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Preface
The objective of this book is to deliver exactly what is on the cover – Artificial Intelligence for
Robotics. The emphasis is on machine learning techniques applied to ground mobile robots.
The book starts with professional robot design principles that have been scaled down for
smaller robot projects. The AI section begins with convolutional neural networks for object
recognition and continues with reinforcement learning and genetic algorithms. The robot
gets a voice and learns to tell jokes using AI-based voice recognition that can discern user
intent. The book introduces a novel way to navigate without a map using a literal divide
and conquer program that uses the upper part of the room to remember paths, and the
lower part of avoid obstacles. The book demonstrates how path planning, decision trees,
object classification, and navigation are all part of the same problem set. We finish by
giving the robot an artificial personality. The final chapter concludes with thoughts on the
future of robots and gives advice on robotics as a career.

The entire book is built around a single fun example task, which is to design and build a
robot that can pick up toys in an indoor, unstructured environment. As you will learn, this
project is anything but easy.

Who this book is for
This book is designed for intermediate to advanced robotics researchers, professionals, and
hobbyists, as well as students who have worked past the basics of robotics and are looking
for the next step in their education and skill set.

Readers should be familiar with Python and the Robotics Operating System (ROS), as well
as Linux. Advanced math is most definitely not required to get a lot out of this book.

What this book covers
Chapter 1, Foundation for Robotics and AI, introduces artificial intelligence (AI) and covers
the basics of robotics as applied in this book. The chapter also introduces the AI framework
used, which is the Observe-Orient-Decide-Act (OODA) model, and soft real-time control.
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Chapter 2, Setting Up Your Robot, covers the robot architecture, ROS, and setting up the
software and hardware, including the construction of the robot example for the book.

Chapter 3, A Concept for a Practical Robot Design Process, introduces a simplified systems
approach to robot design that combines use cases (from systems engineering) and
storyboards (from Agile development) to give the reader a structure and a process to use
when solving problems with robots and AI.

Chapter 4, Object Recognition Using Neural Networks and Supervised Learning, teaches how to
build an artificial neural network. Readers will learn the basics of image recognition as well
as the training and evaluation of neural networks using Keras and Python.

Chapter 5, Picking Up the Toys, introduces techniques that allow the robot to learn for itself
how to user its robot arm. The key technique is to have a mechanism for the robot to score
how well it does. We explore reinforcement learning and dive into Genetic Algorithms.

Chapter 6, Teaching the Robot to Listen, We develop on top of a voice-based command
system, a type of digital assistant that uses AI techniques to understand words and divine
the intent of the speaker.  Basic concepts of speech recognition and natural language
processing are introduced, such as context, knowledge bases, intent recognition, and
sentence reconstruction.  We teach the robot to both tell and understand knock-knock jokes.

Chapter 7, Avoiding the Stairs, helps the readers understand robot navigation, including
SLAM. It will help you navigate the robot using a combination of two techniques: Floor
Finding for obstacle avoidance, and Neural Network Image recognition for learned
navigation without a map.

Chapter 8, Putting Things Away, covers path planning, decision trees, classification
techniques, wave front, the A* (A star) and D* (D star) algorithms, and node-based
planners.

Chapter 9, Giving the Robot an Artificial Personality, describes simulation and Monte Carlo
modeling, the Robot Emotion Engine, the Human Emotion Model, and integrating
personality rules into a chatbot-based conversation engine.

Chapter 10, Conclusions and Remarks, has some words about the future of AI and robotics,
as well as advice about robotics as a career. 
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To get the most out of this book
The reader should have a good grasp of programming with Python, either 2.7 or 3.6. Most
of the examples are written in 2.7, but conversion to 3.6 or above is fairly simple – it is
mostly changing the print statements. The ROS works only in Linux.  The reader can use a
virtual machine to emulate Linux on a Windows computer. This was done by the author
when writing this book. Packt Publishing has several excellent books that explain how to
use ROS, if you need more detailed instruction.  No special math skills are required past
high-school level. If you want to follow the robot's construction, then basic hand tools
(screwdrivers, wrenches, Allen keys, and a soldering iron) will be required.

All the other installation instructions are in the appropriate chapters as the book progresses.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Artificial- Intelligence- for- Robotics. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/ArtificialIntelligenceforRobotics_ ColorImages. pdf

Code in Action
Visit the following link to check out videos of the code being run:
http://bit.ly/2ohcbLg

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We are writing our control loop in Python, so we will use the time.time()
function."

A block of code is set as follows:

# set our frame rate - how many cycles per second to run our loop?
FRAMERATE = 30
# how long does each frame take in seconds?
FRAME = 1.0/FRAMERATE
# initialize myTimer
# This is one of our timer variables where we will store the clock time
from the operating system.
myTimer = 0.0

Any command-line input or output is written as follows:

Sudo apt-get install python-pip python-dev build-essential
Sudo pip install –upgrade pip

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"One concept you will hear around AI circles is the Turing test."
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Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/


1
Foundation for Advanced

Robotics and AI
This book is for readers who have already begun a journey learning about robotics and
wish to progress to a more advanced level of capability by adding AI behaviors to your
robot, unmanned vehicle, or self-driving car. You may have already made a robot for
yourself out of standard parts, and have a robot that can drive around, perhaps make a
map, and avoid obstacles with some basic sensors. The question then is: what comes next?

The basic difference between what we will call an AI robot and a more normal robot is the
ability of the robot and its software to make decisions, and learn and adapt to its
environment based on data from its sensors. To be a bit more specific, we are leaving the
world of deterministic behaviors behind. When we call a system deterministic, we mean
that for a set of inputs, the robot will always produce the same output. If faced with the
same situation, such as encountering an obstacle, then the robot will always do the same
thing, such as go around the obstacle to the left. An AI robot, however, can do two things
the standard robot cannot: make decisions and learn from experience. The AI robot will
change and adapt to circumstances, and may do something different each time a situation is
encountered. It may try to push the obstacle out of the way, or make up a new route, or
change goals.

The following topics will be covered in this chapter:

What is Artificial Intelligence (AI)?
Modern AI – nothing new
Our example problem
What you will learn in this book – AI techniques covered
Introduction to TinMan, our robot
Keeping control – soft real-time control
The OODA loop – basis for decision making
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Technical requirements
Python 2.7 or 3.5 with numpy, scipy, matplotlib, and scikit-learn installed.
Robotics Operating System (ROS) Kinetic Kame.
A computer running Linux for development or a virtual machine running Linux
under Windows. Ubuntu 16.04 is used for the examples and illustrations.
Raspberry Pi 3 or a similar single board computer (BeagleBone Black, Odroid, or
similar).  We are not using the GPIO or special interfaces on the Pi3. 
An Arduino Mega 2560 microcontroller.

The repository for the source code in this chapter on GitHub is: https:/ /github. com/
FGovers/AI_and_Robotics_ source_ code/ chapter_ 1

Check out the following video to see the Code in Action:
http://bit.ly/2BT0Met

The basic principle of robotics and AI
Artificial intelligence applied to robotics development requires a different set of skills from
you, the robot designer or developer. You may have made robots before. You probably
have a quadcopter or a 3D printer (which is, in fact, a robot). The familiar world of
Proportional Integral Derivative (PID) controllers, sensor loops, and state machines must
give way to artificial neural networks, expert systems, genetic algorithms, and searching
path planners. We want a robot that does not just react to its environment as a reflex action,
but has goals and intent—and can learn and adapt to the environment. We want to solve
problems that would be intractable or impossible otherwise.

What we are going to do in this book is introduce a problem – picking up toys in a
playroom—that we will use as our example throughout the book as we learn a series of
techniques for applying AI techniques to our robot.  It is important to understand that in
this book, the journey is far more important than the destination.  At the end of the book,
you should gain some important skills with broad applicability, not just learn how to pick
up toys.
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One of the difficult decisions I had to make about writing this book was deciding if this is
an AI book about robotics or a robotics approach to AI—that is, is the focus learning about
robotics or learning about AI? The answer is that this is a book about how to apply AI tools
to robotics problems, and thus is primarily an AI book using robotics as an example. The
tools and techniques learned will have applicability even if you don’t do robotics, but just
apply AI to decision making to trade on the stock market.

What we are going to do is first provide some tools and background to match the
infrastructure that was used to develop the examples in the book.  This is both to provide
an even playing field and to not assume any knowledge on the reader’s part.  We will use
the Python programming language, the ROS for our data infrastructure, and be running
under the Linux operating system.  I developed the examples in the book with Oracle’s
VirtualBox software running Ubuntu Linux in a virtual machine on a Windows Vista
computer.  Our robot hardware will be a Raspberry Pi 3 as the robot’s on-board brain, and
an Arduino Mega2560 as the hardware interface microcontroller.

In the rest of this chapter, we will discuss some basics about AI, and then proceed to
develop two important tools that we will use in all of the examples in the rest of the book.
We will introduce the concept of soft real-time control, and then provide a framework, or
model, for interfacing AI to our robot called the Observe-Orient-Decide-Act (OODA) loop.

What is AI (and what is it not)?
What would be a definition of AI?  In general, it means a machine that exhibits some
characteristics of intelligence—thinking, reasoning, planning, learning, and adapting. It can
also mean a software program that can simulate thinking or reasoning.  Let’s try some
examples: a robot that avoids obstacles by simple rules (if the obstacle is to the right, go left)
is not an AI. A program that learns by example to recognize a cat in a video, is an AI.  A
mechanical arm that is operated by a joystick is not AI, but a robot arm that adapts to
different objects in order to pick them up is AI. 
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There are two defining characteristics of artificial intelligence robots that you must be
aware of. First of all, AI robots learn and adapt to their environments, which means that
they change behaviors over time.  The second characteristic is emergent behavior, where
the robot exhibits developing actions that we did not program into it explicitly.  We are
giving the robot controlling software that is inherently non-linear and self-organizing.  The
robot may suddenly exhibit some bizarre or unusual reaction to an event or situation that
seems to be odd, or quirky, or even emotional.  I worked with a self-driving car that we
swore had delicate sensibilities and moved very daintily, earning it the nickname Ferdinand
after the sensitive, flower loving bull from the cartoon, which was appropriate in a nine-ton
truck that appeared to like plants.  These behaviors are just caused by interactions of the
various software components and control algorithms, and do not represent anything more
than that.  

One concept you will hear around AI circles is the Turing test.  The Turing test was
proposed by Alan Turing in 1950, in a paper entitled Computing Machinery and Intelligence. 
He postulated that a human interrogator would question an hidden, unseen AI system,
along with another human.  If the human posing the questions was unable to tell which
person was the computer and which the human was, then that AI computer would pass the
test. This test supposes that the AI would be fully capable of listening to a conversation,
understanding the content, and giving the same sort of answers a person will. I don’t
believe that AI has progressed to this point yet, but chat bots and automated answering
services have done a good job of making you believe that you are talking to a human and
not a robot.

Our objective in this book is not to pass the Turing test, but rather to take some novel
approaches to solving problems using techniques in machine learning, planning, goal
seeking, pattern recognition, grouping, and clustering. Many of these problems would be
very difficult to solve any other way. A software AI that could pass the Turing test would
be an example of a general artificial intelligence, or a full, working intelligent artificial
brain, and just like you, a general AI does not need to be specifically trained to solve any
particular problem. To date, a general AI has not been created, but what we do have is
narrow AI, or software that simulates thinking in a very narrow application, such as 
recognizing objects, or picking good stocks to buy. 

What we are not building in this book is a general AI, and we are not going to be worried
about our creations developing a mind of their own or getting out of control.  That comes
from the realm of science fiction and bad movies, rather than the reality of computers
today. I am firmly of the mind that anyone preaching about the evils of AI or predicting that
robots will take over the world has not worked or practiced in this area, and has not seen
the dismal state of AI research in respect of solving general problems or creating anything
resembling an actual intelligence. 
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There is nothing new under the sun
Most of AI as practiced today is not new.  Most of these techniques were developed in the
1960s and 1970s and fell out of favor because the computing machinery of the day was 
insufficient for the complexity of the software or number of calculations required, and only
waited for computers to get bigger, and for another very significant event – the invention of
the internet. In previous decades, if you needed 10,000 digitized pictures of cats to compile
a database to train a neural network, the task would be almost impossible—you could take
a lot of cat pictures, or scan images from books.  Today, a Google search for cat pictures
returns 126,000,000 results in 0.44 seconds.  Finding cat pictures, or anything else, is just a
search away, and you have your training set for your neural network—unless you need to
train on a very specific set of objects that don't happen to be on the internet, as we will see
in this book, in which case we will once again be taking a lot of pictures with another
modern aid not found in the 1960s, a digital camera. The happy combination of very fast
computers; cheap, plentiful storage; and access to almost unlimited data of every sort has
produced a renaissance in AI. 

Another modern development has occurred on the other end of the computer spectrum. 
While anyone can now have a supercomputer on their desk at home, the development of
the smartphone has driven a whole series of innovations that are just being felt in
technology. Your wonder of a smartphone has accelerometers and gyroscopes made of tiny
silicon chips called microelectromechanical systems (MEMS). It also has a high resolution
but very small digital camera, and a multi-core computer processor that takes very little
power to run.  It also contains (probably) three radios: a WiFi wireless network, a cellular
phone, and a Bluetooth transceiver.  As good as these parts are at making your iPhone™
fun to use, they have also found their way into parts available for robots.  That is fun for us
because what used to be only available for research labs and universities are now for sale to
individual users.  If you happen to have a university or research lab, or work for a
technology company with multi-million dollar development budgets, you will also learn
something from this book, and find tools and ideas that hopefully will inspire your robotics
creations or power new products with exciting capabilities.

What is a robot?  For the purposes of this book, a robot is a machine that is
capable of sensing and reacting to its environment, and that has some
human or animal-like function.  We generally think of a robot as some sort
of automated, self-directing mobile machine that can interact with the
environment.
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The example problem – clean up this room!
In the course of this book, we will be using a single problem set that I feel most people can
relate to easily, while still representing a real challenge for the most seasoned roboticist. 
We will be using AI and robotics techniques to pick up toys in my upstairs game room after
my grandchildren have visited.  That sound you just heard was the gasp from the
professional robotics engineers and researchers in the audience. Why is this a tough
problem, and why is it ideal for this book? 

This problem is a close analog to the problem Amazon has in picking items off of shelves
and putting them in a box to send to you.  For the last several years, Amazon has sponsored
the Amazon Robotics Challenge where they invited teams to try and pick items off shelves
and put them into a box for cash prizes. They thought the program difficult enough to
invite teams from around the world.  The contest was won in 2017 by a team from
Australia. 

Let’s discuss the problem and break it down a bit.  Later, in Chapter 2, we will do a full task
analysis, use cases, and storyboards to develop our approach, but we can start here with
some general observations.

Robotics designers first start with the environment – where does the robot work? We divide
environments into two categories: structured and unstructured.  A structured
environment, such as the playing field for a first robotics competition, an assembly line, or
lab bench, has everything in an organized space.  You have heard the saying A place for
everything and everything in its place—that is a structured environment. Another way to think
about it, is that we know in advance where everything is or is going to be.  We know what
color things are, where they are placed in space, and what shape they are.  A name for this
type of information is a prior knowledge – things we know in advance. Having advanced
knowledge of the environment in robotics is sometimes absolutely essential. Assembly line
robots are expecting parts to arrive in exactly the position and orientation to be grasped and
placed into position.   In other words, we have arranged the world to suit the robot. 

In the world of our game room, this is simply not an option.  If I could get my
grandchildren to put their toys in exactly the same spot each time, then we would not need
a robot for this task.  We have a set of objects that is fairly fixed – we only have so many
toys for them to play with.  We occasionally add things or lose toys, or something falls
down the stairs, but the toys are a elements of a set of fixed objects.  What they are not is
positioned or oriented in any particular manner – they are just where they were left when
the kids finished playing with them and went home.  We also have a fixed set of furniture,
but some parts move – the footstool or chairs can be moved around.  This is an
unstructured environment, where the robot and the software have to adapt, not the toys or
furniture.
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The problem is to have the robot drive around the room, and pick up toys.  Let's break this
task down into a series of steps:

We want the user to interact with the robot by talking to it.  We want the robot1.
to understand what we want it to do, which is to say, what our intent is for the
commands we are giving it. 
Once commanded to start,  the robot will have to identify an object as being a2.
toy, and not a wall, a piece of furniture, or a door.
The robot must avoid hazards, the most important being the stairs going down3.
to the first floor.  Robots have a particular problem with negative obstacles
(dropoffs, curbs, cliffs, stairs, and so on), and that is exactly what we have here. 
Once the robot finds a toy, it has to determine how to pick the toy up with its4.
robot arm.  Can it grasp the object directly, or must it scoop the item up, or push
it along?  We expect that the robot will try different ways to pick up toys and
may need several trial and error attempts. 
Once the toy is acquired by the robot arm, the robot needs to carry the toy to a5.
toy box.  The robot must recognize the toy box in the room, remember where it is
for repeat trips, and then position itself to place the toy in the box. Again, more
than one attempt may be required. 
After the toy is dropped off, the robot returns to patrolling the room looking for6.
more toys.  At some point, hopefully, all of the toys are retrieved.   It may have to
ask us, the human, if the room is acceptable, or if it needs to continue cleaning.

What will we be learning from this problem?  We will be using this backdrop to examine a
variety of AI techniques and tools.   The purpose of the book is to teach you how to develop
AI solutions with robots.  It is the process and the approach that is the critical information
here, not the problem and not the robot I developed so that we have something to take
pictures of for the book.  We will be demonstrating techniques for making a moving
machine that can learn and adapt to its environment.  I would expect that you will pick and
choose which chapters to read and in which order according to your interests and you
needs, and as such, each of the chapters will be standalone lessons. 

The first three chapters are foundation material that support all of the rest of the book by
setting up the problem and providing a firm framework to attach all of the rest of the
material.
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What you will learn
Not all of the chapters or topic in this book are considered classical AI approaches, but they
do represent different ways of approaching machine learning and decision-making
problems.

Building a firm foundation for robot control by understanding control theory and timing. 
We will be using a soft real-time control scheme with what I call a frame-based control
loop.  This technique has a fancy technical name – rate monotonic scheduling—but I think
you will find the concept fairly intuitive and easy to understand.

At the most basic level, AI is a way for the robot to make decisions about its actions. We
will introduce a model for decision making that comes from the US Air Force, called the
OODA (Observe- Orient-Decide- Act) loop.  Our robot will have two of these loops: an
inner loop or introspective loop, and an outward looking environment sensor loop.  The
lower, inner loop takes priority over the slower, outer loop, just as the autonomic parts of
your body (heartbeat, breathing, eating) take precedence over your task functions (going to
work, paying bills, mowing the lawn).  This makes our system a type of subsumption
architecture in Chapter 2, Setting Up Your Robot, a biologically inspired control paradigm
named by Rodney Brooks of MIT, one of the founders of iRobot and designer of a robot
named Baxter.

The OODA Loop
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The OODA loop was invented by Col. John Boyd, a man also called The Father of the F-16. 
Col. Boyd's ideas are still widely quoted today, and his OODA loop is used to describe
robot artificial intelligence, military planning, or marketing strategies with equal utility. 
The OODA provides a model for how a thinking machine that interacts with its
environment might work.

Our robot works not by simply doing commands or following instructions step by step, but
by setting goals and then working to achieve these goals. The robot is free to set its own
path or determine how to get to its goal.  We will tell the robot to pick up that toy and the
robot will decide which toy, how to get in range, and how to pick up the toy.  If we, the
human robot owner, instead tried to treat the robot as a teleoperated hand, we would have
to give the robot many individual instructions, such as move forward, move right, extend
arm, open hand, each individually and without giving the robot any idea of why we were
making those motions.

Before designing the specifics of our robot and its software, we have to match its
capabilities to the environment and the problem it must solve.   The book will introduce
some tools for designing the robot and managing the development of the software.  We will
use two tools from the discipline of systems engineering to accomplish this – use cases and
storyboards.  I will make this process as streamlined as possible.  More advanced types of
systems engineering are used by NASA and aerospace companies to design rockets and
aircraft – this gives you a taste of those types of structured processes.

Artificial intelligence and advanced robotics
techniques
The next sections will each detail a step-by-step example of the application of a different AI
approach. 

We start with object recognition.  We need our robot to recognize objects, and then classify
them as either toys to be picked up or not toys to be left alone.  We will use a trained
artificial neural network (ANN) to recognize objects from a video camera from various
angles and lighting conditions.

The next task, once a toy is identified, is to pick it up.  Writing a general purpose pick up
anything program for a robot arm is a difficult task involving a lot of higher mathematics
(google inverse kinematics to see what I mean).  What if we let the robot sort this out
for itself?  We use genetic algorithms that permit the robot to invent its own behaviors and
learn to use its arm on its own.
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Our robot needs to understand commands and instructions from its owner (us).  We use
natural language processing to not just recognize speech, but understand intent for the
robot to create goals consistent to what we want it to do. We use a neat technique called the
“fill in the blank” method to allow the robot to reason from the context of a command.   This
process is useful for a lot of robot planning tasks.

The robot’s next problem is avoiding the stairs and other hazards.  We will use operant
conditioning to have the robot learn through positive and negative reinforcement where it
is safe to move.

The robot will need to be able to find the toy box to put items away, as well as have a
general framework for planning moves into the future.  We will use decision trees for path
planning, as well as discuss pruning for quickly rejecting bad plans.  We will also introduce
forward and backwards chaining as a means to quickly plan to reach a goal.  If you
imagine what a computer chess program algorithm must do, looking several moves ahead
and scoring good moves versus bad moves before selecting a strategy, that will give you an
idea of the power of this technique.  This type of decision tree has many uses and can
handle many dimensions of strategies. We'll be using it to find a path to our toy box to put
toys away.

Our final practical chapter brings a different set of tools not normally used in robotics, or at
least not in the way we are going to employ them. 

I have four wonderful, talented, and delightful grandchildren who love to come and visit. 
You'll be hearing a lot about them throughout the book.  The oldest grandson is six years
old, and autistic, as is my grandaughter, the third child. I introduced the grandson,
William, to the robot , and he immediately wanted to have a conversation with it. He asked
What's your name? and What do you do?   He was disappointed when the robot made no
reply.  So for the grandkids, we will be developing an engine for the robot to carry on a
small conversation. We will be creating a robot personality to interact with
children. William had one more request of this robot: he wants it to tell and respond to
knock, knock jokes. 

While developing a robot with actual feelings is far beyond the state of the art in robotics or
AI today, we can simulate having a personality with a finite state machine and some
Monte-Carlo modeling.  We will also give the robot a model for human interaction so that
the robot will take into account the child's mood as well. I like to call this type of software
an artificial personality to distinguish it from our artificial intelligence.   AI builds a model
of thinking, and AP builds a model of emotion for our robot.  
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Introducing the robot and our development
environment
This is a book about robots and artificial intelligence, so we really need to have a robot to
use for all of our practical examples.  As we will discuss in Chapter 2 at some length, I have
selected robot hardware and software that would be accessible to the average reader, and
readily available for mail order. In the Appendix, I go through all of the setup of all of the
hardware and software required and show you how I put together this robot and wired up
his brain and control system.  The base and robot arm were purchased as a unit from
AliExpress, but you can buy them separately. All of the electronics were purchased from
Amazon.

As shown in the photo, our robot has tracks, a mechanical six degree-of-freedom arm, and a
computer.  Let's call him TinMan, since, like the storybook character in The Wizard of Oz, he
has a metal body and all he wants for is a brain. 
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Our tasks in this book center around picking up toys in an interior space, so our robot has a
solid base with two motors and tracks for driving over a carpet.  Our steering method is the
tank-type, or differential drive where we steer by sending different commands to the track
motors.  If we want to go straight ahead, we set both motors to the same forward speed.  If
we want to travel backward, we reverse both motors the same amount.  Turns are
accomplished by moving one motor forward and the other backward (which makes the
robot turn in place) or by giving one motor more forward drive than the other.  We can
make any sort of turn this way.  In order to pick up toys we need some sort of manipulator,
so I've included a six-axis robot arm that imitates a shoulder – elbow – wrist- hand
combination that is quite dexterous, and since it is made out of standard digital servos,
quite easy to wire and program.

You will note that the entire robot runs on one battery. You may want to split that and have
a separate battery for the computer and the motors. This is a common practice, and many of
my robots have had separate power for each.  Make sure if you do to connect the ground
wires of the two systems together.  I've tested my power supply carefully and have not had
problems with temperature or noise, although I don't run the arm and drive motors at the
same time.  If you have noise from the motors upsetting the Arduino (and you will tell
because the Arduino will keep resetting itself), you can add a small filter capacitor of 10 µf
across the motor wires.
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The main control of the TinMan robot is the Raspberry Pi 3 single board computer (SBC),
that talks to the operator via a built-in Wi-Fi network.  An Arduino Mega 2560 controller
based on the Atmel architecture provides the interface to the robot's hardware components,
such as motors and sensors.

You can refer to the preceding diagram on the internal components of the robot.  We will be
primarily concerned with the Raspberry Pi3 single board computer (SBC), which is the 
brains of our robot.  The rest of the components we will set up once and not change for the
entire book. 

The Raspberry Pi 3 acts as the main interface between our control station, which is a PC
running Linux in a virtual machine, and the robot itself via a Wi-Fi network.  Just about any
low power, Linux-based SBC can perform this job, such as a BeagleBone Black, Oodroid
XU4, or an Intel Edison.

Connected to the SBC is an Arduino 2560 Mega microcontroller board that will serve as our
hardware interface.  We can do much of the hardware interface with the PI if we so desired,
but by separating out the Arduino we don’t have to worry about the advanced AI software
running in the Pi 3 disrupting the timing of sending PWM (pulse width modulated)
controls to the motors, or the PPM (pulse position modulation) signals that control our six
servos in the robot arm.  Since our motors draw more current than the Arduino can handle
itself, we need a motor controller to amplify our commands into enough power to move the
robot’s tracks.   The servos are plugged directly into the Arduino, but have their own
connection to the robot’s power supply.  We also need a 5v regulator to provide the proper
power from the 11.1v rechargeable lithium battery power pack into the robot.  My power
pack is a rechargeable 3S1P (three cells in series and one in parallel) 2,700 ah battery
normally used for quadcopter drones, and came with the appropriate charger.   As with
any lithium battery, follow all of the directions that came with the battery pack and
recharge it in a metal box or container in case of fire.

Software components (ROS, Python, and Linux)
I am going to direct you once again to the Appendix to see all of the software that runs the
robot, but I'll cover the basics here to remind you.  The base operating system for the robot
is Linux running on a Raspberry Pi 3 SBC, as we said.  We are using the ROS to connect all
of our various software components together, and it also does a wonderful job of taking
care of all of the finicky networking tasks, such as setting up sockets and establishing
connections. It also comes with a great library of already prepared functions that we can
just take advantage of, such as a joystick interface. 
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The ROS is not a true operating system that controls the whole computer like Linux or
Windows does, but rather it is a backbone of communications and interface standards and
utilities that make putting together a robot a lot simpler.  The ROS uses a
publish/subscribe technique to move data from one place to another that truly decouples the
programs that produce data (such as sensors and cameras) from those programs that use
the data, such as controls and displays. We’ll be making a lot of our own stuff and only
using a few ROS functions.  Packt Publishing has several great books for learning ROS.  My
favorite is Learning ROS for Robotics by Aaron Martinez and Enrique Fernandez. 

The programming language we will use throughout this book, with a couple of minor
exceptions, will be Python.  Python is a great language for this purpose for two great
reasons:  it is widely used in the robotics community in conjunction with ROS, and it is also
widely accepted in the machine learning and AI community.  This double whammy makes
using Python irresistible.  Python is an interpreted language, which has three amazing
advantages for us:

Portability: Python is very portable between Windows, Mac, and Linux.  Usually
the only time you have to worry about porting is if you use a function out of the
operating system, such as opening a file that has a directory name.
As an interpreted language, Python does not require a compile step. Some of the
programs we are developing in this book are pretty involved, and if we write
them in C or C++, would take 10 or 20 minutes of build time each time we made a
change.  You can do a lot with that much time, which you can spend getting your
program to run and not waiting for make to finish.
Isolation. This is a benefit that does not get talked about much, but having had a
lot of experience with crashing operating systems with robots, I can tell you that
the fact that Python’s interpreter is isolated from the core operating system
means that having one of your Python ROS programs crash the computer is very
rare. A computer crash means rebooting the computer and also probably losing
all of your data you need to diagnose the crash.  I had a professional robot project
that we moved from Python to C++, and immediately the operating system
crashes began, which shot the reliability of our robot.  If a Python program
crashes, another program can monitor that and restart it.  If the operating system
is gone, there is not much you can do without some extra hardware that can push
the reset button for you.  (For further information, refer to Python Success
Stories https:/ /www. python. org/ about/ success/ devil/ ). 
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Robot control systems and a decision-making
framework
Before we dive into the coding of our base control system, let’s talk about the theory we will
use to create a robust, modular, and flexible control system for robotics.  As I mentioned
previously, we are going to use two sets of tools in the sections: soft real-time control and
the OODA loop.  One gives us a base for controlling the robot easily and consistently, and
the other provides a basis for all of the robot’s autonomy. 

Soft real-time control
The basic concept of how a robot works, especially one that drives, is fairly simple.  There is
a master control loop that does the same thing over and over; it reads data from the sensors
and motor controller,  looks for commands from the operator (or the robot's autonomy
functions), makes any changes to the state of the robot based on those commands, and then
sends instructions to the motors or effectors to make the robot move:

The preceding diagram illustrates how we have instantiated the OODA loop into the
software and hardware of our robot. The robot can either act autonomously, or accept
commands from a control station connected via a wireless network. 
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What we need to do is perform this control loop in a consistent manner all of the time.  We
need to set a base frame rate, or basic update frequency, in our control loop.  This makes all
of the systems of the robot perform better.  Without some sort of time manager, each
control cycle of the robot takes a different amount of time to complete, and any sort of path
planning, position estimate, or arm movement becomes more complicated. 

If you have used a PID controller before to perform a process, such as driving the robot at a
consistent speed, or aiming  a camera at a moving target, then you will understand that
having even-time steps is important to getting good results.

Control loops
In order to have control of our robot, we have to establish some sort of control or feedback
loop.  Let’s say that we tell the robot to move 12 inches (30 cm) forward.  The robot has to
send a command to the motors to start moving forward, and then have some sort of
mechanism to measure 12 inches of travel.  We can use several means to accomplish this,
but let’s just use a clock.  The robot moves 3 inches (7.5 cm) per second.  We need the
control loop to start the movement, and then at each update cycle, or time through the loop,
check the time, and see if 4 seconds has elapsed.  If it has, then it sends a stop command to
the motors.  The timer is the control, 4 seconds is the set point, and the motor is the system
that is controlled.  The process also generates an error signal that tells us what control to
apply (in this case, to stop). The following diagram shows a simple control loop.  What we
want is a constant temperature in the pot of water:
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The Valve controls the heat produced by the fire, which warms the pot of water.  The
Temperature Sensor detects if the water is too cold, too hot, or just right. The Controller
uses this information to control the valve for more heat.  This type of schema is called a
closed loop control system.

You can think of this also in terms of a process.  We start the process, and then get feedback
to show our progress, so that we know when to stop or modify the process.   We could be
doing speed control, where we need the robot to move at a specific speed, or pointing
control, where the robot aims or turns in a specific direction.

Let’s look at another example.  We have a robot with a self-charging docking station, with a
set of light emitting diodes (LEDs) on the top as an optical target.  We want the robot to
drive straight into the docking station.  We use the camera to see the target LEDs on the
docking station.  The camera generates an error, which is the direction that the LEDs are
seen in the camera.   The distance between the LEDs also gives us a rough range to the
dock.  Let’s say that the LEDs in the image are off to the left of center 50% and the distance
is 3 feet (1 m)  We send that information to a control loop to the motors – turn right
(opposite the image) a bit and drive forward a bit.  We then check again, and the LEDs are
closer to the center (40%) and the distance is a bit less (2.9 feet or 90 cm). Our error signal is
a bit less, and the distance is a bit less, so we send a slower turn and a slower movement to
the motors at this update cycle. We end up exactly in the center and come to zero speed just
as we touch the docking station.  For those people currently saying "But if you use a PID
controller …", yes, you are correct, I’ve just described a "P" or proportional control scheme. 
We can add more bells and whistles to help prevent the robot from overshooting or
undershooting the target due to its own weight and inertia, and to damp out oscillations
caused by those overshoots.   

The point of these examples is to point out the concept of control in a system.  Doing this
consistently is the concept of real-time control.

In order to perform our control loop at a consistent time interval (or to use the proper term,
deterministically), we have two ways of controlling our program execution: soft real time
and hard real time.  

A hard real-time system places requirements that a process executes inside a time window
that is enforced by the operating system, which provides deterministic performance – the
process always takes exactly the same amount of time.
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The problem we are faced with is that a computer running an operating system is
constantly getting interrupted by other processes, running threads, switching contexts, and
performing tasks.  Your experience with desktop computers, or even smart phones, is that
the same process, like starting up a word processor program, always seems to take a
different amount of time whenever you start it up, because the operating system is
interrupting the task to do other things in your computer.

This sort of behavior is intolerable in a real-time system where we need to know in advance
exactly how long a process will take down to the microsecond.  You can easily imagine the
problems if we created an autopilot for an airliner that, instead of managing the aircraft’s
direction and altitude, was constantly getting interrupted by disk drive access or network
calls that played havoc with the control loops giving you a smooth ride or making a
touchdown on the runway. 

A real-time operating system (RTOS) allows the programmers and developers to have
complete control over when and how the processes are executing, and which routines are
allowed to interrupt and for how long.  Control loops in RTOS systems always take the
exact same number of computer cycles (and thus time) every loop, which makes them
reliable and dependable when the output is critical.  It is important to know that in a hard
real-time system, the hardware is enforcing timing constraints and making sure that the
computer resources are available when they are needed.

We can actually do hard real time in an Arduino microcontroller, because it has no
operating system and can only do one task at a time, or run only one program at a time. 
We have complete control over the timing of any executing program.  Our robot will also
have a more capable processor in the form of a Raspberry Pi 3 running Linux. This
computer, which has some real power, does quite a number of tasks simultaneously to
support the operating system, run the network interface, send graphics to the output HDMI
port, provide a user interface, and even support multiple users.
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Soft real time is a bit more of a relaxed approach.   The software keeps track of task
execution, usually in the form of frames, which are set time intervals, like the frames in a
movie film.  Each frame is a fixed time interval, like 1/20 of a second, and the program
divides its tasks into parts it can execute in those frames.   Soft real time is more appropriate
to our playroom cleaning robot than a safety-critical hard real-time system – plus, RTOSs
are expensive and require special training.  What we are going to do is treat the timing of
our control loop as a feedback system.  We will leave extra "room" at the end of each cycle
to allow the operating system to do its work, which should leave us with a consistent
control loop that executes at a constant time interval.  Just like our control loop example, we
will make a measurement, determine the error, and apply a correction each cycle.

We are not just worried about our update rate.  We also have to worry about "jitter", or
random variability in the timing loop caused by the operating system getting interrupted
and doing other things.  An interrupt will cause our timing loop to take longer, causing a
random jump in our cycle time.  We have to design our control loops to handle a certain
amount of jitter for soft real time, but these are comparatively infrequent events.

The process is actually fairly simple in practice.  We start by initializing our timer, which
needs to be as high a resolution as we can get.  We are writing our control loop in Python,
so we will use the time.time() function, which is specifically designed to measure our
internal program timing performance (set frame rate, do loop, measure time, generate error,
sleep for error, loop).  Each time we call time.time(), we get a floating point number,
which is the number of seconds from the Unix clock.

The concept for this process is to divide our processing into a set of fixed time frames.
Everything we do will fit within an integral number of frames.  Our basic running speed
will process 30 frames per second.  That is how fast we will be updating the robot’s position
estimate, reading sensors, and sending commands to motors.  We have other functions that
run slower than the 30 frames, so we can divide them between frames in even multiples. 
Some functions run every frame (30 fps), and are called and executed every frame.  Let’s say
that we have a sonar sensor that can only update 10 times a second. We call the read
sonar function every third frame.  We assign all our functions to be some multiple of our
basic 30 fps frame rate, so we have 30, 15, 10, 7.5, 6,5,4.28,2, and 1 frames per second if we
call the functions every frame, every second frame, every third frame, and so on.  We can
even do less that one frame per second – a function called every 60 frames executes once
every 2 seconds.
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The tricky bit is we need to make sure that each process fits into one frame time, which is
1/30 of a second or 0.033 seconds or 33 milliseconds.  If the process takes longer than that,
we have to ether divide it up into parts, or run it in a separate thread or program where we
can start the process in one frame and get the result in another.  It is also important to try
and balance the frames so that not all processing lands in the same frame. The following
diagram shows a task scheduling system based on a 30 frames per second basic rate.

We have four tasks to take care of: Task A runs at 15 fps, Task B runs at 6 fps (every five
frames), Task C runs at 10 fps (every three frames), and Task D runs at 30 fps, every
frame.  Our first pass (the top diagram) at the schedule has all four tasks landing on the
same frame at frames 1, 13, and 25.  We can improve the balance of the load on the control
program if we delay the start of Task B on the second frame, as shown in the bottom
diagram. 

This is very akin to how measures in music work, where a measure is a certain amount of
time, and different notes have different intervals – one whole note can only appear once per
measure, a half note can appear twice, all the way down to 64th notes.  Just as a composer
makes sure that each measure has the right number of beats, we can make sure that our
control loop has a balanced measure of processes to execute each frame.

Let’s start by writing a little program to control our timing loop and to let you play with
these principles.
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This is exciting; our first bit of coding together.  This program just demonstrates the timing
control loop we are going to use in the main robot control program, and is here to let you
play around with some parameters and see the results.  This is the simplest version I think
is possible of a soft-time controlled loop, so feel free to improve and embellish.  

The following diagram show what we are doing with this program:

Now we begin with coding.  This is pretty straightforward  Python code; we won't get
fancy until later.  We start by importing our libraries.  It is not surprising that we start with
the time module.  We also will use the mean function from numpy (Python numerical
analysis) and matplotlib to draw our graph at the end.  We will also be doing some math
calculations to simulate our processing and create a load on the frame rate.

import time
from numpy import mean
import matplotlib.pyplot as plt
import math
#
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Now we have some parameters to control our test.  This is where you can experiment with
different timings.  Our basic control is the FRAMERATE – how many updates per second do
we want to try?  Let’s start with 30, as we did before:

# set our frame rate - how many cycles per second to run our loop?
FRAMERATE = 30
# how long does each frame take in seconds?
FRAME = 1.0/FRAMERATE
# initialize myTimer
# This is one of our timer variables where we will store the clock time
from the operating system.
myTimer = 0.0

The duration of the test is set by the counter variable.  The time the test will take is the
FRAME time times the number of cycles in the  counter.  In our example, 2000 frames
divided by 30 frames per second is 66.6 seconds, or a bit over a minute to run the test: 

# how many cycles to test?  counter*FRAME = runtime in seconds
counter = 2000

We will be controlling our timing loop in two ways.  We will first measure the amount of
time it takes to perform the calculations for this frame.  We have a stub of a program with
some trig functions we will call to put a load on the computer.  Robot control functions,
such as computing the angles needed in a robot arm, need lots of trig math to work.

We will measure the time for our control function to run, which will take some part of our
frame.  We then compute how much of our frame remains, and tell the computer to sleep
this process for the rest of the time.  Using the sleep function releases the computer to go
take care of other business in the operating system, and is a better way to mark time rather
that running a tight loop of some sort to waste the rest of our frame time.  The second way
we control our loop is by measuring the complete frame – compute time plus rest time –
and looking to see if we are over or under our frame time.  We use TIME_CORRECTION for
this function to trim our sleep time to account for variability in the sleep function and any
delays getting back from the operating system:

# factor for our timing loop computations
TIME_CORRECTION= 0.0
# place to store data
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We will collect some data to draw a "jitter" graph at the end of the program. We use the
dataStore structure for this.   Let's put a header on the screen to tell the you the program
has begun, since it takes a while to finish:

dataStore = []
# Operator information  ready to go
# We create a heading to show that the program is starting its test
print "START COUNTING: FRAME TIME", FRAME, "RUN TIME:",FRAME*counter
# initialize the precision clock

In this step, we are going to set up some variables to measure our timing.  As we
mentioned, the objective is to have a bunch of compute frames, each the same length.  Each
frame has two parts: a compute part, where we are doing work, and a sleep period, when
we are allowing the computer to do other things.  myTime is the "top of frame" time, when
the frame begins.  newTime is the end of the work period timer.   We use masterTime to
compute the total time the program is running: 

 myTime = newTime = time.time()
 # save the starting time for later
 masterTime=myTime
 # begin our timing loop
 for ii in range(counter):

This section is our "payload", the section of the code doing the work.  This might be an arm
angle calculation, a state estimate, or a command interpreter.  We'll stick in some trig
functions and some math to get the CPU to do some work for us.  Normally, this "working"
section is the majority of our frame, so let's repeat these math terms 1,000 times:

 # we start our frame - this represents doing some detailed math
calculations
 # this is just to burn up some CPU cycles
 for jj in range(1000):
 x = 100
 y = 23 + ii
 z = math.cos(x)
 z1 = math.sin(y)
 #
 # read the clock after all compute is done
 # this is our working frame time
 #
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Now we read the clock to find the working time.  We can now compute how long we need
to sleep the process before the next frame.  The important part is that working time + sleep
time = frame time.  I'll call this timeError:

 newTime = time.time()
 # how much time has elapsed so far in this frame
 # time = UNIX clock in seconds
 # so we have to subract our starting time to get the elapsed time
 myTimer = newTime-myTime
 # what is the time left to go in the frame?
 timeError = FRAME-myTimer

We carry forward some information from the previous frame here.  TIME_CORRECTION is
our adjustment for any timing errors in the previous frame time.  We initialized it earlier to
zero before we started our loop so we don't get an undefined variable error here.  We also
do some range checking because we can get some large "jitters" in our timing caused by the
operating system that can cause our sleep timer to crash if we try to sleep a negative
amount of time: 

We use the Python max function as a quick way to clamp the value of
sleep time to be zero or greater. Max returns the greater of two
arguments.  The alternative is something like  if a< 0 : a=0.

 # OK time to sleep
 # the TIME CORRECTION helps account for all of this clock reading
 # this also corrects for sleep timer errors
 # we are using a porpotional control to get the system to converge
 # if you leave the divisor out, then the system oscillates out of control
 sleepTime = timeError + (TIME_CORRECTION/1.5)
 # quick way to eliminate any negative numbers
 # which are possible due to jitter
 # and will cause the program to crash
sleepTime=max(sleepTime,0.0)

So here is our actual sleep command.  The sleep command does not always provide a
precise time interval, so we will be checking for errors:

 # put this process to sleep
 time.sleep(sleepTime)
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This is the time correction section. We figure out how long our frame time was in total
(working and sleeping) and subtract it from what we want the frame time to be
(FrameTime).  Then we set our time correction to that value.  I'm also going to save the
measured frame time into a data store so we can graph how we did later, using
matplotlib.  This technique is one of Python's more useful features:

 #print timeError,TIME_CORRECTION
 # set our timer up for the next frame
 time2=time.time()
 measuredFrameTime = time2-myTime
 ##print measuredFrameTime,
 TIME_CORRECTION=FRAME-(measuredFrameTime)
 dataStore.append(measuredFrameTime*1000)
 #TIME_CORRECTION=max(-FRAME,TIME_CORRECTION)
 #print TIME_CORRECTION
 myTime = time.time()

This completes the looping section of the program.  This example does 2,000 cycles of 30
frames a second and finishes in 66.6 seconds.  You can experiment with different cycle
times and frame rates. 

Now that we have completed the program, we can make a little report and a graph.  We
print out the frame time and total runtime, compute the average frame time (total
time/counter), and display the average error we encountered, which we can get by
averaging the data in the dataStore:

# Timing loop test is over - print the results
#
# get the total time for the program
endTime = time.time() - masterTime
# compute the average frame time by dividing total time by our number of
frames
avgTime = endTime / counter
#print report
 print "FINISHED COUNTING"
 print "REQUESTED FRAME TIME:",FRAME,"AVG FRAME TIME:",avgTime
 print "REQUESTED TOTAL TIME:",FRAME*counter,"ACTUAL TOTAL TIME:", endTime
 print "AVERAGE ERROR",FRAME-avgTime, "TOTAL_ERROR:",(FRAME*counter) -
endTime
 print "AVERAGE SLEEP TIME: ",mean(dataStore),"AVERAGE RUN
TIME",(FRAME*1000)-mean(dataStore)
 # loop is over, plot result
 # this let's us see the "jitter" in the result
 plt.plot(dataStore)
 plt.show()
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Results from our program are shown in the following code.  Note that the average error is
just 0.00018 of a second, or .18 milliseconds out of a frame of 33 milliseconds: 

START COUNTING: FRAME TIME 0.0333333333333 RUN TIME: 66.6666666667
FINISHED COUNTING
REQUESTED FRAME TIME: 0.0333333333333 AVG FRAME TIME: 0.0331549999714
REQUESTED TOTAL TIME: 66.6666666667 ACTUAL TOTAL TIME: 66.3099999428
AVERAGE ERROR 0.000178333361944 TOTAL_ERROR: 0.356666723887
AVERAGE SLEEP TIME:  33.1549999714 AVERAGE RUN TIME 0.178333361944

The following diagram shows the timing graph from our program.  The "spikes" in the
image are jitter caused by operating system interrupts.  You can see the program controls
the frame time in a fairly narrow range.  If we did not provide control, the frame time
would get greater and greater as the program executed. The diagram shows that the frame
time stays in a narrow range that keeps returning to the correct value: 
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The robot control system – a control loop with
soft real-time control
Now that we have exercised our programming muscles, we can apply this knowledge into
the main control loop for our robot. The control loop has two primary functions:

To respond to commands from the control station 
To interface to the robot's motors and sensors in the Arduino Mega

We will use a standard format for sending commands around the robot.  All robot
commands will have a three letter identifier, which is just a three letter code that identifies
the command.  We will use "DRV" for motor drive commands to the tracks, "ARM" for
commands to the robot arm, and "TLn" for telemetry data (where "n" is a number or letter,
allowing us to create various telemetry lists for different purposes).   Error messages will
start with "ERR", and general commands will start with "COM".   A motor telemetry
message might look like this: 

TL11500,1438\n

Here TL1 is the identifier (telemetry list 1) and the data is separated by commas.  In this
case, the two values are the motor states of the left and right drive motors.  The \n is the end
of line character escape character in Python, which designates the end of that message.

We will also be adding a feature that I always include in all of my robots and unmanned
vehicles.  It is always good to maintain "positive control" over the robot at all times.  We
don't want a hardware fault or a software error to result in the robot being stuck in a loop
or run out of control.  One of the means we can use to detect faults is to use end-to-end
heartbeats.  A heartbeat is a regular message that is periodically passed from the control
station, to the robot's brain, and down to the microcontroller, and then back again.  One of
the tricks I use is to put a time tag on the heartbeat message so that it also acts as a latency
measurement.  Latency is the delay time that it takes from the time a command is generated
until the robot acts on that command.   If we have a heartbeat failure, we can detect that a
process is stuck and stop the robot from moving, as well as send an error message to the
operator.

This robot, like most of my creations, is designed to run autonomously a majority of the
time, so it does not require communications with a control station full time.  You can log
onto the robot, send some commands, or operate it as a teleoperated unit, and then put it
back into autonomous mode.  So we have to design the heartbeat to not require a control
station, but allow for heartbeats to and from a control station if one is connected.  
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Twice a second the main computer, the Raspberry Pi3, will send a message with a header of
HBB, along with the clock time.  The Arduino will simply repeat the HBB message back to
the Pi3 with the same time information; that is, it just repeats the message back as soon as it
can. This allows the Pi3 to measure the route trip delay time by looking at its clock. 
Repeating the clock eliminates the problem of synchronizing the clocks on the two systems. 
When a control program running on my PC is connected to the robot, a separate HBB
message comes via the ROS message interface on a special topic called robotCommand,
which is just a string message type.  The command station puts a time tag on the heartbeat
message, which allows the network latency along the wireless (Wi-Fi) network to be
measured.  Once a command station connects to the robot, it sends a HBB message once a
second to the Pi 3  using ROS.  The robot just repeats the message back as fast as it can. 
This tells the control station that the robot is being responsive, and tells the robot that
someone is connected via Wi-Fi and is monitoring and can send commands. 

Here is a diagram explaining the process:
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OK, now let's start into our main robot control program that runs on the Raspberry Pi3 and
handles the main controls of the robot, including accepting commands, sending 
instructions to the motors, receiving telemetry from the Arduino, and keeping the robot's
update rate managed:

import rospy
import tf.transformations
from geometry_msgs.msg import Twist
from std_msgs.msg import String
import time
import serial
#GLOBAL VARIABLES
# set our frame rate - how many cycles per second to run our loop?
FRAMERATE = 30
# how long does each frame take in seconds?
FRAME = 1.0/FRAMERATE
# initialize myTimer
topOfFrame = 0.0
endOfWork = 0.0
endOfFrame=0.0
# how many cycles to test? counter*FRAME = runtime in seconds
counter = 2000
# fudge factor for our timing loop computations
TIME_CORRECTION= 0.0
class RosIF():
 def __init__(self):
 self.speed = 0.0
 self.turn = 0.0
 self.lastUpdate = 0.0
 rospy.init_node('robotControl', anonymous=True)
 rospy.Subscribe("cmd_vel",Twist,self.cmd_vel_callback)
 rospy.Subscribe("robotCommand",String,self.robCom_callback)
 self.telem_pub = rospy.Publish("telemetry",String,queue_size=10)
 self.robotCommand=rospy.Publish("robotCommand",String,queue_size=10)

 def cmd_vel_callback(self,data):
 self.speed = data.linear.x
 self.turn = data.angular.z
 self.lastUpdate = time.time()

 def command(self,cmd):
 rospy.loginfo(cmd)
 self.robotCommand.Publish(cmd)
 def robCom_callback(self,cmd):
 rospy.loginfo(cmd)
 robot_command = cmd.data
 # received command for robot - process
 if robot_command == "STOP":
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 robot.stop()
 if robot_command == "GO":
 robot.go()
# This object encapsulates our robot
class Robot():
 def __init__(self):
 # position x,y
 # velocity vx, vy
 # accelleration ax, ay
 # angular position (yaw), angular velocity, angular acceleration
<< CODE SNIPPED - SEE APPENDIX>>

We will cover the design of the robot object in the Appendix. The full code is available in the
repository on GitHub. Since we are not using this part of the program for the example in
this chapter, I'm going to snip this bit out. See the Appendix; we will be using this section in
great detail in later chapters.  

Reading serial ports in a real-time manner
One of our functions for the robot control program is to communicate with the Arduino
microcontroller over a serial port.  How do we do that and maintain our timing loop we
have worked so hard for?  Let's put down another very important rule about controlling
robots that will be illustrated in the next bit of code. Let's make this a tip:

In real-time systems (hard or soft) never use blocking calls . Always poll to
get your data. 

Let's have a quick review. A blocking call suspends execution of our program to wait for
some event to happen. In this case, we would be waiting for the serial port to receive data
ending in a new line character.  If the system on the other end of the serial port never sends
data, we can be blocked forever, and our program will freeze.  So how do we talk to our
serial port?  We poll the port (examine the port to see if data is available), rather than wait
for data to arrive, which would the be standard manner to talk to a serial port.  That means
we use read instead of readline commands, since readline blocks (suspends our
execution) until a newline character is received.   That means we can't count on the data in
the receive buffer to consist only of complete lines of data.  We need to pull the data until
we hit a newline character (\n in Python), then put that data into our dataline output
buffer (see the following code), and process it.  Any leftover partial lines we will save for
later, when more data is available.   It's a bit more work, but the result is that we can keep
our timing.
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For advanced students, it is possible to put the read serial function into a separate thread
and pass the data back and still use a blocking call, but I think this is just as much work as
what we are doing here, and the polling technique is less overhead for the processor and
more control for us, because we are never blocked:  

def readBuffer(buff):
# the data we get is a series of lines separated by EOL symbols
# we read to a EOL character (0x10) that is a line
# process complete lines and save partial lines for later
#
EOL = '\n'
if len(buff)==0:
    return
dataLine = ""
lines=[]
for inChar in buff:
    if inChar != EOL:
    dataLine +=inChar
else:
    lines.append(dataLine)
    dataLine=""
for telemetryData in lines:
    processData(telemetryData)
return dataLine

This part of the code processes the complete lines of data we get from the Arduino. We
have three types of message we can get from the microcontroller. Each message starts with
a three letter identifier followed by data. The types are HBB for heartbeat, TLn for telemetry,
and ERR for error messages. Right now we just have one telemetry message, TL1 (telemetry
list 1). Later we will add more telemetry lists as we add sensors to the robot. The HBB
message is just the Arduino repeating back the heartbeat message we send it twice a
second. We'll use ERR to send messages back to the control program from the
microcontroller, and these will be things like illegal motor command:

def processData(dataLine):
 #
 # take the information from the arduino and process telemetry into
 # status information
 # we recieve either heartbeat (HBB), TL1 (telemtry List 1), or ERR (Error
messages)
 # we are saving room for other telemetry lists later
 dataType = dataLine[:3]
 payload = dataLine[3:] # rest of the line is data
 if dataType == 'HBB':
 # process heartbeat
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 # we'll fill this in later
 pass
 if dataType == "TL1": # telemetry list 1
 # we'll add this later
 pass
 if dataType == "ERR": # error message
 print "ARUDUINO ERROR MESSAGE ",payload
 # log the error
 rospy.loginfo(payload)
 return

This section starts our main program.  We start by instantiating our objects for the ROS
interface and the robot. I like to put the ROS interface stuff in an object because it makes it
easier to keep track of and make changes.  Then, we open the serial port to the Arduino on
/dev/ttyUSB0.  Note that we set the timeout to zero.  I don't think this is relevant since we
are not using blocking calls on the serial port, but it can't hurt to double check that no
blocking takes place.  We do some error checking with the try...except block to catch
any errors.  Since the lack of a connection to the robot motors means we can't operate at all,
I've had the program raise the error and stop the program run:

# main program starts here
# *****************************************************
rosif = RosIF() # create a ROS interface instance
robot = Robot() # define our robot instance
serialPort = "/dev/ttyUSB0"
# open serial port to arduino
ser = serial.Serial(serialPort,38400,timeout=0) #
# serial port with setting 38,400 baud, 8 bits, No parity, 1 stop bit
try:
 ser.open()
except:
 print "SERIAL PORT FOR ARDIONO DID NOT OPEN ", serialPort
 raise

Now, we start the ROS loop. not rospy.is_shutdown() controls the program and
allows us to use the ROS shutdown command to terminate the program.  We also initialize
our frame counter we use to schedule tasks.  I count the frames in each second (frameKnt)
and then can set tasks to run at some divisor of the frame rate, as we discussed earlier in the
chapter: 

 frameKnt = 0 # counter used to time processes
 while not rospy.is_shutdown():
 # main loop
 topOfFrame=time.time()
 # do our work
 # read data from the seral port if there is any
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 serData = ser.read(1024)
 # process the data from the arduino
 # we don't want any blocking, so we use read and parse the lines ourselves
 holdBuffer = readBuffer(serData)
 #drive command
 com = ',' # comma symbol we use as a separator
 EOL = '\n'
 if robot.newCommand:
 ardCmd = "DRV"+str(robot.leftMotorCmd)+com+str(robot.rightMotorCmd)+EOL
 serial.write(ardCmd)
 serial.flush() # output Now

Here is an example of scheduling a task.  We want the heartbeat message to go to the
Arduino twice a second, so we compute how many frames that is  (15 in this case) and then
use the modulo operator to determine when that occurs.  We use the formula in case we
want to change the frame rate later, and we probably will.:

 if frameKnt % (FRAMERATE/2)==0: # twice per second
 hbMessage = "HBB"+com+str(time.time())+EOL
 serial.write(hbMessage)
 serial.flush() # output Now

We manage the frame counter, resetting it each second back to zero. We could let it just run,
but let's keep it tidy.  We'll reset the frame counter each second so we don't have to worry
about overflow later:

 frameKnt +=1
 if frameKnt > FRAMERATE: frameKnt = 0 # just count number of frames in a
second

 # done with work, now we make timing to get our frame rate to come out
right
 #
 endOfWork = time.time()
 workTime = endOfWork - topOfFrame
 sleepTime = (FRAME-workTime)+ timeError
 time.sleep(sleepTime)
 endOfFrame = time.time()
 actualFrameTime = endOfFrame-topOfFrame
 timeError = FRAME-actualFrameTime
 # clamp the time error to the size of the frame
 timeError = min(timeError,FRAME)
 timeError = max(timeError,-FRAME)
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Finally, when we fall out of the loop and end the program, we need to close the serial port
to prevent the port from being locked the next time we start up:

 # end of the main loop
 #
 ser.close()

Summary
In this chapter, we introduced the subject of artificial intelligence, and discussed that this is
an artificial intelligence book applied to robotics, so our emphasis will be on AI.   The main
difference between an AI robot and a "regular" robot is that an AI robot may behave non-
deterministically, which is to say it may have a different response to the same stimulus, due
to learning. We introduced the problem we will use throughout the book, which is picking
up toys in a playroom and putting them into a toy box.  Next, we discussed two critical
tools for AI robotics: the OODA loop (Observe-Orient-Decide-Act), which provides a model
for how our robot makes decisions, and the soft real-time control loop, which manages and
controls the speed of execution of our program.  We applied these techniques in a timing
loop demonstration and began to develop our main robot control program.  The Appendix
provides detailed instructions on setting up the various environments and software we will
use to develop our AI-based robot, which I call TinMan.  

Questions
What does the acronym PID stand for?  Is this considered an AI software1.
method?
What is the Turing test?  Do you feel this is a valid method of assessing an2.
artificial intelligence system?
Why do you think robots have a problem in general with negative obstacles, such3.
as stairs and potholes?
In the OODA loop, what does the "orient" step do?4.
From the discussion of Python advantages, compute the following.  You have a5.
program that needs 50 changes tested.  Assuming each change requires one run
and a recompile step to test.  A "C" Make step takes 450 seconds and a Python
"run" command takes 3 seconds.  How much time do you sit idle waiting for the
C compiler?
What does RTOS stand for?  6.
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Your robot has the following scheduled tasks: telemetry: 10 Hz  GPS 5 Hz Inertial7.
50 Hz Motors 20 Hz.  What base frame rate would you use to schedule these
tasks? (Hz or hertz means times per second. 3 Hz = three times per second)
Given that a frame rate scheduler has the fastest task at 20 frames per second,8.
how would you schedule a task that needs to run at seven frames per second? 
How about one that runs at 3.5 frames per second?
What is a blocking call function?  Why is it bad to use blocking calls in a real-time9.
system like a robot?

Further reading
Coram, R. (2004). Boyd: The Fighter Pilot Who Changed the Art of War. New York,
NY: Back Bay Books/Little, Brown. (History of the OODA Loop)
Fernández, E., Crespo, L. S., Mahtani, A., and Martinez, A. (2015). Learning ROS
for Robotics Programming: Your One-Stop Guide to the Robot Operating System.
Birmingham, UK: Packt Publishing.
Joshi, P. (2017). Artificial Intelligence with Python: A Comprehensive Guide to Building
Intelligent Apps for Python Beginners and Developers. Birmingham, UK: Packt
Publishing Ltd.
Brooks, R. (1986). "A robust layered control system for a mobile
robot". Robotics and Automation, IEEE Journal of . 2 (1):
14–23. doi:10.1109/JRA.1986.1087032.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FJRA.1986.1087032


2
Setting Up Your Robot

This chapter begins with some background on my thoughts as to what a robot is, and what
robots are made of – a fairly standard list of parts and components. This chapter is designed
to allow you to duplicate the exercises and use the source code that is found throughout the
book. I thought you would appreciate information on how I set up my environments for
development, what tools I use to create my code, and how I install the Robotic Operating
System (ROS). We will also cover the assembly of TinMan, our robot hardware that I used
for the development and testing of the code in this book. There are many types and
configurations of robots that can work with our concepts and source code, with some minor
modifications.

Topics covered in this chapter include the following:

What is a robot?
Robot anatomy – what are little robots made of?
Software – Linux, ROS, Raspberry Pi 3, Arduino
Software installation and configuration
Hardware – assembling the TinMan robot

Technical requirements
The hardware and software requirements for this chapter are as follows:

Python 2.7 or 3.5, with NumPy, SciPy, Matplotlib, and scikit-learn installed.
ROS Kinetic Kame.
A computer running Linux for development or a virtual machine running Linux
under Windows. Ubuntu 16.04 is used for the examples and illustrations.
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A Raspberry Pi 3 or similar single board computer (BeagleBone Black, Odroid, or
similar). We are not using the GPIO or special interfaces on the Pi 3, so there is
not a lot of RasPi-specific code. 
An Arduino Mega 2560 microcontroller.
A Pololu Micro Maestro Servo Controller x6.
An Arduino development environment. This can be installed either on the
control station (a laptop running Windows or a Linux laptop), or on the
Raspberry Pi. 
The TinMan robot hardware was purchased from AliExpress and was called
Track Cars Creeper Truck Crawler Kits with 6DOF Robot Arm and 6PCS MG1501
Servos Robo-Soul TK-6A. It came with no instructions and a lot of extra hardware.

What is a robot?
The word robot entered the modern language from the play R.U.R. by the Czech author,
Karel Capek, which was published back in 1920. Roboti is supposed to be a Czech word
meaning forced servitude. In the play, an industrialist learns how to build artificial people
– not mechanical, metal men, but made of flesh and blood, who emerge from a factory fully
grown. The English translation of the name as Rossum’s Universal Robots (R.U.R.)
introduced the word "robot" to the world.

Robot anatomy – what are robots made of?
In our limited definition of robots as meaning mobile machines that have sensors and
interact with their environment, there is a fairly standard collection of components and
parts that make up the vast majority of robots. Even robots as outwardly different as a self-
driving car, the welding robot that built the car, and a Roomba vacuum cleaner, are actually
composed of some version of the same parts. Some will have more components, others less,
but pretty much all robots will have the following categories of parts 
(Reference: Murphy, Robin R. Introduction to AI Robotics, MIT Press, 2000, Chapter 1): 
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Controller: A unit that runs the programming that controls the robot. This can be
a traditional computer, a microcontroller, a single board computer (SBC), like 
the one we have, or some other sort of processor that sends and receives
commands. Robot arms and some types of industrial robots will use a
programmable logic controller (PLC), which mimics the way robots were
programmed before digital computers with relays.
Control station or human/robot interface (HRI): Robots are designed to perform
tasks, which require that humans must have some means of sending instructions
to the robot and supervising that the robot is behaving correctly. We will be
using a laptop or desktop computer for this function, and will talk to the robot
via a network. Control stations send commands to the robot, and
receive telemetry from the robot in the form of data, video, or audio.
Radio or datalink: Mobile robots, like the one we are designing in this book, are
capable of moving and exploring their environment. While it is possible to send 
commands to a robot over a tether or wire, a preferred way is to use a radio link.
The ubiquitous availability of wireless networks, such as Wi-Fi and cellular data
services, has made creating data links a lot easier. I have had a lot of robot
projects where a network link was unavailable or impractical, and a custom radio
solution needed to be devised. Other types of radio used in robots may include
Bluetooth, Zigbee, and various mesh network systems, such as Flutter.
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Motors or effectors: Our definition of a robot included the ability for self-
propulsion – in other words, the robot is able to move. In order to move, the
robot needs one or more motors. Our robot, TinMan, has eight motors, two for
driving, and six for controlling the robot arm and hand. Motors, in general,
convert electricity into motion. There are many, many different types, and
picking the correct motor is difficult. You must match the torque (how hard the
motor can pull), the speed in revolutions per minute, and voltage. Many robot
motors also feature gearboxes to slow the speed of the motor down, basically
exchanging speed for torque. TinMan’s electric motors have reduction gear
boxes. 

There are other ways to provide motion to a robot, in fact, many other ways.
We call these things that make the robot move effectors. Effectors are only
limited by your imagination, and include pneumatics (systems actuated by
compressed air), hydraulics (things actuated by incompressible fluid), linear
actuators that go back and forth rather than round and round, and even
exotic effectors, such as Shape Memory Alloy or piezoelectric crystals, which
change shape when electricity is applied. There are robot fish, robot octopi,
squishy robots that fit under doors, robots that roll, robots that jump, and
robots that walk. 

Servos: Some of the motors in our robot are a special category of motors called
Servos. Servo motors feature a feedback mechanism and a control loop, so that
they behave in a particular manner, either to maintain a position or a speed. The
feedback is provided by a sensor. The servos we are using consist of a small
electric motor that drives a gearbox made up of a whole series of gears that
reduce the speed and increase the torque of the motor. The sensor is a
potentiometer (variable resistor) that can measure the angle of the output gear
shaft. When we send a command to the servo, it tells the motor to set to a
particular angle. The angle is measured by the sensor, and any difference
between the motor's position and the sensor creates an error signal that moves
the motor in the correct direction. You can hear the motor making a lot of noise,
because the motor turns many times through seven reduction gears to make the
arm move. The gearbox lets us get a lot of torque without drawing a lot of
current.
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Motor controller: Motors are not very useful by themselves – you need some
capability to convert commands from the control computer into motion from the
motors. Since motors require more voltage and current than the control computer
(our Raspberry Pi) can provide, we need a device to turn small digital signals
into large analog voltage and current. This device is called a motor controller, or 
sometimes an electronic speed control. Since we have a tank-drive robot, we also
need the motors to be able to run in forward or reverse. The motor controller
takes a special input signal called a pulse width modulation (PWM). PWM is a 
repeating signal where the voltage turns on and off. The motor throttle (how fast
the motor turns) is proportional to the amount of time the PWM signal stays in
the ON position: 

The motor controller has several kinds of connections, and has to be wired
carefully due to the higher voltages and currents provided. There are two
control wire inputs – one for speed (the PWM signal), while the other is a
direction signal. We put the motor in reverse by changing the direction
signal – 1 is forward, and 0 is backward. The next thing we need is a ground
– it is very important that the controller sending the PWM signal (in our case,
the Arduino Mega) and the motor control have their ground lines connected
together. We’ll cover this in the wiring section later in the chapter. Next, the
motor controller needs the motor voltage and current, which we get directly
from our battery. Finally, we connect two wires from each motor to the
controller. It is interesting that we don't care which wire goes to which side
of the motor, since we can run both forward and backward. If the motor is
turning the wrong way, just switch the two wires. This is the only time you
get to say just reverse the polarity outside of a science fiction movie!
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Sensors: A robot can be described as a machine that can move and react to its
environment. In order for the robot to be able to see its surroundings, it needs
sensors. Sensors take information from the outside or inside of the robot and
convert it into a digital or electronic format. If we use a camera sensor, it takes
light information and turns it into digital pixels recorded as an array of numbers.
A sonar sensor would measure the distance to an object, such as a wall, by
sending a pulse of energy (sound waves) and listening for the time delay before
hearing an echo. Measuring the time delay gives us the distance to an object. For
our TinMan project, the robot has several types of sensor, some more obvious
than others. Our primary sensor is a wide-angle video camera, which we will use
for avoiding obstacles and detecting objects. We will also use a microphone to
listen for sounds and perform speech recognition. We mentioned servo motors in
a previous paragraph – each servo motor contains an angle sensor that detects
the amount of rotation, and allows us to direct the robot arm and hand. We have
our Emergency Stop button, which is wired to the Arduino, and is a type of
tactile (touch) sensor. When the button is pressed, the digital signal line to the
Arduino is connected to ground, which we can detect as a 0 value on that pin.
The Arduino can also perform an analog-to-digital (A2D) conversion. This 
means we can put a voltage on an Arduino pin from 0 to 5 volts and measure the
amount of that voltage. We could use that to monitor our power supply, or to
measure temperature via a thermistor. A thermistor is just a device that changes
resistance with temperature. If we put a voltage through the thermistor, we can
measure changes in that voltage on the thermistor's output. 

Subsumption architecture
At this point, I want to spend a bit more time on the idea behind the subsumption
architecture, and point out some specifics of how we will be using this concept in the
design of our robot project. Many of you will be familiar with the concept from school or
from study, and so you can look at my diagram and then move on. For the rest of us, let's
talk a bit about this biologically inspired robot concept. 

Subsumption architecture was originally described by Dr. Rodney Brooks, a professor at
MIT, who would later help found iRobot Corporation and invent the Baxter Robot. Rodney
was trying to develop analogues of insect brains in order to understand how to program
intelligent robots. Robots before this time (1986) were very much single-threaded machines
that pretty much only did one thing at a time. They read sensors, made decisions and then
acted – and only had one goal at any one time. Creatures such as flies or ants have very
simple brains but still manage to function in the real world. Brooks reasoned that there
were several layers of closed-loop feedback processes going simultaneously.
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The basic concept of subsumption has been around for some time, and it has been adapted,
reused, refined, and simplified in the years since it was first introduced. What I am
presenting here is my take, or my interpretation, of how to apply the concept of
subsumption to a robot in the context of what we are trying to accomplish.

The first aspect to understand is that we want our robot to act on a series of goals. The robot
is not simply reacting to each stimulus in total isolation, but is rather carrying out some sort
of goal-oriented behavior. The goal may be to pick up a toy, or navigate the room, avoiding
obstacles. The paradigm we are creating has the user set goals for the robot and the robot
determine how to carry those goals out, even if the goal is simply to move one meter
forward. 

The problem begins when the robot has to keep more than one goal in mind at a time. The
robot is not just driving around, but driving around avoiding obstacles and looking for toys
to pick up. How do we arbitrate between different goals, to determine which one has
precedence? The answer is found in the following diagram:
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We will divide the robot's decision-making systems into three layers. Each layer has a
different level of responsibility and operates on a different time scale. At the lowest levels
are what we might call the robot's autonomic nervous system – it contains the robot's
internal health-keeping and monitoring functions. These processes run very fast – 20 times
a second or so, and only deal with what is inside the robot. This would include reading
internal sensors, checking battery levels, and reading and responding to heartbeat
messages. I've labeled this level take care of myself.

The next level handles individual tasks, such as driving around, or looking for toys. These
tasks are short term and deal with what the sensors can see. The time period for decisions is
in the second range, so these tasks might have one or two hertz update rates, but slower
than the internal checks. I call this level complete the task – you might call it drive the
vehicle or operate the payload. 

The final and top level is the section devoted to completing the mission, and it deals with the
overall purpose of the robot. This level has the overall state machine for finding toys,
picking them up, and then putting them away, which is the mission of this robot. This level
also deals with interacting with humans and responding to commands. The top level works
on tasks that take minutes, or even hours, to complete. 

The rules of the subsumption architecture – and even where it gets its name – have to do
with the priority and interaction of the processes in these layers. The rules are as follows
(and these are my version):

Each layer can only talk to the layers next to it. The top layer talks only to the
middle layer, and the bottom layer also talks only to the middle layer. The
middle layer can communicate with either. 
The layer with the lower level has the highest priority. The lower level has the
ability to interrupt or override the commands from higher layers. 

Think about this for a minute. I've given you the example of driving our robot in a room.
The lowest level detects obstacles. The middle level is driving the robot in a particular
direction, and the top layer is directing the mission. From the top down, the uppermost
layer is commanded to clean up the room, the middle layer is commanded to drive around,
and the bottom layer gets the command left motor and right motor forward 60% throttle. Now,
the bottom level detects an obstacle. It interrupts the drive around function and overrides the
command from the top layer to turn the robot away from the obstacle. Once the obstacle is
cleared, the lowest layer returns control to the middle layer for the driving direction.
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Another example could be if the lowest layer loses the heartbeat signal, which indicates that
something has gone wrong in the software. The lowest layer causes the motors to halt,
overriding any commands from the upper layers. It does not matter what they want; the
robot has a fault and needs to stop. This priority inversion of the lowest layers having the
highest priority is the reason we call this a subsumption architecture, since the lower layers
can subsume – or take precedence over – the higher layers. 

The major benefit of this type of organization is that it keeps procedures clear as to which
events, faults, or commands take precedence over others, and prevents the robot from
getting stuck in an indecision loop. 

Each type of robot may have different numbers of layers in their architecture. You could
even have a supervisory layer that controls a number of other robots and has goals for the
robots as a team. The most I have had so far has been five, for one of my self-driving car
projects. 

Software setup
To match the examples in this book, and to have access to the same tools that are used in
the code samples, you will have to set up three environments:

A laptop or desktop computer: This will run our control panel, and also be used
to train neural networks. I used a Windows 10 computer with Oracle VirtualBox
supporting a virtual machine running Ubuntu 16.14. You may run a computer
running Ubuntu or another Linux operating system by itself (without Windows)
if you want. Several of the AI packages we will use in the tutorial sections of the
book will require Ubuntu 16 or later to run. We will load ROS on this computer. I
will also be using a PlayStation-type game controller on this computer for
teleoperation (remote control) of the robot.
Raspberry Pi 3: Also running Ubuntu Linux (you can also run other Linux
versions, but you will have to make any adjustments between those OS versions
yourself). The Pi 3 also runs ROS. We will cover the additional libraries we need
in each section of the text.
Arduino Mega 256: We need to be able to create code for the Arduino. I'm using
the regular Arduino IDE from the Arduino website. It can be run in Windows or
in Linux. Installation will be covered regardless.
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Laptop preparation
I will just cover creating the Ubuntu Linux virtual machine under VirtualBox, since that is
my setup. You can find instructions for installing Ubuntu 16.04 LTS without VirtualBox at
https://tutorials. ubuntu. com/ tutorial/ tutorial- install- ubuntu- desktop#0:

Download and install VirtualBox from https:/ /www. virtualbox. org/ wiki/1.
Downloads. Pick the version that matches your computer setup (Windows).
Download the Ubuntu system image from https:/ /www. ubuntu. com/ download/2.
desktop. It will be an .iso file that is quite large (almost 2 GB). An .iso is a disk
image file that is a byte-for-byte copy of another filesystem.
Open VirtualBox and select New.3.
Make up a descriptive name for this virtual machine and select Linux and4.
Ubuntu (64-bit) in the Type and Version fields. Select Next.
Set a Base Memory size. I picked 3 GB.5.
Select a size for your virtual machine partition. I made a 40 GB virtual drive.6.
Click Next.7.
Select Start (green arrow) and pick your Media Source as the .iso we8.
downloaded in Step 2.
Finish the installation by following the prompts.9.
Restart the virtual machine once you are finished.10.

Installing Python
The Linux Ubuntu system will come with a version of Python. I am going to assume that
you are familiar with Python, as we will be using it throughout the book. If you need help
with Python, Packt Publishing has several fine books on the subject. 

Once you log on to your Virtual Machine, check which version of Python you have by
opening up a terminal window and typing python at the command prompt. You should
see the Python version as follows:

Python 2.7.12 (default, Dec  4 2017, 14:50:18)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
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You can see that I have version 2.7.12.

We are going to need several add-on libraries that augment Python and extend its
capability. The first thing to check is to see whether you have pip installed. Pip is a Python
Installation Package that helps to load other packages from the internet to extend Python.
Check to see whether you have pip by typing the following:

pip

If you get No command 'pip' found, then you need to install pip. Enter the following:

Sudo apt-get install python-pip python-dev build-essential
Sudo pip install –upgrade pip

Now we can install the rest of the packages that we need. To begin with, we need the
python math packages numpy, the scientific python libraries scipy, and the math plotting
libraries matplotlib. I will direct you to install other packages as required in the relevant
chapters.

Let’s install our other libraries. We need the numerical python library (numpy), the scientific
python library (scipy), and matplotlib for making graphs:

>>sudo apt-get install python-numpy python-scipy python-matplotlib python-
sympy

If you want to use the iPython (interactive Python) and Jupyter Notebook process to test
your code (and document it at the same time), you can install those as well. I will not be
using them in this book, but I do admit that they are quite useful.

>>sudo apt-get install ipython ipython-notebook

I'll cover the other Python libraries that we will use later (Open CV, Scikit-Learn, Keras, and
so on) as we need them in the appropriate chapters.

Installing ROS on the laptop
We need a copy of ROS to talk to our robot and to execute development. You can find
directions on how to do this at the ROS website repository at http:/ / wiki. ros.org/
kinetic/Installation/ Ubuntu.

http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/kinetic/Installation/Ubuntu
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http://wiki.ros.org/kinetic/Installation/Ubuntu
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http://wiki.ros.org/kinetic/Installation/Ubuntu
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I'll give you the quick and dirty method here:

Get on your Linux laptop/desktop computer – virtual or otherwise – and get to a command
prompt. We need to establish the source of the software. We do this as follows:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc)
main" > /etc/apt/sources.list.d/ros-latest.list'

We need to set up our key to get access to the software with this command. Remember that
you can cut and paste this from the ROS website as well:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key
421C365BD9FF1F717815A3895523BAEEB01FA116

At this point, it is recommended that you check that your Linux installation is up to date.
We can do this by entering the following command:

sudo apt-get update

This is going to take a bit of time depending on your internet connection and computer. 

Now, we are finally ready to install the main ROS distribution. Since we are on a desktop or
laptop computer, we can get the whole thing, so that we have all of the tools and user
interfaces. Note that we are using ROS Kinetic, the latest full release as at the time of
publication of this book:

sudo apt-get install ros-kinetic-desktop-full

Expect that this step can take quite a while – it was about 30 minutes on my computer.
Once it finally finishes, we can proceed to setting up the ROS on our computer. We need to
set up the ROS dependency manager using these commands:

sudo rosdep init
rosdep update

rosdep keeps up with which other packages your program depends on, and will
download them automatically if they are missing. This is a good feature to have, and we
won't be needing it very often – just when we install a new package. 
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This next part is really important. ROS uses several environment variables to configure
some important parts of the system, such as keeping up with which computer is in charge.
The default configuration is set by doing the following:

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
source ~/.bashrc

The first setup appends the /opt/ros/kinetic/setup.bash to our default .bashrc file
so that those environment variables will get automatically created each time we start a new
terminal window. The .bashrc script is executed when a new bash shell program is
started. 

We can check the default setup by looking at the environment variables. Let's get only the
ones with the string ROS inside them by using a pipe (|) symbol and the grep command:

>>:~$ env | grep ROS
ROS_ROOT=/opt/ros/kinetic/share/ros
ROS_PACKAGE_PATH=/opt/ros/kinetic/share
ROS_MASTER_URI=http://localhost:11311
SESSION_MANAGER=local/BookROS:@/tmp/.ICE-unix/1847,unix/BookROS:/tmp/.ICE-
unix/1847
ROS_DISTRO=kinetic
ROS_ETC_DIR=/opt/ros/kinetic/etc/ros

The most important variable in this set is the ROS_MASTER_URI. This points to the place
where the ROSCORE program is running. Normally, this will be on the robot. Let's say the
robot’s IP address is 192.168.1.15. Then, we set the ROS_MASTER_URI to be
http://192.168.1.15:11311. You can also set up an entry in the /etc/hosts file with
the name of the robot and the IP address as follows:

>>:sudo nano /etc/hosts

192.168.1.15        tinman

Then you can use the hostname tinman in place of the IP address: 

env ROS_MASTER_URI=http://tinman:11311.

Remember to change this in the .bashrc script as well (nano .bashrc).
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Setup of Raspberry Pi 3
I ended up doing two different operating systems on the Raspberry Pi 3, depending on
whether or not I wanted to use the Google Voice interface. In the chapter on Artificial
Personality, we will be using the Google Voice Assistant as one option for providing the
robot with the ability to listen and respond to commands, as well as adding some
personality and additional conversation capability. The easiest way to perform this is to use
the Raspbian operating system image that Google provides with the DIY Voice Kit. You can
see https://aiyprojects. withgoogle. com/ voice to look at the kit. This very inexpensive
piece of hardware ($24.95) includes a very nice speaker, a pair of sensitive microphones,
and even a cool LED light-up button. We will cover the use of this hardware add-on in the
chapter on Artificial Personality. It is much easier to use the operating system image
provided with that kit than try and transplant all that capability onto an already built
Raspberry Pi operating system. So, if you want to do the voice part of the robot project, go
to that chapter and we will cover the setup of the Raspberry Pi 3 image and the Raspbian
operating system there.

Otherwise, if you don’t want to use the Google Voice Assistant, you can build up a
Raspberry Pi 3 with another operating system image. I happen to prefer to run Ubuntu on
my Pi 3 to match my virtual machine. 

For this setup, we will use an image provided by Ubuntu. Go to the Ubuntu Wiki website 
concerning the Raspberry Pi 3 (https:/ /wiki. ubuntu. com/ ARM/ RaspberryPi).

The basic step, which you can follow on the website, is to prepare an SD card with the
operating system image on it. I used Win32DiskImager, but there are several programs
available that will do the job. You need an SD card with at least 8 GB of space –and keep in
mind you are erasing the SD card in doing this.

Download the disk image from (https:/ /downloads. ubiquityrobotics. com/ ) and pick the
version for the Raspberry Pi 3. It is 1.2 GB of data, so it may take a bit. This image already
has the ROS on it, so it will save a lot of time later.

Follow the directions with your SD card – the website advises using a Class 10 memory
card of at least 8 GB, or preferably 16 GB. Put the SD card in your reader and start up your
disk imager program. Double (and triple) check that you are picking the right drive letter –
you are erasing the disk in that drive. Select the disk image you downloaded – I used the
16.04.2 version. Hit the write button and let the formatter create your Pi 3 disk image on the
SD card.
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You can follow the usual setup for setting your language and keyboard, as well as setting
up the network. I like to use a static IP address for the robot, since we will be using this a
lot. Use the same instructions from the preceding section on setting up ROS environment
variables. Put your robot's name in the /etc/hosts file and set the ROS_MASTER_URI to
the Pi 3's host name – tinman in my case.

It is always a good idea to set a new user ID and change out the default
passwords for your own security.

The operating system comes with Python already installed, as before when we set up the
laptop/desktop virtual machine, so we follow the same procedures as previously to load the
python libraries NumPy, SciPy, and a new package, Pyserial. We need this for talking to the
serial port: 

>>: pip install pyserial

VNC
One tool that I have added to my Raspberry Pi 3 is Virtual Network Computing, or VNC.
This utility, if you are not familiar with it, allows you to see and work with the Pi 3 desktop
as if you were connected to it using a keyboard, a mouse, and a montor. Since the Pi 3 is
physically installed inside a robot that travels by itself, attaching a keyboard, mouse, and
monitor is not often convenient (or possible). There are many different versions of VNC,
which is a standard protocol used among many Unix-type – and non-Unix type - operating
systems. The one I used is called RealVNC. You need two parts – the server and the client.
The server side runs on the Pi 3 and basically copies all of the pixels appearing on the
screen and sends them out the Ethernet port. The client catches all of this data and displays
it to you on another computer. Let's install the VNC server on the Pi 3 using this command:

>>: sudo apt-get install realvnc-vnc-server

You can reference the RealVNC website at https:/ /www. realvnc. com/ en/ raspberrypi/ .
This will cover configuration items and how to set up the software. The VNC software is
generally included in most Pi 3 Raspbian releases.

Load the viewer on your Windows PC, Linux virtual machine, or do like I did, and load
VNC on your Apple iPad. You will find the ability to log directly into the robot and use the
desktop tools to be very helpful. 
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Setting up catkin workspaces
We will need a catkin workspace on your development machine –laptop or desktop – as
well as on the Raspberry Pi. Follow the instructions at http:/ /wiki. ros. org/ catkin/
Tutorials/create_ a_ workspace.

If you are already a user of ROS, then you know what a catkin workspace is, and how it is
used to create packages that can be used and deployed as a unit. We are going to keep all of
our programs in a package we will call tinman. Let's go ahead and put this package
together. It takes just a few steps.

Start in the home directory:

mkdir –p catkin_ws/src
cd catkin_ws/src
catkin_make
source devel/setup.bash
catkin_create_pkg tinman
catkin_make
cd src/tinman/src
mkdir script
mkdir launch

You’ll be left with a directory structure that looks something like this:
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Hardware
The TinMan robot is based on a kit I found from a Chinese company named Robo-Soul. It
is called the TK-6A Robot base with a 6-DOF Robot arm. The kit arrived in a timely fashion
via post, but arrived with no instructions whatsoever. Also, the pictures on the website did
not match the kit, either, so I have basically no guide to putting this thing together, other
than trial and error. I will provide an abbreviated version here in the book that will get you 
through the rough parts. A complete version will be on the website for the book at http:/ /
github.com/fgovers/ ai_ and_ robots. 

Beginning at the beginning – knolling
The best way to start with a kit this complex, particularly when you don't have instructions,
is by knolling. What is knolling, you ask? Knolling is the process of laying out all of the
parts in an orderly fashion, all at right angles, so that you can see what you are working
with, as demonstrated in the following image:
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Knolling was – discovered – by a janitor by the name of Andrew Kromelow, who worked at
Frank Gehry’s furniture factory. The factory designed and made chairs for Knoll, a
company started by Florence Knoll, who designed furniture with simple geometric forms.
Each night, Andrew would arrange all of the tools and workbenches in careful arrays of
rectangular forms, which he called knolling in honor of the furniture. We use knolling to
figure out just what we have and what order to put it together in.

I can thank Adam Savage, of Mythbusters, for introducing me to knolling
in his podcast on Tested.com. See the video at https:/ /www. youtube. com/
watch? v= U46Yo_ 6z_ F4. 

Assembling the tracks
We start by assembling the track components. Grab the big triangular plates. The cut-out
part goes in the back at the top, since that is where the motor and drive wheel goes. You
will have one of two track configurations – one with either five small metal wheels, or, like
me, a setup with four large plastic bogie wheels. I believe that the plastic wheels will be the
default going forward. Each wheel goes into the smaller holes on the triangle piece – ignore
the big holes. The wheels are held in place by the black hex bolts with bare shafts, and
fastened with the nylon lock nuts provided. Leave the frontmost wheel off (or remove it
later when we mount the tracks):
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Next, we construct the drive wheels. Each drive wheel is made up of two sprocket wheels
(with the rectangular teeth, a motor coupler (thick brass cylinder), three brass spacers (thin
hexagonal hollow parts) and a triangular cap with four holes. Note that one of the sprocket
wheels has a round opening and one has a hexagonal opening. The brass motor coupler
likewise has a hexagonal end and a round end. The motor coupler runs down the center of
the drive wheel assembly. Attach the three brass spacers and the triangular end cap to the
sprocket wheel with the hexagon opening using small round-head screws and lock
washers. Put the motor coupler into the hexagonal hole and attach with a larger round head
screw. Put the other sprocket wheel on the spacers and attach with small screws. Repeat for
the other drive wheel. You will notice the small holes in the motor coupler for set screws to
be added later – make sure you can get to these holes. There are sets of holes on either side
of the motor coupler. I had to disassemble one of my drive wheels to reposition the set-
screw holes:
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Attach the motor mounts (L-shaped bracket) to one of the robot base plates (largest plate
with clipped corners) – both plates are identical. Use four longer screws and lock washers.
Next, attach the motor to the motor mount using three screws. Now it gets exciting, as we
can attach the two triangular track units at the side of the base plate to the upper pair of
holes in the triangular drive plates, leaving the round corner for the motor to poke through.
Attach the drive wheels to the motors by sliding the motor shaft into the coupler and attach
with set screws (use the regular small round head screws).

Mounting the tracks
The most difficult part of the base assembly is getting the tracks onto the bogie wheels.
First, you must assemble the tracks into continuous loops. The tracks are composed of a
bunch of small plastic tread units that are connected to each other with small metal pins. If
you look at your tracks, one end will have a pin, and the other will not. You have to remove
the pin by pulling or pushing it out using a thumbtack (which was helpfully provided in
the kit). You want to push the pin away from the side with the small cylinders – it needs to
come out the other side. You can see this in the following image. Pull the pin out far
enough to engage the two ends of the track, and carefully push it back in to connect the
track. I did not need the extra track sections that were provided. Now we have a loop of
track. If you put the frontmost bogie wheel on the drive section, remove it now. Loop the
track around the bogie wheels and over the drive wheel. You will have to adjust the drive
wheel in or out to engage the sprockets with the tracks. Now you have to lever the front
drive bogie wheel into place by angling the long screw into its hole and tightening the nut
until it all drops into place. This took a fair amount of effort and about an hour of careful
wiggling to get it all to line up. You must keep at it until you can move the tracks easily
around the bogie wheels and the drive wheel. If one of the bogie wheels is stuck, loosen up
the lock nut just a tiny bit to allow it to turn without binding. There is no track tension
adjustment on this kit, which can be a problem. You can make the front bogie wheel a slot
rather than a hole to get some tension adjustment. I did not have to do this on my version
of the robot kit:
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Now we can assemble the other large base plate on the bottom two holes in the track plates
and our drive base is complete. The second base plate goes upside down relative to the first
plate – the bent outer section goes up. I staggered the two plates by rotating the bottom
plate 180 degrees, but they can also go exactly parallel if you want. I liked the staggered
arrangement for later placement of sensors.

You will need to solder wires onto the drive motors before installing the robot arm. Some
very nice spaghetti wire was included in the kit for this purpose. 

Spaghetti wire has a high strand count, and is very flexible, making it
ideal for use with motors or anywhere where you are expecting a lot of
movement or vibration. We call it spaghetti wire because it is limp, like
cooked spaghetti, not stiff like most wire.

Now I have some good news and some bad news: We are done with the base (good news!)
but we still have to do the arm, and it is much more difficult to assemble (bad news!).
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An important note regarding Servo installation: you need to install the servos in the arm at
the middle of their travel. Each servo can turn its gears through 170 degrees of angle. You
need to assemble the arm with the servos in the middle. I ran the servos all the way to the
left by turning the gear by hand, and then all the way to the right, and then picked a point
half-way before putting them into the arm. I tried to visualize each arm joint in the middle
of its travel, and assemble the arm that way.

Arm base assembly (turntable)
The turntable is the rotating assembly that forms the base of the robot arm, and will create
the robot shoulder rotate axis. This is a fairly involved part that I approached with a great
deal of skepticism. However, we will see that the result is most satisfactory and appears to
be a very solid design. We start with two critical steps. You must do the following first, or
you will have to disassemble everything and start over. You can guess how I know this.
First, pick one of the two smaller circular plates with the small holes in their center. Into
one of these, you will attach one of the servo couplers, the aluminum disks that attach to
the servos. To the other one you will bolt one of the "universal servo brackets", the U-
shaped arm part that has two small arms and one large arm, along with a large number of
holes. This will form the shoulder elevate joint later. You have to bolt these on first because
you can't do it later:
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Now we sandwich the large bearing between the two small circular plates and attach them
with four long screws and nuts. The servo attaches to the bottom (silver disk) and the arm
servo bracket is on the top. The screws must go down so that we don't have anything
poking up to interfere with the arm. After taking a moment to admire our work, we now
attach to two larger circles with the big cutouts. These are secured with four of the very
long screws. Next, we grab the large circle with the servo-shaped hole in the middle, and
install one of our servos in that rectangular spot with four screws and nuts. Then, we need
to secure the bottom of the larger turntable assembly by putting four of the brass spacers all
the way down on the very long screws until they touch the bottom of the metal plate. Now,
mate the servo's spline output to the silver disk-shaped servo adapter you placed on the
bottom of the turntable. We can now add four nuts to the long screws to secure the bottom
plate. Be sure to get them all even and do not tilt the plate with the servo to one side or the
other. Our turntable is done, and you can mount it to the robot mobile base if you wish, or
keep the arm assembly all together and mount the turntable later after you have assembled
the entire arm: 
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Arm assembly
The robot arm is made out of what is generally called the servo construction
kit components. You will note that there are several standard parts used over and over.
There is what I call the universal servo bracket, which is the U-shaped bracket with all of
the holes. Most of the arm servos will fit into these brackets. There are three C-shaped
brackets with rounded corners. We have one right angle bracket, one robot hand (which is
pretty obvious), the five remaining servo motors, and a plastic bag with the servo couplers,
which are aluminum disks with four holes around the outside and one hole in the middle.
We also have three bearings in that same bag.

Our first step in the arm assembly is to take two of the large C brackets and fasten them
back to back to make one long bracket with the curved sections on either end. I used four
screws for this, but there are six holes. I picked the two outer and inner holes:
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Now, all of the servos that attach to the C-shaped arms will go together the same way. We
grab one of the small bearings and a short screw and fasten the bearing into the side of the
rounded part of the C bracket away from the side of the servo. Now attach the bearing and
the screw to the universal servo bracket (which I will just call a US bracket from now on)
and fasten with a nut. If you think about how the servo goes in, you will see which side to
attach the bracket. You now install the servo in the US bracket with four screws. Now, you
have two pivot points on either side of the servo. Install the servo coupler (silver disk) to
the servo and attach the servo coupler to the C bracket to complete the shoulder elevate
joint.

Now for the elbow joint: we take one of the loose US brackets and also get the L-shaped
bracket. We want to fasten these two together at right angles which is how the servo goes
in. The image should explain how this works. Now, we repeat the technique we used to
assemble the shoulder joint – we mount the bearing in the other end of the long C bracket,
attach the universal bracket to it with a nut, and then install the servo. That completes the
elbow, so now we work our way to the wrist. We attach the other C bracket to the end of
the L bracket that we just attached to the elbow joint:



Setting Up Your Robot Chapter 2

[ 66 ]

This next bit is a bit tricky. We need to fasten two of the US brackets together in the middle
and at right angles to one another. We will be making a wrist joint that can both tilt and
rotate, and that takes two servo motors perpendicular to each other. Once that is done, we
can grab our remaining bearing and mount it in the C bracket that we attached to the
elbow. Now use a screw and nut to attach one of the universal brackets to the C bracket,
just as we did before, and then install the servo and servo coupler to the wrist tilt joint:

This is as good a time as any to take a break and think through the next steps. Grab the
robot hand, and you can directly attach one of your servos. Make sure you first put the
servo in the middle, and then incorporate the hand grip into the middle of its travel as well.
Then, line things up and install the servo. That was not too bad. Now install the wrist rotate
servo to the US bracket on top of the wrist joint. Our final assembly step should be pretty
obvious. We put the servo coupler on the wrist with a screw in the center hole, then line up
the hand, and put two screws into the matching holes in the hand and the wrist. 
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Our erector-set construction is complete and we have the mechanical form of the robot.

Take some time now and tidy up all of the servo cables. There are four sets of servo
extension cables in the kit, so attach these to the four top servos in the arm. I used cable ties
to attach the cables to the side of the arm. There is also a spiral cable organizer – at least I
think that is what it is called – in the kit. You can use this to also clean up the arm cables,
and it makes everything all the same color.

Wiring
The power wiring diagram is included by way of illustration. We have four main electronic
components: the Raspberry Pi 3, our robot's brain; the Arduino Mega; the motor shield; and
the servo controller. We will be needing two sets of power – the Pi and servo controller
need 5v, while the motor controller needs the full 11 volts from the battery pack. I
purchased a 5v power supply to convert the battery to 11v. The motor controller needs
power on the screw terminals labeled "EXT_PWR". Hence, we need to create a power
harness with two splits – one split that puts 11v into the power supply board and the motor
controller. We can then wire 5v from the power supply board to the Pi 3. A second 5v goes
to the "servo power" connection on the servo controller board. This is the two-pin connector
that is aligned with the six servo three-pin connectors, as can be seen in the following
diagram:
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The Pi 3 has sufficient power on its USB interface to power the Arduino (that has almost no
load on it) and on the servo controller logic circuit, which also takes very little power. We
run USB cables from Pi 3 to Arduino, and from Pi 3 to the servo controller. Later, we will
plug a USB camera into the Pi 3 as well. If we need to, we can run a separate 5 v to the
Arduino at a later date if we are having power problems. The USB lines also take care of
control signals to the Arduino and the servo controller. The motor shield is plugged
directly onto the top of the Arduino Mega and needs no further connections.

My plan of attack was to put together the battery and power converter and test them for the
proper voltages and polarity using a voltmeter before connecting any of the sensitive
components. I also loaded the drivers and control software to the Arduino and Raspberry
Pi 3 before plugging them into the battery power supply and connecting with USB cables.
All of the servo cables can be installed in the servo controller, being careful to put the black
wires, which are the ground wires (or negative wires), all on the same side. They go to the
outside of the servo controller. You will want to double check that all of the black wires on
the servos are lined up on the "-" or negative pins.

I've provided connections for teleoperations using a PlayStation/Xbox-type joystick, which
is useful for establishing that all motors are running the right way. We'll cover calibration
in the software section. If one or other of the drive motors are running backward, you just
have to switch the motor wires. 

Summary
This chapter covered several important topics. It started with some of the basics of robotics,
for readers who needed a bit more background. We talked about common robot parts, such
as sensors, computers, and motors/actuators. We discussed the subsumption architecture in
more depth and showed how it helped the robot arbitrate between responding to different
events and commands. 

The next section covered the software setup for running the robot, including the offboard
development environment and the onboard Raspberry Pi 3 computer environments. We set
up the ROS and installed the Python tools. 

The final section covered the hardware construction of the example robot, TinMan, with its
tank-tread base and robot arm composed of servo motors. We showed how to wire the
power supply up and connect all of the components to the Raspberry Pi 3 controller. We
installed the ROS software that we will be using to control the robot.
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In the next chapter, we will discuss how to go from a concept to a working plan for
developing complex robot AI-based software using systems engineering practices such as
use cases and storyboards. 

Questions
Name three types of robot sensors.1.
What does the acronym PWM stand for?2.
What is analog-to-digital conversion? What goes in and what comes out?3.
Who invented the subsumption architecture?4.
Compare my diagram of the three-layer subsumption architecture to the Three5.
Laws of Robotics postulated by Isaac Asimov. Is there a correlation? Why is there
one, or why not?
Do you think I should have given our robot project – TinMan – a name? Do you6.
name your robots individually, or by model?
What is the most important environment variable in ROS?7.

Further reading
Brooks, Rodney. Cambrian Intelligence: The Early History of the New AI. MIT Press,
1999. Boston, MA



3
A Concept for a Practical Robot

Design Process
This chapter represents a bridge between the preceding sections on general theory,
introduction, and setup, and the following chapters, where we will apply problem-solving
methods that use artificial intelligence techniques to robotics. The first step is to clearly
state our problem, from the perspective of the use of the robot, as compared to our view as
the designer/builder of the robot. Then, we need to decide how to approach each of the
physical and mental challenges that we and the robot will attempt.

This chapter will cover the following topics:

A systems engineering-based approach to robotics
How to state the problem using use cases
How to approach solving problems with storyboards
How to decompose use cases and storyboards into requirements

A systems engineering-based approach to
robotics
When you set out to create a complex robot, with artificial intelligence-based software, you
can't just jump in and start slinging code and throwing things together without some sort of
game plan as to how the robot goes together and how all the parts communicate with one
another.  We will discuss a systematic approach to robot design based on systems
engineering principles.  We will be learning about use cases and storyboards as a
technique to understand what we are building and what parts are needed. 
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Our task – cleaning up the playroom
We have already talked a bit about our main task for Tinman, our robot example for this
book, which is to clean up the playroom in my house after my grandchildren come to visit.
We need to provide a more formal definition of our problem, and then to turn that into a
list of tasks for the robot to perform along with a plan of action on how we might
accomplish those tasks.

Why are we doing this? Well, consider this quote:

"If you don’t know where you are going, how do you know when you get there? – Me.

I guess I am going to have to attribute this quote to myself, since I can’t find any reference
to someone else saying it. What I am saying is that if you don’t know where the finish line
is, how do you know when you are done?

The internet and various robot websites are littered with dozens of robots that share one
fatal character flaw: the robot and its software was designed first and then they went out to
look for a job for it. In the robot business, this is called the ready, fire, aim problem. The
task, the customer, the purpose, the use, the job of the robot comes first.
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Another way of saying this is: in order to create an effective tool, the first step is to decide
what you do with it.

I could have written this book as a set of theories and exercises that would have worked
well in a classroom setting, and would have introduced you to a whole lot of new tools you
would not know how to apply.

This chapter is here to provide you with tools and methods to provide a path from having
good idea to having a good robot, with as little misdirection, pain, suffering, tears, and torn
hair as I can provide. You are on your own on burns; please be careful with the soldering
iron.

The process we will use is straightforward. The first step is to look at the robot from the
user’s perspective and then describe what is does. We will call these descriptions use cases–
examples of how the robot will be used. Next we will break each use case down into
storyboards (step-by-step illustrations), which can be word pictures or actual pictures.
From the storyboards, we can extract tasks – a to-do list for our robot to accomplish. The
final step for this part of the process is to separate the to-do list into things we can do with
software and things we will need hardware for. This will give us the detailed information
for designing our robot and its AI-based software. Keep in mind that one of the robot’s uses
is to be a good example for this book.

Use cases
Let’s start with a statement of the problem.

The problem – part 1
About once or twice a month, my four delightful, intelligent, and playful grandchildren
come to visit my wife and me. Like most grandparents, we keep a box full of toys in our
upstairs game room for them to play with during their visits. The first thing they do upon
arrival – at least the bigger grandkids– is to take every single toy out of the toy box and
start playing. This results in the the following photo – basically toys randomly and
uniformly distributed throughout the playroom. Honestly, you could not get a better
random distribution. They are really good at this. Since, as grandparents, our desire is to
maximize the amount of time that our grandchildren have fun at our house and we want
them to associate Granddad and Grandmother's house with having fun, we don’t make
them pick up the toys when they go home. You can see where this is heading.
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By the way, if you are a parent, let me apologize to you in advance; this is indeed an evil
plot on we, the grandparents, part, and you’ll understand when you get grandkids of your
own—and you will do this, too.

The problem: actual, unretouched photo of game room in the immediate aftermath of grandchildren

Where were we...? Yes, a room full of randomly and uniformly distributed foreign objects –
toys – scattered about an otherwise serviceable game room, which need to be removed.
Normally, I’d just have to sigh heavily, and pick up all this stuff myself, but I am a robot
designer, so what I want to do is to have a robot that does the following:

Pick up the toys – and not the furniture, lights, books, speakers, or other items in1.
the room that are not toys
Put them in the toy box2.
Continue to do this until there are no more toys to be found and then stop3.
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Now we can ask some pertinent questions. I took a lot of journalism classes in school and I
was taught the usefulness of the 5 Ws and an H – Who, What, When, Where, Why, and How?
These are just as useful for examining use cases. I've got one firm rule here in this section:
no implementation details. Don’t worry about how you are going to do this. Just worry
about defining the results. So we leave out the H for now and just do Ws. Let’s give this a
try.

Who – the robot
That was easy. We want the robot to do something; as in the robot does this and not me.
What do we want the robot to do?

What – pick up toys and put them in the toy box
What does this answer tell us? It says we are going to be grasping and lifting something –
toys. What are toys? We could rephrase this as a negative:
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What – pick up and put away in the toy box the items
that were not previously in the room
The toys were not in the room before the grandkids pulled them all out. So we either want
to classify items as toys, or as things that were not in the room before. Not in the room
implies that the robot somehow knows what belongs in the room, possibly by making a
survey prior to the children’s arrival. However, toys implies that the robot can classify
objects at least as toys and not toys. Let’s stick with that for now. We may have some items in
the room that are not toys, but are out of place, and thus don’t belong in the toy box. You
can already see these questions shaping what comes later in this process.

When – after the grandchildren have visited and they
have left, continue to pick up toys until there are none
left
That gives us two conditions for the when: a start and a stop. In this case, start is defined as
the grandkids have visited, and they have left. Now it is perfectly fair for me to state in the
use case that I'll tell the robot when these conditions are met, since that is not putting me
out. I'll be here, and I know when the room needs to be cleaned. So let’s change when to the
following.

When – when I (the user) tell you to, and don’t stop until
there are no more toys to be found
Now we could have decided that the robot needs to figure this out for itself, and turn itself
on after the grandchildren leave, but what is the return on investment for that? That would
be a lot of work, for not a lot of gain. The pain point for me, the user, is picking up toys, not
deciding when to do it. This is a lot simpler.

Note that my when statement has a start and an end. Anyone who watched Mickey Mouse
in the Sorcerer’s Apprentice segment of Fantasia understands that when you have a robot,
telling it when to stop can be important. Another important concept is defining the end
condition. I did not say stop when all of the toys are picked up because that would imply the
robot needed to know all of the toys, either by sight or number. It is easier as a task
definition to say stop when you see no more toys instead, which accomplishes what we want
without adding additional requirements to our robot.
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It is perfectly normal to have to revisit use cases as the robot designer understands more
about the problem – sometimes you can be working hard to solve a problem that is not
relevant to solving the user’s task. You can image some robot engineer in a team being
given the task of pick up all the toys as meaning all toys ever invented, in all cultures, in all
parts of the world! Then you get a request for a $500,000 database software license and a
server farm to house it. We just want to pick up the toys found in the game room. That is
the beauty of use cases – we don't worry about how until later.

Where – the game room upstairs
OK now we have some tricky parts. The area to be cleaned is a specific area of the house,
but it is not really bound by walls. And it is upstairs – there is a stairway going down in the
game room that we don't want our robot tumbling down. How would you have known
this? You won’t unless you ask these kind of questions! The environment the robot operates
in is just as important as what it does. In this case, let’s got back and ask the user. I’ll stick in
a floorplan for you here to define what I mean by game room. On the bright side, we don’t
need to climb or descend stairs in this task. But we do need to look out for the staircase as a
hazard:

Our robot has more than one use case – it has more than one function to perform.
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The problem – part 2
The robot needs to interact with my grandchildren. Why is this here? As I told you in
Chapter 1, the grandchildren were introduced to some of my other robots, and one of the
grandkids, William, always tries to talk to the robots. I have two grandchildren who are on
the autistic spectrum, so this is not an idle desire – I've read research, such as Robots for
Autism (https:// robots4autism. com/ ) that state that robots can be helpful. While I’m not 
trying to do therapy, I’d like my robot to interact with my grandchildren verbally. I also
have one specific request – the robot must be able to tell and respond to knock-knock jokes,
a favorite of William.

So, here is a diagram of this use case:

So let’s go through our same exercise with this use case. We ask the pertinent questions:
who, what, when, where, and why?

Who – the robot, the user (granddad), and the
grandchildren
In this case, user interaction is part of the task. Who are we interacting with? I need to be
able to command the robot to begin to interact. Then we want the robot to both talk to and
listen to the children.

https://robots4autism.com/
https://robots4autism.com/
https://robots4autism.com/
https://robots4autism.com/
https://robots4autism.com/
https://robots4autism.com/
https://robots4autism.com/
https://robots4autism.com/
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What – receive commands and verbally interact (hold a
conversation) with children, which must include knock-
knock jokes
We keep the two kinds of functions: receive commands from – let's call me the robot
controller, to make this more generic. The other function is to have a conversation with the
children, including telling knock-knock jokes. We'll define conversation further on in our
breakdown, so we'll be setting some limits on that function, but to introduce the topic we
will be spending an entire chapter on, we are referring to "small talk" or phatic
conversation. Klaus Schneider in his PhD thesis ,"Small Talk: Analyzing Phatic Discourse",
compared these short conversations we all have to moves in a game – which means we can
model them and create strategies for them like a game as well. Oh, dear, I've violated my
one and only rule for use cases: I talked about "how" in the "what" section. Let that be a
lesson to you. it Is quite easy to violate this rule and you have to catch yourself and stop.
Delete everything from your memory after "moves in a game".

Schneider, K. (1988), Small Talk: Analysing Phatic Discourse, PhD thesis,
Philipps Universität, Marburg, W. Germany

Fortunately for us, the knock=knock joke has a very structured form based on puns and a
call-and-response format that goes like this:

Robot: Knock Knock
Child: Who’s There?
Robot: Lettuce
Child: Lettuce Who?
Robot: lettuce(let us) in, we’re freezing out here!

I’ll leave diagramming the opposite form – responding to a knock-knock joke—to you, but
you can see that the joke is pretty easy even for a robot.
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When – as requested by the robot controller, then when
the child speaks to the robot
I think this is fairly self-explanatory: the robot interacts when sent a command to do so. It
then waits for someone to talk to it. One thing we can extrapolate from this information:
when we are picking up toys, we are not expecting the robot to talk – the two activities are
exclusive. We only pick up toys after the kids are gone, ergo no one to talk to.

Where – in the game room, within about six feet of the
robot
We have to set some limits on how far we can hear – there is a limit on how sensitive our
microphone can be. I'm suggesting six feet as a maximum distance. We may revisit this
later. When you come to a requirement like this, you can ask the customer "Why six feet?".
They may say, "Well, that sounds like a reasonable distance". You can ask, "Well, if it was
five feet, would that be a failure of this function?". And the user might respond, "No, but it
would not be as comfortable". You can continue to ask questions on distances until you get
a feeling for the required distance (how far away to not fail), which might be three feet in
this case (so that the child does not have to bend over the robot to be heard), and the
desired distance, which is how far the user wants the function to work. These are important
distinctions when we get around to testing. Where is the pass-fail line for this requirement?

What is our robot to do?
Now we are going to do some detailed analysis of what the robot needs to do by using the
storyboard process. This works like this: We take each of our two tasks and break them
down as completely as we can based on the answers to all of our W questions. Then we
make a picture of each step. The pictures can be either a drawing or a word picture (a
paragraph) describing what happens in that step.

I like to start the decomposition process by describing the robot in terms of a state machine,
which for the first problem may be a good approach to understanding what is going on.
You are probably familiar with state machine diagrams, but just in case: a state machine
diagram describes the robot’s behavior as a series of discrete states, or sets of conditions
that define what actions are available to the robot:
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Our first state is simply OFF – the robot has no power turned on.

Each state is an event or events that cause the state to change. These are called transitions.
To get from the off state to whatever is next, some event has to occur – like the human
operator turning on the power. We'll call that transition event power applied. Now what
state are we in? There is some amount of time to get the computer booted and the programs
loaded (Initializing). Once everything boots up and initializes, the robot will be ready to
accept commands. Let's call this state STANDBY. The robot is just sitting waiting for
instructions. Now we want to start cleaning the room. I send a command to the robot to
Begin Cleaning, which changes the state to – what? What do we need to happen next? We
could define a state called cleaning, but that would encompass a lot of complex functions
and we would not learn much from that. We need the robot to look around itself for toys. If
it does not find a toy, it needs to drive forward – avoiding obstacles – and then look again.
If it does find a toy, then it needs to position itself within reach of the robot arm to grab the
toy. So in the state machine diagram we add the transition Begin Cleaning, which changes
the state from STANDBY to Looking for Toys. Now we can add two more transitions: one
called Toy=no and one called Toy=yes. The Toy=no branch goes to a state called drive
ahead, where the robot moves forward – while avoiding obstacles – and then goes back to
the Look for Toys state and tries again to find a toy.



A Concept for a Practical Robot Design Process Chapter 3

[ 81 ]

So now we have found a toy, what do we do now? We need to drive to the toy, which puts
it in range of our robot arm. We try to grip the toy with the robot’s arm and hand. We may
not be successful in the first try, in which case we simply try again. The loop transition,
which is labeled Grip Unsuccessful says go back and try again if you don't succeed the first
time. Where have I heard that before? You can see the same with Pick up toy. Why are
there two parts? We need to first get a hold on the toy before we can lift it. So I thought it
needed two states, since we may fail to "get a grip"— the toy falls out of the hand,
separately from picking the toy up, where the toy is too heavy or awkward to lift.

OK, we found a toy and picked it up. What is next? We need to put it in the toy box. The
next state is Drive to Toybox. Don’t worry about how at this stage; this is just what we need
to do. Later we can further decompose this state into a more detailed version. We drive
until we get to the event Toybox Found. That means we see the toy box. Then we go to the
Position for Drop state, which moves the robot to a place where it can drop the toy in the
box. The final state, Drop Toy, is self-explanatory. We’ve dropped the toy, the robot has
nothing in its gripper, and guess what? We start over by returning to the Look for Toys
state. If the robot decides that the drop was not successful (the toy is still in the gripper),
then we have it try that step again also.

This is all well and good, and our little robot goes around forever looking for toys, right?
We’ve left out two important transitions. We need a No More Toys event, and we need a
way to get back to the OFF state. Getting to OFF is easy – the user turns off the power. I use
the shorthand method of having a block labeled any state since we can hit the off button at
any time, no matter what else the robot is doing, and there is nothing the robot can or
should do about it. It may be more proper to draw a line from each state back to OFF, but
that clutters the diagram, and this notation still gets the meaning across.
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The new state machine diagram looks like this:

Let’s take a minute and talk about the concept of No More Toys. How do we define this?
This may take some experimentation, but for now, we’ll say if we have not found a toy after
10 minutes of trying, then we are satisfied that there are no more toys to be found. Later, we
can adjust that time as necessary. It is possible that 5 minutes is totally adequate for a room
our size. Note that the No More Toys event can only come from the Look for Toys state,
which should make sense.

We mentioned that the robot needs to avoid obstacles. But we don't have a state called
Avoid Obstacles. Why is that? That is because several of the states include driving, and
each of those includes avoiding obstacles. It would not be appropriate to have a state for
avoiding obstacles, since it is not unique to one state. What we need is a separate state
machine that describes the robot's driving. As I mentioned in the section in the last chapter
on the subsumption architecture, we can have more than one goal operational at a time.
The goal of "zz is the mission, which is the overall goal of the robot. Avoid Obstacles is a
goal of the driving engine, the mid-level manager of our robot.
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Storyboards
We've done our use cases and a state machine diagram, so now let's move on to the next
step, which is to create our storyboards. We are going to decompose our use cases further
in order to understand the various tasks our robot must undertake on our behalf in the
course of its two missions. I've created some quick little drawings to illustrate each point.

The concept of storyboards is borrowed from the movie industry, where a comic-strip like
narration is used to translate words on a page in the script into a series of pictures or
cartoons that convey additional information not found in the script, such as framing,
context, movement, props, sets, and camera moves. The practice of storyboarding goes all
the way back to silent movies, and is still used today.

We can use storyboards in robotics design for the same reasons: to convey additional
information not found in the words of the use cases. Storyboards should be simple, quick,
and just convey enough information to help you understand what is going on.

Let's get started. We are not going to create storyboards for "apply power", "initialize", or
"ready" because they are not really needed for those simple concepts. We will jump ahead
to the "begin cleaning" event in our state diagram.

Storyboard – put away the toys
The first step in our process after "begin cleaning" is "look for toys". This storyboard frame
is what the robot sees as it is commanded to start cleaning. It sees the room, which has three
kinds of objects visible: toys, things that are not toys (the green ottoman and the red
fireplace), and the room itself, the walls, and the floor:
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We could select any sort of sensor to detect our toys and direct our robot. We could have a
Lidar, or a thermal scanner, or sonar. Let's make an hypothesis that the best sensor tool for
this task is a regular USB camera. We have control of the lighting, the toys are not
particularly warmer or cooler than the surroundings, and we need enough information to
identify objects by type. Video it is. We will work later to determine exactly what kind of 
camera we need, so add that to our "to do" list.
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Our next storyboard is to look for toys:

We need to run some sort of algorithm or technique to classify objects by type. The results
of that algorithm is to both find the objects - separate them from the background of the floor
- and then to classify each object as a toy or not a toy. We don't really care to have any more
breakdown than that - we leave all Not toy objects alone, and pick up all Toy objects. Note
that we draw circles around the objects that are toys, which is another way of saying that
we must locate them in the camera frame. So what does this simple picture tell us we did
not know before? It tells us that:

We need to segment the camera image by objects
We need to locate the objects in the camera frame
We need to classify the objects as either Toy or Not Toy
We need to be able to store and remember this information
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We really only can pick up and move one toy at a time - we only have one hand, and no-
one said in the use cases that we need to pick up more than one at a time. So we only care
about one toy - and let's arbitrarily say its the closest one to the robot:

We might also say that it's the toy that is easiest to get to, which might be a slightly
different process than choosing the closest one. We set that toy to be the target for our next
action, which is what?
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If you said to drive to the toy, you would be correct. However, we must not just drive to the
toy, but to put the toy in a position where the robot arm can get to it. By the way, that 
means the robot arm must be able to reach to the ground or very close to the ground, as we
have some small toys:
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Our robot must plan a route from its current position to a spot where it can attempt to pick
up the toy. We set a target goal an arms-length away from the center of the toy:
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The robot needs to make sure that there are no obstacles enroute. There are two ways of
doing this. As illustrated, you can clear the path that the robot is traveling on by adding the
width of the robot (plus a bit of extra) and see if any obstacles are in that area, or we can
add a border around obstacles and see if our path goes into those boundaries. Regardless,
we need to have a path free of obstacles:

The robot determines for itself the proper alignment to prepare to pick up the toy.
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Now that the robot has completed its drive, the robot can move the robot hand to a position
to pick up the toy. We need to put the robot hand over the center of mass of the toy, and
then rotate the hand to match a narrow part of the toy so we can pick it up. One of our
goals of this project is to not dictate how the robot does this, but rather to let it learn for
itself. So we can say for this storyboard panel that the robot uses its training and machine 
learning to use an appropriate hand pose to prepare to grasp the object. We can surmise
that that includes lining the hand up:
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Probably step 6 is the hard part, and in step 7 the robot completes the grasp of the object
and picks it up. The robot has to be able to determine if the pick up was successful, and if
not, try again. That was in our state machine diagram we did before. We have now picked
up the toy. What's next? Find the toy box!
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Now we need the robot to find the toy box. Again, we don't care how at this point. We are
still worried about "what" and not "how". Somehow the robot looks around and finds the
toy box, which in this case is large, against the wall, and a distinctive color. Regardless, the
robot has to find the toy box on its own. The labels in the picture indicate that the robot can
distinguish the toy box and considers all other objects it perceives as obstacles. We can see
we don't need to have the "toy/not toy" capability active at the same time, only the "toy box
/ not toy box" decision-making process. This does ease some of our processing and will
make machine learning easier:
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Now that we have found the toy box, we illustrate a slightly more complex task of
navigating around an obstacle to get there. In this example, we show the purple outline of
the robot's base, compared to a red outline around the obstacle, which I labeled Keep out
zone. This gives us more guidance on how to avoid obstacles. Wee want to keep the center
of the robot out of the keep out zone. We need to get close enough to the toy box to drop in
our toy:
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In storyboard 10, we lift the toy high above the top of the toybox, and position our toy to
fall inside the toybox when we let go of it. Make a note that we have to have the toy lifted
before the final few inches to the toybox. We put the robot hand over the top of the opening
of the toybox, just as far forward as we can and in the middle of the toybox.

Our final step in the toy saga is to open the robot hand and let the toy hopefully fall in to
the toy box. I will predict that we will have to spend some trial and error time getting this
right. We may have to tilt the open hand right and left to get the toy to drop. If the toy falls
outside of the box, then it is not put away and we have to start all over and try to put it
away again. We don't need a new state for this because it returns to being a toy on the floor
and we already have a state for that.

I hope that you have seen in the storyboard process how this provides insight into
visualizing the robot's tasks. I would say the more important benefit is that it forces you to
think about what the robot is doing and to break down each step into smaller and smaller
parts. Don't hesitate to take this storyboard and break an individual panel down into its
own storyboard, if that is what you feel you need to do.
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Project goals
Since this is an AI/machine learning project, we have to add to our project goals not just
putting away toys, but using machine learning, adaptive systems, neural networks, and
other tools to provide a new approach to solving these sorts of problems. You may think,
"why bother? You can do this better with a standard programming approach". I would say
that you are wrong, and you can do your own research to see where companies, large and
small, have tried to solve this sort of problem and failed -or at least not succeeded. This
problem is not easily solved by any means, and using an AI-based approach has a far
greater chance of success than standard programming techniques. Now, I'm not saying we
are going to succeed beyond our wildest dreams at this task in this book, but our objective
is to learn a whole lot along the way!

So we pause at this point in defining our project to say that we are deliberately choosing to
use artificial intelligence and machine learning as an approach to solve a problem that has
proven to be difficult with other means.

Since we are going to be teaching the robot various tasks, it will be more effective if we can
teleoperate the robot and drive it around like a radio controlled car, in order to collect data
and take pictures we will use for object recognition later. We will add this required
operation to our "to do" list.

In our next step, we are going to extract from all of our hard work the hardware and
software tasks that our robot will have to accomplish. Then we can talk about how to write
a component specification, and finally, we can discuss performance measurement and
testing.

Decomposing hardware needs
Based on our storyboards, I extracted or derived the following hardware tasks:

Drive the robot base
Carry the robot arm
Lift toys
Put toys in toy box (arm length)
Sensors:

Arm location
Hand status (open/close)
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Robot vision (camera)
Obstacle avoidance:

Camera
Sonar (optional)
Detect stairs

Provide power for all systems:
5V for Raspberry Pi3
5V for Arduino
Arm power
Motor power sensors

Onboard computers:
Computer that can receive commands remotely (Wi-Fi- Raspberry
Pi 3)

Runs ROS
Ru
ns Python

Computer that can interface to a camera (also Raspberry Pi 3)
Computer that can control motors (Arduino)
Interface that can drive servo motors for the robot arm (servo
controller)

Breaking down software needs
This list of software tasks was composed by reviewing the state machine diagram, the use
cases, and the storyboards. I've highlighted the steps that will require AI and will be
covered in detail in the coming chapters:

Power on self-test (POST):1.
Start up robot programs
Check that the Pi 3 can talk to the Arduino and back
Try to establish communications with the control station
Report POST success or failure as appropriate and enter in the log
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Receive commands via Wi-Fi:2.
Teleoperate:

Drive motor base (right/left/forward/back)
Move hand up/down/right/left/in/out/twist
Record video or record pictures as image files

Send telemetry via Wi-Fi3.
Monitor progress (map?)4.
Send video5.
Navigate safely6.

Learn to avoid obstacles
Learn to not fall down stairs

Find toys:7.
Detect objects
Learn to classify objects (toy/not toys)
Determine which toy is closest

Pick up toys:8.
Move to the position where the arm can reach the toy
Devise a strategy for grasp
Attempt grasp
Determine whether grasping was successful
If not, try again with a different strategy
Reweight grasp technique score based on success

Put toys in the toy box:9.
Learn to identify the toy box1.
Find the toy box:2.

Navigate around the room
Search the camera image for the toy box
Report whether the toy box is in image with a range and
direction

Move to the dump location:3.
Avoid obstacles
Lift the toy above the toy box lid

Drop the toy4.
Check to see whether the toy drop was successful5.
If not, reposition and try again6.
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If the toy misses the toy box, we treat it as a toy on the floor again7.
Determine whether there are no more toys10.
Stand by for instructions11.
Teleoperate:12.

Move base forward/backward/left/right
Move arm up/down/right/left
Move hand in/out/twist/open/close
Record video/take pictures

Simulate personality:13.
Have moods
Have feelings
Show empathy
Interact with people
Talk
Listen/recognize words
Understand some commands
Tell knock-knock jokes
Understand knock-knock jokes

Voice commands:14.
Clean-up room
Put this away
Come here
Stop
Wait
Resume
Go home
Turn left/ right
Forward/ back
Hand up/hand down
Hand left/hand right
Open hand/close hand

In this list, where did I get "teleoperate"? We don't remember discussing that in the use
cases and storyboards.
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Writing a specification
Our next task is to write specifications for our various components.  I'll go through an
example here that we must do as part of our toy-grasping robot project: we need to select a
camera.  Just any old camera will not do – we need one that meets our needs.   But what are
those needs? We need to write a camera specification, so that we can tell when we are
looking at cameras to buy which  one will do the job. 

We’ve created our storyboard and our use cases, so we have the information we need to
figure out what our camera needs to do.  We can "reverse engineer" this process somewhat:
let’s discuss what things make one camera different from another.  First of all is the
interface: this camera goes on board the robot, so it has to interface with the robot’s
computer, which has USB, Ethernet, and the special Raspberry Pi camera bus.  What other
things about cameras do we care about? We certainly care about cost. W e don't want (or
need) to use a $1,000 camera for our inexpensive robot.  Cameras have resolution: the
number of pixels in each image.  That can vary from 320 x 240 to 4000 x 2000 (4K).  Cameras
also have a field of view, which is the number of angular degrees the camera can see.  This
can vary from 2.5 degrees (very narrow) to 180 degrees (very wide).  There are also cameras
that see in the dark, or have various types of infrared sensitivity.  Finally, there is size and
weight; we need a small camera that fits on our robot.

This makes our parameters that we need to decide the following:

Field of view: [180 - > 2.5]
Resolution: [320x280 -> 4000x2000]
Cost: ( low to high) – cheaper is better
Sees in the dark: (yes / no)
Size and weight: Smaller and lighter is much better; must fit on the robot.
Interface: USB, Ethernet, or camera bus; power >11V

The reason for listing these parameters like this is that we can now concentrate on those
features that we can select for, so we are not wasting time looking at other parameters that
we don’t care about.  Let's see if we can knock off some of the parameters.  If we use USB as
the interface, the power is provided on the connector, and we don't need extra cables or
routers. This is also the lowest cost method, so we choose USB as the interface.  We also
don't have any requirements in our use cases to see in the dark, so we don’t need a special
infrared camera.   The next question is to determine the field of view.  We need to see the
entire area where the robot arm can move in as it picks up a toy.  We also need enough field
of view to see when we are driving to avoid obstacles.  
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We can take some measurements from the robot, but we can quickly see that we mostly
need to see close to the robot, and we can't see past the tracks on either side.  This sets the
field of view required to be close to 90 degrees. More field of view than this is acceptable,
less is not. 

Our final problem is determining the resolution we need to perform our object recognition. 
For that we need an additional data point – how many pixels do we need to recognize an
object as a toy?  That is what we will do doing with this camera – recognizing toys and
things that are not toys.  We also have to pick a distance in which we can recognize the toy.
We don’t have a firm requirement out of the use cases, so we have to make an educated
guess.  We know that our room is 17 feet long, and it has furniture in it.  Let's guess that we
need eight feet of distance.  How do we know this is correct?  We do a thought experiment. 
If we can identify a toy eight feet away, can we accomplish our task?  We can see the toy
half a room away.   That gives the robot plenty of space to go drive to the toy and it won’t
spend much time looking for toys.  As a check, if the robot had to be four feet away to
recognize a toy, would that be unusable?  The answer is probably not – the robot would
work OK.  How about three feet?  Now we are getting to the point where the robot has to
drive right up to the toy to determine what it is, and that might result in more complicated
logic to examine toys.  So, we say that three feet is not enough, four feet is acceptable, and
eight feet would be great. 

What resolution is required in the camera to recognize a toy at eight feet with a 90 degree
lens?  I can tell you that the ImageNet database requires a sample 35 pixels wide to
recognize an object, so we can use that as a benchmark.  We assume at this point that we
need an image at least 35 pixels across.  Let’s start with a camera with 1,024x768 pixels,
which is 1,024 pixels wide.  We divide by 90 degrees to get each degree has 11.3 pixels
(1,024/90).  How big is our smallest toy at eight feet?  Our smallest toy is a Hot Wheels toy,
which is approximately three inches long.  At eight feet, this is 1.79 degrees or 20.23 pixels
(1.79 degrees * 11.3 pixels/degree).  That is not enough.  Solving the distance equation for
three inches, we get a maximum distance of 4.77 feet for a camera with 1,024x768.  That is
just barely acceptable.  What if we had an HD sensor with 1,900x1200 pixels?  Then at eight
feet I get 75 pixels – more than enough to give us the best possible distance.  If we use a
sensor 1,200 wide, we have a recognition distance of 5.46, which is adequate but not great.  

I walked through this process to show you how to write a specification, and show you the
types of questions you should be asking yourself as you decide what sensors to acquire for
your project.
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Summary
This chapter outlines a suggested process for developing your "to do" list as you develop
your robot project.  This process is called systems engineering.  Our first step was to create
use cases, or descriptions of how the robot is to behave from a user’s perspective.  Then we
created more detail behind the use cases by creating storyboards, where we went step by
step through the use case.  Our example followed the robot finding and recognizing toys,
before picking them up and putting them in the toy box.  We extracted our hardware and
software needs, creating a to do list of what the robot will be able to do.  Finally, we wrote a
specification of one of our critical sensors, the camera.

Questions
Describe some of the differences between a storyboard for a movie or cartoon,1.
and a storyboard for a software program.
What are the five W questions? Can you think of any more questions that would2.
be relevant to examine a use case?
Complete this sentence: A use case shows what the robot does but not3.
___________.
Take the storyboard in step 9, where the robot is driving to the toy box, and4.
break it down into more sequenced steps in your own storyboard. Think about
all that must happen between frames 9 and 10.
Complete the reply form of the knock-knock joke, where the robot answers the5.
user telling the joke. What do you think is the last step? 
Look at the teleoperate operations. Would you add any more, or does this look6.
like a good list?
Write a specification for a sensor that uses distance measurement to prevent the7.
robot from driving down stairs.
What is the distance a camera with 320x200 pixels and a 30 degree field of view8.
(FOV) can see a six inch stuffed animal, still assuming we need 35 pixels for
recognition?
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Further reading
Freidenthal, S., Moore, A., Steiner, R. A Practical Guide to SysML: The Systems
Modeling Language (2014) MK/OMB Press.
The Standard Introduction to Model-Based Systems Engineering (MBSE).
Flewelling, Paul. The Agile Developer's Handbook. (Feb. 2018). Packt Publishing,
Birmingham.



4
Object Recognition Using

Neural Networks and
Supervised Learning

This is the chapter where we start to combine robotics and artificial intelligence to
accomplish some of the tasks we have laid out so carefully in the previous chapters. The
subject of this chapter is image recognition – we will be teaching the robot to recognize
what is a toy, and what is not a toy, so that it can then decide what to pick up and what to
leave alone. We will be using convolutional neural networks as a machine learning tool to
separate objects in images, recognize them, and locate them in the camera frame, so that the
robot can then locate them.

In this chapter, we will cover the following topics:

The basics of image recognition: what is an image?
Artificial neural networks: what is a neuron, and how do they work?
Training neural networks using stochastic gradient descent
Image processing and dataset creation: training sets and test sets, multiplying
data
Convolution: image processing for robots
The LeNet framework from Keras
Training and testing the network
Deploying our trained network on the Raspberry Pi 3 in the robot
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Technical requirements
We will actually be able to accomplish all of these tasks without a robot, if yours cannot
walk yet. We will, however, get better results if the camera is in the proper position on the
robot. If you don't have a robot, you can still do all of these tasks with a laptop and a USB
camera.

Hardware: Laptop or portable computer, Raspberry Pi 3, USB camera
Software: 

Python
Open CV2
Keras (https:/ / keras.io/ )
Tensorflow (https:/ /www. tensorflow. org/ install/ )
USB camera drivers installed on your laptop or Raspberry Pi

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Artificial-Intelligence- for- Robotics/ chapter4.

Check out the following video to see the Code in Action:
http://bit.ly/2wwM9Zl

The image recognition process
Having a computer or robot recognize an image is not as simple as taking two pictures and
then saying "If picture A = picture B, then toy". We are actually going to have to do quite a
bit of work to have the ability to recognize a variety of objects that are randomly rotated,
strewn about, and at various distances. We could recognize simple shapes – hexagons, for
instance, or simple color blobs, but nothing as complex as a toy stuffed dog. Writing a
program that did some sort of analysis of an image and computed the pixels, colors,
distributions, and ranges of every possible permutation would be extremely difficult, and
the result very fragile – it would fail at the slightest change in lighting or color. I had a
recent misadventure with a large robot that mistook an old, faded soft drink machine for its
charging station – let's just say that I had to go and buy more fuses. 
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What we will do instead is teach the robot to recognize a set of images corresponding to
toys that we will take from various angles, by using a special type of artificial neural
network (ANN) that performs convolution encoding on images. We will discuss this in the
following sections: how do we process images, what is "convolution", and how do you
build a neural network? There are a lot of good books and good tutorials on generic neural
network construction, so I'll be emphasizing the unique components we will use to
accomplish our task of recognizing toys in an image. Do you remember from Chapter 3,
what the storyboard said to do:

The result from our image recognizer is to figure out what objects are toys and then locate
them in the image—illustrated in my sketch by drawing circles around them; not just what
they are, but also where they are.
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The image recognition training and deployment
process – step by step
Most of you will be very familiar with computer images. Just like the safety belt
demonstration on every commercial flight, just in case, I'll cover images, pixels, and depth.
If you already know this, skip ahead.

Images are stored in a computer as a two-dimensional array of pixels, or picture elements.
Each pixel is a tiny dot. Thousands or millions of tiny dots make up each image. Each
individual pixel is a number or series of numbers that describe its color. If the image is only
a gray-scale, or black and white image, then each pixel is represented by a single number
that corresponds to how dark or light the tiny dot is. This is fairly straightforward so far. 

If the image is a color picture, then each dot has three numbers that are combined to make
its color. Usually, these numbers are intensity of Red, Green, and Blue (RGB) colors. The
combination (0,0,0) is black (or the absence of all color), and (255,255,255) is white – the sum
of all colors. This process is called the additive color model. If you work with watercolors
instead of computer pixels, you know that adding all the colors in your watercolor box
makes black – that is, a subtractive color model. 

While RGB is one set of three numbers that can describe a pixel, there are other ways of
describing the "color formula" that have various usages. We don't have to use RGB, for
instance; we can also use CYM – Cyan, Yellow, and Magenta, which are the complementary
colors to Red, Green, and Blue. We can also break down colors using the HSV (Hue,
Saturation, and Value) model, which classifies color by Hue (type of color), Saturation
(intensity of color), and Value, or brightness of color. HSV is a very useful color space for
certain calculations, such as converting a color image to gray-scale (black and white). To
turn an RGB to a gray-scale pixel, you have to do a bit of math – you can't just pull out one
channel and keep it. The formula for RGB to gray-scale is (0.3*Red + 0.58*Green + 0.11*Blue).
This is because the different wavelengths of light behave differently in our eyes, which are
more sensitive to green. If you have color in the HSV color model, then creating a grayscale
image is just taking the V(value) number and throwing the Hue and Saturation away. You
can see that is a lot simpler.

We will be doing quite a bit of image manipulation through this chapter.

An RGB pixel is represented by the three colors, which means the actual image is a three-
dimensional array rather than two-dimensional, because each pixel has three numbers,
making an array of (height, width, 3). So, a picture that is 800 by 600 would have an array
of (800,600,3), or 1,440,000 numbers. That is a lot of numbers. We will be working very hard
to minimize the numbers of pixels we are processing at any given time.
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Image processing
So now that we have an image, what can we do with it? You have probably played with
Photoshop, or some other image manipulation program such as GIMP, and you know that
there are thousands of operations, filters, changes, and tricks you can play on images. What
are a few of them? We can make an image brighter or darker by adjusting the brightness.
We can increase the contrast between the white parts of the image and the dark parts. We
can make an image blurry, usually by applying a Gaussian blur filter. We can also make an
image sharper (somewhat) by using a filter such as unsharp mask. You may have also tried
an edge detector filter, such as the Canny filter, to isolate the edges of an image, where
color or value changes. We will be using all of these techniques to help the computer
identify images.

What on earth is unsharp mask? This image enhancing process was invented in the 1930s
in Germany, and was originally used with film. The original image is blurred slightly, and
then inverted (black becomes white and vice-versa). This positive image is used as a mask
to block where the negative image is combined. The net result is to amply the high
frequency (in other words, fine detail) in the image. The effect in Photoshop or GIMP uses a
threshold in the difference of the blurred and normal images to simulate the masking
process.

What we are trying a achieve with all this manipulation for the computer is to not have the
computer be sensitive to the size of the image – which is called scale invariance, the angle
at which the photograph was taken – angle invariance, and the lighting available –
illumination invariance. This is all very desirable in a computer vision system – we would
not want an AI system that only recognized our toys from exactly the same angle and
distance as the original image. Remember that we are going to train our vision system to
recognize toys based on a training set of images we take in advance, and the robot will have
to recognize objects based on what it learned from the training set.

What we are going to do is use features about the image that mostly don't change based on
size, angle, distance, or lighting. What sorts of features might that be?

If we look at a common household object, such as a chair, and inspect if from several
angles, what about the chair does not change? The easy answer is the edges and corners.
The chair has the same number of corners all of the time, and we can see a consistent
number of them from most angles. It also has a consistent number of edges.

Admittedly, that is a bit of an oversimplification of the approach. We will be training our
ANN to example a whole host of image features that may or may not be unique to this
object, and let it decide which ones work and which do not. We will accomplish this by
means of a generic approach to image manipulation called convolution.
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Convolution
Every once in a while, you come across some mathematical construction that turns a
complex task into just a bunch of adding, subtracting, multiplying, and dividing. Vectors in
geometry work like that, and, in image processing, we have the convolution kernel. It
transpires that most of the common image processing techniques – edge detection, corner
detection, blurring, sharpening, enhancing, and so on, can be accomplished with a simple
array construct.

It is pretty easy to understand that in an image, the neighbors of a pixel are just as
important to what a pixel is as the pixel itself. If you were going to try and find all the edge
pixels of a box, you would look for a pixel that has one type of color on one side, and
another type on the other. We need a function to find edges by comparing pixels on one
side of a pixel to the other.

The convolution kernel is a matrix function that applies weights to the pixel neighbors – or
pixels around the one pixel we are analyzing. The function is usually written like this, as a 3
x 3 matrix:

-1 0 1
-2 0 2
-1 0 1

This is the sobel edge detector in the Y direction. This detects edges going up and down.
Each block represents a pixel. The pixel being processed is in the center. The neighbors of
the pixels on each side are the other blocks – top, bottom, left, and right. To compute the
convolution, you apply the weight to the value of each pixel by multiplying the value
(intensity) of that pixel, and then adding all of the results. If this image is in color – RGB –
then we compute the convolution for each color separately and then combine the result.
Here is an example of a convolution being applied to a pixel:
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Add the final result to a sample image. Note that we only get the edge as the result – if the
colors are the same on either side of the center pixel, they cancel each other out and we get
zero, or black. If they are different, we get 255, or white, as the answer.

If we need a more complex result, we may also use a 5 x 5 convolution, which takes into
account the two nearest pixels on each side, instead of just one.

The good news is that you don't have to choose the convolution to apply to the input
images – the Keras AI frontend will set up all of the convolutions, and you only have to set
the size as either 3 x 3 or 5 x 5. The neural network will determine which convolutions
provide the most data and support the training output we want.

But wait, I hear you say. What if the pixel is on the edge of the image and we don't have
neighbor pixels on one side? In that event, we have to add padding to the image – which is
a border of extra pixels that permit us to consider the edge pixels as well.
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Artificial neurons
Now, let's get into the guts of a neural network. What is a neuron? And how do we make a
network out of them?

An artificial neuron is a software construction that approximates the workings of the
neurons in your brain. If you can remember what you learned in biology, a biological or
natural neuron has inputs, or dendrites, that connect it to other neurons or to sensor inputs.
All of the inputs come to a central body, and then leave via the axion, or connection, to
other neurons via other dendrites. The connection between neurons is called a synapse,
which is a tiny gap that the signal from the nerve has to jump. A neuron takes inputs,
processes them, and activates, or sends an output, after some level or threshold is reached:

An artificial neuron is a very, very simplified version of this natural neuron. It has a
number of inputs, a set of weights, a bias, an activation function, and then some number of 
outputs to other neurons or as a result of the network. The following section describes each
component in detail:

Inputs: A number or value received from other neurons or as an input to the
network. In our image processing example, these are pixels. This number can be
a float or an integer – but it must be just one number.
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Weight: To determine the value of a neuron, we sum up all of the inputs. As the
neural network is trained, the weights are adjusted on each input that favors
some inputs over others. We multiply the input by the weight and then total the
inputs.
Bias: A number added to the sum of the weights. Bias prevents the neuron from
getting "stuck" on zero and improves training. This is usually a small number.
Activation function: This determines the output of the neuron based on the
inputs. The most common types are the Rectifier Linear Unit, or ReLU (if the
value of the neuron is less than zero, the output is zero, otherwise, the output is
the value) or the SIGMOID function (Sigmoid means "s-shaped"), which is a log
function. The activation function propagates information across the network:
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Outputs: Each layer in the sequential neural network is connected to the next
layer. Some layers are fully connected – with each neuron in the first layer
connected to each neuron in the second layer. Others are sparsely connected.
There is a common process in neural network training called dropout, where we
randomly remove connections. This forces the network to have multiple paths
for each bit of information it learns, which strengthens the network.
 Max Pooling of outputs: We will use a special type of output connection called
Max Pooling, where groups of neurons corresponding to regions in our image –
say a 5 x 5 block of pixels – go to one neuron in the next level. The maxpool
neuron only takes the largest value from each of the 25 input neurons. This has
the effect of downsampling the image (making it smaller). This allows the
network to associate small features (such as the wheels in a Hot Wheels™ car)
with larger features, such as the hood, or windshield, to identify a toy car:

The convolution neural network process
I want to provide you with an end-to-end look at what we will be doing in the code for the
rest of this chapter. Remember that we are building a convolutional neural network
(CNN) that examines objects in a video frame and outputs if one or more toys are in the
image, and where they are:
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Here is an overview of the process:

Prepare a training set of images of the room with and without toys.1.
Label the area of the images that contain toys – in a separate folder.2.
Label images that don't contain toys – in a separate folder.3.
Break the training set into two parts: a set we use to train the network, and a set4.
we use to test the network.
We will be building two programs: the training program that runs on our5.
desktop computer, and trains the network, and the working program that uses
the trained network to find toys.
Program 1: Train the network (toyTrainNetwork.py).6.
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We take each image and multiply its training value by randomly scaling,7.
rotating, and flipping (mirroring) the images. This increases our training set 20
fold:

We build our CNN network with a convolution layer, a maxpooling layer,8.
another convolution layer, another maxpooling layer, then a fully connected
layer, and an output layer. This type of CNN is call a LeNet.
Now, we scale all our images down to reduce the amount of processing.9.
The network is initialized with random weights.10.
We present a labeled image to the network. We get an answer that is either right11.
or wrong. If it is right, we reinforce the weights on the inputs that contributed to
this answer by incrementing them (the training value). If the answer is wrong,
we reduce the weights instead. In neural networks, the error between the desired
result and the actual result is called loss.
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Repeat for each image.12.
Now, we test the network by running the testing set of images – which are13.
pictures of the same toys, but that were not in the training set. We see what sort
of output we get over this set (how many wrong, how many right). If this answer
is above 90%, we stop. Otherwise, we go back and run all the training images
again.
Once we are happy with the results – and we should need between 100 and 50014.
iterations to get there – we stop and store the weights that we ended up with in
the training network. This is our trained CNN.
Program 2: Find the toys (ToyFindNetwork.pyp).15.
Now, we deploy the trained network by loading it and using our video images16.
from the live robot to look for toys. We will get a probability of an image having
a toy from 0 to 100%. We scan the input video image in sections and find which
sections contain toys. If we are not happy with this network, we can reload this
network into the training program and train it some more.
Done!17.

Now, let's cover this in detail, step by step. We have a bit more theory to cover before we
start writing the code. 

Our first task is to prepare a training set. We put the camera on the robot, and drive the
robot around using the teleoperation interface (or just by pushing it around by hand),
snapping still photos every foot or so. We need to do at least two passes of this: one with
toys in the room, and one without toys in the room. We need about 200 pictures each way,
and more is better. We also need to do a set of pictures in the daytime with natural light,
and at night, if your room changes lighting between day and night. This affords us several
advantages: we are using the same room and the same camera to find the toys, and under
the same lighting conditions.

Now, we need to label the images. I used a small program called LabelImg, which is 
available at github/tzutalin/labelImg. This program creates boundaries of labeled objects
in the ImageNet data format. ImageNet is a popular dataset used in competitions between
image classifers, and has 1,000 types of objects labeled. We have to do this ourselves.
Download the binary version of LabelImg and start it up. Use the Open Dir command to
select the directory with your images of toys. It will present the first picture.

https://github.com/tzutalin/labelImg
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The process for us is fairly straightforward. We look at each picture in turn, and draw a box
around any toy objects. Use the W shortcut key with each box. The label dialog box opens
up. On the first occasion, you will have to type toy as the label. We label these – as you
might guess – toy. We also draw boxes around objects that are not toys – and label them
not_toy. This is going to take a while. We put the finished product, which is an XML file,
into a file folder labeled data. We will need to convert the XML file into a CSV (comma
separated values) file to input into our classifier training program. 

In the next section, we will write our Keras/Tensorflow-based network training program,
but, for the moment, let's talk about what we are going to do first. The program will read in
the images one at a time, and then create additional images by randomly rotating, scaling,
flipping, translating, and adding noise to the images. Now, our 200 pictures will do the
work of 2,000 pictures.

We create our convolutional neural network (CNN) with an AI development package
called Keras. The first step is to build a sequential network framework to incorporate the
layers. Sequential networks are the most common topology used for neural networks,
indicating that the network is composed of layers each connected to the layer above and the
layer below, and nowhere else. We are building a five-layer network. The first network is a
convolution layer. We'll use 20 convolutions and a 5 x 5 convolution matrix, which looks at
the neighboring two pixels around each pixel to develop features. Keras will determine
which convolution kernels to use. We specify the padding to match the convolution size,
which adds two rows of pixels to all four sides of our image, so that we don't get out of
range errors. Next, we have to add the activation function for this layer, which will be the
Rectifier Linear Unit, or ReLU function, which just forwards all values greater than zero,
and returns zero otherwise.

The next layer is a maxpooling layer, which we will set as 2 x 2 with a stride of 2 x 2. This
converts blocks of four pixels into one pixel, and takes the maximum value out of the four
pixels, which conserves features in the image. This layer reduces the image size to one-
quarter of its original size, which increases the speed of our network, and lets the next layer
work to recognize larger features in the image. If the first layer recognized tires on our toy
cars, the second layer after maxpooling will look for windows, hoods, and car trunks.

The third layer is again a convolution using the reduced sized image as input. This
convolution layer needs to have twice as many convolutions as the first layer, so it has 40
convolutions and again uses a 5 x 5 kernel size. We again use the ReLU activation function
for this layer.
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We add a 2 x 2 maxpooling layer after the second convolution, just like the first one.

Now, we are going to flatten our data into a single set of numbers in preparation for
generating our output. We use the Keras flatten function and then add a dense or fully
connected layer for layer five. We have to get from an image to a binary yes or no value,
and so we flatten the data to convert the image data to a string of numbers. 

The final layer is our output layer, which just has two neurons – one for toy and one for not
toy, which are our two classes of objects we will be identifying. We give the network
constructor our number of classes – two – and set its activation to SoftMax. Softmax
converts the outputs of each of our classes to be a number between 0 and 1, and then
divides the outputs so that the sum of all the outputs equals 1. Since we only have two
classes, we could have used a sigmoid function, but the SoftMax activation function is
more generic and lets us add more classes later if we want. Our output will be two numbers
– the predicted probability that the image contains a toy, and the probability that the image
does not contain a toy. The total will add up to 1, so if the toy probability is 0.9, then the
not_toy probability will be 0.1.

The final two steps in building our network are to specify our loss, or error function, and
to choose a training optimizer. The loss function is how we compute the error, or loss,
from the network. Each pass, the network will be presented with an image that either
contains a toy, or does not. We labeled the images so that the program knows which is
which – I like to think of this as the "truth" value. The network analyzes the image and
produces our two numbers – the "toy" and "not toy" values. Our error is the difference
between the truth value and the predicted value. If the toy value is true, or 1.0, and the
prediction is toy = 0.9, then our error is 0.1. If the image did not contain a toy, and we still
got 0.9 as the result, then the error would be 0.9. Since we use a lot of data to come to that
one number, we have to have a way of portioning the error out to the individual neurons.
We will select the binary cross entropy loss calculation, which has been shown to work
well with this sort of problem where there are only two classes.

How we use that information in our training is the role of the training optimizer. We will 
use the ADAM optimizer for this example, which is an improved version of stochastic
gradient descent (SGD) training. SGD is another of those simple concepts with a fancy
name. Stochastic just means random. What we want to do is tweek the weights of our
neurons to give a better answer than we got the first time – this is what we are training, by
adjusting the weights. We want to change the weights a small amount – but in which
direction? We want to change the weights in the direction that improves the answer – it
makes the prediction closer to the truth.
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Let's do a little thought experiment. We have a neuron that we know is producing the
wrong answer, and needs adjusting. We add a small amount to the weight and see how the
answer changes. It gets slightly worse – the number is further away from the correct
answer. So we subtract a small amount instead – and, as you might think, the answer gets
better. We have reduced the amount of error slightly. If we made a graph of the error
produced by the neuron, we are moving towards an error of zero, or we are descending the
graph toward some minimum value. Another way of saying descending is that the slope of
the line is negative – going toward zero. The amount of the slope can be called a gradient –
just as you would refer to the slope or steepness of a hill as the gradient. We can calculate
the partial derivative (in other words, the slope of the line near this point) and that tells us
the slope of the line.

The way we go about adjusting the weights on the network as a whole is called
backpropogation. That is because, as you might surmise, we have to start at the end of the
network – where we know what the answer is supposed to be – and work our way toward
the beginning. We have to calculate the contribution of each neuron to the answer we want,
and adjust it a small amount (the learning rate) in the right direction to move toward the
correct answer every time. We go back to the idea of a neuron – we have inputs, weights for
each inputs, a bias, and then an activation function to produce an output. If we know what
the output is, we can work backward through the neuron to adjust the weights. Let's take a
simple example. Here is a neuron with three inputs, Y1, Y2, and Y3. We have three weights
– W1, W2, and W3. We'll have the bias, B, and our activation function, D, which is the ReLU
rectifier. Our inputs are 0.2, 0.7, and 0.02. The weights are 0.3, 0.2, and 0.5. Our bias is 0.3,
and the desired output is 1.0. We calculate the sum of the inputs and weights and we get a
value of 0.21. Adding our bias, we get 0.51. The ReLU function passes any value greater
than zero, so the activated output of this neuron is 0.51. Our desired value is 1.0, which
comes from the truth (label) data. So, our error is 0.49. If we add the training rate value to
each weight, what happens? Observe the following diagram:
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The output value now goes up to 0.5192. Our error goes down to 0.4808. We are on the right
trail! The gradient of our error slope is (.4808-.49) / 1 = -0.97. The 1 is because we just have
one training sample so far. Where does the stocahastic part come from? Our recognition
network may have 50 million neurons. We can't be doing all of this math for each one. So
we take a random sampling of inputs rather than all of them to determine whether our 
training is positive or negative.
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In math terms, the slope of an equation is provided by the derivative of that equation. So, in
practice, backpropagation takes the partial derivative of the error between training epochs
to determine the slope of the error, and thus determine whether we are training our
network correctly. As the slope gets smaller, we reduce our training rate to a smaller
number to get closer and closer to the correct answer:
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Our next problem is: how do we go up layers. We can see here at the output neuron how
we determine error – just the label value minus the output of the network. How do we
apply this information to the previous layer? Each neuron's contribution to the error is
proportional to its weight. We divide the error by the weight of each input, and that value
is now the applied error of the next neuron up the chain. Then, we can recompute their 
weights and so on. You start to see why neural networks take so much compute power:

We backpropagate the error back up the network from the end back to the beginning. Then, we start all over again with the next cycle



Object Recognition Using Neural Networks and Supervised Learning Chapter 4

[ 122 ]

Build the toy/not toy detector
The next section covers the training program for our CNN that will tell toys apart from not
toys, that is to say, it will tell us whether there is a toy in the field of view of the camera.

We start by building our training sets. We divide our pictures of the playroom into pictures
with toys and pictures taken without toys. We put the toy pictures in a directory under our
program directory called images/toys. We put the pictures without toys in a directory
called images/not_toys. We need about 200 examples of each. So far so good:

Examples of images without toys in them (top image) and with toys in them (bottom
image). Thanks to the grandchildren for helpfully providing these examples. We can tell the
difference, but can the robot?
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Now, we can begin our program to train our neural network we have heard so much about.
We will be using a CNN with the Keras framework. Keras (a cool word that is Greek for
"Horn", and has a complicated backstory you can look up yourself) is a simplified frontend
for several neural network packages, such as TensorFlow (what I'm using), CNTK, or
Theano. Keras makes our work much easier and simpler, which is a boon given how
complex neural network theory can be. I do have some good news – neural network
practice is much easier than the theory.

This section has been inspired by the work of Adrian Rosbrock at PyimageSearch (https:/ /
www.pyimagesearch. com/ ), a great website, and Adventures in Machine Learning by Andy
Thomas (adventuresinmachinelearning.com). The LeNet architecture comes from Gradient-
Based Learning Applied to Document Recognition, written in 1998 by Yann LeCun, Leon Bouttou,
Yoshua Bengio, and Patrick Haffner.

You can control whether or not you use CUDA, the Nvidia GPU neural
network libary, to accelerate your program. The environment variable
CUDA_VISIBLE_DEVICES turns CUDA on or off. Set this environment
variable to -1 to disable CUDA and use 0 (zero) otherwise. 

With that, let's dive right in. Open an editor and create a program called trainTheCNN.py.

We begin, as is customary for a Python program, by importing a bunch of libraries:

# program to train Convolution Neural Network to detect toys and not toys
# import the necessary packages
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam, SGD,Adadelta,Adagrad
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import img_to_array
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dense
from keras import backend as K
from imutils import paths
import numpy as np
import random
import cv2
import os, time

https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
https://www.pyimagesearch.com/
http://adventuresinmachinelearning.com
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You'll observe that a lot of these imports are from Keras, as expected. We will use the
ImageDataGenerator to magically multiply our image so that they provide more training
data, test some training optimizers called Adam, a type of stochastic gradient descent that
uses adaptive training rates, several image processing routines, and a bunch of layers from
Keras.

Now, we create a class to build our neural network, which we will use later in the program.
This is the fun part, so we can get this out of the way up front. We are going to build a
generic LeNet object class. The input parameters are the width, height, and depth of our
images (which are 126 x 126 pixels with a depth of three colors). We have two classes we
will be looking for: toys and not_toys. We use the sequential type of neural network,
which covers most neural networks. Keras also lets you define your own model
architecture, but we won't go into that here. To begin with, we set the shape and size of our
model:

class LeNet:
                @staticmethod
                def build(width, height, depth, classes):
                                # initialize the model
                                model = Sequential()
                                inputShape = (height, width, depth)

Some data files come channels first – so if that is the case, we set the shape to be 3 x
height x width, instead of height x width x 3. The three channels are the Red, Green, and
Blue color values:

                                # if we are using "channels first", update
the input shape
                               if K.image_data_format() ==
"channels_first":
                                                inputShape = (depth,
height, width)

Now, we add our first layer to the model. It is a convolution layer with 20 convolutions
(operations), each of which will isolate some feature of the image. We set the convolution
size to be 5 x 5, and add padding to the image to match. Our activation function is the
ReLU, which is the value if value > 0, and 0 otherwise. It "rectifies" any below-zero value to
be just zero. Remember a color less than zero is just black – our color values will run from 0
to 1. Since a color value less than zero has no sense – blacker than black?- we just make it 0.

                                model.add(Conv2D(20, (5, 5),
padding="same",
                                                input_shape=inputShape))
                                model.add(Activation("relu"))
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Our second layer is a maxpooling layer. We use 2 x 2 cells (4 pixels) and skip (stride) 2
pixels for no overlap. This cuts the size of our image by ¼ (half the width and half the
height= one quarter). Now, instead of 128 x 128, we are 64 x 64 pixels:

                                model.add(MaxPooling2D(pool_size=(2, 2),
strides=(2, 2)))

Now, we add another convolution layer that is twice as complex as the first – 40
convolutions instead of 20. This is a common practice in CNNs. This layer detects more
details than the first layer. If the first layer can be said to detect eyes, toes, and fingers, the
second layer would detect arms and legs. We use the same ReLU function as before, for the
same reason. The activation determines the output of the neurons from this layer:

                                model.add(Conv2D(40, (5, 5),
padding="same"))
                                model.add(Activation("relu"))

Now, we add another maxpooling layer just as before. Our 64 x 64 pixels are now 32 x 32.
We are seeing only the largest features of the images after this:

                                model.add(MaxPooling2D(pool_size=(2, 2),
strides=(2, 2)))

Now, we flatten the image in preparation of using the classifier later. We turn our 64 x 64 x
3 image into a one-dimensional array with 12,228 values:

                                model.add(Flatten())

After the flatten function, we add a dense (fully connected) layer – each neuron connects to
each neuron in the layer below it. Its activation function is also still ReLU:

                                model.add(Dense(500))
                                model.add(Activation("relu"))
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Our final layer has just the two classes to hold our output values. One is the probability
from 0 to 1 that our image contains a toy, and the other is the probability that the image
does not contain a toy. The softmax classifier takes the output from the network and
normalizes them into values – one per class – that add up to one. Softmax is a more generic
function that can handle multiple classes. We are just using two, but this makes the
network more generic:

                                # softmax classifier
                                model.add(Dense(classes))
                                model.add(Activation("softmax"))

                                # return the completed network structure
                                return model

There we go – the LeNet is a simple CNN structure with just two convolution layers.

Now, we define some of our data files, including where our training images are located:

# data files
imageDirectory = "images/"
model_file = "toy_not_toy.model"

Here are the metaparameters for our training program. We set up the number of repetitions
on which to train the network, the learning rate (how fast to change the values of the
weights), and the batch size. The batch size is how many images we hold in memory at a
time. If we run out of memory, we can reduce the batch size:

# Set up the number of training passes (epochs), learning rate, and batch
size
EPOCHS = 200
LEARNING_RATE = 1e-3
BATCH_SIZE = 32

This section sets up the training images and labels so that we can ingest them:

# initialize the data and labels
print("Loading training images set...")
data = []
labels = []
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We load the images from the hard drive and shuffle them randomly, so there is no
particular order that the network could learn accidentally:

# grab the images from the directories and randomly shuffle them
imagePaths = sorted(list(paths.list_images(imageDirectory)))
# use a random seed number from the time clock
random.seed(int(time.time()%1000))
random.shuffle(imagePaths)

We load all of the images one at a time, downsample them to 128 x 128 pixels, and add
them to an array of numbers. We put this into an array called data:

# loop over the input images
for imagePath in imagePaths:
                # load the image, pre-process it, and store it in the data
list
                image = cv2.imread(imagePath)
                image = cv2.resize(image, (128, 128))
                image = img_to_array(image)
                data.append(image)

To create the labels list, we have put the pictures with toys in one directory and the images
without toys in the other. We use the directory name as the label for the image (toy or
not_toy). We put this in an array called labels, where we can locate them again later: 

 extract the class label from the image path and update the labels list
 label = imagePath.split(os.path.sep)[-2]
 if label == "toy":
 label = 1
 else:
 label = 0
 labels.append(label)

Now, we convert the values of the colors in our image from being integer numbers from 0
to 255, to being real numbers from 0 to 1. This is called normalization and is a standard
step in neural networks for obtaining all of the inputs in a common range:

 # Normalize the values of the pixels to be between 0 and 1 instead of 0 to
255
 data = np.array(data, dtype="float") / 255.0
 labels = np.array(labels)
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As we are training our neural network, we need to continually test whether the network is
working properly. The training process tells us the errors in images that were used in the
training set, but we will be using this network to classify new images it has never seen
before. We split our supply of pictures into two groups – the training set, which has the
majority (80%) of the pictures, and the testing set, which has the remaining 20%. We train
the network with the bigger set of images, and then we test against the smaller set of
pictures that are still on the same subject, but were not part of the training set. This gives us
a basis for believing that the network will properly classify images it has not seen before:

 # split the data between a testing set and a training set
 (trainX, testX, trainY, testY) = train_test_split(data,
 labels, test_size=0.20, random_state=time.time())

Now, we convert the labels from text (toy or not_toy) to numbers, - 0 and 1, so that the
network can process them:

 # convert the labels from integers to vectors
 trainY = to_categorical(trainY, num_classes=2)
 testY = to_categorical(testY, num_classes=2)

This is one of the fun parts. We are going to augment our data by randomly shifting,
shearing, zooming, and flipping the images so that one image becomes 10. This gives our
network a lot more information to work with:

 # construct the image generator for data augmentation
 aug = ImageDataGenerator(rotation_range=40, width_shift_range=0.2,
 height_shift_range=0.2, shear_range=0.1, zoom_range=0.2,
 horizontal_flip=True, fill_mode="nearest")

Now we are ready to build our network. We instantiate the LeNet object by using the
build function to create our cnNetwork (CNN Network) data structure. We've already
covered what that does – two convolutions, a flatten, and an output layer. We set our
network size to 124 x 124 pixels, set our depth to three for a color image, and then set our
classes to 2 – toy and not toy. The next step sets up our learning optimizer. I've selected
ADAM, which is described to me as the generic go-to optimizer for CNNs. ADAM has the
stochastic gradient descent model, which is fast, plus a bunch of modifications to enhance
the learning curve, and adjust the learning rate as the model learns. The model slows down
the learning rate as the network reaches its maximum level and the gradient flattens out.
I've included the code for the regular SGD for you in case you want to compare these, as I
did while building the model. ADAM worked slightly better for me. If I used the SGD
optimizer, I had to add more training passes (epochs): 

 # initialize the weights of the network
 print("Building CNN network...")
 cnNetwork = LeNet.build(width=124, height=124, depth=3, classes=2)
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 #use adam optimizer. tried SGD for comparison - needs more epochs (>100)
 opt = Adam(lr=LEARNING_RATE, decay=LEARNING_RATE / EPOCHS)
 #opt = SGD(lr=LEARNING_RATE,decay=LEARNING_RATE / EPOCHS)

We compile the network and specify what our loss function will be. We use binary_cross
entropy, which is appropriate for a network that has only two classes. If there were more
than two classes, you can use categorical cross entropy instead. Cross entropy loss systems
are used for networks where the final output is a probability number between 0 and 1, like
the one we are building. Cross entropy loss is a log loss, where the error increases greatly as
the expected output and the network's prediction diverge. This exaggeration helps to drive
the network back toward the training goal. Generally, cross entropy loss is the negative log
(-log) of the difference between the true result (the label on the image) and the output of the
network (which is a probability number from 0 to 1):

 cnNetwork.compile(loss="binary_crossentropy", optimizer=opt,
 metrics=["accuracy"])

This code block actually trains the network. We can think of creating a neural network as
making a stepwise approximation of a non-linear function, which math majors like to call
fitting the curve – making a curve function that fits the input data. Hence, the function that
trains the network is called fit. We input our training sets (trainX = toys and trainY =
not toys), the batch size (which regulates the amount of memory used), our validation
data that we will test with, and the number of epochs. Throw in a pinch of salt and stir
vigorously:

 # train the network - here is where the magic happens...
 print("[INFO] training network...")
 H = cnNetwork.fit_generator(aug.flow(trainX, trainY,
batch_size=BATCH_SIZE),
 validation_data=(testX, testY), steps_per_epoch=len(trainX) // BATCH_SIZE,
 epochs=EPOCHS, verbose=1)

The program will print status reports on how the training is going. If you want, you can
collect this data and make a graph out of it, as I did below. The output looks like this – you
can see the time each epoch takes – which is about nine seconds in this case. The loss, or
error, is reported, and you can see that it decreases over time. The acc stands for accuracy
of the trained model, and then the validation error and accuracy is reported:

3/3 [==============================] - 11s 4s/step - loss: 0.8696 - acc:
0.6264 - val_loss: 0.6710 - val_acc: 0.5806
Epoch 2/100
3/3 [==============================] - 10s 3s/step - loss: 0.6962 - acc:
0.5000 - val_loss: 0.7323 - val_acc: 0.2903
Epoch 3/100
3/3 [==============================] - 9s 3s/step - loss: 0.6913 - acc:



Object Recognition Using Neural Networks and Supervised Learning Chapter 4

[ 130 ]

0.5818 - val_loss: 0.6469 - val_acc: 0.7097
Epoch 4/100
3/3 [==============================] - 9s 3s/step - loss: 0.7441 - acc:
0.6458 - val_loss: 0.6768 - val_acc: 0.7097
Epoch 5/100
3/3 [==============================] - 9s 3s/step - loss: 0.7307 - acc:
0.6169 - val_loss: 0.6315 - val_acc: 0.7097
Epoch 6/100
3/3 [==============================] - 9s 3s/step - loss: 0.6108 - acc:
0.7500 - val_loss: 0.6369 - val_acc: 0.7097
Epoch 7/100
3/3 [==============================] - 9s 3s/step - loss: 0.6635 - acc:
0.6530 - val_loss: 0.6354 - val_acc: 0.7097
Epoch 8/100
3/3 [==============================] - 9s 3s/step - loss: 0.6594 - acc:
0.6474 - val_loss: 0.6193 - val_acc: 0.7097
Epoch 9/100
3/3 [==============================] - 9s 3s/step - loss: 0.6551 - acc:
0.6458 - val_loss: 0.6085 - val_acc: 0.7097

If you collect all this data and make a graph, it looks like this:
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This is the result I obtained from training the network over 200 epochs, and with 100 toy
and 100 "not toy" images to work with. That is actually a bit sparse for a CNN; 200 images
would be better, so I'll be taking some more pictures. Regardless, the output results are
quite good – we have a toy/not toy accuracy in the 90% range, which is more than good
enough for our robot. We can also look at the training and validation loss curves – the
training loss continues to decrease after the accuracy has leveled off. This means that the
error values and weights can still be improved after the accuracy has maxed out. This gives
the network more confidence. We can realistically stop the training after about epoch 150. 

Our final step is to save the network weights and biases to a file so that we can reuse them
in our next section, which is a program to test that our neural network is working properly: 

 # save the CNN network weights to file
 print("Saving Network Weights to file...")
 cnNetwork.save(model_file)

Using the neural network
Now that we have created our file and saved the results of our trained neural network, we
can put this trained system to work by having it identify from images whether or not there
is a toy in the image. We start a new Python program file and call it
test_the_network.py.

We start with a header and import our libraries for Python. We use OpenCV (cv2) to
perform our image manipulation, and Keras for the neural networks:

# Test Network Program
 # part of the toy detector
 # uses LeNet to detect if toys are in the image
 #
 # Francis X. Govers 2018
 #
 # references:
 #
https://www.pyimagesearch.com/2017/12/18/keras-deep-learning-raspberry-pi/
 #
 # import the necessary packages
 from keras.preprocessing.image import img_to_array
 from keras.models import load_model
 import numpy as np
 import imutils
 import cv2

 load the image
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 image = cv2.imread("toy2.jpg")
 orig = image.copy()

We load our image into memory – in this case, a picture that has a toy in it. We use
OpenCV's image read function and keep a copy to display later.

Our next step is to pre-process our image to present to the neural network. We resize the
image to 128 by 128, the original image size the network is expecting. We normalize the
color values from 0 to 255 into a range from 0 to 1, as we did in the training. We convert the
image format into a normal NumPy numerical array and make it a 2D array with the
expand_dims function.

 pre-process the image for classification
 image = cv2.resize(image, (128, 128))
 image = image.astype("float") / 255.0
 image = img_to_array(image)
 image = np.expand_dims(image, axis=0)

Now, we can load our pre-trained network we saved in the last program. I called it
toy_not_toy.model. This creates a neural network with the weighs already set to the last
configuration set during training: 

 load the trained convolutional neural network
 print("loading network...")
 model = load_model("toy_not_toy.model")

The actual predict function does all of the work for us in this case. It runs the image
through the neural network and collects the results. We place these answers in two
variables – not toy and toy – which each get a number from 0 to 1 of the probability that the
neural network thinks that the image either does or does not contain a toy. The two
numbers should add up to one. Now that we have our prediction, we take the larger
number and declare the winner using the Python max function. We format the result so that
we can display it over the image: 

 classify the input image
 (nottoy, toy) = model.predict(image)[0]
 print("toy = ",toy, " Not Toy = ",nottoy)
 # build the label
 label = "toy" if toy > nottoy else "Not toy"
 probability = max(toy, nottoy)
 label = "{}: {:.2f}%".format(label, probability * 100)

 draw the label on the image
 output = imutils.resize(orig, width=400)
 cv2.putText(output, label, (200, 25), cv2.FONT_HERSHEY_SIMPLEX,
 0.7, (200, 255, 40), 2)
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Finally, we can show the output image on the screen, and write the answer out to disk so
we have a record of it and can paste it into the book, which is very important:

# show the output image
 cv2.imshow("Output", output)
 cv2.imwrite("toy_classify2.jpg", output)
 cv2.waitKey(0)

What we get out of the network are the following images:

So that gives us our toy detector program. In future chapters, we will be extending this toy
detector to determine the toy location and provide navigation guidance to the robot. 
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Summary
We dived head first into the world of ANN. ANN are computer approximations of human
nerve cell processes, and are composed of artificial neurons. Each neuron has several parts:
inputs, weights, bias, and activation. 

The ANN can be thought of as a stepwise non-linear approximation function that slowly
adjusts itself to fit a curve that matches the desired input to the desired output. This process
happens through the learning function. The learning process has several steps, including
preparing data, labeling data, creating the network, initializing the weights, the forward
pass that provides the output, and the calculation of loss (also called error). The weights of
the individual neurons are adjusted by backpropogation, which starts at the output and
works backward to apportion error to each neuron and each neuron input.

We created a CNN to examine images. The network was trained on two sets of images –
one containing toys and one without toys. We trained the network to get a better than 90%
accuracy in classifying images as either having toys, or not having toys. Finally, we tested
the network to verify its output. 

In the next chapter, we will look at training the robot arm with reinforcement learning and
genetic algorithms. 

Questions
We went through a lot in this chapter. You can use the framework provided to1.
investigate the properties of neural networks. Try several activation functions, or
different settings for convolutions to see what changes in the training process.
Draw a diagram of an artificial neuron and label the parts. Look up a natural,2.
human biological neuron, and compare. 
What features of a real neuron and an artificial neuron are the same?3.
What are different?4.
What relationship does the first layer of a neural network have to the input?5.
What relationship does the last layer of a neural network have to the output?6.
Look up three kinds of loss functions and describe how they work. Include mean7.
square loss and the two kinds of cross entropy loss.
What would you change if your network trained to 40% and got "stuck", or was8.
unable to learn anything further?
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5
Picking up the Toys

Our task in this chapter is one of the most daunting in the book. We are going to teach our
robot, TinMan, to pick up a variety of toys with its robot arm. As shown in the illustrations,
we are on steps 6 and 7 of our storyboard – positioning the arm and picking up the toy. We
want to teach the robot how to perform this task, or we might say give the robot the tools
and methods to do the task and then let it teach itself. How are we going to do this?

How would you teach a child to pick up toys from his or her room? You would use either
the offer of a reward, or the threat of punishment. This is another way of saying you would
use positive and negative reinforcement to get the behavior you want. This is the approach
we will use – reinforcement learning. We will reward good behaviors by giving the robot
points, and punish bad or useless behaviors by taking points away. We will write the
software to have the robot want to maximize positive results and avoid negative results.

If you think this is something like a game, with points being added or removed from a
score, with some concept of winning at the end, that is exactly what it is. We can treat this
process just like playing a game, and indeed, that is what the robot will be doing – trying to
win the game of picking up toys. That seems remarkably similar to the Mary Poppins
concept of getting the children she was in charge of to do their chores:

"For every job that must be done,
There is an element of fun,
You find the fun and snap!
The job’s a game"
- “A Spoonful of Sugar”, Mary Poppins, 1964, Robert and Richard Sherman.

So here we have Mary Poppins join the ranks of Ada Lovelace and Robin Murphy in
showing us how to create robots.
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In this chapter, we will cover the following topics:

Task analysis
Teaching the robot arm
Other robot arm machine-learning approaches

This chapter covers the use of two techniques for machine learning for robot arms. The first
one is reinforcement learning (RL), which seek to train behaviors in a robot by maximizing
rewards. RL is a balance between reward for individual actions and accumulation of value
for completing a task.

The second technique uses genetic algorithms to simulate natural selection and evolution to
craft a motion path out of smaller elements. The process creates a large number of
individual chromosomes that represent possible paths the robot can take. Each
chromosome is composed of small steps. Each chromosome is tested with a fitness function
to determine whether it is kept or discarded. New chromosomes are created by mating, or
crossing, two parent chromosomes together. Mutation is also simulated by randomly
switching individual genes, or steps.

Technical requirements
This unit does not require new software from the previous chapter. We will be using
Python with NumPy, the matplotlib library to make plots and graphs, and the pickle
library to store data.

A robot and a robot arm would be helpful, but all of the functions we will learn in this
chapter can also be performed via simulation and modeling, which are included in the
examples. 

Check out the following video to see the Code in Action:
http://bit.ly/2wupSdD

http://bit.ly/2wupSdD
http://bit.ly/2wupSdD
http://bit.ly/2wupSdD
http://bit.ly/2wupSdD
http://bit.ly/2wupSdD
http://bit.ly/2wupSdD
http://bit.ly/2wupSdD
http://bit.ly/2wupSdD
http://bit.ly/2wupSdD
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Task analysis
Let’s talk a bit first about what we have to work with. We have a mobile base with a six
degree-of-freedom arm attached to it. We are fortunate that TinMan's robot arm is
constructed out of servo motors. We can tell where all of the parts of the arm are if we
know where the servos are commanded to be, since we are commanding the angles of the
servos. We can use forward kinematics, which is to sum up all the angles and levers of the
arm in order to deduce where the hand is located at. We can use this hand location as our
desired state – our reward criteria. We will give the robot points, or rewards, based on how
close the hand is to the desired position and orientation we want. We want the robot to
figure out what it takes to get to that position. We need to give the robot a way to test out
different theories, or actions that will result in the arm moving. To start with, let’s freeze the
base of the arm at the shoulder so it can’t rotate, thus eliminating one degree of freedom.
We will just worry about in-plane motion down the center line of the robot. We will also do
the hand rotating, and the fingers opening and closing later as part of a different process
when we learn how to grasp objects.

That leaves us with an action space with just three actions – setting the position of the three
middle servomotors, which I will call shoulder pitch, elbow pitch, and wrist pitch. Our
possible actions are shoulder pitch from 0 to 180, elbow pitch from 0 to 180, and wrist pitch
from 0 to 180. This produces a large range of motion from just these three motors.
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Setting up the solution
We will call the act of setting the motors to a different position an action, and we will call
the resulting position of the robot hand the state. We are going to have the robot associate
states (a beginning position of the hand) and an action (the motor commands used when at
that state) with the probability of generating either a positive or negative outcome – we will
be training the robot to figure out which sets of actions result in maximizing the reward.
We will use some of the same tools we used before in our neural network to propagate a 
reward to each step in a chain of movements that result in the hand moving to some
location. In reinforcement learning circles, this is called discounting the reward –
distributing portions of rewards to the step in a multi-step process. Likewise, the
combination of a state and an action is called a policy – because we are telling the robot,
when you are in this position, and want to go to that position, do this action.
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Our process for learning with the robot arm will look like this – we will set a goal position
for the robot arm.  We can start by saying we have four arm positions we want – neutral
carry (where the arm is above the ground and out of the way of the camera when we are
driving around), pick up (in front of the robot where a toy would be),  high carry (when we
are carrying a toy), and drop off (similar to high carry but extended so we can put the toy in
the toy box). These are our starting four positions. We can add more later if it looks like we
need them:

We set our goal position of the robot hand, which is the position of the robot hand in x and
y coordinates in millimeters from the rotational center of the arm. The robot will try a series
of movements to try and get close to that goal.  We will not be giving the robot what motor
positions it needs to get to that goal – which the robot must learn. The movements at first
will be totally randomly generated. We will restrict the delta movement (analogous to the
learning rate from the previous chapter) to some small size so we don’t get wild flailing of
the arm. At each incremental movement, we will score the movement based on whether or
not the arm moved closer to the goal position.  The robot will remember these movements
by associating the beginning state and the action (movement) with the reward score.  Later,
we will train a neural network to generate probabilities of positive outcomes based on
inputs of starting state and movement action.  This will allow the arm to learn which
sequences of movement achieve positive results.  Then we will be able to predict which
movement will result in the arm moving correctly based on the starting position.
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You can also surmise that we must add a reward for accomplishing the task quickly – we
want the results to be efficient, and so we will add rewards for taking the shortest time to
complete the task – or you can say we subtract a reward for each step needed to get to the
goal so that the process with the fewest steps gets the most reward.

We calculate rewards using the Q-function.  Q represents the reward the robot will be
getting (or expecting to get) from a particular action.

Where Q(s,a) is the final reward for an action given the starting state, reward(s,a) is the
reward for that action, g is a discount function that rewards getting to the goal quicker, and
max(Q(s’,a’) selects the action that results in the largest reward out of the set of actions
available at that state.  In the equation, s and a represent the current state and action, and s’
and a’ represent the next state and next action.

How do we pick actions?
What actions can the robot arm perform?  We have three motors, and we have three options
for each motor. We can do nothing – that is, not move at all.  We can move
counterclockwise, which will make our motor angle smaller, and we can move clockwise,
which makes our motor angle larger. 

Note: most servo motors treat positive position changes as clockwise rotation. Thus, if we
command the rotation to change from 200 to 250 degrees, the motor will turn clockwise 50
degrees.

Our action space for each motion of the robot arm is to move each motor either left, right, or
not at all. This gives us 27 combinations with three motors (3 x 3 x 3 possible actions).  We
will note this with an action matrix.  Each action will have three values.  An action that
reduces the angle of motor 1, holds motor 2 in place, and increases motor 3, noted by [-1, 0,
1].  We will just use 1 in the action matrix because we will set the magnitude of the motion
in another way.  The x-y coordinates of the hand can be computed from the sums of the
joints.

These actions make up the state-space of our robot arm, which is the set of all possible
actions. What we will be doing in this chapter is investigating various ways of picking
which action to perform and when to accomplish our tasks, and using machine learning to
do it.
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Another way of looking at this process is that we are generating a decision tree. You are
probably familiar with the concept.  We have a bit of a unique application when applying
this to a robot arm, because our arm is a series of joints connected together, and moving one
moves all of the other joints farther out on the arm.  When we move motor 1, motors 2 and
3 move position in space, and their angles and distances to the ground and to our goal
change.  Each possible motor move adds 27 new branches to our decision tree, and can
generate 27 new arm positions.  All we have to do is pick which one to keep.

The rest of this chapter will deal with just how we go about selecting our motions.

Summary of robot arm learning process
The result for our arm training is a combination of several AI techniques in one mashup
process.  We have reinforcement learning in the process of maximizing rewards.  We are
using Q-learning to compute rewards for successful completion or partial completion of a
goal.  We use a straight artificial neural network (ANN) to predict the outcomes of actions
given a beginning state. And we introduced genetic algorithms to innovate and make
movement patterns that we can teach to the robot arm:
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Our general process for teaching the arm how to move is based on a type of reinforcement
learning called Q-Learning.  Our concepts are summarized in the following equation:

Q(s,a) = R(s,a) + G max[Qst+1,a]

Here, Q(s,a) is the value of an action done in a particular state.  R is the reward given for
that action. G is a discount factor that reduces rewards for longer sets of actions.  G is
normally set to a number less than 1, like .9.  For example, a set of actions that reaches the
goal in 10 steps (actions) gets a higher Q than a set of actions that takes 20 steps.  This is
very similar to how we distributed the changes in weights for neural networks in the last
chapter.  The function max[Qst+1,a] says to look at the next state of the robot, and select the
action that results in the highest Q value for the next state.    

Teaching the robot arm
Now we jump off the deep end and start writing some code.

We can begin by talking about how we send commands to the arm.  The motors I have
selected for TinMan are stronger versions of standard hobby servo motors, with metal
gears. Servo motors are commanded by setting an angle for the motor’s output shaft to
assume.  The angles run from 0 to 180 degrees. However, the commands for the motor
positions run from 1 to 255, so they fit into a single 8-bit value. We’ll be converting these
byte-based motor commands to and from angles in the program.

Version one – action state reinforcement learning
Our first version of the arm training program will introduce the basic framework, and use
the most primitive form of machine learning, which is to just try random movements until
the program finds something that works. 

You must keep in mind that a particular arm position may have several
valid solutions in our combination of three motors.  For example, motor 1
may have slightly more angle, and motor 3 slightly less, to get to the same
Cartesian coordinates.

import numpy as np
from math import *
import matplotlib.pyplot as mp
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We start with setting up some global variables and objects we will be using.  The action
matrix is the set of all actions available in any state, and is a combination of three motors
with three actions – rotation to the left, no motion, or rotation to the right. Three motors
with three actions each gives us 27 combinations. Why do we include the combination
[0,0,0], which represents no motion at all?  We calculate the reward for each action and if
every other action except [0,0,0] results in a lower reward score, then we have
maximized our attainment of our goal:

# action matrix - all possible combinations of actions of the three motors
ACTIONMAT = np.array([[0,0,-1],[0,0,0],[0,0,1],
       [0,-1,-1],[0,-1,0],[0,-1,1],
       [0,1,-1],[0,1,0],[0,1,1],
       [-1,0,-1],[-1,0,0],[-1,0,1],
       [-1,-1,-1],[-1,-1,0],[-1,-1,1],
       [-1,1,-1],[-1,1,0],[-1,1,1],
       [1,0,-1],[1,0,0],[1,0,1],
       [1,-1,-1],[1,-1,0],[1,-1,1],
       [1,1,-1],[1,1,0],[1,1,1]])

Now we build a robot arm object so that we can provide a standard interface to arm
functions and create a data structure to hang our information about the robot arm on. The
arm has a state, which is the current set of the three motor positions.  Motor positions are
given in radians. The arm has a goal, which is a two-dimensional (x and y) coordinate of the
goal to move the gripper position of the arm:

class RobotArm():
    def __init__(self):
        self.state = [0,0,0]

The setState method of RobotArm updates the current state of the arm motors. It also
recalculates the x-y coordinates of the robot hand (which is measured from the tip of the
gripper jaws):   

    def setState(self,st):
        self.state = st
        self.position = calHandPosition(st)

The setGoal method sets a new goal for the robot hand:

    def setGoal(self,newGoal):
        self.goal = newGoal



Picking up the Toys Chapter 5

[ 145 ]

The Calculate Reward method calculates the reward based on the current relationship
between the robot hand, given by self.position, and the goal point, stored in
self.goal. We want the reward to be proportional to the distance between the goal and
the position. We award 100 points for being at the goal, and 0 points for being as far away
as the hand can get, which happens to be 340 mm away. We calculate this by computing a
percentage of the completed goal.  We use Cartesian distance. Just remember –the closer to
the goal, then more the reward:

I am deliberately using a more straightforward use of Python that avoids
some readability issues in order to convey clarity of purpose to the reader.
I am aware that Python has some pretty cool tricks for efficiently
combining vectors, tables, lists, and arrays, and you are welcome to post
your suggestions for improvement on the GitHub site.

    def calcReward(self):
        dx = self.goal[0] - self.position[0]
        dy = self.goal[1] - self.position[1]
        dist2goal = sqrt(dx*dx + dy*dy)
        self.dist2goal = dist2goal
        # we want the reward to be 100 if the goal is met
        # and proportional to the distance from goal otherwise
        # the arm is 340mm long, so that is as far away as we can get
        #
        self.reward = (340.0-dist2goal)/340.0 * 100.0
        return self.reward

The step method is really the heart of the learning process for this example program. We
are going to input the new action to consider, and the learning rate, which is how far to
move the motor at each increment. For this first program, we will set the learning rate to be
1.0. We apply the action to the current state of the robot arm to get a new state.

Our next step is to do a range check of the application of the new action to see that we don't
drive the motor out of bounds. Our angle values run from 0 to 255 integer units. We use
the max and min functions to restrict our motors to these values:

    def step(self,act,learningRate):
        newState = self.state + (act * learningRate)
        # range check
        for ii in range(3):
            newState[ii]=max(newState[ii],0)
            newState[ii]=min(newState[ii],255.0)
        self.setState(newState)
        reward = self.calcReward()
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        return self.state,reward
# for a given action, return the new state
# just a utility to display the joint angle in degrees
def joint2deg(jointPos):
    return jointPos * (180.0 / 255.0)
def calHandPosition(stat):
    m1,m2,m3=stat
    # calculate hand position based on the position of the servo motors
    # m1, m2, m3 = motor command from 0 to 255
    # forward kinematics
    # we first convert each to an angle
    d1 = 102.5  # length of first joint (sholder to elbow) in mm
    d2 = 97.26  # length of second joint arm (elbow to wrist) in mm
    d3 = 141    # length of thrird joint arm (wrist to hand)
    right = pi/2.0 # right angle, 90 degrees or pi/2 radians
    m1Theta = pi - m1*(pi/255.0)
    m2Theta = pi - m2*(pi/255.0)
    m3Theta = pi - m3*(pi/255.0)
    m2Theta = m1Theta-right+m2Theta
    m3Theta = m2Theta-right+m3Theta
# begin main program
# starting state
 # our arm has states from 0 to 255 which map to degrees from 0 to 180
 # here is our beginning state
 state = [127,127,127]
 oldState = state
 learningRate = 2.0
 robotArm = RobotArm()
 robotArm.setState(state)
 goal=[14,251]
 robotArm.setGoal(goal)
 knt = 0 # counter
 reward=0.0 # no reward yet...
 d2g=0.0
 oldd2g = d2g
 curve = []
 # let's set the reward value for reaching the goal at 100 points
# 98% is good enough
 while reward < 98:
    index = np.random.randint(0,ACTIONMAT.shape[0])
     action = ACTIONMAT[index]
     state,reward = robotArm.step(action,learningRate)
     d2g = robotArm.dist2goal
     if d2g > oldd2g:
         # if the new reward is worse than the old reward, throw this state
away
         #print("old state",oldState,state,d2g,oldd2g)
         state=oldState
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 robotArm.setState(state)
 knt +=1
 oldd2g=d2g
 oldState=state
 curve.append(reward)
 if knt > 10000: reward = 101
 #print ("NewState ",state, "reward ",reward)
# see how long doing this randomly takes
print ("Count",knt,"NewState ",state, "reward ",max(curve))
mp.plot(curve)
mp.show()

The results of our first program are summarized in the following output diagram, showing
that the machine learning process can occur even in a very primitive program such as this
one, that just tries random stuff until it finds something that works:

Number of iterations:  399, final state:  [211.  57.  55.], and final reward:  98.32.
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Adaptive learning rate
In our first example, we used a constant learning rate of three units to move our robot arm.
This equates to about 2.1 degrees of movement from the motor. This step is the smallest and
largest single step motion we took at each part of the learning process. What if we changed
the learning rate adaptively? As we get closer to the goal, we can make the steps smaller,
and if we get farther away, we can take bigger steps. We insert a line at each update just
after where we calculate the reward, as shown here:

state,reward = robotArm.step(action,learningRate)
# insert this new line to try an adaptive learning rate
learningRate = (100-reward)/2.5

The maximum reward for reaching the goal is 100 points. We want the learning rate to be
an inverse ratio to the reward. As the reward gets bigger, the learningRate gets smaller. I
also added the learning rate to the data recording, and created the following diagram from
the results. You can see that the training action converged much faster. After a number of
trials, it averages about four times as fast as the random approach we used in the first
example. You can see the learning rate approaching zero as the reward nears 100: 



Picking up the Toys Chapter 5

[ 149 ]

Number of Iterations: 98; final state [ 51 199 198]
Reward: 99.15
Distance to Goal: 2.88 mm
Learning Rate: Maximum: 14.17 Minimum: 0.34

Q-learning implementation
Now in this next part of the computer code, we will be evolving our arm learning code to
include something that you may have noted was missing from the first program in the 
preceding section. It did not do any path planning; it just provided the combination of three
motor positions that resulted in the the hand being in the proper position. It did not try to
find a good path from the starting point to the ending point. Our next program will do just
that, and will utilize the Q-learning technique we discussed. 

I'm going to leave out the utility functions that we developed in the first program that are
reused in the second program. The complete code will be available for download from the
GitHub website. This lets us confine ourselves to the new sections in this block of code.
Some quick notes: in a lot of Q-learning programs, the entire set of possible states are
available from the beginning. The robot arm has a large volume it can explore, but we will
only be using a small subset of its range to perform our tasks. I will let the program iterate
on the possible states of the motors, and will add new states as they are reached to our Q-
list.

As a quick review, in Q learning, we develop a overall value of a set of actions that together
result in the robot reaching its goal. This total value of a valid path to the goal is called Q. 

We add a discount factor that penalizes longer paths; a shorter path is better. This discount
factor is usually called by the Greek letter Gamma. The discount is a number less than 1
(usually 0.9 or so), and it is one of our tunable parameters. Imagine that we are at the goal:
we get the full reward, 100 points, and the discount is 0. Then we move back to the state
before we get to the goal, that is one step away.  We multiply it by 0.9, so it gets 9/10 of the
reward (90 points).  The next space, two steps back, gets the reward from the 1-step space
(90 points) times the discount factor (Gamma), which is 0.9 x 90 or 81.  So each step back
from the goal gets a bit less of the reward. A path with 10 steps gets more points than a
path with 20 steps. 
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Another important point in the Q-learning process is that the Q value is set for this state
(the current position of the robot hand) by picking the next action that results in the highest
reward. This is how a path is found. We are looking for the action that gets us closer to the
goal, and we value this action at this state by how much the next action will improve our
reward.  Another way of explaining this concept is this: at each state, or position, we figure
out our next move that will get us to a new position by picking the next move with the
largest reward.  For our program, we compute a reward as being inversely proportional to
the distance to our goal: the closer to the goal, the bigger the reward.

Here is the main program for Q-learning.

We can begin by setting up our starting or beginning state. Our arm has states from 0 to
255, which map to degrees from 0 to 180. Here is our beginning state:

 BEGIN MAIN PROGRAM
 state = [127,127,127]

 We initialize our "Q" matrix. Q is a matrix of the number of states by the
number of actions. We will add states as we go in this version of this
program, so Q starts out as an empty list:
  Q=[]

We use an initial learning rate for the arm. We start with three units per move, which is
roughly 2 degrees of motion per motor:

learningRate = 3.0

We instantiate our RobotArm object and initialize it:

 robotArm = RobotArm()

We set the robot arm’s state to match our local variable that we set to the middle value of
127,127,127. You can also set the robot arm’s initial state to some random point, but you
need to do some checking to make sure you don’t have an invalid position that hits the
body of the robot. I checked that this middle position is acceptable:

robotArm.setState(state)

Next, we set the goal for this training session. This is the grab position of the arm, where the
arm is poised to pick up an object:

goal=[14,251]
 robotArm.setGoal(goal)
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We initialize some local variables. We need a counter to keep track of our iterations, and
create our reward variable and set it to zero:

knt = 0 # counter
reward=0.0

Gamma is our discount rate that we use to penalize longer paths. Since it will take quite a
few steps at our small step size, we need this number to be just less than 1. This will reduce
the reward by five percent for each step taken:

gamma = 0.95 # discount for rewards that take more time

We use the stateReset value to reset the robot’s state between runs so that we are starting
in the same place each time:

 stateReset = [127,127,127]
 state = stateReset
 robotArm.setState(state)

G is our total value of a path from start to finish. It is the sum of rewards for that path. Each
step in the path gets an individual reward, and G is the sum of the reward for all those
steps:

G=0

This section begins to perform training using Q learning. We set a number of training
epochs, or episodes. We need the computer to fill in as many state-action pairs as we can to
provide a complete matrix for training. Each entry has a state, the action selected, and the
reward value for that action:

for epoch in range(1,100):

We set the done variable to False when the training reward passes some threshold:

done=False

Now reset the path value, reward, and counter for each run:

G,reward,knt = 0,0,0
 state = stateReset
 robotArm.setState(state)
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This is the actual training loop. We run until we either find a valid path, or exceed our
maximum number of tries. A path with 1,000 steps is not very valuable, so we set the
maximum path length to 1,000.

The action sample function has two modes in this program. In Q mode, it looks up the next
action with the highest possible value as determined by the Q function. If no Q value has
been determined for this state/action pair, then we add a random move from our state table
and evaluate this action. We store the actions in the Q matrix as an enumeration that we can
look up using the ACTIONMAT matrix we created in the previous program. It has the 27
possible actions we can take from each state. This type of enumeration is common in
machine learning programs:

while not done:
 action = action_sample("Q",state,Q)
 motorAction = ACTIONMAT[action]

The step function works just as before. It computes the reward and new state of the robot
arm given the action selected by the action_sample function:

state2,reward = robotArm.step(motorAction,learningRate)

This is the Q learning function that determines the value of the previous action based on the
reward of the next state:

newQ=reward + gamma * maxQ(Q, state2)

I had to create a function to insert this new Q value into the Q matrix at the appropriate
location. The Q matrix is indexed by state and action. By the end of training, each
possible state will have 27 values, one for each possible action, including taking no action at
all:

setQ(Q,state,action,newQ)

G is the accumulated value of this path, so it is just the sum of all of the rewards:

G += reward

We increment our counter and check to see if our path is too long. If it has not reached a
solution by 1,000 steps, we start over. Remember, our goal is to fill out the Q matrix, not to
just compute a path:

knt +=1
 if knt > 1000 or reward > 90:
 done=True
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These two lines of code update the state of the robot arm in the arm object now that we
have completed our computations and selected the action and state to perform next in our
path:

state = state2
 robotArm.setState(state)

We print a little report to let the operator know how things are going:

if epoch % 2 == 0:
 print("Epoch ",epoch,"TotalReward:",G," counter:",knt,"Q Len ",len(Q))

The output of our program looks like this:

Epoch 2 TotalReward: 1408.5684481305104 counter: 101 Q Len 658
 Epoch 4 TotalReward: 1967.41782263554 counter: 30 Q Len 1623
 Epoch 6 TotalReward: 7268.7078233576185 counter: 154 Q Len 1841
 Epoch 8 TotalReward: 2930.969165320549 counter: 39 Q Len 2023
 Epoch 10 TotalReward: 3159.6160871381835 counter: 100 Q Len 2918
 Epoch 12 TotalReward: 9189.000528212566 counter: 316 Q Len 3368
 Epoch 14 TotalReward: 4293.976761223593 counter: 115 Q Len 3566
 Epoch 16 TotalReward: 31415.15446438481 counter: 1001 Q Len 4686
 Epoch 18 TotalReward: 2951.8615312851393 counter: 46 Q Len 4998
 Epoch 20 TotalReward: 4863.635334567336 counter: 78 Q Len 5611
 Epoch 22 TotalReward: 11702.393914624867 counter: 737 Q Len 6571
 Epoch 24 TotalReward: 29049.025812767548 counter: 752 Q Len 7408
 Epoch 26 TotalReward: 4359.228666547103 counter: 1001 Q Len 8945
 Epoch 28 TotalReward: 8860.919025609743 counter: 191 Q Len 9625
 Epoch 30 TotalReward: 17966.243729318052 counter: 312 Q Len 10157
 Epoch 32 TotalReward: 4551.9521073138185 counter: 235 Q Len 11264
 Epoch 34 TotalReward: 5491.852803948144 counter: 280 Q Len 11892
 Epoch 36 TotalReward: 7456.222978066394 counter: 136 Q Len 12743
 Epoch 38 TotalReward: 2796.5324272086796 counter: 62 Q Len 13387
 Epoch 40 TotalReward: 21549.573621139356 counter: 516 Q Len 14871
 Epoch 42 TotalReward: 3751.1177055281605 counter: 66 Q Len 15105

You can watch the counter to see that the paths generated are generally getting shorter, but
keep in mind that this process is primarily exploring the space that the robot arm can reach
and setting values to motor actions to move the arm. 
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Version 2 – indexed states and actions
I was not really happy with the performance of the first version of this program, so I looked
around to make some improvements. The program took quite a while to run – over an hour
for the first iteration. I was particularly annoyed by how I was storing the states. It would
be quite a bit simpler to put the states into some list, and then refer to them by index or
subscript.  Remember that each state is represented by three numbers, showing the
positions of each of our three arm motors – M1, M2, and M3.  Let’s create an index to those
states and replace that with a single number which we will refer to as stat (state minus the
"e").  Then any variable that has stat rather than state uses the index and not the full three
values for the state.  This both simplifies the code greatly, and lets us use the much faster
numpy functions to manipulate the lists.  I also created a getStateIndex function that
does double duty . If the state is already in the table, we return the index number (pointer
for you C fans).  If it is not in the table, we add it.  That keeps the logic simple.  We use a
global variable MAXSTATE to keep track of how many states we have in the table. These
modest changes resulted in a 40x speed increase in the training program.  I also added a
pickle function at the end to save the Q table so we can use it again for deployment. The
pickle function lets you store the contents of a variable, in this case our numpy array of Q
values, to the hard drive so you can retrieve it later:

STATEINDEX = []
def getStateIndex(state):
    global MAXSTATE
    thisState = state.tolist()
    if thisState in STATEINDEX:
        return STATEINDEX.index(thisState)
    else:
        # not found in state index, we add it
        STATEINDEX.append(thisState)
        MAXSTATE +=1

I added a mode to the action_sample function that I call maxreturn.  You will remember
that we started by just randomly selecting an action and computing the reward, then
keeping the action if the action resulted in the arm moving closer to the goal.  If we already
have a Q score computed for this action, we take that.  If we do not have a Q value, we
compute the reward for all 27 possible actions and take the one with the highest reward –
rather than value (Q).  This feature performs a maximum reward for (state,action) pair
(usually annotated as max R(s,a)). This definitely speeds up the process of converging to a
solution:

def action_sample(mode,stat,Qmatrix, learningRate, goal):
    state = STATEINDEX[stat]
    if mode=="random":
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        index = np.random.randint(0,ACTIONMAT.shape[0])
        print("RAND ACTION",index)
        #action = ACTIONMAT[index]
        return index
    if mode=="maxreturn":
        state=STATEINDEX[stat]
        maxRew=-9990
        doAction=1
        for adex in range(len(ACTIONMAT)):
            act = ACTIONMAT[adex]
            thisReward = predictReward(state,goal,act,learningRate)
            if thisReward > maxRew:
                maxRew=thisReward
                doAction = adex
            if maxRew == -9990:
                doAction=
action_sample("random",stat,Qmatrix,learningRate,goal)
        return doAction
    if mode=="Q":
        try:
            # note this returns the number of the action with the highest Q
score!
            action = np.argmax(Q[statQ])
            return(action)
       except:
            # no action found
            action=
action_sample("maxreturn",stat,Qmatrix,learningRate,goal)
            return action

Begin the main program loop and create a starting state.  Our arm has states from 0 to 255,
which map to degrees from 0 to 180. Here is our beginning state of (127,127,127) , the
position of the three motors in the middle of their range. We initialize our Q matrix by
creating a zero-filled array.  Q is a matrix of the number of states multiplied by the number
of actions. We will add states as we go in this version of this program, but we don't want a
lot of thrashing of memory, so we create a large table to start with. We preallocate 15,000
spaces to put states and actions in the Q matrix and if we need to make it bigger, we use
np.resize to expand it:

Q=np.zeros((150000,27))
state = np.array([127,127,127])
# initial learning rate for the arm - we start with 3 units
learningRate = 10
robotArm = RobotArm()
robotArm.setState(state)
goal=[14,251]
robotArm.setGoal(goal)
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# Q learning phase
stateReset = np.array([127,127,127])
state = stateReset
robotArm.setState(state)
# discount function
gamma = 0.6
rewardData = []
# perform training on Q Learning
for epoch in range(1,1000):
    done=False
    G,reward,knt = 0,0,0
    state = randomState()
    #state = np.array([127,127,127])
    robotArm.setState(state)
    stat = getStateIndex(state)
    while not done:
        action = action_sample("Q",stat,Q, learningRate,robotArm.goal)
        motorAction = ACTIONMAT[action]
        state2,reward = robotArm.step(motorAction,learningRate)
        stat2 = getStateIndex(state2)
        Q[stat,action]=reward + gamma * np.max(Q[stat2])
        G += reward
        knt +=1
        if knt > 1000 or reward > 90:
            done=True
        stat = stat2
        robotArm.setState(STATEINDEX[stat])
        # see if we need more states...
        if len(STATEINDEX)> len(Q)-10:
            wid,hit = Q.shape
            wid += 1000
            print( "Adding 1,000 more Q values", wid)

            Q.append(np.zeros((1000,hit)))    if epoch % 2 == 0:
print("Epoch ",epoch,"TotalReward:",int(G)," counter:",knt,"Q Len
",MAXSTATE)
 # now that we are done, we save the Q array so we can reuse it
 output = open('q-arm-matrix.pkl', 'wb')
 # Pickle dictionary using protocol 0.
 pickle.dump(Q, output)
 output.close()
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We finish our program by printing a report for you so you can see how things are going. 
We also save away the Q array so it can be used in deployment.  We would use the Q
learning by referencing the matrix in another program and selecting the state-action pair
with the highest Q value from the matrix.  If our state was 234,14, we would look in the
matrix and see that action 13 had the highest reward. Then we would check our action table
and see that action 13 is [-1, -1, -1], moving each motor one step counter-clockwise.
We would then send that command to the robot.

Here is the output of our Q-learning program. In this particular case, Q learning is not very
effective. The total reward should be going up and it is not. This is due to the fact that we
have a huge number of states and we are only scoring a small number of state-action pairs
in each epoch. We will need to run lots of epochs (over 1,000) to see Q learning start to
work in this case:

 Epoch 134 TotalReward: 894 counter: 12 Q Len 1003
 Epoch 136 TotalReward: 568 counter: 7 Q Len 1008
 Epoch 138 TotalReward: 572 counter: 9 Q Len 1010
 Epoch 140 TotalReward: 479 counter: 9 Q Len 1023
 Epoch 142 TotalReward: 443 counter: 8 Q Len 1029
 Epoch 144 TotalReward: 406 counter: 9 Q Len 1047
 Epoch 146 TotalReward: 444 counter: 11 Q Len 1049
 Epoch 148 TotalReward: 460 counter: 9 Q Len 1067
 Epoch 150 TotalReward: 270 counter: 18 Q Len 1076
 Epoch 152 TotalReward: 681 counter: 9 Q Len 1082
 Epoch 154 TotalReward: 689 counter: 11 Q Len 1092
 Epoch 156 TotalReward: 553 counter: 10 Q Len 1102
 Epoch 158 TotalReward: 467 counter: 7 Q Len 1107
 Epoch 160 TotalReward: 552 counter: 8 Q Len 1116
 Epoch 162 TotalReward: 588 counter: 8 Q Len 1124
 Epoch 164 TotalReward: 907 counter: 15 Q Len 1139
 Epoch 166 TotalReward: 314 counter: 14 Q Len 1141
 Epoch 168 TotalReward: 263 counter: 7 Q Len 1153
 Epoch 170 TotalReward: 527 counter: 7 Q Len 1153
 Epoch 172 TotalReward: 654 counter: 10 Q Len 1161
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Genetic algorithms
We have tried out Q-learning in a couple of different configurations, with a limited amount
of success in training our robot.  The main problem with Q-learning is that we have a very
large number of possible states, or positions, that the robot arm can be in.  This means that
gaining a lot of knowledge about any one position by repeated trials is very difficult.  We
are going to introduce a different approach using genetic algorithms to generate our
movement actions. 

Moving the robot arm requires coordination of three motors simultaneously to create a
smooth movement.  We need a mechanism to create different combinations of motor
movement for the robot to test.  We could just use random numbers, but that is inefficient,
and could take thousands and thousands of trials to get the level of training we want. 
What if we had a way of trying different combinations of motor movement, and then
competing them against one another to pick the best one.  It would be some sort of
Darwinian survival of the fittest for arm movement scripts. 

Here is our process.  We do a trial run to go from position 1 (neutral carry) to position 2
(pickup).  The robot moves the arm 100 times before getting the hand into the right
position.  We score each movement based on the percentage of goal accomplishment,
indicating how much did this movement contribute to the goal. We take the 10 best moves
and put them in a database.  We run the test again and do the same thing – now we have 10
more best moves and 20 moves in the database.  We take the five best from the first set and
cross them with the five best from the second set – plus five moves chosen at random and
five more made up of totally random moves. We run that sequence of moves, and then take
the 10 best individual moves and continue on.  We should quickly, through selection, get
down to a sequence that performs the task.  It may not be optimum, but it will work. We
are managing our gene pool to create a solution to a problem by successive approximation.
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We want to keep a good mix of possibilities that can be combined in different ways to solve
moving our arm to its goal:

We can actually use several methods of cross breeding our movement sequences.  What I
described is a simple cross – half the male genetic material and half the female material (if
you will pardon the biological metaphor).  We could take this by quarters – ¼ male, ¼
female, ¼ male, ¼ female to have two crosses.  We could also randomly grab bits from one
or the other.  We will stick with the half/half strategy for now, but you are free to
experiment to your hearts content.

You are about to issue an objection: what if the movement takes less than 10 steps?  Easy
–when we get to the goal, we stop, and discard the remaining steps.
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We are not looking for a perfect or optimum task execution, but
something just good enough to get the job done.   For a lot of real-time
robotics, we don't have the luxury of the time to create a perfect solution,
so any solution that gets the job done is adequate.

Why did we add the five additional random sample moves, and five totally random
moves?  This mimics natural selection also – the power of mutation.  Our genetic codes are
not perfect, and sometimes inferior material gets passed along.  We also experience random
mutations from bad copies of genes, cosmic rays, or virus diseases. We are introducing
some random factors to “bump” the tuning of or algorithm – the natural selection – in case
we converge on a local minimum or miss some simple path because it has not occurred yet
to our previous movements.

Why on Earth are we going to all this trouble?  The generic algorithm process can do
something very difficult for a piece of software– it can innovate, or evolve a new process
out of primitive actions by basically trying stuff until it finds what works and what does
not.  We have provided another machine learning process to add to our toolbox, but one
that can create solutions we, the programmers, have not pre-conceived.

Let's dive into the genetic algorithm process. 

We'll be building our own tools in this version, but there are some pre-
built tool sets that will help you to create genetic algorithms, such as
DEAP (Distributed Evolutionary Algorithms in Python), which can be
found at https:/ /github. com/ DEAP and installed by typing in pip
install deap.

In the interest of transparency, we are going to build our own genetic algorithm process
from scratch.   You have heard of survival of the fittest?  This is how we decide which plans
are the fittest and get to survive and propagate.  I'm giving you a sandbox to play genetic
engineer in where you have access to all of the parts and nothing is hidden behind the
curtain.  You will find that for our problem the code is not all that complex. 

https://github.com/DEAP
https://github.com/DEAP
https://github.com/DEAP
https://github.com/DEAP
https://github.com/DEAP
https://github.com/DEAP
https://github.com/DEAP
https://github.com/DEAP
https://github.com/DEAP
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We'll start by creating the computefitness function,  the one that scores our genetic
material.  Fitness is our criteria for grading our algorithm.  We can change fitness to our
heart's content to tailor our output to our needs.  In this case, we are making a path in space
for the robot arm from the starting location to the ending goal location.  We judge our path
by how close any point of the path comes to our goal.  Just like in our previous programs,
we make up the movement of the robot as 27 combinations of the three motors going
clockwise, counterclockwise, or not moving.  We divide the movement into small steps,
each three motor units (1.8 degrees) of so of motion.  We string together a whole group of
these steps to make a path.  The fitness function steps along the path and computes the
hand position at each step. 

The predictReward function makes  a trial computation of where the robot hand has
moved as a result of that step.  Let's say we move motor 1 clockwise three steps, leave
motor 2 alone, and move motor 3 counterclockwise three steps.  This causes the hand to
move slightly up and out. We score each step individually by how close it comes to the
goal.  Our score is computed out of 100; 100 is exactly at the goal, and we take away one
point for each 1/100 distance away from the goal, up to a maximum of 340 mm.  Why 340?
That is the total length of the arm.  We score the total movement a bit differently than you
might think.  Totaling up the rewards make no difference, as we want the point of closest
approach to the goal.  So we pick the single step with the highest reward and save that
value.  We throw away any steps after that, since they will only take us away.  Thus we are
automatically pruning our paths to end at the goal.

I used the term allele to indicate a single step out of the total path, which I called a
chrom, short for chromosome:

def computeFitness(population, goal, learningRate, initialPos):
 fitness = []
 gamma = 0.6
 state=initialPos
 index = 0
 for chrom in population:
 value=0
 for allele in chrom:
 action = ACTIONMAT[allele]
 indivFit, state = predictReward(state,goal,action,learningRate)
 value += indivFit
 if indivFit > 95:
 # we are at the goal - snip the DNA here
 break
 fitness.append([value,index])
 index += 1
 return fitness
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How do we make our paths to start with? The make_new_individual function builds our
initial population of chromosomes, or paths, out of random numbers. Each contains a path
made up of a number from 0 to 26 that represent all the valid combinations of motor
commands. We set the path length to be a random number from 10 to 60:

def make_new_individual():
 # individual length of steps
 lenInd = random.randint(10,60)
 chrom = [] # chromosome description
 for ii in range(lenInd):
 chrom.append(randint(26))
 return chrom

We use the roulette function to pick a portion of our population to continue. Each
generation, we select from the top 50% of scoring individuals to donate their DNA to create
the next generation. We want the reward value of the path, or chromosome, to weigh the
selection process; the higher the reward score, the better chance of having children. This is
part of our selection process:

# select an individual in purportion to its value
 # i.e. the higher the value, the better the odds of getting picked
 def roulette(items):
 total_weight = sum(item[0] for item in items)
 weight_to_target = random.uniform(0, total_weight)
 for item in items:
 weight_to_target -= item[0]
 if weight_to_target <= 0:
 return item
# main Program
INITIAL_POS = [127,127,127]
GOAL=[-107.39209423, -35.18324771]
robotArm=RobotArm()
robotArm.setGoal(GOAL)
population = 300
learningRate = 3
crossover_chance = .50
mutate_chance = .001
pop = []
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We start by building our initial population out of random parts. Their original fitness will
be very low: about 13% or less. We will maintain a pool of 300 individual paths, which we
call chromosomes:

for i in range(population):
 pop.append(make_new_individual())
trainingData=[]
epochs = 100

Here we set up the loop to go through 100 generations of our natural selection process. We
begin by computing the fitness of each individual and adding that score to a fitness list with
an index pointing back to the chromosome:

for jj in range(epochs):
# evaluate the population
fitnessList = computeFitness(pop,GOAL,learningRate, INITIAL_POS)

We sort the fitness to get the best individuals. We sort in inverse order.  The largest number
should be first:

fitnessList.sort(reverse=True)

We keep the top 50 % of the population and discard the bottom 50%.  The bottom half is out
of the gene pool as being unfit: 

fitLen = 150
fitnessList = fitnessList[0:fitLen]
# survival of the fittest...

We pull out the top performer from the whole list and put it into the hall of fame (or HOF).
This will eventually be the output of our process. In the meantime, we use the HOF (or
HOFF) value as a measure of the fitness of this generation:

hoff = pop[fitnessList[0][1]]
print("HOF = ",fitnessList[0])

We store the HOFF value to a trainingData list so we can graph the results at the end of
the program:

trainingData.append(fitnessList[0][0])
newPop = []
for ddex in fitnessList:
newPop.append(pop[ddex[1]])
print ("Survivors: ",len(newPop))
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At this phase, we have deleted the bottom 50% of our population, removing the worst
performers. Now we need to replace them with the children of the best performers of this
generation. We are going to use crossover as our mating technique. There are several types
of genetic mating that can produce successful offspring. Crossover is popular and a good
place to start, as well as being easy to code. All we are doing is picking a spot in the
genome, and taking the first half from one parent, and the second half from the other. We
pick our parents to "mate" randomly from the remaining population, weighted
proportionally to their fitness. This is referred to as "roulette wheel selection". The better
individuals are weighted more heavily and are more likely to be selected for breeding. We
create 140 new individuals as children of this generation:

# crossover
# pick to individuals at random
# on the basis of fitness
numCross = population-len(newPop)-10
print ("New Pop Crossovers",numCross)
# #
# add 5 new random individuals
for kk in range(10):
newPop.append(make_new_individual())
for kk in range(int(numCross)):
p1 = roulette(fitnessList)[1]
p2 = roulette(fitnessList)[1]
chrom1 = pop[p1]
chrom2 = pop[p2]
lenChrom = min(len(chrom1),len(chrom2))
xover = randint(lenChrom)
# xover is the point where the chromosomes cross over
newChrom = chrom1[0:xover]+chrom2[xover:]

Our next step is mutation. In real natural selection, there is a small chance that DNA will
get corrupted, changed by cosmic rays, mis-copying of the sequence, or other factors. Some
mutations are beneficial, and some are not. We create our version of this process by having
a small chance (1/100 or so) that one gene in our new child path is randomly changed into
some other value:

# now we do mutation
bitDex = 0
for kk in range(len(newChrom)-1):
mutDraw = random.random()
if mutDraw < mutate_chance:
# a mutation has occured!
bit = randint(26)
newChrom[kk]=bit
#print ("mutation")
newPop.append(newChrom)
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Now that we have done all our processing, we add this new child path to our population,
and get ready for the next generation to be evaluated. We record some data and loop back
to the start:

# welcome the new baby from parent 1 (p1) and parent 2 (p2)
print("Generation: ",jj,"New population = ",len(newPop))
pop=newPop
mp.plot(trainingData)
mp.show()

So, how did we do with our mad genetic experiment? The following output chart speaks
for itself:

The genetic algorithm, for all it seems like a bit of voodoo programming, works quite well
as a machine learning tool for this specific case of training our robot arm.  Our solution
peaked at 99.76% of the goal (about 2 mm) after just 90 generations or so, which is quite fast
for an AI learning process.  You can see the smooth nature of the learning that shows that
this approach can be used to solve problems in path planning for our robot arm.  I have to
admit that I was quite skeptical about this process, but it seems to work quite well for this
particular problem domain. 
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The programming really was not too hard, and you can spend some time improving the
process by tweaking the parameters of the genetic algorithm.  What if we had a smaller
population?  What if we changed the fitness criteria? Get in there and muck about and see
what you can learn. 

Other robot arm machine-learning
approaches
The realm of robot arm control via machine learning is really just getting started.  There are
a couple of research avenues I wanted to bring to your attention as you look for further
study.  One way to approach our understanding of robot movement is to consider the
balance between exploitation and exploration. Exploitation is getting the robot to its goal as
quickly as possible.  Exploration is using the space around the robot to try new things.  The
path planning program may have been stuck on a local minimum, and there are better
solutions available that had not been considered.

There is also more than one way to teach a robot.  We have been using a sort of self-
exploration in our training.  What if we could show the robot what to do and have it learn
by example?  We could let the robot observe a human doing the same task, and have it try
to emulate the results. 

Google’s SAC-X
Google is trying a slightly different approach to the robot arm problem.  In their SAC-
X program, which stands for Scheduled Auxiliary Control, they surmise that it can be
quite difficult to assign reward points to individual movements of the robot arm.  They
break down a complex task into smaller auxiliary tasks, and give reward points for those
supporting tasks to let the robot build up to a complicated challenge. If we were stacking
blocks with a robot arm, we might separate picking up the block as one task, moving with
the block in hand as another, and so on.  Google referred to this as a "sparse reward"
problem if they only did reinforcement on the main task, stacking a block on on top of
another.  You can imagine in the process of teaching a robot to stack blocks that there
would be thousands of failed attempts before a successful move resulted in a reward.  
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Amazon Robotics Challenge
Amazon has a lot of stuff.  Millions and millions of boxes, parts, bits, and things fill their
shelves.   They want to get the stuff from the shelves into small boxes so they can ship the
stuff to you as fast as possible when you order it.  For the last few years, Amazon has
sponsored the Amazon Robotics Challenge, where they invited teams from universities in
to use robot arms to pick up items off a shelf and, you guessed it, put them into a box. 
When you consider that Amazon sells almost everything imaginable, this is a real
challenge.  In 2017, a team from Queensland, Australia won the challenge with a low-cost
arm and a really good hand tracking system.

Summary
Our task for this chapter was to use machine learning to teach the robot how to use its robot
arm.  We used two techniques with some variations.  We used a variety of reinforcement
learning, called Q-learning, to develop a movement path by selecting individual actions
based on the robot's arm state. Each motion was scored individually as a reward, and as
part of the overall path as a value.  The process stored the results of learning into a Q-
matrix that could be used to generate a path.  We improved our first cut at the
reinforcement learning program by indexing, or encoding, the motions from a 27-element
array of possible combinations of motors to a number from 0 to 26, and likewise indexing
the robot state to a state lookup table. This resulted in a 40x speedup of the learning
process.   Our Q-learning approach struggled with the large number of states that the robot
arm could be in. 

Our second technique was a genetic algorithm.  We created individual random paths to
make a population.  We created a fitness function to score each path against our goal, and
kept the top performers from each generation.  We then crossed genetic material from two
somewhat randomly selected individuals to create a new child path.  The genetic algorithm
also simulates mutation by having a slight chance of random changes in steps in the path. 
The results for the genetic algorithm had no problem with the state space complexity of our
robot arm, and generated a valid path after just a few generations. 
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Questions
In Q-learning, what does the Q stand for (you will have to research this on the1.
internet).
What could we do to limit the number of states that the Q-learning algorithm has2.
to search through?
What effect does changing the learning rate have on the learning process?3.
What function or parameter serves to penalize longer paths in the Q-learning4.
equation?  What effect does increasing or decreasing this function have?
In the genetic algorithm, how would you go about penalizing longer paths so5.
that shorter paths (fewer number of steps) would be preferred?
Look up the SARSA variation of Q-learning.  How would you implement the6.
SARSA technique into program 2. 
What effect does changing the learning rate in the genetic algorithm change?7.
What is the upper and lower bound of the learning rate?
In the genetic algorithm, what effect does lowering the population cause?8.

Further reading
Zocca, Spacagna, Slater, Roelants. Python Deep Learning, Packt Publishing, April
2017.
Joshi, Prateek. Artificial Intelligence with Python, Packt Publishing, January 2017. 
AI Junkie: Genetic Algorithm- A Brief Overview. Retrieved at http:/ /www. ai-
junkie.com/ ga/ intro/ gat2. html.
Basic Reinforcement Learning Tutorial 2: SARSA, https:/ /github. com/ vmayoral/
basic_reinforcement_ learning/ tree/ master/ tutorial2.
Google DeepMind Blog: Learning by Playing (Robot Arm (SAC-X)),  https:/ /
deepmind. com/ blog/ learning- playing/ .
Amazon Robotics Challenge Competition, https:/ /blog. aboutamazon. com/ amazon-
robotics- challenge- winners- announced.
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6
Teaching a Robot to Listen

Teaching a robot to listen to spoken instructions is a whole discipline in itself.  It is not
sufficient for the robot to just recognize individual words, or some canned phrase.  We
want the robot to respond to normal spoken commands with a normal variety of phrasing. 
We might say, Pick up the toys, or Please pick up all the toys, or Clean this mess up!, any of
which would be a valid command to instruct the robot to begin searching the room for toys
to pick up and put away. We will be using a variety of techniques and processes for this
chapter.  We are going to be building on an open source verbal assistant called Mycroft. 
This is an AI-based speech recognition and natural language processing engine that can be
programmed and extended by us. We will be adding some additional capability to Mycroft
– we will use a technique I call the fill in the blank method of command processing to extract
the intent of the user’s voice instructions, so that the robot does what you want it to do,
even if that is not exactly what you said.   We will complete this chapter by teaching the
robot to both tell and respond to a specific form of human communication – knock-knock
jokes.

The following topics will be covered in the chapter:

Natural language processing
Reasoning from context
Understanding intent
Speech recognition (speech to text)
Text to speech
Call and response dialog for knock-knock jokes
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Technical requirements
This chapter using the following tools:

Mycroft Open Source Voice Assistant (http:/ / mycroft. ai) – I had to build it
from source from the GitHub repository, so expect to do the same to keep it
compatible with the ROS (Robotics Operating System) we run the robot with.
Python 3.2 (but you should be able to make 2.7 work as well).
You will need a Git account at https:/ /github. com/.
I used the Google DIY Voice Kit (https:/ /aiyprojects. withgoogle. com/ voice),
which provided a very nice set of speaker and stereo microphones for the
Raspberry Pi.  We will be using the hardware only.  

Check out the following video to see the Code in Action:
http://bit.ly/2MXj2HS

Robot speech recognition
This is going to be a rather involved chapter, but all of the concepts are fairly easy to
understand and I was very happy with the results I achieved when I developed this
chapter.  We will end up with a lot of collateral abilities for our robot that we are getting for
free, and will end up with a very strong framework to build voice recognition and
commands upon.  Let’s get right to it.

What are we doing?
We set several goals for our robot in Chapter 2, which included being able to give voice
commands to the robot, since we may be using the robot without a base station. I also
wanted the robot to be able to interact with my grandchildren, and specifically to be able to
tell and respond to knock-knock jokes, a favorite activity of my grandson, William.

We can break this process down into several steps, which we will be handling
independently.  We need the robot to be able to hear, or have the ability to convert sound
into a digital form.  We need to process sounds into words, which is to say, turn sounds
into text.  
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We need to not just recognize individual words, but to combine those words into sentences
and from those sentences, infer the intent of the speaker to understand what the robot is to
do.  We do not want to use canned or memorized speech commands, but rather have the
robot be able to do some natural language processing (NLP) to create a form of robot
understanding of the spoken word.

For example, if we want to have a command for pick up a toy, we humans could phrase that
several ways: grab a toy, grasp a toy, pick up that toy car, or even get that.  We want the robot
to understand or at least respond to all of those utterances with the same action, to drive to
the nearest toy and pick it up with the robot arm. 

The other half of the interface is that the robot needs to respond back by speaking.  Text-to-
speech systems are fairly commonplace today, but we would like to have some natural
variations in the robot’s speech patterns to help make the illusion that the robot is smarter
than it really is.

Our steps for this chapter are as follows:

Receive audio (sound) inputs.1.
Convert those sounds into text that the robot can process.2.
Use processing on those text words to understand the intent of the speaker.3.
Use that intent as a command to perform some task.4.
Provide verbal responses in the form of spoken words (text to speech) back to the5.
operator to confirm the robot heard and understood the command.
Create a custom verbal interface that both tells and responds to knock-knock6.
jokes.

Speech to text
In the rest of this chapter, we will be implementing an AI-based voice recognition and
response system in the robot and creating our own custom voice interface.  We will be
using Mycroft, an open source voice activated digital assistant that is adept at understanding
speech and is easily extended for new functions and custom interfaces. 

The process we will use for voice interaction with the robot follows this script:

Wake word (Hey, Albert)1.
Pause for the robot to make a beep sound to show it is listening2.
Command or query from human (move forward one step)3.
Robot responds verbally (moving forward six inches)4.
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There are two forms of text-to-speech involved in this process that greatly simplify matters
for the robot. First, the robot is listening continuously for only one sound – the wake word. 
This is a specific sound that just means one thing – get ready to process the next sound into
a command. Why is this necessary? 

Since the robot has only a very small processor – the Raspberry Pi – it really does not have
the sort of onboard compute power to run a robust speech-to-text (STT) engine. But it can
run a simple sound recognizer that can listen for just one thing – the wake word. You are
familiar with this from other voice command systems, such as Alexa or Siri, that also either
use a special wake word or a button to have the interface pay attention. 

Once the wake word is received, the Raspberry Pi switches into record mode, and records
the next thing we say. It then transfers that information to an online system, the Google
Cloud Speed to Text system (the same thing that runs the Google Assistant).

How does the robot recognize the wake word?  The speech system we will be using, the
open source system Mycroft, uses one of two methods.  The first is a phoneme recognition
system called Sphynx. What the heck is a phoneme?  You can understand that words are
made up out of individual sounds, which we roughly assign to letters of the alphabet. An
example would be the p sound in the word pet or pick.  We make the pppp sound by putting
our lips together.  The burst of sound we make is identifiable as a P sound – this is a
phoneme.  The word Albert has several phonemes – the A sound, (ah), the L sound, the B,
the ER together (errrrr), and finally, the T. The letters we associate with the sounds – the
ch in cherry, the er in Albert, are called graphemes, as they graphically represent these
sounds.  We could say that the speech-to -text problem is one of mapping these phonemes
to graphemes, but we know that this is too easy – English has all sorts of borrowed words
and phrases where the pronunciation and the spelling are far apart.  

The frontend of the Mycroft speech recognition process uses phonemes to recognize the
wake word.  You will find that it is quite sensitive.  I had no problem getting the speech
processor to receive the wake word from eight feet away. When we get to the setup section,
we will change the default Mycroft wake word from Hey, Mycroft, to Hey, Albert.
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What is the other method for receiving the wake word? Mycroft can also use a trained
neural network that has been taught to recognize entire words all at once by their spectral
power graph. What is a spectral graph?  Your voice sound is not one frequency of sound
energy – it is a complex congregation of different frequencies produced by our mouths and
vocal cords. If we spoke in pure frequencies, we would sound like a flute- pure tones at
mostly one frequency.  We can use a process called a fast fourier transform to convert a
selection of speech into a graph that shows the amount of energy (volume) at each
frequency.  This is called a spectral plot or spectral graph.  The low frequencies are at the
left, and higher frequencies at the right. Most of human speech energy is concentrated
between frequencies between 300 Hz and 4,000 Hz. Each word has a unique distribution of
sound energy amounts in these frequencies, and can be recognized by a neural network in
this manner:

This preceding diagram shows both the audio wave form (top graph) in the time domain, and the spectral plot in the frequency domain for the phrase Hey, Albert.

Both the phoneme method and the neural network method use spectral plots to recognize
sounds as words, but the phoneme process divides words into individual sounds, and the
neural network listens and recognizes the entire word all at once.  Why does this make a
big difference?  The phoneme system can be developed to recognize any word in English
without reprogramming or retraining, while the neural network has to be trained on each
word individually, and hopefully by a lot of different speakers with a lot of different
accents.
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You can remember from the neural networks chapter that we needed
labeled data to train a neural network. You recall we had pictures in
categories and trained on each category. Training ANNs for sound is the
same: we need sounds and the associated words.  Can you think of a place
to get samples of lots of different voices where you also have the exact
written script to match?  Ever listened to a book On tape?

Our next step after receiving the wake word is to record the next sounds that the robot
hears. The Mycroft system then transfers that audio data over the internet to the Google
online speech-to-text engine (https:/ /cloud. google. com/ speech- to- text/ ). This is a
quick way to resolve the problem of our little Raspberry Pi not having enough processing
power or storage to have a robust speech recognition capability. 

What goes on the in the Google Cloud? The STT engine breaks the speech down into
phonemes (sounds) and uses a neural network to assign the most probable graphemes
(letters) to those sounds. The output would be spelled out more phonetically than want to
receive. For example, the sentence How many ounces in a gallon? will come out HH AW . M
EH N IY . AW N S AH Z . IH N . AH . G AE L AH N. (source: CMU Pronouncing Dictionary) 
How is this the case? What happened? These are the phonemes that make up that sentence. 
The periods indicate spaces between words.  Now the system has to convert this into the
words we are expecting. The STT system uses word rules and dictionaries to come up with
the most likely conversion into regular words. This includes both expert systems (word
rules) as well as trained neural networks that predict output words based on phonemes.
We can call this step the language model. Our STT outputs the sentence How many ounces in a
gallon? and sends it back to the robot, all in less than 2 seconds. 

So the robot receives the text How many ounces in a gallon? What do we do with it? Lets look
at the sentence and break it down into its component parts, just like we did in grade school.
The type of sentence is a question, as it starts with How. The subject of the sentence is How
Many. The verb is are, which is implied in the form of the question (How many ounces are
in a gallon). The object is ounces and the modifier (or adjective) is in a gallon.
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Intent
The natural language processing we are doing has one aim, or goal. We are giving
commands to our robot using a voice interface. Commands in English normally follow a
sentence pattern, something like You – do this. Often the you subject of the sentence is
implied or understood, and left out. We are left with statements like Clean this room, or Pick
up those toys. The intent of these commands to to have the robot initiate a program that
results in the robot picking up toys and putting them away. The robot and its processor
have to divine or derive the intent of the user from the words that are spoken. What we
want is for any reasonable sentence to have as it's meaning, You, robot, start your pick up toys
process.

Think of how many ways we can say that command to the robot. Here are some examples:

Let’s clean up this room
Put away the toys
Pick up the toys
Pick up all the toys
Clean up this room
Put those away
Put this away
Time to clean up

What do these phrases have in common? They all imply the subject who is doing the action
is the robot. There are no words like You, robot, Tinman to indicate to whom the command
in intended. The word toys appears a lot, as does pick, clean, and put away. It is possible that
we can just pay attention to those keywords to understand this command. If we get rid of
all of the common conjunction and pronoun words, what does the list look like?

Clean room
Put toys
Pick toys
Pick toys
Clean room
Put away
Put away
Time clean
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An important concept for this chapter is to understand that we are not trying to understand
all speech, but only that subset of speech that are commands that the robot can execute.
That list is fairly short. The robot can only be told to pick up toys, drive around, move its
arm, and stop. That is about it.

A general solution to this voice recognition problem would be to have some ability to
predict from the command given to the robot, the likelihood that intent of the user points to
one command more than any of the others. You can see that in the case of the word clean,
none of our other commands (drive around, move arm, or stop) relate to clean at all. Thus a
sentence with clean in it most probably is associated with the pick up toys command.

This process of deciding intent will be used later in this chapter to send commands to the
robot. We will use an open source AI engine called Mycroft to accomplish this.

Now we are going to jump right into programming the TinMan robot to listen and
understand commands using a open source artificial intelligence package called Mycroft.
Mycroft is a version of a digital assistant similar to Siri from Apple or Alexa from Amazon,
in that it can listen to voice commands in a mostly normal fashion and interface those
commands to a computer.  We are using it because it has an interface that runs on a
Raspberry Pi 3.   Here we go.

Mycroft
Installing Mycroft on Rapsberry Pi 3.

Hardware
One of the few things that the Raspberry Pi did not come with is audio capability. It has no
speakers or microphones. I found a quick and effective way to add that capability was to
use an existing hardware kit that provided both a very high quality speaker and an
excellent set of stereo microphones in a robot-friendly form factor. Note that this works
only with the Raspberry Pi 3 board – it will not work with earlier Raspberry Pis.

The kit is the Google AIY Voice Kit. The website is http:/ /aiyprojects. withgoogle. com:
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The original kit contains a hat or accessory board for the Raspberry Pi 3 that
sits on top of the main board and has interfaces for a speaker and a set of
stereo microphones. If you want, you can use the Google Assistant API that
goes with this kit, but I could not make it work with the ROS, which is critical
for our robot to move.

I decided to use the Mycroft open source voice assistant software instead, which offered
much of the same functionality but in a more user-friendly arrangement. We'll cover
Mycroft in the next section after we get the hardware installed.
You will not need any of the cardboard that came with the kit. Turn off the Pi, and install
the Voice Hat to the top of the Raspberry Pi 3 circuit board. Be careful to line up the pins.

The next step is to connect the speakers with the screw terminals. Connect the microphones
via the JST connector. This is the connector on the top that has the five wires. That ends the
hardware part of the setup.

Turn on your Raspberry Pi 3 with the new speaker and microphone.

Now we can dive into the software.

We are going to get the software drivers for the Google AIY Voice Kit from the GiHhub site
for the project. We will just be using the drivers, but we have to download the whole thing.



Teaching a Robot to Listen Chapter 6

[ 178 ]

Go to the Google AIY project Raspian GitHub site: https:/ /github. com/ google/
aiyprojects-raspbian , and input the following code:.

Sudo apt-get update
 Cd

Start the Pulse Audio daemon. You may need to reboot after this step:

 pulseaudio –D

Go back to the home directory:

 cd

Now we download the AIY project source code to our RasPi:

 git clone https://github.com/google/aiyprojects-raspbian.git voice-
recognizer-raspi
cd ~/voice-recognizer-raspi

These scripts will install the audio drivers:

sudo scripts/configure-driver.sh
sudo scripts/install-alsa-config.sh

Now we must reboot the Pi:

sudo reboot

After rebooting, we can test the sound set up by playing some sound:

 speaker-test –c2

This will play some white noise from the speakers. You can also try the following:

 speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/Front_Center.wav

This will say the phrase Front-Center. If you don’t hear the sounds, try re-installing the
drivers and rebooting, and also check your wires.
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Mycroft software
While there are several ways to install Mycroft, we have to put Mycroft on top of the other
software we have already. Since Mycroft has to get along with the ROS, and all of the
artificial intelligence packages we installed, such as TensorFlow, Theano, and Keras, it is
better that we use the git clone method to download the source code and build Mycroft
on the Raspberry Pi:

git clone https://github.com/MycroftAI/mycroft-core.git
cd Mycroft-core
bash dev_setup.sh

Mycroft will create a virtual environment it needs to run. It also isolates the Mycroft
package from the rest of the packages on the Raspberry PI.

Note: Please do not install Mycroft as the root user (or super user). This
will cause permissions problems with the configuration files. You may
correctly guess that I tried this and did not like the results.

In order to get the Mycroft system to work in this manner, I also had to do one more step.
The Mycroft system kept failing when I first tried to get it to run. It would quit or get stuck
when I tried to start the debugger. In order to correct this problem, I had to recompile the
entire system using the following steps:

sudo rm -R -/.virtualenvs/Mycroft
cd ~/mycroft-core
./dev_setup.sh

Once that is done (and it took quite a while – as in several hours), you should be able to run
the Mycroft system with the startup commands:

 ./start-mycroft.sh debug

You can start in debug mode or:

 ./start-mycroft.sh all

You can start in normal mode.

You will probably be using debug mode quite a bit when you are developing your speech
commands.



Teaching a Robot to Listen Chapter 6

[ 180 ]

Now test that Mycroft is working properly. When you first get Mycroft to run, it will want
to be paired with your login account on the Mycroft web server. You need to set up a
services account on the Mycroft website at http:/ /home. mycroft. ai. Then the Raspberry
Pi  will give you a six-letter code to put into the website under Devices (on the Hamburger
menu on the far right hand side of the website).

Once the robot is paired with the Mycroft server, it can transfer data back and forth. The
wake word will start out being the default Hey, Mycroft. You can test that everything is
working by first asking Hey, Mycroft, what time is it?.

Mycroft divides its capabilities into skills that are each controlled by a separate script. The
Time skill is totally self-contained inside the Raspberry Pi. The robot should give you a
voice response that is replicated on the debug console.

Next you can ask Mycroft a more advanced skill, like looking up information on the
internet. Ask “Hey, Mycroft, how many ounces in a gallon?” Mycroft will use the internet to
look up the answer and reply.

For the next step, you can change the wake word on the Mycroft website to something
more appropriate – we did not name this robot Mycroft. We have been calling this robot
Tinman, but you can choose to call the robot anything you want. You may find that a very
short name like Bob is too quick to be a good wake word, so pick a name with at least two
syllables. Go to the Mycroft web page (http:/ /home. mycroft. ai) and log in to your
account. If you have not yet created an account, now is your chance.

Click on your name in the upper right corner and select Settings from the menu. You can
select several settings on this page, such as the type of voice you want, the units of
measurement, and time and date formats. What we want to do is change the wake word
from the default (Hey, Mycroft) to the name of our robot (Hey, Tinman or Hey, Albert). Select
the small text Advanced Settings in the third paragraph of the page. This will take you to
the page where we can change the wake word.

We change the first field Wake word to Custom. We change the next line to put in our
custom wake word – Hey, albert. We also need to look up the phonemes for this wake word.
Click on the this tool hyperlink to be taken to the CMU Pronouncing Dictionary at
Carnegie Mellon University. Put in our phrase and you will get out the phoneme phrase
HH EY . AE L B ER T . The phoneme syntax puts periods to show the spaces between
words. Copy and paste this phrase and go back to the Mycroft page to paste the phoneme
phrase into the Phonemes field. You are done – don’t change any of the other settings. Hit
Save at the top of the page before you navigate away.
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You can test your new wake word back on the Rapsberry Pi. Start Mycroft up again in
debug mode and wait for it to come up. Say your new wake phrase and enjoy the response.
I have a standard test set of phrases to show Mycroft’s skill at being the voice of our robot.
Try the following:

Hey, Albert. What time is it?
Hey, Albert. What is the weather for tomorrow?
Hey, Albert. How many ounces in a gallon?
Hey, Albert. Who is the queen of England?

You should get the appropriate answers to these questions. Mycroft has many other skills
that we can take advantage of, such as setting a timer, setting an alarm at a clock time,
listening to music on Pandora, or playing the news.

What we will be doing next is adding to these skills by creating our own that are specific to
our room-cleaning robot. Then we can do the knock-knock jokes.

Skills
The first skill we will create is a command to pick up toys. We are going to connect this
command to the ROS to control the robot.

Dialogs
Our first step is to design our dialog on how we will talk to the robot. Start by making a list
of what ways you might tell the robot to pick up the toys in the playroom. Here is my list:

Let’s clean up this room
Put away the toys
Pick up the toys
Pick up all the toys
Clean up this room
Put those away
Put this away
Time to clean up
Who made this mess?
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You will note that there are several key words that are specific to the command to clean up
the room. We have the word clean, of course. We have the phrase pick up, and away. We also
have the words toys or toy, and finally mess. These key words will cue in the natural
language processor, and allow some variation in the exact words used.

Next, we write down what we want the robot to say back. We don’t want the same canned
response each time; it would be good to have some natural variation in the robot’s
responses. Here is my list of responses, with a variety of robot attitudes represented:

Command received – picking up toys.
I am glad to hear the grandchildren came for a visit. I will pick up now.
Picking up toys.
Message understood – toy pickup commencing.
Toy pick up mode initiated.
Time to pick up toys.
Mary Poppins does not live here, so do not start singing.
This is my job – picking up toys is what I do.
Toy pick operation start. Scanning for toys. Wow, there are a lot of toys!
Toys again? OK, I have got this.

You can use as many of these as you want. The Mycroft system will grab a random phrase
from this list. This gives us some room for creativity, and gives the illusion that the robot is
more intelligent than it really is. This type of response system does work quickly for us to
develop our dialogs.

We have to now create a skill, and fit it into the standard skills framework Mycroft uses.
We will have to create a GitHub repository to put our skill into, and use Python to create a
programming framework around the skill. Make sure you have a GitHub repository to put
your skill into. Create a GitHub account if necessary (it's free). We start by forking the
Mycroft Skill repository into our GitHub account.

Go to the Mycroft skills GitHub web page at https:/ /github. com/ MycroftAI/ mycroft-
skills/.

At the upper right, you will see three buttons: Watch, Star, and Fork. Hit the Fork button to
create a copy of all the skills in your repository. We are going to use the skill template to
make a new skill. Now we need to clone this repository so we can edit it. Log onto your Pi
(or your development machine) and clone your repository. For me, it looked like this:

git clone https://github.com/FGovers/mycroft-skills-1
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We need to create a new skill set of directories. This has to follow a specific pattern in order
to work. We are going to copy the skill template (00__skill_template) to do this.

 cp –R 00_skill_template skill__pickup_toys

What we end up with looks like this:

ls -l
 4 drwxrwxr-x 3 ubuntu ubuntu 4096 Jun 20 04:06 dialog
4 -rw-rw-r-- 1 ubuntu ubuntu 2829 Jun 20 04:06 __init__.py
52 -rw-rw-r-- 1 ubuntu ubuntu 49360 Jun 20 04:06 LICENSE
4 -rw-rw-r-- 1 ubuntu ubuntu 412 Jun 20 04:06 README.md
4 -rw-rw-r-- 1 ubuntu ubuntu 164 Jun 20 04:06 requirements.sh
4 -rw-rw-r-- 1 ubuntu ubuntu 79 Jun 20 04:06 requirements.txt
4 drwxrwxr-x 3 ubuntu ubuntu 4096 Jun 20 04:06 vocab

The dialog directory contains subdirectories for each language you want the robot to speak,
and contains the responses to our commands. We will use the en-us directory to put our
US English responses, since that is what my speech system is set to. You may use it-it for
Italian, and so on. The directories use the IETF Language Tag (Internet Engineering Task
Force), which you can look up at https:/ /en.wikipedia. org/ wiki/ IETF_ language_ tag.
Other examples are de-de for German, and en-au for Australian English.

We will create a file called pickup.toys.dialog and put our responses in it, one phrase
per line. We can put multiple dialogs and multiple skills into a single skill category, but we
will just put the pickup toys command in this example.

We also have the vocab directory. This directory contains our intent phrases. These are
identified by a .intent file. We need to create a PickupToys.intent file in the
vocab/en-us directory and put our command phrases we wrote in it:

~/Mycroft-skills-1/skill_pickup_toys/vocab/en-us/PickupToys.intent
Lets clean up this room
Put Away the toys
Pick up the toys
Pick up all the toys
Clean up
Put those away
Put this away
Time to clean up
Who made this mess
mess
toys
clean
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You will also need to clear out the old .voc files that you got by copying the template. We
can insert just the key words rather than the entire sentence, and the Mycroft Intent Engine
will still activate this skill.

Now we can populate the Python code that will activate the command to the robot. We
need to edit the __init__.py file in the skill_pickup_toys directory that we copied
from the template.

We are going to import our parts from Mycroft (IntentBuilder, Mycroft Skill, getLogger,
and intent_handler). We also import rospy, the ROS Python interface, and the ROS
standard message String, which we use to send commands to the robot by publishing on
the syscommand topic:

from adapt.intent import IntentBuilder
from mycroft.skills.core import MycroftSkill
from mycroft.util.log import getLogger
from mycroft import intent_handler
import rospy # ROS = Robotic Operating System
from std_msgs.msg import String # ROS string format for messages
__author__ = 'fxgovers'

This is the logger for Mycroft so that we can log our responses. Anything we put out to
stdout, such as print statements, will end up in the log, or on the screen if you are in debug
mode:

LOGGER = getLogger(__name__)

We set up the publisher for our syscommand topic in the ROS.  This is how we send
commands to the robot control program via the ROS publish/subscribe system.  We will be
publishing commands only, and the only message format we need is String:

 pub = rospy.Publisher('/syscommand', String, queue_size=1000)
# define our service for publishing commands to the robot control system
# all our robot commands go out on the topic syscommand
def pubMessage(str):
 pub.publish(str)

Our Mycroft skill is created as a child object of the MycroftSkill object.  We rename our
skill object class to CleanRoomSkill:

 class CleanRoomSkill(MycroftSkill):
 def __init__(self):
 super(CleanRoomSkill, self).__init__(name="PickupToys")
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I can't explain why Mycroft has both an init method and an initialize method, but we
need to follow the template.  These commands set up the intent in the Intent Builder part of
Mycroft and register our handler when any of our phrases are spoken.  We refer to the
dialogs we built earlier with require("CleanRoomKeyword"), so be careful that all the
spelling is correct. 

def initialize(self):
 clean_room_intent = IntentBuilder("PickupToys"). \
 require("PickupToys").build()
 self.register_intent(clean_room_intent, self.handle_clean_room_intent)

This section creates our handler for when the system has recognized one of our phrases,
and we want to perform the action for this command.  This is where we kick off the publish
command to the robot's control program via the ROS using the pubMessage function we
defined earlier:

def handle_clean_room_intent(self, message):
 self.speak_dialog("clean.up.room")
 pubMessage("PICK_UP_TOYS")

The rest of the program is just housekeeping.  We need to define a stop handler and finally
define a function to create the instance of our skill:

def stop(self):
 pass

def create_skill():
 return CleanRoomSkill()

In order for our skill to work, we need to copy our directory to /opt/mycroft/skills.
From there, we can test it in debug mode. Remember to start the ROS Core service (roscore)
first to receive the ROS messages. 

Telling jokes – knock, knock
Our next section comes at the request of my grandson, William, who just adores knock-
knock jokes. William is seven, so he is just the right age for this.
As you probably know, knock-knock jokes are a pun-based joke that always takes the same form.
(person 1) Knock, knock
(person 2) Who’s there?
(person 1) Wooden
(person 2) Wooden Who?
(person 1) Wooden you like to know!
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So the dialog is very simple. Several parts of it are automatic, such as the first two lines –
Knock, knock and Who’s there?. We can create a generic knock-knock joke in the following
form:

Knock, knock.1.
Who’s there?2.
<word 1>3.
<word 1> who?4.
<punchline phrase>5.

In defining our joke, you can see we just have two variable elements – the word in step 3,
and the punchline phrase in step 5. Our word is repeated in step 4.

We begin by creating a joke database of literally one-line jokes, which we will put in a text
file. Since we just have two elements, we can separate them by a slash /:

tarzan / tarzan stripes forever
orange / orange you glad I can tell jokes?

And so on. I’m providing you a database of about 10 jokes in the files section of the
repository for this chapter. Please feel free to add all of your favorites, or send them to me
and I’ll add them.

In this first section, we will handle the case where the robot is telling the joke. We will start,
like any skill, with the wake word, Hey, Albert. Then we need a phrase to indicate we want
to hear a joke, so we will use variations on Tell me a knock-knock joke, such as I want to hear a
knock-knock joke.

This will trigger our skill program to look up a joke. We will create several intents, or
response capabilities, to respond to the user (or child) talking to the robot. We will start
with the who’s there dialog intent. That will let the robot know to proceed to the next part of
the joke, which is to say our word. Then we disable the who’s there dialog and enable a
dialog for listening for <word> and the phrase who. Then we can deliver the final part of the
joke by reciting the punch line phrase, and we are done.

We can start by creating our vocabulary files, of which we will need three. These are the
things that the user will be saying to the robot. We have our first tell me a knock, knock joke
phrase – so let’s call that knockknock.voc and put the following in it:

Tell me a knock-knock joke
Can I have a knock-knock joke
Give me a knock-knock joke
Play me a knock-knock joke
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Please note that the Mycroft speech-to-text system interprets the phrase knock, knock as
knock-knock with a hyphen, so it is important to put that into our script.

That should be sufficient for our purposes. Feel free to elaborate on your end if you feel that
more is needed. Now our second vocabulary is just who’s there, so we can create this as a
second .voc file, whosthere.voc, which contains the one line Whos there. Our final line is
a bit trickier. We really only care about the keyword who to trigger the punchline, so we can
look only for that in our third intent. Make a file called who.voc and put the one word who in
it. Remember these all go in the dialog/en-us folder in our skill directory.

Now for our responses. We have one canned response, which is to reply to tell me a knock-
knock joke with the phrase knock, knock.  We don't need any sophisticated dialog system, we
just have the robot say the knock-knock phrase.

We start by importing our libaries we need to call in this program, which are the
MycroftSkill class and the intent_file_handler function:

from mycroft import MycroftSkill, intent_file_handler

We define our class skill as a child object of the MycroftSkill object –  this is standard
object-oriented design. We are inheriting all of the functions and data of the parent
MycroftSkill and adding our own functionality to it. We create an initialize function
and then call the parent init to execute the code of the parent class as well. We are
augmenting the functionality of the parent init function. Without this call, we would be
replacing the init function with our own, and might have to duplicate a considerable
amount of work:

class Knockknock(MycroftSkill):
def __init__(self):
MycroftSkill.__init__(self)

The next step is to create our intent handler. The intent handler is called when the Intent
Engine sees the key words that indicate that this is what we want.  Whenever the user asks,
Do you know any knock-knock jokes, or phrases with that meaning, this code will be invoked.
We put our phrases into the knockknock.intent file and place that file in the voc
directory:

@intent_file_handler('knockknock.intent')
 def handle_knockknock(self, message):
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We now need to pick a joke from our database of wonderful, witty KKJs (knock-knock
jokes). We will define our pick_joke function lower in the program. We get two parts
from the joke database: the name to say after who's there and the punchline that ends the
joke:

name,punchline = self.pick_joke()

We use the get_response function from MycroftSkill to have the robot make a
statement and then wait for a reply, which will get turned into a text string and stored in
the response variable:

response=self.get_response(announcement="knock, knock")
 # response will always be "who's there"
 response=self.get_response(announcement=name)

Now we are at the part where the robot says the name, after replying to who's there. For
example, the user says who's there and the robot replies Harold. What we are expecting next
is for the user to say Harold (or whatever name) who?. We will check our response, and see if
the word who is included. If it is not, we can prompt the user to follow along with the joke.
We will only do this one time to keep from getting stuck in a loop. If they are not playing
along, the robot will just continue:

 response will be "name who"
 # if end of respose is not the word who, we can re-prompt
 if "who" not in response:
 prompt = "You are supposed to say "+name+" who"
 response=self.get_response(announcement=prompt)

We have moved through the joke, so now we get to say the punchline, such as Harold you
like a hug (How would you like a hug?). The robot is finished and we exit the routine; both the
comedy routine and the program routine:

self.speak(punchline)

We need a function to read our joke database we defined earlier. The database has KKJs one
per line, with a forward slash (/) between the name and the punchline. We read in all of the
jokes, put them in a list, and then choose one at random using the (wait for it)
random.choice function. We return the name and the punchline separately. We should
only call this routine once per instance of the joke:

def pick_joke():
jokeFile="knockknock.jokes"
jfile = open(jokeFile,"r")
jokes = []
for jokeline in jfile:
jokes.append(jokeline)
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joke = choice(jokes)
jokeParts = joke.split("/")
name = jokeParts[0]
punchline = jokeParts[1]
return name, punchline

We finish the program by defining our instance of the Knockknock class and returning that
object to the calling program, Mycroft:

def create_skill():
 return Knockknock()

Receiving jokes – who’s there?
The other end of the knock-knock joke concept is to receive a joke – where the child wants
to tell the robot a joke. If you know any seven-year-olds, then you know that this is a
requirement also – the child will want to tell the robot a joke as well.
The receiving dialog is pretty simple as well. The user will say knock, knock, which is the cue
to the robot to go into the receive knock-knock joke mode. The robot then has only one response
– who’s there. We could also add who is there? if we want to keep to the common sci-fi
concept that robots do not use contractions.

Note: Data, the android from Star Trek: The Next Generation, stated many
times he was not able to use contractions, although the writers slipped up
from time to time.

In order to create our schema for our new Mycroft skill, we will be using the Mycroft Skill
Kit, or MSK. You can install MSK by typing pip3 install msk. MSK provides a dialog-
driven approach to building skills that will make a framework, including all of the
subdirectories for dialog files and vocabulary. This saves a lot of time, so let’s try it out. The
following is the dialog for creating the receive knock-knock joke code.

$ msk create
 Enter a short unique skill name (ie. "siren alarm" or "pizza orderer"):
recieveKnock
Class name: NockSkill
 Repo name: nock-skill

Looks good? (Y/n) n
 Enter a short unique skill name (ie. "siren alarm" or "pizza orderer"):
recieve Knock

Class name: RecieveKnockSkill
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 Repo name: recieve-knock-skill

Looks good? (Y/n) y
 Enter some example phrases to trigger your skill:
 - knock knock
 -
 Enter what your skill should say to respond:
 - who's there
 -
 Enter a one line description for your skill (ie. Orders fresh pizzas from
the store): This skill recieves a knock knock joke from the user
 Enter a long description:
 > THis is the other half of the Knock Knock joke continuum - we are giving
the robot the ability to recieve knock knock jokes. The user says knock
knock, the robot responds whos there and so on
 >
 Enter author: Francis Govers
 Would you like to create a GitHub repo for it? (Y/n) Y
 === GitHub Credentials ===
 Username: **********
 Password:*********
 Counting objects: 12, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (5/5), done.
 Writing objects: 100% (12/12), 1.35 KiB | 0 bytes/s, done.
 Total 12 (delta 0), reused 0 (delta 0)
 To https://github.com/FGovers/recieve-knock-skill
 * [new branch] master -> master
 Branch master set up to track remote branch master from origin.
 Created GitHub repo: https://github.com/FGovers/recieve-knock-skill
 Created skill at: /opt/mycroft/skills/recieve-knock-skill

We can then either log into the GitHub repository and edit the program, or edit the source
code at /opt/Mycroft/skills/receive-knock-skill. The program is still the
__init__.py file.

A Mycroft skill is a function that is called when one of its phrases is recognized by the
Mycroft Intent Engine. As such, it has no body or main function, just a function definition
for the create skill that instantiates a MycroftSkill object. The __init__ function does
most of the work of setting up the various dialogs, intent handlers, and vocabulary for the
skill. This arrangement works very well in our limited environment of giving the robot
commands or telling jokes. We start with our imports, which are MycroftSkill and the
intent_file_handler. We will also need the Time library to do some pauses:

from mycroft import MycroftSkill, intent_file_handler
 import time



Teaching a Robot to Listen Chapter 6

[ 191 ]

Here is our class definition for our RecieveKnock class, which is a child class of the
MycroftSkill object we imported. We start the init function by passing an init
command back up to the parent class (MycroftSkill) and have it do its initialization.
Then we add our custom functionality on top of that:

 class RecieveKnock(MycroftSkill):
 def __init__(self):
 MycroftSkill.__init__(self)

This section is our intent handler for receiving a knock- knock joke (is it OK to make an
acronym of this like KKJ?). We use the @ decorator to extend the intent handler, in this case,
reading the parameters of the intent from a file called knock.recieve.intent. The intent
handler just has our two key words, the immortal phrase: knock, knock. We are fortunate
that all KKJs start exactly the same way, so we only have these two words.

After the handle_knock_recieve function has been activated by the Intent Engine seeing
the phrase knock, knock, we then get control passed to our handler. What is our next step?
We reply with the single answer Who is there. You will remember we said robots do not use
contractions.

We use a different function next. We don’t want to use another intent handler, but
fortunately Mycroft provides a free-form interface called get_response. You need to look
up the documentation for this versatile function, but it makes our joke routine a lot simpler.
The get response function both lets us speak our reply (who is there) and then receive
whatever the user says next, and store it as a string into the variable response:

 @intent_file_handler('knock.recieve.intent')
 def handle_knock_recieve(self, message):
 response =self.get_response('who.is.there')

Now that we have our response, we can just repeat it back with the robot’s voice, with the
additional word who?. So if the child says, Howard, the robot responds Howard who?.

We use get_response again to have the robot speak and then record whatever the child or
adult says next. We don’t need it, but we want to have the robot’s speech system listen to
whatever is said next. We toss away the response, but insert our own comment to the joke,
from our dialog veryfunny.dialog, which is a file in the dialog directory. I added a sleep
timer to allow everything to settle down before returning control. We include the standard
Stop function required of all MycroftSkills, and make our create_skill function
make a RecieveCall object and return it:

response2= response + " who?"

 response3 =self.get_response(announcement=response2)
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 self.speak_dialog('veryfunny')
 time.sleep(3)

 def stop(self):
 pass
 def create_skill():
 return RecieveKnock()

I created a veryfunny.dialog file to hold responses to our jokes from the robot. I tried to
make some responses that the grandchildren would find funny. I guess I can add robot
joke writer to my resume, as I seem to have done this a lot in my career.
You can get as creative as you want, but here are my suggestions:

That was very funny!
 Ha ha ha
 very good joke
 I like that one. Thank you!
 Ho HO! ho
 that was cute!
 I do not have a sound for a groan
 thththththpppppp!

Here is our directory structure and files for our receive knock-knock jokes skill:

receive-knock-skill directory:
 init__.py
 README.md
 settingsmeta.json
./dialog/en-us:
 knock.recieve.dialog
 veryfunny.dialog
./vocab/en-us:
 knock.recieve.intent

Remember the local version of the skill goes in the /opt/mycroft/skills/recieve-
knock-skill directory. Now test to your heart’s content – how many knock-knock jokes
can you tell the robot?
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Summary
This chapter introduced natural language processing for robotics, and concentrated on
developing a natural language interface for the robot that accomplished three tasks: starting
the "pick up toys" process, telling knock-knock jokes, and listening to knock-knock jokes. 
 The concepts introduced included recognizing words by phonemes, turning phonemes to
graphemes and graphemes to words, parsing intent from sentences, and executing
computer programs with a voice interface.  We introduced the open source AI engine,
Mycroft, which is an AI-based voice assistant program that runs on the Raspberry Pi.  We
also wrote a joke database to entertain small children with some very simple dialog. 

Questions
Do some internet research on why the AI engine was named Mycroft.  How1.
many different stories did you turn up,and which one did you like?
In the discussion of intent, how would you design a neural network to predict2.
command intent from natural language sentences?  
Rewrite the "Receive knock-knock jokes" to remember the jokes told to the robot3.
by adding them to the joke database used by the "tell Knock Knock jokes"
program.  Is this machine learning?
Modify the "tell Jokes" program to play sounds from a wave file, such as a music4.
clip, as well as doing text to speech.
The sentence structure used in this chapter is all based on English grammar.5.
Other languages, such as French and Japanese, have different structures.  How
does that change the parsing of sentences?  Would our program we wrote be able
to understand Yoda?
Do you think that Mycroft's Intent Engine is actually understanding intent, or6.
just pulling out key words?
Describe the voice commands necessary to instruct the robot to drive to an object7.
and pick it up without the robot being able to recognize the object.  How many
commands to you need?  
From step 7, work to minimize the number of commands.  How many can you8.
eliminate or combine?
Also from step 7, how many unique keywords are involved?  How many non-9.
unique keywords?
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Further reading
Thanaki, Jalaj. Python Natural Language Processing. 2017, Packt Publishing.
Joshi, Prateek. Artificial Intelligence with Python. 2017. Packt Publishing.
Mycroft tutorial for developing skills is located at: https:/ /mycroft. ai/
documentation/ skills/ introduction- developing- skills/ .

Additional documentation for using Mycroft is located at https:/ / media.
readthedocs. org/ pdf/ mycroft- core/ stable/ mycroft- core. pdf. 
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7
Avoiding the Stairs

This chapter covers path planning and navigation for our toy-grabbing robot helper. You
have to admit that one of the most difficult problems in any ground robot is navigation.
There are two parts to the task – figuring out where you are (localization), and then
figuring out where you want to go (path planning). Most robots at this point would be
using some sort of Simultaneous Localization and Mapping (SLAM) algorithm that would
first map the room, and then figure out where the robot is within it. But is this really
necessary? First of all, SLAM generally requires some sort of 3D sensor, which we don't
have, and a lot of processing, which we don't want to do. We can also add that it does not
use machine learning.

Is it possible to perform our task without making maps or ranging sensors? Can you think
of any other robot that cleans rooms but does not do mapping? Of course you can. You
probably even have a Roomba, as I do, and most models (with the exception of the 900
series) do not do any mapping at all – they navigate by means of a pseudo-random
statistical cleaning routine.

Our task in this chapter is to create a reliable navigation system for our robot that is
adaptable to our mission of cleaning a single room or floor of toys, and that uses the sensors
we already have.

The following topics will be covered in this chapter:

Mobile robot navigation concepts
Vision processing
The Floorfinder algorithm
Vision-based navigation using neural networks
Object recognition and navigation with neural networks
Decision tree-based logic
Goal-oriented behaviors
Robot command and control
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Technical requirements
We require the Robot Operating System (ROS) for this chapter. This book uses the Kinetic
Kame release: http:/ / wiki. ros. org/ kinetic/ Installation 

This chapter assumes that you have completed chapter six, where we gave the robot a voice
and the ability to receive voice commands. We will be using the Mycroft interface and voice
text-to-speech system, which is called Mimic: https:/ / mycroft. ai/ documentation/ mimic/ 

Check out the following video to see the Code in Action:
http://bit.ly/2N6A06V

Task analysis
As we do for each chapter, let's review what we are going to accomplish in this section. We
will be driving the robot around the house, looking for toys. Once we have a toy, we will
take that toy to the toy box and put it away by dropping it into the toy box. Then, the robot
will go look for more toys. Along the way, we need to avoid obstacles and hazards, which
include a set of stairs going down that would definitely damage the robot.

I used a baby gate to cover the stairs for the first part of testing – and put
pillows on the stairs for the second part. There is no need to bounce the
robot down the stairs while it is still learning.

We are going to start with the assumption that nothing in this task list requires the robot to
know where it is. Is that true? We need to find the toy box – that is important. Can we find
the toy box without knowing where it is? The answer is, of course, that the robot can just
search for the toy box until it locates it. We developed a technique for recognizing the toy
box in an earlier chapter with a neural network.

Now, if the robot was doing a bigger job, like cleaning a 1,000,000 square foot warehouse,
then we would need a map. But our task is to clean a single 16 x 16 room. The time lost
searching for the toy box is not all that significant, considering we can't get too far away,
and we have to drive to the toy box anyway.
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We will set this as a challenge, then, to accomplish our task without making a map. What
else do we need to do?

Navigate the room avoiding obstacles (toys and furniture) and hazards (stairs)
Find a toy
Pick up the toy with the robot arm
Carry the toy to the toy box
Put the toy in the toy box
Go and find another toy
If there are no more toys, then stop

We've covered finding the toy and picking it up in other chapters. In this chapter, we will
discuss driving up to the toy in order to pick it up.

I'm a big fan of the movie The Princess Bride. It has sword fights, cliffs, two battles of wits,
and Rodents of Unusual Size (ROUS). It also has a lesson in planning that we can emulate.
When our heroes, Fezzik the Giant, Inigo Montoya, and Westley, plan on storming the
castle to rescue the princess, the first things Wesley asks are What are our liabilities? What are
our assets?

Our liabilities: We have a small robot with a very limited sensor and compute
capability. We have a room full of misplaced toys and a set of deadly stairs the
robot can fall down.
Our assets: We have a robot with tracks that can drive around, a voice, one
camera, and a robot arm. The robot has a datalink via Wi-Fi to a control
computer. We have this book. We have a toy box that is a distinctive color. And
lots of Toys of Usual Size (TOUS).

The appropriate next step, whether we are designing robots or invading castles, is to do
some brainstorming. How would you go about solving this problem?

We could use SLAM and make a map, then locate the robot on the map, and use that to
navigate. But to really do SLAM, we need more sensors.
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What is SLAM?
SLAM is a common methodology for navigating indoor robots. The first problem we have
in indoor robot driving is that we don't have a map. The second problem we have is that we
have no frame of reference to locate ourselves – GPS does not work indoors. That is two
problems – we need a map, and then we need a way to locate ourselves on that map. While
SLAM starts with the letter “S” for Simultaneous, in truth, most robots make a map, store it
away, and then drive on it later. Of course, while maps are being made, the robot has to
make the map and then locate itself on the map–usually in the center.

How does SLAM work? The sensor usually associated with SLAM is the spinning LIDAR.
You can think of LIDAR as a laser radar – it uses a laser to measure the distance to objects,
and spins in a circle to collect data all around the robot. You can actually get a very small
robot LIDAR, called the Rplidar, for around $100.00, and use it to make maps. There is an
excellent ROS package called Hector Mapping that makes using this LIDAR fairly
straightforward. You will find that SLAM is not a reliable process, and will require several
fits and starts to come up with a map that is usable. Once the map is created, you have to
keep it updated if anything in the room changes (such as, for instance, grandchildren
leaving toys everywhere).

The SLAM process is actually very interesting, not for what happens in an individual scan,
but in how scans are stitched together.
(There is an excellent video that the authors of Hector SLAM at the University Of
Darmstadt, Germany, put together illustrating map making available at https:/ /www.
youtube.com/watch? v=F8pdObV_ df4 list= PL0E462904E5D35E29  – Handheld Mapping in the
Robocup 2011 Rescue Arena).

What we have to do in the SLAM process is to first take a sweep that measures the distance
from the robot to all of the objects in the room. Then we move the robot some distance – for
example, three inches forward. Then we take another sweep and measure the distances
again. We now need to come up with a transformation that converts the data in the second
sweep to line up with the data in the first sweep. To do this, there has to be information in
the two sweeps that can be correlated – corners, doorways, edges, furniture. It can be
difficult or impossible for SLAM to work in long, featureless hallways, for instance, as it
simply has no information to work with – one lidar sweep looks just like the next. To help
with this problem, many SLAM systems require the addition of other sensors to the robot,
that measure wheel odometry or use optical flow to measure movement in order to provide
additional data for the position estimate:
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An illustration of a SLAM Map. The robot uses 500 particles for each LIDAR sample to estimate which changes in robot position best line up the lidar data with the data in the
rest of the map. This is one of my earlier robot projects.

We can summarize SLAM as follows: The robot takes a measurement of the room by
sweeping a laser rangefinder in a circle. The data returned is a list of distance
measurements, where the angular measure is a function of the position in the list. If we
have a list of 360 measurements in a circle, then the first number in our list is 0 degrees, the
next is 1 degree, and so on. We can extract features in the LIDAR data by looking for
corners, edges, jumps, and discontinuities. We look at the angle and distance to each
feature from succeeding measurements, and create a function that gives the best estimate of
how much the robot moved. We use that information to transform the LIDAR data from the
sensor-centric coordinate system to some sort of room coordinate system, usually by
assuming that the starting position of the robot is coordinate 0,0. Our transform, or
mathematical transformation, will be a combination of translation (movement) and rotation
of the robot's body frame.
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One way of estimating this transform is to use particles. We create samples of the robot's
movement space of every point possible that the robot could have moved, and randomly
place dots along all points. We compute the transform for each of these samples, and then
test to see which sample best fits the data collected. This process is called a particle filter.

I wanted to give you a quick heads-up on SLAM so that we could discuss why we are not
going to use it. SLAM is an important topic, and is widely used for navigation, but it is not
the only way to solve our problem by any means.

The weaknesses of SLAM for our purposes include the following:

The need for some sort of sweeping sensor such as LIDAR, which are expensive,
mechanically complicated, and generate a lot of data. We want to keep our robot
cheap, reliable, and simple.
SLAM works better if the robot has wheel odometers, which don't work on
tracked vehicles such as our TinMan. Tracked robots can also be referred to as
Skid steered vehicles, because the tracks slide or skid over the surface in order to
turn – we don't have Ackerman steering, like a car with wheels that point. When
the track skids, it is moving over the surface without turning, which invalidates
any sort of wheel odometry, which assumes that the wheels are always turning
in contact with a surface.
SLAM does not deal with floorplans that are changing. The TinMan robot has to
deal with toys being distributed around the room, which would interfere with
LIDAR and change the floorplan that SLAM uses to estimate position. The robot
is also changing the floorplan as it picks up toys and puts them away.
SLAM is somewhat computationally expensive.
SLAM has problems if data is ambiguous, or if there are not enough features for
the robot to estimate changes on. I've had problems with featureless hallways as
well as rooms that where highly symmetrical.

Alternatives for navigation
We could do a process called structure from motion to get depth information out of our
single camera, and use that to make a map. Structure from motion requires a lot of textures
and edges, which houses may not have. It also leaves lots of voids (holes) that have to be
filled in the map. Structure from motion uses parallax in the video images to estimate the
distance to the object in the camera's field of view. There has been a lot of interesting work
in this area, and I have seen some promising results. The video image has to have a lot of
detail in it so that the process can match points from one video image to the next.
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Here is a survey article on various approaches to Structure from Motion, if you are
interested you can refer: https:/ / pdfs. semanticscholar. org/ 2ec3/
32a1d0e73101eaecb0e066961a5e048464a1. pdf.

We could just drive around randomly, looking for toys. When we find a toy, the robot picks
it up, and then drives around randomly looking for the toy box. When it sees the toy box, it
drives up to it and deposits the toy. We still need a method to avoid running over obstacles.

We could point the camera at the ceiling and use landmarks on the ceiling to determine our
position. But the ceiling is mostly flat, and only has a few landmarks – a ceiling fan and a
box with a movie screen hidden inside. But it does have lots of nice corners, and it is far
enough away to get a good view. And this still does not handle obstacles.

You may not have heard about a technique called floor finding that is used in other robots
– and self-driving cars. I learned about it from the DARPA Grand Challenge when this
process was used by the winning car, Stanley, from Stanford University. I also learned a
great deal about floor finding from the sophisticated algorithm written by Stephen Gentner
in the software package RoboRealm, which is an excellent tool for prototyping robot vision
systems. You can find it at http:/ /www. roborealm. com.

What I will be presenting in this chapter is my version of a floor finder technique that is
different from RoboRealm or Stanley, but that accomplishes the same results. 

The concept is pretty simple. We know that the floor directly in front of the robot is free
from obstacles. We use the video image pixels of the area just in front of the robot as an
example, and look for the same texture to be repeated farther away. We are matching the
texture of the part of the image we know is the floor with pixels farther away. If the textures
map, we mark that area green to show that it is drivable and free of obstacles. We will be
using bits of this technique in this chapter. By the way, did you notice that I said texture,
and not color? We are not matching the color of the floor, because the floor is not all one
color. I have a brown carpet in my upstairs game room, which still has considerable
variation in coloring. Using color matching, which is simple, just won't cut it. We have to
match the texture, which can be described in terms of color, intensity (brightness), hue, and
texture roughness (a measure of how smooth the surface is).
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Let's try some quick experiments in this area with our image of the floor in my game room.
There are several steps involved when doing this for real. We start with the image we get
from the camera. In order to accelerate processing and make the most efficient use of
bandwidth, we set the native resolution of our camera – which has a full resolution of 1900
x 1200 – down to a mere 320 x 240. We are using a small computer, after all. We move that
to our image processing program, using OpenCV. Our first step is to blur the image using
the Gaussian blur function. The Gaussian blur uses a parabolic function to reduce the
amount of high frequency information in the image – it makes the image fuzzier by
reducing the differences between neighboring pixels. To get a sufficient amount of
blurring, I had to apply the blur function three times with a 5 x 5 convolution kernel. We
discussed convolution kernels in the chapter on neural networks. This smoothing makes
the colors more uniform, making the next steps easier.

We designate an area in front of the robot to be an area with a clear view of the floor. I used
a triangular area, but a square area works as well. I picked each of the colors found in the
triangle and grabbed all of the pixels that had a value with 15 units of that color. What does
15 units mean? Each color is encoded with an RGB value from 0 to 255. Our carpet color
brown is around 162, 127, 22 in red, green, and blue units. We select all the colors that are
within 15 units of that color, which, for red, is from 147 to 177. This selects the areas of the
image similar in color to our floor. Our wall is a very similar brown or beige, but
fortunately, there is a white baseboard that we can isolate so that the robot does not try to
climb the walls.

Color is not the only way to match pixels in our floor. We can also look for pixels with a
similar hue (shade of color, regardless of how bright or dark it is), pixels with the same
saturation (darkness or lightness of color), and colors with the same value, or luminosity
(which is the same result as matching colors in a monochrome image or grayscale image).

I compiled a chart illustrating this principle:
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The following diagram shows the ability of various selection attributes (color, hue,
saturation, and luminosity) as a tool to perform floor finding for our robot. The Hue
attribute seems to provide the best results in this test. I tested it on another image to be sure
it was working. It seems to be missing the baseboards.

We select all of the pixels that match our floor colors and paint them green – or, to be more
correct, we create a mask region in a copy of the image that has all of the pixels we want
designated somehow. We can use the number 10, for instance. We make a blank buffer the
size of our image, and turn all of the pixels in that buffer to 10 that would be the floor in the
other image.

Performing an erode function on the masked data can help in this regard. There may be
small holes or noise where one or two pixels did not match our carpet colors exactly – say
there is a spot where someone dropped a cookie. The Erode function reduces the level of
detail in the mask by selecting a small region – for example, 3 x 3, and setting the mask
pixel to 10 only if all of the surrounding pixels are also 10. This reduces the border of the
mask by one pixel and removes any small speckles or dots that may be one or two pixels
big. You can see from my diagram that I was quite successful in isolating the floor area with
a very solid mask, which I painted green for you.
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Given that we now know where the floor is, we paint the other pixels in our mask red, or
some number signifying that it is unsafe to travel there. Let's use 255:

My version of the floor finder algorithm has the steps illustrated here. Note that it does a very good job in this case of identifying where it is safe to drive. The projected paths are
required to prevent the robot from trying to drive up the wall. You get bonus points if you can identify the robot in the corner.

Our next step may take some thought on your part. We need to identify the areas that are
safe to drive. There are two cases in using this process that may cause us problems. We may
have an object in the middle of the floor by itself – like a toy – that has green pixels on
either side of it. We may also have a concave region that the robot can get into but not out
of. In the preceding diagram, you can see that the algorithm painted the wall pixels green,
since they match the color of the floor. There is a strong red band of no-go pixels where the
baseboard is. To detect these two cases, we project lines from the robot's position up from
the floor and identify the first red pixel we hit. That sets the boundary for where the robot
can drive. You can get a similar result if you trace upward from the bottom of the image
straight up until you hit a red pixel, and stop at the first one.
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Let's try this process again, but add some toys to the image so that we can be sure we are
getting the result we want:

That seems to be working well. We are able to find a good path to drive on. Keep in mind
that we are constantly updating the obstacle view with the Floor Finder and updating our
path as we drive.

Another trick we can use with this process is to use the fixed camera geometry to do
distance and size estimates. We have a "locked down" camera – it is fixed in position on the
robot, a set height from the floor, and, therefore, distance along the floor can be measured
from the y value of the pixels. We would need to carefully calibrate the camera by using a
tape measure and a box to match pixel values to distance along the same path line we drew
from the robot base to the obstacle. The distances will be non-linear and only valid out to
the distance the pixels continue to change.
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Since the camera is perpendicular to the floor, we get a certain amount of perspective effect
that diminishes to zero about 20 feet from the camera. My calibration resulted in the
following table:

Measurement in inches Distance from top Distance from bottom
0 1080 0
12 715 365
24 627 453
36 598.3 481.7
48 581.5 498.5
60 571.8 508.2
72 565 515

The image shows the technique for measuring distance in the robot camera field of view.
The object is located four feet away from the robot base along the tape measure. Note that
the robot easily sees its own treads in the foreground. TinMan uses a 180-degree fisheye
lens on an HD-capable web camera. 
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One thing to watch out for are narrow passages that the robot will not fit into. We can
estimate widths based on distance and pixels. One technique used by ROS is to put a
border around all the obstacles equal to 1/2 the width of the robot. If there are obstacles on
both sides, then the two borders will meet and the robot will know it does not fit.

Neural networks
How about this? We use a neural network to classify the images from our camera. We drive
the robot around, and take a picture about four times a second. We record what the robot is
doing at each picture – going forward, turning right, turning left, or backing up. We use
that information to predict the robot's motion path given the image. We make a
convolutional neural network, with the camera image as the input and four outputs – go
forward, go left, go right, and back up. This has the advantage of avoiding obstacles and
hazards automatically. When we get to the stairs (remember I have stairs going down in my
game room that would damage the robot), the robot will know to turn around, because that
is what we did in training. We are teaching the robot to navigate the room by example.

You may be yelling at the book at this moment (and you should be) saying What about the
toys? Unless, of course, you are following my thought process and thinking to yourself, Oh,
that is why we just spent all that time talking about floor finder!. The neural network approach
will get us around the room, and avoid the hazards and furniture, but will not help the
robot to avoid toys, which are not in the training set. We can't put them in this training set
because the toys are never in the same place twice. We will use the floor finder to help
avoid the toys. How do we combine the two? The neural network provides the longer
range goal to the robot, and the floor finder modifies that goal to avoid local, short-range
objects. In our program, we evaluate the neural network first and then then floor finder to
pick a clear route.

On that theme, we are also going to pull another trick for training our robot. Since our floor
surface is subject to change, and may be covered with toys, we will leave that part out of
the training images. Before sending the image to the neural network, we'll cut the image in
half and only use the top half.
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Since our camera is fixed and level with the floor, that gives us only the upper half of the
room to use for navigation. Our image is a 180-degree wide angle, so we have a lot of
information to work with. This should give us the resiliency to navigate under any
conditions:

Our second problem is locating the toy box. For that, we create a new training set of images.
We start the robot in various random locations, and then simply drive to the toy box. We
use exactly the same process we used before for navigation – we are creating a training set
that tells the robot how to get to the toy box. The trick is to get a good sample of every
possible starting location. We do have a bit of a break – if a point is already on one path, we
don't need to cover it again. In other words, all points that are included in another path
don't need to be repeated. We still want to have at least 1,000 images to train from both sets
of images – the one that explores the room, and the set that drives to the toy box.

I created a simple program that just lets the operator drive the robot with a joystick, and
takes a snapshot once a second. Each frame is labeled by simply looking at the value for the
cmd_vel topic. If the angular velocity Z term (angular.z) is positive, we are turning right. If
it is negative, we are turning left, and if the term is zero (you guessed it), we are driving
straight ahead. I created an independent program that works with the camera and stores a
snapshot whenever it receives a TAKE PIC LEFT/RIGHT/CENTER command on the ROS
topic syscommand. These programs will be on the GitHub site for the book – I'm not going
to include them here due to space limitations. We put each category of picture it its own
subdirectory.
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You can think of the neural network as working like this: We present an image to the neural
network. It selects features from that image, and then selects the images that are most like
the features in the image provided. It takes the matching labels from those training images,
and produces a number of possible outputs – right, left, straight – that matched with the
most features.

Processing the image
Now we have several steps to take before we can present our data to the neural network for
training. Our camera on the robot has way too much resolution for what we need for the
network, and we want to use the minimum amount of data in the neural network we can
get away with:
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Our first step is to downsample the image to 320 x 200. We cut the image in half, and keep
only the top half, which eliminates the floor from our consideration. We resize the
rectangular image to 244 x 244, which is an appropriate size for our neural network to
process. We convert the image to black and white, so that we only have one channel to
process.

Our next step is to equalize the image, to take the entire range of possible values. The raw
output of the camera contains neither pure white (255) nor pure black (0). The lowest value
may be 53 and the highest, 180, for a range of 127. We scale the grayscale values by
subtracting the low (53) and multiplying by the scale factor (127/255). This expands the
range of the image to the full scale, and eliminates a lot of the variation in lighting and
illumination that may exist. We are trying to present consistent data to the neural network.

The next step is to perform a Gaussian blur function on the data. We want to reduce some
of the high frequency data in the image, to smooth out some of the edges. This is an
optional step, and may not be necessary for your environment. I have a lot of detail in the
robot’s field of view, and I feel that the blur will give us better results. It also fills in some of
the gaps in the grayscale histogram left by the equalization process in our previous step,
which you can see in the diagram.

We also have to normalize the data to reduce the scale from 0-255 to 0-1. This is to satisfy
the artificial neural network's input requirements. To perform this operation, we just divide
each pixel by 255. We also convert the data from the OpenCV image format to a NumPy
array.

Our neural network is a nine-layer convolutional neural network very similar to the
toy/not toy detector we made before. However, in our final step, rather than being a binary
output determined by a binary classifier, we will use a Softmax classifier with three outputs
– forward, left, or right turns. We can actually make more categories if we want to, and
have easy right and hard right turns rather than just one level of turns. We could even add a
"back up" category, but let's try with the simple model first, and have three outputs.
Remember that the number of output categories must match our training set labels exactly.

Our CNN has nine layers. The first six are pairs of convolution networks with max pooling
layers in between. This lets the network deal with incrementally larger detail in the image.
The final two layers are fully connected with ReLU (Rectifier Linear Units) activations.
Remember, that ReLU only takes the positive values from the other layers. Our final layer is
a Softmax classifier with three outputs:
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Like any other neural network training tasks, we have to split the input data into training
sets and validation sets. We’ll use 80% of our data on training and 20% on validation. We
really can't use a process that sweetens the data by duplicating images with random
rotations – as we did with the toy recognition program, since we are not just recognizing
images, but using them for direction. Changing rotations would mess up our directions.
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Training the neural network for navigation
Let's put our training program together here. We need to have collected our training data,
by driving the robot around and recording our driving movements. This separated our data
into three sets – left turn, right turn, and go straight. We have our training images in three
subfolders to match our labels. We read in our data, associate it with the labels, and pre-
process the data to present it to the neural network:

I'm doing the training runs on my desktop computer, not on the
Raspberry Pi. We’ll deploy on the Raspberry Pi later with our fully trained
networks.

# -*- coding: utf-8 -*-
 """
 CNN based robot navigation – TRAINING program
 @author: Francis Govers
 """

This program was partially inspired by Adrian Rosebrock's pyImageSearch blog and by the
paper Deep Obstacle Avoidance by Sullivan and Lawson at the Naval Research Lab. Here are
the imports that we need for this program – there are quite a few:

# import the necessary packages
 from keras.preprocessing.image import ImageDataGenerator
 from keras.optimizers import Adam
 from sklearn.model_selection import train_test_split
 from keras.preprocessing.image import img_to_array
 from keras.utils import to_categorical
 import matplotlib.pyplot as plt
 import numpy as np
 import cv2
 import os

from keras.models import Sequential
 from keras.layers.convolutional import Conv2D
 from keras.layers.convolutional import MaxPooling2D
 from keras.layers.core import Activation
 from keras.layers.core import Flatten
 from keras.layers.core import Dense
 from keras import backend as K
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Here is the setup for the convolutional neural network. We have three convolution layers,
each followed by a maxpooling layer. Remember that each maxpooling layer will reduce
the resolution of the image considered by the network by half, which is ¼ the data, because
we halve the width and the height.

The convolution layers use the ReLU activation function, since we don't want any negative
pixel values.

After the convolution layers, we have two fully connected layers with 500 neurons each.
The final layer is our three neuron output layers, with a Softmax classifier that will output
the percentage of each classification (left, right, center). The output will look like (0.8,
0.15, 0.05), with three numbers that add up to 1.

This is a generic convolution network class that can be reused for other things, as it is a
general multi-class image classification CNN:

class ConvNet():
 @staticmethod
 def create(width, height, depth, classes):
 # initialize the network
 network = Sequential()
 inputShape = (height, width, depth)

 # first set of CONV => RELU => POOL layers
 network.add(Conv2D(50, (10, 10), padding="same",
 input_shape=inputShape))
 network.add(Activation("relu"))
 network.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# second set of CONV => RELU => POOL layers
 network.add(Conv2D(50, (5, 5), padding="same"))
 network.add(Activation("relu"))
 network.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# third set of CONV => RELU => POOL layers
 network.add(Conv2D(50, (5, 5), padding="same"))
 network.add(Activation("relu"))
 network.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

# Fully connected ReLU layers
 network.add(Flatten())
 network.add(Dense(500))
 network.add(Activation("relu"))

 network.add(Dense(500))
 network.add(Activation("relu"))
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# softmax classifier
 network.add(Dense(classes))
 network.add(Activation("softmax"))

# return the constructed network architecture
 return network

 Now we setup our learning regime. We will run 25 training runs, with a
learning rate of 0.001. We set a batch size of 32 images per batch, which
we can reduce if we end up running out of memory.

 EPOCHS = 25
 LEARN_RATE = 1e-3
 BATCH = 32 # batch size - modify if you run out of memory

This section loads all of our images. We set the path here where the images reside. We put
the three types of training images in folders called left, right and center. We will put
all the images into a list called Images and likewise put the labels in an eponymous list:

print ("Loading Images")
 images=[]
 labels=[]
#location of your images
 imgPath = "c:\users\fxgovers\documents\book\chapter7\train\"
 imageDirs=["left","right","center"]

for imgDir in imageDirs:
 fullPath = imgPath + imgDir
 # find all the images in this directory
 allFileNames = os.listdir(fullPath)
 ifiles=[]
 label = imgDirs.index(imgDir) # use the integer version of the label
 # 0= left, 1 = right, 2 = center
 for fname in allFileNames:
 if ".jpg" in fname:
 ifiles.append(fname)



Avoiding the Stairs Chapter 7

[ 215 ]

Now you can refer back to my diagram of the process we will go through to pre-process the
images. We will cut the image in half and just process the upper half of the picture. Then,
we reduce the image to 244 x 244 to fit into the neural network, which needs square images.
We will convert the image to grayscale (black and white) since we don't need to consider
color, just shapes. This cuts our data down further. We will equalize the image, which
rescales the range of gray colors to fill the whole area from 0 to 255. This evens out the
illumination and sets the contrast:

 # process all of the images
 for ifname in ifiles:
 # load the image, pre-process it, and store it in the data list
 image = cv2.imread(ifname)
 # let's get the image to a known size regardless of what was collected
 image = cv2.resize(image, (800, 600))
 halfImage = 800*300 # half the pixels
 # cut the image in half -we take the top half
 image = image[0:halfimage]
 #size the image to what we want to put into the neural network
 image=cv2.resize(image,(224,224))
 # convert to grayscale
 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 #equalize the image to use the full range from 0 to 255
 # this gets rid of a lot of illumination variation
 image = cv2.equalizeHist(image)

This is the Gaussian blur. This is an optional item – you may want to remove it if your room
does not have a lot of detail. My game room has lots of furniture, so I think reducing the
noise will improve performance:

# gaussian blur the image to remove high freqency noise
 # we use a 5x kernel
 image = cv2.GaussianBlur(img,(5,5),0)

We convert the image to a NumPy array of floats scaled from 0 to 1, instead of a set of
integers from 0 to 255. We also put the number associated with the labels (left = 0,
right=1, center = 3) into the matching label NumPy array:

# convert to a numpy array
 image = img_to_array(image)
 # normalize the data to be from 0 to 1
 image2 = np.array(image, dtype="float") / 255.0
 images=images.append(image)
 labels.append(label)
labels = np.array(labels) # convert to array
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We split the data into two parts – a training set that we use to train the neural network, and
the testing set that we validate the training set with. We’ll use 80% of the image samples for
training and 20% for testing:

# split data into testing data and training data 80/20
 (trainData, testData, trainLabel, testLabel) = train_test_split(data,
 labels, test_size=0.20, random_state=42)

We have to convert the labels to be a tensor, which is just a particular data format:

# convert the labels from integers to vectors
 trainLabel = to_categorical(trainLabel, num_classes=3)
 testLabel = to_categorical(testLabel, num_classes=3)

Now, we build our actual neural network by instantiating the ConvNet object that actually
builds our CNN in Keras. We set up the optimizer, which is ADAM, a type of adaptive
gradient descent. ADAM stands for Adaptive Moment Estimation. ADAM acts against the
error gradient like a heavy ball with friction – it has some momentum, but does not pick up
speed quickly:

 # initialize the artificial neural network
 print("compiling CNN...")
 cnn = ConvNet.build(width=224, height=224, depth=1, classes=3)
 opt = Adam(lr=LEARN_RATE, decay=LEARN_RATE / EPOCHS)
 model.compile(loss="categorical_crossentropy", optimizer=opt,
 metrics=["accuracy"])

We train the network in this step. This will take quite some time to complete. We want the
training to come out somewhere above 80%. If not, add some epochs to see where the
learning curve levels off. If that still does not do the trick, you need more training images.
I'm aiming for 1,000 images in each set, which is roughly 50 minutes of driving the robot
around:

# train the network
 print("Training network. This will take a while")
 trainedNetwork = model.fit_generator(aug.flow(trainImage, trainLabel,
batch_size=BATCH),
 validation_data=(testImage, testLable), steps_per_epoch=len(trainImage) //
BATCH,
 epochs=EPOCHS, verbose=1)
# save the model to disk
 print("Writing network to disk")
cnn.save("nav_model")

We are all done, so we save the model we created to disk so that we can transfer it to the
Raspberry Pi.
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Now make your second training set of driving from random locations to the toy box. Pick
random spots and use the joystick to drive the robot to the toy box from each. Keep going
until you have 1,000 images or so. Run these through the training program and label this
model toy box_model by changing the last line of the program:

cnn.save(“toybox_model”)

Convolutional neural network robot control
implementation
This is great – we have built and trained our neural network. Now we need to put it to use
to drive the robot around. We need to combine a program that sends out ROS commands
with our neural network classification process. I added some commands through the ROS
syscommand topic, which I use for non-periodic commands to my robots. Syscommand just
publishes a string, so you can use it for just about anything:

# -*- coding: utf-8 -*-
 """
 ROS Neural Network based Navigation Program
 @author: Francis Govers
 """
 # navigation program
 # using neural network with ROS interface

We start with our imports from ROS, from OpenCV2, and from Keras, as we will be
combining functions from all three libraries:

import roslib
import sys
import rospy
import cv2
from std_msgs.msg import String
from sensor_msgs.msg import Image
from geometry_msgs.msg import Twist
from cv_bridge import CvBridge, CvBridgeErrorfrom keras.preprocessing.image
import img_to_array
from keras.models import load_model
import numpy as np
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This first section is the ROS interface. I like to encapsulate the ROS interface this way, with
all of the publish and subscribe in one place. We have several topics to set up – we need to
be able to send and receive commands on the syscommand topic. We will be publishing
commands to the robot's motors on the cmd_vel topic. We receive images from the camera
on the image_topic. We use callbacks to handle the event when a topic is published
elsewhere on the robot. These can be called at any time. We have more control when we
publish to a topic, which is handled using the pubTwist and pubCmd methods. I added
flags to received commands and images so that we don't accidentally process the same
image or command twice:

class ROSIF():
 def __init__(self):
 self.bridge = CvBridge()
 self.image_sub = rospy.Subscriber("image_topic",Image,self.callback)
 self.cmd_sub = rospy.Subscriber("syscommand",String,self.cmdCallback)
 self.cmd_pub = rospy.Publisher("syscommand",String,queue_size=10)
 self.twist_pub = rospy.Publisher("cmd_vel",Twist,queue_size=10)
 self.newImage = False
 self.cmdReceived=""

 def callback(self):
 try:
 self.image = self.bridge.imgmsg_to_cv2(data, "bgr8")
 self.newImage = True
 except CvBridgeError as e:
 print(e)
def cmdCallback(self,data):
 # receieve a message on syscommand
 self.cmdReceived = data.data

 def getCmd(self):
 cmd = self.cmdReceived
 self.cmdReceived = "" # clear the command so we dont do it twice
 return cmd

This function is the means for the rest of the program to get the latest image from the
camera system, which is published on ROS on the image_topic. We grab the latest image
and set the newImage variable to False, so that we know next time whether we are trying
to process the same image twice in a row. Each time we get a new image, we set newImage
to True, and each time we use an image, we set newImage to False.

 def getImage(self):
  if self.newImage=True:
  self.newImage = False # reset the flag so we don't process twice
  return self.image
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  self.newImage = False
  # we send back a list with zero elements
  img = []
  return img

This section sends speed commands to the robot to match what the CNN output predicts
for us to do. The output of the CNN is one of three values: left, right, or straight
ahead. These come out of the neural network as one of three enumerated values – 1, 2, or 3.
We convert these back to left, right, and center values, and then use that information to
send a motion command to the robot. The robot uses the Twist message to send motor
commands. The Twist data message is designed to accommodate very complex robots,
quadcopters, and omni wheel drive systems that can move in any direction, so it has a lot of
extra values. We send a Twist.linear.x command to set the speed of the robot forward
and backward, and a Twist.angular.z value to set the rotation, or turning of the base. In
our case, a positive angular.z rotation value goes to the right, and a negative value to
the left. Our last statement publishes the data values on the cmd_vel topic as a Twist
message.

# publishing commands back to the robot
 def pubCmd(self,cmdstr):
 self.cmd_pub.publish(String(cmdstr)):

 def pubTwist(self,cmd):
 if cmd == 0: # turn left
 turn = -2
 speed = 1
 if cmd==1:
 turn = 2
 speed = 1
 if cmd ==3:
 turn=0
 speed = 1
 # all stop
 if cmd==4:
 turn = 0
 speed = 0
 cmdTwist = Twist()
 cmdTwist.linear.x = speed
 cmdTwist.angular.z = turn
 self.twist_pub.publish(cmdTwist)
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We create a function to do all of our image processing with one command. This is the exact
replica of how we pre-processed the images for the training program – just as you might
think. You may think it a bit strange that I scale the image up, only to then scale it down
again. The reason for this is to have detail for the vertical part of the image. If I scaled it
down to 240 x 240 and then cut it in half, I would be stretching pixels afterward to get it
square again. I like having extra pixels when scaling down. The big advantage of this
technique is that it does not matter what resolution the incoming image is at – we will end
up with the correctly sized and cropped image.

The other steps involve converting the image to grayscale, performing an equalization on
the contrast range, which expands our color values to fill the available space, and
performing a Gaussian blur to reduce noise. We normalize the image for the neural
network by converting our integer 0-255 grayscale values to be floating point values from 0
to 1:

def processImage(img):
 # need to process the image
 image = cv2.resize(image, (640, 480))
 halfImage = 640*240 # half the pixels
 # cut the image in half -we take the top half
 image = image[0:halfimage]
 #size the image to what we want to put into the neural network
 image=cv2.resize(image,(224,224))
 # convert to grayscale
 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 #equalize the image to use the full range from 0 to 255
 # this gets rid of a lot of illumination variation
 image = cv2.equalizeHist(image)
 # gaussian blur the image to remove high freqency noise
 # we use a 5x kernel
 image = cv2.GaussianBlur(img,(5,5),0)
 # convert to a numpy array
 image = img_to_array(image)
 # normalize the data to be from 0 to 1
 image2 = np.array(image, dtype="float") / 255.0
 return image2

That is all of the setup. Now we go into the main program. We have to initialize our ROS
node so that we can talk to the ROS publish/subscribe system. We create a variable, mode,
that we use to control what branch of processing to go down. We make an interface to
allow the operator to turn the navigation function on and off, and to select between normal
navigation and our toy box seeking mode.
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In this first section, we will load both neural network models that we trained before:

# MAIN PROGRAM
ic = image_converter()
rosif = ROSIF()
rospy.init_node('ROS_cnn_nav')
mode = "OFF"
# load the model for regular navigation
navModel = load_model("nav_model")
toyboxModel = load_model("toybox_model")

This section begins the processing loop that runs while the program is active. Running
rospy.spin() tells the ROS system to process any message that may be waiting for us.
Our final step is to pause the program for 0.02 seconds to allow the Raspberry Pi to process
other data and run other programs:

while not rospy.is_shutdown():
 rospy.spin()
 time.sleep(0.02)

Summary
This chapter introduced some concepts for robot navigation in an unstructured
environment, which is to say, in the real world, where the designers of the robot don't have
control over the content of the space. We started by introducing SLAM, along with some of
the strengths and weaknesses of map-based navigation. We talked about how Roomba
navigate, by random interaction and statistical models. The method selected for our toy-
gathering robot project, TinMan, combined two algorithms that both relied mostly on
vision sensors. 

The first was the floor finder, a technique used by the winning entry in the DARPA Grand
Challenge. The FFA (Floor Finder Algorithm) uses the near vision (next to the robot) to
teach the far vision (away from the robot) what the texture of the floor is. We can then
divide the room into things that are safe to drive on, and things that are not safe. This deals
with our obstacle avoidance. Our navigation technique used a trained neural network to
identify the path around the room by associating images of the room from the horizon up
(the top half of the room) with directions to travel. This also served to teach the robot to
stay away from the stairs. We discarded the bottom half of the room from the image for the
neural network because that is where the toys are. We used the same process to train
another neural network to find the toy box.
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This process was the same as before, but the training images were all labeled with the path
from that spot to the toy box. This combination gave us the ability to teach the robot to find
its way around by vision, and without a map, just like you do. 

Questions
Regarding SLAM, what sensor is most commonly used to create the data that1.
SLAM needs to make a map?
Why does SLAM work better with wheel odometer data available?2.
In the Floor Finder algorithm, what does the Gaussian blur function do to3.
improve the results?
The final step in the floor finder is to trace upward from the robot position to the4.
first red pixel. In what other way can this step be accomplished?
Why did we cut the image in half horizontally before doing our neural network5.
processing?
What advantages does using the neural network approach provide that a6.
technique such as SLAM does not?
If we used just a random driving function instead of the neural network, what7.
new program or function would we have to add to the robot to achieve the same
results?
How did we end up avoiding the stairs in the approach presented in the chapter?8.
Do you feel this is adequate? Would you suggest any other means for
accomplishing this task?

Further reading
Sullivan and Lawson. "Deep Obstacle Avoidance" Naval Research Labs
Rosebrock, Adrian. PyImageSearch Blog. Retrieved
at https://www.pyimagesearch.com
Bakker, Indra den. Python Deep Learning Cookbook. Packt Publishing, 2017
Joshi, Prateek. Artificial Intelligence with Python. Packt Publishing, 2017.
Zocca, V, Spacagna, G, Slater, D, and Roelants, P. Python Deep Learning. Packt
Publishing,
2017



8
Putting Things Away

Imagine that you have to get to Grandma’s house, which, according to legend, is over the
hills and through the woods, and two states away.  That would be two countries away if you
live in Europe.  To plan your trip, you can start in one of two ways. Ignoring the fact that
Google has taken away most map reading and navigation skills from today’s youth, you
would get out a map and either:

Start at your house and try to find the roads that are closest to a straight line to
Grandma’s house
Start at Grandma’s house and try to find roads leading to your home

From either direction, you will find that the road or path you seek forks, intersects,
changes, meanders, and may even come to a dead end.  Also, all roads are not created
equally – some are bigger, with higher speed limits, and some are smaller, with more stop
signs.  In the end, you pick your route by the combination of decisions that results in the
lowest cost.  This cost may be in time – how long to get there.  It may be in distance – how
many miles to cover.  Or it may be in monetary terms – there is a toll road that charges an
extra fee.

We will be discussing several ways to solve problems involving choosing a chain of
multiple decisions where there is some metric – such as cost – to help us select which
combination is somehow the best.

There is a lot of information here that is widely used in robotics, and we will be expanding
our horizons a bit beyond our toy-grabbing robot to look at robot path planning and
decision making in general.  These are critical skills for any robotics practitioner, so they are
included here.

This chapter covers the basics of decision-making processes for artificial intelligence where
the problem can be described in terms of either a classification problem (determining if this
situation belongs to one or more groups of similar situations) or a regression problem
(fitting or approximating a function that can be a curve or a path).
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We will be applying the following machine learning or artificial intelligence techniques:

Decision trees and random forests
Path planning, grid searches, and the A* (A-Star) algorithm
Dynamic planning with the D* (D-Star) technique
Expert systems and knowledge bases

Finally, we will be applying two approaches to our robot problem – an expert system and
random forests.

At first glance, the concepts we will cover in this section, namely path planning, decision
trees, random forests, grid searches, and GPS route finders, don’t have much in common,
other than all being part of artificial intelligence computer algorithms. From my point of
view, they are all basically the same concept and approach problems in the same way.

Technical requirements
We will be using PyKE – the Python Knowledge Engine – as our expert system.  It can be
installed from:

https://sourceforge. net/ projects/ pyke/ ?source= directory

The other tool you should have already installed from earlier chapters – Scikit_Learn:

http://scikit-learn. org/ stable/ developers/ advanced_ installation. html

Or if you have the pip installer in Python:

pip install –U scikit-learn

Check out the following video to see the Code in Action:
http://bit.ly/2PN1soo
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Task analysis
Our task in this chapter is one that you may have been waiting for, if you have been
keeping score since Chapter 3, where we discussed our storyboards.  We need to choose a
way to pick up the toys with the robot arm.  This involves picking a proper orientation for
the wrist joint.  Since our toys are randomly placed, by those experts at random, my
grandkids, the toy may be in any orientation relative to the floor, and at any angle relative
to the robot.  We need some method for observing the toy with the robot and appropriately
orienting the robot’s hand to grasp the toy. 

Decision trees
The concept of a decision tree is fairly simple.  You are walking down the sidewalk, and
come to a corner.  Here you can go right, turn left, or go straight ahead. That is your
decision.  After making the decision – turn left – you now have different decisions ahead of
you than if you turned right. Each decision creates paths that lead to other decisions:

In this decision tree, I decide what to have for breakfast on any given morning.  Should I
make something, or get a prepared food out of the pantry?   Hot or cold?  Healthy or not?
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Now as we are walking down the sidewalk, we have a goal in mind.  We are not just
wandering around aimlessly; we are trying to get to some goal.  One or more combinations
of decisions will get us to the goal.  Let’s say the goal is to get to the grocery store to buy
bread.  There may be four or five paths down sidewalks that will get you to the store, but
each path may be different in length, or may have different paths.  If one path goes up a
hill, that may be harder than going the level path.  Another path may have you wait at a
traffic light, which costs time.  We assign a value to each of these attributes, and generally
want to pick the path with the lowest cost, or the highest reward, depending on the
problem.

The general problem with decision tree type problems is one of exponential growth. Let’s
consider a chess game, a favorite problem set for artificial intelligence.  We have 20 choices
for an opening move (eight pawns and two knights, each with two possible moves).  Each
of these 20 moves has 20 possible next moves, and so on.  So the first move has 20 choices,
the second moves has 400 choices.  The third move is 197,281 choices! We soon have a very,
very large decision tree as we try to plan ahead.  We can call each of these possible
decisions a branch, the state we are in after making the decision is a leaf, and the entire 
conceptual structure is a decision tree.

Let me emphasize one very important concept for this chapter.

The secret to working with decision trees is to ruthlessly prune the
branches so you consider as few decisions as possible

There are two ways to deal with a decision tree (actually, there are three – see if you can
guess the third before I explain it…). 

The first way is to start at the beginning, and work outwards towards your goal.  You may
come to a dead end, which means back-tracking or possibly starting over.  We are going to
call this forward chaining (chain, as we are making a path of links from leaf to leaf in the
tree).

The other way is to start with the goal and work down the tree towards the start. This is
backward chaining.  The cool thing about backward chaining is that there are lot few
branches to traverse.   You can guess that a major problem with backward chaining is you
have to know what all the leaves are in advance before you can use it.  In many problems,
such as a grid search or a path planner, this is possible.  It does not work in chess, with an
exponentially massive tree.    

The third technique?  No one says we can’t do both – we could combine both forward and
backward chaining and meet somewhere in the middle.
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The choice of decision tree shapes, chaining techniques, and construction are based on:

What data is available?
What information is known or unknown?
How is the path scored or graded?

There are also different kinds of solutions for path planning and decision trees.  If you were
given unlimited resources, the biggest computer, perfect knowledge in advance, and are
willing to wait, then you can generate an optimal path or solution. 

One of my lessons learned from years of developing practical AI-based robots and
unmanned vehicles, is that any solution that meets all of the criteria or goals is an
acceptable and usable solution, and you don’t have to wait and continue to compute the
perfect or optimal solution.  Often then, a “good enough” solution is found in 1/10 or even
1/100 the time of an optimal solution, because an optimal solution requires an exhaustive
search that may have to consider all possible paths and combinations.  

What do we mean by pruning?
Sometime in the computer business, we have to make metaphors to help explain to people
how something works.  You may remember the “desktop metaphor” that Apple and later
Windows adopted to help explain operating systems.  Sometimes we just run those
metaphors into the ground, such as the trash can to delete files, or “Clippy”, the paper clip
assistant. 

You may feel that I’ve gone off the metaphorical deep end when I discuss pruning your
decision trees.  What’s next, fertilizer and tree spikes?  Actually, pruning is a critical concept
in decision tree type systems.  Each branch in your tree can lead to hundreds or thousands
of sub-branches.  If you can decide early that that branch is not useful, you can cut it out
and you don’t have to process any of the branches or leaves in that branch.  The quicker
you can discover that a path is not getting you to your goal, you reduce the time and effort
involved in creating a solution, which is a real-time system like a robot, or a self-driving
car, or autonomous aircraft, which can spell the difference between usable and worthless.
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Let’s run through a quick example.  One great use for a decision tree process is FDIR –
Fault Detection, Isolation, and Recovery.  This is a typical function of a robot.  Let’s make a
decision tree for FDIR in the case of our Tinman robot not moving.  What automated steps
could we take to detect the fault, isolate the problem, and then recover?

One technique we can use is root cause analysis, where we try to figure out our problem by
systematically listing and then eliminating (pruning) causing factors and see if the
symptoms match.

We will use a special form of decision tree called a Fishbone diagram, or Ishikawa
diagram.  This diagram is named after its inventor, Professor Kaoru Ishikawa from the
University of Tokyo. In his 1968 paper, Guide to Quality Control, the Fishbone diagram is 
named because of its shape, which has a central spine and ribs jutting off on either side.  I
know, the metaphors are getting deep when we have a decision “tree” in the shape of a
“fish”. 

Now we begin to have a problem. Remember that in a robot, a problem is a symptom, not a
cause. Our problem is: the robot is not moving.  What can cause this problem?  Let’s make a
list:

The drive system
The software
The communications system
The battery and wiring
The sensors
Operator error

Now for each of these, we subdivide our branches into smaller branches.  What parts of the
drive system can cause the robot to not be able to move?  The wheels could be stuck.  The
motors could not be getting power.  The tracks could have fallen off.  The motor driver
could have overheated.

Here is my Fishbone diagram for the problem of the robot not moving:
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For each of these, you can consider what would be the symptoms of that problem being the
cause?  If the tracks have fallen off, the drive wheels would still be turning, but the tracks
would not be moving.  For the robot not to move, both tracks would have to be affected.  If
we can check any of these facts out, we can prune or eliminate the tracks from our diagram
or decision tree.  We check the tracks, and the drive wheels are not moving, so the tracks
are not the cause. We prune that branch.

How about the battery?  The battery can be in need of charging (dead battery), the battery
could be disconnected, or a power wire could be loose.  We check the battery voltage – that
is OK, prune that leaf off the tree.   We check the wiring – nothing loose.  The battery
branch gets pruned.
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And so we go on until we have something that either matches all our symptoms, or is the
last one left. Let’s say the last branch was communications.  Now what?  We ask, “What
things in communications would cause us not to move?” Our first answer is, motor
command messages not getting through to our robot over the network.  We check the log,
and see indeed, no motor messages are present (cmd_vel, in our case).  There is our
problem, what caused the problem?  The network could be broken (checked- no, network is
OK), the IP address could be wrong (no, that’s OK).  We look to see if any recent changes
were made to the control software, and indeed there were.  We revert to the previous
version, and see the robot moves.  There is our problem and we used decision trees to find
it.

So in this case, we solved our problem almost entirely by pruning branches and leaves off
our tree until only one path was left, or we arrived at our goal.

How can we prune branches in software?  We can look for dead ends.  Dead ends are
leaves – parts of the tree that end and have no future branches.  When we reach a dead end,
we can not only prune that leaf, but the parts of the path that exclusively lead to that
branch.  This would be a backward-chaining approach to pruning, as we start at the end
and work backward.

We can also see sections of the tree that are unused, or never referenced or called.  We can
remove entire sections in this manner.  This is forward pruning, because we are traversing
the tree in the forward direction, from the front to the back.

Self-classifying decision trees and AI tools
Up to this point we, the humans in the story, have been making these decision trees by
hand.  We have not even discussed how we write a program to allow the robot to use trees
to make decisions.  Wouldn’t it be a lot nicer if the computer was doing all the hard part of
making the tree, deciding the branches, and labeling the nodes instead of us?  That is
exactly what we will do in this section.
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Let’s consider the problem of classifying toys.  We may want to come up with a more
efficient robot, which sorts toys in some manner instead of just dumping them in a box. In
an ideal world, out of a population of 20 toys, we would have some characteristic that
divided the group evenly in half – 10 and 10.  Let’s say it is length – half of the toys are
under six inches long and half are over.  Then it would also be ideal if some other
characteristic divided each of those groups of 10 in half – to four groups of five.  Let’s say its
color – we have five red toys, five blue toys, five green toys, and five yellow toys.  Very nice
and organized.  You may recognize that we are doing what biologists do in classifying new
species – we are creating a taxonomy.  Now we pick another attribute that separates the
toys into even smaller groups – it might be what kind of toy it is, or what size wheels it
has.  I think you get the picture

Let’s look at an example.

Now what would be great is  if we could list all the toys, and all the attributes in a table,
and let the computer figure out how many groups and what kinds there are.  We could
create a table like this one:

Type Length Width Weight Color
Number
of
wheels

Noise Soft Material Eyes Toy Name

car 3 1 35 red 4 0 hard metal 0 HotWheels
car 3 1 35 orange 4 0 hard metal 0 HotWheels
car 3 1 35 blue 4 0 hard metal 0 HotWheels
car 3 1 35 blue 4 0 hard metal 0 HotWheels
car 3 1 35 white 4 0 hard metal 0 HotWheels
stuffed 5 5 50 white 0 0 verysoft fur 2 Plush 
stuffed 7 5 55 brown 0 0 verysoft fur 3 Plush 
action 2 4 80 grey 0 0 hard metal 0 slinky

build 2 2 125 wood 0 0 hard wood 0 wood block
2x2

build 2 2 75 wood 0 0 hard wood 0 wood block
triangle

build 4 2 250 wood 0 0 hard wood 0 wood block 
4x2

dish 3 3 79 blue 0 0 hard ceramic 0 teapot
aircraft 7 5 65 white 4 1 hard plastic 0 space shuttle
aircraft 13 7 500 green 8 1 hard plastic 0 Thunderbird 2
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car 5 1 333 yellow 6 1 hard metal 0 school bus
music 12 4 130 wood 0 2 hard wood 0 toy guitar

music 5 2 100 yellow 0 1 hard plastic 0 play
microphone

music 4 4 189 white 0 2 hard wood 0 toy drum

We have a problem we have to solve.  We will be using a decision tree classifier that is
provided with the Scikit-Learn Python package, called DecisionTreeClassifier.  This
program cannot use strings as input data.  We will have to convert all of our string data
into some sort of numeric figure.  Fortunately, the Scikit library people have provided us
with a function just for this purpose.  Actually, they have provided several encoding
functions that convert strings into numbers. The function we will use is called the
LabelEncoder. This function takes an array of strings and converts it into an enumerated
set of integers. 

We can take our first column, which has the type of the toy.  My nomenclature is toy = toy
car, stuffed = stuffed animal, aircraft = toy aircraft, and music = toy musical instrument.
Action is for action toys, and build stands for building toy (that is, blocks, Legos™, and so
on).  We’ll have to turn these into some sort of numbers.

The LabelEncoder will convert a column in our data table that is populated with strings.

The toy type column from data is shown in the following code:

['car' 'car' 'car
' 'car' 'car' 'stuffed' 'stuffed' 'action' 'build' 'build' 'build' 'dish'
'aircraft' 'aircraft' 'car' 'music' 'music' 'music']

It converts it to the label encoded toy type:

[3 3 3 3 3 6 6 0 2 2 2 4 1 1 3 5 5 5]

You can see that everywhere where it said car, we now have the number 3.  6 = stuffed,
0=action and so on.  Why the odd numbering?  The encoder first sorts the strings in
alphabetical order.

We are going to just dive right in from here to create a classification program.  I’ll explain
things along the way, so at least follow along with the code. 
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Here is our decision tree classifier program:

# decision tree classifier
# author: Francis X Govers III
#
# example from book "Artificial Intelligence for Robotics"
#

We can import our libraries we will be using.  There is an extra library called
graphviz that is useful for drawing pictures of decision trees.  You can install it with pip
install graphviz.  We are going to be using the Pandas package, which provides a lot of
data table handling tools:

from sklearn import tree
import numpy as np
import pandas as pd
import sklearn.preprocessing as preproc
import graphviz

Our first step is to read in our data.  I created my table in Microsoft Excel, and exported it as
a CSV (comma separated values) format.  This allows us to read in the data file directly
with the column headers. I print out the shape and size of the data file for reference.  My
version of the file has 18 rows and 11 columns.  The last column is just a note to myself on
the actual name of each toy. We will not be using the last column for anything. We are
building a classifier that will separate the toys by type:

toyData = pd.read_csv("toy_classifier_tree.csv")
print ("Data length ",len(toyData))
print ("Data Shape ",toyData.shape)

Now we can start building our decision tree classifier. We first build an instantiation of the
DecisionTreeClassifer object.  There are two different types of DTC (decision tree
classification) algorithms to chose from.  We are going to use Gini.  What is  Gini?  It took
quite a bit of digging, but the Gini coefficient was developed in 1912 by the Italian
statistician Corrado Gini in his paper, Variabilita e Mutabilita.  This coefficient, or index,
measures the amount of inequality in a group of numbers.  A zero value means all the
members of the group are the same.  For example, if we had a group of toy cars that were
all the same size and all red, then the Gini index of the group would be 0.  If the members
of the group are all different, then the Gini number is closer to 1. The Gini Index is 1 minus
the sum of the squares of the probability of an item being in that class.  We have four toy
cars out of 18 toys, so the probability of a toy car being in a group is 4/18 or 0.222.  The
decision tree will continue to subdivide classes until the Gini Index of the group is 0:

dTree = tree.DecisionTreeClassifier(criterion ="gini")
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We need to separate out the values in our data table. The data in the first column, which is
called column 0 (zero) in Python, are our classification labels.  We need to pull those out
separately, as they are used to separate the toys into classes. From our previous work with
neural networks, these would be our outputs or the label data we have used in other
machine learning processes. We will be training our classifier to predict the class of the toy
based on the attributes in the table (size, weight, color, and so on).  We use slicing to pull
the data out of the Pandas table.  Our Pandas data table is called toyData.  If we want the
entries in the table, we need to ask for toyData.values, which will be returned as a 2D
array: 

dataValues=toyData.values[:,1:10]
classValues = toyData.values[:,0]

This is our label encoder that we talked about – it will be converting the strings in our data
into numbers.  For example, colors like “red”, “green”, and “blue” will be converted to
numbers like 0,1, and 2.  The first item to be encoded is the list of class values that we use to
label the data.  We use the LableEncoder.fit() function to come up with the formula for
converting strings to numbers, and then the LabelEncoder.transform() function to
apply it.  Note that fit() does not produce an output.  Finally, we need to make the string
text and the list of encoded numbers match up. 

What the LabelEncoder will do is sort the strings alphabetically and start numbering them
from "A", ignoring any duplicates.  If we put in "car, car, car, block, stuffed, airplane" we
will get out "2,2,2,1,3,0" as the encoding, and we will have to know that airplane = 0, block =
1, car = 2, and stuffed = 3.  We need to generate a "decoder ring" to match up the numbers
and text descriptions that looks like "airplane, block, car, stuffed".  We duplicate the
LabelEncoder function by using two functions on our list of string-formatted class names. 
We use the set() function to eliminate duplicates and the sorted() function to sort in the
correct order. Now our class name table and the enumerations generated by
LabelEncoder match.  We’ll need this later:

lencoder = preproc.LabelEncoder()
lencoder.fit(classValues)
classes = lencoder.transform(classValues)
classValues = list(sorted(set(classValues)))
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To make it easy on ourselves, I created a function to automatically find out which columns
in our data are composed of strings, and to convert those columns into numbers.  We start
by building an empty list to hold our data.  We will iterate through the columns in our data
and look to see if the first data value is a string. If it is, we will convert that whole column
into numbers using the label encoder object (lecoder) we created.  The label encoding
process has two parts.  We call lecoder.fit() to see how many unique strings we have in
our column and to create a number for each one.  Then we use lecoder.transpose to
insert those numbers into a list:

newData = []
for ii in range(len(dataValues[0]))
line = dataValues[:,ii]
    if type(line[0])==str:
        lencoder.fit(line)
        line = lencoder.transform(line)

Now we put all of the data back into the newData list but there is a problem – we have
turned all our columns into rows!  We use the transpose function from numpy to correct
this problem.  But wait!  We don’t have an array anymore, as we turned it into a list so we
could take it apart and put it back together again.  (You can’t do that with a numpy array –
believe me, I tried): 

    newData.append(line)
newDataArray = np.asarray(newData)
newDataArray = np.transpose(newDataArray)

Now all of our preprocessing is done, so we can finally call the real
DecisionTreeClassifer.  It takes two arguments: first the array of our data values, and
then the array of class types that we want the decision tree to divide our groups into.  The
DecisionTreeClassifier will determine what specific data from the table is useful for
predicting what class one of our toys fits into: 

dTree = dTree.fit(newDataArray,classes)

That’s it – one line.  But wait –we want to see the results.  If we just try and print out the
decision tree, we get the following:

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max_features=None, max_leaf_nodes=None,
            min_impurity_split=1e-07, min_samples_leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            presort=False, random_state=None, splitter='best')
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That does not tell us anything; that is a description of the DecisionTreeClassifier
object.  (It does show us all of the parameters we can set, which is why I put it here.) So,
there is a package called graphviz that is very good at printing decision trees.  Let’s use
that.  We can even pass our column names and class names into the graph. The final two
lines output the graph as a .pdf file and stores it on the hard drive:

c_data=tree.export_graphviz(dTree,out_file=None,feature_names=toyData.colum
ns,                             class_names=classValues, filled = True,
                             rounded=True,special_characters=True)
graph = graphviz.Source(c_data)
graph.render("toy_graph_gini")

And here is the result:
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We can quickly check our solution by looking at our input table and seeing if the numbers
line up.  We should see:

Six toy cars
Three building blocks
One dish
One action toy
Two stuffed animals
Three musical instruments
Two toy airplanes

And that is indeed the case.

The other number to look at is the Gini Index.  The top-level box shows that the Index for
the entire group has an overall value of .8166, which is close to 1 and shows a high degree
of heterogeneity.  As we progress down the tree, the Gini numbers get smaller and smaller
until reaching 0 at each of the identified groups, which shows that the items in those groups
share all of the same attributes.   

What does this graph tell us?  First of all, we can separate out the toy cars by only one
attribute – width.  Only the toy cars are less than 1.5 inches wide (38 mm).  We don’t need
to look at color, or weight, or anything other than width to separate out all the toy cars from
everything else. We see we have five toy cars out of our 17 toys, so we have 12 left to
classify.  Our next division comes in length.  We have seven toys less than 4.5 inches long
(11 cm) and five that are longer. Of the group of five, two have eyes and three do not.  The
toys with eyes are the two stuffed animals.  If you follow the tree, the branches that lead to
the toy music instruments are: width > 1.5 inches, length > 4.5 inches, and no eyes, and they
are indeed larger than the other toys in length and width, and don’t have eyes.

None of the other bits matter in terms of classifying.  That means that an attribute like color
is a poor predictor of what class a toy belongs to – which make sense.   Our other useful
criteria are the number of wheels, the weight, and the length.  That data is sufficient to
classify all our toys into groups.  You can see that the Gini Index of each leaf node is indeed
zero.  I will confess that I added some additional labeling to the graph to make the
illustration clearer.

So, that exercise was satisfactory – we were able to create an automatic decision tree from
our toy data that classified our toys.  We can even use that data to classify a new toy, and
predict which class it might belong to.  If we found that that new toy violated the
classification somehow, then we would need to re-rerun the classification process and make
a new decision table.
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Entropy
There is another type of process for creating decision trees and subdividing data into
categories. That is called the Entropy model, or information gain.  Entropy is a
measurement of the amount of disorder in the sample of data provided.  We can also call
this process information gain, since we are measuring how much each criteria contributed
to our knowledge of which class it belongs to.   

The formula for entropy is a negative log base 2 function, that is still primarily looking at
the probability of a class belonging to a population, which is just the number of individuals
belonging to each class divided by the total number in the sample:

Entropy = ∑_(i=1)^c▒[-p_i*log2(p_i)]

To substitute entropy as our group criteria in our program, we only have to change one
line:

dTree = tree.DecisionTreeClassifier(criterion ="entropy")

The results are shown in the following diagram:
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You can note that entropy starts at 2.55 for our whole group, and decreases to 0 at the leaf
nodes (ends of the branches).  We can check that we have seven classifications, but you can
see that the entropy method selected different criteria than the Gini method.  For example,
the Gini classifier started with Length, and the entropy classifier started with Material.  The
entropy method also chose Noise (whether the toy makes a noise or not) and correctly
selected that the only toys that make a noise were the toy musical instruments, and the toy
airplanes, which both have electronic sound boxes that make airplane sounds.

There is one item that causes some concern, however.  There are two blocks that are show
Material, dividing the toy's values in material less than 2.5.  Material is a discrete value.  We
can generate a list of materials and run this through our sorted(set(list)) process to
get the unique values in sorted order:

['ceramic', 'fur', 'metal', 'plastic', 'wood']

So, a material value of 2.5 or less would be either ceramic or fur.  Fur and ceramic have
nothing in common, other than where they are found in the alphabet.  This is a rather
troubling relationship, which is an artifact of how we encoded our data as a sequential set
of numbers.  This is implying relationships and grouping that don’t really exist.   How can
we correct for this?

As a matter of fact, there is a process for handling just this sort of problem.  This technique
is widely used in AI programs, and is a “must have” tool for working with classification,
either here in the decision tree section, or with neural networks.  This tool has the strange
name of “one hot encoding”. 

One hot encoding
The concept is pretty simple.  Instead of replacing a category with an enumeration, we add
one column to our data for each value, and set it to be a 1 or 0 based on that value.  The
name comes from the fact that only one column in the set is "hot" or selected.
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We can apply this principle to our example.  We can replace the one column, “Material”,
with four columns for each material type in our database.  So our column, "Material",
becomes "ceramic", "fur", "metal", "plastic", and "wood":

Material ceramic fur metal plastic wood
metal 0 0 1 0 0
metal 0 0 1 0 0
metal 0 0 1 0 0
metal 0 0 1 0 0
metal 0 0 1 0 0
fur 0 1 0 0 0
fur 0 1 0 0 0
metal 0 0 1 0 0
wood 0 0 0 0 1
wood 0 0 0 0 1
wood 0 0 0 0 1
ceramic 1 0 0 0 0
plastic 0 0 0 1 0
plastic 0 0 0 1 0
metal 0 0 1 0 0
wood 0 0 0 0 1
plastic 0 0 0 1 0
wood 0 0 0 0 1

This does cause some structural complications to our program.  We have to insert columns
for each of our types, which replaces three columns with 14 new columns. 

I’ve found two functions that we can use to convert text categories into one hot encoded
multiple columns.  One is the OneHotEncoder that is part of Scikit-learn.  It is used like the
LabelEncoder – in fact, you have to use both functions at the same time.  You will have to
convert the string data to numeric form with LabelEncoder and then apply the
OneHotEncoder to convert that to the one-bit-per-value form that we want.
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The simpler way is with a Pandas function called get_dummies().  The name is apparently
because we are creating dummy values to replace a string with numbers.  It does perform
the same function.  The steps involved are a quite a bit simpler than using the
OneHotEncoder process, so that will be the one in our example.    

The top header section is the same as before – we have the same imports:

# decision tree classifier
# with One Hot Encoding and Gini criteria
#
# Author: Francis X Govers III
#
# Example from book "Artificial Intelligece for Robotics"
#
from sklearn import tree
import numpy as np
import pandas as pd
import sklearn.preprocessing as preproc
import graphviz

We will begin by reading in our table as before.  I added an extra column for myself called
toy name so I could keep track of which toy is which.  We don’t need this column for the
decision tree, so we can take it out with the Pandas del function by specifying the name of
the column to remove:

toyData = pd.read_csv("toy_classifier_tree.csv")
del toyData["Toy Name"]   # we don't need this for now

Now we are going to create a list of the columns we are going to remove and replace from
the Pandas dataTable.  These are the columns “Color”, “Soft”, and “Material”.  I used the
term “Soft” to identify toys that were soft and squished easily, because that is a separate
criteria for using our robot hand.  We generate the “dummy” values and replace the three
columns with 18 new columns.  Pandas automatically names the columns with a
combination of the old column name and the value.  For example, the single Color column
is replace by Color_white, Color_blue, Color_green, and so on:

textCols = ['Color','Soft','Material']
toyData = pd.get_dummies(toyData,columns=textCols)
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I put a print statement here just to check that everything got assembled correctly.  It is
optional.  I’ve been really impressed with Pandas for data tables – there is a lot of capability
there to do database-type functions and data analysis:

print toyData

Now we are ready to generate our decision tree.  We instantiate the object and call it dTree,
setting the classification criteria to Gini. We then extract the data values from our toyData
dataframe, and put the class values in the first (0th) column into the classValues variable,
using array slicing operators:

dTree = tree.DecisionTreeClassifier(criterion ="gini")
dataValues=toyData.values[:,1:]
classValues = toyData.values[:,0]

We still need to convert the class names into an enumerate type using the LabelEncoder,
just as we did in the previous two examples.  We don’t need to one hot encode.  Each class
represents an end state for our classification example –the leaves on our decision tree.  If we
were doing a neural network classifier, these would be our output neurons.   One big
difference – when using a decision tree, the computer tells you what the criteria were that it
used to classify and segregate items.  With a neural network, it will do the classification but
you have no way of knowing what criteria were used:

lencoder = preproc.LabelEncoder()
lencoder.fit(classValues)
classes = lencoder.transform(classValues)

As we said, to use the class value names in the final output, we have to eliminate any
duplicate names and sort them alphabetically.  This pair of nested functions do that.

classValues = list(sorted(set(classValues)))
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This is the conclusion of our program.  Actually creating the decision tree only takes one
line of code, now that we have set up all the data.  We use the same steps as before, and
then create the graphic with graphviz and save the image as a PDF.   That was not hard at
all—now that we have had all that practice setting this up:

print ""
dTree = dTree.fit(dataValues,classes)

c_data=tree.export_graphviz(dTree,out_file=None,feature_names=toyData.colum
ns,
                             class_names=classValues, filled = True,
                             rounded=True,special_characters=True)
graph = graphviz.Source(c_data)
graph.render("toy_decision_tree_graph_oneHot_gini ")
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Random forests
I really wanted to add this section on random forest classifiers, just because the name
sounds so darn cool.  There has even been talk of extreme random forests.  While I may
have been accused of stretching metaphors to the breaking point, this time the name may
have inspired the software.   We learned how to make decision trees, and we have learned
that they have some weak points.  It is best if the data really belongs in distinct and
differentiated groups.  It is not very tolerant of noise in the data.  And it really gets
unwieldy if you want to scale it up – you can imagine how big a graph would get with 200
classes rather than the six or seven we were dealing with. 

If you wanted to take advantage of the simplicity and utility of decision trees, but wanted
to handle more data, more uncertainty, and more classes, you can use a random forest,
which, just as the name indicates, is just a whole batch of randomly generated decision
trees.   Let’s step through the process.

We collect our database of information, but instead of 18 rows in our database, we have
10,000 records, or 1 million records.  We subdivide this data into random sets – we generate
100 sets of data each randomly chosen from all of our data- and we put them in random
order. We also pull out one set of data to use as a test set, just as we did for the neural
networks.

Now for each set of random data, we make a decision tree using the same process we have
already learned.

Now we have this collection of 100 classification engines, each generated from a different,
randomly generated subset of data.  We now test our random forest by taking data from the
test set and running through all 100 of the trees in our forest.  Each tree will provide an
estimate of the classification of the data in our test record.  If we are still classifying toys,
then one of the trees would estimate that we are describing a toy car.  Another may think
it’s a musical instrument.  We take each estimate and treat it as a vote.  Then the majority
rules – the class that the majority of the trees selected is the winner.  And that is all there is
to it. 

The setup and program is just the same as what we did before, but you can’t draw a
decision tree from a random forest, or just create a tree as an end in itself, because that is
not what a random forest does – if you just need a decision tree, you know how to do that. 
What you can do is to use a random forest like a neural network, as either a classification
engine (to what class does this data belong?) or a regression engine that approximates a
non-linear curve.
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Grid searching and A* (A-Star)
We are going to take what we have learned so far and press on to a problem related to
classification, and that is grid searching and path finding. We will be learning about the
famous and widely used A* (pronounced A-Star) algorithm. This will start with grid
navigation methods, topological path finding, such as GPS route finding, and finally, expert
systems. You will see that these are all versions and variations on the topic of decision trees
that we have already learned.

Some problems and datasets, particularly in robotics, lend themselves to a grid-based
solution as a simplification of the navigation problem. It makes a lot of sense if we were
trying to plot a path around a house or through a field for a robot, that we would divide the
ground into some sort of checkerboard grid and use that to plot coordinates that the robot
can drive to. We could use latitude and longitude, or we could pick some reference point as
zero – like our starting position – and measure off some rectangular grid relative to the
robot. The grid serves the same purpose in chess, limiting the number of positions under
consideration for potential future movement and limiting and delineating our possible
paths through the space.

While this section deals with gridded path finding, regardless of whether maps are
involved or not, there are robot navigation paradigms that don’t use maps, and even some
that don’t use grids, or use grids with uneven spacing. I’ve designed robot navigation
systems with multiple layer maps where some layers were mutable – changeable – and
some were not. This is a rich and fertile ground for imagination and experimentation, and I
recommend further research if you find this topic interesting.

Let’s get back to the topic at hand. We have a robot and room that is roughly rectangular,
and within that rectangle are some also roughly rectangular obstacles in the form of
furniture, chairs, bookcases, a fireplace, and so on. It is a simple concept to consider that we
mark off a grid to represent this space and create an array of numbers that matches the
physical room with a virtual room. We set our grid spacing at 1 cm – each grid square is 1
cm x 1 cm, giving us a grid with 580 x 490 squares or 284,200 squares. We represent each
square by an unsigned integer in a 2D array in the robot’s memory.

Now we are going to need some other data. We have a starting location and a goal location,
specified as grid coordinates. We’ll put 0,0 for the grid in the nearest and leftmost corner of
the room, so that all our directions and angles will be positive. In the way I’ve drawn the
room map for you, that corner will always be the lower left corner of our map. In standard
“right hand rule” notation, left turns are positive angles and right turns are negative. The x
direction is horizontal and the y direction is vertical on the page. For the robot, the x axis is
out the right side and the y axis is the direction of motion.
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You may think it odd that I’m giving these details, but setting up the proper coordinate
system is the first step in doing grid searches and path planning. We are using Cartesian
coordinates indoors. We would use different rules outdoors with latitude and longitude.
There we might want to use “north-east-down” (north is positive, south is negative, east is
positive, west is negative, the z axis is down, and the x axis is aligned on the robot with the
direction of travel):

So, we have our grid and a coordinate system that we agree upon, or at least agree that we
both understand. We also have a starting location and an ending location. Our objective is
to determine the best path for the robot from the start to the finish point. And in between,
we have to plan a path around any obstacles that may be in the way.

Now we have to start talking about knowledge. There are basically two kinds of grid search
and path finding routines: the one where you know where everything is on the map – we
call this a priori knowledge – and the one where you don’t know where the obstacles are –
this is called a posteriori knowledge. We will start in the easier position where we can do
our path planning with perfect knowledge of the layout of the room – we have a map.

We really have three goals we are trying to achieve simultaneously with path planning. We
are trying to reach our goal, avoid obstacles, and take the shortest path we can get away
with.
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We can talk about how we might go about this. We can start with our pencil at the start
point and draw an imaginary line from our start to the goal. If there are no obstacles in the
way, we are done – that is it. But wait – our pencil is a tiny line on paper. Our robot is
somewhat chubbier – it has a significant width as it drives around. How do we judge if the
robot is not going down some narrow passage that it won’t fit into? We need to modify our
map!

We have our grid, or a piece of paper that represents the grid. We can draw on that grid the
outlines of all the obstacles, to scale. We have two chairs, an end table, a fireplace, a toy box
(that’s important), two footstools, and four bookcases. We color in all the obstacles in the
darkest black we can. Now we get a lighter colored pencil – say a blue color – and draw an
outline around all of the furniture that is half the width of the robot. Our robot is 32 cm
wide, so half of that is 16 cm, a nice even number. Our grid is 1 cm per square, so we make
a 16-square border around everything. It looks like this:
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So, now our map has two colors – obstacles and a “keep out” border. We are going to keep
the center of the robot out of the “keep out” zone, and then we will not hit anything. This
should make sense. As for judging passages and doorways, if the keep out zones touch on
either side, so if there are no white squares left in the middle, then the robot is too big to
pass. You can see this around the ottoman in the upper left corner of the illustration.

We look at our line now. We need a way to write a computer algorithm that determines the
white squares that the robot can pass through that gets us from the start point to the finish
point.

Since we have the goal in Cartesian coordinates, and we have our start spot, we can express
the distance in a straight line from the start to the finish. If the start point is x1,y1, and the
finish point is x2, y2, then the distance is the square root of the sums of the difference
between the points:

distance = sqrt(x2-x1)^2 + (y2-y1)^2)

One approach is to use a wavefront method. We know where the start is. We go out in
every direction, to the eight squares adjacent to the start point. If any of those hit an
obstacle or keep out zone, we throw it out as a possible path. We keep track of how we got
to each square, which in my illustration is indicated by the arrows. We use the information
on how we came to the square because we don’t yet know where we are going next. Now
we take all the new squares and do the same thing again – grabbing one square, seeing
which of its eight neighbors is a legal move, and then putting an arrow (or a pointer to the
location of the previous square) in it to keep track of how we got there. We continue to do
this until we get to our goal. We keep a record of the order of the squares we examined, and
follow the arrows backward to our starting point.
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If more than one square has a path leading to the current square, then we take the closet
one, which is to say the shortest path. We follow these predecessors all the way back to the
starting point, and that is our path:

You will notice in this example that I allowed the robot to make diagonal turns to get from
one square to another. I could have also specified that only right angle turns are allowed,
but that is not very efficient and hard on the robot’s drive system. Only allowing right angle
turns simplifies the processing somewhat, since you only have to consider four neighbors
around a square instead of eight.
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Another approach that would look promising we can call the Greedy Best First approach.
Instead of keeping record and checking all of the grid points like we did in the wavefront
method, we just keep the single best path square out of the eight we just tested. The
measure we use to decide which square to keep is by the one that is closest to our straight
line path. Another way of saying this is to say it’s the square that is closest to the goal. We
remove squares that are blocked by obstacles, of course. The net result is we are considering
a lot (really a lot!) fewer squares than the wavefront method of path planning:

Does the greedy technique work for all cases? Not really.

Why not? That seems a simple algorithm, and we are only considering legal moves. The
problem is it can’t deal with a local minima. What the heck is a local minima? It is a place
on the map where the robot would have to go backward in order to find a good path. The
easiest type of minima to visualize is a U-shaped area where the robot can get in but not
back out. The Greedy Best First algorithm is also not trying to find the shortest path, just a
valid path. If we want to find the shortest path, we need to do some more math:
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The A* algorithm
Honestly, you can’t really write a book about robotics without mentioning the A*
algorithm. A* has its origins with Shakey the Robot at Stanford University back in 1968.
This was one of the first map navigating robots. Nils Nilsson and his team were trying to
find a method to navigate Shakey around the hallways at Stanford, and started trying
different algorthms. The first was called “A1”, and so forth. After several iterations, the
team decided that a combination of techniques worked best. In computer science, A* means
the letter A followed by anything else, and thus the A-Star was named.

The concept of the A-Star process is very much like what we have already been doing with
our other path planners. Like the wavefront planner, we start by considering the neighbors
around our starting location. We will compute a heuristic, or estimate, for each square
based on two factors: the distance from the starting location and the distance in a straight
line to the goal. We are going to use these factors to find the path with the lowest
cumulative cost. We calculate that cost by adding up the heuristic value for each grid
square that is part of the path. The formula is:

F(n) = g(n) + h(n)
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where: F = contribution of this square to the path cost, g(n) = distance from this square to
the start position along the path chosen (that is, the sum of the path cost), and h(n) is the
straight line distance from this square to the goal.

This value represents the cost or contribution of this square if it were a part of the final
path. We will select the square to be part of the path which has the lowest combined cost.
As with the wavefront planner ,we keep track of the predecessor square, or the square that
was traversed before this one to reconstruct our path:

The preceding diagram illustrates the A* (A Star) algorithm.  Each square is evaluated
based on the sum of the distance along a path back to the start(G), and an estimate of the
remaining distance to the goal (H).  The yellow squares represent the path selected so far.

Here is some Python code to illustrate how the A* algorithm works.

We keep a set of all the grid squares on the map we have computed values for.  We’ll call
this the exploredMap.
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Our map grid square object looks like this:

# globals
mapLength = 1280
mapWidth = 1200
mapSize = mapLength*mapWidth
map = []
for ii in range(0, mapWidth):
                for jj in range(0,mapLength):
                                mapSq = mapGridSquare()
                                mapSq.position = [ii,jj]
                                mapSq.sType =EMPTY
# create obstacles
obstacles = [[1,1],[1,2],[1,3],[45,18],[32,15] …..[1000,233]]
# iterate through obstacles and mark on the map
for pos in obstacles:
                map[pos]. sType = OBSTACLE
pathGrid = []
START = [322, 128]
GOAL = [938,523]

def mapGridSquare():
                def __init__(self):
                                self.F_value = 0.0  #total of G and H
                                self.G_value = 0.0  # distance to start
                                self.H_value = 0.0  # distance to goal
                                self.position=[0,0]   # grid location x and
y
                                self. predecessor =None   # pointer to
previous square
                                self.sType = PATH

                def compute(self, goal, start):
                                self.G_value = sum(pathGrid.distance)
                                self.H_value =
distance(goal.position,self.position
                                self.F_value = self.G_value + self.H_value
                                return self.F_value

def reconstructPath(current):
                totalPath=[current]
                done=False
                while not done:
                                a_square = current.predecessor
                                if a_square == None:  # at start position?
                                                done = True
                                totalPath.append(a_square)
                                current = a_square
                return totalPath
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def A_Star_navigation(start, goal, exploredMap, map):
while len(exploredMap>0):
                current = findMin(exploredMap)  # the findMin function
returns the grid block data with
the lowest “F” score
                if current.position == goal.position:
                                # we are done – we are at the goal
                                return reconstructPath(current)
                neighbors = getNeighbors(current)
# returns all the neighbors of the current square that are not marked as
obstacles
                for a_square in neighbors:
                                if a_square.predecessor == None:
                                                # square has not been
previously evaluated
                                                old_score =
a_square.F_value
score = a_square.compute(GOAL, START)
exploredMap.append(a_square)  # add this to the map
# we are looking for a square that is closer to the goal than our current
position
if a_square.G_value < current.G_value:
                a_square.predecessor = current
                current = a_square

D* (D-Star or Dynamic A*)
Earlier in the chapter, I talked about a priori knowledge. The A Star algorithm, for all its
usefulness, requires that obstacles in the entire map be known in advance. What do we do if
we are planning movement into an unknown space, where we will creating the map as we
go along? If we have a robot with sensors, such as sonar or lidar, then the robot will be
detecting and identifying obstacles as it drives along. It also has to continually replan its
route based on increasing information.

The A* process is only run one time to plan a route for a robot, before it begins to move. D*,
a dynamic replanning process, is constantly updating the robot’s path as new information
becomes available.
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The D* algorithm allows for replanning by adding some additional information to each grid
square. You will remember that in A*, we had the G-Value (distance to the start along the
path), and the H-Value (straight line distance to the goal). D Star adds a tag to the square
that can have several possible values. The square’s tag could be NEW, for a new square that
had never been explored before. It could be OPEN, for tags that have been evaluated and are
being considered as part of the path. CLOSED is for squares that have been dropped from
consideration. The next two tags are RAISED and LOWERED. The RAISED flag is set if a
sensor reading or additional information caused the cost of that square to increase, and
LOWERED is the opposite. For LOWERED squares, we need to propagate the new path cost to
the neighbors of the now lower cost square, so that they can be re-evaluated. This may
cause tags to change on the neighboring squares. Raised squares have increased cost, and
so may be dropped from the path, and Lowered squares have reduced cost, and may be
added into the path. Keep in mind that changes in cost values ripple through the D*
evaluation of paths like a wave as each square’s new values are propagated onto its
neighbors.

Another major difference between D* and A* is that D* starts at the goal and works
backward toward the start. This allows D* to know the exact cost to the target – it is using
the actual path distance to the goal from the current position and not a heuristic or estimate
of the distance to go, like A* did.

This is a good time to remind you that all of these grid-searching techniques we just
covered are still variations of decision trees. We are going from leaf to leaf – which we have
been calling squares, but they are still leaves of a decision tree. We set some criteria for
choosing which of several paths to take, which make branching paths. We are working
toward some goal or endpoint in each case. I bring this up because in the next section we
will combine decision trees and the type of path planning we did in the A* and D* sections
to find a path through streets with a GPS.

GPS path finding does not use a map!
I wanted to have the opportunity, since we have come this far, to talk just for a little bit
about topological path planners. This is an alternative method to the grid-based techniques
we used in the preceding sections. There are types of problems and types of navigation
where a grid-based approach is not appropriate or would require astronomical amounts of
detailed data that may not be available or practical in a small robot.
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As an example, I wanted to talk about how your GPS in your car finds a route along streets
to reach your destination. You must have wondered about how that box has enough
information in its tiny brain to provide turn-by-turn directions from one place to another.
You may have imagined, if you stopped to think about it, that the GPS was using the same
map you were viewing on the LCD-screen to determine where you need to go. And you
would also think that some sort of grid-based search took place like the A* algorithm we
discussed in such detail. And you would be wrong.

The data that the GPS uses to plan a route does not look like a map at all.

Instead, it is a topological network that shows how streets are interconnected. In format, it
looks more like a database of vectors, rather than a raster map with pixels and colors. The
database format also takes up a lot less room in the GPS internal storage. The streets are
divided by nodes, or points where things intersect or change. Each node shows which
streets are connected together. The nodes are connected by links, which allow you to
traverse the data from node to node. The links represent the roads, and have a length, along
with cost data about the quality of the road. The cost data is used to compute the
desirability of the route. A limited access highway with a high-speed limit would have a
low cost, and a small side street or dirt road with a lot of stop signs would have a high cost,
since that link is both less desirable, and slower.

We use exactly the same procedures with the GPS road network database as we would
working the A-Star process on a grid map. We evaluate at each node, and progress
outward from our start node, choosing the path that takes us closest in the direction of our
destination. Many GPS systems also simultaneously try to backward chain from the
endpoint – the goal or destination –  and try to meet somewhere in the middle. An amazing
amount of work has gone into making our current crop of GPS systems small, lightweight,
and reliable. Of course, they are dependent on up-to-date information in the database:
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Summary
Well, this has been a very busy chapter. We covered the various uses of decision trees for a
variety of applications. The garden variety decision tree has leaves (nodes) and links, or
branches, that each represent a decision or a change in a path. We learned about Fishbone
diagrams and root cause analysis, a special type of decision tree. We showed a method
using Scikit-Learn to have the computer build a classification decision tree for us and create
a usable graph. We discussed the concept of random forests, which are just an evolved form
of using groups of decision trees to perform prediction or regression. Then we got into
graph search algorithms and path planners, spending some time on the A* or A-Star
algorithm, which is widely used for making routes and paths. For times when we do not
have a map created in advance, the D* or Dynamic A-Star process can use dynamic
replanning to continually adjust the robot’s path to reach its goal. Finally, we introduced
topological graph path planning and discussed how GPS systems find a route for you to the
coffee shop.
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Questions
What are the three ways to traverse a decision tree?1.
In the Fishbone diagram example, how does one go about pruning the branches2.
of the decision tree?
What is the role of the Gini evaluator in creating a classification?3.
In the toy classifier example using Gini indexing, which attributes of the toy were4.
not used by the decision tree? Why not?
Which color for the toys was used as a criteria by one of the classification5.
techniques we tried?
Give an example of label encoding and one hot encoding for menu items at a6.
restaurant.
In the A* algorithm, discuss the different ways that G() and H() are computed.7.
In the A* algorithm, why is H() considered a heuristic and G() is not. Also, in the8.
D* algorithm, heuristics are not used.  Why not?
In the D* algorithm, why is there a RAISED and a LOWERED tag and not just a9.
CHANGED flag?

Further reading
Introduction to A-Star.  https:/ /www. redblobgames. com/pathfinding/ a-star/
introduction. html

Murphy, Robin R. Introduction to AI Robotics. MIT Press, Cambridge MA 2000
How Decision Tree Algorthms Work.   https:/ /dataaspirant. com/ 2017/ 01/30/
how-decision- tree- algorithm- works/ 

Game Programming Heuristics.  http:/ / theory. stanford. edu/ ~amitp/
GameProgramming/ Heuristics. html

Koening, Sven. D*Lite Algorithm Blog (Project Fast Replanning) http:/ /idm- lab.
org/project- a. html

Wooden, David, Graph-Based Path Planning for Mobile Robots, Dissertation, School
of Electrical and Computer Engineering, Georgia Institute of Technology,
December 2006
Stentz, Anthony. Real Time Re-planning in Dynamic and Unknown Environments
(D*). http:/ /www. frc. ri. cmu. edu/~axs/ dynamic_ plan. html
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9
Giving the Robot an Artificial

Personality
When a person thinks of a robot with AI, what many consider AI is a robot that has
emotions, feelings, a state of mind, and some sort of model or concept of how humans think
or feel. We can call this form of AI an artificial personality. While giving a robot feelings is
definitely way beyond the scope of this book (or current technology), what we can do is
create a simulation of a personality for the robot using standard computer modeling
techniques, such as Monte-Carlo analysis, and finite state machines.

In this chapter, we will cover the following topics:

Transaction-based conversation
Designing a chatbot
Natural language processing (advanced)
Simulation tools
Monte Carlo modeling

Technical requirements
We will not be introducing any new programming libraries in this chapter.  We
will be building on the voice system we constructed previously.
All you will need is imagination and some writing skills

Check out the following video to see the Code in Action:
http://bit.ly/2wmar8i

http://bit.ly/2wmar8i
http://bit.ly/2wmar8i
http://bit.ly/2wmar8i
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What is an artificial personality?
Hollywood and the movie industry have turned out some very memorable robots. You can
think of R2D2 and C3PO, the Laurel and Hardy of science fiction. What do you like most
about these two? Could it be their personalities? Think about this a bit. Even though R2D2
is mostly a wastebasket shape with a dome head and no face, he has a definite personality.
You describe him as feisty, or stubborn. The website Robots and Androids (http:/ /www.
robots-and-androids. com/ R2D2. html) described him this way:

“The droid is shown as being highly courageous, unwavering in loyalty, and a little bit
stubborn. He never backs down from a mission, even when the odds appear to be stacked
against him. His personality is often contrasted against that of [C3PO], who is fussy and
timid.”

This is pretty impressive for a robot who never says a word and communicates with beeps
and whistles.

What were other movie robots that made an impression on you? Certainly WALL-E, the
lovable trash compacting robot from the eponymous movie is a favorite. WALL-E also had
a small vocabulary, consisting of only his name, much like a Pokemon. WALL-E displayed
a lot of emotion, and even developed hobbies, collecting and repairing old trash. You may
also remember M-O, the tiny, obsessive cleaning robot that gets frustrated with all of the
dirt WALL-E brings in.

So one thing that we might do as robotics creators and designers is to imbue our robot with
some sort of personality. This has an advantage of letting humans relate to the robot better.
It also gives the false impression that the robot is much smarter and is capable of more than
it really is. This does give the advantage of the robot being more engaging and interesting.

We can also infer from the examples given to us by R2D2 and WALL-E that less can be
more when it comes to communication – we need to not just have words, but also body
language and sound.

What we are going to do in this section is develop an artificial personality for our robots.
While it is impossible for us to give a robot actual emotions or feelings, however you might
define that, we can create a simulation of personality that will provide a convincing
illusion. I think this is a meaningful exercise because the current state of the art in robotics
demands some sort of personality and consistent demeanor from robotics that interact with
humans.
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There is a lot of work going on in this area right now with digital personal assistance, such
as Apple’s Siri and Google’s Alexa. Note that these robots, or artificial intelligence, have
distinct names and voices. I would feel that they are very similar in personality and
capability. There is some distinction when you ask Siri or Alexa a personal question, such
as how old they are (Siri is considerably older than Alexa).

In this chapter, we are going to take tools from the science of simulation – specifically, state
machines and Monte Carlo analysis – and use them to form a model of a personality for
Tinman, the robot. We already have a fairly powerful tool, in the Mycroft speech system we
used to tell knock-knock jokes. We will be extending Mycroft with some new skills and
capabilities, as well as developing cybernetic emotions, both for our robot, and for the
robot’s opinion of what we, the humans, are feeling.

I want to emphasize that we are simulating emotions, not creating an emotional robot. Our
simulation bears the same resemblance to real emotions as a flight simulator bears to the
space shuttle – both provide the same information, but the space shuttle flies around the
Earth in 90 minutes, and the flight simulator never moves.
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The Turing test
Alan Turing proposed his famous test, which he called The Imitation Game in a paper titled
Computing Machinery and Intelligence,  published in 1950 in the journal Mind – A Quarterly
Review of Psychology and Philosophy (see https:/ /www. abelard. org/ turpap/ turpap.
php#the_imitation_ game). In the original text, Turing imagined a game where a player
would have to guess the sex – male or female – of a hidden person by typing questions on a
teletype. Then he suggested that a truly intelligent machine would be one where you would
not be able to distinguish if the hidden personality on the other end of the teletype was a
human or a computer software program.

The movie called The Imitation Game stars Benedict Cumberbatch as Alan
Turing but features his role in breaking German code in WWII as part of
the mathematicians of Bletchley Park. The title refers to Turing’s original
name of the famous test that bears his name.

These days, you may talk to computer software many times a day and not realize that you
are not speaking to a human. Robocalls and chatbots may call you on the telephone, or
engage you in a fake political conversation on Twitter. The Turing test has been won by the
machines—but have we developed intelligence in computers? Not at all – we have just
become very clever at simulating conversation.

Recently, robotics experts have suggested replacing the Turing test with a more demanding
and difficult assignment – assembling a piece of furniture from Ikea using the directions
provided (https:/ /motherboard. vice. com/ en_us/ article/ vvbqma/ the- plan- to-
replace-the-turing- test- with- a- turing- olympics).

We are going to use another tool that Alan Turing mentioned in his paper –state machines.
We will use state machines to define and model the emotions of our robot.

Let’s go back to the concept of a chatbot. A working definition may be a software program
designed to engage a human in conversation, or to interact with a person via voice or text.
While most chatbots are up-front about being computer generated, there are a lot of
chatbots that are not – including Twitter chatbots that seek to influence elections or public
option. Many chatbots are gainfully employed answering tech support phone calls, making
marketing calls, and entertaining users as the dialog of Non-Player Characters (NPCs) in
games.

According to chatbotslife.com, in their article Ultimate Guide to Leveraging NLP [Natural
Language Processing] and Machine Learning for Your Chatbot (Stefan Kojouharov, September,
2016), chatbots come in two flavors: retrieval based and generative based.
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Retrieva-based chatbots rely on stored phrases and words, and use the software decision
making to select which reply is most appropriate. There may be some keyword recognition
and noun-subject insertion involved, but the main action is to select the most appropriate
phrase.

Generative-based chatbots are making up new sentences based on parts of speech and the
robot’s divination of your intent. They can be thought of as machine translation engines
that translate the input (your text or speech) into an output (the robot’s reply). As you
might imagine, the generative type chatbot is far more difficult to achieve, which is why we
will be using a retrieval-based approach.

There are two other details we need to attend to. Chatbots can be designed to handle either
short conversations, or long conversations. The vast majority of chatbots, and that includes
digital assistants, such as Siri, Alexa, and Mycroft, are designed for very short
conversations. Siri, what is the weather? There is a 20% chance of rain. The high is 88 degrees.
That’s it – the whole conversation in three sentences and two interactions. If you ask
another question, it starts a new conversation with little reference to the previous one.

A more difficult task is to have a longer conversation with several interactions, and even a
selection of topics. This requires the computer to keep track of context, or what information
has been discussed and might be referred to again.

We will be attempting to teach our robot to be able to have medium-length conversations
on a seven-year-old level. I’ll define medium length to be between two and six interactions.

The art and science of simulation
What is simulation? A simulator is a computer model of the physical world. You are
probably familiar with flight simulators, which provide the sensations and interactions of
flight without leaving the ground. There are also a lot of other types of simulations and
simulators. We could have a medical simulator that mimics diseases or responds to
treatments. It could be a financial simulation that models returns on the stock market based
on trends. There are structural simulations that model the loads on bridges and buildings to
see whether the materials are adequate.
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The most common way of creating a simulation is by building a physics model of the item
under test. For a flight simulator, this means plugging in formulas for the four forces on an
airplane or helicopter – lift, gravity, thrust and drag. Each factor has parameters that affect
its performance – for instance, lift is a function of the speed through the air, the weight of
the aircraft, the size of the wing, and the angle of attack, or the angle between the wing and
the wind. Vary any of those, and the lift changes. If the amount of lift exceeds the force due
to gravity (that is, the weight of the aircraft) then the aircraft flies. The simulation sets up a
time step interval, just like our control loop for the robot, and computes the forces on the
aircraft for each time step. We can then apply controls and see how our model performs.
Models just like this are used to predict performance in advance of building a prototype or
test airplane.

Another type of simulation is called a Monte Carlo model. The Monte Carlo method uses
probability theory to replace sophisticated physical models with a variation of random
numbers that approximates the same result. If you wanted to create a computer model of
flipping a coin, you wouldn’t spend a lot of time determining the physical properties of a
nickel, or modeling the number of flips in the air based on force. You would just pick a
random number from 1 to 100, and say the result is heads if the number drawn is less than
50 and tails if it is greater than 50. That, in essence, is the Monte Carlo method. There are a
lot of physical processes that can be approximated and studied using this technique.

We can apply Monte Carlo analysis to model people going through security at an airport. If
you had a copy of a typical schedule for the airlines, and the average number of passengers
per flight, you would know the daily traffic at the airport. The difficult bit was modeling
when people would arrive for their flight. Let's imagine that we commissioned a study, and
determined roughly that 50% of people arrive 1 hour early, 25% arrive 2 hours early, and
the rest are evenly distributed between 2.5 hours and 30 minutes, with one passenger out of
every 200 missing their flight by being late. This information allows us to create samples
sizes of passenger arrivals and thus an estimate length of lines at security.
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We would add some distribution of values of how long it took to get through security, and
we would have our model. We have a list of flights, and for each flight we generate a
distribution of passenger arrival times based on the study by assigning random numbers to
each passenger and separating them out into groups based on arrival time. Let’s assign
random numbers from 1 to 100 to our 212 passengers arriving for the 08:00 flight from
Dallas to Washington DC. Now we assign an arrival time based on that number – if the
number is from 1 to 25, the passenger arrives two hours earlier than the flight (06:00). If the
number is from 26 to 75 (the next 50%) then they arrive one hour early (07:00). The rest of
the passengers, having numbers from 76 to 100, are assigned random times between 2.5
hours early to 30 minutes early. And we pick one unlucky passenger out of our 200 to miss
the flight completely by arriving late. Since there is some variability to people who intend
to arrive at exactly two hours ahead, but are delayed or advanced slightly, we can dither or
add a small random factor to each arrival time of plus or minus 10 minutes. Now we have a
statistically correct distribution of people arriving for a flight. Now repeat this process for
the other 1,849 flights leaving today from this airport.

You can see from this model that we can still put a great deal of science into picking
random numbers.

As you might have guessed from my example, the true secret of making this technique
work is picking the correct distribution of random numbers. You may think, Hey, random
numbers are random numbers, right? but this is not correct at all. You have heard of the
standard distribution, or the bell-shaped curve. Most of the values are in the center, with
fewer and fewer as you go away from the center. Many natural processes follow this bell-
shaped curve, including grades on a test, how tall people are, or how many grapes grow in
a bunch. When you do Monte Carlo analysis, most often we use some form of normal or
standard distribution.

Can you think of other types of random numbers? The second most common type of
random numbers are a uniform distribution. Each number has the exact same probability of
being selected, which make for a flat distribution curve. Another name for this uniform
distribution is white noise. Uniform distributions do occur in analysis, and if we want to
add noise to an image, for example, we would use a uniform distribution. But in modeling
emotions and people, normal or standard distributions are the rule.

You may have heard of pink noise – this is a distribution where the probability decreases
with the increase in value of the number. Another way of saying this is the probability is
equal to 1/value.
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You may find that in using Monte Carlo modeling that a standard distribution or uniform
distribution just won't work. Then you can create a custom distribution like I did in the 
airport example, where we used re-sampling to change a uniform distribution to a custom
distribution fitting our passenger arrival model:

We are going to be making a personality simulation for our robot, and we will be using
Monte Carlo modeling plus a state machine.

An emotion state machine
What is a state machine? We covered state machines in the section on systems engineering
– state machines are a technique for understanding or modeling automation or computer
programs. A state is a set of conditions that exist at the present. I like to think of a state as
being a set of functions that are constrained by limits. The machine (our robot) changes
from state to state based on some event that causes the state to change.
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Let’s work through a quick refresher example. Let’s take a slice of bread. When we get it, it
is already baked and sliced, so it’s initial state is as a slice of bread. If we subject the bread
to infrared radiation (that is, heat), then the surface becomes caramelized and we call that
toast. The state of the bread has changed, along with its taste and texture, from baked bread
to toast. The event that caused that transition was the act of putting the bread in a toaster.
This is pretty simple stuff, and I’m sure you have encountered state machines before.

Now let’s think about our model of robot emotions. We can start by listing what emotions
we want our robot to have:

Happy
Welcoming
Friendly
Curious
Fresh

And the opposites of those emotions:

Sad
Distant
Stranger
Frustrated
Tired

These are the list of emotions I wanted to simulate in our robot. I looked at the different
interactions the robot might have, and how a human version of the robot would react. This
line of development was partially inspired by the work at the MIT Media lab with Kismet, a
facial expression robot that was used to model social interactions, much like what we are
trying to accomplish here. (See Breazeal and Scassellati: How to Build Robots that Make
Friends and Influence People, MIT, 2000.):
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In the preceding diagram, we model the overall emotive state of the robot by plotting the
various emotional components or states on a polar plot.  Each emotional element has a
vector or direction.   The left side of the plot are the happy, friendly, open feelings, and the
right side are the sad, closed, distant feelings.  We take the area made up by the four
components, and find the center of that area and that is the overall state of the robot.  In this
example, the predominant emotion is Friendly.  Since the robot's physical state determines
whether it feels tired or not, that data is computed separately –this lets the robot feel tired
but friendly, or refreshed but sad. 

The robot starts in the state of happy, distant, curious, and fresh. That is to say, it feels
happy, it is not in an interaction, so there is no-one to be friendly to, and it will be curious
about its surroundings. As the environment changes, the robot’s state will change. For
example, we have about a two-hour run time on Tinman’s current battery. It starts off in the
fresh state, and will get more and more tired as it approaches the two-hour mark. We are
going to use a simple timer to create this state, but you could also have a voltage sensor in
the Arduino provide information about how fresh the robot’s power supply is at. Each
emotion exists along an axis that all cross a central or neutral point.
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We will drive the happy-sad axis based on how many conversation points the robot is
earning. We'll cover this in detail in a few paragraphs. We will also be describing an
empathy function for our robot that simulates the robot sharing feelings with you. The
distant-welcoming aspect is controlled by how the human interacts with the robot. If you
are acting friendly to the robot, then it will be welcoming. If you are new, the robot will
start off cautiously in asking questions or interacting. If you are not answering questions,
then the robot will become more distant. Likewise, the friend-stranger aspect is based on
how much the robot knows about the person it is talking to. Finally, the curious-frustrated
axis is based on how hard the robot has to work to get information or to accomplish a task.
If it keeps failing at a task, or not getting rewards, it will become frustrated in its
expressions and vocabulary.

How does a robot with no face express emotions? Remember we started talking about
Hollywood robots, many of whom have distinct personalities without having faces or even
heads. We will use body language with the robot arm and changes in vocabulary to express
our simulation of emotions. And we will have the robot be open about how it is feeling and
why.

Our goal for this part of the robot development is to provide a human interaction
framework that invites people to talk to the robot and feel welcome or wanted. I’m
modeling this interaction from watching my grandchildren. I wanted a robot that they
would enjoy and find interesting.

Playing the emotion game
What we want to do is develop the ability for the robot to convey intent, or to provide a
simulation that the robot has needs and desires. We are going to do this by creating a game
that the robot will play with humans. The robot will be trying to score points by getting the
human to interact socially. The robot will gain points by getting information from the
person so that it can get to know them better. The trick for us is, we need the robot to keep this
information and remember it.
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So, what is this game? What we want the robot to do is ask questions of another person and
to use conversation to get personal information out of them, so that the robot then can use
that information in replies. We will be saving all this information and using it to modify the
actual code the robot is running, thus implementing machine learning in the conversation.
The robot will be using the same type of point-reward system we used in training the robot
arm back in a previous chapter. Once the robot has scored by learning a fact, it will no
longer get rewarded for that fact, and will go on to get other facts. Once it has learned all
the facts, it will end the conversation. In practice, I think most users will want fairly short
conversations, so we are setting our goal to have between two and six interactions per
conversation.

The game will be played like this: the user will always initiate a conversation by saying the
robot’s wake phrase, which right now is Hey, Albert. The robot will respond using the
Mycroft speech engine with a beep. The user will initiate a conversation by saying some
version of hello. The robot will then try to earn rewards by getting points, which it does by
asking questions. The emotion engine will respond to the human answers by modifying the
robot’s emotions. We will rank questions by importance – let’s say the robot gets 10 points
for learning your name, nine points for learning your age, and so on. Once a fact is learned,
no more points are earned, so the robot won’t repeat the questions.

The facts we want the robot to know about each person are:

Your name
Your age
How are you feeling today?
What is your favorite food?
What is your favorite book?
Do you go to school?
If so, what is your favorite subject?
When is your birthday?
What is your favorite song?
Do you like (the color pink/singing/dancing/dinosaurs/race cars/building
things/robots/airplanes/spaceships)
Do you brush your teeth?
Do you like knock-knock jokes?
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As part of the learning game for the robot, we will adjust the robot’s emotions as it learns
and interacts, by adjusting the levels of the eight emotions (or four emotion types) we
provided to the robot. We will particularly pay attention to the place where the eight
emotions balance – are they on the happy/friendly/curious side of the graph, or more on the
sad/frustrated/distant side?

Our robot will also have a backstory or a biography that it will use to answer questions
about itself. We’ll give the robot a little narrative. His name is Albert, he is a Tinman Robot,
he is eight months old, he was made by Grandad, and he was born on January 28, 2018. He
likes the color green, his favorite food is electricity, and his favorite author is Isaac Asimov.
He does not go to school but loves to learn. His job and his hobby and his passion is picking
up toys. If you ask him how he feels, he will tell you which emotional state is highest, plus
how fresh or tired his battery is. We want him to occasionally interject how he is feeling
into conversation without being asked. We will also be using the emotional state to set the
robot’s body language, which is primarily how he is carrying his robot arm. If he is happy,
the arm will be extended with the hand pointed upwards. If he is sad, the arm will be close
to his body and his hand will point down. We will store all this information to give the
robot a consistent set of answers to personal questions.

I’ve been addressing this robot as he and him all through the book. This is
just an anthropomorphic projection on my part and is implying features
that a robot just does not have. The primary reason for Tinman’s identity
is his voice – I used a male voice for his synthesizer, mostly because I
wanted it to stand out from all the female GPS and personal assistant
computer voices around. Please feel free to create any voice you like –
there are a lot of female voices available, and you can create whatever
persona you like in your robot and give him/her/it any form of address. It
is interesting that we tend to do this even with non-humanoid robots.
According to Colin Angle, CEO of iRobot(1), over 80% of Roomba owners
have given their robot a name, including him. You don’t see people
naming their toaster ovens, or stand mixers, no matter how attached they
are to them. Albert the Tinman robot may very well be getting a sex-
change operation, or get a sister, as my granddaughter gets a bit older. (1)
Biever, Celeste. My Roomba’s Name is Roswell, www.slate.com., March 23,
2014.
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Creating a model of human behavior
For the robot to support conducting a conversation, we have to also have a model of how
the human it is talking to is feeling. You may have had a friend or relation who went on
talking about themselves and were oblivious to how you were feeling or reacting to their
conversation. We don’t want that type of robot personality. Therefore, the robot has to have
some internal representation of how it thinks you are feeling. We will not be using vision
for this function, so the only way the robot knows how you are doing is by asking questions
and evaluating the use of language.

We will give the robot a human model similar to our state machine, but with just four
emotions on two axis: happy/sad, and friendly/distant. The robot will assume that everyone
is somewhere in the middle when conversation begins. The robot can use clues in language
to understand how you might be feeling, so we will assign colors or shades of emotions to
words to help drive the robot’s human model. Different emotion from the person will drive
different responses from the robot. We particularly want the robot to pay attention to clues
that the human is becoming frustrated due to the robot not understanding or responding in
a way the person wants.

Integrating artificial personality into our robot
This brings us to actually selecting and designing an artificial personality for our robot. We
need to set some guidelines and parameters that will determine what kind of personality
the robot has.

We can start by listing some types of personality that a robot might have, and what kind of
role they might be playing. This is particularly important because this robot will primarily
be interacting with children. Let’s try a few out and see what fits:

Teacher/professor: The robot is attempting to convey information and to teach or
cause the person to change behavior in some way. The robot presents itself as an
authority and provides facts and information about itself. “I’m a robot. Do you
know what a robot is?"
Hyper-friendly: The robot is playful and excited about talking with humans, and
aggressively engages people in conversation and asks lots of questions. The robot
expresses a lot of enthusiasm and encouragement. “I love my job. Don’t you love
your job? It’s so great! I just love talking to people! Do you want to hear a joke?”
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Chummy and friendly. The robot is trying to make friends and be helpful. Hi!
Nice to see you! What is your name?
Friendly but neutral: The robot is not quick to share information, but does want
to talk to you. Hello, I am Albert. How are you today?
Feisty: The robot is supportive, friendly, and wants interaction. It keeps
prompting for more information. It will repeat questions if necessary. Hi! Nice to
meet you. What is your name? How old are you?
Somber and staid. The robot is stuffy and authoritative. Think of having a
conversation with a British butler. The robot uses formal English. (This is
apparently the default non-personality of many digital assistants.) Greetings. How
may I help you? May I ask you your name?
Very neutral (robotic): The robot expresses no opinions, and gives no
information about itself. It expresses no emotions or interjections. Hello. I am a
robot. State a command.
Annoyed and grumpy. The robot is not very happy about having to pick up toys
and does not mind saying so clearly and distinctly. This personality is aiming for
comedy, not anger. So you are back again. I guess this means more toys to pick up.

We can see from this list, the sort of gamut of personalities we can chose for simulation. I’m
going to choose the chummy and friendly type personality, since that is what I feel will go
over best with my grandchildren.  You, of course, may choose any of these you please, or
add some more. 

Personality construction – building blocks
In a quick review, what parts do we have so far for our robot with an artificial personality?
We have simulation tools to model emotions. We have a state machine with six types of
emotions that we can mix together. We have a backstory or biography of robot personal
information. We have picked a personality to emulate. We have the concept of a game
engine where the robot is trying to score points for collecting information by engaging in
small talk, or phatic communication. The robot will change emotions based on
conversations. Emotions will be expressed either by asking the robot how he is feeling, or
by body language of the robot arm.

Now we need some sort of framework to put all of these pieces together, which can roughly
carry on a conversation that we can adjust and manipulate. For that, we are going to revisit
an old, old friend. I want you to meet ELIZA.
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ELIZA is probably the original conversation engine software program. It was invented back
in 1964 by Joseph Weizenbaum, professor at MIT, a Jewish German refugee from WWII,
and considered one of the fathers of artificial intelligence.

ELIZA was named after Eliza Doolittle, the main character in George Bernard Shaw’s book
Pygmalion. In Greek mythology, Pygmalion was a sculptor who fell in love with one of his
statues. He prayed to Aphrodite, who granted his wish for the statue to come to life. This is
very apt for what we are doing – bringing our robot to simulated life via this weird chain of
events, titles, and Greek mythology.

ELIZA was a simulation of a Rogerian therapist. What the heck is a Rogerian therapist?
According to Psychology Today (https:/ /www. psychologytoday. com/ us/blog/ what-
doesnt-kill-us/201210/ unconditional- positive- regard), Carl Rogers is the founder of
“Client-Centered Therapy”, which believes in UPR – Unconditional Positive Regard. Which
is to say that the therapist keeps their own opinions out of the therapy sessions, and
primarily mirrors the patient's words back at them. If the patient says, I’ve always hated cats,
the therapist may respond, Why do you think you hate cats, rather than saying, I have a cat and
they are lovable creatures. So ELIZA, the computer program, reflects back at you what you are
saying without interjecting anything else. You have a conversation with ELIZA via what we
now call texting, and what we used to call typing. Here is an actual ELIZA interaction
between me and an open source version of ELIZA by Wade Brainerd, which can be found
at https://github. com/ wadetb/ eliza. The user is typing at the > prompt. By the way, I
love cats – this is just an example. Please don’t tell my cat about this example:

ELIZA: How do you do. Please tell me your problem.
 > I hate cats.
 You say you hate cats?
 > Yes.
 You seem to be quite positive.
 > I hate cats.
 Can you elaborate on that?
 > I don't like cats because they smell bad.
 Don't you really like cats because they smell bad?
 > No. Don't like cats.
 Are you saying no just to be negative?
 > No.
 You are being a bit negative.
 > I am
 Is it because you are that you came to me?
 > No
 Why not?
 > I am afraid of cats
 How long have you been afraid of cats?
 > About a year
 I'm not sure I understand you fully.
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 > 1 year
 Please go on.
 > I have been afraid of cats since the cat jumped on my head.
 Your head ?
 > yes

So you can see that ELIZA repeats back phrases to the user, reflecting what the user is
talking about. When I said I am afraid of cats, the program replied, How long have you been
afraid of cats?.

ELIZA goes through several steps in recognizing and responding to sentences. Most of the
program is not hardcoded, and it works from a series of scripts that you can edit and
replace to basically reprogram the personality of the program – which is why we are
talking about ELIZA right now:

The first step is to divide the sentence into words separated by spaces. The1.
program also replaces all capital letters with lower case.
The program replaces words with several versions with a standard word. For2.
example, the program replaces cant with can't in case you left out the apostrophe.
This is called preprocessing.
The program looks for keywords that it knows about. A simple keyword is sorry.3.
Any sentence with sorry gets a response like please don’t apologize. Keywords are
collected and prioritized by the order they appear in the script file.
The program looks for decomposition patterns for that keyword. This collects4.
the sentences into common groups. For example, one pattern is: * i was *, which
can be read any word phrase – I was - any word phrase.
ELIZA picks a reassembly pattern to form the reply. If the program has several5.
options for responses, it picks one at random. In our * I was * pattern, one
response is Perhaps I already know you were (2). The number (2) in parentheses tells
the program to substitute the word phrase that comes after I was in the sentence.
If you typed in Then I was left at a bus station, the reply in this pattern could be,
Perhaps I already know you were left at a bus station. You might also get a more
pragmatic, Oh, really. It is important to know that ELIZA has no idea about the
contents of phrases – it is just manipulating words to create sentences based on
patterns.
ELIZA performs post-processing substitutions of words. For example, it replaces6.
the word I with you. If you type I went to sleep, the program replies with, You say
you went to sleep ?, which is the final reply rule after all the others are exhausted.
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The data that controls ELIZA’s personality is called a script. This gives the program all of
the rules for forming replies. The script for the Rogerian therapist is called the DOCTOR
script. It contains some greeting words, some final words when the program exits, a list of
pre-subsitution rules, a list of post-processing substitution words, a list of synonyms, and a
list of key words with decomposition and re-assembly rules.

Here is a sample rule for the key words I am:

 decomp: * i am *
 reasmb: Is it because you are (2) that you came to me ?
 reasmb: How long have you been (2) ?
 reasmb: Do you believe it is normal to be (2) ?
 reasmb: Do you enjoy being (2) ?

The program selects a random phrase out of the four provided. If I said, I am afraid of cats,
then this rule will be triggered, and one of these four phrases would be generated. It might
say, Do you enjoy being afraid of cats?, or How long have you been afraid of cats?.

Almost all of the dialog created by ELIZA comes from the script file, making ELIZA a form
of rule-based expert system, and also gives an open framework for creating new
applications of conversational engines.

As all computer programs do, ELIZA’s concepts for generating conversation were extended
and amplified into a general purpose (that is, not just a therapist) software program called
ALICE, which is a retronym for Artificial Linguist Internet Computer Entity. The simple
script data file used by ELIZA became AIML, the Artificial Intelligence Markup Language.
ALICE was extended to be far more useful than ELIZA ever was, and to cover far more
subjects and capabilities. However, ALICE retains the same concepts of pre- and post-
substitution, keywords, and response patterns. There is a Mycroft plugin engine that allows
Mycroft to use AIML files to design conversations. This tool makes a great alternative
construction kit for your robot personality.
https://github.com/ forslund/ fallback- aiml

AIML looks like this:

 <category>
 <pattern>I PLAY *</pattern>
 <template>Is <set_it><person/></set_it> a game or a musical
instrument?</template>
 </category>
 <category>
 <pattern>I PLAY THE *</pattern>
 <template>I wish I played an instrument. My parents could not afford the
lessons.
 <think><set_it><set_does><settopic>play the
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<person/></settopic></set_does></set_it></think></template>
 </category>
 <category>
 <pattern>I PRIDE MYSELF *</pattern>
 <template>It seems you have good self esteem.</template>
 </category>
 <category>
 <pattern>I QUIT MY JOB *</pattern>
 <template>Where did you work and why did you quit?</template>
 </category>
 <category>
 <pattern>I READ *</pattern>
 <template>I don't think I've read that. Can you give me a reference?
 <think><set_it><set_does><settopic>read
<person/></settopic></set_does></set_it></think></template>
 </category>
 <category>
 <pattern>I READ * BOOKS</pattern>
 <template>Name some books in that genre.
 <think><set_it><set_does><settopic>read <person/>
books</settopic></set_does></set_it></think>
 <think><set_personality>critical</set_personality></think></template>
 </category>

Source: http://www. digitalanywhere. com/ projects/ dany/ index. html. ALICE is open
source software released under the GNU public license.

Context
One of the most important shortcomings of ELIZA is a total lack of memory. ELIZA only
remembers the previous statement. You can’t talk about your father and then say, He was a
good man. ELIZA will have no idea whom you are talking about. ELIZA has no concept of
context beyond the previous sentence.

What is context? In the course of a conversation, we often shorten nouns into pronouns. We
might say, I like my dog, and in the next sentence say, He is well behaved. Who does the
he refer to? We know it is the dog, but how does the computer know? We are going to add
some ability to reason from context to our program.
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We are going to create a storage object we will call the context memory. In that object, we
will be able to keep up with several parts of our conversation, including the person we are 
talking to currently, the last subject we talked about, if we had asked any questions we still
don’t have the answer to, and the answers to any previous questions, in case we need them
again. The computer will assume that a pronoun other than I will refer to the last subject,
whatever that was. If I was talking about a dog, and then say, He is so cute, then the robot
will assume I mean the dog.

Previously, we discussed playing a game to get information from our person. The robot
will be collecting and remembering this information, even after it is turned off, so that the
next time that person is talking to the robot, it remembers the information it learned the last
time – just as you do with a new friend. If you want to continue to expand this AI chatbot
concept, you can use this information to create additional conversation. For example, if the
human tells you they like baseball, the robot could ask what their favorite team is, and then
look up from the internet when the next baseball game is scheduled.

That is the end of our list of parts we are going to use to build our robot personality. We
can now dive in and use our personality construction kit. I’m going to use the bones of the
ELIZA Python open source program from Wade Brainerd to build Albert the Tinman’s
personality.

In the interest of time and space, I’m only going to put the parts here that I added to the
base program. The entire code will be in the GitHub repository. You can get the original
program at https:/ / github. com/ wadetb/ eliza if you want to follow along from the book.

Under construction
Let’s review all the parts we have to put together to make our robot personality:

Simulation
Monte Carlo (stochastic, or random based) modeling
Our robot emotion state machine
Perception of human emotion state machine
Our robot biography (list of internal facts about the robot)
A conversation engine framework called ELIZA
Context – the ability to remember and return facts and “fill in the blanks”
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https://github.com/wadetb/eliza
https://github.com/wadetb/eliza
https://github.com/wadetb/eliza
https://github.com/wadetb/eliza
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In the next few sections, I will be presenting the code that I added to Albert to facilitate his
artificial personality. A lot of it will be contained in script files that provide rules and
patterns for Tinman’s speech. There will also be code functions for his emotion engine,
human emotion model, and game engine.

Let’s get started.

I needed to add some new functions to the script language used by ELIZA. First, I added
the context of our robot, who takes the place of ELIZA, the therapist.

First, we have the opening words when we initiate the interactive conversation mode of
Tinman by saying Hey, Albert (or whatever you decided to call it), the wake word for
Mycroft, and then just Hello.

Albert the robot gets his name from Albert, the Prince Consort to Queen
Victoria, since he was famous for taking wonderful care of his children.
All nine of his children survived to adulthood, a rarity in the Victorian
age, and he had 42 grandchildren. He went by his middle name – his
actual first name was Francis.

The robot responds with the “initial” phrase, as noted by the tag before the colon. We also
have our closing phrase here. You can actually put as many phrases as you like and the
computer will randomly choose one. These rules go into the file I named
AlbertPersonality.txt, which started as a copy of the original doctor.txt script file
that came with ELIZA:

initial: Hello. My name is Albert the Tinman Robot.
initial: Hello. I am Tinman the Robot, but you can call me Albert.
initial: Hello. Nice to meet you. Call me Albert.
final: Goodbye. Thank you for talking to me.
final: Goodbye. It was nice to talk to you.
final: Goodbye. I need to get back to my tasks.
quit: bye
quit: goodbye

I added some word substitutes in case the user calls the robot by name rather than you. This
just substitutes you for anything you might call the robot. I also set synonyms for various
versions of the robot’s name so you can call it robot or bot, as well as Albert, Bert, or even
Bertie.
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A rule with pre: in front of it is substituted before any other processing takes place. From
the first rule, if the word robot appears in a sentence, as in Robot, how old are you?, the
program removes robot and substitutes you to make the parsing consistent. We also change
all uppercase letters to lowercase, so there are no capital letters in the rules. The
synon: rule replaces any of the listed words with the first word given:

pre: robot you
pre: albert you
…
synon: you robot albert bert bertie bot
synon: belief feel think believe wish

The next thing we needed to was create the questions that we want the robot to ask in order
to gain information. The program will automatically harvest this data in any of the
keywords we define to appear in a sentence. Here is the definition for the rules about
asking questions:

questions:
 reasmb: What is your name? <assert name>
 reasmb: What can I call you? <assert name>
 reasmb: How old are you? <assert old>
 reasmb: How are you feeling today <assert feeling>

We create a new flag for questions to add to our script file. Each line represents one
question, but we can ask in different ways or forms. The program will select one version at
random, and decides which question to ask based on the relative priority we will set on the
questions. The assert keyword with the <> symbols around it are another new flag I
added to cue the context memory that we have created a context of asking some question,
and the next statement is probably an answer:

datum: name
 decomp * my name is *
 decomp I am *
 decomp call me *
 decomp <name> * # we are in the name context
 reasmb: Hello (1). Nice to meet you
 reasmb: Hi (1).
 reasmb: Your name is (1), right?
 reasmb: Thank you for telling me your name, (1)
 store: <name> (1)
 decomp * my name is *
 reasmb: Hello (2). Nice to meet you.[welcome][happy]
 store:<name> (2)
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I created a new data structure I called datum, the singular of data. This represents some
information we want the robot to ask about. We give the datum a name – name in this case,
as we want the robot to ask the name of who it is talking to. The decomp (for
decomposition) tags are the patterns of the sentences where the user might say his or her
name. The * represents any phrase. So if the human says Hello. My name is Fred Rodgers,
then the robot will call him Fred Rodgers from then on. If the human says Call me Ishmael
for some unknown reason, then the robot will use that. We have to reassemble the response
phrase with the reasmb rules. The (1) refers to the first * phrase that appears. If the user
says, I am John, then when we use the reassemble rules, (1) will be replaced by John. The
robot will pick one of the phrases provided at random, such as: Your name is John, right?.

I added another new tag to allow the robot to use the context memory area to perform two
functions. We can declare a context subject when we ask a question, which we will do in a
later section. For example, when we ask the user, What is your name?, then we want the
robot to know that the next answer will be in the context of that question. It’s perfectly
reasonable for the robot to say Who are you? and the user to immediately answer Julia with
no other words in that sentence. How is the program to know what to do with Julia? The
answer is the context flag, noted by being bracketed by <>. We read the decomposition rule
decomp <name> * as if you are in the context of asking for a name, and you get a reply
with no keywords, take whatever you get as the answer.

Emotion tags are noted by a bracket like [happy] or [sad].  This will move ether the
robot's emotions or the robot's perception of the human emotions, depending on if it is a
statement received from a human or a sentence uttered by the robot.  There can be more
than one emotion tag associated with a statement. 

Here are the rules for listening for the answer to the age question:

 datum: age
 decomp <age> * I am * years old
 decomp <age> * I am % # integer
 reasmb: You are (2) years old?
 reasmb: (2) years old!
 decomp <age> *
 reasmb: You are (1) years old?
 reasmb: (1) years old!
 store: <age> (1)

The final line store: is the command to tell the computer that this is the answer to the
question and to store that away in the dictionary with the title provided.
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Next, let’s use an example of an interaction with some emotions tied to it, so we can see
how we will use the emotion engine to control what the robot says. This set of rules are
enacted when the user says How are you? to the robot:

 key: feeling
     decomp: how are you feeling
     decomp: how are you
     decomp: hows it hanging
     decomp: how are you today
     reasmb: <happy> I'm doing well. How are you? <assert feeling>
     reasmb: <sad> I am feeling sad. How are you? <assert feeling>
     reasmb: <curious> I am curious about my surroundings
     reasmb: <friend> I am feeling friendly today
     reasmb: <welcome> I am in a welcoming mood today, my friend
     reasmb: <frust> I am a bit frustrated, to tell you the truth
     reasmb: <frust> I am feeling a bit frustrated
     reasmb: <strange> I am having relationship problems
     reasmb: <distant> None of my friends have come to visit
     reasmb: <tired> goto tired

We will be putting the robot’s emotions into the context memory so that the script
processing program can have access to it. We treat an emotion – for dialog purposes- as
part of the context that we are speaking about, which I think is a reasonable approach to 
working with emotions. Each emotion has a tag or name in the context memory dictionary.
If the predominant emotion in the robot is happy, then the robot sets the happy context in the
context memory. Then the rule base will use the context tag to determine which phrase to
use to reply to how are you feeling?. We can also ask a follow-up question. Look at the rule
for <happy>. The robot replies, I’m doing well. How are you? and then sets the
feeling context to let the engine know that we asked a question about feeling. Finally, the
last line relates to the tired emotion. If the robot is feeling tired, then we jump to a
separate section for the robot to talk about being tired. We make it a separate routine
because we need to call if from several places, which illustrates the utility of this rule-based
approach to speech. I don’t want to imagine how many C or C++ SLOC (source lines of
code) it would take to create all of these rules for each line of dialog.

We continue to modify the scripts using these guidelines until we have completed all our
questions and have patterns for all of the answers.

Now we are going to switch back to Python code for the rest of this example. Our next
section describes how we are going to simulate emotions.
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The robot emotion engine
Now we are going to put together the robot's emotion model.  This is the heart of the
artificial personality as it computes, updates, and remembers the emotional state of the
robot.  The robot starts in a generally neutral state, and performs updates based on the
combination of eight emotional traits: happy/sad, welcoming/ distant, friendly/ stranger,
curious/frustrated, and fresh/tired. As events happen in the experience of the robot, it gets
cues that cause its emotional state to change.   For example, if the user said That is stupid to
something the robot said, then the robot would add to the sad axis of its emotion.

We compute the overall emotional state using a polar coordinates, just like you saw in the
diagram we drew.  The current emotional state is determined by computing the center of
mass of the other emotions.  If the emotions are more or less balanced, the center of mass of
the emotions, as plotted on our polar chart, would be near the center.  If the robot is mostly
happy and friendly, then the mass moves more over to that side of the graph.  We pick the
single emotional state that is closest to the center of the mass.  This is intended to be the
basis of creating a complex emotional character for the robot.   The attribute of fresh/tired is
unique, in that the value for that emotion is based on the elapsed runtime of the robot.

The primary expressions of emotion for the robot will be the position of the robot arm –
happier robots carry their arms higher and more forward – and in the choice of vocabulary
in conversation:

 class robotEmotionEngine():
     def __init__(self):
         self.emostate = [90,0]
         self.emoText = "neutral 50"
         self.emotions = {
             "happy" : 50, "sad": 50,
             "welcome" : 50, "distant":50,
             "friend" : 50,"strange" :50,
             "curious" : 50,"frustrated":50,
             "fresh" : 50, "tired",50}
         self.bio = {"name":"Albert Tinman", "lastname": "Tinman", "age":
"6 months",
             "maker": "granddad", "color":
"green","food","electricity","author":"Isaac Asimov, of course",
             "school": "I do not go to school but I love to
learn","hobby":"picking up toys", "job":"picking up toys"}
         # list of happy emotions and sad emotions
         self.emotBalance={"happy": "sad", "welcome":"distant",
             "friend": "strange", "curious": "frustrated","fresh": "tired"}
         self.emotionAxis{"happy":112, "welcome":
22,"friend":67,"curious":157,
             "sad":292,"distant":202,"strange":247,"frustrated",337}
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         self.update()
 def change(self,emot, val):
     self.emotions[emot]=val
     balance = 100 - val
     otherEmotion = self.emotBalance[emot]
     self.emotions[otherEmotion]=balance

This is the update function:

 def update(self):
 rmin = 100
 rmax = 0
 thetamin =360
 thetamax=0
 for emote in self.emotions:
 theta = self.emotionAxis[emote]
 thetamax = min(theta,thetamax)
 thetamin = max(theta,thetamin)
 r = self.emotions[emote]
 rmin = max(rmin, r)
 rmax = max(rmax,r)
 stateR = (rmax-rmin)/ 2
 stateTheta = (thetamax-thetamin) / 2
 for emo in self.emotionAxis:
 thisAngle = self.emotionAxis[emo]
 if stateTheta > thisAngle
 myEmotion = emo
 break
self.emostate = [stateTheta, stateR]
 if stateR < 55 and stateR > 45:
     myEmotion = "neutral"
 self.emoText = myEmotion + " "+ str(stateR)
 print "Current Emotional State" = myEmotion, stateR, stateTheta
 return
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The human emotion model
The robot also needs a model of the human it is talking to, so it can make different
responses based on how the human is feeling. We are going to create a smaller version of
the emotion model we used earlier.  We model four emotions for our human interactions
for the robot to use in formulating responses: happy/sad, and welcoming/distant.  We can
put emotion tags into our patterns in the script file with [happy] , [sad],[welcome] or
[distant] to mark the emotions of responses.  For example, if we are not getting answers to
our questions, we can mark that response with [distant] to note that our subject is not being
cooperative:

Our human emotion model makes use of a Python dictionary data structure to hold our
model.  We have two axes, the Happy/Sad axis and the Welcome/Distant axis.   We move
the Happy/Sad index up or down based on responses.  If we think a response expresses
happy thoughts (Do you like school?  Yes ), the program moves up the emotion index in the
happy direction.  We use the intersection of these to set the current emotional index.  If the
human is near the center, we note this as neutral, our starting point:  

class HumanEmotionEngine():
     def __init__(self):
         self.emostate = [90,0]
         self.emoText = "neutral 50"
         self.emotions = {
             "happy" : 50, "sad": 50,
             "welcome" : 50, "distant":50}
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         # list of happy emotions and sad emotions
         self.emotBalance={"happy": "sad", "welcome":"distant"}
         self.emotionAxis = {'distant': 315, 'welcome': 135, 'sad': 225,
'happy': 45}
         self.update()

Let's look at the change function.  If happy goes up, sad goes down, so we balance this
automatically when emotions change:

 def change(self,emot, val):
     self.emotions[emot]=val
     balance = 100 - val
     otherEmotion = self.emotBalance[emot]
     self.emotions[otherEmotion]=balance

The update function gets the current emotional balance of the human model:

 def update(self):
     stateR = self.emotion["happy"]
     stateS = self.emotion["welcome"]
     self.emostate = [stateR, stateS]

If the emotional state is near the middle, we call that neutral:

     if stateR < 55 and stateR > 45 and stateS < 55 and stateS > 45:
         myEmotion = "neutral"
     happySad = stateR-50
     welcomDist = stateS-50
     if abs(happySad) > abs(welcomDist):
         myEmotion = "sad"
         if happySad > 0:
            myEmotion = "happy"
     else:
        myEmotion = "distant"
        if welcomDist> 0:
            myEmotion = "welcome"
     self.emoText = myEmotion + " "+ str(stateR)
     print "Current Human Emotional State" = myEmotion, stateR, stateTheta
     return

Human information storage
This data structure stores the information we have collected about the human user, and lets
the robot know what questions have yet to be answered. We use a Python dictionary to
hold the data. This type of data structure let's us make a freeform version of a database-like
table.  I add values to the dictionary as we go to make extension easier. 
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I put a list of miscellaneous questions called stuff to throw some spice in the robot's
information gathering, so that the questions don't seem too monotonous.  The robot will
ask if you like the color pink, singing, dancing, robots, airplanes, and so on. 

We put the list in priority order by copying the dictionary, and replacing the data fields
with relative point values from 20 to zero. Name is first with 20 points, age is second with
18, and so on.   As each question is answered, we set this points value to zero.  For example,
if we get the answer for what is your favorite food as apple, we set
self.info["food"] = apple, and set self.points["food"] = 0:

class HumanInformation():
 def __init__(self):
     self.info = {"name":"none"}
     self.info["age"]=0
     self.info["school"]="none"
     self.info["feeling"]="none"
     self.info["food"]="none"
     self.info["book"]="none"
     self.info["subject"]="none"
     self.info["song"]="none"
     self.info["teeth"]="none"
     self.info["jokes"]="none"
     # stuff is random information that we use to get more information and
have the human answer questions
     # these are aimed at 3-7 year olds
     self.info["stuff"]="none"
     self.stuff = ["the color pink", "singing", "dancing", "dinosaurs",
"race cars", "building things",
     "robots", "airplaines", "space ships", "unicorns", "princesses"]
     self.points = self.info
     # setup points scoring scheme
     points = 20
     for item in self.points:
         self.points[item]=points
         points -= 2

Context memory
This is our context memory.  You can think of this as a pool of information that the robot
can remember.  We set up the robot's emotion and the model of human emotion to both be
neutral".  I created some data structure so that we can refer to multiple human users by
pointing self.currentHuman to the HumanInformation data object we created
previously. 
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We use the inContext function to retrieve data from the context pool.  If no data is
available, we return an integer of zero: 

 class ContextMemory():
     def __init__(self):
     self.currentContext = "None"
     self.currentHuman = None # pointer to the data file for the human we
are currentl talking to
     self.humanFile = []
     self.emotion = "neutral"
     self.humanEmotion = "neutral"
     self.contextDict={}
     self.contextDict['neutral']=True  # asserts that the robot is
currently at a neutral state of emotion
     self.contextDict['currentHuman'] = self.currentHuman
     self.contextDict['robotEmotion'] = self.emotion
     self.contextDict['humanEmotion'] = self.humanEmotion
 def inContext(self, datum):
     if datum in self.contextDict:
         return self.contextDict[datum]
     else:
     return 0
 def setHuman(self,human):
     self.currentHuman = human
     self.humanFile.append(human) # add this person to the database of
people we know
 def addHuman(self,human):
     self.humanFile.append(human) # add this person to the database
     # used at startup to recall humans we have met before

Questions
What is your favorite movie robot?  How would you describe its personality?1.
What techniques did the movie-makers use to express that robot's personality2.
(body language, sounds, and so on)?
What are the two types of chatbots?  List some of the strengths and weaknesses3.
of each.
In the diagram on modeling custom distributions (the airport example), the4.
bottom picture shows two standard distributions and two uniform distributions. 
Why don't the curves go all the way to the top of the graph?
Design your own robot emotions. Pick six contrasting emotions that can express5.
the entire range of your robot's personality.  Why did you pick those?
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If you were designing a robot to have the personality of an annoying little boy6.
(think Bart Simpson, Cartman, or Dennis the Menace, if you are that old), what
traits would it have?
Why is it important for the robot to have a backstory or biography?7.

For the next two questions, pick a persona from my list to model (from the Integrating
artificial personality section)

Write six lines of dialog for the robot to ask a human where they last went on8.
vacation.
. Write six ways for the robot to express that it is tired and needs to recharge,9.
without sounding like a robot. 

Further reading
Janarthanam, Srini. Hands-On Chatbots and Conversational UI Development Build
Chatbots and Voice User Interfaces with Chatfuel, Dialogflow, Microsoft Bot Framework,
Twilio, and Alexa Skills. Birmingham: Packt Publishing, 2017.
Rothman, Denis. ARTIFICIAL INTELLIGENCE BY EXAMPLE: Develop Machine
Intelligence from Scratch Using Real Artificial Intelligence Use Cases.  Birmingham:
Packt Publishing, 2017.
How to Develop a Chatbot from Scratch: https:/ /chatbotsmagazine. com/how- to-
develop- a-chatbot- from- scratch- 62bed1adab8c

A Complete guide to Chatbot Frameworks: https:/ /www. marutitech. com/ complete-
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The Ultimate Guide for Leveraging Your Natural Language Processing Machine
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Design Guide for Chatbot Conversation: https:/ / www.marutitech. com/ebooks/
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Kizmet: Sociable Robot with Facial Expressions, MIT Media Lab: http:/ /www. ai.mit.
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10
Conclusions and Reflections

We have been on quite a journey over the course of this book. I will tell you that I’ve
learned a lot, and hope you have as well. I had the chance to revisit my love of robotics, and
to spend a lot of time examining the state of the art of AI and robot design to try and find a
way to explain the concepts to you in an easily digestible form. I tried to break through the
jargon, the acronyms, and the equations to try to convince you that the science and art of AI
robotics is something you can do and have a good time doing it.

I set out to give you a set of tools that I felt you needed to create artificial intelligence for
robots. These are tools that I’ve collected over my many years designing robots.

I introduced you to my version of the subsumption architecture and how our robot can
have several layers of goals at once. This type of approach has become a standard across
unmanned vehicles and robotics, and I’ve used it a number of time as the overall
architecture for my robots:



Conclusions and Reflections Chapter 10

[ 292 ]

I also introduced you to the other keystone of robot design, the OODA loop (Observe –
Orient – Decide – Act), the key to both command/control and robot decision making. The
second “O” – the orient part – is by far the most important, challenging, and time-
consuming part of the OODA loop. This is the process of getting all of the robot’s data into
the same coordinate frame, or perspective. You may also hear this step called by the more
impressive name of data fusion. It is very difficult to make decisions if all of the input data
is not in some sort of consistent form:

We talked about soft-real-time control systems, and the importance of managing the time
and update rate of a robot that has to deal with the real world. This type of frame-based
system gives you a stable foundation to have your robot perform consistently and
smoothly, and the controls we added corrected for jitters in the robot’s timing that are
unavoidable in soft real-time.

Chapter 2, set up the robot’s hardware and software, and showed you how to build the
frame of the Tinman robot, with its triangular tracks and robotic servo arm. If you end up
getting this kit, my directions are the only ones you will have – I had to figure all of this out
without any guidance, which was part of the fun.

I was really pleased with the chapter on Systems Engineering and Design. Very few robot
books go into the design process, and the techniques I have shown you are stripped to the
very bone, but still give you the proper foundation for approaching the design of your own
robotic projects. I like the storyboard process, and found it kept me on track through the
rest of the book. I think you will find it will do the same for you.
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In the section on image recognition, I tried to give you a no-math (or almost no math)
approach to understand how to put together a basic convolutional neural network. The
Keras toolkit for Python really helps make the setup and training as simple as possible
while still giving a lot of control.

Next, we tackled teaching the robot to use its servo-mechanical arm and hand. We used
two different approaches. The first was reinforcement learning, or Q-learning, which did
not match well with our arm state space, which was more continuous than discrete. Q-
learning is good for situations where the robot’s decision making only has a few different
states, and the learning program can explore all possible states several times. We had much
more success with the genetic algorithm, and I built you a custom GA sandbox where you
can explore breeding algorithms, combinations, mutations, and learning rates in safety. I
was very pleased that my GA approach trained the robot arm to a 99% score in just a 100
generations.

Of course, you remember that the next section was natural language processing, listening
and divining intent from spoken commands using the Mycroft AI-based robot personal
assistant software. We added a lot of capability to Tinman to give you weather reports, the
news, look up items on the internet, and respond to commands. We also competed my
grandson’s special request to have the robot tell and understand knock-knock jokes. We
were able to take advantage of Mycroft’s wait-for-response command to make this task a lot
easier that I thought it was going to be.

Here is an encore knock-knock joke I just made up:

Robot: Knock, Knock
User: Who’s there?
Robot: Robot!
User: Robot, who?
Robot: Ro, Ro, Ro (your) bot, gently down the stream.

Let’s see – what came after that? We learned a new way to navigate using object
recognition, neural networks, and image processing to memorize directions by looking at
the upper half of the room. The lower half of the room was processed using the Floor
Finder algorithm to detect and avoid obstacles using vision. This bit of work was entirely
new for this book, and I don’t think this combination of techniques have been used
elsewhere. Neural networks are versatile functions that seem to be used for just about
everything, these days.
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Chapter 8 introduced decision trees and path planners, truly useful processes that are
found in games, robots, medical equipment, spacecraft, and airliners. We used our decision
tree to make object classifiers, and then tried out some path planning algorithms, with a
very short bonus section on GPS path planning.

We finished with designing an artificial personality for our robot. This chapter had a lot
more theory and processes, and provided you with more tools for using simulation and
Monte Carlo models. These are skills that I use every day. We created an emotion engine
for our robot, with a model for human interaction as well. We ended by connecting a very
old chat bot called ELIZA and taught her a few new tricks. Even though the ELIZA concept
is over 50 years old, the techniques pioneered with that program are still being used to
create chatbots today. I believe that artificial personality creation will become its own career
path in robotics, if it is not already.

Conclusions about our journey
I hope you have discovered the enjoyment, entertainment, education, and even some of the
frustration of making an AI-based robot. I want to remind you that the primary goal of this
book was always to teach you about artificial intelligence and robotics techniques. Making
the Tinman robot perform was always just an example that we used to keep the story
moving, and not an end in itself. I’m sure that you have not seen the last of Albert the
Tinman robot or his sisters or cousins, and I will try to continue to develop code and to blog
about the robot after this book is published. Please keep checking the GitHub site for the
book at: https://github. com/ PacktPublishing/ Artificial- Intelligence- for- Robotics

I certainly learned a lot along the way, as I hope you have done. I think that we are about to
see a big increase in the use in AI in robotics and unmanned systems of all kinds, and I
hope that this book provides a seed for some people to seek out this area for a career, and
join the ranks of those who make robots professionally.

Careers in robotics
I am often asked what sorts of skills, courses, or degrees do robot designers need to have, or
to take. I meet a lot of young people at robot competitions, student events, conferences, and
recruiting trips. A lot of the advice I give people I have put into this book already –
especially now, artificial intelligence, neural networks, GPUs, expert systems, chatbots,
navigation, and image processing are all important. You do have to understand that
robotics is an umbrella term that covers a lot of industries and a lot of skill sets.
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Who uses robotics? The range of applications are continuing to grow every day. In the
medical field, there is robot assisted surgery, robotic prosthetic limbs, exoskeletons helping
paraplegics to walk, and implantable devices to help people hear and see.

We have self-driving cars and self-flying airplanes and helicopters in transportation. We
have robots delivering packages on the sidewalks in San Francisco, and a number of
companies testing parcel delivery by aerial drone in Africa, Switzerland, and in other
places.

Look at the world of robotics around you now. We have self-driving cars being tested in a
number of states. Safety features that debuted in the DARPA Grand Challenge robot car
race and were developed for autonomous cars – lane keeping, adaptive cruise control,
driver assistance, and self-parking are now common feature on even base level
automobiles. There are over 60 companies currently developing some sort of electric VTOL
(vertical take off and landing) manned vehicle, every one of which uses advanced
automation and autonomy as part of its control system. In far western Australia, Rio Tinto
Mining has developed the “Mine of the Future” in Pilbara, where 80 autonomous trucks are
remotely operated from Perth, 1,500 kilometers away.

The future of robotics is just being written, and you, reading this book, may play a part in
determining the path it takes.

So, what skills are required to design and make robots like the ones I just described? The
truth is, a modern robot company would employ just about every skill imaginable. Even
the simplest robot takes mechanical designers to develop the parts, gears, and levers to
make robots move and to package the electronics. Electrical engineers work with batteries
and motors. RF engineers and technicians work with radios and datalinks. Cognitive
specialists design artificial intelligence routines, develop robot emotions, and harness
machine learning techniques. Writers and artists craft voice routines, write dialog, design
user interfaces, write manuals and documentation, and add creative touches to the inside
and outside of the robot. Managers and supervisors track budgets and schedules, while
supply specialists work with suppliers, parts, build-to-print shops, electronics warehouses,
and salesmen to get the parts to put together the assembly line. Industrial robots are
managed by special types of programmers who use PLA (programmable logic arrays) and
ladder logic to control robot arms that paint and assemble components. Bookkeepers and
accountants make sure the bills are paid as well as the employees. Salespeople, marketing,
and customer relations teams get the product sold and keep the customers happy.
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All of these skills together have to be present in some form in the professional roboticist,
particularly if you think you will run your own company. I’ve been part of every size of
robot project, from one person to tens of thousands. Each has its own strengths and
weaknesses, but you can be sure as a robot designer that you will be the center of the storm,
making the magic happen, solving problems, and turning ideas into physical form.

To me, there is no more satisfying moment than seeing my creation driving or flying
around, doing its job, and knowing that all of the hard work, sleepless nights, smashed
fingers and toes, and skipped meals was worth this result.

Issues in AI – real and not real
There is really a lot of hype going on right now in the intersecting worlds of artificial
intelligence and robotics. And a lot of is just hype and exaggeration.

One common myth is that robots are taking jobs away from people. In truth, robots and
automation free up workers to do more productive tasks. The truth of this can be seen in
job statistics – unemployment in the US is at a 20-year low, despite massive improvements
in factory automation. The fact is that the improved productivity of robotics creates more
jobs than it removes (source: The Financial Review, November 11, 2016. https:/ /www. afr.
com/business/robots- not- taking- jobs- economist- busts- automation- myths- 20161110-
gsmo3j)

I’m not here to say that individuals are not losing manufacturing jobs, but I do say that the
overall level of employment has increased, not gone down as a result of automation and
increased productivity.

I do recognize that the modern worker, even someone like myself, who works in
technology, must be ready and willing – at any age – to retrain themselves and to learn and
adapt to new ways of working, new economies, and new opportunities. I’ve had to
completely retrain myself at least five times as new markets were invented and new
technologies have emerged. Sometimes there is a “second wave” where some technology
was invented but then disappeared when it was too expensive for the benefits it provided,
or the proper hardware had not been invented yet. Neural networks fit into that category,
as does virtual reality, which was a big deal in 1999, and has now re-emerged with very
small high resolution screens that were developed for cell phones.
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I’m quite interested in the long-term impact of what has been called the “sharing economy”,
where companies like Uber, Lyft, and AirBnB create value by connecting suppliers and
consumers on a massive scale without owning any of the capital or resources to actually
provide any services. All of this is enabled and made possible by the ubiquitous internet,
which continues to grow and evolve at a rapid pace. I often use the term, “but that’s a
decade in internet years”, referring to some idea that is maybe 24 months old, to indicate
the rapid turnover in internet tech. This trend will continue. It will be interesting to see if
anyone owns a car in 20 years, or only a subscription to a car service.

Another trend that has become very interesting is the lowering of barriers to entry in a lot
of businesses. You used to have to have an enormous machine shop and giant machines to
make plastic parts – before 3D printers came and put that capability on your desktop. Want
to make movies? You can do it on an iPhone. Want to start your own recording studio? The
parts for professional results (with a large amount of effort) are available for less than $200.

One item that definitely fits into that category are drones, or small unmanned aerial
vehicles. When I started making unmanned aerial vehicles, or UAVs as we called them, a
decent GPS and IMU (inertial measurement unit) – the things that make unstable
quadcopters possible to control– cost tens of thousands to hundreds of thousands of
dollars. The real breakthrough in drone technology did not come from aviation, but rather
from your cell phone. The developments in cell phones enabled companies to make billions
of dollars making the next cell phone or smartphone, or hand-held computer pacifier, or
whatever you would want to call it. The convergence of very small radios, very small GPS,
and very, very small accelerometers, enabled an entire world of unmanned flying things to
emerge. That, along with higher density batteries that came from (you guessed it) cell
phones and laptops, allowed people to discover that if you put enough power on it, you
can make almost anything fly, including you.

The secret to the flying quadcopter’s amazing success is that the tiny accelerometers (that
measure changes in movement) and tiny gyroscopes (that measure changes in angles)
became cheap and readily available. Without these sensors, and the robotics algorithms that
control them, quadcopters are unstable and impossible to control. Another reason for the
quadcopter’s success is that it uses only the throttle setting – the speed of the motors – to
control all of its aspects of flight, including stability. This compares with the very
complicated collective controls and cyclic pitch controls that make a helicopter work. You
can see the difference in an R/C helicopter, that is very expensive, and only a few people
can fly, and a quadcopter, that is quite cheap and can be flown by anyone, with the help of
a computer and some sensors.
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Some very brief words about robots and AI
phobia
You have been hearing blazing headlines on the internet from various very credible
sources, saying some incredible (as in not credible) things:

Mark my words — A.I. is far more dangerous than nukes — Elon Musk (CNBC. March 13, 2018).

I am in the camp that is concerned about artificial intelligence. First the machines will do a lot of jobs
for us and not be super intelligent. That should be positive if we manage it well. A few decades after
that though the intelligence is strong enough to be a concern. I agree with Elon Musk and some
others on this and don’t understand why some people are not concerned. — Bill Gates,
TechEmergence.com, March 9, 2018.

The development of full artificial intelligence could spell the end of the human race ... It would take
off on its own, and re-design itself at an ever increasing rate. Humans, who are limited by slow
biological evolution, couldn't compete, and would be superseded— Stephen Hawking, speaking to
the BBC, from https:/ / www. forbes. com/ sites/ bernardmarr/ 2017/ 07/ 25/ 28-best-
quotes-about-artificial- intelligence/ #383649e24a6f

Let me say I do not think I’m in the same league as these gentlemen. But what I am is
someone who works every day at the leading edge of artificial intelligence, unmanned
vehicles, and robotics, and who attends and speaks at a lot of AI conferences.

The source of this fear can be found in any bathroom, hanging on the wall – we are
reflecting our own motivations and desires onto our creations.

The state of the art of AI today I would liken to a teenager who has managed to strap a V-8
engine to a skateboard – an enormous amount of power with no way to use it. While
computers, hardware, and networks have advanced and scaled at an amazing rate, we are
still building software exactly the same way today as we did 20 years ago, and many of the
advances of AI were really invented 40 or 50 years ago. Neural networks were invented in
the 1940s(1). Genetic algorithms were suggested by Alan Turing in the 1950a (2). We have
been able to make some advancements on applying learning theory now that we have lots
of data (thank you, internet) and lots of bandwidth, but we have not created any new
concepts or capabilities that show any sort of breakthrough in AI. We are no closer to
creating a general AI – a computer that learns any task without reprogramming – than we
were in 1969.
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While the hardware is advancing, the software is not, at least not at the same rate as the
hardware. I simply don’t see any path forward that leads to the type of problems that the
esteemed Mr. Gates, Mr. Musk, or Dr. Hawking are suggesting. Why not?

It is because robots don’t have needs. Humans have needs and ambitions in order to exist.
We are encased in a frail flesh cell, what William Burroughs called “the Soft Machine”. We
must provide air, food, water, shelter and clothing to protect our fragile shell, and interact
with other soft machines (people) to reproduce and make more of ourselves. You can
argue, as Richard Dawkins did in his book, The Selfish Gene, that all of this is simply an
evolved way for our DNA to perpetuate itself, and that we are simply the product of our
biological programming. It is absolutely impossible to separate a human from his or her
needs – if you don’t, we die in a matter of minutes. It is our needs that drive us forward, to
come out of the trees, to learn to farm, to build cities, and make civilizations.

Robots, on the other hand, do not have needs as a condition of their existence. They are just
sets of instructions we have set down in electronics – golems with words in their heads that
make them move (3). If we don’t feed them – nothing happens. If we don’t use them –
nothing happens. If we forget them for a week and check on them later, they are still the
same. Try that with a cat or dog.

Let’s talk for a moment about what a set of robot needs might look like. I found this an
interesting thought experiment – we make a baby robot that is fully capable of learning
anything a baby human (or baby mouse, or baby cricket) can. What needs would it have?
We can start with what our needs are. It has been a running joke between my wife and I
that every textbook we ever read in college contained some reference to Abraham Maslow,
and his Hierarchy of Needs. This was quite unusual since I studied math and engineering,
and my wife’s degree is in human resources. Mr. Maslow came up with this list of needs
back in 1943, and he has been quoted ever since. (4) Maslow says that we not just have
needs, but they form a hierarchy – the more important needs at the bottom, and more
abstract needs at the top.
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We only worry about the need at any given level when all of the needs below it are
satisfied:

So at the bottom of the pyramid of needs are the physical needs – air, food, water, and
clothing. The next level is security – we need to feel secure from predators or from other
humans wanting to harm us. Above the security needs are social needs – to be in a group or
part of a society. Humans want to belong to a family, a community, a nation. This drive is
very strong, as our invention of war to protect our society attests. Next we have ego needs-
the need to be recognized, to be special, to stand out from the crowd we fought so hard to
be part of. Remember, we only get to express this once all the other needs are taken care of,
so you only worry about recognition once you are part of a group. Our final need is called
self-actualization by Maslow – we would call it self- improvement, or the drive to improve
one’s self. This is where we get athletes, artists, musicians, and people writing books.



Conclusions and Reflections Chapter 10

[ 301 ]

Now let’s look at a machine intelligence. For us, hunger is built into our biology. We, the
creators, would need to build it into an AI system. That would equate, as we did in our
artificial personality, with electrical power or battery life. The next level of needs would be
the goals and tasks for which the AI was created. The next level up would be curiosity and
the need to explore – our AI system would have a drive to acquire more data, or to get
access to more resources. Once a robot has data that gives it the basis to get more data, and
so on. The next level of needs we would endow to our AI would be the need for friendship
or communication, either with other robots or with people. Finally, we could give our robot
the need for learning, or to acquire and learn new skills and techniques – to grow as a
robot.

You may notice that we did not cover these subjects in this book, nor in any other. We did
not talk about giving the robot needs, only the simulation of emotions and some rules for
conversation that make no sense to the robot at all. It gets no joy from telling a terrible joke
to a 7-year-old, because it does not know what any of those concepts are. It just sends
electrons down either one path or another because we tell it to. The only intelligence here is
the reflection and imagination of us, the robot designers. Everything else is an illusion, a
magician’s trick.

That got a bit deep from a guy that started off this chapter telling you knock-knock jokes. I
do get this sort of question quite a lot and felt that I could give you some of my answers, if
that helps arm you against anti-artificial intelligence mobs with torches and pitchforks.

The bottom line is I simply do not worry about AI taking over the world. I don’t say that
there will never be a general AI, just I don’t see one coming about in the foreseeable future.

Understanding risk in AI
One subject I talk about frequently at conferences and in print is the risk of artificial
intelligence in terms of trust and control. I’m not talking here about AI running amok, but
rather with AI being dependable.

It is quite interesting that the sort of AI we have been doing – specifically, artificial neural
networks—does something very few other computer software do.

Given the exact same inputs and conditions, the output of an AI system is not always the
same. Given the same inputs, the AI will sometimes come up with a different answer.

The formal name for this behavior is non-determinism.
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There is a second corollary to this. Given the same inputs, the AI process will sometimes
take a different amount of time to complete its task.

This is simply not normal behavior for a computer. We have gotten used to 2+2 = 4 on a
pretty consistent basis from a computer. Indeed, we depend on it. Remember, computers
are navigating your airliners, keeping you alive in a hospital, sending astronauts to the
moon. How can we deal with a computer sometimes saying 2+2 = 2, and taking a different
amount of time to do it?
You can verify this for yourself – look at the examples when we did training on neural
networks. Did we ever achieve a 100% success from a training run, where we got all of the
answers right? No, not once.

This is because artificial neural Networks are universal approximation functions that map
inputs – which can be quite complex – to outputs. They do this by dealing in probabilities
and averages, which were developed over time. You can think of an artificial neuron to be a
probability engine that says, 45 out of the last 50 times I got this set of inputs, the output was
supposed to be true. The odds are it will be true this time. And it sets itself to true. We may have
millions of little artificial neurons in our network, each of them making the same sort of
calculation. The net result is making a very educated guess about the answer.

For most applications of our neural networks, this is OK behavior. We are classifying
pictures, and it is OK if a few are wrong. We do a Google search for platypus, and we get
one picture out of 100 of Platypus brand tennis shoes. That is OK for a Google search, but
what if we were doing something more serious – like recognizing pedestrians in a self-
driving car. Is it OK if we misidentify one pedestrian out of 100 and not avoid them? Of
course not. That is why, right now, we don’t allow AI system in such critical functions. But
people want to use AI in this way – in fact, quite a lot. It would be great to have an AI
function that recognized geese in flight and told your airliner how to avoid them. It would
be great to have an AI recognize that a patient was misdiagnosed in the hospital and
needed immediate attention. But we can’t do that until we come up with processes for
dealing with the non-deterministic and thus non-reliable nature of AI.

Now today, we deal with non-deterministic elements in automobiles all of the time. They
are called drivers. We also know that 94% of car crashes (5) are caused by that human
element behind the wheel, which is why we need self-driving cars with a better percentage.
How do we deal with human drivers? We require them to be a certain age, which means
they have gained experience. They have to pass a test, demonstrating competency in
accomplishing tasks. They have to demonstrate compliance with rules and regulations by
passing a knowledge test. And they have to get periodically re-certified by renewing their
license. We also require seat belts and airbags to partially mitigate the risk of the human
driver making mistakes by reducing some of the resulting injury.
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We can apply these types of criteria to AI. We can require a certain amount of training
cases. We can test and demonstrate a level of competency. We can predict in advance the
level of errors or mistakes, and put measures in place to mitigate that risk. Perhaps we can
have two AI systems, one that detects obstacles, and the other that is trained to recognize
that the first AI has made a mistake. If we have a 90% chance of the first AI being right, and
another 90% of the second AI being right, then we have a 90% + (90% of 10%) = 99% chance
of avoidance.

I think the key to using AI in safety-critical applications is being able to predict risk in
advance, and designing in advance to mitigate either the cause of the risk or the effect.

Final words
I want to thank you for coming on this journey with me. I hope you have learned
something along the way, even if it is just to know more questions to ask. I encourage you
to dive in and build your own robot, learn about artificial intelligence, and become part of
the community of people who contribute to robotics as a hobby or a profession.

I have to acknowledge a debt of gratitude to all of the robotics and AI open source
community for making all of this material, knowledge, and expertise available, and
continuing to make AI the poster child for why open source, as a model for advancement of
human knowledge, works and works well.

Summary
In this final chapter of our book, we summarized the journey through robotics and AI that
is presented in the other chapters. We talked about robotics as a career, and discussed AI
robotics as a profession. I brought up some issues regarding the future of AI, both real and
imaginary. Drones and self-driving cars are real; robots taking jobs from humans or taking
over the world is imaginary, at least in my opinion. I talked about robots and AI not having
needs, and thus lacking the motivation or pressure, or even capability to evolve. Finally, we
talked about risk in AI and how to recognize it.
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Questions
Given that we started the chapter with knock-knock jokes and ended up taking1.
about robot phobia and philosophical questions about existence, do you feel that
AI is a threat, and why?
List five professions that would be necessary to turn our Tinman robot into a2.
product company.
Why would our imaginary Tinman robot company need a psychologist?3.
What components found in cell phones or smartphones are also found in4.
quadcopters?
Why are artificial intelligence systems, specifically artificial neural Networks,5.
naturally non-deterministic in both result and in time?
What might be a practical application of an AI system that predictably makes6.
mistakes?
If an AI system was picking stocks for you, and predicted a winning stock 43% of7.
the time, and you had a second AI that was 80% accurate at determining when
the first AI had not picked a good stock, what percent of the time would the AI
combination pick a profitable stock?
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Assessments

Chapter 1, Foundation for Advanced
Robotics and AI

PID stands for Proportional, Integral, Derivative, and is a type of closed loop1.
controller which does not require a model to operate. PID is not an AI method
because it doesn't involve learning and there is no simulation of decision making.
The Turing test, originally called “The Imitation Game” by Alan Turing, is an2.
imaginary test, or thought experiment, in which a person is communicating with
someone or something via a teletype (text message for you millennials). An AI
would pass the Turing test if the person was unable to tell if the entity he/she
was communicating with was a human or a robot. The Turing test has been
pretty much smashed by modern AI-based chatbots, and a new test has been
proposed – assembling IKEA furniture via the directions.
Because they cannot see them completely with a range sensor, such as a LIDAR.3.
Also, most robot obstacle detection sensors are parallel to the floor and are not
looking down.
In the Orient step, all of the data is put into the same reference frame, which is4.
usually the robot’s central point of view. This allows the robot to determine
which data is relevant to decision making.
This is a bit of a rhetorical question. The correct answer is "a lot". Using Python as5.
an interpreted language can save a lot of time for very complex builds, where a C
/ C++ compiler and link can take 20 minutes or more. The C program test cycle in
the question would take 6.25 hours to complete while Python would take 2.5
minutes.
RTOS stands for Real-Time Operating System.6.
You need a number that all of the rates 10, 5, 50, 20 divide into evenly. The7.
smallest number that fits is 100 Hz. I would also accept 50 Hz if the student
assumed that the 20 Hz would update twice in one frame and three times in the
next frame.
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As given in the previous questions, there does not have to be the same number of8.
samples in each frame in order to come out with a constant frame rate, as long as
there is a multiple of the base frame rate every sample divides into. In this case,
20 x 7 = 140, so the 7 Hz can run in a 20 Hz base rate, and it will repeat patterns
every 140 frames, or 7 seconds. 3.5 is half of seven and can run at the same base
rate with a pattern that repeats every 70 frames or 3.5 seconds. Each update
would be 5.7 frames apart, which gets rounded up to 6.
A blocking call suspends the execution of your program until some interrupt or9.
event occurs, such as receiving a datagram or UDP packet. They are bad because
you lose control of your program timing and cannot maintain a soft real-time
execution. Use polling type calls instead for serial ports and network interfaces.

Chapter 2, Setting Up Your Robot
Sensors mentioned in the text include:1.

Sonar sensors
Cameras
Microphones
Buttons
Analog-to-digital voltage sensors
Temperature via thermistors

PWM stands for Pulse Width Modulation, a type of digital-to-analog control2.
scheme where pulses are sent out that get longer based on the amount of control
desired. It is commonly used to control DC motors.
As the name says, analog to digital conversion (A2D) takes in an analog value,3.
typically a voltage, and converts it into a digital value or number that the digital
part of the computer can understand.
As stated in the text, the subsumption architecture was originally described by4.
Dr. Rodney Brooks, a professor at MIT who would later help found iRobot
Corporation and invent the Baxter Robot. Rodney was trying to develop
analogues of insect brains in order to understand how to program intelligent
robots. Brooks, Rodney. Cambrian Intelligence: The Early History of the New AI.
MIT Press, 1999. Boston, MA.
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The three laws of robots from Isaac Asimov first of all are fictional, while the5.
subsumption architecture is a real process that is used to make real robots.

The three laws are:

Robots will not harm a human being, or through inaction, allow a human to
come to harm.
Robots will obey orders from humans except when that violates the first law.
Robots will protect themselves from harm, except when that violates the first two
laws.

The bottom layer of the SA (subsumption architecture) is the part that looks
inside the robot and takes care of internal systems. I like to compare it to the
autonomic nervous system. That protects the robot. The second layer is the
short-term manager. It tells the robot where to go, which includes obeying
orders from users. The top layer contains the strategic thinking and planning
processes. The correlation is pretty weak, to be truthful.

And, yes, readers, I am aware of the fourth, or Zeroth, law:  the robot shall
not harm humanity , or allow humanity to come to harm.  That was a later
addition.

This is a personal, subjective question for the reader. Why do we give robots6.
names and not washing machines?
The most important variable in this set is the ROS_MASTER_URI, which tells all7.
of the ROS parts where ROSCORE is located at. ROSCORE makes all of the
connections in a ROS system.

Chapter 3, A Concept for a Practical Robot
Design Process

A storyboard for a movie is used not just for advancing the plot, but showing1.
what point of view will be used – in other words, it is used to plan camera
angles, directions, and movements. The purpose of both storyboards is to “tell
the story” of what happens, so they are different, and the same.  The point of
view of a computer software storyboard should be the user.
Who? What? When? Where? Why?.  More relevant questions might be: How2.
well?  How often?  How much?
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Use cases are from the user's perspective and never include implementation3.
details.
The robot has to: determine a route to the toybox; plan a path; avoid obstacles4.
along the way; align itself with the front of the toybox; drive up to the toybox;
and move the robot arm to clear the top.
It is to complement the teller of the joke – the robot should say “That is very5.
funny”, or “I am sorry, I am unable to groan”.
The robot needs to send a video back to the operator so the operator can see6.
where they are going.
The robot shall have a sensor capable of detecting negative obstacles in the floor7.
(that is, stairs going downward, balconies) at a distance of at least six inches from
the robot, along the robot’s driving direction.
30 degrees/320 pixels wide = 0.0937 deg/pixel. 8.

35 pixels* deg/pixel  = 3.28 degrees.

This makes an isosceles triangle; we need a right triangle to do the math.

Divide the base in two to make a right triangle – base = 3 inches.

We also divide the angle in half. 3.28 becomes 1.64 degrees.

3" / tan(1.64) = 104 inches or 8.73 feet.

Chapter 4, Object Recognition Using Neural
Networks and Supervised Learning

This is an exercise for the student. You should see different curves develop as the1.
activation function is changed.  Some will not produce an answer at all (which
look like random results – the curve stays at the same level as no learning is
taking place). Some will learn faster or slower.
Refer to Figure 3 in the chapter. The artificial neuron has a number of inputs, a2.
set of weights, one for each input, a bias, an activation, and a set of outputs.
Both have multiple inputs and multiple outputs, and accept inputs, perform3.
some processing, and then make an output. Both use some sort of activation to
determine when to “fire” or produce an output.
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The natural neuron is an analog device that can handle many levels or degrees of4.
inputs, with no simple on/off binary representations like the computer neuron.
Neurons use chemical paths that make pathways and connections easier the
more they are used, which is the learning function of a neuron.  This is simulated
by the weights in an artificial neuron.  The natural neuron has an axon, or
connecting body that extends out to the outputs that can be a quite distance from
the nerve inputs. Neurons are randomly connected to other neurons, while
artificial neurons are connected in regular patterns.
The first layer contains the number of inputs to the network.5.
The last layer of an ANN is the output layer and has to have the same number of6.
neurons as outputs.
Loss functions in ANNs are the error function. They compare the expected7.
output of the neuron with the actual output.

Mean square loss: The most commonly used loss function.  Sum of the squares of
the distances between the output and the expected output. MSL amplifies the
error the farther away from the desired solution.
Cross-entropy: Also called log loss. Used mostly for classification CNNs.  As the
predicted value approaches 1 (no error), XE (cross-entropy) slowly decreases.  As
the values diverge, the XE increases rapidly.   Two types of cross-entropy are
binary (on/off, used for yes/no questions) and sigmoid cross-entropy, which can
handle multiple classes.

You are probably “overfitting” and have too small a sample size, or your network8.
is not wide or deep enough.

Chapter 5, Picking up the Toys
The origin of the Q-learning title is the doctoral thesis of Christopher John1.
Cornish Hellaby Watkins from King’s College, London in May, 1989. Evidently,
the Q just stands for “quantity”.
Only pick the Q-states that are relevant and follow-ons to the current state. If one2.
of the states is impossible to reach from the current position, or state, then don’t
consider it.
If the learning rate is too small, the training can take a very long time. If the3.
learning rate is too large, the system does not learn a path, but instead “jumps
around” and may miss the minimum or optimum solution. If the learning rate is
too big, the solution may not converge, or suddenly drop off.
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The discount factor works by decreases the reward as the path length gets longer.4.
It is usually a value just short of 1.0 (for example, 0.93). Changing the discount
factor higher may have the system reject valid longer paths and not find a
solution. If the discount is too small, then paths may be very long.
You would adjust the fitness function to consider path length as a factor in the5.
fitness.
You can implement the SARSA technique into program 2 ,as follows:6.

# SARSA = State, Action, Reward, State, Action
 Q[lastStat,lastAction]=reward+gamma*Q[stat2,action]
 #Q[stat,action]=reward + gamma * np.max(Q[stat2])

Generally, increasing the learning rate shortens the learning time in generations,7.
up to a limit where the path jumps out of the valid range. For our example
program, the lowest learning rate that returns a valid solution is 5, and the
highest value is 15.
It causes the simulation to run much faster, but takes many more generations to8.
find a solution.

Chapter 6, Teaching a Robot to Listen
I found at least three.  My favorite is that Mycroft is Sherlock Holmes’ older, and1.
some say, smarter, brother.  Sherlock Holmes is played on TV by
Benedict Cumberbatch, who also played Alan Turing in The Imitation Game, the
original name of the Turing test, a test of AI conversation, which is what Mycroft
does.
One approach has been to gather a selection of commands, label the intent of the2.
commands, use the commands as input to a neural network, and the label as the
training output. 
It is fairly simple to add a program to just write to the knock-knock joke program3.
database.  I’ll post a version of this on the HitHub site.  Is this machine learning? 
I would say, definitely!  The machine has a capability that it did not have before.
play_wav_cmdline: paplay %1 --stream-name=mycroft-voice.4.

You can use this to play the audio.  You can also add a tag to the joke file that
indicates a wave file, <groan.wav>.  Then if you see this tag, call the play
wave function.
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In other languages, the object or the subject appear in a different order, just as in5.
Yoda’s speech patterns.   “Backwards, talk I”, Yoda would say. 

That does require us to change or add the new sentence patterns to our .voc
files.

You can follow Mycroft’s instructions for changing the engine to understand
French from this web page:

https:/ / mycroft. ai/ documentation/ language- support/ french/
#download- and- install- french- language- model

I do not place Mycroft in the category of construction AI chatbots, but it is rather6.
a referential type that looks up answers in a database, which makes it more of an
expert system than an AI program.  It does use AI neural networks in the speech-
to-text section.

The voice commands are:7.

Hey Albert!
Can you see any objects?
Drive to closest object.

From step 7, work to minimize the number of commands. How many can you8.
eliminate or combine?

Hey Albert.
Drive to the nearest object.

Also from step 7, how many unique keywords are involved? How many non-9.
unique keywords?

Key words are: see, objects, drive, closest.
All of the words are unique except "object".

Chapter 7, Avoiding the Stairs
LIDAR, a type of laser radar, is the most common SLAM sensor used, by a wide1.
margin. The 3D data that LIDAR provides is perfect for SLAM’s mapping
function.
The Wheel odometers reduce the search space that the SLAM algorithm needs to2.
look for possible locations of the robot after moving. Thus, it increases
information and reduces uncertainty in the map.

https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
https://mycroft.ai/documentation/language-support/french/%23download-and-install-french-language-model
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It reduces noise and gets rid of stray single pixels in the image, making for a3.
smoother result.
Instead of using radial red lines, the program can just draw upwards from the4.
bottom of the screen in a series of vertical lines.
We just want to use the upper half of the room to train the network because the5.
lower half has the toys on it and are subject to change. The upper half of the
room does not change with the addition of toys.
We don’t have to have a map to successfully navigate the room. We are6.
providing labeling of our training set by just driving the robot around and taking
pictures at regular intervals. This approach is also far more resilient to changes in
the room, like throwing toys all over the place.
We would need to have a navigation function that determined where in the room7.
we were at – this would probably mean a SLAM algorithm. We would also need
a something to detect the stairs.
We trained the robot to navigate by looking at the upper part of the room. We8.
only drove the robot in safe areas, and used that information to allow the robot to
predict its next driving command based on where it is in the room. Since we
hopefully did not drive the robot down the stairs in this process, the robot will
never get a command to drive towards the stairs. We have to be careful to get a
good training result before letting the robot loose, however. I used a “baby gate”
to block the stairs for early testing.  We can add a lookdown sensor to detect
stairs as an additional safety measure. I would use an IRPD (Infrared Proximity
Detector) for this purpose. 

Chapter 8, Putting Things Away
From the beginning to the end (start to goal); from goal to start; and from both1.
ends at once and meeting in the middle.
By eliminating the effect of the item on the branch. For example, using our "robot2.
does not move" fault, if the branch says, "Arduino- no power", if you check to see
if the Arduino has power, and it does, you can prune that branch. If the branch is
“Motor stuck”, the effect of having a motor stuck is that the robot will drive in
circles. As the robot is not driving in circles – it’s not driving at all – you can
prune that branch.
It determines the amount of “impurity” in the sample or pool. When the Gini3.
impurity = 0, all of the members of the class have the same attributes, and no
further subdivision is possible. Gini minimizes misclassification. The Gini Index
is 1 minus the sum of the squares of the probability of an item being in that class.
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Color, noise, soft, and material were not useful in dividing the categories by4.
labels. The labels and the items did not correlate. It does make sense that color is
not useful in subdividing toys by type.
The color white was used by the decision tree that used the Gini Index and One5.
Hot Encoding to separate out the stuffed animals.
Let’s have three types of menu items: appetizers, entrée, and dessert. Label6.
encoding would substitute 0 for appetizers, 1 for entrée, and 2 for dessert. One
Hot Encoding would use 1 0 0 for appetizers, 0 1 0 for entrees, and 0 0 1 for
desserts.
The G() function is the distance along the path from the current position to the7.
start. H() is the distance from the current position directly to the goal (Euclidean
Distance). Note that G() follows the path, and H() is the straight line distance to
the goal, since we have not computed a path to the goal yet.
A heuristic is an approach that is not guaranteed to be optimal, but instead is just8.
sufficient for the task. Since H(), the direct line distance to the goal, is an estimate
and ignores any obstacles, it can’t be used directly, but is just a way to compare
one position to another. A major difference between D* and A* is that D* starts at
the goal and works backwards toward the start. This allows D* to know the exact
cost to the target – it is using the actual path distance to the goal from the current
position and not a heuristic or estimate of the distance to go, like A* did.
RAISED squares or points are eliminated from consideration. LOWERED squares9.
may be added back into the queue for consideration to be a path. Keep in mind
that lowering scores due to new sensor readings ripple through the path planner.

Chapter 9, Giving the Robot an Artificial
Personality

This is of course, a subjective question. I’m a big R2D2 fan. R2 is feisty,1.
determined, and stubborn, as well as being a faithful companion and helper. R2
will get you out of a jam, fix your star fighter, provide cover from hostile fire, and
hack Imperial computers. He is a Swiss Army Knife with wheels.
R2 D2 owes his personality to a combination of his emotional beeps and squawks2.
(provided by Ben Burtt), his body movements provided by having a person
inside his chassis (Kenny Baker). They were stuck with the not-very versatile
chassis designed for the first Star Wars movie, which only has a head that moves.
Most of R2's persona comes through his sounds, including his famous scream.
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The two types are retrieval based and generative. Retrieval-based chatbots look3.
up responses in lists of scripts, and choose from a number of phrases that are
written in advance by humans. Generative chatbots use the rules of grammar and
models of sentences to create new sentences with the proper meaning. The
strengths of the retrieval-based chatbots is that they are easy to program, with
more control over the outputs, and much smaller and faster programs.
Weaknesses include limited responses, and the use of keywords give them a
small vocabulary. The generative chatbots are more flexible, and can handle a
wider range of topics, but are much harder to program, and are complex and
slow.
Because the two distributions will join together – the standard distributions sit4.
"on top" of the uniform distributions and the two combined go to the top of the
graph.
This is another subjective question. My answers are in the text. I picked emotions5.
that represented the range of capability of my robot and the situations it would
be in. I kept to a friendly-type robot, and the only negative emotion is sad. There
is no anger, for instance.
A small boy would be mischievous, have a short attention span, constantly6.
change the subject, keep trying to bring up the same topic over and over, and
would repeat variations of the same questions.
In order to provide consistent answers to personal questions, such as "how old7.
are you?".

For the next two questions, pick a persona from my list to model (from the
"Integrating artificial personality" section).

Write six lines of dialog for the robot to ask a human where they last went on8.
vacation:

So, where did you go on vacation last?
 Summertime is coming up. Where did you go on vacation last year?
 Do you like to travel? Where have you been?
 I never get to go on vacation. Where did you go last?
 I have heard of this concept called vacation. Where do you like to
go?
 Have you been to the beach?
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Six ways for the robot to express that it is tired and needs to recharge, without9.
sounding like a robot, are:

I’m tired – have you seen my recharger?
 Wow, it is getting late. I’ve been at this a long time.
 Well, my battery is getting low. Must be about quitting time.
 I am starting to feel a bit run down.
 Well, look at the time! My battery needs attending to.
 I’m getting hungry in here. Can I go charge now?

Chapter 10, Conclusions and Reflections
I do not feel that robots or AI are a threat in any way, because the necessary and1.
sufficient conditions for robots to be a threat do not exist.  Which is to say, the
robots have to want to take over the world, and have a need to take over. 
Currently, robots and AI have no wants or needs.
We would need project managers, packaging designers, advertising and2.
marketing, sales people, and support staff.
Psychologists study normal and abnormal mental states and cognitive processes,3.
exactly what we are trying to simulate for artificial personality.  We want the
robot to not trigger bad responses in people.  I once had a robot with flashing red
eyes that caused small children to have panic attacks.  Psychologists would help
avoid such errors.
GPS receivers, radios, Wi-Fi, Bluetooth, accelerometers, gyroscopes, and these4.
days, apps.
Because they are universal approximation systems that work in probabilities and5.
averages, not in discrete numbers and logic.  ANNs can take a different amount
of time because a particular bit of data may take different paths at different times,
going through a different number of neurons and thus not taking the same
amount of time to process.
You can use a neural network based system to model a bad human operator for a6.
driving simulation to help teach other drivers (and self-driving cars) how to
avoid bad drivers.  The desired state is an unpredictable driver, so just train the
neural network to 60% or so.



Assessments

[ 316 ]

So we have a group of 100 stocks picked by our AI program.  Of that set, an7.
indeterminate number are winners and losers.  There is a 43% chance the stock is
a winner, and a 57% chance it is a loser. We have no way of judging the stocks
being winners or losers except by investing our money, which is what we are
trying to avoid – investing in bad stocks.  A 43% chance of winning is not good.
 The second AI has an 80% chance of telling you that the first AI chose a bad
stock. So 80 times out of 100, you will know that the stock was not a winner.  So
you are left with an 80% chance of correctly identifying one of the 57 bad stocks,
which eliminates 45 stocks.  That leaves you with 55 stocks, of which 43 are
winners (on average), which raises your odds to 78%.

Using Bayes Theorem, I recomputed the combined probabilities as 75.1% - so
I’ll take either answer:

Bayes theorem p(x|c) = (px* pc) / (px*pc)+(1-px)(1-pc)
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