
Scalable and Efficient Tasking for Dynamic Sensor Networks

by

Thanh Xuan Dang

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Nirupama Bulusu
Wu-chang Feng
Wu-chi Feng

Yih-Chyun Jenq
Suresh Singh

Portland State University
c© 2011

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3468959

Copyright 2011 by ProQuest LLC.

UMI Number: 3468959

Abstract

Sensor networks including opportunistic networks of sensor-equipped smart-

phones as well as networks of embedded sensors can enable a wide range of

applications including environmental monitoring, smart grids, intelligent trans-

portation, and healthcare. In most real-world applications, to meet end-user

requirements, the network operator needs to define and update the sensors’

tasks dynamically, such as updating the parameters for sensor data collection

or updating the sensors’ code.

Tasking sensor networks is necessary to reduce the effort in programming

sensor networks. However, it is challenging due to dynamics and scale in terms

of number of nodes, number of tasks, and sensing regions of the networks. In

addition, tasking sensor networks must also be efficient in terms of bandwidth,

latency, energy consumption, and memory usage.

This dissertation identifies and addresses the problems of scalability and

efficiency in tasking sensor networks. The first challenge in tasking sensor

networks is to define a mechanism that represents multiple tasks and sensor

groups efficiently taking into account the heterogeneity and mobility of sensors

deployed over a large geographical region. Another challenge in tasking sensor

networks in general, and embedded sensor networks in particular, is to design

protocols that can not only efficiently disseminate tasks but also maintain a

consistent view of the task to be performed among inherently unreliable and

resource-limited sensors.

i

We believe that a scalable and efficient tasking framework can greatly benefit

the development and deployment of sensor network applications. Our thesis is

that decoupling the task specification from task implementation using a spatial

two-dimensional (2D) representation of a tasking region such as maps enables

scalable, efficient, and resource-adaptive tasking over heterogeneous mobile sen-

sor networks. In addition, reducing overhead in detecting inconsistencies across

nodes enables scalable and efficient task dissemination and maintenance.

We present the design, implementation, and evaluation of Zoom, a multi-

resolution tasking framework that efficiently encapsulates multiple tasks and

sensor groups for sensor networks deployed in a large geographical region. The

key ideas in Zoom are (i) decoupling task specification and task implementation

to support heterogeneity, (ii) using maps for representing spatial sensor groups

and tasks to scale with the number of sensor groups and sensing regions, and (iii)

using image encoding techniques to reduce the map size and provide adaptation

to sensor platforms with different resource capabilities.

We present the design, implementation, and evaluation of our protocol,

DHV, which efficiently disseminates task content and ensures that all nodes

have up-to-date task content in sensor networks. It achieves this by minimizing

both the redundant information in each message and the number of transmitted

messages in the networks. DHV has been included in the official distribution

of TinyOS, a popular operating system for embedded sensor networks.

As sensor networks continue to develop, they will evolve from dedicated and

single-purpose systems to open and multi-purpose large scale systems. Nodes

in the network will be retasked frequently to support multiple applications and

multiple users. We believe that this work is an important step in enabling

seamless interaction between users and sensor networks and to make sensor

networks more widely adopted.

ii

To my parents, Truat Duong, Hong Tran, Cuc Le,

my wife, Han Tran,

and my children, Isabel and Jeff Dang

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Nirupama

Bulusu, for her guidance throughout the program. Looking back over the years,

Nirupama was the first person who introduced me to research when I worked

with her on a research project in Australia as an undergraduate intern. Now,

as I am almost at the end of the Ph.D. program, I feel extremely lucky that I

have met her and worked under her guidance. She has patiently nurtured me

to develop intellectually and professionally. I still remember her saying once

that “advising a new student is like adopting a new child”, a perspective that I

will try to carry on in my career. I am indebted to her for all the great things

she has done for me.

Similarly, I would like to thank Professor Wu-chi Feng, a very thoughtful

mentor and skillful foosball coach. I was naturally drawn toward Wu-chi be-

cause of his openness and consideration. He always listens to me and gives me

a broader view of research problems. My philosophical thinking and foosball

skills are way better now than before I met Wu-chi.

I also would like to express my appreciation to Professor Suresh Singh,

Professor Wu-chang Feng, Professor Feng Liu, and Professor Yih Chin Jenq for

serving on my dissertation committee.

During my stay at Portland State University, I met many people with whom

I had fruitful discussions. Among them are Akshay Dua, Phillip Sitbon, John

Kassebaum, Francis Chang, Ed Kaiser, Chris Chambers, and many others.

iv

I would like to thank Professor Sanjay Jha and Professor Chun Tung Chou

from the University of New South Wales and Dr. Wen Hu from The Common-

wealth Scientific and Industrial Research Organisation (CSIRO) for providing

me feedback on various research projects.

I would like to thank Professor Antonio Baptista, Professor Yinglong Zhang,

and Dr. Sergey Frolov at the National Science Foundation Science and Tech-

nology Center for Coastal Margin Observation and Prediction for providing me

support during the time I worked there.

Especially, I would like to thank my wife, Han, for her patience and con-

stant support throughout my graduate study. I am indebted to her for all her

sacrifices. I just want you to know how much I appreciate it. I love you.

Last but most important, I thank God - Jesus Christ - for having a wonderful

plan for me and my family. He showed me the peace, happiness, and the

ultimate purpose of life. He brought many wonderful people like Hoa Nguyen,

Tin Nguyen, Dao Le, the Lam’s family, Triet Hue, Dat Tran, Vang Da, Dai

Ngu, Thao Minh, Hao Tran, Dat Huynh, Dung Mai, Khanh Nguyen, Chau and

Debi, Thu Huyen, Thang Hang, Long Tho, Huynh Nghia, Vu Tran, and many

others who helped me and my family get through difficult times in life.

Thank you,

Thanh Dang

Portland, Oregon

May 2011

I would like to acknowledge the grants that supported my research at Port-

land State University. My research was supported by funding from the National

Science Foundation (NSF) through grant 01-21475 (through the NSF Science

and Technology Center for Coastal Margin Observation and Prediction) and

grants 05-14818, 07-22063, and 0747442.

v

Contents

Abstract i

Dedication iii

Acknowledgements iv

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation: Multi-purpose Multi-user Sensing Systems 1

1.2 The Problem: Scalable and Efficient Tasking 3

1.3 Challenges . 5

1.3.1 Tasking Framework Overview 5

1.3.2 Challenges in Task Representation over Large Areas . . . 7

1.3.3 Challenges in Disseminating Many Tasks Efficiently . . . 9

1.4 Solutions: Task Representation, Dissemination and Maintenance 10

1.4.1 Solution #1: Spatial 2D Task Representation 11

1.4.2 Solution #2: Task Dissemination and Maintenance . . . 12

1.5 Contributions . 13

1.6 Dissertation Overview . 15

2 Background and Related Work 16

vi

2.1 Tasking Models for Sensor Networks 16

2.1.1 Task Implementation . 17

2.1.2 Task Representation and Encoding 18

2.1.3 Task Dissemination . 20

2.1.4 Task Maintenance . 20

2.2 Mobile Sensor Networks . 21

2.2.1 Applications . 22

2.2.2 Task Representation and Encoding in Mobile Sensor Net-

works . 23

2.3 Embedded Wireless Sensor Networks 25

2.3.1 Applications . 26

2.3.2 Dissemination and Maintenance Protocols for Embedded

Sensor Networks . 26

2.4 Summary . 29

3 Zoom: A Multi-resolution Tasking Framework for Mobile Sen-

sor Networks 31

3.1 Introduction . 31

3.2 Overview . 32

3.2.1 Design Goals . 32

3.2.2 Key Ideas . 33

3.2.3 Assumptions . 34

3.2.4 Communication Model 34

3.3 Zoom Tasking Framework . 35

3.3.1 Task Representation . 36

3.3.2 Task Encoding . 39

3.3.3 Resource Adaptation Techniques 40

3.4 Limitations . 43

vii

3.5 Implementation . 43

3.6 Evaluation . 44

3.6.1 Goals and Metrics . 44

3.6.2 Methodology . 44

3.6.3 Experimental Results . 48

3.7 Summary . 55

4 DHV: A Dissemination and Maintenance Protocol for Embed-

ded Sensor Networks 56

4.1 Introduction . 56

4.2 Overview . 57

4.2.1 Design Goals . 57

4.2.2 Key Ideas . 58

4.2.3 Assumptions . 59

4.3 The DHV Protocol . 59

4.4 Suppression Mechanism and Transmission Scheduling 65

4.4.1 Trickle Suppression Mechanism 65

4.4.2 DHV Transmission Scheduling 66

4.5 Limitations . 66

4.6 Theoretical Analysis . 68

4.6.1 Updating One Item . 69

4.6.2 Updating Multiple Items 70

4.7 Implementation . 73

4.8 Evaluation . 75

4.8.1 Goals and Metrics . 75

4.8.2 Methodology . 76

4.8.3 Experimental Results . 83

4.9 Protocol Selection Guidelines 93

viii

4.10 Summary . 93

5 Conclusion and Future Work 94

5.1 Summary . 94

5.2 Impact . 96

5.3 Future Directions . 97

References 99

ix

List of Tables

2.1 Mobile sensor network applications 22

2.2 Embedded sensor network applications 27

3.1 Implementation detail . 44

3.2 Description of the networking stack used in simulation. 47

4.1 Implementation statistics for the TestDissemination application

(tinyos-2.x/apps/tests/TestDissemination). 74

4.2 Notation and ranges of parameters used in evaluation. 77

4.3 Network description. 78

4.4 Packet loss rates versus receiving gain using TOSSIM simulation. 79

x

List of Figures

1.1 Key steps in tasking sensor networks: A user creates a task and

sends the task information to a gateway device that can com-

municate with both the sensor nodes and the user. The gateway

disseminates the task to all nodes in the network. The nodes in

the network, upon receiving the task, perform the appropriate

operations to accomplish the task. They also make sure that all

nodes have the same up to date task. 5

1.2 A task map overlaid on top of a physical topology: Physical

groups of sensors can be viewed as a region in the image. Each

pixel in the image represents a squared region in the physical

map and the pixel value is the task ID. A node upon receiving

a task map can calculate the value of the pixel in the map that

corresponds to its physical location to know which task it should

perform. 12

2.1 Scopes in tasking . 18

2.2 Grouping approaches . 23

2.3 Tasking categories: None of the prior approaches provide re-

source adaption for heterogenous sensor platforms. 24

3.1 Zoom overview: Zoom has three main components: task repre-

sentation, task encoding, and resource adaptation. 36

xi

3.2 A task map overlaid on top of a physical map: A location on the

task map corresponds to a real physical location. The pixel value

at a particular location on the task map is the corresponding task

ID which specifies the task to be performed at that location. . 38

3.3 Task header: Depending on task type, the task header can con-

tain IDs of the other tasks or physical object types that the

sensor is attached to. 38

3.4 STIF header: The top left and bottom right coordinates scope

the physical region to be tasked. The image width and height

indicate the size of the encoded task map. 40

3.5 Multi-resolution encoding: A lower resolution leads to a smaller

image, requiring less memory and computational power to de-

code. 41

3.6 Selected region of interest encoding: A specific region can be

encoded to reduce the image size to be transmitted. The re-

gion can also be encoded at a higher resolution to increase the

identification accuracy. 42

3.7 Region of interest cropping: The task map is divided into blocks

and each block is encoded separately. 42

3.8 Number of roads within a pixel: (a) a pixel can uniquely identify

a road segment. (b, c, d) a pixel can not uniquely identify a road

segment. 45

3.9 Simulation area: 1 km × 1 km area in downtown Portland, OR. 46

3.10 Total error pixels versus resolution: With size of 321 KB at

resolution 2857 x 1917, a STIF image can uniquely describe every

road segment. 49

xii

3.11 Distribution of error pixels: Most error pixels contain 2 to 5 road

segments. 50

3.12 Spatial distribtion of error pixels (Portland, OR): High error pix-

els (white color) are distributed near the downtown and freeway

intersection areas. 50

3.13 Percentage of nodes with incorrect task IDs versus time: The

higher the node density, the lower the error. 52

3.14 Percentage of nodes with incorrect task IDs versus time: Each

pixel in the task map represents a 5 × 5, 10 × 10, or 20 × 20

squared meter region in the physical map. The higher the map

resolution or the smaller square region each pixel represents, the

lower the error. 52

3.15 Encoded map size versus number of blocks. 52

3.16 Decoding time versus map resolutions on the Google G2 smart-

phone: The decoding time is less than 1 millisecond even for

maps with high resolutions. 53

3.17 Encoded map size versus number of regions: Encoded map size

increases proportionally with the number of regions. 54

3.18 Encoded map size versus number of regions. STIF maps always

have a smaller size compared to Logical Neighborhood predicates. 54

4.1 Versions as a two dimensional binary matrix 60

4.2 Five main phases in DHV: (Source [1]: modified with permission

from Springer Verlag) . 61

4.3 DHV message formats: (Source [1]: Used with permission from

Springer Verlag) . 62

xiii

4.4 DHV flow diagram: Node 1 broadcasts its SUMMARY message

which contains the hash of all the version numbers. Node 2

receives hash 1 and detects that hash 1 is different from hash 2

of node 2. Node 2 broadcasts its HSUM message which contains

the checksum of all version numbers. Node 1 receives the HSUM

message 2 and compares it to its own checksum. Node 1 identifies

that the 2nd bits differ. Node 1 copies the 2nd bit of all the version

numbers into one or more VBIT messages and broadcasts them.

Node 2 receives a VBIT message, compares it to its own VBIT

message and detects that the 2nd bits are different from each

other. Node 2 broadcasts a VECTOR message containing (key

2, version 2). Node 1 receives (key 2, version 2) from node 2

and sees that node 1 has a newer version of this item. Node 1

broadcasts the DATA of key 2. (Source [1]: Used with permission

from Springer Verlag) . 64

4.5 Suppression mechanism in Trickle: If c < k, the node broadcasts

its message. Otherwise, the node suppresses its own transmission

and doubles the value of τ . 65

4.6 Transmission scheduling flow diagram: The node keeps a counter

c for the number of received messages that have the same content

as it has. If c is greater than a threshold k, the node suppresses

its own transmission and doubles the next interval period. Oth-

erwise, it checks if there are pending messages to send. 67

4.7 Number of transmitted messages versus total items 70

4.8 Total transmitted messages versus total items: p = 0.1 and k = 5. 71

4.9 Total transmitted message versus update probability: T = 64

and k = 5. 72

xiv

4.10 Total transmitted messages versus update rounds: T = 64 and

p = 0.1. 73

4.11 Code size versus total number of items: Number of new items is

8. The total number of items varies from 8 to 128. The ROM

and RAM usage increase proportionally with the total number of

items. However, DHV always uses slightly less ROM and RAM

than DIP. 74

4.12 Code size versus total number of new items: The total number

of items is 128. The number of new items varies from 8 to 128.

The ROM usage increases proportionally with the total number

of new items. However, DHV always uses slightly less ROM and

RAM than DIP. 75

4.13 Example network topologies used for evaluation. 77

4.14 (Left) Real MicaZ testbed (Right) Packet loss versus receiving

gain using TOSSIM simulation. 79

4.15 Link gain histogram: For medium density network, the majority

of links have gain from -120dB to -100dB while the high density

network has the gain distribution around -100dB to -80dB. . . . 80

4.16 Power measurement setup: An Agilent 34411A digital multi-

meter is placed between the DC power supply and the sensor net-

work to measure the DC current drawn by the network. The dig-

ital multi-meter is also controlled from a computer using Python

scripts based on the PyVISA package [2]. The measurements are

transferred to the computer via a TCP/IP connection. 82

xv

4.17 Tasking latency versus total items: D = 32, N = 8, L = 5%. T

varies from 8 to 128. DHV performance in terms of total number

of transmitted messages and tasking latency is relatively con-

stant with T . Meanwhile, the number of transmitted messages

and tasking latency of DIP increase as T increases. 83

4.18 Total latency versus total new items: D = 32, T = 64, L = 5%.

N varies from 8 to 64. Nodes using DHV also use only half the

time to complete updating the network compared to nodes using

DIP. 84

4.19 Total latency versus network density: T = 64, N = 8, L = 5%.

D varies from 8 to 64. Nodes using DHV complete updating the

network in 33% of the time and uses 50% fewer messages than

nodes using DIP. 85

4.20 Total latency versus packet loss: D = 32, T = 64, N = 8. Packet

loss rate L varies from 5% to 45%. Nodes using DHV complete

updating task items twice faster than nodes using DIP. Nodes us-

ing DHV transmit about 70% of messages to complete updating

compared to nodes using DIP. 85

4.21 Total latency and transmitted messages versus total items: D =

10, N = 8, L = 5%. T varies from 8 to 128. DHV’s performance

is again relatively constant with T . Meanwhile, the number of

transmitted messages and latency in DIP increase as T increases. 86

xvi

4.22 Total latency and transmitted messages versus total new items:

D = 10, T = 64, L = 5%. N varies from 8 to 64. Nodes using

DHV always transmit fewer messages than nodes using DIP to

complete updating the network. Nodes using DHV also spend

only 50% of the time to complete updating the network compared

to nodes using DIP. 87

4.23 Total latency and transmitted messages versus network density:

T = 64, N = 8, L = 5%. D varies from 2 to 20. DHV completes

updating in 33% of the time and uses 50% fewer messages than

DIP. 87

4.24 Performance versus number of nodes: D = 10, T = 64, N = 8.

Packet loss rate L varies from 5% to 45%. DHV outperforms

DIP at low packet loss rates. However, as the packet loss rate

increases, DHV gets closer to DIP and exceeds DIP when the

packet loss rate is greater than 35%. 88

4.25 Convergence time for multi-hop networks: T=128 and N=8. It

takes DHV about 50% and 70% of the time compared to DIP

to update medium density networks (left) and tight density net-

works (right) respectively. 89

4.26 Total transmitted messages versus network density: T = 64,

N = 8, D is varied from 8 to 56 nodes. Nodes using DHV

transmit 30% fewer total messages and complete updating earlier

compared to nodes using DIP. 90

4.27 Energy consumption: D varies from 8 to 32 nodes. Nodes using

DHV consume around 70% of energy consumed by nodes using

DIP to update the whole network. 91

xvii

4.28 Tasking latency versus number of items: DHV shows a relatively

constant programming time versus T while DIP updating time

increases with T. DHV shows a relatively constant update time

versus the total number of items. In contrast, DIP update time

increases with the total number of items. 92

4.29 Update progress: a) T=64, N = 8: DHV completes updating the

network in 50% of the time compared to DIP. b) T = 128, N =

120: DHV completes updating in 50% of the time compared to

DIP. 92

xviii

Chapter 1

Introduction

1.1 Motivation: Multi-purpose Multi-user Sensing Systems

Recent advances in micro-electro-mechanical systems technology, wireless com-

munication, and digital electronics have enabled the development of sensor

networks which consist of many miniature sensor devices with integrated com-

putation, communication, and sensing. These sensors can be attached to physi-

cal objects or deeply embedded into the environment to pervasively instrument

the physical world. Each individual sensor can perform tasks, or a set of sens-

ing operations. Collectively, tasks performed by multiple sensors accomplish

the end-user’s objectives. For example, a sensor node embedded in a car on a

freeway can perform the task of reporting Global Positioning System (GPS) lo-

cation traces to a base station. Collectively, data gathered from multiple such

nodes can be used to estimate traffic flows. Sensor networks, therefore, can

enable a wide range of useful applications including environmental monitoring

[3], smart grids [4], intelligent transportation [5], and healthcare [6].

Since the late 1990s, many sensor networks have been deployed in a wide

range of environments such as human bodies [6], buildings [7], volcanoes [8],

and urban regions [9]. The networks have spanned in size from hundreds to

thousands of stationary and mobile nodes [10]. Most sensor networks, however,

have been deployed for a single purpose and are controlled only by network

1

operators. For example, in [3], a sensor network was deployed for the purpose of

collecting ambient data for monitoring environmental conditions in a vineyard.

As sensor networking technologies continue to develop, the notion of creating

multi-purpose multi-user sensing systems is becoming feasible. Technological

advances enable sensor platforms to be more powerful in terms of computation

and communication [11]. People have incentives to actively contribute sensing

data and use sensor networks for multiple purposes [10, 12, 13]. For example,

in the Mobile Millennium project [10], people contribute their GPS data for

estimating traffic flows to make smart commuting decisions. Therefore, it is

possible to share the same sensor network to support multiple applications for

different users. For example, sensors deployed over large geographical urban

regions [13] could be used by different users for different purposes such as noise

monitoring and traffic monitoring.

To enable multi-purpose multi-user sensing systems, sensor networks must

be able to update their tasks dynamically. The sensor networks will often need

to perform different tasks over different spatial-temporal regions depending on

the dynamics of the phenomena being studied. For example, using a mobile

sensor network, the Oregon Department of Environmental Quality (DEQ) may

want to collect air quality information such as CO2 concentration in a specific

region (e.g., Southeast region) in the city of Portland. The Oregon Intelligent

Transportation Systems (ITS) may want to collect GPS data from all roads and

freeways in the city of Portland. In this case, the network needs to perform

two tasks simultaneously; collecting air quality data in Southeast Portland and

collecting GPS data from nodes on all roads and freeways in Portland. In

addition, the ITS may be receiving many GPS traces from nodes on US-26 but

very little GPS data from nodes on Cornell Road. The ITS may want to signal

the nodes on Cornell Road to increase reporting frequency, and signal the nodes

2

on US-26 to reduce the reporting frequency. This example illustrates how the

end-user often needs to task the sensor network differently or to adapt its tasks

differently across spatial-temporal regions.

While it may be possible to physically gather the sensor nodes, manually

reprogram individual nodes, and redeploy them to update new sensors’ tasks, it

may be impractical to do so for several reasons. First, physical access to sensor

nodes may not be available. Sensor networks can be deployed in unattended

and hostile environments such as volcanoes. Physical access to these nodes can

be life threatening. Second, data users may not have ownership of sensor nodes.

For example, smartphones are personally owned and operated by users. Finally,

it may not be scalable in terms of either the network size or the area over which

sensors are deployed. Sensor networks can have many sensor nodes. Even if

there are few nodes, they may be spread over a large area. It is labor intensive

to manually collect, reprogram, and redeploy the nodes. Thus, tasking these

sensor networks remotely through wireless communication is a convenient way

of changing their operation.

Despite its critical importance, tasking has not been widely addressed in

prior research. Previous approaches to tasking sensor networks either do not

scale well to multiple tasks [14, 15] or do not scale well to large sensing regions

[16], consuming significant network resources such as energy and bandwidth

while incurring significant latency. In the next section, we describe the problem

of scalability and efficiency in tasking sensor networks.

1.2 The Problem: Scalable and Efficient Tasking

We believe that there is a need for a scalable and efficient tasking framework

to adapt the tasks performed by sensors according to user requirements in dy-

namic sensor networks. In particular, tasking sensor networks must be scalable

3

with the number of nodes, number of tasks, and sensing regions. The emer-

gence of smartphones provides powerful generic sensor platforms that can be

massively deployed over large geographical regions. Such sensing infrastructure

can potentially support multiple sensing applications. However, it is important

to recognize that such sensing infrastructure will be highly dynamic, in terms of

when nodes may join or leave the network as well as how nodes are distributed

and used over a sensing area.

Tasking sensor networks must be efficient in terms of bandwidth, energy,

memory, and latency. Although advances in wireless technologies can allow

nodes to achieve a high data rate in wireless communication, sensor nodes

still share the communication medium. Therefore, the bandwidth per node

is inversely proportional to the number of nodes in the network. With high

node density, bandwidth becomes the limited resource. In addition, energy is

limited in many scenarios. Sensors often run on batteries, which have a finite

amount of energy, and are often deployed in unattended environments. In most

cases, it is impractical to replace or recharge the batteries. Although there have

been impressive technological advances in energy harvesting, the technologies

must be used in conjunction with aggressive energy management on the device.

Finally, during tasking, the network may become useless if some, but not all the

nodes perform the new tasks. Therefore, tasking latency should be minimized

to improve network performance.

The purpose of this dissertation is to identify and address problems of scala-

bility and efficiency in tasking sensor networks. We believe this work constitutes

an important step in making sensor networks more widely adopted.

4

1.3 Challenges

To help the reader understand the challenges in tasking sensor networks, we

briefly present an overview of a tasking framework in the following section.

1.3.1 Tasking Framework Overview

There are often several steps in tasking a sensor network as illustrated in Fig-

ure 1.1. First, based on either the application requirements or detection of an

event of interest, a user constructs a task, which can be a change in the network

operation (e.g., set the light sampling rate to 10 Hz for one hour). The task

is sent to a gateway device (either directly or through the Internet) which can

communicate with both the sensor nodes and the user. The gateway dissem-

inates the task to all nodes in the network. The nodes in the network, upon

receiving the task information, perform the necessary operations (defined in

the task implementation) to accomplish the task. The nodes also communicate

with each other or with the gateway to ensure that all of them have the same

up to date task1.

Gateway

Sensor

Task

Figure 1.1: Key steps in tasking sensor networks: A user creates a task and
sends the task information to a gateway device that can communicate with both
the sensor nodes and the user. The gateway disseminates the task to all nodes
in the network. The nodes in the network, upon receiving the task, perform
the appropriate operations to accomplish the task. They also make sure that
all nodes have the same up to date task.

1The communication could leverage a particular wireless technology, such as Zigbee [17],
WiFi, 3G, and 4G LTE, depending on the capabilities of deployed sensor nodes.

5

A tasking framework often consists of four main components: task imple-

mentation, task representation and encoding, task dissemination, and task main-

tenance. Task implementation defines the set of operations that a sensor, upon

receiving a task, performs. For example, the implementation of a task that

has ID 1 (task 1) can set the GPS sampling rate to 10 Hz for one hour. Task

implementation can be platform specific. Task representation and encoding de-

fines the mechanism to represent specifications of tasks and their corresponding

sensor groups. For example, a task specification can be collecting noise level at

10 Khz and the task is assigned to all nodes that are in a circle of 1 mile radius

from a factory. One way to denote this is to have pre-defined attributes that

indicate that the sensing region type is a circle, its origin is the factory, and

its radius is 1 mile. Task dissemination provides communication schemes to

efficiently transmit the tasks to the sensors. For example, the tasks are trans-

mitted to all mobile sensors (e.g., smartphones) through a 3G network. Task

maintenance ensures that sensors have a consistent view of the tasks being

performed. For example, if a smartphone was turned off during the last task

dissemination and now is turned on; it needs to update itself to the latest task

that was disseminated.

Since the task implementation is platform specific, we assume that it exists.

In this dissertation, we focus on task representation and encoding, and task

dissemination and maintenance in sensor networks. To facilitate the research

of this dissertation, we explore the problem of scalable and efficient tasking as

follows. First, we study the problem of scalable and efficient task representa-

tion and encoding over large areas. We motivate and study this problem with

the example of participatory networks of mobile smartphones (mobile sensor

networks). Next, we study the problem of scalable and efficient task dissemi-

nation and maintenance with the example of embedded sensor networks which

6

consist of small form factor embedded sensor devices with limited resources

such as energy, memory, and bandwidth. The following sections describe the

main challenges of each problem as well as the justification for the network type

chosen to study each problem.

1.3.2 Challenges in Task Representation over Large Areas

Mobile devices equipped with sensors can enable many applications. For exam-

ple, GPS-enabled smartphones can report GPS location to estimate traffic flow

[18]. Smartphones can be used to capture audio signals for monitoring noise

pollution [9]. Multiple users such as the ITS and the DEQ might want to query

information from a mobile sensor network to monitor traffic conditions and

air pollution respectively. Hence, tasking mobile sensor networks must support

multiple users and multiple applications. Basically, sensor nodes are segregated

into multiple groups. Each group is assigned a task. Therefore, we focus on

the key problem of how to design a mechanism that can efficiently represent

multiple tasks and multiple sensor groups over large areas? A solution to this

problem must address the following primary challenge.

Large Sensing Region

Mobile sensors such as smartphones can cover a large geographical region (e.g.,

a city). The number of nodes can be tens of thousands. The tasks can be

performed either over a large region or a specific area with fine resolution.

Therefore, the tasking framework should be flexible enough to task sensor nodes

at different geographical resolutions depending on the application requirements.

7

Additionally, it must also address the following challenges in mobile sensor

networks.

Mobililty

In mobile sensor networks, the nodes are often carried by humans or attached

to physical objects like cars or trains. Hence, the nodes can be either stationary

or moving at a speed of tens of miles per hour. For example, in the Mobile

Millennium project [10], cell phones deployed on cars are leveraged to collect

GPS data in the San Francisco Bay Area for traffic estimation. The cars can

join and leave a sensing region frequently. These nodes may not be aware of

the task associated with the sensing region. Therefore, it is important for a

tasking framework to ensure that nodes know what they are supposed to do

based on its current location.

Heterogeneity

Although mobile sensors such as smartphones have similar features, they differ

vastly in the degree of their capabilities. For example, most smartphones have

a camera, microphone, GPS and 3G capabilities. However, the processor speed

can range from 400 MHz to 1 GHz. The camera can capture images from a res-

olution of 1.3 mega pixels to 12 mega pixels. The memory can range from 128

MB to 32 GB. The batteries also have different capacity ranging from 500 mAh

to 3000 mAh. In addition, there are also a variety of operating systems sup-

porting these platforms. The diversity in the smartphone platforms and their

software requires that protocols adapt to devices with different capabilities.

8

1.3.3 Challenges in Disseminating Many Tasks Efficiently

We explore the problem of disseminating multiple tasks concurrently. Our ex-

ample scenario is an embedded sensor network. Nodes in an embedded sensor

network often perform the same task, but the task may change over time. The

changes can be updating task items such as sensor firmware or sensing parame-

ters. The update can happen periodically (e.g., daily or monthly) depending on

the task items being updated. For example, updating sensor firmware might

happen monthly but updating sensing parameters (e.g., light sampling rate)

might happen hourly. Moreover, multiple tasks may need to be updated con-

currently. Nodes in sensor networks often need to communicate with each other

periodically to ensure that they all have the same up to date tasks. The cost in

terms of energy and bandwidth of ensuring that nodes have the same updated

tasks may overwhelm the cost of sensing itself [14]. Therefore, we focus on the

key problem in tasking sensor networks; how to disseminate multiple task items

efficiently and make sure all nodes have the updated items? A solution to this

problem must address the following primary challenge.

Unreliable and Intermittent Operation

Embedded sensors’ operations are often intermittent. In embedded sensor net-

works, sensors can be deployed in large numbers in various environments, in-

cluding remote regions [3], hostile regions [19], and operating without human

attendance. In many real deployments [20, 21], sensor nodes’ operations are

intermittent; nodes are on and off in an unpredictable way. That means even

if tasking is successful in updating the new task to all the nodes that are on,

some nodes that are off during the update may not be aware of the new task

when they wake up. In addition, packet loss rates in wireless embedded sensor

networks are high (e.g., from 5% to 10%) and distance dependent [22]. Fre-

9

quent sensor failure and intermittent communication make network behavior

unpredictable. This makes task dissemination and maintenance in embedded

sensor networks difficult. Additionally, in embedded sensor networks, we must

address the following challenge.

Limited Resources

Energy is the scarcest resource of embedded sensors and it determines the life-

time of sensor networks. For example, a MicaZ sensor [23], which runs on two

AA batteries, has a normal lifetime of up to only 30 days [24]. While energy

harvesting is possible, the technologies are not yet applicable for small form-

factor low power sensor platforms. Therefore, protocols in embedded sensor

networks must conserve energy. For tasking protocols, one way to disseminate

tasks and maintain consistency among sensors is to periodically broadcast mes-

sages containing the tasks’ information. However, communication consumes a

dominant amount of energy in embedded sensor networks. Hence, the energy

consumed for maintaining task consistency in the networks may outweigh the

energy consumed for sensing itself.

1.4 Solutions: Task Representation, Dissemination and Maintenance

We believe that a scalable and efficient tasking framework can greatly benefit

the development and deployment of sensor network applications. Our thesis

is that decoupling the task specification from the task implementation using a

spatial two-dimensional (2D) representation of the tasking region (e.g., maps)

enables scalable, efficient, and resource-adaptive task representation over large

areas and reducing overhead in detecting inconsistencies across nodes enables

scalable and efficient dissemination and maintenance over large numbers of

tasks.

10

1.4.1 Solution #1: Spatial 2D Task Representation

Most prior approaches for representing tasks in sensor networks are declarative;

they define precisely what a network should accomplish without describing the

detailed instructions that the nodes should perform. These approach can be

attribute-based or rule-based. In attribute-based approaches [25], the sensor

network is typically regarded as a database. Queries defined using variants of

the structured query language (SQL) are used to task sensors to report data

and define sensor groups. For example, to select all light readings from sensors

that have their IDs greater than 10, the complete query can be:

SELECT light

FROM sensors

WHERE id > 10

In rule-based approaches [26], sensor groups are defined by a set of rules,

which can be considered as an admission function [11]. A sensor, whose state

including sensing capability, location, or sensed data value, satisfies the rules is a

member of the defined group. For example, the admission function returns true

if the node energy level is greater than 500 mAh. What is missing in prior work

[16] is the ability to specify tasks for multiple sensor groups efficiently while

providing adaptation for sensor platforms with varying resource capabilities.

We believe that decoupling the task specification from the task implementa-

tion using a spatial 2D representation of the tasking region (e.g., maps) enables

scalable, efficient, and resource-adaptive task representation over large areas.

The task specification contains the task ID, a unique number identifying

the task, and task header which can contain grouping information. Task imple-

mentation is platform specific and contains specific instructions to be executed

by sensor nodes. It can be preloaded into the sensor nodes or downloaded as

needed.

11

Figure 1.2: A task map overlaid on top of a physical topology: Physical groups
of sensors can be viewed as a region in the image. Each pixel in the image
represents a squared region in the physical map and the pixel value is the task
ID. A node upon receiving a task map can calculate the value of the pixel in
the map that corresponds to its physical location to know which task it should
perform.

Task maps can be viewed as an image overlaid on top of a physical map as

shown in Figure 1.2. Physical groups of sensors can be viewed as a region in

the image. Each pixel in the image represents a square region in the physical

map and the pixel value is the task ID. A node upon receiving a task map

can calculate the value of the pixel in the map that corresponds to its physical

location to know which task it should perform. This approach allows us to

represent multiple groups and their tasks efficiently in one map. In addition,

image encoding techniques can be applied to reduce the map file size as well as

to provide resource adaptation for heterogeneous sensor platforms.

1.4.2 Solution #2: Task Dissemination and Maintenance

We focus on the problem of disseminating task items and making sure that all

nodes have the updated items. This is often accomplished by dissemination and

maintenance protocols that spread the items to all nodes efficiently and ensure

that every node has the updated items. The key step is to find out which node

has items that are different from the other nodes to trigger the update.

12

A tuple (key, version number) is often used to represent a task item where

the key uniquely identifies the item and the version number indicates the fresh-

ness of the item; the greater the version number is, the more up-to-date the

item is. Previous approaches [15, 27] advertise the whole item version numbers

for comparison. The overhead in detecting inconsistencies across nodes in the

network is high in terms of the number of transmitted messages. Hence, they

are not efficient and do not scale well with the number of items and the number

of nodes.

We believe that reducing overhead in detecting inconsistencies across nodes

enables scalable and efficient dissemination and maintenance over large numbers

of tasks.

We observe that in most cases, the two version numbers, if different, dif-

fer in only a few least significant bits. Therefore, instead of advertising the

whole version numbers of all items to detect an inconsistency in the network,

nodes carefully select bits that are likely to be different from other nodes and

combine the bits into messages, and advertise them all together to reduce the

number of unnecessary bits in each message. Nodes randomly advertise mes-

sages that contain information about item version numbers (e.g., a hash of all

the version numbers) within each time interval to ensure that they have up

to date task items. To further reduce the number of transmitted messages, a

node upon receiving several messages with the same content, suppresses its own

transmission. Together, nodes in the network can reduce both the number of

transmitted messages and the number of unnecessary bits in each message.

1.5 Contributions

As described in Section 1.3, the problems of scalable and efficient tasking in

sensor networks have distinct challenges in scaling to large areas and large

13

numbers of tasks. We recognize this and focus on addressing these key problems

in tasking using the examples of mobile sensor networks and embedded sensor

networks. For the problem of task representation, our work focuses on designing

a mechanism that efficiently represents multiple sensor tasks and groups over

large areas. We have applied this mechanism to a mobile participatory sensor

network. For the problem of task dissemination and maintenance, our work

focuses on developing a scalable dissemination and maintenance protocol to

efficiently distribute task items and ensure that nodes have the updated items.

We have applied this protocol to embedded sensor networks. Together, these

solutions can be used for scalable and efficient tasking of multi-purpose multi-

user sensor networks of the future. We also believe that this work is a step

toward making sensor networks more widely adopted.

The contributions of this dissertation are:

Zoom – A multi-resolution tasking framework, applied to mobile sensor

networks: This framework allows users to group and assign tasks to sensors in

non-uniform, fine-grained ways across a large sensing region for heterogeneous

mobile sensor networks. The key ideas in Zoom are (i) decoupling task speci-

fication and task implementation to support heterogeneity, (ii) using maps for

representing sensor groups and the tasks to scale with the number of nodes

and sensing regions, and (iii) using image encoding techniques to reduce the

map size and provide adaptation to sensor platforms with different resource

capability. Zoom is more intuitive, efficient and scalable compared to previous

approaches. To the best of our knowledge, Zoom is the first multi-resolution,

image based tasking framework for sensor networks.

DHV – A dissemination and maintenance protocol, applied to embedded

sensor networks: DHV uses a bit-level information exchange scheme to scale

with the number of items, and a gossip-based communication scheme to scale

14

with the number of nodes. Experimental results on both simulation and real

testbeds show that DHV outperforms previous protocols by a factor of two in

most cases. DHV has been included in the official distribution of TinyOS, a

popular operating system for embedded sensor platforms, since version 2.1.1.

1.6 Dissertation Overview

The rest of this dissertation is organized as follows. In Chapter 2, we dis-

cuss prior work on embedded sensor networks and mobile sensor networks and

describe related work in tasking these networks.

Chapter 3 then presents the design, implementation, and evaluation of

Zoom, a multi-resolution tasking framework for mobile sensor networks. Chap-

ter 4 describes the design, implementation, and evaluation of DHV, an efficient

dissemination and maintenance protocol for embedded wireless sensor networks.

Finally, Chapter 5 summarizes the research contribution of this dissertation,

discusses remaining challenges and outlines future research directions in tasking

sensor networks.

15

Chapter 2

Background and Related Work

In this chapter, we present an overview of prior work on tasking sensor net-

works, an overview of mobile sensor networks, and an overview of embedded

sensor networks. We also review related work that addresses specific tasking

problems (described in Sections 1.3.2 and 1.3.3) in each type of network. We

use the tasking model described in Section 1.3.1 as a reference model to layout

common ground for understanding previous work in the field. Most previous

work in sensor network programming [28, 25] provides some support for tasking.

Therefore, we include work in the broad area of network programming that is

related to tasking in this chapter.

2.1 Tasking Models for Sensor Networks

As described in Section 1.3.1, a tasking framework often has four main compo-

nents. Task implementation defines the set of operations that a sensor, upon

receiving a task, performs. Task representation and encoding define the mecha-

nism to represent specifications of tasks and their corresponding sensor groups.

Task dissemination provides communication schemes to efficiently transmit the

tasks to the sensors. Task maintenance ensures that sensors have a consistent

view of the tasks being performed. We describe each of the components in

detail in the following sections.

16

2.1.1 Task Implementation

Task implementation defines the set of operations to accomplish a task so that

a sensor, upon being assigned the task, knows what to perform. Task imple-

mentation can be specified in sensor models, middleware, or executable images.

Sensor models [29, 30] provide hardware and software abstraction for sensor

devices and services. On the other hand, the middleware [31] provides task

implementation and makes it available via a set of application programming

interfaces (APIs). Executable images contain the actual machine instructions

to be performed by the sensors to accomplish the tasks.

Sensor models are useful to develop a standard specification of tasks but

do not always provide the task implementation. SensorML [29], which was

developed by the Open Geospatial consortium, aims at providing a full sensor

model in XML format. SensorML provides abstractions for complex sensing

systems including satellites and weather stations. Tasks in SensorML can be

specified using modeling languages such as MathML [32]. Sensors must have

an interpreter to translate these languages into the actual machine instructions

to perform the task. sMAP [30], a simple measurement and actuation profile

for physical information, aims at providing a simple and efficient method for

accessing and controlling devices with limited resources. Tasks in sMAP can

be specified by parameters. These parameters, however, are sensor specific.

There exists middleware to provide task implementation but it is often do-

main specific. Since the introduction of sensor networks, various middleware

have been developed [31]. The middleware can be software libraries [33], toolk-

its [34], or virtual machines [35]. Each middleware provides a specific set of

APIs that applications can be built on top of.

Executable images contain the actual machine instructions to be performed

by sensors to accomplish the tasks. Executable images are platform specific.

17

Hence, for different platforms that run on different operating systems, programs

must be developed and compiled specifically for these platforms. For example,

applications for the MicaZ platform [23] are developed in TinyOS [14] using

NesC language [36] and compiled for the MicaZ platform.

Due to the various options for task implementation, we assume that a task

implementation exists. Each task has a unique task ID. But different sensor

platforms can have different task implementations for the task.

2.1.2 Task Representation and Encoding

Task representation and encoding define a data structure to represent tasks

and their corresponding sensor groups. There are two important aspects of

task representation and encoding: (i) scoping - which sensors are affected and

(ii) idiom - how the tasks are described.

Task Scoping

Task scopes can be at the network level, group level, or node level.

Sensor node

Tasking scope

Node levelGroup levelNetwork level

Figure 2.1: Scopes in tasking

• Network Level : Tasking at the network level assigns tasks to the whole

network. This level of scoping often has network centric computation,

18

where the task execution is applied to the whole network. Examples in

this category are TinyDB [25] and Cougar [37].

• Group Level : Tasking at the group level assigns tasks to groups. The

groups can be physical [38], where the groups are defined based on physical

proximity such as radio connectivity; or logical [28], where the groups are

defined based on some properties such as sensor modality and sensor data.

Nodes in a group, therefore, can be within a one-hop communication

radius [38], multi-hop communication radii [39], or even non-connected

[28]. This level of scoping often has group centric computation, where

the task execution is applied to groups.

• Node Level : Tasking at the node level assigns tasks to individual nodes.

This level of scoping often has node centric computation, where the task

execution is applied to individual nodes. Examples in this category are

ATaG [40] and GRA [41].

Task Idiom

The expression of tasks can be imperative, declarative, or a hybrid of imperative

and declarative.

• Imperative: In this category, a task is expressed as a set of instructions

that nodes must perform to accomplish the task. Example approaches in

this category are Abstract Region [26] and Pleiades [42].

• Declarative: In this category, a task defines precisely what the nodes

should accomplish without describing in detail the instructions that the

nodes should perform. The task can be expressed in a domain-specific

language (e.g., SQL) or in functional languages. Example approaches

that use domain-specific languages are TinyDB [25] and FACTS [43].

19

For example, to collect all temperature readings from all sensors for 60

seconds, the user can create a query

SELECT temperature

FROM sensors

DURATION 60s

in TinyDB without specifying the details of the network routing. Example

approaches that use functional languages are Regiment [44].

• Hybrid : In some cases [45], combining both imperative and declarative

expressions not only states precisely what the tasks objective is but also

provides detail on how to achieve it.

2.1.3 Task Dissemination

Task dissemination provides communication schemes to efficiently transmit the

tasks from a gateway to the sensors. Task dissemination often relies on dis-

semination protocols that spread the tasks to all nodes or all groups of nodes

in the network. In most cases [46, 26], the dissemination is not restricted in

timing order. However, in some cases such as mobile agents where the code

and the sensor data are able to migrate from one node to another to continue

execution, tasks migrate to nodes in an order depending on the status of the

execution [47].

2.1.4 Task Maintenance

Task maintenance ensures that sensors have a consistent view of the tasks being

performed. This is necessary because nodes often do not have the updated tasks

for several reasons. Sensor nodes might be highly mobile. Embedded sensors

can be when they are unattended and exposed to harsh environments. There-

20

fore, some nodes may not be present in the network during the dissemination

of the tasks.

Common approaches [27, 15] in task maintenance require nodes to periodi-

cally exchange messages that contain meta-information about their tasks (e.g.,

task version numbers) to identify which nodes do not have the updated tasks.

The choice of message exchanging mechanisms as well as the meta-information

can affect tasking performance significantly.

In the following sections, we describe related work in tasking mobile sensor

networks and embedded sensor networks. To facilitate the understanding of

tasking in each network type, we summarize background information about

sensor platforms and applications of each network type. We then describe in

detail prior work in tasking each network type specifically.

2.2 Mobile Sensor Networks

Mobile sensor networks consist of mobile hand-held smart devices. These de-

vices are often carried by humans or attached to mobile objects such as cars.

They can collect a wide range of sensing data including video, audio, GPS, and

temperature. They can report the data to the Internet via WiFi or 3G/4G

networks. Because of this, mobile phones offer an unprecedented opportunity

to crowdsource sensor data collection to people. One of the challenges to do-

ing this is the sheer diversity across mobile phones. For example, the phones

can have a number of sensors including GPS, accelerometers, compass, pres-

sure, proximity, gyroscope, and optional plug-ins for external sensors. Wireless

communication technologies for smart phones range from long range and high

bandwidth such as 4G to short range and low bandwidth such as near field

communication (NFC).

21

There is a wide range of commercial operating systems for smart devices in-

cluding Android, iOS, Nokia OS, Windows Phone, Symbian OS, and RIM OS.

Depending on the operating system, applications can be developed in different

languages. For example, Android applications are written in the Java language

while iOS applications are developed in the objective-C language. Thus, the

task implementation for a particular sensing task (e.g., noise pollution moni-

toring) would be different across different smartphone platforms.

2.2.1 Applications

In this section, we organize applications of mobile sensor networks into different

domains. Table 2.1 shows that mobile sensor networks can enable many appli-

cations. However, a framework to selectively trigger each of these applications

depending on the context (e.g., GPS location) is largely missing.

Application domain Example Description
Application

Environmental EarPhone [9] Record noise levels
monitoring What’s noisy [48] and monitor plants

BudBurst [49] as the seasons change
Urban PetrolWatch [50] Capture
monitoring Bikestatic [51] gas prices, biketrack

Truckstop [52] rating, and impact of
stopping trucks

Health and DietSense [53] Monitor food choices,
well being Remote health provide remote access

monitoring [54] to health information
Transportation VTrack [55] Provide traffic information

Google traffic [56] and estimate traffic delay
Mobile millenium [57]

Social CenceMe [58] Capture and share
networking personal activities on social

networks

Table 2.1: Mobile sensor network applications

In the next section, we will review related work in tasking mobile sensor

networks with a focus on task representation and encoding.

22

2.2.2 Task Representation and Encoding in Mobile Sensor Networks

Data structures for tasking mobile sensor networks must encapsulate groups

of sensors and the task that each group must perform. Previous grouping

approaches fall into two main categories: attribute-based and rule-based (Figure

2.2).

Cougar [37] and TinyDB [25] are examples of the attribute-based approach,

wherein the sensor network is typically considered as a database. Nodes and

data are named. Queries defined using variants of structured query languages

(e.g., SQL) are used to task sensors to report data. The sensor groups are

defined within the query. This is a preliminary approach for data collection

and can only support limited in-network processing tasks. It is also difficult to

define multiple groups of sensors at a fine spatial granularity.

Grouping

Attribute-based Rule-based Map-based

TinyDB Cougar
DSWare SINA

Hood

Abstract Region
Logical Neighborhood

Zoom

Figure 2.2: Grouping approaches

Hood [59], Abstract Regions [26], and Logical Neighborhood [28] are exam-

ples of the rule-based approach, wherein groups are often defined by a set of

rules. A sensor, whose state including sensing capability, location, or sensing

data, satisfies the rules is a member of the defined group. The rules may be

defined based on physical parameters or logical parameters. For example, in

Logical Neighborhood [28], logical sensors are specified by attributes and logi-

cal neighborhood are specified by the set of sensors satisfying a constraint on

the sensors’ attributes. The constraint is basically a predicate to determine if a

sensor belongs to a logical group. The rule-based approaches offer greater flex-

23

ibility and capability in creating groups than the attribute-based approaches.

However, it is still challenging to define multiple groups of sensors based on

location information using the above approaches.

Zoom addresses this challenge by using a map-based approach. Essentially,

the whole sensor network can be represented as a spatial map and groups can

be defined on the map. The map can be viewed as an image overlaid on top of a

physical map. Physical groups of sensors can be viewed as a region in the image.

Each pixel in the image represents a squared region in the physical map and

the pixel value is the task ID, which specifies the task being performed. This

approach allows Zoom to task multiple spatial groups of sensors with varying

granularity. In addition, image encoding techniques can be applied to reduce

the map file size as well as to provide resource adaptation for heterogeneous

sensor platforms.

Tasking

Heterogeneous Homogeneous

Mobile/Dynamic Static

Adaptive

Zoom Logical Neighborhood
Enviro Track

Mobile/Dynamic Static

Non
Adaptive

Hood

Abstract Region

TinyDB SINA

Cougar MiLAN
DSWare RuleCaster

Kairos
Regiment

Figure 2.3: Tasking categories: None of the prior approaches provide resource
adaption for heterogenous sensor platforms.

Figure 2.3 depicts an alternate view of prior work in tasking sensor net-

works, encompassing two main categories - supporting homogeneous networks

and supporting heterogeneous networks. Many early approaches [59, 25, 26, 37]

were designed for homogeneous networks. Only a few attempts [28, 60] sup-

port heterogeneous and mobile networks. Interestingly, no prior work provides

adaptation to different platforms with a range of memory, computation, and

24

power capabilities, a distinct feature of heterogeneous networks. Our approach,

presented in Chapter 3, not only supports heterogeneity and mobility but also

provides resource adaptation techniques for different mobile sensor platforms.

2.3 Embedded Wireless Sensor Networks

Low-power sensor networks started attracting academic research and commer-

cial interest in the late 90s. Since then, a wide range of hardware and software

has been developed as both research prototypes [61, 62] and commercial prod-

ucts [63]. Most sensor platforms [23, 64, 65] use ultra low-power and low cost

processors with limited memory. Much of the interest in such devices stems

from their small form factor, the ability to embed them in almost any envi-

ronment, ranging from redwood trees to nests of small birds. This means that

the network designer must be cognizant of resource-constraints when designing

network protocols. The two most popular processors are the 16-bit 25 MHz

Texas Instruments MSP 430 processor and the 8-bit 8 MHz Atmel128 micro-

controller. These processors are used in many sensor platforms such as MicaZ

[23], Shimmer [64], and Telosb [65]. These platforms have RAM ranging from 4

KB to 64 KB, considerably lower than PCs and smartphones. The most com-

mon wireless communication is in the 2.4GHz ISM band. The physical layer

and media access control standard is often IEEE 802.15.4 [66], which is specified

for low-rate wireless networks (250 kbps, much lower than WiFi). Sensor nodes

often run on batteries with capacity ranging from 500 mAh to 3000 mAh (if

batteries can provide a current of 1 mA for 1 hour, the capacity of the batteries

is 1 mAh). The lifetime of a node can range from 10 days to several months.

Energy harvesting technologies [67, 68, 69] can help the nodes to harvest energy

from the environment. However, the technologies are not yet suitable for small

form factor devices.

25

There have been a number of operating systems developed for embedded

sensor networks including TinyOS [70], Contiki [71], SOS [72], Mantis [73],

RETOS [74], t-kernel [75], and NANO-rk [76]. These operating systems provide

basic scheduling and concurrency mechanisms. The operating systems and

other add-on packages [77, 78] provide a concurrency mechanism ranging from

non-threading [70] to multi-threading and from event-driven to asynchronous

message passing [72]. Applications can be developed and compiled with the

operating system [70] or can be loaded dynamically into systems that have

dynamic linking support [71]. However, mechanisms are required to disseminate

the application to all nodes.

2.3.1 Applications

While new applications and use cases for embedded sensor networks continue

to be explored, applications of embedded sensor networks encompass environ-

mental monitoring, precision agriculture, smart environment, and healthcare.

Table 2.2 shows the main application domains and their example applications.

Currently, sensor networks are deployed for a single application. In future, the

same sensor network could be used for multiple applications.

In the next section, we review related work in dissemination and mainte-

nance protocols for low power sensor networks.

2.3.2 Dissemination and Maintenance Protocols for Embedded Sen-

sor Networks

A sensor task consists of task items which can be configuration parameters

[15, 90], code capsules [91, 92], or executable images [93, 94]. Each item is

represented using a tuple (key, version number, data) where key is a unique

identifier of the item, version number indicates the freshness of the item and

26

Example
Application application Description
domain or deployment
Environment Volcano monitoring [79, 19] Record seismic events
monitoring Redwood [80] Capture microclimate
Structure Bridge monitoring [81] Collect ambient vibration
monitoring to monitor bridge

Landslide [82] Detect location changes
to monitor landslide

Precision Grapevine monitoring [3] Record ambient conditions
agriculture
Tracking ZebraNet [83] Study animal migrations and

inter-species interactions
Countersniper [84] Track position of

gun shooters
Habitat Cane-toad monitoring [85] Record and analyze
monitoring acoustic signals to

monitor cane-toads
GreatDuck island [86] Record ambient conditions

Smart Eco-Sense Buildings [87] Capture ambient conditions
environment PecanStreet [88] human activities to

conserve energy consumption
Heathcare Mercury [89] Record vibration and heart-

beat for health monitoring

Table 2.2: Embedded sensor network applications

27

is increased by 1 for each update, and data is the actual content of the item.

Changing the task for the network basically involves updating the items for the

sensors using dissemination and maintenance protocols.

Akdere et al. [95] developed a dissemination protocol for updating items

based on epidemic algorithms, where each sensor upon receiving the items,

retransmits the items to others until the whole network is updated. Epidemic

algorithms, however, eventually terminate. A sensor that was turned off during

the updating interval will not know that there was an update and it might not be

updated until the next round. To know if there was an update in the network,

a naive approach is for each node to query or advertise its keys and version

numbers periodically. The network, as a whole, may transmit an excessive and

unnecessary number of query and advertisement messages.

To reduce the number of transmitted messages, Levis et al. [27] developed

the Trickle dissemination protocol based on polite gossip algorithms, where

each sensor periodically transmits the items. In Trickle, each sensor periodi-

cally transmits the keys and version numbers of its items. However, if it hears

several messages containing the same information as it has, it suppresses its

transmission and increases the time interval. When a difference in the version

numbers is detected, the sensor resets the period to the lowest preset interval.

Trickle scales well with the number of sensors and has successfully reduced the

number of messages in the network.

One limitation of Trickle is that it scales linearly with the total number

of task items. Hence, Lin et al. [15] developed DIP, a dissemination protocol

that scales logarithmically with the total number of items. In DIP, a node

periodically broadcasts a summary message which contains hashes of its keys

and version numbers. The use of hashes helps detect if there is a difference in

O(1). But, once a difference is detected, DIP requires multiple search iterations

28

to identify the exact items that have different version numbers. The search is

analogous to a binary search in a sorted array. Therefore, DIP has O(log(T))

complexity, where T is the number of items, in both time and the number of

messages required to identify an item that needs an update. DIP uses a bloom

filter to further improve the search but it requires extra bytes to be included

in every summary message. If there are N new items, then the total number of

messages is O(Nlog(T)).

Ideally, when there are N new items (N < T), we would like to transmit

just enough information to identify these N items to update. Both Trickle and

DIP transmit redundant information, O(T) and O(Nlog(T)) respectively, to

identify the difference in version numbers. However, if two version numbers

differ by even one bit in their binary representation, the two version numbers

are different from each other.

Based on this fact, we develop the DHV protocol, elaborated in Section 4,

which can detect the differences in O(T) complexity in both time and number

of transmitted messages albeit with a very small factor that O(T) is almost a

constant for most practical values of T. The number of messages required to

identify which items have newer version numbers is O(NT) but also with a very

small constant factor.

2.4 Summary

In this chapter, we presented an overview of tasking sensor networks. We dis-

cussed the general structure of tasks for sensor networks as well as the four

main components (task implementation, task presentation and encoding, task

dissemination, task maintenance) of a tasking framework. We then provided

overviews of mobile sensor networks as well as embedded sensor networks and

pointed out that the emergence of these networks can create large scale, highly

29

mobile and multi-purpose sensor networks that can support multiple applica-

tions. This reinforces the need for tasking sensor networks. We then described

tasking approaches in mobile sensor networks with a focus on task representa-

tion and encoding and summarized that the previous approaches were not scal-

able for mobile sensor networks deployed over a large geographical region. We

also described tasking approaches in embedded sensor networks with a focus on

task dissemination and maintenance and pointed out that the prior approaches

were not scalable with the number of nodes and number of task items. There-

fore, existing tasking frameworks are inefficient in terms of bandwidth, latency,

and energy.

We briefly described how our work, Zoom and DHV, addressed limitations

in prior work in tasking mobile sensor networks and embedded sensor networks

respectively. We will describe Zoom and DHV in detail in Chapter 3 and

Chapter 4 respectively.

30

Chapter 3

Zoom: A Multi-resolution Tasking Framework for Mobile

Sensor Networks

This chapter describes the design, implementation, and evaluation of the Zoom

tasking framework, which efficiently encapsulates multiple tasks and sensor

groups for a mobile sensor network deployed in a large geographical region. It

achieves this by using a map-based approach to represent and encode tasks and

sensor groups as well as provide resource adaptation techniques for different

sensor platforms.

3.1 Introduction

In Chapter 1, we motivated a key problem in scalable and efficient tasking of

sensor networks, that is how to define a mechanism that can efficiently represent

multiple tasks and sensor groups in a large geographical region. This problem

is particularly relevant in mobile sensor networks, which are often distributed

over a large geographical area. We also described the main challenges that a

tasking framework must address. In particular, tasking mobile sensor networks

must support heterogeneity, must take into account mobility, and must scale

well with the number of sensors and sensing regions.

In this chapter, we describe the Zoom tasking framework and how it ad-

dresses the above challenges in detail. In Section 3.2, we describe the design

goals as well as the assumptions we make in designing Zoom. We also discuss

31

the communication model in Zoom and present Zoom’s key ideas. In Section

3.3, we provide an overview of Zoom as well as describe in detail task rep-

resentation, task encoding, and resource adaptation techniques in Zoom. We

discuss the limitations of Zoom in Section 3.4 and Zoom implementation in

Section 3.5. Section 3.6 presents the evaluation of Zoom including metrics,

methodology, and experimental results. Finally, we conclude this chapter with

a summary in Section 3.7.

3.2 Overview

In this section, we present our design goals in Section 3.2.1 and describe key

ideas in Zoom that can achieve the goals in Section 3.2.2 as well as state main

assumptions in Zoom in Section 3.2.3.

3.2.1 Design Goals

A tasking framework for mobile sensor networks must have a data structure

that satisfies the following requirements.

• Multiple tasks and groups : Mobile sensor networks are often deployed over

a large geographical region and support multiple applications. Hence, it

is important that the tasking framework is able to assign different tasks

to different sensor groups.

• Scalability : Mobile sensor networks can also consists of thousands of mo-

bile devices and span a large geographical region. Hence, the framework

must scale with the number of nodes and sensing regions.

• Efficiency : The mobile devices can move at a speed of up to tens of miles

per hour. Hence, they enter and leave a sensing region frequently. In

32

addition, as the number of nodes increases, the nodes also need to conserve

bandwidth because they share the wireless communication medium.

• Heterogeneity : Mobile sensor networks consist of devices encompassing

different hardware and software platforms. The devices have different ca-

pabilities in terms of bandwidth, computation power, energy, and mem-

ory. Therefore, it is necessary that the tasking framework support het-

erogeneous sensor platforms.

3.2.2 Key Ideas

To achieve the above design goals, we employ the following key ideas in design-

ing Zoom. These ideas correspond to our thesis in Section 1.4.1.

• Combining sensor tasks and sensor groups into one data structure: A

naive approach in tasking sensor networks is to assign tasks to individual

nodes. This approach is, however, inefficient when the network needs to

support multiple tasks. Hence, combining multiple tasks and groups into

a data structure can potentially enable the tasking framework to scale

with the number of nodes, number of tasks, and number of sensor groups.

Zoom uses maps to represent multiple spatial sensor groups and tasks.

• Minimizing file size and decoding time: Minimizing the file size can con-

serve bandwidth and memory. In addition, during tasking, the network

may become useless if all nodes are not performing the correct task.

Hence, the decoding time should be minimized to enable efficient tasking.

Zoom uses image encoding techniques to reduce map file size.

• Providing resource adaptation: Mobile sensor networks are heterogeneous.

Hence, it is important for a tasking framework to provide resource adap-

tation to nodes that have different resource capabilities to ensure that

33

every node can be tasked. Zoom uses image encoding techniques to pro-

vide resource adaptation for different sensor platforms.

3.2.3 Assumptions

We make the following assumptions in developing the Zoom tasking framework.

• Location-awareness : Sensor nodes know their own location, which can be

obtained from GPS receivers or other localization methods. This assump-

tion is reasonable because most hand-held smart devices have built-in

GPS.

• Dissemination and maintenance support : Once a node knows what task

to perform and where to get the required information (e.g., task items)

to perform the task, it can acquire the needed information using existing

dissemination and maintenance protocols. This assumption is reasonable

because mobile devices with reasonable networking capability (e.g., 3G,

4G) can acquire the needed information from a known source.

Before describing the key ideas in Zoom in detail, we discuss the communi-

cation model in Zoom.

3.2.4 Communication Model

A simple approach for a node to determine what task it should perform is to

periodically poll a predefined server for tasks that match its context (e.g., lo-

cation and sensing capability). This approach allows the server to assign exact

tasks to individual node. The drawback is that the node has to disclose its pri-

vate context information such as location to the server so that the server can

assign the appropriate tasks based on the released context information. This

communication scheme potentially violates the privacy of the node’s owner. In

34

addition, the node has to actively poll the server, incurring high bandwidth

usage. An alternative approach is a push-based approach – the server period-

ically broadcasts the network-wide task information to the network. A node,

upon receiving the task information, can use its context information such as

location to derive the corresponding task without releasing the context infor-

mation. Although a message containing the task information for all nodes will

have a larger size compared to a message containing the task information for

a single node, this communication scheme preserves privacy and allows nodes

to disseminate the task information within the network and keep the whole

network updated using fewer transmissions. The key challenge now is to design

a data structure that efficiently represents the task information.

In the next few sections, we will describe in detail the main components of

Zoom.

3.3 Zoom Tasking Framework

Zoom has three main components as illustrated in Figure 3.1: task represen-

tation, task encoding, and resource adaptation. Task representation focuses on

designing the data structure that can specify sensor groups and assigning tasks

to the groups. Task encoding focuses on how to compress the task data struc-

ture to reduce the data size. Finally, resource adaptation enables tasking for

sensor devices with different resource capabilities.

Task representation and encoding is performed at the back end where an

operator can define geographical regions and assign tasks to each region. The

task IDs with the location information are represented as a task map; a location

on the map corresponds to a real physical location and the pixel value at a

particular location on the map is the corresponding task ID, which specifies the

task to be performed at that location. The map is then encoded as an image

35

Grouping and

Task Assignment

LZW
Compression

Task Map

LZW

Decompression

Location

Task ID

Task Representation

Task Decoding &

Adaptation

Task Map

Task Encoding

Figure 3.1: Zoom overview: Zoom has three main components: task represen-
tation, task encoding, and resource adaptation.

in STIF format, described in Section 3.3.2, and transmitted to the network.

Upon receiving the encoded task map, a node removes the image header and

decompresses the task map. The node calculates the pixel in the image that

corresponds to its physical location and retrieves the ID of the task it needs to

perform.

The following three sections describe each of these components in detail.

3.3.1 Task Representation

Zoom decouples a task into task specification, which consists of a task ID and

task header, and task implementation. Task ID is a unique number that can

be used to identify the task. Task ID should be understandable by all sensor

platforms. For example, task ID 5 is collecting temperature at 1 Hz. Task

implementation is platform specific and can be a set of instructions or the

required executable code to perform the task.

36

Spatial Grouping

A task map is used to represent geographical regions and the corresponding

sensing tasks of each region. The task map can be viewed as an image overlaid

on top of the physical map. A location on the task map corresponds to a real

physical location. The pixel value at a particular location on the task map

is the corresponding task ID which specifies the task to be performed at that

location. Using this map-based representation, an operator can assign tasks to

multiple spatial groups of sensors and transmit the task map to the network.

Upon receiving the map, the node calculates the pixel in the task map that

corresponds to its physical location to retrieve the task ID.

Figure 3.2 illustrates how Zoom works. To the left is the physical map

of a region. An operator decides to measure noise pollution (task 1) in the

left area and to measure the traffic conditions (task 2) in the right area. The

operator defines the regions (e.g., by drawing on the map) and assigns them

appropriate task IDs, indicated by pixel values. The corresponding task map

(on the right of the figure) is then encoded and disseminated to the network. A

node upon receiving the map determines the task it must perform by checking

the corresponding pixel value.

If two regions overlap, the nodes in the overlapping region must perform

both tasks. The overlapping region is assigned a new task ID, which in turn

includes both the given tasks (Figure 3.3). The complexity of this operation is

handled at the back end. Hence, the nodes themselves do not have to implement

complex algorithms to interpret multiple tasks.

Other Grouping

Sensor groups can also be defined using other parameters such as sensor modal-

ity and sensor capacity. For example, one might issue a task to only nodes that

37

Figure 3.2: A task map overlaid on top of a physical map: A location on the
task map corresponds to a real physical location. The pixel value at a particular
location on the task map is the corresponding task ID which specifies the task
to be performed at that location.

Task ID Task Header

Type 0 Object Types

Type 1 Task 1 ID Task 2 ID

0 15 31

Figure 3.3: Task header: Depending on task type, the task header can contain
IDs of the other tasks or physical object types that the sensor is attached to.

38

are attached to cars. These parameters can be included in the header of the

map or in the task implementation that the node needs to download based on

the task ID.

We divide other grouping parameters into two categories; static and dy-

namic. For static parameters, we consider the types of physical objects that

the sensor is attached to. The types of the physical objects can be train, car,

truck, bike, motorbike, human, or static objects. These types are defined in

the task header. A node combines the spatial grouping information and the

object type to determine if it belongs to a group. For dynamic parameters,

we consider sensor types, sensor readings, and energy levels. These parameters

are, however, defined in the implementation of the task.

3.3.2 Task Encoding

After surveying different encoding schemes, we find that an image-based format

is suitable for Zoom for two reasons: it has the smallest file size and it enables

resource adaptation for sensors with different resource capabilities. We have

designed the Sensor Task Interchange Format (STIF) based on the graphic in-

terchange format (GIF) [96], a common portable image format. GIF represents

an image as a two dimensional array of 8-bit pixels. The pixel value is a ref-

erence to a color defined in the image header. GIF uses the Lempel-Ziz-Welch

(LZW) [97] compression technique where it reduces the file size by maintaining

a dictionary for sequences encountered in the data as it is encoded. STIF repre-

sents a task map as an image and uses the same LZW compression technique as

GIF. We, however, replace the GIF header with a simple header containing the

map identification (ID), the map version, the coordinates of the physical map,

the height and width of the image, and the additional parameters if required.

Figure 3.4 depicts the STIF header. The ID and version fields identify the map

39

0 15 31

Task_Map_ID Task_Map_Version

Top_Left_X Top_Left_Y

Bottom_Right_X Bottom_Right_Y

Image_Width Image_Height

Task ID Task Header

Figure 3.4: STIF header: The top left and bottom right coordinates scope the
physical region to be tasked. The image width and height indicate the size of
the encoded task map.

and the freshness of the map. The top left and bottom right coordinates in-

dicate the scope of the physical region to be reprogrammed. The image width

and height indicate the size of the encoded task map.

A node may not have enough resources to decode a high resolution map

representing a large geographical region. At the same time, the node needs to

know only the task IDs in a small geographical region around itself. Hence,

instead of decoding the whole task map, nodes may just need to decode a small

region in the map. We have developed three resource adaptation techniques,

described in the next section that can help Zoom adapt to nodes that have

different resource capabilities.

3.3.3 Resource Adaptation Techniques

The use of image encoding techniques allows Zoom to provide resource adap-

tation to sensors that have limited resources.

Multi-Resolution Encoding : Our first resource adaptation technique is to

encode the task map at different resolutions, allowing nodes to download only

the appropriate resolution that they need. Figure 3.5 shows a map encoded

at three different resolutions. A lower resolution leads to a smaller image,

requiring less memory and computational power to decode. There is a trade-off

between the resolution and the ability to define the task at a fine granularity.

40

Figure 3.5: Multi-resolution encoding: A lower resolution leads to a smaller
image, requiring less memory and computational power to decode.

Selected Region of Interest Encoding : In Figure 3.6, a node needs to know

the task IDs of only a region large enough to cover its entire mobility (e.g. from

home to work and back), rather than the task IDs of all regions in the map.

Instead of encoding the entire task map, we can selectively encode only a small

region within the map. Hence, the node can obtain a region of interest (ROI)

in the task map. In addition, a node may need high granularity task IDs for a

specific region such as a building to determine the appropriate task to perform

when it is inside or outside the building. We can also selectively encode that

region with a higher resolution. Hence, the node can obtain a higher resolution

task map for the region of interest.

Region of Interest Cropping : Upon receiving an encoded map, a node does

not necessarily decode the whole map, either because it is interested in only

the task ID of its nearby region, or because it has limited resources and cannot

decode the whole map. Zoom provides a technique called region of interest

cropping that allows the node to quickly crop out only a region that is relevant

to itself. This technique was originally developed to support region cropping in

video streaming applications [98].

The main idea is to divide the task map into blocks and encode each block

independently (see Figure 3.7). The encoded blocks are appended to each other.

41

Figure 3.6: Selected region of interest encoding: A specific region can be en-
coded to reduce the image size to be transmitted. The region can also be
encoded at a higher resolution to increase the identification accuracy.

Figure 3.7: Region of interest cropping: The task map is divided into blocks
and each block is encoded separately.

42

Upon receiving the encoded map, a node can determine the corresponding

region of interest based on its location, then search for the start of that block,

and decode only the found block. This technique does not conserve bandwidth

but can help a node find its task ID quickly with fewer resources.

3.4 Limitations

The STIF format has two drawbacks. The number of task IDs is limited to

255 (8 bits/pixel). However, we believe that this is large enough for multiple

concurrent tasks in a sensor network. We could increase the number of bits that

represent a pixel, and consequently the number of task IDs, but at the cost of

compression efficiency. Moreover, decoding STIF images may require slightly

higher memory (albeit smaller than the image size itself) compared to other

image formats. By carefully tuning the LZW compression parameters, we can

overcome the memory problem. Indeed, Sadler et al. [99] have developed an

LZW variant for resource poor embedded devices.

3.5 Implementation

We have implemented a complete system with both the task map decoder and

networking support in our simulators. We have also implemented a task map

encoder with support for Region of Interest (ROI) cropping in Matlab. We

have implemented two variants of the task map decoder in C/C++; a basic

task map decoder and a task map decoder with support for ROI cropping. The

decoders are implemented in standard C. Hence they can be ported to different

platforms using appropriate cross-compilers.

We have also implemented the task map decoder in Android (http://www.

android.com/). Android is a software stack for mobile devices that includes

an operating system, middleware, and key applications. Most of the Android

43

Components Platform Program size RAM
Task map decoder PC 14.5 KB 1.3 KB
Task map decoder PC 15.3 KB 1.5 KB
with ROI cropping
Task map decoder Android 38.4 KB 2 KB

Table 3.1: Implementation detail

code is open source. The Android software development kit (SDK) allows us

to develop applications in Java language. Table 3.1 shows the implementation

details including program size and RAM usage. The programs are small in size

and use less than 2 KB of RAM.

3.6 Evaluation

3.6.1 Goals and Metrics

Our evaluation goal is to answer the following questions:

1. Can the map-based approach in Zoom efficiently represent geospatial sen-

sor groups and tasks?

2. How is Zoom’s performance in terms of encoded map size affected by the

number of groups and number of nodes in the network?

3. Is Zoom better than previous tasking approaches?

We analyze the file size of the encode task map, decoding latency, and the

number of nodes that have incorrect tasks in different scenarios. We describe

in detail how we setup the experiments in the following section.

3.6.2 Methodology

We investigate if the map-based approach in Zoom can represent geographical

regions and tasks well. We consider how well STIF can encode road segments

from a GIS file. We encode a geographical map using the STIF format and

44

analyze the number of pixels that contain more than one road segment. Figure

3.8 depicts possible cases where a pixel may contain only one road segment (a),

two road segments (b), three road segments (c), or four road segments (d). In

the ideal case, a pixel should uniquely identify a road segment, containing no

more than one road segment. However, as the map resolution decreases, a pixel

covers a larger geographical region and may contain more road segments. It is

impossible to distinguish these road segments based on the pixel alone. In that

case, STIF is unable to assign a distinct task to each road segment within a

pixel. We refer to such a pixel as an error pixel. The definition of error also

depends on the application. For example, in Figure 3.8(b), there is a clear error

because the two roads do not intersect and are indistinguishable. Whereas the

error pixel in Figure 3.8 (c) or (d), might be acceptable for some applications.

In our evaluation, we consider (b), (c), and (d) as error pixels. We analyze the

number of error pixels as a function of the map resolution.

Figure 3.8: Number of roads within a pixel: (a) a pixel can uniquely identify a
road segment. (b, c, d) a pixel can not uniquely identify a road segment.

We extract the GIS shapefile for Portland, Oregon and its nearby suburbs

from the latitude and longitude coordinates of (7597010.859, 645515.097) to

(7696218.347, 711876.59). This covers a 600 km2 area. The shapefile is available

at the US Census Bureau website and contains several records. Each record

contains one or more street segments. Each street segment is defined by a set of

points with corresponding longitude and latitude coordinates. We export this

file into STIF files at different resolutions.

To investigate the second question, we use MobiReal [100], a realistic net-

work simulator for mobile ad-hoc networks, to simulate a realistic traffic ap-

45

plication. MobiReal is built on top of GTNets [101], a full-featured network

simulator. MobiReal allows separation of behavior and network simulation.

Therefore, we can specify realistic behavior models for cars or pedestrians and

integrate them with the network simulator.

Figure 3.9: Simulation area: 1 km × 1 km area in downtown Portland, OR.

We simulate a Tasking application in a 1 km × 1 km area in downtown

Portland (Figure 3.9). The main components of the simulation are:

• Tasking Application: We arbitrarily define regions in the map and assign

different task IDs for those regions. A base station (marked as a black

circle in Figure 3.9) broadcasts the encoded task map to the network every

15 seconds. A car, upon receiving the map, decodes the map and updates

its task index. The car also schedules rebroadcast of the map. Together

with the task map, the base station also broadcasts a sale advertisement

for a nearby shopping mall (marked as a black square in Figure 3.9).

• Mobility Behavior : Cars are generated based on predefined road density

that is close to the real density. A random entry point and a random

destination are generated for each car at initialization. Cars travel to

their destinations on the shortest path routes. However, upon receiving

a sale advertisement, a car may add the mall address as an intermediate

46

destination with a predefined probability (10% in our simulation). A car

arriving at the mall stays at the mall for several minutes before leaving

for the final destination. After arriving at the destination, the car is

removed from simulation and a new car will be generated randomly. This

mobility behavior allows us to simulate dynamic behavior inspired by a

real scenario.

• Networking : Table 3.2 shows the full network stack used in the simulation.

Cars communicate with each other and with the base station using IEEE

802.11. The communication ranges are set to 100 meters for the cars and

300 meters for the base station. Both the cars and the base station use

UDP as their transport protocol and IP as the network layer protocol.

A car upon receiving the task map schedules periodic map rebroadcasts

with an interval of 5 seconds. However, if it hears a broadcast of the same

task within this interval, it suppresses its transmission and doubles the

broadcast period interval. The maximum interval is set to 150 seconds.

Layer Class Description
Application Advertisement
Presentation STIF format Modification of GIF
Transport L4Protocol Wrapper class for UDP
Network L3Protocol IP V4
Routing MyRoutingDSR Dynamic source routing
Link (MAC) L2Proto80211 802.11
Physical DynamicWirelessLink

Table 3.2: Description of the networking stack used in simulation.

We analyze the (i) update latency versus number of nodes (cars) in the

network and (ii) the average number of nodes with incorrect task indices versus

map resolution. We also encode task maps with different number of blocks and

analyze the map size and the time to decode a specific block. We also define

different number of regions and assign them different task IDs and analyze the

47

encoded map size versus the number of tasks. Experimental results are also

shown in Sections 3.6.3.

In addition, we also conduct experiments on a real handheld smart device

and analyze the decoding time for task maps of different resolutions. The device

is a HTC Google G2 smartphone with an 800 MHz Qualcomm Snapdragon

MSM7230 processor running Android 2.2. The image resolutions range from

90 × 60 to 5712 × 3833. The results are also shown in Section 3.6.3.

Finally, answering the third question is somewhat tricky. It is not really pos-

sible to quantitatively compare Zoom to previous tasking approaches because

Zoom addresses a different problem and provides slightly different features.

The work closest to Zoom is Logical Neighborhood [28]. We compare the size

of Zoom encoded maps to the size of Logical Neighborhood predicates that

define an equivalent spatial group of nodes.

We define a number of regions on a map and encode the map using Zoom.

The number of regions is varied from 1 to 10. Using Logical Neighborhoods,

we define the region boundaries and embed them in the predicate. Nodes with

locations satisfying the predicate, i.e., their locations lie inside the regions’

boundaries, are members of the corresponding groups. We compare the size of

the Zoom STIF files to the size of Logical Neighborhood predicates to find out

which approach requires fewer data transmissions.

We have described our methodology in setting up experiments to evaluate

Zoom. In the next section, we present the experimental results showing that

Zoom is scalable and efficient for tasking mobile sensor networks.

3.6.3 Experimental Results

This section shows the results of the experiments described above. The results

show that Zoom can efficiently represent multiple sensor tasks for multiple

48

sensor groups in large geographical regions. Zoom data size is smaller than

Logical Neighborhood, the state-of-the-art approach.

Error Pixels versus Resolution

40x40 30x30 20x20 10x10 5x5
0

1

2

3

4

5

6

Pixel Size

P
e
rc

e
n
ta

g
e
 o

f
In

c
o
rr

e
c
t
P

ix
e
ls

 (
%

)

Figure 3.10: Total error pixels versus resolution: With size of 321 KB at reso-
lution 2857 x 1917, a STIF image can uniquely describe every road segment.

Figure 3.10 plots the percentage of error pixels (pixels containing more than

one road segment) versus the map resolution. The number of error pixels

decreases when the map resolution increases. With resolution 2857 x 1917,

which is equivalent to a 10 m x 10 m square per pixel, the percentage of error

pixels is almost zero. The map is only 321 KB in size. This is much smaller than

the shape file, which is 7 MB. With resolution 715 x 479, which is equivalent to

a 40 m x 40 m square per pixel, the percentage of error pixels is around 5.5%

while the encoded map size is only 34.5 KB. Hence, the map-based approach

in Zoom is suitable for representing geographical regions and tasks.

Figure 3.11 shows the distribution of error pixels. As expected, the higher

the map resolution, the lower the error. Nevertheless, most error pixels contain

2 to 5 road segments. Figure 3.12 plots the distribution of error pixels for a

map of resolution 90 x 60. The whiter the color, the higher the number of

roads colliding within the pixel. Most high error pixels are distributed near the

downtown and freeway intersection areas. This error distribution map is useful

49

0 5 10 15
0

0.5

1

1.5

2

Number of Roads per Pixel

P
e
rc

e
n
ta

g
e
 o

f
P

ix
e
ls

 (
%

)

40x40
30x30
20x20
10x10
5x5

Figure 3.11: Distribution of error pixels: Most error pixels contain 2 to 5 road
segments.

Figure 3.12: Spatial distribtion of error pixels (Portland, OR): High error pixels
(white color) are distributed near the downtown and freeway intersection areas.

50

because we can increase the map resolution to decrease the identification error,

when deploying a task map over a high error region.

Update Latency for Different Number of Nodes

Figure 3.13 plots the number of nodes with incorrect task indices versus time

for different network sizes. The simulation scenario is a Tasking application

(Section 3.6.2) in a 1 km × 1 km area in Portland, OR. Each pixel in the task

map represents a 10× 10 square region in the physical map. The base station

broadcasts the encoded task map at the 15th second. In the first 15 seconds, no

node has the right task IDs. After the base station broadcasts the map, nodes

update their task IDs and rebroadcast the map. Hence, the error rate decreases

quickly. However, due to nodes joining and leaving the network dynamically,

we can not achieve a zero error rate. The error rate reaches a stable threshold

after 50 seconds. Also, the higher the density, the lower the error.

Update Latency for Different Map Resolutions

Figure 3.14 shows the percentage of nodes with incorrect task IDs versus time,

with the task map encoded at different resolutions. The simulation scenario is

1 km × 1 km square in downtown Portland, Oregon. The task map is encoded

at resolutions of 191 × 155, 96 × 78, and 48 × 39 pixels resulting in sizes of 1.48

KB, 1.15 KB, and 0.975 KB respectively. Each pixel in the task map represents

a 5 m × 5 m, 10 m × 10 m, and 20 m × 20 square region in the physical map

respectively. The smaller the encoded map size, which corresponds to a larger

geographical area per pixel, the higher the error.

51

0 50 100 150 200
0

20

40

60

80

100

Time (s)
N

o
d
e
s
 w

it
h
 I
n
c
o
rr

e
c
t
T

a
s
k
s
 (

%
)

244 Nodes
365 Nodes
609 Nodes

Figure 3.13: Percentage of nodes with incorrect task IDs versus time: The
higher the node density, the lower the error.

0 50 100 150 200
0

20

40

60

80

100

Time (s)

N
o
d
e
s
 w

it
h
 I
n
c
o
rr

e
c
t
T

a
s
k
s
 (

%
)

5x5
10x10
20x20

Figure 3.14: Percentage of nodes with incorrect task IDs versus time: Each
pixel in the task map represents a 5 × 5, 10 × 10, or 20 × 20 squared meter
region in the physical map. The higher the map resolution or the smaller square
region each pixel represents, the lower the error.

0 50 100 150
600

800

1000

1200

1400

1600

Square Root Number of Blocks

E
n
c
o
d
e
d
 M

a
p
 S

iz
e
 (

k
B

)

Figure 3.15: Encoded map size versus number of blocks.

52

Trade-off Between Compression and Decoding Speed in ROI Crop-

ping

Figure 3.15 plots the encoded map size of the same resolution versus number

of blocks within the map. The original map size is 717 KB with resolution

1536 × 1536. The map is divided into several blocks, with each block encoded

independently. The encoded map size decreases at first as the map is divided

into 4 blocks. After that, the map size increases with the number of blocks.

The peak at 4 blocks is because in the original map, the limited size dictionary

of repeated patterns in LZW does not optimally capture the most frequent

patterns over the entire map.

90x60715x479 953x639 1428x959 5712x3833
200

400

600

800

1000

Resolution

D
e
c
o
d
in

g
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
)

Figure 3.16: Decoding time versus map resolutions on the Google G2 smart-
phone: The decoding time is less than 1 millisecond even for maps with high
resolutions.

Figure 3.16 shows the decoding time versus task map resolutions on the

Google G2 platform. As the resolution increases, the decoding time increases.

However, even for maps with a high resolution of 5712 × 3833 pixels, the

decoding time is less than 1 millisecond.

Task Map Size versus Number of Regions

Figure 3.17 plots the encoded map size versus the number of regions. The map

size grows in proportion to the number of regions. This is reasonable as the

53

0 5 10 15 20 25
1.5

2

2.5

3

3.5

4

Number of Regions
E

n
c
o
d
e
d
 M

a
p
 S

iz
e
 (

k
B

)

Figure 3.17: Encoded map size versus number of regions: Encoded map size
increases proportionally with the number of regions.

number of recurrent patterns in the map usually decreases when the number of

distinct pixel values in the map increases.

Encoded Map Size versus Logical Neighborhood Predicate Size

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

Number of Regions

S
iz

e
 (

B
y
te

s
)

Zoom

Logical Neighborhood

Figure 3.18: Encoded map size versus number of regions. STIF maps always
have a smaller size compared to Logical Neighborhood predicates.

Figure 3.18 plots the size of the STIF maps and the Logical Neighborhood

predicates when encoding different numbers of regions. The regions are selected

randomly and the number of regions are varied from 1 to 10. STIF maps always

have a smaller size compared to Logical Neighborhood predicates. This implies

that Zoom potentially uses less bandwidth than Logical Neighborhood and

sensors in Zoom use less memory than in Logical Neighborhood.

54

3.7 Summary

In this chapter, we presented Zoom, a multi-resolution tasking framework for

mobile sensor networks. Zoom’s innovation is to support heterogeneous devices

by decoupling the task specification from the task implementation. Zoom uses

maps to represent task specification and groups and encodes them in our pro-

posed Sensor Tasking Interchange Format (STIF), making tasking intuitive for

network operators. The use of maps also allows a sensor to quickly obtain its

task identification without running complex geometric algorithms to determine

whether it belongs to a region or not. We have also presented three resource

adaptation techniques to reduce memory, bandwidth and CPU usage in Zoom.

Our evaluation shows that Zoom is capable of tasking arbitrary groups of

sensors in a large geographical network. With an encoded map of size only

34.5 KB, Zoom can task a region of 600 km2 with only 2% error. In addition,

simulation of a realistic traffic application over a region of 1 km2 with a task

map of size 1.48 KB shows that more than 90% of nodes are tasked correctly.

Finally, for the same number of tasks, Zoom’s encoded map size is always 50%

smaller than the predicate size in the state-of-the-art Logical Neighborhood

approach. To the best of our knowledge, this is the first work to propose a map

based approach for mobile sensing systems. We believe that Zoom’s tasking

capability is a step toward providing structure in increasingly unstructured

mobile geo-spatial sensing systems.

55

Chapter 4

DHV: A Dissemination and Maintenance Protocol for Embedded

Sensor Networks

This chapter describes the design, implementation, and evaluation of the DHV

protocol, which efficiently disseminates task items and ensures that nodes have

the up-to-date items in embedded sensor networks. It achieves this by mini-

mizing both the redundant information in each message and the total number

of transmitted messages in the networks.

4.1 Introduction

In Chapter 1, we showed that the key problem in tasking embedded sensor

networks is to design a dissemination and maintenance protocol that can ef-

ficiently spread task items and ensure that all nodes have the updated items.

We also described the main challenges that the dissemination and maintenance

protocol must address. In particular, the protocol must take into account dis-

tinct characteristics of embedded sensor networks, such as intermittent node

operation and limited node resources.

In this section, we describe in detail DHV, a scalable and efficient dissemina-

tion and maintenance protocol for embedded sensor networks. DHV is efficient

in terms of bandwidth, energy, memory, and latency. It also scales well with

the number of nodes and number of task items.

56

The rest of this chapter is organized as follows. In Section 4.2, we spec-

ify the requirements for a dissemination and maintenance protocol, our design

goals, our assumptions, and the key ideas in the DHV protocol. We describe

in detail the DHV protocol in Section 4.3 and its suppression mechanism in

Section 4.4. We discuss limitations of DHV in Section 4.5. Section 4.6 presents

theoretical analysis of the DHV protocol and shows that DHV has a better the-

oretical performance than other protocols. Section 4.7 and Section 4.8 describe

the implementation and evaluation of DHV respectively. We present protocol

selection guidelines in Section 4.9. Finally, we conclude this chapter with a

summary in Section 4.10.

4.2 Overview

In this section, we present our design goals in Section 4.2.1 and describe key

ideas in DHV that can achieve the goals in Section 4.2.2 as well as state main

assumptions in DHV in Section 4.2.3.

4.2.1 Design Goals

The main requirements for a dissemination and maintenance protocol (DMP)

are:

• Convergence: A DMP must ensure that all nodes will eventually have

the same updated task items. This is an important requirement, espe-

cially for embedded sensor networks wherein the nodes are distributed

and unreliable.

• Scalability : A DMP must scale with both the number of nodes and the

number of task items.

57

• Efficiency : A DMP must enable a node with an old task item to discover

a newer task item and update it with low latency. It must also conserve

energy, memory, and bandwidth.

4.2.2 Key Ideas

To achieve the above goals, we design DHV with the following key ideas:

• Minimizing unnecessary information in each message: We observe that to

detect if two version numbers are different, it is not necessary to compare

all the bits in the version numbers. Indeed, if the two version numbers

are different, only one different bit is adequate to conclude that they are

different. In DHV, a sensor transmits only the most probable bits of the

version numbers instead of transmitting the whole version numbers to

identify items with different version numbers, thus reducing the amount

of redundant information in transmission.

• Detecting multiple inconsistencies simultaneously : Previous protocols ex-

change messages to detect if items in the network have different version

numbers serially. In contrast, we design DHV to concurrently detect

multiple items that have different version numbers to reduce detection

latency.

• Minimizing redundant transmissions : In wireless communication, the medium

is shared among nodes. DHV uses a gossip-based communication scheme

to scale with the number of nodes. A node advertises information about

its items (e.g., a hash of version numbers of all items) at a random point

in time within each time interval. However, if it receives messages with

the same information as it has, it suppresses its own transmission, thus

reducing the total number of transmissions in the network.

58

4.2.3 Assumptions

Before describing DHV in detail, we list the following assumptions:

• Unit increment of the version number per update: The version number

is incremented by one for each update. This assumption is reasonable

and indeed is implicitly made in both DRIP [27] and DIP [15]. It allows

us to infer that, if two version numbers are different, they mostly differ

in a few least significant bits. DHV exploits this assumption to restrict

the comparison scope to only a few least significant bits of the version

numbers.

• Unique item ordering : The order of (key, version number) tuples is the

same for all nodes. The same ordering can be achieved by using the same

sorting algorithms based on the items’ keys at all nodes. This assumption

allows DHV to identify which items need updates from the indices of the

different version numbers.

• Low update frequency : The updates are relatively infrequent (e.g., every

hour or every day). This assumption is reasonable because the network

task changes infrequently in most practical applications [81, 21].

The next section describes an overview of DHV, which was designed based

on the above key ideas and the above assumptions.

4.3 The DHV Protocol

DHV views the set of all task item version numbers as a two dimensional binary

matrix (Figure 4.1) where the number of rows is the number of task items and

the number of columns is the number of bits in each version number. DHV has

five main phases as shown in Figure 4.2.

59

Version 1

Version 2

Version T

1

0

Figure 4.1: Versions as a two dimensional binary matrix

• Detecting difference: A node broadcasts a hash of all its version num-

bers to its neighbor nodes, nodes that can directly communicate with the

broadcasting node. Upon receiving the hash, a neighbor node compares

the received hash with its own hash. If the two hashes are the same,

it is likely that the broadcasting node and its neighbor have the same

set of version numbers. If the two hashes are different, the node and its

neighbor have at least one item that has a different version number.

• Identifying location of different bits using horizontal search: If a node re-

ceives a hash that is different from its own hash, the node broadcasts a

checksum of all version numbers, the exclusive OR of all the rows in the

matrix to its neighbor nodes. A neighbor node, upon receiving the check-

sum, compares the checksum with its own checksum to identify which bits

are different. The locations of the different bits in the checksums indicate

the columns in the binary matrix that are different from the broadcasting

node.

• Identifying different version numbers using vertical search: Once a node

knows the location of the different bits in the checksum, the node broad-

casts a bit slice of all the version numbers, which is a column in the

matrix, at the location of different bits found in the horizontal search. If

the bit slices are similar, but the hashes differ, the node broadcasts a bit

60

slice of index 0 (index of the least significant bit) and increases the bit

index to find the different locations until the hashes are the same. Upon

receiving a bit slice, the node compares it to its own bit slice to identify

the locations corresponding to the differing (key, version number) tuples.

• Identifying version ordering : A node broadcasts the (key, version number)

tuple to its neighbor nodes. A neighbor node, upon receiving the tuple,

compares it to its own (key, version number) tuple to decide who has the

newer item. If the node has a higher version number, it transmits the

item data. Otherwise, the node transmits its (key, version number) to

notify other nodes that it has older items.

• Updating : A node with a higher version number broadcasts its item data

to nodes having the item with lower version numbers.

DETECT DIFFERENCE

Comparing hashes of all versions to
detect if there is a difference

IDENTIFY DIFFERENT BIT

LOCATION

Comparing checksum of all versions to

detect the bit location that is different

IDENTIFY DIFFERENT VERSIONS

Comparing the corresponding bits of
all versions to identify versions that are

different

IDENTIFY VERSION ORDERING

Compare versions to identify who has
the newer version

UPDATE

Node with a newer version transmits
the corresponding data

O(T)

O(N)

Figure 4.2: Five main phases in DHV: (Source [1]: modified with permission
from Springer Verlag)

61

SUMMARY

HSUM

VBIT

VECTOR

DATA

Message
Type

Format

4 4

Salt Hash

1

T

4 4

Salt Hash

4

Checksum

1

T

4 4

Salt Hash

1

T

1

N

1

B

1

V

...

Vertical bits

1

T

1

L

4 4

Key 1 Version 1

4 4

Key 2 Version 2

...

...

T

4 4

Key 1 Version 1

1

Data

...

Figure 4.3: DHV message formats: (Source [1]: Used with permission from
Springer Verlag)

There are five message types that DHV uses as shown in Figure 4.3.

SUMMARY: This message type contains the hash of all version numbers

as well as the random seed used for hashing. It contains the least amount of

information compared to other message types. A node can detect only if there

is a difference using this message type.

HSUM: This message type contains the checksum of all version numbers,

the hash of all version numbers, and the random seed used for hashing. It is

used to identify the different bit indices in the version numbers between two

nodes.

VBIT: This message type contains selected bits of version numbers and is

used to identify version numbers that are different between two nodes. The

bits corresponding to the differing indices of the VBIT messages are identified

from HSUM messages. If two HSUM messages are similar but the SUMMARY

messages differ, VBIT messages for the least significant bit indices are compared

because the version numbers mostly differ in a few least significant bits.

62

DATA: This message type contains the actual item data to be updated.

DATA messages can contain item data such as configuration parameters, code

capsules, or executable images.

VECTOR: This message type contains one or more (key, version number)

tuple. When a node receives a VECTOR message advertising older version

numbers compared to itself, the node broadcasts a DATAmessage containing its

version numbers of the task items. When a node receives a VECTOR message

advertising newer version numbers compared to itself, the node broadcasts its

own VECTOR message so that other nodes having newer items will transmit

the corresponding DATA.

Figure 4.4 illustrates how DHV works. Node 1 and Node 2 have a set of item

keys and item version numbers, in which the item with the key number 2 has

different version numbers. Node 1, first, broadcasts its SUMMARY hash of all

the version numbers. Node 2 receives hash 1 and detects that hash 1 is different

from hash 2 of node 2. Hence, node 2 broadcasts its HSUM message, which

is a checksum of all version numbers. Node 1 receives the HSUM message

2 and compares it to its own checksum. Node 1 identifies that the 2nd bits

differ. Hence, node 1 copies the 2nd bit of all the version numbers into one or

more VBIT messages and broadcasts them. Node 2 receives a VBIT message,

compares it to its own VBIT message and detects that the 2nd bits are different

from each other. Hence, node 2 knows that the item with key index 2 is different

from its neighbors. Node 2 broadcasts a VECTOR message containing (key 2,

version 2). Node 1 receives (key 2, version 2) from node 2 and sees that node 1

has a newer version of this item. Hence, node 1 broadcasts the DATA of key 2.

Due to the distributed nature of sensor networks, nodes in the network still

transmit redundant messages. The next section is going to describe how DHV,

based on Trickle [14], minimizes the number of redundant transmissions.

63

0

1
0

..
1

10 ...010 0 1

10 ...010 1 1
10 ...010 0 1

..

11 ...010 1 1

10 ...010 0 1
10 ...010 0 1

10 ...010 0 1

..

11 ...010 1 1

NODE 1 NODE 2

01 ...
00101

Hash 1

Hash 2

(K
 2 ,

10 ...
01001)

01...0010 1

01...0011 1

0

1
0

..

1

0

0
0

..

1

(K 2 , 10 ...01001)

(K 2 , 10 ...01011)
<

1

2

3

4

Time step

K 1 ,

K 2 ,

K 3 ,

K N ,

K 1 ,

K 2 ,

K 3 ,

K N ,

HSum

Vector

Hash

Vbit

(K2, 10...01011,DATA)

Figure 4.4: DHV flow diagram: Node 1 broadcasts its SUMMARY message
which contains the hash of all the version numbers. Node 2 receives hash 1 and
detects that hash 1 is different from hash 2 of node 2. Node 2 broadcasts its
HSUM message which contains the checksum of all version numbers. Node 1
receives the HSUM message 2 and compares it to its own checksum. Node 1
identifies that the 2nd bits differ. Node 1 copies the 2nd bit of all the version
numbers into one or more VBIT messages and broadcasts them. Node 2 receives
a VBIT message, compares it to its own VBIT message and detects that the
2nd bits are different from each other. Node 2 broadcasts a VECTOR message
containing (key 2, version 2). Node 1 receives (key 2, version 2) from node 2
and sees that node 1 has a newer version of this item. Node 1 broadcasts the
DATA of key 2. (Source [1]: Used with permission from Springer Verlag)

64

4.4 Suppression Mechanism and Transmission Scheduling

The next section briefly describes a suppression mechanism used in Trickle [14].

Then, we describe how we extend Trickle to develop the transmission scheduling

algorithm in DHV.

4.4.1 Trickle Suppression Mechanism

In Trickle, time is divided into intervals. At a random point of time in each

interval, a node considers broadcasting its message (e.g., a SUMMARY mes-

sage). If the node has already received several messages with the same content

in this interval, the node suppresses its transmission.

0

Transmit Suppress

Timer fires

Message received

k = 1 c=0, c<k c=2, c>k

T 2T

Figure 4.5: Suppression mechanism in Trickle: If c < k, the node broadcasts
its message. Otherwise, the node suppresses its own transmission and doubles
the value of τ .

Formally, each node maintains a timer t in the range of [0, τ] to schedule

when the node decides to transmit a message, a counter c to keep track of the

total number of received messages that have the same content as the node has,

and a suppression threshold k to decide if the node needs to transmit a message.

c is incremented by 1 whenever the node receives a message that has the same

content as it has. When the timer t fires, the node decides whether to transmit

a message based on the values of c and k. If c < k, the node broadcasts its

message. Otherwise, the node suppresses its transmission and doubles the value

of τ . For example, for k = 1, in the first interval in Figure 4.5, c = 0 and c < k.

Hence, the node broadcasts its message. However, in the second interval in

65

Figure 4.5, c = 2 and c > k. Hence, the node suppresses its transmission. If

the node receives a message that contains different information from its own, it

resets the value of τ to the predefined minimum value. To make sure each node

listens to other nodes long enough before making the transmission decision, t

is actually constrained to be in the range of [τ/2, τ]. When the time interval

[0, τ] completes, the node starts a new interval where c is reset to 0 and t is

randomly selected from [τ/2, τ].

The following section describes how DHV uses Trickle to efficiently schedule

transmissions in wireless sensor networks.

4.4.2 DHV Transmission Scheduling

A decision on whether to send out a message is made when the Trickle timer

fires after a specified time interval. Figure 4.6 shows the flow chart of how the

decision is made at a node. The node keeps a counter c for the number of

received messages that have the same content as it has. If c is greater than a

threshold k, the node suppresses its transmission and doubles the next interval

period. Otherwise, it checks if there are pending messages to send. If the node

has DATA messages to send, it will send one message out. If there are no DATA

messages to send, the node will check if there are other pending messages in

the following order: VECTOR, VBIT, and HSUM to be sent out. If there are

no pending messages, the node will send a SUMMARY message and double the

next time interval period as it expects that the network is stable.

4.5 Limitations

DHV has several limitations.

• DHV is not optimized for subsets of nodes. DHV aims at disseminating

task items to all nodes in a network. In some cases where task items

66

Has Data to send?

Double

suppression period

Has Vector to send?

Has Vbit to send?

Has Hsum to send?

Number of old

messages > k ?

Wait for Timer fires

Timer fires

Send message

Get Summary

message

+

+

+

+

+

-

-

-

-

-

Is last sent message

Summary?

+

-
Reset suppression

period

Figure 4.6: Transmission scheduling flow diagram: The node keeps a counter
c for the number of received messages that have the same content as it has.
If c is greater than a threshold k, the node suppresses its own transmission
and doubles the next interval period. Otherwise, it checks if there are pending
messages to send.

67

need to be disseminated to only a small number of nodes, DHV might

not perform well. However, DHV can be combined with grouping infor-

mation described in Chapter 3 to improve dissemination and maintenance

performance.

• DHV is not optimized for subsets of items. One of the assumptions in

DHV is that all nodes have the same set of task items. DHV maintains

consistency of all the task items. In some scenarios where nodes only need

to maintain consistency of a subset of task items (e.g., items of an active

task), DHV might not perform well. However, a mask can be used to

indicate which task items are under consideration. This approach requires

an additional field in DHV messages for storing the mask information.

• Hash collisions can occur. DHV relies on hashes of version numbers to de-

tect if there are inconsistencies among nodes in a network. Theoretically,

it is possible that there are inconsistencies among nodes in a network

but the hashes are the same. The probability of collision depends on the

number of items and the number of bits representing hashes. In prac-

tice, nodes can send the complete items after a certain number of update

rounds to ensure that all nodes have the same updated items.

The next section will provide performance analysis of different protocols in

different scenarios.

4.6 Theoretical Analysis

To gain an insight into the performance of different dissemination and mainte-

nance protocols, we describe theoretical analysis of DRIP [27], DIP [15], and

DHV. For simplicity, we use a network of two nodes with a zero packet loss

rate.

68

One node called the updated node has the updated items where the other

node, outdated node, has old items. We calculate the number of messages that

need to be transmitted in the network to detect and identify which items have

different version numbers compared to the other node. Let assume that the

two nodes have a total of T items. We will first consider a simple case where

the network updates one item at a time. Then, we generalize the analysis for

the case where the network updates multiple items.

4.6.1 Updating One Item

In this case, the network updates one item at a time. The updated node has an

item whose version number is greater than the other node. However, the two

nodes do not know which item has a different version number. Each protocol

allows nodes to exchange messages to find out which item has a different version

number and which node has a newer item.

DRIP

In DRIP, a node broadcasts a tuple (key, version number) randomly within an

interval. Hence, the best case performance is achieved when a node advertises

the exact item that has a different version number and identifies the difference

in O(1). The worst case performance is achieved when the nodes advertise all

tuples (key, version number) for T items. The worse case performance hence is

O(T). The average case performance is also O(T).

DIP

In DIP, nodes perform binary search to determine which items have different

version numbers. Hence, the best case, worst case, and average case perfor-

mance is O(log(T)).

69

DHV

In DHV, nodes perform three search steps: detecting difference, horizontal

search, and vertical search. Each step requires one message to be transmitted.

Hence, the best case, worst case, and average case performance is 3 messages.

Figure 4.7 shows the theoretical average case performance in terms of num-

ber of transmitted messages of the three protocols updating one item in a simple

network of two nodes. DHV has communication overhead for searching which

item has a different version number. Therefore, DHV performs worse than DIP

and DRIP when the total number of items is less than 10. However, when the

total number of items increases, DHV uses a constant number of messages to

update the network. Theoretically, for updating a single item, DHV outper-

forms both protocols as the number of item increases.

0 10 20 30 40 50
0

10

20

30

40

50

Total Number of Items

N
u
m

b
e
r

o
f
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DRIP

DIP

DHV

Figure 4.7: Number of transmitted messages versus total items

4.6.2 Updating Multiple Items

Let p (0 ≤ p ≤ 1) be the probability that an item is updated within one

updating round (e.g., a time interval). Let k be the number of rounds that the

outdated node does not get updated. Again, we calculate the average number

of messages transmitted to identify which item needs to be updated.

70

DRIP

In DRIP, the average case performance is still O(T).

DIP

In DIP, nodes perform binary search to identify which items have different ver-

sion numbers. Hence, in the best case, worst case, and average case performance

for one item is O(log(T)). The probability that an item is not changed in one

round is 1 − p. The probability that an item is not changed after k rounds

is (1 − p)k. Hence, the probability that an item is updated after k rounds is

q = 1− (1− p)k. The average number of items that are updated after k rounds

is q× T = (1− (1− p)k)× T . The average case performance for multiple items

is O(log(T)× (1− (1− p)k)× T).

DHV

The average number of times an item is updated after k rounds is p× k. That

means, the location of the most significant bit in the version number that is

changed can be smaller than log(p× k+ 1) + 1. The total number of messages

in the average case is hence smaller than O(log(p× k + 1) + 1).

0 10 20 30 40 50
0

10

20

30

40

50

Total Number of Items

N
u
m

b
e
r

o
f
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DRIP

DIP

DHV

Figure 4.8: Total transmitted messages versus total items: p = 0.1 and k = 5.

71

Figure 4.8 shows the performance of different protocols in terms of number

of transmitted messages versus total number of items T . There are k = 5

rounds that a node misses the updates. Within each round, each item may

be updated with a probability of p = 0.1. DHV uses a constant number of

messages, 3–5 messages, to detect which items have different version numbers.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Probability of Update

N
u
m

b
e
r

o
f
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DRIP

DIP

DHV

Figure 4.9: Total transmitted message versus update probability: T = 64 and
k = 5.

Figure 4.9 shows the performance of different protocols in terms of number

of transmitted messages versus the probability of update p. There are k = 5

rounds wherein a node misses the updates and total T = 64 items. Within

each round, each item may be updated with a probability ranging from p = 0.1

to p = 1. DHV uses a constant number of messages, 3–5 messages, to detect

which items have different version numbers.

Figure 4.10 shows the performance in terms of number of transmitted mes-

sages versus number of rounds k of different protocols. Within each round, an

item gets updated with a probability of p = 0.1. The total number of items is

T = 64. DHV uses a relatively constant number of messages to detect which

items have different version numbers compared to DRIP and DIP.

72

0 2 4 6 8 10
0

20

40

60

80

Number of Rounds
N

u
m

b
e
r

o
f
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DRIP

DIP

DHV

Figure 4.10: Total transmitted messages versus update rounds: T = 64 and
p = 0.1.

4.7 Implementation

We have implemented DHV in TinyOS 2.1.1 [14] and tested the protocol with

MicaZ [23] and Tmote [102] platforms. We chose TinyOS because of its pop-

ularity and strong support for different sensor platforms. TinyOS currently

supports 18 embedded sensor platforms. TinyOS applications are written in

nesC [36], a dialect of the C language optimized for sensor platforms with lim-

ited resources. TinyOS programs are built out of software components, some

of which present hardware abstractions. Components are connected to each

other using interfaces. TinyOS provides interfaces and components for com-

mon abstractions such as packet communication, routing, sensing, actuation,

and storage.

Similar to DIP, both item keys and version numbers in DHV are 4 bytes.

The number of bytes in the keys and the version numbers can be adjusted for

different applications. DHV is now part of the official TinyOS 2.1.1 core library

and can be downloaded from the official TinyOS website http://tinyos.net.

Other background information and tutorials can be accessed from the TinyOS

wiki webpage http://docs.tinyos.net.

73

Metric DRIP DIP DHV
ROM (Byte) 15676 18686 17760
RAM (Byte) 364 405 402

Code size (Byte) 43178 51454 48918

Table 4.1: Implementation statistics for the TestDissemination application
(tinyos-2.x/apps/tests/TestDissemination).

Table 4.1 compares DHV memory usage to DRIP and DIP when compiling

with a standard TestDissemination application with only two items. They are

largely similar. DRIP has the smallest code size and uses the least memory.

This is reasonable because DRIP is the least complex protocol. The differences

between DIP and DHV in terms of RAM and ROM are insignificant. DHV

uses slightly less ROM and RAM compared to DIP.

0 50 100 150
0

1000

2000

3000

4000

5000

Total Number of Items

R
A

M
 (

b
y
te

s
)

DIP

DHV

(a) RAM

0 50 100 150
2

2.2

2.4

2.6

2.8

3

3.2
x 10

4

Total Number of Items

R
O

M
 (

b
y
te

s
)

DIP

DHV

(b) ROM

Figure 4.11: Code size versus total number of items: Number of new items is
8. The total number of items varies from 8 to 128. The ROM and RAM usage
increase proportionally with the total number of items. However, DHV always
uses slightly less ROM and RAM than DIP.

74

Figure 4.11 compares the code size and memory usage on the MicaZ platform

of DIP and DHV as a function of the total number of items. The number of new

items is fixed and equal to 8. The ROM and RAM usage increase proportionally

with the total number of items. DHV always uses slightly less ROM and RAM

than DIP.

0 50 100 150
3800

3900

4000

4100

4200

4300

4400

Number of New Items

R
A

M
 (

b
y
te

s
)

DIP

DHV

(a) RAM

0 50 100 150
3

3.1

3.2

3.3

3.4

3.5
x 10

4

Number of New Items
R

O
M

 (
b
y
te

s
)

DIP

DHV

(b) ROM

Figure 4.12: Code size versus total number of new items: The total number of
items is 128. The number of new items varies from 8 to 128. The ROM usage
increases proportionally with the total number of new items. However, DHV
always uses slightly less ROM and RAM than DIP.

Figure 4.12 compares the code size and memory usage in the MicaZ platform

between DIP and DHV versus the total number of new items. The total number

of items is fixed and equals to 128. The ROM usage increases proportionally

with the total number of new items. DHV always uses slightly less ROM and

RAM than DIP. We also observe similar results on the TelosB platform.

4.8 Evaluation

4.8.1 Goals and Metrics

Previous work has shown that DIP outperforms other dissemination and main-

tenance protocols (DMP) [15]. Therefore, our experimental goals are to study

if DHV performs better than the state-of-the-art DIP protocol. We use the

75

following metrics to evaluate the performance, with a lower value indicating

better performance for all metrics.

• Total latency to update new items. This metric indicates how fast a DMP

can help the network converge.

• Total numbers of transmitted messages and transmitted bytes to update

new items. These metrics indirectly represent the energy and bandwidth

consumption of a DMP protocol.

• Total energy consumed for updating a network. This is the energy con-

sumed by a network measured from the time when new task items are

disseminated to the time when all nodes in the network are updated with

the new task items.

4.8.2 Methodology

We conducted experiments with five different parameters and three different

network topologies. The experiments were in both simulation and real testbeds.

One or more nodes with newer items update a network with older items. This

scenario occurs in practice when a node or a base station reprograms a network

or disseminates events to all nodes in the network.

We varied four different parameters including the total number of items,

number of new items to be updated, number of nodes in the network, and

packet loss rate. The notations and values for the parameters used in both

simulation and real testbeds are described in table 4.2.

The three different network topologies (as shown in figure 4.13) are listed

below.

• Single-hop clique where every node in the network can communicate with

every other node,

76

Notation Meaning Range Evaluation Purpose
T Total number of items 8 to 128 Scalability in terms of total

number of items
N Number of new items 8 to 128 Scalability in terms of number

of new items
D Number of nodes 8 to 64 Performance with different

network density
L Packet loss rate 5% to 45% Performance with different

link quality

Table 4.2: Notation and ranges of parameters used in evaluation.

• Multi-hop chain where nodes are arranged in a line and a node can com-

municate with only adjacent nodes, and

• Multi-hop grid where nodes are arranged in a grid and a node can com-

municate with some nearby nodes.

Figure 4.13: Example network topologies used for evaluation.

We purposely chose these three topologies because they cover the whole

topology spectrum. Single-hop clique and multi-hop chain topologies are two

extreme cases where a nodes can communicate with the maximum number of

neighbor nodes and minimum number of neighbor nodes respectively. Multi-hop

grid topology is a representative for most multi-hop networks.

The experiments were conducted in both simulations using TOSSIM [103], a

discrete event simulator tool for wireless sensor networks and on two real sensor

network testbeds; PSU SynLab MicaZ testbed at Portland State University

and Motelab Tmote testbed at Harvard University [104]. Table 4.3 describes

in detail the different networks we used for evaluation.

77

Testbed Number of nodes Networking
TOSSIM 128 One-hop

Multi-hop
PSU-SynLab 64 MicaZ [23] One-hop
MoteLab 121 Tmote [102] Multi-hop

Table 4.3: Network description.

In the following sections, we describe in detail how experiments were setup

in both simulation and real testbeds.

TOSSIM Simulation

We use TOSSIM [103] because its popularity and accuracy. It is a simulator for

TinyOS [14], one of the most popular operating systems for embedded sensor

platforms. TOSSIM simulates entire TinyOS applications by replacing TinyOS

components with simulation implementations. TOSSIM is a discrete event

simulator; when it runs, it pulls events from the event queue (ordered by time)

and executes them.

TOSSIM does not allow simulation of packet loss directly. Instead, the

packet loss depends on several parameters like receiving gain, noise, and clear

channel access threshold. As a first step, we studied the effect of these param-

eters on packet loss. We simulated a two-node network. The noise is simulated

using the state-of-the-art closest pattern matching approach [105] with noise

traces from the Stanford Meyer library and are available in the TinyOS source

code. Due to memory limitations, we only use the first 1000 entries in the

trace, which is well above the recommendation of 100 entries. Figure 4.14

(Right) shows the packet loss rate versus receiving gain. The receiving gains

corresponding to packet loss rates of 5, 10, 15, 20, 25, 30, 35, 40, and 45% are

-70, -74, -76, -78, -81, 84, -87,-88, -89 dBM, respectively. Based on this result,

we can select different gain values for different packet loss rates in simulation.

78

−120 −100 −80 −60 −40
0

20

40

60

80

100
packet loss versus receiving gain

receiving gain (dBm)

p
a
c
k
e
t
lo

s
s

Figure 4.14: (Left) Real MicaZ testbed (Right) Packet loss versus receiving
gain using TOSSIM simulation.

Gain (dBM) -70 -74 -76 -78 -81 -84 -87 -88 -89
Packet loss (%) 5 10 15 20 25 30 35 40 45

Table 4.4: Packet loss rates versus receiving gain using TOSSIM simulation.

For both single-hop clique and multi-hop chain topologies, we evaluate how

DHV and DIP performance is impacted by different parameters including the

total number of items T , the total number of new items N , the packet loss rates

L, and the density D. Density refers to the number of radio communication

neighbors. We compare DHV and DIP in a clique network. The default setting

is D = 32 (nodes) (10 nodes for a multi-hop chain), T = 64 (keys), N = 8

(keys), L = 5%. We vary D, T , N , and L.

For a multi-hop grid topology, there are two experiments with medium and

high density networks. The total number of nodes is 225. The topology and

link configurations are extracted from example files in TOSSIM (15-15-medium-

mica2-grid.txt and 15-15-tight-mica2-grid.txt in tossim/topologies directory).

We characterize density by the average link gains. The smaller the gain is,

the higher the packet reception rate of the link. Figure 4.15 shows the histogram

of the link gains of medium and high density networks. For the medium density

network, the majority of links have gains ranging from -120dB to -100dB while

the high density network has the gain distribution around -100dB to -80dB.

79

−140 −120 −100 −80 −60 −40
0

5

10

15

20

Gain (dB)
P

e
rc

e
n
ta

g
e
 o

f
T

o
ta

l
L
in

k
s
 (

%
)

Medium Density

High Density

Figure 4.15: Link gain histogram: For medium density network, the majority
of links have gain from -120dB to -100dB while the high density network has
the gain distribution around -100dB to -80dB.

The send and receive activities are logged into log files. Based on the log

files, we analyze the total number of transmitted messages and the the dissem-

ination time. Each experiment is repeated 10 times to account for randomness

in timing. Like DIP, DHV uses 2 (key, version number) tuples per VECTOR

message to ensure comparability.

Experiments with Real Testbeds

We evaluated DHV and DIP on two real world testbeds; PSU SynLab - a one-

hop MicaZ testbed at Portland State University and MoteLab - a multi-hop

Tmote testbed at Havard University.

PSU-SynLab Testbed

As part of the research, we setup a embedded wireless sensor network testbed

that we refer to as the Portland State University (PSU) SynLab testbed. The

testbed has 64 MicaZ [106] wireless sensors deployed in the Systems and Net-

working Lab in the Department of Computer Science. Due to the small physical

deployment area, the nodes in the testbed are within the communication range

of each other. Hence, the testbed basically has a clique topology; any node can

communicate directly with other nodes.

80

We use one MicaZ node to capture all the messages transmitted in the

network. The node is connected to a MIB510 programming board and reports

the received messages to a computer using an RS-232 serial communication.

The messages are logged on the computer for analysis. Figure 4.14 shows the

layout of the testbed.

We varied the number of sensor nodes D from 8 to 56, the total number of

items from 8 to 128, and the number of new items N from 8 to 64. We observed

the total number of transmitted messages and total time required to complete

updating the whole network.

Energy Consumption Measurement on PSU-SynLab Testbed

To evaluate the performance in terms of energy consumption for dissemina-

tion and maintenance protocols in embedded sensor networks, we measure the

total energy consumption by the PSU SynLab testbed in different scenarios.

Figure 4.16 shows our setup for collecting power measurements. We use an

Agilent 6651A power supply to provide a consistent DC power source (4.5V/3A)

to all nodes in the network. The Agilent 6651A is controlled from a computer

using an IEEE-488-2 GPIB interface. An Agilent 34411A digital multi-meter

is placed between the DC power supply and the sensor network to measure the

DC current drawn by the network. The digital multi-meter is also controlled

from a computer using Python scripts based on the PyVISA package [2]. The

measurements are transferred to the computer via a TCP/IP connection. With

this setup, we can collect about 130 samples per second.

MoteLab Testbed

In addition to the PSU SynLab testbed, we also conduct experiments with

the MoteLab testbed [104], a multi-hop embedded wireless sensor network

testbed at Harvard University. MoteLab has 190 Tmote sensor nodes, deployed

across three floors in the Maxwell Dworkin Laboratory at Harvard University.

81

Figure 4.16: Power measurement setup: An Agilent 34411A digital multi-meter
is placed between the DC power supply and the sensor network to measure the
DC current drawn by the network. The digital multi-meter is also controlled
from a computer using Python scripts based on the PyVISA package [2]. The
measurements are transferred to the computer via a TCP/IP connection.

The Tmote sensor nodes have a TI MSP430 8 MHz processor with 10 KB of

RAM, 1MB of Flash memory, and a Zigbee Chipcon CC2420 radio operating

at 2.4 GHz. All nodes are connected directly to the Ethernet. Hence, the

nodes can record their activities and send the information to a computer via

the Ethernet connection.

We varied the number of items and observed update progress and time

required to complete updating the whole network. The number of active nodes

at the time of experiment was 121. The number of items was T = 128. The

number of new items was N = 8 and N = 120 in each experiment.

We have described the experimental methodology we used to evaluate the

DHV protocol. The next section describes the experimental results in detail.

82

4.8.3 Experimental Results

In this section, we describe the experimental results which we classify into two

categories: simulation results and testbed results. First, we present results from

TOSSIM simulations on a single-hop clique network, multi-hop chain network

and multi-hop grid network respectively.

Single-hop Clique Network

Performance versus Total Number of Items: Figure 4.17 shows the comparison

between DHV and DIP in a single-hop clique network when we vary the total

number of items T . The other parameters are D = 32, N = 8, and L = 5%.

DHV performance in terms of total number of transmitted messages and tasking

latency is relatively constant with T . Meanwhile, the number of transmitted

messages and tasking latency of DIP increase as T increases. As an example

case, when T = 64, nodes using DHV transmit only about 40% of the total

number of messages and complete reprogramming within 45% of the time taken

by nodes using DIP.

0 50 100 150
10

20

30

40

50

60

Total Number of Items

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

DIP

DHV

0 50 100 150
30

40

50

60

70

80

90

Total Number of Items

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.17: Tasking latency versus total items: D = 32, N = 8, L = 5%.
T varies from 8 to 128. DHV performance in terms of total number of trans-
mitted messages and tasking latency is relatively constant with T . Meanwhile,
the number of transmitted messages and tasking latency of DIP increase as T
increases.

83

Performance versus Total Number of New Items: Figure 4.18 shows the

comparison between DHV and DIP when we vary the number of new items.

Nodes using DHV always transmit fewer messages than nodes using DIP. The

other parameters are D = 32, T = 64, and L = 5%. Nodes using DHV also

use only half the time to complete updating the network compared to nodes

using DIP. For example, when N = 32, nodes using DHV transmit about 70%

of the messages transmitted by nodes using DIP and complete reprogramming

in 50% of the time.

0 20 40 60 80
0

50

100

150

200

250

Number of New Items

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

DIP

DHV

0 20 40 60 80
0

200

400

600

800

Number of New Items

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.18: Total latency versus total new items: D = 32, T = 64, L = 5%. N
varies from 8 to 64. Nodes using DHV also use only half the time to complete
updating the network compared to nodes using DIP.

Performance versus Number of Nodes: Figure 4.19 shows the comparison

of DHV and DIP when we vary the number of nodes in a clique from 8 to 64.

The other parameters are T = 64, N = 8, and L = 5%. Nodes using DHV

complete updating the network in 33% of the time and uses 50% fewer messages

than nodes using DIP.

Performance versus Packet Loss Rate: Figure 4.20 shows the comparison of

DHV and DIP when we vary the packet loss rate from 5% to 45%. The other

parameters are D = 32, T = 64, and N = 8. DHV completely outperforms

DIP in terms of latency. Nodes using DHV complete updating task items twice

faster than nodes using DIP. Nodes using DHV transmit about 70% of number

of messages to complete updating compared to nodes using DIP.

84

0 20 40 60 80
10

20

30

40

50

60

70

Density (Number of Nodes)

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

DIP

DHV

0 20 40 60 80
20

40

60

80

100

120

140

Density (Number of Nodes)

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.19: Total latency versus network density: T = 64, N = 8, L = 5%. D
varies from 8 to 64. Nodes using DHV complete updating the network in 33%
of the time and uses 50% fewer messages than nodes using DIP.

0 10 20 30 40 50
10

20

30

40

50

60

70

Packet Loss (%)

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

DIP

DHV

0 10 20 30 40 50
0

50

100

150

200

250

Packet Loss (%)

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.20: Total latency versus packet loss: D = 32, T = 64, N = 8. Packet
loss rate L varies from 5% to 45%. Nodes using DHV complete updating task
items twice faster than nodes using DIP. Nodes using DHV transmit about 70%
of messages to complete updating compared to nodes using DIP.

85

We have just described the experimental results of DHV and DIP in a single-

hop clique network. In the next section, we describe the results of the protocols

in a multi-hop chain network.

Multi-hop Chain Network

Performance versus Total Number of Items: Figure 4.21 compares the per-

formance of DHV and DIP in a 10-hop chain network when we vary the total

number of items, T , from 8 to 128. The other parameters are D = 10, N

= 8, and L = 5%. DHV’s performance is again relatively constant with T .

Meanwhile, the number of transmitted messages and latency in DIP increase

as T increases. As an example case, when T = 64, nodes using DHV transmit

only about 40% of the total number of messages and complete reprogramming

within 45% of the time taken by nodes using DIP.

0 50 100 150
0

50

100

150

200

Total Number of Items

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

DIP

DHV

0 50 100 150
100

200

300

400

500

Total Number of Items

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.21: Total latency and transmitted messages versus total items: D =
10, N = 8, L = 5%. T varies from 8 to 128. DHV’s performance is again
relatively constant with T . Meanwhile, the number of transmitted messages
and latency in DIP increase as T increases.

Performance versus Total Number of New Items: Figure 4.22 shows the

comparison of DHV and DIP in a 10-hop chain network when we vary the

number of new items N from 8 to 64. The other parameters are D = 10, T =

64, and L = 5%. Nodes using DHV always transmit fewer messages than nodes

using DIP to complete updating the network. Nodes using DHV also spend

86

only 50% of the time to complete updating the network compared to nodes

using DIP. For example, when N = 32, nodes using DHV transmit about 70%

of the messages and complete tasking the network in 50% of the time compared

to nodes using DIP.

0 20 40 60 80
0

100

200

300

400

500

Number of New Items

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

DIP

DHV

0 20 40 60 80
0

500

1000

1500

2000

2500

Number of New Items

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.22: Total latency and transmitted messages versus total new items: D
= 10, T = 64, L= 5%. N varies from 8 to 64. Nodes using DHV always transmit
fewer messages than nodes using DIP to complete updating the network. Nodes
using DHV also spend only 50% of the time to complete updating the network
compared to nodes using DIP.

Performance versus Number of Hops: Figure 4.23 compares DHV and

DIP when we vary the number of nodes in the chain from 2 to 20. The other

parameters are T = 64, N = 8, and L = 5%. DHV completes updating in 33%

of the time and uses 50% fewer messages than DIP.

0 5 10 15 20 25
0

50

100

150

200

250

Number of Nodes

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

DIP

DHV

0 5 10 15 20 25
0

200

400

600

800

1000

1200

Number of Nodes

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.23: Total latency and transmitted messages versus network density:
T = 64, N = 8, L = 5%. D varies from 2 to 20. DHV completes updating in
33% of the time and uses 50% fewer messages than DIP.

87

Performance versus Packet Loss Rate: Figure 4.24 shows the comparison of

DHV and DIP when we vary the packet loss rate L from 5% to 45%. The other

parameters are D = 10, T = 64, and N = 8. In terms of total transmitted

messages, DHV outperforms DIP at low packet loss rates. However, as the

packet loss rate increases, DHV gets closer to DIP and exceeds DIP when the

packet loss rate is greater than 35%. Similarly, nodes using DHV complete

updating the network earlier than nodes using DIP when the packet loss rate

is smaller than 25%. This is a surprise because DHV performs better than

DIP under high packet loss rates in single-hop clique networks. One possible

explanation is that in a clique network, a node can communicate with all other

nodes and hence can still communicate with at least some nodes over lossy

links and DHV can still perform searching for items that have different version

numbers in approximately O(1). Whereas, in a multi-hop chain network, a

node can communicate with only two adjacent neighbor nodes. Therefore, it

is likely that the node cannot communicate with any node in a broadcast over

lossy links and the search restarts again and again.

0 10 20 30 40 50
0

200

400

600

800

Packet Loss (%)

L
a
te

n
c
y
 (

s
e
c
o
n
d
)

DIP

DHV

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Packet Loss (%)

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.24: Performance versus number of nodes: D = 10, T = 64, N = 8.
Packet loss rate L varies from 5% to 45%. DHV outperforms DIP at low packet
loss rates. However, as the packet loss rate increases, DHV gets closer to DIP
and exceeds DIP when the packet loss rate is greater than 35%.

88

Multi-hop Grid Network

Figure 4.25 plots the update time versus the number of completed nodes for

DHV and DIP. The total number of items is T = 128. The number of new

items is N = 8. It takes DHV about 50% and 70% of the time compared to

DIP to update medium density networks (shown in the left figure) and tight

density networks (shown in the right figure) respectively. In the medium density

network, DHV and DIP update time grows linearly with the completed nodes

because in each transmission, only a few nodes can receive the messages. The

update progresses from the node with the new items and spreads out to the

whole network. Hence, the number of completed nodes grows linearly with

time. In contrast, in the high density network, when a node broadcasts, most

other nodes receive the message. Hence, the network converges quickly. The

inflection point when the number of completed nodes is around 200 can be

explained by the fact that some nodes always receive messages with high noise.

It takes much longer to complete updating these nodes.

0 50 100 150 200 250
20

40

60

80

100

Number of Completed Nodes

T
im

e
 (

s
e
c
o
n
d
)

DIP

DHV

0 50 100 150 200 250
30

35

40

45

50

55

Number of Completed Nodes

T
im

e
 (

s
e
c
o
n
d
)

DIP

DHV

Figure 4.25: Convergence time for multi-hop networks: T=128 and N=8. It
takes DHV about 50% and 70% of the time compared to DIP to update medium
density networks (left) and tight density networks (right) respectively.

We have described our evaluation of DHV and DIP based on simulations.

In the following section, we describe experimental results of DHV and DIP in

real world testbeds.

89

Real Test-bed Results

We will organize the results based on two real world testbeds: the PSU-SynLab

single-hop clique network and the MoteLab multi-hop network.

PSU-SynLab Single-hop Clique Network

Performance versus number of nodes: Figure 4.26 shows the total number of

transmitted messages and the update time on the PSU-SynLab testbed. There

are a total of T = 64 items and N = 8 new items. The number of nodes D is

varied from 8 to 56 nodes. Nodes using DHV transmit 30% fewer total messages

and complete updating earlier compared to nodes using DIP.

0 10 20 30 40
20

22

24

26

28

30

32

Number of Nodes

U
p
d
a
te

 T
im

e
 (

s
e
c
o
n
d
)

DIP

DHV

0 10 20 30 40
30

40

50

60

70

80

Number of Nodes

T
o
ta

l
T

ra
n
s
m

it
te

d
 M

e
s
s
a
g
e
s

DIP

DHV

Figure 4.26: Total transmitted messages versus network density: T = 64, N =
8, D is varied from 8 to 56 nodes. Nodes using DHV transmit 30% fewer total
messages and complete updating earlier compared to nodes using DIP.

This result confirms that DHV outperforms DIP in both simulation and real

testbed. However, the performance of both DHV and DIP is slightly different

from the simulation result in Figure 4.19. In particular, both DHV and DIP

send fewer messages compared to the simulation scenario with 5% packet loss

rate. It is likely that packet loss in our small testbed was much lower than in

the simulation, hence, the improved performance of both protocols.

90

Energy Consumption versus Network Density: Figure 4.27 shows the total

energy consumed for updating the whole network. The number of nodes in the

network D is varied from 8 to 32 nodes. Nodes using DHV consume less energy

than nodes using DIP. In particular, nodes using DHV consume around 70% of

energy consumed by nodes using DIP to update the whole network.

0 10 20 30 40
0

2

4

6

8

Number of Nodes

T
o
ta

l
E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
W

h
)

DIP

DHV

Figure 4.27: Energy consumption: D varies from 8 to 32 nodes. Nodes using
DHV consume around 70% of energy consumed by nodes using DIP to update
the whole network.

MoteLab Multi-hop Network

Performance versus Total Number of Items: Figure 4.28 shows the update time

versus the total number of items, N = 8 and T varies from 8 to 128. DHV shows

a relatively constant update time versus the total number of items. In contrast,

DIP update time increases with the total number of items. Although, it is not

very clear in the figure, DIP update time has logarithmic behavior with the

total number of items.

Update Progress: Figure 4.29 shows the updating progress in terms of the

fraction of the network that is updated versus time for two cases: updating

8 new items in 64 items and updating 120 new items in 128 items. DHV

outperforms DIP, especially, when the total number of new items is high (e.g.,

120 new items).

91

0 50 100 150
0

50

100

150

200

Total Number of Items

U
p
d
a
te

 T
im

e
 (

s
)

DIP

DHV

Figure 4.28: Tasking latency versus number of items: DHV shows a relatively
constant programming time versus T while DIP updating time increases with
T. DHV shows a relatively constant update time versus the total number of
items. In contrast, DIP update time increases with the total number of items.

0 50 100 150
0

20

40

60

80

100

F
ra

c
ti
o
n
 o

f
N

e
tw

o
rk

 (
%

)

Time (second)

DIP

DHV

(a)

100 200 300 400 500
0

20

40

60

80

100

F
ra

c
ti
o
n
 o

f
N

e
tw

o
rk

 (
%

)

Time (second)

DIP

DHV

(b)

Figure 4.29: Update progress: a) T=64, N = 8: DHV completes updating the
network in 50% of the time compared to DIP. b) T = 128, N = 120: DHV
completes updating in 50% of the time compared to DIP.

92

4.9 Protocol Selection Guidelines

In most cases, DHV outperforms existing dissemination protocols. However,

DHV performs worse than DIP in a lossy multi-hop network with a chain topol-

ogy. Hence, we, in general, recommend developers and operators to use DHV for

dissemination in wireless sensor networks. If there are only a few items (fewer

than 10 total items) to be disseminated in the network, a simple dissemination

protocol such as DRIP might be suitable.

4.10 Summary

In this chapter, we designed, implemented, and evaluated the DHV protocol for

dissemination and maintenance in embedded sensor networks. The key innova-

tion in DHV is that it reduces the number of transmitted bits in the network by

carefully selecting and transmitting only necessary information at the bit level

to detect and identify which task items need updates. Together with a carefully

designed suppression mechanism, DHV is able to reduce the total number of

messages significantly. Theoretically, DHV can identify differences with O(1)

complexity in the total number of items instead of logarithmically compared

to DIP. Simulations and real-world experiments validate that DHV performs

better than the state-of-the-art DIP protocol in most scenarios. We believe

that DHV can not only be used in embedded sensor networks but also in other

distributed applications that require data consistency. DHV has been included

as a core network library in the official release of TinyOS 2.1.1 and can be

downloaded from http://tinyos.net.

93

Chapter 5

Conclusion and Future Work

We conclude this dissertation with a summary of our contributions and lessons

learnt as well as directions for future work.

5.1 Summary

In this dissertation, we have identified and addressed the problem of scalable

and efficient tasking, adapting the operations of nodes in a sensor networks

to achieve the end users objectives. We explored tasking solutions for mobile

sensor networks and embedded sensor networks. We believe this work is an

important step to make sensor networks more widely adopted in many appli-

cation domains. Due to the inherently different characteristics of embedded

sensor networks and mobile sensor networks, we focused on different aspects of

tasking for each network.

First, we identified the need for a task representation and encoding scheme

that can efficiently encapsulate multiple sensor groups and their assigned tasks.

This problem is particularly critical in mobile sensor networks that may be

deployed over a large area. Therefore, we focused on addressing the problem

of scalable and efficient task representation and encoding for mobile sensor

networks. We designed and implemented the Zoom framework that allows users

to group and assign tasks to sensors in non-uniform, fine-grained ways across a

large sensing region for mobile sensor networks. The key ideas in Zoom are (i)

94

decoupling task specification and task implementation to support heterogeneity,

(ii) using maps to represent sensor groups and their tasks, and (iii) using image

encoding techniques to reduce the map size and provide adaptation to sensor

platforms with different resource capabilities. Zoom is more intuitive, efficient

and scalable compared to previous approaches.

Next, we identified the need for a scalable dissemination (spreading the

task items to all nodes) and maintenance (making sure all nodes have the

updated task items) protocol for sensor networks. It is a critical problem in

embedded sensor networks, wherein dissemination can consume a significant

amount of energy. Hence, we focused on addressing the problem of scalable

and efficient dissemination and maintenance in embedded sensor networks. We

designed and implemented the DHV protocol that allows nodes to disseminate

and maintain tasks with fewer transmitted messages, lower latency, and less

energy consumption compared to the state-of-the-art protocols.

DHV employs two key ideas. First, it uses a bit-level information exchange

scheme to make DHV efficient and scalable with the number of task items and

number of nodes. The key observation is that if the two item version numbers

are different, they likely differ in a few least significant bits. Hence, a sensor

should transmit only the most probable bits of the version numbers instead of

transmitting the whole version numbers to identify task items that have newer

version numbers. Second, DHV uses a gossip-based communication scheme

to scale with the number of nodes. A node broadcasts information about its

version numbers (e.g., hash of all the version numbers) randomly within each

interval. However, if it receives messages with the same content as it has, it

suppresses its transmission. Experimental results on both simulation and real

testbeds show that DHV outperforms previous protocols by a factor of two in

most cases. DHV has been included in the official distribution of TinyOS, a

95

popular operating system for embedded embedded sensor platforms with an

average of 35,000 downloads a year, since version 2.1.1.

There are two main lessons that we have learned while doing the research

of this dissertation.

Information-driven processing: In some situations, by utilizing infor-

mation from an algorithm’s inputs, we can improve the performance of the

algorithm significantly. In DHV, by exchanging only the bits in the item ver-

sion numbers that are likely to be different from the others, we can reduce the

number of transmitted messages and hence reduce the maintenance latency and

conserve energy and bandwidth. Using the same approach, we rearrange sensor

data based on the data values to achieve better compression performance of the

sensor data [107]. We believe this approach is also useful in many other cases.

Map-based representation: Maps by themselves represent information

on some coordinates. They have been used in several applications. Binary

maps are used to keep track of unused sectors in hard disks [108]. Maps are

also used to present activities in computer vision [109]. In this dissertation, we

also demonstrate that maps are efficient to represent sensor tasks and groups.

We believe that maps are also useful in other cases such as summarizing spatial

sensor data.

5.2 Impact

The DHV protocol implementation is included in the TinyOS distribution ver-

sion 2.1.1 as open source software since August 2009. The source code of

TinyOS can be downloaded from

http://code.google.com/p/tinyos-main/.

The specific source code for DHV is in the /tos/lib/net/dhv/ directory

and the test application is in the /apps/tests/TestDHV/ directory.

96

The source code for Zoom is also available at

http://sys.cs.pdx.edu/home/projects/zoom.

5.3 Future Directions

The work presented in this dissertation is a step toward enabling wide adoption

of sensor networks. There are several interesting future directions that are

motivated by either our work or the general problem of tasking sensor networks.

Real-time Tasking of Sensor Networks : Guarantees in tasking latency are

very important in time critical applications. For example, the network operator

needs to know when the network has finished updating new tasks to start

making use of the sensor data. Hard real-time is difficult to achieve. Soft real-

time is often useful for networking planning and management. Tasking latency

depends on many internal and external factors such as the number of nodes in

the network, link quality, routing protocols, and medium access mechanisms.

These factors make it challenging to understand and manage tasking latency.

There has been prior work [110, 111] that explores the possibility of providing

timing guarantees in routing. However, most of the other factors are not well

understood.

Task and Sensor Data Representation: We believe there are numerous ap-

plications of maps in representing spatial information for sensor networks. In

this dissertation, we apply standard compression techniques to compress the

task maps. We can reduce the compressed file size by carefully assigning the

task numbers that result in the best compression performance. However, it is

not well understood how to do so dynamically with different number of tasks

and sensor groups. Spatial sensor data can also be summarized using maps

to reduce the file size. For example, to monitor temperature in a forest using

sensors attached to animals, the temperature values with their locations can be

97

summarized into a map where the locations of the pixels on the map correspond

to the physical locations and the pixels’ values are the temperature values.

Tasking Nano Scale Sensing Networks : In this dissertation, we addressed

the problem of scalable and efficient tasking of mobile sensor networks and em-

bedded sensor networks. The sensor platforms we considered have small form

factor, some computation capability, and wireless communication. We have not

considered other sensor and actuator platforms such as programmable matter

[112] and nano-sensors [113]. Such platforms can be deeply embedded into

physical space or as part of the physical objects themselves. Such platforms

have different computation and communication mechanisms compared to tradi-

tional computers. Hence, tasking these devices also requires new methods and

approaches.

98

References

[1] Thanh Dang, Nirupama Bulusu, Wu-Chi Feng, and Seungweon Park,

“Dhv: A code consistency maintenance protocol for multi-hop wireless

sensor networks,” in Proceedings of the 6th European Conference on

Wireless Sensor Networks (EWSN’09), Cork, Ireland, February 2009, pp.

327–342.

[2] Torsten Bronger, “Python gpib etc. support with pyvisa,” June 2006.

[3] Jenna Burrell, Tim Brooke, and Richard Beckwith, “Vineyard computing:

Sensor networks in agricultural production,” IEEE Pervasive Computing,

vol. 3, pp. 38–45, January 2004.

[4] V.C. Gungor, Bin Lu, and G.P. Hancke, “Opportunities and challenges

of wireless sensor networks in smart grid,” Industrial Electronics, IEEE

Transactions on, vol. 57, no. 10, pp. 3557 –3564, October 2010.

[5] Paolo Costa, Geoff Coulson, Richard Gold, Manish Lad, Cecilia Mascolo,

Luca Mottola, Gian Pietro Picco, Thirunavukkarasu Sivaharan, Nirmal

Weerasinghe, and Stefanos Zachariadis, “The runes middleware for net-

worked embedded systems and its application in a disaster management

scenario,” in Proceedings of the Fifth IEEE International Conference

on Pervasive Computing and Communications, Washington, District of

Columbia, USA, 2007, pp. 69–78, IEEE Computer Society.

99

[6] Heribert Baldus, Karin Klabunde, and G. Msch, “Reliable set-up of medi-

cal body-sensor networks,” in Proceedings of the First EuropeanWorkshop

(EWSN’ 04), Berlin, Germany, February 2004, pp. 353–363.

[7] Murat Demirbas, “Wireless sensor networks for monitoring of large public

buildings,” Computer Networks, vol. 46, pp. 605–634, 2005.

[8] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and

Matt Welsh, “Fidelity and yield in a volcano monitoring sensor network,”

in Proceedings of the 7th symposium on Operating systems design and

implementation, Berkeley, California, USA, 2006, OSDI ’06, pp. 381–396,

USENIX Association.

[9] Rajib Kumar Rana, Chun Tung Chou, Salil S. Kanhere, Nirupama Bu-

lusu, and Wen Hu, “Ear-phone: an end-to-end participatory urban noise

mapping system,” in Proceedings of the 9th ACM/IEEE International

Conference on Information Processing in Sensor Networks (IPSN’ 10),

Stockholm, Sweden, 2010, pp. 105–116, ACM.

[10] Saurabh Amin, Steve Andrews, Saneesh Apte, Jed Arnold, Jeff Ban,

Marika Benko, Re M. Bayen, Benson Chiou, Christian Claudel, Coralie

Claudel, Tia Dodson, Juan carlos Herrera, Ryan Herring, Quinn Ja-

cobson, Toch Iwuchukwu, James Lew, Xavier Litrico, Lori Luddington,

Jd Margulici, Ali Mortazavi, Xiaohong Pan, Tarek Rabbani, Tim Racine,

Erica Sherlock-thomas, Dave Sutter, and Andrew Tinka, “Mobile century

using gps mobile phones as traffic sensors: A field experiment,” in 15th

World Congress on Intelligent Transportation Systems 2008, 2008, p. 18.

[11] James Horey, Arthur B. Maccabe, and Angela Mielke, “Kensho: a dy-

namic tasking architecture for sensor networks,” SIGBED Rev., vol. 4,

pp. 19–24, July 2007.

100

[12] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,

and M. B. Srivastava, “Participatory sensing,” in Workshop on World-

Sensor-Web (WSW06), 2006, pp. 117–134.

[13] Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane, Emiliano

Miluzzo, and Ronald A. Peterson, “People-centric urban sensing,” in

Proceedings of the 2nd Annual International Wireless Internet Conference

(WICON’ 06), Boston, Massachusetts, 2006, p. 18, ACM.

[14] Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert

Szewczyk, Alec Woo, Eric Brewer, and David Culler, “The emergence

of networking abstractions and techniques in tinyos,” in Proceedings of

the 1st conference on Symposium on Networked Systems Design and Im-

plementation, San Francisco, California, 2004, pp. 1–1.

[15] Kaisen Lin and Philip Levis, “Data discovery and dissemination with

dip,” in Proceedings of the 2008 International Conference on Informa-

tion Processing in Sensor Networks (IPSN 2008), Washington, District

of Columbia, USA, 2008, pp. 433–444.

[16] Luca Mottola and Gian Pietro Picco, “Programming wireless sensor net-

works: Fundamental concepts and state-of-the-art,” ACM Computing

Surveys (Accepted), , no. 1, pp. 1–57, 2009.

[17] Zigbee, “Low-rate wireless personal area networks,” May 2011.

[18] Daniel B. Work, Olli-Pekka Tossavainen, Quinn Jacobson, and Alexan-

dre M. Bayen, “Lagrangian sensing: traffic estimation with mobile de-

vices,” in Proceedings of the 2009 conference on American Control Con-

ference, St. Louis, Missouri, USA, 2009, ACC’09, pp. 1536–1543, IEEE

Press.

101

[19] Wen-Zhan Song, Renjie Huang, Mingsen Xu, Andy Ma, Behrooz Shi-

razi, and Richard LaHusen, “Air-dropped sensor network for real-time

high-fidelity volcano monitoring,” in Proceedings of the 7th international

conference on Mobile systems, applications, and services, Kraków,

Poland, 2009, MobiSys ’09, pp. 305–318, ACM.

[20] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan

Peh, and Daniel Rubenstein, “Energy-efficient computing for wildlife

tracking: design tradeoffs and early experiences with zebranet,” in Pro-

ceedings of the 10th international conference on Architectural support for

programming languages and operating systems. 2002, ASPLOS-X, pp. 96–

107, ACM.

[21] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and

John Anderson, “Wireless sensor networks for habitat monitoring,” in

Proceedings of the 1st ACM international workshop on Wireless sensor

networks and applications, New York, NY, USA, 2002, WSNA ’02, pp.

88–97, ACM.

[22] Jerry Zhao and Ramesh Govindan, “Understanding packet delivery per-

formance in dense wireless sensor networks,” in Proceedings of the 1st

international conference on Embedded networked sensor systems, Los An-

geles, California, USA, 2003, SenSys ’03, pp. 1–13, ACM.

[23] Crossbow, “Micaz mote platform,” in MicaZ Mote Platform, San Jose,

CA, Oct Oct 2009, pp. 1–1.

[24] Hailun Tan, “Maximizing network lifetime in energy-constrained wire-

less sensor network,” in Proceedings of the 2006 international conference

on Wireless communications and mobile computing, Vancouver, British

Columbia, Canada, 2006, IWCMC ’06, pp. 1091–1096, ACM.

102

[25] Samuel Madden, Micheal J.Franklin, Joseph Hellerstein, and Wei Hong,

“Tinydb: An acquisitional query processing system for sensor networks,”

ACM Transaction on Database System, vol. 30, no. 1, pp. 122–173, March

2005.

[26] Matt Welsh and Geoff Mainland, “Programming sensor networks using

abstract regions,” in Proceedings of the 1st conference on Symposium on

Networked Systems Design and Implementation - Volume 1, San Fran-

cisco, California, 2004, pp. 3–3, USENIX Association.

[27] Philip Levis, Neil Patel, David Culler, and Scott Shenker, “Trickle: a

self-regulating algorithm for code propagation and maintenance in wire-

less sensor networks,” in Proceedings of the 1st conference on Symposium

on Networked Systems Design and Implementation - Volume 1, San Fran-

cisco, California, 2004, pp. 2–2, USENIX Association.

[28] Luca Mottola and Gian Pietro Picco, “Programming wireless sensor net-

works with logical neighborhoods,” in Proceedings of the first interna-

tional conference on Integrated internet ad hoc and sensor networks, Nice,

France, 2006, InterSense ’06, ACM.

[29] Open Geospatial Consortium, “Sensor model language (sensorml),” 2010.

[30] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and

David Culler, “smap: a simple measurement and actuation profile for

physical information,” in Proceedings of the 8th ACM Conference on

Embedded Networked Sensor Systems, Zurich, Switzerland, 2010, SenSys

’10, pp. 197–210, ACM.

[31] Karen Henricksen and Ricky Robinson, “A survey of middleware for sen-

sor networks: state-of-the-art and future directions,” in Proceedings of the

103

international workshop on Middleware for sensor networks, Melbourne,

Australia, 2006, MidSens ’06, pp. 60–65, ACM.

[32] World Wide Web Consortium, “Mathematical markup language

(mathml) version 3.0,” June 2010.

[33] Ben Greenstein, Eddie Kohler, and Deborah Estrin, “A sensor network

application construction kit (snack),” in Proceedings of the 2nd inter-

national conference on Embedded networked sensor systems, Baltimore,

MD, USA, 2004, SenSys ’04, pp. 69–80, ACM.

[34] Phillip Sitbon, Wu chi Feng, Nirupama Bulusu, and Thanh Dang,

“Sensetk: A multimodal, multimedia sensor networking toolkit,” in Pro-

ceedings of the 14th Annual Multimedia Computing and Networking Con-

ference, San Jose, CA, 2007, pp. 60–65.

[35] René Müller, Gustavo Alonso, and Donald Kossmann, “A virtual machine

for sensor networks,” in Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007, Lisbon, Portugal, 2007,

EuroSys ’07, pp. 145–158, ACM.

[36] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,

and David Culler, “The nesc language: A holistic approach to networked

embedded systems,” in Proceedings of the ACM SIGPLAN 2003 confer-

ence on Programming language design and implementation, San Diego,

California, USA, 2003, PLDI ’03, pp. 1–11.

[37] Yong Yao and Johannes Gehrke, “The cougar approach to in-network

query processing in sensor networks,” SIGMOD Rec., vol. 31, no. 3, pp.

9–18, 2002.

104

[38] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler, “Hood:

a neighborhood abstraction for sensor networks,” in Proceedings of the

2nd international conference on Mobile systems, applications, and ser-

vices, Boston, MA, USA, 2004, MobiSys ’04, pp. 99–110, ACM.

[39] Liqian Luo, Tarek F. Abdelzaher, Tian He, and John A. Stankovic, “Envi-

rosuite: An environmentally immersive programming framework for sen-

sor networks,” ACM Transactions on Embedded Computer Systems, vol.

5, pp. 543–576, August 2006.

[40] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei

Hong, “Tag: a tiny aggregation service for ad-hoc sensor networks,”

SIGOPS Operating Systems Review, vol. 36, pp. 131–146, December 2002.

[41] Christian Frank and Kay Rómer, “Algorithms for generic role assignment

in wireless sensor networks,” in Proceedings of the 3rd international con-

ference on Embedded networked sensor systems (Sensys’ 05), San Diego,

California, USA, 2005, pp. 230–242, ACM.

[42] Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh

Govindan, “Reliable and efficient programming abstractions for wireless

sensor networks,” in Proceedings of the 2007 ACM SIGPLAN confer-

ence on Programming language design and implementation, San Diego,

California, USA, 2007, PLDI ’07, pp. 200–210, ACM.

[43] Kirsten Terfloth, “Facts - a rule-based middleware architecture for wire-

less sensor networks,” in Proceedings of the first international conference

on communication system software and middleware (COMSWARE06,

New Delhi, India, January 2006, pp. 1–8.

105

[44] Ryan Newton, Greg Morrisett, and Matt Welsh, “The regiment macro-

programming system,” in Proceedings of the 6th International Conference

on Information Processing in Sensor Networks (IPSN’ 07), Cambridge,

Massachusetts, USA, 2007, pp. 489–498, ACM.

[45] Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner, “The

abstract task graph: a methodology for architecture-independent pro-

gramming of networked sensor systems,” in Proceedings of the 2005

workshop on End-to-end, sense-and-respond systems, applications and

services.

[46] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan,

“Macro-programming wireless sensor networks using kairos,” in Proceed-

ings of the International Conference on Distributed Computing in Sensor

Systems (DCOSS’ 05), Marina del Rey, California, 2005, pp. 126–140.

[47] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu, “Rapid de-

velopment and flexible deployment of adaptive wireless sensor network

applications,” in Proceedings of the 25th IEEE International Conference

on Distributed Computing Systems, Columbus, Ohio, 2005, ICDCS ’05,

pp. 653–662, IEEE Computer Society.

[48] CENS, “What’s noisy,” May 2011.

[49] Sandra Henderson, “Project budburst: Timing is everything,” May 2011.

[50] Nirupama Bulusu, Chun Tung Chou, Salil Kanhere, Yifei Dong, Shitiz

Sehgal, David Sullivan, and Lupco Blazeski, “Participatory sensing in

commerce: Using mobile camera phones to track market price dispersion,”

in Proceedings of the International Workshop on Urban, Community, and

106

Social Applications of Networked Sensing Systems, Raleigh, NC, 2009, pp.

1–5.

[51] CENS, “Bikestatic: Bike what’s good,” May 2011.

[52] Ashley, “Boyle heights: Truck stop,” May 2011.

[53] Donnie Kim, Nicolai Petersen, Mohammad Rahimi, Jeff Burke, and Deb-

orah Estrin, “Smartphone data acquisition and analysis for monitoring

food choices,” April 2011.

[54] Miguel A. Laguna, Javier Finat, and José A. González, “Remote health

monitoring: A customizable product line approach,” in Proceedings of

the 10th International Work-Conference on Artificial Neural Networks:

Part II: Distributed Computing, Artificial Intelligence, Bioinformatics,

Soft Computing, and Ambient Assisted Living, Berlin, Heidelberg, 2009,

IWANN ’09, pp. 727–734, Springer-Verlag.

[55] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel

Madden, Hari Balakrishnan, Sivan Toledo, and Jakob Eriksson, “Vtrack:

accurate, energy-aware road traffic delay estimation using mobile

phones,” in Proceedings of the 7th ACM Conference on Embedded Net-

worked Sensor Systems, Berkeley, California, 2009, SenSys ’09, pp. 85–98,

ACM.

[56] Google, “Availability of real-time traffic,” May 2011.

[57] Daniel B. Work, Olli-Pekka Tossavainen, Quinn Jacobson, and Alexan-

dre M. Bayen, “Lagrangian sensing: traffic estimation with mobile de-

vices,” in Proceedings of the 2009 conference on American Control Con-

ference, St. Louis, Missouri, USA, 2009, ACC’09, pp. 1536–1543, IEEE

Press.

107

[58] Emiliano Miluzzo, Nicholas D. Lane, Kristóf Fodor, Ronald Peterson,

Hong Lu, Mirco Musolesi, Shane B. Eisenman, Xiao Zheng, and An-

drew T. Campbell, “Sensing meets mobile social networks: the design,

implementation and evaluation of the cenceme application,” in Proceed-

ings of the 6th ACM conference on Embedded network sensor systems,

Raleigh, NC, USA, 2008, SenSys ’08, pp. 337–350, ACM.

[59] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler, “Hood:

a neighborhood abstraction for sensor networks,” in Proceedings of the

Mobile Systems (MobiSys’ 04), Boston, MA, 2004, pp. 99–110.

[60] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George,

S. George, L. Gu, T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic,

R. Stoleru, and A. Wood, “Envirotrack: Towards an environmental com-

puting paradigm for distributed sensor networks,” in Proceedings of the

24th IEEE International Conference on Distributed Computing Systems

(ICDCS’04), Tokyo, Japan, 2004, pp. 582–589.

[61] Ralph Kling, “Intel research mote,” June 2010.

[62] Oracle Labs, “Sun spot world,” June 2010.

[63] Arch Rock Corporation, “Arch rock’s energy optimize,” June 2010.

[64] Shimmer, “Shimmer sensor platform,” May 2011.

[65] Crossbow, “Telosb sensor platform,” May 2011.

[66] Pat Kinney, “Eee 802.15 wpan task group 4 (tg4),” May 2011.

[67] F. Ayazi and K. Najafi, “A harpss polysilicon vibrating ring gyroscope,”

Microelectromechanical Systems, Journal of, vol. 10, no. 2, pp. 169 –179,

jun 2001.

108

[68] Lizzie Tang and Chris Guy, “Radio frequency energy harvesting in wire-

less sensor networks,” in Proceedings of the 2009 International Confer-

ence on Wireless Communications and Mobile Computing: Connecting

the World Wirelessly, Leipzig, Germany, 2009, IWCMC ’09, pp. 644–648,

ACM.

[69] Jaeseok Yun, Shwetak Patel, Matt Reynolds, and Gregory Abowd, “A

quantitative investigation of inertial power harvesting for human-powered

devices,” in Proceedings of the 10th international conference on Ubiqui-

tous computing, Seoul, Korea, 2008, UbiComp ’08, pp. 74–83, ACM.

[70] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister, “System architecture directions for networked sensors,”

SIGPLAN Not., vol. 35, pp. 93–104, November 2000.

[71] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt, “Contiki - a

lightweight and flexible operating system for tiny networked sensors,”

in Proceedings of the 29th Annual IEEE International Conference on Lo-

cal Computer Networks, Washington, District of Columbia, USA, 2004,

LCN ’04, pp. 455–462, IEEE Computer Society.

[72] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Sri-

vastava, “A dynamic operating system for sensor nodes,” in Proceedings

of the 3rd international conference on Mobile systems, applications, and

services, Seattle, Washington, 2005, MobiSys ’05, pp. 163–176, ACM.

[73] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker,

J. Deng, and R. Han, “Mantis: system support for multimodal networks

of in-situ sensors,” in Proceedings of the 2nd ACM international confer-

ence on Wireless sensor networks and applications, San Diego, California,

USA, 2003, WSNA ’03, pp. 50–59, ACM.

109

[74] Hojung Cha, Sukwon Choi, Inuk Jung, Hyoseung Kim, Hyojeong Shin,

Jaehyun Yoo, and Chanmin Yoon, “Retos: resilient, expandable, and

threaded operating system for wireless sensor networks,” in Proceedings

of the 6th international conference on Information processing in sensor

networks, Cambridge, Massachusetts, USA, 2007, IPSN ’07, pp. 148–157,

ACM.

[75] Lin Gu and John A. Stankovic, “t-kernel: providing reliable os support

to wireless sensor networks,” in Proceedings of the 4th international con-

ference on Embedded networked sensor systems, Boulder, Colorado, USA,

2006, SenSys ’06, pp. 1–14, ACM.

[76] Anand Eswaran, Anthony Rowe, and Raj Rajkumar, “Nano-rk: An

energy-aware resource-centric rtos for sensor networks,” in Proceedings

of the 26th IEEE International Real-Time Systems Symposium, Wash-

ington, District of Columbia, USA, 2005, pp. 256–265, IEEE Computer

Society.

[77] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali, “Pro-

tothreads: simplifying event-driven programming of memory-constrained

embedded systems,” in Proceedings of the 4th international conference

on Embedded networked sensor systems, Boulder, Colorado, USA, 2006,

SenSys ’06, pp. 29–42, ACM.

[78] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek, Răzvan Musăloiu-

E, Philip Levis, Andreas Terzis, and Ramesh Govindan, “Tosthreads:

thread-safe and non-invasive preemption in tinyos,” in Proceedings of the

7th ACM Conference on Embedded Networked Sensor Systems, Berkeley,

California, 2009, SenSys ’09, pp. 127–140, ACM.

110

[79] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff

Johnson, Mario Ruiz, and Jonathan Lees, “Deploying a wireless sensor

network on an active volcano,” IEEE Internet Computing, vol. 10, no. 2,

pp. 18–25, 2006.

[80] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil

Turner, Kevin Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna,

David Gay, and Wei Hong, “A macroscope in the redwoods,” in Proceed-

ings of the 3rd international conference on Embedded networked sensor

systems, New York, NY, USA, 2005, SenSys ’05, pp. 51–63, ACM.

[81] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory

Fenves, Steven Glaser, and Martin Turon, “Health monitoring of civil

infrastructures using wireless sensor networks,” in Proceedings of the 6th

international conference on Information processing in sensor networks,

Cambridge, Massachusetts, USA, 2007, IPSN ’07, pp. 254–263, ACM.

[82] A. Sheth, K. Tejaswi, P. Mehta, C. Parekh, R. Bansal, S. Merchant,

T. Singh, U. B. Desai, C. A. Thekkath, and K. Toyama, “Senslide: a

sensor network based landslide prediction system,” in Proceedings of the

3rd international conference on Embedded networked sensor systems, San

Diego, California, USA, 2005, SenSys ’05, pp. 280–281, ACM.

[83] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Margaret

Martonosi, “Hardware design experiences in zebranet,” in Proceedings

of the second ACM Conference on Embedded Networked Sensor Systems

(SenSys’ 04), Baltimore, Maryland, 2004, pp. 227–238.

[84] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav

Kusy, András Nádas, Gábor Pap, János Sallai, and Ken Frampton, “Sen-

sor network-based countersniper system,” in Proceedings of the 2nd inter-

111

national conference on Embedded networked sensor systems, Baltimore,

MD, USA, 2004, SenSys ’04, pp. 1–12, ACM.

[85] Wen Hu, Van Nghia Tran, Nirupama Bulusu, Chun Tung Chou, Sanjay

Jha, and Andrew Taylor, “The design and evaluation of a hybrid sensor

network for cane-toad monitoring,” in Proceedings of the 4th international

symposium on Information processing in sensor networks, Los Angeles,

California, 2005, p. 71, IEEE Press.

[86] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson,

and David Culler, “An analysis of a large scale habitat monitoring appli-

cation,” in Proceedings of the 2nd international conference on Embedded

networked sensor systems, Baltimore, MD, USA, 2004, SenSys ’04, pp.

214–226, ACM.

[87] Milan Milenkovic, “Eco-sense buildings,” May 2011.

[88] Brewster McCracken, “Pecan street project,” May 2011.

[89] Konrad Lorincz, Bor-rong Chen, Geoffrey Werner Challen, Atanu Roy

Chowdhury, Shyamal Patel, Paolo Bonato, and Matt Welsh, “Mercury:

a wearable sensor network platform for high-fidelity motion analysis,” in

SenSys ’09: Proceedings of the 7th ACM Conference on Embedded Net-

worked Sensor Systems, Berkeley, California, 2009, pp. 183–196, ACM.

[90] Kamin Whitehouse, Gilman Tolle, Jay Taneja, Cory Sharp, Sukun Kim,

Jaein Jeong, Jonathan Hui, Prabal Dutta, and David Culler, “Mari-

onette: using rpc for interactive development and debugging of wireless

embedded networks,” in Proceedings of the fifth international conference

on Information processing in sensor networks (IPSN 06), Nashville, Ten-

nessee, USA, 2006, pp. 416–423, ACM.

112

[91] Philip Levis and David Culler, “Maté: a tiny virtual machine for sensor

networks,” SIGPLAN Not., vol. 37, no. 10, pp. 85–95, 2002.

[92] Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira,

Ramesh Govindan, Ben Greenstein, August Joki, Deborah Estrin, and

Eddie Kohler, “The tenet architecture for tiered sensor networks,” in

Proceedings of the 4th international conference on Embedded networked

sensor systems (SenSys 06), Boulder, Colorado, USA, 2006, pp. 153–166,

ACM.

[93] Jonathan W. Hui and David Culler, “The dynamic behavior of a data

dissemination protocol for network programming at scale,” in Proceedings

of ACM Sensys 04, Baltimore, Maryland, USA, 2004, pp. 81–94, ACM.

[94] Sandeep S. Kulkarni and Limin Wang, “Mnp: Multihop network repro-

gramming service for sensor networks,” in Proceedings of the 25th IEEE

International Conference on Distributed Computing Systems (ICDCS 05),

Washington, District of Columbia, USA, 2005, pp. 7–16.

[95] Mert Akdere, Cemal Çagatay Bilgin, Ozan Gerdaneri, Ibrahim Kor-

peoglu, Özgür Ulusoy, and Ugur Çetintemel, “A comparison of epidemic

algorithms in wireless sensor networks,” Computer Communications, vol.

29, no. 13-14, pp. 2450–2457, 2006.

[96] Larry Wood, “Graphics interchange format(sm) version 89a,” Graphics

Interchange Format Programming Reference, vol. 1, no. 1, pp. 1–34, 1990.

[97] Abraham Lempel and Jacob Ziv, “A universal algorithm for sequential

data compression,” IEEE Transactions on Information Theory, vol. 23,

no. 1, pp. 337–342, 1977.

113

[98] Wu chi Feng, Thanh Dang, John Kassebaum, and Tim Bauman, “Sup-

porting region-of-interest cropping through constrained compression,”

in Proceeding of ACM Multimedia 2008), Vancouver, British Columbia,

2008, pp. 745–748.

[99] Christopher M. Sadler and Margaret Martonosi, “Data compression al-

gorithms for energy-constrained devices in delay tolerant networks,” in

Proccedings of ACM Sensys 06), Boulder, Colorado, Nov. 2006, pp. 265–

279.

[100] Kazuki Konishi, Kumiko Maeda, Kazuki Sato, Akiko Yamasaki, Hirozumi

Yamaguchi, Teruo Higashino, and Keiichi Yasumoto, “Mobireal simulator

evaluating manet applications in real environments,” in Proceedings of

the MASCOTS 2005, Atlanta, Georgia, September 2005, p. 537.

[101] George F. Riley, “Simulation of large scale networks ii: large-scale net-

work simulations with gtnets,” in Proceedings of the 35th Winter Simula-

tion Conference (WSC’ 03), New Orleans, Louisiana, 2003, pp. 676–684,

Winter Simulation Conference.

[102] Crossbow, “Telosb mote platform,” in TelosB Mote Platform, San Jose,

CA, Oct Oct 2009, pp. 1–1.

[103] Philip Levis, Nelson Lee, Matt Welsh, and David Culler, “Tossim: accu-

rate and scalable simulation of entire tinyos applications,” in Proceedings

of the 1st international conference on Embedded networked sensor systems

(Sensys 03), Los Angeles, California, USA, 2003, pp. 126–137, ACM.

[104] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh, “Motelab:

a wireless sensor network testbed,” in Proceedings of the 4th international

114

symposium on Information processing in sensor networks, Los Angeles,

California, 2005, IPSN ’05, IEEE Press.

[105] HyungJune Lee, Alberto Cerpa, and Philip Levis, “Improving wireless

simulation through noise modeling,” in Proceedings of the 6th Interna-

tional Conference on Information Processing in Sensor Networks, IPSN

2007, Cambridge, Massachusetts, April 25-27, 2007, pp. 21–30.

[106] Marc Kramer and Alexander Geraldy, “Energy measurements for

micaz node,” in Technical Report, Technical University Kaisers

Lautern,GI/ITG KuVS, (2006), pp. 1–7.

[107] Thanh Dang, Nirupama Bulusu, and Wu-chi Feng, “Rida: A robust

information-driven data compression aorchitecture for irregular wireless

sensor networks,” in Proceedings of the Forth the European conference on

Wireless Sensor Networks, EWSN 07, Delft, The NetherLands, January

January 2007, pp. 133–149.

[108] Jeff Bonwick, “Space maps,” Sun Blog, vol. 38, pp. 393–394, 2010.

[109] D. Demirdjian, K. Tollmar, K. Koile, N. Checka, and T. Darrell, “Activity

maps for location-aware computing,” in Proceedings of the Sixth IEEE

Workshop on Applications of Computer Vision, Washington, District of

Columbia, USA, 2002, WACV ’02, pp. 70–, IEEE Computer Society.

[110] Tian He, John A. Stankovic, Chenyang Lu, and Tarek Abdelzaher,

“Speed: A stateless protocol for real-time communication in sensor net-

works,” in Proceedings of the 23rd International Conference on Dis-

tributed Computing Systems, Providence, Rhode Island, 2003, ICDCS

’03, pp. 46–, IEEE Computer Society.

115

[111] Jingyuan Li, Yafeng Wu, Krasimira Kapitanova, John A. Stankovic,

Kamin Whitehouse, and Sang H. Son, “Run time assurance of

application-level requirements in wireless sensor networks,” in Proceed-

ings of the 7th ACM Conference on Embedded Networked Sensor Systems,

Berkeley, California, 2009, SenSys ’09, pp. 367–368, ACM.

[112] Seth Copen Goldstein, Todd C. Mowry, Jason D. Campbell, Michael P.

Ashley-Rollman, Michael De Rosa, Stanislav Funiak, James F. Hoburg,

Mustafa Emre Karagozler, Brian Kirby, Peter Lee, Padmanabhan Pillai,

J. Robert Reid, Daniel D. Stancil, and Michael Philetus Weller, “Beyond

audio and video: Using claytronics to enable pario,” AI Magazine, vol.

30, no. 2, July 2009.

[113] Carlos Adolfo Piña Garćıa, Ericka-Janet Rechy-Ramı́rez, and V. Angélica

Garćıa-Vega, “Comparing three simulated strategies for cancer monitor-

ing with nanorobots,” in Proceedings of the 7th Mexican International

Conference on Artificial Intelligence: Advances in Artificial Intelligence,

Berlin, Heidelberg, 2008, MICAI ’08, pp. 1020–1030, Springer-Verlag.

116

