
AUTONOMIC PERFORMANCE OPTIMIZATION
WITH APPLICATION TO SELF-ARCHITECTING

SOFTWARE SYSTEMS

by

John M. Ewing
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Daniel Menascé, Dissertation Director

Dr. Hassan Gomaa, Committee Member

Dr. Sam Malek, Committee Member

Dr. Stephen G. Nash, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean
Volgenau School of Engineering

Date: Spring Semester 2015
George Mason University
Fairfax, VA

Autonomic Performance Optimization with Application to Self-Architecting Software
Systems

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

John M. Ewing
Master of Science

Illinois Institute of Technology, 2003
Bachelor of Science

University of Richmond, 1997

Director: Dr. Daniel Menascé, Professor
Department of Computer Science

Spring Semester 2015
George Mason University

Fairfax, VA

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3706982
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3706982

Dedication

I dedicate this dissertation to my wife, Theresa.

ii

Acknowledgments

I would like to thank first and foremost my advisor, Daniel Menascé. His guidance, support,
and suggestions have proven invaluable.

I’d also like to thank the other members of the SASSY team, Hassan Gomaa, João Sousa,
Sam Malek, Naeem Esfahani, Koji Hashimoto, Zeynep Zengin, and Minseong Kim. Their
ideas, concepts, and work provided the foundation and the context for this dissertation.

I would like to express my gratitude to Hassan Gomaa, Sam Malek, and Stephen Nash
for serving on my dissertation committee.

I would also like to thank the National Science Foundation for supporting me as a grad-
uate research student under the SASSY project (grant CCF-0820060) and George Mason
University’s Provost Office for their support during part of my doctoral work.

Carlotta Domeniconi and Sean Luke shared valuable insights on machine learning and
heuristic search algorithms in my conversations with them.

I’d also like to thank Vasudeva Akula for sharing his experimental data during my work
on autonomic load-balancing.

My mother-in-law, Russetta Canavan, was tremendously supportive during her many
visits—I could not have finished without her help.

My father, Lionel Ewing, spent many hours collecting debugging information to help
me identify a rare race-condition fault in the multi-threaded re-architecting search.

Over the years, my sister, Margaret Ewing, and my sister-in-law, Dolores Prin, offered
much encouragement.

The final push to finish this dissertation would not have been possible without the
babysitting assistance of Helen Maher and Noli Candelaria. They altered their schedules
many times over the last few months to accommodate my deadlines.

My friend, Harold White, lent a listening ear as I hunted bugs and made various hy-
potheses. I’d also like to thank him for his considerable support during the week of my final
defense.

I’d like to acknowledge my children, Alexander, Daniel, and Sarah, who have lived
with “Daddy’s dissertation” for all of their lives. Watching Alexander learn to program,
teaching Daniel about plots, and singing dissertation ditties to Sarah brought me joy during
this process.

Finally, a most special thank you to my wife, Theresa, for her support, forbearance, and
editing skills.

iii

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xii

1 Introduction . 1

1.1 The Challenge of Service-Oriented Architectures 1

1.1.1 Need for New Computing Paradigms 1

1.1.2 The SOA Approach . 1

1.1.3 The Challenge of Autonomy in SOA 2

1.2 Overview of Autonomic Computing . 3

1.2.1 Self-* Properties . 4

1.2.2 Models of Autonomic Function . 5

1.2.3 Degrees of Autonomicity . 7

1.2.4 Utility Functions . 7

1.3 Problem Statement . 8

1.4 Thesis Statement . 8

1.5 Success Criteria . 9

1.6 Contributions . 9

2 Background . 11

2.1 Approaches to Autonomic Computing . 11

2.1.1 Control Theory . 11

2.1.2 AI Technologies . 12

2.1.3 Heuristic Search Supported by Modeling 13

2.2 Performance Evaluation . 13

2.2.1 QoS Metrics . 13

2.2.2 Performance Modeling of SOA Systems 14

2.2.3 Utility Functions . 15

2.3 Optimization and Heuristic Search . 20

2.3.1 Linear Programming Optimization 20

2.3.2 Non-Linear Optimization . 22

2.3.3 Heuristic Search Overview . 22

2.3.4 Local Search . 24

iv

2.3.5 Evolutionary Algorithms . 27

2.4 Learning Agents . 32

2.4.1 K-Nearest Neighbor . 33

2.4.2 Support Vector Machines . 34

2.5 Self-Architecting Software Systems . 39

2.5.1 Overview of SASSY . 39

2.5.2 Service Activity Schema (SAS) . 39

2.5.3 Service Sequence Scenario (SSS) . 41

2.5.4 System Servcie Architecture (SSA) 41

2.5.5 Architectural Patterns . 43

2.5.6 Performance Models for Architectural Patterns 46

2.5.7 Three Layer Model of SASSY . 46

2.5.8 Definitions . 47

2.6 Related Work . 50

3 The Need for Meta-Controllers in Autonomic Computing 52

3.1 Challenges of Autonomic Controllers . 52

3.1.1 Tuning Optimization Algorithms . 53

3.1.2 Effect of Human Effort on Cost . 54

3.2 Case Study: Autonomic Load-Balancing . 55

3.2.1 Overview of Autonomic Load-Balancing 55

3.2.2 Optimization Problem to be Solved 56

3.2.3 Testing Optimization Algorithms . 60

3.3 Concluding Remarks . 63

4 Software Architecture Optimization Search . 64

4.1 Architecture Search Overview . 64

4.2 The Software Architecture Optimization Problem 65

4.3 SSS Performance Models . 66

4.3.1 SSS Availability Model . 66

4.3.2 SSS Throughput Model . 66

4.3.3 SSS Security Option Model . 67

4.3.4 SSS Execution Time Model . 67

4.4 Two-Level Optimization Search for Re-Architecting 68

4.5 Heuristic Search Algorithms for Re-Architecting 71

4.5.1 Neighborhood Filtering (Hill-Climbing and Beam Search) 71

4.5.2 Evolutionary Programming in SASSY 72

4.6 Heuristic Performance Differences . 73

4.6.1 Impact of Architecture Search Algorithm 74

v

4.6.2 Impact of Service Selection Search Algorithm 74

4.7 Examining Meta-Optimization . 76

4.7.1 Meta-Optimization in SASSY . 78

4.7.2 Meta-Optimization Framework . 79

4.8 Concluding Remarks Regarding Architecture Search 87

5 Meta-Controller Approaches . 90

5.1 Framework for the Meta-Controller . 90

5.2 Overall Best Heuristic Pair . 93

5.3 Context Best Heuristic Pair . 93

5.3.1 Characterizing the Optimization Problem 94

5.3.2 Processing the Training Set . 94

5.3.3 Decision Making . 96

5.3.4 KNN Meta-Controller . 96

5.3.5 Offline Training SVM Meta-Controller 97

5.3.6 Online Training SVM Meta-Controller 117

5.4 Concluding Remarks Regarding Meta-Controller Approaches 119

6 Experimental Evaluation . 121

6.1 Autonomic Controller Implementation . 121

6.2 Simulation Design . 122

6.2.1 Simulated Services . 122

6.2.2 Simulation Detail . 124

6.3 Development of SASSY Test Applications 124

6.3.1 SASes . 125

6.3.2 Generation of Service Instances . 125

6.3.3 Generation of SSSes . 128

6.3.4 Finding Initial Architecture and Service Selection 132

6.4 Scalability Experiments . 132

6.5 Meta-Optimization Experiments . 139

6.6 Context-Best Meta-Controller Experiments 142

6.6.1 KNN Meta-Controller Experiments 142

6.6.2 Offline SVM Meta-Controller Experiments 149

6.6.3 Online SVM Meta-Controller Experiments 150

6.7 Summary of Experimental Results . 153

7 Concluding Remarks . 157

7.1 Consideration of the Thesis Statement . 157

7.1.1 Evaluating Thesis Statement H1 . 157

7.1.2 Evaluating Thesis Statement H2 . 158

7.1.3 Evaluating Thesis Statement H3 . 158

vi

7.2 Reviewing the Contributions . 159

7.2.1 Frameworks . 159

7.2.2 Performance Models . 160

7.2.3 Run-time Adaptation of Autonomic Controllers 160

7.2.4 Experimental Examination . 160

7.2.5 Minor Contributions . 160

7.3 Discussion: Managing the Meta-Controller 161

7.4 Future Work . 162

7.4.1 Additional Heuristic Search Algorithms 162

7.4.2 Meta-Optimization . 162

7.4.3 Meta-Controller . 163

A High Performance Data Structure Templates . 164

A.1 C++ Templates . 164

A.2 List . 165

A.3 ArrayList . 166

A.4 LinkedList . 168

A.5 HashTable . 168

A.6 Set . 170

B Heuristic Search Algorithm Implementation . 172

B.1 Heuristic Search Algorithm Template Structure 172

B.2 Heuristic Template for Multi-threading . 173

B.2.1 Initializing Threads . 175

B.2.2 Main Worker Thread Loop . 175

B.2.3 Timer Thread . 178

B.2.4 Destructing Threads . 178

B.2.5 Evaluation of Solutions . 179

B.3 Local Search Implementation . 179

B.4 Evolutionary Algorithms . 181

Bibliography . 182

vii

List of Tables

Table Page

2.1 Sample discrete utility function for encryption levels. 16

4.1 Composition of architecture search binary string. 84

4.2 Composition of service selection search binary string. 85

4.3 Resulting heuristic pairs for representative problems A through D. 86

4.4 Resulting heuristic pairs for representative problems E through H. 86

4.5 Resulting heuristic pairs for representative problems I through L. 87

5.1 Features of the machine learning problem, F(P). 95

5.2 Minimum and maximum values in the GA search for SVM parameters. . . . 116

6.1 State descriptions for simulated SPs. 123

6.2 Possible α (sensitivity) values for randomly generated SSSes. 129

6.3 Performance impact of security option 1. 130

6.4 Performance impact of security option 2. 130

6.5 Summary of SSSes in SAS-15. 131

6.6 Summary of SSSes in SAS-25. 131

6.7 Summary of SSSes in SAS-40. 131

6.8 Summary of SSSes in SAS-65. 132

6.9 Parameters for initial architecture, A, and service selection, Z, searches. . . 133

6.10 Budgets for initial architecture and service selection search. 133

6.11 Re-architecting budgets for architecture, A, and service selection, Z, search. 135

6.12 95% confidence intervals for average Ug on SAS-15. 135

6.13 95% confidence intervals for average Ug on SAS-25. 137

6.14 95% confidence intervals for average Ug on SAS-40. 139

6.15 95% confidence intervals for average Ug on SAS-65. 141

6.16 95% confidence intervals for average Ug on meta-optimized heuristic pairs. . 144

6.17 95% confidence intervals for net overall average Ug. 144

6.18 Performance tables collected by Overall Best with 95% confidence intervals. 146

6.19 95% confidence intervals for mean Ug on SAS-65 with Offline SVM. 149

6.20 95% confidence intervals for average Ug on SAS-40 with Online SVM. 151

viii

List of Figures

Figure Page

1.1 Depiction of the IBM reference model for autonomic computing, MAPE-K. 5

2.1 An example of a logarithmic utility function for throughput. 17

2.2 The effect of α on execution time and availability sigmoid utility functions. 18

2.3 Output from grid search tool in libsvm. 38

2.4 Example of a service activity schema (SAS) for an evacuation planning ser-

vice [92]. 40

2.5 Top: Execution Time or Availability SSS (they have the same structure);

Bottom: Secure Comm SSS [92] . 42

2.6 Top: Base SSA corresponding to the SAS of figure 2.4; Bottom: SSA showing

the replacement of component Eval Evac Plan with a fault tolerant compo-

nent [92]. 44

2.7 Class diagram for SSSs [92]. 45

2.8 Depiction of an architecture. 49

3.1 Screenshot of the heuristic comparison matrix for autonomic load balancer. 61

3.2 Plot of the difference in heuristic search trajectory between random search

and an evolution strategy algorithm (M = 1, K = 30, step size=0.032)

and the difference between random search and a genetic algorithm (M =

25, linear rank S = 0.875, uni. crossover=0.02, genome=11bits) with 99%

confidence intervals. 62

4.1 Basic framework for autonomic optimization in SASSY. 70

4.2 Average architecture search trajectory on 100 SAS-25 optimization problems

with 95% CI bars. 75

4.3 Average service selection search trajectory on 100 SAS-25 optimization prob-

lems with 95% CI bars. 76

4.4 Average architecture search trajectory on 100 SAS-25 optimization problems

95% CI error bars. 77

4.5 The candidate problem set plotted using summary statistics. The twelve

finalist problems are labeled A-L and marked with red x’s. 82

4.6 The meta-optimization procedure applied to SASSY. 83

ix

4.7 Heuristic pair performance on problem D with 95% CI bars. 88

4.8 Heuristic pair performance on problem F with 95% CI bars. 88

4.9 Normalized heuristic pair performance across all problems with 95% CI bars. 89

5.1 Data flows in the meta-controller monitoring and optimization framework. . 91

5.2 Figures (a) and (b) show two possible heuristic pair combinations for a train-

ing set. A label for the training set problem, Pt is determined by which

heuristic pair yields a superior value for RelPerf. The heuristic pairs used

to generate the RelPerf values are the same heuristic pairs used for the

labels, so a labeling boundary is present. 103

5.3 In Fig. (a), (c), and (e), the entire training set is labeled with either heuristic

pair E or heuristic pair G. In Fig. (b), (d), and (f), the entire training set is

labeled with either heuristic pair F or heuristic pair J. Indications of behavior

differences in the heuristic pairs can be observed by plotting with the RelPerf

of other heuristic pairs. 105

5.4 Figures (a), (b), (c) demonstrate how the Overlap metric is calculated. Fig-

ure (a) shows two randomly generated Gaussian data sets, S1 and S2. In Fig.

(b), ~C1,2 is computed. Figure (c) shows the projection of the data sets onto

~C1,2. Three of the projected points in Ś2 are labeled with the fraction of Ś1
between them and the center of S2. 106

5.5 Figures (a) - (f) show two randomly generated Gaussian data sets. The

Overlap metric increases as the data sets become less separated. 107

5.6 E and H plotted with RelPerf of E and H. 113

5.7 Refining search with grid search tool from LibSVM. 115

6.1 State transition diagram describing the behavior of an SP. 123

6.2 SOA application with 15 activities. 125

6.3 SOA application with 25 activities. 126

6.4 SOA application with 40 activities. 127

6.5 SOA application with 65 activities. 128

6.6 Box plot showing results on SAS-15 application. 136

6.7 Box plot showing results on SAS-25 application. 138

6.8 Box plot showing results on SAS-40 application. 140

6.9 Box plot showing results on SAS-65 application. 142

6.10 Box plot showing simulation results for meta-optimized heuristic pairs on

SAS-65. 143

6.11 Box plot showing the quartiles of experiments with KNN MC. 145

6.12 The average Ug over time with 95% error bars in KNN MC experiments. . . . 146

x

6.13 Percentage of time a heuristic pair was selected by the meta-controllers. . . 147

6.14 Scatter plot of relative heuristic pair performance on 1,935 re-architecting

problems. 148

6.15 Box plot showing results of Offline SVM on SAS-65 application. 150

6.16 Box plot showing results of Online SVM on SAS-40. 151

6.17 Online SVM performance over time on SAS-40. 152

6.18 Box plot showing 1st and 2nd half simulation results for Online SVM on SAS-40.153

6.19 SVM parameter search trajectory with 95% CI for SVM models 1-23. . . . 154

6.20 SVM parameter search trajectory with 95% CI for SVM models 24-46. . . . 155

6.21 Online SVM measured prediction accuracy vs size of the training set. 156

A.1 UML describing the derivation and composition of the Set template. 167

B.1 UML describing the heuristic search templates. 174

xi

Abstract

AUTONOMIC PERFORMANCE OPTIMIZATION WITH APPLICATION TO SELF-
ARCHITECTING SOFTWARE SYSTEMS

John M. Ewing, PhD

George Mason University, 2015

Dissertation Director: Dr. Daniel Menascé

Service Oriented Architectures (SOA) are an emerging software engineering discipline

that builds software systems and applications by connecting and integrating well-defined,

distributed, reusable software service instances. SOA can speed development time and

reduce costs by encouraging reuse, but this new service paradigm presents significant chal-

lenges. Many SOA applications are dependent upon service instances maintained by ven-

dors and/or separate organizations. Applications and composed services using disparate

providers typically demonstrate limited autonomy with contemporary SOA approaches.

Availability may also suffer with the proliferation of possible points of failure–restoration

of functionality often depends upon intervention by human administrators.

Autonomic computing is a set of technologies that enables self-management of computer

systems. When applied to SOA systems, autonomic computing can provide automatic de-

tection of faults and take restorative action. Additionally, autonomic computing techniques

possess optimization capabilities that can leverage the features of SOA (e.g., loose coupling)

to enable peak performance in the SOA system’s operation. This dissertation demonstrates

that autonomic computing techniques can help SOA systems maintain high levels of use-

fulness and usability.

This dissertation presents a centralized autonomic controller framework to manage SOA

systems in dynamic service environments. The centralized autonomic controller framework

can be enhanced through a second meta-optimization framework that automates the se-

lection of optimization algorithms used in the autonomic controller. A third framework

for autonomic meta-controllers can study, learn, adjust, and improve the optimization pro-

cedures of the autonomic controller at run-time. Within this framework, two different

types of meta-controllers were developed. The Overall Best meta-controller tracks overall

performance of different optimization procedures. Context Best meta-controllers attempt

to determine the best optimization procedure for the current optimization problem. Three

separate Context Best meta-controllers were implemented using different machine learning

techniques: 1) K-Nearest Neighbor (KNN MC), 2) Support Vector Machines (SVM) trained

offline (Offline SVM), and 3) SVM trained online (Online SVM).

A detailed set of experiments demonstrated the effectiveness and scalability of the ap-

proaches. Autonomic controllers of SOA systems successfully maintained performance on

systems with 15, 25, 40, and 65 components. The Overall Best meta-controller success-

fully identified the best optimization technique and provided excellent performance at all

levels of scale. Among the Context Best meta-controllers, the Online SVM meta-controller

was tested on the 40 component system and performed better than the Overall Best meta-

controller at a 95% confidence level. Evidence indicates that the Online SVM was success-

fully learning which optimization procedures were best applied to encountered optimization

problems. The KNN MC and Offline SVM were less successful. The KNN MC struggled be-

cause the KNN algorithm does not account for the asymmetric cost of prediction errors.

The Offline SVM was unable to predict the correct optimization procedure with sufficient

accuracy—this was likely due to the challenge of building a relevant offline training set. The

meta-optimization framework, which was tested on the 65 component system, successfully

improved the optimization techniques used by the autonomic controller.

The meta-optimization and meta-controller frameworks described in this dissertation

have broad applicability in autonomic computing and related fields. This dissertation also

details a technique for measuring the overlap of two populations of points, establishes an

approach for using penalty weights to address one-sided overfitting by SVM on asymmet-

ric data sets, and develops a set of high performance data structure and heuristic search

templates for C++.

Chapter 1: Introduction

This chapter provides an introduction to the technologies and challenges that are addressed

in this dissertation.

1.1 The Challenge of Service-Oriented Architectures

This section discusses Service-Oriented Architectures (SOA): flexible, emerging technologies

that solve many problems but also introduce new management challenges.

1.1.1 The Need for New Computing Paradigms

Advances in computer and network technology over the last thirty years have helped to

produce an information revolution. Today, the recording, processing, and consumption of

digital information pervades most aspects of daily life and has led to substantial improve-

ments in personal and organizational productivity. As users have become accustomed to

and dependent upon information technology (IT), they have developed higher expectations

of computer system functionality, performance, and availability. As a result, providers of

information technology are under pressure to rapidly develop and deploy new functionality

at reduced cost. To cope with such demands, IT managers are embracing new paradigms

such as SOA.

1.1.2 The SOA Approach

Whereas the Object-Oriented Architecture (OOA) paradigm views application design from

a data perspective, the SOA paradigm views application design from a functional perspec-

tive. When distributed computing technologies like Web Services are combined with SOAs,

previously developed service modules and already deployed service providers can be easily

reused and incorporated into new computing applications [100]. This ability to reuse exist-

ing services encourages collaborative development efforts across multiple organizations and

1

is enabling service marketplaces to emerge where vendors offer the use of a managed service

provider for a fee. Reuse of existing services reduces costs and time required to develop

and deploy SOA applications–in fact, true SOA systems can be composed from services

discovered at runtime [10].

The key principles to enabling the benefits of service-orientation are [35]:

• Loose Coupling–Service modules are designed such that dependencies between services

are minimized.

• Service Contract–Service providers create and maintain relationships through the es-

tablishment of service contracts.

• Autonomy–Service providers control how they render service and are robust to the

failures of other service providers.

• Abstraction–The logic of service modules and the platforms of service providers are

hidden from the outside world.

• Reusability–The size and contents of service modules should encourage reuse.

• Composability–The design of an SOA should allow new applications to be created

from previously existing service providers.

• Statelessness–Services avoid maintaining state information.

• Discoverability–Service providers provide discoverable descriptions of the service.

1.1.3 The Challenge of Autonomy in SOA

A significant challenge for IT managers is that many SOA applications will be dependent

upon service instances maintained by vendors and/or separate organizations. Using con-

temporary SOA approaches, applications and composed services using disparate providers

typically demonstrate limited autonomy. Poor performance or failure of a single service

provider frequently impact the overall SOA applications dependent upon that provider.

Thus, to meet the high performance expectations of users, IT staff must vigilantly moni-

tor all service providers used by their SOA applications. If a service provider suffers from

2

performance degradation or failure, IT staff must respond quickly to replace the service

provider with another functionally equivalent service provider. In some service degrada-

tion and failure cases, IT staff may be required to rearchitect some SOA applications to

meet performance objectives–a process that could take human administrators minutes to

hours. Thus, the cost of staff effort and the complexity of monitoring and maintaining SOA

technologies become major considerations in decisions regarding the fielding of SOA appli-

cations. In SOA environments, where the performance and availability of service providers

are highly dynamic, human management of the application architecture and service selec-

tion is likely infeasible. Autonomic computing could provide a powerful remedy to the

problem of maintaining SOA applications by automating the monitoring, repair, and even

optimization of SOA applications [102].

1.2 Overview of Autonomic Computing

A longstanding tradition in the worlds of computer science and artificial intelligence (AI)

is to draw inspiration from nature to find effective solutions to difficult problems. This

approach has yielded many great discoveries, including neural networks, simulated anneal-

ing, and the field of evolutionary computation. This decade has seen a new movement,

autonomic computing, which is inspired by the autonomic functions of living organisms.

Complex organisms depend on subconscious management of many critical, ongoing biolog-

ical processes (e.g., adjusting the organism’s heart rate) while their conscious minds can

focus on higher level tasks (e.g., finding and catching food). Applying this paradigm to com-

puter technology, computer systems manage their own essential low-level functions, thereby

freeing human users, developers, and administators to focus on higher-level tasks [64].

The field of autonomic computing emerged in the late 1990’s and early 2000’s as re-

searchers realized well-defined and routine tasks, such as parameter tuning, could be handled

by computers themselves. This promising field of research has quickly gained momentum

and now represents a major initiative involving many disciplines, including AI, systems

engineering, software engineering, operations research, and Information Technology (IT)

management.

3

1.2.1 Self-* Properties

Autonomic computing seeks to provide information systems with the following capabili-

ties [42, 64]:

1. A reduction in the Total Cost of Ownership (TCO). Autonomic computing aims to

reduce the TCO by decreasing the human effort required to manage complex systems

and by more efficiently using both hardware and energy resources [53, 71].

2. Improvements in Quality of Service (QoS) metrics. Measurements that assess user

experience with the system, such as response time and availability, comprise QoS

metrics. By making near-optimal decisions, autonomic systems can improve QoS

metrics thereby enhancing the user experience [89].

3. Ability to adapt in the face of environmental change. Autonomic systems should

detect significant and possibly unexpected changes in their environment and respond

appropriately. This adaptation may include modification of the autonomic system’s

behavior and even the system’s structure [22, 69].

4. Ability to evolve in the face of new requirements and functionality. The introduction

of new requirements by users and the addition of new features by developers should

be seamlessly integrated into the autonomic system with minimal disruption and

effort [69].

5. Enhanced ability to defend against attacks. Autonomic systems can enhance security

through automated response to detected attacks and through the development of

dynamic trust models for external entities [27, 56].

To achieve the five capabilities detailed above, researchers have proposed four central

self-* properties that autonomic systems should exhibit: self-configuration, self-optimiza-

tion, self-healing, and self-protection [64]. To be considered self-configuring, an autonomic

system must be able to receive high-level operational goals and then successfully move

to a configuration satisfying these goals. Some configurations satisfy goals better than

others, and self-optimizing autonomic systems will find those configurations that best satisfy

4

operational goals in both the present and the future. Systems with the self-healing property

should diagnose both internal and external problems as they occur and then implement

appropriate remedies. Self-protecting autonomic systems monitor for attacks and take steps

to defend themselves in a proactive manner [56].

1.2.2 Models of Autonomic Function

Autonomic systems can be considered intelligent agents [56]. Russell and Norvig [114]

propose an intelligent agent model in which intelligent agents collect a sequence of percepts

from their environments via sensors. The agents apply functions to the percept sequence

to generate a set of actions that are effected via actuators [114]. Similar models like the

Sense-Plan-Act (SPA) model have been used in the field of robotics [69].

���������	
������

���������	������

���������

������� ����

�������
��������

���������

������
������

������	
������

Figure 1.1: Depiction of the IBM reference model for autonomic computing, MAPE-K.

In a further refinement of the intelligent agent model, IBM introduced the Monitor-

Analyze-Plan-Execute-Knowledge (MAPE-K) model. In this model, autonomic systems

are comprised of autonomic elements. Each autonomic element contains an autonomic

5

manager and a managed element (see Fig. 1.1). As in the intelligent agent model, the

autonomic manager receives percepts from the managed element through sensors. The

monitoring process filters these percepts and passes relevant data to the analysis process.

The analysis process transforms the raw data to information usable in a decision-making

process. If the result of the data analysis warrants action, the usable information is passed

to the planning process. The planning process finds an improved configuration of the

system and develops a sequence of actions that will move the managed element to the

desired configuration. Finally, the effector implements the sequence of actions ordered by

the planning process [56, 57].

A cornerstone of the MAPE-K model is the knowledge module. Each of the processing

steps within the autonomic manager interacts with the manager’s knowledge module. In

the case of monitoring, knowledge may provide insight on percept filtering. For analysis,

knowledge may provide insight on which estimation algorithm should be used. For planning,

knowledge is essential for predicting the impact of an action. Knowledge can consist of both

pre-existing information and learned information [56, 57].

Inspired by recent advances in robotic agent models, Kramer and Magee [69] suggest a

more flexible autonomic model for managing architectures. Rather than impose a process-

ing loop like SPA or MAPE-K, they suggest a three layer model consisting of the component

control layer, the change management layer, and the goal management layer. The inter-

action between the layers is message-driven. At the lowest level, the component control

layer interacts directly with the managed element, collecting and filtering percepts, and

effecting simple changes requested by the upper layers. The change management layer is

able to make rapid decisions via pre-compiled plans reminiscent of event-condition-action

tuples [43, 56]. The plans are implemented either in response to monitoring data from the

component control layer or in response to a request by the goal management layer. The

lower layers enable the goal management layer to perform searching of the configuration

space and perform high-level planning to ascertain the sequence of actions needed to achieve

a near-optimal configuration. A significant advantage of this model is that it allows the au-

tonomic manager to operate simultaneously on different time scales. For example, a system

may have percepts arrive on a millisecond time scale, but making and implementing a plan

6

may take tens of seconds.

1.2.3 Degrees of Autonomicity

Huebscher and McCann [56] propose classifying systems based on their degree of autonomic-

ity. The authors suggest five levels of autonomicity:

1. Support–At this lowest level of autonomicity, a system focuses on only a subset of

self-* properties and/or focuses only on a subset of components.

2. Core–A system with core autonomicity enables self-* properties on all components

but provides no method for modifying system goals online.

3. Autonomous–An autonomous system enables self-* properties on all components but

does not possess awareness of the autonomic manager’s performance.

4. Autonomic–An autonomic system enables self-* properties on all components, is aware

of the autonomic manager’s performance, and can adapt the behavior of the autonomic

manager to improve performance.

5. Closed-Loop–A system with closed-loop autonomicity enables self-* properties on all

components, is aware of the autonomic manager’s performance, and grows the capa-

bilities of the autonomic manager through intelligent reasoning.

System and software architectures can be configured, optimized, healed, and protected

by autonomic managers. Recent work suggests that viewing the architecture as an autonom-

ically managed element may provide the best method for enabling all four self-* properties

in the autonomic system [56,69].

1.2.4 Utility Functions

Utility functions are frequently used by intelligent agents to represent preferences and/or

high-level objectives [114]. In autonomic computing, utility functions were introduced

in [125] as a way of representing business objectives in autonomic computing systems. Gen-

erally, utility functions associate scalar values representing usefulness with system states.

7

For many systems, intelligent agents need to express preferences regarding several dis-

tinct attributes. In many autonomically managed systems [7, 37, 63, 92, 125], a separate

utility function is specified for each attribute of interest. For an autonomically managed

SOA application, such attributes might consist of security features and QoS metrics such

as execution time, availability, and throughput [92].

By combining the results of attribute utility functions, a global utility function can

produce a single utility value indicating the overall usefulness of a system state [7, 37, 92].

When using global utility functions, autonomic agents seek to maximize the global utility

over time.

1.3 Problem Statement

There is a need for methods and mechanisms that provide autonomic capabilities to SOA

applications operating in environments that exhibit unpredictable workload intensities, ser-

vice and communication failures, and have QoS requirements specified by utility functions.

These autonomic capabilities should reduce the human effort of managing SOA applications.

1.4 Thesis Statement

The thesis statement is broken into the three related statements listed below.

H1: Autonomic computing techniques can be used to automatically design the archi-

tecture of SOA-based software systems and select service providers in a scalable way that

optimizes utility.

H2: Scalable autonomic computing techniques that self-adapt to new architectures and

new service provider selections can be used to maintain optimized levels of utility for SOA-

based software systems in the face of failures and performance degradations of service

providers.

H3: An autonomic meta-controller employing machine learning techniques can measure

and tune the autonomic controller’s performance, and thus reduce the human effort required

to manage the system.

8

1.5 Success Criteria

The following success criteria will be used to evaluate the hypotheses.

C1: Develop techniques for the automatic design of architectures and corresponding ser-

vice selection and demonstrate through rigorous experimentation that the methods achieve

optimized solutions in a scalable way.

C2: Develop techniques for the automatic re-architecting and corresponding service se-

lection for SOA-based systems in the face of failures and performance degradation. Demon-

strate through rigorous experimentation that the methods maintain high utility solutions

in a scalable way.

C3: Develop a meta-heuristic agent that adaptively selects heuristics and their param-

eters to solve self-architecting and service selection optimization problems.

1.6 Contributions

This dissertation makes the following major contributions:

1. A centralized autonomic framework that supports goal management, change manage-

ment, and performance monitoring for optimizing architectures in SOA applications.

2. A general approach for discovering near-optimal goal architectures through predictions

of utility.

3. Goal management that takes steps toward full autonomicity through adaptive selec-

tion of heuristic search and search parameters.

4. An experimental evaluation of the developed autonomic frameworks.

This dissertation also makes the following minor contributions:

1. A general approach for the meta-optimization of autonomic systems.

2. A general method for measuring the overlap of two populations of points.

3. A reasoned approach for using penalty weights to address one-sided overfitting by

support vector machines (SVM) on asymmetric data sets.

9

4. High performance C++ templates that combine the best features of arrays, linked

lists, and hash tables.

5. A library of high performance C++ heuristic search templates.

10

Chapter 2: Background

This chapter provides necessary background information about the concepts and technolo-

gies that will be utilized by this dissertation. The first section discusses various approaches

to autonomic computing. Performance evaluation of computer systems with a focus on SOA

systems is addressed in the second section. The third section considers different approaches

to optimization and examines heuristic search algorithms. Machine learning techniques are

described in the fourth section. The fifth section provides an overiew of Self-Architecting

Software SYstems (SASSY). Finally, the sixth section surveys related work.

2.1 Approaches to Autonomic Computing

This section provides background on three major approaches to autonomic computing:

control theory, artificial intelligence (AI) techniques, and heuristic search supported by

modeling.

2.1.1 Control Theory

Control theory is a mature engineering discipline for maintaining some set of reference

properties in a dynamic system through the use of feedback loops [25]. Control theoretic

principles help machinery maintain stability in unstable environments. Many autonomic

systems based on control theory have been developed [25,26,50,53,71,85,103,104]. Control

theory works well when there is a control parameter in the system that can be conti-

nously adjusted. For example, in web servers, control theory might continuously adjust the

MAXTHREADS parameter to keep CPU utilization below some threshold [25].

Criticisms of control theory in autonomic computing can be found in [52] and [56]. The

argument presented in [52] is that there are substantial risks of negative interactions be-

tween control theoretic autonomic components in medium to large systems–these negative

interactions can be subtle and difficult to foresee. In [56], it is pointed out that control

11

theoretic approaches are tightly coupled to implementation–this makes autonomic systems

employing control theory rigid and difficult to evolve. In situations where no continuous

control parameter is available (e.g., architecture management), control theory is reduced to

managing systems through simplistic event-condition-action rules where events are gener-

ated when a reference variable crosses some threshold. Another limitation of control theory

is that it is intended for maintaining system stability and not system optimization.

2.1.2 AI Technologies

Many of the technologies developed in AI can be adapted to autonomic computing. The

more commonly applied techniques are discussed in this section.

Bayesian networks, a form of machine learning, provide mechanisms for computing com-

plex interactions of conditional probabilities [114]. Using bayesian networks, empirical ob-

servations of the system and environment are analyzed and converted into knowledge. Auto-

nomic agents use this knowledge to support the planning and decision-making. Knowledge

obtained through bayesian networks has been applied to enhancing QoS in SOA [74,126,133]

Fuzzy logic allows reasoning with gradations of true and false [114]. Fuzzy logic has

machine learning applications and can be used to learn relationships between parameters

and metrics in autonomic systems [130]. Knowledge developed via fuzzy logic has been used

to support the decision-making of autonomic agents managing SOA systems in [75, 98].

Reinforcement learning observes the consequences of actions taken by an autonomic

agent [124]. These observations are used to infer the relative utility of the actions taken.

Reinforcement learning has been applied to autonomic management of SOA systems in [61].

Reinforcement learning can spend considerable time exploring and learning the consequences

of various actions. Autonomic controllers employing reinforcement learning may take con-

siderable time to develop optimized behaviors.

Supervised learning uses labeled training sets to support decision making in autonomic

systems [98]. Supervised learning will be considered in more detail in Section 2.4.

A knowledge base (KB) in AI is a repository of facts and deductions. Reasoning en-

abled by a KB is sometimes used to drive planning and decision-making in autonomic

systems [106].

12

2.1.3 Heuristic Search Supported by Modeling

Many autonomic controllers are based on search that is supported by performance mod-

els [56]. The performance models provide the capability to predict the performance of any

potential system configuration. Then, a search algorithm is employed to explore the sys-

tem configuration space in a quest for the most suitable system configuration. Often, the

most suitable system configuration is the configuration that maximizes utility. The search

algorithms employed range from simple exhaustive search to complex heuristics. Heuris-

tic search supported by modeling has proven robust even in those situations where the

assumptions of the performance model do not hold [6].

Parameter tuning was an early application of adaptive systems employing heuristic

search [89]. Heuristic search has proven a popular choice for resource allocation [7, 37, 60,

107, 132]. Recent work with these methods has focused on selecting at run-time optimal

software architectures [92] and service selections [16, 30, 87, 88].

2.2 Performance Evaluation

This section defines key Quality of Services (QoS) metrics used to assess SOA application

performance, describes performance models that accurately predict QoS values in SOA

applications, and discusses utility functions for assessing the usefulness of different QoS

performance levels.

2.2.1 QoS Metrics

The following three QoS metrics represent the majority of users’ concerns about performance

in SOA computer applications:

• execution time (te),

• availability (a), and

• throughput (x).

Similar to response time from the client/server paradigm, execution time is the amount

of time that passes while a service is being rendered. The execution time can be derived

13

by comparing the time stamp for the receipt of the service request message, Tr, and the

time stamp for the sending of a service response message, Ts. It should be noted that

in SOA systems, a single service request message can generate multiple service response

messages. Thus, in SOA systems, an execution time is always associated with a specific

service response message. This is reflected in equation 2.1 through the use of subscript i.

te,i = Ts,i − Tr. (2.1)

Availability is the fraction of time that an application or service is up (i.e., able to

process service requests in a normal manner). Availability can be computed from uptime,

tu, and downtime, td, as follows:

a =
tu

tu + td
. (2.2)

If the mean time to failure, t̄f , and the mean time to repair, t̄r, are known for a service

provider, the expected availability of the provider, E[a], can be calculated as shown in

equation 2.3.

E[a] =
t̄f

t̄f + t̄r
. (2.3)

Throughput is the rate at which service requests are successfully processed. Throughput

can be computed from the number of successfully completed requests, N cmp
req , over period of

time, t, as shown in equation 2.4.

x =
N cmp

req

t
. (2.4)

2.2.2 Performance Modeling of SOA Systems

Performance models predict how different system factors affect QoS metrics [86]. Within

autonomic computing systems, analytic performance models are used to predict QoS values

for different system configurations [6, 7, 37, 89, 92]. Modeling of SOA systems reflects the

principles of loose coupling, autonomy, and abstraction by dividing performance models

into two categories: 1) service producer models and 2) service consumer models.

14

Service Producer Models

Service producers are the service providers that receive and process service requests. Given

inputs of service demands, arrival rates, and available resources, service producer models

predict execution times and/or availabilities of service providers. These models are used by

the administrators of a service provider to maintain the service provider’s performance. Ser-

vice producer models are also used to determine the advertised QoS parameters in standards

such as Web Service Level Agreement (WSLA) [76].

Service Consumer Models

Service consumer models consider service instances as black boxes and do not speculate

on the internal dynamics of service instances. Instead, service consumer models focus on

predicting availability, throughput, and execution time of process flows given the adver-

tised availabilities, capacities, and execution times of the service instances comprising the

application flow.

Process flows in SOA applications can be represented in tree data structures [95]. The

leaf nodes of the tree are invocations of service instances. Process flow constructs such

as sequential flows and fork-and-joins serve as parent nodes in the tree structures [95].

Process flow tree structures can be converted to expression trees that act as service consumer

performance models. This tree conversion process substitutes operators for parent nodes

and QoS metric distributions for leaf nodes.

2.2.3 Utility Functions

As mentioned in chapter 1, utility functions provide a means for intelligent agents to de-

termine the usefulness of system states. Within autonomic computing, utility functions are

most commonly applied in the data-driven and heuristic search approaches but can also

be employed by control theoretic approaches. This subsection discusses attribute utility

functions and global utility functions in more detail.

15

Attribute Utility Functions

Attribute utility functions represent either the utility of enabling a certain feature or the

utility of achieving a particular level of QoS. There is typically a discrete utility bonus

associated with each feature type (e.g. security). Table 2.1 shows a sample utility function

for an encryption feature that supports Data Encryption Standard (DES), Triple DES, and

Advanced Encryption Standard (AES).

Encryption Type Security Level Utility

unencrypted none 0.1
DES low 0.3
Triple DES medium 0.8
AES high 1.0

Table 2.1: Sample discrete utility function for encryption levels.

In order to optimize data rates for different network flows, network researchers frequently

apply utility functions to QoS metrics [1,72,120]. A typical concave utility function applied

to data rates is the logarithmic utility shown in equation 2.5:

Ui(v) = γ + α log(v + β) (2.5)

where v is the measured QoS metric, α is a scaling constant, and β and γ are constants

used to move the origin of the logarithmic function. This utility function can be adapted

for the throughput QoS metric in some SOA applications (see Fig. 2.1).

Concave utility functions for network flow data rates yield convex network optimization

problems amenable to mathematical programming techniques [120]. Thus, most work on

network optimization has used concave utility functions for flow data rate. However, concave

utility functions are only appropriate for QoS metrics that are elastic [1,72]. A QoS metric

is considered elastic within a computer application if that application always experiences

decreasing marginal utility degradation as the value of the QoS metric worsens [116], as

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

U
ti
lit

y

Throughput (trans/s)

α = 0.5, β = 1.0, γ = 0.0

Figure 2.1: An example of a logarithmic utility function for throughput.

shown in Fig. 2.1. As modern users have become sensitive to degradation of execution time

and availability, these metrics are considered to be inelastic for interactive SOA applications.

For many interactive SOA applications, throughput is sometimes considered to be inelastic.

For inelastic QoS metrics, a sigmoid utility function is often appropriate [1,7,63,92,114,116,

125]. Sigmoid utility functions are convex in regions where the metric value is poor (i.e.,

not meeting some QoS goal) and concave in regions where the metric value is good (i.e.,

exceeding some QoS goal). Thus the inflection point of the sigmoid utility function occurs

at the QoS goal. A sigmoid utility function for execution time, throughput, and availability

is shown in equation 2.6 [92].

Ui(v) = Ki
eαi (βi−v)

1 + eαi (βi−v)
(2.6)

where Ki is a normalizing factor equal to

Ki =

(1 + eαiβi)/eαiβi for execution time

1 for throughput

(1 + eαi(βi−1))/eαi(βi−1) for availability,

(2.7)

17

βi is the QoS goal for the metric v and αi is a sensitivity parameter that defines the sharpness

of the curve. The sign of αi determines whether the sigmoid decreases (αi > 0) with v or

increases (αi < 0) with v. The maximum value of this sigmoid utility function is 1. These

maximum values occur at v = 0 for execution time, v = 1 for availability, and for v → ∞

for throughput. Typically, a decreasing utility function is used for execution time and an

increasing one is used for throughput and availability (see Fig. 2.2). Automated procedures

for determining appropriate QoS goals in sigmoid utility functions are available [91].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

U
ti
lit

y

Execution Time

α = 0.05, β = 65.0
α = 0.15, β = 65.0
α = 0.50, β = 65.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.97 0.975 0.98 0.985 0.99 0.995 1

U
ti
lit

y

Availability

α = -1500, β = 0.99
α = -500, β = 0.99
α = -200, β = 0.99

Figure 2.2: The effect of α on execution time and availability sigmoid utility functions.

Global Utility Functions

A global utility function provides a mechanism for combining separate attribute utilities

into a single utility score. There are myriad possibilites for defining global utility functions;

this section will discuss two common, practical approaches–a weighted arithmetic mean and

a weighted geometric mean. The weighted arithmetic mean is straightforward:

Ug =

N
∑

i=1

Ui × wi

N
∑

i=1

wi

(2.8)

18

where Ug is the global utility value, N is the number of attributes, Ui is the utility for

attribute i, and wi is the weight for attribute i. Using an arithmetic mean as a global

utility function can lead to solution topologies where the optimal solution maximizes some

attribute utilities while neglecting the utilities of other attributes. Such solutions may

not be desirable for many SOA applications where failure to meet any QoS objective may

make a substantial negative impression on the user. For example, if the optimal solution

maximizes throughput and minimizes execution time but neglects availability, users are

likely to consider the application unusable.

In contrast, a weighted geometric mean is likely to create solution topologies where the

optimal solution attempts to maximize each attribute utility according to its weight [92].

Ug =

(

N
∏

i=1

Uwi

i

)1/
N
∑

i=1

wi

(2.9)

It is also possible to use both the arithmetic and geometric means to create various

hybrid utility functions where some utilites are added and others are multiplied. Prefer-

ence logic, an emerging system evaluation subdiscipline, studies the development of such

hybrid utility functions [31,32]. Preference logic rationalizes global utility functions through

nesting and blending of disjunctions, arithmetic means, and geometric means. The key char-

acteristic of an attribute in preference logic is its andness (which is inversely related to the

attribute’s orness). If an attribute utility score is essential to overall system performance,

then that attribute is considered to have a high level of andness (and consequently a low

level of orness). If an attribute utility score matters only when other attribute utility scores

are low, then that attribute is considered to have a high level of orness (and consequently

a low level of andness) [31]. An arithmetic mean is used to combine attributes that have

equal levels of andness and orness, while a geometric mean is used to combine attributes

with high andness and low orness [32].

Finally, it should be noted that the selection of attribute and global utility functions has

substantial impact on the characteristics of the utility topology in the solution space. Some

combinations of utility functions will create relatively smooth utility landscapes over the

19

solution space, while other combinations of utility functions will produce challenging, rugged

utility landscapes. The topology of the expected utility landscapes must be considered in

the selection of optimization algorithms.

2.3 Optimization and Heuristic Search

Optimization of configurations and resource allocations is a fundamental goal in many

engineering and management disciplines. The purpose of optimization is to find values for a

vector of decision variables, ~x, that maximize (or in some problems minimize) an objective

function f(~x) subject to a set of contraints, C. By observing the properties of f(~x) and C,

optimization problems can be categorized into the following three types:

• linear,

• convex non-linear, and

• non-convex non-linear.

Maximizing global utility for an SOA application is typically a non-convex non-linear opti-

mization problem.

2.3.1 Linear Programming Optimization

When f(~x) is a linear function to be optimized, and C is a set of linear constraints, the

problem can be categorized as a linear optimization problem [122]. Linear problems can be

optimized through a set of techniques known as linear programming. A linear optimization

problem can be represented in either of two different forms: a primal problem that is

typically a minimization problem (e.g. cost minimization) and a dual problem that is

typically a maximization problem (e.g. profit maximization) [122]. The objective function to

be minimized in the primal problem is recast as a set of constraints in the dual problem, and

the constraints of the primal problem are recast as an objective function to be maximized

in the dual problem [122]. The dual problem is sometimes easier to solve and can provide

insight into the solution of the primal problem.

20

In both primal and dual formulations, linear programming techniques require non-

negative values for each decision variable, xi, comprising ~x [48]. The feasible points of

the solution space are the values of ~x that comply with all of the constraints in C–these

feasible points are bounded by a polytope (i.e., an n-dimensional polygon) defined by the

linear constraints [122]. The linear objective function f(~x) can be thought of as defining a

continuum of parallel hyperplanes [96, 122].

In linear programming minimization problems, the smallest value of f(~x) that results

in an objective function hyperplane touching the constraint polytope is the minimum value

of f(~x) [96, 122]. The solution to the minimization problem is the point of intersection

between this objective function hyperplane and the constraint polytope, ~x∗ [96, 122]. In

linear programming maximization problems, the objective function hyperplane is defined

by the largest value of f(~x) that touches the constraint polytope.

In both minimization and maximization problems, the intersection is guaranteed to

occur at a corner of the polytope (in some cases it may be possible for the intersection to

include an edge or a face of the polytope) [96,122]. The number of corners on the polytope is

combinatorial,
(

n
m

)

, where n is the number of decision variables andm is the number of linear

constraint equations [122]. A common method for solving linear programming problems is

the simplex method, which travels from corner to corner of the polytope. The simplex

algorithm starts at one corner of the polytope and then assesses the gradient offered by

each edge of the polytope connected to its current corner [96, 122]. The simplex algorithm

follows the edge offering the steepest descent in minimization problems or the steepest

ascent in maximization problems [96, 122]. The simplex algorithm follows this edge until

it reaches the next corner, where it again evaluates the edges connected to its position.

This process continues until the simplex algorithm reaches a corner where no edge offers

further improvement; this corner is returned by the simplex algorithm as the minimum or

maximum depending on the goal [96,122]. The worst case time complexity for the simplex

algorithm is exponential with regard to n [48,96]. However, the average time complexity of

the simplex algorithm is polynomial with regard to n [48, 96].

21

2.3.2 Non-Linear Optimization

Convex non-linear optimization problems have convex constraint sets and seek to either

minimize a non-linear convex objective function or maximize a non-linear concave objective

function. Such problems are guaranteed to have a single optimum, and a number of tech-

niques including Newton’s method, quasi-Newton methods, and extensions of the simplex

method have been developed for solving such problems in polynomial time [48, 96, 114].

Non-convex non-linear optimization problems contain at least one of the following:

• a non-convex constraint set,

• a non-convex objective function to be minimized, or

• a non-concave objective function to be maximized.

Non-convex non-linear optimization problems are inherently difficult to optimize because

there may exist multiple local optima [112]; typically, only one of these optima is the true

global optimum or supremum [96]. The methods used on convex problems, like the simplex

algorithm, are likely to converge to the nearest optimum regardless of whether it is a mere

local optimum or the global optimum.

A global utility function expressed by a combination of functions similar to those found in

equations 2.6, 2.8, and 2.9 is unlikely to be concave. Thus, the problem of maximizing global

utility for an SOA application will typically belong to the class of non-convex non-linear

optimization problems. Exhaustive search of the configuration space faced by an autonomic

controller of an SOA application is typically NP-hard (see Chapter 4) and consequently

impractical for supporting online decisions. More pragmatic search methods are required if

an autonomic controller searching configuration spaces is to succeed.

2.3.3 Heuristic Search Overview

NP-hard optimization problems are often solved through heuristic search techniques [7,114].

There are three major categories of heuristic search techniques: A*, local search, and evo-

lutionary algorithms [114]. This project utilizes local search and evolutionary algorithms.

A* search depends upon having an admissible cost heuristic function (an admissible cost

22

heuristic function estimates the eventual total cost of a partial solution/configuration with-

out ever overestimating the cost) [114]. In optimization problems, this cost includes the

difference in utility between the current partial solution and the optimal solution. Since

the utility of the optimal solution is seldom known a priori, it is rare to find admissible

cost heuristic functions for optimization problems. Most research on NP-hard optimiza-

tion problems has focused on local search algorithms and evolutionary algorithms [110]. It

should be noted that local search algorithms and evolutionary algorithms are not guaran-

teed to find the global optimum, however in most cases these heuristic algorithms do find

near-optimal solutions. Sacrificing an optimal solution for a near-optimal solution is usually

an acceptable tradeoff to avoid costly exhaustive search of the exponentially-sized solution

spaces found in NP-hard problems.

For autonomic computing systems, the time and resources available for heuristic search

may be substantially limited. Often an optimization search will be spurred by changes in the

autonomic controller’s environment, and the controller will need to respond to these changes

within a matter of seconds. Therefore, good heuristic search performance is essential for

the autonomic controller. Two particular characteristics are of concern in heuristic search

performance: 1) the ability to avoid entrapment in local optima and 2) the convergence

rate. The convergence rate measures improvement in the best predicted global utility with

respect to either the number of evaluations or processing time consumed by the search.

For the autonomic controller presented in Chapter 4 the utility landscape of the config-

uration spaces may vary widely due to differences in utility functions, application designs,

and environments. The behaviors of heuristic search algorithms vary considerably and often

interact with the ruggedness of the utility landscape. All search heuristics seek to balance

exploration of previously unvisited portions of the search space with exploitation of promis-

ing areas of the search space. On smoother utility landscapes, exploitative heuristic search

algorithms are likely to experience higher convergence rates than exploration-oriented algo-

rithms. On rougher utility landscapes, exploration-oriented algorithms are more likely to

avoid entrapment in local optima than exploitative algorithms.

The next section outlines heuristic search algorithms that may be applied in autonomic

computing. Many of these have tunable parameters that can be used to modify the behavior

23

and performance of the heuristic.

2.3.4 Local Search

Local search algorithms (known as direct search in the operations research community [65])

start with one or more solutions (referred to as the visited solutions) and then evaluate sim-

ilar solutions called neighbors. In an effort to find better solutions, a local search algorithm

will then visit one or more promising neighbor solutions and generate new neighborhoods

to evaluate from those visited solutions. The search proceeds until either the search budget

has been exhausted or a local optimum has been found. Most local search algorithms, after

identifying a local optimum, will restart the search from a randomly selected solution(s) in

an attempt to locate a better optimum.

The definition of the neighboring solutions is a key to the success of local search heuristic

algorithms. For configuration optimization problems, local search typically will define the

neighborhood as any configuration that has a single change from the currently visited solu-

tion. For many medium to large configuration optimization problems, such a neighborhood

definition could lead to large, unwieldy neighborhoods that reduce the effectiveness of the

search. Some work has considered pruning the neighborhood through the use of heuristic

filtering (see Section 4.5.1). A neighborhood heuristic filter examines the shortcomings of

the currently visited solution and identifies and visits only those neighbors who are most

likely to have an improved global utility score.

Hill-Climbing

Hill-climbing is a simple local search heuristic algorithm that visits only one solution at

a time. Hill-climbing can operate in either a greedy mode or an opportunistic mode. A

greedy hill-climber evaluates an entire neighborhood to find the neighboring solution with

the highest utility score before visiting any neighboring solutions. If the greedy hill-climber

finds a neighboring solution with a higher score than the currently visited solution, the

greedy hill-climber will visit the neighboring solution with the highest evaluation score and

then generate a new neighborhood. An opportunistic hill-climber evaluates each member

of the neighborhood one at a time in a randomly selected order. If any neighbor offers an

24

improvement in score over the currently visited solution, the opportunistic hill-climber will

move to visit that neighboring solution and generate a new neighborhood, neglecting the

evaluation of the rest of the former neighborhood. In either mode, when the hill-climber

becomes stuck in local optima, it may select a random solution and recommence the search.

Beam Search

Beam search is a more sophisticated local search heuristic algorithm that concurrently

visits multiple solutions. The currently visited solutions in beam search are referred to as

the level-list. The maximum size of the level-list is called the beam width, k. The beam

search algorithm generates neighbors for each member of the level-list. The best solutions

from the combined neighborhood are then selected for the next level-list. Optional selection

requirements may also be applied to the new level-list. One of the following distinct criteria

may be applied before finalizing the k candidate solutions as the next level list:

1. Candidate solutions must exceed the highest score amongst solutions on the previous

level list.

2. Candidate solutions must equal or exceed the lowest score amongst solutions on the

previous level list.

3. All candidate solutions are accepted as the next level list.

Using criterion 1 will lead beam search to ascend optima in a more exploitative manner,

but with this criterion beam search may become trapped in local optima (i.e., an empty

level list) more frequently. Under criterion 2, beam search may more slowly ascend optima

by more fully exploring the solution space, but this extra exploration may help beam search

avoid some local optima. It should be noted that using criterion 2, beam search will need

to store some of the evaluated solutions in memory to avoid visiting the same solutions over

and over while looping through the solution space. With criterion 3, beam search will never

become trapped in local optima, though on some landscapes the extra exploration may

prove costly. Also, beam search using criterion 3 will need to store all evaluated solutions in

memory to avoid endless loops through the solution space. As in hill-climbing, when beam

search becomes trapped in a local optimum, it may randomly generate a new level list and

25

recommence the search. The implementation of beam search used in Chapters 4, 5, and 6

stores previously used level-list solutions in a hash table, so that no solution makes more

than one appearance on the level-list. This allows beam search to move down the utility

landscape and potentially out of a local optimum.

Simulated Annealing

Simulated annealing is a stochastic local search heuristic algorithm inspired by the cooling

techniques used to strengthen solid materials such as steel and glass. A physical annealing

process reduces temperatures according to a schedule that helps ensure the crystal lattices

of the material will settle into low energy states, thus reducing the fragility of the lattices.

The simulated annealing search heuristic operates like opportunistic hill-climbing with one

key difference: simulated annealing may stochastically decide to visit inferior (i.e., lower

predicted Ug) neighbors [110]. This stochastic behavior is meant to simulate the jittering

of molecules as they settle into crystal lattices. In simulated annealing, the probability of

visiting an inferior neighbor i is determined as follows [110]:

p
(

V inf
i

)

= e

(

−∆Ui
g

T

)

(2.10)

where ∆U i
g is the difference in global utilities between the currently visited solution and

neighbor i, and T is the temperature variable. When T is large, the probability that

simulated annealing will decide to visit a significantly inferior neighbor is high. When T is

small, simulated annealing is less likely to visit inferior neighbors and its behavior will start

to resemble a deterministic hill-climber. To simulate the cooling process, T is gradually

reduced as the search proceeds. The process by which T is reduced is referred to as the

cooling schedule. An exponential cooling schedule is commonly employed:

Ti+1 ← αTi (2.11)

where α is a constant between 0 and 1, and i is the number of completed evaluations. An

accepted rule of thumb for determining the initial temperature, T0, is to ensure at the start

26

of the search a roughly 40% to 60% chance that a significantly inferior neighbor will be

visited. When using an exponential cooling schedule, T0 can be calculated by:

T0 ←
−∆U∗

g

lnx0
(2.12)

where ∆U∗
g is a significant difference in global utility, and x0 is the desired probability of

visiting a significantly inferior neighbor at the start of the search. The exponential cooling

parameter, α, can be computed by:

α←
(−∆U∗

g

T0 lnxb−1

)
1

b−1

(2.13)

where b is the number of evaluations in the search budget and xb−1 is the desired final

probability of visiting a significantly inferior neighbor.

2.3.5 Evolutionary Algorithms

Local search heuristic algorithms such as hill-climbing–although highly effective on certain

topologies–can suffer poor performance on more rugged topologies because their intense

focus on a small portion of the solution space fails to consider the bigger picture of the

entire solution space. Since only small variations separate a visited solution from its neigh-

boring solutions, neighboring predicted utilities are expected to be correlated. Thus, local

search algorithms can suffer poor performance because they only examine one neighbor-

hood at a time [110], which can lead to wasted processing time when excessive effort is

spent performing evaluations in poor neighborhoods. Additionally, the local search algo-

rithms hill-climbing and beam search are easily trapped in local optima [114].

Evolutionary algorithms use paradigms from nature to develop a broader view of the

solution space [24, 62, 96, 110]. Traditional evolutionary algorithms such as evolutionary

programming, evolution strategies, and genetic algorithms base their search approach on

the idea of natural selection. More recently developed evolutionary algorithms such as

particle swarm and ant colony optimization are inspired by patterns of communication

27

found in the cooperative behavior of organisms.

Within the traditional evolutionary algorithms, solutions are referred to as individuals

and the properties of the individual are referred to as the phenotype. Some evolutionary

algorithms use an encoded representation of these properties called the genotype. Either

the phenotype or the genotype must be used to represent the solution in an evolutionary

algorithm. The predicted Ug of a solution is termed the individual’s fitness, and changes

to individuals are called mutations. Most evolutionary algorithms start with a randomly

selected population of individuals. These algorithms then assess the fitness of each individ-

ual in the starting population. The traditional algorithms next enter a birth/death cycle of

creating new individuals and removing individuals.

The first step in this cycle is to select the parents based upon some set of rules. For

example, an algorithm could be directed to select only the fittest 25% of individuals (defined

by Ug) in the population to be parents. The second step is for the parents to produce

offspring. An offspring is typically either a copy of a parent or a blend of two or more

parents, modified by some stochastic mutation operation. The algorithms use another set

of rules to determine how many offspring each parent produces (this is sometimes referred to

as the brood size). After all of the offspring are evaluated, the algorithms have a procedure

to determine which individuals from the previous population and which offspring will survive

to form the population of the next generation. If offspring compete with parents to form

the next generation, the population is said to be overlapping [24]. The birth/death cycle

begins anew with the selection of parents from this new generation. Subsequent generations

are created until either a specified threshold fitness has been achieved or a specified budget

of evaluations has been completely consumed.

Evolutionary Programming

Originally developed for the optimization of finite state machines, evolutionary program-

ming techniques have been applied to a wide range of optimization problems [96]. Evolu-

tionary programming heuristic search algorithms typically use a phenotypic representation

of solutions, so the features of the solution are able to be mutated directly. The search is

initialized with randomly generated individuals forming an initial population of size M [24].

28

In each iteration of the birth/death cycle in evolutionary programming, every member of

the population produces a single offspring, which is initially an identical copy of the parent.

The properties of the individual are directly mutated. The probability of mutations intro-

ducing small changes is high, while the probability of mutations introducing large changes

is low. In phenotypic evolutionary algorithms, the average step size is the average differ-

ence produced by a mutation [24]. Typically, evolutionary programming uses overlapping

populations, where the offspring and parent populations are combined together before com-

peting for survival. Next, evolutionary programming applies a survival selection method

called truncation where the population is sorted by fitness, and the top M individuals are

retained as the parent population in the next iteration [24]. This process continues un-

til a stopping criterion is satisfied (either threshold fitness achieved or evaluation budget

consumed).

Evolution Strategies

Similar in many respects to evolutionary programming, evolution strategies was originally

developed for optimization of spray nozzle designs [24]. Typically, evolution strategies begin

with a small population (size M) of randomly generated individuals. In each iteration of the

birth/death cycle in evolution strategies, a relatively large offspring population of size K

(where K >> M) is generated by having each member of the previous population produce

a number of offspring equal to the brood size of K
M (typically the broodsize is an integer).

Evolutionary programming can be thought of as a special case of evolution strategies where

the populations are overlapping and M = K [24]. Evolution strategies uses a phenotypic

representation of individuals, and the evolutionary programming approach to mutation is

also adopted here. In evolution strategies, the parent population may be discarded or used

as part of an overlapping population. Truncation is again used for survival selection. As

in evolutionary programming, this process continues until a stopping criterion is satisfied

(either threshold fitness achieved or evaluation budget consumed).

Adaptive step size is an advanced feature often employed in evolution strategies [5, 24].

With adaptive step size enabled, each individual in the population maintains an average

step size parameter for each dimension of the solution space. Along with the phenotypic

29

representation, these average step size parameters are passed on to offspring. When using

adaptive step sizes, mutation becomes a two-step process. First, each of the individual’s

average step size parameters is stochastically modified. Second, the individual’s phenotypic

representation undergoes mutation in accordance with its new step sizes. On some util-

ity landscapes, the use of adaptive step size can substantially accelerate the algorithm’s

convergence.

Evolution strategies will sometimes employ a technique called recombination during

reproduction [5]. When using recombination, a specific method adapted to the solution

space (e.g. arithmetic mean) converts the M solutions of the parent population into a single

representative solution. This representative solution then produces K offspring solutions

which are then mutated.

Genetic Algorithms

Seeking to more closely emulate the process of natural selection in living organisms, genetic

algorithms manipulate genotypic representations of individuals [24]. An individual’s geno-

type is a string or set of strings that encode the properties of the individual’s phenotype.

Binary strings are a frequent form of representation in genotypes. As with other evolution-

ary algorithms, genetic algorithms begin with a randomly generated initial population of

size M . In each iteration of the birth/death cycle an offspring population of size M is pro-

duced. Typically in genetic algorithms, offspring solutions are produced from a blending

of two parent solutions. Parents are selected for each offspring by one of three stochas-

tic methods: 1) fitness proportional selection, 2) linear rank selection, or 3) tournament

selection.

In fitness proportional selection, each time the genetic algorithm needs to select a parent,

a weighted roulette wheel is spun. In fitness proportional selection, the probability of the

roulette wheel stopping on (and thereby selecting) a population member i is [24, 110]:

P (i) =
U i
g

M
∑

i=1

U i
g

(2.14)

30

When employing fitness proportional selection, a genetic algorithm’s rate of convergence is

correlated to the breadth of the population’s fitness distribution. At the start of a genetic

algorithm search, the randomly generated population’s fitness distribution is frequently

widely dispersed. Thus early in the search, fitness proportional selection will tend to cause

the genetic algorithm to rapidly converge to better solutions. However, as the population

converges toward a concave maximum (as is frequently the case for global utility optima), the

fitness distribution of the population will become tightly clustered. Hence, final convergence

to a concave utility maximum is often a leisurely process when using fitness proportional

selection [24].

In linear ranking, the population is first sorted in descending order according to fitness

(Ug). As in fitness proportional selection, a roulette wheel is also employed. The probability

of the roulette wheel stopping on sorted population member i is [24, 110]:

P (i) =
1 + S
M

− 2S(i− 1)

M(M − 1)
(2.15)

where S is a pressure selection variable that may take on values in the range of [0, 1].

When S is zero, all members of the population have an equal chance of being selected; as

S increases, the probability increases of selecting the fittest members of the population.

Typically with moderate to large values of S, linear ranking selection will slow the early

convergence of the genetic algorithm, while speeding up the final convergnce on concave

maxima–these are considered desirable features on many utility landscapes. A drawback of

linear ranking selection is that the computational cost of sorting large populations can slow

down the search.

Tournament selection provides some of the convergence rate benefits of linear ranking

selection at a reduced computational cost [24]. In tournament selection, each time the

genetic algorithm needs to select a parent, a tournament is formed by choosing q participant

solutions from the population with uniform probability [24]. The winner of a tournament

is the solution with the highest fitness; this winning solution is then selected as a parent.

Regardless of whether fitness proportional, linear ranking, or tournament selection is

used, the selected parent solutions are then blended to produce offspring using a process

31

called crossover in which the strings comprising the genotypes of the parents are spliced

together [24, 110]. Three different types of crossover are commonly employed in genetic al-

gorithms: 1-point, 2-point, and uniform [24]. In 1-point crossover, the string of the offspring

starts by copying the symbols from one parent’s string, then at a randomly chosen crossover

point begins copying symbols from the corresponding portion of the second parent’s string.

Similar to 1-point crossover, 2-point crossover randomly selects two crossover points, and

at the second crossover point, the offspring’s string returns to copying symbols from the

corresponding portion of the first parent’s string. In uniform crossover, after each symbol

position is copied from a parent’s string to the offspring’s string, there is a fixed probability,

p(c), that the parent providing the symbols for the offspring string will be swapped for the

other parent [24].

After the crossover process is complete, the next step is to mutate the offspring. The

mutation process typically involves changing one or more symbols in the genotype strings.

A common method for changing symbols is to have a small but fixed probability of symbol

change applied to each position in the string [24, 110]. For binary strings, this is called

bit-flip mutation, and a typical probability for the mutative flip of an individual bit is 1
L

where L is the number of bits in the string [24].

In most genetic algorithms, the parent generation is discarded, and all of the offspring are

selected to survive as the next generation. Unlike evolutionary programming and evolution

strategies, there is no survival selection in genetic algorithms because parent selection alone

provides sufficient selection pressure.

2.4 Learning Agents

As mentioned in section 1.2.3, fully autonomic controllers possess self-awareness of their own

performance and are able to self-adapt their control procedures. For autonomic controllers

employing heuristic search, self-adaptive tuning of the heuristic search is a natural first step

toward fully autonomic operation. Some mechanisms for self-adaptive tuning of heuristics

have been developed for use in games, compilers, and theorem proving [41,99,117,121,127].

32

Pattern classification through supervised learning may support adapative heuristic se-

lection. In general terms, a pattern classifier examines objects and predicts each object’s

associated class [114]. In Chapter 5, the object to be classified will be an optimization prob-

lem. An object is usually represented as a point in an n-dimensional space. Each dimension

of the space is called a feature. The features of an optimization problem include utility

functions, application design, available architectural patterns, and environmental factors.

Classifiers leverage the information in the features and analyze feature interactions to make

successful predictions. The classifying techniques described below are used to classify op-

timization problems according to the most appropriate heuristic for solving the particular

problem.

In supervised machine learning, classifiers require a training data set. The training data

consists of a set of objects and their corresponding classifications. Most classifiers employ a

learning algorithm that studies training sets and makes generalizations [8, 114]. Often the

classifiers are tested against a second set of objects called the validation set. The validation

set is independent from the training set and is used to ensure that the classifier has not

overfit the data [8]. Overfitting occurs when the classifier makes bad generalizations based

on noise in the original data set. Finally, a third set of objects (independent from the

training and validation sets) called the test set is used to assess the final performance of

the classifier [8].

2.4.1 K-Nearest Neighbor

K-Nearest Neighbor (KNN) methods classify an object by examining the k closest objects

found in the training set [114]. Each of the k nearest objects votes for its own class. The

KNN method assigns the class receiving the most votes to the object in question. The

training data is the classifier in KNN, so there is no training process [114]. The time

complexity of classification in KNN is O(n) where n is the size of the training data set; this

is significantly slower than other classification algorithms [114].

Three different distance metrics have been employed in KNN classifiers. The most

commonly used is the classic Euclidean distance function. A less computationally expen-

sive distance function is the Manhattan distance function, which is the sum of all feature

33

differences [114]. A 2-dimensional example of Manhattan distance is the distance a pedes-

trian must walk between two points in a rectangular city grid such as Manhattan. The

Mahalanobis distance function is significantly more expensive computationally than either

Euclidean or Manhattan distances but enhances feature independence, which in some cases

can improve classification [131]. Recent research into KNN methods has focused on scaling

features based on local information in the neighborhood of the object [28, 40].

2.4.2 Support Vector Machines

Support Vector Machines (SVM) belong to the group of classifiers known as linear dis-

criminants. Linear discriminant classifiers find a set of hyperplane decision boundaries to

separate the classes. Typically, a hyperplane decision boundary is described by a vector,

w, and an offset value, b, and can be used to make a class prediction for an object with

features described by x [8]:

y(x) = wTx + b (2.16)

If the value of y(x) is positive, then then the classifier predicts that the object represented

by x belongs to the positive class. If the value of y(x) is negative, then the classifier predicts

that the object represented by x belongs to the negative class. If y(x) is equal to 0, then y(x)

resides on the decision boundary, and the membership prediction of the object represented

by x will depend upon the implementation of the classifier.

SVMs differ from other discriminant methods by introducing the concept of the margin.

The margin is a buffer on either side of the hyperplane decision boundary. In the simplest

formulation of SVM, the two classes must be linearly separable, and no points from either

class may reside within the margin. Points that are located on the edge of the margin

are called support vectors. SVM methods seek to find the w and b that will maximize the

margin width. The margin width is equal to the the distance between a point represented

by a support vector and the hyperplane decision boundary [8]. This can be computed as

follows:

tny(xn)

‖w‖ tn ∈ −1, 1 (2.17)

34

where n is the support vector’s index in the training set and tn is the class label for xn. As

seen in Equation 2.17, the width of the margin in SVM is proportional to 1
‖w‖ . To maximize

the margin width, SVM minimizes ‖w‖.

A more sophisticated formulation of SVM allows training on data sets that are not

linearly separable. This is accomplished by allowing support vectors to reside within and

beyond the margins of the decision boundary. If xn is a support vector, then the distance

that xn has crossed its margin boundary is represented by a slack variable, ξn, which is

measured in units of margin width. If xn is not a support vector, then ξn is set to 0. In this

more sophisticated formulation of SVM, the goal of maximizing margin width is balanced

with the goal of limiting the intrusion of support vectors into the margin. Balancing these

two goals can be achieved by minimizing the following expression [8]:

C
N
∑

n=1

ξn +
1

2
‖w‖2 (2.18)

where C is an inverted regularization parameter, and N is the number of objects represented

in the training set. Regularization parameters allow tuning of the classifier to prevent

underfitting and overfitting.

Kernels for SVM

By projecting training sets into higher dimensional spaces, it is often possible to improve

the linear separability of the positive and negative classes. A kernel function, k(x,x′) can

be constructed from the dot product of the feature space mapping, φ [8]:

k(x,x′) = φ(x)Tφ(x′). (2.19)

The hyperplane decision boundary in Equation 2.16 can be re-formulated using a feature

space mapping φ:

y(x) = wTφ(x) + b. (2.20)

35

By adding Lagrange multipliers, a Lagrangian function of Equation 2.18 can be devel-

oped. From the Lagrangian function, the following expression for w is developed [8]:

w =
N
∑

n=1

antnφ(xn) (2.21)

where an is a Lagrange multiplier term for xn. A dual representation of the Lagrangian

function can be obtained by substituting this expression for w back into the Lagrangian

function [8]. After this substitution, all instances of φ in the dual representation take the

form of dot products: φ(xn)
Tφ(xm). This allows the substitution of the kernel function,

k(xn,xm), into the dual representation of the Lagrangian function. Equation 2.20 can also

be reformulated to use the kernel function [8]:

y(x) =
N
∑

n=1

antnk(x,xn) (2.22)

Equation 2.22 and the dual form of the Lagrangian function no longer contain φ. Thus, it

is not necessary to compute φ(x)—φ exists and is a valid feature mapping for a given kernel

function, k(). This concept is referred to as the kernel trick [8]. This is useful because

kernel functions are often simpler and easier to work with than corresponding feature space

mappings.

A number of valid kernels have been developed for use in SVM. Due to its flexibility

and power, the radial-basis function is a popular kernel function [8, 54]:

k(x,x′) = exp
(

−γ
∥

∥x− x′
∥

∥

2
)

, γ > 0 (2.23)

This kernel function will be used in some of the meta-controllers described in Chapter 5.

36

Cross-Validation

When a classifier has been trained, its generalized performance (i.e., prediction accuracy)

is initially not known. The performance of the classifier can be determined by testing the

classifier against a validation set of the data. The validation set should be independent of

the training set. Thus, before training commences, the available data for the classification

problem should be split into a training set and a validation set. Determining how to

apportion the available data between the training set and the validation set is sometimes

difficult. If the training set is too small, it may not provide enough information to produce

a useful classifier. If the validation set is too small, the error in the estimated accuracy will

be large.

In cases where the amount of available data for the classification problem is small,

there may be no reasonable way to split the data into a training set and a validation set.

In such cases, the best approach is to employ a technique termed cross-validation. In

cross-validation the data set is randomly divided into n equally-sized groups called folds.

The classifier is then trained and tested through n iterations. With each training/testing

iteration, a different fold is held back as the validation set, while the classifier is trained with

the remaining n − 1 folds. When the cross-validation is complete, each problem available

to the classifier has been used in a validation set one time. The accuracy of the classifier

can be computed by assessing the results on the n validation sets.

Parameter Determination

A challenge in using SVM classifiers is selecting appropriate values for the regularization

parameter, C, as well as any parameters associated with the kernel function used. Kernel

function parameters influence the classifier’s model complexity. Models that are overly com-

plex may risk overfitting the data (i.e. selecting a hyperplane boundary fitted to noisy data

that will generalize poorly). Models that are insufficiently complex may risk underfitting the

data (i.e. the feature space mapping fails to yield sufficient linear separability). SVM clas-

sifiers using poorly selected parameters may suffer considerable performance degradation

due to over-fitting or under-fitting the training data.

For kernels that have only one kernel function parameter (e.g., the radial-basis function

37

kernel described in Equation 2.23), the authors of the libsvm library [17] recommend using

grid search for optimizing C and the kernel parameter [54]. The libsvm library includes

a grid search tool for radial-basis functions. Using cross-validation, this tool evaluates

classifiers at various points of (log(C), log(γ)). The accuracy is plotted in topological form

as shown Fig. 2.3.

-10 0 10 20 30 40
-40

-30

-20

-10

 0

 10

HP-E-and-HP-G.txt

Best log2(C) = 15.0 log2(gamma) = -20.0 accuracy = 95.2096%

C = 32768.0 gamma = 9.5367431640625e-07

"-"
 95
 94.5
 94

 93.5
 93

 92.5
 92

log2(C)

log2(gamma)

Figure 2.3: Output from grid search tool in libsvm.

The grid search tool takes the grid range as an input, so the user may choose to zoom in

on the more promising portions of the grid with higher resolution in log(C) and log(γ). This

process can be repeated until no further improvements in accuracy can be found. Using the

log(C) and log(γ) SVM parameters that provided the highest accuracy in the grid search,

the classifier can then be trained with all available data (i.e. all folds are used vice n − 1

folds in cross-validations).

38

2.5 Self-Architecting Software Systems

The proposed autonomic controller will serve as the optimization engine within the SASSY

(Self-Architecting Software Systems) framework. This section begins with an overview

of SASSY and then presents the framework for enabling autonomic management of SOA

applications in SASSY.

2.5.1 Overview of SASSY

SASSY is a model driven framework for run-time self-architecting and re-architecting of

composed services and SOA applications [92]. The objective of SASSY is to automate

composition, adaptation, and evolution of SOA systems in a way that maximizes global

utility over time. The utility functions in SASSY grade the service or application on various

QoS metrics and on the incorporation of optional service features.

SASSY uses four types of run-time models: 1) service activity schemas with their cor-

responding service sequence scenarios, 2) system service architecture models, 3) QoS archi-

tectural pattern models, and 4) QoS analytic models [92, 94].

2.5.2 Service Activity Schema (SAS)

SASSY is designed to enable domain experts to build composed services and applications.

Through the use of a domain ontology, the domain expert creates a service activity schema

(SAS). An SAS contains a process flow that connects incoming requests to sequences of

activities and outgoing responses. An activity could be a known service type (from the

domain ontology) or another SAS. Requests, activities, and responses can be linked together

using gateway constructs reminiscent of Business Process Modeling Notation (BPMN) [77].

Figure 2.4 shows an example of an SAS for an emergency response service in the SASSY

user interface [92]. The SASSY user interface offers a modeling language designed to enable

domain experts to build SOA applications. The SASSY user interface was built using the

Generic Modeling Environment (GME) from Vanderbilt University’s Institute for Software

Integrated Systems (ISIS) [23]. This SAS represents a service that plans evacuations in

response to some natural disaster or security threat. The dashed boxes on the left-hand

39

Figure 2.4: Example of a service activity schema (SAS) for an evacuation planning ser-
vice [92].

side of Fig. 2.4 correspond to service sequence scenarios (SSS) (see Section 2.5.3). This

evacuation planning service combines five composable service types (see boxes with rounded

corners and a server icon inside): Road Map, Weather, ID Possible Threats, Make Evac

Plan, and Eval Evac Plan. When a message containing a plan request is received by

the evacuation service, three service types are invoked simultaneously (see fork gateway in

the diagram specified by a rhombus with a plus sign inside): Road Map, Weather, and ID

Possible Threats. The Road Map service type is used to obtain machine readable maps of

the roads in the region. The Weather service type provides current and predicted weather

information about the region and the ID Possible Threats service type identifies possible

threats for the region and assigns probabilities to each threat. After all three activities

complete, i.e., join, the Make Evac Plan service type is invoked to generate an evacuation

plan, which is passed to the Eval Evac Plan service type for an analysis and evaluation of

the evacuation plan [92]. The result of the evaluation is tested at the conditional gateway

(see rhombus with an “×” in the middle at the output of Eval Evac Plan). If the plan

is not approved, a new one will have to be produced. If the plan is approved, a response

40

message containing the plan is sent back [92].

2.5.3 Service Sequence Scenario (SSS)

Domain experts express QoS requirements through SSS modeling constructs. For each SSS,

the domain expert selects a subset of the service types from the SAS; these selected service

types must 1) define a fully connected complete or partial path through the SAS, 2) follow

only one path through a switch, and 3) follow all paths through a fork-and-join [77]. Once

the service types of the SSS are selected, the domain expert selects one QoS metric defined in

the SASSY ontology to associate with the SSS [92]. An attribute utility function operating

on the value (or possibly distribution) of the QoS metric is also associated with each SSS

(see Section 2.2.3). Utility functions are established by the domain experts in consultation

with all stakeholders [92].

Figure 2.5 displays three SSSs: the Execution Time SSS, the Availability SSS,

and the Secure Comm SSS. The Execution Time SSS includes the fork-and-join of Road

Map, Weather, and ID Possible Threats followed by the execution of Make Eval Plan

and Eval Evac Plan. The QoS metric associated with this SSS is execution time. The

Availability SSS has the same structure as the Execution Time SSS except that its met-

ric is availability. Thus, two or more SSSs may have the same structure as long as they

have different metrics associated with them [92]. The SecureComm SSS includes the connec-

tion between ID Possible Threats, Make Eval Plan, and Eval Evac Plan. The metric

associated with this SSS is the security level of its communication [92].

2.5.4 System Service Architecture (SSA)

A System Service Architecture (SSA) consists of a structural model and a behavioral model

of an SOA system [92]. Unlike traditional software architectural models that are primarily

used during the design phase, the SASSY framework uses the SSA as its representation of

the running system [94]. Evolution and adaptation of SASSY systems are enabled through

run-time reasoning and analysis of the SSA. The SSA’s structural model is based on the

eXtensible Architectural Description Language (xADL) [21], which provides the traditional

41

component-and-connector view of the software architecture [92].

Figure 2.5: Top: Execution Time or Availability SSS (they have the same structure);
Bottom: Secure Comm SSS [92]

42

The SSA extends the core xADL language by introducing the concept of service in-

stances, which are modeled as software components or a composition of software compo-

nents. A service instance is the realization of a service type defined in the ontology [92].

The SSA also provides a mapping between each service instance and the concrete ser-

vice provider that is used at a given moment [92]. The middleware enabling integration

and communication among the services is modeled as software connectors [92]. Finally, the

components and connectors bind to one another using required and provided interfaces [92].

The top part of Fig. 2.6 shows the structural view of a base SSA that corresponds

to the SAS of Fig. 2.4 [92]. The base SSA is automatically generated by SASSY using

GReAT [2, 3], which is a graph transformation tool [92]. The base architecture associates

one component to each service type and creates one component to represent the logic of

a coordinator that orchestrates the communication among service types [92]. The bottom

part of Fig. 2.6 shows a modified version of that base SSA in which the component Eval

Evac Plan has been replaced by a fault-tolerant component [92].

The SSA’s behavioral models provide a state machine view for representing how the

service instances interact with one another as they fulfill the system requirements [92]. In

other words, a behavioral model corresponds to the executable logic of service coordination

in SOA [92]. An SSA’s behavioral models are based on Finite State Processes (FSP) [36,

68], which unlike many other state machine languages provides a rich set of abstraction

constructs, enabling scalable behavior modeling of large-scale software systems [92]. SASSY

automatically generates the SSA’s behavioral models based on the requirements specified by

the domain expert in the SAS [92]. Since the SSA contains both structural and behavioral

models, the SSA needs only a set of selected service providers and bindings with those

services to become executable [92].

2.5.5 Architectural Patterns

The SASSY framework uses a library of architectural patterns to assist in the self-archi-

tecting process [92, 119]. Each pattern consists of one or more components which may

be linked by connectors. Each of these components may be associated with one or more

service types, which may be instantiated by multiple service providers. The structural and

43

Figure 2.6: Top: Base SSA corresponding to the SAS of Fig. 2.4; Bottom: SSA showing
the replacement of component Eval Evac Plan with a fault tolerant component [92].

behavioral aspect of a pattern are described in xADL [21] and FSP [68], respectively [92,94].

A pattern is also associated with QoS metrics where the pattern may provide tangible

improvements [92].

44

The class diagram in Fig. 2.7 illustrates the relationships between patterns, SSSs, com-

ponents, service types, QoS metrics, and utility functions [92]. Each SSS has a single utility

function associated with it. Each utility function is a function of a single QoS metric. Each

QoS metric can be computed by an analytic QoS model (see Section 2.2.2).

An example of an architectural pattern is the fast fault tolerant pattern shown in the

bottom of Fig. 2.6 [92]. The fast fault tolerant pattern influences two QoS metrics: avail-

ability and execution time [92]. When the fast fault tolerant pattern receives a service

request from the coordinator, the fast fault tolerant pattern forwards a copy of the service

request to each of its connected service instances. The fast fault tolerant pattern returns

the first service response back to the coordinator and ignores the subsequent response from

the other service instances. For each pattern, a set of analytic QoS models can be de-

veloped [94]. The example below shows simple analytic models for the fast fault tolerant

pattern in Fig. 2.6 [92]:

A = 1− (1− a1)(1− a2) (2.24)

!!!

"#$%$#&'()*+#$,*

-,!'./#0$+

-,!'.,1/%

23##/0*

4,56,*/*#

!/07$+/'8&6/

!/07$+/'
20,7$1/0

9

9

9

9::;

9::;

9::;

9::;

9::;

<3=

"=/=

4,56)#/1>&

?*+%)1/=
?*+%)1/=

?*+%)1/=

?56%/5/*#/1>&

?*@%)/*+/=

Figure 2.7: Class diagram for SSSs [92].

45

assuming failure independence, and

E =
a1(1− a2)

A
e1 +

a2(1− a1)

A
e2 +

a1a2
A

min{e1, e2} (2.25)

where e1 and e2 are the execution times of the individual components, A is the availability,

and E is the execution time. More detailed models for this pattern and others are provided

in [94] and can be developed from [88].

2.5.6 Performance Models for Architectural Patterns

The following general rules, when applied recursively, can be used to obtain the SSS QoS

models for availability, execution time, and throughput [92].

• Availability: the availability of a sequence is the product of the availabilities of the

components in the sequence. The availability of a fork-and-join is the product of the

availabilities of all of its branches.

• Execution time: the execution time of a sequence is the sum of the execution times

of the components in the sequence. The execution time of a fork-and-join is the

maximum execution time of each of its branches.

• Throughput: the throughput of a sequence is the minimum throughput of the compo-

nents in the sequence. The throughput of a fork-and-join is the minimum throughput

of its branches.

2.5.7 Three Layer Model of SASSY

As discussed previously, SASSY uses the Kramer-Magee 3-layer model [69] as the overall

structure for the autonomic system. The three layers are the Goal Management Layer, the

Change Management Layer, and the Component Control Layer.

Component Control Layer in SASSY

The Component Control Layer in SASSY provides the interface between the SASSY system

and individual service providers (SPs). The Component Control Layer receives instructions

46

from the Change Management Layer to connect specific SPs to the SASSY system or to

disconnect specific SPs from the SASSY system. To accomplish this task, the SASSY

Component Control Layer employs adaptation connectors that implement SOA adaptation

patterns [45–47,49].

The Component Control Layer also performs low-level monitoring of the component

and SP performance. The collected information is passed up to the Change Management

Layer [43].

Change Management Layer in SASSY

The Change Management Layer receives metrics and status updates from the Component

Control Layer. A performance monitor or gauge service within the Change Management

Layer uses this information to assess the system’s current global utility, Ug.

If the system’s Ug falls below some threshold or a new resource becomes available, the

Change Management Layer may request a new plan from the Goal Management Layer. In

SASSY, the plan is a tuple, (A, Z), of a new architecture, A, and a new service provider

selection, Z.

The Change Management Layer has the responsibility of implementing the plans (i.e.,

new A and Z) it receives from the Goal Management Layer [43].

Goal Management Layer in SASSY

In SASSY, the Goal Management Layer’s main function is to determine a new A and

accompanying Z. When the Goal Management Layer receives a new plan request, the Goal

Management Layer undertakes a re-architecting process that finds a new A and Z. When

the re-architecting process completes, the Goal Management Layer then sends the new A

and Z to the Change Management Layer. The work presented in Chapters 4 and 5 performs

the re-architecting process for the SASSY system.

2.5.8 Definitions

This section provides formal defintions of some of the SASSY constructs previously dis-

cusssed. These definitions are not meant to define a new software architectural description

47

language [56] but to establish the concepts required at a sufficient level of abstraction.

Definition 1 (basic software component): a piece of software that has a well-defined

interface that specifies the functions performed by the component. A software component

can be composed with other components, can be reused, and independently implements its

functions.

Definition 2 (composite software component): an atomic composition of compo-

nents (basic or composite) that has an interface equivalent to a basic software component.

The interface of a composite component is called a connector.

Definition 3 (link): a tuple (v, w) where v and w are either basic or composite software

components and v invokes a function provided by w.

Definition 4 (software architecture, A): the tuple (C,L,S) where C is a set of basic

or composite software components, L = {(v, w) | v, w ∈ C} is a set of links, and S is a set

of service sequence scenarios defined below.

Definition 5 (service sequence scenario, SSS): an SSS of the software architecture,

A, is the tuple (Θ, q, U(q)) where (1) Θ = (Cs,Ls) is such that Cs ⊆ C,Ls ⊆ L, and

∀(v, w) ∈ Ls, v, w ∈ Cs; (2) q is a QoS metric, and (3) U(q) is an attribute utility function,

discussed below, of metric q.

Figure 2.8 provides a pictorial example of a software architecture, A, where C =

{C1, C2, C3, C4, C5}, L = {L1, L2, L3, L4, L5}, and S = ((Cs,Ls), r, U(r)) where Cs =

{C1, C2, C3}, Ls = {L1, L3}, r is the response time metric, and U(r) is a utility func-

tion of r.

Definition 6 (SOA software system): the result of instantiating a software architec-

ture A = (C,L,S) in which the basic software components, including those that are part of

composite software components, in C are instantiated by SPs available in an SOA environ-

ment. The selection of SPs to instantiate the basic software components of an architecture

is denoted by Z.

Definition 7 (attribute utility function, U(q)): a function that maps a value of q

to a number u ∈ [0, 1] in a way that larger values of u correspond to better values of q. A

performance model for q can be used to predict q from a given A and Z.

Definition 8 (global utility function, Ug(U1(q1), · · · , Um(qm))): a function of the

48

!"

!#

!$

!%

!&

'"

'# '$

'%

'&

!"#$%&%'()'*+*,

-'()'#$,+&%'()'*+*,

Figure 2.8: Depiction of an architecture.

49

attribute utility functions of all the SSSes. The value of the function Ug must ∈ [0, 1].

Definition 9 (SSS performance model, E(q)): a performance model for the SSS

(Θ, q, U(q)) that is a function (or algorithm) used to compute the value of the performance

metric q for the SSS.

2.6 Related Work

QoS brokers try to match the requirements of service consumers with the capabilities of

SPs [90,93]. The problem of optimal service selection has been studied in [13,16,30,87,88].

The J-Opera software package offers the ability to automatically compose services and

applications and offers some limited opportunities for optimization[50, 103,104].

Frameworks for the evolution and adaptation of software systems have been described

in [18, 22, 44, 66, 80]. Some research such as [105, 106, 115] has focused on self-healing pro-

cesses.

Optimization of the placement of components, services, and applications is a major

research initiative in the mobile and ubiquitous computing communities [78,79,97,101,108,

118]. The authors in [4,15,83] study optimization of both individual and composed services.

In [12], Calinescu et al. present QoSMOS, a system for online performance management

of SOA systems. Like SASSY, this system employs utility functions to combine multiple QoS

objectives and optimizes the selection of SPs. Unlike SASSY, QoSMOS considers some SPs

to be white boxes, and it can modify the configuration parameters and resource allocations

for those white box SPs. QosMOS does not consider architectural patterns for improving

QoS. Optimization in QoSMOS is conducted through exhaustive search, a technique that

would not scale well to the problems considered by SASSY.

Cardellini et al. devise a framework, MOSES, for optimizing SOA systems in [14].

Similar to SASSY, MOSES uses SP selection and architectural patterns for improving the

QoS of a SOA service or application. MOSES adapts the optimization problem such that it

can be solved through linear programming (LP) techniques. The use of LP limits the form

of the objective function in MOSES. SASSY does not face similar restrictions on the form

of the utility function. On larger problems, MOSES must restrict the space of substitutions

50

considered to keep the problem solvable in near real-time.

Mani et al. in [81] develop a system using Role Based Modeling Language to model the

performance impact of design pattern changes in SOA systems. As the SOA application

implements a new design pattern, the changes in the systems are passed to the system’s

performance model.

Other researchers have investigated using multi-objective optimization techniques to re-

duce effort and increase the quality of software architecture designs. When the optimization

search completes, these systems present human decision makers with a set of Pareto optimal

architecture candidates. PerOpteryx, introduced by Koziolek et al. in [67], employs archi-

tectural tactics in a multi-objective evolutionary algorithm to expedite the multi-objective

search process. Martens et al. present a similar system in [82] that starts quickly by using

LP on a simplified version of the problem to prepare a starting population for a multi-

objective evolutionary algorithm.

The approach to self-adapting software systems presented here is based on software

architectures, i.e., it is a white box approach. A different approach, which falls in the cate-

gory of black box approaches, is based on adaptation by selectively enabling and disabling

software features. An example of this approach is the FeatUre-oriented Self-adaptatION

(FUSION) framework, which learns the impact of adaptation decisions on the system’s

goals [33, 34].

51

Chapter 3: The Need for Meta-Controllers in Autonomic

Computing

3.1 Challenges of Autonomic Controllers

A driving force in the adaptation of autonomic computing is the desire to reduce the Total

Cost of Ownership (TCO); autonomic computing achieves this goal by reducing maintenance

costs, in particular the level of effort required by system administrators to manage complex

systems.

Run-time self-optimization in the face of changes in the environment presents special

challenges. Autonomic systems that perform self-optimization require some computational

method to discover a configuration or a sequence of actions that will optimize the system. A

number of techniques including linear programming, heuristic search, and machine learning

have been employed to conduct self-optimization in autonomic systems [14, 39, 124].

Most self-optimizing autonomic systems share the following three considerations:

1. multiple optimization problems will be encountered over the life of the autonomic

system,

2. encountered optimization problems must be solved in near real-time, and

3. the performance of the optimization algorithm is impacted by parameters that control

the behavior of the algorithm.

For many autonomic systems, it is reasonable to expect that hundreds to thousands of

optimization problems will be encountered over the system’s lifetime. Self-optimization is

often invoked in support of self-healing; restoring functionality to a system requires expe-

ditious decision-making on the part of the optimizing algorithm.

Optimization conducted through heuristic search algorithms can have widely varying

performance. The performance of a heuristic search algorithm largely depends upon the

52

type of algorithm and its attendant parameter settings. The topology of the system’s

objective function over the system’s configuration space interacts heavily with the selection

of the heuristic search algorithm and attendant parameters. These interactions can be

difficult to predict, and require human system administrators with significant knowledge,

experience, and time to set them correctly. This additional effort can substantially reduce

the original cost savings provided by the autonomic system.

3.1.1 Tuning Optimization Algorithms

The behavior of optimization algorithms is often controlled by a number of parameters.

Typically, the level of sophistication in the optimization algorithm is correlated with the

number of parameters guiding the algorithm’s behavior. Tuning the parameters that guide

optimization algorithm behavior to reasonable settings requires significant expertise and

likely substantial effort on behalf of a human administrator.

An examination of the heuristic search algorithms presented in Section 2.3.3 illustrates

a number of control parameters in optimization algorithms that require the attention of

system designers and administrators. For each of the heuristic search algorithms considered

below, the budget for the search (either measured in time or number of evaluations) is also

sometimes a tunable parameter.

The behavior of a hill-climbing heuristic search algorithm is impacted significantly by

the selection of its mode of operation, either greedy or opportunistic. On certain problems,

hill-climbing algorithms may employ some form of neighborhood filtering. A neighborhood

filter may be defined by multiple parameters specific to the domain of the optimization

problem. Performance of a hill-climbing algorithm is likely to be impacted by interactions

between the mode of operation and the settings of the neighborhood filter.

Like hill-climbing, beam search may also employ neighborhood filters. Additionally, a

beam search algorithm must use one of three criteria levels for determining the next level-

list. Beam search also requires a setting for the the beam width. Each of these parameter

settings can have significant impact on a beam search algorithm’s performance. Interactions

of these parameter settings are likely to have a performance impact as well.

Simulated annealing requires two parameters, the initial and final probabilities of moving

53

to an inferior neighbor. In some cases, the definition of an inferior neighbor must also be set.

The correct settings for these probabilities will depend considerably on the search budget

and the utility topology of the search space.

Evolution strategies and evolutionary programming require a large number of parameter

settings:

• parent population size,

• offspring population size,

• overlapping population boolean,

• method of offspring generation,

• mutation step sizes (one for each dimension of the solution being mutated), and

• adaptive step factors (one for each dimension of the solution being mutated),

All of these parameters can be expected to have significant impacts on the evolutionary

algorithm’s performance. Heavy interaction between many of the parameters should also

be expected to affect the evolutionary algorithm’s performance.

3.1.2 Effect of Human Effort on Cost

With some trial and error, it may be possible for a human system administrator with ex-

perience in heuristic search optimization to determine reasonable parameter settings for a

given heuristic search optimization algorithm. Such expertise is likely uncommon among

system administrators, and devoting time and effort to this task would reduce the adminis-

trator’s available effort in other areas. Determining optimal parameter settings for heuristic

search optimization algorithms, however, could require a major research project analyzing

the autonomic system and its environment.

Further, changes in the autonomic system either in scale or in function (e.g. a significant

increase in the number of users or the introduction of new functionality) could alter the

optimal parameter settings for the heuristic search algorithms, thus requiring an investment

of time and resources by the human administrator to re-assess the system. Changes in the

54

environment (e.g. changes in the provisioning of hardware available to the system) could

have the same effect.

Given the myriad ways that the parameter settings and the autonomic controller may

need to be reassessed, it can be expected that the costs of managing such systems could

be high, which would increase the TCO—reducing TCO is one of the fundamental goals

of autonomic computing. Chapters 4 and 5 will present automated methods that can

substantially reduce the human effort required and attendent costs.

3.2 Case Study: Autonomic Load-Balancing

As mentioned in Section 2.1.3, an autonomic controller employing a hill-climbing heuristic

search has been applied to optimizing business load-balancing [37]. Further work (currently

unpublished) on autonomic load-balancing has explored using beam search, simulated an-

nealing, evolutionary programming, evolution strategies, genetic algorithms, and particle

swarm. Over two hundred and fifty different heuristic parameter combinations were tested

against the fifty dynamic stress tests developed in [37]. In the unpublished heuristic study,

the fifty dynamic load stress tests contained substantial variance in global utility poten-

tials, although individual utility landscapes representing snapshots in time were relatively

smooth and simple. Also, utility predictions of load balancing policies were expensive,

limiting the evaluation budget. As a result, hill-climbing and beam search outperformed

the other tested heuristics; this was determined according to the analytic methodology de-

scribed below. The autonomic controller described in Chapter 4 is expected to encounter

landscapes with substantially more variation than those in the unpublished work; also, the

changes in architectural design and service selection are expected to be considerably less

granular than modifications to load-balancing and resource allocation policies. Therefore,

more sophisticated heuristics may be employed by the autonomic controller in Chapter 4.

3.2.1 Overview of Autonomic Load-Balancing

Load balancing refers to a number of widely used techniques for distributing work among

multiple resources according to a given policy. In recent work, autonomic principles have

55

been applied to the development of dynamic load balancing policies that allow system

adaptation in the face of an uncertain and changing environment [9,11,73]. Some dynamic

load balancing policies seek to improve system efficiency by dispatching a work request to

a specific resource where the effort required to process the request is minimized or where

service level objectives are most likely to be met [9, 11, 26, 73, 132]. Other dynamic load

balancing policies seek to prioritize work requests that generate more utility [107]. This

work uses some of the dynamic load balancing policies first described in [85] that prioritize

the requests most likely to generate utility. The autonomic controller allows for greater

precision in the development of these load balancing policies, provides the capability to

reallocate cluster resources, and is well-suited for highly dynamic workloads.

This work provides a business-oriented approach to dispatching incoming requests to

servers and allocating servers to server clusters according to customer priority classes. This

approach maximizes utility across multiple levels of offered loads and adapts and reacts

well to highly dynamic loads and can allocate resources among user classes in two different

ways.

The approach considered in this chapter is aimed at improving the revenue of an e-

commerce site, an auction site in this example, by providing better performance to groups of

customers that have higher business value at the expense of other less important customers.

3.2.2 Optimization Problem to be Solved

The autonomic LB optimizes a global utility function that calculates the business-value gen-

erated by the throughput of specific revenue-generating transactions with a certain expected

response time. The bid transaction throughput is used because it generates revenue for the

bidding site. Good response times are also critical to generating value—when response

times are good, current customers continue to use the auction site and new customers are

attracted to the site by favorable impressions. If response times are poor, customers are

likely to abandon the site and use a competing auction site with better response times—

this effect deprives the site of future business. This work uses the sigmoid utility function

UR
s (Rs) from [7] as the response time factor in the global utility function. This response

time utility function, shown in Eq. (3.1), models whether utility is generated by complying

56

with the response time service level objective (SLO):

UR
s (Rs) =

e−Rs+βs

1 + e−Rs+βs
(3.1)

where s is the priority class (i.e., gold, silver, or bronze), βs is the average response time

SLO, in seconds, for class s, and Rs is the average response time, in seconds, of all class s

transactions. The response time utility function has a value between zero and 1 and goes to

zero as the response time goes to infinity. The value of the utility is 0.5 when the response

time meets the SLO (i.e., Rs = βs). The load balancing policies should maximize the values

of UR
s in a way that prioritizes those customer classes that are most likely to generate bids.

This is achieved by combining the response time utility factors in a weighted sum:

UR
total(

~R) =
∑

∀ s

ws × UR
s (Rs) (3.2)

where ws are weights defined by management to indicate the priority of class s, and ~R

stands for the vector of average response times for the classes.

The bid throughput, Xbid,s, for priority class s is the second factor in the utility. The

total bid throughput, Xbid, is computed as follows:

Xbid(~X) =
∑

∀ s

Xbid,s (3.3)

where ~X stands for the vector of average bid throughputs for the classes. From a business

perspective, Xbid(~X) represents how much money is being made today, while UR
total(

~R)

represents the likelihood of customers returning tomorrow. The goal is to maximize both

Xbid(~X) and UR
total(

~R) in a way that maximizes revenue today while ensuring the most

important customers are satisfied and will continue using the site in the future. Making the

57

global utility, Ug, the product of Xbid(~X) and UR
total(

~R) achieves this goal:

Ug(~R, ~X) = Xbid(~X)× UR
total(

~R). (3.4)

It should be noted that the values of ~R and ~X depend on the specific policy vector ~s used

by the LB (see next section) and on the workload intensity W. Thus, the utility function

can be written as a function h of ~R, ~X, ~s, and W as

Ug(~R, ~X) = h(~R, ~X,~s,W). (3.5)

LB Policies

The LB uses two autonomic policies. The first, called f-policy , is a re-direction policy

that affects the dispatching of requests to server clusters. This policy is specified by three

parameters of the form fi,j ∈ [−1, 1] that indicate the fraction of requests from priority

class i to cluster j. In this case, these parameters are fS,G, fB,S , and fB,G. A positive value

for fi,j indicates redirection of class i requests to cluster j and a negative value indicates a

redirection in the opposite direction.

An f-policy is then characterized by the vector ~f = (fS,G, fB,S , fB,G). The autonomic

LB dynamically adjusts the f-policy ~f to maximize the global utility Ug.

In order to preserve the identity of the clusters, one more constraint is added to the

values within ~f : fS,G and fB,G must carry the same sign (i.e., fS,G × fB,G ≥ 0). Without

this restriction, the autonomic controller will occasionally swap the clusters (e.g., move

gold to silver, silver to bronze, and bronze to gold). At first glance, this behavior might

seem acceptable, however, moving cluster could result in a number of high priority requests

being stuck behind a large number of low priority requests from the previous occupant of

the cluster. This ultimately yields unacceptable response times for high priority requests.

The second policy, called s-policy , is a resource allocation policy that determines how

many servers should be allocated to each cluster. Specifically, it determines the values of

nG, nS , and nB, which combined with the values of fS,G, fB,S , and fB,G, maximize the

58

global utility function. The s-policy is characterized by the vector ~nA = (nG, nS , nB).

The state space S of all possible configurations is formally described below with the

help of the ǫ(x) function defined as 0 for x ≥ 0 and 1 for x < 0.

S = {~s = (fS,G, fB,S , fB,G, nG, nS , nB) |

nG, nS , nB ∈ {1, 2, · · · , NA − 2},

nG + nS + nB = NA,

fS,G, fB,S , fB,G ∈ [−1, 1],

fS,G × fB,G ≥ 0,

ǫ(fS,G)|fS,G|+ ǫ(fB,G)|fB,G| ≤ 1,

(1− ǫ(fS,G))fS,G + ǫ(fB,S)|fB,S | ≤ 1,

(1− ǫ(fB,S))fB,S + (1− ǫ(fB,G))fB,G ≤ 1}.

The three last constraints specify that no more than 100% of the requests initially

directed to one cluster can be redirected.

The problem to be solved by the autonomic LB can be cast as the following non-linear

constrained optimization problem:

Find the policy vector ~smax such that ~smax = arg max~s∈S {Ug(~R, ~X) = h(~R, ~X,~s,W)}.

Note that the function h is non-linear and does not have a closed form expression because

the response time and throughput values have to be determined by solving a multiclass

closed queueing network model. Although no closed form expression exists for solving mul-

ticlass closed queueing networks [86], solutions can be found through iterative or recursive

algorithms. Moreover, the state space S is typically very large. Therefore, using standard

optimization techniques is not an option for an autonomic controller that needs to make

real-time policy change decisions. For that reason, an autonomic LB that uses heuristic

techniques is employed.

The LB controller algorithm considers that time is divided into 30-second time intervals

called controller intervals (CI). Two control levels are implemented: 1) the f-policy is re-

evaluated at the end of each CI, and the s-policy is re-evaluated by the controller at the

59

end of every 10 CIs. Because of the switching cost of moving servers from one cluster to

the other, the s-policy should be evaluated at a lower frequency than the f-policy.

Each server manages its own queue of requests. The requests in each queue are ordered

by the timestamp of the original request such that the oldest request in the queue is the

next to be serviced. The LB redirects a fraction of incoming requests from one cluster to

another cluster according to the f-policy. The LB sends requests to servers within a cluster

in a round-robin fashion. When the heuristic search completes, the autonomic controller

may need to move one or more servers from one cluster to another to comply with a new

s-policy. To move servers between clusters, the controller undertakes the following actions:

1) an empty, temporary list for storing requests is established for each cluster donating or

receiving a server 2) before each server is moved, the requests in that server’s queue are

transferred to the temporary list of the donating cluster 3) within a receiving cluster, all

requests in server queues are transferred to the temporary list for that receiving cluster 4)

the servers are moved to comply with the new s-policy 5) the requests in the temporary

lists are distributed round-robin to the server queues within each cluster.

3.2.3 Testing Optimization Algorithms

A methodology was developed to reduce the variance introduced by the tests, making

statistically significant comparisons of the utility achieved with different heuristics possible.

A tool was developed in Microsoft Excel that automatically applies the paired observations

variance reduction technique [59] to generate a matrix of comparisons between different

heuristics. Figure 3.1 shows a screenshot of a portion of the matrix produced by the tool.

This variance reduction tool showed at a 99% confidence level that autonomic controllers

using hill-climbing and beam search generated a higher average global utility than controllers

using other search heuristics.

The unpublished work demonstrates that paired observation variance reduction is also

useful for comparing heuristic search trajectories. A separate tool was developed in Excel to

generate automatic plots using paired observations. This plot generation tool compared two

heuristics to a reference heuristic, enabling statistically meaningful visualization of mean

search trajectories. Such plots are useful in assessing how changes in the evaluation budget

60

Figure 3.1: Screenshot of the heuristic comparison matrix for autonomic load balancer.

61

might impact different heuristics. Figure 3.2 shows a sample plot of an evolution strategy

algorithm and a genetic algorithm using random search as a reference.

Figure 3.2: Plot of the difference in heuristic search trajectory between random search
and an evolution strategy algorithm (M = 1, K = 30, step size=0.032) and the difference
between random search and a genetic algorithm (M = 25, linear rank S = 0.875, uni.
crossover=0.02, genome=11bits) with 99% confidence intervals.

Overhead of Tuning Optimization Algorithms

The tool described in Section 3.2.3 is useful for making comparisons betweeen heuristic

search algorithms. However, it requires a large amount of experimental data to be collected,

processed, and inserted into the tool. In the case of the autonomic load balancer, generating

and collecting the data took thousands of hours of computation. Further a human admin-

istrator had to evaluate the comparisons and make decisions about which heuristic search

algorithm and parameters should be evaluated next. Eventually, the human administrator

will start encountering diminishing returns in tuning the heuristic search algorithm. This

62

process can take months of the administrator’s time.

3.3 Concluding Remarks

As autonomic systems are developed and deployed, the burden placed on administrators

for their maintenance and tuning needs to be carefully considered. Technologies that allow

the autonomic system to reflect on its own performance and conduct self-tuning need to

be explored and utilized if possible. Revisiting the levels of autonomicity described in

Section 1.2.3, adding self-tuning and self-management capabilties within the autonomic

controller itself may raise a system from being autonomous to being autonomic.

63

Chapter 4: Software Architecture Optimization Search

This chapter provides a comprehensive examination of the optimization conducted by the

SASSY autonomic controller. The first section provides the context in which architecture

search is performed in SASSY. The second section describes the optimization problem that

needs to be solved by the SASSY autonomic controller. The optimization procedures used

in this work depend upon performance modeling, so procedures for automated generation

of SOA performance models are presented in the third section of the chapter. The proposed

framework for solving SASSY’s optimization problems is outlined in the fourth section. The

fifth section contains heuristic search algorithms that have been adapted to work within the

framework. The sixth section examines whether the selection of heuristic search algorithms

has a significant performance impact. A meta-optimization framework for autonomic sys-

tems is detailed in the seventh section of this chapter.

4.1 Architecture Search Overview

As described in Chapter 2, in SASSY, a domain expert specifies data flows among activities

for a new SOA application using a visual language. The domain expert can specify multiple

QoS requirements, which are then expressed as SSSes and attribute utility functions. SSSes

and attribute utility functions can also be used to specify different security options and the

utility payoff for achieving specific levels of security on each component in the SSS. The

domain expert then specifies a global utility function, Ug(), that combines the attribute

utility functions.

When the system’s requirements are finalized, SASSY generates a base software archi-

tecture that consists of a coordinator and a basic software component for each activity

described in the data flow. Each basic software component is linked to the coordinator,

and SSS performance models are automatically generated using an expression tree and the

procedures described in Section 4.3.

64

More sophisticated architectures can be derived from the base architecture by substitut-

ing composite components for basic components. Specific architectural patterns can be used

as templates for composite components. SASSY employs load-balancing and fault-tolerant

architectural patterns to improve the QoS in the specified SSSes [94]. SASSY seeks to find

an architecture that can provide the greatest Ug.

To make the architecture executable, the coordinator must bind a set of SPs to the basic

components in the architecture. Different SPs may offer the same service with varying levels

of performance and cost. For a given architecture, SASSY searches for a combination of

SPs that maximizes Ug.

The coordinator is able to substitute patterns and components to the architecture at

run-time [43]. This enables the system to re-architect at run-time when new SPs become

available or an SP currently bound to the architecture fails.

4.2 The Software Architecture Optimization Problem

The architecture optimization problem in SASSY is to find an architecture and a set of SPs

that implement the service types in the SAS in a way that optimizes the SAS global utility

function Ug().

More formally, the optimization problem can be expressed as:

Find an architecture A∗ and a corresponding service provider allocation Z∗ such that

(A∗, Z∗) = argmax(A,Z) Ug(A,Z). (4.1)

This optimization problem may be modified by adding a cost constraint. In the cost-

constrained case, there is a cost associated with each SP for providing a certain QoS level.

The number of different architectures is O(pn) where p is the average number of ar-

chitectural patterns that can be used to replace any component and n is the number of

components in the architecture. The number of possible SP selections for an architecture

with n components is O(sn) where s is the average number of SPs that can be used to imple-

ment each component. Thus, the size of the solution space for this optimization problem is

65

O((p×s)n). It is clear that the solution space is huge even for small values of p, s and n. For

example, for p = 5, s = 2, and n = 10, the size of the solution space is on the order of 1010,

i.e., 10 billion possible solutions! In fact, the problem is NP-hard. This chapter presents

an optimization technique to avoid an exhaustive, costly, and computationally infeasible

search.

4.3 SSS Performance Models

After the SASSY autonomic controller finishes generating the base architecture as described

in Section 4.1, the autonomic controller produces a set of SSS performance models; one SSS

performance model is created for each SSS. A performance model for SSS i,Mi, in SASSY

takes an architecture, Aj , and a service selection, Zk, and produces an expected QoS value,

qi,j,k:

E [qi,j,k] =M(Aj , Zk). (4.2)

The global performance model is implemented using an expression tree that links together

component performance models (see Section 2.5.6).

4.3.1 SSS Availability Model

This model computes the overall availability of the SSS. The expression trees used for SSS

availability models have two layers: a root/parent node layer and a leaf/child node layer.

The parent node of an availability model expression tree is a multiplication product opera-

tion, wherein all of the child nodes are muliplied together to provide the overall availability

of the SSS. Each child node is a component performance model for availability. The compo-

nent availability model dynamically links the appropriate architectural pattern availability

model with the current observed availability of the SPs. There is one child node for each

component that is a member of a given availability SSS.

4.3.2 SSS Throughput Model

This model determines the maximum possible throughput for a given SSS. The expression

trees used for SSS throughput models also have just a root/parent node layer and a leaf/child

66

node layer. The parent node of a throughput model expression tree is a minimum operation,

wherein the child with the lowest throughput value determines the overall throughput for the

SSS. Each child node is a component performance model for throughput. The component

throughput model dynamically links the appropriate child architectural pattern throughput

model with the current observed capacity of the SPs. There is one child node for each

component that is a member of a given throughput SSS.

4.3.3 SSS Security Option Model

This model determines the minimum level of security across the SSS. Similar to the previ-

ous two types of models, the expression trees used for SSS security option models have a

root/parent node layer and a leaf/child node layer. The parent node of a security option

model expression tree is a minimum operation, wherein the child with the lowest security

level determines the overall security level for the SSS. Each child node contains the security

level for the component it represents. There is one child node for each component that is a

member of a given security option SSS.

4.3.4 SSS Execution Time Model

This model estimates the execution time for a given SSS. The expression trees used for SSS

execution time models may have more than two layers, depending upon the structure of

the SSS. The root/parent node of the execution time model expression tree is an arithmetic

summation operation, wherein the child nodes evaulate themselves and the values they

return to the parent are added together. The rest of the expression tree is constructed

from arithmetic summation operations, maximum operations, and component performance

models for execution time, according to the procedure shown in Algorithm 1. The inputs

to the algorithm are Ci, the set of components in SSSi, and Li, the set of links connecting

the components in the SSS (see Section 2.5.8 for more detail). The component performance

model dynamically links the appropriate architectural pattern execution time model with

the current observed execution time of the SPs.

67

4.4 Two-Level Optimization Search for Re-Architecting

As discussed in Section 4.2, the goal of the optimization procedure is to find an architec-

ture, A∗, and service selection, Z∗, that maximizes global utility, Ug. The Ug for a given

Algorithm 1 Generating Execution Time Performance Model for SSSi

1: function BuildExeModelTree (Ci, Li)
2: exprTreei ← AllocateEmptyExpressionTree()
3: Ci,1 ← GetFirstComponentOfSSS(Ci, Li)
4: exprTreei ← AddNodesToTree(Ci,1, Ci, Li, exprTreei)
5: return exprTreei
6: end function

7: function AddNodesToTree (currentC, Ci, Li, exprTreei)
8: treeNodePointer ← InstantiateSummationOperationNode()
9: if IsEmpty(exprTreei) then

10: exprTreei.root ← treeNodePointer
11: else
12: LinkChildToParent(treeNodePointer, exprTreei.cursor)
13: end if
14: exprTreei.cursor ← treeNodePointer
15: flag ← true
16: while flag = true do
17: type ← GetComponentType(currentC)
18: if type = ACTIVITY then
19: compModelPointer ← GetCompExeTimeModel(currentC)
20: treeNodePointer ← InstantiateCompModelNode(compModelPointer)
21: linkChildToParent(treeNodePointer, exprTreei.cursor)
22: else if type = FORK then
23: treeNodePointer ← InstantiateMaximumOperationNode()
24: LinkChildToParent(treeNodePointer, exprTreei.cursor)
25: exprTreei.cursor ← treeNodePointer
26: for all Ci,j such that LinkFromTo(currentC, Ci,j , Li) = true do

27: exprTreei ← AddNodesToTree(Ci,j , Ci, Li, exprTreei)
28: exprTreei.cursor ← ParentOf(exprTreei.cursor)
29: end for
30: currentC ← FindCorrespondingJoin(currentC, Ci, Li)
31: exprTreei.cursor ← ParentOf(exprTreei.cursor)
32: else
33: break while loop {currentC is a JOIN and need to return to the FORK for loop.}
34: end if
35: if NoOutGoingLink(currentC, Li) = true then
36: flag ← false
37: else
38: currentC ← FollowOutgoingLink(currentC, Ci, Li)
39: end if
40: end while
41: return exprTreei
42: end function

68

architecture, Ai, requires computation of the QoS metrics that are used to calculate the at-

tribute utility functions. The models described in Section 4.3 cannot compute QoS metrics

without the performance characteristics of the SPs in the service selection. In the ideal case,

Ai is assessed using the service selection, Z∗
Ai
, that reaches the global maximum for Ug.

Thus, for each evaluation of an architecture, Ai, a search for a corresponding Z∗
Ai

should

be performed. This is accomplished by a two-level optimization search—architecture and

service selection—shown in Fig. 4.1.

After the base architecture is generated, the SASSY user interface (Box 1) passes the

base architecture to the architecture search module (Box 3). When either a new SASSY

application is specified or when requirements on an existing SASSY application are modified,

the SASSY user interface will send a re-architecting message to the architecture search

module.

The performance monitor (Box 2) tracks the Ug of the SASSY appplication over time

by monitoring the performance of the SSSes. If the Ug declines below a specified threshold,

a re-architecting message is sent from the performance monitor to the architecture search

module (Box 3).

The architecture search module looks for an architecture that will maximize Ug. To

accomplish this goal, the architecture search module evaluates a series of proposed architec-

tures using a heuristic search algorithm. A proposed architecture, Ai, cannot be assessed

without a corresponding optimized service selection, Z∗
Ai
. To acquire an optimized Z∗

Ai
, the

architecture search module sends the proposed architecture to the service selection search

module (Box 4).

The service selection search module attempts to find an optimized, Z∗
Ai
, for Ai given an

evaluation budget constraint, NZ . The service selection search module evaluates a series

of proposed service selections. The service selection search module sends the proposed

architecture, Ai, and a proposed service selection, Zj , to both the SSS performance modeler

(Box 5) and the evaluation function (Box 6).

The SSS performance modeler applies the models discussed in Section 4.3 to Ai and

Zj and predicts QoS values for each defined SSS. The SSS performance modeler sends

69

the predicted QoS values to the evaluation function. The evaluation function applies the

attribute utility functions to the QoS values and then computes the global utility function.

The expected Ug is returned to the service selection module.

The service registry (Box 7) supports the service selection search by sending a list of

the available SPs and their attributes to both the service selection search module and the

SSS performance modeler.

The service selection module continues generating and evaluating proposed service selec-

tions until the evaluation search budget, NZ , has been consumed. At that point, the service

selection search module returns the best service selection found, Z∗
Ai
, to the architecture

search module.

The architecture search module continues generating and evaluating architectures (with

each evaluation requiring a service selection search). When either a time limit or an ar-

chitecture evaluation limit, NA, is reached, the best architecture found, A∗, is passed to

SASSY’s change management layer (see Section 2.5.7).

������

�� ������	��
�	�

�	����

���
�	

�� �	����	��

�	�	������

�	����

���
�	

���������

	
	��	������

	�
�����������

	��������

����	����	�

�	������

A�

�
�
����

��

�
�
���

A
�
���

������	��

��	�����������

����	����������

�� ��������	��

���	���	

�	��

���

�����

A� ����

�����������

�������

 	����!��	

���	�	�

"�� 	����!��	�

�������

#��$��
�����

%
������

	��������

���������

�����	������

A� ����

����
��������	����

�	�	��������

A ���
�

Figure 4.1: Basic framework for autonomic optimization in SASSY.

70

4.5 Heuristic Search Algorithms for Re-Architecting

The work in this section was originally presented in [39]. This section details the adaptation

of the well-known heuristic algorithms described in Sections 2.3.4 and 2.3.5 to architecture

search and service selection for the SASSY re-architecting problem. The four heuristic

algorithms that have been adapted to SASSY are: hill-climbing, beam search, simulated

annealing, and evolutionary programming. Hill-climbing, beam search, and simulated an-

nealing belong to the local search family of heuristic algorithms. Local search algorithms

start with one or more solutions (referred to as the visited solutions) and then evaluate sim-

ilar solutions called neighbors. In an effort to find better solutions, a local search algorithm

will then visit one or more promising neighbor solutions and generate new neighborhoods

to evaluate from those visited solutions. The search proceeds until either the search budget

has been exhausted or a local optimum has been found. Most local search algorithms, after

identifying a local optimum, will restart the search from a randomly selected solution(s) in

an attempt to locate a better optimum.

4.5.1 Neighborhood Filtering (Hill-Climbing and Beam Search)

The rules for determining what constitutes a neighbor are key to the success of local search

heuristic algorithms. For configuration optimization problems, local search typically will

define the neighborhood as any configuration that has a single change from the currently

visited solution. For many medium to large configuration optimization problems, such

a neighborhood definition could lead to large, unwieldy neighborhoods that reduce the

effectiveness of the search.

To reduce the size of the neighborhood, a technique called a neighborhood filter was

developed. A neighborhood filter examines the shortcomings of the currently visited solution

and identifies and visits only those neighboring solutions that are most likely to have an

improved Ug score.

Filtered neighborhood construction in architecture search attempts to improve Ug by

addressing the k SSSs with the largest negative impact on Ug. For each of the k SSSs,

the j worst performing components for the given SSS metric are designated as candidate

71

components.

For non-security SSSs, neighbors are produced in the following ways:

• For each of the j candidate components: 1) neighbors are produced by substituting

architectural patterns [94] that are expected to improve the metric of the SSS and

2) neighbors are produced by incrementing/decrementing the number of SPs in that

component.

• If the non-security SSS has a common component with a security SSS, a neighbor

is produced by decrementing the security option level along the entire path of the

security SSS.

If the SSS is a security SSS (i.e., the SSS metric is a security option), then a neighbor

is produced by incrementing the level of that option along the entire SSS path.

Neighborhood construction in service selection search also considers the k non-security

SSSs with the largest negative impact on Ug. For each of the k SSSs and for each of their j

candidate components, the lowest performing SP is identified according to the SSS metric.

If an unused SP offers a performance improvement in the SSS metric, a neighbor is produced

by substituting in the superior service instance.

4.5.2 Evolutionary Programming in SASSY

In the architecture search, the initial population is comprised of mutated copies of the

starting architecture. In the service selection search, the initial population is randomly

generated. Then evolutionary programming enters a loop of the following steps:

1. Select the M solutions with the highest fitness (predicted Ug).

2. Move surviving solutions to parent population.

3. Parent solutions reproduce to generate offspring population of size K.

4. Mutate offspring solutions.

5. Determine fitness (predicted Ug) of offspring solutions.

72

This loop continues until the search budget is consumed. If the populations are over-

lapping, offspring and parent solutions compete for survival in step 1. If the populations

are non-overlapping, only offspring are eligible for being selected in step 1. Reproduction

in evolutionary programming is asexual and an offspring is initially an identical copy of the

parent.

Evolutionary programming uses a phenotypic representation, so the features of the so-

lution are mutated directly. The size of the mutation is influenced by a parameter called

the step size. When a solution mutates, the number of changes made to the architecture is

randomly generated from a normal distribution N(µ, σ) with µ set to the step size and σ

set to 0.5µ (a minimum of one change per mutation is enforced). The type of change made

to a software architecture A is randomly selected from the following list:

• A change in the level of a security option.

• A change to the architectural pattern of one component.

• Increasing by one the number of SPs in a composite component.

• Decreasing by one the number of SPs in a composite component.

The changes made in service selection mutation are substitutions of SPs. An adaptive

step size is employed in service selection search. The step size itself is modified by adding

a randomly selected value from a normal distribution with µ set to zero and σ set to a

parameter called the adaptive step factor. Employing adaptive step size allows the search

to make large jumps through the space at the start of the search. When a near-optima is

located, individuals with more modest mutations will tend to have the highest fitness, and

consequently individuals with smaller step sizes are likely to be favored. As the step sizes

shrink, the search converges on the near-optima and moves from exploration to exploitation.

4.6 Heuristic Performance Differences

The work described in Section 3.2.3 demonstrated that autonomic controllers may experi-

ence significantly different levels of performance depending on the heuristic search algorithm

employed. This section examines if the choice of heuristic search algorithms in SASSY is

73

also significant. The SASSY optimization problem is further complicated by the fact that

it requires a two-layer search.

4.6.1 Impact of Architecture Search Algorithm

To investigate the impact of the architecture search algorithm, a limited experiment was

conducted. In this experiment, two different heuristic pairs were used to solve the initial op-

timization problems generated by 100 simulations (using the simulation procedure described

in Chapter 6). The two heuristic pairs used the same service selection search algorithm but

used different architecture search algorithms.

The two heuristic pairs were generated using the meta-optimization process (presented in

Section 4.7.2) on a 30 component SAS. Both heuristic pairs used the same evaluation budget:

NA = 100 and NZ = 1, 200. The two heuristic pairs used the same heuristic algorithm

for service selection search: opportunistic hill-climbing with no neighborhood filtering

(HC). For the architecture search, the first heuristic pair, HC-HC, uses opportunistic hill-

climbing with neighborhood filtering (SSS filter, k = 5, and component filter, j = 2). The

second heuristic pair, EP-HC, uses evolutionary programming (EP) with non-overlapping

populations, parent population size M = 6, offspring population size K = 30, and a step

size of 2.0.

The architecture search trajectories for HC-HC and EP-HC are plotted against each other

in Fig. 4.2, which depicts the average Ug as the search progresses. Over the first 30 eval-

uations, the difference in search performance is negligible. At that point, the Ug achieved

by HC-HC plateaus, while EP-HC continues to find architectures with higher Ug. The 95%

confidence intervals separate at about 70 evaluations. On these 100 inital optimization

problems, EP-HC is clearly superior to HC-HC, demonstrating the significant impact of the

architecture search algorithm.

4.6.2 Impact of Service Selection Search Algorithm

A second limited experiment was conducted to investigate the impact of the service selection

search algorithm. In this experiment, a third heuristic pair was used to solve the same 100

initial optimization problems with the same evaluation budgets used by the previous two

74

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 U

g

Number of Architectures Evaluated

EP-HC
HC-HC

Figure 4.2: Average architecture search trajectory on 100 SAS-25 optimization problems
with 95% CI bars.

heuristic pairs. This third heuristic pair, HC-EP, used the same architecture search algo-

rithm as HC-HC. However HC-EP employed a different service selection search algorithm:

evolutionary programming with overlapping populations, parent population size M = 3,

offspring population size K = 19, initial step size of 3.5, and an adaptive step factor of 4.5.

The service selection search trajectories for HC-HC and HC-EP are plotted against each

other in Fig. 4.3. The difference in performance between the service selection heuristics

is immediately clear—HC-EP far outperforms HC-HC. The difference between the heuristic

pairs peaks at 280 service selection evaluations. After 1,200 service selection evaluations,

HC-HC is closer to HC-EP but a significant difference remains. In essence, Fig. 4.3 shows that

HC-EP converges on better solutions more rapidly than HC-HC.

The Ug values returned by the service selection search module to the architecture search

module are used to evaluate architectures. As such, these values also inform decisions about

which portions of the architecture space to invest in future search resources. Reductions in

service selection search performance may also reduce the signal-to-noise ratio in the data

used to guide the architecture search.

The next step in this analysis was to examine how the difference in service selection

75

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000 1200

A
v
e
ra

g
e
 U

g

Number of Service Selections Evaluated

HC-EP
HC-HC

Figure 4.3: Average service selection search trajectory on 100 SAS-25 optimization problems
with 95% CI bars.

search performance affected the architecture search. The architecture search trajectories

for HC-HC and HC-EP are plotted against each other in Fig. 4.4. The curves of the trajectories

in Fig. 4.4 have approximately the same shape, but the best Ug found by HC-HC trail those

found by HC-EP by a fairly constant margin.

These limited experiments confirm that the choice of heuristic algorithms for both ar-

chitecture search and service selection search does impact search performance.

4.7 Examining Meta-Optimization

All self-optimizing systems have methods for judging the efficacy of a given configuration

or sequence of actions. For the purposes of expediency in discussion, this section assumes

that all self-optimizing systems can be gauged with a global utility function. This work was

originally reported in [38].

Formally, self-optimization can be specified as:

76

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 U

g

Number of Architectures Evaluated

HC-EP
HC-HC

Figure 4.4: Average architecture search trajectory on 100 SAS-25 optimization problems
95% CI error bars.

Find a system state S∗ such that

S∗ = argmaxS Ug(S,K) (4.3)

where Ug() is a global utility function representing the usefulness of being at system state

S when the operating environment is at state K.

To achieve optimization, self-optimizing autonomic systems either employ approximate

optimization algorithms or make restrictions in the number of system states that may be

considered. Equation 4.4 shows the optimization process, B, producing an approximately

optimized state, S∗
a with optimization algorithm, H.

S∗
a = B(H,K). (4.4)

Often, these approximate optimization algorithms are non-deterministic due to stochas-

tic operations (e.g., mutations in evolutionary algorithms). Thus, to measure the per-

formance of an optimization algorithm H, its expected global utility UH over multiple

77

executions of B should be considered:

UH = E [Ug(S
∗
a)] = E [Ug(B(H,K))]. (4.5)

The meta-optimization problem can be formally specified as follows:

Find an approximate optimization algorithm H∗ such that

H∗ = argmaxH E [Ug(B(H,K))] (4.6)

tH ≤ tL (4.7)

where tH is the execution time for H and tL is a time limit.

4.7.1 Meta-Optimization in SASSY

There are two NP-hard optimization problems that need to be solved in near real-time for

SASSY [92]:

1. an architecture optimization problem and

2. a service selection optimization problem.

The two optimization problems are in fact nested: before an individual architecture can be

evaluated, an approximately optimal service selection must first be found.

Formally, the SASSY optimization problem can be expressed as:

Find an architecture A∗ and a corresponding SP allocation Z∗ such that

(A∗, Z∗) = argmax(A,Z) Ug(A, Z,K). (4.8)

where Ug(A, Z) is the global utility of architecture A and service selection Z, with the state

of all SPs in the environment denoted by K. This optimization problem may be modified

by adding a cost constraint. In the cost-constrained case, there is a cost associated with

each SP for providing a certain QoS level [92].

78

The optimization process, B, in SASSY requires two algorithms: HA for the architecture

search and HZ for the service selection search. Equation 4.9 shows that the optimization

process requires one more input, Ac, the current architecture. This provides a useful starting

position for the algorithm HA, since the Ac is often close to an architecture A∗
a.

(A∗
a, Z

∗
a) = B(HA,HZ ,Ac,K). (4.9)

The performance of the algorithm pair, UHA,HZ
, is expressed below:

UHA,HZ
= E [Ug(A∗

a, Z
∗
a)] = E [Ug(B(HA,HZ ,Ac,K))]. (4.10)

Equation 4.11 describes the meta-optimization problem in SASSY:

Find a pair of approximate optimization algorithms (H∗
A,H∗

Z) such that

(H∗
A,H∗

Z) = argmax(HA,HZ) E [Ug(B(HA,HZ ,Ac,K))] (4.11)

t(HA,HZ) ≤ tL (4.12)

SASSY can employ a number of heuristic search methods as approximate optimiza-

tion algorithms in solving the architectural pattern problem and the SP selection problem.

Hill-climbing, beam search, simulated annealing, and evolutionary programming have been

implemented and tested in the SASSY autonomic controller with varying degrees of effec-

tiveness (as evidenced in Section 4.6). Each of these heuristic search algorithms require

multiple parameter settings that can have potentially large impacts on the optimization

process performance.

4.7.2 Meta-Optimization Framework

As demonstrated in Equations 4.6 and 4.11, certain inputs are required in the meta-

optimization process. In the general case, the operating environment state, K, is required

to conduct a meta-optimization. For SASSY meta-optimizations, we additionally require

the system’s current architecture, Ac.

79

To ensure acquisition of appropriate meta-optimization inputs, the following three-step

meta-optimization process is proposed:

1. capture candidate sample problem set,

2. select finalist problems from candidate problem set, and

3. apply meta-optimization procedure to finalist problems.

A candidate sample problem set is a pool of observed or generated optimization prob-

lems. A candidate sample problem set may be large, and it may not be computationally

feasible to conduct effective meta-optimization on each problem in this set. When the can-

didate problem set is large, a method is required for selecting a promising subset (i.e., the

finalists) of the candidate problems. A meta-optimization procedure can then be pursued

on the small set of finalist problems.

Generating Candidate Problems in SASSY

To capture a candidate sample problem set in SASSY, the SASSY system operates in a

simulated service environment. The simulation generates SP failures, SP degradations,

and SP repairs. If an SP failure or SP degradation reduces Ug below some threshold, the

autonomic controller will initiate an optimization process to find a new architecture, A, and

SP selection, Z. When the performance monitor detects SP repair events, the autonomic

controller will also initiate an optimization process to determine if a better A and Z can

be achieved. For a more detailed explanation of the simulation used, see Section 6.2. The

candidate problem set is produced by collecting randomly sampled problems encountered in

the simulation—the purpose is to avoid oversampling small portions of the problem space.

In the SASSY application depicted in Fig. 6.5, between three and ten SPs were ran-

domly generated for each of the 65 activities, yielding an overall total of 404 SPs. A

relatively long initial optimization search found an optimized starting architecture, Ai, and

an optimized SP selection, Zi. The instantiated SASSY system operated using the beam

search/evolutionary programming BS-EP heuristic search algorithm pair (this heuristic pair

was originally from a meta-optimization process on a 30 component SAS). The SASSY

80

system, starting with Ai and Zi, was exposed to simulated SP failures, simulated SP degra-

dation, and simulated SP repair events over time. The SASSY system went through 26 such

simulations and captured 1% of the encountered optimization problems encountered by the

SASSY autonomic controller. This process generated 1,041 candidate sample problems.

Selecting Finalist Problems in SASSY

Chapter 5 will demonstrate that sometimes a small fraction of SASSY optimization prob-

lems are particularly challenging. The choice of heuristic search algorithms on these chal-

lenge problems can have an outsized impact on the SASSY system’s overall performance.

Identifying challenge problems with machine learning techniques has proven difficult (see

Chapter 5). To improve the probability of including one or more challenge problems in the

finalist subset, diversity is prioritized when choosing finalists from candidates.

To develop a diverse finalist subset, two summary statistics are considered:

1. ∆ Ug is the difference in Ug from the last optimization search. This measures the

severity of the optimization problem.

2. f∆(K) is the fraction of SPs that have changed state due to failure, degradation, or

repair since the last optimization search. This measures the degree of change in the

environment.

Figure 4.5 shows a scatter plot of the 1,041 candidate problems using these summary statis-

tics.

To pick a diverse group of finalist problems, the selected finalist problems are distributed

across the full range, including some outliers. Challenge problems may be uncommon, so it

is not necessary that each finalist problem represent a cluster of candidate problems. The

twelve finalist problems were selected by assessing Fig. 4.5 and are labeled A through L.

Applying Meta-Optimization Procedure

Figure 4.6 describes the meta-optimization procedure applied to the SASSY autonomic

controller. Exactly one finalist sample problem is assigned to an instance of the meta-

optimizer. The arrows departing from Box 1 show how the information captured in the

81

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

f ∆
(K

)

∆ Ug

C

A

L

D

H

B

K

F

EJ

I

G

Figure 4.5: The candidate problem set plotted using summary statistics. The twelve finalist
problems are labeled A-L and marked with red x’s.

finalist sample problem is distributed.

• The current architecture, Ac, is sent to the Meta-Optimizer.

• The performance of the SPs in the environment is sent to the SSS Performance Mod-

eler.

• A list of the available SPs in the environment is provided to the Service Selection

Search Module.

The Meta-Optimizer (Box 2) generates a pair of heuristic search algorithms that are

then provided to the Architecture Search Module (Box 3) and the Service Selection Search

Module (Box 4). Additionally, the Meta-Optimizer directs the Architecture Search Module

to commence an optimization search. The optimization search will be repeated n times

before the Meta-Optimizer changes the heuristic search algorithms in the search modules

(Boxes 3 and 4). The score for the heuristic search pair is the average predicted Ug of the

returned A and Z.

The heart of the architecture/SP selection optimization is the interaction among boxes

3, 4, 5, and 6. When the architecture optimization search begins, the Architecture Search

82

�� ������	��
�	�

�	����

���
�	

�� �	����	��

�	�	������

�	����

���
�	

�� �	���������	�

���������	����
���

��������������

��������

���������A

�����������

�������

A�

�� ���
�
	

A� ����

�� ����

A

���

�

H
A H�

��H
A
,H

Z
�

�������

�	�������	

���	�	�

���������� ��

����	�

���!�	�

"��#��
�����

�
�������
���	���������������

����������������������

�������

A ����

����������

������������

���A� ����

Figure 4.6: The meta-optimization procedure applied to SASSY.

Module (Box 3) requests the Service Selection Search Module (Box 4) to find an optimal Zi

for a given Ai. As it conducts the SP selection search, the Service Selection Search Module

requests performance predictions for a given Ai and Zj .

Genetic Algorithm for the Meta-Optimizer

A genetic algorithm is employed as the meta-optimization algorithm for the following four

reasons.

1. The genotype representation provides an elegant mechanism for representing complex

objects.

2. The crossover and mutation operators can be applied to the genotype representation

in a simple and uniform way.

3. Genetic algorithms are robust in the face of noisy evaluations.

4. The crossover operator can blend two different heuristic pair algorithms to explore

the heuristic parameter space between them.

The heuristic search algorithms and their attendant parameters are encoded into binary

strings. The format of these binary strings are defined in Table 4.1 and Table 4.2. The

83

Parameter Algorithm Type Min Max Step # bits

search algorithm all enum N/A N/A N/A 2
hill-climbing mode hill-climbing enum N/A N/A N/A 1
beam search mode beam search enum N/A N/A N/A 2
neighborhood filtering hill-climbing & beam search boolean N/A N/A N/A 1
SSSes in filter hill-climbing & beam search integer 1 13 1 4
components in filter hill-climbing & beam search integer 1 64 1 6
beam width beam search integer 2 5 1 2
parent population size evolutionary programming integer 1 20 1 5
brood size evolutionary programming floating point 1.0 8.5 0.5 4
overlapping population evolutionary programming boolean N/A N/A N/A 1
initial step size evolutionary programming floating point 1.0 4.5 0.5 3
adaptive step factor evolutionary programming floating point 1.0 4.5 0.5 3
initial probability simulated annealing floating point 0.1 0.04 0.7 4
final probability simulated annealing floating point 0.00001 0.00016 0.00001 4

Table 4.1: Composition of architecture search binary string.

genotype of the heuristic search algorithm pair is formed by concatenating these two binary

strings.

The service selection search budget parameter, NZ , in Table 4.2 refers to the number of

SP selections to be evaluated for each architecture evaluation. Thus, the total number of

model evaluations, NM can be computed as follows:

NM = NA ×NZ (4.13)

where NA is the architecture search budget parameter.

In this work, the window for completing an architecture optimization search was set

to be 7.5 seconds. On systems with two 2.4 GHz quad-core hyper-threading Intel Xeon

processors this translated to NM = 47, 600. Using this information, NA was then derived

from NZ .

As in most genetic algorithms, the size of the parent population and offspring population

are equal (in this work the population size is set to 15). Parent selection is conducted with

the probabilistic linear rank method described in Section 2.3.5 and Equation 2.15.

The offspring is produced from the two parents through the uniform crossover operator

with the crossover probability set to 0.08. The genetic algorithm transcribes the binary

string from the first parent selected to the offspring. With each transcribed bit, there

is an 8% chance that the genetic algorithm will swap the parents for the source of the

84

Parameter Algorithm Type Min Max Step # bits

search budget, NZ all integer 100 2500 25 7
search algorithm all enum N/A N/A N/A 2
hill-climbing mode hill-climbing enum N/A N/A N/A 1
beam search mode beam search enum N/A N/A N/A 2
neighborhood filtering hill-climbing & beam search boolean N/A N/A N/A 1
SSSes in filter hill-climbing & beam search integer 1 13 1 4
components in filter hill-climbing & beam search integer 1 64 1 6
beam width beam search integer 2 5 1 2
parent population size evolutionary programming integer 1 20 1 5
brood size evolutionary programming floating point 1.0 8.5 0.5 4
overlapping population evolutionary programming boolean N/A N/A N/A 1
initial step size evolutionary programming floating point 1.0 4.5 0.5 3
adaptive step factor evolutionary programming floating point 1.0 4.5 0.5 3
initial probability simulated annealing floating point 0.1 0.04 0.7 4
final probability simulated annealing floating point 0.00001 0.00016 0.00001 4

Table 4.2: Composition of service selection search binary string.

transcription [24].

Once the crossover operation is complete for a new offspring, the bit-flip mutation op-

erator is invoked. To avoid entrapment in hamming cliffs, the binary strings are converted

into Gray code [113] before the bit-flip mutation operator is applied. The bit-flip muta-

tion operator examines each bit of the genotype binary string and flips a given bit with a

probability of 0.02.

After the bit-flip mutation is complete, the genetic algorithm checks to make sure that

the parameters of produced heuristic search algorithms are within acceptable boundaries.

The crossover operation and bit-flip mutation are repeated as necessary to produce a valid

offspring.

Each produced offspring is a pair of heuristic search algorithms for solving nested SASSY

optimization problems. Each offspring is then asked to search the assigned finalist sample

problem. This search is repeated n times, and the score of the heuristic pair, UHA,HZ
, is

computed as follows:

UHA,HZ
=

∑n
i=1 Ug(Ai, Zi)

n
(4.14)

where Ai and Zi are respectively the best architecture and service selection found in opti-

mization search instance i. In the work presented here n has been set to 50.

85

Parameter problem A problem B problem C problem D

arch. search budget, NA 19 19 19 19
arch. search alg. beam search hill-climbing hill-climbing beam search
arch. search mode exceeds LL greedy opportunistic no LL req.
arch. # of filter SSSes 2 6 12 4
arch. # of filter comp. 2 24 4 5
arch. beam width 4 N/A N/A 4
arch. ini. prob. N/A N/A N/A N/A
arch. final prob. N/A N/A N/A N/A
serv. sel. search budget, NZ 2,475 2,475 2,475 2,475
serv. sel. search alg. evol. prog. evol. prog. evo. prog. evol. prog.
serv. sel. par. pop. size 2 1 1 4
serv. sel. off. pop. size 5 7 2 8
serv. sel. overlap pop. true true true true
serv. sel. ini. step size 4.5 2.5 3.0 4.5
serv. sel. adapt. step fact. 1.0 1.5 1.5 3.5

Table 4.3: Resulting heuristic pairs for representative problems A through D.

Parameter problem E problem F problem G problem H

arch. search budget, NA 19 20 22 20
arch. search alg. hill-climbing beam search hill-climbing sim. annealing
arch. search mode greedy no LL req. opportunistic N/A
arch. # of filter SSSes 3 4 11 N/A
arch. # of filter comp. 1 1 3 N/A
arch. beam width N/A 5 N/A N/A
arch. ini. prob. N/A N/A N/A 0.26
arch. final prob. N/A N/A N/A 0.0008
serv. sel. search budget, NZ 2,475 2,275 2,100 2,375
serv. sel. search alg. evo. prog. evol. prog. evol. prog. evol. prog.
serv. sel. par. pop. size 1 4 1 3
serv. sel. off. pop. size 6 4 4 18
serv. sel. overlap pop. false true true true
serv. sel. ini. step size 2.5 4.5 4.5 2.5
serv. sel. adapt. step fact. 1.5 1.5 1.0 1.0

Table 4.4: Resulting heuristic pairs for representative problems E through H.

The results for a given offspring are stored in a hash table. If another individual is

encountered matching that offspring later in the meta-optimization search, the evaluation

of the heuristic pair can be skipped, and UHA,HZ
can be recovered from the hash table.

The genetic algorithm continues producing new generations until the heuristic pair eval-

uation limit is reached (set to 1,000 evaluations in this work). This meta-optimization ge-

netic algorithm was applied to each of the twelve finalist sample problems. The resulting

heuristic pairs are shown in Tables 4.3, 4.4, and 4.5.

From the results in Tables 4.3, 4.4, and 4.5, evolutionary programming is clearly the

dominant heuristic search algorithm for the service selection search. At the architecture

search level, a variety of local search algorithms were found to be optimal on their respective

86

Parameter problem I problem J problem K problem L

arch. search budget, NA 19 21 23 32
arch. search alg. hill-climbing hill-climbing hill-climbing hill-climbing
arch. search mode opportunistic greedy opportunistic opportunistic
arch. # of filter SSSes unused 3 12 11
arch. # of filter comp. unused 1 2 2
arch. beam width N/A N/A N/A N/A
arch. ini. prob. N/A N/A N/A N/A
arch. final prob. N/A N/A N/A N/A
serv. sel. search budget, NZ 2,500 2,250 2,050 1,475
serv. sel. search alg. evo. prog. evol. prog. evol. prog. evol. prog.
serv. sel. par. pop. size 3 2 3 3
serv. sel. off. pop. size 22 6 12 15
serv. sel. overlap pop. true true true true
serv. sel. ini. step size 3.5 1.0 4.0 3.0
serv. sel. adapt. step fact. 2.0 1.0 1.5 1.0

Table 4.5: Resulting heuristic pairs for representative problems I through L.

problems. A common feature across all 12 meta-optimization runs are the large values for

NZ . Only problem L generated a heuristic pair with NZ set to less than 2,000.

Figures 4.7 and 4.8 plot the progress of the meta-optimization search on the finalist

sample problems D and F respectively. Due to differences in the environment, the scale of

the plots’ y-axis differ substantially.

Each of the finalist sample problems has a different y-scale. To gauge the overall con-

vergence of the meta-optimization genetic algorithm, the search performance is normalized

against the best Ug found during the entire meta-optimization search. A plot of the nor-

malized convergence can be found in Fig. 4.9.

4.8 Concluding Remarks Regarding Architecture Search

This chapter has described in detail the SASSY architecture optimization problem and the

heuristic search algorithms that can be used to solve it. Small experiments have shown

that the choice of heuristic search algorithm matters. A meta-optimization technique was

presented to facilitate finding good heuristic search algorithms. The next chapter considers

how to fully leverage the heuristic search algorithms produced by the meta-optimization

process.

87

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000

U
H

A
,H

Z

Number of Heuristic Pairs Generated

Best Heuristic Pair Found
GA Population Average

Figure 4.7: Heuristic pair performance on problem D with 95% CI bars.

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0 200 400 600 800 1000

U
H

A
,H

Z

Number of Heuristic Pairs Generated

Best Heuristic Pair Found
GA Population Average

Figure 4.8: Heuristic pair performance on problem F with 95% CI bars.

88

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

A
v
e
ra

g
e
 N

o
rm

a
liz

e
d
 U

H
A
,H

Z

Number of Heuristic Pairs Generated

Best Heuristic Pair Found
GA Population Average

Figure 4.9: Normalized heuristic pair performance across all problems with 95% CI bars.

89

Chapter 5: Meta-Controller Approaches

This chapter describes four distinct meta-controller methods for autonomic optimization in

SASSY. In this context, a meta-controller seeks to dynamically improve the performance of

the autonomic controller. Meta-controllers in SASSY observe the performance of heuristic

search algorithms and use these observations to determine which heuristic search algorithms

should be used when the need for architecture optimization arises.

The different meta-controller approaches each employ machine learning but the degree of

sophistication ranges from the simple (Overall Best) to the complex (SVM-based Context

Best meta-controllers). By applying machine learning to the operation of the autonomic

controller, meta-controllers seek to increase the degree of autonomicity from autonomous

to autonomic (see Section 1.2.3 for more information on the degrees of autonomicity).

The first section of this chapter describes the framework common to all of the meta-

controller approaches. The Overall Best meta-controller is described in the second sec-

tion. The third section describes the three Context Best meta-controller methods (KNN,

offline SVM, and online SVM). The final section of the chapter provides concluding remarks

regarding meta-controllers.

5.1 Framework for the Meta-Controller

This section describes the framework for self-adaptation and architecture/component selec-

tion optimization. Figure 5.1 shows the modules and data flows in the proposed monitoring

and optimization framework. An architecture optimization search is started when either:

• the performance monitor (box 1) detects that a decline in Ug has crossed some thresh-

old or

• the service registry (box 7) notifies the meta-controller that a new SP has become

available.

90

������

�� ������	��
�	�

�	����

���
�	

�� �	����	��

�	�	������

�	����

���
�	

�� �	����������	�

����	����	�

�	������

��������

������	�������
�

���
�������	�

HA H�

A�

�

����

��

�

����

A
�
���

�

A� ����

���������

���������

�������������

��������������

���������

�������

�	���� ��	

���	�	�

!���	���� ��	�

�������

"��#��
�����

$
������

A ���
�

����������

������������

���A� ����

��������������������

������������

���������

Figure 5.1: Data flows in the meta-controller monitoring and optimization framework.

In the first case, to initiate an architecture optimization search, the performance monitor

sends a message to the meta-controller (box 2). The meta-controller selects an appropriate

heuristic search procedure, HA for the architecture search module (box 3) and a potentially

different heuristic search procedure, HZ , for the service selection search module (box 4).

The architecture search module (box 3) commences the execution of the heuristic search

procedure, HA. Whenever HA requests an evaluation (i.e., prediction of Ug) for a specified

architecture, Ai, the architecture search module (box 3) passes Ai to the service selection

search module (box 4).

At this point, the service selection search module (box 4) initiates a new search that

takes Ai as input and executes the heuristic search procedure HZ . Whenever HSrvSlct

requests an evaluation of service selection, Zj , the service selection search module (box

4) passes a copy of Ai and Zj to each of the SSS performance modeler (box 5) and the

evaluation function (box 6).

The SSS performance modeler (box 5) predicts the QoS metrics for each SSS and passes

the results to the evaluation function (box 6). The evaluation function applies the attribute

utility functions of each SSS to the QoS metrics. The resulting SSS utility values are fed

into the Ug function.

91

The evaluation function (box 6) returns Ug(Ai, Zj) to the service selection search module

(box 4), and HZ uses this as the fitness score for Zj and continues the search. The heuristic

HZ persists searching until some exit criterion is met (e.g., threshold utility is achieved or

evaluation budget consumed). When HZ completes, the service selection search module

(box 4) returns Ug(Ai, Z
∗
Ai
) and Z∗

Ai
to the architecture search module (box 3).

With the completion of a service selection search instance, HA uses Ug(Ai, Z
∗
Ai
) as

the fitness score for Ai and continues the search. The heuristic HA persists searching until

some exit criterion is met (e.g., threshold utility is achieved or evaluation budget consumed).

When HA completes, the architecture search module (box 3) sends A∗ and Z∗ to the change

planner/manager (not shown in Fig. 5.1). The change planner/manager then executes a

plan for online evolution or adaptation of the running system.

This framework assumes the existence of a service registry (box 7) that includes QoS

levels of the SPs listed in the registry [20]. This information is required by three modules:

the meta-controller (box 2) that uses this information when selecting HA and HZ , the

service selection search module (box 4) that needs to know which SPs are available for the

search, and the SSS performance modeler (box 5) that uses the advertised performance of

the SPs.

The performance monitor (box 1) continuously collects QoS metrics and tracks Ug in

real-time. As mentioned at the start of this section, the performance monitor (box 1)

can initiate a new architecture search if Ug (most likely represented as a moving average)

declines below a threshold utility level that was set upon completion of the last architecture

optimization search as described Chapter 4. The performance monitor (box 1) continuously

sends performance data updates to the SSS performance modeler (box 5), which stores near

term performance data so that it is prepared to support optimization searches.

Each time that the meta-controller makes a heuristic selection decision in a re-archi-

tecting event, the meta-controller stores an optimization problem, P, consisting of the

starting architecture and a list of all the SPs with their current QoS metrics. After the

architecture optimization search completes, the meta-controller stores a result tuple of P:

(HA, HZ , U
best
g). After the re-architecting process completes, the meta-controller begins a

92

training process testing other heuristic search pairs from the candidate list against P and

storing the outcome in the result tuple. This training process can be preempted by new

re-architectecting searches and resumed later.

5.2 Overall Best Heuristic Pair

The Overall Best meta-controller attempts to determine the overall best candidate heuris-

tic pair, (H∗
A,H∗

Z), over the entire range of re-architecting optimization problems encoun-

tered by a SASSY application (see Chapter 4 for more information about heuristic pairs).

Each time a result tuple is stored, the Overall Best meta-controller updates the average

Ubest
g for the given heuristic pair. When it is time for the Overall Best meta-controller to

make a decision, it chooses the heuristic pair that has produced the highest average Ubest
g .

5.3 Context Best Heuristic Pair

It is unlikely that there is a single heuristic search pair that outperforms all other heuristic

search pairs over the potential optimization problem space. A certain heuristic pair may

dominate a portion of the optimization problem space, while other heuristic pairs may dom-

inate other portions of the space. A Context Best meta-controller attempts to determine

the overall best candidate heuristic pair given specific features of P.

In many architecture search problems, a reasonable local-optimum architecture is near

the starting architecture. When encountering such problems, the autonomic controller

is best served by using exploitative heuristic search algorithms that intensely scan the

architecture space surrounding the starting point. In other architecture search problems,

the closest near-optima are relatively far away from the starting architecture. When solving

these problems, the autonomic controller is best served using exploratory heuristic search

algorithms that can travel some distance from the starting architecture.

Changes in the service environment that have occurred since the previous re-architecting

event can impact the expected distance of near-optimal architectures from the starting ar-

chitecture. Thus, measurements of service environment changes, such as SP availability,

93

may offer insight into the likelihood of proximate local-optimum architectures. These met-

rics can be used as features in a machine learning problem. If the meta-controller can

successfully train on these features via a machine learning approach, the meta-controller

may be able to predict whether an exploitative (e.g., beam search) or exploratory heuristic

search algorithm (e.g., simulated annealing) is more likely to be successful.

Changes in QoS metrics and utility scores, such as a reduction in throughput in an SSS,

may be useful features in predicting whether the architecture search and service selection

searches should employ neighborhood filtering for the local search algorithms. It is possi-

ble that machine learning approaches may make other connections between optimization

problem features and heuristic pairs.

5.3.1 Characterizing the Optimization Problem

An accurate and relevant representation of the optimization problem, P, is required for a

machine learning approach to successfully train. The representation used for the Context

Best meta-controller is shown in Table 5.1. The features in the Component group and Secu-

rity Option group reflect the starting architecture of the system and some statistics on the

service environment. The BSC architectural pattern stands for a basic component in the

architecture, while the LB architectural pattern represents a load-balancing composite com-

ponent in the architecture, and the fFT architectural pattern indicates a fast fault-tolerant

composite component (see Section 2.5.5 for more detail on architectural patterns); one and

only one of these three features must be set to true for each component. The current level

feature in the Security Option group is set to the level of security enabled on a component

for that particular security option (multiple security options may be specified by the domain

expert). The Overall, SSS utility, and QoS Metric groups reflect the performance of the

architecture and service selection in the current service environment.

5.3.2 Processing the Training Set

The Context Best meta-controller conducts its training process by testing all candidate

heuristic pairs against the features of the problem, F(P), until 50 result tuples, [P,HA,HZ , U
best
g],

94

Group Value Type Number of Features

Overall Ug floating point 1
Overall ∆(Ug) floating point 1

SSS Utility U(q) floating point nSSS

SSS Utility ∆(U(q)) floating point nSSS

Component BSC Arch. Pattern boolean ncmp

Component LB Arch. Pattern boolean ncmp

Component fFT Arch. Pattern boolean ncmp

Component number of SPs used integer ncmp

Component number of SPs available integer ncmp

Component number of SPs changed integer ncmp

QoS Metric current q for component floating point ncmp × nQoS

QoS Metric ∆(q) for component floating point ncmp × nQoS

Security Option current level integer ncmp × nsec

Table 5.1: Features of the machine learning problem, F(P).

have been generated for each candidate heuristic pair on a given problem. Whenever a re-

sult tuple is stored, a Context Best meta-controller extracts the F(P) in Table 5.1. A

training set record, keyed to F(P), is created that contains an empty linked-list of result

tuples. The training set record is then added to the training set’s specialized data structure

(this data structure has both hash table and array properties, see Appendix A for more

details). If the training set already contains a matching training record, the new results are

appended to the pre-existing record in the training set.

Machine learning algorithms that make calculations in Euclidean space are sensitive to

differences in the scale of the ranges: features with relatively large ranges will be emphasized

to the detriment of features with relatively small ranges. If the information contained in

features with relatively small data ranges is significant to the classification problem, the

performance of the machine learning algorithm will suffer [17]. To address this issue, the

Context Best meta-controller tracks maximum and minimum values for each feature in

the training set. These maximum and minimum values are used to maintain a copy of the

training set where each feature is normalized to the range of [−1 : 1]. The maximum and

minimum values are also used to scale the features of encountered problems not yet in the

training set.

95

5.3.3 Decision Making

When the Context Best meta-controller needs to select a candidate heuristic pair, it ex-

tracts F(Pcurrent) for the current re-architecting problem. If a training record with a match-

ing F(P) is found in the training set, the Context Best meta-controller determines which

candidate heuristic pair has the best recorded performance in that training record.

If no matching training record is found, the Context Best meta-controller normalizes

F(Pcurrent) using the maximum and minimum values from the training set. Next the

Context Best meta-controller employs a machine learning algorithm to select the expected

best heuristic pair for F(Pcurrent).

5.3.4 KNN Meta-Controller

The first machine learning technique that was applied to the Context Best meta-controller

is the k-nearest neighbor (KNN) algorithm that was described in Section 2.4.1. The training

set serves directly as the classification model in KNN—no training is required. Using KNN,

the meta-controller chooses a heuristic pair as follows:

1. Calculate the Euclidean distance between F(Pcurrent) and the key of each training

record.

2. Select top k closest training records.

3. Each of the k training records votes for the candidate heuristic that performed best

on its problem.

4. If one heuristic pair received more votes than any other, select that heuristic pair. If

there is a tie in the voting, select the heuristic pair from the training record closest

to F(Pcurrent).

For moderate to large SASSY systems, F(Pcurrent) will have hundreds of features. With

a large number of features, the computation of the Euclidean distance may not be trivial on

large training sets, especially given the near real-time requirements for the SASSY meta-

controller.

96

5.3.5 Offline Training SVM Meta-Controller

As discussed in Section 2.4.2, support vector machines (SVM) with kernel methods offer a

sophisticated alternative to KNN. From the perspective of an autonomic meta-controller,

SVMs have some attractive properties. The process of selecting a heuristic pair requires just

two steps: 1) project F(Pcurrent) to a higher dimensional space using the selected kernel

method and 2) compute a vector multiplication to determine on which side of the hyperplane

decision boundary F(Pcurrent) lies. On modern computing systems, these calculations are

trivial.

SVM does require a significant amount of effort for training. In particular, SVM is

sensitive to the selection of kernel parameters and C, which controls the size of the margin

around the decision boundary. To maximize the SVM’s prediction accuracy, it is necessary

to optimize these parameters. The accuracy for a given set of SVM parameters can be

assessed through n-fold cross-validation (see Section 2.4.2). Thus, searching for optimal

parameters requires significant effort. Training the SVM and finding optimal kernel pa-

rameters can either be performed offline or performed online between optimization searches

when the hardware of the autonomic controller would otherwise be idle.

Traditional SVM supports two-class pattern recognition. Extensions for multi-class

SVM are available but may take longer to train and require proportionally larger data

sets [55]. Given the limited training sets that will be available to the SASSY meta-controller,

the Offline SVM meta-controller uses two-class pattern recognition. This means that two

different heuristic pairs must be selected from the candidate pairs; for example on the SAS-

65, an Offline SVM meta-controller might select heuristic pairs E and G from Table 4.4 in

Section 4.7.2. Problems where E outperforms G are labeled E, and vice versa; the labeling

process is explained in Equation 5.7. These labels are mapped into the two classes of the

SVM.

An Offline SVM meta-controller employing an offline training set requires the comple-

tion of the following actions to build an SVM model.

1. Collect and study a set of training problems.

2. Find the most suitable heuristic pair combination.

97

3. Remove noisy training problems from the training set.

4. Determine penalty weights for mis-classification.

5. Optimize SVM parameters.

6. Train the SVM model.

Collect and Study Training Problems

Similar to the collection of candidate problems for the meta-optimizer described in Sec-

tion 4.7.2, problems for the offline SVM training set are collected while the SASSY system

executes with a simple autonomic controller (i.e., without using a meta-controller) in a simu-

lated service environment (for more details see Section 6.2). This problem collection process

is different from that used by the Overall Best and Context Best KNN meta-controllers,

which build training sets by collecting problems as they are encountered. The problems for

the offline SVM training set are collected through random sampling—this helps to avoid

oversampling small portions of the problem space. As each training problem Pt, is collected,

F(Pt) is computed and stored with Pt.

As the SASSY simple autonomic controller executes in the simulated environment, it is

important that the controller use one of the best performing heuristic search algorithm pairs

because experience has shown that the SVM is sensitive to the range of Ug values in the fea-

ture space. The training set problems collected by using an inferior heuristic pair are likely

to have a different range of Ug values than those encountered by a meta-controlled SASSY

system—this difference in Ug range increases the odds that the trained meta-controller will

later choose the wrong heuristic pair on encountered optimization problems.

After collecting a sufficient number of training set optimization problems, it is necessary

to investigate how the candidate heuristic pairs—described in Chapter 4—perform on them.

Each candidate heuristic pair is tested against each training set problem 50 times. The

results of this testing are stored in the result tuples described in Section 5.1.

98

Find Most Suitable Heuristic Pair Combination

The step of finding the most suitable heuristic pair combination consists of four sub-steps

designed to maximize the SVM meta-controller’s performance by considering three key

factors. For each possible combination of two candidate heuristic pairs, the system

1. assesses potential performance,

2. assesses the balance of the training set,

3. assesses complementary behavior, and

4. makes an aggregate assessment.

The subsequent sections provide a detailed explanation of each sub-step.

Find Suitable Pairs: Assess Potential Performance Sub-Step

The purpose of the first sub-step is to determine the expected performance of a heuristic pair

combination, E [U best
g (mcperfect((Hj

A,H
j
Z), (Hk

A,Hk
Z))] where mcperfect represents a meta-

controller that always predicts the optimal heuristic pair (either j or k) for each encountered

problem.

For each problem, Pt, in the training set, the system computes U
Pt,H

j
A
,Hj

Z

from the

result tuples as follows:

U
Pt,H

j
A
,Hj

Z

=
1

n

n
∑

i=1

Ubest
g (Pt,Hj

A,H
j
Z , i) (5.1)

where n is the number of result tuples that match the combination [Pt,Hj
A,H

j
Z], and i is

the index of the result tuple amongst all other matches of a particular [Pt,Hj
A,H

j
Z]. Now,

E [U best
g (mcperfect((Hj

A,H
j
Z), (Hk

A,Hk
Z))] can be computed:

E [U best
g (mcperfect((Hj

A,H
j
Z), (Hk

A,Hk
Z)))] =

1

N

N
∑

t=1

max(U
Pt,H

j
A
,Hj

Z

, UPt,Hk
A
,Hk

Z
) (5.2)

99

where N is the number of problems in the training set.

For the purpose of providing a benchmark, against which the performance of a theo-

retically perfect meta-controller can be measured, the SASSY meta-controller framework

computes the best performance that a simple autonomic controller could provide. The best

heuristic pair for the overall training set, (H∗
A,H∗

Z), is determined as follows:

(H∗
A,H∗

Z) = argmax(Hi
A
,Hi

Z
) E [U best

g (Hi
A,Hi

Z)] (5.3)

E [U best
g (Hi

A,Hi
Z)] =

1

N

N
∑

t=1

UPt,Hi
A
,Hi

Z
. (5.4)

For the purposes of the aggregate assessment, a relative performance metric, Potential-

Gain, for each heuristic pair combination, (Hj
A,H

j
Z), (Hk

A,Hk
Z) is computed.

PotentialGain((Hj
A,H

j
Z), (Hk

A,Hk
Z)) = E [U best

g (mcperfect((Hj
A,H

j
Z), (Hk

A,Hk
Z))]

− E [U best
g (H∗

A,H∗
Z)]

(5.5)

The relative performance metric is converted into a score, PotentialGainScore, that is

used to compute the aggregate assessment.

PotentialGainScore((Hj
A,H

j
Z), (Hk

A,Hk
Z)) = max(0, PotentialGain((Hj

A,H
j
Z),

(Hk
A,Hk

Z)))

(5.6)

The PotentialGainScore is one component of the AggregateScore that will be used

to determine the best combination of heuristic pairs.

Find Suitable Pairs: Assess Balance Sub-Step

Properly training an SVM is challenging when one class has significantly more sample prob-

lems than the other class in the training set. Such a training set is termed unbalanced [17].

100

A vanilla SVM training on an unbalanced training set will tend to favor the class more

heavily represented. This favoritism can become extreme with small, heavily unbalanced

training sets resulting in a biased decision rule produced by the SVM. The labeling process

for heuristic pair combinations will often produce unbalanced training sets. Some techniques

including boosting [109] and penalty weights (which will be applied later) can be used to

counter this favoritism and resulting bias. These techniques improve the performance, but

when possible it is best to use more balanced training sets.

The first step in evaluating the balance of the training set produced for a given heuristic

pair combination is to label the sample problems in the training set with the heuristic pair

expected to provide the best performance for each. Each problem, Pt, in the training set is

labeled with either heuristic pair j or heuristic pair k as follows:

label(Pt) = argmaxi ∈{j,k} UPt,Hi
A
,Hi

Z
. (5.7)

A metric, Balance, that measures the degree of balance can be computed as follows:

Balance(Hj
A,H

j
Z), (Hk

A,Hk
Z)) =

2

N
×min(nj , nk) (5.8)

where nj is the number of problems labeled with heuristic pair j, and nk is the number of

problems labeled with heuristic pair k. The total number of problems in the training set is

N .

The Balance metric can have values in the range [0, 1]. A perfectly balanced training

set yields a value of one. As the training set becomes more unbalanced, the Balance metric

declines. Extremely unbalanced training sets are especially harmful with the small training

sets used by the SASSY meta-controller, so a further penalty is required to discourage the

more extremely unbalanced training sets. The BalanceScore does this by taking the square

of the Balance metric.

BalanceScore((Hj
A,H

j
Z), (Hk

A,Hk
Z)) = (Balance((Hj

A,H
j
Z), (Hk

A,Hk
Z)))

2 (5.9)

The BalanceScore is another component of the Aggregate Score that will be used to

101

determine the best combination of heuristic pairs.

Find Suitable Pairs: Assess Complementary Behavior Sub-Step

Correctly determining the best heuristic pair for a given problem depends upon successfully

identifying a relationship between F(Pt) and label(Pt). For heuristic pairs with similar

search behaviors, this relationship may be difficult to determine. For these heuristic pairs,

the labeling process may be dominated by noise or esoteric phenomena not captured in

F(Pt).

To improve its chances of building a successful SVM model, the meta-controller should

train with a combination of heuristics that behave differently. The behavior of a heuristic

pair on a given optimization problem is driven by the interaction of the algorithm’s logic

and the topology of Ug over the architecture and service selection spaces. These interactions

can be complex and difficult to predict.

The training set contains useful empirical data for analyzing behavioral differences be-

tween the heuristic search pairs. This behavioral analysis begins by computing the average

performance of the candidate heuristics for each problem as follows:

UPt
=

1

nc

nc
∑

i=1

UPt,Hi
A
,Hi

Z
(5.10)

where i is the index of a candidate heuristic pair and nc is the number of candidate heuristic

pairs being considered.

Using UPt
as a basis, the relative performance, RelPerf, of a heuristic pair on a given

problem can be computed.

RelPerf(Pt,Hj
A,H

j
Z) = U

Pt,H
j
A
,Hj

Z

− UPt
. (5.11)

RelPerf(Pt,Hk
A,Hk

Z) = UPt,Hk
A
,Hk

Z
− UPt

. (5.12)

The RelPerf metric provides indications of how heuristic pair behavior is impacting per-

formance. Figure 5.2 plots training set problems by the RelPerf metrics of two different

102

heuristic pair combinations. The heuristic pairs shown in Fig. 5.2 were developed by the

meta-optimizer described in Section 4.7 and the parameters for the heuristic pairs can be

found in Tables 4.4 and 4.5.

When the labels match the heuristic pairs used to produce RelPerfmetrics, the diagonal

line x = y forms a labeling boundary. In Fig. 5.2b, all of the plotted training set problems

are close to the labeling boundary. In Fig. 5.2a, there are clusters of training set problems

some distance away from the label boundary. Also of interest is the shape of the main

cluster of problems shown in the zoomed-in plots. In Fig. 5.2b, the main cluster is narrow

and follows the label boundary. The main cluster in Fig. 5.2a is roughly the shape of a

bow tie with an orientation orthogonal to the labeling boundary. The distribution of these

points are an indication that the behaviors of E and G are more complementary than the

behaviors of F and G.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

R
e

lP
e

rf
(P

t,
 H

A
G

,
H

Z
G

)

RelPerf(Pt, HA
E
, HZ

E
)

problems labeled E
problems labeled G
label boundary

-0.008

-0.004

 0

 0.004

 0.008

-0.008 -0.004 0 0.004 0.008

(a) E and G plotted with RelPerf of E and G.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

R
e

lP
e

rf
(P

t,
 H

A
J
,

H
Z

J
)

RelPerf(Pt, HA
F
, HZ

F
)

problems labeled F
problems labeled J
label boundary

-0.01

-0.005

 0

 0.005

 0.01

-0.01 -0.005 0 0.005 0.01

(b) F and J plotted with RelPerf of F and J.

Figure 5.2: Figures (a) and (b) show two possible heuristic pair combinations for a training
set. A label for the training set problem, Pt is determined by which heuristic pair yields
a superior value for RelPerf. The heuristic pairs used to generate the RelPerf values are
the same heuristic pairs used for the labels, so a labeling boundary is present.

For the purposes of examining differences in behavior within a heuristic pair combi-

nation, the meta-controller can also examine the distribution of the labeled training set

using RelPerf metrics produced by other candidate heuristic pairs not present in the com-

bination. Figure 5.3 contains six such plots. The three plots on the left (Figs. 5.3a, 5.3c,

103

and 5.3e) show labeled training set problems for the heuristic pair combination E and G

plotted against RelPerf metrics from three other heuristic pair combinations. The three

plots on the right (Figs. 5.3b, 5.3d, and 5.3f) show the labeled training set problems for the

heuristic pair combination F and J against the RelPerf metrics from the same three other

heuristic pair combinations.

In Figs. 5.3a, 5.3c, and 5.3e, the label clusters are generally well formed and separated.

The opposite phenomenon is seen in Figs. 5.3b, 5.3d, and 5.3f where the label clusters are

mostly overlapping. The fact that the labels for the E and G heuristic pair combination

continue to exhibit separation even when plotted by the RelPerf of different heuristic pairs

shows that the labels are responding to intrinsic properties of the training set problems—

this is due to differences in heuristic pair behavior between E and G. The actual architecture

search algorithms used in E and G support this notion. The architecture heuristic algorithm

used by E is a greedy hill-climber with narrow neighborhood filter, an exploitative search

procedure. The architecture search algorithm used by G is opportunistic hill-climber with

a wide neighborhood filter, an exploratory search procedure.

By measuring the degree of overlap between data sets, the meta-controller can assess

behavior differences between two heuristic pairs. The following procedure was developed in

support of the meta-controller to measure the degree of overlap between data sets.

1. Determine the center, Ci, of each data set, Si.

2. Compute ~C1,2, a vector from C1 to C2.

3. For each point, pj ∈ (S1 ∪ S2), compute ~pj , a vector from pj to C1.

4. Project all pj onto ~C1,2 using ~pj .

5. For each projected point, ṕj ∈ (Ś1), compute the fraction of ṕ ∈ (Ś2) between ṕj

and C1.

6. For each ṕk ∈ (Ś2), compute the fraction of ṕ ∈ (Ś1) between ṕk and C2.

7. Calculate the average fraction for all ṕ—this is the Overlap metric measuring the

degree of overlap between data set 1 and data set 2.

104

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

-0.1 -0.05 0 0.05 0.1 0.15 0.2

R
e

lP
e

rf
(P

t,
 H

A
B
,

H
Z

B
)

RelPerf(Pt, HA
A
, HZ

A
)

problems labeled E
problems labeled G

-0.012

-0.006

 0

 0.006

-0.006 0 0.006 0.012

(a) E and G plotted with RelPerf of A and B.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

-0.1 -0.05 0 0.05 0.1 0.15 0.2

R
e

lP
e

rf
(P

t,
 H

A
B
,

H
Z

B
)

RelPerf(Pt, HA
A
, HZ

A
)

problems labeled F
problems labeled J

-0.012

-0.006

 0

 0.006

-0.006 0 0.006 0.012

(b) F and J plotted with RelPerf of A and B.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

R
e

lP
e

rf
(P

t,
 H

A
D

,
H

Z
D

)

RelPerf(Pt, HA
C

, HZ
C

)

problems labeled E
problems labeled G

-0.006

-0.003

 0

 0.003

 0.006

-0.01 -0.005 0 0.005

(c) E and G plotted with RelPerf of C and D.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

R
e

lP
e

rf
(P

t,
 H

A
D

,
H

Z
D

)

RelPerf(Pt, HA
C

, HZ
C

)

problems labeled F
problems labeled J

-0.006

-0.003

 0

 0.003

 0.006

-0.01 -0.005 0 0.005

(d) F and J plotted with RelPerf of C and D.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

R
e

lP
e

rf
(P

t,
 H

A
I ,

H
Z

I)

RelPerf(Pt, HA
H

, HZ
H

)

problems labeled E
problems labeled G

-0.01

-0.005

 0

 0.005

-0.01 -0.005 0 0.005

(e) E and G plotted with RelPerf of H and I.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

R
e

lP
e

rf
(P

t,
 H

A
I ,

H
Z

I)

RelPerf(Pt, HA
H

, HZ
H

)

problems labeled F
problems labeled J

-0.01

-0.005

 0

 0.005

-0.01 -0.005 0 0.005

(f) F and J plotted with RelPerf of H and I.

Figure 5.3: In Fig. (a), (c), and (e), the entire training set is labeled with either heuristic
pair E or heuristic pair G. In Fig. (b), (d), and (f), the entire training set is labeled with
either heuristic pair F or heuristic pair J. Indications of behavior differences in the heuristic
pairs can be observed by plotting with the RelPerf of other heuristic pairs.

105

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

y

x

S1
S2

(a) Scatter plot of Gaussian data sets.

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

y

x

S1
S2

(b) Computation of ~C.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8 9 10 11

y

x

S1
S2

0.05
0.02

0.12

(c) Projection of ṕ on ~C.

Figure 5.4: Figures (a), (b), (c) demonstrate how the Overlap metric is calculated. Figure

(a) shows two randomly generated Gaussian data sets, S1 and S2. In Fig. (b), ~C1,2 is

computed. Figure (c) shows the projection of the data sets onto ~C1,2. Three of the projected

points in Ś2 are labeled with the fraction of Ś1 between them and the center of S2.

A graphical depiction of this process is shown in Fig. 5.4. Figure 5.5 demonstrates how

the Overlap metric increases as two data sets become less separated. The Overlap metric

can be computed in an n-dimensional space.

When calculating the Overlap metric for a heuristic pair combination, S1 is the set

of training problems labeled with heuristic pair j and S2 is the set of problems labeled

with heuristic pair k. The problems are plotted in an nc-dimensional space where nc is

the number of candidate heuristic pairs. The value used for i-th dimension is the RelPerf

metric of heuristic pair i on the given problem.

106

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10 11

y

x

overlap = 0.0

data set 1
data set 2

(a) σ = 1.0

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14

y

x

overlap = 0.002

data set 1
data set 2

(b) σ = 1.5

-2

 0

 2

 4

 6

 8

 10

 12

-2 0 2 4 6 8 10 12 14

y

x

overlap = 0.022

data set 1
data set 2

(c) σ = 2.0.

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

-2 0 2 4 6 8 10 12 14 16

y

x

overlap = 0.054

data set 1
data set 2

(d) σ = 2.5.

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10 12 14 16 18

y

x

overlap = 0.088

data set 1
data set 2

(e) σ = 3.0

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

-5 0 5 10 15 20

y

x

overlap = 0.121

data set 1
data set 2

(f) σ = 3.5

Figure 5.5: Figures (a) - (f) show two randomly generated Gaussian data sets. The Overlap
metric increases as the data sets become less separated.

107

The Overlap metric is converted into a score as follows:

OverlapScore((Hj
A,H

j
Z), (Hk

A,Hk
Z)) =

1

Overlap((Hj
A,H

j
Z), (Hk

A,Hk
Z))

. (5.13)

The OverlapScore is the final component of the AggregateScore that will be used to

determine the best combination of heuristic pairs.

Find Suitable Pairs: Aggregate Assessment Sub-Step

The meta-controller combines its assessments of the potential performance, the balance of

the training set, and the behavioral differences using the AggregateScore which is computed

as follows:

AggregateScore((Hj
A,H

j
Z), (Hk

A,Hk
Z)) =

(

BalanceScore((Hj
A,H

j
Z), (Hk

A,Hk
Z))
)wb

×
(

PotentialGainScore((Hj
A,H

j
Z), (Hk

A,Hk
Z))
)wp

×
(

OverlapScore((Hj
A,H

j
Z), (Hk

A,Hk
Z))
)wo

(5.14)

where wb, wp, and wo are weights for the BalanceScore, PotentialGainScore, and Over-

lapScore respectively. The heuristic pair combination with the highest AggregateScore

on the training set is then used in the subsequent steps of training of the SVM.

In practice, the settings wp = 0.25, wb = 0.375, wo = 0.375 were found to be effective by

applying this weighting methodology to the selection of heuristic pair combinations. The

top aggregate scoring heuristic pair combinations were then used to build label training

sets for the SVM. After studying the SVM’s performance, the results were used to adjust

the weighting methodology. This iterative process resulted in the selection of these weight

values.

108

Remove Noisy Data

For some training problems, the label determined in Equation 5.7 may not have statisti-

cal significance—such training problems are considered noisy problems. The SVM meta-

controller’s performance may be harmed if noisy problems are included in the training

set—the SVM may alter the positioning of the hyperplane to accommodate these training

problems, which can negatively impact the effectiveness of the decision rule generated by

the SVM.

For each problem, Pt, in the training set, the t-test is used to compare result tuples

that match (Pt,Hj
A,H

j
Z) to result tuples that match (Pt,Hk

A,Hk
Z). If the t-test shows no

statistical significance at the α = 0.01 level, the problem is not used for either parameter

selection or training the SVM.

Determine Penalty Weights

One of the advantages of using SVM over KNN is that it enables the use of penalty weights

(see Section 2.4.2). Penalty weights can be used to address two problems faced by the

meta-controller:

1. unbalanced training sets and

2. asymmetric cost of misclassification.

Penalty Weights for Unbalanced Data Sets

As discussed previously, unbalanced training sets present challenges for SVM classification

that can be partly addressed through the use of penalty weights. Raskutti et al. in [109]

employs penalty weights to address unbalanced data sets with some success. However, the

authors do not offer a rationale for the simple formulas used to determine the weights.

In developing a penalty weight procedure for the meta-controller, the assumption made

was that SVM misclassifies at a high rate on unbalanced training sets due to asymmetries

in the uncertainty of the population edges. Here edge is taken to mean the portion of

the population close to the edge of the largest margin computed by the SVM. The SVM

109

algorithm does not model the underlying populations from the samples and then fit a largest-

margin hyperplane between the modeled populations. Rather, it considers the data it is

given (i.e., the training set) directly, and then fits the largest-margin hyperplane possible

between the sample sets.

On unbalanced training sets, the edge of the smaller sample set will usually be less

dense than the edge of the larger sample set. If the kernel trick (see Section 2.4.2) is

employed and the training set is projected into a higher dimensional space to create linear

separability, the density of both edges are further reduced, and the SVM may effectively try

to push a hyperplane into the gaps between the points of the smaller set. This phenomenon

results in the SVM overfitting the contours of the smaller sample set, but not the larger

set. Overfitting in SVM is controlled by the parameter C. Recall Equation 2.18 from

Section 2.4.2, reprinted here for convenience.

C
N
∑

n=1

ξn +
1

2
‖w‖2 . (5.15)

The value ξn is called a slack variable and measure the degree to which some of the points

(the support vectors) have crossed into the margin boundary (for points that are not support

vectors ξ is equal to 0) [8]. The unit of measurement for ξn is the margin width. The value

C is essentially an inverted regularization coefficient and is used to prevent overfitting of the

data. If the value of C is too high, it may lead to overfitting the data. In the case of small,

unbalanced training sets, the overfitting is one-sided—penalty weights allow essentially two

different C parameters:

Ci = C × wi, i ∈ 0, 1 (5.16)

where i is the class and wi is the penalty weight for that class [17]. If properly implemented,

lowering C for the larger sample set while raising C for the smaller sample set will mitigate

the risk of one-sided overfitting.

In building an effective SVM for the meta-controller, penalty weights were used to inform

the SVM of the greater uncertainty in the smaller data set. Note that in the SVM’s final

convergence on a hyperplane, the SVM is considering only the subset of points that have a

110

reasonable chance of being support vectors. To express the uncertainty of the position of

this subset, a confidence interval measured in units of the margin width is used.

xi ± t[1−α/2,((fini)−1]
si√
fini

(5.17)

where t[1−α/2,((fini)−1] is the critical value of the t distribution, ni is the number of samples

labeled with i, fi is the fraction of samples residing close enough to the margin to affect

its width and/or alignment, and si is the standard deviation of ni measured in units of the

margin width.

The following expression shows class i’s preferred margin width:

ḿi = max

(

(m

100

)

,

(

m − t[1−α/2,((fini)−1]
si√
fini

))

(5.18)

where m is the original margin width. From Equation 5.15, it is known that there is an

inverse relationship between the margin width and the penalty weights. Class i’s preferred

penalty weight for uncertainty can be expressed as:

ẃu,i =
1

ḿi
. (5.19)

The weights are then normalized (this allows the bounds on C to remain in the search

for optimal kernel parameters later on) which provides the penalty weight contribution for

uncertainty.

wu,i =
2ẃu,i

ẃu,0 + ẃu,1
(5.20)

This method does have the drawback that SVM practitioners may have trouble specify-

ing some of the key inputs. The margin width is not generally known a priori, so describing

the standard deviation in terms of the margin requires a best guess. If overfitting of the

smaller data set is occurring without penalty weights then a standard deviation of 0.5

margin widths is a reasonable initial estimate; this value was used in the SASSY SVM

111

meta-controllers.

SVM practitioners may also have difficulty specifying the fraction of the population

residing in the edge. Estimating this value will require considering:

• the expected number of support vectors in the produced SVM model,

• the dimensionality of the sample problems, and

• the level of model complexity providing the highest accuracy.

Complex models on multi-dimensional data may have a significant fraction of the sample

set in the edge. For the SASSY SVM meta-controller, the fraction of the sample set in

the edge was estimated to be 0.8 because of the high dimensionality of F(P) and because

complex models tend to provide the best performance on SASSY meta-controller training

sets.

Finally, the practicioner must specify the α value. The α parameter is conducive to

tuning the procedure and generally can range from 0.01 to 0.1. Smaller values of α further

favor the smaller sample sets. The SASSY SVM meta-controller was found to be effective

with α = 0.05, which was sufficiently low to limit the likelihood of overfitting the smaller

data set.

Penalty Weights for Asymmetric Cost

On many pattern recognition problems, the costs of misclassification are asymmetric—that

is the cost of incorrectly classifying class 0 as class 1 is different from the cost of incorrectly

classifying class 1 as class 0. An examination of a RelPerf plot can help determine if the

costs of misclassification are symmetric or asymmetric in the pattern recognition problem

faced by the SASSY meta-controller. The RelPerf plot in Fig. 5.6 shows the computed

RelPerf values for heuristic pairs E and H (see Table 4.4 in Section 4.7.2) on sample SASSY

optimization problems in a training set. The points labeled with heuristic pair H are quite

close to the label boundary where the RelPerf values are equal. While the majority of

points labeled heuristic pair E are also close to the label boundary, a significant fraction

form a cluster a large distance away from the label boundary. This plot clearly shows an

asymmetric cost in the case of heuristic pair combination E and H.

112

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

R
e
lP

e
rf

(P
t,
 H

A
H

,
H

Z
H

)

RelPerf(Pt, HA
E
, HZ

E
)

problems labeled E
problems labeled H
label boundary

Figure 5.6: E and H plotted with RelPerf of E and H.

The cost associated with misclassifying a problem as k when the true label is j can be

determined as follows:

cj =
1

nj

nj
∑

i=1

(

RelPerf(Pj
i ,H

j
A,H

j
Z)− RelPerf(Pj

i ,Hk
A,Hk

Z)
)

. (5.21)

The cost associated with misclassifying a problem as j when the true label is k is similar:

ck =
1

nk

nk
∑

i=1

(

RelPerf(Pk
i ,Hk

A,Hk
Z)− RelPerf(Pk

i ,Hj
A,H

j
Z)
)

. (5.22)

Now the costs must be converted into penalty weights for cost, wc. To avoid changing

the bounds of C in the search for optimal kernel parameters requires that 0 < wc < 2.

113

Equations 5.23 and 5.24 accomplish this.

wc,j = 2

(cj
ck

1 +
cj
ck

)

(5.23)

wc,k = 2− wc,j (5.24)

Finally, the penalty weights for uncertainty and cost are combined.

wj = wu,j × wc,j (5.25)

wk = wu,k × wc,k (5.26)

These final weight values are provided to the libsvm SVM library [17] when the meta-

controller calls procedures for both cross-validation and training.

Optimize SVM Parameters

As discussed in Section 2.4.2, SVM performance can vary dramatically depending on the

values selected for kernel parameters and C. The kernel parameters control the possible

levels of model complexity, while C is used to prevent overfitting the data. The SASSY SVM

meta-controller uses the radial basis function kernel (see Section 2.4.2 for more information).

The radial basis function kernel has one parameter, γ.

When using the radial basis function kernel, the authors of libsvm recommend using

their grid search tool to determine the optimal values of γ and C [54]. This tool (more fully

described in Section 2.4.2) plots accuracy bands around different ranges of γ and C values.

The accuracy value for each point (γ, C) is produced from an n-fold cross-validation process

(the user specifies the value of n). The user can then choose to repeat the process focusing

with higher resolution on the most promising regions in the parameter space. This process

can be time-consuming.

During the initial development of the offline SVM meta-controller, the libsvm grid

search tool was used extensively to find the optimal values for γ and C. The accuracy

landscapes generated by the cross-validation procedure were highly unusual. There was a

114

degree of self-similarity in the structure of the many optima. At each level of zoom, multiple

optima appeared. At this stage in the meta-controller’s development, the need for penalty

weights to compensate for unbalanced training sets was not yet known, which may have

contributed to this strange accuracy landscape. The absence of multiple optima can be

noted in Fig. 5.7, which shows grid search results when the penalty weight procedure for

unbalanced data sets has been applied.

 0 5 10 15 20
-25

-20

-15

-10

-5

HP-E-and-HP-G.txt

Best log2(C) = 2.0 log2(gamma) = -7.5 accuracy = 95.3293%

C = 4.0 gamma = 0.005524271728019903

"-"
 95
 94.5
 94

 93.5
 93

 92.5
 92

log2(C)

log2(gamma)

Figure 5.7: Refining search with grid search tool from LibSVM.

Use of the libsvm grid search tool requires substantial human interaction to find opti-

mal values of γ and C. The strange landscape with multiple optima multiplied the effort

required. To introduce automation into the process, the grid search tool was replaced with

a genetic algorithm (GA). When properly employed, GAs have proven effective in simi-

lar difficult landscapes [24]. Additionally, the development of an automated procedure for

tuning these parameters enabled the creation of an online SVM meta-controller.

A common characteristic of all SASSY meta-controller accuracy landscapes is that at

115

Parameter Minimum Maximum

log(C) -10.0 40.0
m -3.0 0.5
b -60.0 20.0
log(γ) -40.0 10.0

Table 5.2: Minimum and maximum values in the GA search for SVM parameters.

the highest levels of the search there is a linear negative correlation between log(C) and

log(γ) (see Fig. 5.7). This relationship is common to many classification problems using

the radial basis function kernel and can be seen in the grid searches performed in [54]. The

presence of this relationship was used to speed early convergence of the GA by encoding

log(γ) as a linear function of log(C):

log(γ) = m log(C) + b (5.27)

where m is the slope and b is the log(C) = 0 intercept. Thus, the GA encoded three

parameters, log(C), m, and b. The number of bits for each of these three parameters was

set to 29. The maximum and minimum values for each parameter can be found in Table 5.2;

the values for log(C) and log(γ) are those suggested in [54]. The values for m and b are

drawn from analysis of parameter optimization plots for meta-controller SVMs.

The parent and offspring size were each set to 20. Parent selection was conducted with

linear rank selection described in Equation 2.15 with the selection pressure set to 1.0. The

objective function used to rank the parents was the observed weighted accuracy from the

cross-validation. The bit-flip probability was set to 1
L where L is the length of the binary

string (in this case 1
87). The crossover probability was set to 0.15. The value for n in the

n-fold cross-validation procedure was set to 50.

For the offline SVM meta-controller, the GA search for C and γ was run 20 times for

12 hours each time. The number of repetitions turned out to be unnecessary as each search

converged to similarly peforming optima each time. The libsvm library is safe for multi-

threading, so the GA search ran with 8 threads to maximize resource usage on systems with

116

dual quad-core CPUs.

Train SVM Model

Once the previous procedures have been completed, training the SVM model is trivial. The

SVM algorithm is provided with the SVM search parameters, C and γ. The penalty weights

for each class are specified at the same time, and the scaled training set is loaded into a

specific C programming language struct specified in the libsvm documentation. Training

the model on sets with a thousand SASSY sample training sets takes about a second on an

ordinary modern personal computer. The output of the libsvm training process is a decision

boundary that can be used to classify the problems encounted by the meta-controller.

Applying the SVM Model

Applying the decision rule generated by the SVM training process to an encountered opti-

mization problem, Pe is relatively simple:

1. calculate the features F(Pe),

2. scale the features F(Pe) by the same factors as the training set,

3. apply the kernel function to transform the scaled F(Pe) (performed by libsvm), and

4. apply the decision rule to the scaled, transformed F(Pe).

The output of the decision rule is the label of the heuristic pair, (HA,HZ), to use on the

given problem. The meta-controller uses the label to look up the appropriate pair, and

informs the autonomic controller to use the heuristic algorithms in the pair.

5.3.6 Online Training SVM Meta-Controller

The development of the online training SVM meta-controller was motivated by the consider-

able overhead involved in developing an offline training set, finding an appropriate heuristic

pair combination, and optimizing the SVM parameters needed to train the SVM. This can

be time consuming and requires significant computing resources. During the time that the

offline training SVM meta-controller is under development, the administrator must decide

117

whether to wait for the meta-controller before deploying the application or whether to run

the application with a simple autonomic controller. The former choice involves substantial

delay and the latter introduces additional complexity and burden on the administrator.

Another approach is to implement the SVM meta-controller in a fashion similar to

the Overall Best and Context Best KNN meta-controllers. One of the differences be-

tween the KNN meta-controller and an online SVM meta-controller is that the KNN meta-

controller has an implicit model after encountering, collecting, and studying its first opti-

mization problem. The online SVM meta-controller will need to have collected a significant

number of training problems to create a reasonable model.

Until the training set has reached a minimum threshold size, the online SVM meta-

controller mimics the behavior of the Overall Best meta-controller. In the work presented

here, the minimum number of training problems to train an SVM model was set to 50 (this

is before filtering out noisy problems, so the actual number of problems presented to the

SVM is likely to be smaller).

After studying the 50th collected problem, the online SVMmeta-controller uses the same

AggregateScore assessment procedure as the offline SVM meta-controller for selecting a

heuristic pair combination. During testing, the online SVM meta-controller working on the

SAS-65 application (described in Section 6.3.1) typically took less than 3.2 seconds (and

usually less than 1 second) to consider 28 different heuristic pair combinations on a 2.4 GHz

CPU.

Once the heuristic pair combination is selected, the online SVM meta-controller uses a

slightly different GA for selecting the SVM parameters. This search is run just one time for

each SVM training. The bit-flip and crossover probabilities are unchanged from the offline

SVM meta-controller. Cross-validation is the same as the offline SVM meta-controller (50

folds). For the online SVM meta-controller, the GA’s population size has been reduced from

20 to 10, and the 12-hour search limit is replaced by a search limit of 1,000 (log(C), log(γ))

evaluated points. Most of these searches took under an hour to complete with dual quad-

core 2.4 GHz CPUs.

After successfully training the SVM model, the online SVM meta-controller uses the

newly developed SVM decision rule to classify optimization problems. Whenever five new

118

problems have been collected, the online SVM meta-controller uses the new data to revisit

its selection of heuristic pair combination and SVM parameter selection. The online SVM

meta-controller reverts to Overall Best if no training problems remain for one of the labels

after noisy training problems have been removed.

To help reduce some of the training burden, the online SVM generates result tuples for

candidate heuristic pairs on each collected problem, Pt, in a round-robin fashion. Starting

with the third round, following the completion of a round, the online SVM meta-controller

follows a three-step process to winnow down the number of heuristic pairs tested against

Pt.

1. Determine the current best heuristic pair, (Hc
A,Hc

Z) on Pt, from the candidate heuris-

tic pairs.

2. Compare each of the other i candidate heuristics to (Hc
A,Hc

Z) using the t-test with

α = 0.01.

3. If a statistically significant difference is found between (Hi
A,Hi

Z) and (Hc
A,Hc

Z), then

cease calculating result tuples for (Hi
A,Hi

Z) on problem Pt.

This modification saves the meta-controller from wasting resources analyzing clearly inferior

heuristic pairs on Pt.

5.4 Concluding Remarks Regarding Meta-Controller Approaches

This chapter has described in detail four different approaches for meta-controllers in SASSY.

The Overall Best meta-controller simply monitors which heuristic algorithm pair provides

the best expected performance across all encountered optimization problems.

The three Context Best meta-controller approaches analyze the encountered optimiza-

tion problem and then attempt to predict the best heuristic algorithm pair for solving the

encountered problem. All three Context Best meta-controllers conduct the same feature

analysis of the encountered optimization problems. The first Context Best meta-controller

uses a vanilla KNN machine learning algorithm. The second and third Context Best meta-

controller methods use SVM for the machine learning algorithm. The difference between

119

the SVM Context Best meta-controllers is that one trains offline while the other trains

online.

Some interesting techniques were developed in support of the SVM meta-controllers.

A technique for measuring the degree of overlap between two populations of data points

was presented. This technique for measuring overlapping populations could be extended

by incorporating the k-means clustering algorithm [58], which could lead to very precise

measurements of population overlap. To address problems in working with unbalanced

training sets, a rationale and a technique were developed for setting penalty weights in

SVM. The next chapter will provide experimental evaluation of the autonomic controllers

presented in Chapter 4 and the meta-controllers presented in this chapter.

120

Chapter 6: Experimental Evaluation

This chapter presents the experimental evaluation of the SASSY autonomic controller and

meta-controllers described in Chapters 4 and 5. The first section describes the implementa-

tion of the SASSY autonomic controller and meta-controllers. The second section provides

the simulation design used by the experiments. The third section examines the develop-

ment of the SASSY test applications. The scalability experiments and their results are

covered in the fourth section, while the fifth section details the meta-optimization experi-

ments. The sixth section contains the experimental results for three different Context-Best

meta-controllers.

6.1 Autonomic Controller Implementation

The performance monitor, the autonomic controller, the meta-controllers, and the heuristic

search algorithms were written in C++ using the GNU C++ compiler. The source code has

been compiled and tested on both Linux (CentOS version 5.11) and Windows Vista using

Intel compatible processors. The libsvm library [17] was used for the SVM meta-controller.

The heuristic search algorithms were written as C++ templates—this allows the same

search logic to be applied to both architecture and service selection. The genetic algorithm

(GA) code used for both the meta-optimization search described in Section 4.7 and the SVM

parameter search described in Section 5.3.5 for the SVM parameter search also utilized

these heuristic search code templates. The heuristic search algorithms employed multi-

threading by using the BOOST thread library [128]. Random number streams used to

produce stochastic behavior in the heuristic search algorithms were provided using the

Mersenne Twister [70, 84].

121

6.2 Simulation Design

The experiments described in this section use a simulated service environment. This simu-

lation generates changes to the service environment that will force the autonomic controller

to re-architect multiple times over the course of an experiment. The response variable in

these experiments is the mean Ug collected by the SASSY performance monitor.

6.2.1 Simulated Services

Simulated SPs were developed for evaluating the autonomic controller and meta-controllers.

These simulated SPs advertise their service time, capacity in transactions per second, and

availability. To test the ability of the autonomic controller to react and adapt to service

failures, the service instances must demonstrate failure behavior in simulation. Four per-

formance variables govern the behavior of an SP:

• s (mean service time),

• c (capacity),

• tf (mean time to failure), and

• tr (mean time to repair).

The availability of the SP is derived from tf and tr.

Each simulated SP has two state variables, CONTRACT and STATUS, that together

define six distinct states. The variable CONTRACT is a boolean that designates whether

the SP is included in the current SASSY service selection. The STATUS variable has

three possible values: Normal, Soft Fail, and Hard Fail. The states and their corresponding

variable settings are shown in Table 6.1. A state transition diagram for an SP is shown

in Fig. 6.1. All SPs initially start in the Idle, Normal state. State transitions due to the

autonomic controller changing the service selection are denoted by a thick line in Fig. 6.1.

The dashed lines show state transitions resulting from failure events.

Whenever a simulated SP arrives in a normal state (including the initial start), the SP

schedules a random failure event using an exponential distribution with a mean equal to tf .

A coin flip is used to determine if the failure is a hard failure or a soft failure. Whenever an

122

State Name CONTRACT STATUS Description

Idle, Normal FALSE NORMAL unused, operating normally
Contract, Normal TRUE NORMAL in service selection, operating normally
Idle, Soft Failure FALSE SOFT FAIL unused, operating poorly
Contract, Soft Failure TRUE SOFT FAIL in service selection, operating poorly
Idle, Hard Failure FALSE HARD FAIL unused, unresponsive
Contract, Hard Failure TRUE HARD FAIL in service selection, unresponsive

Table 6.1: State descriptions for simulated SPs.

������

��	
��

���	�����

��	
��

���	������

����������	�

�����

����������	�

���������		
����
�

������	���	
����
�

���������		
����
�

������	���	
����
�

����	������	

�����
����	���������	�����

����	������	

�����

���	������

��	�������	�

�����

��	�������	�

������	���	
����
�

������	���	
����
�

����	�����

���	������	��������	������	�����

����	�����

Figure 6.1: State transition diagram describing the behavior of an SP.

123

SP arrives in a failure state, the SP schedules a random repair event using an exponential

distribution with a mean equal to tr.

The SPs can simulate their function at various security levels with specified perfor-

mance effects. When a security feature is selected in a contract, the appropriate multipliers

corresponding to the selected security option and level are applied to s and c.

6.2.2 Simulation Detail

Each simulation experiment is divided into 500 discrete intervals called controller intervals

of duration ǫ time units. The value tr was set to 1 time step for each SP in the simulation.

The value tf was derived from the SP’s advertised availability.

For the purpose of the simulation, the re-architecting search and the implementation

of a new architecture (A) and service selection (Z) are assumed to be instantaneous. In

reality, the re-architecting searches take approximately 5 to 20 seconds and implementing

the new architecture and service selection might take up to a minute.

At each time step, the simulation uses analytic performance models similar to those

described in Section 4.3 to assess the current performance of the system. The performance

monitor collects these values and evaluates the Ug of the SASSY application according to the

provided global utility function. If the global utility falls below the autonomic controller’s

re-architecting threshold (set to 80% of the predicted Ug of the current A and Z), a re-

architecting search is initiated. If a previously failed service is repaired, this also triggers a

re-architecting search. If no re-architecting search occurs, the performance monitor records

the value of Ug for the current time step. If the re-architecting search finds a superior A

and Z, the new A and Z are implemented. The performance monitor collects updated

performance measurements and recomputes and records Ug for the current time step.

6.3 Development of SASSY Test Applications

Test SOA applications were generated in a 6-step process:

1. Create an SAS.

2. Determine available security options.

124

3. Generate available SPs.

4. Generate SSSes.

5. Generate global utility function.

6. Find a starting architecture and service selection.

6.3.1 SASes

SASSY applications were developed at four different levels of scale. An SAS was manually

developed with 15 activities (see Fig. 6.2), 25 activities (see Fig. 6.3), 40 activities (see

Fig. 6.4), and 65 activities (see Fig. 6.5).

�����

�������	
������� ������

Figure 6.2: SOA application with 15 activities.

6.3.2 Generation of Service Providers

A group of between three to ten SPs are produced for each service activity shown in the

SAS. The first step in generating the SPs is to generate a baseline profile for each service

125

�����

�������	
������� ������

Figure 6.3: SOA application with 25 activities.

activity. The baseline profile, Bi, for a service activity i is randomly determined in the

following manner.

• The baseline profile execution time, BE
i , is set to a random variable taken from a

uniform distribution ranging from 1.0 to 50.0 ms.

• The baseline profile capacity, BC
i , is set to a random variable taken from a uniform

distribution ranging from 10.0 to 30.0 requests per second.

• The baseline profile availability, BA
i , is set to 0.995x where x is a random variable

taken from an exponential distribution with a mean of 1.0.

• The baseline profile cost, Bc
i , is set to a random variable taken from a uniform distri-

bution ranging from 10BE
i to 20BE

i in dollars.

Once Bi has been established, an individual SP j for service activity i is generated from

Bi using a random variable, x, taken from a uniform distribution ranging from 0.25 to 1.75.

The range for x was selected to create a heterogeneous mixture of SPs from Bi. The metrics

for SP j are computed as follows (the value for x is computed separately for each metric):

• The execution time, Ei,j , is set to xBE
i .

126

�����

�������	
������� ������

Figure 6.4: SOA application with 40 activities.

• The capacity, Ci,j , is set to xBC
i .

• The availability, Ai,j , is set to (BA
i)

x.

• The cost, ci,j , is set to xBc
i .

Once all of the SPs for a given service activity have been generated, the SP generation

algorithm checks to see if any SP is strictly inferior to another SP for the same service

activity. SP j is considered strictly inferior to SP k if the following four conditions are met:

Ei,j > Ei,k (6.1)

Ci,j < Ci,k (6.2)

Ai,j < Ai,k (6.3)

ci,j > ci,k. (6.4)

An SP that is found to be strictly inferior is regenerated. This process repeats until no SP

is strictly inferior to another SP with the same service activity.

127

�����

�������	
������� ������

Figure 6.5: SOA application with 65 activities.

6.3.3 Generation of SSSes

As discussed in Section 2.5.3, an SSS is a subset of activities in the SAS that follows a path

through the SAS. Each SSS is associated with a metric (e.g., execution time, throughput,

availability, or security) and an attribute utility function.

The first two steps in generating an SSS are 1) find the path the SSS takes through the

SAS and 2) select the metric for the SSS. The path is determined through a random walk

starting at the begining of the SAS graph. When the random walk encounters a switch, it

randomly picks one of the edges emanating from the switch. When a fork is encountered,

the random walker will proceed down each of the edges emanating from the fork. The

random walk concludes when it reaches the final activity on the SAS. No two SSSes are

allowed to share both the same metric and the same path.

The metric is randomly determined (each metric has an equal probability of being

selected). If the selected metric for the SAS is either execution time, throughput, or avail-

ability, a sigmoid function is used for the SSS utility function (see Section 2.2.3). The goal

value for the metric in the sigmoid function is denoted by β while the shape of the curve is

controlled by α. The value for α (sensitivity parameter) is randomly selected from values

128

listed in Table 6.2.

Metric Value 1 Value 2 Value 3 Value 4 Value 5 Value 6

Exe. Time 0.05 0.10 0.15 0.25 0.40 0.65
Throughput -0.40 -0.25 -0.16 -0.10 -0.06 -0.04
Availability -2,300 -1,500 -800 -500 -300 -200

Table 6.2: Possible α (sensitivity) values for randomly generated SSSes.

If SSS i uses the execution time metric, the random walk computes the shortest possible

expected execution time—this value is stored as β∗
E,i. The value βE,i is set to xβ∗

E,i where

x is a random variable taken from a uniform distribution ranging from 1.02 to 1.05.

If SSS i uses the throughput metric, the random walk computes the largest possible

throughput using the base architecture—this value is stored as β∗
C,i. The value βC,i is set

to xβ∗
C,i where x is a random variable taken from a uniform distribution ranging from 1.0

to 1.2.

If SSS i uses the availability metric, the random walk computes the highest possible

availability using the base architecture—this value is stored as β∗
A,i. The value βA,i is set

to βx
A,i where x is a random variable taken from a uniform distributing ranging from 0.925

to 0.975.

The variance introduced by x allows for the real-world trade-offs that the autonomic

controller must make in order to satisfy competing goals (e.g., minimizing execution time

while maximizing throughput).

Two security options, each with three levels of information assurance, were made avail-

able. The performance impact of the options can be found in Tables 6.3 and 6.4. Increasing

the security level of an SP increases the SP’s execution time and decreases its capacity. If

SSS i uses a security option metric, the utility payout for the highest level of security, Uhigh,

is always set to 1.0. The utility payout for the middle level of security, Umedium, is randomly

determined from a uniform distribution ranging from 0 to 1.0. The utility payout for the

129

lowest level of security, U low, is randomly determined from a uniform distribution ranging

from 0 to Umedium. Note that while different SSSes may use the same security option for a

metric, each of these SSSes will have its own payout structure.

Metric Level 0 Level 1 Level 2

∆ Exe. Time 0.00 0.04 0.09
∆ Capacity 0.00 -0.15 -0.30

Table 6.3: Performance impact of security option 1.

Metric Level 0 Level 1 Level 2

∆ Exe. Time 0.000 0.035 0.080
∆ Capacity 0.00 -0.14 -0.28

Table 6.4: Performance impact of security option 2.

A weighted-geometric utility function is used for the global utility function, Ug(), (see

Section 2.2.3). The SSS utility functions supply the inputs to Ug(). The weights are

randomly determined from a uniform distribution ranging from 1.0 to 5.0 to ensure sufficient

variance to mimic real-world conditions. For ease of comprehension, the weights are then

normalized so that the total weight is 1.0.

A summary of the SSSes produced by this procedure for each of the SASes can be found

in Tables 6.5, 6.6, 6.7, and 6.8.

The budget (or cost constraint) for the application is computed as follows:

b = 2.25
N
∑

i=1

1

ni

ni
∑

j=1

ci,j (6.5)

130

QoS Metric Weight Number of Activities

execution time 0.12 12
throughput 0.04 12
availability 0.15 12
availability 0.12 12
availability 0.12 12
security option 1 0.14 12
security option 1 0.12 12
security option 2 0.19 12

Table 6.5: Summary of SSSes in SAS-15.

QoS Metric Weight Number of Activities

execution time 0.08 12
throughput 0.17 11
throughput 0.11 12
throughput 0.05 11
availability 0.17 12
security option 1 0.13 12
security option 2 0.10 13
security option 2 0.07 12
security option 2 0.06 11
security option 2 0.06 11

Table 6.6: Summary of SSSes in SAS-25.

QoS Metric Weight Number of Activities

execution time 0.11 26
execution time 0.07 26
execution time 0.07 30
execution time 0.04 26
throughput 0.07 30
throughput 0.03 26
availability 0.16 30
availability 0.06 26
security option 1 0.14 30
security option 1 0.14 30
security option 1 0.07 26
security option 1 0.04 26

Table 6.7: Summary of SSSes in SAS-40.

131

QoS Metric Weight Number of Activities

execution time 0.18 11
execution time 0.03 16
execution time 0.03 11
throughput 0.11 11
throughput 0.06 16
throughput 0.02 11
availability 0.12 16
availability 0.08 11
availability 0.04 16
availability 0.04 11
security option 1 0.08 16
security option 1 0.03 9
security option 2 0.11 11
security option 2 0.07 9

Table 6.8: Summary of SSSes in SAS-65.

where N is the number of service activities, ni is the number of SPs for service activity i,

and ci,j is the cost of SP j in service activity i. The factor of 2.25 provides a budget large

enough to employ architectural patterns requiring multiple SPs.

6.3.4 Finding Initial Architecture and Service Selection

An initial optimized architecture was found for each SAS; the initial search was conducted

with the two different methods shown in Table 6.9.

The search budgets for the initial architecture, A0, and service selection, Z0, varied with

the size of the SAS (see Table 6.10). Initially, smaller A search budgets were chosen for the

SAS-40 and the SAS-65, but analysis of the search trajectory revealed that the searches had

not yet converged. Thus, the searches were rerun with a larger A search budget to ensure

convergence.

6.4 Scalability Experiments

This set of experiments examines the performance of the autonomic controllers and the

Overall Best meta-controller on all four of the SASSY SASes.

132

Parameter Method 1 Method 2

A search alg. hill-climbing evolutionary prog.
A search mode opportunistic overlapping
A filter j 5 N/A
A filter k 2 N/A
A M N/A 50
A K N/A 250
A step size N/A 2.0
A adaptive step factor N/A 2.0
Z search alg. hill-climbing evolutionary prog.
Z search mode opportunistic overlapping
Z filter j 2 N/A
Z filter k 5 N/A
Z M N/A 50
Z K N/A 250
A step size N/A 2.0
A adapative step factor N/A 2.0

Table 6.9: Parameters for initial architecture, A, and service selection, Z, searches.

Application A Search Budget Z Search Budget

SAS-15 9,000 20,000
SAS-25 7,200 15,000
SAS-40 10,000 12,000
SAS-65 10,000 7,500

Table 6.10: Budgets for initial architecture and service selection search.

Eleven types of controllers were evaluated in these experiments. The first controller to

be evaluated was an autonomic controller using the hill-climbing heuristic pair used in the

initial search (see Table 6.9)—this controller will be hereafter referred to as HC Original

since it employs the original heuristic pair used in the development process. The next eight

controllers were autonomic controllers each using one of the heuristic pairs developed with

the meta-optimization process described in Section 4.7 on a separate 30 component SAS.The

tenth controller is an Overall Best meta-controller employing the eight meta-optimized

heuristic pairs. The eleventh controller is a meta-controller, Random MC, that randomly

selects one of the eight meta-optimized heuristic pairs whenever it needs to conduct a re-

architecting search. Finally, an uncontrolled system is tested and will serve as the control

133

for the experiments.

The eight meta-optimized heuristic pairs were formed from four architecture, A, search

algorithms and two service selection, Z, search algorithms. The four A search algorithms

were:

1. an opportunistic hill-climber (HC) with SSS filter, k = 5, and component filter, j = 2,

2. beam search (BS) with beam width of two, SSS filter, k = 5, and component filter,

j = 2,

3. evolutionary programming (EP) with non-overlapping populations, parent population

size M = 6, offspring population size K = 30, and a step size of 2.0 (with no adaptive

step), and

4. simulated annealing (SA) with p(V inf
init) set to 66% and p(V inf

last) to 0.0023% (V inf is

defined here as a move with a -0.1 change in Ug).

The two Z search algorithms were:

1. an opportunistic hill-climber (HC) with no neighborhood filtering and

2. evolutionary programming (EP) with overlapping populations, parent population size

M = 3, offspring population size K = 19, initial step size of 3.5, and an adaptive step

factor of 4.5.

The four architecture heuristic search algorithms were combined with the two service selec-

tion heuristic algorithms to form the following heuristic search pairs: 1) HC-HC, 2) HC-EP,

3) BS-HC, 4) BS-EP, 5) EP-HC, 6) EP-EP, 7) SA-HC, and 8) SA-EP.

Each of the architecture searches was configured to run with 5 threads, and each of the

service selection searches was configured to run with 25 threads. Composite components

were limited to a maximum size of five basic components.

The eleven controllers and the control were evaluated on the four SASes, thus yielding 48

experiments. Each experiment was replicated 100 times with different seeds for the pseudo-

random number generator (PRNG) streams controlling the simulation and the behavior of

134

Application A Search Budget Z Search Budget

SAS-15 128 1,537
SAS-25 100 1,200
SAS-40 80 960
SAS-65 63 756

Table 6.11: Re-architecting budgets for architecture, A, and service selection, Z, search.

the autonomic controller. To reduce unnecessary experimental variance, the same 100 seeds

for the simulation event PRNG stream were used for each of the controllers and the control.

The budgets for the architecture, A, and service selection, Z, search in these experiments

can be found in Table 6.11. These budgets were selected because the search can be completed

in near real-time (approximately 6-7 seconds on a system with dual quad-core 2.4 GHz

CPUs).

The number of training replications for the Overall Best meta-controller was set to 1.

Controller Lower Bound Mean Upper Bound

uncontrolled 0.9089 0.9111 0.9133
hc-original 0.9192 0.9200 0.9209
HC-HC 0.9234 0.9240 0.9247
HC-EP 0.9230 0.9237 0.9245
BS-HC 0.9234 0.9241 0.9248
BS-EP 0.9237 0.9244 0.9251
EP-HC 0.9235 0.9242 0.9249
EP-EP 0.9234 0.9241 0.9248
SA-HC 0.9235 0.9243 0.9250
SA-EP 0.9234 0.9240 0.9247
Random MC 0.9233 0.9240 0.9248
Overall Best 0.9232 0.9239 0.9246

Table 6.12: 95% confidence intervals for average Ug on SAS-15.

Table 6.12 shows 95% confidence intervals for mean Ug over the course of the SAS-15

experiments. The box and whiskers plot in Fig. 6.6 shows the distribution of results. The

135

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

U
ncontrolled

H
C
 O

riginal

H
C
-H

C

H
C
-EP

BS-H
C

BS-EP

EP-H
C

EP-EP

SA-H
C

SA-EP

R
andom

 M
C

O
verall Best

A
v
e
ra

g
e
 U

g

Figure 6.6: Box plot showing results on SAS-15 application.

whiskers show the maximum and minimum average Ug. The boxes show the first and third

quartiles, while the black horizontal bar shows the mean.

Applying the Tukey-Kramer procedure to the SAS-15 data demonstrates that all eleven

controlled systems performed significantly better than the uncontrolled system at the α =

0.01 level. The Tukey-Kramer procedure also shows that all eight meta-optimized heuristic

pairs and both meta-controllers were superior to HC Original at the α = 0.01 level. The

Tukey-Kramer procedure yielded no other significant results at the α = 0.01, α = 0.05, and

α = 0.10 levels on the SAS-15 experiments.

Table 6.13 shows 95% confidence intervals for mean Ug over the course of the SAS-25

experiments. The box and whiskers plot in Fig. 6.7 shows the distribution of results.

The most striking feature of the SAS-25 experimental results is the poor performance

of HC Original. This poor performance is likely due to a negative interaction between the

neighborhood filters employed by HC Original and the structure of the SSSes associated

with the SAS-25 (see Table 6.6). The SSS filter, k, is set to two in HC Original for both

architecture, A, search and service selection, Z, search. The heuristic search algorithm

likely finds itself stuck in dead-end neighborhoods when the two worst performing SSSes

136

Controller Lower Bound Mean Upper Bound

uncontrolled 0.6063 0.6082 0.6102
hc-original 0.5602 0.5638 0.5673
HC-HC 0.6382 0.6387 0.6392
HC-EP 0.6397 0.6401 0.6406
BS-HC 0.6419 0.6422 0.6426
BS-EP 0.6423 0.6427 0.6431
EP-HC 0.6395 0.6399 0.6402
EP-EP 0.6398 0.6402 0.6406
SA-HC 0.6402 0.6406 0.6409
SA-EP 0.6408 0.6411 0.6415
Random MC 0.6411 0.6414 0.6418
Overall Best 0.6419 0.6423 0.6426

Table 6.13: 95% confidence intervals for average Ug on SAS-25.

have a security option metric. Neighbors are generated with upgraded security levels but

the resulting increases in execution time and reductions in thoughput may more than offset

any improvement in security utility. The HC-HC heuristic algorithm performs much better—

the SSS filter in HC-HC’s architecture search is set to five, and the service selection search

does not use a filter.

The Tukey-Kramer procedure was applied to assess the statistical significance of the

differences. HC-Original was significantly worse than all other controlled systems and the

uncontrolled system at the α = 0.01 level. All other controlled systems were superior to

the uncontrolled system at the α = 0.01 level. Overall Best, BS-EP, and BS-HC provided

superior performance to HC-HC at the α = 0.01 level. BS-EP was also better than EP-HC at

the α = 0.1 level. The Random MC was superior to HC-HC at the α = 0.1 level.

Table 6.14 shows 95% confidence intervals for mean Ug over the course of the SAS-40

experiments. The box and whiskers plot in Fig. 6.8 shows the distribution of results.

These results show the importance of the service selection search algorithm on the SAS-

40. On the SAS-40, controllers using evolutionary programming for the service selection

search generally perform much better than controllers using hill-climbing.

Using the Tukey-Kramer procedure again, all controlled systems provided superior per-

formance over the uncontrolled system at the α = 0.01 level. Overall Best, BS-EP, and

137

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

U
ncontrolled

H
C
 O

riginal

H
C
-H

C

H
C
-EP

BS-H
C

BS-EP

EP-H
C

EP-EP

SA-H
C

SA-EP

R
andom

 M
C

O
verall Best

A
v
e
ra

g
e
 U

g
 0.632

 0.634

 0.636

 0.638

 0.64

 0.642

 0.644

 0.646

 0.648

 0.65

H
C
-H

C

H
C
-EP

BS-H
C

BS-EP

EP-H
C

EP-EP

SA-H
C

SA-EP

R
andom

 M
C

O
verall Best

Figure 6.7: Box plot showing results on SAS-25 application.

HC-EP were superior to SA-EP, HC-HC, EP-HC, SA-HC, and HC Original at the α = 0.01 level.

Additionally, Overall Best and BS-EP were superior to BS-HC and HC-HC at the α = 0.01

level; BS-EP was also superior to Random MC at the α = 0.1 level. HC-EP was better than

BS-HC at the α = 0.05 level.

Other SAS-40 Tukey-Kramer results showed that Random MC, EP-EP, BS-HC, SA-EP,

HC-HC, and EP-HC performed better than SA-HC and HC Original at the α = 0.01 level.

EP-EP was also better than EP-HC at the α = 0.01 level and HC-HC at the α = 0.1 level.

Random MC was superior to EP-HC at the α = 0.1 level. Finally HC Original outperformed

SA-HC at the α = 0.01 level.

Table 6.15 shows 95% confidence intervals for mean Ug over the course of the SAS-65

experiments. The box and whiskers plot in Fig. 6.9 shows the distribution of results.

The experimental results for SAS-65 again show a clear difference between controllers

that use evolutionary programming for service selection search vice hill-climbing. Con-

trollers using more exploratory architecture search algorithms (e.g., evolutionary program-

ming and simulated annealing) also struggled.

With the application of the Tukey-Kramer procedure, all controllers except EP-HC and

138

Controller Lower Bound Mean Upper Bound

uncontrolled 0.8349 0.8591 0.8832
hc-original 0.9035 0.9048 0.9061
HC-HC 0.9292 0.9298 0.9304
HC-EP 0.9510 0.9517 0.9524
BS-HC 0.9341 0.9346 0.9351
BS-EP 0.9558 0.9563 0.9568
EP-HC 0.9239 0.9246 0.9253
EP-EP 0.9458 0.9462 0.9466
SA-HC 0.9035 0.9045 0.9055
SA-EP 0.9319 0.9326 0.9334
Random MC 0.9398 0.9405 0.9412
Overall Best 0.9537 0.9543 0.9550

Table 6.14: 95% confidence intervals for average Ug on SAS-40.

SA-HC were found to be superior to the uncontrolled system at the α = 0.01 level. Overall

Best, BS-EP, and HC-EP provided superior performance over all other controllers at the

α = 0.01 level.

Other SAS-65 Tukey-Kramer results showed that Random MC, EP-EP, and SA-EP were

superior to BS-HC, HC-HC, EP-HC, SA-HC, and HC Original at the α = 0.01 level. EP-EP was

additionally superior to SA-EP at the α = 0.05 level. BS-HC and HC-HC provided superior

performance over EP-HC, SA-HC, and HC Original at the α = 0.01 level. HC Original was

better than EP-HC and SA-HC at the α = 0.01 level. Finally, the uncontrolled system and

EP-HC were superior to SA-HC at the α = 0.05 level.

6.5 Meta-Optimization Experiments

This section describes experiments using the heuristic pairs generated by the meta-opti-

mization process on the SAS-65 in Section 4.7. As described in Section 4.7, twelve fi-

nalist problems (labeled A through L) were selected from thousands of collected sample

problems. A meta-optimization procedure was applied to each of the finalist problems,

which produced twelve corresponding meta-optimized heuristic pairs. (Note that these

meta-optimized heuristic pairs are distinct from those described in Section 6.4 which were

139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

U
ncontrolled

H
C
 O

riginal

H
C
-H

C

H
C
-EP

BS-H
C

BS-EP

EP-H
C

EP-EP

SA-H
C

SA-EP

R
andom

 M
C

O
verall Best

A
v
e
ra

g
e
 U

g

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

H
C
 O

riginal

H
C
-H

C

H
C
-EP

BS-H
C

BS-EP

EP-H
C

EP-EP

SA-H
C

SA-EP

R
andom

 M
C

O
verall Best

Figure 6.8: Box plot showing results on SAS-40 application.

meta-optimized on a different 30 component SAS.However, the BS-EP heuristic pair will be

retained and used as a control here.) This work was reported in [38].

The meta-optimization experiments were conducted on the SAS-65.

Figure 6.10 shows the distribution of average global utilities in each set of 100 experi-

ments produced by the twelve heuristic pairs and the control. The boxes in this figure show

the first and third population quartiles, the black bar shows the mean, and the whiskers

show the maximum and minimum.

The average Ug maintained over the 100 simulations with 95% confidence intervals is

presented in Table 6.16. A visual test of the confidence intervals shows that the heuristic

pair generated for problem L performed better than each of the other heuristic pairs except

for that generated for problem K. Next the statistical significance of the results is assessed.

The Tukey-Kramer procedure was applied to the twelve heuristic pairs and to the control

heuristic pair with α = 0.05 and determined the following:

• The heuristic pair generated by the meta-optimization for problem L (opportunistic

hill-climbing/evolutionary programming) was superior to nine of the twelve heuristic

pairs generated for the other problems. Results comparing its performance to those

140

Controller Lower Bound Mean Upper Bound

uncontrolled 0.8010 0.8036 0.8062
hc-original 0.8077 0.8101 0.8126
HC-HC 0.8192 0.8203 0.8213
HC-EP 0.8512 0.8519 0.8527
BS-HC 0.8222 0.8232 0.8243
BS-EP 0.8520 0.8527 0.8535
EP-HC 0.8020 0.8032 0.8044
EP-EP 0.8385 0.8396 0.8407
SA-HC 0.7983 0.7997 0.8011
SA-EP 0.8348 0.8360 0.8373
Random MC 0.8361 0.8373 0.8386
Overall Best 0.8492 0.8501 0.8510

Table 6.15: 95% confidence intervals for average Ug on SAS-65.

generated for problems A, D, K, and the control were inconclusive.

• The heuristic pair generated for problem K was superior to eight of the twelve heuristic

pairs generated for the other problems. Results comparing to A, D, G, L, and the

control were inconclusive.

• The control pair was superior to half of the generated heuristic pairs; the results

comparing to A, D, F, G, K, and L were inconclusive.

To obtain more conclusive results, the extra variance caused by the inferior performance

of certain heuristic pairs was removed by repeating the test with the top performing heuristic

pairs, thereby increasing the granularity of the Tukey-Kramer procedure. When considering

just the heuristic pairs generated for problems A, D, K, L, and the control, the following

observations are made:

• The heuristic pair generated for problem L was superior to those generated for prob-

lems A and D.

• The heuristic pair generated for problem K was superior to that generated for prob-

lem D.

After further reducing the variance to permit comparisons among the top three heuristic

pairs (problem K, for problem L, and the control), the following was observed:

141

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

U
ncontrolled

H
C
 O

riginal

H
C
-H

C

H
C
-EP

BS-H
C

BS-EP

EP-H
C

EP-EP

SA-H
C

SA-EP

R
andom

 M
C

O
verall Best

A
v
e
ra

g
e
 U

g

Figure 6.9: Box plot showing results on SAS-65 application.

• The heuristic pair generated by the meta-optimization for problem L was superior to

the control.

• The heuristic pair generated by the meta-optimization for problem K was also superior

to the control.

6.6 Context-Best Meta-Controller Experiments

Experimental results for the three different Context-Best meta-controllers are presented

in this section: a KNN meta-controller (KNN MC), an offline SVM meta-controller (Offline

SVM), and an online SVM meta-controller (Online SVM).

6.6.1 KNN Meta-Controller Experiments

A Context Best meta-controller using KNN, termed the KNN MC, was compared to the

Overall Best meta-controller and the Random MC meta-controller on the SAS-25 (this work

was originally presented in [39]). The number of training replications for both meta-

controllers was set to 1 in these experiments.

142

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

problem
 A

problem
 B

problem
 C

problem
 D

problem
 E

problem
 F

problem
 G

problem
 H

problem
 I

problem
 J

problem
 K

problem
 L

control

A
v
e
ra

g
e
 U

g

Figure 6.10: Box plot showing simulation results for meta-optimized heuristic pairs on
SAS-65.

As in the scalability and meta-optimization experiments, each experiment was repli-

cated 100 times. However, these experiments were conducted with an older version of the

simulation software, and the PRNG stream controlling the events was not preserved. This

resulted in higher experimental variance for these experiments compared to others discussed

in this chapter.

Figure 6.11 shows the distribution of average global utilities in each set of 100 exper-

iments produced by the eight simple controllers and three meta-controllers. The boxes in

this figure show the three population quartiles, while the whiskers show the maximum and

minimum. Next the statistical significance of the results is assessed.

Table 6.17 shows the mean of the average global utility for each of the meta-controllers

along with 95% confidence intervals. The meta-controller Overall Best clearly outperforms

the other two meta-controllers; its lower confidence bound is greater than the upper bounds

of the others.

The small range of average Ug is due to the meta-controllers keeping the system near

the starting Ug most of the time. Occasionally, a critical SP will fail, and it is either not

possible or very difficult to maintain the current Ug. The overall duration of failure events

143

Heuristic Pair lower bound mean upper bound

control 0.8520 0.8527 0.8535
problem A 0.8501 0.8511 0.8522
problem B 0.8403 0.8413 0.8423
problem C 0.8459 0.8473 0.8488
problem D 0.8509 0.8519 0.8529
problem E 0.8436 0.8461 0.8485
problem F 0.8487 0.8499 0.8511
problem G 0.8496 0.8507 0.8518
problem H 0.8376 0.8390 0.8404
problem I 0.8376 0.8389 0.8402
problem J 0.8403 0.8431 0.8459
problem K 0.8533 0.8541 0.8550
problem L 0.8537 0.8544 0.8552

Table 6.16: 95% confidence intervals for average Ug on meta-optimized heuristic pairs.

causing more than a 10% reduction in Ug was observed to be less than 15 ǫ in the average

simulation run. Though uncommon, the differences in meta-controller response to these

failures result in statistical differences in the average Ug.

Controller Lower Bound Mean Upper Bound

HC-HC 0.63858 0.63910 0.63962
HC-EP 0.63994 0.64035 0.64076
BS-HC 0.64194 0.64234 0.64273
BS-EP 0.64225 0.64268 0.64311
EP-HC 0.63960 0.64001 0.64043
EP-EP 0.63987 0.64028 0.64069
SA-HC 0.64014 0.64054 0.64095
SA-EP 0.64062 0.64098 0.64134
Overall Best 0.64228 0.64263 0.64297
KNN MC 0.64129 0.64164 0.64200
Random MC 0.64081 0.64119 0.64157

Table 6.17: 95% confidence intervals for net overall average Ug.

144

 0.63

 0.632

 0.634

 0.636

 0.638

 0.64

 0.642

 0.644

 0.646

 0.648

H
C
-H

C

H
C
-EP

BS-H
C

BS-EP

EP-H
C

EP-EP

SA-H
C

SA-EP

O
verall Best

KN
N
 M

eta-C
ontroller

R
andom

A
v
e
ra

g
e
 U

g

Figure 6.11: Box plot showing the quartiles of experiments with KNN MC.

The Tukey-Kramer procedure was applied to perform a simultaneous pair-wise com-

parison of the eleven controllers (eight simple controllers and three meta-controllers) in

Table 6.17. It was determined that Overall Best was significantly better than Random

MC and six of the eight simple controllers (those employing HC-HC, HC-EP, EP-HC, EP-EP,

SA-HC, and SA-EP) at the 95% confidence level. This procedure also demonstrated that

Context Best was better than five of the simple controllers (HC-HC, HC-EP, EP-HC, EP-EP,

and SA-HC). The Tukey-Kramer procedure was further applied on just the results of the

three meta-controllers, and it can be concluded that Overall Best was significantly better

than the KNN MC and that the KNN MC was significantly better than Random MC at the 95%

confidence level.

Figure 6.12 shows the Ug over time. All three meta-controllers do well in maintaining

Ug over the course of the simulation runs. As can be seen by the size of the error bars,

the experimental variance makes it difficult to compare the different meta-controllers; this

variance cancels out to some degree when computing the overall average for each simulation

experiment.

Table 6.18 shows the heuristic pair performance data collected by the Overall Best

145

 0.638

 0.64

 0.642

 0.644

 0.646

 0.648

 0.65

 0 100 200 300 400 500

A
v
e
ra

g
e
 U

g

Time (ε)

Overall Best
Context Best

KNN Meta-Controller

Figure 6.12: The average Ug over time with 95% error bars in KNN MC experiments.

meta-controller. Heuristic pairs employing hill-climbing for service selection search per-

form poorly in comparison to heuristic combinations employing evolutionary programming

for service selection search. The best heuristic pair is BS-EP, using beam search in the

architecture search and evolutionary programming in the service selection search.

Heuristic Search Lower Bound Mean Upper Bound
Pair

HC-HC 0.6305 0.6310 0.6314
HC-EP 0.6412 0.6415 0.6419
BS-HC 0.6367 0.6370 0.6374
BS-EP 0.6429 0.6432 0.6435
EP-HC 0.6402 0.6405 0.6408
EP-EP 0.6414 0.6417 0.6420
SA-HC 0.6377 0.6381 0.6385
SA-EP 0.6414 0.6417 0.6420

Table 6.18: Performance tables collected by Overall Best with 95% confidence intervals.

146

The evolving behavior of the meta-controllers can be seen in Fig. 6.13. The data series

labeled early in Fig. 6.13 were collected from just the first half of the simulation, while

the data series labeled late were collected from only the second half of the simulation. By

the second half of the simulation, Overall Best has clearly converged to the most overall

effective heuristic pair, BS-EP. From the data presented in Fig. 6.13, it is unclear if the KNN

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

H
C
-H

C

H
C
-EP

BS-H
C

BS-EP

EP-H
C

EP-EP

SA-H
C

SA-EP

P
e
rc

e
n
ta

g
e
 S

e
le

c
te

d

Heuristic Combination

Early Context Best
Late Context Best
Early Overall Best
Late Overall Best

Figure 6.13: Percentage of time a heuristic pair was selected by the meta-controllers.

MC is converging. Using paired observations, it was determined that the small increase in

heuristic pair BS-EP being selected is statistically significant (2.08% ± 1.97%) at the 95%

confidence level.

To better understand the differences in heuristic pair selection between the KNN MC

and the Overall Best meta-controllers, 2,000 re-architecting problems encountered in the

simulations were collected. Each heuristic pair was tested against each problem 30 times.

For each problem, the average Ug found by all the heuristic pairs was calculated. Then, the

relative performance of each heuristic pair on each problem was determined.

Similar to plots presented in Section 5.3.5, Fig. 6.14 shows a scatter plot of the rela-

tive performance of BS-EP vs EP-EP on each re-architecting problem. The thin black line

147

shown in Fig. 6.14 indicates where the performance of BS-EP and EP-EP are equal; a large

concentration of problems are close to this line. EP-EP outperformed BS-EP on 78.2% of

the problems. However, as can be seen in Fig. 6.14, when BS-EP outperforms EP-EP, it

is typically by a larger margin. The average difference in Ug between EP-EP and BS-EP

when EP-EP is better equals 0.00048 whereas when BS-EP is better the difference is 0.01268,

approximately 25 times greater.

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

R
e
la

ti
v
e
 S

e
a
rc

h
 P

e
rf

o
rm

a
n
c
e
 (

U
g
)

o
f
E

P
-E

P

Relative Search Performance (Ug) of BS-EP

Figure 6.14: Scatter plot of relative heuristic pair performance on 1,935 re-architecting
problems.

The KNN algorithm used in the KNN MC is not capable of accounting for the risk that

picking incorrectly EP-EP over BS-EP could lead to a relatively large drop in performance.

The KNN MC meta-controller would need to correctly identify the best heuristic pair about

85% of the time to equal the performance of Overall Best. It is unlikely that KNN can

achieve such accuracy in the face of the following challenges presented by the use of online

training sets:

• a relatively small number of training problems,

148

• one training replication per heuristic pair for each problem, and

• a relatively large number of fields in the problem characterization.

6.6.2 Offline SVM Meta-Controller Experiments

An offline SVM meta-controller, Offline SVM, was developed using the procedure described

in Section 5.3.5. The meta-controller used the twelve heuristic pairs (labeled A through L)

produced by the meta-optimization procedure described in Section 4.7. An autonomic

controller operating with heuristic pair BS-EP collected 1,040 sample problems on the SAS-

65. The sample problems were tested against each of the twelve heuristic pairs (A through

L) 50 times each.

Controller Lower Bound Mean Upper Bound

uncontrolled 0.8010 0.8036 0.8062
E 0.8436 0.8461 0.8485
G 0.8496 0.8507 0.8518
L 0.8537 0.8544 0.8552
Offline SVM 0.8487 0.8506 0.8525

Table 6.19: 95% confidence intervals for mean Ug on SAS-65 with Offline SVM.

The heuristic pair combination yielding the greatest AggregateScore was heuristic pair

E and heuristic pair G. The Offline SVM was trained with heuristic pair E and heuristic

pair G. The trained Offline SVM was tested on the SAS-65 and the results are shown in

Table 6.19. Results from uncontrolled, E, G, and L are reprinted here for convenience of

comparison—heuristic pair L provided the best observed performance on SAS-65 in Sec-

tion 6.5. A different view of the results is provided in Fig. 6.15.

Applying the Tukey-Kramer procedure to autonomic controllers using E, G, and L as

well as the Offline SVM, no statistically significant difference were found between Offline

SVM and the three autonomic controllers at the α = 0.1 level. These results show that on the

SAS-65 application, the Offline SVM was unable to improve upon autonomic controllers

149

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

U
ncontrolled

E G L O
ffline SVM

A
v
e
ra

g
e
 U

g

Figure 6.15: Box plot showing results of Offline SVM on SAS-65 application.

using the meta-optimized heuristic pairs.

6.6.3 Online SVM Meta-Controller Experiments

An online SVM meta-controller, Online SVM was tested on the SAS-40 using the meta-

optimized heuristic pairs described in Section 6.4. The results presented here are based on

the first 96 experimental replications completed (the last 4 replications are being conducted

at the time of this writing).

The majority of the Online SVM meta-controllers initially used the heuristic pair com-

bination BS-EP and EP-EP. A substantial minority of the Online SVM initially used HC-EP

and EP-EP heuristic pair combination. All of the meta-controllers converged to BS-EP and

EP-EP by about 200 ǫ (40% of the simulation duration). The BS-EP and the EP-EP are

complementary heuristic pairs as the beam search here is an exploitative algorithm and the

evolutionary programming is an exploratory algorithm.

Confidence intervals for the mean Ug can be found in Table 6.20. The confidence intervals

for Online SVM and Overall Best are nearly separated. Applying Tukey-Kramer shows

that Online SVM is superior to Random MC at the α = 0.01 level and Overall Best at the

150

α = 0.05 level. The distribution of these results can be seen in the box plot shown in

Fig. 6.16.

Controller Lower Bound Mean Upper Bound

BS-EP 0.9558 0.9563 0.9569
Online SVM 0.9548 0.9554 0.9559
Overall Best 0.9537 0.9543 0.9550
Random MC 0.9398 0.9405 0.9412

Table 6.20: 95% confidence intervals for average Ug on SAS-40 with Online SVM.

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

BS-EP

O
nline SVM

O
verall Best

R
andom

 M
C

A
v
e
ra

g
e
 U

g

Figure 6.16: Box plot showing results of Online SVM on SAS-40.

Figure 6.17 shows the measured global utility over time during the simulation. Though

not of statistical significance, it is interesting to note that the Online SVM improves over

time relative to the other controllers.

151

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0 100 200 300 400 500

A
v
e
ra

g
e
 U

g

Time (ε)

Overall Best
Online SVM

Random
BS-EP

Figure 6.17: Online SVM performance over time on SAS-40.

Figure 6.18 shows the distribution of results if the simulation is broken into two halves

chronlogically (i.e., the first half covers results in the ǫ range [1 : 250], while the second

half covers results in the ǫ range [251 : 500]). The autonomic controller using BS-EP, the

Overall Best meta-controller, and the Random MC show no significant improvement from

the first half of the simulation to the second half. The Online SVM meta-controller shows

an improvement in the second half of the simulation with 99% confidence (this was found

by applying the Tukey-Kramer procedure). This provides an indication that the Online

SVM meta-controller is learning as the simulation progresses and successfully applying the

acquired knowledge to the selection of heuristic search pairs.

Each of the 96 replications for the Online SVM meta-controller trained at least 46 SVM

models over the course of the simulation. Figures 6.19 and 6.20 examine the average search

trajectory for the SVM parameters, C and γ, needed to build the SVM models (see Sec-

tions 5.3.5 and 5.3.6 for more information). Figure 6.19 shows the average search for the

first 23 SVM models trained, while Fig. 6.20 shows the average search for SVM models 24

through 46. The higher cross-validation rate in Fig. 6.20 is likely due to larger training sets.

It is worth noting the GA population steadily improves as the search continues. This

152

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

BS-EP 1st H
alf

BS-EP 2nd H
alf

O
nline SVM

 1st H
alf

O
nline SVM

 2nd H
alf

O
verall Best 1st H

alf

O
verall Best 2nd H

alf

R
andom

 1st H
alf

R
andom

 2nd H
alf

A
v
e
ra

g
e
 U

g

Figure 6.18: Box plot showing 1st and 2nd half simulation results for Online SVM on SAS-
40.

indicates that the search procedure in Section 5.3.5 is following signal vice noise, which was

a concern due to the self-similar properties observed on the cross-validation topologies.

Figure 6.21 shows the weighted prediction accuracy of the Online SVM meta-controller’s

heuristic pair selections. Linear regression was performed on this scatter plot (the corre-

lation, r, was 0.54). This figure indicates that the accuracy improves as the size of the

training set increases.

6.7 Summary of Experimental Results

In all of the scalability experiments, the Overall Best meta-controller was one of the top

performers. Analysis in 6.6.1 demonstrated that the Overall Best meta-controller was

able to consistently identify the best available heuristic pair. These experiments demon-

strate that the Overall Best meta-controller provides good performance with low training

overhead.

The scalability experiments demonstrated that most of the autonomic controllers scale

well. The scalability experiments also revealed that applying an autonomic controller

153

 78

 80

 82

 84

 86

 88

 90

 92

 94

 0 200 400 600 800 1000

W
e
ig

h
te

d
 C

ro
s
s
-V

a
lid

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Number of (C,γ) Evaluated

Best Found
GA Pop. Avg.

Figure 6.19: SVM parameter search trajectory with 95% CI for SVM models 1-23.

does not necessarily improve the performance. In fact the non-optimized algorithm, HC

Original, hurt the performance of the system substantially on the SAS-25. On the SAS-

65, some algorithms that had been meta-optimized on the development SAS also struggled

siginificantly. Autonomic controllers employing the heuristic pair BS-EP were notable for

their success across multiple levels of scale.

The meta-optimization technique described in Section 4.7 successfully produced two

heuristic pairs that were superior to BS-EP, the best known heuristic pair from the scala-

bility testing. The results do show that is necessary to test the resulting heuristic pairs to

determine which of them provides the best overall performance.

The KNN MC struggled due to the inability of the KNN algorithm to account for assymet-

ric risks in mis-classifying optimization problems. The Offline SVM meta-controller also

struggled to exploit the new heuristic pairs discovered in the meta-optimization process.

Further investigation is required for the source of the problems. A hypothesis that explains

the poor performance of the Offline SVM meta-controller is the following: the offline train-

ing set is insufficiently representative of the optimization problem space encountered by the

Offline SVM meta-controller. Essentially, the SVM hyperplane may extrapolate poorly if

the SVM meta-controller wanders into an optimization problem space that is some distance

154

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 0 200 400 600 800 1000

W
e
ig

h
te

d
 C

ro
s
s
-V

a
lid

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Number of (C,γ) Evaluated

Best Found
GA Pop. Avg.

Figure 6.20: SVM parameter search trajectory with 95% CI for SVM models 24-46.

from the problems in the original training set. This results in poor accuracy in predicting

the best heuristic pair for the currently faced optimization problem.

Conversely, the results show that the Online SVM meta-controller performs better than

the Overall Best on the SAS-40 system. The Online SVM meta-controller has the advan-

tage that its training set is developed from the path in the optimization problem space that

it has travelled. As a result, it is more likely that newly encountered problems will be close

to the Online SVM meta-controller’s training set. More testing on other SASes will reveal

if the Online SVM meta-controller can provide enough performance improvement to justify

the extra overhead of training and building SVM classification models.

155

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300

W
e
ig

h
te

d
 A

c
c
u
ra

c
y
 (

%
)

Size of Training Set

Measured Prediction Accuracy
Linear Regression

Figure 6.21: Online SVM measured prediction accuracy vs size of the training set.

156

Chapter 7: Concluding Remarks

This chapter begins by reviewing the thesis statement and the criteria defined for its accep-

tance. The second section examines the contributions made in this work. The third section

discusses the management of meta-controllers. The last section looks at promising areas for

future investigation.

7.1 Consideration of the Thesis Statement

In this section, a decision will be taken to accept or reject the thesis statement stated in

Section 1.4 based on the success criteria defined in Section 1.5. The thesis statement was

divided into three statements each with their own criterion for acceptance.

7.1.1 Evaluating Thesis Statement H1

The first statement, H1, of the thesis is reprinted below:

Autonomic computing techniques can be used to automatically design the archi-

tecture of SOA-based software systems and select service providers in a scalable

way that optimizes utility.

The corresponding criterion for accepting H1 follows:

Develop techniques for the automatic design of architectures and corresponding

service selection and demonstrate through rigorous experimentation that the

methods achieve optimized solutions in a scalable way.

Multiple heuristic search techniques were developed and applied to the automatic design of

architectures and service selection. These techniques, supporting technologies, and frame-

works are described in Sections 4.3, 4.4, and 4.5. Experimental evidence in Section 6.3.4

demonstrated the success of these techniques.

157

7.1.2 Evaluating Thesis Statement H2

The second statement, H2, of the thesis is:

Scalable autonomic computing techniques that self-adapt to new architectures

and new service provider selections can be used to maintain optimized levels of

utility for SOA-based software systems in the face of failures and performance

degradations of service providers.

The criterion for accepting H2 is:

Develop techniques for the automatic re-architecting and corresponding service

selection for SOA-based systems in the face of failures and performance degrada-

tion. Demonstrate through rigorous experimentation that the methods maintain

high utility solutions in a scalable way.

The re-architecting framework described in Section 4.4 provides a methodology for main-

taining system performance as failure and performance degradation events occur. This

framework is supported by modeling technologies described in Section 4.3 and utilizes the

heuristic search techniques described in Section 4.5. A number of experiments described in

Chapter 6 demonstrated the effectiveness of the framework. A specific set of scalability ex-

periments in Section 6.4 showed that the approach from Section 4.4 and that the algorithms

detailed in Section 4.5 scale with the size of the managed application.

7.1.3 Evaluating Thesis Statement H3

The third statement, H3, in the thesis is printed below:

An autonomic meta-controller employing machine learning techniques can mea-

sure and tune the autonomic controller’s performance, and thus reduce the hu-

man effort required to manage the system.

The criterion for accepting H3 is:

Develop a meta-heuristic agent that adaptively selects heuristics and their pa-

rameters to solve self-architecting and service selection optimization problems.

158

Four different meta-controllers of varying levels of complexity were developed and are de-

scribed in Chapter 5. All of the meta-controllers are capable of measuring and tuning an

autonomic controller.

Experiments in Section 6.4 and Section 6.6.1 revealed that the Overall Best meta-

controller is capable of identifying the best overall heuristic pair with low overhead. Chap-

ter 6 provided evidence that the Overall Best meta-controller was competitive with auto-

nomic controllers that had preselected the best available heuristic pair.

Though KNN MC and the Offline SVM meta-controllers proved less effective in experi-

ments from Sections 6.6.1 and 6.6.2, early results for the Online SVMmeta-controller appear

promising.

Further, a meta-optimization technique was described in Section 4.7 that optimizes

heuristic pairs for specific SASSY applications. The resulting twelve heuristic pairs were

tested in experiments described in Section 6.5, and two of the generated pairs exceeded the

performance of the previous best performing heuristic pair.

The criteria for the three thesis statements have been met. The thesis statement is

accepted.

7.2 Reviewing the Contributions

This dissertation makes a number of contributions in autonomic frameworks, performance

modeling, and run-time adapation of autonomic systems.

7.2.1 Frameworks

Three centralized autonomic frameworks were presented:

1. an autonomic controller framework for managing SOA applications,

2. a meta-optimization framework for improving heuristic search algorithms, and

3. a meta-controller framework for the run-time adaptation of the autonomic controller.

The autonomic controller provided by the first framework fulfills the Goal Management

Layer function (as described in Section 2.5.7) in the SASSY project. Both the meta-

optimization framework and the meta-controller framework enhanced the performance of

159

the autonomic controller. In addition to enhancing the autonomic controller, these two

frameworks could also be adapted to other autonomic computing problem domains beyond

SOA application management.

7.2.2 Performance Models

The autonomic controller has the ability to automatically generate performance models for

specific SOA applications. The techniques for producing these performance models may be

useful to other SOA monitoring and management systems.

7.2.3 Run-time Adaptation of Autonomic Controllers

Autonomic controllers were adapted at run-time by meta-controllers. Four different meta-

controller techniques have been described here in Chapter 5. The concept of the meta-

controller could be broadly applied across autonomic computing and robotics.

7.2.4 Experimental Examination

The frameworks and technologies developed for this dissertation have undergone rigorous

experimental evaluation. This experimental evaluation included scalability testing. The

experimental simulation techniques described here could be used to evaluate other SOA

systems.

7.2.5 Minor Contributions

A number of minor contributions have been made as well. They are detailed below.

Population Overlap Metric

In assessing relative behavior of heuristic pair combinations, a general method for mea-

suring the overlap of two populations of points was developed (see Section 5.3.5). This

method could be extended with the k-means clustring algorithm [8]. This would allow the

two populations to be broken up into clusters before applying the overlap measurement al-

gorithm. Such an algorithm might have many uses in the fields of data mining and pattern

recognition.

160

Approach for SVM Penalty Weights on Asymmetric Data Sets

A reasoned approach to SVM penalty weights for controlling one-sided overfitting of asym-

metric data sets was presented in Section 5.3.5. This technique could be valuable to SVM

practicioners who work with small, unbalanced training sets.

High Performance Data Structure Templates

The ability of the heuristic search algorithms to rapidly evaluate hundreds of thousands of

SASSY systems in a matter of seconds is due to the high performance data structure tem-

plates developed in C++. These templates blend the best features of arrays, linked lists, and

hash tables. Additionally, these templates provide memory management functionality that

speeds performance by massively reducing the number of requests for memory allocation—a

relatively slow operation in modern computing systems.

Library of Heuristic Search Templates

A library of multi-threaded heuristic search algorithm templates was developed in C++

using the high performance data structure templates. This heuristic search library is general

and can be applied to any C++ object class that can provide a scoring function, a hashing

function, a neighborhood generation function, and a mutation function.

7.3 Discussion: Managing the Meta-Controller

A logical question when considering meta-controllers is: ”What or who will manage the

meta-controller?” Like the autonomic controller it manages, the meta-controller contains a

number of tunable parameters. Has the introduction of the meta-controller merely moved

the management overhead to a different component?

Although the meta-controller will require some initial effort from human administrators,

there is a strong argument that this effort will be minimal compared to managing the

autonomic controller itself. The autonomic controller is closer to the dynamic environment

of the managed system than the meta-controller. This dynamism can throw an autonomic

controller off-kilter (e.g., the trap the HC Original autonomic controller fell into on the

161

SAS-25 in Section 6.4).

The immediate environment of the meta-controller is more static. The meta-controller’s

environment changes only when large changes are made to the system (e.g., the introduc-

tion of a new heuristic search algorithm or a significant evolution of the managed SOA

application). Even when such large changes occur, a properly constructed and tested meta-

controller should be able to weather the change with minimal human intervention. Thus, the

meta-controller represents a significant step towards developing fully autonomic systems.

7.4 Future Work

There are a number of areas for future research to explore.

7.4.1 Additional Heuristic Search Algorithms

There are some interesting heuristic search algorithms that were not implemented in this

work that may provide good performance for SASSY meta-controllers. Foremost among

these heuristic search algorirthms is Ant-Colony Optimization (ACO) [29]. ACO works

well on problems where solutions have interchangeable parts—both architectures and service

selections meet this criterion.

7.4.2 Meta-Optimization

There are some improvements that could be made to the meta-optimization approach de-

scribed in Section 4.7. The meta-optimization could benefit from meta-heuristic algorithms

that converge more rapidly than the GA algorithm used here. The process of selecting

finalist problems for the meta-optimization is rudimentary and could be better developed.

Finally, the fitness function for a heuristic pair derived from its performance on a finalist

problem could be modified to use a blend of the heuristic pair’s performance on multiple

finalist problems.

162

7.4.3 Meta-Controller

The Overall Best meta-controller may benefit from a more adaptive training strategy.

For example, the number of training replications could be elevated when the Overall Best

meta-controller first becomes operational. As the Overall Best meta-controller becomes

confident that it has converged onto the best heuristic pair, it could wind down its training

activity.

Prediction accuracy and risk evaluation are the biggest challenges faced by the three

Context Best meta-controllers (see Section 6.6). One possibility for improving their perfor-

mance would be the introduction of a hybrid approach of the Offline SVM and the Online

SVM meta-controllers. The Offline SVM meta-controller would bring its knowledge of the

overall performance of the heuristic pairs and the costs of mis-classification. The Online

SVM meta-controller would provide more relevant optimization problems to the constuction

of the SVM hyperplane decision boundary. Additionally, the Online SVM may also be able

to better represent the nearby optimization problem space by studying mutations of recently

encountered problems or by studying projected future optimization problems.

Additionally, it may be valuable to revisit the characterization of the optimization prob-

lems (see Section 5.3.1). A simpler representation of optimization problems may help the

SVM avoid overfitting noise.

163

Appendix A: High Performance Data Structure Templates

This appendix describes the generalized high performance data structures that were devel-

oped to suppport two-level re-architecting search in near-realtime. The first section provides

a brief overview of C++ templates. List data structures and the abstract List template

are covered in the second section. The third and fourth sections discuss the templates Ar-

rayList and LinkedList respectively. The fifth section examines the HashTable template,

while the sixth section analyzes the Set template that blends the features of multiple data

structure temples.

A.1 C++ Templates

The C++ programming language contains two powerful abstraction features: class tem-

plates and class inheritance. By combining these abstraction features with support for

low-level programming, the C++ programming language sets itself apart from other mod-

ern programming languages[123].

Class templates are defined in C++ by specifying one or more abstract data types before

defining the class. The implementation of class template methods must include the abstract

data types in their scope. When a computer programmer wishes to use a class template,

the computer programmer must specify a data type to serve for each abstract data type in

the template definition. When the computer program is compiled, the compiler will create

a new specific class from the template for each unique combination of specified data types.

Thus, classes and methods written as templates can be applied to many data types.

This flexibility encourages the re-use of computer programming code and reduces the level

of effort needed to develop and maintain computer programming code. The computer pro-

gramming code developed in support of this dissertation uses the template features in C++.

High performance data structures written as C++ templates were utilized throughout the

code for storing architecture objects, service selection objects, archiecture components,

threads, etc.

164

A.2 List

A list is a data structure that holds a number of elements in a certain order. Various

methods can insert, delete, and retrieve elements from the list. Some lists support the

concept of a cursor that points to a specific element in the list. The cursor can be moved

to the next element in the list via the method gotoNext() or the previous element in the

list via the method gotoPrior(). With other methods, the cursor can also be moved to

either the beginning or end of the list [111]. Often a loop will iterate through the list in a

manner similar to a for loop iterating through an array.

A list can be implemented several different ways. The two most common methods for

implementing a list are through arrays and linked nodes called linked lists [19]. In this

dissertation, a List template was defined with pure virtual methods. Classes that use pure

virtual functions are called abstract classes, and cannot be directly instantiated. With pure

virtual methods, no specific implementation is provided—it is up to inheriting child classes

to provide an implementation. Abstract classes provide a common interface; a program

may have a pointer to a a list of integers (i.e., List<int>*) but may call gotoNext() or

gotoPrior without needing to know if the list is implemented with an array or a linked

list.

The abstract template class List can be seen in the Unified Modeling Language (UML)

class diagram in Fig. A.1. Figure A.1 was developed with the Umbrello UML Modeller [51].

Note that the abstract data type is LE which stands for List Element. When instantiating

an ArrayList or aLinkedList the programmer must specify what data type will be used

for LE. In Fig. A.1 the data types in the method arguments appear after a ’:’. Data types

that are followed by an ’&’ are passed by reference, while data types that are followed by

an ’*’ are memory pointers to specific object instances. Data types returned by a method

follow the close of the arguments and another ”:”.

The following pure virtual methods are defined by List:

• insert(newElement : LE &),

• remove(),

• replace(newElement : LE &),

165

• append(toBeAdded : List< LE >&),

• clear(),

• getCursor() : LE,

• getCursorRef() : LE&,

• gotoNext() : bool,

• gotoPrior() : bool,

• gotoBeginning() : bool, and

• gotoEnd() : bool.

For the sake of clarity, the pure virtual functions of List are not shown in Figure A.1.

The list templates used in this dissertation are significant extensions of the C++ tem-

plate data structures found in [111]. The implementation for the hash table template and

the set template are novel to this dissertation.

A.3 ArrayList

The ArrayList template provides an implementation of the abstract List template using

arrays. Lists that use arrays are trivial to implement, and many useful algorithms for

sorting are designed to operate on arrays [19]. However, lists implemented by arrays do

have limitations. Some methods in ArrayList are relatively computationally expensive.

For example, when inserting in the middle of the ArrayList, it is necessary to copy each

element after the cursor down one space in the array to make room for the new element.

Additionally, the size of the array must be specified when the ArrayList is instantiated—

this sets a maximum number on the number of elements in the list.

Two different implementations of ArrayList exist in the dissertation code: Array-

ListPlain and ArrayListHash. The ArrayListPlain makes no demands on the specified

data type—integers, floating point numbers, and characters can all be used in Array-

ListPlain. The ArrayListHash requires the specified data type to implement the methods

166

1

0..*

1

1

1

1..*

LE
List

sz : int
+ size() : int

LE
ArrayList

element : LE*
cursor : int
maxSize : int
+ insert(newElement : LE&)
+ remove()
+ replace(newElement : LE&)
+ append(toBeAdded : List< LE >&)
+ clear()
+ getCursor() : LE
+ getCursorRef() : LE&
+ gotoNext() : bool
+ gotoPrior() : bool
+ gotoBeginning() : bool
+ gotoEnd() : bool
+ getMaxSize() : int
+ getPosition() : int
+ moveToNth(n : int) : bool
+ topN(N : int, result : List< LE >&)
+ sort()
+ shuffle(rand : PRNG*)

LE
LinkedList

head : ListNode< LE >*
cursor : ListNode< LE >*
+ insert(newElement : LE&)
+ remove()
+ replace(newElement : LE&)
+ append(toBeAdded : List< LE >&)
+ clear()
+ getCursor() : LE
+ getCursorRef() : LE&
+ gotoNext() : bool
+ gotoPrior() : bool
+ gotoBeginning() : bool
+ gotoEnd() : bool
+ donate(recipient : LinkedList< LE >&)
receive(p : ListNode< LE >*)

LE
ListNode

- next : ListNode*
- prior : ListNode*
- element : LE

SE
SetEntry

- nodePtr : ListNode< SE >*
- elemPtr : SE*
+ hash(divisor : unsigned int) : unsigned int
+ operator ==(toBeCompared : const SetEntry&) : bool
+ priority() : double

TE
HashTable

- hshTable : LinkedList< TE >*
hashSize : unsigned int
- unusedMemory : LinkedList< TE >
+ store(toBeStored : TE&)
+ contains(toBeChecked : TE&) : bool
+ retrieve(toBeRetrieved : TE&)
+ remove(toBeRemoved : TE&) : bool
+ clear()
+ freeMem()
scanList(index : unsigned int, toBeChecked : TE&) : bool
putIntoList(index : unsigned int, toBePutIn : TE&)
getFromList(index : unsigned int, toBeGotten : TE&) : TE&
cutFromList(index : unsigned int, toBeTakenOut : TE&) : bool

SE
Set

- array : ArrayList< SetEntry < SE > >*
- table : HashTable< SetEntry < SE > >*
- unusedLN : LinkedList< SE >
- aDirtyBit : bool
- tDirtyBit : bool
+ getPosition() : int
+ moveToNth(n : int) : bool
+ topN(N : int, result : List< SE >&)
+ sort()
+ shuffle(rand : PRNG*)
+ add(newElement : SE&) : bool
+ contains(checkElement : SE&) : bool
+ getPosition(checkElement : SE&) : int
+ moveCursorTo(checkElement : SE&) : bool
+ remove(checkElement : SE&) : bool
+ subtract(toBeSubtracted : List< SE >&) : int
+ freeMem(tableToo : bool)
+ synchronize(arrayBit : bool, tableBit : bool)
- syncList()
- syncArray()
- syncTable()
+ resize(newMaxSize : int)

«datatype»
HashTable< SetEntry < SE > >

«datatype»
ArrayList< SetEntry < SE > >

Figure A.1: UML describing the derivation and composition of the Set template.

167

priority() and hash()—integers, floating point numbers, and characters would require a

wrapper class implementing hash() and priority() to be used in ArrayListHash.

The priority() method is used for sorting and selecting the top N elements. The

hash() method helps support the hashing methods for large complex classes such as ar-

chitectures and service selections that can contain multiple ArrayList and Set object in-

stances.

A.4 LinkedList

The LinkedList implementation of the abstract List template uses a series of list nodes.

Each list node is a tuple of a data element, a pointer to the next list node, and a pointer to

the previous list node. Implementations of linked lists that use two pointers in a list node

(like the implementation presented here) are called doubly linked lists [111]. (Singly linked

lists use list nodes that contain no pointer to the previous list node.)

At first glance, linked lists appear to be better suited for inserting and removing data.

Inserting an element into the LinkedList template requires the memory allocation of a new

list node, and the modification of four pointers (two in the newly allocated list node, one in

the prior list node, and one in the next list node). However, in modern computing systems,

allocating memory has become a relatively expensive operation. The Set and HashTable

templates will address this issue.

Two special methods Donate and Receive() provided by ListedList enable two linked

lists to pass list nodes back and forth. This can provide performance savings by reducing

the number of memory allocation calls made. When using one linked list, another empty

linked list can store allocated list nodes that are no longer in use. These nodes can be

donated back as needed.

A.5 HashTable

Lists are effective data structures when the programmer wants to perform operations on

every element in the data structure or work on sequences of elements within the data

structure. Frequently, it is necessary to ascertain if an element is already present in a

168

data structure; for this task, lists are ill-suited. A more appropriate data structure when

searching for elements is a hash table.

A hash table is a large array, often much larger than the number of data elements that

will be stored in it. Unlike lists, hash tables do not retain any ordering information about

the elements. When adding an element to the hash table, a hashing function computes a

non-negative integer called a hash from the properties of the element; the hash should be

smaller than the size of the array. The element is then stored in the array position denoted

by the hash value. When two elements with differing properties produce the same hash

value, this is termed a collision. The goal of a good hashing function is to avoid collisions

as much as possible.

There are two major approaches to dealing with hash table collisions during insertion of

an element. The first approach scans for the next empty slot after the hash of the colliding

element; this approach places the colliding element in the first empty slot found. This

approach gets complicated quickly, as methods looking for elements must now check all

contiguously occupied elements appear at and after the hash in the array for equivalence.

Removing elements in this approach is complicated as the new empty spaces might prevent

the successful lookup of an element placed after the removed element. As the hash table

fills up, the performance of this first approach can seriously degrade [19].

A second and more elegant approach is to have each entry in the array correspond

to a separate linked list. If a collision occurs, another element is just added at the end

of the linked list corresponding to that hash. The performance of this approach will also

degrade with a large number of collisions, but not as severely as with the first approach [19].

This second approach is adopted in the HashTable template used in this dissertation. Like

the ArrayListHash, the HashTable template requires data elements to provide a hash()

method. When a HashTable template object is insantiated, the size of the array of linked

lists is set to a prime number slightly larger than the size specified in the HashTable

constructor method. This prime number will be provided as the hashDivisor argument in

all hash(unsigned int hashDivisor) calls.

The performance of the HashTable template is enhanced by saving list nodes in a

pool when entries are removed from the table (the donate() and receive() methods of

169

LinkedList are used to performn this task). When new elements are added to the table,

the HashTable template can check to see if a list node in the usused pool is availble. The

method freeMem() will de-allocate the list nodes in the unused pool.

A thread-safe version, HashTableTS template was also developed. This version uses the

mutex data structures and methods made available in the BOOST thread library [128]. The

HashTableTS template is used in the multi-threaded heuristic search algorithms presented

in Appendix B.

A.6 Set

To permit successful re-architecting of large SOA systems in near-realtime, performance and

scalability were prioritized during the development of the two-level search. Neighborhood

generation algorithms with filtering proved to be particularly challenging. The first draft

of this code was both complicated and cumbersome using a combination of ArrayList,

LinkedList, and HashTable data structures. It was clear that a new approach was required

to improve performance, scalability, and code maintainability.

The Set template was devised to solve the problem and combines the features of linked

lists, array lists, and hash tables in a seamless manner. A Set template data structure

can be thought of as a hash table that also cares about the ordering of the objects like a

list. The Set template inherits from the LinkedList template. Similar to the HashTable

template, the Set template maintains a pool of unused list nodes to improve performance.

A key component of the Set template is the SetEntry which is analogous to a list node,

though a SetEntry is typically a much smaller object. A SetEntry is a tuple of element

pointer and a list node pointer. The SetEntry provides a hash() method which in turn calls

the hash() method of the element to which it points. In a similar manner, the SetEntry

provides a priority() method and an equivalence operator. SetEntries are stored two

different ways in the Set template: in a ArrayList and in a HashTable. The hash table

and the array list are synchronized with the linked list.

The Set template does not keep the linked list, the hash table, and the array list in sync

after each operation. Instead, the Set template maintains a separate dirty-bit flag for the

linked list, the hash table, and the array. A call to the method sort() or shuffle() would

170

be conducted on the list arry of SetEntries; the dirty-bit flag for the linked list would then

be set to true because its ordering would no longer reflect the true ordering of the Set data

structure. The next time, an operation is performed on the linked list like an insert(),

the Set template will check the linked list’s dirty-bit flag and re-sync the linked list with

the list array (this is easily accomplished since the set entries contain pointers to the list

node in the linked list). Because the SetEntries are lightweight objects (e.g. 16 bytes on a

64-bit system), re-syncing the list array and the hash table are relatively quick operations.

TheSet template can combine the speedy lookup performance of the hash table, with the

insertion/removal performance of a linked list, and the sorting features of a list array. The

Set template will almost always provide superior performance over using two different data

structures and copying data back and forth between the data structures.

It is important to note that the Set data structure will only keep one unique copy of

an element. This turns out to be a useful feature in local search neighborhood construction

and managing training sets for Context Best meta-controllers.

The concept of the No Free Lunch Theorem [129] pertains here: care must be taken in

considering the sequence of operations performed on the Set class. It is possible to choose a

sequence of operations that will force re-syncing of a data structure prior to each operation.

With such operation sequences, performance will be degraded rather than enhanced.

Because the Set template is feature-rich, it also substantially simplifies the code where

it is used. Beyond the re-architecting search, the Set template was utilized in the man-

agement of online training sets for the Context Best meta-controllers. This reduced the

complexity of the resulting code, which made it easier to identify errors in the automated

scale management of the training data.

171

Appendix B: Heuristic Search Algorithm Implementation

This appendix describes the C++ templates used to implement the multi-threaded heuristic

search algorithms used in this dissertation. The first section examines the overall structure

of the heuristic search templates. The second section examines the HeuristicSearchMTE

template that provides the support functions and data structures for multi-threaded search.

The third section focuses on multi-threaded templates for hill-climbing, beam search, and

simulated annealing. The fourth section considers the templates for evolutionary program-

ming and genetic algorithms.

B.1 Heuristic Search Algorithm Template Structure

The heuristic search templates inherit from an abstract base template called Heuristic-

Search. Two abstract data types are associated with HeuristicSearch: solution and

torch. The solution abstract data type is the object to be optimized. The torch

abstract data type represents memory resident data structures used for specific process-

ing related to the solution data type. The solution data type is expected to pro-

vide the methods score() and hash(). For local search methods, solution should also

provide getNeighborhood(). Evolutionary programming and genetic algorithms expect

solution to provide mutate(), and genetic algorithms further expect solution to provide

crossover(). To support mutate() and crossover(), genetic algorithms will sometimes

utilize a wrapper class to convert the actual solution class to binary strings; the wrapper

class then serves as the solution data type.

The HeuristicSearch template defines the method search() as a pure virtual func-

tion (see Section A.2); search serves as the main interface for all heuristic search algorithm

templates. The common interface simplifies the code wherever multiple types of heuristic

search algorithms may be instantiated and applied; this includes the autonomic controller,

the meta-controllers, and the Architecture class.The search() method takes one argu-

ment, startingPoint, a solution that is passed by reference. The best solution found

during the search will be copied into startingPoint. Since startingPoint is passed by

172

reference, the best solution will be returned to the caller of the search when the search

completes.

The other major function of the HeuristicSearch template is to provide inheriting

templates with access to a HeuristicSearchProperties object (represented as the pointer

myProperties). HeuristicSearchProperties objects contain a large number of get()

and set() methods for all heuristic search algorithm parameters. These parameters may

be assigned by reading text files or through the meta-optimization process described in

Section 4.7. The relationship between HeuristicSearchProperties and HeuristicSearch

can be seen in Fig. B.1.

B.2 Heuristic Template for Multi-threading

There are two abstract classes that inherit from HeuristicSearch: HeuristicSearchST

and HeuristicSearchMTE. The ST stands for single-threaded and MTE stands for Multi-

Threaded Element. The HeuristicSearchST was used in the development and testing

process. This appendix will focus on the HeuristicSearchMTE because it was used in the

experiments described in Chapter 6.

The HeuristicSearchMTE’s primary objective is to streamline the management and

coordination of threads for the heuristic search algorithms. The secondary objective of

HeuristicSearchMTE is to provide data elements and structures that are common to all of

the inheriting heuristic search templates.

The HeuristicSearchMTE provides two groups of methods. The first group of methods

enables threads to communicate with a heuristic search instance. The second group of

methods is comprised of internal procedures common to all the heuristic searches, such as

budgetConsumed().

The HeuristicSearchMTE contains a large number of data structures for managing the

concurrent execution of the threads. Many of these data types are provided by the BOOST

thread library [128].

173

s
o

lu
tio

n
to

rc
h

H
e
u
r
is
t
ic
S
e
a
r
c
h

#
 m

y
P

ro
p

e
rtie

s
 : H

e
u

ris
tic

P
ro

p
e

rtie
s
*

#
 m

y
To

rc
h

 : to
rc

h
*
*

+
 s

e
a

rc
h

(s
ta

rtin
g

P
o

in
t : s

o
lu

tio
n

&
)

s
o

lu
tio

n
to

rc
h

H
e
u
r
is
t
ic
S
e
a
r
c
h
M
T
E

#
 b

e
s
tO

v
e

ra
llF

o
u

n
d

 : s
o

lu
tio

n
#

 b
e

s
tO

v
e

ra
llS

c
o

re
 : d

o
u

b
le

#
 p

re
v
io

u
s
ly

E
v
a

lu
a

te
d

 : H
a

s
h

Ta
b

le
T
S

<
 s

o
lu

tio
n

 >
*

#
 s

e
a

rc
h

Tra
je

c
to

ry
 : d

o
u

b
le

*
#

 u
s
e

T
im

e
L
im

it : b
o

o
l

#
 e

v
a

lu
a

tio
n

B
u

d
g

e
t : in

t
#

 tim
e

B
u

d
g

e
t : d

o
u

b
le

#
 n

u
m

C
o

n
s
e

c
u

tiv
e

C
a

c
h

e
H

itS
to

p
T
h

re
s
h

 : in
t

#
 m

a
x
im

u
m

S
c
o

re
 : d

o
u

b
le

#
 th

is
Is

D
e

s
tru

c
tin

g
 : b

o
o

l
#

 n
u

m
T
h

re
a

d
 : in

t
#

 s
to

p
F
la

g
 : b

o
o

l
#

 n
u

m
E

v
a

lu
a

tio
n

s
 : in

t
#

 n
u

m
C

o
n

s
e

c
u

tiv
e

C
a

c
h

e
H

its
 : in

t
#

 a
c
tio

n
 : H

e
u

ris
tic

A
c
tio

n
#

 a
c
tio

n
C

o
m

p
le

te
 : b

o
o

l
#

 ra
n

d
o

m
S

tre
a

m
 : P

R
N

G
*

#
 h

e
u

rT
h

re
a

d
s
 : th

re
a

d
_
g

ro
u

p
#

 tim
in

g
T
h

re
a

d
 : b

o
o

s
t::th

re
a

d
_
g

ro
u

p
#

 m
y
T
im

e
r : T

im
e

rT
h

re
a

d
<

 s
o

lu
tio

n
, to

rc
h

 >
*

#
 s

le
e

p
in

g
T
h

re
a

d
s
 : L

in
k
e

d
L
is

t<
 H

e
u

rT
h

re
a

d
 <

 s
o

lu
tio

n
 , to

rc
h

 >
 *

 >
#

 b
u

s
y
T
h

re
a

d
s
 : L

in
k
e

d
L
is

t<
 H

e
u

rT
h

re
a

d
 <

 s
o

lu
tio

n
 , to

rc
h

 >
 *

 >
#

 e
v
a

lu
a

tio
n

M
u

te
x
 : s

h
a

re
d

_
m

u
te

x
#

 c
o

n
s
C

a
c
h

e
H

itC
o

u
n

tM
u

te
x
 : s

h
a

re
d

_
m

u
te

x
#

 s
to

p
M

u
te

x
 : s

h
a

re
d

_
m

u
te

x
#

 a
c
tio

n
M

u
te

x
 : m

u
te

x
#

 th
re

a
d

L
is

tM
u

te
x
 : b

o
o

s
t::m

u
te

x
#

 a
c
tio

n
C

o
m

p
le

te
C

V
 : c

o
n

d
itio

n
_
v
a

ria
b

le
+

 s
e

a
rc

h
(s

ta
rtin

g
P
o

in
t : s

o
lu

tio
n

&
)

+
 s

e
tA

c
tio

n
(n

e
w

A
c
tio

n
 : H

e
u

ris
tic

A
c
tio

n
)

+
 re

g
is

te
rT

im
e

r(w
h

o
M

e
 : T

im
e

rT
h

re
a

d
<

 s
o

lu
tio

n
, to

rc
h

 >
*
)

+
 s

e
tS

to
p

F
la

g
()

+
 jo

in
R
e

a
d

y
L
is

t(w
h

o
M

e
 : H

e
u

rT
h

re
a

d
<

 s
o

lu
tio

n
, to

rc
h

 >
*
)

+
 g

e
n

e
ra

te
(o

ff
s
e

t : in
t, in

te
rv

a
l : in

t)
+

 e
v
a

lu
a

te
(o

ff
s
e

t : in
t, in

te
rv

a
l : in

t)
+

 n
o

tify
A

c
tio

n
C

o
m

p
le

te
()

+
 is

D
e

s
tru

c
tin

g
() : b

o
o

l
#

 e
v
a

lu
a

te
(to

B
e

E
v
a

lu
a

te
d

 : s
o

lu
tio

n
&

, c
a

c
h

e
d

 : b
o

o
l*

) : d
o

u
b

le
#

 b
u

d
g

e
tC

o
n

s
u

m
e

d
(n

u
m

E
v
a

ls
R

s
rv

d
 : in

t) : in
t

#
 ta

s
k
O

n
e

T
h

re
a

d
(a

L
c
k
 : m

u
te

x
_
lo

c
k
&

, w
h

a
t : T

h
re

a
d

A
c
tio

n
, o

ff
s
e

t : in
t, in

te
rv

a
l : in

t) : b
o

o
l

#
 s

to
p

H
e

u
rT

h
re

a
d

s
(a

L
c
k
 : m

u
te

x
_
lo

c
k
&

)
#

 w
a

itO
n

H
e

u
rT

h
re

a
d

s
(a

L
c
k
 : m

u
te

x
_
lo

c
k
&

)

s
o

lu
tio

n
E
v
o
lu
t
io
n
a
r
y
A
lg
o
r
it
h
m

#
 o

ff
s
p

rin
g

 : L
is

tA
rra

y
<

 In
d

iv
id

u
a

l <
 s

o
lu

tio
n

 >
 *

 >
*

#
 p

a
re

n
ts

 : L
is

tA
rra

y
<

 In
d

iv
id

u
a

l <
 s

o
lu

tio
n

 >
 *

 >
*

- e
a

R
N

G
 : P

R
N

G
*

#
 in

itia
lize

P
o

p
u

la
tio

n
(to

B
e

C
o

p
ie

d
 : s

o
lu

tio
n

&
, p

Ty
p

e
 : P

o
p

u
la

tio
n

Ty
p

e
)

#
 e

v
a

lu
a

te
O

ff
s
p

rin
g

() : b
o

o
l

#
 e

v
a

lu
a

te
P
a

re
n

ts
() : b

o
o

l
#

 re
p

ro
d

u
c
e

(rTy
p

e
 : R

e
p

ro
d

u
c
tio

n
Ty

p
e

, s
Ty

p
e

 : S
e

le
c
tio

n
Ty

p
e

)
#

 m
u

ta
te

O
ff

s
p

rin
g

()
#

 s
u

rv
iv

a
lS

e
le

c
tio

n
(s

Ty
p

e
 : S

e
le

c
tio

n
Ty

p
e

, p
Ty

p
e

 : P
o

p
u

la
tio

n
Ty

p
e

)

s
o

lu
tio

n
to

rc
h

E
v
o
lu
t
io
n
a
r
y
A
lg
o
r
it
h
m
M
T
E

+
 s

e
a

rc
h

(s
ta

rtin
g

P
o

in
t : s

o
lu

tio
n

&
)

#
 e

v
a

lu
a

te
O

ff
s
p

rin
g

() : b
o

o
l

#
 e

v
a

lu
a

te
P
a

re
n

ts
() : b

o
o

l
+

 e
v
a

lu
a

te
(o

ff
s
e

t : in
t, in

te
rv

a
l : in

t)
+

 g
e

n
e

ra
te

(o
ff

s
e

t : in
t, in

te
rv

a
l : in

t)

s
o

lu
tio

n
to

rc
h

H
illC

lim
b
M
T
E

- m
o

d
e

 : in
t

- b
e

s
tL

o
c
a

lIn
d

e
x
 : in

t
- b

e
s
tL

o
c
a

lS
c
o

re
 : d

o
u

b
le

- b
e

s
tL

o
c
a

lM
u

te
x
 : s

h
a

re
d

_
m

u
te

x
- n

e
ig

h
b

o
rh

o
o

d
 : S

e
t<

 s
o

lu
tio

n
 >

- v
is

ite
d

 : S
e

t<
 s

o
lu

tio
n

 >
+

 s
e

a
rc

h
(s

ta
rtin

g
P

o
in

t : s
o

lu
tio

n
&

)
+

 e
v
a

lu
a

te
(o

ff
s
e

t : in
t, in

te
rv

a
l : in

t)
+

 g
e

n
e

ra
te

(o
ff

s
e

t : in
t, in

te
rv

a
l : in

t)

s
o

lu
tio

n
to

rc
h

T
im

e
r
T
h
r
e
a
d

- h
e

u
ris

tic
 : H

e
u

ris
tic

M
T
E

<
 s

o
lu

tio
n

, to
rc

h
 >

*
- h

o
w

L
o

n
g

 : d
o

u
b

le
- ru

n
n

in
g

 : b
o

o
l

- ru
n

n
in

g
C

V
 : b

o
o

s
t::c

o
n

d
itio

n
_
v
a

ria
b

le
*

- ru
n

n
in

g
M

u
te

x
 : b

o
o

s
t::m

u
te

x
*

+
 g

e
tC

V
P

tr() : b
o

o
s
t::c

o
n

d
itio

n
_
v
a

ria
b

le
*

+
 g

e
tM

u
te

x
P

tr() : b
o

o
s
t::m

u
te

x
*

+
 o

p
e

ra
to

r()()
+

 w
a

k
e

U
p

(m
illiS

e
c
F
ro

m
N

o
w

 : d
o

u
b

le
)

s
o

lu
tio

n
to

rc
h

H
e
u
r
is
t
ic
T
h
r
e
a
d

- a
c
tio

n
 : T

h
re

a
d

A
c
tio

n
- h

e
u

ris
tic

 : H
e

u
ris

tic
M

T
E

<
 s

o
lu

tio
n

, to
rc

h
 >

*
- in

te
rru

p
te

d
 : b

o
o

l
- in

trrp
tC

V
 : b

o
o

s
t::c

o
n

d
itio

n
_
v
a

ria
b

le
*

- in
trrp

tM
u

te
x
 : b

o
o

s
t::m

u
te

x
*

- in
tv

l : in
t

- o
ff

s
t : in

t
- ru

n
n

in
g

 : b
o

o
l

- ru
n

n
in

g
C

V
 : b

o
o

s
t::c

o
n

d
itio

n
_
v
a

ria
b

le
*

- ru
n

n
in

g
M

u
te

x
 : b

o
o

s
t::m

u
te

x
*

+
 g

e
tIn

tC
V

P
tr() : b

o
o

s
t::c

o
n

d
itio

n
_
v
a

ria
b

le
*

+
 g

e
tIn

tM
u

te
x
P

tr() : b
o

o
s
t::m

u
te

x
*

+
 g

e
tR

u
n

M
u

te
x
P

tr() : b
o

o
s
t::m

u
te

x
*

+
 g

e
tR

u
n

C
V

P
tr() : b

o
o

s
t::c

o
n

d
itio

n
_
v
a

ria
b

le
*

+
 o

p
e

ra
to

r ()()
+

 w
a

itF
o

rIn
te

rru
p

tio
n

()
+

 w
a

k
e

U
p

(w
h

a
t : T

h
re

a
d

A
c
tio

n
, o

ff
s
e

t : in
t, in

te
rv

a
l : in

t)

H
e
u
r
is
t
ic
S
e
a
r
c
h
P
r
o
p
e
r
t
ie
s

- e
v
a

lB
d

g
t : in

t
+

 A
B

C
D

E
F
 :

+
 g

e
tE

v
a

lB
u

d
g

e
t() : in

t
+

 s
e

tE
v
a

lB
u

d
g

e
t(n

e
w

B
u

d
g

e
t : in

t)
+

 g
e

tA
B

C
D

E
F
()

+
 s

e
tA

B
C

D
E

F
()

s
o

lu
tio

n
In
d
iv
id
u
a
l

+
 in

itia
lize

(to
B

e
C

o
p

ie
d

 : s
o

lu
tio

n
&

)
+

 c
ro

s
s
o

v
e

r(p
a

re
n

tO
n

e
 : In

d
iv

id
u

a
l<

 s
o

lu
tio

n
 >

*
, p

a
re

n
tTw

o
 : In

d
iv

id
u

a
l<

 s
o

lu
tio

n
 >

*
)

+
 m

u
ta

te
(b

la
n

k
S

la
te

 : In
d

iv
id

u
a

l<
 s

o
lu

tio
n

 >
*
) : In

d
iv

id
u

a
l<

 s
o

lu
tio

n
 >

*
+

 ra
n

d
o

m
ize

(b
la

n
k
S

la
te

 : In
d

iv
id

u
a

l<
 s

o
lu

tio
n

 >
*
) : In

d
iv

id
u

a
l<

 s
o

lu
tio

n
 >

*
+

 s
c
o

re
(s

c
o

re
Ty

p
e

 : in
t) : d

o
u

b
le

+
 s

e
tR

a
n

k
S

c
o

re
(ra

n
k
S

c
o

re
 : d

o
u

b
le

)

s
o

lu
tio

n
to

rc
h

B
e
a
m
S
e
a
r
c
h
M
T
E

- m
o

d
e

 : in
t

- k
 : in

t
- le

v
e

lL
is

t : S
e

t<
 s

o
lu

tio
n

 >
- b

e
s
tL

e
v
e

lL
is

tS
c
o

re
 : d

o
u

b
le

- w
o

rs
tL

e
v
e

lL
is

tS
c
o

re
 : d

o
u

b
le

- c
a

n
d

id
a

te
L
is

t : S
e

t<
 s

o
lu

tio
n

 *
 >

- b
e

s
tC

a
n

d
id

a
te

s
 : S

e
t<

 s
o

lu
tio

n
 *

 >
- n

e
ig

h
b

o
rh

o
o

d
 : A

rra
y
L
is

t<
 S

e
t <

 s
o

lu
tio

n
 >

 >
*

- v
is

ite
d

 : S
e

t<
 s

o
lu

tio
n

 >
- a

s
s
e

s
s
L
e

v
e

lL
is

t(e
v
a

l : b
o

o
l)

+
 e

v
a

lu
a

te
(o

ff
s
e

t : in
t, in

te
rv

a
l : in

t)
+

 g
e

n
e

ra
te

(o
ff

s
e

t : in
t, in

te
rv

a
l : in

t)
- m

a
k
e

N
e

w
L
e

v
e

lL
is

t()
- p

ro
c
e

s
s
N

e
ig

h
b

o
rh

o
o

d
() : b

o
o

l
+

 s
e

a
rc

h
(s

ta
rtin

g
P

o
in

t : s
o

lu
tio

n
&

)

s
o

lu
tio

n
to

rc
h

S
im

u
la
t
e
d
A
n
n
e
a
lin

g
M
T
E

- c
c
H

its
 : L

is
tA

rr<
 in

t >
*

- c
c
h

R
e

s
ta

rt : in
t

- in
iP

ro
b

 : d
o

u
b

le
- e

n
d

P
ro

b
 : d

o
u

b
le

- e
x
p

D
e

lta
C

 : d
o

u
b

le
- e

x
p

E
v
a

l : d
o

u
b

le
- n

e
ig

h
b

o
rs

 : A
rra

y
L
is

t<
 s

o
lu

tio
n

 >
+

 e
v
a

lu
a

te
(o

ff
s
e

t : in
t, in

te
rv

a
l : in

t)
+

 g
e

n
e

ra
te

(o
ff

s
e

t : in
t, in

te
rv

a
l : in

t)
+

 s
e

a
rc

h
(s

ta
rtin

g
P

o
in

t : s
o

lu
tio

n
&

)

s
o

lu
tio

n
to

rc
h

h
e

u
ris

tic
H
e
u
r
is
t
ic
S
e
a
r
c
h
C
lu
s
t
e
r

- a
v
a

ila
b

le
H

e
u

ris
tic

s
 : L

in
k
e

d
L
is

t<
 h

e
u

ris
tic

 *
 >

- b
u

s
y
H

e
u

ris
tic

s
 : L

in
k
e

d
L
is

t<
 h

e
u

ris
tic

 *
 >

- h
e

u
rP

ro
p

s
 : L

in
k
e

d
L
is

t<
 H

e
u

ris
tic

P
ro

p
e

rtie
s
 *

 >
- p

rn
g

S
tre

a
m

s
 : L

in
k
e

d
L
is

t<
 P

R
N

G
 *

 >
- th

e
To

rc
h

e
s
 : L

in
k
e

d
L
is

t<
 to

rc
h

 *
*
 >

- h
e

u
ris

tic
L
is

tM
u

te
x
 : m

u
te

x
- h

e
u

ris
tic

L
is

tC
V

 : c
o

n
d

itio
n

_
v
a

ria
b

le
#

 s
e

a
rc

h
Tra

je
c
to

ry
 : d

o
u

b
le

*
- n

u
m

T
h

re
a

d
s
 : in

t
+

 s
e

a
rc

h
(s

ta
rtin

g
P
o

in
t : s

o
lu

tio
n

&
)

s
o

lu
tio

n
to

rc
h

G
e
n
e
t
ic
A
lg
o
r
it
h
m
M
T
E

- s
e

lTy
p

e
 : S

e
le

c
tio

n
Ty

p
e

+
 s

e
a

rc
h

(s
ta

rtin
g

P
o

in
t : s

o
lu

tio
n

&
)

s
o

lu
tio

n
to

rc
h

E
v
o
lu
t
io
n
a
r
y
P
r
o
g
r
a
m
m
in
g
M
T
E

#
 p

o
p

M
o

d
e

 : P
o

p
u

la
tio

n
Ty

p
e

+
 s

e
a

rc
h

(s
ta

rtin
g

P
o

in
t : s

o
lu

tio
n

&
)

Figure B.1: UML describing the heuristic search templates.

174

B.2.1 Initializing Threads

When a template class inheriting from HeuristicSearchMTE is instantiated, the number

of threads to be used is collected from HeuristicProperties. The HeuristicSearchMTE

also determines the search budget; the search budget can be either a time limit or a limit

on the number of solution evaluations.

If the search budget is a time limit, then the HeuristicSearchMTE creates an instance

of TimerThread. The TimerThread instance is provided with a pointers to a semaphore, a

condition variable, and the heuristic search instance. The TimerThread object is provided

to the BOOST thread library, which clones the object and starts a new thread executing in

a special method, operator()(), provided by the TimerThread class. The operator()()

directs the new thread to call the RegisterTimer()method provided by HeuristicSearch-

MTE, and provides the heuristic search instance with a pointer to the thread’s copy of the

TimerThread instance. The thread still executing operator()() is blocked while waiting for

the condition variable running to become true. HeuristicSearchMTE provides an interface

to inheriting templates to wake up the timer thread later.

The HeuristicSearchMTE then begins the process of creating worker threads that will

perform most of the real work in the search. Each worker thread requires two semaphores

and two condition variables. After the semaphores and condition variables are created,

HeuristicSearchMTE instantiates a HeuristicThread object. At the time of creation, the

HeuristicThread object is given the pointers to the semaphores, the condition variables,

and the HeuristicSearchMTE. Like the TimerThread object, each HeuristicThread ob-

ject is provided to the BOOST thread library, which again clones the object and starts a

new thread executing in the HeuristicThread implementation of operator()() (shown in

Listing B.1).

B.2.2 Main Worker Thread Loop

A worker thread remains in the loop that starts on line 5 of Listing B.1 until the heuristic

search instance is destructed. One of the first actions in the loop taken by a thread is

to call HeuristicSearchMTE’s method joinReadyList() (line 13). The joinReadyList()

provides a thread-safe method to put the pointer of the HeuristicThread into heuristic

175

search’s linked list called sleepingThreads (also known as the ready list). After joining

the ready list, the thread returns to HeuristicThread’s operator()() and is blocked while

waiting for the condition variable running to become true (line 17).

When the method TaskOneThread() provided by HeuristicSearchMTE is called by the

heuristic search, running will be set to true for one thread in the sleepingThreads list. The

selected thread’s enumerated parameter action is also set by the method TaskOneThread().

TaskOneThread() then notifies the thread that the value of running has changed via the con-

dition variable. Based on the value of action, the selected thread chooses to call one of three

possible methods: generate() (line 21), evaluate() (line 23), and singleThreadSearch

(line 25).

The interfaces to generate(), evaluate(), and singleThreadSearch() are defined by

HeuristicSearchMTE as pure virtual functions; these methods are actually implemented by

the templates that inherit from HeuristicSearchMTE. The generate() methods implement

a mechanism for the thread to generate new solutions in a manner that is coordinated

with the other worker threads. The evaluate() methods assign the thread a number

of solutions to evaluate. The singleThreadSearch() methods use the selected worker

thread to perform all of the search functions by itself. When the selected thread completes

the method call, it returns to the beginning of the while loop on line 5 and repeats the

process of joining the ready list and waiting to run again.

Heuristic search threads sometimes need to signal the threads to stop their work and

either return to the ready list or prepare for the destruction of the heuristic search object. If

the thread receives an interrupt between lines 8 and 28, the point of execution moves to the

exception handler starting on line 30. If the thread was running, it rejoins the ready list on

line 35. Using the interrupt semaphore, intrrptMutex, and the interrupt condition variable,

intrrptCV, the thread notifies the heuristic search that it has received and processed the

interrupt (line 40).

Disabling interruption on line 9 is crucial—if an interrupt is received after joining the

ready list on line 13 but before running is set to false on line 14, the ready list will make

a duplicate entry for this thread on line 35. The condition of duplicate entries in the ready

list would eventually lead to a failure.

176

1 template <c l a s s s o lu t i on , c l a s s torch>

2 void Heur ist icThread<s o lu t i on , torch > : : operator () ()

3 {

4 in t e r rup t ed = f a l s e ;

5 whi l e (t rue)

6 {

7 try

8 {

9 boost : : t h i s t h r e ad : : d i s a b l e i n t e r r u p t i o n d i ;

10 boost : : un ique lock<boost : : mutex> runLock (∗ runningMutex) ;

11 i f (! i n t e r rup t ed)

12 {

13 h eu r i s t i c−>j o inReadyLis t (t h i s) ;

14 running = f a l s e ;

15 }

16 boost : : t h i s t h r e ad : : r e s t o r e i n t e r r u p t i o n e i (d i) ;

17 whi l e (! running) runningCV−>wait (runLock) ;

18 switch (ac t i on)

19 {

20 case threadGenerate :

21 h eu r i s t i c−>generate (o f f s t , i n t v l) ; break ;

22 case threadEvaluate :

23 h eu r i s t i c−>eva luate (o f f s t , i n t v l) ; break ;

24 case threadSearch :

25 h eu r i s t i c−>s ing leThreadSearch (o f f s t) ; break ;

26 d e f au l t :

27 a s s e r t (f a l s e) ; break ;

28 }

29 }

30 catch (const boost : : t h r ead in t e r rup t ed&)

31 {

32 i f (running)

33 {

34 boost : : un ique lock<boost : : mutex> runLock (∗ runningMutex) ;

35 h eu r i s t i c−>j o inReadyLis t (t h i s) ;

36 running = f a l s e ;

37 }

38 boost : : un ique lock<boost : : mutex> intLock (∗ intrrptMutex) ;

39 in t e r rup t ed = true ;

40 intrrptCV−>no t i f y on e () ;

41 i f (h e u r i s t i c−>i sDe s t r u c t i n g ()) break ;

42 }

43 }

44 }

Listing B.1: The loop for worker thread execution in HeuristicThread.

177

B.2.3 Timer Thread

The job of the timer thread is to notify the original thread (which controls the search) that

the time limit for the search has been reached. To perform this job, the timer thread needs to

be activated. When a new search is started, the heuristic search object calls TimerThread’s

method wakeUp() which has an argument for the number of milliseconds allocated in the

search budget. The timer thread wakes up from its blocked sleep and then uses a sleep()

method provided by the BOOST thread library.

When the timer thread awakens from the BOOST thread library sleep, it invokes a

sequence of three methods provided by HeuristicSearchMTE:

1. setAction(heurFinished), which tells the control thread that the next action is to

finish the heuristic search,

2. setStopFlag(), which sets a flag that will cause the control thread to break out of

the main search loop, and

3. notifyActionComplete(), which wakes up the control thread and notifies it that an

action needs to be taken.

The timer thread then returns to its blocked state waiting for notification that a new search

is beginning.

B.2.4 Destructing Threads

The destructor method for HeuristicSearchMTE collects the pointers for all the semaphores

and condition variables used by the threads and stores them in temporary lists. The de-

structor method then sets the flag for destructing to true. The destructor method then

interrupts all the threads and calls a join() via the BOOST thread library.

Similar to worker threads, the timer thread contains an exception handling block for

interruption. Like the worker thread, it checks the destructing flag. If the destructing

flag is set to true, both timer and worker threads cease execution.

178

B.2.5 Evaluation of Solutions

When a solution is presented to the HeuristicSearchMTE evaluate() method, a thread-

safe hash table, previouslyEvaluated, is consulted. If the solution is present in prev-

iouslyEvaluated, the score of the previous solution is read from the hash table and applied

to the current copy of the previously seen solution. A counter called numConsecutive-

CacheHits is incremented. There is a limit to the number of consecutive cache hits allowed

to prevent the search from entering an infinite loop when an evaluation budget is used (i.e.,

no timer thread is present to end the search).

If a solution is not found in previouslyEvaluated, numConsecutiveCacheHits is set

to 0. The evaluate() method then calls the solution’s score() method. The score()

method for an Architecture object will invoke a service selection search. The score()

method for a ServiceSelection object will conduct model evluations and utility calcu-

lations. Eventually both architecture and service selections return a Ug as the score to

the evaluate() method. The solution is then stored in previouslyEvaluated. If the

solution’s score is greater than the bestOverallScore, bestOverallFound is assigned to

the current solution. The bestOverallScore is updated as well. The evaluate() method

will also check to see if the bestOverallScore is the maximum score possible. If the an-

swer is yes, the search will terminate. (In this dissertation, the only times the maximum

value was reached were during the online SVM meta-controller’s search for optimal SVM

parameters.)

B.3 Local Search Implementation

The logic for hill-climbing, beam search, and simulated annealing described in Section 2.3.4

are implemented in their respective heuristic search templates . Similar to the timer thread

setting the heurFinished action, worker threads can inform the control thread that new

actions are warranted. The possible enumerated actions are:

• heurWait, which indicates the search has begun but no action has been decided yet,

• heurEval, which indicates that the current action is to evaluate solutions,

179

• heurMove, which indicates that the current action is to visit a new solution and

generate a new neighborhood,

• heurRestart, which indicates that the current search should be restarted at a new

randomly generate solution, and

• heurFinish (discussed with the timer thread in Section B.2.3).

Neighborhood generation in hill-climbing and simulated annealing is single-threaded.

Neighborhood generation is conducted by a method implemented by the solution class.

One of the goals of the heuristic search template design is to contain the complexity of

mult-threading within the heuristic search templates; this goal makes multi-threaded neigh-

borhood generation difficult. The design decision to forgo multi-threading in neighborhood

generation could be re-visited in future versions.

Neighborhood generation in beam search can utilize up to k (the beam width) threads,

since separate solution objects will be generate the neighborhoods. It is important to

make sure that data structures shared between the solutions would not be thread-safe.

During neighborhood generation, the local search algorithms make use of the torch

abstract data type for both architecture and service selection search. The torch contains

what would typically be temporary data structures. However, these data structures can

be large, and re-allocating and re-building these data structures is expensive. These data

structures are retained in the torch class and provided in the argument of solution’s

getNeighborhood(). Beam search must make k copies of the torch object as the data

structures contained in the torch are not thread-safe.

When the getNeighborhood()method finishes, the neighborhood (a Set of solutions)

is returned to the heuristic search. The heuristic search can take full advantage of the worker

threads for evaluating the solutions in the neighborhood.

In opportunistic hill-climbing and simulated annealing, a worker thread may find a new

solution that warrants a visit. When this happens, the worker thread will set the action

to heurMove, and then notify the control thread. The control thread will interrupt the rest

of the worker threads. After verifying that each worker thread received and processed the

interrupt, the control thread proceeds to neighborhood generation of the new solution.

180

B.4 Evolutionary Algorithms

The templates EvolutionaryProgrammingMTE and GeneticAlgorithmMTE both inherit from

the template EvolutionaryAlgorithmMTE (see Fig. B.1). The abstract template Evolu-

tionaryAlgorithmMTE uses multiple inheritance from the templates EvolutionaryAlgo-

rithm and HeuristicSearchMTE. The EvolutionaryAlgorithm template implements life

cycle methods that are used to support inheriting template classes. The Evolutionary-

Algorithm template uses wrapper classes, called Indviduals (distinct from the wrapper

classes discussed in Section B.1), around the abstract data type solution. This wrapper

simplifies keeping copies of solution in case mutation or crossover operations yield an in-

valid solution. Also, the Individual wrapper class provides some functionality not shown

in Fig. B.1 that enable certain efficiencies when two or more solutions in the population

are identical.

The template EvolutionaryAlgorithmMTE takes the life cycle support methods pro-

vided by EvoluationaryAlgorithm to create new methods that enable worker threads to

generate new solutions and evaluate solutions.

The templates EvolutionaryProgrammingMTE and GeneticAlgorithmMTE then imple-

ment their search procedures according to the logic presented in Section 2.3.5 using the

support functions provided by EvolutionaryAlgorithmMTE and EvolutionaryAlgorithm.

181

Bibliography

182

Bibliography

[1] G. Abbas, A.K. Nagar, H. Tawfik, and J. Y. Goulermas. Quality of service issues and
nonconvex network utility for inelastic services in the internet. In IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS ’09), pages 537–547, London, United Kingdom, September
2009.

[2] A. Agrawal, G. Karsai, and F. Shi. Generative programming via graph transforma-
tions in the model-driven architecture. In OOPSLA Workshop on Generative Tech-
niques in the Context of Model Driven Architecture, pages 229–240, Seattle, WA,
November 2002.

[3] A. Agrawal, G. Karsai, and F. Shi. Graph transformations on domain-specific models.
Technical report, Institute for Software Integrated Systems, November 2003.

[4] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian. Resource
management in the autonomic service-oriented architecture. In Proc. 3rd IEEE In-
ternational Conference on Autonomic Computing (ICAC 06), pages 84–92, Dublin,
Ireland, June 2006.

[5] T. Bäck, F. Hoffmeister, and H. Schwefel. A survey of evolution strategies. In 4th
International Conference on Genetic Algorithms, pages 2–9, San Diego, CA, July
1991.

[6] M. N. Bennani and D. A. Menascé. Assessing the robustness of self-managing com-
puter systems under highly variable workloads. In Proc. 1st IEEE International Con-
ference on Autonomic Computing (ICAC ’04), pages 62–69, New York, NY, May
2004.

[7] M. N. Bennani and D. A. Menascé. Resource allocation for autonomic data centers
using analytic performance models. In Proc. 2nd IEEE International Conference on
Autonomic Computing (ICAC ’05), pages 229–240, Seattle, WA, June 2005.

[8] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

[9] A. Bivens, C. Chhuor, D. Dillenberger, G. Ferris, J. Fenton, and W. Chou.
Autonomic load balancing, part 1: Cisco content switching module.
http://www.ibm.com/developerworks/library/ac-ewlmload1/index.html, April
2006.

[10] M. B. Blake. Decomposing composition: Service-oriented software engineers. IEEE
Software, 24:68–77, November 2007.

[11] D. Breitgand, R. Cohen, A. Nahir, and D. Raz. On fully distributed adaptive load
balancing. Lecture Notes in Computer Science, 4785:74–85, September 2007.

183

[12] R. Calinescu, Lars Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli.
Dynamic QoS management and optimization in service-based systems. Software En-
gineering, IEEE Transactions on, 37(3):387–409, 2011.

[13] R. D. Callaway, M. Devetsikiotis, Y. Viniotis, and A. Rodriguez. An autonomic service
delivery platform for service-oriented network environments. IEEE Transactions on
Services Computing, 3(2):104–115, April 2010.

[14] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola.
Moses: A framework for QoS driven runtime adaptation of service-oriented systems.
Software Engineering, IEEE Transactions on, 38(5):1138–1159, 2012.

[15] V. Cardellini, E. Casalicchio, V. Grassi, F. L. Presti, and R. Mirandola. QoS-driven
runtime adaptation of service oriented architectures. In 7th Joint European Soft-
ware Engineering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 131–140, Amsterdam, The Netherlands,
August 2009.

[16] Emiliano Casalicchio, Daniel A Menascé, Vinod Dubey, and Luca Silvestri. Optimal
service selection heuristics in service oriented architectures. In Quality of Service in
Heterogeneous Networks, pages 785–798. Springer, 2009.

[17] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[18] Y. Cheng, A. Leon-Garcia, and I. Foster. Toward an autonomic service management
framework: A holistic vision of soa, aon, and autonomic computing. IEEE Commu-
nications Magazine, 46(5):138–146, May 2008.

[19] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al. In-
troduction to algorithms, volume 2. MIT press Cambridge, 2001.

[20] Andrea D’Ambrogio. Model-driven WSDL extension for describing the QoS of web
services. In IEEE International Conference on Web Services (ICWS ’06), pages 789–
796, Chicago, IL, September 2006.

[21] E. Dashofy, A. van der Hoek, and R. N. Taylor. An infrastructure for the rapid devel-
opment of XML-based architecture description languages. In Proc. 24th International
Conference on Software Engineering, pages 266–276, Orlando, FL, May 2002.

[22] M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards architecture-based self-
healing systems. In Proc. of the 1st Workshop on Self-Healing Systems, pages 21–26,
Charleston, SC, November 2002.

[23] J. Davis. GME: The generic modeling environment. In OOPSLA ’03: Companion
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 82–83, Anaheim, CA, October 2003.

[24] Kenneth DeJong. Evolutionary Computation. MIT, Cambridge, MA, 2002.

[25] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung. Self-
managing systems: A control theory foundation. In 12th IEEE International Con-
ference and Workshops on the Engineering of Computer-Based Systems (ECBS ’05),
pages 441–448, Greenbelt, Maryland, April 2005.

184

[26] Y. Diao, C. W. Wu, J. L. Hellerstein, A. J. Storm, M. Surendra, S. Lightstone,
S. Parekh, C. Garcia-Arellano, M. Carroll, L. Chu, and J. Colaco. Comparative
studies of load balancing with control and optimization techniques. In Proc. of the
American Control Conference, pages 1484–1490, Portland, OR, June 2005.

[27] S. Dobson, S. Denazis, A. Fernández, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic communications.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1:223–259, De-
cember 2006.

[28] C. Domeniconi, J. Peng, and D. Gunopulos. Locally adapative metric nearest-neighbor
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(9):1281–1285, September 2002.

[29] M. Dorigo and T. Stützle. Ant Colony Optimization. Bradford Books, Cambridge,
Massachusetts, 1990.

[30] V. Dubey and D. A. Menascé. Utility-based optimal service selection for business
processes in service oriented architectures. In IEEE International Conference on Web
Services, pages 542–550, Miami, FL, July 2010.

[31] J. J. Dujmović. Continuous preference logic for system evaluation. IEEE Transactions
on Fuzzy Systems, 15:1082–1099, December 2007.

[32] J. J. Dujmović. Characteristic forms of generalized conjunction/disjunction. In 2008
IEEE International Conference on Fuzzy Systems (FUZZ 2008), pages 1075–1080,
Hong Kong, China, June 2008.

[33] Ahmed Elkhodary. A learning-based approach for engineering feature-oriented self-

adaptive software systems. In Proc. 18th ACM SIGSOFT international symposium on
Foundations of software engineering, FSE ’10, pages 345–348, New York, NY, USA,
2010. ACM.

[34] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. Fusion: a framework for en-

gineering self-tuning self-adaptive software systems. In Proc. 18th ACM SIGSOFT
international symposium on Foundations of software engineering, FSE ’10, pages 7–
16, New York, NY, USA, 2010. ACM.

[35] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Pren-
tice Hall, Upper Saddle River, NJ, 2005.

[36] N. Esfahani, S. Malek, D. A. Menascé, J. P. Sousa, and H. Gomaa. A modeling lan-
guage for activity-oriented composition of service-oriented software systems. In Proc.
12th ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems MODELS ’09, pages 591–605, Denver, CO, October 2009.

[37] J. M. Ewing and D. A. Menascé. Business-oriented autonomic load balancing for
multi-tiered web sites. In IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS ’09), pages
279–288, London, United Kingdom, September 2009.

[38] J. M. Ewing and D. A. Menascé. Autonomic metaheuristic optimization with appli-
cation to run-time software adaptation. In The Eleventh International Conference on
Autonomic and Autonomous Systems (ICAS), page in publication, Rome, Italy, May
2015.

185

[39] John M Ewing and Daniel A Menascé. A meta-controller method for improving
run-time self-architecting in SOA systems. In Proceedings of the 5th ACM/SPEC
international conference on Performance engineering, pages 173–184. ACM, 2014.

[40] Jerome Friedman. Flexible metric nearest neighbor classification. Technical report,
Stanford University Statistics Department, 1994.

[41] M. Fuchs. Learning proof heuristics by adapting parameters. In Proc. Twelfth Inter-
national Conference in Machine Learning (ML-95), pages 235–243, Tahoe City, CA,
July 1995.

[42] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 42(1):5–18, January 2003.

[43] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. A. Menascé. Software adaptation
patterns for service-oriented architectures. In Proc. 2010 ACM Symposium on Applied
Computing, pages 462–469, Sierre, Switzerland, March 2010.

[44] H. Gomaa and M. Hussein. Software reconfiguration patterns for dynamic evolution
of software architectures. In Proc. 4th Working IEEE/IFIP Working Conference on
Software Architecture, pages 79–88, Oslo, Norway, June 2004.

[45] Hassan Gomaa and Koji Hashimoto. Dynamic software adaptation for service-oriented
product lines. In Proceedings of the 15th International Software Product Line Con-
ference, Volume 2, page 35. ACM, 2011.

[46] Hassan Gomaa and Koji Hashimoto. Dynamic self-adaptation for distributed service-
oriented transactions. In Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pages 11–20. IEEE Press, 2012.

[47] Hassan Gomaa and Koji Hashimoto. Model-based run-time software adaptation for
distributed hierarchical service coordination. In ADAPTIVE 2014, The Sixth Inter-
national Conference on Adaptive and Self-Adaptive Systems and Applications, pages
1–6, 2014.

[48] Igor Griva, Stephen G. Nash, and Ariela Sofer. Linear and Nonlinear Optimization.
Society for Industrial Mathematics, Philadelphia, PA, second edition, 2008.

[49] Koji Hashimoto. Software Adaptation Patterns for Service-Oriented Architectures.
PhD thesis, George Mason University, 2010.

[50] T. Heinis, C. Pautasso, and G. Alonso. Design and evaluation of an autonomic work-
flow engine. In Proc. 2nd IEEE International Conference on Autonomic Computing
(ICAC ’05), pages 27–38, Seattle, WA, June 2005.

[51] Paul Hensgen. Umbrello uml modeller. https://umbrello.kde.org/. version 2.15.2.

[52] K. Herrmann, G. Mühl, and K. Geihs. Self-management: The solution to complexity
or just another problem. IEEE Distributed Systems Online, 6(1):1, January 2005.

[53] T. Horvath, K. Skadron, and T. Abdelzaher. Enhancing energy efficiency in multi-
tier web server clusters via prioritization. In Proc. IEEE International Parallel and
Distributed Processing Symposium (IPDPS’07), pages 1–6, Long Beach, CA, March
2007.

186

[54] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to support
vector classification, 2003.

[55] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support
vector machines. Neural Networks, IEEE Transactions on, 13(2):415–425, 2002.

[56] M. C. Huebscher and J. A. McCann. A survey of autonomic computing–degrees,
models, and applications. ACM Computing Surveys, 40(3):1–28, August 2008.

[57] IBM. An architectural blueprint for autonomic computing. http://www-
01.ibm.com/software/tivoli/autonomic/pdfs/AC Blueprint White Paper 4th.pdf,
June 2006. 4th edition.

[58] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,
31(8):651–666, 2010.

[59] R. K. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley and Sons,
New York, 1991.

[60] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlicting, and C. Pu. Generating adap-
tation policies for multi-tier server applications in consolidated server environments.
In Proc. 5th IEEE International Conference on Autonomic Computing (ICAC ’08),
pages 23–32, Chicago, IL, June 2008.

[61] I. J. Jureta, S. Faulkner, Y. Achbany, and M. Saerens. Dynamic web service com-
position within a service-oriented architecture. In IEEE International Conference on
Web Services (ICWS ’07), pages 304–311, Salt Lake City, UT, July 2007.

[62] James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kaufmann,
San Francisco, 2001.

[63] J. O. Kephart and W. E. Walsh. An artificial intelligence perspective on autonomic
computing policies. In Proc. 5th International Workshop on Policies for Distributed
Systems and Networks, pages 3–12, Yorktown Heights, New York, June 2004.

[64] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, January 2003.

[65] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Review, 45(3):385–482,
September 2003.

[66] S. Kounev, F. Brosig, N. Huber, and R. Reussner. Towards self-aware performance and
resource management in modern service-oriented systems. In 2010 IEEE International
Conference on Services Computing (SCC), pages 621–624, Miami, FL, July 2010.

[67] Anne Koziolek, Heiko Koziolek, and Ralf Reussner. Peropteryx: automated applica-
tion of tactics in multi-objective software architecture optimization. In QoSA-ISARCS
’11, pages 33–42, New York, NY, USA, 2011. ACM.

[68] J. Kramer and J. Magee. Analyzing dynamic change in software architectures: A
case study. In Proc. 4th IEEE International Conference on Configurable Distributed
Systems, pages 91–100, Annapolis, MD, May 2007.

187

[69] J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In Future
of Software Engineering (FOSE ’07), pages 259–268, Minneapolis, MN, May 2007.

[70] G. H. Kuenning. Mersenne twist pseudorandom number generator package.
http://lasr.cs.ucla.edu/geoff/mtwist.html, July 2008. version 1.5.

[71] D. Kusic and N. Kandasamy. Risk-aware limited lookahead control for dynamic re-
source provisioning in enterprise computing systems. Cluster Computing, 10(4):395–
408, August 2007.

[72] J. W. Lee, R. R. Mazumdar, and N. B. Shroff. Non-convex optimization and rate con-
trol for multi-class services in the Internet. IEEE/ACM Transactions on Networking,
13(4):827–840, August 2005.

[73] W. S. Li, D. C. Zilio, V. S. Batra, M. Subramanian, C. Zuzarte, and I. Narang.
Load balancing for multi-tiered database systems through autonomic placement of
materialized views. In Proc. IEEE International Conference on Data Engineering
(ICDE06), page 102, Atlanta, GA, April 2006.

[74] Kwei-Jay Lin, Jing Zhang, Yanlong Zhai, and Bin Xu. The design and implementation
of service process reconfiguration with end-to-end qos constraints in soa. Service
Oriented Computing and Applications, 4(3):157–168, 2010.

[75] M. Lin, X. Jianshan, G. Heqing, and H. Wang. Solving QoS-driven web service dy-
namic composition as fuzzy constraint satisfaction. In Proc. 2005 IEEE International
Conference on e-Technology, e-Commerce, and e-Service (EEE’05), pages 9–14, Hong
Kong, China, April 2005.

[76] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck.
Web service level agreement (WSLA) language specification.
http://researchweb.watson.ibm.com/wsla/WSLASpecV1-20030128.pdf, January
2001.

[77] S. Malek, N. Esfahani, D. A. Menascé, J. Sousa, and H. Gomaa. Self-architecting
software systems (SASSY) from QoS-annotated models. In Principles of Engineering
Service Oriented Systems (PESOS ’09), pages 62–69, Vancouver, Canada, May 2009.

[78] Sam Malek, Marija Mikic-Raki, and Nenad Medvidovic. A decentralized redeployment
algorithm for improving the availability of distributed systems. LNCS, 3798:99–114,
November 2005.

[79] Sam Malek, Marija Mikic-Raki, and Nenad Medvidovic. A style-aware architectural
middleware for resource-constrained, distributed systems. IEEE Transactions on Soft-
ware Engineering, 31(3):256–272, March 2005.

[80] E. Mancini, M. Rak, and U. Villano. A simulation-based framework for autonomic web
services. In Proc. 11th International Conference on Parallel and Distributed Systems,
pages 433–437, Fukuoka, Japan, July 2005.

[81] Nariman Mani, Dorina C Petriu, and Murray Woodside. Propagation of incremen-
tal changes to performance model due to soa design pattern application. In Proc.
ACM/SPEC international conference on International conference on performance en-
gineering, pages 89–100. ACM, 2013.

188

[82] Anne Martens, Danilo Ardagna, Heiko Koziolek, Raffaela Mirandola, and Ralf Reuss-
ner. A hybrid approach for multi-attribute QoS optimisation in component based
software systems. In GeorgeT. Heineman, Jan Kofron, and Frantisek Plasil, edi-
tors, Research into Practice–Reality and Gaps, volume 6093 of LNCS, pages 84–101.
Springer Berlin Heidelberg, 2010.

[83] M. Marzolla and R. Mirandola. Performance aware reconfiguration of software sys-
tems. Technical report, The University of Bologna, May 2010.

[84] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transtions on Mod-
eling and Computer Simulation, 8(1):3–30, 1998.

[85] D. A. Menascé and V. Akula. A business-oriented load dispatching framework for
online auction sites. In Proc. 4th IEEE International Conference on Quantitative
Evaluations of Systems (QEST07), pages 249–258, Edinburgh, Scotland, September
2007.

[86] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy. Performance by Design: Com-
puter Capacity Planning by Example. Prentice Hall, Upper Saddle River, NJ, 2004.

[87] D. A. Menascé, E. Casalicchio, and V. Dubey. A heuristic approach to optimal service
selection in service oriented architectures. In Proc. 7th International Workshop on
Software and Performance (WOSP 2008), pages 13–24, Princeton, NJ, June 2008.

[88] D. A. Menascé, E. Casalicchio, and V. Dubey. On optimal service selection in service
oriented architectures. Performance Evaluation Journal, 67(8):659–675, September
2009.

[89] D. A. Menascé, R. Dodge, and D. Barbará. Preserving QoS of e-commerce sites
through self-tuning: A performance model approach. In Proc. 3rd ACM Conference
on E-commerce, pages 224–234, Tampa, FL, October 2001.

[90] D. A. Menascé and V. Dubey. Utility-based QoS brokering in service oriented ar-
chitectures. In Proc. IEEE International Conference on Web Services (ICWS ’07),
pages 422–430, Salt Lake City, UT, July 2007.

[91] D. A. Menascé and V. Dubey. On composing and decomposing QoS goals in ser-
vice oriented architectures. In J. Suzuki, editor, Methodologies for Non-Functional
Requirements in Serive Oriented Architectures. IGI Global, 2010.

[92] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek, and J. P. Sousa. A framework
for utility-based service oriented design in SASSY. In Workshop on Software and
Performance, pages 27–36, San Jose, CA, January 2010.

[93] D. A. Menascé, H. Ruan, and H. Gomaa. QoS management in service-oriented archi-
tectures. Journal of Performance Evaluation, 64(7–8):636–663, August 2007.

[94] D. A. Menascé, J. P. Sousa, S. Malek, and H. Gomaa. QoS architectural patterns
for self-architecting software systems. In Proc. 7th International Conference on Au-
tonomic Computing (ICAC ’10), pages 195–204, Washington, DC, June 2010.

[95] Daniel A Menascé, Emiliano Casalicchio, and Vinod Dubey. On optimal service
selection in service oriented architectures. Performance Evaluation, 67(8):659–675,
2010.

189

[96] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics.
Springer, New York, second edition, 2004.

[97] M. Mikic-Rakic, S. Malek, and N. Medvidovic. Improving availability in large, dis-
tributed component-based systems via redeployment. LNCS, 3798:83–98, November
2005.

[98] A. Missaoui and K. Barkaoui. A neuro-fuzzy model for QoS based selection of web
service. Journal of Software Engineering and Applications, 4(3):588–592, June 2010.

[99] A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to automatic
production of compiler heuristics. In D. Scott, editor, Artificial Intelligence: Method-
ology, Systems, and Applications, volume 2443 of LNCS, pages 389–409. Springer
Berlin, Heidelberg, 2002.

[100] O. Nano and A. Zisman. Realizing service-centric software systems. IEEE Software,
24(6):28–30, November 2007.

[101] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based run-
time software evolution. In Proc. 20th International Conference on Software Engi-
neering, pages 177–186, Kyoto, Japan, April 1998.

[102] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented com-
puting: State of the art and research challenges. IEEE Computer, 40(11):38–45,
November 2007.

[103] C. Pautasso, T. Heinis, and G. Alonso. Autonomic execution of web service compo-
sitions. In Proc. 2005 IEEE International Conference on Web Services (ICWS ’05),
page 435, Orlando, FL, July 2005.

[104] C. Pautasso, T. Heinis, and G. Alonso. JOpera: Autonomic service orchestration.
IEEE Data Engineering Bulletin, 29(3):32–39, September 2006.

[105] D. Perez-Palacin and J. Merseguer. Performance evaluation of self-reconfigurable
servie-oriented software with stochastic petri nets. Electronic Notes in Theoretical
Computer Science, 261:181–201, February 2010.

[106] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated composition of web
services by planning at the knowledge level. In 19th International Joint Conference
on Artificial Intelligence, pages 1252–1259, Edinburgh, Scotland, August 2005.

[107] N. Poggi, T. Moreno, J. L. Berral, R. Gavaldá, and J. Torres. Self-adaptive utility-
based web session management. The International Journal of Computer and Telecom-
munications Networking, 53(10):1712–1721, July 2009.

[108] V. Poladian, D. Garlan, M. Shaw, M. Satyanarayanan, B. Schmerl, and J. Sousa.
Leveraging resource prediction for anticipatory dynamic configuration. In Proc. 1st
IEEE Conference on Self-Adaptive and Self-Organizing Systems (SASO), pages 214–
223, Boston, MA, July 2007.

[109] Bhavani Raskutti and Adam Kowalczyk. Extreme re-balancing for svms: a case study.
ACM Sigkdd Explorations Newsletter, 6(1):60–69, 2004.

[110] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, editors. Modern
Heuristic Search Methods. Wiley, Hoboken, NJ, 1996.

190

[111] James Robergé. Data Structures in C++: A Laboratory Course. Jones and Bartlett
Publishers, Sudbury, MA, 1997.

[112] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM Review, 35(2):183–238,
June 1993.

[113] Jonathan Rowe, Darrell Whitley, Laura Barbulescu, and Jean-Paul Watson. Prop-
erties of gray and binary representations. Evolutionary Computation, 12(1):47–76,
2004.

[114] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River, NJ, second edition, 2002.

[115] M. Schmid and R. Kroeger. Decentralised QoS-management in service oriented archi-
tectures. In R. Meier and S. Terzis, editors, Distributed Applications and Interoperable
Systems, volume 5053 of LNCS, pages 44–57. Springer, Berlin, 2008.

[116] S. Shenker. Fundamental design issues for the future Internet. IEEE Journal on
Selected Areas in Communications, 13(7):1176–1188, September 1995.

[117] S. F. Smith. Flexible learning of problem solving heuristics through adaptive search.
In Proc. Eighth International Joint Conference on Artificial Intelligence IJCAI’83,
pages 422–425, Karlsruhe, Germany, August 1983.

[118] J. P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and M. Shaw. Task-based adaptation
for ubiquitous computing. IEEE Transactions on Systems, Man, and Cybernetics,
36(3):328–340, May 2006.

[119] J. P. Sousa, Z. Zengin, and S. Malek. Towards multi-design of situated service-oriented
systems. In Proc. 2nd International Workshop on Principles of Engineering (PESOS
’10), pages 57–63, Cape Town, South Africa, May 2010.

[120] R. Srikant. Mathematics of Internet Congestion Control. Birkäuser, Boston, MA,
2004.

[121] M. Stephenson, S. Amarasinghe, M. Martin, and U. O’Reilly. Meta optimization:
Improving compiler heuristics with machine learning. SIGPLAN Not., 38(5):77–90,
2003.

[122] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley,
MA, 1993.

[123] Bjarne Stroustrup. Abstraction and the c++ machine model. In Zhaohui Wu, Chun
Chen, Minyi Guo, and Jiajun Bu, editors, Embedded Software and Systems, volume
3605 of Lecture Notes in Computer Science, pages 1–13. Springer Berlin Heidelberg,
2005.

[124] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hybrid reinforcement learning
approach to autonomic resource allocation. In Proc. 3rd IEEE International Con-
ference on Autonomic Computing (ICAC ’06), pages 65–73, Dublin, Ireland, June
2006.

[125] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in autonomic
systems. In Proc. International Conference on Autonomic Computing (ICAC ’04),
pages 70–77, New York, NY, May 2004.

191

[126] G. Wang, C. Wang, A. Chen, H. Wang, C. Fung, S. Uczekaj, Y. Chen, W. Guthmiller,
and J. Lee. Service level management using QoS monitoring, diagnostics, and adapta-
tion for networked enterprise systems. In Ninth IEEE International EDOC Enterprise
Computing Conference, pages 239–248, Enschede, The Netherlands, September 2005.

[127] D. A. Waterman. Generalization learning techniques for automating the learning of
heuristics. Artificial Intelligence, 1(1-2):121–170, April 1970.

[128] Anthony Williams and V. J. Botet Escriba. The boost thread library. http://www.
boost.org/doc/libs/1 47 1/libs/boost thread/boost thread. htm), 2011.

[129] David H Wolpert and William G Macready. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[130] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On the use of fuzzy modeling
in virtualized data center management. In Proc. 4th IEEE International Conference
on Autonomic Computing (ICAC ’07), pages 25–34, Jacksonville, FL, June 2007.

[131] J. Zhang and R. J. Rigueiredo. Autonomic feature selection for application classifica-
tion. In Proc. 3rd IEEE International Conference on Autonomic Computing (ICAC
’06), pages 43–52, Dublin, Ireland, June 2006.

[132] L. Zhang and D. Ardagna. SLA based profit optimization in autonomic comput-
ing systems. In Proc. 2nd International Conference on Service Oriented Computing
(ICSOC04), pages 173–182, New York, NY, November 2004.

[133] Y. Zhang, K. Lin, and J. Hsu. Accountability monitoring and reasoning in service-
oriented architectures. Service Oriented Computing Applications, 1(1):35–50, June
2007.

192

Curriculum Vitae

From 2001 to 2005, John was employed as a computer scientist at the Defense Information
Systems Agency.

From 1999 to 2001, John as a member of the senior technical staff and Computer,
Networks, and Software Inc.

From 1997 to 1998, John served as the computer lab manager of the Rice Campus at
the Illinois Institute of Technology.

In 2003, John earned a Master of Science in Computer Science from Illinois Institute of
Technology.

In 1997, John received Bachelor of Science in Chemistry from University of Richmond.
In 1993, John graduated from York Community High School in Elmhurst, Illinois.

193

	Blank Page

