
UNIVERSITY OF CALIFORNIA
Santa Barbara

Automated Design of Optimal Medium Access
Control Protocols for Wireless Networking

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Jian Zhen

Committee in Charge:

Professor Volkan Rodoplu, Chair

Professor Forrest Brewer

Professor Michael Melliar-Smith

Professor Louise Moser

Professor John Shynk

December 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3683002

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3683002

The Dissertation of
Jian Zhen is approved:

Professor Forrest Brewer

Professor Michael Melliar-Smith

Professor Louise Moser

Professor John Shynk

Professor Volkan Rodoplu, Committee Chairperson

March 2014

Automated Design of Optimal Medium Access Control Protocols for Wireless

Networking

Copyright c© 2014

by

Jian Zhen

iii

To My Beloved Family

iv

Acknowledgements

When I was a Master’s student in Spring Quarter 2009, I took ECE 250 from

Professor Rodoplu. In that course, I learned a lot in the area of wireless com-

munication and networking, and read for the first time in my life, many scientific

papers. In contrast to the other courses I was taking at the time, in Professor

Rodoplu’s course, we discussed a lot and were encouraged to contribute our own

ideas, something that I enjoy very much. Professor Rodoplu believed that I had

research potential, and encouraged me to pursue the Ph.D. degree. I am now glad

that I made the decision at that time to continue my studies for a Ph.D.

First, I would like to express my gratitude to my advisor, Professor Rodoplu,

for his guidance, support, and encouragement throughout my M.S. and Ph.D.

studies. This dissertation would not be possible without his advice and guidance.

During the past few years, I have learned a lot from Professor Rodoplu: how to

read scientific papers critically, how to think independently, how to create my

own research idea, how to write papers, and how to give a presentation. All

of these helped me become an independent researcher. But the most valuable

gift Professor Rodoplu has given to me is the long discussion hours spent with

him. Looking back, it is those numerous discussions which improved my academic

capability and brought me confidence in scientific research.

v

Then, I would like to thank Professor Brewer, for his eye-opening inspiration

and strong belief in me. Without the help and support from him, I would not

have been able to connect the dots and find the creative solutions I have found.

I also like to thank Professor Moser, Professor Melliar-Smith and Professor

John Shynk for their general guidance and valuable advice. I am very lucky to

have them on my PhD committee. Their valuable feedback and suggestions on my

PhD research have helped me improve the standard of my PhD work significantly.

Next, I would like to thank my fellow lab-mates: Xin Yang, Yichu Wang, and

Peng Liu. We have spent a lot of happy and valuable time together; without your

company, my time working in the lab would be much less memorable.

I would also like to thank Dongxu Zhou, my roommate and one of my best

friends in Santa Barbara. We can always understand each other and have very

supportive conversations. Without your warm support, it would be much harder

for me to get over the downtimes during my PhD studies.

And a lot thanks to my friends: Mingzhi Lu, Xun Li, Zengbin Zhang, Chao-I

Chen, Danny Fan, Wei Sun, and everyone from whose friendship and acquaintance

I have benefited at UCSB. Without all of you, the days in Santa Barbara would

not be so vivid and colorful.

vi

In addition, a special thank to Xin Yang and Ying Wu for the dinners you

cooked during my final stages of finishing this dissertation. The dissertation would

not have been finished so smoothly without your food!

Finally, I am deeply grateful to my parents, who are incredibly wise and gen-

erous. Without your love and sacrifice, it would be unimaginable for me to ac-

complish this research. Without both of you, my first advisors in life for my first

twenty-something years, a better foundation could not have been laid for me, my

career, and my whole life.

Thank you all!

vii

Curriculum Vitæ

Jian Zhen

Education

Sept.2009 – Mar.2014 Ph.D. in Electrical and Computer Engineering, University of

California, Santa Barbara, USA

Jan.2009 – Mar.2012 M.S. in Electrical and Computer Engineering, University of

California, Santa Barbara, USA

Oct.2004 – Nov.2008 Dipl.-Ing. in Electrical Engineering, Technical University of

Munich, Germany

Apr.2008 – June 2008 Visiting Student, University of A Coruna, Spain (DAAD spon-

sored research project between Germany and Spain)

Research Experience

Jan.2010 – present Research Assistant, University of California, Santa Barbara Project:

Automated Design of Medium Access Control Protocol for Wire-

less Networks Impact: published and submitted 4 conference pa-

pers in the top-tier conferences and currently working on 1 jour-

nal paper for a top-tier journal in the area.

viii

Teaching Experience

Winter 2014 Teaching Assistant,Digital Design Principles, Electrical and Com-

puter Engineering, University of California, Santa Barbara

Winter 2013 Teaching Assistant,Digital Design Principles, Electrical and Com-

puter Engineering, University of California, Santa Barbara

Spring 2011 Teaching Assistant, Computer Organization, Electrical and Com-

puter Engineering, University of California, Santa Barbara

May 2010 Guest Lecturer, University of California, Santa Barbara Topics:

Automated Generation of Medium Access Control Protocols: Re-

cent Progress.

Work Experience

June 2012 – Sept.2012 Software Engineer Intern, Citrix Online, Santa Barbara, USA

Mentor: Software Architect/Researcher Allan Knight, in Com-

munication Group (1) optimization and implementation of au-

dio/video processing in WebRTC library for iOS/Android plat-

form under ARMv7 neon architecture; (2) test and analyze the

audio/video performance under the iOS/Android system.

June 2011 – Sept.2011 Software Engineer Intern, Citrix Online, Santa Barbara, USA

Advisor: Chief Scientist Albert Alexandrov, in Research Group

Working on improving QoS of the new product Gotomeeting HD,

ix

developed a bandwidth estimation/allocation algorithm which

measures the Internet bandwidth between two communicating

end users in realtime and allocates the available bandwidth to

different types of traffic (video, audio and screen sharing data

traffic, etc.) according to their different QoS requirements.

July 2005 – Feb.2006 Engineering Intern, Siemens AG, Munich, Germany Worked in

DVB-T mobile handheld device development team

Professional Memberships

2008 – 2014 IEEE student member

2011 – 2014 IET Networks/Communications reviewer

2012 Session Chair, Globecom 2012, Dec. 2012

2013 Session Chair, Globecom 2013, Dec.2013

Selected Publications

GLOBECOM13 Jian Zhen, Volkan Rodoplu: “Automated MAC Protocol Genera-

tion under Dynamic Traffic Conditions,” in Proc. IEEE GLOBE-

COM, Dec 2013.

GLOBECOM12 Jian Zhen, Volkan Rodoplu: “Automated MAC Protocol Gen-

eration for Dynamic Topologies,” in Proc. IEEE GLOBECOM,

Dec 2012.

x

GLOBECOM11 Jian Zhen, Forrest Brewer, Volkan Rodoplu: “Automated MAC

Protocol Generation with Multiple Neighborhoods and Acknowl-

edgments Based on Symbolic Monte Carlo Simulation,” in Proc.

IEEE GLOBECOM, Dec 2011.

GLOBECOM10 Jian Zhen, Forrest Brewer, Volkan Rodoplu: “A Methodology

for Optimal MAC Protocol Generation: Case Study of a Syn-

chronous MAC Channel,” in Proc. IEEE GLOBECOM, Dec

2010.

Honors and Awards

2013 – 2014 ECE Department Dissertation Fellowship, University of Cal-

ifornia, Santa Barbara.

2012 – 2013 Doctoral Student Travel Grant from Graduate Division, Uni-

versity of California, Santa Barbara.

2009 – 2013 President’s Work Study Award, University of California, Santa

Barbara. (4 times)

2005 – 2007 Scholarship for Foreign Students from the Bavarian Govern-

ment (5 times), Germany

xi

Activities

2010 – 2013 CSSA Badminton Group coordinator, University of Califor-

nia, Santa Barbara.

2010 – 2011 Vice president of Chinese Scholar and Students Association

(CSSA), University of California, Santa Barbara.

Languages

Chinese: native speaker

English: full professional proficiency

German: full professional proficiency

xii

Abstract

Automated Design of Optimal Medium Access Control

Protocols for Wireless Networking

Jian Zhen

We present a framework for the automated design of optimal Medium Access

Control (MAC) protocols for wireless networks.

First, we describe a methodology that incorporates the impact of control infor-

mation transfer into MAC protocol optimization. We apply this methodology to

the problem of a synchronous broadcast MAC channel in order to generate the op-

timal protocol when the objective function is the average network throughput per

time slot. We describe a recursive procedure for the symbolic generation of the op-

timization program for any choice of the objective function. We demonstrate that

this methodology subsumes two structurally different types of protocols, namely,

pure random access protocols and protocols with data advertisements, as special

cases of the regimes where they are optimal. We examine the scaling of the op-

timal throughput and the computational complexity as a function of the number

of nodes and the control lifetime.

Second, we generate optimal MAC protocols based on a more general MAC

model that incorporates multiple MAC neighborhoods as well as acknowledg-

ments. In this model, both the advertisement and acknowledgment frames are

xiii

automatically generated by an optimization program that is built based on sym-

bolic Monte Carlo simulation. The design flow chain produces an optimal MAC

protocol with respect to the desired objective function.

Third, we formulate the automated optimal MAC protocol generation prob-

lem for dynamic topologies, as encountered in wireless ad hoc networks, under

multiple neighborhoods and in the presence of acknowledgments. The probabil-

ity distribution over the set of local topologies encountered in the global network

serves as a model for which an optimization program may be formulated that

takes the per-node average throughput as its objective function. Symbolic Monte

Carlo simulation is used to generate the optimization program, which is subse-

quently solved via state-of-the-art nonlinear solvers. A quantitative comparison

with the standard RTS/CTS protocol provides information on the value of side

information on the probability distribution of local topologies, which RTS/CTS

does not presume. Our investigations of computational complexity show that the

time to generate the program dominates over the time to solve the resulting non-

linear program, and that the complete program can be solved within a reasonable

computational time.

Fourth, we formulate the automated optimal MAC protocol generation prob-

lem under dynamic traffic conditions for multiple neighborhoods and in the pres-

ence of acknowledgments. We show that the problem can be formulated as a

xiv

functional optimization program in which each design (a.k.a. decision) function

of the program is the probability that a node takes an action given its knowl-

edge state, as a function of the effective traffic demand at the current time at that

node. In order to achieve a viable computational complexity for the functional op-

timization program, we discretize the effective traffic demands by virtue of which

a look-up table is produced for each design function. Structurally different MAC

protocols can be represented in this framework, and are generated automatically

with respect to traffic demand. The symbolic Monte Carlo method is used to

generate an approximate expression for the objective function as well as for the

non-linear constraints, in a manner that trades off accuracy versus computational

complexity. Symbolic simulation results are presented for a fixed network topol-

ogy under the assumption of Poisson traffic. The objective is to minimize the

average power consumption of a node subject to a minimum average throughput

constraint that incorporates soft delay guarantees. Our research demonstrates

that a MAC protocol that incorporates acknowledgments in a multi-hop setting

under dynamic traffic can be generated automatically.

This thesis opens the way for the design of an automated design flow chain

for network protocols that are based only on local information, of which MAC

protocols constitute an example. In the future, our framework can be integrated

xv

as a “back end” to Software Defined Networks (SDN’s) which are envisioned to

run on optimizable protocols as the ones described in this thesis.

xvi

Contents

Acknowledgments v

Curriculum Vitæ viii

Abstract xiii

List of Figures xix

List of Tables xxi

1 Introduction 1

2 Related Work 27

3 Optimal MAC Protocol Design for a Single Neighborhood 32
3.1 Symbolic Generation of the Optimization
Program . 41
3.2 Results and Discussion . 46
3.3 Summary . 53

4 Optimal MAC Protocol Design with Multiple Neighborhoods
Based on Symbolic Monte Carlo Simulation 54
4.1 A General Model for the Multiple
Neighborhood MAC . 55
4.2 Approximation of the Optimization Program via Symbolic Monte
Carlo Simulation . 63
4.3 Optimal MAC Protocol Design with
Multi-objective Optimization . 67
4.4 Simulation Results and Discussion 69

xvii

4.4.1 Design Variables and Throughput As Functions of N . . . 85
4.4.2 Optimal MAC Protocol Results under
Multi-Objective Optimization . 87
4.4.3 Convergence and Complexity 90

4.5 Summary . 93

5 Optimal MAC Protocol Design for Dynamic Topologies 94
5.1 Representation of Dynamic Wireless
Network with a Subgraph Codebook 95
5.2 Optimal MAC Protocol Design for Dynamic Topologies 102
5.3 Simulations . 107
5.4 Summary . 113

6 Optimal MAC Protocol Design for Dynamic Traffic Conditions 115
6.1 Assumptions and Preliminaries 116
6.2 Formulation of MAC Protocol Optimization Problem For Dynamic
Traffic Conditions . 120
6.3 MAC Protocol Generation Model 124
6.4 Simulations . 128
6.5 Summary . 137

7 Conclusions and Future Work 138

Bibliography 141

xviii

List of Figures

1.1 TCP/IP protocol stack . 2

3.1 An illustration of the node actions and states, for W = 1. 35
3.2 Global State Space for N=2, W=1 37
3.3 Recursive accumulation of the metrics in the AccumulateMetrics()
function . 42
3.4 (a) Optimal transition probabilities versus the number of nodes N ,
for W = 5 (b) Optimal transition probabilities versus control lifetime
W , for N = 5 . 47
3.5 Network throughput versus the control lifetime W , for N = 20 . . 49
3.6 (a) Network throughput as a function of the number of nodes,
parameterized by the control lifetime W . (b) Computation time versus
the control lifetime W , for N = 20 . 51

4.1 A MAC example with two neighborhoods 57
4.2 Timing of FSM with a 2-phase design 59
4.3 Illustration of Symbolic Monte Carlo 66
4.4 Seven different network topologies for simulation 70
4.5 Case (1): Number of nodes N = 2 (a) Optimized design variable
θi versus control lifetime W (b) Throughput versus control lifetime W 73
4.6 Case (2): Number of nodes N = 3 (fully connected) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus con-
trol lifetime W . 75
4.7 Case (3): Number of nodes N = 3 (linear topologies) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus con-
trol lifetime W . 76

xix

4.8 Case (4): Number of nodes N = 4 (fully connected) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus con-
trol lifetime W . 78
4.9 Case (5): Number of nodes N = 4 (a) Optimized design variable
θi versus control lifetime W (N = 4) (b) Throughput versus control
lifetime W (N = 4) . 80
4.10 Case (6): Number of nodes N = 4 (ring topology) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus con-
trol lifetime W . 82
4.11 Case (7): Number of nodes N = 4 (linear topologies) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus con-
trol lifetime W . 83
4.12 (a) Optimized design variable θi versus number of nodesN (W = 5)
(b) Throughput versus number of nodes N (W = 5) 86
4.13 Multi-objective optimization: Transition probability versus λ and
control lifetime W . (Number of nodes N = 5.) 88
4.14 Multi-objective optimization: Weighted sum of objectives versus λ
and control lifetime W . (Number of nodes N = 5.) 89
4.15 Convergence of optimized throughput 91
4.16 Computation time versus the total number of experiments 92

5.1 Centered subgraph of node ni at time t, i.e., Gi,t 97
5.2 A simple example that illustrates a periodic dynamic network and
its corresponding codebook . 102
5.3 Simulation structure . 108
5.4 Optimized design variables . 109
5.5 Per-node throughput . 111
5.6 Computational complexity . 113

6.1 Network traffic pattern and “effective coherent time of traffic” . . 119
6.2 A simple example of the “traffic pattern codebook” 123
6.3 Simulation scenario . 129
6.4 Simulation structure . 130
6.5 Optimized design functions . 131
6.6 Optimized design functions . 132
6.7 Optimized power consumption . 135
6.8 Computational complexity . 136

xx

List of Tables

4.1 General transition table of a node’s finite state machine 62

5.1 Transition rules of a node upon arriving in state s 105

6.1 Transition rules for a node upon arriving in state s 126

xxi

Chapter 1

Introduction

Wireless networking is ubiquitous today, ranging from Wi-Fi networks, 4G

(Fourth Generation) cellular networks, to wireless networks in specialized domains

such as RF military networks, underwater acoustic networks, sensor networks,

as well as newly proposed domains such as inter-vehicular networks [1]. It is

expected that wireless networks will continue to proliferate and to penetrate our

lives through smart-phone usage and short-range wireless technologies [2] that will

deliver much higher data rates at the 60 GHz carrier frequency in the near future.

Wireless networks have inherited the layered model of design [3] from wired

networks, which is shown in Fig. 1.1. In this layered model, a.k.a. the “protocol

stack,” the lowest layer is the Physical Layer (PHY) whose job it is to create

an abstraction for the reliable delivery of individual bits to the upper layers.

The Data Link Layer (DLL), built on top of the physical layer, takes blocks of

bits called “frames” as its Protocol Data Units (PDUs) that are to be delivered

1

Chapter 1. Introduction

Application Layer

Transport Layer

Network Layer

Data Link Layer

Medium Access Control

Physical Layer

Figure 1.1: TCP/IP protocol stack

2

Chapter 1. Introduction

reliably. If frames get lost due to channel errors, then those frames would need to

be re-transmitted, which is the job of the Data Link Layer. The Medium Access

Control (MAC) Layer solves the problems of achieving access of multiple nodes

into the same wireless medium. The MAC Layer is the first layer at which the

distinction between wired and wireless networks becomes significant, as wireless

networks allow multiple nodes in the same vicinity to access the same bandwidth,

whereas wired networks contain the electric fields within wires and do not have

the “broadcast effect” of wireless networks. This characteristic makes wireless

networks much harder to design, and sources of inefficiency at the MAC Layer

translate to big losses in performance at all layers of a wireless network. The

Network Layer, as it appears in this more prominent TCP/IP stack (rather than

the original OSI stack [4]), addresses the delivery of “packets” of data from one

node to another node (usually far away) across the network.

The Internet is based on the phenomenal success of the Internet Protocol (IP),

the most important and famous of all network protocols and the model upon which

most of the networking protocols in other domains have been built. The Transport

Layer addresses the end-to-end reliable delivery of packets. In the Transport Layer

view, the routers that make up the network are abstracted, and only the end-to-

end reliability from the source to the destination is considered. The Transport

Control Protocol (TCP) of the TCP/IP suite is the most important one that has

3

Chapter 1. Introduction

been developed and the one still in use. Even though it has been found not to

be suitable for wireless networks, TCP still serves as the benchmark transport

protocol for end-to-end reliable delivery of data.

The Application Layer, built on top of the Transport Layer, is the layer at

which individual applications become visible in the protocol stack. The success

of the Layered Protocol Model (or Protocol Stack) has been phenomenal since

its birth in the 1970’s, and we will use this layered model as one of the key

assumptions of this thesis. Even though this thesis involves only the MAC Layer,

understanding the usefulness of the approach developed can only be achieved when

viewed in the larger context of this layered protocol stack.

As we mentioned, inefficiency at the MAC Layer of wireless networks typically

translates into big losses in the overall performance of the protocol stack. Despite

the enormous emphasis on the design of the Physical Layer since the 1950’s [5][6]

and the number of sophisticated technologies [7] developed for the Physical Layer,

the MAC Layer has received relatively less emphasis and there has been only a

handful of MAC protocols [8] that have been used in wireless standards. A part

of the reason for this has been to keep wireless MAC protocols simple. Wireless

MAC protocols must operate within a locality. Especially if the wireless network

is mobile, the neighbor relationships change; as a result, the emphasis on a local

protocol that can be applied to any neighborhood across the network translates

4

Chapter 1. Introduction

to a simple one that addresses effectively the access of nodes only in that locality.

Hence, the types of topologies that can occur and be persistent for reasonable

durations before topology changes occur due to mobility are limited: For example,

for cellular networks, the only relevant topologies are direct hops between the

base station of a cell and the nodes within that cell. For a Wi-Fi network, the

relevant topologies are those that have a direct link between the access point,

and the nodes. In Wi-Fi deployments, there is no direct link1 between the nodes

themselves. When the nodes in the network have direct links with each other,

we call such networks “ad hoc networks”. The MAC Layer problems for cellular

and (non ad-hoc) Wi-Fi networks are more straightforward, and to some extent,

subsumed by the more general “ad hoc network MAC Layer” problem that allows

for nodes to receive transmissions from each other without the need for a base

station or an access point, such as Wi-Fi Direct. This thesis focuses on the MAC

Layer problem for ad hoc networks, as opposed to cellular or Wi-Fi networks with

access points.

The precursor of wireless ad hoc networks was the military packet radio net-

works [10] in the 1970’s. The advances [11] in Complementary Metal Oxide Semi-

conductor (CMOS) technology in the 1980’s enabled low-power Very Large-Scale

Integrated (VLSI) circuits, which translated into low-cost silicon for portable wire-

1Wi-Fi Direct [9] is an exception to this since it uses ad hoc connections.

5

Chapter 1. Introduction

less devices. This technology enabled the wireless revolution [12] in the late 1990’s,

and wireless ad hoc networks became popular, now for civilian networks, as so-

phisticated, integrated technologies such as GPS (Global Positioning System) re-

ceivers [13], turbo decoders [14] for modems, and wavelet transforms [15] could

now be fit into a hand-held device at low power. This advance raised the question

of whether it would be effective for nodes to communicate to each other directly

rather going through a wired backbone, that is, the possibility of wireless ad hoc

networks.

The 2000’s saw the rise of the 3G (Third Generation) and 4G (Fourth Genera-

tion) cellular wireless standards, as well as the proliferation of Wi-Fi networks in

homes and offices. Cellular networks have evolved to control data access for max-

imum data rates. High data rates are most easily achieved when the base station

allocates the bandwidth in advance using very tight control over the hand-held

devices. The MAC Layer issues, in this setting, rarely come up for cellular phone

networks, except for the Random Access Channel that a phone uses to access

the base station for the first time, when it is turned on. Because cellular phone

networks spend the majority of their time in the deterministic access mode, the

MAC Layer issues in these networks are not considered significant. In contrast, in

Wi-Fi networks, the MAC Layer plays an important role. If ad hoc networking is

enabled for Wi-Fi, called the Distributed Coordination Function (DCF) mode, the

6

Chapter 1. Introduction

MAC Layer issues become significant. Even though this thesis constitutes funda-

mental work on the design of the wireless MAC Layer, its immediate application

would be to Wi-Fi networks in the DCF mode.

The inefficiency of the MAC Layer for Wi-Fi networks is well-documented:

For example, results in [16] on the IEEE 802.11a standard, one of the first Wi-

Fi standards from the late 1990’s, clearly display the MAC layer inefficiencies

empirically. These MAC Layer inefficiencies have persisted all the way to the

newest Wi-Fi standard, IEEE 802.11ac [17], where, according to the standard,

Physical Layer raw data rate is above 500 Mbps; however, the achieved data rates

are 15 Mbps for the downlink, and 5 Mpbs for the uplink. In other words, there

is a 10 to 100-fold loss in going from the Physical Layer to the Application Layer,

a large part of which is attributable to the MAC Layer. Both the industry and

academia have taken piecemeal approaches to improve MAC Layer performance.

For example, one of the most common approaches is to tweak the MAC Layer in

wireless LANs (as was done with 802.11n networks [18],[19]) so as to drive the loss

from around 90% to 58% [20]. The main problem is that unlike the Physical Layer,

the MAC Layer lacks measures of “optimality” and “capacity”; hence, rigorous

design of the MAC Layer (as could be done for the Physical Layer) has so far not

been possible.

7

Chapter 1. Introduction

Cross-layer design [21],[22],[23] was proposed in the 2000’s, as a method to

design the protocol stack optimally. Such cross-layer decision does not entirely

break down the layered abstraction model, but rather uses the exchange of impor-

tant parameters between the layers so that each layer could be optimized. This

clearly increases the complexity of protocol design significantly, but more impor-

tantly, even for a single layer, the notion of optimality does not concern the control

plane. Because no optimization theory currently exists that could model the im-

pact of control packet exchanges on data, the cost of exchanging control packets

in the network cannot be incorporated into these cross-layer design frameworks.

As a result, a design of a layer claimed to be “optimal”, might, in fact, result in

such a significant amount of control packets generated that it might completely

sweep away any real benefits that will accrue in the data plane.

One of the pioneering approaches to cross-layer design, that is still based on

the assumption of not incorporating the impact of control into optimization, is

the Layering via Optimization Decomposition [24] framework, which shows how

cross-layer design can rigorously turn into a layered architecture. In this approach,

the optimization problem (taking only data flows into account) is first formulated

across multiple layers of the protocol stack, treating the whole stack as if it were

only one layer. By decomposing the optimization problem into smaller problems

that interface with each other via “price signals” (whereby each layer indicates the

8

Chapter 1. Introduction

price of making certain decisions), the assumed single layer is “decomposed” into

multiple layers in an optimal fashion, taking into account only data flows, and not

the cost of any control signals that would need to exchanged between the nodes.

This approach uses only classical decomposition techniques in optimization, and

has been used as a basis to claim the “optimality” of the layered approach. Exam-

ples have also been given to show how existing protocols can be reverse-engineered

in order to show under what scenarios they can be claimed to be optimal. One of

the problems with this formulation, however, is the usage of “utility functions” to

characterize optimality. These utility functions have to be ingeniously engineered

in order to produce a reasonable solution that is then claimed to be optimal. As

a result, at least in reverse engineering protocols[25], the complexity of protocol

design is pushed towards the ingenious design of utility functions for which, when

the network is optimized, will lead to reasonable protocols.

For the MAC Layer, the main drawback of the Layering via Decomposition

approach is the fact that it does not incorporate the impact of control informa-

tion into optimization. However, for the MAC Layer, the control information

exchanges and their impact on performance are the most significant of all the

layers. The MAC Layer, when not properly designed, can be very costly in terms

of control frame exchanges. After all, it is the control frames that determine

whether and when nodes are available, and when each one can transmit. Further-

9

Chapter 1. Introduction

more, when MAC protocols are applied to sensor networks, the control frames can

take up as much bandwidth and energy as the data frames.

The aim of this thesis is not an incremental advance over methods in par-

ticular wireless networks but rather the design of a general framework that will

optimize the MAC Layer in a manner that directly takes into account the impact

of the decisions made in control channels on the resulting data rate. Such a frame-

work currently does not exist. If such a framework were designed, it would have

enormous implications not only for wireless networks, but also for many different

subfields of electrical engineering such as (1) controls, which use coordinated nodes

that must communicate with each other and make joint decisions, (2) artificial

intelligence, where multiple robots communicate with each other to make individ-

ual or joint decisions, and (3) network science, in which the communication costs

of exchanging control information can now be directly modeled. The development

of the rudiments of such a framework is one of the main tasks of this thesis. We

focus on the problem of modeling the impact of control information exchanges on

the decisions that the nodes make, within the context of only the MAC Layer in

this thesis; however, we keep the above broader implications in mind.

The methodological contributions of this thesis are two-fold:

10

Chapter 1. Introduction

1. The incorporation of the impact of control information exchanges into op-

timization, and the solutions of such optimization problems for the MAC

Layer.

2. The development of a novel method, called “Symbolic Monte Carlo Simu-

lation”, by which the objective function of an optimization program can be

built symbolically by traversing the state space of the network.

These methodologies are applied to solve the problem of optimally designing

the MAC Layer, with the eventual goal of automating MAC Layer design.

Automation has significant advantages: When systems become very complex,

it becomes extremely difficult to manage complexity, not to mention design and

operate a system optimally. One of the key drivers of “Software Defined Net-

working” (SDN) in recent years [26] has been the recognition of how complex

networking protocols have become, and the lack of modularity in the design and

maintenance of networking protocols. Even though automation of networking

protocols has not been a driver of Software Defined Networking, it appears as

the next step that Software Defined Networking can take. In some sense, what

networking lacks is the kind of “silicon compiler revolution” [27] that occurred in

the 1980’s, whereby high-level goals could be mapped optimally to low-level archi-

tectures in a way that could be optimized via the use of synthesis tools. Networks

11

Chapter 1. Introduction

have grown large, and in a sense, the complexity problems that are faced by the

networking community today are not unlike the complexity problems that were

faced by the VLSI community in the 1980’s and 1990’s, when chips went from

thousands of transistors to 10’s of millions of transistors. The need for electronic

design automation (EDA) [28] arose as a result, which was met by companies such

as Cadence and Synopsys. The main problem today is the enormous growth of

the Internet, now increasingly wireless, and the complexity problems that arise

with its design, maintenance, management, and performance.

In EDA, the designer puts in a high-level description of the design conception

in a hardware description language, such as Verilog. Using this high-level de-

scription in Verilog, the synthesis tools generate hardware connections on a given

target architecture, such as a Field Programmable Gate Array (FPGA), or using

standard cells from a design library. The goals and the methodology of network

protocol automation is quite different from this methodology: In network proto-

col automation, we are interested in being able to generate an optimal protocol,

given a certain communication model (that describes the MAC Layer in our case),

with an objective function that is a combination of network-specific metrics such

as throughput and energy, subject to constraints such as achieving a minimum

throughput required per flow. One of the main differences is that while in EDA,

the final design is synthesized from a set of existing modules (as in the case of

12

Chapter 1. Introduction

standard cells), there is no library from which protocols can be easily synthesized.

For network protocols, because the synthesis would be for software rather than

hardware, it is also much more efficient for the designer to input a high-level

description of the protocol in question from which an optimized description can

be produced, than to attempt to synthesize it from a collection of lower-layer

pre-designed modules. The designer inputs, not a specific protocol, but rather a

“skeleton”, whose parameters are open to optimization. While this is not the first

attempt to optimize the parameters of a given networking protocol, it is one of the

first attempts to unify the different protocols under the same design framework

so that each can be generated as instances of a much larger family.

In Chapter 3, we give our first example of the results of our framework where

a family that spans both random access control protocols (such as ALOHA) [29]

and controlled access protocols that use advertisements of data transmission is

specified as the “skeleton” for protocol generation. It is then shown that our opti-

mization framework can generate a throughput-optimal protocol that is a random

access protocol when the number of data frames to follow the advertisement is

1, and an advertisement protocol when the number of data frames that follow

the advertisement is greater than 1. This example is the simplest example of

how an optimization program that can incorporate the impact of control infor-

mation exchanges can result in structurally different protocols. Put another way,

13

Chapter 1. Introduction

structurally different protocols can be subsumed under the same umbrella frame-

work when the control information exchanges are incorporated into optimization.

Under different circumstances, the optimal protocol generated then turns out to

be different. Furthermore, when the conditions change, the optimization can be

run easily again, to produce a new, optimal protocol. Such quick generation, and

reconfigurability, as well as guarantees of optimality, cannot be found in other cur-

rent network protocol design frameworks. While the job still rests on the designer

to write the protocol “skeleton” in the general way that will subsume different

protocols under the same umbrella, the resulting benefits once the program has

been written will be significant.

The aim of this thesis is not the development of such automated network pro-

tocol design tools, which would take a whole generation of network designers.

In developing such tools, significant effort would need to be spent in the “front

end” of the design, which would include building the interfaces, and the program-

ming languages that would be used to design protocols. Network protocol design

severely needs new languages to express higher-level data abstractions than those

currently provided by C, C++, or Java, the main languages used to implement

network protocols. The recent Software Defined Networking (SDN) efforts may

lead to new advances in this regard, by building better languages that express

higher-level networking abstractions. In contrast, this thesis focuses on the meat

14

Chapter 1. Introduction

of the matter, which is the “back end” of these technologies, and can be used to

optimize network protocols, within the larger framework of Software Defined Net-

works. The back end consists of the actual algorithms that can optimize networks.

As is the case in compilers, this constitutes the meat of the matter.

The key abstraction that we found that would help with the design of this

“back end” is the notion of probabilistic branching. Even though probabilistic

automata (a.k.a. Rabin automata [30]) are not new, the use of probabilistic au-

tomata in describing the “space” of possible networking protocols (and in particu-

lar, wireless protocols) is new. In the simplest example, a random access protocol

and a protocol that uses control frames to advertise upcoming data frames can be

both subsumed under the same framework if we assume that in each slot a node

transmits data, transmits control information, or listens, with certain probabilities

that will be optimized. The traditional conception of a protocol is a deterministic

one, with only few random components that could include features like exponen-

tial back-off duration parameters. Instead of this traditional conception, we build

our entire protocol framework on probabilistic branching. That is, at each slot,

the nodes’ actions can branch into possibilities each of which is specified with a

certain probability. The “optimal protocol”, then, is the specification of these op-

timal values of the probabilities. If these probabilities turn out to be 0’s and 1’s,

the optimal protocols will turn out to coincide with deterministic protocols; how-

15

Chapter 1. Introduction

ever, this is not necessarily the case. In fact, we shall find that many “optimal”

protocols make full use of this probability space that is available to them. The

traditional problem of picking parameter values for certain parameters such as ex-

ponential back-off duration then turns into the problem of picking these optimal

probabilities of action (as well as state transition) at each slot. In the simplest

case, the exponential back-off is now implemented as follows: At each slot, un-

der no advertisements, the node decides whether to attempt to carrier-sense the

medium again, or not. Doing so results in a geometric distribution for the number

of slots that pass until the node carrier senses the medium and possibly attempts

to transmit again. Contrasting this with the randomly generated and then fixed

exponentially back-off duration, we see that they are in fact equivalent in the

limit as the discrete slotted system becomes continuous. The continuous limit of

a geometric random variable is an exponential random variable. Hence, in those

instances, we subsume those protocols with exponential back-off parameters, in

our framework, in the continuous limit.

Traditional protocols also involve deterministic timers, whose parameter val-

ues are set as deterministic numbers. Such protocols are not subsumed in our

framework. All our timers time out after a random duration that has a geometric

distribution. The experience of this work has shown us, though, that the in-

sistence on deterministic timers may be one of convention rather than anything

16

Chapter 1. Introduction

fundamental. Through this work, timers that last random durations (based on

optimal probabilities at each slot) are more amenable to optimization, and may

become the types of timers of choice in future networking protocols. While de-

terminism stresses maximum control over all parameters, such maximum control

does not easily leave space for design-time optimization when we insist that struc-

turally different protocols be subsumed under the same framework.

Chapter 3 applies this framework in our first scenario of N nodes that share

a common bandwidth. These nodes are said to be in the same “neighborhood”,

which means that if one node transmits, all others can hear and decode that

transmission, as long as the transmissions are not colliding at a receiver, that

is, as long as multiple nodes are not transmitting at the same time. The RF

propagation delays are minimal, and the nodes are assumed to have been slot-

synchronized, although this latter assumption can be relaxed. The main problem

here is the “information asymmetry”, namely, that a node does not know when

other nodes will transmit. This information asymmetry problem can be solved via

the exchange of advertisement frames that nodes can use to advertise to others for

how long they will send data frames over the nextW slots, whereW is a parameter.

(W is a fixed parameter in this case.) One of the key facets of wireless transmission

is that a node cannot know whether a frame that it sent has been received by an

intended node, unless that node sends back an Acknowledgment (ACK) for that

17

Chapter 1. Introduction

frame. In this chapter, we do not model ACK’s (these are modeled in the following

chapter); hence, the fact that a node sends an advertisement (which guarantees

that it will follow it with data of that duration) does not guarantee to the node

itself the control frame that it sent has been received. That control frame will not

be received if it collides with other control or data frames at the intended node’s

receiver. However, sending control frames definitely increases the probability that

the control frame will be received, and that the other nodes, including the intended

node, will be apprised of the data transmission that is about to start. When the

decisions of allN nodes are to be taken into account, the challenges associated with

this optimization problem of interacting machines become clear. It also becomes

clear that the probabilistic calculus of state transitions and action probabilities

will be of utmost importance in formulating the framework for optimal protocol

generation.

Because Chapter 3 is applies to a single wireless neighborhood, significant sim-

plification is possible in the state space description of the entire network: Because

nodes are symmetric in whether they are able to hear from or transmit to each

other, for the entire group of N nodes, a “reduced global state space” description

is possible; hence, the state space does not grow exponentially with N in this

case. This reduced state space description is found “by hand”; however, being

able to write down the objective function to be optimized for the whole network

18

Chapter 1. Introduction

is still very challenging, as it involves terms for every possible transition that can

potentially take place in the global state diagram of this N -node network. In

traditional optimization, writing down the objective function is usually simple,

because it involves simple expressions. In our case, we generate the objective

function via a program that attaches transition probabilities to individual arcs on

the state diagram for the N -node network, in terms of the probabilities of actions

given states for individual nodes, and collects the objective function by traversing

all the paths in the global state diagram and arrives at an exact expression of the

objective function. Thus, most of the complexity of optimization is incurred in

generating the optimization problem itself, rather than in solving it. The result-

ing optimization program is a non-linear, non-convex program that can then be

solved by state-of-the-art non-linear solvers. The result is the optimal decision

probabilities at each node. An important simplification occurs in our assumption

that all the N nodes are identical (the ad hoc networking assumption). This

controls renders the optimization problem polynomial-time as a function of N ,

the number of nodes. This problem can be generalized easily to types or classes

of nodes: As long as the types or classes of nodes is O(1) in N , the resulting

algorithm is polynomial-time.

Because MAC protocols are inherently local, scaling of protocols as a function

of N , the number of nodes, is not a strict requirement. There are two scenarios of

19

Chapter 1. Introduction

interest: First, multiple nodes may be in the same locality (e.g. the same room),

forming an ad hoc network. In this case, all nodes can be assumed to hear from

and transmit to each other. For the MAC protocol to successfully address the case

of 30 different laptops in the same room, the MAC protocol design must scale as

a function of N in this case. Above, in Chapter 3, the protocol design complexity

scales in polynomial-time in N ; hence, it effectively solves that case. Second,

for mobile ad hoc networks, the neighborhood associations change frequently;

hence, at any given time, the number of nodes that are in a given neighborhood

is small, since the transmit power is controlled in these networks to reach only a

few surrounding nodes. (Doing so helps conserve the battery of nodes.) In this

case, finding the optimal protocol can be done as follows: Generate the objective

function expression over small topologies that occur in each neighborhood. (These

topologies are possibly multi-hop, but do not have too many hops.) Then, optimize

the whole network by computing the objective function as a weighted sum of

these small topologies where the weight is given by the frequency with which that

topology occurs in a wireless neighborhood in a given mobile network. These are

the topics of Chapters 4 and 5.

In Chapter 4, we first enhance our basic MAC model by adding Acknowledg-

ments (ACKs) to the MAC protocol model, and by allowing multi-hop topologies.

Such multi-hop topologies are achieved by disabling a subset of the links in the

20

Chapter 1. Introduction

single neighborhood model so that those nodes cannot hear from each other. We

do not model Internet routing or Data Link Layers in this thesis. As a result,

the problems of relaying bits (routing) and the problem of re-transmission of data

frames (Data Link Layer) are abstracted away. Such abstraction is possible by

virtue of the layered protocol model laid out in the beginning of this Introduc-

tion. The MAC Layer should be able to operate on its own, and can have protocols

that are indigenous to this layer, without dealing with the challenges that occur

at other layers. (Hence, all the frames encountered in this thesis are MAC Layer

frames.) The ACKs that are added at this layer thus serve to bring in the feature

that is found in the most prevalent wireless MAC protocol, CSMA/CA, which

stands for Carrier Sensing Multiple Access / Collision Avoidance.

Originally developed by Tobagi and Kleinrock in the 1970’s for packet radio

networks, CSMA/CA [31] adds the “collision avoidance” feature to the even more

traditional Ethernet protocol used for wired networks. The main idea is that

because the environment is wireless, and because the node cannot hear (as it could

on a wire) whether there was a collision at the receiver, it uses a mechanism called

RTS/CTS (Ready To Send / Clear to Send) to negotiate such access. In the first

part, named RTS, a node sends an RTS frame to the wireless medium, to say that

it has unicast data to send to a particular neighbor, whose node ID is given in the

RTS frame. The key assumption is that due to the broadcast nature of the wireless

21

Chapter 1. Introduction

channel, all nodes in that neighborhood potentially hear this RTS. The particular

node for which this RTS was intended, then replies with a CTS, if at that time,

there are no data transmissions that are known to be scheduled for the near future

in the neighborhood of the intended receiver. Again, a key assumption is that due

to the broadcast nature of the wireless channel, the nodes in the neighborhood of

the second node will hear this CTS, and keep quiet for the duration that is specified

in the data length duration of the RTS frame. (There is a further, optional part,

where, upon receiving the last data frame of that particular transmission, the

second node sends back an acknowledgment that says that the data reception is

complete. However, this step is not required.) CSMA/CA is famous for having

solved both the hidden and exposed terminal problems in wireless networks. It

still is the most widely used MAC protocol in any wireless system today, due to its

effectiveness as well as its simplicity. However, as mentioned before, CSMA/CA

does not give any guarantees as to MAC protocol optimality. Such a notion

of protocol optimality was not even formulable in a manner that incorporates

the overhead of control information exchanges until this work. It is safe to say,

however, that any protocol that claims to be optimal, must do at least well as

CSMA/CA. If it does better, than this opens the way to the possible replacement

of CSMA/CA with an optimally generated protocol.

22

Chapter 1. Introduction

In Chapter 5, we first solve the protocol generation problem for small topologies

that are likely to be encountered as local topologies in dynamic mobile networks.

These topologies also provide the first examples of optimal protocols, as specified

by optimal transition probabilities in state diagrams that now incorporate more

features such as ACKs, and that can operate in a multi-neighborhood scenario.

The multi-neighborhood scenario renders the “reduced global state space” ap-

proach that was developed for the single neighborhood scenario useless. A global

state space can no longer exist because each node now has its own view of the

world based on the information that it receives through its particular links. This

calls for an entirely new computational method that will grant each node only a

local view of the world.

We called the method that we developed to solve this problem, “Symbolic

Monte Carlo simulation”. Monte Carlo simulation [32] is well-known as the

method to simulate a complex system by feeding it uniformly distributed input

vectors, and getting a characterization of its performance via simulation. In our

case, we have a complex system as well, but one whose transition probabilities

are functions of the probabilities of actions upon states of different nodes, the

latter of which are optimization variables. Hence, the idea is to simulate this

complex system and “accumulate” expressions for the objective function based

on the particular paths traversed in the state diagram. If a sufficient number of

23

Chapter 1. Introduction

the important paths can be sampled in this fashion, then an approximation of the

objective function will have been accumulated.

While the idea appears easy to explain, the important catch is that the state

space of such a complex network is not something that can be written down or

enumerated in any fashion. The state space, which is the direct product of indi-

vidual nodes’ state spaces, certainly exists, but must be “generated” on demand,

as a path on which the objective function is being constructed. This can be done

either in a breadth-first, or depth-first manner, because in the end, not just one,

but multiple paths that carry the rewards and the probability weight have to be

discovered.

The “Symbolic Monte Carlo simulation“ method that we developed, is thus

not only the idea of accumulating expressions along paths to compute an approx-

imation of the objective function, but also the computationally feasible way of

doing this via a recursive method (that has both breadth-first and depth-first

features) to explore (and to generate explicitly as needed) the state space in an

intelligent manner. Despite the merit of this recursive method, the complexity of

the exploration is still exponential in N ; hence, the method is suitable only for

small-size MAC neighborhoods as addressed in this work. Finding polynomial-

time methods to solve the same problem would indeed open new vistas not only

for this problem, but also for computational problems in general.

24

Chapter 1. Introduction

In Chapter 5, the results of the previous chapter are applied to mobile ad hoc

networks that have dynamic topologies. The main assumption that underlies this

chapter is that the frequencies of local topologies can be measured and collected

for a dynamic network, and the optimal protocol generation can be run off-line.

A comparison with CSMA/CA is presented whereupon we find that the optimal

protocol does significantly better than CSMA/CA. At the same time, CSMA/CA

does not have access to information on the frequency with which local topologies

occur. However, the main point is that even if CSMA/CA had access to such in-

formation, it would not know how to use that information. Using that information

requires a protocol, of the type we generate, where nodes make not deterministic

but probabilistic decisions on their action space given the state in which they are.

The closest analogue to this would be the p-persistent CSMA protocol, in which

the node transmits not with probability 1 as in CSMA/CA, but rather with prob-

ability p into the medium. The p-persistent CSMA/CA protocol is indeed quite

similar to our protocol, except that p-persistent CSMA cannot decide by itself

whether and when to switch to a pure random access (ALOHA) mode, whereas

our framework can.

Wireless networks also have bursty traffic patterns, which means that a node

may be idle for a while, until some application (such as Facebook) places a certain

demand for data. The generation of an optimal protocol for such bursty data is

25

Chapter 1. Introduction

more difficult than the static data that we assumed so far, where the node always

has something to transmit. Even though the latter models high-traffic periods, it

cannot model the moderate or low-traffic periods, where traffic demands in time

are random.

In Chapter 6, we address this problem. The main conceptual step that we

have to add in is the model of the amount of traffic demand at a node. If this is

done is a node-specific fashion, then the complexity of the resulting state space

will definitely grow exponentially with N . However, using the assumption that

nodes are identical (as far as their MAC Layer pictures are concerned) in an ad

hoc network, we can add the local traffic demand rate at a node (e.g., the rate

λ of arrivals of a Poisson traffic stream) as an optimization parameter. Under

this scheme, an optimal protocol specifies the probability with which the node

takes a given action in a given state and given a certain local traffic demand that

it sees at that time. However, because the local traffic demand is a continuous

variable, in order to make discrete decisions, it must be discretized. The intelligent

discretization of the traffic demand via a vector codebook is the key new technique

that Chapter 6 adds to the repertoire of techniques that we develop in this thesis

to enable the generation of optimal MAC Layer protocols.

26

Chapter 2

Related Work

There have been only a few works in the past that have attempted to generate

protocols automatically while extremizing an objective function. First, there is

the work on the automatic generation of security protocols [33][34]. The primary

method used in this approach is iterative deepening, where a cost threshold is set

at each iteration, and a search is performed in the protocol space to generate all

of the protocols below the given cost threshold. The protocol space of security

protocols is specified by a grammar such that the leaves of the tree generated

are either principals or public keys. The number of protocols generated in this

fashion are exponential in the value of the cost threshold specified, hence multiple

heuristic pruning methods are used to reduce the search space. Our approach dif-

fers significantly from this work, both with respect to the problems in the domain

of application, and the techniques employed. Our main approach is to represent

the control information exchanges directly within an optimization program. In

27

Chapter 2. Related Work

particular, the “form” of the protocol for which we search is not specified a priori

via a grammar, but rather extracted later. That is, the rules (or grammar) that

specify the protocol are discovered later, and not specified a priori. The research

challenges of (1) representing control information within optimization programs,

and (2) extracting protocols via rule detection within optimal waveform sets, have

the potential for generalizability to different domains if they can be demonstrated

for the set of MAC protocols.

The second body of related work is layering via optimization decomposition

[24]. In this approach, the entire optimization problem of network resource alloca-

tion is formulated as a large (nonlinear) optimization program. The decomposition

of this problem via standard techniques into subproblems that interface via price

variables can produce different layers of the protocol stack (in a vertical decom-

position). In this approach, the control information exchanges are not modeled in

the optimization program, but rather are produced as by-products. It is checked,

only afterwards, that the protocol that results has reasonable control overhead.

As such, the protocols that are produced are suitable for the regime in which the

data takes up much larger resources than control information. Reference [35] has

also pursued this approach where decisions of whether and when to schedule con-

trol information, and the overhead associated with these decisions, are not part of

the framework. However, for wireless networks, in particular for MAC protocols

28

Chapter 2. Related Work

for wireless sensor networks, the control information exchanges and data take up

comparable resources. Our main contribution in Stage I is that we are able to

represent control information exchanges within optimization programs, which is

what can lead to protocols that contain control packet exchanges. In particu-

lar, when an optimization engine finishes its job at the end of Stage II, it must

produce whether and when the control packets are to be scheduled. Hence, an

important challenge is describing the most general form of the control informa-

tion, which we address through this work. Note that in [24], the control packet

exchanges that result at the output of this decomposition, have to be treated as

“externalities”. Second, extra care must be taken with the utility functions used

in [24] as they can hide under the choice of a utility function the fundamental

reasons for choosing one protocol over another in the regime where the control

overhead is non-negligible. As in microeconomics, the space of utility functions is

very large, and it is easy to fit a utility function to “explain” observed behaviors

in situations where the actual reasons lie outside the model. For example, the

fundamental reasons for choosing a reactive versus a pro-active routing protocol

in mobile networks would lie outside of the framework of [24].

References [36] and [37] proposed a framework, for the first time, that incor-

porates the impact of control information exchanges between the nodes into the

optimization of a single-neighborhood MAC protocol, for the performance met-

29

Chapter 2. Related Work

rics of throughput and energy. However, these formulations used deterministic

optimization variables to model the transmission schedules of the nodes. Deter-

ministic optimization variables cannot handle the mixture of random access and

advertised transmission schedules, and the optimal solutions, which will be iden-

tical for identical nodes, will produce continuous collisions when followed by each

node. These researchers solved this problem by purposely breaking the symmetry

between the nodes and creating a pre-determined chain of leaders and followers

that determine the order in which the control will be transmitted. However, such

presumed leader election, if resolved, should practically obviate the MAC problem

in the first place. Hence, a different representation of node knowledge states is

required, that successfully captures the mixture of random access and determin-

istic transmission modes under the same optimization framework. In this thesis,

we derive that representation and the corresponding optimization framework.

Similar to the concept of automated protocol generation, Ergen et.al. [38] in-

troduced a “MAC protocol engine” to accelerate the design process, in which the

designer provides the design requirements and the protocol engine chooses a par-

ticular protocol from a pre-existing protocol library. With this approach, deciding

which protocols outperform others relies on extensive prior mathematical analysis

for each protocol in the library, which is labor-intensive to produce. Furthermore,

as new protocols are added to the library, a comparative analysis of their perfor-

30

Chapter 2. Related Work

mance must be analyzed for the protocol engine to be able to make a choice. In

contrast, in our approach, we aim at automatic protocol generation that does not

require any complex mathematical analysis.

Other works [39] [40] have proposed a framework for automated combination

of MAC protocols for unknown conditions. Reference [41] further proposed an

adaptive MAC framework for dynamic radio networking. References [42] and [43]

proposed a compiler-assisted approach to design MAC protocols, which can be

reconfigured by exchanging and combining different components. References [44]

and [45] proposed a flexible MAC development framework using “decomposable”

MAC structures, which are claimed to be highly flexible and adaptive in the actual

realization in the working system. Even though the two former works achieve

configurability and the latter flexibility and extensibility, there is no framework

for design automation and no guarantees of protocol optimality in these cases.

31

Chapter 3

Optimal MAC Protocol Design
for a Single Neighborhood

In this chapter, we address the automatic generation of a MAC protocol for a

single wireless neighborhood, in which all the nodes can hear from and transmit to

each other. We assume that there are N identical nodes, with infinitely long data

in their MAC buffers. We further assume that nodes have been slot-synchronized,

but that they do not have any knowledge of each other’s future transmissions,

unless advertised through a control frame. We allow for the simplest node actions

possible: In each slot, a node can transmit data, transmit control, or listen. Con-

sider first the scenario where the control information that each node can transmit

is of a single type: The control information frame indicates that this node will

send data for the next W slots, where W is a parameter that we call “control

lifetime”, which indicates the data length that will follow the control frame.

32

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

Our main aim in this chapter is to illustrate how the framework that we shall

establish can generate structurally different protocols for different values of W .

There are only three different types of protocols that are subsumed under the

same umbrella: First, the optimal protocol might be a pure random access control

protocol that will transmit data with a certain (optimal) probability and listen the

remainder of the time. The second possibility is that the optimal protocol might

be one that will use explicit advertisements to send data every time that a node

wants to transmit data. The third possibility is that the optimal protocol might

be a mixture of random access and advertisements: It sends advertised data with a

certain probability, sends pure data into the channel with another probability, and

listens the remainder of the time. The key point is that in the existing protocol

frameworks, the designer would typically need to make a decision, based on a

priori intuition, as to which of these (i.e., sending advertisements or pure random

access) would work the best. Even if the designer allowed for a mixture under the

existing frameworks, each type of protocol would have to be simulated separately

and then compared, as there is currently no unified framework to model the impact

of control information on performance in an optimizable fashion in protocols today.

We shall show in this chapter how we solve this problem by modeling the mixture

as a Markov chain, whose arcs are given by expressions that are made up of the

action probabilities of the nodes in this wireless neighborhood.

33

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

Now, we set up a mathematical notation for node actions. (We further enlarge

the set of node actions by another type of control information, which advertises

that the node will listen to the channel for the next W slots.) The set of actions of

each node shall be identical and will be given by A = {d, n, d̂, n̂}, where d stands

for sending data in that slot, n for listening, d̂ for sending a control frame into

the channel that announces to the other nodes that this node will send data in

the following W slots, and n̂ for sending a control frame into the channel that

announces to the other nodes that this node will listen to the channel for the

next W slots. Note that we use broadcast transmission for both data and control

frames; hence, if a control frame is sent successfully, it is heard by all of the

N − 1 nodes. In addition, note that W is a fixed number for simplicity, and can

be advertised within a control frame. We call W the “control lifetime”, namely

the number of slots in the immediate future over which the control frame has

any effect. In our case, W is the same for both d̂ and n̂ control frames, but can

be made to be different for a more general optimization program. We take our

optimization metric to be the average throughput, namely the long-run average

of successful data transmissions per slot.

In order to explain how the impact of control information on node decisions can

be modeled, we analyze the impact of control for the N -node, single neighborhood

scenario, with two of the nodes A and B as shown at the top part of Fig. 3.1. For

34

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

f

Sd̂ Sn̂

ffff
d

dd

dd
d n

nnnnn

nnn

n

f
q
d̂

q
n̂

ffff

d̂ n̂n d n

Figure 3.1: An illustration of the node actions and states, for W = 1.

this figure, the control lifetime has been set as W = 1. When viewing this figure,

recall that d stands for the node action “transmit data”; n stands for the node

action “listen”; d̂ stands for the node action “send advertisement for data”; and

n̂ stands for the node action “send advertisement for listen”.

The “knowledge state” of a node encodes whether a node has sent a control

(i.e., advertisement) frame in the last W slots, denoted by the state sd̂; whether it

has received a control frame in the last W slots, denoted by the state qd̂ or neither

of these, denoted by the state φ.

In the figure, in the first slot, both nodes A and B transmit data, and their

transmissions collide, wasting that slot for all of the nodes in the network. In the

35

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

second slot, A is silent, but B collides with the Nth node. In the third slot, A

sends d̂, which advertises that it will send data d in the next W slots (W = 1 here).

As a result, A’s knowledge state in the next slot goes from φ (the null knowledge

state) to sd̂, which indicates that node A has just sent d̂ in the previous slot. In

this example, all of the other nodes were quiet in the third slot, and A’s control

frame successfully got through to all of the nodes, and because control frames

are transmitted in broadcast mode, each of these nodes switches from φ to qd̂

which indicates that it has just received a control information frame d̂. Due to

the broadcast mode, there is no need to mark from whom this control frame was

received. Note that node A’s switching to knowledge state Sd̂ depends only on

A’s sending d̂ in the previous slot, and cannot depend on successful reception of

this d̂ (which happens to be the case in this example), of which A can have no

knowledge due to the wireless nature of the channel. (No acknowledgments are

modeled here. They will be added to the model in the next chapter.)

The global knowledge state of the network at any time is the Cartesian product

of the Markov chains of these N nodes. In Fig. 3.2, we have drawn the Markov

chain for the global knowledge state of the network for N = 2 and W = 1. The

doubles in the state bubbles correspond to the pairs of the knowledge states of

the individual nodes. In this diagram, there are 4 states besides the φ knowledge

state: These states correspond to the cases where one of the nodes has successfully

36

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

sent control (either d̂ or n̂) to the other node (indicated by Sd̂ or Sn̂, respectively),

and the other node has received this control frame, and hence transitioned in its

own state space to a qd̂ or qn̂ state.

All other cases

),(
ˆˆ qs nn

),(
ˆˆ
sq nn

),(
ˆˆ qs dd

),(
ˆˆ sq dd),(ff

),ˆ(nn

)ˆ,(nn

),ˆ(nd

),(nn

)ˆ,(dn),(),,(nnnd

),(),,(nndn
),(),,(nnnd

),(),,(nndn

),(),,(dnnd

Figure 3.2: Global State Space for N=2, W=1

For the general case of N nodes, both the knowledge states of the nodes and

the global state given by their Cartesian product are well-defined, however, diffi-

cult to draw. Based on this general description, an important state space reduc-

tion occurs when we note that due to the broadcast nature of the control frame

transfer, the state of a node is uniquely given by one of the following 5 states,

S = {φ, sd̂, sn̂, qd̂, qmn̂ }, where S denotes the state space of an individual node. The

37

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

first three states correspond to the null knowledge state, the state where a node

has just sent d̂, and the state where the node has just sent n̂. The fourth state

indicates that the node has received d̂ somewhere in the last W slots. This is the

correct generalization of the above example for W = 1 to the case of the general

W . Because d̂ promises that this node will follow this control frame with W slots

of data, a node can have received at most one d̂ in the last W slots. In contrast,

a node might have received multiple (m) n̂’s in the last W slots; hence, the fifth

state in the list is a set of states parameterized by m where qmn̂ indicates that this

node has received m n̂’s in the last W slots, where 0 ≤ m ≤ min(N − 1,W). (We

let q0
n̂ = φ.)

In general, we denote the “action set” of a node, namely, the set of actions

that a node can take in each slot, by A, and the state space of a node by S.

We let θa|s, where a ∈ A and s ∈ S, denote the conditional probability that the

node takes action a in state s. These θa|ss are the optimization variables of our

program.

Based on the above reduced representation of the global state space, the tran-

sition rules from one global state to another are simply given as follows: If a d̂

control frame has been transmitted successfully some time in the last W slots,

which we represent by Id̂, then the node that has advertised this will be sending

data d in the next slot. Even though all of the other nodes have the flexibility

38

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

to take any action they want in the next slot, if they transmit anything in the

next slot, they will collide with the d, and if all of them listen, then they will

receive that d successfully. Either of these cases cannot cause a knowledge state

transition in that slot for any of these nodes. As a result, the global state remains

in Id̂ with probability 1. For all other cases, the probability of transition from one

global state to the next, for any action a ∈ A = {n, d, n̂, d̂}, is given by:

(
N −m

1

)
· θa|qmn̂ · θ

N−m−1
n|qmn̂

· θmn|sn̂ , (3.1)

where m is the number of n̂ control frames that have been sent by all nodes in

the last W slots, and θn|sn̂ = 1.

What we have illustrated so far is an example of the general design flow

methodology that we establish in this chapter for optimal MAC protocol gen-

eration. This design flow consists of the following steps:

1. The impact of successful transmission of control information is represented

by the “knowledge state” of a node, that encodes what control information

the node has sent into the channel, and what control information it has

received. Note that because these are wireless links, a node can never be

sure that the control it has sent has been perfectly received.

39

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

2. The knowledge states of a node form a Markov chain, and the probability

that the node takes action a upon knowledge state s is an optimization

variable. It is key to note that these variables are defined only with respect

to the local information available at that node, which is encoded in its

knowledge state.

3. The Cartesian product of the Markov chains of all the nodes is the global

knowledge state representation of the network. The optimizer uses this

global state representation, even though no individual node has access to

the global state representation.

4. Based on the symmetries of the network (such as the case of identical nodes),

the global state representation is mapped to an equivalent representation,

called the “reduced global state representation”. This is a significant step

in reducing the total number of variables of the program, as well as the

computation of the symbolic expression of the objective function.

5. An objective function is given exogenously (e.g., average network through-

put) as a metric defined on each arc or state of the Markov chain. It is es-

sential to note that no symbolic expression of the objective function is given

a priori (because its number of terms scales with the size of the Markov

chain).

40

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

6. The objective function is symbolically computed recursively by a depth-first

search down the reduced global state representation, and the optimization

program is symbolically generated.

7. The generated optimization program is solved via state-of-the-art non-linear

solvers.

So far, we have applied the first five steps in the above design flow. In the

remainder of the chapter, we shall be concerned with the remainder of the steps,

namely, generating the optimization program, and solving it.

3.1 Symbolic Generation of the Optimization

Program

We may impose any metric of our choice on the Markov state space of the pre-

vious section. In this chapter, we shall maximize the average network throughput

per slot. The network scores a throughput of 1 unit whenever only a single node

sends data (d) in a slot, and all of the other nodes are quiet. Note that d̂ does not

score any throughput in that slot. (It is easy to generalize this to a model where

the control information consumes only a fraction α, e.g., the header of a frame,

by assigning a throughput of 1− α to every arc where d̂ is transmitted.)

41

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

S0

S1 S3
S4

S2

S7

S5

S6

Search Depth = 4

Figure 3.3: Recursive accumulation of the metrics in the AccumulateMetrics()
function

The average throughput (reward) per slot on a Markov chain is calculated as

follows: Define a “cycle” of a recurrent Markov chain as the pair of events from the

time that the chain starts in a recurrent state to the time that the chain returns to

the same state (for the first time). Let T denote the duration of this cycle. (Note

that T is a random variable.) Let F denote the reward that the chain collects

(on its arcs) in that cycle. That, independent of the choice of the recurrent state,

the average reward per slot is computed as E[F]/E[T]. Hence, our first task is to

generate automatically the expression for this objective function.

42

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

We use the depth-first recursive algorithm, shown in Alg.1, to accumulate and

generate the symbolic expressions for E[F] and E[T], using the null knowledge

state as the initial state of the cycle. Because the cumulative probability of a path

diminishes with the number of hops in the state space, we use a maximum search

depth Nsd. In this way, we trade off optimization accuracy with computation

complexity.

Algorithm 1 The AccumulateMetrics algorithm that recursively computes the
average branch cycle length Tbr and the average branch reward Fbr

1: // Pbr, average branch probability
2: // Fbr, average branch reward
3: // Tbr, average branch cycle length
4: // Fc, cumulative reward
5: // Nsd, search depth of algorithm
6: // Si, the i-th next state
7: // S, the current state
8: // PS→Si , transition probability
9: // FS→Si

, the reward earned during the transition
10: [Pbr, Fbr, Tbr] = AccumulateMetrics(Nstep, Pbr, Fc, S)
11: if (HasReturnedTo S0) or (HasHitSearchDepth Nsd) then
12: Tbr = Nstep · Pbr;
13: Fbr = Fc · Pbr;
14: return [Pbr, Fbr, Tbr];
15: else
16: {[Si, PS→Si

, FS→Si
]} =Neighbor(S);

17: Nstep = Nstep + 1;
18: for each next state Si do
19: Fc,i = Fc + FS→Si ;
20: Pbr,i = Pbr · PS→Si

;
21: [Pbr,i, Fbr,i, Tbr,i] = AccumulateMetrics(Nstep, Pbr,i, Fc,i, Si);
22: end for
23: Fbr =

∑
Fbr,i;

24: Tbr =
∑
Tbr,i;

25: Pbr =
∑
Pbr,i;

26: return [Pbr, Fbr, Tbr];
27: end if

43

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

Fig. 3.3 provides a picture of the state space through which the recursive al-

gorithm branches out in its calculation. The key point is that many of the states,

even though they reside in the state space, are not reachable states. Because the

transitions to those states are never computed in the depth-first search, this ap-

proach obviates any a priori pruning of unreachable states from the state space.

The algorithm starts from S0 (the null knowledge state), and calls the recursive

function AccumulateMetrics(). In the base case, the algorithm checks the stop

condition (line 11 of the Algorithm): (1) it has returned to the initial null knowl-

edge state, or (2) it has arrived at the search depth Nsd. If the stop condition

is satisfied, the algorithm returns the average branch probability, average branch

cycle length, and the average branch reward. Otherwise, the algorithm calls the

function Neighbor() to calculate the set of valid states to which it can transi-

tion, with associated transition probabilities and rewards, then accumulates the

rewards and multiplies the probabilities for each next state; after that, Accumu-

lateMetrics() function is called recursively for each next state. The total reward

and total cycle length are calculated on lines 23, 24, and 25.

We have written the automatic expression generation in MATLAB, using its

support for symbolic expressions. An example objective function generated this

way is given below, for N = 10, and W = 2, for network throughput maximization

44

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

(The objective function is E[F]/E[T]):

E[F] = θ9
n|φ(10 θd|φ + 20 θn̂|φ + 180 θn̂|φθ

8
n|qn̂θd|qn̂

+ 90 θn̂|φθ
8
n|qn̂θd̂|qn̂ − 810 θn̂|φθ

16
n|qn̂θd|qn̂θn̂|qn̂

− 810 θn̂|φθ
16
n|qn̂θd|qn̂θd̂|qn̂

+ 720 θn̂|φθ
8
n|qn̂θn̂|qn̂θ

7
n|q2n̂

θd̂|q2n̂
) (3.2)

E[T] = 20 θ9
n|φθn̂|φ + 20 θ9

n|φθd̂|φ + 1 (3.3)

subject to the following constraints: θd|sd̂ = 1, θn|sn̂ = 1, 0 ≤ θa|s ≤ 1, and ∀

a ∈ A,
∑

a θa|s = 1. We use MATLAB’s fmincon function, which uses sequential

quadratic programming, to solve the resulting objective function. This function

is non-linear because it is a rational function of two polynomials, and all of the

constraints that specify that the probabilities θa|s that emanate from state s add

up to 1, are linear. Hence, the result is a non-linear program, that exhibits local

maxima. As a result, the choice of the starting point for the sequential quadratic

program is crucial. One approach that has very good empirical performance is

Monte Carlo simulation, treating the non-linear optimization program as a com-

plex system. When the starting points are chosen randomly within the feasible

set, and the maximum is retained, the procedure converges to the global optimal

value with high probability; however, the convergence time can be long. A better

45

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

procedure, which we use in the next section, is to start from the optimal solu-

tion of the network with one fewer nodes. This procedure is shown to have fast

convergence, and is validated, in the large W regime, to converge to the optimal

value obtained by asymptotic analysis.

3.2 Results and Discussion

Our goal in this section is to analyze the scaling of both performance of the

optimal solutions produced for throughput maximization as well as the computa-

tional complexity of those solutions, as a function of the number of nodes N and

the control lifetime W .

Fig. 3.4(a) displays the optimal transition probabilities computed via our

methodology as a function of N , for W = 5, for the null knowledge state. We see

that the probability that a node listens in a slot is θn|φ = 1−1/N ; that is, the op-

timal probability that a node is silent in this model where control information can

be sent, is the same as it would be for the pure Random Access Channel. Further,

we see that the probability that control information d̂ is sent when the node is in

the null knowledge state is 1/N , and no data d is ever sent without preceding it

with a control frame d̂, for W = 5; that is, θd|φ = 0. What is important to notice

46

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Number N

T
ra

n
s
it
io

n
 P

ro
b
a
b
ili

ti
e
s
 (
θ
)

Transition Probabilities vs Node Number N (W=5)

θ
n|φ

θ
d|φ

θ
n^|φ

θ
d^|φ

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control Lifetime W

T
ra

n
s
it
io

n
 P

ro
b
a
b
ili

ti
e
s
 (
θ
)

Transition Probabilities vs Control Lifetime W (null state φ, N=5)

θ
n|φ

θ
d|φ

θ
n^|φ

θ
d^|φ

(b)

Figure 3.4: (a) Optimal transition probabilities versus the number of nodes N ,
for W = 5 (b) Optimal transition probabilities versus control lifetime W , for
N = 5

47

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

here is that this optimal decision was generated by our methodology, and did not

need to be hand-designed.

Fig. 3.4(b) displays the optimal transition probabilities from the null knowl-

edge state φ, for N = 5, as a function of W . We see that the probability that

a node is silent is 1 − 1/5 = 0.8 for all W , and that a “phase transition” occurs

from W = 1 to W = 2, where the optimal decision switches from a pure Ran-

dom Access Channel, to one that always precedes data with d̂. Because control

information consumes 1 slot, it is not worth sending d̂, if the length of the data

that will follow it is not long enough. It is important to note that this decision

was automatically generated by our methodology, and if the optimization metric

changes, which results in a new switching point, the optimal solution for that case,

which is different, can quickly be generated. Neither a carefully hand-designed

protocol nor any mathematical analysis is needed to derive the switching point.

The main effort goes into the general formulation and the symbolic generation of

the optimization program, and the result is quickly re-configurable for different

metrics.

Fig. 3.5 displays the optimal average throughput as a function of W . We see

that throughput increases monotonically as a function of W , and the inflection

point that occurs at W = 2 corresponds to the phase transition that occurs when

the optimal solution switches from a pure Random Access Channel solution to one

48

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Control Lifetime W

T
h
ro

u
g
h
p
u
t

Throughput vs Control Lifetime W (N=20)

Figure 3.5: Network throughput versus the control lifetime W , for N = 20

49

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

that always utilizes control. The monotonic increase as a function of W is due

to the fact that the successful transmission of d̂, when it occurs, allows the other

nodes to know to keep quiet, which continues to increase the average throughput

as W increases, albeit with diminishing returns. We shall analytically show below,

that limW→∞ F̄ ≡ E[F]/E[T] = 1; that is, this graph converges to 1; however, the

rate at which it converges ∂F̄ /∂W goes as 1/W , which is very slow. Practically,

we would decide on a W , e.g. 8, beyond which the returns are not worth the

increase in complexity.

Fig. 3.6(a) displays the optimal average throughput as a function of the number

of nodes N , parameterized by W . We see that the optimal average throughput

decreases with N , albeit flattening out quickly, and for each N , monotonically

increases with W . We can validate these results for the large W regime by the

following analysis: Let K denote the number of slots until the first successful

transmission of d̂ in the network. As W becomes large, the node that sent the

d̂ will send data for a very long time (W); hence, the average throughput will

be approximately F̄ ≈ W
W+E[K]

. Because the probability that d̂ is transmitted

successfully is pN ≡ (1− 1/N)N−1, and K has a geometric distribution with this

success probability, F̄ ≈ W
W+ 1

(1−1/N)N−1
for large W . Hence, limN→∞ F̄ ≈ W

W+e
,

which concurs perfectly with all of the obtained results that appear for N = 20 in

Fig. 3.6(a). From the same expression, it follows that limW→∞ F̄ ≈ 1, for every

50

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Number (N)

T
h
ro

u
g
h
p
u
t(

C
h
a
n
n
e
l
U

ti
liz

a
ti
o
n
)

Throughput(Channel Utilization) vs N and W

W=7

W=6

W=5

W=4

W=3

W=2

W=1

RAC

(a)

1 2 3 4 5
10

−1

10
0

10
1

10
2

10
3

Control Lifetime W

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

Computation Time vs Control Lifetime W (N=20)

Generating Formulation

Solving Optimization

Total Time

(b)

Figure 3.6: (a) Network throughput as a function of the number of nodes, pa-
rameterized by the control lifetime W . (b) Computation time versus the control
lifetime W , for N = 20

51

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

N , which shows the asymptotic limit in Fig. 3.5 is 1. Calculating the convergence

rate ∂F̄ /∂W̄ as a function of pN gives a maximum of 1/4W , which shows the

rate at which it approaches the asymptote of 1. It is important to note that this

mathematical analysis is not necessary for our methodology to work, and only

serves as a cross-validation for our results.

We have collected the measurements of the computational complexity by mea-

suring the execution time of the entire procedure in MATLAB, when the process

was run on a Dell Studio 540 Mini-Tower, with Intel Core 2 Quad Processor Q9550

(2.83GHz, 1333MHz FSB) and 12MB cache.

Fig. 3.6(b) displays the plots for both the time needed for the symbolic gen-

eration of the optimization program, and the process of solving the optimization

program, using the tic-toc feature of MATLAB, when the program was run on

a Dell Studio 540, in the absence of any other active computationally intensive

processes. The plot shows that the generation of the symbolic expression of the

optimization program dominates the total computation time. (This will be re-

duced by performing the symbolic generation in a native language such as C,

rather than in an interpreter such as MATLAB.) For this case study, because this

is a broadcast channel, the number of states in the reduced global state space

remains the same as N grows; hence, the complexity of symbolic generation is

52

Chapter 3. Optimal MAC Protocol Design for a Single Neighborhood

roughly constant in N . If control information were unicast, the computational

complexity would grow with N .

3.3 Summary

In this chapter, we developed a methodology for optimal MAC protocol gen-

eration for a single neighborhood. The methodology that we have developed in

this chapter can be applied to any choice of an objective function defined on the

global state space, and the same symbolic generator can be invoked to produce

the program. For example, if the objective is to minimize the average energy con-

sumption subject to a minimum throughput constraint for each node, then adding

one line of code in the constraints, and changing a single line in the recursive func-

tion, quickly produces the new optimal protocol. This is in sharp contrast with

hand-designed protocols that would be designed differently for each metric. We

shall take up these issues in the next chapter.

53

Chapter 4

Optimal MAC Protocol Design
with Multiple Neighborhoods
Based on Symbolic Monte Carlo
Simulation

In the previous chapter, we addressed the scenario of a single wireless neigh-

borhood with N nodes. We found that a reduced global state representation was

possible to represent the knowledge state of the nodes in the network. In con-

trast, in this chapter, we address multiple neighborhoods, where such a reduced

global state representation is no longer possible, because each node experiences a

channel that is not necessarily symmetric with the other node’s channels. Because

some links no longer exist (as compared with the single neighborhood topology),

the probabilities of nodes’ actions depend on where they are located in the multi-

neighborhood topology. We also need to consider only small multi-neighborhood

topologies because MAC protocols are local. The small topologies that we con-

54

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

sider in this chapter will become the local topologies of the mobile network in the

next chapter.

4.1 A General Model for the Multiple

Neighborhood MAC

In this chapter, we focus on the case of multiple neighborhoods, i.e., each node

can only send to and/or receive from a subset of the N − 1 other nodes. This

subset is called that node’s “neighborhood”. We first construct a general model

for a multi-neighborhood MAC as follows: We assume that there are N identical

nodes in the network, all of which are slot-synchronized. We assume that each

node always has data to send to its “neighbor nodes”, namely, the nodes which

could hear that node in the absence of any other transmissions. We utilize a

collision-based model; an interference-based model is not part of this chapter. We

assume that each node has no knowledge about any other node unless it obtains

control information through a successfully received control frame.

We assume that each node takes any one of four basic actions in every slot:

(1) n, which denotes the action that the node remains silent, (2) d, which denotes

that it sends a data frame, (3) a, which denotes that it sends an acknowledgment,

(4) c, which denotes that it sends a control frame that is not an acknowledgment.

55

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

Now, a can be further categorized into two types: ac (an acknowledgment for a

received control frame) and ad (acknowledgment for a received data frame). Once

the node receives ac, it will grab the channel if ac is destined to it, and it will keep

silent if ac is not destined to it.

The control frame c can be broken down into four types: 1) c0, which stands

for the case where the node will send data d for the next W slots, where W is the

so-called “control lifetime”, namely, how long the effect of that control information

will last. Neither c0 nor d needs to be acknowledged; the node that receives c0

will listen to the channel and keep quiet during the W slots of the transmission of

the data frame d. 2) c1, which is similar to c0 but requires that the node, which is

supposed to receive d in the next W slots, sends back ac in order to acknowledge

the successfully received c1; 3) c2, which is similar to c0 but requires that the

node, that has received d (only one node), sends back the acknowledgment ad to

the sender; 4) c3, which requires that both ac and ad be sent back. Note that we

use broadcast transmission for control frames but unicast transmission for data

frames, that is, the control frames (including acknowledgments) sent by a node can

be heard by all the neighbors of that node, but the data frames sent by that node

are heard but not decoded (i.e., discarded) once the receiving node realizes from

the header that it is not a frame destined for itself. To summarize, the actions that

56

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

Figure 4.1: A MAC example with two neighborhoods

a node can take form the set of actions denoted by A = {n, d, c0, c1, c2, c3, ac, ad}.

We define AI ≡ {n, d, c0, c1, c2, c3}, which is a subset of A.

We define the “state” of the system given above as a triple 〈s, w, b〉, where

s ∈ S is the “knowledge state”, and includes the control information that is

“owned” by a node, namely, the control information frames it has sent and the

control information frames that it has received in the last W slots. (Recall that

W is the control information lifetime, namely, how long the effects of each control

frame was designed to last.) The set of knowledge states of a node (recall that all

57

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

nodes are identical) is denoted by S = {φ, l, sc0 , sc1 , sc2 , sc3 , qc0 , qc1 , qc2 , qc3}, where

φ is the null state, which means that no control information has been sent or

received by this node during the last W slots; sci and qci mean that control frame

ci has just been sent or received (in the last slot), with i ∈ {0, 1, 2, 3} indicating

the 4 different types of control frames, as explained in the previous paragraph; l

means that the node has received a control frame ci which was not destined to it,

and thus this node will keep silent during the transmission of other nodes. (We

shall refer to l by the name “cooperative silence”, which means that the node

keeps silent to make way for other nodes’ transmissions.) The second element of

the triple is w ∈ N , a timer that is associated with each node, and restarts every

time that a new control frame is either sent or received, and counts down by one

to zero at each discrete time interval. The third element of the triple is b ∈ {0, 1},

a binary variable that indicates whether the data reception is successful: b is used

only after a control frame has been received (c0, c1, c2 or c3). After this reception,

the node knows that it will receive d in the following W slots, and it sets b = 1.

If there is a slot when no data frame d is received, b is multiplied by zero. At the

end of the W slots, by checking b, the receiving node will know whether there is

a missing data frame during the last W slots: if b = 1, which means that all the

data frames have been received, an acknowledgment will be sent back; if b = 0,

some data frames are missing, in which case no acknowledgment is sent back.

58

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

Figure 4.2: Timing of FSM with a 2-phase design

During the transition between states, any of these elements in the triplet can

be marked as “−”, which stands for “don’t care”, meaning that this element can

be anything. For example, 〈sc0 ,W,−〉 means that the sender does not care about

the third element, b, in the triplet. Finally, we note that upon initialization, the

initial knowledge state of each node is φ.

Now, we illustrate the above by a simple example in Fig. 4.1: Three nodes A,

B and C are located as shown in the figure, such that B can communicate with

both A and C, but A and C can only communicate with B, i.e., two neighborhoods

A-B and B-C are formed. (Note that the original definition of ‘neighborhood’ in

this chapter allows for asymmetric links; hence, this is a special case where all links

are bidirectional.) Before the system starts, all the nodes are in state 〈φ,−,−〉,

where “−” means “don’t care”. In this example in Fig. 1, at the beginning, node

59

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

A chooses to send control frame c0 to its neighbor B before it sends data d to node

B (d is a unicast transmission), and as a result, A transitions from 〈φ,−,−〉 to

〈sc0 ,W,−〉. The timer is started and set to W , which is the control lifetime. On

the other side, only node B can hear c0 and will listen to A for the next W slots;

thus, B transitions to 〈qc0 ,W, 1〉 while C keeps its original state. b is initialized

to 1 at the receiver when the receiving process starts. At the same time, node

C cannot hear c0 sent by A (and stays in the initial state); thus, it still has its

choice to access the channel, and here, sends a control frame c2 to the channel,

which leads to a collision at node B in the second slot (we assume that the whole

sequence gets corrupted when a collision happens at any slot during the sequence),

and node B changes its b to 0 to indicate that a data frame has been corrupted.

In the next slot, no acknowledgment ac is sent back by B because of the collision

and node C stops the process of sending d and returns to its initial state. After

node A finishes sending d, it returns to its initial state 〈φ,−,−〉. After two slots,

node A again wants to take hold of the channel to continue to send data, but

this time it chooses to send control frame c3 (instead of c0 used in the first part),

which requires that both control and data be acknowledged (ac and ad). Node B

replies to node A with ac which is also received by node C; thus node C receives a

control frame which is not destined to itself and transitions to the “passive silent

60

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

state”, 〈l,W + 1,−〉, and keeps silent for the next W + 1 slots (W slots for d, and

1 additional slot for ad).

The complete transition table for the finite state machine (FSM) is displayed

in Table 4.1. This transition table in the figure fully characterizes the state space

of a node with a 2-phase design. The timing of this design appears in Fig. 4.2.

The output and the state computations are staggered as shown. In the first phase

of the clock cycle, the next state Si is computed based on the current state Si−1

and the current inputs Ai−1 and Ii−1, where Ai−1 denotes the action of this node

at (discrete) time i − 1, and Ii−1 denotes the input to this node at time i − 1.

In the second phase of the clock cycle, the output Ai is computed based on only

Si, which becomes available at the end of the first phase of the clock cycle. This

table encodes a general template which can be applied to scenarios that involve

the design of MAC protocols for multiple neighborhoods. Hence, even though the

table might appear complex, it needs to be derived only once for a very general

class. Second, note that the output action A shown in the rightmost column is a

random variable. (Note that many of the rows also contain deterministic actions

such as n, d, and a1.) This random variable A, has the sample space AI , which is

the set of initial node actions, AI = {n, d, c0, c1, c2, c3}. Third, 〈φ ∨ l,−,−〉 and

〈qc1 , w > 1,−〉 are abbreviations for “〈φ,−,−〉 or 〈l,−,−〉” and “〈qc1 , w,−〉 with

w > 1”.

61

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

State Transition Rules
Phase 1

Phase 2
Input Current Next Output

receive send State State Action
– d < φ,−,− > < φ,−,− > A
d n < φ,−,− > < φ,−,− > A
n n < φ,−,− > < φ,−,− > A
c0∧ dest. n < φ ∨ l,−,− > < qc0 ,W − 1,− > n
– – < qc0 , w > 1,− > < qc0 , w − 1,− > n
– – < qc0 , 1,− > < φ,−,− > A
c0∧ ndest. n < φ,−,− > < l,W − 1,− > n
n ∨ d ∨X n < l, w > 1,− > < l, w − 1,− > n
n ∨ d ∨X n < l, 1,− > < φ,−,− > A
c0∧ ndest. n < l,−,− > < l,W − 1,− > n
c1∧ ndest. n < l,−,− > < l,W,− > n
c2∧ ndest. n < l,−,− > < l,W,− > n
c3∧ ndest. n < l,−,− > < l,W + 1,− > n
c1∧ dest. n < φ ∨ l,−,− > < qc1 ,W,− > ac
– – < qc1 , w > 1,− > < qc1 , w − 1,− > n
– – < qc1 , 1,− > < φ,−,− > n
c2∧ dest. n < φ ∨ l,−,− > < qc2 ,W,− > n
d – < qc2 , w > 1, 1 > < qc2 , w − 1, 1 > n
d – < qc2 , 1, 1 > < φ,−,− > ad
c3∧ dest. n < φ ∨ l,−,− > < qc3 ,W + 1,− > ac
d – < qc3 , w > 1, 1 > < qc3 , w − 1, 1 > n
d – < qc3 , 1, 1 > < φ,−,− > ad
X ∨ n – < qc2 , w > 1,− > < qc2 , w − 1, 0 > n
– – < qc2 , w > 1, 0 > < qc2 , w − 1, 0 > n
– – < qc2 , 1, 0 > < φ,−,− > n
X ∨ n – < qc2 , 1,− > < φ,−,− > n
X ∨ n – < qc3 , w > 1,− > < qc3 , w − 1, 0 > n
– – < qc3 , w > 1, 0 > < qc3 , w − 1, 0 > n
– – < qc3 , 1, 0 > < φ,−,− > n
X ∨ n – < qc3 , 1,− > < φ,−,− > n
– c0 < φ,−,− > < sc0 ,W − 1,− > d
– – < sc0 , w > 1,− > < sc0 , w − 1,− > d
– – < sc0 , 1,− > < φ,−,− > n
– c1 < φ,−,− > < sc1 ,W,− > n
ac – < sc1 ,W,− > < sc1 ,W − 1,− > d
no ac – < sc1 ,W,− > < φ,−,− > A
– – < sc1 , 1 < w < W,− > < sc1 , w − 1,− > d
– – < sc1 , 1,− > < φ,−,− > A
– c2 < φ,−,− > < sc2 ,W,− > d
– – < sc2 , w > 2,− > < sc2 , w − 1,− > d
– – < sc2 , w = 2,− > < sc2 , 1,− > n
– – < sc2 , 1,− > < φ,−,− > A
– c3 < φ,−,− > < sc3 ,W + 1,− > n
ac – < sc3 ,W + 1,− > < sc3 ,W,− > d
no ac – < sc3 ,W + 1,− > < φ,−,− > A
– – < sc3 , 2 < w < W + 1,− > < sc3 , w − 1,− > d
– – < sc3 , 2,− > < sc3 , 1,− > n
– – < sc3 , 1,− > < φ,−,− > A
∨ and ∧ denote OR and AND;
A is a random variable and A ∈ AI = {n, d, c0, c1, c2, c3} ;
“dest.”\“ndest.” means this “is”\“is not” the destined node;
X stands for “Collision” at the receiver;
“–” stands for “don’t care” when making transition decisions.

Table 4.1: General transition table of a node’s finite state machine

62

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

Now that we have the transition table, we introduce the design variables, θA ∈

[0, 1] with A ∈ AI , that is, θA ∈ {θn, θd, θc0 , θc1 , θc2 , θc3}, which is the probability of

taking a particular action from the set of initial actions, AI , based on the initial

state 〈φ,−,−〉. This is the probability mass function of the discrete random

variable A over the sample space AI , where
∑
θA = 1. The probability of taking

each action is an optimization variable.

4.2 Approximation of the Optimization Program

via Symbolic Monte Carlo Simulation

The goal of this section is two-fold: Our first aim is to introduce the Sym-

bolic Monte Carlo approach to sample the global state space and collect symbolic

terms (hence, sampling symbolic expressions). This is different from the tradi-

tional Monte Carlo simulation which accumulates numbers ; here, in contrast, we

accumulate expressions. Second, our goal is to obtain, using this method, an

approximate but much shorter expression of the objective function of the opti-

mization (which optimizes for any of the desired metrics, such as throughput,

energy, or any weighted combination), and find the optimal values of the design

variables. As shown in [46], the design problem we consider can always be de-

scribed as a maximization of average reward, which is equal to E[F]/E[T], i.e., the

63

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

expected reward per cycle divided by the expected cycle length, where a cycle is

defined as the (discrete) time between two subsequent visits to the same recurrent

state (the initial state in our case). E[F] and E[T] are functions of the design

variables θA, A ∈ AI . A sufficient condition for the recurrence of a Markov chain

is imposed on the design variables: θi ≥ ε for all θi, where ε is taken to be a small

positive number. The objective function can be written as: limε→0E[F]/E[T]

such that θA ∈ [ε, 1] and
∑
θA = 1.

In order to construct the symbolic expressions for E[F] and E[T], we need to

explore the global state space to collect the expression for each path that has

been traversed. For the case with multiple neighborhoods and acknowledgments,

which brings in much more complexity into the model compared with the single

neighborhood case, an exhaustive exploration of the global state space is not

viable. However, using the fact that many symmetries exist in the global state

space due to the identicality of the nodes and due to the fact that the global

transition table of these finite state machines (with random variable outputs)

that communicate with each other is an ergodic process, the global state space

can be captured by sampling this space in a manner we shall explain. Due to the

ergodicity, we are guaranteed that the symbolic expression that is accumulated

by this random sampling and averaging will converge eventually to the correct

expression of the objective function. We call this approach “symbolic Monte

64

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

Carlo”, and obtain an approximate expression for E[F] and E[T] by using this

method.

To this end, we define the random variable X(r) as the path traversed in one

cycle in the rth experiment, that starts from the initial state and returns to the

initial state. The f(X(r)) is the reward collected along the path X(r), which

can be any metric such as the amount of data successfully transferred. Define

P (X(r), {θi}) =
∏

i∈AI
{θNi(X

(r))
i } as a probability generating function, which gen-

erates the probability of taking the path X(r), given the set of decision variables

{θi, i ∈ AI}. The exponent Ni(X
(r)) means that by taking path X(r), the node

has chosen the node action i ∈ AI exactly Ni(X
(r)) times. Before symbolic Monte

Carlo is started, the initial decision variables, θinit,i, are chosen. If the designer

has any intuition as to what might be a good starting point for the symbolic

Monte Carlo simulation, this can be incorporated into this choice at this stage.

We define a “sampler” as an experiment that randomly chooses a path in the

global state space; hence, each realization of X(r), i.e., x(r), is an outcome of

the sampler. Based on this, we introduce the “sampling density” denoted by

Q(X(r)) = P (X(r), {θexpl,i}), which denotes the probability that the path X(r) is

taken by the sampler in an experiment, where the θexpl,i are the design variables

used by sampler in the exploration. In order to obtain a good cover of the whole

design space, we use a uniform sampler, which sets θexpl,i = 1/N . Note that {θi}

65

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

Figure 4.3: Illustration of Symbolic Monte Carlo

are kept symbolic in the expression and later used as optimization variables. Fi-

nally, the approximated optimization expression, F̂ , of the average reward per

time slot E[F]/E[T] can be obtained as follows,

F̂ =

∑
r P (X(r), {θi})f(X(r))∑
r P (X(r), {θi})t(X(r))

(4.1)

where f(X(r)) is the reward associated with the path X(r) and t(X(r)) as the

discrete time length of the path X(r).

For the example shown in Fig. 4.1, if the sequence of states between time

slots 0 and 6 (that is, a cycle) is the r-th experiment of the symbolic Monte Carlo

simulation, then the outcome of the experiment, x(r), is the path shown in Fig. 4.3,

66

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

namely “0− 1− 2− 3− 4− 5− 0”. The symbolic term accumulated as a result

of this sampling in this experiment, namely P (x(r), {θi}), is θ4
nθc0θc1 .

After the objective function has been obtained by Symbolic Monte Carlo, the

optimization is performed by using the OpenOpt package provided in Python.

4.3 Optimal MAC Protocol Design with

Multi-objective Optimization

Wireless networks have to trade off a variety of factors, which together de-

termine whether a protocol can be claimed to be optimal. To this end, we now

consider multi-objective optimization where the objective function is a weighted

sum of multiple objective functions. Because different objectives usually have dif-

ferent ranges, they need to be normalized before they are weighted. Thus, the

general form of a multiple objective function is:

max
θ̄

∑
j

λjFj(θ̄) (4.2)

where θ̄ is a vector of design variables, Fj is the jth normalized design objective,

and λj is the weight of the jth objective. Here, we assume that Fj ≥ 0 for all j.

67

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

In this chapter, we choose two of the most important metrics for wireless

network design: throughput and energy efficiency. In particular, we introduce

the following two metrics: (1) the per node throughput R, which is the average

number of frames successfully delivered between two neighboring nodes in unit

time and (2) the average per node power consumption P , which is the average

energy consumed by a node in one time slot. After normalization, we obtain the

normalized throughput as

Rnorm =
R−Rmin

Rmax −Rmin

(4.3)

and the normalized power efficiency as

Pnorm =
Pmax − P
Pmax − Pmin

. (4.4)

Thus the throughput-energy optimization can be written as

max
θi

λRnorm(θi) + (1− λ)Pnorm(θi) (4.5)

s.t.
∑
i

θi = 1 (4.6)

1 ≥ θi ≥ 0 (4.7)

68

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

where Rnorm(θi) and Pnorm(θi) are functions of the design variables {θi}, and λ

is the weight of the throughput objective. We assume that 1 ≥ λ ≥ 0; thus,

we have 1 − λ as the weight of energy efficiency. The simulation results for this

multi-objective function will be presented at the end of the next section.

4.4 Simulation Results and Discussion

In this section, we discuss our results from three different angles: (1) opti-

mality, where we take throughput as our optimization metric, (2) computational

complexity, which we take as the time required to run the entire design chain

(which is comprised of the generation of the approximate optimization program

via symbolic Monte Carlo, followed by solving it via the OpenOpt package pro-

vided in Python), and (3) convergence, which is a measure of the rate at which the

symbolic Monte Carlo simulation (which uses random sampling) converges. This

convergence is measured directly in terms of convergence to the actual optimal

throughput.

In contrast with the single MAC neighborhood scenario, where the network

is a fully connected graph and does not change with the nodes’ real geographical

locations, in a multiple neighborhood scenario, the network topology is determined

by the nodes’ locations (as well as other channel factors such as shadowing).

69

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

Figure 4.4: Seven different network topologies for simulation

70

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

As mentioned before, because MAC protocols are local, finding an optimal

solution for small-size topologies suffices. The objective functions that are sym-

bolically accumulated for these topologies will then be used as submodules for

subgraphs of mobile networks in the next chapter.

As an illustration, we generate and discuss the optimal MAC protocols for

seven sample topologies that range from N = 2 to N = 4, These topologies are

shown in Fig. 4.4. (Each pair of nodes that are neighbors is connected via a solid

line. We assume that a bidirectional channel exists between these shown node

pairs.)

We graph the obtained optimal design variables {θi} as well as the average

throughput, as a function of the control lifetime, W , for the seven simulation

cases illustrated. In order to see the impact of the number of nodes, we also graph

{θi} and the average throughput, as a function of the number of nodes, N , for

the fully connected graph, and for control lifetime W = 5.

In Chapter 3, where we considered a model for the single neighborhood case,

one of the results that we found was that the nodes had to keep silent for a fraction

(N − 1)/N of the time to achieve the optimal throughput. In this chapter, we

use this result to set the initial values of the design variables as follows: θn =

(N−1)/N , and θi = 1/(5N) for i 6= n. These initial values also define the sampling

density (see the previous section for the definition) in the symbolic Monte Carlo

71

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

simulation. In our simulations, each objective function is generated by doing a

15-step depth-first search (Dsd=15) and we run the entire optimization generation

and solution chain in Python environment on a Macbook Pro computer (2.6GHz

Intel Core i7 Processor, 8GB 1600MHz DDR3) with no other concurrent compute-

intensive processes.

We now discuss the simulation results for the seven different topologies:

1. Case (1) (N = 2):

In Fig. 4.5(a), the resulting optimal values of the design variables {θi} are

shown. In Fig. 4.5(a), we see that almost no control frames are generated

in the optimal solution when the control lifetime W is small (θd > 0 and

θd̂ ≈ 0). As the control lifetime W increases, the nodes start to send control

frames before data frames (that is, θd̂ becomes positive). Note that this

control frame d̂ is generated automatically from a general model of the MAC

Layer, rather than being “hand-designed” into the protocol; hence, it has

the advantage that it can be dynamically generated based on the network

conditions (and will not be generated if it is not advantageous to do so given

the objective function).

In Fig. 4.5(b), the average throughput of the generated MAC protocol is

shown as a function of the control lifetime W . In Fig. 4.5(b), we see that

72

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8
T
h
e
ta

s

Thetas vs Control Lifetime W (N=2)

theta_n

theta_d^

theta_d

(a)

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

Throughput vs Control Lifetime W

N=2

(b)

Figure 4.5: Case (1): Number of nodes N = 2 (a) Optimized design variable θi
versus control lifetime W (b) Throughput versus control lifetime W

73

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

the throughput increases as the control lifetime W increases, which is due

to the coordination facilitated by the control frame d̂ between the nodes.

2. Case (2) (N = 3, fully connected):

In Fig. 4.6(a), the resulting optimal values of the design variables {θi} are

shown. In Fig. 4.6(a), we see a pattern that is similar to the one shown for

the N = 2 case: as the control lifetime W increases, the nodes start to send

advertisements for data frames (that is, θd̂ becomes positive). However, the

nodes also spend more time listening to the channel, and less time accessing

the channel (that is, θn is larger, whereas θd and θd̂ are smaller), which is

due to the fact that more nodes are using the same single channel and hence

it is preferred to have fewer transmissions.

In Fig. 4.6(b), the average throughput of the generated optimal MAC pro-

tocol is shown as a function of the control lifetime W . In Fig. 4.6(b), we see

that the throughput increases as the control lifetime W increases, which is

similar to the N = 2 case.

3. Case (3) (N = 3, linear topology):

In Fig. 4.7(a), the resulting optimal values of the design variables {θi} are

shown. In Fig. 4.7(a), we can see that no control frames are generated in the

optimal solution when the control lifetime W is small (θd > 0 and θd̂ ≈ 0).

74

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

1.0
T
h
e
ta

s

Thetas vs Control Lifetime W (N=3)

theta_n

theta_d^

theta_d

(a)

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

Throughput vs Control Lifetime W

N=3

(b)

Figure 4.6: Case (2): Number of nodes N = 3 (fully connected) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus control lifetime
W

75

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

1.0

T
h
e
ta

s

Thetas vs Control Lifetime W (N=3)

theta_n

theta_d^

theta_d

(a)

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

T
h
ro
u
g
h
p
u
t

Throughput vs Control Lifetime W

N=3

(b)

Figure 4.7: Case (3): Number of nodes N = 3 (linear topologies) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus control lifetime
W

76

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

However, as the linear topology belongs to the multi-neighborhood scenario,

the nodes start to send control frames (that is, θd̂ becomes positive) after

the control lifetime becomes much larger (W ≥ 4). This is quite different

from the optimal results for the fully-connected graph case (i.e., the single

neighborhood case), where the nodes start to send control frames as soon as

W > 1.

In Fig. 4.7(b), the average throughput of the generated MAC protocol is

shown as a function of the control lifetime W . In Fig. 4.7(b), we see that

the throughput increases as the control lifetime W increases, which is again,

due to coordination facilitated by the control frame d̂ between the nodes.

However, again, a difference from the single-neighborhood case is that this

increase starts after the control lifetime becomes much larger, namely at

W ≥ 4 rather than at W > 1.

For N = 4, we have considered the following topologies: fully-connected

graph (case 4), topology of case 5, the ring topology (case 6) and the linear

topology (case7).

4. Case (4) (N = 4, fully connected graph):

In Fig. 4.8(a), the resulting optimal values of the design variables {θi} are

shown. In Fig. 4.8(a), we see a pattern that is similar to the one shown for

77

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

1.0
T
h
e
ta

s

Thetas vs Control Lifetime W (N=4)

theta_n

theta_d^

theta_d

(a)

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

Throughput vs Control Lifetime W

N=4

(b)

Figure 4.8: Case (4): Number of nodes N = 4 (fully connected) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus control lifetime
W

78

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

the N = 2 and N = 3 cases: as the control lifetime W increases, the nodes

start to send data advertisements (that is, θd̂ becomes positive). However,

unlike the cases for N = 2 and N = 3, the time that nodes spend on listening

to the channel does not change much as the control lifetime increases. (Note

that θn is flat as W increases.) This result coincides with the one seen in

Fig. 3.4(b) in Chapter 3, which validates the results of the Symbolic Monte

Carlo approach against the one reduced global state solution in Chapter 3.

In Fig. 4.8(b), the average throughput of the generated optimal MAC pro-

tocol is shown, as a function of the control lifetime W , where we can see a

result that is similar to the one for the N = 3 fully-connected graph case.

5. Case (5) (N = 4):

In Fig. 4.9(a), the resulting optimal values of the design variables {θi} are

shown. In Fig. 4.9(a), we can see that almost no control frames are generated

in the optimal solution when the control lifetime W is small (θd > 0 and

θd̂ ≈ 0). The nodes start to send control frames only after the control lifetime

becomes larger, which is similar to the N = 3 multiple neighborhood case.

However, the switch-over point where the node starts to send a control frame

is at an even larger control lifetime W > 4, compared with the N = 3 case,

and the change appears to be more gradual than it was for the N = 3 case.

79

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

1.0
T
h
e
ta

s

Thetas vs Control Lifetime W (N=4)

theta_n

theta_d^

theta_d

(a)

1 2 3 4 5
W

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
h
ro

u
g
h
p
u
t

Throughput vs Control Lifetime W

N=4

(b)

Figure 4.9: Case (5): Number of nodes N = 4 (a) Optimized design variable
θi versus control lifetime W (N = 4) (b) Throughput versus control lifetime W
(N = 4)

80

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

In Fig. 4.9(b), the average throughput of the generated MAC protocol is

shown as a function of the control lifetime W , where we can see a result

similar to the ones for the N = 3 cases.

6. Case (6) (N = 4, ring topology):

In Fig. 4.10(a), the resulting optimal values of the design variables {θi}

are shown. In Fig. 4.10(a), we can see that almost no control frames are

generated in the optimal solution for any control lifetime W used in the

simulation. The reason is that in a ring topology, the network is sparsely

populated and fewer transmission collisions have a chance to happen; thus,

sending a control frame such as d̂ is not preferred, when one considers the

overhead involved. It is quite remarkable that such complex decisions can

be generated automatically in an optimal fashion, whereas it would take

significant design intuition to arrive at these results by reasoning individually

about these topologies.

In Fig. 4.10(b), the average throughput of the generated optimal MAC pro-

tocol is shown as a function of the control lifetime W . In the figure, we

can see that the throughput does not change with W , which is expected,

considering that no control frames are sent at all.

7. Case (7) (N = 4, linear topology) :

81

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

1.0

T
h
e
ta

s

Thetas vs Control Lifetime W (N=4)

theta_n

theta_d^

theta_d

(a)

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

T
h
ro
u
g
h
p
u
t

Throughput vs Control Lifetime W

N=4

(b)

Figure 4.10: Case (6): Number of nodes N = 4 (ring topology) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus control lifetime
W

82

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

T
h
e
ta

s

Thetas vs Control Lifetime W (N=4)

theta_n

theta_d^

theta_d

(a)

1 2 3 4 5
W

0.0

0.2

0.4

0.6

0.8

T
h
ro
u
g
h
p
u
t

Throughput vs Control Lifetime W

N=4

(b)

Figure 4.11: Case (7): Number of nodes N = 4 (linear topologies) (a) Optimized
design variable θi versus control lifetime W (b) Throughput versus control lifetime
W

83

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

In Fig. 4.11(a), the resulting optimal values of the design variables {θi}

are shown. In Fig. 4.11(a), we can see that almost no control frames are

generated in the optimal solution for any control lifetime W used in the sim-

ulation, which is similar to the results for the ring topology (case 6). Again,

the reason is that in a linear topology, the network is sparsely populated

and fewer transmit collisions have a chance to occur; thus, sending a control

frame such as d̂ is not preferred due to the overhead involved.

In Fig. 4.11(b), the average throughput of the generated MAC protocol is

shown as a function of the control lifetime W . In the figure, we can see that

the throughput does not change with the control lifetime, which is expected

considering that no control frames are sent at all.

From case (4) to case (7), we see that the optimal design (i.e., the optimal

{θi}) depends very much on the network topology, even though we have the same

number of nodes and the same control lifetime. One of the useful aspects of

this automated protocol generation is that it gives us insight into understand-

ing quickly what impact the “environmental parameters” (such as the number

of nodes, the control information lifetime, and the topology) have on optimal-

ity. Hence, our paradigm can be used as an important tool to guide decision-

making. Our paradigm provides a significant advantage especially because the

“hand-designed” protocols do not offer benchmarks for optimality. Hence, another

84

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

important contribution of this framework is that it provides such a benchmark for

hand-designed protocols whose “design space” falls within the (rather general)

design space that is encoded in the transition table.

4.4.1 Design Variables and Throughput As Functions of N

In Fig. 4.12(a), the resulting optimal values of the design variables {θi} are

shown as a function of N , for W = 5, in the case of a single neighborhood.

We see that the probability that a node listens in a slot is θn = 1 − 1/N ;

that is, the optimal probability that a node is silent in this model where control

information can be sent, is the same as it would be for the pure Random Access

Channel. Furthermore, we see that the probability that a data frame d is sent

without preceding it with a control frame d̂ is 1/N , and no control information d̂

is sent before transmitting the data frame d (θd̂ = 0).

In Fig. 4.12(b), the average throughput of the generated MAC protocol is

shown as a function of the number N of nodes. In the figure, we can see that the

throughput decreases slightly as the number of nodes increases; the same result

has also been shown in Chapter 3.

What is important to notice here is that this result is the same as in Chapter

3, which again validates the results obtained via Symbolic Monte Carlo simulation

against the earlier results obtained via the reduced global state method.

85

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

2 3 4
N

0.0

0.2

0.4

0.6

0.8

1.0

T
h
e
ta
s

Thetas vs Node Number N (W=5)

theta_n

theta_d^

theta_d

(a)

2 3 4
N

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

Throughput vs Node Number N

W=5

(b)

Figure 4.12: (a) Optimized design variable θi versus number of nodes N (W = 5)
(b) Throughput versus number of nodes N (W = 5)

86

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

4.4.2 Optimal MAC Protocol Results under

Multi-Objective Optimization

In this section, we present the optimal protocols obtained under a weighted

combination of energy and throughput, as described in the previous section. In

order to bring in energy efficiency into MAC protocol optimization, we add a sleep

action into our original model (which is achieved by turning off the radio to save

transceiver energy in one time slot). This additional action is denoted by s. The

probability that a node chooses to go to sleep at the null state φ is denoted as θs|φ.

Recall from the previous section that we denote by λ, the weight for throughput,

and by 1− λ, the weight for energy efficiency in the multi-objective function.

In Fig. 4.13, the resulting optimal values of the design variables {θi}, as a

function of λ, for W = 2 and W = 8, N = 5, in case of single neighborhood, are

shown.

We see that if the weight for throughput is small, a node chooses optimally to

sleep all the time. (λ < 0.2 for W = 8 and λ < 0.4 for W = 2 are examples of

switch-over points where it becomes more advantageous for a node to be awake.)

As λ increases, the nodes start to send data (θd̂|φ > 0) and no longer sleep.

We can also see that the “phase transition” (another name for the switch-over

point) between sleep and sending data happen at different λs for different control

87

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Weighting Factor (λ)

T
ra

ns
iti

on
 P

ro
ba

bi
lit

ie
s

(θ
)

Transition Probabilities vs λ and W (N=5)

θ
n|φ, W=2

θ
d|φ, W=2

θ
s|φ, W=2

θ
d^|φ, W=2

θ
n|q

n^

, W=8

θ
d|q

n^

, W=8

θ
n^|q

n^

, W=8

θ
d^|q

n^

, W=8

Figure 4.13: Multi-objective optimization: Transition probability versus λ and
control lifetime W . (Number of nodes N = 5.)

88

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

Figure 4.14: Multi-objective optimization: Weighted sum of objectives versus λ
and control lifetime W . (Number of nodes N = 5.)

lifetimes W : nodes start to send data at smaller λs for larger control lifetimes

than for smaller control lifetimes (λ = 0.2 at W = 8 versus λ = 0.4 at W = 2).

The reason is that larger control lifetimes can achieve higher throughput and

thus displace the optimal point for the trade-off between energy efficiency and

throughput toward the throughput side.

In Fig. 4.14, the resulting optimal value for the multi-objective function (de-

noted as the Optimum Achieving Rate, namely, the normalized weighted sum of

89

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

multiple objectives), is shown as a function of λ, for W = {1, 2, 3, ..., 19}, N = 5,

for a single neighborhood.

We see that, similar to Fig. 4.13, when the weight of the throughput is small,

nodes choose to sleep (note that the energy part of the objective function is equal

to 1 whereas the throughput part of the objective function is equal to 0). As λ

increases, nodes start to send data instead of going to sleep (the energy part of

objective function is decreasing while the throughput part of the objective function

increases). Overall, a larger control lifetime W can increase the objective function

for larger volume of lambda (λ > 0.4), but with diminishing returns, and only to

a certain extent.

From the two figures above, we see that automated design can optimize the

design variables, not only for a single design objective, but also for a combination

of design objectives, weighted by chosen weighting factors. These results certainly

open doors to a variety of potential applications.

4.4.3 Convergence and Complexity

In Fig. 4.15, we show the convergence of the symbolic Monte Carlo simulation.

The figure displays the normalized standard deviation of the optimized throughput

for a single-neighborhood network with N = 5 and W = 5. We see that the

90

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of experiments

S
td

.
d

e
v
.

o
v
e

r
m

e
a

n

Convergence of optimized throughput

Normalized standard deviation of optimized throughput

Figure 4.15: Convergence of optimized throughput

91

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

300

350

400

Number of experiments

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Computation time vs number of experiments

Generating formulation

Solving optimization

Total time

Figure 4.16: Computation time versus the total number of experiments

standard deviation is only 10% of the mean when the number of experiments is

larger than 4000.

Finally, in Fig. 4.16, we see that the average computation time increases

roughly linearly with the number of experiments. Compared with the compu-

tation time for generating the formulation, the time for solving the optimization

program has a larger variance. The reason is that the optimization objective func-

tion that is generated each time is a random sample in the design space, and thus

there is a standard deviation around the time required for the OpenOpt solver to

92

Chapter 4. Optimal MAC Protocol Design with Multiple Neighborhoods Based
on Symbolic Monte Carlo Simulation

solve the program. We expect that the computation time can be largely reduced

when the algorithm is implemented in a more efficient language, such as C/C++.

4.5 Summary

In this chapter, we have described a framework for automated MAC proto-

col generation that models both multiple neighborhoods and acknowledgments,

using Symbolic Monte Carlo simulation. As opposed to numerical Monte Carlo

simulation methods, the symbolic Monte Carlo method samples the global state

space without explicitly generating it, and computes an approximate expression

of the objective function of the MAC protocol generation problem. This method

works for any multi-objective function. In the next chapter, we shall apply this

framework to the case of a mobile network, which has a dynamic topology.

93

Chapter 5

Optimal MAC Protocol Design
for Dynamic Topologies

In this chapter, we extend the framework to address dynamic topologies,

namely the topologies of wireless ad hoc networks, which change over time. In

the previous two chapters, the network topology was static, i.e., the nodes did not

change position, and the links were fixed. In contrast, for dynamic topologies, links

break and new links form. As a result, at any given point, what can be considered

persistent (for a short duration) around each node is a small local topology. In

the previous chapter, we saw how we can find the optimal MAC protocol for a lo-

cal, multi-hop topology under both advertisements of data, and acknowledgments.

Here, we utilize the framework of the previous chapter to form an optimization

program that weights each such topology according to the frequency with which

that topology is observed to occur in a mobile network deployment.

94

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

We shall begin with a framework in which we can represent the dynamic wire-

less network via a subgraph codebook. Each subgraph in this codebook will be

a local topology that a node might find itself in during its evolution in a mobile

network.

5.1 Representation of Dynamic Wireless

Network with a Subgraph Codebook

The problem setting is given as follows: N identical nodes, ni ∈ V , with

V = {n1, n2, ..., nN} with the node index 1 ≤ i ≤ N , are deployed onto a (two-

dimensional) deployment region. We assume that the transmission range, RTX,

and the interference range, RITF, are much smaller than the size of the deployment

region, which allows for a multi-neighborhoods MAC. Thus, the N nodes form a

graph, G = (V,E) with vertex set V and edge set E = {{ni, nj}|1 ≤ i < j ≤ N}.

For simplicity of mathematical exposition, we assume that all of the nodes are

slot-synchronized.

We assume that each node always has data to send to all of its neighbor nodes

(that is, its transmission buffers are never empty). We also assume that each node

has no knowledge about any other node unless it receives control information via

successful reception of a control frame from that node. We assume that the

95

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

network is “dynamic”, i.e., each node ni ∈ V moves continuously within the

deployment region, with a random speed and direction, which can change with

respect to time (indexed as t with 0 ≤ t ≤ TO, where TO is the “network operation

time” or simulation duration). Depending on the nodes’ movement patterns, the

links between neighboring nodes can break and form.

We add the subindex t to G and to E to denote the network graph at different

times; hence, Gt = (V,Et) denotes the complete network that evolves over time.

(We assume that no nodes are lost or added to the network during the network

operation time or simulation duration.) We define a “centered k-hop graph”,

denoted by M(Ṽ , Ẽ; c, k) as a graph with a node c (called the “center” of the

graph) and a set of nodes Ṽ = {m} and a set of edges Ẽ = {m,m′} such that

hop count(c,m) ≤ k and hop count(c,m′) ≤ k.

Based on the above assumptions and definitions, we define the “k-hop centered

subgraph” of ni, denoted by Gk
i,t(i) = (V k

i,t, E
k
i,t; i) around node ni at time t, as a

subgraph of Gt = (V,Et), with

V k
i,t = {v : distance(v, ni; t) ≤ RITF · k, v ∈ V } ⊆ V, (5.1)

Ek
i,t = {{v, u} : v, u ∈ V k

i,t, v 6= u, {v, u} ∈ Et} ⊆ Et, (5.2)

96

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

Figure 5.1: Centered subgraph of node ni at time t, i.e., Gi,t

where “distance(v, u; t)” is the physical distance between nodes v and u at time

t. (Note that this may be roughly indicative of the hop count between v and u,

but not necessarily so.)

In Fig. 5.1, an example of a 1-hop centered subgraph is given; G1
i,t is the 1-hop

centered subgraph centered around node ni at time t. The k-hop neighborhood

subgraph of any node eventually converges to the whole network graph Gt, as k

increases. In this chapter, we consider only the 1-hop centered subgraph, G1
i,t;

thus, we simply write it as Gi,t, and write V k
i,t as Vi,t and Ek

i,t as Ei,t, in the rest

of the chapter. Then, the “subgraph codebook” of {Gt}t=Tot=0 , denoted by CG, is a

97

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

hash table with elements (CG)key,w such that each key of CG is a centered graph

M(Ṽ , Ẽ; c, k) and each value of CG is the fraction of the elements of {Gk
t (i)|0 ≤

t ≤ TO, 1 ≤ i ≤ N} that are isomorphic to M(Ṽ , Ẽ; c, k).

In this chapter, we are interested in the throughput of the network. First,

we define node ni’s “instantaneous throughput”, F̃i,t, as the number of received

frames in one time slot, at node ni and at network time t. In our formulation,

we let each data frame occupy exactly one time slot; thus, F̃i,t is a Bernoulli

random variable (with the two values 0 and 1). Because the same MAC protocol

is deployed for all of the nodes in the network, the probability distribution of F̃i,t

depends only on the network graph at time t and node ni’s position in the graph.

Note that because the physical movement is very slow in comparison to the speed

of frame transmission, we are justified in using a “static network” model. Then, we

define the “individual node’s short-term throughput” at time t, denoted by Fi,t,

as the conditional expectation of the node’s instantaneous throughput, namely

as Fi,t = E[F̃i,t|Gt]. The “node’s average throughput”, F̄i, is defined as the time

average of the node’s short-term throughput, namely as F̄i = 1
To

∫ To
0
Fi,tdt. Finally,

we define the “per-node average throughput” of the network1, F̄ , as the average

of the throughput of all the nodes in the network, namely as F̄ = 1/N
∑N

i=1 F̄i.

1Other metrics or weighted combinations thereof may be substituted while retaining this
framework.

98

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

Putting these together, we have

F̄ =
1

To

∫ To

0

dt

(
1

N

N∑
i=1

Fi,t

)
(5.3)

Now, we use the fact that Fi,t = E[F̃i,t|Gt] ≈ E[F̃i,t|Gi,t], where Gt is the

network graph at time t and Gi,t is “the centered subgraph around node ni at

time t”, which means that the knowledge of the local network around node ni

suffices in computing the expectation. (This is due to the locality of a MAC

channel.) Thus, we have

F̄ =
1

To

∫ To

0

dt

(
1

N

N∑
i=1

E[F̃i,t|Gt]

)
(5.4)

≈ 1

To

∫ To

0

dt

(
1

N

N∑
i=1

E[F̃i,t|Gi,t]

)
(5.5)

We define the “subgraph counting function” A((CG)key, t) as

A((CG)key, t) ≡ |{Gi,t|Gi,t
∼= (CG)key, 1 ≤ i ≤ N}| (5.6)

which counts the number of the subgraphs Gi,t at time t, which are isomorphic

(“∼=” means “graph isomorphism”) to the codebook key (CG)key. Recall that F̃i,t

is the throughput of node ni in the centered subgraph Gi,t. (Note that F̃i,t is

a random variable.) Note that F̃i,t and F̃j,t′ (ni, nj ∈ V, and 0 ≤ t, t′ ≤ TO)

99

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

are identically distributed if Gi,t ≡ (CG)key ≡ Gj,t′ for the same key key. We

let F̃key be a random variable with this identical distribution. Let K(CG) denote

the set of all the keys of CG. Then, we assume that the process A((CG)key, t)

is a strongly ergodic process in the sense that the time average of A((CG)key, t)

converges, for every (CG)key, to its ensemble average for every realization of the

dynamic network’s evolution. Then,

F̄ = lim
To→∞

1

ToN

∫ To

0

dt
∑

(CG)key∈K(CG)

E[F̃key|(CG)key] · Aω((CG)key, t) (5.7)

for every realization ω of the network evolution. (Above, Aω((CG)key, t) denotes the

(unique) realization of the process A((CG)key, t) that corresponds to the realization

ω of the network’s evolution.) Then,

F̄ =
∑

(CG)key∈K(CG)

E[F̃k|(CG)key] lim
TO→∞

1

To

∫ To

1

dt

(
A((CG)key, t)

N

)
(5.8)

Because A((CG)key, t) is strongly ergodic in the sense defined above,

lim
TO→∞

1

TO

∫ TO

0

dt

(
A((CG)key, t)

N

)
= P[(CG)key] (5.9)

100

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

It is worthwhile to note that this is the only assumption that we make about

the network dynamics; note that, the nodes’ movements are not restricted to any

particular mobility model.

Based on the above assumption, we have

F̄ =
∑

(CG)key∈K(CG)

E[F̃key|(CG)key]P[(CG)key] (5.10)

For simplicity, we write P[(CG)key] as φkey ∈ Φ, where Φ is the probability distri-

bution on K(CG). Then,

F̄ =
∑

(CG)key∈K(CG)

E[F̃key|(CG)key] · φkey (5.11)

We see in (5.10) that the per-node average throughput is equal to the average of

the throughputs of the subgraphs, weighted by their frequency of occurrence. We

also note that a dynamic wireless network can be efficiently represented by the

pair < CG,Φ >, i.e., the subgraph codebook.

In order to demonstrate the subgraph codebook intuitively, we give a simple

example in Fig. 5.2: This example uses a network with periodic dynamics; how-

ever, as can be seen in the development that leads up to (5.11), no periodicity

is necessary for (5.11) to hold. From time t = t0 to t = t0 + 1, (t0 > 0), ni is

moving from the left to the right while breaking the links on its left and form-

101

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

Figure 5.2: A simple example that illustrates a periodic dynamic network and
its corresponding codebook

ing new links on its right. The probability distribution (computed as a relative

frequency) on the subgraphs remains the same, despite the fact that the global

topology oscillates between the two shown topologies.

5.2 Optimal MAC Protocol Design for Dynamic

Topologies

Based on the above probabilistic model of a dynamic network, we solve the

automated MAC protocol generation problem by using the symbolic Monte Carlo

method [47]. The objective function we use in this chapter is the “per-node

102

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

average throughput” and is equal to the Φ-weighted sum of the individual node’s

throughput given, as described in the previous section, by

F̄ =
∑

(CG)key∈CG

φkey · E[F̃key|(CG)key] (5.12)

where φkey ∈ Φ and (CG)key ∈ CG in codebook< CG,Φ >. Thus, this maximizes the

expected value of the objective function (e.g., throughput) over this probabilistic

model of the network. Note that a single protocol is generated.

The MAC model we use in this chapter is similar to the one in the previous

chapter, so only a brief description shall be given here. In the MAC model,

only a minor difference exists, namely that we have disabled the acknowledgment

for the received data frame, because it was found that this was never used in

the optimal solution in the case of throughput maximization (see the results in

[47]). Thus, each node takes any one of the five actions in every slot: (1) n;

the node remains silent, (2) d; the node sends a data frame, (3) a; the node

sends an acknowledgment, (4) c; the node sends a control frame that is not an

acknowledgment, by which it tells (1-hop) neighbors that it will send a data frame

for the following W slots, where W is the “control lifetime”, i.e., the number of

slots for which the effect of the control frame on the receiving node lasts, (5)

ca, which has the same meaning as c but which requires that the receiver node

103

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

send back an acknowledgment a right after it receives ca. Note that a is an

acknowledgment only for a control frame; there are no acknowledgments for data

frames. Once the node receives a, it takes hold of the channel if a is destined to

it and keeps silent if it is not destined to it. Thus, the actions that a node can

take form the set of actions denoted by A = {n, d, c, ca, a}. We define the “initial

set of actions”, as a subset of this action set, as AI ≡ {n, d, c, ca}.

We define the state of a node as < s,w >, where s ∈ S is the “knowledge

state”, which encodes that node’s knowledge regarding its control information

exchanges (namely, this encodes the control frames that this node has sent, and

the control frames that it has received in the last W slots), and w ∈ {1, 2, ...,W}

is the state timer which counts down and records how many slots the node will

still be in this state. We assume unicast data transmission and broadcast control

transmission, i.e., only the destined receiver node decodes successfully the data

frame d that it receives, while each of the neighbor nodes may decode all of the

control frames that it receives. Thus, the set of knowledge states is denoted by

S = {φ, sc, sca, sa, qc, qca, qa, lc, lca, la}, where φ is the null state, in which no control

information has been sent or received by the node during the last W slots; sc, sca,

sa mean that c, ca or a (respectively) has just been sent in the last slot; qc, qca

and qa mean that c, ca or a (respectively) has been received in the last slot and

the frame was destined to this node; lc, lca and la mean that c, ca or a has been

104

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

state s action x P (x|s) timer w(x|s)
φ n, d, c, ca θn, θd, θc, θca 1, 1, 1, 1
sc d 1 W (control lifetime)
sca n 1 1
sa n 1 W
qc n 1 W
qca a 1 W
qa d 1 W
lc n 1 W
lca n 1 W + 1
la n 1 W

Table 5.1: Transition rules of a node upon arriving in state s

received in the last slot but was destined to another node (such a case is due to

the broadcast nature of control transmission).

Upon arriving at one of these states, the node chooses an action x ∈ A with

probability P (x|s), according to the transition rule of this state, and starts the

timer with w = w(s) accordingly, and the timer counts down each slot until it

triggers another state transition when it times out. The transition rules of this

model are summarized in Table 5.1. In this table, θn, θd, θc, θca (
∑
θ = 1) are

the design variables (a.k.a. decision variables) of the optimization. Note that

this table is not a complete transition table for the finite state machine (FSM)

of a node; for simplicity, it describes only the transition rules of phase 2 for a

2-phase FSM (see [47]). The phase 1 transition rules (from actions to next state)

are rather straightforward, and are not shown.

105

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

In order to optimize the performance of the MAC protocol (recall that our

chosen metric is throughput in this chapter), we utilize the Symbolic Monte Carlo

method [47] to explore the global state space of the network; we collect symbolic

terms, and accumulate the symbolic expressions for the two metrics of interest that

help us compute the average throughput. These two metrics are E[F], namely,

the average number of successful transmissions per cycle, and E[T], the average

length of the cycle, where a cycle is defined as the time between two subsequent

visits to the same recurrent state. The long-term average throughput can be

computed as E[F]/E[T]. The key aspect of the Symbolic Monte Carlo method is

that the whole state space need not be explored; this would be a computationally

intensive task even for a small network with multiple neighborhoods. Instead, the

state space is sampled by running a symbolic Monte-Carlo simulation in which

symbolic expressions are collected via only the sampled routes through the state

space. In the end, an approximation of the objective function is obtained. Finally,

after the objective function has been computed by Symbolic Monte Carlo, the

resulting non-linear optimization program is solved by using the openopt package

available for Python.

106

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

5.3 Simulations

The simulation set-up is as follows: Ten moving nodes are randomly deployed,

according to a uniform distribution, on a 600m×600m square area. Each node is

identical and moves according to the Random Waypoint Model, with a constant

velocity v = 80m/min (for simplicity in this simulation, but the approach would

work for any dynamic model). The “pause time” at each waypoint is zero minutes.

Each node is equipped with a 802.11b/g radio and has a transmission range of

95m outdoors (following a circular transmission model). To simplify the model,

we assume that the interference range is the same as the transmission range. The

time span of the simulation is 100 minutes, and the network topology is computed

every minute, i.e., 100 graphs are generated in the simulation.

In order to evaluate the proposed automated MAC generation framework for

dynamic topologies, we built a simulation environment in Python, incorporated

with three main packages: pylab, which enables a MATLAB-like working environ-

ment; networkx, which provides powerful graph-related functions; and openopt,

which is able to solve the resulting non-linear optimization problem efficiently.

All the simulations were run on a Lenovo ThinkPad SL410 laptop, with no other

concurrent computationally intensive processes.

107

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

Figure 5.3: Simulation structure

The simulation structure is illustrated in Fig. 6.4: the dynamic network gen-

erator randomly generates the traces of the nodes for a dynamic network. The

subgraph codebook generator takes in the traces of the nodes and builds the cor-

responding subgraph codebook for this dynamic network. Based on the codebook

and the given MAC model, symbolic Monte Carlo simulation explores the design

space and generates an approximate symbolic expression for the objective func-

tion. At the end, the values of the optimal design variables are generated by the

optimizer.

We describe a refinement of the original symbolic Monte Carlo method in order

to speed up its convergence. This approach accelerates the symbolic Monte Carlo

method by intelligently choosing the samples which are never duplicates of each

other. In the first stage, we exhaustively search the design space using depth-first

search for the first Dsd steps, starting from the null state φ, where Dsd is chosen

dynamically and implicitly: once the depth-first search collects enough sample

108

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

1 2 3 4 5 6 7 8 9
Control lifetime

0.0

0.2

0.4

0.6

0.8

1.0

Th
et

as

Optimized Design Variables Thetas

theta_d
theta_n
theta_c
theta_ca

Figure 5.4: Optimized design variables

paths (> 1000 in this simulation) at the l-th step, Dsd is set to l and we finish

the first stage. In the second stage, we continue each of the sample paths built in

the first stage and run the original symbolic Monte Carlo method, in which each

next step is chosen randomly until the path loops back to the null state. (If the

path loops back to φ within the first Dsd steps, we terminate that path and keep

it as one of the sample paths.)

In Fig. 5.4, we show the optimized design variables {θi} under different con-

trol lifetimes, from 1 to 9. In order to make a fair comparison among different

control lifetimes, we use the same nodes’ traces, generated by the dynamic net-

work generator. We can see in this figure that for different control lifetimes the

109

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

optimal design variables are different, and that the figure can be divided into

three main regimes: 1) the control lifetime is 1, where no control frame (c or

ca) is sent because the benefit of successfully transmitting control frames is too

small; 2) the control lifetime is 2 or 3, where all the node actions are used with

different weightings; 3) the control lifetime is larger than 3, where only the control

frame ca is sent. Each of these regimes corresponds to a protocol that is struc-

turally different from the others; hence, this provides an example as to how this

framework generates structurally different protocols under the same umbrella. In

the traditional hand-design of protocols, the human designer makes a (usually

implicit) guess at what the underlying control lifetime is (this may be governed,

for example, by the coherence time of traffic generation under dynamic traffic

conditions, which is not addressed in this chapter). Based on this implicit guess,

a protocol is intuitively designed to include or exclude a control frame such as

ca, in a hand-designed protocol. Moreover, most hand-designed protocols com-

prise only very elementary randomness in the choice of node actions; in contrast,

above, optimal weightings according to which nodes take actions from the action

set are specified and become part of the protocol description. The main reason

that this can be done is that optimality that incorporates control information

exchanges has been formulated a priori in our framework, whereas no such rigor-

ous optimality framework that includes control information generation exists in

110

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

1 2 3 4 5 6 7 8 9
Control lifetime

0.00

0.05

0.10

0.15

0.20

0.25

Ch
an

ne
l U

til
iz

at
io

n
pe

r c
on

ne
ct

ed
 n

od
es

Performance Comparison with RTS/CTS and slotted Aloha

Generated MAC
RTS/CTS
Slotted Aloha

Figure 5.5: Per-node throughput

the hand-design of protocols. Numerical optimizations exist for protocols whose

control structure has been fixed; however, the above framework differs from these

in that structurally different protocols are subsumed under the same umbrella.

In Fig. 5.5, we display the per-node throughput under different control life-

times, where the control lifetime W ranges from 1 to 5. When we compare the

designed MAC protocol with the widely used RTS/CTS protocol, we see that

the designed MAC protocol outperforms RTS/CTS for all W s in this range. The

reason is that RTS/CTS does not utilize the distribution with which local sub-

graphs appear in the global network. This is both a strength and a weakness of

RTS/CTS. The graph shows the extent to which this information, when available,

111

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

can be utilized to improve the throughput, while relying only on local informa-

tion. This type of information, as displayed in this graph, also provides a partial

answer to the more general question that we raised earlier, namely, a definition

of the optimality of protocols with respect to differing levels of side information.

While RTS/CTS is not provably optimal for the case without the side information

on the distribution of local topologies, because it is a feasible solution, it provides

a lower bound for the performance of protocols without this side information.

Thus, the graph displays the performance difference between this feasible solution

and the optimal solution (i.e., protocol) with the side information on the proba-

bility distribution of the local topologies. In Fig. 5.5, we can also see that slotted

ALOHA performs the worst except for when the control lifetime is less than 3, in

which case RTS/CTS performs worse than slotted ALOHA. THe reason is that

for the smaller control lifetime, RTS/CTS has a relatively large control overhead

whereas slotted ALOHA does not.

Next, we analyze the computational complexity of the optimal protocol ob-

tained for the same dynamic network. In Fig. 6.8, the computational complexities

(characterized by the execution times) for the three major parts of the framework

are shown. It can be seen that expression generation (i.e., state space exploration

with Symbolic Monte Carlo) accounts for most of the complexity. While Python

may be replaced by a more efficient language, this result points to a general re-

112

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

1 2 3 4 5 6 7 8 9
Control lifetime

100

101

102

103

104

Co
m

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

Computation Complexity

Codebook Generation
Expression Generation
Solving Optimization Program

Figure 5.6: Computational complexity

sult that we have seen so far, namely that the time to generate the optimization

program dominates over the time to solve the program using non-linear state-of-

the-art solvers.

5.4 Summary

In this chapter, we have presented a framework for automated MAC protocol

generation for dynamic topologies. The key idea in handling network dynamism

is to model the network via a collection of local topologies (a.k.a. subgraphs)

and their probability distribution. Empirical frequencies of these local topologies

113

Chapter 5. Optimal MAC Protocol Design for Dynamic Topologies

collected during simulation serve to approximate this probability distribution. An

optimal protocol for a dynamic topology is defined with respect to this model. In

this chapter, we have solved this optimal protocol generation problem for dynamic

topologies by generating a mathematical program using the symbolic Monte Carlo

method. We have also quantified the value of side information on the distribution

of local topologies by comparing the performance of the optimal protocol with

RTS/CTS. The results on computational complexity show that the problem can

be solved in a reasonable time, and that the time to generate the approximate

program dominates the time to solve the generated optimization program.

One of the key assumptions in this chapter has been that the frequency distri-

bution with which topologies occur is available to the protocol designer off-line.

The question arises as to how time-varying frequencies of subgraphs can be ad-

dressed in an on-line fashion. Even though this question is beyond the scope of

this dissertation, we note here that the frequency of subgraphs can be maintained

by nodes in a distributed fashion, and this information can be fed back to a pro-

tocol optimization engine that can re-run the optimization program with updated

frequencies. If this can be done within the coherence time of the network, then

this method can be used in an on-line fashion. The design of online optimal

protocol generators is beyond the scope of this thesis.

114

Chapter 6

Optimal MAC Protocol Design
for Dynamic Traffic Conditions

The main goal of this chapter is to extend our methodology for MAC protocol

generation to address dynamic traffic demands, that is, traffic demands that are

different at each node and that vary with time. In the previous chapters, the nodes

were assumed to have an infinite amount of data to send in their buffers. However,

realistic networks have bursty traffic patterns, and significant differences in the

long-term traffic demands of the nodes can exist. In this case, a methodology

has to be developed to address both long-term traffic needs as well as short-term

bursty traffic patterns (which we assume are known only at the transmitting node

at a given time). A major challenge is to weave these long-term and short-term

dynamic and variable demands into a single optimization framework that can

generate a MAC protocol.

115

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

In this chapter, we model stationary networks with multiple MAC neighbor-

hoods in which nodes can exchange advertisements and acknowledgments whose

effects are fully modeled, under dynamic traffic demands.

6.1 Assumptions and Preliminaries

We assume that N identical nodes, V = {1, 2, ..., N}, have been deployed

onto a two-dimensional deployment region. We assume that the transmission

range, RTX, and the interference range, RITF, are much smaller than the size of

the deployment region, which allows for a multi-neighborhood MAC protocol. A

bidirectional link l is formed as l = {i, j} iff nodes i and j are located within

transmission range of each other. As a result, the N nodes form an undirected

transmission graph G = (V,E) with vertex set V and edge set E = {{i, j}|1 ≤

i, j ≤ N}.

In this chapter, we consider only unicast data transmission. We further assume

that at each time, a node has a single radio that allows the transmission of a MAC

frame to only one neighbor. Except for possibly different traffic demands that they

will see at different times, we assume that all of the nodes are identical. We now

switch to the perspective of any one of these nodes. At any given time, if there is

an outgoing transmission of a MAC frame at this node, we can examine the traffic

116

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

stream with which this MAC frame is associated, and record the traffic demand

associated with that stream outgoing to that neighbor. We denote the rate of

this traffic demand by a continuous function, µ(t) (in bits per second). (Note

that this notation does not require the index of either the sending node or the

receiving node. We shall see in the next section that the behavior of each node

is the same for a given traffic demand at that time. This is possible by virtue

of the MAC layer abstraction, which separates it from routing issues.) Because

the traffic in a wireless network is bursty, we model the current traffic demand

of this node for this traffic stream as µ(t) =
∑

m hmδ(t − tm), where m is the

index for the mth traffic “spike”, hm is the number of frames in the mth “spike”,

and tm is when the m-th spike occurs. (Note that this definition is for the traffic

stream associated with the current outgoing MAC frame at this node. We fix that

stream and examine its traffic demand pattern over time.) An example is given in

Fig. 6.1. Because the traffic stream that has been singled out belongs to a single

application, which might have an end-to-end delay requirement, we incorporate

soft delay guarantees into our framework by imputing an average target link delay

of Dm seconds to each spike based on the average remaining time for the delivery

of the frames in that spike. (This assumption on the higher-layer routing layer is

invoked only to give one example as to how a delay constraint can arise at the

MAC Layer.)

117

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

In order to create a mathematical model on which the long-term averages of the

next section is based, we define the “effective traffic demand” as µ̄(t) =
∑

m
hm
Dm
sm(t−

tm), where sm(t) is the rectangle function with unit height and duration Dm, as

shown in Fig. 6.1. Considering that

∫ t+Dm

t

hm
Dm

sm(t)dt =

∫ t+Dm

t

hmδ(t)dt (6.1)

µ̄(t) is a smoothed version of µ(t). This effective traffic demand, µ̄(t), sets the

minimal average throughput around time t, which needs to be supported by the

MAC protocol such that each frame meets the soft delay guarantee. (We assume

that the retransmissions from the Data Link Layer are incorporated into the traffic

demands; however, we do not model the Data Link Layer in this chapter.) Let

F (µ(t)) be the achieved throughput around t, under traffic demand µ(t). Then,

E[F (µ(t))] ≥ βµ̄(t), (6.2)

is our requirement on the average throughput, where β ≥ 1 is a margin specified

by the soft-delay guarantee (In the simulation of this chapter, we let β = 1).

We assume that the nodes are slot-synchronized and that the slot size is equal

to the duration of a frame. Thus, the slot duration is assumed to be much smaller

than the coherence time, Tc, of the effective traffic demand, which is the duration

118

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

Figure 6.1: Network traffic pattern and “effective coherent time of traffic”

over which the effective traffic demand remains roughly constant. Then, µ̄(t) can

be discretized into µ̄k, as µ̄k ≡ µ̄(kTc).

We assume that only a single (data or control) frame can be successfully trans-

mitted by a node, or received by a node in each time slot. A collision occurs at

a time slot at the receiver when at least two frames overlap in that time slot,

in which case no frame can be decoded correctly for that time slot. We assume

that each node has no knowledge about any other node unless it obtains control

information through a successfully received control frame.

119

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

6.2 Formulation of MAC Protocol Optimization

Problem For Dynamic Traffic Conditions

The first key idea in this section is that a MAC protocol is uniquely character-

ized by the choice of the design functions that are functions of the local effective

traffic demand at the current time. We shall write a functional optimization pro-

gram that optimizes over these functions over the entire set of links in the network.

Even though this functional optimization program will be global, the information

that is assumed to be known to each node is only its own µ̄ at the current time,

which is locally available. Because each node acts identically, the goal is to obtain

off-line, a look-up table for the probability that a node takes a given action given

its knowledge state as a function of µ̄.

We can describe our design space generally by defining the design functions in

vector form, as θ(·) = [..., θx(·), ...]T with x ∈ A, where A is the set of actions that

a node can take given its knowledge state. (See [47].) Thus, the goal of automatic

MAC protocol generation for dynamic traffic is to find the optimal θ(·) as a vector

function of the local effective traffic demand µ̄k.

Let µ̄k denote the vector of effective traffic demands over all of the links in

the network. Then, let C(µ̄k;θ(·)) and F (µ̄k;θ(·)) denote the objective function

(which will be a cost function in this case) and the constraint function, respec-

120

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

tively. Then the general form of the functional optimization problem is as follows:

min
θ(·)

1

M

M∑
k=1

C(µ̄k;θ(·)) (6.3)

s.t. F (µ̄k;θ(·)) ≥ µ̄k, k ∈ {1, ...,M} (6.4)

where M is the number of time slots over which the optimization is performed.

Thus, 1
M

∑M
k=1C(µ̄k;θ(.)) is the time average of the cost function.

Finding the optimal function θ(.) by directly solving the functional opti-

mization program in (6.3) and (6.4) is particularly difficult, if it is possible at

all. In order to make the optimization program computationally viable, the sec-

ond key idea in this section is to quantize the vector µ̄ of effective traffic de-

mands over all the links in the network, with a vector quantizer, which we de-

note as Q(µ̄) = yj with j ∈ {1, ..., L}. Here, the vector yj is the output of

the quantization, and L is the number of possible outputs. The partition for

yj is given as Rj = {µ̄ ∈ (R+)N : Q(µ̄) = yj}. The quantization outcomes

and the partition can be chosen properly, based on the statistical characteris-

tics of µ̄ and the computational power available1. We form a codebook for

the output of the quantizer, denoted by Cµ̄ = {yj}, with |Cµ̄| = L. For sim-

plicity, we write P [µ̄ ∈ Rj] as ψj. Let y
(i)
j be the ith element of the vector

1A thorough analysis of vector quantizer Q(µ̄) is beyond the scope of this thesis, but will be
studied in our future work.

121

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

yj ∈ (R+)N . Let UQ denote the total number of output levels, namely, the num-

ber of elements of the set {y(i)
j |1 ≤ j ≤ L, 1 ≤ i ≤ N}. We shall sometimes

switch to a single-dimensional index notation for y
(i)
j , and denote the lth output

level by y[l], 1 ≤ l ≤ UQ. Define the vector of quantized design functions by

−→
θ ≡ [θ(y[1])T ,θ(y[2])T , ...,θ(y[l])T , ...,θ(y[UQ])T]T . Then, the quantized version

of the optimization program can be written as

min−→
θ

∑
yj∈Cµ̄

C(yj;
−→
θ) · ψj (6.5)

s.t. F (yj;
−→
θ) ≥ yj, j ∈ {1, ..., L} (6.6)

A simple example is given in Fig. 6.2 to illustrate the typical scenario we

consider and to show intuitively the construction of a traffic pattern codebook:

node 1, node 2 and node 3 are deployed as shown in the figure. The traffic links

are shown as arrows and the traffic demands on each link, µ1(t), µ2(t) and µ3(t),

as functions of time, are also shown below the network. For simplicity, we assume

that the traffic demands on all the links are periodic with period T = 20. Within

each period T , 200 frames at node 1, and 100 frames at node 2 are generated at

t1 = kT + 1 and at t2 = kT + 7, respectively. The maximal allowed delays D1 and

D2 are both equal to 10. With the above assumptions, the keys of the effective

122

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

Figure 6.2: A simple example of the “traffic pattern codebook”

123

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

traffic demand codebook, yj, j = {0, 1, 2, 3} as well as the associated probability

distribution, ψj, j = {0, 1, 2, 3}, can be calculated as shown in Fig. 6.2.

6.3 MAC Protocol Generation Model

We use a MAC protocol model that is similar to those in [47] and [48]: each

node takes an action from the set of actions denoted by A = {n, d, c, f, a} (each

action occupies one time slot), where n means “listen to the channel”, d means

“send data frame”, c means “send control frame”, f means “send control frame

and require acknowledgment for the control frame from the destined receiver,” and

a means “send acknowledgment”. Based on these action definitions, we define the

“knowledge state”, S, as the control information that is “owned” by a node,

namely, the control information frames it has sent and the control information

frames that is has received in the last W slots. (As in [47] and [48], W is the

control information lifetime, namely, how long the effect of each control frame

was designed to last.) The set of knowledge states of a node is denoted by S =

{φ, φ0, sc, sf , sa, qc, qf , qa, lc, lf , la}, where φ is the null state, in which no control

information has been sent or received by the node during the last W slots but with

data waiting in the network layer buffer to be sent, and φ0, a newly introduced

state which has the same definition as φ except that there is no data in the network

124

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

layer buffer to be sent; sc, sf , sa mean that c, f or a, respectively, has just been

sent in the last slot; qc, qf and qa mean that c, f or a, respectively, has just been

received in the last slot and the frame was destined to this node; lc, lf and la mean

that c, f or a, respectively, has been received in the last slot but was destined

to another node. (A more detailed explanation of the model can be found in [47]

and [48].)

We define the design functions (a.k.a. decision functions), θn(·), θd(·), θc(·),

θf (·) (
∑
θ(·) = 1) as the probability, P(x|s)(·), with which the node chooses

an action x ∈ A, upon arriving at one of the states, s ∈ S, as a function of the

effective traffic demand at the current time at that node. As was described for the

general case in the previous section, we denote by θ(·) = [θn(·), θd(·), θc(·), θca(·)]T

the vector of design functions, to represent all the design functions collectively.

The transition rules of this model are summarized in Table 6.1. 2

In this chapter, we pick a particular objective function of interest, the average

transmission power, which we shall minimize. In order to obtain the optimiza-

tion program expressions, we utilize the Symbolic Monte Carlo method [47] to

explore the global state space of the network. Let C, R and T denote the power

consumption of a node, the network throughput, and the length of a cycle, re-

2Note that this table is not a complete transition table for the finite state machine (FSM) of
a node; for simplicity, it describes only the transition rules for phase 2 of a 2-phase FSM (see
[47]). The phase 1 transition rules (from actions to next state) are straightforward, and are not
shown.

125

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

state s action x P (x|s) timer w(x|s)
φ n, d, c, f θn(·), θd(·), θc(·), θf (·) 1, 1, 1, 1
φ0 n 1 1
sc d 1 W
sf n 1 1
sa n 1 W
qc n 1 W
qf a 1 1
qa d 1 W
lc n 1 W
lf n 1 1
la n 1 W

Table 6.1: Transition rules for a node upon arriving in state s

spectively, where a “cycle” is defined as the time between two subsequent visits

to the same recurrent state. Let Fr and Fc denote the successful transmissions

per cycle and the energy consumed by a node per cycle, respectively. We collect

symbolic terms, and accumulate the symbolic expressions for the three metrics

of interest that help us compute the average throughput E[R] and the average

power consumption E[C]. Thus, the three metrics of interest are E[Fr], E[Fc] and

E[T]. The long-term average throughput of the network and power consumption

of a node can be computed as E[R] = E[Fr]/E[T] and E[C] = E[Fc]/E[T]. The

key aspect of the Symbolic Monte Carlo method is that the whole state space

need not be explored; this would be a computationally intensive task even for a

small network with multiple neighborhoods. Instead, the state space is “sampled”

by running a symbolic Monte Carlo simulation in which symbolic expressions are

126

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

collected via only the sampled routes through the state space. In the end, an

approximation of the objective function is obtained. Finally, after the objective

function and the constraints (based on the optimization program in (6.5) and

(6.6)) have been computed by the Symbolic Monte Carlo method, the resulting

non-linear optimization program

min−→
θ

∑
j

E[C|yj;
−→
θ] · P[yj;

−→
θ] (6.7)

s.t. E[R|yj;
−→
θ] ≥ yj,∀j ∈ {1, ..., L} (6.8)

with

E[C|yj;
−→
θ] =

E[Fc|yj;
−→
θ]

E[T |yj;
−→
θ]

(6.9)

E[R|yj;
−→
θ] =

E[Fr|yj;
−→
θ]

E[T |yj;
−→
θ]

(6.10)

(under the further constraints that all the probabilities are between 0 and 1, and

sum to 1 over the set of actions) is solved by using the openopt package available

for Python.

127

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

6.4 Simulations

The simulation set-up is as follows: 4 nodes are deployed as shown in Fig.

6.3, with the shown neighbor relationships. We set the control lifetime W = 5.

We assume that each node generates the same type of bursty traffic with the

same distribution. In this simulation, we assume a convergecast scenario: All the

traffic converges onto node 2; node 0 and node 3 generate data. Node 0 sends to

node 2 through a relay node 1. Relay node 1 generates no traffic of its own. In

order to simplify the problem while keeping its essential features, the following

assumptions are made: (1) Each burst has the same deterministic number of

frames. (2) The maximal allowed delay on each link is D = 1 second, which is

the same for all the traffic streams. (3) Each node is equipped with only one half-

duplex radio. (4) The radio on each node is able to finish transmission/reception

of a maximum number c of bursts within the average target delay D seconds, i.e.,

the radio capacity is c (bursts/target delay). In our simulations, we set c = 20.

(5) The arrival process of bursts at each node is an independent Poisson process

with arrival rate λ, i.e., λ1 = λ2 = λ (arrivals/second).

In order to evaluate the proposed automated MAC generation framework for

dynamic traffic, we built a simulation environment in Python, incorporated with

three main packages: pylab, which enables a MATLAB-like working environment;

128

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

Figure 6.3: Simulation scenario

networkx, which provides powerful graph-related functions; and openopt, which

is able to solve the resulting non-linear optimization problem efficiently (in this

simulation we use the NLP non-linear solver within the openopt package). All

the simulations were run on a Dell Studio 540 Mini-Tower, with Intel Core 2

Quad Processor Q9550 (2.83GHz, 1333MHz FSB and 12MB cache) with no other

concurrent compute-intensive processes.

The simulation structure is illustrated in Fig. 6.4: the Dynamic Traffic Gen-

erator randomly generates bursty traffic according to the Poisson distribution.

The traffic Codebook Generator takes in the bursty traffic and builds the cor-

responding traffic codebook for this dynamic traffic. Based on the given MAC

model, symbolic Monte Carlo simulation explores the design space and generates

129

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

Figure 6.4: Simulation structure

approximate symbolic expressions which are needed for formulating the optimiza-

tion. With the expressions from the Symbolic Monte Carlo method and the traffic

codebook from the Codebook Generator, the Optimization Formulation stage gen-

erates a non-linear optimization program which can be solved by the NLP Solver

provided by the openopt package. At the end, the values of the optimal design

functions are output by the Solver.

In this simulation, we use the “two-stage” symbolic Monte Carlo method that

was described in the simulation section of the Chapter 5.

In Fig. 6.5, we show the optimized design functions {θi}(·) as a function of

the effective traffic demand, for the low traffic load network (arrival rate λ = 0.1,

characterizing the traffic generator, and is constant during the simulation). We

vary the local effective traffic demand from 0.00 to 0.10. We can see that when

the node has no frames to send, the node chooses to listen (denoted by action

130

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

0.00 0.02 0.04 0.06 0.08 0.10
Local effective traffic demand (mu)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Th
et
as

Optimized Thetas (Arrival Rate = 0.1 per sec)

theta_n
theta_d
theta_c
theta_f

Figure 6.5: Optimized design functions

131

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

0.00 0.05 0.10 0.15 0.20
Local effective traffic demand (mu)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Th
et

as

Optimized Thetas (Arrival Rate = 0.5 per sec)

theta_n
theta_d
theta_c
theta_f

Figure 6.6: Optimized design functions

132

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

n) almost all the time (θn ≈ 1.0). (There is a small discrepancy, not completely

visible in the graph, which is due to the randomness inherent in the generation of

the approximate objective function in the Symbolic Monte Carlo method.) As the

traffic demand increases, θn decreases and the other θs decrease, which means that

the node chooses to send frames more often in order to meet the average traffic

demand. When the local effective traffic demand reaches 0.10, instead of choosing

only one of the sending methods, i.e. d, c or f , the optimal MAC protocol chooses

a combination of them, with different probabilities. These values in the figures

characterize the optimal MAC protocol for dynamic traffic, which can be stored

at each node during the operation, and do not need to be recomputed.3 Each

time that the local traffic load changes, the node needs to look up only θ in its

lookup table and set the optimal θs for the current traffic condition at almost no

computational cost. Furthermore, this “hybrid” protocol (which uses d, c, and f)

results from the optimization, and is very difficult to be found as a hand-designed

protocol.

In Fig. 6.6, we show the optimized design functions {θi}(·), as a function of the

effective traffic demand, for the high traffic load (arrival rate λ = 0.5). We vary

the effective traffic demand from 0.00 to 0.20. In this figure, we can see a trend

3We note that in this thesis, even though the traffic conditions are dynamic, the parameters
of the random processes that generate them (only λ in the current simulation) are assumed to
be static.

133

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

similar to that in Fig. 6.5; namely, the node listens less and sends more frames

into the channel as the traffic demand increases. However, because the network

is more loaded (λ = 0.5), the node chooses to send d, c and f more aggressively

(for the same traffic demands, the values of θd, θc and θf are larger than in Fig.

6.5).

When we compare Fig. 6.5 and Fig. 6.6 more carefully, we can see that they

are very similar in the range from µ = 0.0 to µ = 0.1, except for a slightly smaller

θn and slightly larger θd and θf in Fig. 6.6 4. This recurring pattern in the two

figures implies that the “irregularity” of the theta function θ(·) does not come from

randomness, but rather from the complex nature of this optimization problem.

In Fig. 6.7, we display the average power consumption of a node under dif-

ferent arrival rates, where the arrival rate λ ranges from 0.0 to 0.7. We see that

the average power consumption increases as the traffic load increases, but the av-

erage power consumption is not a linear function of the traffic load because as λ

increases, the nodes have different optimal combinations of actions and thus more

complex power consumption patterns, which are difficult to derive analytically.

In Fig. 6.8, the computational complexities (characterized by the execution

times) for the four major parts of the framework are shown. It can be seen that

4In Fig. 6.5, the local effective traffic demand ranges only between 0.0 and 0.10 because the
generated traffic codebook does not contain entries with local traffic higher than 0.1; thus, no
design function θ(·) can be evaluated beyond 0.1. Similarly, for Fig. 6.6, the design function
θ(·) is not evaluated for values greater than µ̄ = 0.2.

134

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Arrival Rate (lambda)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pe
r N

od
e

Av
er

ag
e

Po
w

er
 C

on
su

m
pt

io
n

Optimized Power Consumption

Figure 6.7: Optimized power consumption

135

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

10 20 30 40 50
Number of Traffic Codebook Entries (L)

100

101

102

103

104

105

Co
m
pu
ta
tio

n
Ti
m
e
(s
ec
on
ds
)

Computational Complexity

Codebook Generation
Symbolic Monte Carlo
Expression Generation
Solving Optimization Program

Figure 6.8: Computational complexity

136

Chapter 6. Optimal MAC Protocol Design for Dynamic Traffic Conditions

solving the optimization program accounts for most of the complexity, which is

different from the result obtained in [46] and [47], where the computation time

for the Symbolic Monte Carlo method and expression generation was dominant.

This is due to the fact that the objective function in this chapter is a weighted

sum of multiple identical symbolic expressions (one for each value of effective

traffic demand), which does not incur much additional computational time for

the generation of symbolic expressions, but which does result in much higher

computational complexity for solving the resulting optimization program.

6.5 Summary

We have demonstrated the viability of automated MAC protocol generation

under dynamic traffic conditions for multiple neighborhoods, in the presence of

acknowledgments. The functional optimization program that we generate has

design functions, which are the probabilities with which a node takes a given

action in a given knowledge state, and for a given current effective traffic demand

at that node. By discretizing this program, we have presented a method by which

an optimal MAC protocol can be generated off-line.

137

Chapter 7

Conclusions and Future Work

The conclusions of this work can be summarized as follows:

1. The incorporation of the impact of control information into optimization

enables optimization programs to generate optimal protocols.

2. Protocol optimality, that takes into account the cost and impact of control

information, is a key concept for the design of protocols at all layers of the

network protocol stack.

3. A protocol model in which decisions branch probabilistically for each node at

each slot is a general framework by which to subsume structurally different

protocols under a single umbrella, and optimize over them.

4. Symbolic Monte Carlo simulation is an effective method in generating an

approximation to the objective function on a complex state space.

138

Chapter 7. Conclusions and Future Work

5. For the Medium Access Control (MAC) Layer, Symbolic Monte Carlo sim-

ulation can generate an optimal protocol, off-line, for small-scale multi-

neighborhoods, for dynamic topologies, and for dynamic traffic conditions.

This work solves the following problems effectively:

1. The MAC Layer problem to find an optimal protocol for a single neighbor-

hood for N nodes in polynomial-time in N .

2. The MAC Layer problem to find an optimal protocol for small-scale multi-

neighborhoods (using Symbolic Monte Carlo simulation).

3. The MAC Layer problem to find an optimal protocol for a mobile network,

which has a dynamic topology (using Symbolic Monte Carlo simulation, and

information on the frequencies with which local topologies occur).

4. The MAC Layer problem to find an optimal protocol under dynamic traffic

conditions, modeled by local traffic demand at a node.

The following are some indicated future directions by which the methods in

this thesis can be made useful so that they will have an impact on networks:

1. Development of a “front end” for automated protocol generation, which

is comprised of a high-level language in which these optimizable network

139

Chapter 7. Conclusions and Future Work

protocols can be expressed, and a Graphical User Interface (GUI) on which

the different design specifications can be given.

2. Incorporation of this framework into Software Defined Networking (SDN),

which virtualizes the network and eases network management issues. These

optimized protocols can then be incorporated into a Software Defined Net-

working framework, such as OpenFlow [49].

3. Development of “back end” technologies that are polynomial-time in N even

for multi-neighborhood topologies. Even though such scaling is not required

for MAC protocol design that is local, it will be required if this framework

is to have success within Software Defined Networking (SDN).

140

Bibliography

[1] H. Hartenstein and K. P. Laberteaux, “A tutorial survey on vehicular ad hoc

networks,” in IEEE Communications Magazine Volume: 46, Issue: 6, June

2008.

[2] R. C. Daniels and R. W. Heath, “60 GHz wireless communications: emerging

requirements and design recommendations,” in IEEE Vehicular Technology

Magazine, Volume: 2, Issue: 3. Sept. 2007.

[3] A. S. Tanenbaum and D. J. Wetherall, Computer Networks (5th Edition),

Prentice Hall, Oct 7, 2010

[4] J. D. Day and H. Zimmermann, “The OSI reference model,” in Proc. of the

IEEE Volume:71, Issue:12, Dec. 1983.

[5] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-

nical Journal, vol. 27, pp. 379-423 and 623-656, July and Oct., 1948.

141

Bibliography

[6] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Addison

Wesley Longman Publishing Co., Inc. Redwood City, CA, USA 1995.

[7] R. v. Nee, OFDM for Wireless Multimedia Communications, Artech House,

Inc. Norwood, MA, USA, 2000

[8] I. Demirkol, C. Ersoy and F. Alagoz,“MAC protocols for wireless sensor net-

works: a survey,” in IEEE Communications Magazine, Volume:44, Issue: 4,

2006.

[9] D. Camps-Mur and A. Garcia-Saavedra,“Device-to-device communications

with Wi-Fi Direct: overview and experimentation,” in Wireless Communi-

cations, IEEE, Volume:20, Issue: 3, June 2013.

[10] J. Jubin and J. D. Tomow, “The DARPA packet radio network protocols,”

in Proc. of the IEEE, Volume: 75, Issue: 1, Jan. 1987.

[11] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Oxford Uni-

versity Press, USA, Jan. 2002.

[12] B. Bing, Wireless Local Area Networks: the New Wireless Revolution, Wiley,

2002.

[13] B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins, Global Positioning

System: Theory and Practice, Springer, Wien (Austria), 1993.

142

Bibliography

[14] S. L. Goff, A. S. Glavieux and C. Berrou, “Turbo-codes and high spectral

efficiency modulation,” in Proc. IEEE ICC ’94, 1994.

[15] C.S. Burrus, R.A. Gopinath and H. Guo, Introduction to Wavelets and

Wavelet Transforms: a Primer, Prentice Hall, 1997.

[16] Y. Xiao, J. Rosdahl, “Throughput and delay limits of IEEE 802.11,” in IEEE

Communications Letters, 2002, vol. 6, no. 8, pp. 355-357.

[17] E. H. Ong, J. Kneckt, O. Alanen and Ch. Zheng, “IEEE 802.11ac: enhance-

ments for very high throughput WLANs,” in 2011 IEEE 22nd International

Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),

2011.

[18] V. Shrivastava, S. Rayanch, J. Yoon, and S. Banerjee, “802.11n under the

microscope,” in Proc. IMC, Oct. 2008.

[19] K. Pelechrinis, T. Salonidis, H. Lundgren, N. Vaidya, “Analyzing 802.11n

performance gains,” in Proc. ACM MobiCom 2009.

[20] V. Visoottiviseth, T. Piroonsith, and S. Siwamogsatham, “An empirical study

on achievable throughputs of IEEE 802.11n Devices,” in Proc. WinMee, June

2009.

143

Bibliography

[21] S. Shakkottai, T.S. Rappaport, “Cross-layer design for wireless networks,” in

IEEE Communications Magazine, 2003, vol. 41 , issue 10, pp. 74 - 80.

[22] V. Srivastava, M. Motani, “Cross-layer Design: a survey and the road ahead,”

in IEEE Communications Magazine, 2005, vol. 43, issue 12, pp. 112 - 119.

[23] E. Setton, T. Yoo, X. Zhu, A Goldsmith, “Cross-layer design of ad hoc

networks for real-time video streaming,” in IEEE Wireless Communications,

2005, vol. 12 , issue 4, pp. 59 - 65, 2005.

[24] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering as

optimization decomposition: a mathematical theory of network architectures,”

in Proceedings of IEEE, vol. 95, no. 1, pp. 255–312, 2007.

[25] J.W. Lee, A. Tang, J. Huang, M. Chiang and A.R. Calderbank, “Reverse-

engineering MAC: a non-cooperative game model,” in IEEE Journal on Se-

lected Areas in Communications, Vol.25, No.6, August 2007.

[26] M. Casado, T. Koponen, S. Shenkder and A. Tootoonchian, “Fabric: a retro-

spective on evolving SDN,” in Proceedings of the first workshop on Hot topics

in software defined networks HotSDN’12, New York, 2012.

[27] D. D. Gajski and R. H. Kuhn, “Guest editors’ introduction: new VLSI tools,”

in IEEE Computer Volume:16, Issue: 12, 1983.

144

Bibliography

[28] D. Macmillen, R. Camposano, D. Hill and T. W. Williams, “An industrial

view of electronic design automation,” in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems Volume:19, Issue: 12, Dec

2000.

[29] N. Abramson, “Development of the ALOHANET,” in IEEE Transactions on

Information Theory, 1985.

[30] M. O. Rabin, “Probabilistic automata,” in Information and control, Elsevier,

1963.

[31] G. Bianchi, L. Fratta and M. Oliveri, “Performance evaluation and enhance-

ment of the CSMA/CA MAC protocol for 802.11 wireless LANs,” in IEEE

Personal, Indoor and Mobile Radio Communications (PIMRC’96), 1996.

[32] C. Z. Mooney, Monte Carlo Simulation, Sage Publications, 1997.

[33] A. Perrig and D. Song, “A first step towards the automatic generation of se-

curity protocols,” in Symposium on Network and Distributed Systems Security

(NDSS), Feb. 2000.

[34] D. Song, A. Perrig, and D. Phan, “AGVI - automatic generation, verification,

and implementation of security protocols,” in Computer Aided Verification:

Proc. 13th Intl. Conf. (CAV 2001), G. Berry, H. Comon, and A. Finkel, Eds.,

145

Bibliography

Lecture Notes in Computer Science, Vol. 2102, Berlin, Germany: Springer-

Verlag, 2001, pp. 241-245.

[35] J. W. Lee, M. Chiang, and R. A. Calderbank, “Utility-optimal random-access

control,” in IEEE Transactions on Wireless Communications, vol. 6, no. 7, pp.

2741-2751, July 2007.

[36] V. Rodoplu, A. Aminzadeh Gohari, and W. Tang, “Towards automated de-

sign of MAC protocols for underwater wireless networks,” in Proc. of the

3rd ACM International Workshop on Underwater Networks (WUWNET’08),

Sept. 2008.

[37] V. Rodoplu, and A. Aminzadeh Gohari, “Challenges: automated design of

networking protocols,” in Proc. of ACM International Conference on Mobile

Computing and Networking (MobiCom’08), Sept. 2008.

[38] S. C. Ergen, P. Di Marco, C. Fischione, “MAC protocol engine for sensor net-

works,” in Proc. of the IEEE Global Communications Conference (Globecom’

09), Nov. 2009.

[39] A. Farago, A. D. Myers, V. R. Syrotiuk and G. V. Zaruba, “Meta-MAC pro-

tocols: automated combination of MAC protocols to optimize performance for

unknown conditions,” in IEEE Journal on Selected Areas in Communications,

Vol.18, No.9, Sept. 2000, pp. 1670.

146

Bibliography

[40] A. Farago, A.D. Myers, V.R. Syrotiuk and G.V. Zaruba, “Meta-MAC Pro-

tocols: automatic combination of MAC protocols to optimize performance for

unknown conditions,” in IEEE Journal on Selected Areas in Comminications,

Vol. 18, No. 9, Sept 2000.

[41] C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D.C. Sicker and D. Grunwald,

“MultiMAC - an adaptive MAC framework for dynamic radio networking,” in

First IEEE International Symposium on New Frontiers in Dynamic Spectrum

Access Networks, 2005.

[42] H. S. Lichte, S. V. and H. Karl, “Automated development of cooperative MAC

protocols a compiler-assisted approach,” in Mobile Networks and Applications,

vol. 15, no. 6, pp. 769-785, DOI: 10.1007/s11036-009-0210-5.

[43] J. Ansari, X. Zhang and Petri Maehoenen, “A compiler assisted approach

for component based reconfigurable MAC design,” in The 10th IFIP Annual

Mediterranean Ad Hoc Networking Workshop, 2011.

[44] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova and P. Maehoenen, “Decom-

posable MAC framework for highly flexible and adaptable MAC realizations,”

in New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, 2010.

147

Bibliography

[45] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova and P. Maehoenen, “A flexible

MAC development framework for cognitive radio systems,” in IEEE Wireless

Communication and Networking Conf., Quintana-Roo, Mexico, Mar. 2011.

[46] J. Zhen, F. Brewer, V. Rodoplu,“A methodology for optimal MAC protocol

generation: case study of a synchronous MAC channel,” in Proc. of the IEEE

Global Communications Conf. (Globecom’ 10), Dec. 2010.

[47] J. Zhen, F. Brewer, V. Rodoplu,“Automated MAC protocol generation with

multiple neighborhoods and acknowledgments based on Symbolic Monte Carlo

simulation,” in Proc. of the IEEE Global Communications Conf. (Globecom’

11), Dec. 2011.

[48] J. Zhen, V. Rodoplu,“Automated MAC protocol generation for dynamic

topologies,” in Proc. of the IEEE Global Communications Conf. (Globecom’

12), Dec. 2012.

[49] N. McKeown, T. Anderson and H. Balakrishnan,“OpenFlow: enabling inno-

vation in campus networks,” in ACM SIGCOMM Computer Communication

Review, Volume 38, Issue 2, April 2008.

148

