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Abstract 

Video streaming over wireless networks is compelling for many applications, rang

ing from home entertainment to surveillance to search-and-rescue operations. When 

multiple video streams share a wireless network, careful rate allocation is needed to 

prevent congestion, as well as to balance the video qualities among the competing 

streams. In this dissertation, we present a distributed media-aware rate allocation 

protocol, and evaluate its performance in the application example of streaming high-

definition (HD) and standard-definition (SD) video over 802.11-based wireless home 

networks. 

Our optimization framework incorporates heterogeneity in wireless link speeds 

and video rate-distortion (RD) characteristics, as well as traffic contention among 

neighboring links. The goal of the protocol is to minimize the total video distortion 

of all participating streams while limiting network utilization. It relies on cross-

layer information exchange between video rate controllers at the end hosts and link 

state monitors at the intermediate relay nodes. Results from various network sim

ulations confirm that the media-aware allocation outperforms TCP-Friendly Rate 

Control (TFRC) in terms of average video quality and fairness among the streams. 

The protocol is further extended for the scenario of application-layer video mul

ticast over wireless. Following the same mechanism of congestion price updates at 

relaying wireless nodes and video rate updates at sending peers, the multicast ex

tension of the protocol is designed to support either non-scalable or scalable video 

streams. As in unicast video streaming, the proposed media-aware protocol achieves 

lower average video distortion of all participating peers than a TFRC-based heuristic 

scheme. 
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Chapter 1 

Introduction 

Video streaming over wireless networks is compelling for many applications, ranging 

from news and multimedia messaging services for cell phones, extended broadband 

Internet access in corporate or community networks, to wireless home entertainment 

or surveillance camera networks, to audiovisual communication in search-and-rescue 

operations. 

In spite of the growing networking capabilities of modern wireless devices and 

the sophisticated techniques used by today's video coding and streaming systems, 

video streaming over wireless networks remains a challenging task. The wireless 

radio channel is subject to interference from other nearby transmitters, multipath 

fading, and shadowing, causing fluctuations in link capacities and sometimes an error-

prone communication environment. The traffic patterns of compressed video streams 

typically change over time due to content variations and dynamic user behavior, and 

the received video quality may degrade drastically in the presence of packet losses, 

due to error propagation in the compressed bitstream. Moreover, video streaming 

applications typically have high data rates and stringent latency requirements, at odds 

with the limited bandwidth resources in a wireless network. Simultaneous streaming 

of multiple video sessions can easily lead to network congestion without careful rate 

allocation. The lack of centralized control in a wireless network, on the other hand, 

requires that the task of multi-user resource allocation be performed in a distributed 

manner. 

1 
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CHAPTER 1. INTRODUCTION 2 

This dissertation focuses on the problem of distributed rate allocation among 

multiple simultaneous video streaming sessions, so that they can efficiently share 

a wireless network without incurring excessive congestion. Since neighboring links 

compete for the same wireless radio channel, the rate of a video stream will not only 

affect the links along its own route, but also contend with traffic over other nearby 

links. The rate allocation problem is further complicated by heterogeneity in both 

the video rate utilities and the wireless link qualities. In this thesis, we take into 

consideration all the above factors to design a practical, distributed rate allocation 

protocol for video over wireless. The contributions are summarized as follows: 

• Formulation and analysis of a mathematical framework for multi-stream rate 

allocation over wireless networks. In this framework, a wireless network model 

explicitly captures the effect of traffic contention among neighboring links and 

heterogeneous link transmission speeds. A parametric video distortion model is 

used to represent the utility of allocated rate for each stream. The multi-stream 

rate allocation problem is formulated within the convex optimization framework, 

with the goal of minimizing total video distortion while avoiding excessive net

work utilization. It is shown that the globally optimal solution can be achieved 

in a distributed fashion, by iteratively updating video source rates and link 

congestion prices. We further analyze dynamics of the ^proposed distributed 

solution, and establish system stability under proper parameter choices. 

• Design and simulation study of a distributed media-aware rate allocation pro

tocol. The proposed protocol allows cross-layer information exchange between 

link state monitors at the relaying wireless nodes and video rate controllers at 

the end hosts, so that each stream can quickly adapt its rate to various changes 

in the wireless networks and the video streams. Consequently, each video end 

host can regulate its stream rate according to explicit congestion prices accu

mulated along its path, instead of reacting to inferred congestion from packet 

losses or excessive delay. In comparison with conventional schemes such as TCP-

Friendly Rate Control (TFRC), the proposed media-aware allocation leads to 

lower average video distortion and more balanced qualities among the streams. 
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CHAPTER 1. INTRODUCTION 3 

• Extension of the distributed rate allocation protocol for video multicast over wire

less, supporting both scalable and non-scalable video streams. Each relay node in 

the multicast tree actively maintains local link state information and a conges

tion price reflecting the impact on congestion of traversing video streams. Each 

parent peer in the multicast tree either actively performs video rate adapta

tion when relaying a scalable video stream, or collects an aggregated congestion 

price over its entire subtree when streaming non-scalable video streams. As in 

unicast video streaming, the multicast extension of the rate allocation protocol 

outperforms the TFRC-based heuristic scheme in terms of average video quality 

received by all participating peers. 

Most simulation results presented in this dissertation are collected from scenarios of 

high-definition (HD) and standard-definition (SD) video streaming over 802.11a net

works, a concrete example being a home media network. Nevertheless, we believe 

that the general principles of the proposed distributed rate allocation protocol carry 

over to other types of networks, and expect similar performance gains. 

The rest of this dissertation is organized as follows. The next chapter reviews 

research in the related areas of wireless networking, congestion control, and video 

coding and streaming systems. Chapter 3 presents our optimization framework, to

gether with stability analysis and numerical illustrations of the distributed rate al

location algorithm. In Chapter 4, we explain the design of a practical media-aware 

rate allocation protocol, based on cross-layer information exchange between video 

rate controllers at the end hosts and link state monitors at the relay nodes. Per

formance of the protocol is compared against a conventional media-unaware scheme 

based on TFRC, in network simulations involving various network topologies and 

different types of video content. Chapter 5 extends the media-aware rate allocation 

protocol for wireless video multicast. For delivery of non-scalable video streams, con

gestion prices are accumulated in a recursive manner and passed along to the root 

node for video rate adaptation. For delivery of scalable video streams, graceful qual

ity reduction at intermediate nodes within the multicast tree becomes possible, again 

based on accumulated congestion prices. Finally, in Chapter 6, we summarize lessons 

learned from this dissertation and discuss future research directions. 
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Chapter 2 

Background 

The prospect of improving the performance of video streaming over wireless networks 

has motivated efforts across several research communities. This dissertation builds 

upon recent advances in wireless networking, congestion control, as well as video 

coding and streaming techniques. The following sections review the relevant state-of-

art in these related areas. 

2.1 Wireless Networking 

2.1.1 802.11 Networks 

Overview of 802.11 standards 

To support communications over wireless Local Area Networks (LANs), the IEEE 

802.11 standard provides specifications for both the physical layer and the Media 

Access Control (MAC) sublayer [7]. Later versions of the standard differ in their 

choice of modulation and frequency bands at the physical layer: 802.11b uses Direct 

Sequence Spectrum Spreading (DSSS) and operates at the 2.4 GHz Industrial, Sci

entific, and Medical (ISM) band [3]; 802.11a and 802.llg have adopted Orthogonal 

Frequency-Division Modulation (OFDM) and use spectrums centered at 5 GHz and 

2.4 GHz respectively [1, 2]. The tutorials in [59], [97] and [228] provide more details 

on these standards. 

4 
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CHAPTER 2. BACKGROUND 5 

The 802.11 MAC protocol has two operation modes: the contention-based Dis

tributed Coordination Function (DCF) and the centralized Point Coordination Func

tion (PCF). PCF is an optional mode, and it is rarely used in practice. On the other 

hand, DCF has attracted much attention both in industry and within the research 

community due to its fully distributed nature. In this dissertation, we assume that 

all wireless nodes operate in DCF mode, and describe its procedures in Appendix A. 

Given increasing popularity of real-time voice and video traffic over wireless LANs, 

the 802.lie protocol has been developed to address the growing need for Quality-

of-Service (QoS) support [8, 252, 179]. The Enhanced Distributed Channel Ac

cess (EDCA) scheme allows traffic classification at the MAC layer, and serves different 

traffic categories differently according to their priority levels by tuning their channel 

access parameters [21]. Despite the enhancements introduced by 802.lie, supporting 

QoS over 802.11 networks remains a challenging problem [144, 263]. 

New standardization efforts for 802.1 In are devoted to increasing both the data 

rate and throughput in wireless LANs [4, 170, 172]. The IEEE 802.11n amendment 

promises transmission rates up to 600 Mbps by applying Multiple-Input-Multiple-

Output (MIMO) technology across multiple antennas and bonding multiple frequency 

channels for transmission. The amendment is also designed to reduce MAC-layer over

head by aggregating transmissions of multiple consecutive packets, thereby improving 

throughput of payload data [249] 

In the IEEE 802.11s draft standard for wireless mesh networking [9], the basic dis

tributed MAC procedures in 802.11 are extended to support packet relays, meanwhile 

addressing many performance issues arising from a multi-hop environment, such as 

the exposed node problem [29]. An overview of this ongoing project can be found 

in [100]. 

Performance analysis 

The saturating throughput of an 802.11 wireless LAN has been derived based on 

Markov modeling of the DCF procedures [25, 26, 28]. The analysis has also been 

extended to scenarios with non-saturating traffic [65], and to differentiated media 

access in 802.lie [183, 217]. 
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CHAPTER 2. BACKGROUND 6 

General performance limits of ad hoc wireless networks have also been the aim of 

a number of information-theoretical studies. In a landmark paper, the capacity of a 

static wireless ad hoc network is shown to asymptotically vanish as the number of 

users increases [90]. Following the same methodology, upper bounds of the transport 

capacity over ad hoc networks are derived in [121] and capacity for energy-constrained 

networks are calculated in [184]. Later studies suggest that mobility can increase 

the capacity of wireless networks [89]. In addition, the scheme in [10] presents a 

mechanism to achieve the tradeoff between delay and throughput in a mobile network. 

In [54], it is shown that advanced signal processing techniques such as multiuser 

detection significantly improves the capacity of mobile ad hoc networks with delay 

constraints. The capacity region achieved by time-sharing in a wireless ad hoc network 

has also been characterized in [219] and [220]. 

Another thread of research has explored the practical capacity limits of 802.11 

networks [27, 33]. Experimental studies show that throughput is typically significantly 

lower than the theoretical prediction in a multi-hop network, due to contention among 

adjacent links along the path [143]. Schemes for bandwidth estimation along a path 

over an ad hoc network are proposed in [200] and [43]. 

Performance issues 

Many performance issues have been identified when the 802.11 MAC protocol is used 

for ad hoc networking [41]. It has been pointed out in [99] that the presence of one 

stream traversing a slow link significantly reduces the throughput achieved by other 

streams traversing faster links. More generally, this anomaly can be attributed to 

the design objective of maintaining max-min fairness among all competing wireless 

stations in 802.11 protocols [177]. 

For multi-hop networks, it has been reported that the congestion control proce

dures of TCP interact poorly with the exponential random backoff mechanism of the 

802.11 MAC protocol [253, 62, 165]. As revealed in [24], [122], [42] and [237], seri

ous fairness issues arise in certain network topologies, where TCP leads to partial or 

complete starvation of some of the flows. 
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CHAPTER 2. BACKGROUND 7 

2.1.2 Cross-Layer Design 

Unlike in the conventional network structure with protocols independently designed 

for each layer, cross-layer design allows information sharing across the different layers 

for efficient utilization of network resources [48]. Recent research has studied joint 

optimization of physical layer power allocation, MAC layer link scheduling, network 

layer routing and transport layer flow congestion control [218, 60, 248, 173, 171, 246]. 

The joint optimization in [246] can be achieved by a distributed scheme based on lo

cal price updates and message exchanges among wireless nodes [245]. For multicast, 

network coding techniques [13, 53] can be combined with cross-layer design of power 

allocation, medium access and routing to maximize throughput, minimize power con

sumption or minimize network congestion [185, 259, 242, 243]. 

For video streaming over wireless networks, cross-layer design is both promis

ing and challenging [226, 196]. The importance of adapting application layer video 

streaming rate and error protection parameters according to time-varying wireless 

channel conditions has been recognized fairly early [241, 222, 261, 260]. The studies 

in [224, 145, 155, 204] have unveiled potential benefits of adjusting lower layer param

eters, such as 802.11 MAC layer retransmission limits and priority queueing, based on 

relative importance and urgency of media packets. Similarly, many research efforts 

manifest the performance gain from joint consideration of application-layer and link-

layer adaptation techniques [201, 213, 169, 92]. In [88] and [157], multipath routing 

is combined with multiple description of video streams to leverage path diversity for 

better error resilience over a wireless mesh network. 

A cross-layer design framework for video streaming is presented in [196]. By al

lowing information exchange and joint optimization of key parameters across different 

layers in the protocol stack, the framework allows greater flexibility for media and 

network adaptation while keeping the computational complexity tractable within the 

layered structure. Significant performance gain can be achieved over schemes with 

oblivious layers by exploring joint capacity and flow assignment, congestion-distortion 

minimized routing and packet scheduling, as well as media- and network-aware video 

rate allocation [257, 197, 199, 12]. 
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