
 

 

 

 

ABSTRACT 

PERFORMANCE STUDY OF WEB CACHING ALGORITHMS IN A HOME  

NETWORK WITH VIDEO TRAFFIC 

By 

Peter Suh 

August 2015 

Internet traffic is growing at a significant pace, especially with video content that 

already accounts for more than 50% of total of internet traffic.  The reasons for this trend 

are increasing numbers in mobile devices, shifting focus from traditional television media 

to the online content, and advancement in internet technology.  Internet infrastructure is 

facing challenges as it tries to meet the demand for video traffic.  One solution is web 

caching, an area of research with many different proposed algorithms and 

implementations.  This thesis examines the performance of a set of algorithms using a 

popular web caching software, Squid.  The tests are done using a web automation tool, 

Selenium, to browse the web from a home network in three different scenarios:  checking 

web content, videos, and a mix of web content and videos. 
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CHAPTER 1 

INTRODUCTION 

In today’s internet, with so much content available, from streaming video to 

online social networks, high access speed is of critical importance.  We have become 

dependent on the internet for almost every aspect of our lives.  It is certain that internet 

traffic is increasing substantially.  According to Cisco, a well-known company 

specializing in network and internet technology, 51 zettabytes of data have been 

transmitted over the internet in 2013.  A zettabyte is equivalent to one trillion gigabytes.  

Last year, it increased to 62 zettabytes.  It is projected to increase steadily over the next 

few years [1]. 

There are several factors affecting this increase in internet traffic.  First, the 

number of mobile devices have exceeded the global population and this number is 

estimated to double by 2018 [1,2].  Second, people are moving away from cable and 

television and into online streaming services for flexibility of viewing and to avoid the 

high cost of cable subscriptions [3,4].  Third, televisions are now equipped with internet 

access that allows viewing of online content, with some devices getting content strictly 

from the internet, such as Google’s Android TV [3].  Fourth, higher video quality is 

available, from HD to 4K [5].  Fifth, many broadcast companies such as CBS and HBO 

are starting to distribute their media through online streaming services [3].  Finally, 

current internet capacity is higher than 16 Mbps and it is expected to reach 42 Mbps by 

2018 [1].  As a result, the majority of the current internet traffic is video. 
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The impact of video’s percentage in total internet traffic has become significant.  

As of last year, 63% of total internet traffic, which is 39 zettabytes, was video [1].  In 

other words, it would take a person 60 million years to watch everything currently being 

streamed on the internet [1].  The percentage of video is projected to increase to 80% by 

2018.  That will be equivalent to 105 zettabytes of video streaming across the internet [1].  

By that time, a person must watch 72 billion DVDs to what is being transmitted on the 

internet [1].  Currently, the majority of videos are coming from Netflix and YouTube [6].  

There are a wide variety of video presentations in terms of both resolution and duration.  

Just on Youtube, over 100 hours of videos are uploaded every minute [7].  With such a 

large growth in video and internet traffic, the internet faces obstacles to its underlying 

network infrastructure.  

Users and content providers notice problems when the network infrastructure has 

difficulty handling the ever-increasing internet traffic.  Viewers have experienced videos 

stopping momentarily waiting for more data to load which is known as buffering.  

Accessing web pages starts to take longer, especially if there is a lot of content.  There 

are a number of possibilities for these problems.  First, it may be that the home internet 

connection is not designed to handle the traffic being requested.  In other words, it does 

not have sufficient bandwidth.  Another problem may be that the source of the content is 

at a great distance from the destination which will cause delay.  The solution for the first 

problem would be to upgrade the connection to the ISP since it is expected to reach 42 

Mbps by 2018, an increase of 200% since last year.  Telecommunication companies are 

upgrading their networks and constantly investing in faster technologies [8].  Although 

this is viable, some critics argue that the capacity of local connections may still not be 
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able to keep up with the growth of internet traffic [3].  The solution to the second 

problem, the distance of the requested data, would be to bring the content closer to the 

users.  One approach is Content Delivery Networks (CDN) [9].  CDNs are data centers 

located in densely populated areas that re-distribute original content [9].  They essentially 

bring content closer to the user.  This is effective, but it requires a large investment by the 

service providers.  The second approach to fixing this problem is to use web caching, 

which is to store web data temporarily.  Web caching is a technology used in proxy 

servers and web browsers that accelerates content delivery and reduces network 

congestion.  Proxy server is a server that transfers messages between clients and other 

servers.  Many internet service providers, campus networks, and businesses use proxy 

servers [10].  Since web caching technology is incorporated as part of the network 

software, there are many ways for improvement.  The disadvantages of web caching are 

that it cannot store everything as CDN does, it is typically bound by more limited 

memory and connection speed, and proxy servers must retrieve new data from content 

servers.  It is important to note that none of the solutions mentioned can resolve the 

latency of live-streaming which is also growing rapidly [6]. 

Web caching offers a flexible way to relieve internet traffic because it is software-

based.  Although hardware can be improved, this can be costly and time-consuming so a 

solution is to utilize the current available memory and make an algorithm that is efficient.  

Web caching temporarily stores requested web content.  When the same content is 

requested again, it is delivered to the client faster than delivering it from the source.  If 

there is no more room to store content, the cache will remove old or unused items.  Web 

caching uses algorithms to try to make the best decisions on what to keep and remove.  
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There are three types of web caching:  client-side, content server-side, and proxy server.  

Client-side web caching is done by browsers where it stores contents of visited web 

pages.  The disadvantage to client-side caching is that this is restricted to one user or 

device.  Content server-side caching is used to cache redundant computations and 

database retrieval [10].  This reduces the load on the server.  Proxy servers are located 

between multiple users and content servers.  They use web caching software to handle all 

incoming web traffic.  Their use reduces network traffic and response time by relieving 

the load on content servers and reducing retrievals of data across the internet.  There has 

been significant research into developing various effective algorithms for web caching in 

all three approaches.  These algorithms will be discussed in further detail shortly. 

Efficient caching algorithms keep popular items and dispose of rarely used items, 

thus translating to better proxy performance and increased access speed.  This thesis 

examines the performance of a popular web caching software used in a proxy, Squid, 

through empirical testing with a subset of today’s web traffic.  The testing is done using 

Selenium, a tool for web automation.  Based on the results of the tests, some 

recommendations are made to maximize the performance of Squid.   

This thesis is divided as follows:  in Chapter 2, background information on web 

caching and various web caching algorithms is covered.  Chapter 3 describes the software 

tools used in this thesis.  Chapter 4 discusses the web caching experiment design and 

collection of data.  Chapter 5 discusses the results of the experiment.  Finally, Chapter 6 

provides conclusions and future work about this web caching experiment. 
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CHAPTER 2 

BACKGROUND 

 Web caching is a technology that stores or caches web content or objects for 

future reuse.  The web objects can be almost anything, such as images, videos, texts, 

audio, documents, web page components, and scripts.  Web caching was developed to 

reduce latency, bandwidth use, and load on internet content servers [10].  One of the 

major problems with web caching is keeping unused objects in the cache for a long time 

which is known as cache pollution.  This occurs because algorithms do not perform 

efficiently either because they are too simple or because certain network conditions do 

not work well with a particular algorithm.  Another problem occurs when an algorithm is 

not caching data effectively.  In this case, the stored objects get removed from the cache 

too early.  Although there have been many algorithms developed for web caching, 

finding the best algorithm is still a major challenge [10].  Today’s web caching software, 

such as Squid, still uses basic algorithms despite the availability of many other advanced 

algorithms.  The next few paragraphs will talk about how web caching works in further 

detail and then discuss metrics used to measure performance.  In addition to web caching, 

a brief background on web pre-fetching will be covered as both are related.   

When a web page is requested from a client for the first time, a proxy server will 

retrieve web pages from the source, which may be a long distance away.  The retrieved 

pages are cached into individual objects in a proxy server and sent to the client.  Each 

time a cached object is requested, the proxy server checks if the object is still fresh, 
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meaning the current date and time have not passed the expiration date and time.  If it is 

fresh, then the proxy server will send the cached object.  If it is not fresh, then the proxy 

server must retrieve it from the source and replace it with the expired object.  When the 

same content is accessed again from the same or a different client, the content is retrieved 

from the proxy server, not from the source.  Therefore, the delivery time is reduced 

significantly.  A proxy server will cache objects until the memory is full.  When the 

memory is exhausted and new objects arrive, the proxy server must decide what objects 

to replace with the new ones or whether to keep the new objects at all.  Algorithms make 

these important caching decisions. 

 

 

FIGURE 1.  Proxy server in a network.  The client retrieves new or cached objects from 

the proxy and the proxy retrieves new objects from the internet. 

 

 

 

Web Caching Algorithms 

One of the most popular web caching software available is Squid.  We will 

discuss Squid in detail in Chapter 3. Squid uses three algorithms:  Least Recently Used 

(LRU), Least Frequently Used with Dynamic Aging (LFUDA), and Greedy Dual-Size 



7 

 

Frequency (GDSF) [11].  Least Recently Used works by adding a timestamp to each 

object which represents the last time it was either cached as a new object or reused 

[12,13].  When there is not enough space, it simply removes the object with the oldest 

timestamp [12,13].  LRU was first used in memory and CPU caching, and it has proven 

effective there but in web caching it is not as effective because the size of objects are not 

uniform [14].  The advantage of using LRU in web caching is that it is fast due to its 

simplicity.  The disadvantage is that it may discard an object that is used frequently.  It is 

one of the simplest algorithms developed and there are enhanced variations [15,16].  

Although there are no distinct advantages, it still provides satisfactory performance that is 

why it is the default choice in Squid [11,12,17,18].   

LRU = last accessed timestamp (1) 

Least Frequently Used with Dynamic Aging keeps track of how many times an 

object gets reused and its time in the cache or age [12,17].  It removes objects with lowest 

frequency of use.  The predecessor of this algorithm is Least Frequently Used.  Least 

Frequently Used, just as Least Recently Used, is a simple algorithm that ranks objects 

based on frequency.  Frequency is stored as a counter that increments only to the cached 

object that is accessed.  LFUDA was also used in memory and CPU caching.  Keeping 

objects based on frequency allows some objects to be stored longer than necessary, which 

is known as cache pollution.  This is due to an object having a high frequency resulting in 

objects with lower frequency being replaced even though the objects with lower 

frequency may have higher potential to be accessed again.  To prevent this, an age 

variable is implemented to balance the frequency [19].  The age counter increments every 

time a cached object is replaced and the value is added only to the newly cached object.  
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This forces objects that have not been accessed for a long time to be pushed back in the 

queue.  A score is kept by summing age and frequency.  When the cache is full, LFUDA 

removes objects with the lowest score, based on equation 2.  A new object that gets 

cached is given a score by summing the age value and a frequency of one.  Then all of the 

objects are re-ordered based on their scores.  An advantage is that it keeps popular 

objects, regardless of size.  A disadvantage is that caching large, popular objects takes a 

significant amount of memory space. 

LFUDA = age + frequency (2) 

Greedy Dual-Size Frequency is similar to Least Frequently Used with Dynamic 

Aging except that it takes into account an object’s size in order to maximize the usage of 

memory space.  The predecessor of this algorithm is Greedy Dual.  Greedy Dual was 

developed for uniform-size cache replacement.  It sorts objects by cost where cost is a 

measure of transferring objects into the cache.  The improved algorithm, known as 

Greedy Dual Size (GDS), was developed to consider variable size.  An age was also 

implemented to prevent cache pollution.  Finally, frequency was added for determining 

access patterns which improved performance further, known as GDSF.  In Squid, the cost 

variable is removed [19].  It uses equation 3 to remove objects with the lowest value.  

The advantage is that it maximizes the number of objects that can be cached.  The 

disadvantage is that it penalizes large and popular objects [14]. 

GDSF = age + 
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑠𝑖𝑧𝑒
 (3) 

In addition to Squid’s algorithms, there are many more web caching algorithms 

developed.  There are six types of primary caching algorithms:  recency-based, 

frequency-based, size-based, function-based, random, and intelligent.  LRU is 
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categorized as recency-based, LFUDA is categorized as frequency-based, and GDSF is 

categorized as function-based.  Function-based algorithms consider multiple parameters 

to meet specific requirements.  The advantages of function-based algorithms vary by their 

design, and the disadvantage is the difficulty of putting appropriate weight on each 

parameter.  GDSF is function-based because it considers more than one factor:  

frequency, cost, and size.  Greedy Dual and GDS are considered function-based due to 

cost and size factors.  LFUDA can also be considered function-based because of the age 

factor but the algorithm is primarily concerned with frequency and age is implemented 

solely for preventing cache pollution.  Same argument can be made for GDSF for its use 

of the age factor.  Size-based type prefers to store smaller objects.  The advantage of this 

is that it can get high hit ratio because it can store many objects.  The disadvantage is that 

it discards large frequently visited objects so it cannot get high byte hit ratio. Random 

types remove cached objects randomly.  There is no definitive advantage or disadvantage 

to using it.  Intelligent type algorithms do complex analysis to cache objects.  It analyzes 

logs, web environments, and web traffic by applying machine learning techniques.  The 

advantage is that it is highly effective.  The disadvantage is that it takes a significant 

amount of time and computation overhead.  Within each type there are numerous 

algorithms.  For example, there are twelve different recency-based algorithms and seven 

intelligent algorithms.  Each algorithm has its own advantages and disadvantages.  A 

summary of each type is shown in Table 1.  The next paragraph will discuss how to 

measure performance of these algorithms [10]. 
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TABLE 1.  Algorithm Types 

Algorithm Description Advantage Disadvantage 

Recency-based Adds last access 

timestamp to each 

object. 

Simple 

implementation. 

Fast computation. 

Disregards 

frequency. 

Frequency-based Adds frequency 

counter to each 

object. 

High hit rate. Cache pollution. 

Low byte hit rate. 

Size-based Keeps smaller 

objects. 

High hit rate. Low byte hit rate. 

Removes 

frequently visited 

large objects. 

Function-based Considers multiple 

parameters. 

Depends on an 

algorithm’s design. 

Difficulty 

assigning 

appropriate 

weight on each 

parameter. 

Random Randomly removes 

objects. 

Not definitively 

known. 

Not definitively 

known. 

Intelligent Analyzes caching 

pattern by applying 

machine learning 

technique. 

High hit rate and 

byte hit rate. 

Large 

computation 

overhead. 

 

 

Web Caching Metrics 

An algorithm’s performance is measured by metrics.  Two metrics are widely 

used in web caching:  hit rate (HR) and byte hit rate (BHR) [10,12,13,14,17,18,19,20].  

Hit rate is a measure of how many times a cached object is requested over total requests.  

It is a way of measuring how well an algorithm caches objects.  High hit rate translates to 

good performance.  There are three ways to get high hit rate.  First, the same object is 

requested many times.  Second, many cached objects are requested.  The first case is 

unlikely because there are many different objects in the internet.  The second scenario is 

more likely to occur.  To get high hit rate in the second scenario, the number of cached 
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objects should get close to the number of requests.  That means the number of cached 

objects must get high.  Since there is a limit on cache space, the number of cached objects 

can only be maximized by decreasing their size.  In order to get high hit rate, an 

algorithm should store as many small objects as possible.  The third scenario is to keep 

and store objects that will be requested frequently.  This requires heuristics to predict 

what objects may be requested again in the future.  Greedy Dual-Size Frequency was 

designed to achieve high hit rate by increasing the chances of getting hits by storing 

smaller objects [12,14,17].   

Byte hit rate is a measure of how much data is coming from the cache versus how 

much comes from the content server.  It is a way of measuring how efficiently the 

bandwidth is used.  High byte hit rate is important for good network performance.  There 

are two scenarios to achieve high byte hit rate.  The first case is getting hits on a large 

object.  The second case is getting hits on many small objects.  These two cases are 

unlikely to occur commonly due to the nature of the internet.  This also requires 

heuristics.  Least Frequently Used with Dynamic Aging was designed to achieve high 

byte hit rate by allowing larger objects to get hits [12,14,17]. 

It is difficult to achieve high percentage in both of these metrics because they are 

contradictory [14].  If high hit rate is desired, then smaller objects should be stored and 

this will not provide a high byte hit rate.  On the other hand if high byte hit rate is desired, 

then larger objects should be stored and this will not provide a high hit rate due to fewer 

number of cached objects.  Getting high hit rate with large objects is also difficult due to 

object size.  Getting high byte hit rate with small objects is difficult because the total size 

of all small objects will not be large compared to the total size of all large objects.  For 
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example, the sizes of small and large objects are one kilobyte and five kilobytes, 

respectively.  Then if five cached objects are requested, sending small objects only have a 

total size of five kilobytes while sending large objects only have a total size of 25 

kilobytes.  Sending large objects only have higher byte hit rate. On the other hand, if the 

total size of requested objects is five kilobytes, then only five small objects or one large 

object can be sent at a time.  Sending small objects only have higher hit rate.  To get both 

a high hit rate and a byte hit rate is nearly impossible because the cache must contain 

most of the objects requested, but users always visit new web pages.  For example, GDSF 

cannot achieve high byte hit rate and LFUDA cannot achieve high hit rate.   

Web Pre-Fetching 

One way to improve performance further is by using web pre-fetching.  Web pre-

fetching is similar to web caching except it caches objects that have never been 

requested.  This technique can be applied at client-side, content server, and proxy servers 

as well.  It works by predicting what objects will be requested based on users’ navigation 

patterns.  In order for web pre-fetching to work, it must incorporate web caching.  The 

performance of web caching and web pre-fetching can increase by 100% if the two work 

well together.  The disadvantage is that web pre-fetching may cache objects that may 

never get requested, resulting in increased load and traffic.  This can lead to worse 

performance than just utilizing web caching.  Web pre-fetching has two types:  history-

based and content-based.  History-based types analyze visited web pages and determine 

what similar pages will be requested in the near future.  For example, if users check 

online news from Yahoo or CNN, it will cache those pages as soon as new content are 

available.  Content-based types use keywords found in web pages to predict what pages 
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with the same keywords will be visited by users.  For example, users visiting Amazon 

will most likely visit other online shopping sites such as eBay and Walmart using 

keywords such as “shopping,” “buy,” and “sale.”  There are different metrics used to 

measure the performance of web pre-fetching algorithms [10]. 

The effectiveness of pre-fetching algorithms is measured by 6 metrics:  precision, 

byte precision, recall, byte recall, traffic increase, and latency per page ratio.  Precision is 

the rate of how many pre-fetched objects were hit over total pre-fetched objects.  Byte 

precision is similar to precision except in terms of bytes.  Recall is similar to the hit rate 

from web caching except it counts the number of pre-fetched hits over the number of 

requests.  Byte recall is also similar to byte hit rate except it calculates the total bytes of 

pre-fetched objects over total bytes transferred.  These four metrics desire high 

percentage for performance.  Traffic increase is the difference of bytes passing through 

the network with pre-fetching and no pre-fetching.  Latency per page ratio is a latency 

ratio between using pre-fetching and not using pre-fetching.  These two metrics are 

desired to be minimal [10].   
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CHAPTER 3 

SOFTWARE TOOLS 

This section introduces the software tools used in the proxy server and in testing 

the performance of web caching algorithms.  These tools were found through online 

search and references in published articles.  Although there are many other software 

options out there, these were selected based on documentation, popularity, availability, 

and compatibility.  The software documentation had to be thorough to be able to install 

and run the software in a short span of time.  Popular tools tend to have more resources 

available online through websites, forums, and streaming video sites such as Youtube.  In 

terms of availability, only free tools were identified as candidates, mainly for financial 

reasons.  The tools had to be compatible with the existing hardware, and only the 

Windows operating systems was available.  The tools should not require more than two 

computers and a router.  These requirements were all satisfied with some challenges. 

Squid 

Squid is an open-source proxy software developed for Linux and Windows 

operating systems which started in the early 1990’s [21].  Besides web caching, it has 

many other features such as web access control and Domain Name System [11].  It offers 

instructions on how to setup in a Windows environment as the servers used in this 

experiment were Windows-based.  Currently, it is being used by many internet providers 

[11].  It comes with a log analysis tool that provides information such as hit rate and byte 

hit rate.  Its settings such as selecting different algorithms and cache storage size are 
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edited through a configuration file.  When Squid is running, its settings cannot be 

modified until it is stopped.  Although there are many other software tools out there, 

Squid was selected based on documentation, popularity, availability, and compatibility. 

Other candidates were Varnish, Nginx, Apache Traffic Server and Polipo.  Nginx, 

Apache Traffic Server, and Polipo were not considered because these do not support 

Windows operating system that is the only operating system available for testing 

[22,23,24].  Varnish supports Windows but the monitoring tool did not have byte hit rates 

[25,26,27,28].   

Selenium 

Selenium is an open-source web automation tool primarily used to validate 

contents and functionalities of web pages.  It is popular in many companies for front-end 

validation.  It supports many browsers, such as Firefox, and it is offered in many 

programming languages, such as Java, for writing automation scripts.  It also has a 

record-and-play plug-in available in Firefox so it can be used by beginners.  It supports 

Linux, Windows and Macintosh operating systems.  For this thesis, it is used to automate 

web browsing.  This was also selected based on the same criteria as Squid: 

documentation, popularity, availability, and compatibility.   

Other candidates were Wisconsin Proxy Benchmark, Polygraph, and Chrome 

Browser Automation.  To make Squid work is to imitate how a user would browse the 

internet, which is to visit websites and do it for many hours.  Since this would require a 

lot of manual labor, automation or benchmarking software was to be used.  

Benchmarking software is specifically designed to test the performance of proxy servers 

by generating web traffic and providing performance data.  Wisconsin Proxy Benchmark 
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was a good candidate because of many factors.  It provided caching statistics including 

hit rate and byte hit rates [29].  The setup required a client, a proxy, and a content server 

[29].  Figure 2 shows the setup.  It was referenced in published journals so it proved its 

purpose [12,19].  However, the documentation was very limited in building and running 

the software.  It did not mention what operating systems it supports so it would require 

trial and error. 

 

 

FIGURE 2.  Architecture of Wisconsin Proxy Benchmark [29]. 

 

 Polygraph was another benchmark software that was better than Wisconsin Proxy 

Benchmark in many aspects.  First, it was well documented [30].  It had details on how to 

setup, build and run it on Linux and Windows environments [31].  It also had scripts 

designed for specific scenarios such as testing proxy servers [32].  It was referenced in 

published journals so it proved its purpose as well [19,33,34].  However, one major 

problem was its steep requirements on hardware that was not attainable at the time.  It 

requires, in addition to proxy and client servers, a Domain Name System server, a content 

server, and a switch [32].  Figure 3 shows the setup.  Because this software tries to be as 

realistic as possible by creating and using domain names, it was strongly recommended 
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for a closed network for security purposes [35].  The setup requirements were unable to 

be fulfilled due to lack of resources so it was no longer considered. 

 

 

FIGURE 3.  Architecture of Polygraph [32]. 

 

 Chrome Browser Automation was a Chrome plug-in and it was promising 

because it was based on record and play function.  Figure 4 shows the interface.  The 

plug-in can record every action performed in the browser and replay the session. 

However, there were some major limitations.  The interface was basic and limited for 

editing. It would crash after some usage.  This required constant monitoring and 

restarting experiments that were time-consuming.  The plug-in would not wait for the 

web pages to fully load so adding delays were attempted so that all of the objects were 
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cached.  This failed often as they were frequently skipped.  Overall, it was not fit for this 

experiment. 

 

 

FIGURE 4.  Screenshot of a Chrome Browser Automation interface. 
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CHAPTER 4 

EXPERIMENT 

The hardware setup is done as follows.  For the client computer, Compaq Presario 

desktop is used.  Its operating system is 64-bit Windows 7 Home Premium.  Its processor 

is AMD Athlon II X2 215 with a clock speed of 2.70 gigahertz.  Its RAM is 3.00 

gigabytes.  For the proxy server, Lenovo Thinkpad laptop is used.  Its operating system is 

64-bit Windows 7 Enterprise.  Its processor is Intel Core i5-4300M with a clock speed of 

2.60 gigahertz.  Its RAM is 8.00 gigabytes.  Both computers are connected to an 

Actiontec DSL router via Ethernet connections.  This completes the hardware setup.  

The experiments are designed as follows. Selenium runs on a client server and 

Squid runs on a proxy server.  Web browsing is performed by a client server and all of its 

network traffic is re-directed to a proxy server via a router.  The web browser is 

configured not to cache anything.  Figure 5 shows the hardware setup.   

 

 

 

FIGURE 5.  Hardware setup for this experiment. 
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The first test opens home pages of 30 websites that have a large amount of web 

content, such as Yahoo and eBay.  The list of 30 websites is selected from the top 500 

most visited websites worldwide according to a web analytics site, and having a large 

amount of content [36].  Popular websites such as Google are not considered due to lack 

of content on its homepage.  The sizes of the objects in the list of 30 websites vary from a 

few hundred bytes to hundreds of kilobytes.  There are a total of 2,891 objects in all of 

the web pages that is 40 megabytes in total.  Thus the average size of an object would be 

about 14 kilobytes.   

The second test views streaming videos.  Because Squid requires extensive 

modification in the configuration to cache streaming videos, for this experiment it is 

substituted to accessing large images.  This is determined by comparing the size of few-

minute videos from Youtube and large images, and it is found that they are identical in 

size.  The large images are found from Google.  From this point onwards, the images are 

referred to as streaming videos.  The sizes of the videos or objects vary from a megabyte 

to tens of megabytes.  There are a total of fourteen objects, one per web page with a total 

of fourteen web pages, which is 56 megabytes in total.  The average object size would be 

approximately four megabytes.  The first and second tests are to represent two ends of a 

spectrum where the first test finds many small objects and the second test finds few, large 

objects.  In other words, it is to represent two types of web users:  users who check web 

content and other users who watch streaming videos. 

The third and last test is the mix of web content and streaming videos to see the 

overall effect.  The total size of objects is therefore 96 megabytes.  Each test uses three 

algorithms:  Least Recently Used, Least Frequently Used with Dynamic Aging, and 
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Greedy Dual-Size Frequency.  Each algorithm is tested with 10%, 18%, 25%, 50% and 

75% cache storage sizes with respect to the total size of all web content, streaming videos 

and a mix of web content and streaming videos.  Five different cache storage sizes are 

selected to show a broad spectrum.  For example, with the cache storage size at 50% for 

visiting web content pages, Squid would store about 1,450 objects or 20 megabytes in 

total and the test will still visit all of the web pages.  Thus the total number of 

experiments is 45; it is a product of three types of tests, three algorithms, and five cache 

storage sizes.  Each experiment is conducted for one hour based on initial findings where 

the data were becoming consistent after running for one hour.  The web pages are visited 

randomly at each test.  One instance of a random run is analyzed in Figure 6.  At the end 

of each test, Squid’s configuration file, a screenshot of the log analysis tool at one hour, 

and logs are saved as experimental data.  The logs and cache folders are cleared before 

the next test.  This covers the approach of the experiment. 

 

 

FIGURE 6.  Statistical analysis of a test run.  This shows how frequently each web page 

was visited in this run.  For example, website one was Yahoo which was visited six times 

and website two was CNN which was visited twice.  The statistics vary for each run.  
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CHAPTER 5 

RESULTS 

 This section analyzes hit rates and byte hit rates from three tests:  web content, 

streaming videos, and a mix of web content and streaming videos.  All graphs have either 

hit rate or byte hit rate in the y-axis and cache storage size on the x-axis.  The value for y-

axis is in percentage and for x-axis it is in megabytes.  The cache storage size represents 

how much of the total objects visited are cached.  The total size of visited web objects is 

different for each test:  40 megabytes of web content, 56 megabytes of streaming videos, 

and 96 megabytes in a mix of web content and streaming videos.   

The first graph, shown in Figure 7, is the hit rate for visiting web content.  The hit 

rate for visiting web content shows that Greedy Dual-Size Frequency outperformed other 

algorithms.  This is expected because the design of GDSF maximizes the cache storage 

by choosing smaller objects.  GDSF’s hit rate increases four-fold from 7.6% to 30.2%.  

Least Frequently Used with Dynamic Aging performs the worst because it caches objects 

of any size, thus reducing chances of getting hits.  LFUDA’s hit rate increases eight-fold 

from 2.4% to 25.4%.  Least Recently Used does worse than GDSF because LRU also 

stores any sized objects.  It does slightly better than LFUDA as the cache size increases.  

This is probably because LFUDA caches large and frequently visited objects so it holds 

fewer objects than LRU.  The hit rate of LRU increases at the highest:  nine-fold from 

2.9% to 28%.  All seem to have a uniform increase over cache storage sizes.  It is clear 

that increasing storage size has the expected positive effect on web caching. 
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TABLE 2.  Hit Rate for Web Content 

Size LFUDA GDSF LRU 

4 MB 2.4% 7.6% 2.9% 

7 MB 7.2% 11.9% 8.6% 

10 MB 10.2% 15.6% 11.9% 

20 MB 18.7% 24.4% 22.5% 

30 MB 25.4% 30.2% 28.0% 

 

 

 

FIGURE 7.  Hit rate for visiting web pages with content. 

 

 The next graph, shown in Figure 8, is the byte hit rate for visiting web content.  

LRU maintains highest byte hit rate at all cache storage sizes.  This is expected because 

its algorithm does not consider frequency as others do.  Since the tests are created to visit 

web pages randomly, the frequency factor actually has a negative effect on byte hit rate.  

Visiting web pages randomly means that algorithms need to ignore frequency if they 

need to get adjusted to new patterns quickly.  Since LFUDA and GDSF place some 

weight on frequency, frequency makes GDSF and LFUDA harder to reorganize their 
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cache for new objects.  GDSF performs the worst because it prefers to store smaller 

objects.  In order to get high byte hit rate, it requires many small objects to get hit which 

is more difficult statistically.  LFUDA does better than GDSF but worse than LRU 

because of the same reasons explained earlier, regarding frequency and size.  LFUDA 

keeps any sized objects, therefore it has higher chances of getting hits on larger objects 

than GDSF.  LRU and LFUDA seem to have the most dramatic increase in byte hit rate 

by a factor of nine, from 3.7% to 34.2% and 2.7% to 32.3%, respectively.  GDSF 

increases by a factor of almost eight, from 2.7% to 28.2%.  It is clear that increasing 

storage size has the expected positive effect on web caching. 

 

TABLE 3.  Byte Hit Rate for Web Content 

Size LFUDA GDSF LRU 

4 MB 2.7% 2.7% 3.7% 

7 MB 10.1% 6.0% 10.9% 

10 MB 13.0% 9.9% 16.3% 

20 MB 22.0% 21.6% 30.4% 

30 MB 32.3% 28.2% 34.2% 

 

 

 The next two paragraphs discuss hit rate and byte hit rates for viewing streaming 

videos.  Again, GDSF outperforms others in the hit rate, shown in Figure 9, because it 

can store more objects based on smaller size.  LRU performs worst overall.  However, it 

has the highest increase in hit rate with a factor of about four, from 6.1% to 21.7%.  

GDSF and LFUDA do not show significant increase except between the cache storage 

sizes of ten and fourteen megabytes.  The reason could be that objects with size greater  
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FIGURE 8.  Byte hit rate for content. 

 

than ten megabytes are now able to be cached.  This could also explain why the hit rates 

of LFUDA and GDSF do not increase proportionately to the cache storage size.   

However, LRU’s hit rate starts increasing substantially and this may be because of its 

disregard to frequency.  The hit rates for GDSF and LFUDA increase by a factor of 1.5.  

The overall hit rate is less than the overall hit rate from web content.  This is expected 

because there are fewer objects.  It is clear that increasing cache storage size has positive 

effect on caching on all algorithms.   

 

TABLE 4.  Hit Rate for Streaming Videos 

Size LFUDA GDSF LRU 

6 MB 11.8% 14.4% 6.1% 

10 MB 12.4% 15.2% 9.0% 

14 MB 16.2% 19.7% 8.2% 

28 MB 18.3% 22.2% 15.6% 

42 MB 18.1% 23.5% 21.7% 
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FIGURE 9.  Hit rate for streaming videos. 

 

 According to Figure 10, LRU has the highest byte hit rate for streaming videos, 

with the same reasoning from byte hit rate for web content.  GDSF and LFUDA are 

almost the same at each cache storage size.  A probable reason for showing similar 

performance would be because there are very few objects to experiment with.  LRU 

grows by a factor of eleven, from 5.4% to 61.8%.  LFUDA and GDSF grow by a factor 

of nine, from 5.8% and 4.8% to 45.5% and 48%, respectively.  It is clear that increasing 

cache storage size has positive effect on caching on all algorithms.  The overall byte hit 

rate is much larger here than for visiting content web pages that is expected because 

every hit translates to large byte hits.  

The last two paragraphs discuss the results of mixing web content and streaming 

videos.  GDSF does best overall in hit rate, as shown in Figure 11, which is expected  
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TABLE 5.  Byte Hit Rate for Streaming Videos 

Size LFUDA GDSF LRU 

6 MB 5.8% 4.8% 5.4% 

10 MB 7.0% 6.5% 14.1% 

14 MB 18.9% 19.9% 20.3% 

28 MB 30.7% 35.4% 39.5% 

42 MB 45.5% 48.0% 61.8% 

 

 

 

FIGURE 10.  Byte hit rate for streaming videos. 

 

because it outperformed in previous two tests.  Its hit rate doubled from 16.6% to 38.7%.  

LFUDA and LRU are evenly matched, with their hit rates growing by a factor of four.  A 

sudden jump in hit rate at seventeen megabytes could be due to the cache storage size 

being big enough to cache objects with size greater than ten megabytes, as discussed 

earlier in regards to Figure 9.  The overall hit rate is also larger than any previous 

scenario, which is expected since this is a mix of web content and streaming videos.  It is 

clear that increasing cache storage size has positive effect on caching on all algorithms. 
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TABLE 6.  Hit Rate for Web Content and Streaming Videos 

Size LFUDA GDSF LRU 

10 MB 10.7% 16.6% 7.9% 

17 MB 9.8% 24.4% 9.0% 

24 MB 12.3% 24.1% 14.7% 

48 MB 20.9% 35.7% 24.2% 

72 MB 36.4% 38.7% 34.1% 

 

 

 

FIGURE 11.  Hit rate for web content and streaming videos. 

 

Finally, LRU does best in byte hit rate, as shown in Figure 12.  This is expected 

since it did well in previous scenarios.  GDSF and LFUDA are almost identical.  The byte 

hit rate of LRU increases by a factor of five, from 10% to 48.7%.  GDSF and LFUDA 

increase by a factor of seven.  The overall byte hit rate is better than the byte hit rate of 

web content and worse than the byte hit rate of streaming videos.  This is because smaller 

objects have a negative impact while larger objects have a positive impact on byte hit 
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rate.  It is clear that increasing cache storage size has positive effect on caching on all 

algorithms.   

 

TABLE 7.  Byte Hit Rate for Web Content and Streaming Videos 

Size LFUDA GDSF LRU 

10 MB 8.5% 5.6% 10.0% 

17 MB 7.3% 10.4% 11.1% 

24 MB 12.6% 12.4% 18.3% 

48 MB 32.3% 33.5% 35.4% 

72 MB 41.1% 41.7% 48.7% 

 

 

 

FIGURE 12.  Byte hit rate for content and streaming videos. 
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CHAPTER 6 

CONCLUSION 

In this study, the performance of a web caching software on a home network was 

examined.  The motivation for this experiment was due to significant increase in web 

traffic, with streaming video taking an ever-larger percentage of the total web traffic.  A 

brief overview of web caching algorithms was discussed to provide a basic overview.  

For this experiment, Squid was used to compare performances of its set of web caching 

algorithms.  The tests were composed of viewing web content, streaming videos, and a 

mix of web content and streaming videos. 

The results showed that Greedy Dual-Size Frequency performed best in hit rates 

while Least Recently Used was the highest in byte hit rates.  GDSF had the best hit rate 

because it maximized caching by keeping smaller objects which was expected.  LRU had 

the best byte hit rate because it did not consider frequency.  In comparison to research 

papers, the results nearly matched on hit rates even though the tests were not similar.  

Every result showed that the hit rate and byte hit rate increased proportionately to cache 

storage size, as expected. 

There is no clear choice on which algorithm should be used to satisfy both 

metrics.  However, since the testing was performed randomly and had a limited scope, 

additional testing must be done to be able to draw generalized real-world 

recommendations.  In real internet traffic, there may be patterns to the searches users 

perform.  Further tests are needed to determine which algorithms work best taking into 
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account the possible non-random access done by users.  With less random testing, 

patterns may emerge in web traffic that result in changes in algorithm performance.  It is 

quite possible that the frequency aspect of the web caching algorithms will play a larger 

role.  In hit rate, GDSF may still have the highest performance.  In byte hit rate, Least 

Frequently Used with Dynamic Aging may have the highest performance. 

Future Work 

 In order to perform experiments more realistically, more exhaustive testing on the 

web caching algorithms must be performed.  First, if patterns exist in web browsing 

behavior, the patterns must be identified and a method for replicating them must be 

developed.  The tests will need to be designed so that visiting the web pages is done 

following the users’ patterns.  This may be able to be achieved by modifying the 

automation script so that some web pages are referenced more frequently than others.  

Another approach would be to incorporate the web browsing history of real users where 

the automation scripts visit web pages based on users’ web browsing history.  

Furthermore, using benchmarking software such as Polygraph may show how results can 

vary based on the methods of testing.  Another aspect that can be improved is the scale of 

testing.  Significantly increasing the number of websites and streaming videos will need 

to be done.  Increasing the duration of streaming videos from 30 to 120 minutes is 

suggested to represent television shows and movies.  Since there are other web caching 

software tools available, other software can also be tested for comparison.  There are 

many variations that can improve this experiment. 
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