
Geometry in Wireless Sensor Networks

In-network Information Processing and Localization

A Dissertation

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Yang Yang

Fall 2013

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3622965
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3622965

c© Yang Yang

2013

All Rights Reserved

Geometry in Wireless Sensor Networks

In-network Information Processing and Localization

Yang Yang

APPROVED:

Miao Jin, Chair
Assistant Professor of Computer Science
The Center for Advanced Computer
Studies

Hongyi Wu
Professor of Computer Science
The Center for Advanced Computer
Studies

Nian-Feng Tzeng
Professor of Computer Engineering
The Center for Advanced Computer
Studies

Magdy Bayoumi
Professor of Computer Engineering
The Center for Advanced Computer
Studies

Mary Farmer-Kaiser
Interim Dean of the Graduate School

DEDICATION

This dissertation is dedicated to my father, Xiaomin Yang and my mother, Yanwei Yu.

ACKNOWLEDGMENTS

The work described here could not have been finished without help and support from others.

The following words cannot express the depth of my appreciation. First, I would like to

express my gratitude to my advisor, Dr. Miao Jin. Without her outstanding guidance and

continuous support throughout my doctoral studies, I could not have finished this work. I also

would like to thank Dr. Hong-Yi Wu, Dr. Nian-Feng Tzeng and Dr. Magdy Bayoumi for their

valuable supervision of my academic study and research. Second, I would like to thank all of

the CACS faculty for the wonderful knowledge they taught in classes and all of the CACS

staff for their help in my academic career. I also would like to thank all of my friends and

colleagues for their help, especially Ning Ding, Su Xia, Zhe Cui, Zhixun Zhou, Hongyu Zhou,

Xiyue Xiang, Buri Ban, Zhipeng Yang, Yao Zhao, Yang Liu, Ting Ning, Yanyan Han, Rajesh

Prasad, Ruochi Zhang, Yi Wang and Ran Zhang. Finally, I would like to give thanks to my

parents for their help, encouragement, and sacrifice. They always supported me without

considering themselves. Without their support, I would not be able to reach such a great

milestone in my life.

TABLE OF CONTENTS

DEDICATION . iv

ACKNOWLEDGMENTS. v

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER 1: Introduction. 1
1.1 Wireless Sensor Network . 1
1.2 Geometry in Wireless Sensor Networks . 1

CHAPTER 2: Distributed Information Storage and Retrieval in General 3D Wireless Sen-
sor Networks . 2
2.1 Background . 3

2.1.1 Overview of Distributed Information Storage and Retrieval Algorithms . 4
2.1.2 Challenges in 3D Networks . 6
2.1.3 Our Approach . 8

2.2 Cut Graph of Boundary Surface . 10
2.2.1 Topological Background . 10
2.2.2 Cut Graph of Boundary Surface . 12

2.2.2.1 Computing the Cut Graph . 13
2.2.2.2 Trimming . 14

2.3 Generating Planar Rectangle Virtual Coordinates . 16
2.3.1 Discrete Surface Ricci Flow . 16
2.3.2 Computing Planar Rectangle Virtual Coordinates 17

2.4 Implementation . 18
2.4.1 Data Replication . 18
2.4.2 Data Retrieval . 19
2.4.3 Delivery of Data and Query . 19
2.4.4 Storage . 20
2.4.5 Time Complexity and Communication Cost . 20

2.5 Simulations . 22
2.5.1 Producer and Consumer Costs . 23

2.5.1.1 Single Type of Data . 23
2.5.1.2 Aggregated Data . 23

2.5.2 Load Distribution . 25
2.5.3 Tradeoff Between Storage Cost and Consumer Cost 27

2.6 Discussions . 28

2.6.1 Network Model . 28
2.6.2 Network Dynamics . 29
2.6.3 Distance Sensitivity . 29

2.7 Summary . 30

CHAPTER 3: 3D Surface Localization with Terrain Model . 31
3.1 Background . 32

3.1.1 Our Approach . 34
3.2 Theoretical Knowledge . 37

3.2.1 Discrete Conformal Mapping . 37
3.2.2 Discrete Surface Ricci Flow . 38
3.2.3 Mobius Transformation . 39

3.3 Surface Network Localization . 40
3.3.1 Conformal Mapping to Plane . 40
3.3.2 Alignment . 43
3.3.3 Localization . 45
3.3.4 Time Complexity and Communication Cost . 45

3.4 Discussion . 46
3.4.1 The Size of Anchor Nodes . 46
3.4.2 Anchor Node Free . 46
3.4.3 Connectivity Only . 48

3.5 Simulations . 49
3.5.1 Terrain Models with Different Resolutions . 50
3.5.2 Networks with Measurement Errors . 51
3.5.3 Networks with Connectivity Information Only 52
3.5.4 The Convergence Time . 52

3.6 Summary . 53

CHAPTER 4: Conclusions. 54

REFERENCES. 57

BIOGRAPHICAL SKETCH. 62

vii

LIST OF TABLES

Table 2.1: Comparison of average producer and consumer costs of single type of data . . . 23

LIST OF FIGURES

Figure 2.1: A simple double-ruling scheme on a 2D grid sensor network. 5

Figure 2.2: A simple double-ruling scheme on a 3D grid sensor network. 7

Figure 2.3: A 3D sensor network model. 7

Figure 2.4: Network Models with different topologies. 8

Figure 2.5: Loops on a genus two eight surface. 11

Figure 2.6: Cut graph on different models. 12

Figure 2.7: The convergence rate of discrete Ricci flow. 21

Figure 2.8: Average consumer costs with the increase of data types. 24

Figure 2.9: Load distribution with one producer and one data type. 25

Figure 2.10: Load distribution with one hundred producers and ten data types. 26

Figure 2.11: Tradeoff between storage cost and consumer cost. 28

Figure 3.1: DTM and Sensor Network Triangulation Mesh. 36

Figure 3.2: Circle Packing Metric. 38

Figure 3.3: Localization error decreases with the increased number of anchor nodes. . . . 47

Figure 3.4: Color coding with conformal factors on plane. 48

Figure 3.5: Localization results for different network models. 49

Figure 3.6: The same set of DTMs as shown in Fig. 3.5 with very low resolutions. 50

Figure 3.7: Localization results with different DTM resolutions. 50

Figure 3.8: Localization error increases with one-hop distance measurement. 51

Figure 3.9: Networks with Connectivity Information Only. 52

Figure 3.10: The convergence rate of the discrete surface Ricci flow algorithm. 53

xi

CHAPTER 1: INTRODUCTION

1.1 Wireless Sensor Network

Wireless sensors are devices equipped with different types of modules, such as

temperature, odorimeter, barometers, light and so on. These sensors can be used to collect the

measured data from the environments and communicate with each other through the wireless

interfaces. Some of them could be very small and simple and some of them could be

computational powerful. These wireless sensors can form a network and work with each other

to solve various problems. Nowadays, wireless sensors can be adopted in many areas. For

example, they can be used underwater for detection, they can be distributed in the forest to

monitor the environments, they can be deployed on the mountain to study the activity of the

volcanoes, or they can even be equipped in the human body to monitor the blood pressure.

Wireless sensor networks have experienced an explosive growth in recent years. In

comparison with earlier computer communication systems, the unique and intrinsic challenge

in sensor networking is distributed and scalable computation and communication.

1.2 Geometry in Wireless Sensor Networks

It is obvious that the location of sensors could be on a two-dimensional plane, a

three-dimensional ocean or a three-dimensional mountain. For the communication models,

we can extract some graphs from the sensor network communication models such like the unit

disk graph. For sensing model, the signal of sensors could be broadcast or directional such

that the sensing model of sensors could be a disk or a sector. In fact, geometry is everywhere

in the wireless sensor network field. As long as we could identify some geometric problems

from the sensor network studies, we could probably provide some efficient algorithms and

useful tools from the geometry world to help the network issues.

CHAPTER 2: DISTRIBUTED INFORMATION STORAGE AND RETRIEVAL IN

GENERAL 3D WIRELESS SENSOR NETWORKS

Distributed in-network data-centric processing aims to reduce energy consumed for

communication and establish a self-contained data storage, retrieval, aggregation, and query

sensor system which focuses more on the data itself rather than the identities of the individual

network nodes. Double-ruling based schemes support efficient in-network data-centric

information storage and retrieval, especially for aggregated data, since all data with different

types generated in a network can be conveniently retrieved along any single retrieval curve.

Previous double-ruling based research focuses on two-dimensional (2D) wireless sensor

networks where a 2D planar setting is assumed. With increasing interests in deploying

wireless sensors in three-dimensional (3D) space for various applications, it is urgent yet

fundamentally challenging to design double-ruling based approach in general 3D sensor

networks because double-ruling based schemes in general have much harder geometric

constraints than other distributed in-network data-centric processing schemes.

In this chapter, we propose a geographic location free double-ruling based approach for

general 3D sensor networks with possibly complicated topology and geometric shapes.

Without the knowledge of the geographic location and the distance bound, a query simply

travels along a simple curve with the guaranteed success to retrieve aggregated data through

time and space with one or different types across the network. Extensive simulations and

comparisons show the proposed scheme with low cost and a balanced traffic load.

2.1 Background

Wireless sensor networks have experienced an explosive growth in recent years. In

comparison with earlier computer communication systems, the unique and intrinsic challenge

in sensor networking is distributed and scalable computation and communication. In

particular, an individual sensor is highly resource-constrained, with extremely limited

computing, storage, and communication capacities. On the other hand, however, the target

applications often require large-scale deployment where the amount of data generated, stored

and transmitted in the network grow proportionally with the network size. This dilemma

renders the conventional sensor networking strategy that intends to transmit all sensor data to

an external server impractical. To this end, distributed in-network data-centric storage and

retrieval have been extensively discussed in the literature. The new paradigm of distributed

in-network data-centric processing focuses more on data themselves rather than the identities

of individual sensor nodes. Data are uniquely named and data processing is achieved using

data names instead of network addresses, aiming to establish a self-contained data acquisition,

storage, retrieval, and query system.

While a two-dimensional (2D) planar setting has been assumed in most earlier studies of

in-network data storage and retrieval, there have been increasing interests in deploying

wireless sensors in three-dimensional (3D) space for such applications as underwater

reconnaissance and atmospheric monitoring. Several explorative 3D sensor network testbeds

have been developed recently (either in space or underwater). Although they are all in

relatively small size, we foresee large-scale deployment will soon be demanded in the near

future.

This research focuses on in-network data-centric information storage and retrieval in

3

large-scale three-dimensional (3D) sensor networks. We first summarize existing in-network

data-cebtric storage and retrieval algorithms for two-dimensional (2D) networks, and then

discuss the challenges in 3D networks, followed by an overview of our proposed approach.

2.1.1 Overview of Distributed Information Storage and Retrieval Algorithms

Geographical hash table is a general approach for in-network data-centric storage and

retrieval. A basic geographical hash table based scheme hashes a datum by its type into

geographic coordinates and stores at the sensor node geographically nearest to such

coordinates. Queries apply the same hash table with the desired type to retrieve data from the

storage node. Delivery of the data is implemented by geographic routing, such as GPSR. To

reduce bottleneck at the hash nodes and improve data survivability under node failure, a

geographical hash table based scheme applies a structured replication with multiple mirrors

scattered in the network. Structured replication reduces the cost of storage but increases the

cost of queries.

Different from geographical hash table based schemes, a double-ruling based scheme

works as follows. A datum (or a pointer to the datum) is duplicated along a curve called

replication curve, and a query travels along another curve called retrieval curve. Successful

retrieval is guaranteed if the retrieval curve intersects the replication curve. A simple

double-ruling scheme on a planar grid is illustrated in Figure 2.1 where nodes are located at

lattice points. The replication curves follow the horizontal lines and the retrieval curves follow

the vertical lines. By traveling along a vertical line, a data query, called information consumer,

can always find the requested data generated by an information producer.

Double-ruling based schemes support efficient data retrieval, since all data with different

types generated in a network can be conveniently retrieved along any retrieval curve. This is

4

Figure 2.1: A simple double-ruling scheme on a 2D grid sensor network.

in a sharp contrast to geographical hash table based schemes where an information consumer

has to visit multiple nodes scattered in the network to collect data with different types hashed

to various locations. Moreover, with modestly increased data replication, a double-ruling

based scheme has well balanced load across the network, while nodes near the hashed location

suffer much higher traffic load than others in a geographical hash table based scheme. A

double-ruling based scheme also has better fault tolerance against geographically concentrated

node failure by replicating data on nodes that are uncorrelated with node proximity.

Double-ruling based schemes achieve all the desired properties at the cost of more data

duplication and much stronger geometric constraints on the shape of a sensor network than

geographical hash table based schemes. Previous double-ruling based schemes either assume

networks with 2D grid shape or with heavy data replication to achieve high probability that

5

the retrieval curve would meet one of the replication curves within the sensor network. To

extend double-ruling scheme to networks with uneven sensor distribution and irregular

geometric shapes, landmark-based scheme is proposed to partition the sensor field into tiles.

GHT is adopted at the tile level, i.e., a data type is hashed to a tile instead of a single node.

Inside each tile, a double-ruling scheme is applied to ensure the intersection of a retrieval path

and a replication path. Later, a location-free double-ruling scheme is introduced in the year of

2007 based on boundary recognition and the computation of the respective gradient fields. To

improve the flexibility of retrieval, a spherical projection-based double-ruling scheme is

proposed in the year of 2006, where a planar network is mapped to a sphere based on the

inverse of stereographic projection. Both the replication and retrieval curves are great circles

such that a retrieval curve always intersects all other replication circles.

2.1.2 Challenges in 3D Networks

Although double-ruling has shown highly effective for distributed information storage

and retrieval in 2D sensor networks, it cannot be efficiently applied in 3D networks. A naive

double-ruling based scheme in 3D sensor networks is shown in Figure 2.2. In such a 3D

grid-based cube-shape sensor network, data replication and retrieval are along the horizontal

and vertical planes respectively, such that a retrieval plane intersects all replication planes.

Besides an extremely high cost of data replication, such 3D grid-based double-ruling scheme

requires a network with a regular cube shape and uniform node distribution. Recently, a

volumetric parametrization based double-ruling scheme is introduced in LuoSECON 2012.

They map a 3D sensor network to a cube and assign each node a virtual coordinates. Their

method require the network shape topologically equivalent to a cube. However, many

practical 3D sensor networks are topologically different from a cube. Figure 2.3(a) shows a

6

Figure 2.2: A simple double-ruling scheme on a 3D grid sensor network.

3D sensor network with sensors deployed underwater around an island. The topology of the

network is equivalent to a donut with a handle as shown in Figure 2.3(b). Figure 2.3(c) gives

another example of a 3D sensor network with multiple coverage holes inside.

(a) (b)

Figure 2.3: A 3D sensor network model.

Another challenge of double-ruling in 3D sensor networks is the delivery of data and

query to the mapped geo-localizations for in-network data storage and retrieval. Previous

GHT and double-ruling based schemes on 2D sensor networks rely on geographical routing

7

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.4: Network Models with different topologies.

schemes, such as GPSR. They require location information. However the cost to equip GPS

receiver at each node are greatly exacerbated in a 3D sensor network due to the dramatically

increased sensor quantity in order to cover a 3D space compared with its 2D counterpart.

Some application scenarios even prohibit the reception of satellite signals by part or all of the

sensors, rendering it impossible to solely rely on global navigation systems. Moreover,

geographic routing with local information only that can guarantee constant storage at each

node is non-trivial and even impossible in general 3D sensor networks.

2.1.3 Our Approach

The proposed approach is motivated by a topology concept that any closed surface can

be cut open to a topological disk along an appropriate set of edges called a cut graph of the

8

surface. Two examples given in Figure 2.4 briefly illustrate the basic idea of our approach.

The first example is a 3D volumetric sensor network model with two handles (see Figure

2.4 (a)). We first detect its boundary nodes and build a triangular structure of the identified

boundary surface (see Figure 2.4 (a)). We also compute a cut graph of the boundary surface

which is marked with yellow color in Figure 2.4 (b). We cut the boundary surface open to a

topological disk along the cut graph and then map it to an aligned planar rectangle such that

each boundary node is associated with a planar rectangle virtual coordinates (see Figure

2.4 (c)). Each non-boundary sensor stores the ID of its neighbor nearest to the boundary. A

data generator follows the sequence of IDs to the boundary, and then travels along a

horizontal line of the virtual planar rectangle and leaves data copies. The two horizontal lines

marked with blue shown in Figure 2.4 (c) correspond to the two data replication curves shown

in Figure 2.4 (g) marked with the same color. similarly, a consumer follows the sequence of

IDs to the boundary and collects the aggregated data of different types along a vertical line.

The vertical line marked with red shown in Figure 2.4 (c) corresponds to the data aggregation

curve shown in Figure 2.4 (g) marked with the same color. The second example is also a 3D

sensor network deployed under water (see Figure 2.4 (d)). We cut its boundary surface open

to a topological disk along a computed cut graph (see Figure 2.4 (e)) and then assign each

boundary node a planar rectangle virtual coordinates (see Figure 2.4 (f)). Similarly, Figure

2.4 (h) gives a data query example.

The proposed cut graph based double-ruling approach works for 3D sensor networks

with general topology and geometry shapes. Without the knowledge of the geographic

location and the distance bound, the success of data retrieval is always guaranteed because a

pair of horizontal and vertical lines surely intersect. Retrieval of aggregated data through time

9

and space with different types is also guaranteed. A consumer travels along a vertical line and

then collects all desired information in the network because the vertical line intersects all

horizontal lines - replication curves of the network. The proposed algorithm has no

constraints on communication models and is fully distributed. Each node only needs to

exchange information with its direct neighbors. The amount of extra information stored at

individual nodes is constant and small. Simulation results show the proposed approach with

low cost and a balanced traffic load.

2.2 Cut Graph of Boundary Surface

Given a sensor network deployed in 3D volume, we first need to detect its boundary

nodes and extract a triangulated boundary surface of the 3D volume. Note that the boundary

surface of a 3D volume is a closed surface (i.e., without any holes). We apply an existing

boundary detection algorithm to identify boundary nodes of a 3D volume sensor network and

the algorithm proposed in triangulation to extract a triangular structure of the detected

boundary nodes. Both algorithms are fully distributed, with no constraints on communication

models. They require no GPS information, but distance information within one-hop

neighborhood only. Although both methods can tolerate distance measurement errors, we

don’t require accurate detection of all boundary nodes, since we only need a connected

triangular structure to approximate the boundary surface of the 3D volume network. We even

allow some mistakenly detected non-boundary vertices on the triangular structure.

2.2.1 Topological Background

A surface is orientable if it has two distinct sides. General surfaces in real world are

orientable surfaces. A loop is a continuous function of the circle on surface. Two loops are

homotopic if there is a continuous deformation from one loop onto the other on surface.

10

Figure 2.5: Loops on a genus two eight surface.

Denote M a connected and orientable surface embedded in 3D, and L a loop on M . L is

contractible if it is homotopic to a constant (a loop which can shrink to a single point) as

shown in Figure 2.5 with L1; otherwise it is non-contractible. L is surface separating if it can

be expressed as the symmetric difference of boundaries of topological disks embedded in

surface as shown in Figure 2.5 with L1 and L2; otherwise it is non-separating as shown in

Figure 2.5 with L3. Any non-separating loop is a non-contractible loop; similarly, any

contractible loop is a separating loop.

The genus of M is the maximum number of disjoint non-separating loops L1, L2,

· · · , Lg in M ; that is, any Li and Lj have no topological intersection if i 6= j, and

M\(L1 ∪ · · ·Lg) is connected. The genus number is the most basic topology information of a

surface and equals to the number of handles. For example, a disk and a sphere have a genus 0,

and a torus has a genus 1.

Any closed surface M (e.g., a surface without a boundary) can be opened into a

topological disk D (e.g., a surface with one boundary) by cutting along an appropriate set of

edges called cut graph. Denote G a cut graph of M . Each edge of G appears twice on the

boundary of D, and we can obtain M by gluing together these corresponding boundary edges

11

(a) Network I. (b) Network II.

(c) Network III.

Figure 2.6: Cut graph on different models.

of D. Figure 2.6 shows cut graphs of a genus 0, a genus 1, and a genus 2 surfaces respectively.

The three closed surfaces are cut open to topological disks along the given cut graphs. Denote

g the genus number of M , the number of base loops of a cut graph is 2g.

2.2.2 Cut Graph of Boundary Surface

The triangulated boundary surface of a 3D sensor network is connected, orientable, and

closed. We abuse the symbol M to denote a connected and orientable triangulated surface

embedded in 3D. Specifically, we denote M = (V,E, F) a triangulated surface embedded in

3D, consisting of vertices V , edges E, and triangle faces F . Denote vi ∈ V a vertex with id i;

eij ∈ E an edge with two ending vertices vi and vj ; fijk ∈ F a triangle face with vertices vi,

vj , and vk.

The problem of computing the shortest cut graph of a general topology surface proves

the problem NP-hard and provides a polynomial-time approximation algorithm. Canonical

12

systems of loops, a system of 4g (g is the genus number of the surface) loops with a single

base vertex to cut a surface into a disk. Erickson and Whittlesey provide a greedy algorithm to

compute a shortest system of such canonical loops.

Instead of adopting the above optimization algorithms, we propose a fully distributed

two-step algorithm, aiming to balance the size of the cut graph measured by the number of

edges and the computation cost and the communication cost measured by the number of

exchanged messages. The basic idea of the first step is to grow triangles with the width first

way. At each step of the growing, all the marked triangles always form a topological disk and

the marked edges form the boundary of the disk. After all the triangles have been marked, we

can cut the closed surface into a topological disk along the marked edges. The size of the cut

graph can be largely reduced by trimming away those unnecessarily marked edges at the

second step for trimming. For topological sphere surfaces, there is no marked edges left after

trimming, which provides a convenient way to automatically identify the topology of a 3D

sensor network.

2.2.2.1 Computing the Cut Graph

The algorithm starts from one randomly chosen triangle fijk of M , which can be the one

with the smallest node id. fijk marks itself and its three edges eij , ejk, and eki. Each of the

marked edges checks whether it is shared by two marked triangles. For example, edge eij

finds its neighboring triangle fjil unmarked. eij then removes mark from itself but adds mark

on triangle fjil and edges eil and elj . Note that it is possible that eil or elj may have been

marked already. The propagation algorithm stops when all the triangles of M have been

marked. Let all the marked edges be G, which form a cut graph of M . We prove the

correctness of the algorithm as follows.

13

Theorem 2.1. A closed surface M can be cut into a topological disk D along the cut graph G

computed by the above algorithm.

Proof. We can prove it by way of induction. The algorithm starts from one triangle of M

with its edges marked. This single triangle is topologically equivalent to a disk with boundary

edges marked. We denote it as D1. After the i− 1 steps, i− 1 triangles have been marked and

added. We have Di−1. Suppose Di−1 is a topological disk with boundary edges marked. At

the step i, an unmarked triangle is identified, which means this triangle does not belong to

Di−1 but must share at least one of the boundary edges of Di−1. By adding this triangle into

Di−1 and updating the marked edges as the way described by the algorithm, the newly formed

Di is still a topological disk. Marked edges form the boundary of Di. When all the triangles of

M have been marked, Dm has included all the triangles and is still a topological disk with its

boundary edges marked. The surface M can then be cut open to a topological disk D = Dm

along the marked edges by splitting each marked edge and its two ending vertices to two.

Theorem 2.2. The cut graph computed by the above algorithm is connected.

Proof. This can be easily proved by way of contradiction. If the computed cut graph is

disconnected, then the boundary of Dm is disconnected. It is impossible that the boundary of

a topological disk is disconnected.

2.2.2.2 Trimming

If we cut a closed surface M open along the cut graph computed by the above

propagation algorithm, the boundary of the topological disk surface D would be extremely

zigzagged. The size of the boundary can be Ω(m), where m is the number of triangles of M .

The reason is that in the worst case the size of the marked edges is increased by one each time

when one triangle of M is marked.

To control the size of the cut graph, we need to trim away those unnecessarily marked

edges. Marked edges forming non-segmenting loops of M are necessary because the loops

correspond to the cut open of each handle. While for those marked and dangling tree edges

which do not belong to or connect any loops, M can still be cut open to a topological disk

after removing them from the cut graph.

14

The algorithm of trimming is straightforward. Each marked edge checks its two ending

vertices whether they connect to other marked edges. If one of its two ending vertices does

not connect to any other marked edges, the edge is identified as a dangling tree edge and can

be unmarked - removed from the cut graph. The unmarked edge will then send messages to its

neighboring marked edges through the other ending vertex. Its neighbors then conduct the

same checking when receiving the message. The trimming process stops when there is no

marked, dangling tree edges. Note that it is impossible that the two ending vertices of a

marked edge do not connect to any other marked edges, because we proved that the marked

edges are connected in Theorem 2.2.

Theorem 2.3. The removal of marked, dangling tree edges does not disconnect the cut graph.

Proof. Each dangling tree edge connects to G with only one ending vertex when it is

removed. So the removal of dangling tree edges does not disconnect G.

We have the following Theorem which said that all marked edges will be unmarked at

the end of the trimming process for topologically sphere surface M .

Theorem 2.4. After the trimming process, there is no marked edge left for a topological

sphere surface M (g = 0).

Proof. We first use way of contradiction to prove the cut graph of a topological sphere

surface M computed by the above propagation algorithm is a tree. Considering the fact that

M is topologically equivalent to a sphere, every loop on M is contractible, therefore surface

separating, If there exist a loop in the computed cut graph of M , the loop will separate M to

two disconnected parts. This contradicts what we have proved in Theorem 2.1: at each step i

of the propagation, Di is always a topological disk. So the computed cut graph of a

topological sphere surface M should be a tree without loops. Each marked edge will be

identified as dangling tree edge and removed eventually by the proposed trimming algorithm.

There will be no marked edges left at the end of the trimming process.

For a boundary surface detected topologically equivalent to a sphere, we conduct a

simple flooding on the boundary surface to find a pair of boundary nodes with the longest

15

shortest path (hops) on the surface. We then cut the surface open along the shortest path

between the pair of nodes.

2.3 Generating Planar Rectangle Virtual Coordinates

After we virtually cut the outside boundary surface of a network M to a topological disk

D along the computed cut graph. We then apply discrete surface Ricci flow to compute the

planar rectangle virtual coordinates of boundary nodes.

2.3.1 Discrete Surface Ricci Flow

To briefly introduce the concept of discrete surface Ricci flow, we start from the

definitions of circle packing metric and discrete Gaussian curvature. Given a topological disk

triangulated surface D = (V,E, F), We assign each vi a circle with radius γi and denote the

radius function Γ : V → R
+. For each edge eij , the two circles at vi and vj intersect with an

acute angle φij . We call φij the weight of eij , and denote the weight function Φ : E → [0,
π

2
].

Definition 2.1 (Circle Packing Metric). A circle packing metric of D includes Γ and Φ.

Denote lij the length of eij . lij can be computed from γi, γj and φij from the following

cosine law:

lij
2 = γi

2 + γj
2 + 2γiγj cosφij. (2.1)

Discrete Gaussian curvature measures how curved a discrete surface is embedded in R
3.

Definition 2.2 (Discrete Gaussian Curvature). Denote θjki the corner angle attached to vi

belonging to fijk, ∂D the the boundary of D, and Ki the discrete Gaussian curvature at vertex

vi. Ki can be computed as the angle deficit at vi:

Ki =















2π −
∑

fijk∈F

θ
jk
i , vi 6∈ ∂D;

π −
∑

fijk∈F

θ
jk
i , vi ∈ ∂D.

(2.2)

Discrete surface Ricci flow deforms the initial circle packing metric such that the final

circle packing metric induces edge lengths satisfying the target Gaussian curvatures.

16

2.3.2 Computing Planar Rectangle Virtual Coordinates

A planar rectangle has zero Gaussian curvature everywhere except its four corner points

with Gaussian curvature
1

2
π. So we uniformly pick four vertices along the boundary of the

topological disk triangulated surface D and assign their target Gaussian curvatures: ki =
1

2
π.

For all other vertices of D, we assign: ki = 0.

We initialize a circle packing metric on D such that each circle associated with a vertex

has a unit radius, i.e., γi = 1, ui = log γi = 0 for each vi, and φij =
π

2
for each eij . Discrete

surface Ricci flow deforms the circle packing metric on D such that the induced edge lengths

from final circle packing metric satisfy our pre-defined Gaussian curvatures. Isometric

embedding of D on plane based on the computed edge lengths generates a planar rectangle

mapping of D. The mapping is diffeomorphism that provides planar rectangle virtual

coordinates for vertices of D. The detail of the algorithm is as follows:

1. Initialization of circle packing metric: For each vi, ui = 0. For each eij , φij =
π

2
,

2. Compute edge length for each eij: lij = eui + euj ;

3. Compute each θ
jk
i according to the law of cosines:

θ
jk
i = cos−1

l2ij + l2ki − l2jk

2lijlki
;

4. Compute current Gaussian curvature ki for each vi as Equation 3.2.

5. Denote ǫ a threshold and set to 1e− 4. If all |ki − ki| < ǫ, the algorithm goes to the next

step; otherwise, ui = ui + δ(ki − ki), where δ is a small constant and set to 0.1, and the

algorithm goes back to step 2.

17

6. Isometric embedding: Denote pi the planar coordinates of each vi. Start from a

boundary edge eij with vi one of the four chosen boundary vertices: we assign

pi = (0, 0), pj = (lij, 0). In a breadth first search way, if fijk has exactly two vertices

(e.g., vi and vj) with planar coordinates (e.g., pi and pj), compute pk as one intersection

point of two circles centered at pi and pj with radii lik and ljk respectively, and

satisfying (pk − pi)× (pj − pk) > 0. Repeat the above process until every vertex has its

planar coordinates. The planar rectangle is automatically aligned with x-axis.

Note that each boundary node only needs to exchange information with its direct

neighbors when implementing the above algorithm.

2.4 Implementation

In this section, we implement every part of the proposed algorithm by using our own

simulators.

2.4.1 Data Replication

Since a network is location free, we let each non-boundary node store the ID of its

neighbor nearest to the boundary of the network. A producer follows a sequence of nodes to

the nearest boundary node denoted as p. The boundary surface of the network has been

mapped to a virtual planar rectangle, so each boundary node has a planar rectangle virtual

coordinates. We assume a data replication curve is along a horizonal line of the virtual planar

rectangle. The horizontal line through p is unique, solely determined by the y coordinate of

the planar rectangle virtual coordinates of p. The producer travels and leaves pointers or

copies of the data at nodes along the line with two directions - one with the increased and the

other with the decreased x values. At each step, the producer simply checks the planar

18

rectangle virtual coordinates of its one range neighbors and chooses the one with the closest

distance to the line and along the current direction. Once finishing data replication, the

producer turns back and follows the reversed path back.

2.4.2 Data Retrieval

Without the aware of the knowledge of the producer’s location and the distance, a

consumer follows a sequence of nodes to the nearest boundary node denoted as p. We assume

a data retrieval curve is along a vertical line of the virtual planar rectangle. A vertical line

passing through p is determined solely by the x coordinate of the planar rectangle virtual

coordinates of p. The consumer simply travels along the line with two directions - one with

the increased and the other with the decreased y values. At each step, similarly, the producer

simply checks the planar rectangle virtual coordinates of its one range neighbors and chooses

the one with the closest distance to the line and along the current direction. The consumer can

stop as soon as it hits the replication curve of its desired data. If there are multiple producers

and different types of data, the consumer travels along a full vertical line to collect all the

aggregated data in the network. Once data has been collected, the consumer turns back and

follows the reversed path back.

2.4.3 Delivery of Data and Query

As a preprocessing, each of the boundary nodes sends messages recording its minimum

hop count to boundary (initialized to zero) to its neighbors. A non-boundary node receives a

message and compares with its current record (initialized to infinity). If the received count has

more than one hop count less, the node updates its current one and records the ID of its

neighbor sending this message. The node also updates the count of the message and then

19

sends to its neighbors. Otherwise, the node simply discards the message. When there is no

message in the network, each of the non-boundary nodes of the network has recorded the ID

of its neighbor nearest to boundary. It is then straightforward for a producer or a consumer to

travel along the shortest path to the boundary according to the sequences of IDs.

2.4.4 Storage

We have very limited information stored at the nodes of the network. For each of the

non-boundary nodes, it only stores the ID of its neighbor nearest to boundary; for each of the

boundary nodes, it stores the computed planar rectangle virtual coordinates. For the data

replication, we can leave copies of data on either all the nodes along the replication curve; or

just a small portion of nodes sampled along the replication curve, which is a trade off between

the storage cost and the retrieval cost.

2.4.5 Time Complexity and Communication Cost

We measure the communication cost by the number of messages. Denote the size of all

the nodes of a network as n, the size of its boundary nodes as m. We summarize the time

complexity and the communication cost of the major steps of the cut graph based

double-ruling scheme.

Both the time complexity and the communication cost to compute the cut graph are

linear to the size of the boundary nodes of the network, O(m), including the trimming step.

We apply discrete Ricci flow to compute the planar rectangle virtual coordinates. The

number of iterations, as shown by Figure 2.7 for the model in Figure 2.4 (a), determines the

time complexity of computing the edge lengths, given by −C
log ǫ

λ
where C is a constant, ǫ is

the threshold of curvature error (set to 1e-4 in our implementation), and λ is the step length of

20

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

The number of iterations (x102)

D
ec

re
as

in
g

of
 th

e
cu

rv
at

ur
e

er
ro

r

Figure 2.7: The convergence rate of discrete Ricci flow.

each iteration (set to 0.1 in our implementation). Since each vertex only needs to exchange

messages with its one range neighbors at one iteration, the corresponding communication cost

is −C
log ǫ

λ
d′m where d′ is the average vertex degree of the triangulated boundary surface.

With the computed edge lengths, both the time complexity and the communication cost of

computing the planar rectangle embedding are linear to the size of the boundary nodes, i.e.,

O(m).

Let the boundary nodes of the network synchronize among themselves and start to send

messages recording the minimum hop count to boundary to its neighbors at roughly the same

time, the total communication cost for each non-boundary node to record the ID of its

neighbor nearest to boundary is O(dn) where d is the average number of neighbors of each

node. The time complexity is O(n).

21

2.5 Simulations

We evaluate the performance of the proposed location-free cut graph based double-ruling

scheme in 3D sensor networks given in Figures 2.3 and 2.4. Specifically, we denote the one

given in Figure 2.4 (e) as Network I with 4369 number of nodes and the average number of

neighbors of each node 13.79, the one given in Figure 2.3 (b) as Network II with 4298 number

of nodes and the average number of neighbors of each node 13.43, the one given in

Figure 2.4 (a) as Network III with 6194 number of nodes and the average number of

neighbors of each node 13.67, and the one given in Figure 2.4 (a) as Network IV with two

inner holes and the average number of neighbors of each node 13.7181. Producer and

consumer costs are measured by the number of hop counts they travel to store or retrieve data.

Traffic load on each node is measured by the number of messages passing through it. In our

simulations, each node has equal probability to be a producer or a consumer.

Note that there are very limited algorithms to compare with because all previous

double-ruling based schemes can’t work on 3D sensor networks with general topology and

geometry shapes including the naive 3D grid-based double-ruling scheme and the volumetric

parametrization based double-ruling scheme. Hashing based schemes can tolerate different

topology but require Geographic information. Our implementation of the GHT scheme for

comparison has actually considered geographic information to design the hash function and

stored heavy routing information on each node (shortest path tree rooted at each node) to

guarantee the routing path a shortest one from the producer and the consumer to the hashed

location, and hence all “improved GHT” approaches won’t help to achieve better performance

in our comparison.

22

Table 2.1: Comparison of average producer and consumer costs of single type of data

Network I Network II Network III Network IV
Cut Graph GHT SR-GHT Cut Graph GHT SR-GHT Cut Graph GHT SR-GHT Cut Graph GHT SR-GHT

Producer cost 69.3331 22.5738 19.4178 77.6277 23.6468 16.0400 78.1474 24.6926 13.7566 146.7712 41.0066 24.23068
Consumer cost 19.5381 22.8416 94.4715 18.2786 23.8186 93.0521 25.3367 24.7264 101.8150 24.796 41.2531 157.83

2.5.1 Producer and Consumer Costs

Producers stand for the information producers who generate different types of data.

Consumers stand for the information consumers who want to retrieval the data.

2.5.1.1 Single Type of Data

We compare the proposed scheme with GHT one with and without structured replication.

For GHT with structured replication (SR-GHT), we apply 1 level hierarchy with extra 3

mirror points scattered in network to store the nearby data. Table 2.1 lists the average

producer and consumer costs with one type of data generated in network. For cut graph based

scheme, the producer cost is the highest and the consumer cost is the lowest; a producer needs

to travel and leave copies of data along the whole replication curve while a consumer can stop

immediately when its retrieval curve intersects the replication curve. For SR-GHT scheme, on

the contrary, the producer cost is the lowest and the consumer cost is the highest; a producer

can store data at the closest location, but a consumer has to travel to both the hashed location

and its three mirror points to collect data.

2.5.1.2 Aggregated Data

If there are more than one data type in network, the consumer cost of cut graph based

scheme is fixed; a consumer collects all different types of data by simply moving along a

retrieval line. While the consumer cost of GHT scheme increases proportional to the number

23

of data types; a consumer has to travel to different hashed locations for different types of data.

Note that the cost of GHT scheme may decrease because we simply take a round trip to each

hashed location in our implementation. But to find a minimum tour to visit all of the locations

is the traveling salesman problem, which is NP-hard. The producer cost does not change for

either cut graph based and GHT schemes with the increase of data types.

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

The Number of Data Types

A
ve

ra
ge

 C
on

su
m

er
 C

os
t

Cut Graph based
GHT

(a) Network I.

2 3 4 5 6 7 8 9 10
40

60

80

100

120

140

160

180

200

220

240

The Number of Data Types

A
ve

ra
ge

 C
on

su
m

er
 C

os
t

Cut Graph based
GHT

(b) Network II.

2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

The Number of Data Types

A
ve

ra
ge

 C
on

su
m

er
 C

os
t

Cut Graph based
GHT

(c) Network III.

2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

450

The Number of Data Types

A
ve

ra
ge

 C
on

su
m

er
 C

os
t

Cut Graph based
GHT

(d) Network IV.

Figure 2.8: Average consumer costs with the increase of data types.

Figure 2.8 clearly shows that cut graph based scheme performs the best for retrieval of

multiple types of data generated in network. When there is only one type of data in network,

cut graph based scheme and GHT schemes have a tradeoff between the producer and

consumer costs.

24

2.5.2 Load Distribution

10−49 50−99 100−149 150−199 200−399 400−899 >=900
0

0.02

0.04

0.06

0.08

0.1

0.12

Load Distribution

F
ra

ch
tio

n
of

 N
od

es

Cut Graph Based
GHT

(a) Network I.

10−49 50−99 100−149 150−199 200−399 400−899 >=900
0

0.02

0.04

0.06

0.08

0.1

0.12

Load Distribution

F
ra

ch
tio

n
of

 N
od

es

Cut Graph Based
GHT

(b) Network II.

10−49 50−99 100−149 150−199 200−399 400−899 >=900
0

0.02

0.04

0.06

0.08

0.1

0.12

Load Distribution

F
ra

ch
tio

n
of

 N
od

es

Cut Graph Based
GHT

(c) Network III.

10−49 50−99 100−149150−199200−399400−899 >=900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Load Distribution

F
ra

ch
tio

n
of

 N
od

es

Cut Graph Based
GHT

(d) Network IV.

Figure 2.9: Load distribution with one producer and one data type.

We simulate different scenarios to evaluate the load distribution of cut graph based

scheme and compare with GHT scheme. The first scenario is one data producer with one data

type in a network. Each node in the network has equal probability to request for data. For

both GHT and cut graph based schemes, the load on the majority of the nodes are within a

small number. Specifically, the load on roughly 83% of nodes in Network I, roughly 84% of

nodes in Network II and Network III, and roughly 79% of nodes in Network IV are below 10.

Figure 2.9 shows the distribution of high traffic load on the remaining nodes. For GHT

scheme, nodes near the hashed location suffer much higher traffic load; while for cut graph

25

0−19 20−39 40−69 70−99 100−299 300−899 >=900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Load Distribution

F
ra

ch
tio

n
of

 N
od

es

Cut Graph Based
GHT

(a) Network I.

0−19 20−39 40−69 70−99 100−299 300−899 >=900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Load Distribution

F
ra

ch
tio

n
of

 N
od

es

Cut Graph Based
GHT

(b) Network II.

0−19 20−39 40−69 70−99 100−199 200−899 >=900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Load Distribution

F
ra

ch
tio

n
of

 N
od

es

Cut Graph Based
GHT

(c) Network III.

0−19 20−39 40−69 70−99 100−199200−899 >=900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Load Distribution

F
ra

ch
tio

n
of

 N
od

es

Cut Graph Based
GHT

(d) Network IV.

Figure 2.10: Load distribution with one hundred producers and ten data types.

26

based scheme, boundary nodes take a little bit more traffic load since the load has been evenly

distributed among the boundary. The node suffering the highest traffic has a load of 4368 with

GHT scheme and 813 with cut graph scheme for Network I; a load of 4297 with GHT scheme

and 140 with cut graph scheme for Network II; a load of 6193 with GHT scheme and 981

with cut graph scheme for Network III: and a load of 14077 with GHT scheme and 996 with

cut graph scheme for Network IV.

The second scenario is one hundred data producers with ten data types in a network. We

randomly choose the data producers from the network. Each node in the network has equal

probability to request for aggregated data. Figure 2.10 shows the distribution of the total traffic

load of data storage and retrieval. For GHT scheme, a data consumer has to travel a long path

to collect different types of data scattered in a network, which generates high traffic load in

the network; while for cut graph based scheme, a data consumer has fixed cost for aggregated

data retrieval so that the majority of the traffic load of the network is still low. The node

suffering the highest traffic has a load of 10211 with GHT scheme and 1542 with cut graph

scheme for Network I; a load of 10540 with GHT scheme and 1404 with cut graph scheme for

Network II; a load of 22935 with GHT scheme and 1614 with cut graph scheme for Network

III: and a load of 48074 with GHT scheme and 3778 with cut graph scheme for Network III.

2.5.3 Tradeoff Between Storage Cost and Consumer Cost

As discussed in Section 2.4 , it is a tradeoff between the storage cost and the consumer

cost for the proposed cut graph-based double-ruling approach for information storage and

retrieval in general 3D sensor networks. Figure 2.11 shows clearly that the average consumer

cost drops dramatically when the percentage of nodes stored with a copy of the data along the

data replication curve increases from 10% to 40%, and then decreases slowly when the

27

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
17

18

19

20

21

22

23

24

The percentage of nodes with a copy of the data

A
v

e
ra

g
e

 C
o

n
su

m
e

r
C

o
st

Figure 2.11: Tradeoff between storage cost and consumer cost.

percentage of nodes stored with a copy of the data is over 50% for Network II model. A

balance between the storage cost and the consumer cost would be to store copies of data at

half of the nodes along the data replication curve.

2.6 Discussions

In this section, we have three different scenarios to show how they could effect the

overall performance of our algorithm.

2.6.1 Network Model

The proposed solution doesn’t require any global position information of a network. It

has no constraints on communication models of the network either. The network only requires

one-hop neighborhood distance information to detect boundary nodes and construct a

triangular structure at the pre-processing step.

The proposed cut-graph computation algorithm is independent of the complexity and

irregularity of a 3D volume where a set of sensor are deployed, because the boundary surface

28

of a 3D volume is always a closed surface. The algorithm cuts a closed surface with any

geometric shape or topology to a topological disk and then virtually map it to a planar

rectangle. It is possible that a 3D network degenerates. One example is that a 3D volume

sensor network degenerates to a 3D surface network. The algorithm can simply be applied to

the surface network directly which is not necessarily closed. Another example is that part of a

3D network degenerates to a single line, neither a volume nor a surface. We can apply 3D

network segmentation algorithm to identification the bottleneck and then segment the network

to parts. Double-ruling approach can be applied at individual parts.

2.6.2 Network Dynamics

As discussed in Sec. 2.4.5 , both the time complexity and communication cost of the

proposed cut graph-based double-ruling approach are dominated by computing the planar

rectangle virtual coordinates of the boundary surface using discrete surface Ricci flow. For a

network with possible nodes’ failures, we don’t need to restart the computation of Ricci flow

each time a sensor node runs out of its battery. We only need to replace a dead boundary node

with its nearest active sensor node. The process can be triggered by nodes with dead

communication to one common node. They conduct a local flooding to find one node nearest

to the dead one. Note that this new one is not necessarily a boundary node. Denote this new

node vi. vi initializes its γi = 1, ui = log γi = 0. vi and its direct neighbors recompute the

weights of edges neighboring to vi. Discrete surface Ricci flow continues till the convergence.

2.6.3 Distance Sensitivity

It is preferred that the retrieval cost of a consumer for one type of data is related with its

distance to the location where the data is produced. Such distance sensitivity is however not

29

guaranteed in our algorithm. It is possible that one consumer is geographically close to one

producer in a 3D volume network, but the consumer has to go a longer distance to hit the data

replication curve by the producer. Such case can happen when the consumer and the producer

locate at two sides of the medial axis of the 3D volume network. The reverse is also possible

that the consumer can travel a shorter distance to hit the data replication curve than its real

distance to the producer.

2.7 Summary

We present a location-free cut graph based double-ruling approach for 3D sensor

networks with general topology. An information consumer simply travels along a simple

curve with the guaranteed success to retrieve aggregated data through time and space with

different types across the network. We conduct extensive simulations and comparisons that

further show the proposed approach with low cost and a balanced traffic load.

30

CHAPTER 3: 3D SURFACE LOCALIZATION WITH TERRAIN MODEL

The majority of current research on sensor network localization focuses on wireless

sensor networks deployed on two dimensional (2D) plane or in three dimensional (3D) space,

very few on 3D surface. However, many real world applications require large-scale sensor

networks deployed on the surface of a complex 3D terrain. Compared with planar and 3D

network localizations, surface network localization exists unique and fundamental hardness.

In this research, we explore 3D surface network localization with terrain model. A digital

terrain model (DTM), available to public with a variable resolution up to one meter, is a 3D

representation of a terrain’s surface. It is commonly built using remote sensing technology or

from land surveying and can be easily converted to a triangular mesh. Given a sensor network

deployed on the surface of a 3D terrain with one-hop distance information available, we can

extract a triangular mesh from the connectivity graph of the network. The constraint that the

sensors must be on the known 3D terrain’s surface ensures that the triangular meshes of the

network and the DTM of the terrain’s surface approximate the same geometric shape and

overlap. We propose a fully distributed algorithm to construct a well-aligned mapping

between the two triangular meshes. Based on this mapping, each sensor node of the network

can easily locate reference grid points from the DTM to calculate its own geographic location.

We carry out extensive simulations under various scenarios to evaluate the overall

performance of the proposed localization algorithm. We also discuss the possibility of 3D

surface network localization with mere connectivity and the results are promising.

3.1 Background

A variety of applications in wireless sensor networks require geographic locations of

sensor nodes. Instead of equipping each sensor node with a high cost localization hardware

such as GPS receiver, different localization algorithms and protocols have been proposed that

allow the sensor nodes to derive their own locations.

Current localization research focuses on sensor networks deployed on two-dimensional

(2D) plane or in three-dimensional (3D) space. They take distance information as input, and

then search the solution space to find coordinates of sensor nodes that preserve the distance

matrix as much as possible. Distance between adjacent sensors can be measured by received

signal strength (RSS) or time difference of arrival (TDOA), or simply approximated by

one-hop radio range. For remote sensors, their distance can be approximated by hop counts of

the shortest path.

In real-world applications, many large-scale sensor networks are deployed over complex

terrains, such as the volcano monitoring project and ZebraNet. Localization of a network

deployed over a 3D surface exists a unique hardness compared with the well-studied

localization of a network in 2D or 3D space. Specifically, due to limited radio range, the

distance between two remote sensors deployed over a 3D surface can only be approximated

by their surface distance, the length of the shortest path between them on the surface. Such

surface distance is different from the 3D Euclidean distance of two nodes. A localization

algorithm doesn’t exist for a network deployed over a 3D surface with surface distance

information only, even if we assume accurate range distance measurement available. One

intuitive example is that a piece of paper can be rolled to different shapes, but distance

between any pair of points on the paper doesn’t change. With pure surface distance

32

information, we can never figure out the current shape of the paper. We can also learn the

hardness of localization of a network deployed over a 3D surface from differential geometry.

Consider that the distance information of a sensor network deployed over a 3D surface

approximates the distance information of the surface, there exists no unique embedding in 3D

within rigid motions for a general surface with distance only.

In some previous papers, authors assume each sensor node can measure not only

distances between its neighboring nodes but also its own height information. They require a

sensor network is deployed on a surface with single-value property - any two points on the

surface have different projections on plane. Such property ensures that they can project the

network deployed over a 3D surface to 2D plane by removing z coordinate without ambiguity.

They apply existing 2D network localization method on the projected one to compute the x

and y coordinates of each sensor node, and then add the height information back as the z

coordinate.

Later, a cut-and-sew algorithm is proposed to generalize the localization algorithm from

single-value surfaces to general surfaces. The algorithm takes a divide-and-conquer approach

by partitioning a general 3D surface network into a minimal set of single-value patches. Each

single-value patch can be localized individually, and then all single-value patches are merged

into a unified coordinates system.

However, integrating height measurement into every sensor of a network is not always

practical and affordable, especially for a large-scale sensor network. The motivation of this

work is to explore the possibility of localization of a network deployed over surfaces with

one-hop distance information only or even just mere connectivity, if we have the information

of the deployed terrain surface.

33

3.1.1 Our Approach

A 3D representation of a terrain’s surface is called a digital terrain model (DTM). DTMs

are commonly built using remote sensing technology or from land surveying, and are

available to public with a variable resolution up to one meter. For example, the Shuttle Radar

Topography Mission (SRTM) is a high-resolution digital topographic database that provides

DTM data for North and South America with high accuracy and dense coverage. It is

expected that acquisitions from radar satellites TerraSAR-X and Tan DEM-X will be available

in 2014 to provide a uniform global coverage of DTMs up to 5 m absolute height accuracy at

10 m grid spacing.

A DTM is represented by a grid of squares, where the longitude, latitude, and altitude

(i.e., 3D coordinates) of all grid points are known. It is straightforward to convert the gird into

a triangulation, e.g., by simply connecting a diagonal of each square. Therefore a triangular

mesh of the DTM of a terrain surface can be available before we deploy a sensor network on

it. On the other hand, given a wireless sensor network deployed on a terrain surface with

one-hop distance information available, a simple distributed algorithm can extract a refined

triangular mesh from the network connectivity graph. Vertices of the triangular mesh are the

set of sensor nodes. An edge between two neighboring vertices indicates the communication

link between the two sensors. The constraint that the sensors must be on the known 3D terrain

surface ensures that the triangular mesh of the DTM of the terrain surface overlaps with the

triangular mesh extracted from the network connectivity graph. The question is how the latter

can be localized in reference to the former.

The proposed approach is based on surface conformal structure. Conformal structure is

an intrinsic geometric structure of surfaces, determined by surface distance. Conformal

34

structure can tolerate a small local deformation of a surface, so the conformal structure of a

surface is consistent even if the surface is approximated by different triangulations with

various densities. Surfaces sharing the same conformal structure exist conformal mapping

between them. A conformal mapping is a one-to-one and continuous mapping which

preserves angles and local shape.

The triangular mesh of the DTM of a terrain surface and the triangular mesh extracted

from the connectivity graph of a network deployed over the terrain surface approximate the

geometric shape of the same terrain surface. Theoretically, the two triangular meshes share

the same conformal structure. We can construct a well-aligned conformal mapping between

them. Based on this mapping, each sensor node of the network can easily locate reference

grid points of the DTM to calculate its own location.

Fig. 3.1 illustrates the basic idea. Fig. 3.1 (a) shows the triangular mesh of the DTM of a

terrain surface. Fig. 3.1 (c) shows the triangular mesh extracted from the connectivity graph

of a network deployed over the terrain surface. We first compute two conformal mappings,

denoted as f1 and f2 respectively, to map the two triangular meshes to plane as shown in

Figs. 3.1 (b) and (d) respectively. Such mapping exists based on Riemanns theorem that a

topological disk surface can be mapped to plane through a conformal mapping. However, the

two mapped triangular meshes on plane are not aligned. Three anchor nodes marked with red

as shown in Fig. 3.1 (c) are deployed with the network to provide the reference for alignment.

Based on the positions of the three anchor nodes, We construct another conformal mapping,

denoted as f3, to align the mapped network triangular mesh with the mapped DTM triangular

mesh on plane. Combining the three mappings, f−1

1 ◦ f3 ◦ f2, induces a well-aligned

conformal mapping between the two triangular meshes shown in Fig. 3.1 (a) and (d)

35

(a) (b)

(c) (d)

Figure 3.1: DTM and Sensor Network Triangulation Mesh.

respectively. Based on the well-aligned mapping, each sensor node of the network, a vertex of

the network triangular mesh, simply locates its nearest grid points, vertices of the DTM

triangular mesh, to calculate its own geographic location. Note that the proposed localization

algorithm, theoretically speaking, only requires three anchor nodes for a network with

thousands or even tens of thousands of sensor nodes.

36

3.2 Theoretical Knowledge

Before giving the details of the proposed surface network localization algorithm, we

introduce briefly the background knowledge necessary to the algorithm. Specifically, we

introduce the concept of discrete conformal mapping and discrete surface Ricci flow, a tool we

apply to compute discrete conformal mapping of a triangular mesh from 3D to 2D plane. We

then introduce Möbius Transformation, a tool we apply to align two planar triangular meshes.

3.2.1 Discrete Conformal Mapping

Intuitively speaking, a conformal mapping is a one-to-one and continuous mapping that

maps infinitesimal circles to infinitesimal circles and preserves the intersection angles among

the infinitesimal circles.

In discrete setting, we denote M = (V,E, F) a connected triangular mesh embedded in

R
3, consisting of vertices (V), edges (E), and triangle faces (F). Specifically, we denote

vi ∈ V a vertex with ID i; eij ∈ E an edge with two ending vertices vi and vj; fijk ∈ F a

triangle face with vertices vi, vj , and vk. A boundary edge is defined as an edge shared by one

triangle face only. The two ending vertices of a boundary edge are defined as boundary

vertices. A non-boundary edge is shared by two triangular faces.

If we use circles with finite radii to approximate infinitesimal circles, we can

approximate conformal mapping in discrete setting. It is called circle packing metric. We

assign each vi a circle and denote γi its radius. The radius function is Γ : V → R
+. The two

circles at vi and vj of edge eij intersect with an acute angle, denoted as φij and called the

weight on the edge. The edge weight function is then Φ : E → [0,
π

2
].

Denote lij the edge length of eij . lij can be computed from the circle radii of the two

37

(a)

v1

v2 v3

φ12

φ23

φ31γ1

γ2

γ3

θ1

θ2 θ3

(b)

Figure 3.2: Circle Packing Metric.

ending vertices γi, γj and its weight φij from the cosine law:

lij
2 = γi

2 + γj
2 + 2γiγj cosφij. (3.1)

Definition 3.1 (Circle Packing Metric). The circle packing metric of a discrete surface M

includes the circle radius function and the edge weight function.

From the definition of conformal mapping, a conformal mapping on a discrete surface

with circle packing metric modifies the vertex radii, and preserves the edge weights.

3.2.2 Discrete Surface Ricci Flow

Richard Hamilton first introduced Ricci flow in his seminal work in 1982. Chow and Luo

proved a general existence and convergence theorem for discrete Ricci flow on surfaces. Jin et

al. later provided a series of computational algorithms for discrete Ricci flow on surfaces.

Before we introduce the definition of discrete surface Ricci flow, we need to give

definitions of discrete metric and discrete Gaussian curvature first.

Definition 3.2 (Discrete Metric). A discrete metric on M is a function l : E → R
+ on the set

of edges, assigning to each edge eij ∈ E a positive number lij such that all triangles satisfy

the triangle inequalities fijk ∈ F : lij + ljk > lki.

38

Edge lengths of M satisfy the triangle inequalities, so they are sufficient to define a

discrete metric on M .

Definition 3.3 (Discrete Gaussian Curvature). Denote θjki the corner angle attached to Vertex

vi in Face fijk, and ∂M the boundary of M , the discrete Gaussian curvature Ki on vi ∈ V is

defined as the angle deficit at vi:

Ki =















2π −
∑

fijk∈F

θ
ij
i , vi 6∈ ∂M,

π −
∑

fijk∈F

θ
jk
i , vi ∈ ∂M.

(3.2)

Since we can compute corner angles directly from edge lengths, a discrete metric solely

determines the discrete Gaussian curvature of M .

Definition 3.4 (Discrete Surface Ricci Flow). Discrete surface Ricci flow continuously

deforms the circle packing metric of M according to the difference between the current and

target Gaussian curvatures in a heat-like diffusion process, and converges when the difference

is less then a threshold. The final circle packing metric induces a metric which satisfies the

target Gaussian curvatures, and is conformal to the original surface metric.

3.2.3 Mobius Transformation

A complex number z = a+ bi defined on a complex plane can be simply considered as a

point p(a, b) on plane, where a and b are x and y coordinates of Point p respectively.

Definition 3.5 (Möbius Transformation). A Möbius transformation is a conformal map

between complex plane to itself, represented as:

f(z) =
az + b

cz + d
, (3.3)

where a, b, c, d are complex numbers, satisfying ad− bc = 1.

If a Möbius transformation maps four distinct complex numbers z1, z2, z3, z4 to four

distinct complex numbers w1, w2, w3, w4 respectively, i.e., four distinct planar points are

mapped to another four distinct planar points, the Möbius transformation keeps their

cross-ratio invariant, represented as:

39

(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
=

(w1 − w3)(w2 − w4)

(w2 − w3)(w1 − w4)
. (3.4)

Note that all operations including addition, subtraction, multiplication, and division are

all defined on complex numbers.

3.3 Surface Network Localization

Given a wireless sensor network deployed on a terrain surface with one-hop distance

information available, we can adopt our previous work to extract a refined triangular mesh

from the network connectivity graph. Vertices of the triangular mesh are the set of sensor

nodes. An edge between two neighboring vertices indicates the communication link between

the two sensors. Note the algorithm is fully distributed and has no constraint on

communication models.

Denote M1 the triangular mesh of the DTM of the terrain surface and M2 the triangular

mesh extracted from the connectivity graph of the network. The proposed three-step

localization algorithm is fully distributed. We explain each step in detail, specifically,

conformal mapping of both M1 and M2 to plane, alignment of mapped M1 and M2 on plane,

and localization of vertices of M2.

3.3.1 Conformal Mapping to Plane

Given a triangular mesh M = (V,E, F) embedded in R
3, we apply discrete surface

Ricci flow to conformally map M to plane. Denote the mapping f : M → D ∈ R
2. The

mapping result is stored at each vi as a complex number (i.e., z = x+ yi), and (x, y) serves as

the planar coordinates of vi.

One fact to consider when designing the mapping algorithm is that the boundary shape of

40

a large-scale sensor network can be random and complicated, and the mapping result should

be independent of the boundary shape. So we apply discrete surface Ricci flow with the

following free-boundary condition: we assign the target Gaussian curvatures of all

non-boundary vertices to zero, and discrete surface Ricci flow only deforms the circle radii of

non-boundary vertices. Discrete surface Ricci flow converges when the target Gaussian

curvatures of non-boundary vertices equal to zero. i.e., flat. Note that boundary vertices are

ending vertices of boundary edges. Boundary edges of M can be easily detected according to

the definition that they are shared by only one triangle face.

We first construct an initial circle packing metric (Γ0,Φ) of M based on edge lengths.

Denote γ
jk
i the corner radius associated with corner angle θjki . Each vi computes its corner

radii as:

γ
jk
i =

lki + lij − ljk

2
,

where lij , ljk, lki represent the distance measurements of edges eij, ejk, eki, respectively. Then

vi computes its initial circle radius γi by averaging its corner radii:

γi =
1

m

∑

fijk∈F

γ
jk
i ,

where m is the number of the adjacent faces to vi (i.e., the vertex degree of vi). For each edge

eij , we compute its edge weight φij , i.e., the intersection angle of the two circles centered at vi

and vj with radii γi and γj respectively based on the Euclidean cosine law:

cosφij =
l2ij − γ2

i − γ2
j

2γiγj
.

With the constructed initial circle packing metric, in each iteration of discrete surface

Ricci flow, only non-boundary vertices update their circle radii. Specifically, each

41

non-boundary vi exchanges its current ui = logγi with its direct neighbors and updates its

adjacent edge lengths {lij|eij ∈ E} according to Eqn. 3.1. With the updated edge lengths, vi

computes its corner angles {θjki |fijk ∈ F} according to the inverse cos law:

θ
jk
i = cos−1

l2ki + l2ij − l2jk

2l2kil
2
ij

.

Then vi computes its current discrete Gaussian curvature Ki as the excess of the total angle

sum at vi (Eqn. 3.2). If for every non-boundary vi, the difference between its target Gaussian

curvature K̄i that is set to zero and current Gaussian curvature Ki is less than a threshold (we

set to 1e− 5 in our experiments), discrete surface Ricci flow converges. Otherwise, each

non-boundary vi updates its ui: ui = ui + δ(K̄i −Ki), where δ is the step length (we set to

0.05 in our experiments).

When discrete surface Ricci flow converges, we can stop the iterations. Each edge eij

updates its length according to the final circle radii γi = eui and γj = euj and the stored edge

weight φij:

lij =
√

γi2 + γj2 + 2γiγj cosφij .

With the computed edge lengths, we can embed M to plane. For simplicity, we let the

vertex with the smallest ID (denoted as v0) initiate the embedding process. Its planar

coordinates are set to (0, 0). Then it arbitrarily selects one of its direct neighbors, e.g., vj , and

sets the planar coordinates of vj to (0, lij). For vertex vk, adjacent to both vi and vj , it

calculates the intersection points of the two circles centered at vi and vj with radii lik and ljk,

respectively. Then, vj chooses one of the intersection points that satisfies

(vj − vi)× (vk − vi) > 0 as its planar coordinates. The procedure continues until all vertices

of M have their planar coordinates.

42

Note that we can pre-compute the conformal mapping of M1 to plane and then pre-load

the mapping result to sensor nodes before the deployment of a network.

3.3.2 Alignment

Denote f1 and f2 the mappings that conformally map M1 and M2 to planar regions D1

and D2 respectively. We need to construct another conformal mapping that aligns D2 with D1

on plane.

Eqn. 3.4 provides a natural alignment of two planar regions based on three pairs of

anchor points. Denote f a Möbius transformation that maps the planar region D1 with three

distinct points z1, z2, z3 to the planar region D2 with three distinct points w1, w2, w3.

Particularly, z1, z2, z3 are mapped to w1, w2, w3 respectively. We use complex numbers to

represent points on plane. Assume we use zij to denote zi − zj , and wij to denote wi − wj , f

can be represented in a closed form from Eqn. 3.4,

f(z) =
w2(z − z1)z23w12 − (z − z2)z13w23w1

(z − z1)z23w12 − (z − z2)z13w23

. (3.5)

Before we continue the alignment algorithm, we give a brief introduction of Barycentric

coordinates. They provide a convenient way to interpolate a function on triangles as long as

the function’s value is known at vertices. Let’s consider a function f defined on a triangle fabc

with f(va), f(vb), and f(vc) known. Denote Area|fabc| the area of triangle fabc. The function

value of any point p located inside this triangle can be written as a weighted sum of the

function value at the three vertices:

f(p) = t1f(va) + t2f(vb) + t3f(vc),

where t1 =
Area|fpbc|

Area|fabc|
, t2 =

Area|fpca|

Area|fabc|
, and t3 =

Area|fpab|

Area|fabc|
. It is obvious that t1, t2, and t3

43

are subject to the constraint t1 + t2 + t3 = 1. t1, t2, and t3 are called Barycentric Coordinates

of Point p on fijk.

Assume three anchor nodes - sensor nodes equipped with GPS - are randomly deployed

with other sensors. Each anchor node is assigned planar coordinates, e.g., mapped to plane by

f2. Denote the planar point of an anchor node mapped by f2 with a complex numbers

zi(1 ≤ i ≤ 3).

Each anchor node then checks its stored M1 or simply sends a request with its known

geographic position to a server to locate three nearest grid points of the DTM, denoted as

vi, vj , and vk. Since M1 and M2 are not perfectly overlap in general, the anchor node does not

necessarily locate inside fijk ∈ M1. We compute the projection point of the anchor node to

fijk. The projection point is the closest point of M1 to the anchor node. Since f1 is a

continuous and one-to-one mapping, we can compute the planar coordinates of the projection

point mapped by f1 based on the planar coordinates of vi, vj , and vk. Specifically, denote

(t1, t2, t3) the Barycentric Coordinates of the projection point on fijk, f1(vi), f1(vj), and

f1(vk) the planar coordinates of vi, vj , and vk mapped by f1, the planar coordinates of the

projection point mapped by f1 is: t1f1(vi) + t2f1(vj) + t3f1(vk). Denote the planar point of

the projection point mapped by f1 with a complex number wi(1 ≤ i ≤ 3).

Each anchor node conducts a flooding to send out its zi and wi to the whole network.

When receiving the three pairs of planar coordinates, a non-anchor node vi ∈ M2 simply

plugs them and its planar coordinates by f2 into Eqn. 3.5. The computed one is the aligned

planar coordinates of the sensor node.

44

3.3.3 Localization

With the aligned planar coordinates, each sensor node locates three nearest grid points on

plane. Denote vi, vj , and vk the three nearest grid points on plane. The mapped planar point of

the sensor node locates inside the planar triangle fijk ∈ M1. Denote (ti, tj , tk) the Barycentric

Coordinates of the mapped planar point of the sensor node on fijk. The 3D geographic

coordinates of the sensor node can be computed as tip(vi) + tjp(vj) + tkp(vk), where p(vi),

p(vj), and p(vk) are the 3D geographic coordinates of vj , vk, and vl respectively.

3.3.4 Time Complexity and Communication Cost

Assume we measure the communication cost by the number of exchanged messages.

Both the time complexity and communication cost of the proposed localization algorithm are

dominated by the step to compute conformal mapping. The time complexity of discrete

surface Ricci flow is measured by the number of iterations. The time complexity and

communication cost of planar embedding based on computed edge lengths by discrete surface

Ricci flow are linear to the size of the network.

The time complexity and communication cost of the other steps of the localization

algorithm are either linear to the size of the network or constant complexity.

A special note is that we don’t need to compute the conformal mapping of M1 each time.

We only need to compute it once before we start to deploy a network, and then pre-load only

the mapping data related with the FoI (Field of Interest) to sensor nodes if they have sufficient

storage. Otherwise, a server may be designated to keep the DTM database.

45

3.4 Discussion

In this section, we have three different scenarios to show how they could effect the

performance of our localization result.

3.4.1 The Size of Anchor Nodes

Theoretically speaking, the proposed localization algorithm requires only three anchor

nodes to align two triangular meshes on plane, even one triangular mesh is extracted from the

connectivity graph of a network with thousands or even tens of thousands of sensor nodes. If

there are more then three anchor nodes deployed with the network, we can apply the

least-square conformal mapping method instead of Möbius transformation to incorporate all

anchor nodes into the alignment to improve the localization accuracy.

Fig. 3.3 shows one example. For a network with size 2.6k deployed on a 3D surface as

shown in Fig. 3.1(d), the localization error of the network decreases with the increased

number of anchor nodes. Compared with Möbius transformation based alignment introduced

in Sec. 3.3.2 , least-square conformal mapping based alignment is more flexible to take anchor

nodes into alignment. But from the other side, least-square conformal mapping method is

centralized with high computational complexity.

3.4.2 Anchor Node Free

As we introduced in Sec. 3.2.1 , conformal mapping maps infinitesimal circles to

infinitesimal circles, so locally conformal mapping introduces no distortion, only scaling.

Such scaling is called conformal factor. conformal factor at vi can be approximated as the

ratio of the triangle areas in 3D and mapped in 2D plane of all fijk incident to vi,

cf(vi) =

∑

fijk∈F
Area3D|fijk|

∑

fijk∈F
Area2D|fijk|

.

46

2 3 4 5 6 7 8 9 10

0.075

0.08

0.085

0.09

0.095

0.1

0.105

The number of anchor nodes

Lo
ca

liz
at

io
n

E
rr

or

Figure 3.3: Localization error decreases with the increased number of anchor nodes.

Conformal factor at the peak of a terrain surface is usually huge. We can demonstrate the fact

by an extreme case. Suppose we have a long and open tube-shape can and we conformally

map it to plane. The center of the bottom of the can is mapped to the origin. No matter what

conformal mapping we construct, conformal factor increases exponentially fast as the mapped

point on plane close to the origin.

Based on the fact, vertices of M2, i.e., sensor nodes, with the highest conformal factors

are around the peaks of a terrain surface. We can apply them as anchor nodes for alignment.

Assume the network shown in Fig. 3.1(d) is anchor node free. We compute conformal factors

of the triangular meshes of the DTM and the network and use colors to encode them at the

mapped planar regions shown in Fig. 3.4. It is obvious that areas marked with red represent

the regions with high conformal factors. We pick one vertex with the highest conformal factor

for each red marked region. Suppose we pick v1 and v2 for the triangular mesh of the network,

v3 and v4 for the triangular mesh of the DTM. Suppose v1 shares a similar conformal factor

with V3. v1 simply determines its 3D coordinates the same as v3. Similarly, v2 determines its

47

3D coordinates the same as v4.

Note that if the shape of a mountain region is extremely complicated, conformal factors

may identify wrong pairs of nodes between M1 and M2. The anchor free localization method

is not stable in that case.

(a) (b)

Figure 3.4: Color coding with conformal factors on plane.

3.4.3 Connectivity Only

When range distance measurement is not available, we can still extract a sparse

triangular mesh from a network connectivity graph. A simple landmark-based algorithm

uniformly selects a subset of nodes in a distributed way and denotes them as landmarks, such

that any two neighboring landmarks are approximately a fixed K hops away (K ≥ 6). The

dual of a discrete Voronoi diagram with generators the set of landmarks forms a triangulation.

Vertices of the triangulation is the set of landmarks. Edge between two neighboring vertices is

a shortest path between the two landmarks. We simply assume the edge length of the

triangulation a unit one, and then apply exactly the same localization algorithm for landmark

nodes.

A non-landmark node, denoted as ni, finds its three nearest landmarks, denoted as v1, v2,

48

(a) DTM I (b) DTM II (c) DTM III (d) DTM IV

Figure 3.5: Localization results for different network models.

v3 with computed 3D coordinates p(v1),p(v2), and p(v3) respectively. Denote d1, d2, and d3

the shortest distances (hop counts) of node ni to the three landmarks v1, v2, v3 respectively.

Then node ni computes its 3D coordinates p(ni) simply by minimizing the mean square error

among the distances:
3

∑

j=1

(|p(ni)− p(vj)| − dj)
2. (3.6)

3.5 Simulations

Fig. 3.5 shows a set of DTMs of representative terrain surfaces, on which wireless sensor

networks are randomly deployed (see the black points on these terrain surfaces). The sizes of

the sensor networks deployed on DTM I, II, III, and IV, are 0.5k, 2.6k, 3k, and 2k

respectively. We carry out extensive simulations under various scenarios to evaluate the

overall performance of the proposed algorithm with different factors such as the positions of

49

(c) DTM II (d) DTM IV

Figure 3.6: The same set of DTMs as shown in Fig. 3.5 with very low resolutions.

DTM II DTM IV
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Terrain Models with Decreased Resolutions

L
o

c
a

li
z

a
ti

o
n

 E
rr

o
r

Very high resolution

High resolution

Low resolution

Very low resolution

Figure 3.7: Localization results with different DTM resolutions.

the three anchor nodes, the resolution of a DTM, and the one-hop distance measurement error.

We compute the localization error as the ratio of the average node distance error (all sensors

in the network) and the average transmission range.

3.5.1 Terrain Models with Different Resolutions

To evaluate the impact of the resolution of a DTM, we compute the localization errors of

a network deployed on a terrain surface with four different resolutions of the DTM. The

resolution of the highest one is almost twenty times of the resolution of the lowest one.

Fig. 3.5(b) and (d) show the two DTMs of our testing with very high resolutions, and

50

DTM I DTM II DTM III DTM IV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Increased Range Distance Measurment Error

L
o

c
a

li
z

a
ti

o
n

 E
rr

o
r

0%
5%
10%
15%
20%

Figure 3.8: Localization error increases with one-hop distance measurement.

Fig. 3.6(a) and (b) show the same two DTMs with very low resolutions. The results given in

Fig. 3.7 show that the resolution of a DTM has a small impact on the performance of the

localization algorithm unless it is too low.

3.5.2 Networks with Measurement Errors

We have also evaluated our algorithm when errors are introduced in one-hop distance

measurement. For each network, we choose the set of anchor nodes that gives the median

localization error based on the repeated tests. Fig. 3.8 shows that the localization algorithm is

sensitive to measurement error. So for a network with potentially large measurement errors,

we select uniformly a set of landmark nodes such that each landmark node has one hop

distance to its landmark neighbors, i.e., a Voronoi diagram with a small and constant cell size,

and then build a triangular mesh from the chosen landmark nodes with edge length

approximately the averaged transmission range. Similar as connectivity based surface

localization discussed in Sec. 3.4.3 , we localize the landmark nodes first and then other

non-landmark nodes.

51

(a) (b)

Figure 3.9: Networks with Connectivity Information Only.

3.5.3 Networks with Connectivity Information Only

As we discussed in Sec. 3.4.3 , we uniformly select a subset of nodes marked as

landmark nodes and build a sparse triangulation for a network with mere connectivity. Each

vertex is a landmark node and each edge has an approximately constant length. Fig. 3.9 shows

the sparse triangular meshes generated from the network with size 3k deployed on DTM III

and the network with size 2k deployed on DTM IV. The localization errors for landmark

nodes of the two networks are 0.2037 and 0.2610 respectively.

3.5.4 The Convergence Time

We carry out experiments to test the number of iterations of discrete surface Ricci flow

required for convergence. Fig. 3.10 shows the convergence rates of discrete surface Ricci flow

on network with size 3k deployed on DTM III and network with size 2k deployed on DTM

IV. As we can pre-compute the planar conformal mapping of the DTM triangulation of a

terrain surface, we can apply Newtons numerical method to compute the solution of discrete

surface Ricci flow. The computation of this centralized method is very efficient with less than

ten iterations in a few seconds for a triangulation with 10k size.

52

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

Iterations (x100)

C
u

rv
a

tu
re

 E
rr

o
r

Network with size 3k deployed on DTM III

Network with size 2k deployed on DTM IV

Figure 3.10: The convergence rate of the discrete surface Ricci flow algorithm.

3.6 Summary

In this paper we have proposed a fully distributed algorithm to localize a wireless sensor

network deployed on the surface of a complex 3D terrain. Our algorithm constructs a

well-aligned mapping between the triangular mesh of the DTM of the terrain surface and the

triangular mesh extracted from the connectivity graph of the network deployed on the terrain

surface. Based on the mapping, each sensor node of the network can easily locate reference

grid points from the DTM to calculate its own geographic location. We have carried out

extensive simulations under various scenarios to evaluate the overall performance of the

proposed algorithm with different factors. We have also discussed the possibility of 3D

surface network localization with connectivity only with promising results.

53

CHAPTER 4: CONCLUSIONS

In this dissertation, firstly, I have proposed a routing scheme for 3D wireless networks,

which is based on Harmonic Volumetric Embedding (HVE). More specifically, my proposed

solution is based on a unit tetrahedron cell (UTC) mesh structure. I propose a distributed

algorithm to realize volumetric harmonic mapping of the UTC mesh under spherical boundary

condition. It is a one-to-one map that yields virtual coordinates for each node in the network.

Since a boundary has been mapped to a sphere, node-based greedy routing is always successful

thereon. At the same time, I exploits the UTC mesh to develop a face-based greedy routing

algorithm, and prove its success at internal nodes. To route a data packet to its destination,

face-based and node-based greedy routing algorithms are employed alternately at internal and

boundary UTCs, respectively. For networks with multiple internal holes, a segmentation and

tunnel-based routing strategy is proposed on top of VHM to support global end-to-end routing.

As far as I know, this is the first work that realizes truly deterministic routing with constant-

bounded storage and computation in general 3D sensor networks. To make a local routing

decision, each node only needs to store virtual coordinates of itself and its neighbors, and a

routing table with a size bounded by the number of internal holes.

Secondly, I focus on large-scale 3D wireless sensor networks. Accordingly, I have proposed

a Bubble Routing scheme, which does not require the global coordinates of sensors (such as

GPS). The sensor distribution can be either uniform or non-uniform. The sensor deployment

may be constrained by obstacles and terrain variations, thus resulting in complex network

shapes with multiple interior holes and concave exterior boundary. The key contribution of our

proposed scheme is to preprocess the global information via a distributed algorithm, such that

a sensor only needs to store a minimum amount of information to make correct and efficient

local routing decisions, thus achieving scalable routing with guaranteed delivery.

More specifically, my proposed routing protocol is outlined below. First, a 3D sensor net-

work is segmented into a set of hollow spherical cells (HSCs), one for each interior hole. The

boundary of an HSC is called a Hollow Spherical Bubble (HSB). To enable greedy routing

inside an HSC, a continuous and one-to-one mapping is performed to map the HSB to a virtual

sphere, which guarantees greedy forwarding between any two nodes thereon. Such a mapping

is nontrivial. Moreover, virtual trees grow from the HSB toward the inside of the HSC. They

are employed to guide routing between two nodes to largely parallel to the greedy path between

their projections on the HSB. This design ensures greedy routing in an HSC and achieves load

balancing at the same time. A global routing table is created to route packets across HSCs. Its

size is small and bounded by the number of interior holes.

Finally, I consider a sensor network deployed in a 3D space with one or multiple internal

holes, where sensors cannot be deployed. I show that local minima are always on the bound-

aries of holes if nodal density is high, and there exists a DISCO algorithm to support routing

between any pair of points in a strong-connected 3D network. I propose a distributed and deter-

ministic algorithm with constant storage, communication and computation overhead, dubbed

trace-routing, to escape from local minima. Trace-routing is triggered when a packet reaches

a local minimum. It constructs a virtual cutting plane that contains the local minimum and the

destination and intersects the corresponding boundary surface to yield a trace. The trace is a

closed loop that can be computed locally with constant overhead. The packet is routed along

such a trace, thus deterministically moving out of the local minimum.

The proposed trace-routing algorithm does not demand preprocessing of the global network

information, neither does it require establishing or maintaining a global data structure, which

55

often consumes a storage space proportional to the network size and needs frequent update due

to network dynamics. I further prove the trace-routing algorithm guarantees data delivery in a

strong-connected 3D network under both continuous and discrete settings. In a nutshell, trace-

routing supports DISCO, thus highly efficient in large-scale 3D sensor networks. It is worth

mentioning that the proposed trace-routing algorithm and related discussions and proofs do not

rely on any particular communication model (such as the unit ball graph model or quasi-unit

ball graph model). Only a maximum radio range is assumed, which is generally known in

practical sensor networks.

56

REFERENCES

[1] J. Allred, A. B. Hasan, S. Panichsakul, W. Pisano, P. Gray, J. Huang, R. Han, D. Lawrence,

and K. Mohseni, “SensorFlock: An Airborne Wireless Sensor Network of Micro-Air Ve-

hicles,” in Proc. of SenSys, pp. 117–129, 2007.

[2] J.-H. Cui, J. Kong, M. Gerla, and S. Zhou, “Challenges: Building Scalable Mobile Un-

derwater Wireless Sensor Networks for Aquatic Applications,” IEEE Network, vol. 20,

no. 3, pp. 12–18, 2006.

[3] X. Bai, C. Zhang, D. Xuan, J. Teng, and W. Jia, “Low-Connectivity and Full-Coverage

Three Dimensional Networks,” in Proc. of MobiHOC, pp. 145–154, 2009.

[4] X. Bai, C. Zhang, D. Xuan, and W. Jia, “Full-Coverage and K-Connectivity (K=14, 6)

Three Dimensional Networks,” in Proc. of INFOCOM, pp. 388–396, 2009.

[5] C. Liu and J. Wu, “Efficient Geometric Routing in Three Dimensional Ad Hoc Networks,”

in Proc. of INFOCOM, pp. 2751–2755, 2009.

[6] T. F. G. Kao and J. Opatmy, “Position-Based Routing on 3D Geometric Graphs in Mo-

bile Ad Hoc Networks,” in Proc. of The 17th Canadian Conference on Computational

Geometry, pp. 88–91, 2005.

[7] J. Opatrny, A. Abdallah, and T. Fevens, “Randomized 3D Position-based Routing Al-

gorithms for Ad-hoc Networks,” in Proc. of Third Annual International Conference on

Mobile and Ubiquitous Systems: Networking & Services, pp. 1–8, 2006.

[8] R. Flury and R. Wattenhofer, “Randomized 3D Geographic Routing,” in Proc. of INFO-

COM, pp. 834–842, 2008.

[9] F. Li, S. Chen, Y. Wang, and J. Chen, “Load Balancing Routing in Three Dimensional

Wireless Networks,” in Proc. of ICC, pp. 3073–3077, 2008.

[10] J. Zhou, Y. Chen, B. Leong, and P. Sundaramoorthy, “Practical 3D Geographic Routing

for Wireless Sensor Networks,” in Proc. of SenSys, pp. 337–350, 2010.

[11] D. Pompili, T. Melodia, and I. F. Akyildiz, “Routing Algorithms for Delay-insensitive

and Delay-sensitive Applications in Underwater Sensor Networks,” in Proc. of MobiCom,

pp. 298–309, 2006.

[12] W. Cheng, A. Y. Teymorian, L. Ma, X. Cheng, X. Lu, and Z. Lu, “Underwater localization

in sparse 3d acoustic sensor networks,” in Proc. of INFOCOM, pp. 798–806, 2008.

[13] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with Guaranteed Delivery

in Ad Hoc Wireless Networks,” in Proc. of Third Workshop Discrete Algorithms and

Methods for Mobile Computing and Communications, pp. 48–55, 1999.

[14] B. Karp and H. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Net-

works,” in Proc. of MobiCom, pp. 1–12, 2001.

[15] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks,” in

Proc. of Canadian Conference on Computational Geometry (CCCG), pp. 51–54, 1999.

[16] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric Ad-hoc Routing: The-

ory and Practice,” in Proc. of The 22nd ACM Symposium on the Principles of Distributed

Computing, pp. 63–72, 2003.

[17] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-case Optimal and Average-case Effi-

cient Geometric Ad-hoc Routing,” in Proc. of MobiHOC, pp. 267–278, 2003.

[18] B. L. S. Mitra and B. Liskov, “Path Vector Face Routing: Geographic Routing with Local

Face Information,” in Proc. of ICNP, pp. 147–158, 2005.

[19] H. Frey and I. Stojmenovic, “On Delivery Guarantees of Face and Combined Greedy-face

Routing in Ad Hoc and Sensor Networks,” in Proc. of MobiCom, pp. 390–401, 2006.

[20] G. Tan, M. Bertier, and A.-M. Kermarrec, “Visibility-Graph-based Shortest-Path Geo-

graphic Routing in Sensor Networks,” in Proc. of INFOCOM, pp. 1719–1727, 2009.

[21] S. Durocher, D. Kirkpatrick, and L. Narayanan, “On Routing with Guaranteed Delivery

in Three-Dimensional Ad Hoc Wireless Networks,” in Proc. of International Conference

on Distributed Computing and Networking, pp. 546–557, 2008.

58

[22] S. Xia, X. Yin, H. Wu, M. Jin, and X. Gu, “Deterministic Greedy Routing with Guaran-

teed Delivery in 3D Wireless Sensor Networks,” in Proc. of MobiHoc, pp. 1–10, 2011.

[23] H. Zhou and et. al., “Localized Algorithm for Precise Boundary Detection in 3D Wireless

Networks,” in Proc. of ICDCS, pp. 744–753, 2010.

59

Yang, Yang. Bachelor of Science, Northwestern Polytechnical University, Summer 2005;
Master of Science, University of Louisiana at Lafayette, Spring 2011; Doctor of
Philosophy, University of Louisiana at Lafayette, Fall 2013

Major: Computer Science
Title of Dissertation: Geometry in Wireless Sensor Networks In-network Information

Processing and Localization
Dissertation Director: Dr. Miao Jin
Pages in Dissertation: 72; Words in Abstract: 274

ABSTRACT

Firstly, I propose a geographic location free double-ruling based approach for general 3D

sensor networks with possibly complicated topology and geometric shapes. Without the

knowledge of the geographic location and the distance bound, a query simply travels along a

simple curve with the guaranteed success to retrieve aggregated data through time and space

with one or different types across the network. Extensive simulations and comparisons show

the proposed scheme with low cost and a balanced traffic load.

Secondly, I explore 3D surface network localization with terrain model. A digital terrain

model (DTM), available to public with a variable resolution up to one meter, is a 3D

representation of a terrain’s surface. It is commonly built using remote sensing technology or

from land surveying and can be easily converted to a triangular mesh. Given a sensor network

deployed on the surface of a 3D terrain with one-hop distance information available, we can

extract a triangular mesh from the connectivity graph of the network. The constraint that the

sensors must be on the known 3D terrain’s surface ensures that the triangular meshes of the

network and the DTM of the terrain’s surface approximate the same geometric shape and

overlap. I propose a fully distributed algorithm to construct a well-aligned mapping between

the two triangular meshes. Based on this mapping, each sensor node of the network can easily

locate reference grid points from the DTM to calculate its own geographic location. I carry

out extensive simulations under various scenarios to evaluate the overall performance of the

proposed localization algorithm. The possibility of 3D surface network localization with mere

connectivity and the results are promising is also discussed.

61

BIOGRAPHICAL SKETCH

Yang Yang received his Bachelor’s in Computer Science from the Northwestern

Polytechnical University in China in 2005 and his Master of Science in Computer Science

from the University of Louisiana at Lafayette in 2011. He has been working toward a Doctor

of Philosophy in Computer Science with The Center for Advanced Computer Studies (CACS)

at the University of Louisiana at Lafayette.

His current research interests include computational geometry and wireless sensor

networks.

