < d?
fori < 0to num —2 do
k<i+1
while k < num — 1 and (S[k].y — S[i].y)? < dminsq
dminsq < min((S[k].x — S[i].x)>4 (S[k].y — S[i].y)?, dminsq)
k< k+1
return sqrt(dminsq)
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The algorithm spends linear time both for dividing the problem into two
problems half the size and combining the obtained solutions. Therefore, assuming
as usual that n is a power of 2, we have the following recurrence for the running
time of the algorithm:

T(n) =2T(n/2) + f(n),

where f(n) € ®(n). Applying the Master Theorem (witha =2, b =2, andd = 1),
we get T'(n) € ®(n log n). The necessity to presort input points does not change
the overall efficiency class if sorting is done by a O(n log n) algorithm such as
mergesort. In fact, this is the best efficiency class one can achieve, because it has
been proved that any algorithm for this problem must be in Q(n log n) under
some natural assumptions about operations an algorithm can perform (see [Pre85,
p. 188]).

Convex-Hull Problem

Let us revisit the convex-hull problem, introduced in Section 3.3: find the smallest
convex polygon that contains n given points in the plane. We consider here a
divide-and-conquer algorithm called quickhull because of its resemblance to
quicksort.

Let S be aset of n > 1 points py(xq, y1), . . ., pu(x,, ,) in the Cartesian plane.
We assume that the points are sorted in nondecreasing order of their x coordinates,
with ties resolved by increasing order of the y coordinates of the points involved.
It is not difficult to prove the geometrically obvious fact that the leftmost point
p1 and the rightmost point p, are two distinct extreme points of the set’s convex
hull (Figure 5.8). Let pyp, be the straight line through points p; and p, directed
from p; to p,. This line separates the points of S into two sets: S; is the set of
points to the left of this line, and S, is the set of points to the right of this line.
(We say that point g3 is to the left of the line ¢1¢; directed from point ¢; to point
g if g19>q3 forms a counterclockwise cycle. Later, we cite an analytical way to
check this condition, based on checking the sign of a determinant formed by the
coordinates of the three points.) The points of S on the line p;p,, other than p;
and p,, cannot be extreme points of the convex hull and hence are excluded from
further consideration.

The boundary of the convex hull of S is made up of two polygonal chains:
an “upper” boundary and a “lower” boundary. The “upper” boundary, called the
upper hull, is a sequence of line segments with vertices at p;, some of the points
in S; (if S; is not empty) and p,. The “lower” boundary, called the lower hull, is
a sequence of line segments with vertices at p;, some of the points in S, (if S, is
not empty) and p,. The fact that the convex hull of the entire set S is composed
of the upper and lower hulls, which can be constructed independently and in a
similar fashion, is a very useful observation exploited by several algorithms for
this problem.

For concreteness, let us discuss how quickhull proceeds to construct the upper
hull; the lower hull can be constructed in the same manner. If S is empty, the
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which contains one multiplication and one subtraction. On most computers, multi-
plication is unquestionably more expensive than addition/subtraction, and hence
it is multiplication that is usually quoted as the algorithm’s basic operation.* The
standard summation formulas and rules reviewed in Section 2.3 (see also Appen-
dix A) are very helpful in the following derivation:

n—-1 n n+1 n—1 n n-1 n
con=>" Y Y1=Y Y a+1-i+n=> Y w+2-0)
i=1 j=i+1 k=i i=1 j=i+1 i=1 j=i+1
n—1 n—1
=Y 42-D—G+D+D =) m+2-D)n—i)
i=1 i=1

=n+Dn—-D+nm-2)+---+3-1
n—1

n—-1 n—1
=Y G+2i=Y 2+ Y 2j= (ﬂfl)n6(2n71) L=
j=1 = o

2

_n(n=1D)2n+5) 1
6 3

Since the second (back substitution) stage of Gaussian elimination isin © (n2),
as you are asked to show in the exercises, the running time is dominated by the
cubic elimination stage, making the entire algorithm cubic as well.

Theoretically, Gaussian elimination always either yields an exact solution to a
system of linear equations when the system has a unique solution or discovers that
no such solution exists. In the latter case, the system will have either no solutions
or infinitely many of them. In practice, solving systems of significant size on a
computer by this method is not nearly so straightforward as the method would
lead us to believe. The principal difficulty lies in preventing an accumulation of
round-off errors (see Section 11.4). Consult textbooks on numerical analysis that
analyze this and other implementation issues in great detail.

n’ e Omd).

LU Decomposition

Gaussian elimination has an interesting and very useful byproduct called LU de-
composition of the coefficient matrix. In fact, modern commercial implementa-
tions of Gaussian elimination are based on such a decomposition rather than on
the basic algorithm outlined above.

EXAMPLE Let us return to the example in the beginning of this section, where
we applied Gaussian elimination to the matrix

As we mentioned in Section 2.1, on some computers multiplication is not necessarily more expensive
than addition/subtraction. For this algorithm, this point is moot since we can simply count the number
of times the innermost loop is executed, which is, of course, exactly the same number as the number
of multiplications and the number of subtractions there.
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There are two important observations to make about this pseudocode. First, it
is not always correct: if A[i, i] =0, we cannot divide by it and hence cannot use the
ith row as a pivot for the ith iteration of the algorithm. In such a case, we should
take advantage of the first elementary operation and exchange the ith row with
some row below it that has a nonzero coefficient in the ith column. (If the system
has a unique solution, which is the normal case for systems under consideration,
such a row must exist.)

Since we have to be prepared for the possibility of row exchanges anyway, we
can take care of another potential difficulty: the possibility that A[i, i]is so small
and consequently the scaling factor A[j, i]/A[i, i] so large that the new value of
Alj, k] might become distorted by a round-off error caused by a subtraction of two
numbers of greatly different magnitudes. To avoid this problem, we can always
look for a row with the largest absolute value of the coefficient in the ith column,
exchange it with the ith row, and then use the new A[i, i] as the ith iteration’s
pivot. This modification, called partial pivoting, guarantees that the magnitude
of the scaling factor will never exceed 1.

The second observation is the fact that the innermost loop is written with a
glaring inefficiency. Can you find it before checking the following pseudocode,
which both incorporates partial pivoting and eliminates this inefficiency?

ALGORITHM  BetterForwardElimination(A[1..n, 1..n], b[1..n])
/Implements Gaussian elimination with partial pivoting
//Input: Matrix A[1..n, 1..n] and column-vector b[1..n]
//Output: An equivalent upper-triangular matrix in place of A and the
/lcorresponding right-hand side values in place of the (n + 1)st column
fori < 1tondo A[i, n + 1] < b[i]//appends b to A as the last column
fori < 1ton—1do
pivotrow < i
for j < i+1tondo
if |A[j, i]| > |A[pivotrow, i]| pivotrow <« j
fork —iton+1do
swap(Ali, k], A[pivotrow, k])
for j < i+1tondo
temp < A[j, i]/ Ali, i]
fork < iton+1do
Alj, k] < A[j, k] — A[i, k] * temp

Let us find the time efficiency of this algorithm. Its innermost loop consists of
a single line,

Alj, k] < A[j, k] — A[i, k] x temp,

We discuss round-off errors in more detail in Section 11.4.
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P

FIGURE 5.8 Upper and lower hulls of a set of points.

FIGURE 5.9 The idea of quickhull.

upper hull is simply the line segment with the endpoints at p; and p,,. If Sy is not
empty, the algorithm identifies point p,,,, in S, which is the farthest from the line
p1p, (Figure 5.9). If there is a tie, the point that maximizes the angle Zp.«pp,
can be selected. (Note that point p,,,, maximizes the area of the triangle with
two vertices at p; and p,, and the third one at some other point of S;.) Then the
algorithm identifies all the points of set S that are to the left of the line pypmax;
these are the points that will make up the set S; . The points of S; to the left of
the line ppaxp, Will make up the set S ,. It is not difficult to prove the following:

Pmax 18 @ vertex of the upper hull.

The points inside A pyppax P, cannot be vertices of the upper hull (and hence
can be eliminated from further consideration).

B There are no points to the left of both lines p;pmax and PmaxPn-

Therefore, the algorithm can continue constructing the upper hulls of p; U
811U Pmax and ppax U 81, U p, recursively and then simply concatenate them to
get the upper hull of the entire set p; U S; U p,,.
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Now we have to figure out how the algorithm’s geometric operations can be
actually implemented. Fortunately, we can take advantage of the following very
useful fact from analytical geometry: if g;(xy, y1), g2(x, y2), and g3(x3, y3) are
three arbitrary points in the Cartesian plane, then the area of the triangle Ag1¢,q3
is equal to one-half of the magnitude of the determinant

x oy 1
X3 y2 1 =x1y2+ X391+ x2¥3 — X352 — X2y — X1)3,
x3 y3 1

while the sign of this expression is positive if and only if the point g3 = (x3, y3) is to
the left of the line g,¢;. Using this formula, we can check in constant time whether
a point lies to the left of the line determined by two other points as well as find
the distance from the point to the line.

Quickhull has the same © (n%) worst-case efficiency as quicksort (Problem 9
in this section’s exercises). In the average case, however, we should expect a
much better performance. First, the algorithm should benefit from the quicksort-
like savings from the on-average balanced split of the problem into two smaller
subproblems. Second, a significant fraction of the points—namely, those inside
APp1PmaxPn (see Figure 5.9)—are eliminated from further processing. Under a
natural assumption that points given are chosen randomly from a uniform dis-
tribution over some convex region (e.g., a circle or a rectangle), the average-case
efficiency of quickhull turns out to be linear [Ove80].

Exercises 5.5

1. a. For the one-dimensional version of the closest-pair problem, i.e., for the
problem of finding two closest numbers among a given set of n real num-
bers, design an algorithm that is directly based on the divide-and-conquer
technique and determine its efficiency class.

b. Isit a good algorithm for this problem?

2. Prove that the divide-and-conquer algorithm for the closest-pair problem
examines, for every point p in the vertical strip (see Figures 5.7a and 5.7b), no
more than seven other points that can be closer to p than d,;,, the minimum
distance between two points encountered by the algorithm up to that point.

3. Consider the version of the divide-and-conquer two-dimensional closest-pair
algorithm in which, instead of presorting input set P, we simply sort each of
the two sets P; and P, in nondecreasing order of their y coordinates on each
recursive call. Assuming that sorting is done by mergesort, set up a recurrence
relation for the running time in the worst case and solve it for n = 2*.

4. Implement the divide-and-conquer closest-pair algorithm, outlined in this
section, in the language of your choice.
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elimination for each of the first n — 1 variables ultimately yields a system with an
upper-triangular coefficient matrix.

Before we look at an example of Gaussian elimination, let us note that we
can operate with just a system’s coefficient matrix augmented, as its (n + 1)st
column, with the equations’ right-hand side values. In other words, we need to
write explicitly neither the variable names nor the plus and equality signs.

EXAMPLE 1 Solve the system by Gaussian elimination.
2x1—xp+x3=1
4x;+x, —x3=5
X1+ x +x3=0.

4 -1 5| row2-4rowl
1 1 1 0 r0w37%row1

2 -1 1 1

0 3 -3 3
L 0 % % —%_ r0w3—%row2
2 -1 1 17

0 3 -3 3

0 0 2 =2

Now we can obtain the solution by back substitutions:
X3 = (—2)/2 = —1, Xy = (3 - (—3)X3)/3 = 0, and X1 = (1 — X3 — (—1)X2)/2 =1

Here is pseudocode of the first stage, called forward elimination, of the
algorithm.

ALGORITHM ForwardElimination(A[1..n, 1..n], b[1..n])
/I Applies Gaussian elimination to matrix A of a system’s coefficients,
/laugmented with vector b of the system’s right-hand side values
//Input: Matrix A[l..n, 1..n] and column-vector b[1..n]
//Output: An equivalent upper-triangular matrix in place of A with the
/lcorresponding right-hand side values in the (n 4+ 1)st column
fori < 1tondo Ali,n+ 1] < b[i] //augments the matrix
fori < 1ton—1do
for j < i+ 1tondo
fork < iton+1do
ALj K] < ALj. K] = A[i, K] % A[j. i / Ali. i]
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/ / / ’
apxy+apxy + - -+ apx, =by ajXy + ajyXo R o ay,x, = hl

ay Xy + apxy + -+ agyx, = by dypxy + -+, x, = b

: Ed :
’ ’
A1 X1+ X+ -+ Xy = b, Ay, X =b,.

In matrix notations, we can write this as

Ax=b = Ax=V,

where
! ’ ! ’
ap ap ... ay by ap ap .- a, by
ay a ... a b 0 a), ... d b,
Ao |92 92 wl oy |2 a2 %2 w| = |2
Qpy Ay ... Ay, b, 0o 0 ... 4, b,

(We added primes to the matrix elements and right-hand sides of the new system
to stress the point that their values differ from their counterparts in the original
system.)

Why is the system with the upper-triangular coefficient matrix better than
a system with an arbitrary coefficient matrix? Because we can easily solve the
system with an upper-triangular coefficient matrix by back substitutions as follows.
First, we can immediately find the value of x, from the last equation; then we can
substitute this value into the next to last equation to get x,_;, and so on, until we
substitute the known values of the last n — 1 variables into the first equation, from
which we find the value of x;.

So how can we get from a system with an arbitrary coefficient matrix A to an
equivalent system with an upper-triangular coefficient matrix A’? We can do that
through a series of the so-called elementary operations:

®m  exchanging two equations of the system
replacing an equation with its nonzero multiple

replacing an equation with a sum or difference of this equation and some
multiple of another equation

Since no elementary operation can change a solution to a system, any system that
is obtained through a series of such operations will have the same solution as the
original one.

Let us see how we can get to a system with an upper-triangular matrix. First,
we use aq; as a pivot to make all x; coefficients zeros in the equations below
the first one. Specifically, we replace the second equation with the difference
between it and the first equation multiplied by a,;/a;; to get an equation with
a zero coefficient for x;. Doing the same for the third, fourth, and finally nth
equation—with the multiples a3;/aq, as1/ai1, - - -, a,1/aq; of the first equation,
respectively—makes all the coefficients of x; below the first equation zero. Then
we get rid of all the coefficients of x, by subtracting an appropriate multiple of the
second equation from each of the equations below the second one. Repeating this
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S

5. Find on the Web a visualization of an algorithm for the closest-pair problem.
What algorithm does this visualization represent?

6. The Voronoi polygon for a point p of a set S of points in the plane is defined
to be the perimeter of the set of all points in the plane closer to p than to any
other point in S. The union of all the Voronoi polygons of the points in § is
called the Voronoi diagram of S.

a. What is the Voronoi diagram for a set of three points?

b. Find a visualization of an algorithm for generating the Voronoi diagram
on the Web and study a few examples of such diagrams. Based on your
observations, can you tell how the solution to the previous question is
generalized to the general case?

7. Explain how one can find point p,,, in the quickhull algorithm analytically.
8. What is the best-case efficiency of quickhull?

9. Give a specific example of inputs that make quickhull run in quadratic time.

Implement quickhull in the language of your choice.

Creating decagons There are 1000 points in the plane, no three of them
on the same line. Devise an algorithm to construct 100 decagons with their
vertices at these points. The decagons need not be convex, but each of them
has to be simple, i.e., its boundary should not cross itself, and no two decagons
may have a common point.

Shortest path around There is a fenced area in the two-dimensional Eu-
clidean plane in the shape of a convex polygon with vertices at points
p1(x1, Y15 Pa(x2, ¥2), « -y Pulx,, ¥,) (nOt necessarily in this order). There are
two more points, a(x,, y,) and b(x,, y) such that x, < min{xy, x,, ..., x,,} and
xp, > max{xy, x5, . . ., x,}. Design a reasonably efficient algorithm for comput-
ing the length of the shortest path between a and b. [OR098]

SUMMARY

Divide-and-conquer is a general algorithm design technique that solves a
problem by dividing it into several smaller subproblems of the same type
(ideally, of about equal size), solving each of them recursively, and then
combining their solutions to get a solution to the original problem. Many
efficient algorithms are based on this technique, although it can be both
inapplicable and inferior to simpler algorithmic solutions.

Running time 7'(n) of many divide-and-conquer algorithms satisfies the
recurrence T (n) =aT (n/b) + f(n). The Master Theorem establishes the order
of growth of its solutions.

Mergesort is a divide-and-conquer sorting algorithm. It works by dividing an
input array into two halves, sorting them recursively, and then merging the two
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sorted halves to get the original array sorted. The algorithm’s time efficiency
is in ®(n log n) in all cases, with the number of key comparisons being very
close to the theoretical minimum. Its principal drawback is a significant extra
storage requirement.

Quicksort is a divide-and-conquer sorting algorithm that works by partition-
ing its input elements according to their value relative to some preselected
element. Quicksort is noted for its superior efficiency among n logn al-
gorithms for sorting randomly ordered arrays but also for the quadratic
worst-case efficiency.

The classic traversals of a binary tree—preorder, inorder, and postorder—
and similar algorithms that require recursive processing of both left and right
subtrees can be considered examples of the divide-and-conquer technique.
Their analysis is helped by replacing all the empty subtrees of a given tree by
special external nodes.

There is a divide-and-conquer algorithm for multiplying two n-digit integers
that requires about n'58 one-digit multiplications.

Strassen’s algorithm needs only seven multiplications to multiply two 2 x 2
matrices. By exploiting the divide-and-conquer technique, this algorithm can
multiply two n x n matrices with about n>897 multiplications.

The divide-and-conquer technique can be successfully applied to two impor-
tant problems of computational geometry: the closest-pair problem and the
convex-hull problem.
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11. Anagram detection
a. Design an efficient algorithm for finding all sets of anagrams in a large file
such as a dictionary of English words [Ben00]. For example, eat, ate, and
tea belong to one such set.

b. Write a program implementing the algorithm.

Gaussian Elimination
You are certainly familiar with systems of two linear equations in two unknowns:

ayx +apy ="b
arx +any =b;.

Recall that unless the coefficients of one equation are proportional to the coef-
ficients of the other, the system has a unique solution. The standard method for
finding this solution is to use either equation to express one of the variables as a
function of the other and then substitute the result into the other equation, yield-
ing a linear equation whose solution is then used to find the value of the second
variable.

In many applications, we need to solve a system of n equations in n
unknowns:

apxy+apxy + -+ ayx, =b
ayxy+ apx, + - -+ ay,x, = by

ApiX1+ appXy + -+ ayx, = b,

where n is a large number. Theoretically, we can solve such a system by general-
izing the substitution method for solving systems of two linear equations (what
general design technique would such a method be based upon?); however, the
resulting algorithm would be extremely cumbersome.

Fortunately, there is a much more elegant algorithm for solving systems of
linear equations called Gaussian elimination.? The idea of Gaussian elimination
is to transform a system of n linear equations in » unknowns to an equivalent
system (i.e., a system with the same solution as the original one) with an upper-
triangular coefficient matrix, a matrix with all zeros below its main diagonal:

The method is named after Carl Friedrich Gauss (1777-1855), who—like other giants in the history of

mathematics such as Isaac Newton and Leonhard Eule—made numerous fundamental contributions
to both theoretical and computational mathematics. The method was known to the Chinese 1800 years
before the Europeans rediscovered it.
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is no.) Design an algorithm for this problem with a better than quadratic time
efficiency.

. Youhavealistofn openintervals (ay, by), (as, by), . . ., (a,, b,) ontherealline.

(Anopen interval (a, b) comprises all the points strictly between its endpoints
a and b, i.e., (a, b) = {x| a < x < b}.) Find the maximum number of these
intervals that have a common point. For example, for the intervals (1, 4),
(0, 3), (—1.5, 2), (3.6, 5), this maximum number is 3. Design an algorithm
for this problem with a better than quadratic time efficiency.

. Number placement Given a list of n distinct integers and a sequence of n

boxes with pre-set inequality signs inserted between them, design an algo-
rithm that places the numbers into the boxes to satisfy those inequalities. For
example, the numbers 4, 6, 3, 1, 8 can be placed in the five boxes as shown
below:

[1]<[8]>[3]<[4]<[¢]

Maxima search

a. A point (x;, y;) in the Cartesian plane is said to be dominated by point
(xj, y;)if x; < x; and y; < y; with at least one of the two inequalities being
strict. Given a set of n points, one of them is said to be a maximum of the
set if it is not dominated by any other point in the set. For example, in the
figure below, all the maximum points of the set of 10 points are circled.

Design an efficient algorithm for finding all the maximum points of a given
set of n points in the Cartesian plane. What is the time efficiency class of
your algorithm?

b. Give a few real-world applications of this algorithm.

This page intentionally left blank
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That’s the secret to life . . . replace one worry with another.

—Charles M. Schulz (1922-2000), American cartoonist,
the creator of Peanuts

his chapter deals with a group of design methods that are based on the idea
of transformation. We call this general technique transform-and-conquer

because these methods work as two-stage procedures. First, in the transformation
stage, the problem’s instance is modified to be, for one reason or another, more
amenable to solution. Then, in the second or conquering stage, it is solved.

There are three major variations of this idea that differ by what we transform

a given instance to (Figure 6.1):

Transformation to a simpler or more convenient instance of the same
problem—we call it instance simplification.

Transformation to a different representation of the same instance—we call it
representation change.

Transformation to an instance of a different problem for which an algorithm
is already available—we call it problem reduction.

In the first three sections of this chapter, we encounter examples of the

instance-simplification variety. Section 6.1 deals with the simple but fruitful idea
of presorting. Many algorithmic problems are easier to solve if their input is
sorted. Of course, the benefits of sorting should more than compensate for the

simpler instance

or
problem's another representation solution
instance or

another problem's instance

FIGURE 6.1 Transform-and-conquer strategy.
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3.

2

N

Consider the problem of finding the smallest and largest elements in an array

of n numbers.

a. Design a presorting-based algorithm for solving this problem and deter-
mine its efficiency class.

b. Compare the efficiency of the three algorithms: (i) the brute-force algo-
rithm, (ii) this presorting-based algorithm, and (iii) the divide-and-conquer
algorithm (see Problem 2 in Exercises 5.1).

. Estimate how many searches will be needed to justify time spent on presorting

an array of 103 elements if sorting is done by mergesort and searching is done
by binary search. (You may assume that all searches are for elements known
to be in the array.) What about an array of 10° elements?

To sort or not to sort? Design a reasonably efficient algorithm for solving each

of the following problems and determine its efficiency class.

a. You are given n telephone bills and m checks sent to pay the bills (n > m).
Assuming that telephone numbers are written on the checks, find out who
failed to pay. (For simplicity, you may also assume that only one check is
written for a particular bill and that it covers the bill in full.)

b. You have a file of n student records indicating each student’s number,
name, home address, and date of birth. Find out the number of students
from each of the 50 U.S. states.

Given a set of n > 3 points in the Cartesian plane, connect them in a simple

polygon, i.e., a closed path through all the points so that its line segments

(the polygon’s edges) do not intersect (except for neighboring edges at their

common vertex). For example,

P P3

P
Ps o Ps i

Py P,

Py Py
. P5 P5

a. Does the problem always have a solution? Does it always have a unique
solution?

b. Design a reasonably efficient algorithm for solving this problem and indi-
cate its efficiency class.

You have an array of n real numbers and another integer s. Find out whether
the array contains two elements whose sum is s. (For example, for the array 5,
9,1,3 and s = 6, the answer is yes, but for the same array and s = 7, the answer
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EXAMPLE 3 Searching problem Consider the problem of searching for a given
value v in a given array of n sortable items. The brute-force solution here is
sequential search (Section 3.1), which needs n comparisons in the worst case. If
the array is sorted first, we can then apply binary search, which requires only
|log, n| + 1 comparisons in the worst case. Assuming the most efficient n log n
sort, the total running time of such a searching algorithm in the worst case will be

(1) = Ty (1) + Tygaren(n) = ©(n log n) + O(log n) = ©(n log n),

which is inferior to sequential search. The same will also be true for the average-
case efficiency. Of course, if we are to search in the same list more than once, the
time spent on sorting might well be justified. (Problem 4 in this section’s exercises
asks to estimate the minimum number of searches needed to justify presorting.)

|

Before we finish our discussion of presorting, we should mention that many,
if not most, geometric algorithms dealing with sets of points use presorting in
one way or another. Points can be sorted by one of their coordinates, or by
their distance from a particular line, or by some angle, and so on. For example,
presorting was used in the divide-and-conquer algorithms for the closest-pair
problem and for the convex-hull problem, which were discussed in Section 5.5.

Further, some problems for directed acyclic graphs can be solved more easily
after topologically sorting the digraph in question. The problems of finding the
longest and shortest paths in such digraphs (see the exercises for Sections 8.1
and 9.3) illustrate this point.

Finally, most algorithms based on the greedy technique, which is the subject of
Chapter 9, require presorting of their inputs as an intrinsic part of their operations.

Exercises 6.1

1. Consider the problem of finding the distance between the two closest numbers
in an array of n numbers. (The distance between two numbers x and y is
computed as [x — y|.)

a. Design a presorting-based algorithm for solving this problem and deter-
mine its efficiency class.

b. Compare the efficiency of this algorithm with that of the brute-force algo-
rithm (see Problem 9 in Exercises 1.2).

2. Let A={ay,...,a,} and B={by, ..., b,} be two sets of numbers. Consider
the problem of finding their intersection, i.e., the set C of all the numbers that
are in both A and B.

a. Design a brute-force algorithm for solving this problem and determine its
efficiency class.

b. Design a presorting-based algorithm for solving this problem and deter-
mine its efficiency class.
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time spent on it; otherwise, we would be better off dealing with an unsorted
input directly. Section 6.2 introduces one of the most important algorithms in
applied mathematics: Gaussian elimination. This algorithm solves a system of
linear equations by first transforming it to another system with a special property
that makes finding a solution quite easy. In Section 6.3, the ideas of instance
simplification and representation change are applied to search trees. The results
are AVL trees and multiway balanced search trees; of the latter we consider the
simplest case, 2-3 trees.

Section 6.4 presents heaps and heapsort. Even if you are already familiar
with this important data structure and its application to sorting, you can still
benefit from looking at them in this new light of transform-and-conquer design.
In Section 6.5, we discuss Horner’s rule, a remarkable algorithm for evaluating
polynomials. If there were an Algorithm Hall of Fame, Horner’s rule would be a
serious candidate for induction based on the algorithm’s elegance and efficiency.
We also consider there two interesting algorithms for the exponentiation problem,
both based on the representation-change idea.

The chapter concludes with areview of several applications of the third variety
of transform-and-conquer: problem reduction. This variety should be considered
the most radical of the three: one problem is reduced to another, i.e., transformed
into an entirely different problem. This is a very powerful idea, and it is extensively
used in the complexity theory (Chapter 11). Its application to designing practical
algorithms is not trivial, however. First, we need to identify a new problem into
which the given problem should be transformed. Then we must make sure that
the transformation algorithm followed by the algorithm for solving the new prob-
lem is time efficient compared to other algorithmic alternatives. Among several
examples, we discuss an important special case of mathematical modeling, or
expressing a problem in terms of purely mathematical objects such as variables,
functions, and equations.

Presorting

Presorting is an old idea in computer science. In fact, interest in sorting algorithms
is due, to a significant degree, to the fact that many questions about a list are
easier to answer if the list is sorted. Obviously, the time efficiency of algorithms
that involve sorting may depend on the efficiency of the sorting algorithm being
used. For the sake of simplicity, we assume throughout this section that lists are
implemented as arrays, because some sorting algorithms are easier to implement
for the array representation.

So far, we have discussed three elementary sorting algorithms—selection sort,
bubble sort, and insertion sort—that are quadratic in the worst and average cases,
and two advanced algorithms—mergesort, which is always in ®(n log n), and
quicksort, whose efficiency is also © (n log n) in the average case but is quadraticin
the worst case. Are there faster sorting algorithms? As we have already stated in
Section 1.3 (see also Section 11.2), no general comparison-based sorting algorithm
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can have a better efficiency than n log n in the worst case, and the same result holds
for the average-case efficiency.!

Following are three examples that illustrate the idea of presorting. More
examples can be found in this section’s exercises.

EXAMPLE 1 Checking element uniqueness in an array 1If this element unique-
ness problem looks familiar to you, it should; we considered a brute-force algo-
rithm for the problem in Section 2.3 (see Example 2). The brute-force algorithm
compared pairs of the array’s elements until either two equal elements were found
or no more pairs were left. Its worst-case efficiency was in @ (n?).

Alternatively, we can sort the array first and then check only its consecutive
elements: if the array has equal elements, a pair of them must be next to each
other, and vice versa.

ALGORITHM  PresortElementUniqueness(A[0..n — 1])
/[Solves the element uniqueness problem by sorting the array first
/[Input: An array A[0..n — 1] of orderable elements
//Output: Returns “true” if A has no equal elements, “false” otherwise
sort the array A
fori < Oton —2do
if A[i]= A[i + 1] return false
return true

The running time of this algorithm is the sum of the time spent on sorting
and the time spent on checking consecutive elements. Since the former requires
at least n log n comparisons and the latter needs no more than n — 1 comparisons,
it is the sorting part that will determine the overall efficiency of the algorithm. So,
if we use a quadratic sorting algorithm here, the entire algorithm will not be more
efficient than the brute-force one. But if we use a good sorting algorithm, such
as mergesort, with worst-case efficiency in ® (n log n), the worst-case efficiency of
the entire presorting-based algorithm will be also in ®(n log n):

T(n) = Typp (n) + Tyoqn(n) € ©(nlogn) + O(n) = O(n log n). [ ]

EXAMPLE 2 Computing a mode A mode is a value that occurs most often in a
given list of numbers. For example, for 5, 1, 5,7, 6, 5, 7, the mode is 5. (If several
different values occur most often, any of them can be considered a mode.) The
brute-force approach to computing a mode would scan the list and compute the
frequencies of all its distinct values, then find the value with the largest frequency.

Sorting algorithms called radix sorts are linear but in terms of the total number of input bits. These
algorithms work by comparing individual bits or pieces of keys rather than keys in their entirety.
Although the running time of these algorithms is proportional to the number of input bits, they are
still essentially 1 log n algorithms because the number of bits per key must be at least log, n in order
to accommodate n distinct keys of input.
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In order to implement this idea, we can store the values already encountered,
along with their frequencies, in a separate list. On each iteration, the ith element
of the original list is compared with the values already encountered by traversing
this auxiliary list. If a matching value is found, its frequency is incremented;
otherwise, the current element is added to the list of distinct values seen so far
with a frequency of 1.

Itis not difficult to see that the worst-case input for this algorithm is a list with
no equal elements. For such a list, its ith element is compared with i — 1 elements
of the auxiliary list of distinct values seen so far before being added to the list with
a frequency of 1. As a result, the worst-case number of comparisons made by this
algorithm in creating the frequency list is

Co=YG-D=0+1++m-1)= " com?).

i=1

(n—-1
2

The additional n — 1 comparisons needed to find the largest frequency in the aux-
iliary list do not change the quadratic worst-case efficiency class of the algorithm.

As an alternative, let us first sort the input. Then all equal values will be
adjacent to each other. To compute the mode, all we need to do is to find the
longest run of adjacent equal values in the sorted array.

ALGORITHM  PresortMode(A[0..n — 1])
//Computes the mode of an array by sorting it first
//Input: An array A[0..n — 1] of orderable elements
//Output: The array’s mode
sort the array A
i<0 /lcurrent run begins at position i
modefrequency <0  //highest frequency seen so far
while i <n —1do
runlength < 1; runvalue < Ali]
while ; + runlength <n — 1 and A[i 4 runlength] = runvalue
runlength < runlength + 1
if runlength > modefrequency
modefrequency < runlength; modevalue < runvalue
i < i+runlength
return modevalue

The analysis here is similar to the analysis of Example 1: the running time of
the algorithm will be dominated by the time spent on sorting since the remainder
of the algorithm takes linear time (why?). Consequently, with an n log n sort, this
method’s worst-case efficiency will be in a better asymptotic class than the worst-
case efficiency of the brute-force algorithm. |
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Exercises 6.4

1. a. Construct a heap for the list 1, 8, 6, 5, 3, 7, 4 by the bottom-up algorithm.
b. Construct a heap for the list 1, 8, 6, 5, 3, 7, 4 by successive key insertions
(top-down algorithm).
c. Is it always true that the bottom-up and top-down algorithms yield the
same heap for the same input?
2. Outline an algorithm for checking whether an array H[l..n] is a heap and
determine its time efficiency.
3. a. Find the smallest and the largest number of keys that a heap of height &
can contain.
b. Prove that the height of a heap with n nodes is equal to [log, n].

4. Prove the following equality used in Section 6.4:
h—1 .
> 2(h—i)2 =2(n —logy(n +1)), wheren =2"1—1.
i=0

5. a. Design an efficient algorithm for finding and deleting an element of the
smallest value in a heap and determine its time efficiency.
b. Design an efficient algorithm for finding and deleting an element of a given
value v in a heap H and determine its time efficiency.

I

Indicate the time efficiency classes of the three main operations of the priority
queue implemented as

a. an unsorted array.
b. asorted array.

¢. abinary search tree.
d. an AVL tree.

e. a heap.

N

Sort the following lists by heapsort by using the array representation of heaps.
a. 1,2,3,4,5 (in increasing order)

b. 5,4,3,2,1 (in increasing order)

c. S,O,R, T,I,N, G (in alphabetical order)

8. Is heapsort a stable sorting algorithm?

‘What variety of the transform-and-conquer technique does heapsort repre-
sent?

10
11

Which sorting algorithm other than heapsort uses a priority queue?

Implement three advanced sorting algorithms—mergesort, quicksort, and
heapsort—in the language of your choice and investigate their performance
on arrays of sizes n = 103, 10%, 10, and 10°. For each of these sizes consider

214

Transform-and-Conquer

(including the main diagonal) and store the nontrivial part of L below the main
diagonal of A.

Computing a Matrix Inverse

Gaussian elimination is a very useful algorithm that tackles one of the most
important problems of applied mathematics: solving systems of linear equations.
In fact, Gaussian elimination can also be applied to several other problems of
linear algebra, such as computing a matrix inverse. The inverse of an n x n matrix
A is an n x n matrix, denoted A~!, such that

AAT =1,

where [ is the n x n identity matrix (the matrix with all zero elements except
the main diagonal elements, which are all ones). Not every square matrix has
an inverse, but when it exists, the inverse is unique. If a matrix A does not have
an inverse, it is called singular. One can prove that a matrix is singular if and
only if one of its rows is a linear combination (a sum of some multiples) of the
other rows. A convenient way to check whether a matrix is nonsingular is to apply
Gaussian elimination: if it yields an upper-triangular matrix with no zeros on the
main diagonal, the matrix is nonsingular; otherwise, it is singular. So being singular
is a very special situation, and most square matrices do have their inverses.
Theoretically, inverse matrices are very important because they play the role
of reciprocals in matrix algebra, overcoming the absence of the explicit division
operation for matrices. For example, in a complete analogy with a linear equation
in one unknown ax = b whose solution can be written as x = a~'b (if a is not
Zero), we can express a solution to a system of n equations in n unknowns Ax = b
as x = A~1b (if A is nonsingular) where b is, of course, a vector, not a number.
According to the definition of the inverse matrix for a nonsingular n x n
matrix A, to compute it we need to find n? numbers xij, 1<1i, j<n, such that

ay ap ... ay Xy X X 10 ...0
ap Gy ... ay || X X ... X | [0 1 ... 0
ayl Qp2 --- Ayp Xnl Xn2 oo Xpp 00 ... 1

We can find the unknowns by solving n systems of linear equations that have the
same coefficient matrix A, the vector of unknowns x/ is the jth column of the
inverse, and the right-hand side vector e/ is the jth column of the identity matrix
d=j=n:

Axl =el.
We can solve these systems by applying Gaussian elimination to matrix A aug-
mented by the n x n identity matrix. Better yet, we can use forward elimina-

tion to find the LU decomposition of A and then solve the systems LUx/ = e/,
j=1,...,n,as explained earlier.
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Computing a Determinant

Another problem that can be solved by Gaussian elimination is computing a
determinant. The determinant of an n x n matrix A, denoted det A or |A], is a
number whose value can be defined recursively as follows. If n =1, i.e., if A consists
of a single element aqy, det A is equal to aqy; for n > 1, det A is computed by the
recursive formula

n
det A =Zsja1j det Aj,
j=1

where s;is +1if j isodd and —1if j is even, ay; is the element in row 1 and column
Jj,and Aj is the (n — 1) x (n — 1) matrix obtained from matrix A by deleting its
row 1 and column j.

In particular, for a 2 x 2 matrix, the definition implies a formula that is easy
to remember:

a a
det |: 1 12} =ayy det [ay] — ayp det [ay] = ajjan — apay.
a axp
In other words, the determinant of a 2 x 2 matrix is simply equal to the difference
between the products of its diagonal elements.
For a 3 x 3 matrix, we get

aip dp a3
det apy apy aps

asy dzp  as3

a a a a a a
=an det |: 2 23 ] —ap det |: 21 23 i| + as det [ 21 2 :I
azp asz az; as3 azp azp

= a11a2033 + A12023031 + A13a21A3 — A11d3A3p — A12021A33 — 13022031

Incidentally, this formula is very handy in a variety of applications. In particular,
we used it twice already in Section 5.5 as a part of the quickhull algorithm.

But what if we need to compute a determinant of a large matrix? Although
this is a task that is rarely needed in practice, it is worth discussing nevertheless.
Using the recursive definition can be of little help because it implies computing the
sum of n!terms. Here, Gaussian elimination comes to the rescue again. The central
point is the fact that the determinant of an upper-triangular matrix is equal to the
product of elements on its main diagonal, and it is easy to see how elementary
operations employed by the elimination algorithm influence the determinant’s
value. (Basically, it either remains unchanged or changes a sign or is multiplied by
the constant used by the elimination algorithm.) As a result, we can compute the
determinant of an n x n matrix in cubic time.

Determinants play an important role in the theory of systems of linear equa-
tions. Specifically, a system of n linear equations in » unknowns Ax = b has a
unique solution if and only if the determinant of its coefficient matrix det A is
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Stage 1 (heap construction) Stage 2 (maximum deletions)
2 97 6 5 8 9 6 8 2 5 7
2 9 8 6 5 7 7 6 8 2 519
2 9 8 6 5 7 8 6 7 2 5
9 2 8 6 5 7 5 6 7 218
9 6 8 2 5 7 7 6 5 2

2 6 517
6 2 5
5 216
5 2
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2

FIGURE 6.14 Sorting the array 2, 9, 7, 6, 5, 8 by heapsort.

in Figure 6.11 is intentionally used so that you can compare the tree and array
implementations of the bottom-up heap construction algorithm.)

Since we already know that the heap construction stage of the algorithm is in
O(n), we have to investigate just the time efficiency of the second stage. For the
number of key comparisons, C(n), needed for eliminating the root keys from the
heaps of diminishing sizes from n to 2, we get the following inequality:

n—1
C(n) <2[logy(n — 1)] +2logy(n — 2)] + - - - + 2[log, 1] <2 ) " log, i
i=1
n—1
<2 logy(n — 1) =2(n — 1) logy(n — 1) < 2n log, n.
i=1

This means that C(n) € O (n log n) for the second stage of heapsort. For both stages,
we get O(n) + O(nlogn) = O(nlogn). A more detailed analysis shows that the
time efficiency of heapsort is, in fact, in © (n log n) in both the worst and average
cases. Thus, heapsort’s time efficiency falls in the same class as that of mergesort.
Unlike the latter, heapsort is in-place, i.e., it does not require any extra storage.
Timing experiments on random files show that heapsort runs more slowly than
quicksort but can be competitive with mergesort.
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Step 2 Step 3

FIGURE 6.13 Deleting the root’s key from a heap. The key to be deleted is swapped
with the last key after which the smaller tree is “heapified” by exchanging
the new key in its root with the larger key in its children until the parental
dominance requirement is satisfied.

Maximum Key Deletion from a heap

Step 1 Exchange the root’s key with the last key K of the heap.

Step 2 Decrease the heap’s size by 1.

Step 3 “Heapify” the smaller tree by sifting K down the tree exactly in the
same way we did it in the bottom-up heap construction algorithm. That
is, verify the parental dominance for K: if it holds, we are done; if not,
swap K with the larger of its children and repeat this operation until
the parental dominance condition holds for K in its new position.

The efficiency of deletion is determined by the number of key comparisons
needed to “heapify” the tree after the swap has been made and the size of the tree
is decreased by 1. Since this cannot require more key comparisons than twice the
heap’s height, the time efficiency of deletion is in O (log n) as well.

Heapsort

Now we can describe heapsort—an interesting sorting algorithm discovered by
J. W. 1. Williams [Wil64]. This is a two-stage algorithm that works as follows.

Stage 1 (heap construction): Construct a heap for a given array.
Stage 2 (maximum deletions): Apply the root-deletion operation n — 1 times
to the remaining heap.

As aresult, the array elements are eliminated in decreasing order. But since
under the array implementation of heaps an element being deleted is placed last,
the resulting array will be exactly the original array sorted in increasing order.
Heapsort is traced on a specific input in Figure 6.14. (The same input as the one
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not equal to zero. Moreover, this solution can be found by the formulas called
Cramer’s rule,
det A; det A; det A,
= N s Xy = s
det A det A det A
where det A; is the determinant of the matrix obtained by replacing the jth

column of A by the column b. You are asked to investigate in the exercises whether
using Cramer’s rule is a good algorithm for solving systems of linear equations.

X1

Exercises 6.2

1. Solve the following system by Gaussian elimination:
X+ x+x3=2
2x1+x, +x3=3
x1—xp +3x3=8.
2. a. Solve the system of the previous question by the LU decomposition
method.

b. From the standpoint of general algorithm design techniques, how would
you classify the LU decomposition method?
3. Solve the system of Problem 1 by computing the inverse of its coefficient
matrix and then multiplying it by the vector on the right-hand side.

4. Would it be correct to get the efficiency class of the forward elimination stage
of Gaussian elimination as follows?

n—=1 n n+l n—1
con=Y Y Y 1= m+2-dn-i
i=1 j=i+1 k=i i=1

n—1
=Y [(n+2n—i@n+2)+i’]
i=1

n—1

n—1 n—1
=Y +2n—) @n+2)i+Yy i’
i=1 i=1 i=1

Since s,(n) = Y17 (n +2n € ©@Y), s,(0) = Y"1 2n +2)i € O, and
s3(n) = Z?;f i2 e ©m3), s1(n) — s,(n) + s3(n) € O@).

5. Write pseudocode for the back-substitution stage of Gaussian elimination and
show that its running time is in © (n2).

6. Assuming that division of two numbers takes three times longer than their
multiplication, estimate how much faster BetterForwardElimination is than

ForwardElimination. (Of course, you should also assume that a compiler is
not going to eliminate the inefficiency in ForwardElimination.)
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. a. Give an example of a system of two linear equations in two unknowns that
has a unique solution and solve it by Gaussian elimination.

b. Give an example of a system of two linear equations in two unknowns that
has no solution and apply Gaussian elimination to it.

c. Give an example of a system of two linear equations in two unknowns that
has infinitely many solutions and apply Gaussian elimination to it.

. The Gauss-Jordan elimination method differs from Gaussian elimination in

that the elements above the main diagonal of the coefficient matrix are made

zero at the same time and by the same use of a pivot row as the elements below

the main diagonal.

a. Apply the Gauss-Jordan method to the system of Problem 1 of these
exercises.

b. What general design strategy is this algorithm based on?

c. In general, how many multiplications are made by this method in solving
a system of n equations in n unknowns? How does this compare with the
number of multiplications made by the Gaussian elimination method in
both its elimination and back-substitution stages?

. A system Ax = b of n linear equations in n unknowns has a unique solution if
and only if det A # 0. Isit a good idea to check this condition before applying
Gaussian elimination to the system?

. a. Apply Cramer’s rule to solve the system of Problem 1 of these exercises.

b. Estimate how many times longer it will take to solve a system of n linear
equations in n unknowns by Cramer’s rule than by Gaussian elimination.
Assume that all the determinants in Cramer’s rule formulas are computed
independently by Gaussian elimination.

. Lights out This one-person game is played on an n x n board composed
of 1 x 1 light panels. Each panel has a switch that can be turned on and off,
thereby toggling the on/off state of this and four vertically and horizontally
adjacent panels. (Of course, toggling a corner square affects a total of three
panels, and toggling a noncorner panel on the board’s border affects a total
of four squares.) Given an initial subset of lighted squares, the goal is to turn
all the lights off.

a. Show that an answer can be found by solving a system of linear equations

with 0/1 coefficients and right-hand sides using the modulo 2 arithmetic.

b. Use Gaussian elimination to solve the 2 x 2 “all-ones” instance of this
problem, where all the panels of the 2 x 2 board are initially lit.

¢. Use Gaussian elimination to solve the 3 x 3 “all-ones” instance of this
problem, where all the panels of the 3 x 3 board are initially lit.
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nodes occurs on each level. Let i be the height of the tree. According to the first
property of heaps in the list at the beginning of the section, & = [log, n] or just
[log, (n +1)1 — 1=k — 1 for the specific values of n we are considering. Each
key on level i of the tree will travel to the leaf level & in the worst case of the
heap construction algorithm. Since moving to the next level down requires two
comparisons—one to find the larger child and the other to determine whether
the exchange is required—the total number of key comparisons involving a key
on level i will be 2(h — i). Therefore, the total number of key comparisons in the
worst case will be

h—1 h—1
CoorgeM =D Y 2h—i)=) 2(h—)2" =2(n —logy(n + 1)),
i=0 level i keys i=0

where the validity of the last equality can be proved either by using the closed-form
formula for the sum Zf’zl i2! (see Appendix A) or by mathematical induction on
h. Thus, with this bottom-up algorithm, a heap of size n can be constructed with
fewer than 2n comparisons.

The alternative (and less efficient) algorithm constructs a heap by successive
insertions of a new key into a previously constructed heap; some people call it
the top-down heap construction algorithm. So how can we insert a new key K
into a heap? First, attach a new node with key K in it after the last leaf of the
existing heap. Then sift K up to its appropriate place in the new heap as follows.
Compare K with its parent’s key: if the latter is greater than or equal to K, stop
(the structure is a heap); otherwise, swap these two keys and compare K with its
new parent. This swapping continues until K is not greater than its last parent or
it reaches the root (illustrated in Figure 6.12).

Obviously, this insertion operation cannot require more key comparisons than
the heap’s height. Since the height of a heap with n nodes is about log, n, the time
efficiency of insertion is in O (log n).

How can we delete an item from a heap? We consider here only the most
important case of deleting the root’s key, leaving the question about deleting an
arbitrary key in a heap for the exercises. (Authors of textbooks like to do such
things to their readers, do they not?) Deleting the root’s key from a heap can be
done with the following algorithm, illustrated in Figure 6.13.

O (19)

FIGURE 6.12 Inserting a key (10) into the heap constructed in Figure 6.11. The new key
is sifted up via a swap with its parent until it is not larger than its parent
(or is in the root).
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FIGURE 6.11 Bottom-up construction of a heap for the list 2, 9, 7, 6, 5, 8. The double-
headed arrows show key comparisons verifying the parental dominance.

dominance holds for the key in this node. If it does not, the algorithm exchanges
the node’s key K with the larger key of its children and checks whether the
parental dominance holds for K in its new position. This process continues until
the parental dominance for K is satisfied. (Eventually, it has to because it holds
automatically for any key in a leaf.) After completing the “heapification” of the
subtree rooted at the current parental node, the algorithm proceeds to do the same
for the node’s immediate predecessor. The algorithm stops after this is done for
the root of the tree.

ALGORITHM HeapBottomUp(H[1..n])
/[Constructs a heap from elements of a given array
// by the bottom-up algorithm
/[Input: An array H[1..n] of orderable items
//Output: A heap H|[1..n]
fori < |n/2]| downto 1 do

k<«i; v< H[k]
heap < false
while not ieap and 2 x k < n do
Jj < 2%k
if j <n //there are two children
iH[j] < Hj +1] j < j +1
ifv> H[j]
heap < true
else H[k] < H[j];, k<«
Hlk]<v

How efficient is this algorithm in the worst case? Assume, for simplicity,
that n = 2% — 1 so that a heap’s tree is full, i.e., the largest possible number of
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Balanced Search Trees

In Sections 1.4, 4.5, and 5.3, we discussed the binary search tree—one of the prin-
cipal data structures for implementing dictionaries. It is a binary tree whose nodes
contain elements of a set of orderable items, one element per node, so that all ele-
ments in the left subtree are smaller than the element in the subtree’s root, and all
the elements in the right subtree are greater than it. Note that this transformation
from a set to a binary search tree is an example of the representation-change tech-
nique. What do we gain by such transformation compared to the straightforward
implementation of a dictionary by, say, an array? We gain in the time efficiency
of searching, insertion, and deletion, which are all in © (log n), but only in the av-
erage case. In the worst case, these operations are in ®(n) because the tree can
degenerate into a severely unbalanced one with its height equal ton — 1.

Computer scientists have expended a lot of effort in trying to find a structure
that preserves the good properties of the classical binary search tree—principally,
the logarithmic efficiency of the dictionary operations and having the set’s ele-
ments sorted—but avoids its worst-case degeneracy. They have come up with two
approaches.

®  The first approach is of the instance-simplification variety: an unbalanced
binary search tree is transformed into a balanced one. Because of this, such
trees are called self-balancing. Specific implementations of this idea differ
by their definition of balance. An AVL ftree requires the difference between
the heights of the left and right subtrees of every node never exceed 1. A
red-black tree tolerates the height of one subtree being twice as large as the
other subtree of the same node. If an insertion or deletion of a new node
creates a tree with a violated balance requirement, the tree is restructured
by one of a family of special transformations called rotations that restore the
balance required. In this section, we will discuss only AVL trees. Information
about other types of binary search trees that utilize the idea of rebalancing
via rotations, including red-black trees and splay trees, can be found in the
references [Cor09], [Sed02], and [Tar83].

B The second approach is of the representation-change variety: allow more than
one element in a node of a search tree. Specific cases of such trees are 2-3
trees, 2-3-4 trees, and more general and important B-trees. They differ in the
number of elements admissible in a single node of a search tree, but all are
perfectly balanced. We discuss the simplest case of such trees, the 2-3 tree, in
this section, leaving the discussion of B-trees for Chapter 7.

AVL Trees

AVL trees were invented in 1962 by two Russian scientists, G. M. Adelson-Velsky
and E. M. Landis [Ade62], after whom this data structure is named.
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(®)

FIGURE 6.2 (a) AVL tree. (b) Binary search tree that is not an AVL tree. The numbers
above the nodes indicate the nodes’ balance factors.

DEFINITION An AVL tree is a binary search tree in which the balance factor of
every node, which is defined as the difference between the heights of the node’s
left and right subtrees, is either 0 or +1 or —1. (The height of the empty tree is
defined as —1. Of course, the balance factor can also be computed as the difference
between the numbers of levels rather than the height difference of the node’s left
and right subtrees.)

For example, the binary search tree in Figure 6.2a is an AVL tree but the one
in Figure 6.2b is not.

If an insertion of a new node makes an AVL tree unbalanced, we transform
the tree by a rotation. A rotation in an AVL tree is a local transformation of its
subtree rooted at a node whose balance has become either +2 or —2. If there are
several such nodes, we rotate the tree rooted at the unbalanced node that is the
closest to the newly inserted leaf. There are only four types of rotations; in fact,
two of them are mirror images of the other two. In their simplest form, the four
rotations are shown in Figure 6.3.

The first rotation type is called the single right rotation, or R-rotation. (Imag-
ine rotating the edge connecting the root and its left child in the binary tree in
Figure 6.3a to the right.) Figure 6.4 presents the single R-rotation in its most gen-
eral form. Note that this rotation is performed after a new key is inserted into the
left subtree of the left child of a tree whose root had the balance of +1 before the
insertion.

The symmetric single left rotation, or L-rotation, is the mirror image of the
single R-rotation. It is performed after a new key is inserted into the right subtree
of the right child of a tree whose root had the balance of —1 before the insertion.
(You are asked to draw a diagram of the general case of the single L-rotation in
the exercises.)
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the array representation

index 0 1 2 3 4 5 6 7 8 9 10
valve | Jro[8[7]s[2]1]6[3[5]1]
parents leaves

FIGURE 6.10 Heap and its array representation.

relationship among key values for nodes either on the same level of the tree or,
more generally, in the left and right subtrees of the same node.

Here is a list of important properties of heaps, which are not difficult to prove
(check these properties for the heap of Figure 6.10, as an example).

1. There exists exactly one essentially complete binary tree with n nodes. Its
height is equal to |log, n].

2. The root of a heap always contains its largest element.

A node of a heap considered with all its descendants is also a heap.

4. A heap can be implemented as an array by recording its elements in the top-
down, left-to-right fashion. It is convenient to store the heap’s elements in
positions 1 through n of such an array, leaving H[0] either unused or putting
there a sentinel whose value is greater than every element in the heap. In such
a representation,

a. the parental node keys will be in the first |n/2] positions of the array,
while the leaf keys will occupy the last [r/2] positions;

b. the children of a key in the array’s parental position i (1 <i < |n/2]) will
be in positions 2i and 2i + 1, and, correspondingly, the parent of a key in
position i (2 <i < n) will be in position [i/2].

w

Thus, we could also define a heap as an array H[1..n]in which every element
in position i in the first half of the array is greater than or equal to the elements
in positions 2i and 2i + 1, i.e.,

H[i]= max{H[2i], H[2i + 1]} fori=1,..., |n/2].

(Of course, if 2i + 1 > n, just H[i] > H[2i] needs to be satisfied.) While the ideas
behind the majority of algorithms dealing with heaps are easier to understand if
we think of heaps as binary trees, their actual implementations are usually much
simpler and more efficient with arrays.

How can we construct a heap for a given list of keys? There are two principal
alternatives for doing this. The first is the bottom-up heap construction algorithm
illustrated in Figure 6.11. It initializes the essentially complete binary tree with n
nodes by placing keys in the order given and then “heapifies” the tree as follows.
Starting with the last parental node, the algorithm checks whether the parental
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FIGURE 6.9 lllustration of the definition of heap: only the leftmost tree is a heap.

finding an item with the highest (i.e., largest) priority
deleting an item with the highest priority
®  adding a new item to the multiset

It is primarily an efficient implementation of these operations that makes
the heap both interesting and useful. Priority queues arise naturally in such ap-
plications as scheduling job executions by computer operating systems and traf-
fic management by communication networks. They also arise in several impor-
tant algorithms, e.g., Prim’s algorithm (Section 9.1), Dijkstra’s algorithm (Sec-
tion 9.3), Huffman encoding (Section 9.4), and branch-and-bound applications
(Section 12.2). The heap is also the data structure that serves as a cornerstone of
a theoretically important sorting algorithm called heapsort. We discuss this algo-
rithm after we define the heap and investigate its basic properties.

Notion of the Heap

DEFINITION A heap can be defined as a binary tree with keys assigned to its
nodes, one key per node, provided the following two conditions are met:

1. The shape property—the binary tree is essentially complete (or simply com-
plete), i.e., all its levels are full except possibly the last level, where only some
rightmost leaves may be missing.

2. The parental dominance or heap property—the key in each node is greater
than or equal to the keys in its children. (This condition is considered auto-
matically satisfied for all leaves.)’

For example, consider the trees of Figure 6.9. The first tree is a heap. The
second one is not a heap, because the tree’s shape property is violated. And the
third one is not a heap, because the parental dominance fails for the node with
key 5.

Note that key values in a heap are ordered top down; i.e., a sequence of values
on any path from the root to a leaf is decreasing (nonincreasing, if equal keys are
allowed). However, there is no left-to-right order in key values; i.e., there is no

Some authors require the key at each node to be less than or equal to the keys at its children. We call
this variation a min-heap.
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2 0
0
(a)
-2 0
0
(b)
2 0
0
(c)
-2 0
0
(d)

FIGURE 6.3 Four rotation types for AVL trees with three nodes. (a) Single R-rotation.
(b) Single L-rotation. (c) Double LR-rotation. (d) Double RL-rotation.

The second rotation type is called the double left-right rotation (LR-
rotation). It is, in fact, a combination of two rotations: we perform the L-rotation
of the left subtree of root r followed by the R-rotation of the new tree rooted at
r (Figure 6.5). It is performed after a new key is inserted into the right subtree of
the left child of a tree whose root had the balance of +1 before the insertion.
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single R-rotation

FIGURE 6.4 General form of the R-rotation in the AVL tree. A shaded node is the last
one inserted.

double LR-rotation

FIGURE 6.5 General form of the double LR-rotation in the AVL tree. A shaded node
is the last one inserted. It can be either in the left subtree or in the right
subtree of the root's grandchild.

The double right-left rotation (RL-rotation) is the mirror image of the double
L R-rotation and is left for the exercises.

Note that the rotations are not trivial transformations, though fortunately they
can be done in constant time. Not only should they guarantee that a resulting tree is
balanced, but they should also preserve the basic requirements of a binary search
tree. For example, in the initial tree of Figure 6.4, all the keys of subtree T are
smaller than ¢, which is smaller than all the keys of subtree T,, which are smaller
than r, which is smaller than all the keys of subtree 75. And the same relationships
among the key values hold, as they must, for the balanced tree after the rotation.
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b. Draw a binary tree of height 4 that can be an AVL tree and has the smallest
number of nodes among all such trees.

3. Draw diagrams of the single L-rotation and of the double RL-rotation in their
general form.

4. For each of the following lists, construct an AVL tree by inserting their ele-
ments successively, starting with the empty tree.
a. 1,2,3,4,5,6
b. 6,5,4,3,2,1
¢ 3,6,51,2,4

5. a. Foran AVL tree containing real numbers, design an algorithm for comput-
ing the range (i.e., the difference between the largest and smallest numbers
in the tree) and determine its worst-case efficiency.

b. True or false: The smallest and the largest keys in an AVL tree can always
be found on either the last level or the next-to-last level?

6. Write a program for constructing an AVL tree for a given list of n distinct
integers.

7. a. Constructa2-3 tree for the list C, O, M, P, U, T, I, N, G. Use the alphabetical
order of the letters and insert them successively starting with the empty
tree.

b. Assuming that the probabilities of searching for each of the keys (i.e., the
letters) are the same, find the largest number and the average number of
key comparisons for successful searches in this tree.

8. Let T and T5_3 be, respectively, a classical binary search tree and a 2-3 tree
constructed for the same list of keys inserted in the corresponding trees in
the same order. True or false: Searching for the same key in 753 always takes
fewer or the same number of key comparisons as searching in 7y?

9. For a 2-3 tree containing real numbers, design an algorithm for computing
the range (i.e., the difference between the largest and smallest numbers in the
tree) and determine its worst-case efficiency.

10. Write a program for constructing a 2-3 tree for a given list of n integers.

Heaps and Heapsort

The data structure called the “heap” is definitely not a disordered pile of items
as the word’s definition in a standard dictionary might suggest. Rather, it is a
clever, partially ordered data structure that is especially suitable for implementing
priority queues. Recall that a priority queue is a multiset of items with an orderable
characteristic called an item’s priority, with the following operations:



6.3 Balanced Search Trees 225

@_’
% do%
N T

FIGURE 6.8 Construction of a 2-3 tree for the list 9, 5, 8, 3, 2, 4, 7.

and hence
h>logz(n+1) — 1.
These lower and upper bounds on height 7,
logz(n+1) —1<h <log,(n+1)—1,

imply that the time efficiencies of searching, insertion, and deletion are all in
©(log n) in both the worst and average case. We consider a very important gener-
alization of 2-3 trees, called B-trees, in Section 7.4.

Exercises 6.3

1. Which of the following binary trees are AVL trees?
® ® ®
ofRe (‘ ®
a oo, H G & B
& B & B

(©

2. a. Forn=1,2, 3,4, and 5, draw all the binary trees with n nodes that satisfy
the balance requirement of AVL trees.

Transform-and-Conquer

0

®

FIGURE 6.6 Construction of an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive
insertions. The parenthesized number of a rotation’s abbreviation indicates
the root of the tree being reorganized.

An example of constructing an AVL tree for a given list of numbers is shown
in Figure 6.6. As you trace the algorithm’s operations, keep in mind that if there
are several nodes with the £2 balance, the rotation is done for the tree rooted at
the unbalanced node that is the closest to the newly inserted leaf.

How efficient are AVL trees? As with any search tree, the critical charac-
teristic is the tree’s height. It turns out that it is bounded both above and below
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by logarithmic functions. Specifically, the height 2 of any AVL tree with n nodes
satisfies the inequalities

Llogy n) < h < 1.4405 log,(n +2) — 1.3277.

(These weird-looking constants are round-offs of some irrational numbers related
to Fibonacci numbers and the golden ratio—see Section 2.5.)

The inequalities immediately imply that the operations of searching and in-
sertion are ®(log n) in the worst case. Getting an exact formula for the average
height of an AVL tree constructed for random lists of keys has proved to be dif-
ficult, but it is known from extensive experiments that it is about 1.01log, n + 0.1
except when n is small [Knulll, p. 468]. Thus, searching in an AVL tree requires,
on average, almost the same number of comparisons as searching in a sorted array
by binary search.

The operation of key deletion in an AVL tree is considerably more difficult
than insertion, but fortunately it turns out to be in the same efficiency class as
insertion, i.e., logarithmic.

These impressive efficiency characteristics come at a price, however. The
drawbacks of AVL trees are frequent rotations and the need to maintain bal-
ances for its nodes. These drawbacks have prevented AVL trees from becoming
the standard structure for implementing dictionaries. At the same time, their un-
derlying idea—that of rebalancing a binary search tree via rotations—has proved
to be very fruitful and has led to discoveries of other interesting variations of the
classical binary search tree.

2-3 Trees

As mentioned at the beginning of this section, the second idea of balancing a
search tree is to allow more than one key in the same node of such a tree. The
simplest implementation of this idea is 2-3 trees, introduced by the U.S. computer
scientist John Hopcroft in 1970. A 2-3 tree is a tree that can have nodes of two
kinds: 2-nodes and 3-nodes. A 2-node contains a single key K and has two children:
the left child serves as the root of a subtree whose keys are less than K, and the
right child serves as the root of a subtree whose keys are greater than K. (In other
words, a 2-node is the same kind of node we have in the classical binary search
tree.) A 3-node contains two ordered keys Ky and K, (K; < K;) and has three
children. The leftmost child serves as the root of a subtree with keys less than K7,
the middle child serves as the root of a subtree with keys between K; and K,
and the rightmost child serves as the root of a subtree with keys greater than K,
(Figure 6.7).

The last requirement of the 2-3 tree is that all its leaves must be on the same
level. In other words, a 2-3 tree is always perfectly height-balanced: the length of
a path from the root to a leaf is the same for every leaf. It is this property that we
“buy” by allowing more than one key in the same node of a search tree.

Searching for a given key K in a 2-3 tree is quite straightforward. We start
at the root. If the root is a 2-node, we act as if it were a binary search tree: we
either stop if K is equal to the root’s key or continue the search in the left or right
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2-node 3-node

FIGURE 6.7 Two kinds of nodes of a 2-3 tree.

subtree if K is, respectively, smaller or larger than the root’s key. If the root is a 3-
node, we know after no more than two key comparisons whether the search can
be stopped (if K is equal to one of the root’s keys) or in which of the root’s three
subtrees it needs to be continued.

Inserting a new key in a 2-3 tree is done as follows. First of all, we always
insert a new key K in a leaf, except for the empty tree. The appropriate leaf is
found by performing a search for K. If the leaf in question is a 2-node, we insert
K there as either the first or the second key, depending on whether K is smaller or
larger than the node’s old key. If the leaf is a 3-node, we split the leaf in two: the
smallest of the three keys (two old ones and the new key) is put in the first leaf,
the largest key is put in the second leaf, and the middle key is promoted to the
old leaf’s parent. (If the leaf happens to be the tree’s root, a new root is created
to accept the middle key.) Note that promotion of a middle key to its parent can
cause the parent’s overflow (if it was a 3-node) and hence can lead to several node
splits along the chain of the leaf’s ancestors.

An example of a 2-3 tree construction is given in Figure 6.8.

As for any search tree, the efficiency of the dictionary operations depends on
the tree’s height. So let us first find an upper bound for it. A 2-3 tree of height
with the smallest number of keys is a full tree of 2-nodes (such as the final tree in
Figure 6.8 for h = 2). Therefore, for any 2-3 tree of height 4 with n nodes, we get
the inequality

n>1424. 42" =21_1,
and hence
h <logy(n+1)—1.

On the other hand, a 2-3 tree of height / with the largest number of keys is a full
tree of 3-nodes, each with two keys and three children. Therefore, for any 2-3 tree
with n nodes,

n<2-142-34---+2.3"=201+3+...43H=3"+1_1



Space and Time Trade-Offs

Things which matter most must never be at the mercy of things which
matter less.

—Johann Wolfgang von Goethe (1749-1832)

pace and time trade-offs in algorithm design are a well-known issue for both

theoreticians and practitioners of computing. Consider, as an example, the
problem of computing values of a function at many points in its domain. If it is
time that is at a premium, we can precompute the function’s values and store them
in a table. This is exactly what human computers had to do before the advent of
electronic computers, in the process burdening libraries with thick volumes of
mathematical tables. Though such tables have lost much of their appeal with the
widespread use of electronic computers, the underlying idea has proven to be quite
useful in the development of several important algorithms for other problems.
In somewhat more general terms, the idea is to preprocess the problem’s input,
in whole or in part, and store the additional information obtained to accelerate
solving the problem afterward. We call this approach input enhancement' and
discuss the following algorithms based on it:

B counting methods for sorting (Section 7.1)
®  Boyer-Moore algorithm for string matching and its simplified version sug-
gested by Horspool (Section 7.2)

The other type of technique that exploits space-for-time trade-offs simply uses
extra space to facilitate faster and/or more flexible access to the data. We call this
approach prestructuring. This name highlights two facets of this variation of the
space-for-time trade-off: some processing is done before a problem in question

N

The standard terms used synonymously for this technique are prepr ing and pr ing.
Confusingly, these terms can also be applied to methods that use the idea of preprocessing but do no
use extra space (see Chapter 6). Thus, in order to avoid confusion, we use “input enhancement” as a
special name for the space-for-time trade-off technique being discussed here.
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a. randomly generated files of integers in the range [1..n].
b. increasing files of integers 1, 2, ..., n.
c. decreasing files of integersn,n — 1, ..., 1.

12. Spaghetti sort Imagine a handful of uncooked spaghetti, individual rods
whose lengths represent numbers that need to be sorted.
a. Outline a “spaghetti sort”—a sorting algorithm that takes advantage of
this unorthodox representation.

b. What does this example of computer science folklore (see [Dew93]) have
to do with the topic of this chapter in general and heapsort in particular?

Horner’s Rule and Binary Exponentiation

In this section, we discuss the problem of computing the value of a polynomial
p(xX) =a,x" +a,_ X"V ax +a (6.1)

at a given point x and its important special case of computing x”. Polynomials
constitute the most important class of functions because they possess a wealth of
good properties on the one hand and can be used for approximating other types of
functions on the other. The problem of manipulating polynomials efficiently has
been important for several centuries; new discoveries were still being made the
last 50 years. By far the most important of them was the fast Fourier transform
(FFT). The practical importance of this remarkable algorithm, which is based on
representing a polynomial by its values at specially chosen points, was such that
some people consider it one of the most important algorithmic discoveries of all
time. Because of its relative complexity, we do not discuss the FFT algorithm in this
book. An interested reader will find a wealth of literature on the subject, including
reasonably accessible treatments in such textbooks as [Kle06] and [Cor09].

Horner'’s Rule

Horner’s rule is an old but very elegant and efficient algorithm for evaluating a
polynomial. It is named after the British mathematician W. G. Horner, who pub-
lished it in the early 19th century. But according to Knuth [Knull, p. 486], the
method was used by Isaac Newton 150 years before Horner. You will appreciate
this method much more if you first design an algorithm for the polynomial evalu-
ation problem by yourself and investigate its efficiency (see Problems 1 and 2 in
this section’s exercises).

Horner’s rule is a good example of the representation-change technique since
itis based on representing p(x) by a formula different from (6.1). This new formula
is obtained from (6.1) by successively taking x as acommon factor in the remaining
polynomials of diminishing degrees:

)= (- (apX +ay_)x + - )x +ag. (6.2)
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For example, for the polynomial p(x) = 2x* — x3 4+ 3x2 4+ x — 5, we get
p(x) =2t -+ 4+x -5
=x2x°—x’4+3x+1) -5
=x(x@?—x+3)+1) -5
=x(x@x2x -1 +3)+1) -5. (6.3)

It is in formula (6.2) that we will substitute a value of x at which the polyno-
mial needs to be evaluated. It is hard to believe that this is a way to an efficient
algorithm, but the unpleasant appearance of formula (6.2) is just that, an appear-
ance. As we shall see, there is no need to go explicitly through the transformation
leading to it: all we need is an original list of the polynomial’s coefficients.

The pen-and-pencil calculation can be conveniently organized with a two-
row table. The first row contains the polynomial’s coefficients (including all the
coefficients equal to zero, if any) listed from the highest a,, to the lowest a;. Except
for its first entry, which is a,,, the second row is filled left to right as follows: the
next entry is computed as the x’s value times the last entry in the second row plus
the next coefficient from the first row. The final entry computed in this fashion is
the value being sought.

EXAMPLE 1 Evaluate p(x) =2x* — x3+3x2 +x —5atx =3.

coefficients 2 -1 3 1 -5
x=3 2 3-24+(-D=S5 3-5+3=18 3-18+1=55 3-55+4(-5)=160

Thus, p(3) =160. (On comparing the table’s entries with formula (6.3), you will
see that 3 -2 + (—1) = 5is the value of 2x — lat x =3, 3- 5+ 3 = 18 is the value of
x(2x —1)+3atx=3,3-18+ 1=>55is the value of x(x(2x — 1) +3) + latx =3,
and, finally, 3 - 55 + (—5) =160 is the value of x(x(x(2x = 1) +3) + 1) — 5= p(x)
atx =3.) [ |

Pseudocode of this algorithm is the shortest one imaginable for a nontrivial
algorithm:

ALGORITHM Horner(P[0..n], x)
//[Evaluates a polynomial at a given point by Horner’s rule
/[Input: An array P[0..n] of coefficients of a polynomial of degree n,
I stored from the lowest to the highest and a number x
//Output: The value of the polynomial at x
p < P[n]
fori <—n — 1 downto 0 do
p < x*p+ P[i]
return p

This page intentionally left blank
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Gaussian elimination—an algorithm for solving systems of linear equations—
is a principal algorithm in linear algebra. It solves a system by transforming it
to an equivalent system with an upper-triangular coefficient matrix, which is
easy to solve by back substitutions. Gaussian elimination requires about %n3
multiplications.

Horner’s rule is an optimal algorithm for polynomial evaluation without
coefficient preprocessing. It requires only » multiplications and »n additions
to evaluate an n-degree polynomial at a given point. Horner’s rule also has a
few useful byproducts, such as the synthetic division algorithm.

Two binary exponentiation algorithms for computing ¢” are introduced in
Section 6.5. Both of them exploit the binary representation of the exponent
n, but they process it in the opposite directions: left to right and right to left.

Linear programming concerns optimizing a linear function of several vari-
ables subject to constraints in the form of linear equations and linear inequal-
ities. There are efficient algorithms capable of solving very large instances
of this problem with many thousands of variables and constraints, provided
the variables are not required to be integers. The latter, called integer linear
programming, constitute a much more difficult class of problems.
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The number of multiplications and the number of additions are given by the
same sum:
n—1
M@n) = An) = Z 1=n.
i=0

To appreciate how efficient Horner’s rule is, consider only the first term of
a polynomial of degree n: a,x". Just computing this single term by the brute-
force algorithm would require » multiplications, whereas Horner’s rule computes,
in addition to this term, n — 1 other terms, and it still uses the same number of
multiplications! It is not surprising that Horner’s rule is an optimal algorithm for
polynomial evaluation without preprocessing the polynomial’s coefficients. But it
took scientists 150 years after Horner’s publication to come to the realization that
such a question was worth investigating.

Horner’s rule also has some useful byproducts. The intermediate numbers
generated by the algorithm in the process of evaluating p(x) at some point x; turn
out to be the coefficients of the quotient of the division of p(x) by x — x(, and the
final result, in addition to being p(x), is equal to the remainder of this division.
Thus, according to Example 1, the quotient and the remainder of the division of
2x* — %% 4 3x2 4 x — 5 by x — 3 are 2x% + 5x2 + 18x 4 55 and 160, respectively.
This division algorithm, known as synthetic division, is more convenient than so-
called long division.

Binary Exponentiation

The amazing efficiency of Horner’s rule fades if the method is applied to comput-
ing a", which is the value of x" at x = a. In fact, it degenerates to the brute-force
multiplication of a by itself, with wasteful additions of zeros in between. Since
computing a” (actually, " mod m) is an essential operation in several important
primality-testing and encryption methods, we consider now two algorithms for
computing a” that are based on the representation-change idea. They both exploit
the binary representation of exponent n, but one of them processes this binary
string left to right, whereas the second does it right to left.
Let

n=b;...b.. b

be the bit string representing a positive integer » in the binary number system.
This means that the value of n can be computed as the value of the polynomial

p)=bixl 4 bx' 4 by (6.4)
at x = 2. For example, if n = 13, its binary representation is 1101 and
13=1-2°+1-2240-2"+1-2°

Let us now compute the value of this polynomial by applying Horner’s rule
and see what the method’s operations imply for computing the power

a" = aP@ = ab,2’+~-~+h,.2'+--»+/;04
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Horner’s rule for the binary polynomial p(2) Implications for a" = a??®

p <1 //the leading digit is always 1 forn > 1 a? «a'
fori <~ I — 1 downto 0 do fori <— I — 1 downto 0 do
p<2p+b; aP « a?rtbi
But
5 .
2p+b; _ 2p o bi _ (. p\2 . b _ (a?) if b; =0,
a =a?-a""=(@al)-a" = .
@) {(a")z‘a ifb; =1.

Thus, after initializing the accumulator’s value to a, we can scan the bit string
representing the exponent n to always square the last value of the accumulator
and, if the current binary digit is 1, also to multiply it by a. These observations lead
to the following left-to-right binary exponentiation method of computing a”.

ALGORITHM  LeftRightBinary Exponentiation(a, b(n))
//Computes a”" by the left-to-right binary exponentiation algorithm
/Mnput: A number a and a list b(n) of binary digits by, . . ., by
I/ in the binary expansion of a positive integer n
//Output: The value of a”
product < a
fori < I — 1 downto 0 do
product < product * product
if b; =1 product < product xa
return product

EXAMPLE 2 Compute a'? by the left-to-right binary exponentiation algorithm.
Here, n =13 =1101,. So we have

binary digits of n 1 1 0 1
product accumulator a at-a=d’ (@?=a® @®?-a=a®

Since the algorithm makes one or two multiplications on each repetition of its
only loop, the total number of multiplications M (n) made by it in computing a” is

b-1D=Mn <2(b -1,

where b is the length of the bit string representing the exponent n. Taking into
account that b — 1= |log, n], we can conclude that the efficiency of the left-
to-right binary exponentiation is logarithmic. Thus, this algorithm is in a better
efficiency class than the brute-force exponentiation, which always requires n — 1
multiplications.
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SUMMARY

Transform-and-conquer is the fourth general algorithm design (and problem-
solving) strategy discussed in the book. It is, in fact, a group of techniques
based on the idea of transformation to a problem that is easier to solve.

There are three principal varieties of the transform-and-conquer strategy:
instance simplification, representation change, and problem reduction.

Instance simplification is transforming an instance of a problem to an instance
of the same problem with some special property that makes the problem
easier to solve. List presorting, Gaussian elimination, and rotations in AVL
trees are good examples of this strategy.

Representation change implies changing one representation of a problem’s
instance to another representation of the same instance. Examples discussed
in this chapter include representation of a set by a 2-3 tree, heaps and heapsort,
Horner’s rule for polynomial evaluation, and two binary exponentiation
algorithms.

Problem reduction calls for transforming a given problem to another problem
that can be solved by a known algorithm. Among examples of applying this
idea to algorithmic problem solving (see Section 6.6), reductions to linear
programming and reductions to graph problems are especially important.

Some examples used to illustrate transform-and-conquer happen to be very
important data structures and algorithms. They are: heaps and heapsort, AVL
and 2-3 trees, Gaussian elimination, and Horner’s rule.

A heap is an essentially complete binary tree with keys (one per node)
satisfying the parental dominance requirement. Though defined as binary
trees, heaps are normally implemented as arrays. Heaps are most important
for the efficient implementation of priority queues; they also underlie
heapsort.

Heapsort is a theoretically important sorting algorithm based on arranging
elements of an array in a heap and then successively removing the largest

element from a remaining heap. The algorithm’s running time is in ® (n log n)
both in the worst case and in the average case; in addition, it is in-place.

AVL trees are binary search trees that are always balanced to the extent
possible for a binary tree. The balance is maintained by transformations of
four types called rotations. All basic operations on AVL trees are in O (log n);
it eliminates the bad worst-case efficiency of classic binary search trees.

2-3 trees achieve a perfect balance in a search tree by allowing a node to
contain up to two ordered keys and have up to three children. This idea can
be generalized to yield very important B-trees, discussed later in the book.
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the assignment. Express the assignment problem as a 0-1 linear programming
problem.

. Solve the instance of the linear programming problem given in Section 6.6:

maximize 0.10x 4+ 0.07y 4+ 0.03z
subjectto x +y +z=100

x =< %y

722> 0.25(x +y)

x>0, y>0, z>0.

. The graph-coloring problem is usually stated as the vertex-coloring prob-
lem: Assign the smallest number of colors to vertices of a given graph so
that no two adjacent vertices are the same color. Consider the edge-coloring
problem: Assign the smallest number of colors possible to edges of a given
graph so that no two edges with the same endpoint are the same color. Ex-
plain how the edge-coloring problem can be reduced to a vertex-coloring
problem.

. Consider the two-dimensional post office location problem: given n points
(x1, ¥1)s - - -, (x,,, ¥,) in the Cartesian plane, find a location (x, y) for a post
office that minimizes % ;':1(\x[ — x|+ |y; — yl), the average Manhattan dis-
tance from the post office to these points. Explain how this problem can be
efficiently solved by the problem reduction technique, provided the post office

does not have to be located at one of the input points.

. Jealous husbands There are n >?2 married couples who need to cross a
river. They have a boat that can hold no more than two people at a time.
To complicate matters, all the husbands are jealous and will not agree on any
crossing procedure that would put a wife on the same bank of the river with
another woman’s husband without the wife’s husband being there too, even if
there are other people on the same bank. Can they cross the river under such
constraints?

a. Solve the problem for n =2.

b. Solve the problem for n = 3, which is the classical version of this problem.

¢. Does the problem have a solution for n > 4? If it does, indicate how many
river crossings it will take; if it does not, explain why.

. Double-n dominoes Dominoes are small rectangular tiles with dots called
spots or pips embossed at both halves of the tiles. A standard “double-six”
domino set has 28 tiles: one for each unordered pair of integers from (0, 0)
to (6, 6). In general, a “double-n” domino set would consist of domino tiles
for each unordered pair of integers from (0, 0) to (n, n). Determine all values
of n for which one constructs a ring made up of all the tiles in a double-n
domino set.

Transform-and-Conquer

The right-to-left binary exponentiation uses the same binary polynomial p(2)
(see (6.4)) yielding the value of n. But rather than applying Horner’s rule to it as
the previous method did, this one exploits it differently:

b2 4ee b2 by :ab,Z’ o ab,zf . bo._

a"=a .-a

Thus, a” can be computed as the product of the terms
2| b =1,
1 ifb; =0,

i.e., the product of consecutive terms a2, skipping those for which the binary digit
b; is zero. In addition, we can compute a? by simply squaring the same term we
computed for the previous value of i since a? = (02,71)2. So we compute all such
powers of a from the smallest to the largest (from right to left), but we include in
the product accumulator only those whose corresponding binary digit is 1. Here
is pseudocode of this algorithm.

ALGORITHM  RightLeftBinary Exponentiation(a, b(n))
//IComputes a” by the right-to-left binary exponentiation algorithm
//Input: A number a and a list b(n) of binary digits by, . . ., by
Il in the binary expansion of a nonnegative integer n
//Output: The value of a”
term «—a [finitializes a®
ifbg=1 product < a
else product < 1
fori < 1to I do
term < term x term
if b, =1 product < product x term
return product

EXAMPLE 3 Compute a'? by the right-to-left binary exponentiation method.
Here, n = 13 =1101,. So we have the following table filled in from right to
left:

1 1 0 1 binary digits of n
a® a a? a terms a®
@ -a®=ab a-a*=d a product accumulator

Obviously, the algorithm’s efficiency is also logarithmic for the same reason
the left-to-right binary multiplication is. The usefulness of both binary exponentia-
tion algorithms is reduced somewhat by their reliance on availability of the explicit
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binary expansion of exponent n. Problem 9 in this section’s exercises asks you to
design an algorithm that does not have this shortcoming.

Exercises 6.5
1. Consider the following brute-force algorithm for evaluating a polynomial.

ALGORITHM BruteForcePolynomial Evaluation(P[0..n], x)

//Computes the value of polynomial P at a given point x
//by the “highest to lowest term” brute-force algorithm
//Input: An array P[0..n] of the coefficients of a polynomial of degree n,
Il stored from the lowest to the highest and a number x
//Output: The value of the polynomial at the point x
p <00
for i < n downto 0 do

power <1

for j < 1toi do

power <— power % X

p < p+ Pli]* power

return p

Find the total number of multiplications and the total number of additions
made by this algorithm.

2. Write pseudocode for the brute-force polynomial evaluation that stems from
substituting a given value of the variable into the polynomial’s formula and
evaluating it from the lowest term to the highest one. Determine the number
of multiplications and the number of additions made by this algorithm.

3. a. Estimate how much faster Horner’s rule is compared to the “lowest-to-
highest term” brute-force algorithm of Problem 2 if (i) the time of one
multiplication is significantly larger than the time of one addition; (ii) the
time of one multiplication is about the same as the time of one addition.

b. Is Horner’s rule more time efficient at the expense of being less space
efficient than the brute-force algorithm?

4. a. Apply Horner’s rule to evaluate the polynomial
p(x)=3x4fx3+2x+5 atx = —2.
b. Use the results of the above application of Horner’s rule to find the quo-
tient and remainder of the division of p(x) by x + 2.
S. Apply Horner’s rule to convert 110100101 from binary to decimal.

6. Compare the number of multiplications and additions/subtractions needed
by the “long division” of a polynomial p(x) = a,x" + a,_1x" "' + - - +a by
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In this book, we deal with an important special case of state-space graphs in
Sections 12.1 and 12.2.

Exercises 6.6

1. a. Prove the equality

lem@m, n) = — 2+
ged(m, n)

that underlies the algorithm for computing lem(m, n).

b. Euclid’s algorithm is known to be in O (log n). If it is the algorithm that is
used for computing ged(m, n), what is the efficiency of the algorithm for
computing lem(m, n)?

2. You are given a list of numbers for which you need to construct a min-heap.
(A min-heap is a complete binary tree in which every key is less than or equal
to the keys in its children.) How would you use an algorithm for constructing
a max-heap (a heap as defined in Section 6.4) to construct a min-heap?

3. Prove that the number of different paths of length k > 0 from the ith vertex to
the jth vertex in a graph (undirected or directed) equals the (i, j)th element
of A* where A is the adjacency matrix of the graph.

4. a. Design an algorithm with a time efficiency better than cubic for checking
whether a graph with n vertices contains a cycle of length 3 [Man89].

b. Consider the following algorithm for the same problem. Starting at an arbi-
trary vertex, traverse the graph by depth-first search and check whether its
depth-first search forest has a vertex with a back edge leading to its grand-
parent. If it does, the graph contains a triangle; if it does not, the graph
does not contain a triangle as its subgraph. Is this algorithm correct?

5. Given n > 3 points P; = (xy, y1), . .., P, = (x,, y,) in the coordinate plane,
design an algorithm to check whether all the points lie within a triangle with
its vertices at three of the points given. (You can either design an algorithm
from scratch or reduce the problem to another one with a known algorithm.)

6. Consider the problem of finding, for a given positive integer n, the pair of
integers whose sum is n and whose product is as large as possible. Design an
efficient algorithm for this problem and indicate its efficiency class.

7. The assignment problem introduced in Section 3.4 can be stated as follows:
There are n people who need to be assigned to execute n jobs, one person
per job. (That is, each person is assigned to exactly one job and each job is
assigned to exactly one person.) The cost that would accrue if the ith person is
assigned to the jthjobis aknown quantity C[i, j]foreachpairi, j=1,...,n.
The problem is to assign the people to the jobs to minimize the total cost of
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FIGURE 6.18 State-space graph for the peasant, wolf, goat, and cabbage puzzle.

EXAMPLE Let us revisit the classic river-crossing puzzle that was included in
the exercises for Section 1.2. A peasant finds himself on a river bank with a wolf,
a goat, and a head of cabbage. He needs to transport all three to the other side
of the river in his boat. However, the boat has room only for the peasant himself
and one other item (either the wolf, the goat, or the cabbage). In his absence, the
wolf would eat the goat, and the goat would eat the cabbage. Find a way for the
peasant to solve his problem or prove that it has no solution.

The state-space graph for this problem is given in Figure 6.18. Its vertices are
labeled to indicate the states they represent: P, w, g, ¢ stand for the peasant, the
wolf, the goat, and the cabbage, respectively; the two bars || denote the river;
for convenience, we also label the edges by indicating the boat’s occupants for
each crossing. In terms of this graph, we are interested in finding a path from the
initial-state vertex labeled Pwgc| | to the final-state vertex labeled | [Pwgc.

It is easy to see that there exist two distinct simple paths from the initial-
state vertex to the final state vertex (what are they?). If we find them by applying
breadth-first search, we get a formal proof that these paths have the smallest
number of edges possible. Hence, this puzzle has two solutions requiring seven
river crossings, which is the minimum number of crossings needed. |

Our success in solving this simple puzzle should not lead you to believe that
generating and investigating state-space graphs is always a straightforward task.
To get a better appreciation of them, consult books on artificial intelligence (AI),
the branch of computer science in which state-space graphs are a principal subject.
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x — ¢, where ¢ is some constant, with the number of these operations in the
“synthetic division.”

7. a. Apply the left-to-right binary exponentiation algorithm to compute a'7.

b. Isit possible to extend the left-to-right binary exponentiation algorithm to
work for every nonnegative integer exponent?

8. Apply the right-to-left binary exponentiation algorithm to compute a'’.

9. Design a nonrecursive algorithm for computing ¢” that mimics the right-to-left
binary exponentiation but does not explicitly use the binary representation
of n.

10. Is it a good idea to use a general-purpose polynomial-evaluation algorithm
such as Horner’s rule to evaluate the polynomial p(x) = x" + x" "1 4. +
x+1?

11. According to the corollary of the Fundamental Theorem of Algebra, every
polynomial

P =ax" +a,_1x" 1+ 4
can be represented in the form
px)=a,(x —x)x —x)...(x —x,)

where xq, x,, . . ., x,, are the roots of the polynomial (generally, complex and
not necessarily distinct). Discuss which of the two representations is more
convenient for each of the following operations:

a. polynomial evaluation at a given point

b. addition of two polynomials

¢. multiplication of two polynomials

12. Polynomial interpolation Given a set of n data points (x;, y;) where no two
x; are the same, find a polynomial p(x) of degree at most n — 1 such that
px;)=y;foreveryi=1,2,...,n.

Problem Reduction

Here is my version of a well-known joke about mathematicians. Professor X, a
noted mathematician, noticed that when his wife wanted to boil water for their
tea, she took their kettle from their cupboard, filled it with water, and put it on
the stove. Once, when his wife was away (if you have to know, she was signing
her best-seller in a local bookstore), the professor had to boil water by himself.
He saw that the kettle was sitting on the kitchen counter. What did Professor X
do? He put the kettle in the cupboard first and then proceeded to follow his wife’s
routine.
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reduction alg. A
Problem 1 Problem 2 solution
(to be solved) (solvable by alg. A) to Problem 2

FIGURE 6.15 Problem reduction strategy.

The way Professor X approached his task is an example of an important
problem-solving strategy called problem reduction. If you need to solve a problem,
reduce it to another problem that you know how to solve (Figure 6.15).

The joke about the professor notwithstanding, the idea of problem reduction
plays a central role in theoretical computer science, where it is used to classify
problems according to their complexity. We will touch on this classification in
Chapter 11. But the strategy can be used for actual problem solving, too. The
practical difficulty in applying it lies, of course, in finding a problem to which the
problem at hand should be reduced. Moreover, if we want our efforts to be of
practical value, we need our reduction-based algorithm to be more efficient than
solving the original problem directly.

Note that we have already encountered this technique earlier in the book.
In Section 6.5, for example, we mentioned the so-called synthetic division done
by applying Horner’s rule for polynomial evaluation. In Section 5.5, we used the
following fact from analytical geometry: if pi(xy, y1), pa(x3, y2), and p3(x3, y3) are
three arbitrary points in the plane, then the determinant

x oy 1
X3 y2 1| =x1yp+x3y1 + X235 — X3y2 — X1¥3 — X2
x3 y3 1

is positive if and only if the point ps is to the left of the directed line p, p, through
points p; and p,. In other words, we reduced a geometric question about the
relative locations of three points to a question about the sign of a determinant.
In fact, the entire idea of analytical geometry is based on reducing geometric
problems to algebraic ones. And the vast majority of geometric algorithms take
advantage of this historic insight by René Descartes (1596-1650). In this section,
we give a few more examples of algorithms based on the strategy of problem
reduction.

Computing the Least Common Multiple

Recall that the least common multiple of two positive integers m and n, denoted
lem(m, n), is defined as the smallest integer that is divisible by both m and n. For
example, lcm(24, 60) = 120, and Iem(11, 5) = 55. The least common multiple is
one of the most important notions in elementary arithmetic and algebra. Perhaps
you remember the following middle-school method for computing it: Given the
prime factorizations of m and n, compute the product of all the common prime
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n
maximize Z VX
j=1
n
subject to Z wjx; < w
j=1
Osxjsl forj=1,...,n.

There is no need to apply a general method for solving linear programming
problems here: this particular problem can be solved by a simple special algorithm
that is introduced in Section 12.3. (But why wait? Try to discover it on your
own now.) This reduction of the knapsack problem to an instance of the linear
programming problem is still useful, though, to prove the correctness of the
algorithm in question.

In the discrete (or 0-1) version of the knapsack problem, we are only allowed
either to take a whole item or not to take it at all. Hence, we have the following
integer linear programming problem for this version:

n
maximize Z vx;
j=1

n
subject to Z wix; < W
j=1
xje{O,l} forj=1,...,n.

This seemingly minor modification makes a drastic difference for the com-
plexity of this and similar problems constrained to take only discrete values in
their potential ranges. Despite the fact that the 0-1 version might seem to be eas-
ier because it can ignore any subset of the continuous version that has a fractional
value of an item, the 0-1 version is, in fact, much more complicated than its con-
tinuous counterpart. The reader interested in specific algorithms for solving this
problem will find a wealth of literature on the subject, including the monographs
[Mar90] and [Kel04]. |

Reduction to Graph Problems

As we pointed out in Section 1.3, many problems can be solved by a reduction
to one of the standard graph problems. This is true, in particular, for a variety of
puzzles and games. In these applications, vertices of a graph typically represent
possible states of the problem in question, and edges indicate permitted transi-
tions among such states. One of the graph’s vertices represents an initial state and
another represents a goal state of the problem. (There might be several vertices
of the latter kind.) Such a graph is called a state-space graph. Thus, the transfor-
mation just described reduces the problem to the question about a path from the
initial-state vertex to a goal-state vertex.
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maximize (or minimize) c¢1x;+ - -+ X,
subject to  aj1x; + - -+ a,x, < (or>or=)b;, fori=1,...,m

x1>0,...,x,>0.

(The last group of constraints—called the nonnegativity constraints—are, strictly
speaking, unnecessary because they are special cases of more general constraints
aj1x1+ - - -+ aj,x, > b;, but it is convenient to treat them separately.)

Linear programming has proved to be flexible enough to model a wide variety
of important applications, such as airline crew scheduling, transportation and
communication network planning, oil exploration and refining, and industrial
production optimization. In fact, linear programming is considered by many as
one of the most important achievements in the history of applied mathematics.

The classic algorithm for this problem is called the simplex method (Sec-
tion 10.1). It was discovered by the U.S. mathematician George Dantzig in the
1940s [Dan63]. Although the worst-case efficiency of this algorithm is known to
be exponential, it performs very well on typical inputs. Moreover, a more recent al-
gorithm by Narendra Karmarkar [Kar84] not only has a proven polynomial worst-
case efficiency but has also performed competitively with the simplex method in
empirical tests.

It is important to stress, however, that the simplex method and Karmarkar’s
algorithm can successfully handle only linear programming problems that do not
limit its variables to integer values. When variables of a linear programming
problem are required to be integers, the linear programming problem is said
to be an integer linear programming problem. Except for some special cases
(e.g., the assignment problem and the problems discussed in Sections 10.2-10.4),
integer linear programming problems are much more difficult. There is no known
polynomial-time algorithm for solving an arbitrary instance of the general integer
linear programming problem and, as we see in Chapter 11, such an algorithm
quite possibly does not exist. Other approaches such as the branch-and-bound
technique discussed in Section 12.2 are typically used for solving integer linear
programming problems.

EXAMPLE 2 Let us see how the knapsack problem can be reduced to a linear
programming problem. Recall from Section 3.4 that the knapsack problem can
be posed as follows. Given a knapsack of capacity W and »n items of weights
wy, ..., w,andvaluesvy, ..., v,,find the most valuable subset of the items that fits
into the knapsack. We consider first the continuous (or fractional) version of the
problem, in which any fraction of any item given can be taken into the knapsack.
Letx;, j=1,...,n, be a variable representing a fraction of item j taken into
the knapsack. Obviously, x; must satisfy the inequality 0 < x; < 1. Then the total
weight of the selected items can be expressed by the sum Z';:] w;x;, and their
total value by the sum Z'}=l v;x;. Thus, the continuous version of the knapsack
problem can be posed as the following linear programming problem:
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factors of m and n, all the prime factors of m that are not in n, and all the prime
factors of n that are not in m. For example,

24=2-2-2-3,
60=2-2-3.5,
lem(24, 60) = (2-2-3)-2-5=120.

As a computational procedure, this algorithm has the same drawbacks as the
middle-school algorithm for computing the greatest common divisor discussed
in Section 1.1: it is inefficient and requires a list of consecutive primes.

A much more efficient algorithm for computing the least common multiple
can be devised by using problem reduction. After all, there is a very efficient
algorithm (Euclid’s algorithm) for finding the greatest common divisor, which is a
product of all the common prime factors of m and n. Can we find a formula relating
lem(m, n) and ged(m, n)? Itis not difficult to see that the product of lem(m, n) and
gcd(m, n) includes every factor of m and n exactly once and hence is simply equal
to the product of m and n. This observation leads to the formula

m-n

lem(m, n) = ——,
ged(m, n)

where ged(m, n) can be computed very efficiently by Euclid’s algorithm.

Counting Paths in a Graph

As our next example, we consider the problem of counting paths between two
vertices in a graph. It is not difficult to prove by mathematical induction that the
number of different paths of length k > 0 from the ith vertex to the jth vertex
of a graph (undirected or directed) equals the (i, j)th element of A¥ where A is
the adjacency matrix of the graph. Therefore, the problem of counting a graph’s
paths can be solved with an algorithm for computing an appropriate power of its
adjacency matrix. Note that the exponentiation algorithms we discussed before
for computing powers of numbers are applicable to matrices as well.

As a specific example, consider the graph of Figure 6.16. Its adjacency matrix
A and its square AZ indicate the numbers of paths of length 1 and 2, respectively,
between the corresponding vertices of the graph. In particular, there are three

e e a b c d a b c d
al0o 1 11 al3 0 11

A b|1 0 0 O 2 b|0 1 1 1

c|1 0 0 1 cl1 1 21

e e dl1 0 1 0 a1 1 1 2

FIGURE 6.16 A graph, its adjacency matrix A, and its square A2. The elements of A and
AZ? indicate the numbers of paths of lengths 1 and 2, respectively.
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paths of length 2 that start and end at vertexa (a —b —a,a — ¢ —a,anda — d — a);
but there is only one path of length 2 froma to ¢ (a —d — ¢).

Reduction of Optimization Problems

Our next example deals with solving optimization problems. If a problem asks to
find a maximum of some function, it is said to be a maximization problem; if it
asks to find a function’s minimum, it is called a minimization problem. Suppose
now that you need to find a minimum of some function f(x) and you have an
algorithm for function maximization. How can you take advantage of the latter?
The answer lies in the simple formula

min f(x) = — max[—f(x)].

In other words, to minimize a function, we can maximize its negative instead and,
to get a correct minimal value of the function itself, change the sign of the answer.
This property is illustrated for a function of one real variable in Figure 6.17.

Of course, the formula

max f(x) = — min[— £ (x)]

is valid as well; it shows how a maximization problem can be reduced to an
equivalent minimization problem.

This relationship between minimization and maximization problems is very
general: it holds for functions defined on any domain D. In particular, we can

ya

FIGURE 6.17 Relationship between minimization and maximization problems:
min f(x) = — max[—f (x)].
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apply it to functions of several variables subject to additional constraints. A very
important class of such problems is introduced below in this section.

Now that we are on the topic of function optimization, it is worth pointing out
that the standard calculus procedure for finding extremum points of a function is,
in fact, also based on problem reduction. Indeed, it suggests finding the function’s
derivative f’(x) and then solving the equation f’(x) =0 to find the function’s
critical points. In other words, the optimization problem is reduced to the problem
of solving an equation as the principal part of finding extremum points. Note
that we are not calling the calculus procedure an algorithm, since it is not clearly
defined. In fact, there is no general method for solving equations. A little secret of
calculus textbooks is that problems are carefully selected so that critical points
can always be found without difficulty. This makes the lives of both students
and instructors easier but, in the process, may unintentionally create a wrong
impression in students’ minds.

Linear Programming

Many problems of optimal decision making can be reduced to an instance of
the linear programming problem—a problem of optimizing a linear function of
several variables subject to constraints in the form of linear equations and linear
inequalities.

EXAMPLE 1 Consider a university endowment that needs to invest $100 million.
This sum has to be split between three types of investments: stocks, bonds, and
cash. The endowment managers expect an annual return of 10%, 7%, and 3% for
their stock, bond, and cash investments, respectively. Since stocks are more risky
than bonds, the endowment rules require the amount invested in stocks to be no
more than one-third of the moneys invested in bonds. In addition, at least 25%
of the total amount invested in stocks and bonds must be invested in cash. How
should the managers invest the money to maximize the return?

Let us create a mathematical model of this problem. Let x, y, and z be the
amounts (in millions of dollars) invested in stocks, bonds, and cash, respectively.
By using these variables, we can pose the following optimization problem:

maximize 0.10x 4+ 0.07y 4+ 0.03z
subjectto x +y+z=100
x<iy
2> 0.25(x +y)
x>0, y>=0, z>0. [ |

Although this example is both small and simple, it does show how a problem
of optimal decision making can be reduced to an instance of the general linear
programming problem
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is to use “lazy deletion,” i.e., to mark previously occupied locations by a special
symbol to distinguish them from locations that have not been occupied.

The mathematical analysis of linear probing is a much more difficult problem
than that of separate chaining.® The simplified versions of these results state that
the average number of times the algorithm must access the hash table with the
load factor « in successful and unsuccessful searches is, respectively,

1 1 1 1
SN2(1+1701) and UN2(1+(1701)2) (7.5)
(and the accuracy of these approximations increases with larger sizes of the hash
table). These numbers are surprisingly small even for densely populated tables,
i.e., for large percentage values of a:

1 1 1 1
a s+ =) 1+ m)
50% 15 2.5
75% 2.5 8.5
90% 55 50.5

Still, as the hash table gets closer to being full, the performance of linear prob-
ing deteriorates because of a phenomenon called clustering. A cluster in linear
probing is a sequence of contiguously occupied cells (with a possible wrapping).
For example, the final state of the hash table of Figure 7.6 has two clusters. Clus-
ters are bad news in hashing because they make the dictionary operations less
efficient. As clusters become larger, the probability that a new element will be
attached to a cluster increases; in addition, large clusters increase the probabil-
ity that two clusters will coalesce after a new key’s insertion, causing even more
clustering.

Several other collision resolution strategies have been suggested to alleviate
this problem. One of the most important is double hashing. Under this scheme, we
use another hash function, s(K), to determine a fixed increment for the probing
sequence to be used after a collision at location / = h(K):

(I +s(K)) mod m, (I +2s(K)) mod m, RV (7.6)

To guarantee that every location in the table is probed by sequence (7.6), the incre-
ment s(k) and the table size m must be relatively prime, i.e., their only common
divisor must be 1. (This condition is satisfied automatically if m itself is prime.)
Some functions recommended in the literature are s(k) =m — 2 — k mod (m — 2)
and s(k) =8 — (k mod 8) for small tables and s(k) = k mod 97 + 1 for larger ones.

This problem was solved in 1962 by a young graduate student in mathematics named Donald E.
Knuth. Knuth went on to become one of the most important computer scientists of our time. His
multivolume treatise The Art of Computer Programming [Knul, Knull, KnulIl, KnulV] remains the
most comprehensive and influential book on algorithmics ever published.
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is actually solved but, unlike the input-enhancement variety, it deals with access
structuring. We illustrate this approach by:

B hashing (Section 7.3)
®  indexing with B-trees (Section 7.4)

There is one more algorithm design technique related to the space-for-time
trade-off idea: dynamic programming. This strategy is based on recording solu-
tions to overlapping subproblems of a given problem in a table from which a solu-
tion to the problem in question is then obtained. We discuss this well-developed
technique separately, in the next chapter of the book.

Two final comments about the interplay between time and space in algo-
rithm design need to be made. First, the two resources—time and space—do not
have to compete with each other in all design situations. In fact, they can align to
bring an algorithmic solution that minimizes both the running time and the space
consumed. Such a situation arises, in particular, when an algorithm uses a space-
efficient data structure to represent a problem’s input, which leads, in turn, to a
faster algorithm. Consider, as an example, the problem of traversing graphs. Re-
call that the time efficiency of the two principal traversal algorithms—depth-first
search and breadth-first search—depends on the data structure used for repre-
senting graphs: it is © (n2) for the adjacency matrix representation and @ (n + m)
for the adjacency list representation, where n and m are the numbers of vertices
and edges, respectively. If input graphs are sparse, i.e., have few edges relative to
the number of vertices (say, m € O(n)), the adjacency list representation may well
be more efficient from both the space and the running-time points of view. The
same situation arises in the manipulation of sparse matrices and sparse polynomi-
als: if the percentage of zeros in such objects is sufficiently high, we can save both
space and time by ignoring zeros in the objects’ representation and processing.

Second, one cannot discuss space-time trade-offs without mentioning the
hugely important area of data compression. Note, however, that in data compres-
sion, size reduction is the goal rather than a technique for solving another problem.
We discuss just one data compression algorithm, in the next chapter. The reader
interested in this topic will find a wealth of algorithms in such books as [Say05].

Sorting by Counting

As a first example of applying the input-enhancement technique, we discuss its
application to the sorting problem. One rather obvious idea is to count, for each
element of a list to be sorted, the total number of elements smaller than this
element and record the results in a table. These numbers will indicate the positions
of the elements in the sorted list: e.g., if the count is 10 for some element, it should
be in the 11th position (with index 10, if we start counting with 0) in the sorted
array. Thus, we will be able to sort the list by simply copying its elements to their
appropriate positions in a new, sorted list. This algorithm is called comparison-
counting sort (Figure 7.1).
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Array A[0..5] [62]31[84]96[19]47 ]
Initially Countl] | O 0 0 0 0 0
Afterpass/ =0 Countl] | 3 | O 1 1 0 0
After pass i =1 Count] 1 212101
After pass i =2 Count] 4 | 3 0 1
After pass i =3 Count ] 5 0 1
After pass i =4 Countl] 0| 2
Final state Countl[] | 3 1 4 |5 0 2
Array S10..5] [19]31]47[62]84]9 |

FIGURE 7.1 Example of sorting by comparison counting.

ALGORITHM ComparisonCountingSort(A[0..n — 1])
/[Sorts an array by comparison counting
/Input: An array A[0..n — 1] of orderable elements
//Output: Array S[0..n — 1] of A’s elements sorted in nondecreasing order
fori < O0ton —1do Count[i] <0
fori < Oton —2do
forj<i+1ton—1do
if Ali] < A[j]
Count[j] < Count[j]+1
else Count[i] < Count[i]+1
fori < O0ton —1do S[Count[i]] < Ali]
return §

What is the time efficiency of this algorithm? It should be quadratic because
the algorithm considers all the different pairs of an n-element array. More formally,
the number of times its basic operation, the comparison A[i] < A[/], is executed
is equal to the sum we have encountered several times already:

n-2 n-1 n—-2 n-2
-1
cCm=> > 1=Z[(n71)7(i+1)+1]=2(n717i)=%.
i=0 j=i+1 i=0 i=0

Thus, the algorithm makes the same number of key comparisons as selection sort
and in addition uses a linear amount of extra space. On the positive side, the
algorithm makes the minimum number of key moves possible, placing each of
them directly in their final position in a sorted array.

The counting idea does work productively in a situation in which elements
to be sorted belong to a known small set of values. Assume, for example, that
we have to sort a list whose values can be either 1 or 2. Rather than applying a
general sorting algorithm, we should be able to take advantage of this additional

272

Space and Time Trade-Offs

Closed Hashing (Open Addressing)

In closed hashing, all keys are stored in the hash table itself without the use
of linked lists. (Of course, this implies that the table size m must be at least as
large as the number of keys n.) Different strategies can be employed for collision
resolution. The simplest one—called linear probing—checks the cell following
the one where the collision occurs. If that cell is empty, the new key is installed
there; if the next cell is already occupied, the availability of that cell’s immediate
successor is checked, and so on. Note that if the end of the hash table is reached,
the search is wrapped to the beginning of the table; i.e., it is treated as a circular
array. This method is illustrated in Figure 7.6 with the same word list and hash
function used above to illustrate separate chaining.

To search for a given key K, we start by computing 4(K) where 4 is the hash
function used in the table construction. If the cell #(K) is empty, the search is
unsuccessful. If the cell is not empty, we must compare K with the cell’s occupant:
if they are equal, we have found a matching key; if they are not, we compare K
with a key in the next cell and continue in this manner until we encounter either
a matching key (a successful search) or an empty cell (unsuccessful search). For
example, if we search for the word LIT in the table of Figure 7.6, we will get 2(LIT)
= (124 9+ 20) mod 13 =2 and, since cell 2 is empty, we can stop immediately.
However, if we search for KID with 2(KID) = (11 + 9 + 4) mod 13 = 11, we will
have to compare KID with ARE, SOON, PARTED, and A before we can declare the
search unsuccessful.

Although the search and insertion operations are straightforward for this
version of hashing, deletion is not. For example, if we simply delete the key ARE
from the last state of the hash table in Figure 7.6, we will be unable to find the key
SOON afterward. Indeed, after computing 4#(SOON) = 11, the algorithm would find
this location empty and report the unsuccessful search result. A simple solution

keys A | FOOL | AND | HIS | MONEY | ARE | SOON | PARTED
hash addresses 1 9 6 10 7 1 1 12
0 12 3 4 5 6 7 8 9 10 n 12

A

A FOOL

A AND FOOL

A AND FOOL | HIS

A AND | MONEY FOOL | HIS

A AND | MONEY FOOL | HIS | ARE

A AND | MONEY FOOL | HIS | ARE | SOON
PARTED | A AND | MONEY FOOL | HIS | ARE | SOON

FIGURE 7.6 Example of a hash table construction with linear probing.
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keys A | FOOL | AND | HIS | MONEY | ARE | SOON | PARTED
hash addresses 1 9 6 10 7 1 1 12
0 1 2 3 4 5 6 7 8 9 10 " 12
LT T T T T T ] [ ] [ ] | |
{ l { l { { {
A AND  MONEY FOOL  HIS ARE PARTED
{
SOON

FIGURE 7.5 Example of a hash table construction with separate chaining.

of the hash function. If the hash function distributes n keys among m cells of the
hash table about evenly, each list will be about n/m keys long. The ratioo =n/m,
called the load factor of the hash table, plays a crucial role in the efficiency of
hashing. In particular, the average number of pointers (chain links) inspected in
successful searches, S, and unsuccessful searches, U, turns out to be

S~1+ and U=a, (7.4)
respectively, under the standard assumptions of searching for a randomly selected
element and a hash function distributing keys uniformly among the table’s cells.
These results are quite natural. Indeed, they are almost identical to searching
sequentially in a linked list; what we have gained by hashing is a reduction in
average list size by a factor of m, the size of the hash table.

Normally, we want the load factor to be not far from 1. Having it too small
would imply a lot of empty lists and hence inefficient use of space; having it too
large would mean longer linked lists and hence longer search times. But if we
do have the load factor around 1, we have an amazingly efficient scheme that
makes it possible to search for a given key for, on average, the price of one or
two comparisons! True, in addition to comparisons, we need to spend time on
computing the value of the hash function for a search key, but it is a constant-time
operation, independent from n and m. Note that we are getting this remarkable
efficiency not only as a result of the method’s ingenuity but also at the expense of
extra space.

The two other dictionary operations—insertion and deletion—are almost
identical to searching. Insertions are normally done at the end of a list (but see
Problem 6 in this section’s exercises for a possible modification of this rule).
Deletion is performed by searching for a key to be deleted and then removing
it from its list. Hence, the efficiency of these operations is identical to that of
searching, and they are all ©(1) in the average case if the number of keys n is
about equal to the hash table’s size m.
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information about values to be sorted. Indeed, we can scan the list to compute
the number of 1’s and the number of 2’s in it and then, on the second pass,
simply make the appropriate number of the first elements equal to 1 and the
remaining elements equal to 2. More generally, if element values are integers
between some lower bound / and upper bound u, we can compute the frequency
of each of those values and store them in array F[0..u — []. Then the first F[0]
positions in the sorted list must be filled with /, the next F[1] positions with / + 1,
and so on. All this can be done, of course, only if we can overwrite the given
elements.

Let us consider a more realistic situation of sorting a list of items with some
other information associated with their keys so that we cannot overwrite the list’s
elements. Then we can copy elements into anew array S[0..n — 1]to hold the sorted
list as follows. The elements of A whose values are equal to the lowest possible
value/ are copied into the first F[0]elements of S, i.e., positions 0 through F[0] — 1;
the elements of value / + 1 are copied to positions from F[0]to (F[0] + F[1]) — 1;
and so on. Since such accumulated sums of frequencies are called a distribution
in statistics, the method itself is known as distribution counting.

EXAMPLE Consider sorting the array

[Blu]e]n[e]ir]

whose values are known to come from the set {11, 12, 13} and should not be
overwritten in the process of sorting. The frequency and distribution arrays are
as follows:

Array values 11 12 13
Frequencies 1 3 2
Distribution values 1 4 6

Note that the distribution values indicate the proper positions for the last occur-
rences of their elements in the final sorted array. If we index array positions from 0
ton — 1, the distribution values must be reduced by 1 to get corresponding element
positions.

It is more convenient to process the input array right to left. For the example,
the last element is 12, and, since its distribution value is 4, we place this 12 in
position 4 — 1 =3 of the array S that will hold the sorted list. Then we decrease
the 12’s distribution value by 1 and proceed to the next (from the right) element
in the given array. The entire processing of this example is depicted in Figure 7.2.
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DI0..2] S[0..5]
AlBl =12 114|6 12
Aldl =12 113]|6 12
Al3]=13 1126 13
Al2l=12 112|656 12
Alll=11 111165 11
Al0] =13 0|1 1[5 13

FIGURE 7.2 Example of sorting by distribution counting. The distribution values being

decremented are shown in bold. -

Here is pseudocode of this algorithm.

ALGORITHM  DistributionCountingSort(A[0..n — 1], 1, u)

/[Sorts an array of integers from a limited range by distribution counting
/Input: An array A[0..n — 1] of integers between / and u (I < u)
//Output: Array S[0..n — 1] of A’s elements sorted in nondecreasing order
for j < Otou —Ido D[j]« 0 /finitialize frequencies
fori < 0ton —1do D[A[i]— ] < D[A[i]— ]+ 1//compute frequencies
for j < 1tou — Il do D[j] < D[j — 1]+ D[j] /Ireuse for distribution
fori < n — 1 downto 0 do

Jj < Ali]-1

S[DLj]-1] < A[{]

D[j] < D[j]-1
return §

Assuming that the range of array values is fixed, this is obviously a linear
algorithm because it makes just two consecutive passes through its input array
A. This is a better time-efficiency class than that of the most efficient sorting
algorithms—mergesort, quicksort, and heapsort—we have encountered. It is im-
portant to remember, however, that this efficiency is obtained by exploiting the
specific nature of inputs for which sorting by distribution counting works, in addi-
tion to trading space for time.

Exercises 7.1

1. Isit possible to exchange numeric values of two variables, say, u and v, without
using any extra storage?

2. Will the comparison-counting algorithm work correctly for arrays with equal
values?

3. Assuming that the set of possible list values is {a, b, ¢, d}, sort the following
list in alphabetical order by the distribution-counting algorithm:

b, ¢, d, ¢, b, a, a, b.
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S

0 b m-1

FIGURE 7.4 Collision of two keys in hashing: #(K;) = h(K ).

Obviously, if we choose a hash table’s size m to be smaller than the number
of keys n, we will get collisions—a phenomenon of two (or more) keys being
hashed into the same cell of the hash table (Figure 7.4). But collisions should be
expected even if m is considerably larger than n (see Problem 5 in this section’s
exercises). In fact, in the worst case, all the keys could be hashed to the same cell
of the hash table. Fortunately, with an appropriately chosen hash table size and a
good hash function, this situation happens very rarely. Still, every hashing scheme
must have a collision resolution mechanism. This mechanism is different in the
two principal versions of hashing: open hashing (also called separate chaining)
and closed hashing (also called open addressing).

Open Hashing (Separate Chaining)

In open hashing, keys are stored in linked lists attached to cells of a hash table.
Each list contains all the keys hashed to its cell. Consider, as an example, the
following list of words:

A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED.

As a hash function, we will use the simple function for strings mentioned above,
i.e., we will add the positions of a word’s letters in the alphabet and compute the
sum’s remainder after division by 13.

We start with the empty table. The first key is the word A; its hash value is
h(A) = 1mod 13 = 1. The second key—the word FOOL—is installed in the ninth
cell since (6 + 15 + 15+ 12) mod 13 = 9, and so on. The final result of this process
is given in Figure 7.5; note a collision of the keys ARE and SOON because 4 (ARE) =
(1418 +5) mod 13 =11 and ~(SOON) = (19 + 15 + 15 + 14) mod 13 =11.

How do we search in a dictionary implemented as such a table of linked lists?
We do this by simply applying to a search key the same procedure that was used
for creating the table. To illustrate, if we want to search for the key KID in the hash
table of Figure 7.5, we first compute the value of the same hash function for the
key: h(KID) = 11. Since the list attached to cell 11 is not empty, its linked list may
contain the search key. But because of possible collisions, we cannot tell whether
this is the case until we traverse this linked list. After comparing the string KID first
with the string ARE and then with the string SOON, we end up with an unsuccessful
search.

In general, the efficiency of searching depends on the lengths of the linked
lists, which, in turn, depend on the dictionary and table sizes, as well as the quality



7.3

7.3 Hashing 269

Hashing

In this section, we consider a very efficient way to implement dictionaries. Recall
that a dictionary is an abstract data type, namely, a set with the operations of
searching (lookup), insertion, and deletion defined on its elements. The elements
of this set can be of an arbitrary nature: numbers, characters of some alphabet,
character strings, and so on. In practice, the most important case is that of records
(student records in a school, citizen records in a governmental office, book records
in a library).

Typically, records comprise several fields, each responsible for keeping a
particular type of information about an entity the record represents. For example,
a student record may contain fields for the student’s ID, name, date of birth, sex,
home address, major, and so on. Among record fields there is usually at least one
called a key that is used for identifying entities represented by the records (e.g.,
the student’s ID). In the discussion below, we assume that we have to implement
a dictionary of n records with keys Ky, Ky, ..., K.

Hashing is based on the idea of distributing keys among a one-dimensional
array H[0..m — 1] called a hash table. The distribution is done by computing, for
each of the keys, the value of some predefined function 4 called the hash function.
This function assigns an integer between 0 and m — 1, called the hash address, to
a key.

For example, if keys are nonnegative integers, a hash function can be of
the form i (K) = K mod m; obviously, the remainder of division by m is always
between 0 and m — 1. If keys are letters of some alphabet, we can first assign a letter
its position in the alphabet, denoted here ord(K), and then apply the same kind
of a function used for integers. Finally, if K is a character string cyc; . . . ¢;_1, We
can use, as a very unsophisticated option, (Zf;ol ord(c;)) mod m. A better option
is to compute 7(K) as follows:2

h<«0; fori<«O0tos—1doh « (h*C + ord(c;)) modm,

where C is a constant larger than every ord(c;).
In general, a hash function needs to satisfy somewhat conflicting require-
ments:

B A hash table’s size should not be excessively large compared to the number of
keys, but it should be sufficient to not jeopardize the implementation’s time
efficiency (see below).

B A hash function needs to distribute keys among the cells of the hash table as
evenly as possible. (This requirement makes it desirable, for most applications,
to have a hash function dependent on all bits of a key, not just some of them.)

B A hash function has to be easy to compute.

This can be obtained by treating ord(c;) as digits of a number in the C-based system, computing its

decimal value by Horner’s rule, and finding the remainder of the number after dividing it by m.
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. Is the distribution-counting algorithm stable?

w

. Design a one-line algorithm for sorting any array of size n whose values are n
distinct integers from 1 to n.

6. The ancestry problem asks to determine whether a vertex u is an ancestor
of vertex v in a given binary (or, more generally, rooted ordered) tree of n
vertices. Design a O (n) input-enhancement algorithm that provides sufficient
information to solve this problem for any pair of the tree’s vertices in constant
time.

7. The following technique, known as virtual initialization, provides a time-
efficient way to initialize just some elements of a given array A[0..n — 1] so
that for each of its elements, we can say in constant time whether it has been
initialized and, if it has been, with which value. This is done by utilizing a
variable counter for the number of initialized elements in A and two auxiliary
arrays of the same size, say B[0..n — 1] and C[0..n — 1], defined as follows.
B[0], ..., B[counter — 1] contain the indices of the elements of A that were
initialized: B[0] contains the index of the element initialized first, B[1] contains
the index of the element initialized second, etc. Furthermore, if A[i] was the
kth element (0 < k < counter — 1) to be initialized, C[i] contains k.

a. Sketch the state of arrays A[0..7], B[0..7], and C[0..7] after the three as-
signments

A[3] < x; Al7] <z A[l] « y.

b. In general, how can we check with this scheme whether A[i] has been
initialized and, if it has been, with which value?

8. Least distance sorting There are 10 Egyptian stone statues standing in a row
in an art gallery hall. A new curator wants to move them so that the statues
are ordered by their height. How should this be done to minimize the total
distance that the statues are moved? You may assume for simplicity that all
the statues have different heights. [Azi10]

9. a. Write a program for multiplying two sparse matrices, a p x ¢ matrix A and
a g x r matrix B.

b. Write a program for multiplying two sparse polynomials p(x) and g (x) of
degrees m and n, respectively.

10. Is it a good idea to write a program that plays the classic game of tic-tac-toe
with the human user by storing all possible positions on the game’s 3 x 3 board

along with the best move for each of them?

Input Enhancement in String Matching

In this section, we see how the technique of input enhancement can be applied
to the problem of string matching. Recall that the problem of string matching
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requires finding an occurrence of a given string of m characters called the pattern
in a longer string of n characters called the text. We discussed the brute-force
algorithm for this problem in Section 3.2: it simply matches corresponding pairs
of characters in the pattern and the text left to right and, if a mismatch occurs,
shifts the pattern one position to the right for the next trial. Since the maximum
number of such trials is n —m + 1 and, in the worst case, m comparisons need to
be made on each of them, the worst-case efficiency of the brute-force algorithm is
in the O (nm) class. On average, however, we should expect just a few comparisons
before a pattern’s shift, and for random natural-language texts, the average-case
efficiency indeed turns out to be in O (n + m).

Several faster algorithms have been discovered. Most of them exploit the
input-enhancement idea: preprocess the pattern to get some information about
it, store this information in a table, and then use this information during an actual
search for the pattern in a given text. This is exactly the idea behind the two best-
known algorithms of this type: the Knuth-Morris-Pratt algorithm [Knu77] and the
Boyer-Moore algorithm [Boy77].

The principal difference between these two algorithms lies in the way they
compare characters of a pattern with their counterparts in a text: the Knuth-
Morris-Pratt algorithm does it left to right, whereas the Boyer-Moore algorithm
does it right to left. Since the latter idea leads to simpler algorithms, it is the
only one that we will pursue here. (Note that the Boyer-Moore algorithm starts
by aligning the pattern against the beginning characters of the text; if the first
trial fails, it shifts the pattern to the right. It is comparisons within a trial that the
algorithm does right to left, starting with the last character in the pattern.)

Although the underlying idea of the Boyer-Moore algorithm is simple, its
actual implementation in a working method is less so. Therefore, we start our
discussion with a simplified version of the Boyer-Moore algorithm suggested by
R. Horspool [Hor80]. In addition to being simpler, Horspool’s algorithm is not
necessarily less efficient than the Boyer-Moore algorithm on random strings.

Horspool’s Algorithm

Consider, as an example, searching for the pattern BARBER in some text:

S0 Cc Sp—1
B ARBER

Starting with the last R of the pattern and moving right to left, we compare the
corresponding pairs of characters in the pattern and the text. If all the pattern’s
characters match successfully, a matching substring is found. Then the search
can be either stopped altogether or continued if another occurrence of the same
pattern is desired.

If a mismatch occurs, we need to shift the pattern to the right. Clearly, we
would like to make as large a shift as possible without risking the possibility of
missing a matching substring in the text. Horspool’s algorithm determines the size
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10.

11.

. How many character comparisons will be made by Horspool’s algorithm in

searching for each of the following patterns in the binary text of 1000 zeros?
a. 00001  b. 10000  ¢. 01010

. For searching in a text of length n for a pattern of length m (n > m) with

Horspool’s algorithm, give an example of
a. worst-case input. b. best-case input.

. Is it possible for Horspool’s algorithm to make more character comparisons

than the brute-force algorithm would make in searching for the same pattern
in the same text?

. If Horspool’s algorithm discovers a matching substring, how large a shift

should it make to search for a next possible match?

. How many character comparisons will the Boyer-Moore algorithm make in

searching for each of the following patterns in the binary text of 1000 zeros?
a. 00001  b. 10000  ¢. 01010

a. Would the Boyer-Moore algorithm work correctly with just the bad-symbol
table to guide pattern shifts?

b. Would the Boyer-Moore algorithm work correctly with just the good-suffix
table to guide pattern shifts?

a. If the last characters of a pattern and its counterpart in the text do match,
does Horspool’s algorithm have to check other characters right to left, or
can it check them left to right too?

b. Answer the same question for the Boyer-Moore algorithm.

Implement Horspool’s algorithm, the Boyer-Moore algorithm, and the brute-
force algorithm of Section 3.2 in the language of your choice and run an
experiment to compare their efficiencies for matching

a. random binary patterns in random binary texts.

b. random natural-language patterns in natural-language texts.

You are given two strings S and 7, each n characters long. You have to

establish whether one of them is a right cyclic shift of the other. For example,

PLEA is a right cyclic shift of LEAP, and vice versa. (Formally, 7 is a right cyclic

shift of S if T can be obtained by concatenating the (n — i)-character suffix of

S and the i-character prefix of S for some 1 <i <n.)

a. Design a space-efficient algorithm for the task. Indicate the space and time
efficiencies of your algorithm.

b. Design a time-efficient algorithm for the task. Indicate the time and space
efficiencies of your algorithm.
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B

B A O B A B

di=t()-2=4 B A 0 B A B

dy=35 d=4()—-1=5

d=max{4,5} =5 d,=2

d =max{5,2} =5
B A O B A B

FIGURE 7.3 Example of string matching with the Boyer-Moore algorithm.

the pattern by max{d; d,} = max{6 — 1, 2} = 5. Note that on this iteration it is the
bad-symbol rule that leads to a farther shift of the pattern. The next try finds a
matching substring in the text after successfully matching all six characters of the
pattern with their counterparts in the text. |

When searching for the first occurrence of the pattern, the worst-case effi-
ciency of the Boyer-Moore algorithm is known to be linear. Though this algorithm
runs very fast, especially on large alphabets (relative to the length of the pattern),
many people prefer its simplified versions, such as Horspool’s algorithm, when
dealing with natural-language-like strings.

Exercises 7.2

1. Apply Horspool’s algorithm to search for the pattern BAOBAB in the text
BESS_KNEW_ABOUT_BAOBABS

2. Consider the problem of searching for genes in DNA sequences using Hor-
spool’s algorithm. A DNA sequence is represented by a text on the alphabet
{A, C, G, T}, and the gene or gene segment is the pattern.

a. Construct the shift table for the following gene segment of your chromo-
some 10:

TCCTATTCTT

b. Apply Horspool’s algorithm to locate the above pattern in the following
DNA sequence:

TTATAGATCTCGTATTCTTTTATAGATCTCCTATTCTT
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of such a shift by looking at the character ¢ of the text that is aligned against the
last character of the pattern. This is the case even if character c itself matches its
counterpart in the pattern.

In general, the following four possibilities can occur.

Case 1 If there are no ¢’s in the pattern—e.g., c is letter S in our example—
we can safely shift the pattern by its entire length (if we shift less, some character
of the pattern would be aligned against the text’s character ¢ that is known not to
be in the pattern):

0 S Sp—1
I
BARBER
B ARBER

Case2 Ifthere are occurrences of character c in the pattern but it is not the last
one there—e.g., c is letter B in our example—the shift should align the rightmost
occurrence of ¢ in the pattern with the ¢ in the text:

S0 .- B e S
I
BARBER
BARBER

Case 3 If ¢ happens to be the last character in the pattern but there are no ¢’s
among its other m — 1 characters—e.g., c is letter R in our example—the situation
is similar to that of Case 1 and the pattern should be shifted by the entire pattern’s
length m:

o .- M ER oo S,

LEADER

Case 4 Finally, if ¢ happens to be the last character in the pattern and there
are other ¢’s among its first m — 1 characters—e.g., c is letter R in our example—
the situation is similar to that of Case 2 and the rightmost occurrence of ¢ among
the first m — 1 characters in the pattern should be aligned with the text’s c:

So ... A R e S
ol
REORDER
REORDER

These examples clearly demonstrate that right-to-left character comparisons
can lead to farther shifts of the pattern than the shifts by only one position
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always made by the brute-force algorithm. However, if such an algorithm had
to check all the characters of the pattern on every trial, it would lose much
of this superiority. Fortunately, the idea of input enhancement makes repetitive
comparisons unnecessary. We can precompute shift sizes and store them in a table.
The table will be indexed by all possible characters that can be encountered in a
text, including, for natural language texts, the space, punctuation symbols, and
other special characters. (Note that no other information about the text in which
eventual searching will be done is required.) The table’s entries will indicate the
shift sizes computed by the formula

the pattern’s length m,
if ¢ is not among the first m — 1 characters of the pattern;
t(c) = (7.1)
the distance from the rightmost ¢ among the first m — 1 characters
of the pattern to its last character, otherwise.

For example, for the pattern BARBER, all the table’s entries will be equal to 6, except
for the entries for E, B, R, and A, which will be 1, 2, 3, and 4, respectively.

Here is a simple algorithm for computing the shift table entries. Initialize all
the entries to the pattern’s length m and scan the pattern left to right repeating the
following step m — 1 times: for the jth character of the pattern (0 < j <m —2),
overwrite its entry in the table with m — 1 — j, which is the character’s distance to
the last character of the pattern. Note that since the algorithm scans the pattern
from left to right, the last overwrite will happen for the character’s rightmost
occurrence—exactly as we would like it to be.

ALGORITHM  ShiftTable(P[0..m — 1])
/[Fills the shift table used by Horspool’s and Boyer-Moore algorithms
//Input: Pattern P[0..m — 1] and an alphabet of possible characters
/IOutput: Table[0..size — 1] indexed by the alphabet’s characters and
I filled with shift sizes computed by formula (7.1)
fori < 0tosize — 1do Tuble[i] < m
for j < 0tom —2do Table[P[jl]«m—1—j
return Table

Now, we can summarize the algorithm as follows:

Horspool’s algorithm

Step 1 For a given pattern of length m and the alphabet used in both the
pattern and text, construct the shift table as described above.

Step 2 Align the pattern against the beginning of the text.

Step 3 Repeat the following until either a matching substring is found or the
pattern reaches beyond the last character of the text. Starting with the
last character in the pattern, compare the corresponding characters in
the pattern and text until either all m characters are matched (then
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number of positions computed by the formula

_{dl ifk=0,

max{d;, &y} ifk >0, (7.3)

where di = max{t;(c) — k, 1}.

Shifting by the maximum of the two available shifts when k > 0 is quite log-
ical. The two shifts are based on the observations—the first one about a text’s
mismatched character, and the second one about a matched group of the pattern’s
rightmost characters—that imply that shifting by less than d; and d, characters, re-
spectively, cannot lead to aligning the pattern with a matching substring in the text.
Since we are interested in shifting the pattern as far as possible without missing a
possible matching substring, we take the maximum of these two numbers.

EXAMPLE As a complete example, let us consider searching for the pattern
BAOBAB in a text made of English letters and spaces. The bad-symbol table looks
as follows:

c AlB|C|ID| ... 0| ... |Z

ne | 1]206l6| 6 |3 6 |66

The good-suffix table is filled as follows:

=~

pattern dy

BAOBAB
BAOBAB
BAOBAB
BAOBAB
BAOBAB

DB W N =
[V NNV RNV BV I )

The actual search for this pattern in the text given in Figure 7.3 proceeds as
follows. After the last B of the pattern fails to match its counterpart K in the text,
the algorithm retrieves #;(K) = 6 from the bad-symbol table and shifts the pat-
tern by d; = max{t;(K) — 0, 1} = 6 positions to the right. The new try successfully
matches two pairs of characters. After the failure of the third comparison on the
space character in the text, the algorithm retrieves #;(_) = 6 from the bad-symbol
table and d) = 5 from the good-suffix table to shift the pattern by max{d,, d,} =
max{6 — 2, 5} = 5. Note that on this iteration it is the good-suffix rule that leads
to a farther shift of the pattern.

The next try successfully matches just one pair of B’s. After the failure of
the next comparison on the space character in the text, the algorithm retrieves
t1(_) = 6 from the bad-symbol table and d, = 2 from the good-suffix table to shift
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S0

= W

BCBAB o Se
I

N> o
len)

ABCBAB

Note that the shift by 6 is correct for the pattern DBCBAB but not for ABCBAB,
because the latter pattern has the same substring AB as its prefix (beginning part
of the pattern) and as its suffix (ending part of the pattern). To avoid such an
erroneous shift based on a suffix of size k, for which there is no other occurrence
in the pattern not preceded by the same character as in its rightmost occurrence,
we need to find the longest prefix of size [ < k that matches the suffix of the same
size [. If such a prefix exists, the shift size d, is computed as the distance between
this prefix and the corresponding suffix; otherwise, d, is set to the pattern’s length
m. As an example, here is the complete list of the d, values—the good-suffix table
of the Boyer-Moore algorithm—for the pattern ABCBAB:

k pattern dy

ABCBAB
ABCBAB
ABCBAB
ABCBAB
ABCBAB

L S S
F OO N Y

Now we are prepared to summarize the Boyer-Moore algorithm in its entirety.

The Boyer-Moore algorithm

Step 1 For a given pattern and the alphabet used in both the pattern and the
text, construct the bad-symbol shift table as described earlier.

Step 2 Using the pattern, construct the good-suffix shift table as described
earlier.

Step 3 Align the pattern against the beginning of the text.

Step 4 Repeat the following step until either a matching substring is found or
the pattern reaches beyond the last character of the text. Starting with
the last character in the pattern, compare the corresponding characters
in the pattern and the text until either all m character pairs are matched
(then stop) or a mismatching pair is encountered after k > 0 character
pairs are matched successfully. In the latter case, retrieve the entry
t1(c) from the ¢’s column of the bad-symbol table where c is the text’s
mismatched character. If k > 0, also retrieve the corresponding d,
entry from the good-suffix table. Shift the pattern to the right by the
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stop) or a mismatching pair is encountered. In the latter case, retrieve
the entry 7 (c) from the ¢’s column of the shift table where c is the text’s
character currently aligned against the last character of the pattern,
and shift the pattern by 7(c) characters to the right along the text.

Here is pseudocode of Horspool’s algorithm.

ALGORITHM  HorspoolMatching(P[0..m — 1], T[0..n — 1])
/Implements Horspool’s algorithm for string matching
//Input: Pattern P[0..m — 1] and text T[0..n — 1]
//Output: The index of the left end of the first matching substring

I or —1 if there are no matches
ShiftTable(P[0..m — 1]) /lgenerate Table of shifts
i<m-—1 /Iposition of the pattern’s right end
while i <n —1do

k<0 /Inumber of matched characters

while k <m — land P[m —1—k]=T[i — k] do

k<—k+1
ifk=m

returni —m + 1
else i < i + Table[T[i]]
return —1

EXAMPLE As an example of a complete application of Horspool’s algorithm,
consider searching for the pattern BARBER in a text that comprises English letters
and spaces (denoted by underscores). The shift table, as we mentioned, is filled as
follows:

characterc |A|B|C|D|E|F| ... |R| ... |Z

shifte(e) | 4 |26 | 6| 1|6 6 3 6 616

The actual search in a particular text proceeds as follows:

JIM_SAW_ME_IN_A_BARBERSHOP
BARBER BARBER

B A RBER B ARBER

B ARBER B ARBER ]

A simple example can demonstrate that the worst-case efficiency of Hor-
spool’s algorithm is in O(nm) (Problem 4 in this section’s exercises). But for
random texts, it is in ® (n), and, although in the same efficiency class, Horspool’s
algorithm is obviously faster on average than the brute-force algorithm. In fact,
as mentioned, it is often at least as efficient as its more sophisticated predecessor
discovered by R. Boyer and J. Moore.
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Boyer-Moore Algorithm

Now we outline the Boyer-Moore algorithm itself. If the first comparison of the
rightmost character in the pattern with the corresponding character c in the text
fails, the algorithm does exactly the same thing as Horspool’s algorithm. Namely,
it shifts the pattern to the right by the number of characters retrieved from the
table precomputed as explained earlier.

The two algorithms act differently, however, after some positive number k
(0 < k < m) of the pattern’s characters are matched successfully before a mismatch
is encountered:

N c Si—k+1 - S; ... Sp-p text
X I I

pPo - Pm—k-1 Pm—k ceo Pm—1 pattern

In this situation, the Boyer-Moore algorithm determines the shift size by consid-
ering two quantities. The first one is guided by the text’s character ¢ that caused
a mismatch with its counterpart in the pattern. Accordingly, it is called the bad-
symbol shift. The reasoning behind this shift is the reasoning we used in Hor-
spool’s algorithm. If ¢ is not in the pattern, we shift the pattern to just pass this
¢ in the text. Conveniently, the size of this shift can be computed by the formula
t1(c) — k where #;(c) is the entry in the precomputed table used by Horspool’s
algorithm (see above) and k is the number of matched characters:

N c Si—k+1 - S; . S,—1  text
It I I
Po - Pm—k-1 Pm—k coo Pm—1 pattern
Po s Pm-1

For example, if we search for the pattern BARBER in some text and match the last
two characters before failing on letter S in the text, we can shift the pattern by
#(S) —2 =6 —2 =4 positions:

N S ER e Sy
Foa
BARBER
BARBER

The same formula can also be used when the mismatching character ¢ of the
text occurs in the pattern, provided #(c) — k > 0. For example, if we search for the
pattern BARBER in some text and match the last two characters before failing on
letter A, we can shift the pattern by #;(A) — 2 =4 — 2 =2 positions:

S0 Sn—1

> W= >
o m=m
W o= =
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If t,(c) — k <0, we obviously do not want to shift the pattern by O or a negative
number of positions. Rather, we can fall back on the brute-force thinking and
simply shift the pattern by one position to the right.

To summarize, the bad-symbol shift d; is computed by the Boyer-Moore
algorithm either as 7;(c) — k if this quantity is positive and as 1 if it is negative
or zero. This can be expressed by the following compact formula:

dy = max({t;(c) — k. 1. (1.2)

The second type of shift is guided by a successful match of the last k > 0
characters of the pattern. We refer to the ending portion of the pattern as its suffix
of size k and denote it suff (k). Accordingly, we call this type of shift the good-suffix
shift. We now apply the reasoning that guided us in filling the bad-symbol shift
table, which was based on a single alphabet character c, to the pattern’s suffixes
of sizes 1, ..., m — 1to fill in the good-suffix shift table.

Let us first consider the case when there is another occurrence of suff (k) in
the pattern or, to be more accurate, there is another occurrence of suff (k) not
preceded by the same character as in its rightmost occurrence. (It would be useless
to shift the pattern to match another occurrence of suff (k) preceded by the same
character because this would simply repeat a failed trial.) In this case, we can shift
the pattern by the distance d, between such a second rightmost occurrence (not
preceded by the same character as in the rightmost occurrence) of suff (k) and its
rightmost occurrence. For example, for the pattern ABCBAB, these distances for
k =1 and 2 will be 2 and 4, respectively:

k pattern dy

1 ABCBAB 2
2 ABCBAB 4

What is to be done if there is no other occurrence of suff (k) not preceded by
the same character as in its rightmost occurrence? In most cases, we can shift the
pattern by its entire length m. For example, for the pattern DBCBAB and k = 3, we
can shift the pattern by its entire length of 6 characters:

S0 B AB e Sn—1
I
B AB
DBCBAB

N =0

Unfortunately, shifting the pattern by its entire length when there is no other
occurrence of suff (k) not preceded by the same character as in its rightmost
occurrence is not always correct. For example, for the pattern ABCBAB and k = 3,
shifting by 6 could miss a matching substring that starts with the text’s AB aligned
with the last two characters of the pattern:
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of solutions to its smaller subinstances. Let us consider an instance defined by the
first i items, 1 <i <n, with weights wy, ..., w;, values vy, ..., v;, and knapsack
capacity j, 1 <j <W. Let F(i, j) be the value of an optimal solution to this
instance, i.e., the value of the most valuable subset of the first i items that fit into
the knapsack of capacity j. We can divide all the subsets of the first i items that fit
the knapsack of capacity j into two categories: those that do not include the ith
item and those that do. Note the following:

1. Among the subsets that do not include the ith item, the value of an optimal
subset is, by definition, F(i — 1, j).

2. Among the subsets that do include the ith item (hence, j — w; > 0), an optimal
subset is made up of this item and an optimal subset of the first i — 1 items
that fits into the knapsack of capacity j — w;. The value of such an optimal
subsetisv; + F(i — 1, j — w;).

Thus, the value of an optimal solution among all feasible subsets of the first i
items is the maximum of these two values. Of course, if the ith item does not fit
into the knapsack, the value of an optimal subset selected from the first i items
is the same as the value of an optimal subset selected from the first i — 1 items.
These observations lead to the following recurrence:

max{F(i—1, j), v, + F(i =1, j —w;)} ifj—w; >0,

FGD=\Fi-1) itj—w <0 @0
It is convenient to define the initial conditions as follows:
F@©, j)=0forj>0 and F(@,0)=0 fori>0. 8.7)

Our goal is to find F(n, W), the maximal value of a subset of the n given items
that fit into the knapsack of capacity W, and an optimal subset itself.

Figure 8.4 illustrates the values involved in equations (8.6) and (8.7). For
i, j >0, to compute the entry in the ith row and the jth column, F(i, j), we
compute the maximum of the entry in the previous row and the same column
and the sum of v; and the entry in the previous row and w; columns to the left.
The table can be filled either row by row or column by column.

0 J=wi J w
0|0 0 0 0
i-110 F(i-1, j-w) F(i-1, j)
w,vi i |0 Fi j)
n |0 goal

FIGURE 8.4 Table for solving the knapsack problem by dynamic programming.
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Mathematical analysis of double hashing has proved to be quite difficult. Some
partial results and considerable practical experience with the method suggest that
with good hashing functions—both primary and secondary—double hashing is su-
perior to linear probing. But its performance also deteriorates when the table gets
close to being full. A natural solution in such a situation is rehashing: the current
table is scanned, and all its keys are relocated into a larger table.

It is worthwhile to compare the main properties of hashing with balanced
search trees—its principal competitor for implementing dictionaries.

B Asymptotic time efficiency With hashing, searching, insertion, and deletion
can be implemented to take ©(1) time on the average but © (n) time in the very
unlikely worst case. For balanced search trees, the average time efficiencies
are ©(log n) for both the average and worst cases.

B Ordering preservation ~ Unlike balanced search trees, hashing does not
assume existence of key ordering and usually does not preserve it. This makes
hashing less suitable for applications that need to iterate over the keys in or-
der or require range queries such as counting the number of keys between
some lower and upper bounds.

Since its discovery in the 1950s by IBM researchers, hashing has found many
important applications. In particular, it has become a standard technique for stor-
ing a symbol table—a table of a computer program’s symbols generated during
compilation. Hashing is quite handy for such Al applications as checking whether
positions generated by a chess-playing computer program have already been con-
sidered. With some modifications, it has also proved to be useful for storing very
large dictionaries on disks; this variation of hashing is called extendible hashing.
Since disk access is expensive compared with probes performed in the main mem-
ory, it is preferable to make many more probes than disk accesses. Accordingly, a
location computed by a hash function in extendible hashing indicates a disk ad-
dress of a bucket that can hold up to b keys. When a key’s bucket is identified,
all its keys are read into main memory and then searched for the key in question.
In the next section, we discuss B-trees, a principal alternative for storing large
dictionaries.

1. For the input 30, 20, 56, 75, 31, 19 and hash function #(K) = K mod 11
a. construct the open hash table.

b. find the largest number of key comparisons in a successful search in this
table.

c. find the average number of key comparisons in a successful search in this
table.

2. For the input 30, 20, 56, 75, 31, 19 and hash function #(K) = K mod 11
a. construct the closed hash table.
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b. find the largest number of key comparisons in a successful search in this
table.

c. find the average number of key comparisons in a successful search in this
table.

. Why is it not a good idea for a hash function to depend on just one letter (say,

the first one) of a natural-language word?

. Find the probability of all n keys being hashed to the same cell of a hash table

of size m if the hash function distributes keys evenly among all the cells of the
table.

. Birthday paradox The birthday paradox asks how many people should be

in a room so that the chances are better than even that two of them will have
the same birthday (month and day). Find the quite unexpected answer to this
problem. What implication for hashing does this result have?

. Answer the following questions for the separate-chaining version of hashing.

a. Where would you insert keys if you knew that all the keys in the dictionary
are distinct? Which dictionary operations, if any, would benefit from this
modification?

b. We could keep keys of the same linked list sorted. Which of the dictio-
nary operations would benefit from this modification? How could we take
advantage of this if all the keys stored in the entire table need to be sorted?

. Explain how to use hashing to check whether all elements of a list are distinct.

‘What is the time efficiency of this application? Compare its efficiency with
that of the brute-force algorithm (Section 2.3) and of the presorting-based
algorithm (Section 6.1).

. Fill in the following table with the average-case (as the first entry) and worst-

case (as the second entry) efficiency classes for the five implementations of
the ADT dictionary:

unordered | ordered binary balanced

array array search tree | search tree | hashing
search
insertion
deletion

. We have discussed hashing in the context of techniques based on space-time

trade-offs. But it also takes advantage of another general strategy. Which one?

Write a computer program that uses hashing for the following problem. Given
a natural-language text, generate a list of distinct words with the number of
occurrences of each word in the text. Insert appropriate counters in the pro-
gram to compare the empirical efficiency of hashing with the corresponding
theoretical results.
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9. Binomial coefficient Design an efficient algorithm for computing the bino-
mial coefficient C(n, k) that uses no multiplications. What are the time and
space efficiencies of your algorithm?

10. Longest path in a dag
a. Design an efficient algorithm for finding the length of the longest path in a
dag. (This problem is important both as a prototype of many other dynamic
programming applications and in its own right because it determines the
minimal time needed for completing a project comprising precedence-

constrained tasks.)

b. Show how to reduce the coin-row problem discussed in this section to the
problem of finding a longest path in a dag.

11. Maximum square submatrix Given an m x n boolean matrix B, find its
largest square submatrix whose elements are all zeros. Design a dynamic
programming algorithm and indicate its time efficiency. (The algorithm may
be useful for, say, finding the largest free square area on a computer screen
or for selecting a construction site.)

12. World Series odds Consider two teams, A and B, playing a series of games
until one of the teams wins n games. Assume that the probability of A winning
a game is the same for each game and equal to p, and the probability of
A losing a game is ¢ = 1 — p. (Hence, there are no ties.) Let P(i, j) be the
probability of A winning the series if A needs i more games to win the series
and B needs j more games to win the series.

a. Set up a recurrence relation for P(i, j) that can be used by a dynamic
programming algorithm.

b. Find the probability of team A winning a seven-game series if the proba-
bility of it winning a game is 0.4.

¢. Write pseudocode of the dynamic programming algorithm for solving this
problem and determine its time and space efficiencies.

The Knapsack Problem and Memory Functions

We start this section with designing a dynamic programming algorithm for the
knapsack problem: given n items of known weights wy, ..., w, and values
vy, ..., v, and a knapsack of capacity W, find the most valuable subset of the
items that fit into the knapsack. (This problem was introduced in Section 3.4,
where we discussed solving it by exhaustive search.) We assume here that all the
weights and the knapsack capacity are positive integers; the item values do not
have to be integers.

To design a dynamic programming algorithm, we need to derive a recurrence
relation that expresses a solution to an instance of the knapsack problem in terms
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5. How would you modify the dynamic programming algorithm for the coin-
collecting problem if some cells on the board are inaccessible for the robot?
Apply your algorithm to the board below, where the inaccessible cells are
shown by X’s. How many optimal paths are there for this board?

1 2 3 4 5 6

1 X o

2| o X | o
3 o X | o
4 o o
s X[ x[x] e

[

Rod-cutting problem Design a dynamic programming algorithm for the fol-
lowing problem. Find the maximum total sale price that can be obtained by
cutting arod of n units long into integer-length pieces if the sale price of a piece
i units long is p; fori =1, 2, ..., n. What are the time and space efficiencies
of your algorithm?

7. Shortest-path counting A chess rook can move horizontally or vertically to
any square in the same row or in the same column of a chessboard. Find the
number of shortest paths by which a rook can move from one corner of a
chessboard to the diagonally opposite corner. The length of a path is measured
by the number of squares it passes through, including the first and the last
squares. Solve the problem
a. by a dynamic programming algorithm.

b. by using elementary combinatorics.

8. Minimum-sumdescent Some positive integers are arranged in an equilateral
triangle with » numbers in its base like the one shown in the figure below for
n = 4. The problem is to find the smallest sum in a descent from the triangle
apex to its base through a sequence of adjacent numbers (shown in the figure
by the circles). Design a dynamic programming algorithm for this problem
and indicate its time efficiency.

7.4
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FIGURE 7.7 Parental node of a B-tree.

B-Trees

The idea of using extra space to facilitate faster access to a given data set is partic-
ularly important if the data set in question contains a very large number of records
that need to be stored on a disk. A principal device in organizing such data sets
is an index, which provides some information about the location of records with
indicated key values. For data sets of structured records (as opposed to “unstruc-
tured” data such as text, images, sound, and video), the most important index
organization is the B-tree, introduced by R. Bayer and E. McGreight [Bay72]. It
extends the idea of the 2-3 tree (see Section 6.3) by permitting more than a single
key in the same node of a search tree.

In the B-tree version we consider here, all data records (or record keys)
are stored at the leaves, in increasing order of the keys. The parental nodes are
used for indexing. Specifically, each parental node contains n — 1 ordered keys
Ky <--- < K,_ assumed, for the sake of simplicity, to be distinct. The keys are
interposed with n pointers to the node’s children so that all the keys in subtree T
are smaller than K7, all the keys in subtree 7 are greater than or equal to K; and
smaller than K, with K; being equal to the smallest key in 77, and so on, through
the last subtree 7,_; whose keys are greater than or equal to K,,_; with K,,_; being
equal to the smallest key in T,,_; (see Figure 7.7).4

In addition, a B-tree of order m > 2 must satisfy the following structural
properties:

The root is either a leaf or has between 2 and m children.

Each node, except for the root and the leaves, has between [m/2] and m
children (and hence between [m/2] — 1 and m — 1 keys).

B The tree is (perfectly) balanced, i.e., all its leaves are at the same level.

The node depicted in Figure 7.7 is called the n-node. Thus, all the nodes in a classic binary search tree

are 2-nodes; a 2-3 tree introduced in Section 6.3 comprises 2-nodes and 3-nodes.
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[4.7.10] [ 11,14 ] [15, 16, 19] [ 20, 24] ‘25,‘28‘ [34,38] [40, 43, 46] [ 51, 55 [0, 68, 80]

FIGURE 7.8 Example of a B-tree of order 4.

An example of a B-tree of order 4 is given in Figure 7.8.

Searching in a B-tree is very similar to searching in the binary search tree, and
even more so in the 2-3 tree. Starting with the root, we follow a chain of pointers
to the leaf that may contain the search key. Then we search for the search key
among the keys of that leaf. Note that since keys are stored in sorted order, at
both parental nodes and leaves, we can use binary search if the number of keys at
anode is large enough to make it worthwhile.

It is not the number of key comparisons, however, that we should be con-
cerned about in a typical application of this data structure. When used for storing
a large data file on a disk, the nodes of a B-tree normally correspond to the disk
pages. Since the time needed to access a disk page is typically several orders of
magnitude larger than the time needed to compare keys in the fast computer mem-
ory, it is the number of disk accesses that becomes the principal indicator of the
efficiency of this and similar data structures.

How many nodes of a B-tree do we need to access during a search for a record
with a given key value? This number is, obviously, equal to the height of the tree
plus 1. To estimate the height, let us find the smallest number of keys a B-tree of
order m and positive height 4 can have. The root of the tree will contain at least
one key. Level 1 will have at least two nodes with at least [m/2] — 1 keys in each
of them, for the total minimum number of keys 2([m /2] — 1). Level 2 will have at
least 2[m/2] nodes (the children of the nodes on level 1) with at least [m/2] — 1
in each of them, for the total minimum number of keys 2[m/21([m/2] — 1). In
general, the nodes of level i, 1 <i <h — 1, will contain at least 2|'n1/21i’1(|'m/2] —
1) keys. Finally, level , the leaf level, will have at least 2[m /21"’1 nodes with at
least one key in each. Thus, for any B-tree of order m with n nodes and height
h > 0, we have the following inequality:

h—1
n> 14y 2[m/21 7 ([m/2] = 1) + 2[m/21"~".
i=1
After aseries of standard simplifications (see Problem 2 in this section’s exercises),
this inequality reduces to
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1 2 3 4 5 6 1 2 3 4 5 6
1 @) 11 0 0 0 0 1 1
2 @) @) 21 0 1 1 2 2 2
3 @) @) 3| 0 1 1 3 3 4
4 @) @) 41 0 1 2 3 3 5
5/ O @) 5| 1 1 2 3 4 5

(a) (b)

©

FIGURE 8.3 (a) Coins to collect. (b) Dynamic programming algorithm results. (c) Two
paths to collect 5 coins, the maximum number of coins possible.
[ ]

Exercises 8.1

1. What does dynamic programming have in common with divide-and-conquer?
What is a principal difference between them?

2. Solve the instance 5, 1, 2, 10, 6 of the coin-row problem.

3. a. Show that the time efficiency of solving the coin-row problem by straight-
forward application of recurrence (8.3) is exponential.
b. Show that the time efficiency of solving the coin-row problem by exhaustive
search is at least exponential.
4. Apply the dynamic programming algorithm to find all the solutions to the
change-making problem for the denominations 1, 3, 5 and the amount
n=09.
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above the cells in the first row, and there are no adjacent cells to the left of the
cells in the first column. For those cells, we assume that F(i — 1, j)and F(i, j — 1)
are equal to O for their nonexistent neighbors. Therefore, the largest number of
coins the robot can bring to cell (i, j) is the maximum of these two numbers plus
one possible coin at cell (i, j) itself. In other words, we have the following formula
for F(i, j):

F(i, ) =max{F(i — 1, j), F(i, j = D} +¢; forl<i<n, 1<j<m

(8.5)
F@O,j)=0forl<j<m and F(,0)=0 forl<i<n,
where ¢;; = 11if there is a coin in cell (i, j), and ¢;; = 0 otherwise.
Using these formulas, we can fill in the n x m table of F (i, j) values either row
by row or column by column, as is typical for dynamic programming algorithms
involving two-dimensional tables.

ALGORITHM RobotCoinCollection(C[1..n, 1..m])

/| Applies dynamic programming to compute the largest number of
/lcoins a robot can collect on an n x m board by starting at (1, 1)
/land moving right and down from upper left to down right corner
/[Input: Matrix C[1..n, 1..m] whose elements are equal to 1 and 0
/lfor cells with and without a coin, respectively
//Output: Largest number of coins the robot can bring to cell (n, m)
F[1,1] < C[1,1]; forj «<2tomdo F[1, j]«< F[1, j — 1]+ C[1, j]
fori < 2tondo

Fli, 1]« F[i — 1, 1]+ C[i, 1]

for j < 2tom do

Fli, j] < max(F[i — 1, j], F[i, j —1]) + C[i. j]

return F[n, m]

The algorithm is illustrated in Figure 8.3b for the coin setup in Figure 8.3a.
Since computing the value of F (i, j) by formula (8.5) for each cell of the table takes
constant time, the time efficiency of the algorithm is ® (nm). Its space efficiency is,
obviously, also © (nm).

Tracing the computations backward makes it possible to get an optimal path:
if F(i — 1, j) > F(i, j — 1), an optimal path to cell (i, j) must come down from
the adjacent cell above it; if F(i — 1, j) < F(i, j — 1), an optimal path to cell (i, j)
must come from the adjacent cell on the left; and if F(i — 1, j) = F(, j — 1), it
can reach cell (i, j) from either direction. This yields two optimal paths for the
instance in Figure 8.3a, which are shown in Figure 8.3c. If ties are ignored, one
optimal path can be obtained in © (n + m) time.
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n>4rm/21" 1 -1,

which, in turn, yields the following upper bound on the height / of the B-tree of
order m with n nodes:

+1
h < [logp,)o "T J+1. 1.7

Inequality (7.7) immediately implies that searching in a B-tree is a O (log n)
operation. But it is important to ascertain here not just the efficiency class but
the actual number of disk accesses implied by this formula. The following table
contains the values of the right-hand-side estimates for a file of 100 million records
and a few typical values of the tree’s order m:

order m 50 100 250
h’s upper bound 6 5 4

Keep in mind that the table’s entries are upper estimates for the number of disk
accesses. In actual applications, this number rarely exceeds 3, with the B-tree’s
root and sometimes first-level nodes stored in the fast memory to minimize the
number of disk accesses.

The operations of insertion and deletion are less straightforward than search-
ing, but both can also be done in O(log n) time. Here we outline an insertion
algorithm only; a deletion algorithm can be found in the references (e.g., [Aho83],
[Cor09]).

The most straightforward algorithm for inserting a new record into a B-
tree is quite similar to the algorithm for insertion into a 2-3 tree outlined in
Section 6.3. First, we apply the search procedure to the new record’s key K to
find the appropriate leaf for the new record. If there is room for the record in that
leaf, we place it there (in an appropriate position so that the keys remain sorted)
and we are done. If there is no room for the record, the leaf is split in half by
sending the second half of the records to a new node. After that, the smallest key
K’ in the new node and the pointer to it are inserted into the old leaf’s parent
(immediately after the key and pointer to the old leaf). This recursive procedure
may percolate up to the tree’s root. If the root is already full too, a new root is
created with the two halves of the old root’s keys split between two children of
the new root. As an example, Figure 7.9 shows the result of inserting 65 into the
B-tree in Figure 7.8 under the restriction that the leaves cannot contain more than
three items.

You should be aware that there are other algorithms for implementing inser-
tions into a B-tree. For example, to avoid the possibility of recursive node splits,
we can split full nodes encountered in searching for an appropriate leaf for the
new record. Another possibility is to avoid some node splits by moving a key to
the node’s sibling. For example, inserting 65 into the B-tree in Figure 7.8 can be
done by moving 60, the smallest key of the full leaf, to its sibling with keys 51 and
55, and replacing the key value of their parent by 65, the new smallest value in
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[4.7.10][ 1, 14][15, 16, 19] \20,24\\25,;8\\34,38\\40,43,46\ [51,55][60, 65][68, 80]

FIGURE 7.9 B-tree obtained after inserting 65 into the B-tree in Figure 7.8.

the second child. This modification tends to save some space at the expense of a
slightly more complicated algorithm.

A B-tree does not have to be always associated with the indexing of a large
file, and it can be considered as one of several search tree varieties. As with other
types of search trees—such as binary search trees, AVL trees, and 2-3 trees—a B-
tree can be constructed by successive insertions of data records into the initially
empty tree. (The empty tree is considered to be a B-tree, too.) When all keys reside
in the leaves and the upper levels are organized as a B-tree comprising an index,
the entire structure is usually called, in fact, a B*-tree.

Exercises 7.4

1. Give examples of using an index in real-life applications that do not involve
computers.

2. a. Prove the equality
h—1 .
1+ 20m/27 7 (Tm/21 = 1) + 2[m/21" ' = 4[m/21" "' -1,
i=1
which was used in the derivation of upper bound (7.7) for the height of a
B-tree.
b. Complete the derivation of inequality (7.7).
3. Find the minimum order of the B-tree that guarantees that the number of disk

accesses in searching in a file of 100 million records does not exceed 3. Assume
that the root’s page is stored in main memory.

4. Draw the B-tree obtained after inserting 30 and then 31 in the B-tree in
Figure 7.8. Assume that a leaf cannot contain more than three items.

5. Outline an algorithm for finding the largest key in a B-tree.

6. a. A top-down 2-3-4 tree is a B-tree of order 4 with the following modifica-
tion of the insert operation: Whenever a search for a leaf for a new key

Dynamic Programming

njo|1]|2|3|4|5]|6
FI0l=0 F|O
nlof1]2]3|4a|5]|6
FO1 = min{F[1 =1} + 1 =1 FlO]|1
nlfof1]2]3]4|5]|6
Fl21 =min{FI2 -1} + 1 =2 FlO|1]2
nlof|1]2]|3|a|s5]|6
FI31=min{FI3 1], FI3-3}+ 1 =1 Flo[1]2]1
njo|1]|2|3|4|5]|6
Fl4] = min{F[4 - 1], FI4-3], Fl4-4}+1=1 F|0][1]2]1]1
nlof1]2]3]a 6
FI5] = min{F[5-1], FI5-3], Fl5-4}+1=2 F|0][1]2][1|1]2
nlof|1]2]3|4 6
FI6] = min{FI6 - 1], FI6-3], FI6 -4} +1=2 F|0|1]2]1]1]2]2

FIGURE 8.2 Application of Algorithm MinCoinChange to amount n =6 and coin
denominations 1, 3, and 4.

To find the coins of an optimal solution, we need to backtrace the computa-
tions to see which of the denominations produced the minima in formula (8.4).
For the instance considered, the last application of the formula (for n = 6), the
minimum was produced by d, = 3. The second minimum (for n = 6 — 3) was also
produced for a coin of that denomination. Thus, the minimum-coin set for n = 6
is two 3’s. |

EXAMPLE 3 Coin-collecting problem Several coins are placed in cells of an
n x m board, no more than one coin per cell. A robot, located in the upper left cell
of the board, needs to collect as many of the coins as possible and bring them to
the bottom right cell. On each step, the robot can move either one cell to the right
or one cell down from its current location. When the robot visits a cell with a coin,
it always picks up that coin. Design an algorithm to find the maximum number of
coins the robot can collect and a path it needs to follow to do this.

Let F(i, j) be the largest number of coins the robot can collect and bring to
the cell (i, j) in the ith row and jth column of the board. It can reach this cell
either from the adjacent cell (i — 1, j) above it or from the adjacent cell (i, j — 1)
to the left of it. The largest numbers of coins that can be brought to these cells
are F(i — 1, j)and F(i, j — 1), respectively. Of course, there are no adjacent cells
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down application of recurrence (8.3) and solving the problem by exhaustive search
(Problem 3 in this section’s exercises). [ |

EXAMPLE 2 Change-making problem Consider the general instance of the
following well-known problem. Give change for amount n using the minimum
number of coins of denominations d; < d, < - - - < d,,. For the coin denominations
used in the United States, as for those used in most if not all other countries,
there is a very simple and efficient algorithm discussed in the next chapter. Here,
we consider a dynamic programming algorithm for the general case, assuming
availability of unlimited quantities of coins for each of the m denominations
dy<dy<---<d, whered =1.

Let F(n) be the minimum number of coins whose values add up to n; it is
convenient to define F(0) = 0. The amount n can only be obtained by adding one
coin of denomination d;to the amount n — djforj=1,2,...,msuch thatn > d;.
Therefore, we can consider all such denominations and select the one minimizing
F(n—d;+ 1. Since 1 is a constant, we can, of course, find the smallest F(n — d;)
first and then add 1 to it. Hence, we have the following recurrence for F(n):

F(n)= min {F(n — dpt+ 1 forn>0,

Jjin=d; (8. 4)
F(0)=0.

We can compute F(n) by filling a one-row table left to right in the manner similar

to the way it was done above for the coin-row problem, but computing a table
entry here requires finding the minimum of up to m numbers.

ALGORITHM  ChangeMaking(D[1..m], n)
//Applies dynamic programming to find the minimum number of coins
/lof denominations d; < d, < - - - < d,, where dy =1 that add up to a
//given amount n
//Input: Positive integer n and array D[1..m] of increasing positive
1 integers indicating the coin denominations where D[1]=1
//Output: The minimum number of coins that add up to n
F[0] <0
fori <— 1tondo
temp < 00; j <1
while j <m andi > D[] do
temp < min(F[i — D[j]], temp)
j<—j+1
Fli] < temp +1
return F[n]

The application of the algorithm to amount n = 6 and denominations 1, 3,
4 is shown in Figure 8.2. The answer it yields is two coins. The time and space
efficiencies of the algorithm are obviously O (nm) and ®(n), respectively.
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encounters a full node (i.e., a node with three keys), the node is split into
two nodes by sending its middle key to the node’s parent, or, if the full
node happens to be the root, the new root for the middle key is created.
Construct a top-down 2-3-4 tree by inserting the following list of keys in
the initially empty tree:

10, 6, 15, 31, 20, 27, 50, 44, 18.

b. What is the principal advantage of this insertion procedure compared with
the one used for 2-3 trees in Section 6.3? What is its disadvantage?

7. a. Write a program implementing a key insertion algorithm in a B-tree.
b. Write a program for visualization of a key insertion algorithm in a B-tree.

SUMMARY

®  Space and time trade-offs in algorithm design are a well-known issue for
both theoreticians and practitioners of computing. As an algorithm design
technique, trading space for time is much more prevalent than trading time
for space.

®  [nput enhancement is one of the two principal varieties of trading space for
time in algorithm design. Itsidea is to preprocess the problem’s input, in whole
or in part, and store the additional information obtained in order to accelerate
solving the problem afterward. Sorting by distribution counting and several
important algorithms for string matching are examples of algorithms based
on this technique.

B Distribution counting is a special method for sorting lists of elements from a
small set of possible values.

B Horspool’s algorithm for string matching can be considered a simplified
version of the Boyer-Moore algorithm. Both algorithms are based on the ideas
of input enhancement and right-to-left comparisons of a pattern’s characters.
Both algorithms use the same bad-symbol shift table; the Boyer-Moore also
uses a second table, called the good-suffix shift table.

®  Prestructuring—the second type of technique that exploits space-for-time
trade-offs—uses extra space to facilitate a faster and/or more flexible access
to the data. Hashing and BT-trees are important examples of prestructuring.

B Hashing is a very efficient approach to implementing dictionaries. It is based
on the idea of mapping keys into a one-dimensional table. The size limitations
of such a table make it necessary to employ a collision resolution mechanism.
The two principal varieties of hashing are open hashing or separate chaining
(with keys stored in linked lists outside of the hash table) and closed hashing
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or open addressing (with keys stored inside the table). Both enable searching,
insertion, and deletion in ®(1) time, on average.

The B-tree is a balanced search tree that generalizes the idea of the 2-3 tree
by allowing multiple keys at the same node. Its principal application, called
the B-tree, is for keeping index-like information about data stored on a
disk. By choosing the order of the tree appropriately, one can implement the
operations of searching, insertion, and deletion with just a few disk accesses
even for extremely large files.

Dynamic Programming

FI01=0, F[1]=¢, =5 F|lO|5

F[2] = max{1 + 0,5} =5 F|0]5]5

FI38]=max{2 + 5,5} =7 FlO0|5]5]7

index [0 |1]2]3]|4|5]|6
c 5[1]2]10/6]|2
Fl4] = max{10 + 5, 7} = 15 F10]|5]5]7]|15

index |0|1|2|3|4|5]|6
C 5(1]2/10/6]2
F[5] = max{6 + 7, 15} = 15 F|l0|5|5]|7]|15/15

index [0 |1[2|3|4|5]|6
C 51112]10/6|2
F[6] = max{2 + 15, 156} = 17 Fl0]|5]|5 15]15|17

~

FIGURE 8.1 Solving the coin-row problem by dynamic programming for the coin row
5,1,2,10,6, 2.

out that, in fact, we also solved the problem for the first i coins in the row given
for every 1 <i < 6. For example, for i = 3, the maximum amount is F(3) =7.

To find the coins with the maximum total value found, we need to back-
trace the computations to see which of the two possibilities—c, + F(n — 2) or
F(n — 1)—produced the maxima in formula (8.3). In the last application of the
formula, it was the sum ¢4 + F(4), which means that the coin ¢ = 2 is a part of an
optimal solution. Moving to computing F'(4), the maximum was produced by the
sum ¢4 + F(2), which means that the coin ¢, = 10 is a part of an optimal solution
as well. Finally, the maximum in computing F(2) was produced by F (1), implying
that the coin ¢, is not the part of an optimal solution and the coin ¢; = 5is. Thus, the
optimal solution is {cq, ¢4, ¢¢}. To avoid repeating the same computations during
the backtracing, the information about which of the two terms in (8.3) was larger
can be recorded in an extra array when the values of F are computed.

Using the CoinRow to find F(n), the largest amount of money that can be
picked up, as well as the coins composing an optimal set, clearly takes © (n) time
and © (n) space. This is by far superior to the alternatives: the straightforward top-
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invented independently of the discovery of dynamic programming and only later
came to be viewed as examples of this technique’s applications.) Numerous other
applications range from the optimal way of breaking text into lines (e.g., [Baa00])
to image resizing [Avi07] to a variety of applications to sophisticated engineering
problems (e.g., [Ber01]).

Three Basic Examples

The goal of this section is to introduce dynamic programming via three typical
examples.

EXAMPLE 1 Coin-row problem Thereis arow of n coins whose values are some
positive integers ¢y, ¢, . . ., ¢,, not necessarily distinct. The goal is to pick up the
maximum amount of money subject to the constraint that no two coins adjacent
in the initial row can be picked up.

Let F(n) be the maximum amount that can be picked up from the row of n
coins. To derive a recurrence for F(n), we partition all the allowed coin selections
into two groups: those that include the last coin and those without it. The largest
amount we can get from the first group is equal to ¢, + F (n — 2)—the value of the
nth coin plus the maximum amount we can pick up from the first n — 2 coins. The
maximum amount we can get from the second group is equal to F(n — 1) by the
definition of F(n). Thus, we have the following recurrence subject to the obvious
initial conditions:

F(n)=max{c,+ F(n —2), Fn—1)} forn=>1,

F(0) =0, F(l) =cy. @3)

We can compute F(n) by filling the one-row table left to right in the manner
similar to the way it was done for the nth Fibonacci number by Algorithm Fib(n)
in Section 2.5.

ALGORITHM CoinRow(C[1..n])
/| Applies formula (8.3) bottom up to find the maximum amount of money
/[that can be picked up from a coin row without picking two adjacent coins
//Input: Array C[1..n] of positive integers indicating the coin values
//Output: The maximum amount of money that can be picked up
F[0] < 0; F[1]<C[1]
fori < 2tondo
Fli] < max(C[i]+ F[i — 2], F[i —1])
return F[n]

The application of the algorithm to the coin row of denominations 5, 1, 2, 10,
6,2 is shown in Figure 8.1. It yields the maximum amount of 17. It is worth pointing

This page intentionally left blank
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Dynamic Programming

An idea, like a ghost . .. must be spoken to a little before it will
explain itself.
—Charles Dickens (1812-1870)

ynamic programming is an algorithm design technique with a rather inter-

esting history. It was invented by a prominent U.S. mathematician, Richard
Bellman, in the 1950s as a general method for optimizing multistage decision pro-
cesses. Thus, the word “programming” in the name of this technique stands for
“planning” and does not refer to computer programming. After proving its worth
as an important tool of applied mathematics, dynamic programming has even-
tually come to be considered, at least in computer science circles, as a general
algorithm design technique that does not have to be limited to special types of
optimization problems. It is from this point of view that we will consider this tech-
nique here.

Dynamic programming is a technique for solving problems with overlapping
subproblems. Typically, these subproblems arise from a recurrence relating a given
problem’s solution to solutions of its smaller subproblems. Rather than solving
overlapping subproblems again and again, dynamic programming suggests solving
each of the smaller subproblems only once and recording the results in a table from
which a solution to the original problem can then be obtained.

This technique can be illustrated by revisiting the Fibonacci numbers dis-
cussed in Section 2.5. (If you have not read that section, you will be able to follow
the discussion anyway. But it is a beautiful topic, so if you feel a temptation to read
it, do succumb to it.) The Fibonacci numbers are the elements of the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...,
which can be defined by the simple recurrence

Fn)=Fn—-1)+Fn-2) forn>1 8.1
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and two initial conditions
F(0)=0, F()=1 8.2)

If we try to use recurrence (8.1) directly to compute the nth Fibonacci number
F(n), we would have to recompute the same values of this function many times
(see Figure 2.6 for an example). Note that the problem of computing F(n) is
expressed in terms of its smaller and overlapping subproblems of computing
F(n — 1) and F(n — 2). So we can simply fill elements of a one-dimensional array
with the n + 1 consecutive values of F(n) by starting, in view of initial conditions
(8.2), with 0 and 1 and using equation (8.1) as the rule for producing all the other
elements. Obviously, the last element of this array will contain F(n). Single-loop
pseudocode of this very simple algorithm can be found in Section 2.5.

Note that we can, in fact, avoid using an extra array to accomplish this task
by recording the values of just the last two elements of the Fibonacci sequence
(Problem 8 in Exercises 2.5). This phenomenon is not unusual, and we shall en-
counter it in a few more examples in this chapter. Thus, although a straightforward
application of dynamic programming can be interpreted as a special variety of
space-for-time trade-off, a dynamic programming algorithm can sometimes be re-
fined to avoid using extra space.

Certain algorithms compute the nth Fibonacci number without computing
all the preceding elements of this sequence (see Section 2.5). It is typical of
an algorithm based on the classic bottom-up dynamic programming approach,
however, to solve all smaller subproblems of a given problem. One variation of the
dynamic programming approach seeks to avoid solving unnecessary subproblems.
This technique, illustrated in Section 8.2, exploits so-called memory functions and
can be considered a top-down variation of dynamic programming.

Whether one uses the classical bottom-up version of dynamic programming or
its top-down variation, the crucial step in designing such an algorithm remains the
same: deriving a recurrence relating a solution to the problem to solutions to its
smaller subproblems. The immediate availability of equation (8.1) for computing
the nth Fibonacci number is one of the few exceptions to this rule.

Since a majority of dynamic programming applications deal with optimiza-
tion problems, we also need to mention a general principle that underlines such
applications. Richard Bellman called it the principle of optimality. In terms some-
what different from its original formulation, it says that an optimal solution to any
instance of an optimization problem is composed of optimal solutions to its subin-
stances. The principle of optimality holds much more often than not. (To give a
rather rare example, it fails for finding the longest simple path in a graph.) Al-
though its applicability to a particular problem needs to be checked, of course,
such a check is usually not a principal difficulty in developing a dynamic program-
ming algorithm.

In the sections and exercises of this chapter are a few standard examples of
dynamic programming algorithms. (The algorithms in Sec