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Preface

This book is intended as an introduction to partial differential equations
(PDE) for advanced undergraduate mathematics students or beginning grad-
uate students in applied mathematics, the natural sciences and engineering.
The assumption is that the students either have some background in basic
real analysis, such as norms, metric spaces, ODE existence and uniqueness,
or they are willing to learn the required material as the course goes on, with
this material provided either in the text of the chapters or in the notes at
the end of the chapters. The goal is to teach the students PDE in a mathe-
matically complete manner, without using more advanced mathematics, but
with an eye toward the larger PDE world that requires more background.
For instance, distributions are introduced early because, although concep-
tually challenging, they are, nowadays, the basic language of PDE and they
do not require a sophisticated setup (and they prevent one from worrying
too much about differentiation!). Another example is that L2-spaces are in-
troduced as completions, their elements are shown to be distributions, and
the L2-theory of the Fourier series is developed based on this. This avoids
the necessity of having the students learn measure theory and functional
analysis, which are usually prerequisites of more advanced PDE texts, but
which might be beyond the time constraints of students in these fields.

As for the aspects of PDE theory covered, the goal is to cover a wide
range of PDE and emphasize phenomena that are general, beyond the cases
which can be studied within the limitations of this book. While first order
scalar PDE can be covered in great generality, beyond this the basic tools
give more limited results, typically restricted to constant coefficient PDE.
Nonetheless, when plausible, more general tools and results, such as energy
estimates, are discussed even in the variable coefficient setting. At the end of

ix
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the book these are used to show solvability of elliptic non-constant coefficient
PDE via duality based arguments with the text also providing the basic
Hilbert space tools required (Riesz representation).

In terms of mathematical outlook, this book is more advanced than
Strauss’s classic text [6]—but does not cover every topic Strauss covers—
though it shares its general outlook on the field. It assumes much less
background than Evans’ [1] or Folland’s [2] text; Folland’s book covers many
similar topics but with more assumption on the preparation of the students.
For an even more advanced text see Taylor’s book [7] (which has some
overlaps with this book) which, however, in a sense has a similar outlook
on the field: this would be a good potential continuation for students for a
second PDE course. This text thus aims for a middle ground; it is hoped
that this will bring at least aspects of modern PDE theory to those who
cannot afford to go through a number of advanced mathematics courses to
reach the latter.

Since PDE theory necessarily relies on basic real analysis as we recall,
more advanced topics develop as we progress. Good references for further
real analysis background are Simon’s book [4] for multivariable calculus and
basic real analysis topics, and Johnsonbaugh and Pfaffenberger [3] for the
metric space material.

The chapters have many concrete PDE problems, but some of them
also have some more abstract real analysis problems. The latter are not
necessary for a good understanding of the main material, but give a more
advanced overview.

The last two chapters of the text are more advanced than the rest of the
book. They cover solvability by duality arguments and variational problems.
While no additional background is required since the basic Hilbert space
arguments are provided, the reader will probably find these chapters more
difficult. However, these chapters do show that even sophisticated PDE
theory is within reach after working through the previous chapters!

In practice, in a 10-week quarter at Stanford most of the (main chapter)
material in Chapters 1–14 is covered in a very fast-paced manner. In a
semester it should be possible to cover the whole book at a fast pace, or
most of the book at a more moderate pace.
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This text on partial differential equations is intended for readers 
who want to understand the theoretical underpinnings of modern 
PDEs in settings that are important for the applications without 
using extensive analytic tools required by most advanced texts. The 
assumed mathematical background is at the level of multivariable 
calculus and basic metric space material, but the latter is recalled 
as relevant as the text progresses.

The key goal of this book is to be mathematically complete without overwhelming 
the reader, and to develop PDE theory in a manner that refl ects how researchers 
would think about the material. A concrete example is that distribution theory and 
the concept of weak solutions are introduced early because while these ideas take 
some time for the students to get used to, they are fundamentally easy and, on the 
other hand, play a central role in the fi eld. Then, Hilbert spaces that are quite impor-
tant in the later development are introduced via completions which give essentially 
all the features one wants without the overhead of measure theory.

There is additional material provided for readers who would like to learn more than 
the core material, and there are numerous exercises to help solidify one’s under-
standing. The text should be suitable for advanced undergraduates or for beginning 
graduate students including those in engineering or the sciences.
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