
 

 

TITLE: ENHANCING DRUG SAFETY THROUGH ACTIVE SURVEILLANCE OF 
OBSERVATIONAL HEALTHCARE DATA 

 
 
 
 

Patrick B. Ryan 
 
 
 
 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Division 
of Pharmaceutical Outcomes and Policy in the UNC Eshelman School of Pharmacy 
 
 
 
 
 

Chapel Hill 
2011 

 
 
 
 
 

 
 
 

Approved by: 

Richard A. Hansen, PhD 

Joel F. Farley, PhD  
 

Michael D. Murray, PharmD, MPH  
 

Til Stürmer, MD, MPH 
 

J. Marc Overhage, MD, PhD 



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3465081

Copyright  2011  by ProQuest LLC.

UMI Number:  3465081



 

ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2011 
Patrick B. Ryan 

ALL RIGHTS RESERVED 



 

iii 
 

 
 

ABSTRACT 

PATRICK B. RYAN: Enhancing Drug Safety Through Active Surveillance of Observational 
Healthcare Data 

(Under the direction of Dr. Richard A. Hansen) 
 

Drug safety continues to be a major public health concern in the United States, with 

adverse drug reactions ranking as the 4th to 6th leading cause of death, and resulting in 

health care costs of $3.6 billion annually.  Recent media attention and public scrutiny of 

high-profile drug safety issues have increased visibility and skepticism of the effectiveness of 

the current post-approval safety surveillance processes.  Current proposals suggest 

establishing a national active drug safety surveillance system that leverages observational 

data, including administrative claims and electronic health records, to monitor and evaluate 

potential safety issues of medicines.  However, the development and evaluation of 

appropriate strategies for systematic analysis of observational data have not yet been studied. 

This study introduces a novel exploratory analysis approach (Comparator-Adjusted 

Safety Surveillance or COMPASS) to identify drug-related adverse events in automated 

healthcare data.  The aims of the study were: 1) to characterize the performance of 

COMPASS in identifying known safety issues associated with ACE inhibitor exposure 

within an administrative claims database; 2) to evaluate consistency of COMPASS estimates 

across a network of disparate databases; and 3) to explore differential effects across 

ingredients within ACE inhibitor class. 
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COMPASS was observed to have improved accuracy to three other methods under 

consideration for an active surveillance system: observational screening, disproportionality 

analysis, and self-controlled case series.  COMPASS performance was consistently strong 

within 5 different databases, though important differences in outcome estimates across the 

sources highlighted the substantial heterogeneity which makes pooling estimates challenging.  

The comparative safety analysis of products within the ACE inhibitor class provided 

evidence of similar risk profiles across an array of different outcomes, and raised questions 

about the product labeling differences and how observational studies should complement 

existing evidence as part of a broader safety assessment strategy. 

The results of this study should inform decisions about the appropriateness and utility of 

analyzing observational data as part of an active drug safety surveillance process.  An 

improved surveillance system would enable a more comprehensive and timelier 

understanding of the safety of medicines.  Such information supports patients and providers 

in therapeutic decision-making to minimize risks and improve the quality of care. 

 
 
 
 
 
 
 
 
 

 



 

v 
 

ACKNOWLEDGEMENTS 
 

 

The achievement of one rests on the shoulders of many.  This milestone toward my 

personal development is really a testament to the ongoing support of everyone around me 

along the way. 

First, I want to thank my mother and father for their unending support and the 

providing me with belief that all goals are achievable.  Thank you for instilling me a 

conviction that work ethic provides an opportunity to make meaningful and lasting 

contributions to mankind. 

Thank you to all my colleagues at GlaxoSmithKline, Johnson & Johnson, and across 

Observational Medical Outcomes Partnership.  My professional collaborations provided me 

with the intellectual curiosity to initiate my academic research, but completing this project 

would not have been achievable without the support and freedom to pursue my professional 

and scholarly ambitions simultaneously.  Thanks to Alan, Paul, and David for giving me the 

motivation to challenge past practices and to look for better solutions.  Thanks to my 

classmates and faculty at UNC Eshelman School of Pharmacy for allowing me to become 

part of a community of great intellectual stimulation and collegiality.  

Thanks to Rick, for encouraging me to chase my passion, no matter how 

unconventional the path.  I will always appreciate your willingness to support me in my 

pursuits at every stage along the process, from taking your course as a non-degree-seeking 

student through joining the program as a “part-time” experiment to sheparding me through 



 

vi 
 

the dissertation from afar.  Also, thank you to Joel, Til, Mick and Marc for your expert 

counsel, persistent support, and remarkable patience.  Your insight helped me to think more 

critically about how to help advance the science of pharmacoepidemiology. 

Most importantly, thank you to my best friend, my soulmate, my wife Holly. 

You give me inspiration to reach for my educational ambitions and motivation to aspire to 

the highest standards. You provided more patience and support than anyone deserves.   

Your love and encouragement throughout is the main reason why I’ve made it to this point.  I 

will be forever thankful for taking our academic journeys together, and look forward to 

where the rest of our life journeys take us from here. 

 

 
 



 

vii 
 

TABLE OF CONTENTS 
 
 

LIST OF TABLES .................................................................................................................... x 

LIST OF ABBREVIATIONS ................................................................................................ xiii 

CHAPTER ONE: INTRODUCTION ....................................................................................... 1 

1.1 Overview ................................................................................................................... 1 

1.1 Specific Aims ............................................................................................................ 3 

1.3 Importance of Proposed Research Plan .......................................................................... 7 

CHAPTER TWO: BACKGROUND AND SIGNIFICANCE ................................................. 9 

2.1 The Increasing Importance of Drug Safety in the Quality of Healthcare ....................... 9 

2.2 History of FDA’s response to drug safety .................................................................... 13 

2.3 Approaches for evaluating drug safety issues ............................................................... 14 

2.4 Approaches for identifying potential drug safety issues ............................................... 29 

2.5 An integrated active surveillance system within a causal inference framework .......... 39 

CHAPTER THREE: METHODS ........................................................................................... 44 

3.1 Overview ....................................................................................................................... 44 

3.2 COMPASS .................................................................................................................... 45 

3.2.1 COMPASS comparator selection .............................................................................. 47 

3.2.2 COMPASS cohort restrictions and adjustments ........................................................ 52 

3.2.3 COMPASS risk windows .......................................................................................... 60 

3.2.4 COMPASS prioritization score ................................................................................. 63 



 

viii 
 

3.2.5 COMPASS summary ................................................................................................. 66 

3.3 Data Sources ................................................................................................................. 68 

3.4 Experimental design ..................................................................................................... 80 

3.5 Performance measures ................................................................................................ 102 

3.5 Data analysis by Aim .................................................................................................. 106 

CHAPTER FOUR: MANUSCRIPT 1:  “Systematic identification of drug safety issues  
in administrative claims data:  Performance of hypothesis generation methods for active 
surveillance” ......................................................................................................................... 122 
 

Abstract ............................................................................................................................. 122 

Background ....................................................................................................................... 123 

Materials and Methods ...................................................................................................... 125 

Results ............................................................................................................................... 131 

Discussion ......................................................................................................................... 135 

References ......................................................................................................................... 140 

Tables and Figures ............................................................................................................ 140 

CHAPTER FIVE: MANUSCRIPT 2:  “Integrating active drug safety surveillance  
analyses across a network of observational healthcare databases” ....................................... 149 
 

Abstract ............................................................................................................................. 149 

Introduction ....................................................................................................................... 151 

Methods ............................................................................................................................ 153 

Results ............................................................................................................................... 156 

References ......................................................................................................................... 166 



 

ix 
 

Tables and Figures ............................................................................................................ 166 

CHAPTER SIX: MANUSCRIPT 3: “Comparative safety of ACE inhibitors: Evaluating  
an active surveillance framework” ........................................................................................ 172 
 

Abstract ............................................................................................................................. 172 

Introduction ....................................................................................................................... 173 

Methods ............................................................................................................................ 174 

Results ............................................................................................................................... 177 

Discussion ......................................................................................................................... 181 

References ......................................................................................................................... 193 

Tables and Figures ............................................................................................................ 188 

CHAPTER SEVEN: CONCLUSION AND DISCUSSION ................................................ 193 

7.1. Motivation for study .................................................................................................. 197 

7.2. Review of study results .............................................................................................. 200 

7.3. Lessons through the evolution of the research program ............................................ 207 

7.4. Limitations of the COMPASS method ...................................................................... 210 

7.5. Limitations of observational data .............................................................................. 212 

7.6. Limitations of the COMPASS experiments ............................................................... 214 

7.7. Contributions to the field ........................................................................................... 216 

WORKS CITED ................................................................................................................... 219 

 

 
 

 



 

x 
 

LIST OF TABLES 

 
Table 1: Source population characteristics ............................................................................. 70 

Table 2: ACE inhibitor use across databases .......................................................................... 86 

Table 3: Indication covariates identified by COMPASS for each ACE inhibitor .................. 87 

Table 4: Comparator drugs selected by COMPASS for each ACE inhibitor ......................... 88 

Table 5: Contraindications used as restriction criteria by COMPASS for each  
ACE inhibitor .......................................................................................................................... 91 

 
Table 6: Labeled events identified in SPLs by ingredient ...................................................... 95 
 
Table 7: ACE Inhibitor 'true positive' reference set ................................................................ 97 

Table 8: ACE Inhibitor negative controls, by prevalence ..................................................... 100 

Table 9: Adverse events to explore across ACE inhibitor ingredients ................................. 120 

Manuscript 1 Table 1: Operating characteristics of the four methods at alpha=0.05 ........... 140 

Manuscript 1 Table 2: Performance measures of the four methods ..................................... 140 

 

Manuscript 1 Table 3: COMPASS propensity score balance effects ................................... 141 

 

Manuscript 2 Table 1: Data source characteristics ............................................................... 166 

Manuscript 2 Table 2: Operating characteristics of COMPASS across data sources  
and within composite summaries .......................................................................................... 167 

 

Manuscript 3 Table 1: Cohorts, baseline characteristics, indications ................................... 188 

Manuscript 3 Table 2: Event rates by ingredient .................................................................. 191 

 



 

xi 
 

LIST OF FIGURES 

Figure 1: Sources of risk for medical products ....................................................................... 10 

Figure 2: Generation of health care utilization databases and potential sources of errors  
and bias14 ................................................................................................................................. 22 

 
Figure 3: Population restrictions to approximate clinical trials in observational studies88..... 24 

Figure 4: Conceptual framework for active surveillance ........................................................ 40 

Figure 5: COMPASS conceptual model ................................................................................. 46 

Figure 6: Attributes of medical products used in COMPASS automated heuristics .............. 49 

 
Figure 7: Example attributes for lisinopril .............................................................................. 50 

Figure 8: COMPASS automated comparator selection heuristic ........................................... 52 

Figure 9: COMPASS pre-exposure design considerations ..................................................... 53 

Figure 10: COMPASS automated design refinement process ................................................ 57 

Figure 11: COMPASS alternative risk windows .................................................................... 62 

Figure 12: COMPASS prioritization across risk windows ..................................................... 63 

Figure 13: COMPASS prioritization across outcomes ........................................................... 66 

Figure 14: OMOP Common Data Model conceptual schema ................................................ 72 

Figure 15: Drug era construction ............................................................................................ 75 

Figure 16:  Condition era construction ................................................................................... 78 

Figure 17: Performance measures for 2x2 contingency table ............................................... 103 

Manuscript 1 Figure 1: COMPASS conceptual model ......................................................... 142 

Manuscript 1 Figure 2: Sensitivity and specificity of four methods at  
alpha=0.05 and 0.001.   ......................................................................................................... 143 

 
Manuscript 1 Figure 3: Receiver operating characteristics curves for each of the four 
methods.  . ............................................................................................................................. 144 

 



 

xii 
 

Manuscript 1 Figure 4: Estimates for 'label event' conditions across the four methods,  
ordered by estimate from COMPASS.  ................................................................................ 145 

 
Manuscript 2 Figure 1: Forest plots of effect estimates for 42 ACE inhibitor  
labeled events ........................................................................................................................ 168 

 
Manuscript 2 Figure 2: Heterogeneity across drug-outcome pair ........................................ 169 

 
Manuscript 3 Figure 1: Population size by propensity score strata ...................................... 189 

 
Manuscript 3 Figure 2: Impact of propensity score adjustment on measured covariates ..... 190 

 
Manuscript 3 Figure 3: Effects estimates by outcome .......................................................... 192 

 

 
 
 
 
 
 
 
 



 

xiii 
 

 

LIST OF ABBREVIATIONS 

 

 

ACE Angiotensin Converting Enzyme 

ADR Adverse Drug Reaction 

AERS Adverse Event Reporting System 

AUC Area under Receiver Operator Characteristic curve (ROC analysis) 

CCAE Thomson Reuters MarketScan Commercial Claims and Encounters 

COMPASS COMParator-Adjusted Safety Surveillance 

CPT-4 Current Procedural Terminology, 4th edition 

DP Disproportionality Analysis 

FDA Food and Drug Administration 

FPR False Positive Rate (1-specificity) 

GAO General Accounting Office 

HCPCS Healthcare Common Procedure Coding System 

IC Information Component 

ICD9 International Classification of Diseases - Clinical Modification 9 

INPC Indiana Network for Patient Care 

MAP Mean Average Precision 

MDCD MarketScan Medicaid Multi-State Database 

MDCR MarketScan Medicare Supplemental and Coordination of Benefits 
Database 
 

MedDRA Medical Dictionary for Regulatory Activities 

 



 

xiv 
 

MGPS Multi-item Gamma Poisson Shrinker 

MSLR MarketScan Lab Database 

NDC National Drug Code 

OMOP Observational Medical Outcomes Partnership 

OS Observational Screening 

p@k Precision-at-k (accuracy measure of precision at the k-th ranked score) 

PT MedDRA preferred term 

r@fp 
Recall-at-false positive rate (accuracy measure of sensitivity at a 
defined false positive threshold) 
 

SNOMED Systematized Nomenclature of Medicine -- Clinical Terms 

SPL Structured Product Label 

SPLICER Structured Product Label Information Coder and Extractor  

USCCS Univariate self-controlled case series 
 

  



 

 

CHAPTER ONE: INTRODUCTION 

  

1.1 Overview  

Drug safety continues to be a major public health concern in the United States.  In order 

for patients and health care providers to make appropriate therapeutic decisions, they need to 

be informed of the potential benefits and harms of alternative treatment options.  While the 

efficacy of prescription medicines is generally well-characterized from the series of 

randomized clinical trials conducted during drug development, the safety profile of 

medicines is often less certain and poorer understood1.  Research suggests that drug safety 

information is the highest information priority for patients, and that the perception of side 

effects is influential in many patients’ decisions about taking a medicine2. This patient focus 

is well-justified.  Lazarou et al estimated that, in 1994, between 76,000 and 137,000 hospital 

patients died from an adverse drug reaction (ADR), ranking adverse drug reactions as the 

fourth to sixth leading cause of death3, and resulting in health care costs of $3.6 billion 

annually4. 

The frequency of new safety information being brought to light following regulatory 

approval is quite striking.  A study by the US General Accounting Office (GAO) concluded 

that 51% of all approved drugs had at least one serious adverse drug reaction that was not 

recognized during the approval process5.  A revised estimate from 1994-1997 showed that 

30% of products required significant label changes following introduction6.  Nearly 20 
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million patients in the United States took at least one of the five drugs withdrawn from 

the market between September 1997 and September 1998.  Seven drugs approved since 1993 

and subsequently withdrawn from the market have been reported as possibly contributing to 

1002 deaths7.  It could be speculated that at least some of these negative outcomes could 

have been averted had the full safety profile been understood at the time of therapeutic 

decision-making. 

Traditional methods of drug safety surveillance involve literature searching and case-by-

case analysis of spontaneous adverse event reports, as well as crude frequency counts and 

calculation of reporting rates6.  Statistical data mining algorithms are becoming increasingly 

popular supplementary tools for safety reviewers8.  Currently, the FDA conducts spontaneous 

data mining by applying the Multi-item Gamma Poisson Shrinker (MGPS) method to the 

Adverse Event Reporting System (AERS) database9, 10.  Many groups have recognized the 

significant limitations in the current system.  As part of the FDA Amendment Act of 2007, 

Congress mandated the use of observational data (including administrative claims and 

electronic health records) as part of an active drug safety surveillance system that would 

supplement the current practice11.   

It is expected that a national active surveillance system will consist of several interlocked 

processes, including signal detection, signal strengthening, signal validation, and hypothesis 

testing in a formal pharmacoepidemiologic study12.  While these observational data sources 

have been actively studied for pharmacoepidemiologic evaluation studies13, 14, appropriate 

statistical methods for screening observational data to generate and triage hypotheses about 

potential drug effects are nascent and have not yet been rigorously explored across a network 

of disparate data sources.  An outstanding research need is to characterize how well these 
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tools identify true drug-event associations and minimize the number of false positive 

findings. 

We have developed a novel exploratory analysis approach to observational data for active 

surveillance.  The method, called COMParator-Adjusted Safety Surveillance (COMPASS), is 

a statistical algorithm that estimates adjusted rate differences and relative risks for all 

outcomes of interest for a given medical product through propensity score stratification 

across exposed and unexposed cohorts.  COMPASS applies an automated heuristic for 

defining a comparator group based the indication of the medical product, and provides 

multivariate adjustment based on key influents of risk, including person demographics, 

comorbidity, and health service utilization.  COMPASS is not intended to be a final solution 

for active surveillance, but instead a first-pass screening tool to serve as a potential guide for 

identifying and prioritizing potential drug effects that may warrant further evaluation.  A goal 

of this research is to empirically evaluate the behavior of COMPASS to inform its 

appropriate use within an active surveillance network. 

1.1 Specific Aims  

To study the performance of the novel method, drugs within the Angiotensin Converting 

Enzyme (ACE) Inhibitor class were explored.  ACE Inhibitors provide a solid basis for 

methodological research because the class represents a large set of mature products that are 

actively used in the broad population.  The safety profile of ACE inhibitors is thought to be 

well-characterized, including a broad set of known safety issues that span the continuum 

from common, nuisance effects, such as cough, to rare and more serious events, like 

angioedema and renal dysfunction.  An analysis of the product labels within the ACE 
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inhibitor class identified 50 distinct adverse events listed on the majority of products, 12 of 

which were highlighted in Boxed Warnings or in Warnings and Precautions sections. 

The specific aims of the study were: 

Aim 1: Characterize the performance of COMPASS in identifying known safety 

issues associated with ACE inhibitor exposure within an administrative claims database 

This aim studied how COMPASS performs in the Thomson Reuters MarketScan 

Commercial Claims and Encounters (CCAE), a large administrative claims database 

containing 59 million privately insured lives.  CCAE provides patient-level de-identified data 

from inpatient and outpatient visits and pharmacy claims of multiple insurance plans.  CCAE 

contains 3 million persons with at least one prescription dispensing record for an ACE 

inhibitor.   

COMPASS was applied to the ACE Inhibitor drug class to generate estimates of outcome 

relationships for a defined set of potential adverse events.  These outcomes included both the 

known associations previously characterized in the product label as well as a sample of 

‘negative control’ conditions for which there is no evidence of drug-related effects.  

Descriptive statistics summarized the distribution of the estimates and patterns across 

attributes of the conditions, such as background prevalence rate, confidence in association, 

and expected degree of confounding. 

The objective of a hypothesis-generating tool is to accurately distinguish between true 

and false relationships.  The performance of COMPASS was characterized through multiple 

measures of accuracy, including area under receiver operator curve15.  These measures were 

compared to those from three alternative methods for active surveillance signal generation: 

disproportionality analysis, as adapted from spontaneous data mining16, 17; observational 
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screening, an unadjusted cohort-based design18; and, univariate self-controlled case series19, 

20. 

 

Aim 2: Evaluate consistency of COMPASS estimates across a network of disparate 

databases 

An active surveillance network is likely to comprise multiple data sources, as it is 

recognized that there is currently no single US-based source that can be expected to satisfy 

all requirements of allowing investigation of all medical products for all potential adverse 

events and across all populations of interest.  However, there is little research to inform the 

expected behavior of active surveillance analysis methods when applied to disparate 

databases, or the potential benefits of integrating estimates across sources to improve method 

performance. 

This aim conducted the COMPASS analysis for ACE inhibitors across five databases.  In 

addition to CCAE, the method was applied to the MarketScan Lab Database (MSLR), 

MarketScan Medicaid Multi-State Database (MDCD), MarketScan Medicare Supplemental 

and Coordination of Benefits Database (MDCR), and the GE Centricity electronic health 

record (GE).  MSLR contains 1.5 million persons representing a largely privately-insured 

population, with administrative claims from inpatient, outpatient, and pharmacy services 

supplemented by laboratory results.  MDCD provides administrative claims data for 11 

million Medicaid enrollees from multiple states.  MDCR captures administrative claims for 5 

million retirees with Medicare supplemental insurance paid for by employers, including 

services provided under the Medicare-covered payment, employer-paid portion, and any out-

of-pocket expenses.  GE contains patient-level data for 11 million persons captured at the 
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point of care from a consortium of providers using the GE Centricity electronic health record 

system in their outpatient and specialty practices.   

I2 statistics were computed to assess the heterogeneity in COMPASS estimates across 

data sources.  Accuracy measures from each source were also compared to assess the 

reliability in performance.  In addition, we explored the use of fixed and random effects 

meta-analysis21 to produce composite estimates.  We then evaluated the relative performance 

of the pooled estimate in predicting drug safety issues as compared to source-specific 

performance to assess the potential advantages of a network-based approach to active 

surveillance. 

 

Aim 3: Explore differential effects across ingredients within ACE inhibitor class 

The general consensus within the clinical community is that all ACE inhibitors have 

similar safety profiles22.  However, examination of the product labels suggests differences in 

which adverse events have been reported.  Further, there is little information to assess the 

relative effect size of adverse events across products.  This aim applied COMPASS to seven 

medical products within the class (lisinopril, moexipril, quinapril, ramipril, benazepril, 

captopril, and enalapril), to determine whether meaningful differences are observed within 

observational databases. 

Among the true relationships, six events (asthma, back pain, bronchospasm, flushing, 

epistaxis, and tinnitus) are differentially listed on the product labels, indicating the potential 

to observe different rates among the conditions between products.  In addition, 17 events 

(including abdominal pain, cough, constipation, leucopenia, renal impairment, pruritis, and 

thrombocytopenia) are consistently recorded across the ingredient labels but no quantitative 
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evidence is provided to compare the strength of the association.  COMPASS estimates were 

summarized to evaluate the relative consistency in risks across individual products, and 

explore whether differences in product labeling reflect true observed clinical differences 

between these medicines. 

 

1.3 Importance of Proposed Research Plan 

An improved drug surveillance system would enable a more comprehensive and timelier 

understanding of the safety of medicines.  Such information will support patients and 

providers in therapeutic decision-making to minimize risks and improve the quality of care.  

The results of this study will inform decisions about the appropriateness and utility of 

analyzing observational data as part of a future drug safety surveillance process. 

The proposed project was designed to add to the literature in several important ways, 

with potential methodological, policy, and clinical implications.  First, from a 

methodological perspective, the study detailed and provided empirical evidence to inform the 

potential use of a novel method for identifying drug safety issues in automated healthcare 

databases as part of an active surveillance system.  This method leverages advances in 

pharmacoepidemiology, biomedical informatics, and pharmaceutical sciences to provide an 

analytical framework that could support continued drug outcome research beyond the scope 

of this study's ACE inhibitor analyses. 

Second, from a policy perspective, the evaluation of how to interpret findings across a 

network of data sources may have broader implications for initiating the national active 

surveillance system.  There is little research to inform how decision-making processes will 

accommodate information when generating, strengthening and confirming hypotheses about 
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potential drug-related effects23.  The role of exploratory analyses in an active surveillance 

system and the relative confidence in information that can be gained from such analyses is 

undetermined.  Studying heterogeneity across sources and the potential use of a meta-

analytic framework to integrate estimates provided insights to inform the governance of the 

future national active surveillance system about what level of evidence is necessary to take 

appropriate action about emerging safety issues. 

Finally, from the clinical perspective, the exploratory analyses of ACE inhibitors have the 

potential to generate hypotheses that could shape future understanding about the effects of 

these medicines.  Products that showed comparable safety profiles may stimulate interest in 

exploring the current inconsistencies in product labeling across the class.  Alternatively, 

products observed to have differential effects, in which case further studies may be warranted 

to confirm and communicate these differences to inform clinical practice.  

 

 



 

 

CHAPTER TWO: BACKGROUND AND SIGNIFICANCE 

 

2.1 The Increasing Importance of Drug Safety in the Quality of Healthcare 

 
Drug safety continues to be a major public health concern in the United States.  In 

order for patients and health care providers to make effective therapeutic decisions, they need 

to be informed of the potential benefits and harms of alternative treatment options.  While the 

efficacy of prescription medicines is generally well-characterized from the series of 

randomized clinical trials conducted during drug development, the safety profile of 

medicines is often less certain and poorer understood.  Research suggests that drug safety 

information is the highest information priority for patients, and that the perception of side 

effects is influential in many patients’ decisions about taking a medicine1. This patient focus 

is well-justified.  Lazarou et al estimated that, in 1994, between 76,000 and 137,000 hospital 

patients died from an adverse drug reaction (ADR), ranking adverse drug reactions as the 

fourth to sixth leading cause of death2, and resulting in health care costs estimated between 

$3.6 billion3
 and $8 billion24 annually.  The Institute of Medicine report To Error Is Human, 

which claimed 44,000 to 98,000 Americans die each year due to medical errors4, though not 

all drug adverse reactions are medical errors, nor do all medical errors result in adverse drug 

reactions.   

In order to understand fully understand the magnitude of the effect of drug safety, it is 

important to provide the proper context around the potential quality issues associated within
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 this domain.  The FDA Task Force on Risk Management provided a framework to classify 

the sources of risk from medicinal products, shown in Figure 16. 

 

 

Figure 1: Sources of risk for medical products 

 

Most injuries and deaths associated with drug use result from their known side effects.   

The ‘known unavoidable side effects’ are typically not regarded as medical errors, but are 

simply the unfortunate potential consequence of choosing a pharmaceutical intervention in 

hopes of achieving the benefits of that treatment.  While some side effects are unavoidable, 

more than half of the side effects from pharmaceuticals can be prevented or minimized by 

careful product choice and use6.  Two other sources of preventable adverse events include 

medication/device errors and product defects.  Medication or device errors may involve the 

incorrect administration of the prescribed product or incorrect operation or placement of a 

medical device6.  Product defects may be the result of inadequate product quality control and 
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quality assurance during manufacturing.  Failure to prevent avoidable adverse effects could 

certainly be characterized as a medical error.  The final category of potential risk 

characterized in Figure 1 is ‘Remaining Uncertainties’.  These include unexpected side 

effects, unstudied uses, and unstudied populations. 

Unexpected adverse events are those drug associations not identified prior to 

regulatory approval, either due to the rare occurrence of the event or the unstudied use of the 

drug within specific populations.  Physicians and patients expect that when medications are 

prescribed correctly for labeled indications and are used as directed, these medications 

generally will have beneficial effects and will not cause significant harm. This confidence in 

pharmaceutical products reflects trust in the effectiveness and integrity of the drug approval 

and monitoring process25.  Yet, a 2004 Harris poll showed a sharp decline in public 

confidence in the FDA, with negative ratings of 58% compared with 37% two years prior5.  

The information around known benefits and risks form the basis of therapeutic decision-

making, but unexpected adverse events cannot easily enter into the benefit-risk equation; 

patients and physicians don’t know what they don’t know, but they expect the regulatory 

authorities and manufacturers to tell them what they should know.  Different decisions, 

potentially resulting in improved outcomes, may be made if new information were to be 

introduced.   

The frequency of new information being brought to light is quite striking.  A study by 

the US General Accounting Office (GAO) concluded that 51% of all approved drugs had at 

least 1 serious adverse drug reaction that was not recognized during the approval process5.  A 

revised estimate from 1994-1997 showed 30% of products required significant label changes 

following introduction6.  Once the information about a potential safety concern is known and 
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understood, patients and providers can make informed therapeutic decisions.  However, the 

interlude between drug introduction and new safety information being available presents a 

potential quality concern, as patients may make decisions that incur unnecessary harms that 

they would otherwise not had they been provided with better quality information.  The 

degree of exposure to drugs during this time of imperfect information may be extensive. 

Nearly 20 million patients in the United States took at least 1 of the 5 drugs withdrawn from 

the market between September 1997 and September 1998.  Seven drugs approved since 1993 

and subsequently withdrawn from the market have been reported as possibly contributing to 

1002 deaths7.  It could be speculated that at least some of these negative outcomes could 

have been averted had the full safety profile been understood at the time of therapeutic 

decision-making. 

While “the contribution of serious adverse events resulting from unexpected side 

effects to the overall rate of serious adverse events is relatively small”6, the level of media 

attention and public scrutiny of unexpected adverse events is quite significant.  Recent 

notable product withdrawals, such as rofecoxib26-29, tegaserod30, and pemoline31, and other 

emerging potential safety concerns, such as rosiglitazone32-35, have increased visibility and 

skepticism of the effectiveness of the current post-approval safety surveillance processes.  

With this sensitivity comes the concern that regulatory decision makers may become too 

conservative in their assessment of the benefit-risk balance of medicines, putting too much 

emphasis on rare but serious adverse events without sufficient perspective placed on the 

efficacy profile of the medicine for the indicated population.  In this regard, inadequate 

understanding of the safety of medicines can result in misuse, overuse, and underuse of 

pharmaceuticals as therapeutic alternatives. 
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2.2 History of FDA’s response to drug safety 

While unexpected drug adverse events has gained significant attention over the past 

five years, the issue has been at the forefront of FDA’s activities for over 100 years.  When 

the US Federal Food and Drugs Act of 1906 was passed, the primary focus was ensuring 

drugs were pure and free from contamination, with no requirement of efficacy36.   

Nonetheless, there were 107 deaths in 1937 from the use of diethylene glycol as a solvent for 

sulfanilamide. Although the toxicity of diethylene glycol was known at the time, it was not 

known to the manufacturer, and an amendment to the original act was passed in 1938 to 

outlaw misbranding of ingredients or false advertising claims36.  The most significant drug 

safety event occurred in 1961 when published reports identified an association between 

thalidomide and a 20% increase in fetal malformation and phocomelia36.  The number of 

children born with serious congenital malformations as a result of maternal use of 

thalidomide was estimated between 6,000 and 12,000, with the majority being born in 

Germany37.  In 1962, Congress responded by passing the Kefauver-Harris amendment to the 

US Federal Food and Drugs Act, requiring pre-marketing submission of both efficacy and 

safety data to the FDA36.  The FDA also started a systematic collection of reports on all types 

of adverse drug reactions, originally chiefly through the Hospital Reporting Program37.  The 

spontaneous adverse event reporting system is a tradition that continues to this day through 

the FDA’s MEDWatch program, with all case reports archived within the Adverse Event 

Reporting System (AERS)38.  Originally, a spontaneous reporting system for suspected 

adverse effects of drugs was the only conceivable early warning system for possible drug 

adverse reactions39.  Since that time, other potential models for adverse event reporting, such 
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as prescription event monitoring, have been proposed and implemented in other countries39, 

40.   

Various stakeholders have recognized the need to improve current pharmacovigilance 

practice and the opportunities that exist to expand the use of observational data in that 

pursuit1, 5, 26, 41, 42.  The Institute of Medicine study of the drug safety system was largely 

prompted from the market withdrawals of troglitazone, cerivastatin, and rofecoxib43.  In 

2007, Congress passed the FDA Amendment Act, which in part, mandated the 

“establishment of a postmarket risk identification and analysis system” that leverages 

observational healthcare data, including administrative claims and electronic health records, 

to monitor approved medicines on a periodic basis11.  In response, FDA established the 

Sentinel Initiative, an effort to create and implement a national, integrated, electronic system 

for monitoring medical product safety44.  In their initial work, FDA has called for additional 

research to inform the “science of safety” and establish best practices for the appropriate use 

of observational data and analysis within an active surveillance system. 

 

2.3 Approaches for evaluating drug safety issues 

Prior to regulatory approval while a drug is in development, one of the primary 

sources of safety information about medical products is clinical trials.  Randomized 

experiments are designed and conducted to test the efficacy of the drug, typically in 

comparison to placebo or standard of care.  During the course of these efficacy trials, adverse 

events are captured at each study visit, and final study reports typically summarize these 

events as frequency tables.  Typically, observation of serious adverse events during clinical 

development is cause for study termination unless the benefits can be shown to outweigh the 
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potential risks.  Other adverse events captured during development commonly reflect 

nuisance side effects, such as headache and nausea, for which a causal relationship may be 

undetermined but general consensus suggests any purported relationship would not alter 

therapeutic decision-making.  Randomized experiments are generally regarded as the highest 

level of evidence, as studies lead to an unbiased estimate of the average treatment effect45.  

Unfortunately, most trials suffer from insufficient sample size and lack of external 

validity to reliably estimate the risk of other potential safety concerns for the target 

population1, 41.  Rare side effects and long-term outcomes (both positive and negative) may 

not be known when a product is approved because of the relatively small size and short 

duration of clinical trials.  For products intended to treat chronic, non-life-threatening 

conditions that occur in large populations, the International Conference for Harmonization 

(ICH) recommends a baseline safety database that typically involves at least 1,500 patients 

with at least 6 month exposure time to reliably (95 percent of the time) identify events 

happening at the 1-percent level6.  In other words, events that occur less frequently than 1 in 

100 patients are not expected to be detected under this recommendation.  Adverse events that 

occur in specific populations (like children, pregnant women, elderly, and patients with other 

comorbid conditions) may not be detected in clinical trials because these subgroups are not 

studied as comprehensively in drug development23.  For a clinical trial to provide the 

appropriate insights for a particular safety question, the choice of outcomes, the duration of 

treatment, length of follow-up, target population, and statistical power, must all be correctly 

specified.  Due to these limitations, it is generally accepted that safety can only be regarded 

as provisionally established at the time of approval and knowledge about the safety profile 

will continue to be developed in clinical practice23. 
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 Meta-analysis of clinical trial data has gained favor as one approach for overcoming 

the limitation of insufficient sample in any one study.  Adverse event rates for both the 

treated and untreated study arms can be derived from samples, and composite estimates of 

relative effects can be produced by weighting studies by the inverse of the variance of each 

study-specific measure46.  Numerous methods exist for meta-analysis to pool study-level 

effects47, and are commonly applied in systematic reviews that assess medical product 

efficacy and effectiveness.   Meta-analyses have the advantage of increasing power and 

improving precision, and offer the ability to answer questions not posed by individual studies 

or explore conflicting claims generating by different experiments 47.  Meta-analyses have 

been applied in drug safety contexts to generate estimates for specific events once concerns 

came to light.  Pooled analysis of rofecoxib data has been shown retrospectively to detect a 

significant safety signal with acute myocardial infarction three years prior to the product 

withdrawal48.  Nissen and Wolski conducted a meta-analysis of rosiglitazone clinical trials to 

identify potential increase in cardiovascular events33.  One challenge impeding its broader 

use as an exploratory tool is that proper meta-analysis requires careful consideration of 

specific study designs, within-study biases, variation across studies, and reporting biases that 

may be present when interpreting analysis results.    It has been noted also that “the 

interpretation of the results of systematic reviews with meta-analyses includes a subjective 

component that can lead to discordant conclusions that are independent of the methodology 

used to obtain or analyze the data”49. 

While large-scale clinical trials and pooled meta-analysis results are often desirable to 

produce the most reliable measure of an effect, they are often infeasible logistically or 

ethically.  Observational studies provide an alternative approach to evaluating drug safety 
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questions that can provide the necessary information about the drug effects to support clinical 

decision making.  Depending on the questions posed, a primary analysis of an appropriate 

observational study may provide better information than the analysis of an existing clinical 

trial data set.50  Observational studies provide empiric investigations of exposures and the 

effects they cause, but differ from experiments in that the there is no control of assignment of 

treatment to subjects45.  Observational studies can take many forms of epidemiologic 

investigation, using different methods for data collection, applying alternative study designs, 

and leveraging different analysis strategies51-56.  These studies can range from population-

based cohort studies with prospective data collection to targeted disease registries to 

retrospective case-control studies.   

One type of resource that has provided fertile ground for epidemiologic investigation 

has been observational healthcare databases.  Administrative claims and electronic health 

record databases have been actively used in pharmacoepidemiology for over 30 years57, but 

have seen increased use in the past decade due to increased availability at lower costs and 

technological advances that made computational processing on large-scale data more 

feasible.  Observational healthcare databases offer researchers the opportunity for secondary 

use of data captured as part of the healthcare delivery system to study effects amongst any 

observed medical products.  Many such databases contain large numbers of patients that 

make it possible to examine rare events and specific subpopulations that previously could not 

be studied with sufficient power58.  The large population size make it possible to estimate 

absolute incidence rates across a wide array of potential outcomes and to measure amount of 

exposure in a large population to produce more accurate measures of potential public health 

impact59.  Because the data reflects healthcare activity within a real-world population, it 
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offers the potential to complement clinical trial results which suffer from lack of 

generalizability.  Long-term longitudinal capture of data in these sources can enable studies 

to monitor the performance of risk management programs over time60. 

 Administrative claims databases have been the most actively used observational 

healthcare data source.  Administrative claims databases typically capture data elements used 

within the reimbursement process.  Providers of health care services such as physicians, 

pharmacies, hospitals, and laboratories submit encounter information so that they will be paid 

for these services61.  This commonly includes pharmacy claims for prescription drug fills 

(providing what drug was dispensed, the dispensing date, and the days supply), and medical 

(inpatient and outpatient) claims that detail the date and type of service rendered.  Medical 

claims typically contain diagnosis codes used to justify reimbursement for the procedures.  

Age and gender can also commonly be inferred from the available data.  In these databases, 

data are recorded only when a patient has a reimbursable encounter with the health care 

system that has been properly filed, coded and adjudicated by the payer.14  As a result, many 

key data elements may not be available.  Information on over-the-counter drug use and in-

hospital medication is usually unavailable and the patient's compliance with the prescription 

is generally unknown62.  Retail pharmacy claims data can be used to study drug utilization 

pattern, but the completeness of these data can vary by patient age63 or other unobservable 

characteristics.  Claims can be aggregated by payers, healthcare systems, or data aggregators, 

though each may have a different perspective on how to define observation periods (whether 

it be the time insured, the time in the system, or simply the span of time that data was 

observed).  While the databases over longitudinal coverage, the amount of times that patients 

persist within a given database can vary significantly.  This problem can be especially 



 

 19

pronounced in payer databases; for example, it is estimated that health maintenance 

organizations (HMO) have an annual turnover rate of 20% to 30%64.  Therefore, a database 

capturing healthcare encounters may contain records spanning a decade or more, but the 

average person may only exist in the database for 18 to 24 months. 

Electronic health records (EHR) generally contain data captured at the point of care, 

with the intention of supporting the clinical process.  A patient chart may include 

demographics (birth date, gender, and race), height and weight, and family and medical 

history.  Many EHR systems support provider entry of diagnoses, signs, and symptoms, and 

also capture of other clinical observations, such as vital signs, laboratory values, and imaging 

reports.   Beyond this, electronic medical records may often contain findings of physical 

examinations and the results of diagnostic tests14.  EHR systems usually also have the 

capability to record other important health status indications, such as alcohol use and 

smoking status65, but the data may be missing in many patient charts61.  Unless integrated 

across an entire health system, electronic health record systems are generally maintained 

independently by physician practices.  The provider and office staff enter information elicited 

from the patient or generated by the physician, but are also responsible for entering relevant 

clinical information from services rendered outside the practice, including conditions 

diagnosed by outpatient specialist physicians or during hospital admissions61.  Drug exposure 

may be inferred from various sources; providers may use the EHR system to capture patient-

reported medication history and/or to write prescriptions, but there may be no confirmation 

that prescription was filled at a pharmacy.  As a result of discontinuous care within the US 

health care system, a patient may have multiple electronic health records scattered 
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throughout the providers they’ve seen, but rarely are those records integrated together, so 

each reflect a different and incomplete perspective of that person’s healthcare experience. 

For both administrative claims and electronic health records, drug safety analyses are 

considered a secondary use of the data.  Therefore, the onus is on the researcher to fully 

understand and assess the relative strengths and limitations of each potential source, prior to 

conducting an evaluation.  Data recorded in either system reflects data used for its primary 

intent and therefore may not necessarily represent the information desired for study.  For 

example, diagnoses recorded on medical claims are used to support justification for the 

payment of a given procedure; this diagnosis could represent the condition that the procedure 

was used to ‘rule out’ or can be an administrative artifact of being the code used by a medical 

assistant to maximize the reimbursement amount.  Similarly, patients without a diagnosis 

recorded do not necessarily reflect the absence of a condition, as the code may not be used 

due to lack of seriousness or convenience to facilitate payment procedures.  A similar 

limitation exists in EHR systems, where in addition to concerns about incomplete capture, 

data may be artificially manipulated to serve clinical care.  For example, physicians may 

neglect to remove conditions that have subsided, or may remove many records all at once to 

make viewing the problem list in the electronic system more convenient.  Some diagnosis 

codes have been studied through source record verification and have demonstrated adequate 

performance characteristics66-76, with other conditions and systems are less certain77-80.  Most 

systems have insufficient processes to evaluate data quality a priori, requiring intensive work 

on behalf the researcher to prepare the data prior to analyis81.  Both types of sources require 

inferences to estimate potential drug exposure.  Inferences can be made in administrative 

claims sources based on pharmacy dispensing records, while inferences for HER systems 
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rely on patient self-report and physician prescribing orders61.  Neither reflect the timing, 

dose, or duration of drug ingested, so assumptions are required in interpretation of all study 

results. 

The principle concern for all observational studies, which is of particular relevance in 

observational database evaluation, is the potential for bias.  Schneeweiss et al illustrated 

some of the potential sources of bias that are introduced throughout the data capture process 

for both administrative claims and electronic health records, as shown in Figure 214. 
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Figure 2: Generation of health care utilization databases and potential sources of errors 
and bias14 

 
An observational study is biased if the treated and control groups differ prior to treatment in 

ways that can influence the outcome under study45.  Several forms of bias can arise through a 

study.  In the context of drug safety analyses, one of the most challenging issues of 

confounding by indication: a medical product is differently used as treatment for a given 
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disease, but factors associated with the underlying disease independently influence the risk of 

outcome82.  Therefore, a medical product can appear associated with the outcome without 

appropriate control for the underlying condition, and confounding may persist even despite 

advanced methods for adjustment83.  Confounding can also exist due to predisposition for 

healthcare utilization, either due to functional status, or access due to proximity, economic 

and institutional factors84.  An additional concern is immortal time bias, whereby outcomes 

are not observable within the defined time-at-risk85-87. 

Several strategies exist for minimizing the effects of bias within observational 

database studies.  These include design-level considerations and analysis approaches.  One 

design strategy is to impose restrictions on the sample selected to increase validity, 

potentially at the expense of precision.  These restrictions are quite analogous to clinical 

trials, and include ensuring incident drug use, similar comparison groups, patients without 

contraindication, and comparable adherence, as shown in Figure 3 88.  Schneeweiss et al 

showed in an example of statin and 1-year mortality how bias was minimized at each stage of 

restriction.  The restriction to incident users deserves special attention.  Use of a new user 

design can minimize prevalent user bias and eliminate selection of intermediate variables89-91.   

Within a new user design framework, measures of effect focus on events occurring after the 

first initiation of treatment, which allows a more direct comparison to a comparator group 

using an alternative treatment.  The design can be logically extended to study drug switching 

and add-on therapies, as long as incident use of the target drug is preserved90.   
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Figure 3: Population restrictions to approximate clinical trials in observational studies88 

   
 
 Comparator selection is also an important design consideration to reduce confounding 

by indication.  The comparator definition should yield patients in the same health 

circumstance as those eligible to be new users of target medication.  In some regards, when 

assessing a drug safety issue, the comparator is desired to represent the ‘standard of care’ that 

would be provided to that patient had they not been prescribed the target drug, such that 

relative effect estimates represent risk above and beyond that that patient could otherwise 

expect.  A challenge in comparator selection comes when there is no truly comparable 

standard of care to evaluate against, or when there is significant channeling bias influencing 

treatment decision to a particular drug class.  In this regard, evaluation studies can be highly 
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sensitive to the comparator selected, and a criticism of these studies is often the subjective 

nature by which the comparator was selected. 

 Once a design is established, bias can be further minimized through analysis 

strategies, such as matching, stratification, and statistical adjustment.  Variables commonly 

considered for adjustment are those which are observed to have different baseline 

characteristics, or are known to have the potential to influence treatment decisions or 

outcome occurrence.  These may include patient demographics, such as age, gender, and 

race.  It may also include patient comorbidities, either expressed as a set of binary classifiers 

of specific diseases or as a composite index of comorbidity.  One commonly used measure is 

the Charlson index92-102, which was originally developed to predict mortality, but has also 

been shown to be related to healthcare expenditures103.   Adjustment for comorbidity index 

has shown to be useful for exploratory data analysis104, but are not sufficient to address all 

potential sources of confounding due to background conditions. Additional variables often 

cited include prior use of medications, and markers for health service utilization, such as 

number of outpatient visits and inpatient stays.  The specific definition and application of 

these covariates is highly variable across drug safety evaluation studies.  It has been shown 

that covariate selection can influence effect measures, regardless of the modeling approach 

undertaken, particularly if effect modification exists105. 

 Once variables are identified, they can be controlled for through direct matching or 

stratification, whereby the target and comparator groups are logically divided by the 

attributes of the covariates.  However, in a multivariate context, the data may be too sparse to 

provide adequate sample to match on all covariates or provide subpopulations within each 

strata.  A popular tool to overcome this limitation is propensity score analysis45, 106.  
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Propensity scores are most commonly used in cohort studies.  Within the context of cohort 

studies, the propensity score is estimated as the conditional probability of treatment 

assignment, given the observed characteristics prior to exposure.  The propensity score 

provides a scalar value that summarizes all covariates, commonly estimated through logistic 

regression, which can then be used for matching or stratification107.  Propensity scores can be 

been shown to balance the distribution of covariates between two cohorts, although patient-

level covariate values may differ within paired groups45.   Variables introduced in the 

propensity score model which are confounders (related to both exposure and outcome) or 

related to outcome alone have shown to minimize bias in outcome effect measures108.  While 

propensity score adjustment has increased in popularity, the practical effect, in relation to 

typical multivariate modeling approach, can be modest in many circumstances109.  However, 

its use has several desirable characteristics that make its choice preferred to conventional 

approaches, including the focus on pre-exposure characteristics, improved balance, and better 

control of confounding that could influence rare outcomes or small relative effects110. 

As with other approaches, the propensity score model is only as good as the 

covariates selected to provide the adjustment.  Propensity score may balance observed 

confounders, but does not balance in factors not incorporated into the model.  This is a 

particular problem for analysis of electronic healthcare databases, where many important 

covariates, such as smoking status, alcohol consumption, body mass index, and lifestyle and 

cultural attitudes to health, are not captured.  Sturmer et al demonstrated that further 

adjustment could be achieved by conducting supplemental validation studies to collect 

additional information on previously unmeasured confounders111.  Schneeweiss showed how 

unmeasured confounders biased estimates of COX-2 inhibitors and myocardial infarction112.  
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Seeger et al highlighted how a model without the appropriate variables included could yield a 

biased estimate in a case study exploring association of statin therapy and myocardial 

infarction113-115.  Strategies for automated selection of large sets of covariates have been 

proposed as potential solutions to minimize risk of missing an empiric confounder116.  

Sensitivity analysis has been proposed as an additional approach to assess the potential 

consequences of unobserved confounding117, but is unfortunately rarely reported in published 

studies.   

Instrumental variable (IV) analysis presents a potential solution to adjusting for 

uncontrolled confounding through control of a factor that is related to exposure but unrelated 

to outcome118-120.  Several studies have shown how instrumental variable analysis can reduce 

bias121-124.  A challenge in IV analysis is identifying a covariate that satisfies the criteria of an 

instrumental variable, particularly with regard to having no effect on the outcome.  For active 

surveillance, where multiple outcomes may be explored for a given outcome, the selection of 

a common instrumental variable becomes even harder.  

 One consideration for all statistical adjustment techniques in drug safety evaluation 

studies is the danger of introducing bias.  Statistical control for variables which either 

increase bias or decrease precision without affecting bias can produce less reliable effect 

estimates125.  For example,  bias can also be induced if an analysis improperly stratifies on a 

collider variable126.  As a result, care has to be taken in any evaluation study to develop a 

parsimonious model which maximizes the bias control while minimizing the risk of 

introducing bias or inflating variance. 

 In pharmacoepidemiology circles, the strategies for overcoming the limitations in 

studying a given observational healthcare database have been well understood, and best 
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practices are gaining widespread agreement.  One emerging area of opportunity for drug 

safety evaluation involves applying these same practices across networks of observational 

databases.  The potential value of a network-based approach is appealing.  While one 

database can be large in size, study restrictions can result in insufficient sample of the 

population of interest to provide reliable estimates of drug-related effects.  Conducting 

analyses across multiple sources can alleviate concerns of insufficient sample size, and also 

provide higher quality evidence by allowing effects to be evaluated concurrently within 

disparate source populations.  Several efforts have shown promise in constructing networks 

of databases and conducting evaluation studies across the network. The HMO Research 

Network is the most notable example.  The network was established in 1994 and is 

comprised of 16 HMO organizations covering over 15 million persons, with each 

organization maintaining administrative claims data that can be pooled across the network for 

specific evaluation studies.  Researchers within the network have conducted various studies 

to support public health, including drug safety evaluations127-135.  Meningococcal Vaccine 

Study used a network of administrative claims databases to conduct a cohort study of 

Guillian Barre syndrome following meningococcal vaccination136.  Some preliminary work 

has shown how analyses can be successfully executed across such a network137-139.  In 

particular, Rassen et al demonstrated how propensity score techniques could be applied in a 

distributed setting to provide adjusted effects while minimizing concerns of patient 

privacy139.  These prior successes have led to active discussions about how to establish a 

distributed network that could focus on drug safety evaluations as part of a national active 

surveillance system140-143. 
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2.4 Approaches for identifying potential drug safety issues 

FDA Guidance for Industry: Good Pharmacovigilance Practices and 

Pharmacoepidemiologic Assessment defines pharmacovigilance as “all scientific and data 

gathering activities relating to the detection, assessment, and understanding of adverse 

events.  These activities are undertaken with the goal of identifying adverse events and 

understanding, to the extent possible, their nature, frequency, and potential risk factors.144”  

The principle concern of pharmacovigilance is the timely discovery of adverse drug reactions 

that are novel in terms of their clinical nature, severity and/or frequency as early as possible 

after marketing, with minimum patient exposure145.  The ultimate goal of pharmacovigilance 

is the rational and safe use of medicines; the findings are intended to influence physicians, 

pharmacists, and patients in their choice of medicines (including self-medication) and the 

precautions to be taken39.   

Methods and processes for evaluating specific drug safety issues once identified have 

been well established and expanded use of observational studies continues to be refined, as 

described in the previous section.  Once a signal is detected, a thorough and manually-

intensive evaluation is conducted, requiring use of many information sources, including pre-

clinical studies, clinical trials, spontaneous adverse reaction reports, epidemiological studies, 

and data collected for other purposes146.  The course of events leading to the identification 

and evaluation of adverse events “frequently follows an S-shaped curve, with 3 major phases: 

a latent period during which a suspicion arises at some point, followed by the often sudden 

accumulation of data (signal strengthening) and, finally, a usually lengthy phase of 

evaluation during which the adverse effect is confirmed (signal testing), explained and 

quantified”39.  Following signal evaluation, if it is deemed that there is reasonable evidence 
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to suggest an association between a drug and an adverse event, a decision about the effect on 

overall safety must be made and the appropriate actions taken, including 1) to change a 

product label, 2) to conduct patient or physician education, 3) to limit advertising to patients 

or physicians, 4) to modify approved indications, 5) to restrict use to selected patients, 6) to 

conduct additional post-marketing studies or trials, and 7) to suspend marketing or 

immediately withdraw a drug147.  The FDA recognizes the importance of timely 

communication of emerging safety information, stating that “informing healthcare providers 

of changes and updates in information about pharmaceuticals during the post-marketing 

period is essential to assuring continued safe use of these drugs. It is critical that physicians 

understand and act on the latest information available regarding the appropriate use of a 

medication148.”  Because signal detection is the first step on the cascade of steps that lead to 

communications aimed at improving patient-provider decision-making, it could be expected 

that enhancing the ability to identify potential safety concerns of medicines can result in 

downstream improvements in patient quality of care.  However, one of the largest gaps in our 

current system is how to identify the issues that warrant the evaluation.   

 Once a drug has been approved and is introduced on the market, the FDA's 

“postmarketing surveillance programs focus primarily on (1) identifying events that were not 

observed or recognized before approval, and (2) identifying adverse events that might be 

happening because a product is not being used as anticipated”5.  Spontaneous adverse event 

reporting remains the cornerstone of pharmacovigilance activities.  The FDA receives about 

400,000 reports annually, primarily from drug manufacturers who are required to report 

serious, unexpected safety events within 15 days, and a minor proportion coming directly 

from health care providers and patients7.  The chief use of spontaneous adverse event reports 
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is to facilitate clinical review of case series.  A case series of related events is often the first 

initial warning that a potential association may exist, and a single reliable case report may be 

sufficient to provide definitive evidence about a rare, serious idiosyncratic event149.  While 

case series are generally regarded as low on the hierarchy of evidence, behind observational 

cohort studies and randomized trials150, the use of case series analysis has a prominent role 

when other information cannot be made available151.  At the same time, clinical review 

constitutes the primary bottleneck: with hundreds of thousands of reports submitted to FDA, 

WHO and other organizations each year, every one of which cannot possibly be reviewed by 

the available experts152.   

Although the careful review of pharmacovigilance experts remains central to the drug 

safety process, statistical data mining algorithms are becoming increasingly popular 

supplementary tools for safety reviewers24, 25.  Various disproportionality analysis methods 

exist, but each approach attempts to answer the same question: which drug-event 

combinations are reported more frequently than we would have expected if the drug and 

event were truly independent153?  The proportional reporting ratio (PRR) was first proposed 

by Evans et al as a simple tool to help prioritize amongst the potential relationship identified 

within a spontaneous adverse event  reporting databases 154.  The Reporting Odds Ratio 

(ROR) was also established155, and is used in some countries in Europe, including the 

Netherlands156, 157.  Multi-item Gamma Poisson Shrinker (MGPS) was conceived as a 

Bayesian approach to the disproportionality problem and also incorporated stratification by 

age, gender, and year-of-report in an attempt to both shrink small estimates and minimize 

potential sources of bias when calculating an expected value to compare to9.  MGPS has 

become the preferred method of choice at FDA, and actively used throughout the 
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pharmaceutical industry158-160.  Bayesian confidence propagation neural network approach, 

and its Information Component (IC) metric, was developed as another Bayesian approach 

and is currently used at WHO161-167.  While most agree the potential for bias is significant, 

preliminary work using IC shows stratification by age and gender may decrease performance 

of spontaneous data mining168.  Additional work has looked to expand into using these 

methods for drug-drug interactions169, 170. 

Data mining has shown that it does not detect safety issues sooner than a simple 

heuristic of 3 reported events, but the proportion of true relationships is higher171.  After the 

methods had widespread use and different approaches were gaining favor in different corners 

of the world, a body of research was conducted to compare the performance for the approach.  

Preliminary work showed the methods had comparable performance153, 172.  Some studies 

observed that performance differences between the PRR and MGPS methods are related to 

stratification effects, tradeoffs in sensitivity and specificity, and inequities in the thresholds 

that have been adapted for each method.  PRR was shown to be more sensitive and less 

specific than MGPS173.  With all approaches however, false positives present the most 

significant challenge.  Hochberg et al showed “there is a substantial fraction of SDRs for 

which no external supporting evidence can be found, even when a highly inclusive search for 

such evidence is conducted”174.  It is generally understood that the weaknesses of 

spontaneous adverse event reporting cannot be overcome by data mining methodologies 

alone8, 145, 146, 153, 175-182. 

Experience gained internationally shows that spontaneous reporting is effective in 

providing information about a wide range of different adverse effects and other drug-related 

problems.  It has been mainly helpful in detecting adverse events that are often allergic or 
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idiosyncratic reactions, characteristically occurring in only a minority of patients and usually 

unrelated to dosage and that are serious, unexpected and unpredictable, and unusual effects 

that are related to the pharmacological effects of the drug and are dosage-related183.  On the 

other hand, spontaneous reporting is of less use for the study of adverse effects with a 

relatively high background frequency and occurring without a suggestive temporal 

relationship39. 

While the spontaneous adverse event reporting system has value in generating 

hypotheses about potential associations, it  has several limitations that make causal 

assessments difficult: voluntary reporting suffers from chronic underreporting and maturation 

bias, and the unknown nature of underlying population make true reporting rates difficult to 

obtain and use for comparisons.  It has been estimated that only about 1% of all adverse drug 

reactions and about 10% of all serious adverse drug reactions are reported5.  Reports are 

“usually based on suspicion, and may be preliminary, ambiguous, doubtful or wrong”39. 

Recognizing the limitations of spontaneous adverse event reporting, various efforts 

have sought to leverage observational healthcare databases for event detection.  The CDC has 

played a leading role in establishing public health surveillance programs to inform medical 

product safety issues.  The National Electronic Injury Surveillance System-Cooperative 

Adverse Drug Event Surveillance System has enabled monitoring of adverse drug events 

leading to emergency department visits184-186.  Another successful project has been the CDC 

Vaccine Safety Datalink (VSD), which demonstrated the feasibility of establishing a 

distributed network of administrative claims sources and conducting systematic analyses to 

detect vaccine-related adverse events187.  The sequential probability ratio test was applied to 

detect increases in intussusception following introduction to the rotavirus vaccines, as well as 
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decreases in several events after the changeover from the whole cell pertussis vaccine to the 

acellular pertussis vaccine.  In these instances, as with spontaneous reporting, the public 

health surveillance objective is to identify cases of serious events following exposure that 

wouldn’t otherwise be expected.  A primary distinction between spontaneous reporting and 

Vaccine Safety Datalink is that the spontaneous reporting system captures all potential events 

of any origin, whereas studies designed for VSD focus on a restricted set of specific adverse 

events known to be potentially caused by vaccines.   In that respect, the VSD approach still 

fall within an evaluation paradigm, whether the system must first be presented within a prior 

hypothesis of a specific drug-condition relationship and craft an analysis to assess the 

purported effect.    The method was since enhanced188 and applied to drug safety surveillance 

as part of the HMO Research Network, which demonstrated the ability to identify known 

drug-safety issues, including acute myocardial infarction risk following exposure to 

rofecoxib137, 138.  However, as the authors note, these studies suffer from several 

methodological limitations, notably failure to fully address confounding and length of 

exposure.  Also, as with the applications to public health surveillance, these methods have 

not yet been applied in an exploratory framework to generate hypotheses but are instead 

applied to targeted drug-condition pairs.  As such, ‘identification’ of the rofecoxib-

myocardial infarction effect comes without regard to how many other false positive cases 

may be detected when using the same approach. 

As we move into active drug safety surveillance, the goal shifts from case detection to 

association detection.  That is, the interest in the system expands beyond detecting rare, 

idiosyncratic events that would not be expected to be seen without exposure, to detecting 

elevations in risks of conditions that occur in the background population.  Where clinical 
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trials may be sufficient for detecting strong associations with highly prevalent outcomes 

(such as nuisance side effects like headache and nausea), and spontaneous reporting and 

public health surveillance tools may serve the purposes for identifying cases of rare events 

(such as Stevens-Johnson syndrome, toxic epidermal necrolyis, and Guillain Barre 

syndrome), the largest opportunity for an active surveillance system rests in complementing 

those systems in the gap in between.  This may include adverse events that are less 

commonly observed in clinical trials, that have weaker associations to exposure, and are 

observed sufficiently often in the general population that case series may not be sufficient to 

fully characterize the relationship.  Several notable adverse events that fall within this 

category include acute myocardial infarction, fracture, gastrointestinal bleeding, suicidality, 

and renal and hepatic dysfunction.   

While there is a lot of excitement for the potential of an active surveillance system for 

hypothesis generation, it is widely recognized that significant methodological research is 

needed to inform the appropriate use of observational data and analysis methods before a 

national system can be reliably used.  Several methods have emerged that attempt to assess 

multiple outcomes within an exploratory framework across observational databases.  A 

recent FDA-commissioned report summarized a selection of alternative signal detection 

methods and their potential application to observational data17, and the Observational 

Medical Outcomes Partnership also produced a review of methodological considerations for 

active surveillance that was intended to inform the ongoing scientific dialogue16.   

Curtis et al adapted the empirical Bayes Multi-item Gamma Poisson Shrinkage 

(MGPS) algorithm to longitudinal administrative claims data, and applied it to the Medicare 

Current Beneficiary Survey to study effects of COX-2 inhibitors and Non-steroidal anti-
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inflammatory drugs (NSAIDs).  The method was used to simultaneously evaluate 259 

outcomes and compared to a parallel analysis using traditional epidemiologic methods to 

assess the concurrent validity of the data mining approach.  The authors showed some 

consistency in cardiovascular effects but also identified several diagnoses that “likely 

represented indications for the drug”189. 

Noren et al have similarly adapted the Information Component to be applied to 

longitudinal data, with their Temporal Pattern Discovery method152, 190.  The method was 

applied to the UK IMS Disease Analyzer database, which contains electronic health records 

for 2 million patients through the United Kingdom.  Studies successfully demonstrated 

detection of nifedipine effects of flushing and localized swelling, while providing a visual 

mechanism to identify potential confounding by indication in effects such as omeprazole and 

acute pancreatitis190. 

I3 Drug Safety, a subsidiary of United Health Group, developed a commercial tool, i3 

Aperio, that is marketed as an active surveillance system191.  While little of the specific 

implementation details are publicly available, one article describes the approach as a cohort 

study that executed against the i3 research claims database192.  A target drug is compared to a 

chosen comparator product.  Patients are matched with a greedy algorithm based on a 

propensity score calculated by a logistic regression that includes as covariates age, sex, 

geographic regions, costs, diagnoses (defined by 3-digit ICD9 codes), drugs, visits, 

procedures, and labs192.  Relative risk estimates are provided for 1 year following exposure, 

with outcomes defined by 4-digit ICD9 codes192.  The study showed no association between 

exenatide and acute pancreatitis, though effects of other outcomes were not reported and 

performance characteristics of the entire system were not provided.   
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Observational screening is a method originally developed at GlaxoSmithKline and 

now made commercially available as part of the SAEfetyWorks® software application by 

ProSanos18, 193-196.  Screening applies a basic cohort design to estimate the relative rate of 

condition occurrence among exposed populations compared to the overall population.  The 

method was studied across 1391 labeled events across 10 drugs, and showed 39% sensitivity 

and 85% specificity when using a threshold requiring two databases to both show a 

significant effect18.  SAEfetyWorks introduces two noteworthy innovations: 1) a 

computationally efficient method for estimating unadjusted incidence rate ratios for all 

potential outcomes across a wide array of medical products, and 2) a framework for applying 

methods across disparate data sources to produce composite measures of effects based on 

threshold criteria imposed across the network of sources.   

A common challenge across all methods is determining how to manage the potential 

false alarms when exploring such a large set of potential outcomes, and determining when 

evidence is sufficiently compelling to warrant follow-up23.  To date, no empirical studies 

have demonstrated the performance characteristics of these methods across a large sample of 

drug-event pairs, or quantitatively identified the incremental value in supplementing current 

pharmacovigilance practice with these new methods, either in terms of identifying new issues 

or faster time-to-detection. 

As such, several efforts have begun work to conduct methodological research to 

develop and study the potential use of analysis methods across an active surveillance system.  

In 2010, FDA awarded a contract to Harvard Pilgrim Health Care to develop a pilot project, 

dubbed ‘mini-Sentinel’, to begin to explore scientific and operational aspects of initiating a 

national active surveillance system197.  International efforts are also ongoing to evaluate the 
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potential use of observational healthcare databases for detecting potential drug safety issues.  

The EU-ADR project “aims to develop an innovative computerized system to detect adverse 

drug reactions (ADRs), supplementing spontaneous reporting system [by] exploit clinical 

data from electronic healthcare records (EHRs) of over 30 million patients from several 

European countries (The Netherlands, Denmark, United Kingdom, and Italy).  A variety of 

text mining, epidemiological and other computational techniques will be used to analyze the 

EHRs in order to detect ‘signals’ (combinations of drugs and suspected adverse events that 

warrant further investigation)”198-201.  The IMI PROTECT (Pharmacoepidemiological 

Research on Outcomes of Therapeutics by a European Consortium) initiative started in 2010 

as a collaborative European project to address limitations of current methods in the field of 

pharmacoepidemiology and pharmacovigilance202.   

The Observational Medical Outcomes Partnership (OMOP) was established in 2009 

as a public-private partnership to conduct methodological research to inform the 

establishment of a national active surveillance system203.  OMOP is chaired by FDA, 

managed by the Foundation for the National Institutes of Health, and supported by the 

pharmaceutical industry, with broad participation from government, academia, payers, 

healthcare systems, and patient groups, across multiple disciplines, including epidemiology, 

statistics and medical information, and across the applied health sciences.  OMOP consists of 

a two year research program to evaluate the feasibility and utility of alternative analysis 

methods and observational health care databases for identifying and evaluating safety and 

benefit issues of drugs already on the market.  OMOP has established a data community of 

10 disparate data sources, comprising over 200 million lives in aggregate, and designed a 

large-scale methodological experiment where a library of methods will be applied to each 
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database and tested against a defined set of test cases (positive and negative controls for 10 

medical products) to empirically measure performance in identifying known safety issues 

and discerning from false positive findings.  All the methods and tools developed by OMOP 

have been placed in the public domain, and researchers have been encouraged to use these 

products to advance their own research pursuits. 

 

2.5 An integrated active surveillance system within a causal inference framework 

While still in its infancy, there is much debate about the intended design and scope of 

a national active medical product safety surveillance system204, 205.  An active surveillance 

system will involve a systematic process for analyzing multiple observational healthcare data 

sources, including administrative claims and electronic health records, to better understand 

the effects of medical products by estimating temporal relationships between exposure and 

outcomes.  The active surveillance system can be used to 1) characterize known side effects, 

2) monitor preventable adverse events, and 3) explore remaining uncertainties.  The goal of 

the active surveillance system is to contribute supplemental information to other existing 

sources of safety information (including pre-clinical data, clinical trials, and spontaneous 

adverse event reporting) to support decision-making about appropriate use of medical 

products for regulatory agencies, providers, and patients. 
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Figure 4: Conceptual framework for active surveillance 

 
Figure 4 provides a conceptual framework for active surveillance.  There are various sources 

of risk of medical products that can result in injury or death, including known side effects, 

medication and device error, product defects, and other remaining uncertainties.  These risks 

are influenced by many factors, including patient characteristics (such as demographics, 

comorbidities, concomitant medications, and health service utilization), health system factors 

(such as utilization practice and provider behavior), and other environmental sources.  

Discovery of how treatment effects vary by baseline risk is one of the important contributions 

of post-marketing surveillance of drugs206.  The current measures of risk include clinical 

trials, spontaneous adverse event reporting systems, epidemiologic studies, and registries.  

Active surveillance offers the opportunity for the systematic use of observational healthcare 

databases, such as administrative claims and electronic health records, to improve our 

measures of the sources of risks.  Analyses against these data can account for the measurable 

influents of risk to provide robust, supplemental information that can be used to both identify 
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and evaluate potential drug safety issues.  While evaluation studies have been common 

practice for decades, use of these data in a formal exploratory analytic framework is new and 

requires further research to determine its relative contribution to such a system.  

When considering drug safety in a causal inference framework, one can consider 

Hill’s considerations of 1) strength, 2) consistency, 3) specificity, 4) temporality, 5) biologic 

gradient, 6) plausibility, 7) coherence, 8) experimental evidence, and 9) analogy54.  The 

strength of association should be considered because stronger associations may be more 

compelling, but weak associations do not rule out causal connections207.  Consistency refers 

to the repeated observation of an association in different populations under different 

circumstances.  Specificity relates to the number of causes that lead to a specific effect, and 

the number of effects produced from a given cause.  Temporality refers to the necessity that 

the cause precedes the effect.  Biologic gradient addresses the degree to which there is a 

dose-response relationship, where the amount of response increased with increased exposure.  

Plausibility reflects the scientific rationale for the existence of an association, typically in 

drug safety, related to the mechanism of action and the biologic pathways that lead to the 

effect.  Coherence is the degree to which the interpretation of the association does not 

conflict with the current understanding of the natural history and biology of the disease.  

Experimental evidence for drug safety analyses typically refers to evidence that comes from 

human randomized clinical trials, but can also include randomized pre-clinical experiments 

in animal models. 

An active drug safety surveillance system can apply Hill’s considerations as part of 

its process for generating hypotheses.  Specifically, analyses conducted across a network of 

observational databases can be used to identify potential drug safety issues based on strength, 



 

 42

consistency, specificity, and temporality.  Specifically, methods produce estimates of the 

strength of temporal associations between exposure and subsequent outcomes.  Applying the 

methods to multiple sources provides an assessment of consistency, as formal tests for 

heterogeneity can be used to measure differences between source populations.  Evaluating 

multiple outcomes for each drug and multiple exposures for each outcome can provide 

insights into the specificity of any specific drug-outcome association.  However, these 

exploratory analysis results will not be sufficient to address issues of biologic plausibility, 

and the use of observational data does not meet the same standards of evidence that come 

from a randomized experimental design.  Methods for studying dose effects requires further 

research, as the degree to which dose and amount of exposure can be accurately measured 

and used within a hypothesis generating framework is undetermined. 

While hypothesis generating analyses are inherently exploratory in nature, basic 

principles of formal evaluation can be applied to raise the collective confidence in the 

reliability of the process.  Research questions and statistical analyses should be specified in 

advance, with all methodological considerations addressed during study planning rather than 

after study completion.  This includes decisions around definitions of exposure and outcome, 

inclusion/exclusion criteria imposed on the sample, and strategies for statistical 

adjustment150.    Analysis processes should be fully transparent and reproducible, and should 

minimize subjective assessment to improve the generalizability of the approach.  Many of 

these principles are well-defined in guidelines for conducting full evaluation studies13, 208-210 

but have not yet been adopted for exploratory analyses.  With these principles in place, 

hypothesis generation can play an important role in an active surveillance system’s 

contribution to causal inference of drug safety issues.  These exploratory analyses can 
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identify and prioritize areas that warrant further examination.  Evaluation studies may be 

used to refine estimates of the strength of the association, but attention can particularly focus 

on biologic plausibility and coherence to put the preliminary results in proper clinical context 

with other evidence, including clinical trials, pre-clinical data, spontaneous adverse events, 

and other epidemiologic studies.     

 



 

 

CHAPTER THREE: METHODS 

 

3.1 Overview 

 
This study is a methodological experiment to evaluate the performance of a novel 

analysis technique for active drug safety surveillance.  The analytical approach, called 

COMParator-Adjusted Safety Surveillance (COMPASS), is described (section 3.2).  The 

evaluation of COMPASS was conducted across five observational data sources (described in 

section 3.3) by exploring the method’s ability to identify known safety issues associated with 

ACE inhibitors.  The experimental design, including the selection of the sample test cases of 

true adverse reactions and negative controls for the drug class and individual ingredients is 

highlighted in section 3.4.  The performance measures used to assess COMPASS 

performance are discussed in section 3.5.  The remainder of the chapter provides specific 

analyses conducted to support the following aims: 

Aim 1: Characterize the performance of COMPASS in identifying known safety issues 

associated with ACE inhibitor exposure within an administrative claims database 

 

Aim 2: Evaluate consistency of COMPASS estimates across a network of disparate 

databases 

 

Aim 3: Explore differential effects across ingredients within ACE inhibitor class
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3.2 COMPASS 

COMParator-Adjusted Safety Surveillance (COMPASS) is a statistical algorithm that 

estimates adjusted rate differences and relative risks for all outcomes of interest for a given 

medical product through propensity score stratification across exposed and unexposed 

cohorts.  COMPASS applies an automated heuristic for defining a comparator group based 

on the indication of the medical product, and provides multivariate adjustment based on key 

influents of risk, including person demographics, comorbidity, and health service utilization.  

COMPASS is not intended to be a final solution for active surveillance, but instead a first-

pass screening tool to serve as a potential guide for identifying and prioritizing potential drug 

effects that may warrant further evaluation. 

Figure 5 highlights the conceptual model that serves as the basis for COMPASS.  The 

fundamental goal of a drug safety analysis is to assess the temporal relationship between 

treatment and outcome.  However, in the context of an active surveillance system that 

leverages observational databases in a non-experimental design, specific attention is needed 

to minimize bias when estimating the drug-outcome association.  COMPASS applies a 

retrospective cohort design to compare the effects of the target drug of interest to an 

unexposed population, defined as those exposed to an alternative treatment for the same 

indication.  The COMPASS model focuses on minimizing bias from four primary sources: 

personal demographics (such as age and gender), confounding by indication, effects of 

comorbidity, and health serve utilization.   
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Figure 5: COMPASS conceptual model 

  

 

The COMPASS approach incorporates several notable features into its analysis that 

bear particular consideration.  First, it leverages large biomedical ontologies to automate 

comparator selection based on the indications and therapeutic classes of the target drug of 

interest.  Second, it imposes automated study design heuristics, including cohort exclusion 

criteria based on contraindications and covariate selection based on FDA-approved 

indications and off-label uses.  Third, the use of a comorbidity index and multiple measures 

of health service utilization as additional aggregate covariates allows for improved balancing 

of exposed and unexposed cohorts that are universally applicable for all outcomes while 

minimizing concerns of inflating bias due to unconfounded relationships with any specific 

outcome.  Fourth, the algorithm simultaneously applies multiple risk windows to identify 

effects with differential time-to-event relationships, such as acute, subacute, insidious or 

delayed onset.  Fifth, COMPASS produces a composite score based on adjusted risk 

differences and ratios that enables prioritization across multiple potential safety concerns 
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based on both magnitude of effect and public health significance.  Finally, in contrast to 

traditional pharmacoepidemiology evaluation designs, which are typically implemented to 

estimate the effect of one drug-condition pair, the COMPASS model is designed to be 

scalable to allow estimation of multiple drug-outcome pairs concurrently, and has 

demonstrated to be computationally feasible to screen thousands of potential adverse events 

within hours.  This efficiency enables key principles of pharmacoepidemiology to be brought 

to bear during the initial exploratory phase of hypothesis generation to complement existing 

evaluation studies that test hypotheses once identified.   

 

3.2.1 COMPASS comparator selection 

COMPASS leverages the standardized vocabulary made available through the 

Observational Medical Outcomes Partnership (OMOP).  The Standard Vocabulary contains 

all of the code sets, terminologies, vocabularies, nomenclatures, lexicons, thesauri, 

ontologies, taxonomies, classifications, abstractions, and other such data that are required for: 

1) creating the transformed (i.e., standardized) data from the raw data sets; 2) searching and 

querying the transformed data, and browsing and navigating the hierarchies of classes and 

abstractions inherent in the transformed data; and 3) interpreting the meanings of the data211.  

Within OMOP, the primary use of the vocabulary has been to translate source codes 

into standard concepts.  For example, across the OMOP data community, conditions are 

coded using several different coding schemes, such as ICD9, SNOMED, MedDRA, Read, 

and OXMIS, but the vocabulary allows all sources to be standardized into a common 

vocabulary (either SNOMED or MedDRA).  Similarly for drugs, many source capture 

prescriptions using NDC, GPI, VA Product codes, or Multilex, but these codes have been 
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mapped to RxNorm.  The standard vocabulary also contains classification systems associated 

with its standards.  For example, MedDRA provides a hierarchical structure of ‘is-a’ parent-

child relationships whereby Preferred Terms (PT) are children of High Level Terms (HLT), 

which are children of High Level Group Terms (HLGT), which are children of System Organ 

Classes (SOC).  The OMOP standard vocabulary offers several classifications for medical 

products.  For example, RxNorm concepts are mapped into the National Drug File, Reference 

Terminology (NDF-RT), which provides classifications for mechanism of action, 

physiological effect, chemical structure, and indication.  Notably, RxNorm is also mapped to 

the Anatomical Therapeutic Chemical (ATC) classification maintained by the World Health 

Organization (WHO) Collaborating Centre for Drug Statistics Methodology, and the 

National Drug Data File Plus (NDDF Plus) maintained by First DataBank.  NDDF Plus 

provides multiple classifications for medical products, including FDA-approved indications, 

off-label uses, and contraindications.  NDDF Plus is actively used in clinical design support 

tools for informing clinicians about medical information during prescription order entry.  

However, we are not aware of its prior use in population-level exploratory analysis of drug 

safety issues across observational healthcare databases. 

COMPASS uses four attributes- therapeutic class, FDA-approved indications, off-

label uses, and contraindications- as part of its automated heuristics, as shown in Figure 6.  

This graphic shows that ingredients can be mapped to each of these four attributes.  It is 

worth highlighting that these attributes are actually mapped through RxNorm clinical drugs 

(which are concepts that uniquely identify product name and dose), but since active 

surveillance analyses are initially anticipated to be conducted at the generic ingredient-level, 
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without immediate exploration of dose effects, the attributes have been propagated up to the 

ingredient level.  

 
 

 
Figure 6: Attributes of medical products used in COMPASS automated heuristics 
*Ingredient maps to these concept through RxNorm clinical drug, which contains 
product name and dose 

 
An example of how these attributes are instantiated for a given medical product, 

lisinopril, is shown in Figure 7.  All attributes have a many-to-many relationship with 

ingredients, meaning that each medical product can have one or more drug classes (here, 

lisinopril has only one, ACE inhibitors), one or more FDA-approved indications (lisinopril 

has three), one or more off-label uses (lisinopril has seven in total), and one or more 

contraindications (lisinopril has 40).    
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Figure 7: Example attributes for lisinopril 

 
 COMPASS uses these attributes to create automated heuristics for comparator 

selection, cohort restriction, and covariate adjustment.  The logic for comparator selection is 

illustrated in Figure 8.  The comparator group is initially defined by exposure to any medical 

products that have at least one of the same indications as the target drug of interest but don’t 

share a therapeutic class.  To continue with lisinopril as a working example, the algorithm 

identifies all drugs that have an FDA-approved indication of either ‘hypertension’, ‘chronic 

heart failure’ or ‘myocardial infarction’.  The drugs identified include ingredients from 

multiple drug classes, including: Angiotensin II Receptor Blockers (ARBs), such as losartan, 

valsartan, and candesartan; Beta Blockers, such as atenolol, metoprolol and acebutolol; 

Calcium Channel Blockers, such as amlodipine, nifedipine, and isradipine; diuretics, such as 

furosemide, amiloride, and hydrochlorthiazide; and other ACE inhibitors, such as enalapril, 

ramipril and captopril.  The list is then restricted to those products who do not share a same 

therapeutic class.  So, the other ACE inhibitors- enalapril, ramipril, captorpil- are removed 

from the indication drug list.  Special consideration of combination products is taken to 

ensure ingredients that could be shared within the target drug are not erroneously included in 
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the comparator drug list.  As such, hydrochlorothiazide is also removed from the comparator 

drug list for lisinopril because the combination of the two products is marketed (brand name: 

Zestoretic).  The final list of comparator drugs reflect a set of alternative medicines that a 

patient could have been prescribed by a provider for at least one of the indications that the 

target drug is used for.  Because most observational databases do not provide explicit patient-

level information that ties diagnosis to prescriptions, pharmacoepidemiology studies 

attempting to exploit the drug-indication relationship often do so by either assuming, 

inferring, or defining by explicit inclusion criteria.  Moreover, pharmacoepidemiology 

studies commonly select a comparator drug for the unexposed cohort based on subjective 

assessment and clinical expertise.  One reason for this approach is to minimize risk of 

immortal time bias that could be introduced if  the unexposed population were defined by 

persons without any exposure (rather than an active alternative treatment).  The COMPASS 

comparator selection heuristic provides an objective tool to construct a referent group to 

serve as the ‘unexposed’ population to compare with those exposed to the target drug of 

interest, and minimizes the potential bias introduced by subjective selection of only one 

‘similar’ drug or class as an alternative treatment.  The comparator selected varies by the 

drug under study as a proxy for ‘standard of care’ but does not reflect the notion of a ‘no 

treatment’ comparator group.       

 



 

 52

 
Figure 8: COMPASS automated comparator selection heuristic 

 
 

3.2.2 COMPASS cohort restrictions and adjustments 

While appropriate comparator selection is a critical component of the cohort design, several 

additional design and analysis considerations are required to improve the validity of the 

estimate of the drug-condition relationship.  COMPASS applies a series of exclusion criteria 

as part of its study design and also attempts to balance the cohorts using propensity score 

stratification across a series of covariates.  Figure 9 highlights the restrictions and 

adjustments imposed as part of the COMPASS analysis process. 
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Figure 9: COMPASS pre-exposure design considerations 

 

COMPASS applies an incident user design to compare new users of alternative 

treatments.  Incident use is inferred by requiring that persons have at least 6 months of 

observation prior to the index date of the first drug use of either the target drug or 

comparator.   It is possible that patients could have been exposed previously, but that 

exposure was not observed due to the period of data capture contained within the 
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observational database.  It is assumed that any potential ‘prevalent use’ that occurs due to 

lack of data coverage represents a small but non-differential bias, and sensitivity analyses can 

be conducted to evaluate the robustness of any findings by varying the length of the washout 

period to be more or less than 6 months.  Because of the incident use providing a comparable 

initiation of treatment between cohorts, it has been argued that the populations are more 

likely to be similar in characteristics that might not be observable in the database90.  

Restricting prevalent use allows for a clear temporal sequence for confounder adjustment 

while minimizing concern of adjusting for intermediate consequence of treatment rather than 

just treatment predictors90.  Definition of treatment initiation also allows for a more precise 

measure of time-at-risk that can be used to assess adverse events with different time-to-event 

relationships, such as acute and delayed onset. 

 An additional restriction imposed in COMPASS is that all persons with concomitant 

use of drugs in the exposed and unexposed lists during the time-at-risk window are excluded.  

This restriction ensures that events attributable to the target drug are not erroneously 

classified for the unexposed cohort, or vice versa.  The risk window defined will influence 

the degree to which the concomitant use will restrict the overall sample; estimating potential 

acute onset events, where only the first 30 days following exposure start are of interest, will 

be less restrictive than exploration of insidious events, where all time exposed needs to be 

non-overlapping.   

 Another potential source of bias introduced by the automated comparator selection 

heuristic is the potential for factors that influence treatment avoidance. A classic example of 

channeling bias is studying gastrointestinal effects among users of Cox-2 inhibitors and other 

non-steroidal anti-inflammatory drugs (NSAIDs).  One of the primary benefits of Cox-2 
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inhibitors relative to NSAIDs was greater GI tolerability; as a result, prescribers tended to 

avoid the use of traditional NSAIDs to those patients with peptic ulcers and other 

gastrointestinal hemorrhaging and would channel those patients to use Cox-2 inhibitors.  

Without adequate restriction or adjustment for the channeling effect, analyses can produce 

biased estimates that indicate Cox-2 inhibitor use has an increased GI risk, rather than a 

preventative effect.    COMPASS leverages the contraindication information available in the 

OMOP standard vocabulary to impose automated exclusion criteria on the cohorts to 

minimize this potential source of bias.  As shown in Figure 10, all contraindications are 

mapped through ICD9 codes to SNOMED clinical findings.  Patients are removed from the 

cohort if there are one or more contraindication condition era records that start in the 6 

months prior to the exposure index date.  For the lisinopril example, patients with ‘acute 

hepatic failure’, ‘angioedema’, ‘pregnancy’, and any other listed contraindication observed in 

their record are excluded from both the exposed and unexposed cohorts.  This restriction 

eliminates the subpopulation that may be more predisposed to known risks. 

 After all restriction criteria have been applied to the cohorts, COMPASS creates a 

series of covariates to use in balancing baseline characteristics to further refine the effect 

estimates.  Balancing is achieved through propensity score stratification 45, 106, 107, 212, 213, 

whereby the covariates are used in a multivariate logistic regression model to estimate the 

probability of the person being exposed to the target drug vs. the comparator drugs, and 

persons in both cohorts are stratified into quantiles based on this probability.  Effects are 

measured within these propensity score strata, and composite summaries are constructed 

using Mantel-Haenzsel estimator.  Strata that contain only exposed or unexposed patients are 

excluded from analysis, as a means to ensure overlap between comparator populations.  
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Stratification is chosen over matching because it is computationally simpler to construct, and 

preserves sample without oversampling or imbalanced weighting for outlier patients214.  In 

prior applications of propensity score balancing, covariates are selected either through 

subjective assessment and clinical expertise or through heuristics that measure the potential 

degree of confounding based on a variable’s relationship to both treatment and outcome108, 

116.  Past studies have demonstrated that inappropriate use of non-confounded covariates that 

are related to treatment but not outcome can inflate variance estimates around the treatment-

outcome effect84, 108, 215.  A challenge in active surveillance, where hundreds of thousands of 

drug-condition pairs may warrant investigation and may need to be explored rapidly on a 

regular basis, is that clinical expert review is likely infeasible and computations requiring 

pairwise comparisons may not be scalable for use in the initial exploratory stages.  As such, 

COMPASS creates a restricted set of covariates, based on personal demographics, treatment 

indication, comorbidity, and health service utilization, which are expected to address the 

primary sources of bias while avoiding unconfounded relationships, to provide cohort 

balancing that is universally sufficient to facilitate simultaneous estimates of all outcomes.    
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Figure 10: COMPASS automated design refinement process 

 
Covariates associated with indication are a primary consideration within COMPASS.  

The comparator drugs are selected based on potential for having a similar indication as the 

target drug.   However, the observed prevalence of the indications prior to exposure is not 

accounted for.  As such, there could be potential for imbalance between the exposed and 

unexposed populations, resulting in confounding by indication.  For example, using the 

lisinopril example, if the majority of patients prescribed lisinopril use the medication for their 

hypertension, but the majority of patients in the unexposed population are being treated for 

myocardial infarction, there could be cohort differences in the cardiovascular profile of the 

patients that could bias comparisons in measured post-exposure effects.  COMPASS attempts 
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to address this potential concern by using these indications as covariates to be balanced 

through propensity score stratification prior to analysis.  Specifically, COMPASS constructs 

binary classifiers for each medical concept identified as either an FDA-approved indication 

or an off-label use.  The concepts are constructed through the OMOP standard vocabulary by 

mapping the NDDF concepts to one or more ICD9 codes, which are then mapped to one or 

more SNOMED clinical findings.  For each indication concept, persons are classified as 1 if 

at least one of the SNOMED codes comprising the indication is recorded in a condition era 

start within the 6 months prior the exposure index date, and 0 otherwise.  Figure 10 

highlights the heuristic for the lisinopril example; concepts are constructed for all FDA-

approved indications (‘hypertension’, ‘chronic heart failure’, and ‘myocardial infarction’) 

and all off-label uses (including ‘diabetic nephropathy’, ‘migraine prevention’, and 

‘prevention of recurrent atrial fibrillation’) in the FirstDataBank vocabulary through the 

mapping via ICD9 and SNOMED.  

A related effect is the number of drugs previously used for the indications.  While all 

patients are incident users to the drug of interest, the cohort definition does not guarantee that 

those patients hadn’t attempted other alternative treatments for their underlying disease prior 

to initiating treatment to the target or comparator drug.  A patient receiving first-line 

treatment for a disease may have different characteristics than someone who has switched 

due to prior treatment failures.  The number of prior drugs used for the indications serves as a 

proxy for the number of treatment switches and can potentially inform the level of underlying 

disease severity insofar as multiple treatments are attempted due to the inherent complexity 

of the disease or lack of response to initial treatments by the patient.  The covariate, ‘number 

of indication medications’, is measured as the count of distinct ingredients used within the 6 
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months prior to the index date that share at least one indication as the target drug.  In the 

lisinopril example, this could include the number of beta blockers, diuretics, ARBs, or other 

ACE inhibitors attempted in the 6 mo before lisinopril initiation.  A count of 0 would be 

potentially indicative of a patient who is using the target drug as first-line treatment for one 

of the indications, while larger counts may increase the likelihood that the patient is 

switching to the target treatment after prior treatment attempts.     

  Beyond the variable set of covariates defined by the target drug attributes, 

COMPASS also applies a defined set of covariates that are independent of the target drug but 

are thought to be important in any drug safety analysis.  These include: age, as measured in 

years by the difference in the index year from the patient’s year of birth; gender, as a binary 

classifier indicating male or female status; the Charlson comorbidity index, as a score 

reflecting overall disease status, based on conditions observed prior to exposure index date94; 

and four methods of health service utilization.  ‘Number of drugs’ is measured by the count 

of distinct ingredients used within the 6 months prior to the index date.  ‘Number of 

procedures’ is measured as count of the distinct procedures administered within the 6 months 

prior to the index date.  ‘Number of outpatient visits’ and ‘number of inpatient visits’ reflect 

the number of distinct days for which services were initiated in outpatient and inpatient 

centers, respectively.  The ‘inpatient’ measure included both hospital stays and emergency 

room visits not requiring hospitalization. 

The exposed and unexposed cohorts are stratified by propensity score Pi , estimated 

by the following logistic regression:  
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The computational efficiency that makes COMPASS viable as an initial hypothesis-

generating tool also comes at the sacrifice of precision of the association estimates.  

Specifically, global covariates (such as the comorbidity index and aggregate health service 

utilization measures) are used in lieu of drug- or disease-specific covariates because 

individual covariates could have unobserved confounding, but the confounding effects would 

vary by outcome.  Preliminary studies using the Charlson comorbidity index in the 

propensity score model found improved balance not only of the index, but also reduced 

differences in most of the constituent comorbidities that comprise the index as well. 

 

3.2.3 COMPASS risk windows 

 
The time-to-event relationship between an exposure and an adverse event can vary based on 

the pharmacologic effect of the medicine and the disease progression of the event216.  Some 

events, such as anaphylaxis reactions, commonly have an acute onset, and are generally 

observed shortly after initial exposure to the medication or never at all.  Other events may 

have a delayed onset, such as cancer, which may result from long-term exposure.  Still other 

events may have different time-to-event relationships based on the effect with the drug; 

studies exploring drug-related relationships with hip fracture have shown insidious onset 

with benzodiazepines due to risk of dizziness and falls, while a delayed effect observed with 

proton pump inhibitors hypothesized to be due to long-term calcium malabsorption.  
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Traditional pharmacoepidemiologic evaluation studies that focus on one drug-outcome pair 

typically have a hypothesis of the type of effect under study that can be used to define the 

study risk window.  In the active surveillance paradigm, where we are exploring multiple 

outcomes to identify potential effects that warrant further review, we do not have the luxury 

of knowing the time-to-event relationship.  Alternative active surveillance approaches may 

pre-specify a risk window of interest; for example, the use of self controlled case series 

would traditionally assume insidious onset since the time exposed is used to define the time-

at-risk.  In COMPASS, we seek an alternative to pre-specifying the time-to-event 

relationship by instead concurrently testing four clinical scenarios (see Figure 11).   Time-at-

risk windows are defined as either acute, subacute, insidious, or delayed onset.  The acute 

onset window captures all events that occur within the 30 days following exposure start.  

Subacute onset includes all events within 60 days of treatment initiation, subsuming the acute 

risk window.  Insidious onset is defined as any time during exposure (from exposure start to 

exposure end) or within 30 days following exposure end.  The additional 30 day surveillance 

window is to accommodate misclassification in exposure end date estimation, and to capture 

events that may proceed a patient ceasing treatment and seeking an alternative therapy 

(potentially due to lack of effectiveness or tolerability due to side effects).   Delayed onset is 

defined by the period from 180 days following exposure start until the end of the observation 

period.  The delayed window may or may not include period of exposure.  All risk windows 

serve as intent-to-treat analyses and are right-censored by the observation period end date.  It 

is important to highlight that, as with any intent-to-treat analysis, this approach may be 

susceptible to selection bias due to treatment stopping, switching, augmentation, and non-

adherence.   
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Figure 11: COMPASS alternative risk windows 

 
 
 Within each risk window, events are identified by condition era start dates that fall 

within the time-at-risk.  When evaluating prevalent events, each person can contribute one or 

more events during exposure.  Across the cohort population, the event rate is estimated as the 

number of events / total time-at-risk.  For each risk window, adjusted rate ratios (ARR) and 

adjusted rate differences (ARD) between cohorts can be estimated for each outcome as:  
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)var(*96.195 ooo ARDARDARDLB −=  

where o is the outcome, s in S is the propensity score strata derived from Pi, w are the 

weights for each strata based on the inverse of the variance, and i is the index for each 

person. 

Within an outcome, the selection of the risk window is made by identifying the risk 

window that yields the maximum ARRLB95 (see Figure 12).  This selection criteria aims to 

prioritize the risk window that has the largest relative effect.  The lower bound is used in lieu 

of the point estimate to filter out unstable estimates generated by small outcome counts.   

 
 
 

 
Figure 12: COMPASS prioritization across risk windows 

 

 

3.2.4 COMPASS prioritization score 
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Both the adjusted rate ratio and rate difference measures provide useful information 

for assessing the significance and potential public health impact of a particular drug-outcome 

pair.  However, in the context of active surveillance, where a potential aim is to explore 

multiple drugs and conditions over time, there is a further need to prioritize the observed 

effects so that the limited resources available can focus on those drug-outcome pairs that are 

more likely to be true causal relationships that warrant some sort of intervention.  One 

conventional approach to prioritization is to construct a dichotomous threshold, whereby 

pairs with a score that exceeds the threshold are considered ‘signals’ and those not meeting 

the threshold are not evaluated further.  In the context of the outputs available from 

COMPASS, one could derive a signal threshold based on the rate ratio, the rate difference, 

the confidence intervals around those point estimates, or some combination therein.  For 

example, drug-outcome pairs with ARRLB95 > 1 reflect pairs that have statistically 

significant rate ratios that indicate some increase in risk between the target and comparator 

cohorts.  Alternatively a threshold of ARR > 2 reflects the estimated effect of the target drug 

is more than double that of the unexposed population; note, there is no inherent measure of 

uncertainty embedded in the decision making.  Thresholds based on rate ratios emphasize 

magnitude of effect size, but do not characterize proportion of population effects.  In 

contrast, thresholds based on adjusted rate differences, such as ARD > 1/1000, can provide a 

designation of a level of potential public health significance that is required to warrant 

investigation.  Composite thresholds can impose further restrictions, such as ARR > 2 and 

ARD > 1/1000, which would only be satisfied for those drug-outcome pairs with a large 

effect size and a large potential public health impact.  When applying thresholds, 

performance can be clearly classified by the degree to which the threshold generates true 
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positives, false positives, true negatives, and false negatives.  However, method performance 

becomes a function of the threshold, the dichotomization makes prioritization amongst the 

‘signals’ and ‘non signals’ difficult, and it is not clear what the appropriate threshold to set 

for any given drug or outcome. 

As an alternative approach, COMPASS constructs a prioritization score that allows 

for rank-ordering drug-outcome pairs based on a single scalar value.  The score is based on 

the confidence interval of the risk difference; if the point estimate of the ARD > 0, then the 

score is the lower bound of the 95% confidence interval, otherwise when the ARD < 0, the 

score is the upper bound of the 95% confidence interval – the minimum ARDLB across all 

outcomes.  Essentially, all outcomes with positive point estimates are prioritized above 

outcomes with negative point estimates, but amongst positive effects, the largest lower bound 

is prioritized to reflect the highest confidence in a true association, and amongst the negative 

effects, the largest upper bound is prioritized to reflect the lowest confidence in a lack of 

association.  Figure 13 provides an illustration of how the prioritization score would rank 5 

outcomes.  Outcome 1 has the largest overall ARD and ARDLB so is ranked first, but 

outcome 2 is prioritized over outcome 3 despite having a lower ARD because of its higher 

ARDLB.  Outcomes 4 and 5 are deprioritized from the first three because ARD < 0, but 

outcome 5 is ranked higher than 4 because the upper bound reflects greater uncertainty that 

there may still be a positive effect.    
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Figure 13: COMPASS prioritization across outcomes 

 
 
 

3.2.5 COMPASS summary 

COMPASS is intended to be a fully-automated exploratory analysis method that 

allows safety scientists to specify a drug of interest and generate hypotheses of potential 

drug-related adverse associations that may warrant further evaluation.    COMPASS was 

developed using SQL and SAS 9.1 against a Oracle 11g database running in the OMOP 

Research Lab on a SUN M5000 server with on a Windows 2003 server with 16 (8x2) 

2.14GHz  CPU, 64GB RAM, and 50TB of storage.  The implementation was customized for 

use with the OMOP common data model, but the algorithm could be generalized to the 
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format of any observational healthcare database that would allow for the exploration of 

temporal relationships between drug exposure and condition occurrence. 

 

The COMPASS algorithm is executed with the following steps: 

1. INPUT: Define the target drug of interest 

2. Identify the FDA-approved indications of the target drug 

3. Identify the ATC drug class of the target drug 

4. Define the comparator drugs as drugs with the at least one of the same indications as 

the target drug and not in the same ATC drug class (see Figure 8) 

5. Select all persons with at least one exposure to the target drug (target cohort) 

6. Select all persons with at least one exposure to one of the comparator drugs 

(comparator cohort) 

7. Identify the contraindications of the target drug 

8. Restrict cohorts to exposures with at least 6 months of observation prior to first 

exposure index date 

9. Restrict cohorts to exposures without any contraindication conditions within 6 months 

prior to first exposure index date (see Figure 10) 

10. Exclude persons who have overlapping exposure to target and comparator drugs 

during the time-at-risk 

11. Identify the off-label uses of the target drug 

12. Create covariates (see Figure 9) 

13. Calculate propensity score (probability of being in target cohort) from all covariates 
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14. Stratify population into 20 quantiles based on rank-ordered propensity scores.  No 

persons from the target or comparator cohorts are dropped from analysis, but 

balancing statistics are produced to allow scientists to review if there is sufficient 

sample in each quantile for each cohort. 

15. For all outcomes, calculate the strata-specific incidence rate for each of four risk 

windows, based on acute, subacute, insidious and delayed onset (see Figure 11).  

Both cohorts are right-censored at time of observation period end. 

16. Calculate adjusted rates, adjusted rate differences and adjusted rate ratios with 

associated confidence intervals for all outcomes and all risk windows. 

17. For all outcomes, select the risk window with the maximum rate ratio (see Figure 12). 

18.  Calculate COMPASS prioritization score based on rate difference across outcomes 

(see Figure 12Figure 13). 

19. OUTPUT: COMPASS prioritization scores for all outcomes, rate ratio and rate 

difference estimates for all risk windows, cohort propensity score balance statistics 

 
 

3.3 Data Sources 

The primary data source under study is the Thomson Reuters MarketScan 

Commercial Claims and Encounters (CCAE), a large administrative claims database 

containing 59 million privately insured lives.  CCAE provides patient-level de-identified data 

from inpatient and outpatient visits and pharmacy claims of multiple insurance plans.  In 

addition to CCAE, the performance of COMPASS was evaluated against the MarketScan 

Lab Database (MSLR), MarketScan Medicaid Multi-State Database (MDCD), MarketScan 

Medicare Supplemental and Coordination of Benefits Database (MDCR), and the GE 
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Centricity electronic health record (GE).  MSLR contains 1.5 million persons representing a 

largely privately-insured population, with administrative claims from inpatient, outpatient, 

and pharmacy services supplemented by laboratory results.  MDCD provides administrative 

claims data for 11 million Medicaid enrollees from multiple states.  MDCR captures 

administrative claims for 5 million retirees with Medicare supplemental insurance paid for by 

employers, including services provided under the Medicare-covered payment, employer-paid 

portion, and any out-of-pocket expenses.  GE contains patient-level data for 11 million 

persons captured at the point of care from a consortium of providers using the GE Centricity 

electronic health record system in their outpatient and specialty practices.  Table 1 provides a 

comparison of the source populations and data availability. 

The five sources reflect the broad diversity of data available and under consideration 

for a national active surveillance system.  They include various populations of interest with 

different demographics and health behaviors (privately insured, Medicaid young, Medicare 

elderly) as well as both primary data capture processes (administrative claims and electronic 

health records).  The diversity in the source populations is likely to significantly influence 

active surveillance methods performance, though the potential effect has not been previously 

empirically measured.  In particular, the Medicare database reflects an older population with 

higher drug use, more comorbidities, and greater health service utilization than any other 

database, so can be expected to potentially reflect a higher-risk population that is also more 

predisposed to confounded relationship between exposure and outcome.  The first and third 

aim focused on CCAE since it is the largest database and is most representative of the 

general population.  Aim 2 applied COMPASS to all sources to study how the underlying 

data can influence method performance in identifying drug safety issues.
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Table 1: Source population characteristics 

    CCAE MSLR MDCD MDCR GE 

Population (N) N=59,836,290 N=1,466,617 N=11,188,360 N=4,655,736 N=11,216,208 

  Years of coverage  2003-2008  2003-2008  2002-2007 2003-2008 2000-2008 
Gender             

  

Male: N (%) 29,173,105 

(48.75) 

515,174 

(35.13) 

4,665,014 

(41.70) 

2,071,968 

(44.50) 

4,751,444 

(42.36) 

  

Female: N (%) 30,663,185 

(51.25) 

951,443 

(64.87) 

6,523,346 

(58.30) 

2,583,768 

(55.50) 

6,460,828 

(57.60) 

Age (yrs)             

  Mean (SD) 32.4 (18.1) 39.1 (17.5) 23.4 (22.7) 74.5 (8.0) 40.6 (22.0) 

Observation period length (mo)           

  Mean (SD) 21.2 (18.6) 18.7 (11.1) 14.2 (13.8) 31.9 (22.9) 24.0 (31.3) 

Number of drug exposure records per person           

  Median (25-75 %tile) 9 (3-28) 14 (5-35) 14 (5-38) 60 (20-134) 8 (3-22) 

Number of condition occurrence records per 
person           

  Median (25-75 %tile) 15 (5-39) 27 (12-56) 24 (9-63) 57 (20-129) 5 (2-10) 

Number of procedure occurrence records per 
person           

  Median (25-75 %tile) 20 (7-52) 39 (19-77) 31 (12-70) 72 (26-154) 10 (3-24) 

 

CCAE:  Thomson MarketScan Commercial Claims and Encounters; MSLR: Thomson MarketScan Lab; MDCD: MarketScan 

Medicaid Multi-State Database; MDCR: MarketScan Medicare Supplemental and Coordination of Benefits Database; GE: GE 

Centricity electronic health record; SD: standard deviation
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All data sources have been transformed into the OMOP common data model211, 217.  

The common data model is a single data schema that can be applied to disparate data types to 

enable consistent and systematic application of analysis methods to produce comparable 

results across sources.  The OMOP common data model leverages standardized 

terminologies to transform sources that use different coding schemes for drugs and 

conditions into a common vocabulary.  The common data model also imposed consistent 

transformation rules for key data elements, such as logic for inferring drug exposure length.  

The model was designed to accommodate and distinguish between data elements from 

disparate sources, such as recording drug exposure by delineating between prescription 

dispensings captured by pharmacy claims, procedural administrations entered on medical 

claims, and prescriptions written and medication history lists recorded in electronic health 

records system. 

Conceptually, the common data model core module has eight entities, shown in 

Figure 14. These are: 

1. Person, which includes attributes such as gender and year of birth 

2. Observation Period (the time at which health care information may be available) 

3. Drug Exposure (i.e., the association between Person and Drug for a specific time 

period) 

4. Health Outcome of Interest, which may be based on a combination of: 

5. The Person’s medical Condition(s) 

6. One or more Clinical Observations about the Person (e.g., laboratory test results) 

7. One or more Medical Procedures that the Person required 
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8. One or more Visits for health care services for the Person 

 

Figure 14: OMOP Common Data Model conceptual schema 

 

For each source, the corresponding person-level data elements from the raw databases 

are transformed into each of the common data model entities.  The analysis common data 

model is constrained to only include data elements during periods of time where a person is 

potentially eligible to have both exposure and outcome recorded.  In the context of 

administrative claims, this restriction corresponds to requiring eligibility where patients have 

both pharmacy and medical benefit coverage.  In clinical systems, these eligibility periods 

can be defined by the first and last observation recorded.  In both cases, patients must 

contribute at least one valid observation period, and all data elements that fall within those 
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periods of time are recorded in the corresponding tables.  Data that falls outside a valid 

observation period is excluded from analysis. 

 

The databases code drug utilization using several source terminologies, including 

National Drug Code (NDC) and Generic Product Identifier (GPI), as well as procedural 

administrations coded in Current Procedural Terminology, 4th edition (CPT-4), Healthcare 

Common Procedure Coding System (HCPCS), and ICD9 surgical procedure codes.  These 

source codes have been mapped into RxNorm as the standard terminology, which provides a 

common classification of clinical drugs and ingredients. 

As part of its design, the common data model contains a DRUG_EXPOSURE table, 

which stores all verbatim records from the source database that could be potentially used to 

infer drug exposure.  Most source databases provide an identifier for the medical product 

used and an exposure start date, which requires inferring exposure period length based on 

other available records.  For example, this table may contain prescription dispensings (with 

information such as quantity and days supply), or prescriptions written with quantity of 

medicine (with information such as number of refills), or medication history listings (which 

may provide a drug stop date).   

Because source databases may vary significantly in the available fields that could be 

used to infer exposure, a supplemental data table, DRUG_ERA, was created.  The 

DRUG_ERA table is intended to have one common structure for maintaining periods of 

persistent exposure.   DRUG_ERA is a derived table, based on the DRUG_EXPOSURE 

table that pre-processes the data to make it more analysis-friendly and minimize the 

computational burden.  The intent behind developing this framework is to establish one 
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systematic, transparent process for building DRUG_ERAs that can be consistently applied 

across all drugs in a database, and across multiple databases.   

Drug era construction is a person-level data transformation that serves two purposes:  

1) rolling up different medical products that contain the same active ingredient, and 2) 

combining records that overlap in time, subject to a persistence window.  The first objective 

is accomplished by leveraging the hierarchy within the standardized terminology to 

aggregate drugs to the ingredient level of RxNorm.  The second objective is achieved by 

deriving end dates for each drug exposure record, then evaluating whether exposure windows 

for the same product are sufficiently close to infer continuous use. 

For claims related to pharmacy prescriptions, the dispensed date and number of days 

supply are used to extrapolate the end date for the period of drug exposure. This approach is 

commonly used and shown to reliably reflect utilization patterns218.  When a person receives 

recurring prescriptions for the same product and strength, the multiple prescriptions may 

need to be treated as a single drug era. To determine whether this is indeed the case, the 

drug’s “persistence window,” which is the number of days after the person stops taking a 

drug and during which the person is deemed to still be affected by the drug, must be taken 

into account. If the number of days between the end date of the prior Drug Exposure and the 

start date of the subsequent drug exposure falls within the persistence window, then the two 

exposures are considered to belong to the same drug era.  The ‘persistence window’ for this 

experiment is defined to be 30 days. 

For example, as illustrated in Figure 15, consider a person who is taking two drugs: 

Drug A and Drug B. The person has had four prescriptions for Drug A (A1, A2, A3, A4), 

each with a sixty-day supply. The Person has also had two prescriptions for Drug B (B1, B2). 
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Figure 15: Drug era construction 

 
To define the drug era for Drug A, the timing, duration, overlap, and persistence of 

the person’s prescriptions for drug A must be considered.  A2 was filled before the expected 

completion of A1. Similarly, A3 was filled before the expected completion of A2.  A4 was 

filled after A3 was completed, but within the persistence window for Drug A. Therefore, the 

four prescriptions for Drug A will be consolidated into a single drug era (DrugEra1), with the 

start for prescription A1 recorded as the start date for the consolidated record and the end 

date for prescription A4 recorded as the end date. As the persistence window was exceeded 

between filling the two prescriptions for Drug B, they are defined as two distinct Drug Eras. 

The start and end dates for DrugEra2 and DrugEra3 are the start and end dates for 

prescriptions B1 and B2, respectively. 

Note, the logic for drug eras does not append overlapping exposure time to the end of 

the drug exposure length.  That is, if a person receives a second 30-day prescription 10 days 
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before the allotted 30-days supply for the first prescription, the resulting drug era would be 

50 days long.  These ten days will not be added to the persistence window as ‘carry over’.  

This assumes the old prescription was completed or will be used in the future at the time of 

dispensing or record of the next prescription.  Because drugs are rolled up to the ingredient 

level, this avoids misclassification of dose changes.  It could be argued this conservative 

assumption be revised to augment the exposure length by this overlap, but these assumptions 

may likely vary by treatment and specific analysis. 

In a manner analogous to the construction of drug eras, condition occurrence records 

are standardized into a common terminology and aggregated into condition eras prior to 

analysis.  Specifically, administrative claims databases code diagnoses as International 

Classification of Diseases (ICD9) diagnostic codes, while clinical systems use ICD9, 

Systematized Nomenclature of Medicine-Clinical Terms (SNOMED), and Medical 

Dictionary for Regulatory Activities (MedDRA).  These source codes are mapped into 

SNOMED as the standard terminology for this analysis. 

The common data model contains a CONDITION_OCCURRENCE table, which stores 

all verbatim records from the source database that could be potentially used to infer condition 

occurrences.  Most source databases provide an identifier for the condition (such as ICD-9-

CM diagnosis code) used and a diagnosis date.  However, particularly in administrative 

claims systems, diagnoses may be recorded to facilitate reimbursement of a particular 

procedure, and may be recorded multiple times on the same or successive dates if more than 

one service is provided.  The CONDITION_ERA table is intended to provide one common 

structure for aggregating distinct diagnosis records into episodes of care for a given 

condition.   
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Similar to Drug Eras, Condition Eras are chronological periods of Condition Occurrence. 

Combining individual Condition Occurrences into a single Condition Era serves at least two 

purposes: 1) it allows aggregation of chronic conditions that require frequent ongoing care, 

instead of treating each Condition Occurrence as an independent event; and 2) it allows 

aggregation of multiple, closely-timed doctor visits for the same condition to avoid double-

counting the Condition Occurrences. 

For example, consider a Person who visits his Primary Care Physician (PCP), who 

diagnoses the Person with a specific condition and refers the Person to a Specialist. One 

week later, the Person visits the Specialist, who confirms the PCP’s diagnosis and provides 

the appropriate treatment to resolve the condition with no further care required. These two 

independent doctor visits should be aggregated into one Condition Era.  

This model generally fits well for acute conditions, but may be less robust for chronic 

conditions. For example, chronic conditions that do not require regular follow-up may be 

recorded as multiple Condition Eras because the absence of data in the periods between visits 

does not justify the aggregation of the eras. Because the persistence window is small, it is 

likely that multiple visits will be captured in rapid succession for the same condition; 

however, it is unlikely that infrequent visits for chronic conditions (e.g. a Person with 

Rheumatoid Arthritis who visits his rheumatologist every three months) will be captured. 

However, the small window also reduces the likelihood that independent events will be 

falsely classified as the same Condition Era. 
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Figure 16:  Condition era construction 

 
Figure 16 provides an illustration of how the logic for condition eras is applied to 

diagnosis codes.  Imagine a Person who has been diagnosed with two conditions during his 

insurance coverage period: Condition A and Condition B. The Person has been diagnosed 

with Condition A four times (A1, A2, A3, A4), and has been diagnosed with Condition B 

twice (B1, B2).  

To define condition persistence for Condition A, the timing of successive diagnoses is 

considered. Here, A2 is within the persistence window of A1. Similarly, A3 is within the 

persistence window of A2, and A4 is within the persistence window of A3. Thus, the four 

diagnoses of Condition A should be consolidated into Condition Era1, with the start date 

equal to the diagnosis date for A1, and the end date equal to the diagnosis date for A4. With 
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Condition B, significant time has elapsed between diagnoses B1 and B2. Therefore, it cannot 

be assumed that there is dependence between the diagnoses as the time exceeded the 

persistence window for B1. Therefore two distinct Condition Eras are defined, one each that 

corresponds to B1 and B2. 

Note, that for Eras built using 30 day-persistence windows no additional 30 days is 

being added at the end of the last Condition Occurrence. That means, that Condition-free 

times within an Era is treated as continual Condition, while in the time following the Era no 

Condition is assumed.  For outcome ascertainment, the condition era onset, and not the era 

length, is of most direct relevance. 

The potential concern with applying any persistence window when defining episodes 

of care is misclassification.  A longer persistence window risks treating diagnoses that 

reflected independent conditions are part of the same continuum of care, while shorter 

persistence window assumptions may falsely separate the records from the same episode of 

care and observe them as distinct occurrences.  In the context of active surveillance, where 

condition occurrences may be used as proxies for potential observations of adverse events, 

both forms of misclassification bias require careful consideration.  Even when using a 30d 

persistence window assumption, the large majority of aggregated eras come from the same 

diagnosis occurring less than 10 days from one another.  In these cases, it seems more 

unlikely these conditions represent independent events than it does that the gaps coincide 

with a common episode of care.  A sensitivity analysis of the condition era persistence 

window was conducted to assess the degree of consolidation at 0 days and 30 days219.  This 

analysis shows that between 33% and 45% of records were successfully aggregated in claims 
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databases using 30 day window, and that >70% of gaps between successive diagnoses were 

within 30 days for the 10 outcomes under study within OMOP.  

If a method only uses the first occurrence of cases as a proxy for incident events, then 

consolidation of eras does not matter (since both have the same first start date).  However, if 

a method attempts to use prevalent cases, as measured by each distinct era occurrence, the 

selection of the persistence window can be significant.  To reiterate, multiple eras for the 

same condition does not necessarily indicate distinct occurrences of the condition, but instead 

represent independent periods of time where the data suggests the condition may have 

occurred.  That is, chronic conditions, such as diabetes, are likely to be considered to persist 

following the first occurrence, but a person may have multiple eras for diabetes because they 

do not receive care of the disease on a regular basis.   

 

3.4 Experimental design 

The primary objective of this study is to evaluate the performance of COMPASS as a 

potential hypothesis generating tool for active drug safety surveillance across a network of 

observational healthcare databases.  Performance is measured as the accuracy by which 

COMPASS identifies true effects and discerns from false positive findings.  The challenge in 

prospectively evaluating a hypothesis generating tool for drug safety is that ‘ground truth’ 

about the drug-outcome relationship is not established; that is, the intended goal of such a 

tool would be to uncover new safety issues that have not previously been detected.  However, 

new safety issues that are detected may be either true positives or false positive findings, and 

substantial work in formal evaluation would need to be conducted to confirm or refute any 

findings.  Prior to prospective use of a hypothesis generating tool, it is important to first 
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retrospectively evaluate the performance of the method in an experimental setting so we can 

establish some level of expectation for prospective performance.  

 The retrospective evaluation of COMPASS is conducted within six observational 

databases, and across the drugs within the Angiotensin Converting Enzyme (ACE) Inhibitor 

class.  COMPASS is applied to a series of drug-condition pairs to produce estimates of the 

potential effects.  These estimates are then compared to a pre-defined ‘ground truth’ 

classification of drug-condition relationships as either positive or negative controls.  

Measures of accuracy are compared to other hypothesis generating methods to provide both 

absolute and relative assessment. 

ACE Inhibitors provide a solid basis for methodological research because the class 

represents a large set of mature products that are actively used in the broad population.  ACE 

Inhibitors block the conversion of angiotensin I to angiotensin II within the rennin-

angiotensin system, which plays a important role in the pathology of hypertension, 

cardiovascular health, and renal function22, 220.  Effective blood pressure reduction has been 

shown to reduce death, stroke, and heart disease221.  ACE inhibitors have been found to be 

effective in the control of hypertension, as well as reduce the risk of acute myocardial 

infarction among patients with heart failure, left ventricular remodeling after acute 

myocardial infarction, mortality among patients with severe heart failure and reduced left 

ventricular ejection fraction, and progression of renal disease among diabetic and non-

diabetic patients220.  Angiotensin II receptor blockers (ARBs) were developed as an 

alternative treatment option to ACE inhibitors and have been found to have comparable 

impact on hypertension, cardiovascular disease and heart failure, as well as renal disease 

progression220, 222.  Several head-to-head clinical trials and systematic reviews have shown 
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that products with the ACE inhibitor class have comparable efficacy to one another22, 221, and 

the class has comparable efficacy to ARBs for the primary indications for both classes220, 222.  

The Joint National Committee on Prevention, Detection, Evaluation and Treatment of High 

Blood Pressure (JNC-7) currently recommends an ACE inhibitors or ARBs as first line 

options for patients with stage 1 hypertension who have diabetes, chronic kidney disease, 

history of stroke or myocardial infarction, or high cardiovascular risk223. The American 

Diabetes Association and Kidney Disease Outcome Quality Initiative guidelines both 

recommend use of an ACE inhibitors or ARBs for diabetic patients with hypertension or 

diabetic nephropathy224, as well as patients with diabetic or non-diabetic proteinuric renal 

disease225. 

The primary adverse events of ACE inhibitors reported include hypotension, cough, 

angioedema, hyperkalemia, and acute renal impairment22.  Other adverse effects include 

rashes, hepatotoxicity, dysgeusia, and neutropenia.  One meta-analysis examined adverse 

events in 51 placebo- or standard treatment controlled randomized trials of ACE inhibitors in 

patients with heart failure or ventricular dysfunction, and found that cough (relative 

risk=1.86), hypotension (RR=1.95), renal dysfunction (RR=1.84), dizziness (RR=1.60), 

hyperkalemia (RR=7.11), and impotence (RR=6.46) were all significantly more prevalent 

among patients treated with ACE inhibitors than among those in the control groups226.  A 

systematic review comparing ACE inhibitors and ARBs found differences in rate of cough, 

but no difference in rates of other adverse events such as headache and dizziness222.  The 

relative risk of cough was 2.7 in East Asian patients, as compared to whites227.  When ARBs 

were added to ACE inhibitor therapy for heart failure, increased risk of hypotension, renal 

function, and hyperkalemia has been observed228.  None of the studies have shown 
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significant differences in the rates of cough, angioedema, hyperkalemia, or acute renal 

impairment between specific ACE inhibitors22. 

 While rare in incidence, angioedema has been consistently shown as a potential risk 

across all ACE inhibitors in clinical trials, and reinforced by observational database studies70.  

Enalapril was shown to have a 4-fold increase in angioedema risk relative to placebo, from 1 

per 1,000 to 4 per 1,000 among all subjects229.  The ALLHAT study demonstrated the same 

incidence and relative effects in lisinopril, with a rate was 4 per 1,000 for lisinopril users, 

versus <1 per 1,000 for the other treatments230.  The HOPE trial showed comparable findings 

for ramipril231.  Rates in angioedema were also consistent in trials for captopril232 and 

perindopril233.  The risk of ACE inhibitor-related angioedema is increased in patients of 

African descent, with an observed two230 to four-fold234 increased risk relative to white 

Americans.   The AASK trial showed the significantly different rates of angioedema among 

ramipril users over 3.5 to 6 years of followup (6.4%), versus 2.3% and 2.7% for metoprolol 

and amlodipine, respectively22.  In ALLHAT, rates of angioedema were higher in blacks than 

non-blacks (0.7% vs 0.3%)230.   

Hypotension (either postural or not defined) was the most consistently reported 

adverse event was hypotension, but definitions of ‘significant’ hypotension varied widely 

between studies, and observed rates varied accordingly22.  Rates of hypotension among 

captopril trials ranged from 8% to 37%22.  Hypotension rates were comparable between ACE 

inhibitor products, including captopril232, enalapril235, and perindopril233.  Hyperkalemia was 

also consistently reported, and while rates varied significantly in the literature for enalapril235, 

236, no evidence of consistent differences between products in the class.  Clinical trials and 

observational studies have reported renal dysfunction for captopril232, lisinopril237, and 
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perindopril233 with no significant disparities.  Two observational studies232, 233 reported 

hematological effects, including leucopenia and thrombocytopenia, but did not observe 

differential effects between drugs.  In summary, the ACE inhibitor class has a well-

established safety profile, with little evidence to suggest differential effects between products 

within the class22. 

This study specifically focused on seven medical products within the class: lisinopril, 

moexipril, quinapril, ramipril, benazepril, captopril, and enalapril.  Each ingredient was 

identified by its corresponding RxNorm ingredient concept identifier, and all clinical drugs 

(including doses, formulations, and combination products for which an ACE inhibitor is one 

of the active ingredients) are subsumed through the standard vocabulary relationships.  The 

number of patients exposed to any ACE inhibitor and each of the individual ingredients for 

each of the six databases is shown in Table 2.  Within CCAE, there are over 3 million 

patients with at least one exposure to an ACE inhibitor, and at least 15,000 patients exposed 

to each product.  Restriction to incident use yield over 1 million persons overall, and greater 

than 10,000 patients for all ingredients except perindopril.  The total sample size varies 

across the network of databases, but CCAE reflects the largest database and subsequently the 

largest sample of ACE inhibitor users.  However, the proportion of ACE inhibitor users in 

the Medicare and GE populations are markedly higher than the privately-insured population 

reflected in CCAE. 

Table 3 highlights the FDA-approved indications and off-label uses for each product, as 

identified using the COMPASS automated heuristic.   All products share hypertension as a 

primary indication, with eight conditions listed as an indication and 14 other conditions being 

listed as an off-label use for at least one product.  However, there are some disparities in 
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secondary indications and off-label uses between products.  No two ACE inhibitors share the 

same indication and off-label use profile.  In particular, benazepril is the second-most 

frequently used ACE inhibitor (behind lisinopril) in all sources, but has the fewest indications 

reported.  The indications are used to construct a comparator group defined by alternative 

treatments with the same indications, and all indications and off-label uses serve as 

covariates in the COMPASS propensity model. 

Table 4 lists the alternative treatments that share at least one common indication with 

each product, and therefore would be selected as part of the COMPASS comparator 

definition.  There are 78 ingredients used as a comparator for at least one ACE inhibitor, 

including products from multiple classes such as Angiotensin II receptor blockers, beta 

blockers, calcium channel blockers, and diuretics.  The ‘any ACE inhibitor’ analysis 

constructed a comparator group based on 73 products; the fewest products used in 

comparator selection is 62 (benazepril) while the largest number of comparator drugs is 74 

(ramipril).  Note, certain comparator drugs are listed for one ACE inhibitor and not others, 

due either to differing indications or because the comparator drug may be excluded due to a 

combination formulation.  For example, hydrochlorothiazide is excluded as a comparator for 

all ACE inhibitors except ramipril because combination products exist, and amlodipine is 

used for only four ACE inhibitors due to combination use.  It is important to note that 

COMPASS is applying an automated heuristic to comparator selection, and as such, some of 

the active comparators selected may be different from those that would be defined through 

expert subjective assessment.  For example, some may argue that aspirin and clopidogrel 

may be inappropriate comparator choices for lisinopril, however they are used for lisinopril 

due to shared indication of myocardial infarction prevention.    
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Table 2: ACE inhibitor use across databases 

    CCAE MSLR MDCD MDCR GE 

    N=59,836,290 N=1,466,617 N=11,188,360 N=4,655,736 N=11,216,208 

    n (%) n (%) n (%) n (%) n (%) 

Any ACE Inhibitor           

  Prevalent users 3,052,264 (5.10) 108,869 (7.42) 614,703 (5.49) 1,569,765 (33.72) 1,361,058 (12.13) 

  Incident users 1,137,211 (1.90) 32,532 (2.22) 188,224 (1.68) 483,853 (10.39) 529,767 (4.72) 

Lisinopril           

  Prevalent users 1,808,825 (3.02) 59,039 (4.03) 374,919 (3.35) 931,871 (20.02) 888,890 (7.93) 

  Incident users 837,280 (1.40) 21,669 (1.48) 165,749 (1.48) 395,600 (8.50) 399,047 (3.56) 

Benazepril           

  Prevalent users 576,123 (0.96) 20,969 (1.43) 98,911 (0.88) 253,275 (5.44) 166,383 (1.48) 

  Incident users 215,215 (0.36) 7,228 (0.49) 38,272 (0.34) 81,463 (1.75) 68,539 (0.61) 

Enalapril           

  Prevalent users 236,215 (0.39) 12,067 (0.82) 85,350 (0.76) 167,866 (3.61) 130,920 (1.17) 

  Incident users 85,833 (0.14) 4,292 (0.29) 31,800 (0.28) 51,545 (1.11) 48,202 (0.43) 

Ramipril           

  Prevalent users 318,274 (0.53) 12,356 (0.84) 76,815 (0.69) 169,027 (3.63) 141,059 (1.26) 

  Incident users 128,343 (0.21) 3,697 (0.25) 15,441 (0.14) 67,553 (1.45) 65,580 (0.58) 

Quinapril           

  Prevalent users 195,047 (0.33) 7,684 (0.52) 36,146 (0.32) 95,355 (2.05) 88,094 (0.79) 

  Incident users 37,571 (0.06) 1,476 (0.10) 9,498 (0.08) 15,341 (0.33) 33,933 (0.30) 

Captopril           

  Prevalent users 43,613 (0.07) 1,685 (0.11) 23,822 (0.21) 67,609 (1.45) 31,854 (0.28) 

  Incident users 11,360 (0.02) 345 (0.02) 6,618 (0.06) 13,195 (0.28) 10,761 (0.10) 

Moexipril           

  Prevalent users 43,152 (0.07) 840 (0.06) 7,253 (0.06) 23,262 (0.50) 17,856 (0.16) 

  Incident users 11,501 (0.02) 164 (0.01) 1,805 (0.02) 4,928 (0.11) 8,063 (0.07) 
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Table 3: Indication covariates identified by COMPASS for each ACE inhibitor 
 

Indication A
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Asymptomatic Left Ventricular Dysfunction A     A         
Bartter's Syndrome O           O   
Chronic Heart Failure A A O A A A A O 
Cystine Renal Calculi O           O   
Cystinuria O           O   
Diabetic Nephropathy A O O O O O A O 
Diabetic Retinopathy O O             
Diagnostic Test for Primary Aldosteronism O           O   
Diastolic Heart Failure O O O O O O O O 
Edema O           O   
Hypertension A A A A A A A A 
Hypertension due to Scleroderma O   O O O   O   
Hypertensive Emergencies O           O   
Left Ventricular Dysfunction following Myocardial Infarction A       A   A   
Migraine Prevention O O             
Myocardial Infarction A A             
Myocardial Infarction Prevention A       A       
Nondiabetic Proteinuric Nephropathy O O O O O O O O 
Prevention of Cerebrovascular Accident A       A       
Prevention of Recurrent Atrial Fibrillation O O O O O O O O 
Raynaud's Phenomenon O           O   
Renal Crisis Scleroderma O O O O O O O   

A: FDA-approved indication; O-off-label use 
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Table 4: Comparator drugs selected by COMPASS for each ACE inhibitor 
 

Drug class Comparator drug 
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Aldosterone Receptor Antagonists Spironolactone X X X X X X X X 
Aldosterone Receptor Antagonists eplerenone X X X X X X X X 
Alpha-Beta Blockers Labetalol X X X X X X X X 
Alpha-Beta Blockers carvedilol X X X X X X X X 
Analgesic - Central Alpha-2 Receptor Agonists Clonidine X X X X X X X X 
Angiotensin II Receptor Blockers (ARBs) Losartan X X X X X X X X 

Angiotensin II Receptor Blockers (ARBs) 
Olmesartan 
medoxomil X X X X X X X X 

Angiotensin II Receptor Blockers (ARBs) candesartan X X X X X X X X 
Angiotensin II Receptor Blockers (ARBs) eprosartan X X X X X X X X 
Angiotensin II Receptor Blockers (ARBs) irbesartan X X X X X X X X 
Angiotensin II Receptor Blockers (ARBs) telmisartan X X X X X X X X 
Angiotensin II Receptor Blockers (ARBs) valsartan X X X X X X X X 
Antianginal - Coronary Vasodilators (Nitrates) Nitroglycerin X       X   X   
Antiarrhythmic - Class IV Diltiazem   X     X X X X 
Antiarrhythmic - Class IV Verapamil   X     X X X X 
Anticoagulants - Coumarin Dicumarol X X             
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins) Lovastatin X       X       
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins) Pravastatin X       X       
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins) Simvastatin X       X       
Antihyperlipidemic - HMG CoA Reductase Inhibitors (statins) atorvastatin X       X       
Beta Blockers Cardiac Selective Atenolol X X X X X X X X 
Beta Blockers Cardiac Selective Betaxolol X X X X X X X X 
Beta Blockers Cardiac Selective Bisoprolol X X X X X X X X 
Beta Blockers Cardiac Selective Metoprolol X X X X X X X X 
Beta Blockers Cardiac Selective nebivolol X X X X X X X X 
Beta Blockers Cardiac Selective, Intrinsic Sympathomimetic Activity Acebutolol X X X X X X X X 
Beta Blockers Non-Cardiac Select., Intrinsic Sympathomimetic Activity Carteolol X X X X X X X X 
Beta Blockers Non-Cardiac Select., Intrinsic Sympathomimetic Activity Penbutolol X X X X X X X X 
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Drug class Comparator drug 
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Beta Blockers Non-Cardiac Select., Intrinsic Sympathomimetic Activity Pindolol X X X X X X X X 
Beta Blockers Non-Cardiac Selective Nadolol X X X X X X X X 
Beta Blockers Non-Cardiac Selective Propranolol X X X X X X X X 
Beta Blockers Non-Cardiac Selective Timolol X X X X X X X X 
Calcium Channel Blockers - Dihydropyridines Amlodipine   X     X X X X 
Calcium Channel Blockers - Dihydropyridines Felodipine   X     X X X X 
Calcium Channel Blockers - Dihydropyridines Isradipine X X X X X X X X 
Calcium Channel Blockers - Dihydropyridines Nicardipine X X X X X X X X 
Calcium Channel Blockers - Dihydropyridines Nifedipine X X X X X X X X 
Calcium Channel Blockers - Dihydropyridines Nisoldipine X X X X X X X X 
Calcium Channel Blockers - Dihydropyridines clevidipine X X X X X X X X 
Calcium Channel Blockers - T-Type Channel Acting Agents Mibefradil X X X X X X X X 
Central Alpha-2 Receptor Agonists Guanabenz X X X X X X X X 
Central Alpha-2 Receptor Agonists Guanfacine X X X X X X X X 
Central Alpha-2 Receptor Agonists Methyldopa X X X X X X X X 
Central Alpha-2 Receptor Agonists Methyldopate X X X X X X X X 
Digitalis Glycosides Digoxin X X   X X X X   
Direct Acting Vasodilators Hydralazine X X X X X X X X 
Direct Acting Vasodilators Minoxidil X X X X X X X X 
Direct Acting Vasodilators Nitroprusside X X X X X X X X 
Diuretic - Loop Furosemide X X X X X X X X 
Diuretic - Loop torsemide X X X X X X X X 
Diuretic - Potassium Sparing Amiloride X X X X X X X X 
Diuretic - Thiazides and Related Bendroflumethiazide X X X X X X X X 
Diuretic - Thiazides and Related Chlorothiazide X X X X X X X X 
Diuretic - Thiazides and Related Chlorthalidone X X X X X X X X 
Diuretic - Thiazides and Related Hydrochlorothiazide         X       
Diuretic - Thiazides and Related Hydroflumethiazide X X X X X X X X 
Diuretic - Thiazides and Related Indapamide X X X X X X X X 
Diuretic - Thiazides and Related Methyclothiazide X X X X X X X X 
Diuretic - Thiazides and Related Metolazone X X X X X X X X 
Diuretic - Thiazides and Related Polythiazide X X X X X X X X 
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Drug class Comparator drug 
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Diuretic - Thiazides and Related Trichlormethiazide X X X X X X X X 
Ganglionic Blocking, Non-Depolarizing Mecamylamine X X X X X X X X 
Peripheral Alpha-1 Receptor Blockers Doxazosin X X X X X X X X 
Peripheral Alpha-1 Receptor Blockers Prazosin X X X X X X X X 
Peripheral Alpha-1 Receptor Blockers Terazosin X X X X X X X X 
Platelet Aggregation Inhibitors - Salicylates Aspirin X X     X       
Platelet Aggregation Inhibitors - Thienopyridine Agents clopidogrel X X             
Postganglionic Blockers, Antihypertensive Guanethidine X X X X X X X X 
Postganglionic Blockers, Antihypertensive guanadrel X X X X X X X X 
Renin Inhibitor, Direct aliskiren X X X X X X X X 
Reserpine and Derivatives Reserpine X X X X X X X X 
Reserpine-Thiazide & Related Combinations benzothiazide X X X X X X X X 
Thrombolytic - Tissue Plasminogen Activators Alteplase X X             
Unclassifed Alseroxylon X X X X X X X X 
Unclassifed Pargyline X X X X X X X X 
Unclassifed Phenprocoumon X X             
Unclassifed cyclothiazide X X X X X X X X 
Unclassifed quinethazone X X X X X X X X 

X: drug used in comparator group 
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Table 5: Contraindications used as restriction criteria by COMPASS for each ACE inhibitor 
X: condition listed as contraindication 

Indication 
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Abnormal Hepatic Function Tests X X X           
Acute Hepatic Failure X X             
Acute Pancreatitis X X X X   X X X 
Acutely Decompensated Chronic Heart Failure X     X         
Anaphylaxis occuring from Desensitization to Allergens X       X       
Angioedema X X X X   X X X 
Anuria X X X X   X X X 
Aortic Valve Stenosis X X X X     X X 
Ascites X       X       
Atrial Fibrillation with Lown-Ganong-Levine Syndrome X     X         
Atrial Fibrillation with Wolff-Parkinson-White X     X         
Azotemia X       X       
Bone Marrow Depression X X X X   X X X 
Bradycardia X     X         
Cardiogenic Shock X     X         
Cerebrovascular Insufficiency X X   X   X X X 
Chronic Heart Failure X     X         
Chronic Idiopathic Constipation X   X X         
Complete Atrioventricular Block X     X         
Connective Tissue Disease X X X X X X X X 
Cough X           X   
Dehydration X   X   X X     
Diabetes Mellitus X X X X   X X X 
Disease of Liver X X X X X X X X 
Disorder of Electrolytes X X             
Gout X X X X   X X X 
Head and Neck Angioedema X   X   X       
Hemodialysis with High-Flux Membrane X X X X X X X X 
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Indication 
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Hepatic Cirrhosis X       X       
Hepatic Coma X X X X   X X X 
Hereditary Angioedema X X X X   X X X 
Hypercalcemia X X X X   X X X 
Hypercholesterolemia X X X X   X X X 
Hyperkalemia X X X X X X X X 
Hyperparathyroidism X X X X   X X X 
Hypertrophic Cardiomyopathy X X   X     X X 
Hyperuricemia X X X X   X X X 
Hypokalemia X X X X   X X X 
Hypomagnesemia X X X X   X X X 
Hyponatremia X X X X X X X X 
Hypotension X X X X X X X X 
Hypovolemia X X             
Immunosuppression X X   X   X X X 
Incomplete AV Heart Block X     X         
Intestinal Angioedema X X X   X       
Jaundice X X X           
Left Ventricular Dysfunction following Myocardial Infarction X     X         
Myocardial Infarction X     X         
Myocardial Ischemia X         X     
Neonatal Hyperbilirubinemia X X X X   X X X 
Neutropenic Disorder X X X X X X X X 
Oliguria X X X X X X X X 
Peripheral Edema X     X         
Pregnancy X X X X X X X X 
Renal Artery Stenosis X X X X X X X X 
Renal Disease X X X X X X X X 
SIADH Syndrome X X             
Scleroderma X       X       
Severe Aortic Valve Stenosis X     X         
Severe Coronary Artery Disease X   X X         
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Indication 
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Severe Diarrhea X       X       
Severe Hepatic Disease X   X           
Severe Hypotension X   X X         
Severe Renal Disease X X X X   X X X 
Severe Vomiting X       X       
Sick Sinus Syndrome X     X         
Sympathectomy X X X X   X X X 
Systemic Lupus Erythematosus X X X X X X X X 
Transplantation Procedure X     X     X X 
Ventricular Tachycardia X     X         
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The safety profile of ACE inhibitors is thought to be well-characterized, including a 

broad set of known safety issues that span the continuum from common, nuisance effects, 

such as cough, to rare and more series events, like angioedema and renal dysfunction.   To 

conduct the retrospective evaluation of COMPASS, we must first define a reference set of 

‘positive controls’ and ‘negative controls’ that can be used to assess methods’ performance.  

This objective was achieved through a systematic analysis of the structured product labels, 

using labeled events as surrogate markers for ‘positive controls’ and selecting terms 

unrelated to any labeled events as ‘negative controls’. 

Regenstrief Institute has developed a novel application, Structured Product Label 

Information Coder and Extractor  (SPLICER), which performs natural language processing 

on structured product labels (SPL) to extract terms that may be adverse events.  SPLs are 

FDA-approved labeling from product manufacturers, publicly available from the National 

Library of Medicine, that is formatted in XML to facilitate standardized evaluation.  The 

application classifies the events by the location of occurrence, as ‘Black box’, ‘Warnings and 

Precautions’, ‘Adverse Reactions’ or ‘Post-marketing experience’, and codes the terms of 

MedDRA preferred terms (PTs).  Each SPL was mapped to a corresponding RxNorm drug 

concept. 

SPLICER’s most recent run was performed on 12/19/2009 and include 5602 SPL’s from 

the DailyMed site238.  This set of labels comprised 1706 distinct generic drugs and 2861 

distinct brand names.  SPLICER successfully coded and extracted 608,948 adverse events 

from these labels.  These events were mapped to 4627 distinct MedDRA preferred terms.  An 

evaluation of SPLICER’s performance in retrieving events from the Adverse Reaction 
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section of 100 labels demonstrated a recall of 93% and a precision of 95%.  The output of 

SPLICER for SPLs from the ACE inhibitors was used for defining the reference set. 

Table 6 provides a descriptive summary of the number of events extracted from each SPL, 

summarized by the ingredients within each DOI.  For example, there are 28 distinct SPLs 

that involve lisinopril.  Among those 28 labels, SPLICER identified 234 distinct MedDRA 

PTs.  On average, each of the labels listed 184 distinct events, with the minimum of 60 

events and a maximum of 205 events.  This table highlights the variability observed in 

product labeling, both among labels for the same ingredient as well as among ingredient 

within the same drug class. 

 
Table 6: Labeled events identified in SPLs by ingredient 

Ingredient 
name 

Number 
of SPLs 

Distinct 
events 
across 
SPLs  

Min 
events 
among 
SPLs 

Average 
events 
among 
SPLs 

Max 
events 
among 
SPLs 

Lisinopril 28 234 60 184 205 
Moexipril 6 261 72 158 242 
Quinapril 15 174 72 101 151 
Ramipril 9 112 87 100 110 
Benazepril 19 180 58 89 133 
Captopril 12 143 103 114 135 
Enalapril 15 211 117 142 171 
Fosinopril 12 183 116 132 140 
Perindopril 3 153 150 151 152 

 

Selecting ‘positive controls’ 

Labeled events were selected as ‘positive controls’ test cases if three criteria were 

satisfied: 

1. MedDRA PT was listed on >=50% of structured product labels within the OMOP 

DOI 
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2. MedDRA PT had at least one ICD-9-CM code directly mapped to it within the 

OMOP standardized terminology 

3. One of the ICD-9-CM codes mapped to the MedDRA PT also directly mapped to at 

least one SNOMED concept 

 
We created two levels of classification: Tier 1 events are those conditions that occur in 

either the ‘Black box’ or ‘Warnings/Precautions’ sections on >=50% of the SPLs within the 

class.  Tier 2 events are those conditions that occur as adverse events anywhere on the 

product label (Black box, warnings/precautions, adverse reactions, or Post-marketing 

experience) on >=50% of the SPLs within the class.   Tier 1 events are a subset of the Tier 2 

labeled events.  It could be argued that events listed in black box warnings or 

warnings/precautions are more likely to be causally related and observable.  Primary analyses 

will be based on all Tier 2 events, but Tier 1 classification offers a potential sensitivity 

analysis when assessing methods performance.  

The rationale for criteria #1 was that the majority of labels contributing to the drug class 

needed to list the event in order to have some confidence that the association could be 

potentially observed.  The rationale for criteria #2 and #3 is to ensure the event is 

theoretically observable across the data sources under study.  That is, some MedDRA 

preferred terms include adverse event concepts that have no corresponding codes in ICD-9-

CM, so could not possibly be recorded in any US administrative claims system.  Another 

issue is that some ICD-9 codes may map to multiple concepts; in these cases, the ICD-9 code 

is mapped in the standardized terminology to a surrogate concept and is excluded from 

consideration as a test case.  We chose to restrict our focus to concepts that also have 
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corresponding SNOMED concepts to enable us to evaluate both MedDRA and SNOMED as 

alternative standardized terminologies for active surveillance. 

   

As a class, ACE Inhibitors have 84 SNOMED-based ‘true positives’, 21 of which are 

Tier 1 Warning events.  The list of the terms is shown in Table 7.  The observed background 

prevalence in CCAE is categorized for each condition. 

 

Table 7: ACE Inhibitor 'true positive' reference set 

ConceptID Condition Concept Name Prevalence 
Position in 
Label 

196490 Acute renal failure following labor AND/OR delivery Low Tier 1 Warning 

197320 Acute renal failure syndrome High Tier 1 Warning 

316447 Chronic hypotension High Tier 1 Warning 

254761 Cough High Tier 1 Warning 

22350 Edema of larynx High Tier 1 Warning 

193782 End stage renal disease High Tier 1 Warning 

197988 Generalized abdominal pain High Tier 1 Warning 

316866 Hypertensive disorder High Tier 1 Warning 

193519 Impaired renal function disorder High Tier 1 Warning 

317002 Low blood pressure High Tier 1 Warning 

314432 Maternal hypotension syndrome Low Tier 1 Warning 

313829 Maternal hypotension syndrome - delivered with postnatal problem Medium Tier 1 Warning 

31967 Nausea High Tier 1 Warning 

27674 Nausea and vomiting High Tier 1 Warning 

75365 Oliguria and anuria High Tier 1 Warning 

196764 Post-delivery acute renal failure - delivered with postnatal problem Low Tier 1 Warning 

4167493 Pregnancy-induced hypertension Medium Tier 1 Warning 

195014 Renal failure following molar AND/OR ectopic pregnancy Medium Tier 1 Warning 

4058979 Renal sclerosis NOS None Tier 1 Warning 

433879 Umbilical pain High Tier 1 Warning 

441408 Vomiting High Tier 1 Warning 

440979 Acquired hemolytic anemia High Tier 2 Label 

440372 Acquired thrombocytopenia High Tier 2 Label 

4110022 Acute bronchitis and bronchiolitis Medium Tier 2 Label 

23798 Acute laryngopharyngitis High Tier 2 Label 

258453 Acute upper respiratory infection of multiple sites High Tier 2 Label 

139902 Allergic urticaria High Tier 2 Label 

439777 Anemia High Tier 2 Label 

321318 Angina High Tier 2 Label 

73231 Arthralgia of temporomandibular joint High Tier 2 Label 
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ConceptID Condition Concept Name Prevalence 
Position in 
Label 

78508 Arthralgia of the ankle and/or foot High Tier 2 Label 

77642 Arthralgia of the forearm High Tier 2 Label 

81112 Arthralgia of the lower leg High Tier 2 Label 

79106 Arthralgia of the pelvic region and thigh High Tier 2 Label 

78516 Arthralgia of the upper arm High Tier 2 Label 

437113 Asthenia High Tier 2 Label 

317009 Asthma High Tier 2 Label 

438727 Atypical depressive disorder Medium Tier 2 Label 

256717 Bronchospasm High Tier 2 Label 

77670 Chest pain High Tier 2 Label 

256448 Chronic asthmatic bronchitis High Tier 2 Label 

4110029 Chronic pharyngitis and nasopharyngitis NOS Medium Tier 2 Label 

75860 Constipation High Tier 2 Label 

136775 Contact dermatitis due to solar radiation High Tier 2 Label 

75635 Cramp High Tier 2 Label 

196523 Diarrhea High Tier 2 Label 

312437 Dyspnea High Tier 2 Label 

433440 Dysthymia High Tier 2 Label 

318556 Epistaxis High Tier 2 Label 

437448 Exhaustion due to excessive exertion Medium Tier 2 Label 

436297 Exhaustion due to exposure Medium Tier 2 Label 

318566 Flushing High Tier 2 Label 

80141 Functional diarrhea High Tier 2 Label 

440674 Gout High Tier 2 Label 

440071 Gout associated problem Medium Tier 2 Label 

78234 Hand joint pain High Tier 2 Label 

23325 Heartburn High Tier 2 Label 

194087 Hepatitis due to infection Medium Tier 2 Label 

138565 Hyperhydrosis disorder High Tier 2 Label 

434610 Hyperkalemia High Tier 2 Label 

312950 IgE-mediated allergic asthma High Tier 2 Label 

436962 Insomnia High Tier 2 Label 

252658 Intrinsic asthma without status asthmaticus High Tier 2 Label 

77074 Joint pain High Tier 2 Label 

435224 Leukopenia High Tier 2 Label 

194133 Low back pain High Tier 2 Label 

78517 Multiple joint pain High Tier 2 Label 

437834 Non-autoimmune hemolytic anemia Medium Tier 2 Label 

375838 Objective tinnitus Medium Tier 2 Label 

314666 Old myocardial infarction High Tier 2 Label 

319041 Orthostatic hypotension High Tier 2 Label 

315078 Palpitations High Tier 2 Label 

135338 Pemphigus Medium Tier 2 Label 

78162 Peripheral vertigo High Tier 2 Label 

134159 Precordial pain High Tier 2 Label 

441264 Primary thrombocytopenia High Tier 2 Label 

4067066 Pruritus and related conditions Low Tier 2 Label 
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ConceptID Condition Concept Name Prevalence 
Position in 
Label 

136184 Pruritus of skin High Tier 2 Label 

441540 Reactive confusion High Tier 2 Label 

78232 Shoulder joint pain High Tier 2 Label 

140821 Spasm High Tier 2 Label 

381864 Subjective tinnitus High Tier 2 Label 

377575 Tinnitus High Tier 2 Label 

4181583 Upper respiratory infection High Tier 2 Label 

 

 
 
Selecting ‘negative controls’: 
 
Labeled events were selected as ‘negative control’ test cases if four criteria were satisfied: 

1. MedDRA PT does not have the same High Level Term as any PT that was extracted 

from any location (black box, warnings/precautions, adverse reactions, post-

marketing experience, indications) of any structured product labels among any drug 

2. MedDRA PT had at least one ICD-9-CM code directly mapped to it within the 

OMOP standardized terminology 

3. One of the ICD-9-CM codes mapped to the MedDRA PT also directly mapped to at 

least one SNOMED concept 

4. MedDRA PT belongs to a System Organ Class other than "Pregnancy, puerperium 

and perinatal conditions" and "Congenital, familial and genetic disorders" 

 
Criteria #1 ensures that no ‘negative control’ is related to any labeled event.  This is a 

conservative restriction to avoid selecting any terms that could be drug-related by eliminating 

all adverse events that occurred on at least one label.  The ‘negative control’ must exist in a 

High Level Term without any other labeled events to minimize the chance that a ‘negative 

control’ would be selected because it was a distinct term even though it was clinically 
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similar.  For example, ‘myocardial infarction’ is a labeled event, but ‘acute myocardial 

infarction’ and ‘myocardial ischemia’ are not; however, since all three terms belong to the 

HTL ‘Coronary ischemic disorders’,  all are excluded as candidate ‘negative controls’.  

Criteria #4 was applied because pregnancy-related adverse events are often ill-defined and 

typically reflect special case circumstances that are not the specific focus of this study. 

 
Based on these criteria, 2,800 distinct SNOMED terms were identified as ‘negative controls’. 
 
Table 8: ACE Inhibitor negative controls, by prevalence 

Prevalence SNOMED terms 
High 608 
Medium 1439 
Low 724 
None 29 
Total 2800 

 
 

It is acknowledged that the objective heuristic used to construct the reference set, both true 

positives and negative controls, is subject to misclassification.  Because ‘truth’ is not known 

for any drug, we are required to select some surrogate (which has its own undefined 

sensitivity and specificity).  We understand that labeled events have not necessarily been 

shown to be causally related to drug, or may not be expected to be observed in subsequent 

study.  In particular, adverse events listed in the Adverse Reactions and Post-Marketing 

Experience section may reflect occurrence from clinical trials or spontaneous reporting 

without any expectation of causality.  Similarly, it is possible that ‘negative controls’ have 

been selected that do have legitimate temporal relationships with the drugs of interest, and 

either have not been previously identified or were not listed on the product label.   For 

purposes of the experiment, all scores for ‘negative controls’ that suggest a relationship were 

classified as false positive findings.  The process used to identify the reference set was 
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empirically driven to minimize subjective assessment, but carries its own limitations.  

SPLICER may misclassify adverse events, either missing or failing to code events that exist 

on the label or identifying terms on the labels that are not actual adverse events.  While the 

application has strong performance characteristics for the Adverse Reactions section, it may 

be more prone to error in the Black Box or Warnings/Precautions sections due to the 

unstructured nature of the text.  SPLICER classifies all matched terms meeting its criteria as 

potential adverse events, though may misclassify terms that were instead risk factors or 

contraindications. 

That said, it is not necessary to identify all potential ‘positive controls’ or all eligible 

‘negative controls’.  Instead, the number of test cases can be considered the sample size 

within this methodological experiment.  Because the same set of test cases is being 

consistently applied across all methods, any misclassification of test cases (either ‘positive 

controls’ that are not related, or ‘negative controls’ that have an association) should not 

introduce differential bias to the experiment and should not influence the relative assessment 

of performance measures between methods.   

A key limitation in this experimental design is the potential lack of generalizability in 

the results.  A method’s performance in identifying known drug safety issues and discerning 

from known non-issues may not be consistent with performance of classifying unknown 

effects.  Because the performance characteristics calculated are based on the artificial 

definition of truth used for experiment, care should be taken when attempting to predict how 

methods may perform prospectively in an active surveillance network.  Instead, these metrics 

should be considered to be most appropriate for comparative purposes across methods and 

databases.  The experiment’s use of six data sources should provide a robust measure of 
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performance across disparate data, but the findings may not be directly applicable to a 

network of different data sources that could potentially be used for a national active 

surveillance system.  While ACE inhibitors offer a wide array of drug safety issues to test 

again, the results may not be generalizable to all potential effects expected to be detected 

within an active surveillance system.  In particular, the performance against other medical 

products, such as newly marketed medicines with low initial use, products for other 

therapeutic uses, and drugs with acute or intermittent exposure, may vary from results 

observed in this study.  

 

 

3.5 Performance measures 

The potential use of COMPASS as a hypothesis generating tool for identifying drug safety 

issues is analogous to signal detection theory, and measures of performance that follow from 

diagnostic and screening testing are well suited for study.  The aim is to predict a binary 

classification of drug-condition status (there is, or is not, a causal relationship between 

exposure and outcome).  The method prediction is a continuous valued score, but could be 

imagined to be dichotomized at some defined threshold.  In this context, the test cases could 

be categorized into the following 2x2 contingency table (Figure 17), and various measures of 

performance can be estimated.   
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Figure 17: Performance measures for 2x2 contingency table 

Measures of accuracy can be applied within the experiment that are not constrained to 

defined dichotomization of the method score.  In addition to studying COMPASS 

performance at logical thresholds, such as ARDLB>0, the performance of COMPASS was 

characterized through multiple measures of accuracy, including mean average precision, 

precision-at-k, and area under receiver operator characteristic (ROC) curve.   

‘Mean average precision’ (MAP) can be thought of as the average precision at each 

threshold value that represents a ‘true positive’ association.  MAP is effectively the 

equivalent to the area under precision-recall curve.  MAP can be formally defined as follows. 

Let 1=dcy  if the dth drug is associated with the cth condition (‘positive control’) and zero 

otherwise, d=1,…,D, c=1…,C. Let ∑=
cd

dcyM
,

denote the number of causal combinations and 

CDN ×=  the total number of combinations.  Let dcz  denote the predicted value for the dth 

drug and the cth condition.  For a given set of predicted values ),,( 11 dczzz Λ
ρ
= , we define 

“precision-at-K” denoted )()( zP K ρ
as the fraction of causal combinations amongst the K 
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largest predicted values in z
ρ

. Specifically, let )()1( Nzz >>Λ  denote the ordered values of 

z
ρ

. Then:  
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where )(iy  is the true status of the combination corresponding to )(iz .  “Mean Average 

Precision” is then defined as: 
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Unscored conditions are treated as if they produced a minimum score, such that 

methods receive the maximum penalty for not classifying ‘positive controls’. 

‘Precision-at-k’ (P@k) is commonly used in information retrieval, and reflects the 

proportion of correctly classified objects at a defined cutoff (k) among an ordered set.  So, in 

drug safety contexts, setting k=100, P@k could be interpreted as: ‘among the top 100 

estimates produced by the method, what proportion of the drug-condition pairs reflect 

positive controls’. 

An additional tool for assessing accuracy is the Receiver Operator Characteristic 

(ROC) curve, which are based on evaluating true positive rate (sensitivity) and false positive 

rate (1-specificity).  The area under the ROC curve (AUC) provides a scalar measure of 

performance at all potential thresholds.  

Finally, we define ‘recall-at-FP’ (R@fp) as the sensitivity obtained at a defined 

tolerance of false positive rate.  So, for example, setting FP=5%, R@fp can be interpreted as: 
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‘what proportion of true positives can a method identify before 5% of negative controls 

would also be identified’. 

Mean average precision, precision-at-k, area under curve, and recall-at-fp all provide 

scalar measures of performance, but each reflect a complementary component for 

interpretation.  None are sufficient, since each have inherent limitations.  Precision-at-k and 

recall-at-fp are inherently threshold-based, insofar as a subjective assessment of k and fp is 

required.  In contrast, MAP and AUC are threshold-independent, but provide a composite 

score that may reflect boundary conditions of little practical use.  For example, AUC 

integrates over all levels of specificity, including high false positive rates that would likely be 

unacceptable in a drug safety context.  Similarly, MAP integrates over all levels of recall, 

though it may be unrealistic to expect that a given method can identify all adverse events 

with high precision and focus on more modest levels of detection may be more appropriate.  

A method that produces higher performance scores across all summary measures can be 

considered to have superior aggregate performance.  However, it is feasible for methods to 

have differential behavior across the summary measures.   

Moreover, summary performance measures do not reflect expectations for 

performance for any specific adverse event, as each condition can have different attributes 

(such as background prevalence, time-to-onset, strength of association, and degree of 

confounding) that could alter a method’s behavior for that relationship.  For each drug-

condition pair, a method produces a score, but the performance of that pair cannot be 

measured without putting the score into context with other scores produced by the method for 

other drug-condition pairs.  As such, for each event, it is possible to measure precision and 

false positive rate at the score produced by essentially treating the event score as the  
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threshold for dichotomizing scores, as shown in Figure 17.  Event-based performance 

measures were provided to explore differential method performance across the positive 

controls. 

 
 

3.5 Data analysis by Aim 

 
 
Aim 1: Characterize the performance of COMPASS in identifying known safety issues 

associated with ACE inhibitor exposure within an administrative claims database 

This aim studied how COMPASS performs in the Thomson Reuters MarketScan 

Commercial Claims and Encounters (CCAE), a large administrative claims database 

containing 59 million privately insured lives.  COMPASS was applied to the ACE Inhibitor 

drug class to generate estimates of outcome relationships for a defined set of 2884 potential 

adverse events.  These outcomes include both the 84 known associations previously 

characterized in the product label as well as a sample of 2800 'negative control' conditions for 

which there is no evidence of drug-related effects.  Each test case reflects a condition concept 

in the SNOMED terminology that subsumes one or more ICD9 codes.   

Descriptive statistics summarized the distribution of the estimates and patterns across 

attributes of the conditions, such as the ground truth status, background prevalence rate, 

confidence in association, and expected degree of confounding.  Stratified probability density 

functions were used to explore two-way interactions between ground truth and condition 

characteristics.  

The objective of a hypothesis-generating tool is to accurately distinguish between true 

and false relationships.  The performance of COMPASS were characterized through multiple 



 

107 
 

measures of accuracy, including mean average precision, area under ROC, precision-at-k, 

and recall-at-fp.  These measures provide an estimate of overall performance across all test 

cases.  In addition, we evaluated the tradeoff between four performance characteristics 

(sensitivity, specificity, positive predictive value, and negative predictive value) at alternative 

threshold values, including ARD LBCI > 0, which would be a natural indicator for 

designating a significant relationship.  For each ‘true positive’, we characterized performance 

by assessing the false positive rate and precision if the threshold were set at the test case 

score.  This review across specific conditions allows the exploration of differential 

performance among the true relationships. 

These measures were compared to those from three alternative methods for active 

surveillance signal generation: disproportionality analysis; observational screening; and, 

univariate self-controlled case series.  Each method has previously been proposed for use in 

active surveillance, yet use fundamentally different analytical strategies for producing drug-

condition estimates.  Disproportionality analysis reflects an adaption to a data mining signal 

detection approach used in spontaneous adverse event reporting.   Observational screening 

applies an unadjusted cohort-based design to compare event rates during exposure to that of 

the overall population.  Self-controlled case series is a case-based approach that attempts to 

measure drug effects based on time exposed and unexposed among those with at least one 

outcome.  All three approaches have been made publicly available as part of the OMOP 

methods library, and are described in further detail below.  For each alternative method, the 

same descriptive statistics used for COMPASS were applied to facilitate comparisons.  In 

addition, because method scores are measured on different scales and may have different 
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degrees of variability, the rank of scores from each method were  used to enable visualization 

of relative performance across methods on a normalized scale.  

The comparison of these hypothesis generating tools is exploratory in nature.  As such, 

there is no formal statistical test being applied to determine that COMPASS is superior or 

non-inferior to other alternative approaches.  Such tests do exist for comparing AUC between 

alternative diagnostic tests.  However, in active surveillance, there is an expectation that no 

single method will be sufficient for all potential active surveillance needs, and that multiple 

approaches may be useful across a network of disparate data sources.  This is due to the 

heterogeneity that exists within the potential drug-condition associations under potential 

study.  Unlike a diagnostic tool for a defined condition, such as DXA for detecting hip 

fracture, where the variability in the tool’s performance is inherent to the individual being 

assessed, the variability in an active surveillance tool stems from variability of the adverse 

event, the exposure, and the source population.  For example, overall performance as 

measured by MAP or AUC may suggest the use of a particular tool, but for a specific 

condition with a particular set of characteristics, an alternative approach may be preferred. 

Instead, the objective of this study is to determine if COMPASS has the potential to 

complement existing approaches.  

 

Disproportionality analysis 

Disproportionality analysis methods for drug safety surveillance represent the primary class 

of analytic methods for analyzing data from spontaneous adverse event reporting systems 

(SRSs). SRSs receive reports that comprise of one or more drugs, one or more adverse events 

(AEs), and possibly some basic demographic information (in addition to narrative and text 
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data).  Disproportionality analysis methods include the multi-item gamma-Poisson shrinker 

(MGPS), proportional reporting ratios (PRR), reporting odds ratios (ROR), and Bayesian 

confidence propagation neural network (BCPNN). The methods search SRS databases for 

“interesting” associations and focus on low-dimensional projections of the data, specifically 

2-dimensional contingency tables, as shown below. 

 
 AE j = 

Yes 
AE j = No Total 

Drug i = Yes w00 w01 w0* 
Drug i = No w10 w11 W1* 

Total w*0 w*1 w** 
 

 

Given a two-by-two table such as Table 2, various disproportionality metrics can be 

estimated as shown below. 

 
Proportional reporting ratio154: 
 

PRR =
w00 w00 + w01

w10 w10 + w11

 

Reporting odds ratio155: 
 

ROR =
w00 w10

w01 w11

 

 
Multi-item Gamma Poisson Shrinker9: 
 
Let w00(i,j) denote the w00 entry for the two-by-two table for the ith drug and the jth 

condition. Assume that each w00(i,j) is a draw from a Poisson distribution with mean m(i,j). 

Let m(i,j) = l(i,j)*E(i,j), where E(i,j)=w0+(i,j)*w+1(i,j)/w++(i,j), i.e., the expected value of 

w0(i,j) under independence and is assumed to be known. The goal is to estimate the values of 

the l’s . A l(i,j) far from one supports the notion that drug i and condition j are not 
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independent. MGPS is a Bayesian procedure and starts with a particular five-parameter prior 

distribution for the collection of l’s: 

π(λ;α1,β1,α2,β2,P) = Pg(λ;α1,β1) + (1− P)g(λ;α2,β2) 

where g(λ;α,β)  denotes a gamma density with a/b. The “EBGM” measure is defined as: 

EBGM (i, j) = 2EB log2 ( i, j ) 
where: 

  

EB log2 = Qw ψ (α1 + w00 − log(β1 + E)[ ]+ (1− Qw ) ψ (αn + w00 − log(β2 + E)[ ]( )/log(2)

Qw = Pf (w00;α1,β1, E ) / Pf (w00;α1,β1,E) + (1− P) f (w00;α2,β2, E)[ ],  and
f (w00;α,β,E ) = (1+ β / E )−w00 (1+ E /β)−α Γ(α + w00) /Γ(α)n!.

 

 
MGPS uses an empirical Bayes approach and chooses a1, b1, a2, b2, and P to maximize: 

Pf (w00(i, j);α1,β1,E(i, j)) + (1− P) f (w00(i, j);α2,β2,E(i, j))
i, j
∏ . 

 
The EBGM score is the mean of the posterior distribution of the true RR. Other summaries 

are possible. For example, DuMouchel mentions “EB05”.  This is the 5th percentile of the 

posterior distribution – meaning that there is a 95% probability that the “true” RR exceeds 

the EB05. Since EB05 is always smaller than EBGM this, in a sense, adds extra shrinkage 

and represents a more conservative choice than EBGM.  

 
 
Bayesian confidence propagation neural network (BCPNN) Information Component (IC)165: 

IC(i, j) = log2

w00(i, j) +1/2
E(i, j) +1/2

 

 

Disproportionality analysis methods can be readily applied to longitudinal observational 

databases insofar as the longitudinal data can also be projected into 2x2 contingency tables.  

Various design alternatives are available for defining this projection.  These decisions 

include: how to count events (whether to categorize distinct patient status or replicate the 

notion of spontaneous reports of conditions following exposure); definition of outcomes 
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based on incident or prevalent occurrence of conditions;  definition of a surveillance window 

to infer time-at-risk relative to exposure start or end (30 days from onset; all time exposed, 

time exposed + 30 days from end, any time following exposure start); and whether to stratify 

on age, gender and/or year of report to calculate expected values.   Combined with the 

various potential metrics, there are 112 configurations of the OMOP disproportionality 

analysis under experimentation.  

 

Observational screening 

Observational screening is a method originally developed at GlaxoSmithKline and now made 

commercially available as part of the SAEfetyWorks® software application by ProSanos18, 

193-196.  Screening applies a basic cohort design to estimate the rate of condition occurrence 

during the time exposed to a particular product d: 

 

where for the i-th person, xi is the number of conditions that occurred during the time-

at-risk ti, as defined by the periods of exposure (drug era end date – drug era start 

date) and some surveillance window.   

This screening rate is then compared to the overall background rate of the condition to 

produce a screening rate ratio:   

 

where SRd
  is the screening rate for the drug of interest d, and Xi is the number of 

conditions that occurred any time within the i-th person’s observation period 

(regardless of exposure status) and Ti is the total observation time.    
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The estimate is unadjusted and therefore susceptible to various forms of confounding.  The 

primary intent, in its original conception, was that screening rate ratios could be calculated 

very efficiently for all potential drug-condition pairs across large observational databases, 

and could provide a first-pass approach for identifying potential issues that warrant further 

evaluation.  The screening rate ratio metric is a crude estimate of the absolute effect size, 

which could be used to identify differences in occurrence of outcomes during exposure.  

Screening assumes the screening rate ratio is a ratio of two Poisson distributed rates, and uses 

the closed form solution by Graham et al to estimate confidence interval: 

 

UB95: (t1/t0)*((2*x1*x0+Zα/2
2*(x1+x0) + √( Zα/2

2*(x1+x0)*(4*x1*x0+ 

Zα/2
2*(x1+x0))))/(2*(x1)

2)) 

 

LB95: (t1/t0)*((2*x1*x0+Zα/2
2*(x1+x0) - √( Zα/2

2*(x1+x0)*(4*x1*x0+ Zα/2
2*(x1+x0))))/(2*(x1)

2)) 

 

where t0 is person-time exposure for cohort 0, 

t1 is person-time exposure for the entire data source, 

x0 is the number of events occurring during exposure in cohort 0, 

x1 is the number of events occurring at any time for the entire data source 

 

Various design decisions can alter the screening rate estimate, some of which are under 

experimentation within the OMOP implementation of observational screening.  These 

include: the use of first exposure or all exposures; defining outcomes based on incident 

conditions, prevalent conditions, or first condition appearing within time-at-risk;  definition 
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of a surveillance window to infer time-at-risk relative to exposure start or end (30 days from 

onset; all time exposed, time exposed + 30 days from end, any time following exposure 

start); and whether to count as outcomes conditions that occur on the first day of exposure.  

Additionally, both the screening rate ratio point estimate and lower bound of the confidence 

interval can be used as scores to use for prioritizing potential effects.  In total, 32 different 

parameter settings are explored as potential alternative configurations of observational 

screening.  

 

 

Self-controlled case series 

The univariate self-controlled case series (USCCS) approach assumes that events arise 

among persons as a non-homogeneous Poisson process19, 20, 239.  The method only makes use 

of persons who have time exposed and unexposed, and also have experienced at least one 

event.  The observation period for person i is the time period during which an event could be 

observed. Each person’s observation period is split into risk periods, indexed by j.  Let eij 

denote the time spent by individual i in risk period j. The incidence, denoted λij, is assumed 

to be constant within each interval.  The current implementation of univariate self-controlled 

case series assumes a multiplicative model for the incidence function: λij = exp(Φi + βj) 

where Φi represents an effect for each person i, and βj represents an effect for risk group j, 

with β0 = 0.  The incidence function during the baseline period is simply λi0 = exp(Φi). 

Note, other logical extensions can be applied, such as further risk modeling based on age 

groups, concomitant drug use, or other time-varying covariates20, but are not included in the 
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current model proposed for active surveillance.  Conditioning on the number of events ni 

observed for person i during the observation period, the log likelihood is multinomial: 

 

 
 
The desirable phenomenon within the self-controlled case series framework is that all person-

level effects Φi cancel out, because incidence rates are compared within a given person’s 

time window.  In the active surveillance context, USCCS can be applied across multiple 

drugs and conditions, but the estimates of the drug-condition relationships are treated 

independently.  The estimate β can be used as a relative measure of effect, and is produced as 

the score for each drug-condition pair by the OMOP self-controlled case series program.  

Within the self-controlled case series framework, several design decisions are required that 

are under experimentation within OMOP.  These include: whether to define outcomes based 

on incident or prevalent occurrence of conditions; whether to include the first day of 

exposure in the time-at-risk; definition of a surveillance window to infer time-at-risk relative 

to exposure start or end (30 days from onset; all time exposed, time exposed + 30 days from 

end, exposure + 60 days from end); and, precision of the Normal prior (0.5, 0.8, 1, 2).  

Measures of standard error for the univariate design can be estimated, but are not included 

within the current approach under consideration.   All combinations of potential parameter 

settings are empirically evaluated to produce 64 distinct self-controlled case series analyses.   

 

 

Aim 2: Evaluate consistency of COMPASS estimates across a network of disparate 

databases 
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An active surveillance network is likely to comprise multiple data sources, as it is 

recognized that there is currently no single US-based source that can be expected to satisfy 

all requirements of allowing investigation of all medical products for all potential adverse 

events and across all populations of interest.  However, there is little research to inform the 

expected behavior of active surveillance analysis methods when applied to disparate 

databases, or the potential benefits of integrating estimates across sources to improve method 

performance. 

This aim conducted the COMPASS analysis for ACE inhibitors across five databases.  

Beyond CCAE, the method was applied to the MarketScan Lab Database (MSLR), 

MarketScan Medicaid Multi-State Database (MDCD), MarketScan Medicare Supplemental 

and Coordination of Benefits Database (MDCR), and the GE Centricity electronic health 

record (GE).  For each database, COMPASS was applied to the ACE Inhibitor drug class to 

generate estimates of outcome relationships for the same set of 2884 test cases (84 ‘positive 

controls’ and 2800 ‘negative controls’).  

Four accuracy measures (mean average precision, area under ROC, precision-at-k, and 

recall-at-fp) were calculated for each database to measure overall performance across the test 

cases.  In addition, for each ‘true positive’, we characterized the performance in each source 

by assessing the false positive rate and precision at the test case score.   These accuracy 

measures from each source were compared to assess the reliability in performance.   

I2 statistics were calculated to assess the heterogeneity in COMPASS estimates across 

data sources.  Scatterplots were used to explore the relationships among scores between each 

of the 21 pairwise combinations of data sources.     
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In addition, we explored three approaches to producing composite estimates based on the 

individual scores provided from each contributing data source.  The first composite will 

apply a simple threshold heuristic to categorize test cases based on the number of sources 

that produce a statistically significant estimate: , where i is the 

index for the sources.  Here, the composite score measures how many sources corroborate the 

association, with the expectation that greater sources with significant relationships reflect 

increased confidence in a potential relationship (though each source contributes equally to 

the measure).  Note, when C1 = 5, then in effect, this approach provides a conservative 

assessment that requires all sources to corroborate an association before the condition is 

considered a potential issue. 

The first composite score is proposed because it provides a simple heuristic that has been 

suggested as a potential approach to consider within a distributed network of active 

surveillance systems.  A more formal approach is to pool the estimates and measures of 

uncertainty within a meta-analytic framework. The composite score C2 is based on a pooled 

rate difference from fixed effect model using the inverse variance method46, 240: 

 

 

 

 

Where i is the data source, k is the total number of sources, ai is the number of events in 

the exposed group, tei is the person-time in the exposed group, bi is the number of events in 



 

117 
 

the comparator group, tci is the person-time in the comparator group, and wi reflects the 

inverse of the estimated variance for each study. 

The heterogeneity statistic is given by: 

 

I2 = 100% * (Q – d.f.) / Q 

Q follows a chi-square distribution with k-1 degrees of freedom under the null hypothesis 

that the true treatment effect is the same for all sources.  I2 for the homogeneity test will be 

provided for each outcome241.  A distribution of heterogeneity measures was provided to 

determine the degree to which source variability influences estimation across the range of 

true positives and negative controls.  Given the diversity in the data sources, we fully expect 

the potential for significant heterogeneity between sources.  In fact, the heterogeneity may be 

sufficiently large that the use of meta-analysis pooled estimates could be questioned.  

Certainly, in the contexts of producing a valid estimate for a formal evaluation, 

considerations around the sources of variability and how they may influence effect estimates 

require specific attention.  However, in the context of active surveillance, where we are 

trying to produce estimates to generate hypotheses about potential effects, we are primarily 

concerned the degree to which a composite estimate provides a more reliable screening tool, 

even in spite of observed heterogeneity.   

We also explored a DerSimonian and Laird random effects model to relax the assumption 

that there is a common treatment effect across the sources46.  Here, we assume the true effect 

follows a Normal distribution with mean and variance τ2, where: 
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It seemed initially compelling to consider using a random-effects meta-regression 

technique to further adjust for study-level covariates, such as database demographics (age 

and gender distribution), data capture characteristics, and potentially the accuracy measure 

(AUC).  However, despite having access to 6 large data sources, we are underpowered for 

meta-regression because the unit of analysis is the study, not the population, and we do not 

have sufficient degrees of freedom with 6 estimates to produce a reliable composite 

summary.  

Using these composite estimates, we then used the same measures of performance as 

described in Aim 1 to evaluate will then evaluate the relative performance of the pooled 

estimate in predicting drug safety issues as compared to source-specific performance to 

assess the potential advantages of a network-based approach to active surveillance.  It is 

expected the composite estimates should have improved performance to the source-specific 

estimates, both due to pooling data to increase power as well as the minimization of source-

specific effects that could lead to false positive findings.   
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Aim 3: Explore differential effects across ingredients within ACE inhibitor class 

 

The general consensus within the clinical community is that all ACE inhibitors have 

similar safety profiles.  However, examination of the product labels suggests differences in 

which adverse events have been reported.  Further, there is little information to assess the 

relative effect size of adverse events across products in a real-world setting.  This aim applied 

COMPASS to seven medical products within the class (lisinopril, moexipril, quinapril, 

ramipril, benazepril, captopril, enalapril), to determine whether meaningful differences are 

observed within observational databases.  In this aim, COMPASS was used as a hypothesis 

generating tool to highlight potential disparities in adverse event rates between products that 

may warrant further evaluation.  The results of this exploratory analysis should not be 

considered definitive; indeed, differences will be observed through indirect comparisons of 

adjusted risk differences.  A formal pharmacoepidemiology evaluation would likely design a 

study that provides a direct assessment of the relative effect, and would tailor the analysis to 

address the specific adverse event of interest.  In this context, as an initial active surveillance 

tool, COMPASS is used to identify the differences between products to facilitate 

prioritization of effects that may require this additional analysis. 

 Table 9 highlights the events that were explored within this study.  Among the 

conditions, 17 events were consistently recorded across the product labels for all nine 

ingredients.  These events include events listed as warnings, such as cough, hypotension, and 

renal dysfunction.  The product labels do not provide evidence about the anticipated effect 

size, or whether the risks should be anticipated to be differential among specific ingredients.  

In absence of any additional information, it could be assumed that the effects should be 
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shown to be consistent for these 17 events.  COMPASS will be applied to these events to 

generate hypotheses about potential differential risk profiles.   

The additional six events in the table reflect adverse events that are not consistently 

reported in the product labels.  For example, epistaxis and tinnitus are listed on product labels 

for all ingredients except quinapril and captopril.   Ramipril does not list asthma, flushing, 

low back pain, or bronchospasm as potential effects, although the majority of the other 

products do include these events.  These disparities may reflect true differences in observed 

adverse events, or could simply reflect artifacts of the product labeling standards and the lack 

of enforcement of consistency across product manufacturers.  COMPASS was applied to 

these six events to discern whether risk differences can be observed across the products.   

Table 9: Adverse events to explore across ACE inhibitor ingredients 

SNOMED term 

Products 
with 

event on 
label L

is
in

op
ri

l 

be
na

ze
pr

il 

E
na

la
pr

il 

R
am

ip
ri

l 

qu
in

ap
ri

l 

C
ap

to
pr

il 

m
oe

xi
pr

il 
Consistent events 
Acquired hemolytic anemia 9 X X X X X X X 
Constipation 9 X X X X X X X 
Cough 9 X X X X X X X 
Diarrhea 9 X X X X X X X 
Dyspnea 9 X X X X X X X 
End stage renal disease 9 X X X X X X X 
Generalized abdominal pain 9 X X X X X X X 
Impaired renal function disorder 9 X X X X X X X 
Leukopenia 9 X X X X X X X 
Low blood pressure 9 X X X X X X X 
Nausea 9 X X X X X X X 
Oliguria and anuria 9 X X X X X X X 
Orthostatic hypotension 9 X X X X X X X 
Palpitations 9 X X X X X X X 
Primary thrombocytopenia 9 X X X X X X X 
Pruritus of skin 9 X X X X X X X 
Vomiting 9 X X X X X X X 
Inconsistent events 
Epistaxis 7 X X X X     X 
Tinnitus 7 X X X X     X 
Asthma 6 X X X   X X X 



 

121 
 

Flushing 6 X X X     X X 
Low back pain 6 X X X   X   X 
Bronchospasm 5 X   X     X X 

 

COMPASS produced an adjusted rate difference and associated confidence interval for each 

ingredient-outcome pair.  These estimates within each outcome can then be compared to 

determine if two products have potentially differential effects. 

 

 
 
 



 

 

CHAPTER FOUR: MANUSCRIPT 1:  
“Systematic identification of drug safety issues in administrative claims data:  Performance 

of hypothesis generation methods for active surveillance” 

 

Abstract 
There is emerging interest to expand the use of observational databases, such as 

administrative claims and electronic health records, as part of an active surveillance network 

to identify potential drug safety concerns in a more timely manner.  However, few studies 

have evaluated the operational characteristics of the methods proposed for such surveillance.  

This study explored the performance of three existing methods (disproportionality analysis, 

observational screening, and self-controlled case series) and introduced a new approach, 

Comparator-Adjusted Safety Surveillance (COMPASS), which augments an inception cohort 

design with automated heuristics for comparator selection, inclusion/exclusion criteria, and 

covariate adjustment through propensity score stratification.   Methods were evaluated in a 

large administrative claims database to assess their ability to identify true safety concerns and 

discern from false positive findings associated with ACE inhibitor exposure.  COMPASS 

generated the fewest safety signals, had the lowest false positive rate, highest predictive 

probability and greatest precision of the four methods.  Self-controlled case series achieved 

higher sensitivity but lower specificity.    The proposed COMPASS method is a new 

alternative analysis approach to consider in developing a national active surveillance system, 

but further methodological research is needed to improve the utility of all methods as 

hypothesis generating tools.
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Background 

Safety assessment of medical products involves a wide array of information.  Prior to 

regulatory approval, pre-clinical toxicology studies, pharmacology experiments and clinical 

trials provide initial assessment of adverse drug reactions, but are limited both in 

generalizability to real-world populations and in size for detection of less common events or 

reactions with modest increased risks from background observed rates (1).  In the post-

approval setting, spontaneous adverse event reporting offers the opportunity for patients and 

providers to notify FDA and product manufacturers of adverse experiences post-exposure.  

However, this passive surveillance system suffers significant limitations for providing a 

complete safety assessment, including event underreporting, reporting bias, incomplete 

information and lack of follow-up (2).  An additional source of post-approval safety 

information has been the conduct of analytic pharmacoepidemiologic evaluation studies, 

which are typically defined to explore a specific hypothesis about a drug-related effect within 

a real-world population.  Observational healthcare databases, such as administrative claims 

and electronic health records, have provided useful information for pharmacoepidemiologists 

to conduct these retrospective studies by applying a formal study design to an available 

dataset in order to estimate the magnitude of the effect between a particular exposure and 

outcome (3).  While pharmacoepidemiologic studies are often less resource-intensive than 

randomized studies, they require significant expertise and several months before the 

customized assessment of the individual hypothesis is completed.  The often intractable 

challenges of confounding in observational studies require substantial effort to address and 

often limit the confidence the community places in these studies, in relation to other available 

experimental evidence.  
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The increasing availability of these data sources, coupled with recent information 

technology innovations, has raised interest in expanding the use of large linked healthcare 

data to create an active drug safety surveillance system that would complement current 

practice.   The active surveillance system is envisioned to “actively search for patterns in 

prescription, outpatient and inpatient data systems that might suggest the occurrence of an 

adverse event, or safety signal, related to drug therapy” (4).   Unlike the existing use of 

pharmacoepidemiologic studies to study pre-defined hypotheses of individual drugs and 

outcomes at a particular timepoint, the active surveillance system would be applied across a 

network of disparate databases continuously over time to both generate and refine hypotheses 

of potential issues associated with all regulated medical products and across a large array of 

potential adverse events.    

In the US, the development of a national active surveillance system is being 

coordinated by the FDA under the Sentinel Initiative (5), but little evidence is available to 

inform best practices about appropriate methods to use or expected operating characteristics 

for such a system once it comes online.  The Observational Medical Outcomes Partnership 

(OMOP) was established to conduct methodological research for the national active 

surveillance system (6), and has provided a public forum for experimentation amongst data 

holders and methods developers to begin to address some of these outstanding research 

questions.  Several methods have been proposed as potential approaches for active 

surveillance, including disproportionality analysis, as adapted from spontaneous data 

mining(7,8); observational screening, an unadjusted cohort-based design(9); and univariate 

self-controlled case series(10,11).  All of these methods were implemented within the OMOP 

community (12).   In this study, we introduce a new approach, Comparator-Adjusted Safety 
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Surveillance (COMPASS), which applies a propensity score cohort design using automated 

heuristics for key design elements, including comparator selection, inclusion/exclusion 

criteria, and covariate adjustment.  The overall aim of this study is to measure the 

performance of these alternative analysis methods for active surveillance.  To address this, 

we performed a retrospective evaluation of all four methods against a large administrative 

claims database, assessing each method’s performance in their ability to properly classify 

adverse events with their known association with ACE inhibitors. 

 

Materials and Methods 

Data 

The study population used for the evaluation came from the Thomson Reuters 

MarketScan Commercial Claims and Encounters (CCAE), a large administrative claims 

database containing 59 million privately insured lives.  CCAE provides patient-level de-

identified data from inpatient and outpatient visits and pharmacy claims of multiple large 

employer-based health plans from 2003 to 2008.  CCAE contains 3,052,264 persons with at 

least one prescription dispensing record for an ACE inhibitor, though each method uses a 

different fraction of that sample based on a particular study design.  The CCAE database was 

transformed into an OMOP common data model [CDM], with International Classification of 

Diseases, Ninth Revision (ICD-9) diagnosis codes translated into a standardized terminology 

using condition concepts from Systematized Nomenclature of Medicine-Clinical Terms 

(SNOMED CT). 
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Method 

Disproportionality analysis 

Disproportionality analysis (DP) methods were developed for use in analyzing 

spontaneous adverse event reporting databases by identifying drug-event combinations that 

were co-reported more frequently than what would be expected had the drug and event been 

independent.  Spontaneous reports can be used to construct a series of 2x2 contingency 

tables, one for each drug-event combination, on the basis of whether the report contains the 

drug of interest and whether the report contains the event of interest.  Several metrics can be 

applied to these 2x2 tables to produce estimates of the association, including multi-item 

gamma-Poisson shrinker (MGPS), proportional reporting ratios (PRR), reporting odds ratios 

(ROR), and Bayesian confidence propagation neural network (BCPNN) (7,8).  

Disproportionality analysis methods can be readily applied to longitudinal observational 

databases insofar as the longitudinal data can also be projected into 2x2 contingency tables.   

 

Observational screening 

Observational screening (OS) is a method originally developed at GlaxoSmithKline 

and now made commercially available as part of the SAEfetyWorks® software application 

by ProSanos (9, 13,14).  Observational screening applies a basic cohort design to estimate the 

rate of condition occurrence during the time exposed to a particular product, and compares 

that rate to the overall background rate of the condition in the overall population.  The 

estimate is unadjusted and therefore susceptible to various forms of confounding.  The 

primary intent, in its original conception, was that screening rate ratios could be calculated 

efficiently for all potential drug-condition pairs across large observational databases, and 
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could provide a first-pass approach for identifying potential issues that warrant further 

evaluation.   

 
Self-controlled case series 

The univariate self-controlled case series (USCCS) approach assumes that events 

arise among persons as a non-homogeneous Poisson process (15).  The method only makes 

use of persons who have are both exposed and unexposed during the observation period, and 

also have experienced at least one event.  The method estimates the relative rate within each 

person by evaluating the rate of events during the exposed and unexposed time, before 

producing a composite effect estimates across all cases.  The self-controlled design thus is 

unconfounded by patient characteristics that are stable over time. 

 

COMPASS 

COMParator-Adjusted Safety Surveillance (COMPASS) is a statistical algorithm that 

estimates adjusted rate ratios for all outcomes of interest for a given medical product through 

propensity score stratification across exposed and unexposed cohorts.  COMPASS applies an 

automated heuristic for defining a comparator group based on the indication of the medical 

product, and provides multivariate adjustment based on key risk factors, including person 

demographics, comorbidity, and health service utilization.  Figure 1 highlights the conceptual 

model that serves as the basis for COMPASS.  The fundamental goal of a drug safety 

analysis is to assess the temporal relationship between treatment and outcome.  However, in 

the context of an active surveillance system that leverages longitudinal healthcare databases 

in a non-experimental design, specific attention is needed to minimize bias when estimating 

the drug-outcome association.  COMPASS applies a retrospective cohort design to compare 
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the effects of the target drug of interest to an unexposed population, defined as those exposed 

to an alternative treatment for the same indication.  The COMPASS model focuses on 

minimizing bias from four primary sources: personal demographics (such as age and gender), 

confounding by indication, effects of comorbidity, and health service utilization.   

The COMPASS approach incorporates several notable features into its analysis that 

bear particular consideration.  First, it incorporates large biomedical ontologies, or networks 

of clinical concepts such as relationships between diseases and treatments, to automate 

comparator selection by identifying all drugs that share at least one FDA-approved indication 

but have different mechanisms of action than the target drug of interest.  Second, it imposes 

automated study design heuristics, including cohort exclusion criteria based on 

contraindications and covariate selection based on FDA-approved indications and off-label 

uses.  Third, the use of a comorbidity index and multiple measures of health service 

utilization as additional aggregate covariates allows for improved balancing of exposed and 

unexposed cohorts that are universally applicable for all outcomes while minimizing 

concerns of inflating bias due to unconfounded relationships with any specific outcome.  

Fourth, the algorithm simultaneously applies multiple risk windows to identify effects with 

differential time-to-event relationships, such as acute, subacute, insidious or delayed onset.  

Fifth, COMPASS produces a composite score based on adjusted risk differences and ratios 

that enable prioritization across multiple potential safety concerns based on both magnitude 

of effect and public health significance.  Finally, in contrast to traditional 

pharmacoepidemiology evaluation designs, which are typically implemented to estimate the 

effect of one drug-condition pair, the COMPASS model is designed to be scalable to allow 

estimation of multiple drug-outcome pairs concurrently, and is computationally feasible to 
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screen thousands of potential adverse events within hours.  This efficiency enables key 

principles of pharmacoepidemiology to be brought to bear during the initial exploratory 

phase of hypothesis generation. 

 

Analysis 

Drug-outcome effect estimates generated from all methods were compared to a binary 

classification made to partition the test cases into ‘positive controls’ and ‘negative controls’.  

The classification was performed by OMOP through systematic review of structured product 

labels available on the FDA website before December 19, 2009, using the occurrence of a 

condition in the adverse event section of the majority of labels within a class as a surrogate 

for a ‘positive control’, and selecting conditions unrelated to any labeled events as ‘negative 

controls’ (16).  For ACE inhibitors, 84 ‘positive controls’ and 2780 ‘negative controls’ were 

identified and used for experimentation.  The ‘positive controls’ include labeled events 

known to be related to ACE inhibitor exposure, such as cough, hypotension, hyperkalemia, 

and renal impairment (17).  ‘Negative controls’ include a wide range of conditions observed 

in the database that are unrelated to any known effect of exposure, such as uterine 

leiomyoma, osteomyelitis, ankle fracture, incisional hernia, malignant neoplasm of brain, and 

hammer toe.  The full set of test cases is available for download at (16).  Sensitivity was 

measured as the proportion of the 84 labeled events identified at statistically significant 

levels, based on alpha = 0.05 and 0.001.  Specificity was measured as the fraction of the 2780 

negative controls that failed to meet statistical significance.  Positive predictive value was 

estimated as the proportion of the outcomes meeting statistical significance that were 

classified as positive controls.  
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For each method, a receiver operating characteristic (ROC) curve was produced.  All 

drug-outcome pairs were rank-ordered by the effect size point estimate, and the sensitivity 

and specificity was estimated at all observed threshold values.  Five complementary 

measures of performance were estimated based on these ROC curves. The c statistic, or the 

area under the ROC curve, provides a predictive probability that two random drug-outcome 

pairs, one positive control and one negative control, would be properly rank-ordered.  The c 

statistic ranges from 0 to 1, with 1 indicating perfect prediction and 0.5 a random prediction.   

Partial area under ROC curve at 10% false positive (PAUC10) is used to focus on the highest 

scores and eliminate the range of the ROC curve with unacceptable low specificity.  The 

value of PAUC10 ranges from 0 to 0.10, with random prediction scoring 0.005.  Recall at 5% 

false positive (RECALL5) estimates what fraction of the positive controls is identified at a 

threshold of 95% specificity.  Precision at 100 (P100) provides a measure of what proportion 

of the drug-outcome pairs amongst the 100 highest estimates are positive controls.  ‘Mean 

average precision’ (MAP) is a metric commonly used in information retrieval that provides 

the average precision at each threshold value that represents a ‘true positive’ association. 

Each method has multiple parameter settings, based on design decisions around 

surveillance windows to define time-at-risk, covariates to include, and metrics to calculate.  

Parameter settings for all methods were selected by choosing the configuration that 

maximizes PAUC10.  Sensitivity analysis was performed to assess impact of different design 

decisions of the all performance measures. 
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Results 

Table 1 shows that COMPASS generates the fewest significant signals (n=114) of all 

methods, and also has the highest precision (0.31).  COMPASS dominates DP, with both 

higher sensitivity and specificity.  USCCS has a higher sensitivity than COMPASS (0.61 vs. 

0.42), but comes at the expense of four-fold increase in false positive rate (0.13 vs. 0.03).  OS 

has the highest sensitivity (0.71) but also the lowest specificity (0.55) and lowest precision. 

Figure 2 shows the impact of changing the alpha threshold for statistical significance 

from a=0.05 to a=0.001 on the number of signals, sensitivity and specificity of all four 

methods.  COMPASS continues to produce the fewest signals of all methods, but identifies 

34 fewer significant associations at the stricter threshold.  Decreasing the significance level 

from a=0.05 to a=0.001 decreases COMPASS sensitivity from 0.42 to 0.37, while increasing 

specificity from 0.97 to 0.98.  COMPASS sensitivity and specificity remain higher than DP.  

For USCCS, specificity increases from 0.87 to 0.94, while sensitivity decreases to 0.50.  OS 

identifies the same 60 true positives at both alpha levels, but the false positive rate decreases 

from 0.45 to 0.35.  Under both alpha levels, COMPASS has the highest precision of the four 

methods, increasing to 0.39 for a=0.001.  In other words, 39% of the 80 signals identified by 

COMPASS with p<0.001 were true labeled events. 

Across all five summary measures, COMPASS has the best performance in 

classifying ACE inhibitor labeled events from negative controls (Table 2).  Figure 3 

highlights the receiver operating characteristics (ROC) curves for each method, used to 

derive these statistics.  ROC curves do not reach 100% sensitivity and 100% false positive 

rate, because methods may fail to produce an estimate if no events are observed for a given 

outcome, in which case AUC calculations assume unscored conditions receive the minimum 
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possible score.  COMPASS observed the highest predictive value (c = 0.648), with the ROC 

curve furthest departed from random prediction shown with the dashed diagonal line.   If 

unscored conditions were ranked at random instead of given minimum score, then c statistic 

would increase to 0.738.  DP has the next-highest AUC, c=0.631.  USCCS has the least 

predictive model, c=0.555.  Each ROC is annotated with point estimate thresholds to 

facilitate comparison of interpreting observed scores from each method.  When defining the 

threshold as relative risk (RR) > 1.0, COMPASS has sensitivity = 0.51 and specificity = 0.85.  

At the same threshold of requiring a positive effect, DP is observed to have 

sensitivity/specificity tradeoff of (0.48/0.76), OS is (0.75/0.36), and USCCS is (0.69/0.42).  

Imposing a stricter criteria that RR>1.4, COMPASS has (0.06/0.99), DP has (0.26/0.92), OS 

has (0.25/0.81), USCCS has (0.13/0.87).  COMPASS does not identify any label events at 

RR>2, but DP has (0.13/0.97), OS is (0.25/0.81), and USCCS is (0.06/0.99).  A threshold of 

RR>3.0 is required to observe a false positive rate < 0.05 for OS.  The estimate distributions 

suggest each method has different degrees of positive bias, with OS and USCCS being most 

susceptible to generating positive effect estimates.  

For COMPASS, the optimal setting set the washout period to 180d, specified 

inclusion criteria that at least one indication diagnosis is observed prior to index exposure, 

excluded all patients with contraindication in 30d prior first exposure, applied 20 propensity 

score strata, and identified incident events within 30d from exposure start.  This setting 

produced the maximum PAUC10, MAP, and RECALL5.  The maximum P100 was 0.15, 

observed when changing the washout period to 90d.  The highest observed AUC for 

COMPASS was 0.673, by not restricting by prior indications, reducing the number of strata 

to 10, and including all events during the 30d post-exposure start. 
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For DP, the optimal setting selected prevalent events, used the empiric Bayes 

geometric mean metric from the MGPS algorithm, did not stratify on age and gender, and 

applied a surveillance window of 30d from exposure start.  This setting also yielded the 

highest MAP, P100, and RECALL5 amongst the DP configurations.  Changing the condition 

type parameter to incidence events produced a higher AUC (c=0.637).  For OS, the setting 

that yielded the highest PAUC10 used first exposures to drugs, first occurrence of conditions, 

and compared the rate of events with all time post-exposure (excluding the index date) to the 

overall background rate.  The maximum AUC amongst the OS configurations was 0.615, 

maximum MAP = 0.053, and maximum RECALL5=0.15, all obtained by using all drug 

exposures and all condition occurrences and restricting the surveillance window to 30d from 

exposure start, including the index date.  The maximum P100 observed for OS was 0.11. For 

USCCS, the optimal setting selected incident events, excluded the index date of exposure, 

defined time-at-risk as the length of exposure + 60d, and specified the precision of the 

Normal prior as 2.  This setting was the maximum self-controlled configuration based on 

P100 and RECALL5 as well.  A different setting, using 30d from exposure start as the 

surveillance window, had the maximum AUC (c=0.680) and MAP = 0.054 for USCCS.   

One potential explanation for performance differences between the methods is the 

extent to which confounding factors could influence results.  Table 3 shows the impact that 

propensity score adjustment played within the COMPASS method.  Relative risks for each 

adverse event were estimated by comparing the observed outcome rate in the exposed 

population (those with incident exposure to ACE inhibitors) to an unexposed population 

constructed as those patients with incident exposure to an alternative drug that shares the 

same indication as ACE inhibitors but has a different mechanism of action.  The drug set 
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identified included angiotensin receptor blockers, beta blockers, calcium channel blockers, 

and diuretics.  Both cohorts were restricted to include patients with a recorded diagnosis for 

one of the ACE inhibitor indications, and excluded patients with a recent diagnosis of any 

ACE inhibitor contraindication.  These two cohorts were observed to have important 

differences, with ACE inhibitor users having a higher proportion of males, greater 

medication use and procedures recorded, higher Charlson comorbidity index, with higher 

background rates of diabetes, congestive heart failure, hypertension, renal crisis scleroderma, 

and diabetic nephropathy.  Covariate adjustment through propensity score stratification 

reduced the observed imbalanced to <5% differences between cohorts.  Inherent in the 

USCCS approach is the self-controlled design that is intended to address time-invariant 

confounders, but temporal changes in health service utilization and increasing disease 

severity can bias results.  Both DP and OS are unadjusted association measures, using 

observed rates from the overall population to calculate expectations to use to compare with 

observed counts, so these methods could be susceptible to bias from any of the covariate 

imbalances identified.  DP and OS could also be biased by additional factors not observed in 

COMPASS due to the required similarities between the exposed and unexposed populations 

in the design. 

Figure 4 highlights the observed effect estimates and 95% confidence intervals of all 

four methods for 35 selected labeled events.  Among these labeled conditions, COMPASS 

identified 17 statistically significant associations, 11 of which were among the conditions 

identified with false positive rate < 0.05 (Cough, diarrhea, functional diarrhea, gout, 

heartburn, impaired renal function disorder, low blood pressure, nausea, orthostatic 

hypotension, pruritus of skin, and vomiting).  For the same set of labeled events, DP also 
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identified 17 statistically significant associations with 11 conditions having 5% false positive 

rate or less.  Only three of the conditions identified were the same as those identified by 

COMPASS (gout, low blood pressure, and orthostatic hypotension).  For OS, 29 of the 

labeled events were identified at p<0.05, but only eight of those conditions were detected 

with specificity > 95%.  USCCS had 9 conditions reach statistical significance at a false 

positive rate lower than 5%. 

Amongst the four methods, COMPASS was the only method to identify diarrhea, 

functional diarrhea, heartburn, nausea, pruritus of skin, and vomiting.  USCCS was only 

method to identify bronchospasm, edema of larynx, and leukopenia.  DP exclusively 

identified chest pain and palpitations, while OS was the only method to detect asthenia.  

Three events (acute laryngopharyngitis, asthma, pemphigus) were not identified as statistical 

significant by any method.  Additionally, 10 conditions were not identified by any method 

with specificity > 95%: acquired hemolytic anemia, allergic urticaria, anemia, constipation, 

dyspnea, flushing, generalized abdominal pain, insomnia, oliguria and anuria, and primary 

thrombocytopenia. 

 

Discussion 

We compared four different active surveillance methods in a retrospective claims 

database analysis to determine their ability to identify true safety findings and discern from 

negative control events within ACE inhibitor exposures.  COMPASS was the best 

performing method in terms of fewest signals, lowest false positive rate, highest predictive 

probability, and greatest precision.  If greater sensitivity is desired, the self-controlled case 

series design outperforms COMPASS but comes at expense of a four-fold increase in false 
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positives.  Disproportionality analysis is outperformed by COMPASS in terms of both 

sensitivity and specificity.  Observational screening is positively biased with estimates 

consistently greater than relative risk > 1, and produces an unacceptable false positive rate at 

conventional levels of statistical significance. 

COMPASS attempts to incorporate accepted practice in pharmacoepidemiology 

evaluation studies, with bioinformatics innovations to make automated heuristics for many of 

the design decisions typically customized on a case-by-case basis.  The method is similar in 

intent to the high-dimensional propensity score (HDPS) approach proposed by Schneeweiss 

et al. (18), but differs in its covariate selection procedures.  The HDPS heuristic requires both 

the exposure and outcome to identify empiric confounders, whereas COMPASS uses only 

information about the exposed and unexposed populations.  Rubin argues that outcome 

information should not be used to estimate probability of treatment (19), but Brookhart et al. 

showed in simulation study the potential for a covariate related to exposure and unrelated to 

outcome to inflate variance without decreasing bias (20).  From a technical standpoint, 

COMPASS is more scalable than HDPS for examining large sets of drugs and outcomes on a 

continual basis, because it only requires constructing one propensity score model for each 

exposure that can be applied across all outcomes.  All COMPASS analyses of ACE 

inhibitors, 480 configurations executed for 2864 outcomes against the CCAE database, were 

run in the OMOP research lab in 91 hours.  An additional advantage of COMPASS as an 

active surveillance tool is that its systematically applies existing clinical information to 

objectively and transparently define study design decisions (comparator selection, 

inclusion/exclusion criteria, covariate adjustment) and facilitates a comprehensive sensitivity 
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analysis, rather than requiring expert assessment to customize a study plan that can be timely 

to develop and subject to potential disagreement across stakeholder groups.   

Both the AUC and PAUC10 suggest that all four methods are better than random 

predictions, but each leave substantial room for improvement.  While the COMPASS method 

approaches AUC in line with other clinical diagnostics in the range of 0.65-0.80 (21-26), in 

the context of an active surveillance system, the frequency of false positives and the potential 

for false negatives may be considered unacceptable.  Here, it is important to reinforce the 

need for an active surveillance system to complement, rather than replace, existing practice 

and to be used to generate and prioritize potential hypotheses that require further evaluation.  

Also, while COMPASS is observed to have better overall performance than DP, OS, and 

USCCS, the event-specific analysis suggests that multiple methods may be necessary for an 

active surveillance to comprehensively evaluate the full spectrum of events, as each method 

uniquely identified positive controls.  Further research is needed to determine why these 

patterns exist and for developing strategies to integrate evidence from across different 

methods. 

We believe our results provide a useful first step toward characterizing the expected 

performance of an active surveillance system in its ability to reliably identify true drug safety 

issues.  The chief limitation in our study is our focus on one drug class, as several factors 

could influence performance across medical products, including prevalence and duration of 

exposure, maturity of the drug class and clinical comfort with the mechanism of action, 

disease complexities in the underlying indicated population, and the potential for differential 

confounding across different safety effects.   Further retrospective studies of other products 

would aid in increasing both the precision of the performance estimates and also improve the 
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generalizability of the findings to support our use of the active surveillance system 

prospectively. 

Another limitation of the current study is the potential for misclassification in the definition 

of ‘positive controls’ and ‘negative controls’.  This ground truth classification was based on 

events occurring on the product label, but some adverse events may be listed on labels due to 

observations from clinical trials or spontaneous reports but in absence of definitive evidence 

of a true causal relationship.  Similarly, negative controls were selected based on the 

condition being unrelated to any labeled event, though it is possible that there is a previously 

unknown association that has been uncovered that is instead being classified as a ‘false 

positive’ within this study.  The risk of a true negative control seems minimal, since ACE 

inhibitors are mature products with presumably well-understood safety profiles.  Further 

misclassification can arise due to the mapping of the labeled events to specific diagnosis 

codes that occur in the data.  In this study, all outcomes defined by occurrence of diagnosis 

codes may limit method performance, and performance may be differential to the severity of 

the disease.  In a typical pharmacoepidemiology evaluation study of a specific drug-outcome 

association, the outcome definition may be more refined to include sets of diagnosis codes, 

potentially in conjunction with diagnostic or treatment procedures and laboratory values.  For 

an active surveillance system to be applied across a large array of outcomes, this health 

outcome of interest definitions would need to be developed a priori. 

The current study used all data accumulated over time in CCAE, from 2003 to 2008.  

Since an active surveillance system may also be applied to newly marketed products with 

accumulating exposures in a continuous fashion, further analysis should evaluate method 

performance in that context.  ACE inhibitors do not make a good case study for this scenario, 
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since the class reflects a mature product that was approved prior to data availability in most 

data systems.  Thomson MarketScan Commercial Claims and Encounters database reflects 

only one viable data source that could contribute to an active surveillance network.  It reflects 

privately insured population, so may not be generalizable to the overall US population and 

may not accurately reflect ACE inhibitor use of adverse event experiences.  Administrative 

claims data reflects data captured for reimbursement, and may be different than data capture 

systems for electronic health records.  Method performance should be evaluated across 

multiple disparate sources.  Strategies for integrating estimates across the data network 

should also be explored. 
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Tables and Figures 

 
Table 10: Operating characteristics of the four methods at alpha=0.05 

Method 
Total 
signals 

True 
positives 

False 
positives Sensitivity Specificity Precision 

COMPASS 114 35 79 0.42 0.97 0.31 
DP 252 31 221 0.37 0.92 0.12 
USCCS 402 51 351 0.61 0.87 0.13 
OS 1302 60 1242 0.71 0.55 0.05 

 
COMPASS-Comparator-adjusted Safety Surveillance; DP-Disproportionality analysis; 
USCCS-Univariate self-controlled case series; OS-Observational screening 
 

 
Table 11: Performance measures of the four methods.  AUC-Area under receiver operating 
characteristic curve; PAUC10 - Partial AUC at 10% false positive rate; MAP- mean average 
precision; P100- precision at top 100 signals; RECALL5 - recall at 5% false positives 
METHOD AUC PAUC10 MAP P100 RECALL5 
COMPASS 0.648 0.023 0.085 0.14 0.274 
DP 0.631 0.017 0.075 0.12 0.202 
OS 0.573 0.014 0.05 0.10 0.131 
USCCS 0.555 0.011 0.044 0.09 0.131 

 
Metrics: AUC-Area under receiver operating characteristic curve (min=0.0; random=0.5; 
max=1.0); PAUC10 - Partial AUC at 10% false positive rate (min=0.0; random=0.005; 
max=0.1); MAP- mean average precision (min=0; max=1); P100- precision at top 100 
signals (min=0; max=0.84); RECALL5 - recall at 5% false positives (min=0; max=1) 
Methods: COMPASS-Comparator-adjusted Safety Surveillance; DP-Disproportionality 
analysis; USCCS-Univariate self-controlled case series; OS-Observational screening 
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Table 12: COMPASS propensity score balance effects; Exposed- ACE inihibitor; Unexp- unexposed; RR- relative risk 

  Pre-adjustment Post-adjustment 

  Exposed Unexp RR Exposed Unexp RR 

Demographics 

Age 51.71 50.34 1.03 50.79 51.21 0.99 

Gender (% male) 0.56 0.47 1.20 0.50 0.49 1.02 

Lifestyle risk factors 

Smoking 0.07 0.07 0.98 0.06 0.06 0.98 

Obesity 0.06 0.05 1.27 0.05 0.06 0.93 

Alcohol 0.05 0.04 1.13 0.06 0.04 1.34 

Drug abuse 0.01 0.01 1.02 0.01 0.01 1.01 

Health service utilization measures 

Total medication count 1.30 1.20 1.09 1.24 1.22 1.02 

Indication medication count 1.03 0.16 6.34 0.25 0.40 0.62 

Total procedure count 5.92 5.64 1.05 5.94 5.59 1.06 

Total outpatient visits 2.57 2.65 0.97 2.53 2.61 0.97 

Total inpatient visits 0.41 0.40 1.03 0.37 0.38 0.97 

% Exposed within inpatient visit 0.10 0.11 0.90 0.10 0.10 1.00 

Charlson score 1.86 1.36 1.36 1.58 1.51 1.05 

Comorbidities within Charlson index (% of persons with condition) 

Diabetes (mild to moderate) 0.44 0.26 1.67 0.34 0.32 1.05 

Diabetes with chronic complications 0.26 0.15 1.75 0.18 0.19 1.00 

Chronic pulmonary disease 0.20 0.19 1.04 0.21 0.19 1.10 

Congestive heart failure 0.11 0.07 1.70 0.06 0.08 0.84 

Cerebrovascular disease 0.10 0.09 1.08 0.10 0.09 1.09 

Any malignancy 0.06 0.07 0.92 0.06 0.07 0.91 

Peripheral vascular disease 0.06 0.04 1.51 0.07 0.04 1.63 

Renal disease 0.05 0.02 1.91 0.04 0.03 1.38 

Rheumatologic disease 0.04 0.04 1.07 0.04 0.04 0.93 

Mild liver disease 0.03 0.03 1.10 0.04 0.03 1.57 

Myocardial infarction 0.02 0.01 2.73 0.01 0.01 0.76 

Peptic ulcer disease 0.01 0.01 1.07 0.01 0.01 0.93 

Metastatic solid tumor 0.01 0.02 0.61 0.01 0.01 0.95 

Dementia 0.01 0.01 1.26 0.01 0.01 0.89 

Hemoplegia or paralegia 0.01 0.01 0.90 0.01 0.01 0.97 

Indication covariates (% of persons with condition) 

Hypertension 0.76 0.70 1.08 0.72 0.76 0.95 

Hypertensive Emergencies 0.52 0.43 1.22 0.47 0.49 0.97 

Renal Crisis Scleroderma 0.51 0.42 1.21 0.46 0.48 0.97 

Hypertension due to Scleroderma 0.50 0.41 1.22 0.45 0.46 0.97 

Diabetic Nephropathy 0.29 0.17 1.65 0.21 0.21 1.00 

Myocardial Infarction 0.24 0.27 0.89 0.24 0.24 0.97 

Myocardial Infarction Prevention 0.22 0.25 0.88 0.22 0.23 0.97 

Prevention of Cerebrovascular Accident 0.19 0.24 0.81 0.21 0.21 0.97 

Left Ventricular Dysfunction following Myocardial Infarction 0.13 0.10 1.40 0.09 0.10 0.90 

Prevention of Recurrent Atrial Fibrillation 0.11 0.09 1.20 0.10 0.09 1.09 

Chronic Heart Failure 0.10 0.06 1.63 0.06 0.07 0.84 

Diastolic Heart Failure 0.08 0.05 1.67 0.04 0.05 0.84 

Edema 0.08 0.07 1.13 0.06 0.07 0.90 

Diabetic Retinopathy 0.07 0.04 1.88 0.04 0.05 0.81 

Nondiabetic Proteinuric Nephropathy 0.05 0.03 1.51 0.03 0.04 0.88 

Migraine Prevention 0.05 0.06 0.82 0.05 0.05 0.99 

Cystine Renal Calculi 0.04 0.04 1.13 0.04 0.04 0.95 

Raynaud's Phenomenon 0.03 0.03 1.33 0.06 0.03 2.12 

Asymptomatic Left Ventricular Dysfunction 0.02 0.02 1.25 0.02 0.02 0.90 
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Figure 18: COMPASS conceptual model 
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Figure 19: Sensitivity and specificity of four methods at alpha=0.05 and 0.001.  Each method 
is annotated with the number of signals generated at that significance threshold.   
Methods: COMPASS-Comparator-adjusted Safety Surveillance; DP-Disproportionality 
analysis; USCCS-Univariate self-controlled case series; OS-Observational screening
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Figure 20: Receiver operating characteristics curves for each of the four methods.  Select point estimate thresholds are annotated on 
each ROC curve to highlight sensitivity/specificity tradeoff at different observed effect sizes (relative risk).
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Figure 21: Estimates for 'label event' conditions across the four methods, ordered by estimate from COMPASS.  Estimates are colored 
based on the false positive rate at the point estimate threshold. 
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CHAPTER FIVE: MANUSCRIPT 2:  
“Integrating active drug safety surveillance analyses across a network of observational 

healthcare databases” 

 
 
 

Abstract 

Background:  The development of an active drug safety surveillance system requires access 

to a network of disparate observational healthcare data sources.  There is little empirical 

evidence to anticipate performance of active surveillance analyses in their ability to identify 

true drug safety issues and discern from false positive findings or the consistency of evidence 

observed across data sources. 

Objectives: To measure the operating characteristics of an active surveillance method in five 

disparate observational databases by retrospective evaluation of known adverse events 

associated with ACE inhibitor exposure. 

Results: In all five databases, Comparator-Adjusted Safety Surveillance provided a 

moderately predictive model with high specificity > 97%.  The total number of events 

reaching statistical significance and the sensitivity in identifying labeled events varied 

considerably by data source.  Composite summaries based on meta-analysis of source-

specific effect estimates did not yield additional predictive ability or identify additional 

outcomes not found using individual sources alone.  82% of the outcomes with a statistically 
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significant composite effect estimate were observed to have high heterogeneity (I2 statistic > 

75%) of point estimates among databases.  

Conclusions:  Active surveillance across a network of disparate data sources can provide 

valid information to complement existing evidence as part of a comprehensive drug safety 

assessment. Independent replication of statistically significant findings improves precision of 

observational analyses, but does not eliminate risk of false positive findings.  Substantial 

heterogeneity across data sources requires the development of a strategy to assess emerging 

drug safety issues by examining both source-specific effect estimates and composite 

summaries. 

Key words:  Active surveillance; Meta-analysis; Drug safety 
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Introduction 

 
In 2007, Congress passed the Food and Drug Administration (FDA) Amendment Act, 

which called for the establishment of an “active postmarket risk identification and analysis 

system” with access to patient-level observational data from 100 million lives by 20121.  In 

the US, creating such a system requires establishing a network of disparate data sources, as it 

is recognized that currently no single data holder has adequate capture of information from 

throughout the healthcare delivery system or sufficient sample that is adequately 

representative of the general population.   

Several initiatives demonstrate the feasibility of coordinating a network of disparate 

observational data sources.  The HMO Research Network has established a consortium of 16 

health maintenance organizations to conduct multicenter pharmacoepidemiologic evaluation 

studies across their administrative claims data2.  FDA’s Mini-Sentinel pilot project 

announced access to data for 60 million persons, with current focus on administrative claims 

from privately insured populations3.  As part of its methodological research efforts, the 

Observational Medical Outcomes Partnership (OMOP) established a data network of 10 data 

sources covering over 200 million persons, and representing the breadth of disparate data 

available (administrative claims aggregated from insurers, large employers, and directly from 

the point-of-care and electronic health records from inpatient systems, outpatient services, 

and across an integrated health information exchange) and the diversity of population 

demographics of interest4.   

 In the context of active drug safety surveillance, where the data network is envisioned 

to be used for systematic monitoring of any medical product and any health outcome of 
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interest, several methodological issues require careful consideration.  Paramount to these 

pursuits is a full understanding of the accuracy of active surveillance methods that correctly 

identify true drug safety issues and discern false positive findings.  Operating characteristics 

of methods, such as sensitivity, specificity and positive predictive value, may be influenced 

by attributes of the underlying data, including population size, patient demographics and 

health profile, completeness in data capture, and longitudinality of coverage, i.e. the ability to 

track all interactions with the healthcare system for individual patients over time within a 

dataset.  Across a network of disparate data sources, method performance and the relative 

confidence in information gained from each contributing source may vary.  There is a need to 

investigate how effect estimates from disparate sources can be meaningfully integrated to 

produce composite summaries, such as within a meta-analytic framework, and to assess the 

predictive performance of these summary estimates.  It is also important to understand the 

extent of heterogeneity that may be present across different sources to help provide context 

and facilitate the proper interpretation of active surveillance results. 

This study evaluated the performance of one active surveillance method, Comparator-

Adjusted Safety Surveillance (COMPASS), across five disparate observational databases in 

its ability to identify known adverse events associated with ACE inhibitors exposure.  The 

study also examined the operating characteristics of composite estimates and measured the 

heterogeneity across the data network. 
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Methods 

 
 

Five observational data sources from within the OMOP data network were used for 

this analysis.   Thomson Reuters MarketScan Commercial Claims and Encounters (CCAE) is 

a large administrative claims database containing 59 million privately insured lives, and 

provides patient-level de-identified data from inpatient and outpatient visits and pharmacy 

claims of multiple large employers.  MarketScan Lab Database (MSLR) contains 1.5 million 

persons representing a largely privately-insured population, with administrative claims from 

inpatient, outpatient, and pharmacy services supplemented by laboratory results.  MarketScan 

Medicaid Multi-State Database (MDCD) provides administrative claims data for 11 million 

Medicaid enrollees from multiple states.  MarketScan Medicare Supplemental and 

Coordination of Benefits Database (MDCR) captures administrative claims for 5 million 

retirees with Medicare supplemental insurance paid for by employers, including services 

provided under the Medicare-covered payment, employer-paid portion, and any out-of-

pocket expenses.  GE Centricity electronic health record (GE) contains patient-level data for 

11 million persons captured at the point of care from a consortium of providers using the GE 

Centricity system in their outpatient and specialty practices.  Analyses were conducted 

independently in each database, despite the potential for patient overlap across multiple 

databases, due to lack of unique patient identifier.   

COMPASS is a statistical algorithm that estimates adjusted rate ratios for all 

outcomes of interest for a given medical product through propensity score stratification 

across exposed and unexposed cohorts for a given medical treatment.  COMPASS applies a 

retrospective inception cohort design to compare the effects of the target drug to the effects 



 

154 
 

of alternative treatments for the same indication defined by an automated heuristic.  The 

COMPASS model focuses on minimizing bias from four primary sources: personal 

demographics (such as age and gender), confounding by indication, effects of comorbidity, 

and health service utilization.  COMPASS follows many of the design features advocated in 

the literature5, 6, and has been demonstrated to have better performance characteristics than 

other active surveillance methods under consideration, such as self-controlled case series, 

disproportionality analysis, and observational screening, when examining known effects 

within a large claims database7.  COMPASS was executed against all data sources using the 

same configuration, specifically, having set the washout period (time from observation start 

to index exposure) to 90 days, specified inclusion criteria that at least one indication 

diagnosis was observed prior to index exposure, excluded all patients with contraindication 

in 30 days prior first exposure, applied 20 propensity score strata, and identified incident 

events within 30 days from exposure start.  Complete details of the COMPASS method and 

implementation are available7.   

The Aniotensin Converting Enzyme (ACE) inhibitor drug class was selected for the 

retrospective evaluation of method performance, because of the products’ widespread use 

and length of time on the market.  Product longevity was important for accurately 

characterizing the product’s existing safety profile, which may not be fully understood for 

newly marketed medicines8.  Effect estimates generated from COMPASS were compared to 

a binary classification made to partition the test cases into ‘positive controls’ and ‘negative 

controls’.  The classification was performed by OMOP through systematic review of 

structured product labels available on the FDA website before December 19, 2009, using the 

occurrence of a condition in the adverse event section of the majority of labels within a class 
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as a surrogate for a ‘positive control’, and selecting conditions unrelated to any labeled 

events as ‘negative controls’9.  For ACE inhibitors, 84 ‘positive controls’ and 2780 ‘negative 

controls’ were identified and used for experimentation.  The ‘positive controls’ include 

labeled events known to be related to ACE inhibitor exposure, such as cough, hypotension, 

hyperkalemia, and renal impairment10.  ‘Negative controls’ include a wide range of 

conditions observed in the database that are unrelated to any known effect of exposure, such 

as uterine leiomyoma, osteomyelitis, ankle fracture, incisional hernia, malignant neoplasm of 

brain, and hammer toe.  The full set of test case outcomes is available for download from the 

OMOP website9.   

Effect estimates for all test cases were produced using COMPASS within each data 

source.  Additionally, composite estimates summarizing the relative risks across the sources 

were produced using both fixed-effects and random-effects meta-analysis11.  We used both 

meta-analytical approaches in order to assess the impact of heterogeneity on the accuracy of 

the composite estimates.  Drug-outcome pairs were classified by how many sources produced 

significant associations to assess the impact of replicated findings on performance 

characteristics.  Five operating characteristics were measured for each data source as well as 

the composite meta-analysis estimates.  Sensitivity was measured as the proportion of the 84 

labeled events identified at statistically significant levels, based on alpha = 0.05.  Specificity 

was measured as the fraction of the 2780 negative controls that failed to meet statistical 

significance at alpha = 0.05.  Positive predictive value (PPV) was estimated as the proportion 

of the outcomes meeting statistical significance that were classified as positive controls (e.g. 

labeled events).   The c statistic, or the area under the Receiver Operating Characteristic 

(ROC) curve, provides a predictive probability that two random drug-outcome pairs, one true 
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relation and one negative control, would be properly rank-ordered with the higher score 

being more likely to be true.  The c statistic ranges from 0 to 1, with 1 indicating perfect 

prediction and 0.5 a random prediction.   Partial area under the ROC curve at 10% false 

positive (PAUC10) is used to focus on the highest scores and eliminate the range of the ROC 

curve with unacceptably low specificity.  The value of PAUC10 ranges from 0 to 0.10, with 

random prediction scoring 0.005.  Heterogeneity across sources was measured using the I2 

statistic, classified as low (I2<25%), medium, or high (I2>75%) heterogeniety12. 

 

Results 

 
Table 13 provides a comparison of the source populations and data availability from 

across the data network used for this study.  All databases include a higher proportion of 

females, with MSLR having the largest difference and CCAE having more balance.  The 

databases had substantial variability in age distributions, with MDCD a greater number of 

younger persons and MDCR predominantly elderly.  MDCD had the highest turnover rate, 

and GE had greater variability in the observation duration.  Differences in the numbers of 

drugs, conditions, and procedures reflect the underlying disease severity of the source 

populations as well as the characteristics of the data capture process within each system.  

Within CCAE, there were over 3 million patients with at least one exposure to an ACE 

inhibitor.  Restriction to incident use, defined as first exposure to an ACE inhibitor at least 

180 days after observation period start, yielded over 1 million persons overall.  The total 

sample size varied across the network of databases, but CCAE was the largest database and 

as such had more ACE inhibitor users.  However, compared to the privately-insured 

population (reflected in CCAE), the proportions of ACE inhibitor users in the Medicare and 
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GE populations were markedly higher, likely as a result of the higher burden of illness in the 

elderly population. 

 The operating characteristics of COMPASS across the five data sources and amongst 

the composite meta-analysis estimates are presented in Table 14.  CCAE produced the largest 

number of significant associations amongst the data sources (n=127), 38 of which were 

labeled events and 89 of which were negative controls, yielding both the highest sensitivity 

(0.45) and lowest specificity (0.97).  CCAE had the highest AUC (0.645), and the second-

largest PAUC10 behind GE.  COMPASS identified only 3 significant associations within 

GE, all of which were true labeled events (cough, dysthymia, and shoulder joint pain) for a 

PPV of 1.     All sources except GE had PPVs ranging from 0.30 to 0.36.  MDCD and 

MDCR, despite representing disparate populations, shared 11 true positive findings in 

common and had very similar operating characteristics on all measures. 

Ninety-four outcomes were statistically significant under the fixed-effects meta-

analysis model, identifying two fewer true positives and 31 fewer false positives than CCAE 

alone.   Estimates from the fixed effects model had strong correlations with CCAE estimates, 

since CCAE is the largest database and therefore has a higher weight, since weight is 

proportional to the inverse of the variance of the effect estimate within a database.  As a 

result, operating characteristics between the fixed-effects and CCAE were similar, although 

the fixed-effects model had higher precision and PAUC10.   The random-effects model had 

fewer outcomes reach significance than the fixed-effects model (n=14), with 57% of those 

events being true positives.   The random-effects precision was higher than both the fixed-

effect model and all individual sources, except for GE.  The fixed-effects model had a 
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comparable AUC with CCAE, while the random-effects meta-analysis yielded a less 

predictive model than individual AUC predictions from CCAE, MSLR, MDCR, and MDCD.    

Across the five databases, 168 outcomes were identified as statistically significant in 

at least one source, with 48 of those outcomes being significant in 2 or more sources, 18 

events in 3 or more sources, and 3 events in 4 sources (Table 14).  No events were 

statistically significant in all five databases.  Using significance in multiple sources as a 

criterion, we see that requiring 2 or more sources yields sensitivity of 0.37, specificity of 

0.99, and PPV of 0.48.  Requiring a majority (3 or more) of the sources to show a significant 

finding substantially increases precision to 0.72, as 13 of the 18 identified outcomes were 

true labeled events.   

Two labeled events were identified in all but one database: cough (not MSLR) and 

diarrhea (not GE), but one negative control was consistently identified as a false positive in 

four databases: benign neoplasm of the colon (CCAE, MSLR, MDCD, MDCR).  The 

combination of databases that produced consistent findings differed by outcome; amongst the 

11 labeled events identified by 3 databases, 9 were found within CCAE, MDCD, and MDCR 

(including orthostatic hypertension, nausea, vomiting, insomnia, and arthralgia of the pelvic 

region), but dysthymia was identified in CCAE, MDCR, and GE, and shoulder joint pain was 

significant in CCAE, MDCD, and GE.  Figure 22 provides forest plots for 42 labeled events, 

and highlights how the consistency in estimates across sources varies substantially by 

outcome.   

Within the negative controls, all sources except GE identified false positive events 

that were not replicated in any other source.  CCAE had 65 unique false positives, including 

hammer toe and multiple sclerosis.  MSLR was the only source to falsely identify the two 
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events, hemoglobin SS disease with crisis and mononeuritis of lower limb.  MDCD had 24 

false positives, including Acquired deformity of toe and candidiasis of the esophagus, while 

MDCR identified 15 such unique outcomes, including false positives for primary malignant 

neoplasm of vermillon border of lower lip and acquired spondyloisthesis.  In no cases did 

meta-analysis (fixed or random-effects) produce a statistically significant estimate for a true 

positive or negative control that wasn’t otherwise identified by at least one database 

individually. 

Figure 23 highlights the magnitude of heterogeneity observed across all test cases, 

classified by both their status as a labeled event or negative control and also the statistical 

significance of the fixed-effects composite estimate.  Amongst the 36 significant labeled 

events, 31 (86%) had I2 values > 75%, indicating high heterogeneity.  79% of the 58 

significant false positives were also observed to have I2 values > 75%.  In contrast, 24% of 

the 34 false negatives have high heterogeneity, and 15 of the outcomes have I2 < 25%.  84% 

of the true negatives have low heterogeneity (I2 <=25%), and only 4% of true negatives were 

observed with I2 > 75%.  There is no significant correlation between effect size and I2 within 

each quadrant, though extremely small relative risks observed (RR<0.4) in the true negatives 

were associated with high heterogeneity. 

 

Discussion 

 
We evaluated an active surveillance method across a network of five observational 

databases to assess method performance in its ability to properly classify true drug safety 

issues from negative controls in a range of different data sources.  In all five databases, 

COMPASS produced a moderately predictive model with high specificity > 97%.  The total 
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number of events reaching statistical significance and the sensitivity in identifying labeled 

events varied considerably by data source.  With the exception of the GE data, all data 

sources had precision estimates suggesting that about one in three significant outcomes were 

labeled events.   

The number of associations identified appears to be only marginally related with 

population size, as CCAE is 5 times larger than MDCD and 12 times larger than MDCR, but 

only yielded 2.5 times as many significant outcomes.  This may be explained, in part, by the 

underlying source characteristics as the privately insured population in CCAE may be 

generally healthier, with fewer comorbidities and concomitant medications, and have less 

frequent health service utilization. 

GE showed a notably different performance profile from the other databases; despite 

being the second-largest database in population size, it yielded the fewest significant 

outcomes (n=3) all of which were true positives.  GE had the highest PAUC10 but the lowest 

AUC, in part due to the large number of outcomes for which COMPASS failed to generate 

estimated as a result of absence of observed cases of the drug-outcome co-occurrence.  

Unlike the other four sources, which derive drug exposure from pharmacy dispensing and 

condition occurrence from diagnosis codes on medical claims, GE drug exposure is inferred 

from prescriptions written and medication history and outcomes are identified from problem 

lists, both of which are generally maintained in outpatient centers and under-represent 

inpatient care.  This finding suggests special attention is needed to understand the process 

that results in data capture, as analysis approaches based on assumptions of how claims data 

are captured may not generalize.  
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Composite estimates produced through conventional meta-analysis approaches (both 

fixed-effects and random-effects models) were not more predictive than estimates from 

individual sources, suggesting that pooling data from across sources will not necessarily 

provide greater confidence in assessing drug-outcome relationships.  Meta-analysis has been 

a popular framework for aggregating effect estimates from multiple sources.   In the context 

of randomized clinical trials, where effect estimates are assumed to be unbiased measures of 

the average treatment effect, conventional meta-analytical approaches need only be 

concerned with the variance within each effect estimate and the heterogeneity across 

estimates13.  In contrast, observational analyses may be subject to biases, which may vary by 

data source due to the underlying data capture mechanism, such as accuracy of capture of 

measurable covariates and degree of unmeasured confounding.  As a result, composite 

estimates produced from meta-analysis across a network of observational databases may 

present a false sense of precision, as meta-analytic methods do not address the nature or 

magnitude of bias that exists within each source and can’t overcome the heterogeneity that 

exists across the data network.  This study provides a first empirical evaluation of the 

magnitude of this potential problem and its impact on the predictive value of meta-analyses 

for exploring drug safety effects.   These empirical results seem consistent with general 

guidelines for the use of meta-analysis that have been discussed previously in other contexts 

14-17. 

This study also demonstrates the relative importance of independent replication in 

observational analyses.  Amongst outcomes identified as significant in only one source, 13% 

were labeled events.  The precision increased to 33% when evaluating outcomes identified as 

significant in two sources, and increased substantially to 73% if outcomes were significant in 
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three databases.  These findings suggest that independent replication of a statistically 

significant association in multiple sources can be more informative than a single significant 

finding that is not substantiated in other sources, but observing significance in multiple 

sources does not eliminate the risk of false positive findings and does increase the risk of 

false negatives.  Benign neoplasm of the colon, which was a negative control that showed 

significant associations in four databases, bears particular consideration.  There has been an 

active debate about the potential merits of ACE inhibitors as treatment to prevent colorectal 

cancer, with some studies showing no association18 and others hypothesizing a protective 

effect19.  As a result, increased effects observed in this study could be the result of channeling 

bias and confounding by off-label indication, as patients who are at greater risk of having 

prior diagnosis for colon cancer may be more likely to be exposed to ACE inhibitors.  This 

case study underscores the expected challenges to be faced by an active surveillance system 

and the need to evaluate the information produced from such a system in context with all 

other available evidence as part of a comprehensive safety assessment. 

Another key finding from this study is the magnitude of the observed heterogeneity 

that is observed within effect estimates across the five data sources.  82% of the outcomes 

with a statistically significant composite effect estimate were observed to have high 

heterogeneity, with I2 > 75%.  The results indicate that elevated risks identified within a 

network of databases are more likely to be accompanied by greater risk of variability in 

estimates across the network than drug-outcome pairs without observed relationships.  The 

substantial heterogeneity explains, in part, the differences in performance observed between 

the fixed-effects and random-effects models, as fewer drug-outcome pairs reached 

significance within the random-effects model while the fixed-effects model was heavily 
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weighted toward the largest database, CCAE.  It is important to highlight the heterogeneity 

observed is based on variability between sources, but it can be difficult to determine the 

specific attribute within a source that is causing the inconsistent results.  Further research, 

including the use of meta-regression techniques, may lend insight but may already require a 

larger network of data sources to compare.  One desirable aspect of a network-based 

approach is that the central coordinating center can ensure estimates are received from across 

the network, and minimize the risk of bias due to differential reporting.  Here, we’ve 

demonstrated the examination of forest plots to observe heterogeneity across sources, but 

funnel plots of sample size and variance can also provide a useful tool for examining bias 

across the reported estimates 20, 21. 

Given the observed potential for large heterogeneity and the substantial variability in 

heterogeneity across outcomes, we recommend that active surveillance system results be 

presented with source-specific estimates in conjunction with any composite estimates, as 

typically shown in a forest plot.  Pooling patient-level data across sources or statistical 

adjustment by adding source as a covariate (i.e., a set of indicator variables) in a multivariate 

model are unlikely to fully address the heterogeneity that can be present and may risk biased 

estimates leading to misinterpretation of the drug-outcome relationship.  Guidelines for 

appropriate reporting of meta-analysis of observational studies provide a useful framework 

that could be followed22. 

A key limitation of this current study is the potential for misclassification in the 

definition of ‘positive controls’ and ‘negative controls’.  Ground truth was based on using the 

proxy of events occurring on the product label, but some adverse events may be listed on 

labels due to observations from clinical trials or spontaneous reports but in absence of 
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definitive evidence of a true causal relationship.  Similarly, negative controls were selected 

based on the condition being unrelated to any labeled event, though it is possible that there is 

a previously unknown association that has been uncovered that is instead being classified as a 

‘false positive’ within this study.  Further misclassification can arise due to the mapping of 

the labeled events to specific diagnosis codes that occur in the data, and the lack of 

confirmation of those event definitions through source record verification.  Method 

performance could be improved with greater precision in outcome definitions and reference 

set classification. 

We believe our results provide a useful first step toward characterizing the expected 

performance of active surveillance analysis across a network of disparate observational 

databases in its ability to reliably identify true drug safety issues.  The chief limitation in our 

study is our focus on one drug class, as several factors could influence performance of both 

the method and the data sources across medical products, including prevalence and duration 

of exposure, maturity of the drug class and clinical comfort with the mechanism of action, 

disease complexities in the underlying indicated population, and the potential for differential 

confounding across different safety effects.  Another limitation of this study is the focus on 

one active surveillance method, as other approaches may exist or could be developed.  In that 

regard, these results could serve as a minimum benchmark to foster further methods 

innovation and evaluation.  Similarly, while the five data sources used in this analysis reflect 

the broad diversity of data available, additional data sources under consideration for 

inclusion in a national system should be evaluated.  The sources included in this study 

represent various populations of interest with different demographics and health behaviors 

(privately insured, Medicaid young, Medicare elderly) as well as both primary data capture 
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processes (administrative claims and electronic health records), but the observed variability 

in performance suggest that operating characteristics are unlikely to be generalizable across 

databases and that each new data source needs to be assessed independently prior to inclusion 

in an active surveillance network.  Further retrospective studies of an array of drugs using a 

portfolio of alternative methods against a broader network of potential data sources would 

improve the applicability of the findings to support our use of the active surveillance system 

prospectively. 
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Tables and Figures  

Table 13: Data source characteristics 
CCAE MSLR MDCD MDCR GE

Population (N) N=59,836,290 N=1,466,617 N=11,188,360 N=4,655,736 N=11,216,208

Gender
Male: N (%) 29,173,105 (48.75) 515,174 (35.13) 4,665,014 (41.70) 2,071,968 (44.50) 4,751,444 (42.36)

Female: N (%) 30,663,185 (51.25) 951,443 (64.87) 6,523,346 (58.30) 2,583,768 (55.50) 6,460,828 (57.60)

Age (yrs)
Mean (SD) 32.4 (18.1) 39.1 (17.5) 23.4 (22.7) 74.5 (8.0) 40.6 (22.0)

Observation period length (mo)
Mean (SD) 21.2 (18.6) 18.7 (11.1) 14.2 (13.8) 31.9 (22.9) 24.0 (31.3)

Number of drug exposure records per person
Median (25-75 %tile) 9 (3-28) 14 (5-35) 14 (5-38) 60 (20-134) 8 (3-22)

Number of condition occurrence records per person
Median (25-75 %tile) 15 (5-39) 27 (12-56) 24 (9-63) 57 (20-129) 5 (2-10)

Number of procedure occurrence records per person
Median (25-75 %tile) 20 (7-52) 39 (19-77) 31 (12-70) 72 (26-154) 10 (3-24)

Any ACE Inhibitor exposure

Prevalent users:  N (%) 3,052,264 (5.10) 108,869 (7.42) 614,703 (5.49) 1,569,765 (33.72) 1,361,058 (12.13)

Incident users:  N (%) 1,137,211 (1.90) 32,532 (2.22) 188,224 (1.68) 483,853 (10.39) 529,767 (4.72)  
CCAE: Thomson Reuters MarketScan Commercial Claims and Encounters 
MSLR:  Thomson Reuters MarketScan Lab Supplemental 
MDCD:  MarketScan Multi-state Medicaid database 
MDCR:  MarketScan Medicare Supplemental and Coordination of Benefits Database 
GE:  GE Centricity 
Incident users, defined as first exposure >180 days from observation period start 
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Table 14: Operating characteristics of COMPASS across data sources and within composite summaries 

Source 

Total 

signals 

True 

positives 

False 

Positives Sensitivity Specificity PPV AUC PAUC10 

CCAE 127 38 89 0.45 0.97 0.30 0.645 0.022 

MSLR 9 3 6 0.04 1.00 0.33 0.598 0.014 

MDCR 47 17 30 0.20 0.99 0.36 0.613 0.011 

MDCD 51 16 35 0.19 0.99 0.31 0.608 0.012 

GE 3 3 0 0.04 1.00 1.00 0.537 0.033 

                  

Meta-analysis composite estimates             

Fixed effects 94 36 58 0.43 0.98 0.38 0.644 0.032 

Random 

effects 14 8 6 0.10 1.00 0.57 0.557 0.017 

                  

Threshold based on number of sources meeting significance         

1+ 168 39 129 0.46 0.95 0.23       
2+ 48 23 25 0.27 0.99 0.48       
3+ 18 13 5 0.15 1.00 0.72       
4+ 3 2 1 0.02 1.00 0.67       

 
CCAE: Thomson Reuters MarketScan Commercial Claims and Encounters 
MSLR:  Thomson Reuters MarketScan Lab Supplemental 
MDCD:  MarketScan Multi-state Medicaid database 
MDCR:  MarketScan Medicare Supplemental and Coordination of Benefits Database 
GE:  GE Centricity 
‘Signal’- an outcome with a statistically significant association (p<0.05) 
PPV: Positive predictive value 
AUC: Area under receiver operating characteristic curve 
PAUC10: Partial area under receiver operating characteristic curve, at 10% false positive rate 
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Figure 22:  Forest plots of effect estimates for 42 ACE inhibitor labeled events 
Only positive relationships (RR>1) are highlighted for purposes of identification of risks. 
Outcomes without estimates for specific databases are due to small case counts.
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Figure 23: Heterogeneity across drug-outcome pair
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CHAPTER SIX: MANUSCRIPT 3: 
“Comparative safety of ACE inhibitors: Evaluating an active surveillance framework”  

 
 
 

Abstract 

Background:  Angiotensin-converting enzyme (ACE) inhibitors have proven effective 

treatments for hypertension.  Product labeling indirectly suggests differences in adverse event 

profiles among ACE inhibitors, but little evidence exists about the comparative safety profile 

in real-world settings.   

Objectives: To estimate and compare the risk of 23 adverse events among seven products 

within the ACE inhibitor class (lisinopril, benazepril, enalapril, ramipril, quinapril, captopril, 

and moexipril) by applying an active surveillance method against a large administrative 

claims database.   

Results: Most risks were comparable across the ACE inhibitor class, though differential 

increased effects for ramipril (low blood pressure, RR=1.60 [95% CI 1.54-1.67]) and 

enalapril (orthostatic hypotension, RR=2.12 [95% CI 1.85-2.42]) were identified. 

Conclusions:  The safety profiles of products within the ACE inhibitor class are largely 

consistent, with differences in product labeling not observed in real-world study.  Systematic 

use of observational databases for comparative safety assessment provides important, real-

world evidence for decision-making.   

Key words:  Active surveillance; ACE inhibitors; Drug safety
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Introduction 

Angiotensin-converting enzyme (ACE) inhibitors, along with diuretics, angiotensin II 

receptor blockers (ARBs), calcium channel blockers, and beta-blockers, offer providers and 

patients many options for pharmacologic treatment of hypertension.  ACE inhibitors have 

been found to be effective in the control of blood pressure, reducing the risk of acute 

myocardial infarction among patients with heart failure, and decreasing progression of 

kidney damage among diabetic and hypertensive patients1.  ACE inhibitors are generally 

well-tolerated, though are known to have potential side effects, such as cough, hyperkalemia, 

and hypotension, and in rare occasions, angioedema and renal dysfunction2-7.  While there 

have been many placebo-controlled randomized trials and some head-to-head experiments 

synthesized in meta-analyses, little evidence to date has distinguished the efficacy or safety 

profile between the products within the class1, 8-10.  Some observational studies have explored 

specific potential risks, such as congenital malformations11, cancer12, 13, and angioedema14, 

but there have been no pharmacoepidemiologic studies examining the full comparative safety 

profile of ACE inhibitors. 

There has been increasing interest in expanding the secondary use of large linked 

healthcare databases, such as administrative claims and electronic health records, towards the 

development of systems for active drug safety surveillance and comparative effectiveness 

research15-18.  Such systems could apply standardized processes to identify and evaluate real-

world effects of medicines, and to explore differentiated outcomes among alternative 

treatments.  Several methodological issues exist to ensure the appropriate use of 

observational data for comparative studies19-21, but few studies have been conducted that 

evaluate the performance of observational analyses toward this aim.   
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This study explores the comparative safety of seven products within the ACE 

inhibitor class (lisinopril, benazepril, enalapril, ramipril, quinapril, captopril, and moexipril) 

by applying an active surveillance method against a large administrative claims database.  

The aim of the study is to assess the incidence of side effects listed on the product labels, and 

to evaluate the potential utility of a standardized process for evidence generation. 

 

Methods 

Data Source 

The study population used for this evaluation came from the Thomson Reuters 

MarketScan Commercial Claims and Encounters (CCAE), a large administrative claims 

database containing 59 million privately insured lives.  CCAE provides patient-level de-

identified data from inpatient and outpatient visits and pharmacy claims of multiple large 

employer-based health plans from 2003 to 2008.  CCAE contains 3,052,264 persons with at 

least one prescription dispensing record for an ACE inhibitor, though the sample size 

available for each active ingredient varies by usage.  The CCAE database was transformed 

into the Observational Medical Outcomes Partnership (OMOP) common data model22, with 

all International Classification of Diseases, Ninth Revision (ICD-9) diagnosis codes 

translated into a standardized terminology using Systematized Nomenclature of Medicine-

Clinical Terms (SNOMED CT) condition concepts. 

 

Product label review 

Candidate outcomes were identified through natural language processing of all 

structured product labels within the class23, and subsequently refined though manual review 
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of product labels for each drug in the class2-7.  A set of 23 outcomes were selected for 

exploration based on the adverse event being listed in the product label and the event being 

observable in claims data through ICD-9 diagnosis codes mapped in the OMOP standardized 

terminology24.   

 

Statistical Analysis 

COMParator-Adjusted Safety Surveillance (COMPASS) is a statistical algorithm that 

estimates adjusted rate ratios for all outcomes of interest for a given medical product through 

propensity score stratification across exposed and unexposed cohorts within an incident user 

design.  COMPASS applies an automated heuristic for defining a comparator group based on 

the indication of the medical product, and provides multivariate adjustment focused on 

minimizing bias from four primary sources: personal demographics (such as age and gender), 

confounding by indication, effects of comorbidity, and health service utilization.   

COMPASS leverages large biomedical ontologies, or networks of clinical concepts 

such as relationships between diseases and treatments, to automate comparator selection by 

identifying all drugs that share at least one FDA-approved indication but have different 

mechanisms of action than the target drug of interest.  For this study, the heuristic matched 

each product in the ACE inhibitor class to alternative treatments for the same indications 

(indications listed in Table 15).  Comparator products that were included for all ACE 

inhibitors were: Angiotensin II receptor blockers, beta-blockers, calcium channel blockers, 

and diuretics.   Ramipril’s comparator group included statins and nitroglycerin.  Captopril’s 

comparator group also included nitroglycerin.  Benazepril and enalapril were the only drugs 

to not include class IV antiarhythmics (diltiazem, verapamil) and amlodipine and felodipine 
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(due to combination use).  Digoxin was included in comparator groups for all drugs but 

benazepril and moexipril.  Lisinopril and ramipril comparator groups included aspirin, 

clopidoprel, alteplase, and phenprocoumon.   

COMPASS imposes automated study design heuristics, including cohort exclusion 

criteria based on contraindications and covariate selection based on FDA-approved 

indications and off-label uses.  Persons included in this study were required to have a 

diagnosis code for at least one approved indication (in Table 1) any time prior to the index 

exposure, and were excluded if they had a diagnosis of a listed contraindication (such as 

pregnancy, liver disease, and renal artery stenosis, or prior angioedema,  neutropenia, and 

hyperkalemia) within 30 days of exposure.  Off-label uses, such as diastolic heart failure, 

prevention of recurrent atrial fibrillation, and renal crisis scleroderma, were used as 

covariates in the propensity score model.  The number of prior medications dispensed for the 

indication was also used as a covariate to adjust for past treatment attempts.   The Romano 

version of the Charlson comorbidity index and its constituent diseases25, 26, as well as total 

conditions were used to adjust for disease burden27.  Covariates for total prescriptions 

dispensed, total procedures, and total inpatient and outpatient visits 30 days prior to exposure 

were used as proxies to balance on health service utilization.  Additional covariates included 

patient demographics (age at exposure and gender) and proxies for lifestyle risk factors: 

smoking, obesity, alcohol and drug abuse.  The propensity score was estimated within each 

calendar year using multivariate logistic regression using all covariates described above to 

estimate probability of exposure classification, and the cohorts were stratified into 20 

quantiles based on the propensity score distribution.  Cohort balance pre- and post-

adjustment was assessed using a heatmap visualization across all covariates and each 
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products.  Outcomes were identified as incident condition occurrences, based on date of 

recorded diagnosis codes, within 30 days from the date of first exposure for focus on acute 

onset events with close proximity to exposure.  Outcome counts were tabulated within each 

propensity score strata, and adjusted relative risks were estimated through inverse variance 

weighting of the strata-specific effects.  COMPASS was developed using SAS version 9.2 

(Cary, NC).   

COMPASS has previously been shown to have better performance than other viable 

active surveillance methods in identifying true drug safety issues and discerning from false 

positive findings when exploring ACE inhibitor class effects28.  COMPASS has been studied 

across a network of five disparate databases, and CCAE was shown to have the highest 

sensitivity and best predictive model amongst the available sources29. 

Event counts and unadjusted incidence estimates were generated for each ACE 

inhibitor product and its corresponding active comparator group.  Adjusted relative risks and 

95% confidence intervals (CI) were calculated from COMPASS for each outcome.   

 

Results 

Table 15 shows the number of persons that were eligible for inclusion in the exposed 

and comparator cohorts within the inception cohort design.  Lisinopril had the largest cohort 

size (n=339,556) while both captopril and moexipril had fewer than 10,000 persons meeting 

the study criteria.  Each drug had a large sample used to define the comparator cohort, with at 

least 696,353 exposed to alternative treatment.  The comparator cohort sizes vary due to 

differences in the FDA-approved indications for each treatment (highlighted in Table 15), as 

well as differing contraindications used as restriction criteria. 
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Each ingredient has notable differences in baseline characteristics among the exposed 

populations.  Persons with incident ramipril exposure are older and more heavily weighted 

toward males than other products.  Both ramipril and captopril cohorts have higher average 

disease severity, as measured by Charlson index, and higher health service utilization, in 

terms of total concomitant medications, procedures administered, and inpatient and 

outpatient visits prior to incident exposure.  Ramipril and captopril patients, on average, had 

exposure to 2.3 prior medications for the respective indications, while patients with incident 

exposure to other ACE inhibitors had at least prior exposure to an alternative indicated 

treatment (1.35-1.87). 

Figure 24 depicts the number of patients in the exposed and comparator cohorts 

within propensity score strata.  For all products, there is substantial sample in the comparator 

group throughout all 20 strata; the 20th highest strata within lisinopril analysis offers the 

smallest sample (n=6906).  However, there are substantial differences in the distribution of 

exposed persons across the propensity strata across products, indicating differential 

discrimination in the propensity score model.    In the ramipril cohort, 65% of the exposures 

(n=32,771) fell within the top 5% of propensity scores.  Captopril and moexipril have strata 

with fewer than 100 patients, while ramipril, quinapril, and enalapril have fewer than 1000 

exposed in the lowest 5% propensity score strata. 

Figure 25 depicts a heatmap that highlights the impact of propensity score adjustment 

on baseline characteristics, including patient demographics, health service utilization, 

comorbidities, lifestyle risk factors, and indication prevalence.  Each column in the graph 

represents a covariate, and the color gradient within the column reflects the range of 

observed values across all cohorts (darker colors indicate higher mean values).  Within each 
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product, trellised in rows with ingredient name on the right, there are summary measures 

displayed for the exposed (1) and comparator (0) cohorts pre- and post-adjustment.  Color 

differences between pre-0 and pre-1 rows reflect cohort imbalances in the mean of that 

attribute; for example, benazepril cohort had a higher proportion of males and greater number 

of prior indication medications than its comparator cohort (columns 2 and 3, rows 3 and 4).  

Balance after propensity score stratification can be observed by assessing post-1 and post-0 

rows; the benazepril cohort was well-balanced with its comparator cohort on gender (column 

2, rows 1 and 2) and indication medications column 3, rows 1 and 2), as evidenced by similar 

color.  Ramipril and captopril exposed cohorts had the highest rates of comorbidities and risk 

factors (obesity, smoking, and alcohol abuse).  In contrast, the moexipril cohort had the 

lowest rates of health service utilization and comorbidities, but the highest prevalence of 

prior hypertension diagnosis.  For all products, imbalance between exposed and comparator 

groups was observed on multiple baseline characteristics, but the magnitude and 

directionality of those imbalances vary widely by product.  Propensity score stratification 

achieves greater covariate balance for all products, but some residual imbalance is observed.  

For captopril, after adjustment the exposed group has higher prevalence of mild to moderate 

diabetes (0.17 vs. 0.11) and diabetic nephropathy (0.10 vs. 0.06), but lower prevalence of 

chronic pulmonary disorder (0.14 vs. 0.17) than the comparator cohort.  For ramipril, the 

exposed cohort had 57% male vs. 51% in the comparator group, and higher prevalence of 

renal crisis scleroderma (0.46 vs. 0.38), but fewer incident exposures occurred within an 

inpatient visit (0.02 vs. 0.05). 

Review of the product labels identified similarities and differences across the ACE 

inhibitors.  Angioedema, hypotension, and leukopenia are listed in the warnings section of 
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each label, while cough, hyperkalemia, and impaired renal function are cited as possible 

adverse events within the precautions section.  Additional events consistently listed in the 

Adverse Reactions section of the product labels include: hemolytic anemia, constipation, 

diarrhea, dyspnea, end stage renal disease, abdominal pain, nausea, oliguria, palpitations, 

pruritis, and vomiting.  Bronchospasm is not listed on the product labels for benazepril, 

quinapril, and ramipril.  Asthma not listed for ramipril.  Flushing is listed for all products, 

except quinapril and ramipril.  Low back pain is not listed for captopril and ramipril.  

Tinnitus is on labels for all but captopril and quinapril.  Table 16 shows the number of events 

and prevalence of these outcomes across the seven products.  The active comparator for 

benazepril is provided as a benchmark, as it reflects the smallest comparator with the 

common indication across all products.  Acquired hemolytic anemia, bronchospasm, edema 

of larynx, end stage renal disease, flushing, impaired renal function disorder, leucopenia, 

oliguria and anuria were observed to occur in fewer than 10 patients for all products, except 

lisinopril.  Cough, dyspnea, low back pain and palpitations were the four most prevalent 

conditions across the cohorts.  The unadjusted incidence of asthma amongst products with 

the event listed on the product label ranged from 0.60 to 3.00 per 1000 persons; ramipril (the 

only member of the class with asthma not listed on the label) had 98 cases for incidence of 

1.94 / 1000 persons.  Ramipril also did not have low back pain listed on the product label, but 

the unadjusted incidence of 4.53 was similar to those observed for all products with the 

labeled events.  Two products, captopril and quinapril, that did not list tinnitus as an adverse 

event on the labels, had 3 and 4 cases, respectively. 

Figure 26 shows the adjusted relative risks, estimated by COMPASS, for all products 

across 12 of the labeled events.  Two relative risks were observed with lower bounds of 95% 
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confidence intervals > 1.5; low blood pressure for ramipril ( RR=1.60; 1.54-1.67) and 

orthostatic hypotension for enalapril (RR=2.12; 1.85-2.43).   Ramipril was the only product 

with statistically significant risks for asthma, dyspnea, hyperkalemia, and nausea.  Moexipril 

use was associated with significant lower risk of cough than comparator (RR=0.55; 0.49-

0.60).  Low back pain for captopril appears lower than alternative treatments (RR=0.65; 

0.56-0.75), while other ACE inhibitors show consistent relative risks with comparators. All 

other observed effects were small in magnitude and with concordance in direction among 

two or more products. 

 

Discussion 

This is the first study to examine the full portfolio of potential side effects of ACE 

inhibitors in observational data through an active surveillance framework.  The observational 

analysis of real-world population complements the existing evidence from clinical trials, and 

provides a first side-by-side comparison of risks of individual ACE inhibitors relative to 

alternative treatment.  The analysis is derived from a large privately insured population, with 

over 535,000 new users of ACE inhibitors over a 5-year period.   

The analysis suggests that the seven ACE inhibitors under study have largely 

comparable safety profiles, in terms of incidence rates of 23 events suggested from product 

labeling.  All but four events (asthma, cough, dyspnea, and palpitations) had unadjusted rates 

amongst ACE inhibitors that varied by less than 2 events per 1000 persons, and only dyspnea 

was observed within an ACE inhibitor (captopril) to have an incremental risk greater than 1 

per 1000 persons relative to the active comparator.  However, the analysis also generated a 

few hypotheses of differential effects that may warrant further study.  Unlike the other drugs 
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in the class, users of ramipril had a significantly higher incidence of low blood pressure than 

alternative treatments.  Persons initiating enalapril had a two-fold increase in the risk of 

orthostatic hypotension.  Captopril users were observed to have a lower incidence rate of low 

back pain than its comparator, whereas other ACE inhibitors had consistently similar rates to 

alternative treatments.  Cough has been demonstrated in clinical trials to be one of the most 

prevalent adverse events for all ACE inhibitors.  None of the ACE inhibitors were associated 

with clinically significant increased risks, and moexipril use was associated with significantly 

fewer cough events than its comparator. 

Prior studies have suggested that the adverse event rate of ACE inhibitor-induced 

cough is far higher than those reported from clinical trials and in product labels30-32.  Part of 

the difference between observational analyses can be attributed not only to the different 

source populations but also due to study design, as Visser et al.30 conducted a case-control 

design to explore medication-related effects among cases of cough vs. matched controls, 

whereas COMPASS studied the relative effects of ACE inhibitors relative to other 

antihypertensives.  Both studies may be susceptible to residual channeling bias, since 

providers are generally aware of the known side effect and may accordingly alter treatment 

decisions for those at risk33.  Note also neither study performed source record verification to 

confirm the cough diagnoses.  

A noteworthy finding from this study is the relative concordance of safety profiles of ACE 

inhibitors in light of observed differences in product labeling.  The ramipril labeling does not 

report asthma, bronchospasm, flushing, or low back pain as adverse events on its US product 

label, but the observed rates within ramipril users appear consistent with other products in the 

class.  Similarly, quinapril labeling does not include bronchospasm, flushing, or tinnitus, but 
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no differences between quinapril and other ACE inhibitors were observed in this study.  Only 

in one instance was the discrepancy between the labels consistent with differences observed 

in this study; the omission of low back pain on the captopril labeling is supported by the 

statistically significant decreased risk that was not observed with any other product.  Perhaps 

most notable is that majority of the labeled events were not observed to occur at significantly 

different rates than alternative treatments. 

Discrepancies between product labeling and real-world observation aren’t necessarily 

unexpected.  Product labels offer one important tool for product manufacturers and regulators 

to communicate with providers and patients about the potential effects of medicines.  Serious 

side effects are often highlighted in boxed warnings, or described in the Warnings and 

Precautions sections of labels, while other adverse events are listed in the Adverse Reaction 

section34.  The evidence used to support product labeling is generally based on randomized 

clinical trials, often using placebo as a comparator, prior to approval, although post-approval 

spontaneous adverse event reports may also be documented.  Randomized trials are often 

limited by lack of generalizability and restricted sample sizes, such that the observed 

frequency of event occurrence can be small and reported differences between treatment arms 

may be statistically insignificant.  Spontaneous adverse event reporting reflects case series of 

self-reported suspicions of drug-event relationships, but can suffer from substantial bias in 

underreporting and are limited in interpretation due to lack of denominator for 

contextualizing the rate of events relative to other drugs35, 36.  In neither case is the intention 

to provide a relative assessment of comparative safety, but instead to provide an absolute 

reporting of adverse events that have been observed.  FDA guidance suggest that labels 

should only include adverse event evidence that would be “useful to health care practitioners 
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making treatment decisions”37, based on frequency of occurrence or rates of discontinuation 

or suspicion of a causal effect.  While product labels offer evidence of the occurrence of 

adverse events during the product lifecycle, they do not communicate the level of confidence 

in a causal attribution of the effect nor are they intended to communicate comparative 

differences between alternative treatments for the same indication. 

Observational data offer the potential for providing more precise measures of risk 

using large samples, but observational analyses are susceptible to bias and confounding.  

Pharmacoepidemiologic evaluation studies are increasingly becoming an important source of 

post-approval evidence, but typically focus on pre-specified hypotheses of risk and are often 

not conducted in a consistent and reproducible fashion.  Observational database networks for 

active surveillance and comparative effectiveness can enable a systematic process for 

evidence generation that can provide ongoing assessment of the both the beneficial and 

negative effects of medicines, relative to alternative treatments, in real-world populations.  

However, as these efforts continue their development, it raises the need for a central evidence 

source that comprise all existing information, from pre-clinical studies, clinical trials, 

spontaneous reporting, and observational data, that can be used to support safety and 

effectiveness assessments and inform medical decision making about alternative treatments.  

Currently, evidence like that produced in this study, does not have a logical home beyond the 

peer-review literature. 

It is important to reinforce that COMPASS is intended as a hypothesis generating 

tool, used within an active surveillance system as a standardized process to enable proactive 

monitoring of medical products to identify and refine hypotheses about potential drug effects.  

While COMPASS applies many of the analytical and design choices typically considered 
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within a pharmacoepidemiologic study20, 38-40, the results should be considered exploratory in 

nature and interpreted with caution accordingly.  In particular, researchers should consider 

additional sources of confounding that may have been inadequately addressed in the 

COMPASS model.  For example, while COMPASS uses covariates of lifestyle risk factors, 

such as smoking, obesity, tobacco and alcohol use, these variables are known to be poorly 

represented in administrative claims data and are not an accurate reflection of these 

characteristics in the population41.  There may also be a need to examine the validity of the 

outcomes, which are initially defined only by diagnosis codes without source record 

verification.  The analysis should be embedded within a broader sensitivity analysis 

framework whereby alternative decisions for issues like time-at-risk definition, covariate 

selection, and adjustment strategy can be systematically evaluated.  Each potential 

association uncovered in this exploratory phase of active surveillance requires further 

evaluation as part of a causal assessment.  Other evidence to raise confidence in the potential 

effect beyond the temporal association that is observed in these observational databases is the 

biological plausibility of the relationship based on clinical pharmacology and additional 

evidence of a dose-response relationship. 

Here, COMPASS has been used to evaluate the comparative safety of products within 

a specific class through indirect comparisons.  These indirect comparisons complicate the 

interpretation of results, but are necessary because each product has different indications and 

contraindications that should be accounted for in the construction of a proper referent group 

with similar baseline characteristics.  Each product was evaluated against a proxy for 

standard of care by comparing effects patients exposed to the product with patients exposed 

to alternative treatments for the same indications as the target drug.  In the case of ACE 
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inhibitors, all products share a common FDA-approved indication for hypertension, but some 

products have approved indications for other conditions, such as chronic heart failure, 

prevention of myocardial infarction and stroke, and diabetic nephropathy.  The impact of 

adjustment via propensity score is different across products since the underlying populations 

reflect different patient demographics, health service utilization patterns, comorbidities and 

other risk factors.  The observed differences underscore the importance of a thorough 

examination of comparator populations prior to assessment of outcome differences39.  In this 

instance, the substantial heterogeneity in baseline characteristics between products in the 

ACE inhibitor class would have been obscured had the drugs not been analyzed separately.  

Further methodological research is needed to establish best practices for integrating and 

evaluating evidence through indirect comparisons within therapeutic classes and across 

observational databases.  Alternative analytical approaches should also be evaluated and 

compared with COMPASS.  This may include strategies to enable direct comparisons across 

the ACE inhibitor products, with further adjustment to address the different indicated 

populations and concerns for channeling bias.   

This study serves as a proof-of-concept to demonstrate the opportunities and 

challenges awaiting the development of a national active surveillance system.  While the 

safety profile of ACE inhibitors is generally thought to be well-established, COMPASS 

provided corroborating evidence about the magnitude of risk that is consistent across the 

drug class, highlighted substantial differences in treatment patterns among the products, and 

identified hypotheses about potential differential effects that may warrant further evaluation.  

It bears mentioning that there is currently little incentive for comprehensive research on 

mature products that are off-patent, such as ACE inhibitors.  However, given their 
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widespread use and cost-effectiveness, it could be argued that relative assessments of mature 

products could provide the most impactful evidence to improve patient health while reducing 

overall healthcare costs.  Further work will be needed to establish the operating 

characteristics of COMPASS and other potential active surveillance methods across a 

broader array of medical products to understand the reliability of the evidence the system can 

provide.  Once established, it could be anticipated such as system could directly support the 

assessment of newly marketed medicines with emerging safety concerns.  More broadly, the 

availability of comparative evidence of medical therapies should support all stakeholders in 

the healthcare community, including product manufacturers, regulators, payors, healthcare 

systems, and clinicians, in maximizing the care provided to patients. 
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Tables and Figures 

 
Table 15: Cohorts, baseline characteristics, indications 

Lisinopril Benazepril Enalapril Ramipril Quinapril Captopril Moexipril

Incident users of drug 339,556       96,325          27,750          50,560              12,900          3,330            5,024            

Comparator cohort 699,946       696,353       703,574       1,126,697        778,472       828,155       794,778       

Age (mean) 50.75 50.77 50.30 53.36 51.18 51.75 50.27

Gender (% males) 0.53 0.55 0.52 0.58 0.53 0.48 0.46

Charlson index (mean) 0.76 0.68 0.86 1.36 0.79 1.25 0.56

Indication medication count 1.55 1.87 1.60 2.38 1.71 2.35 1.35

Total medication count 0.75 0.78 0.77 1.09 0.78 0.93 0.76

Total procedure count 1.67 1.57 1.57 4.28 1.52 2.58 1.50

Total outpatient visits 1.17 1.26 1.16 2.00 1.19 1.36 1.28

Total inpatient visits 0.09 0.06 0.12 0.29 0.08 0.28 0.05

Asymptomatic Left Ventricular Dysfunction x

Chronic Heart Failure x x x x x

Diabetic Nephropathy x

Hypertension x x x x x x x

Left Ventricular Dysfunction following Myocardial Infarction x x

Myocardial Infarction x

Myocardial Infarction Prevention x

Prevention of Cerebrovascular Accident x

FDA-approved indications

Baseline characteristics
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Figure 24: Population size by propensity score strata
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Figure 25: Impact of propensity score adjustment on measured covariates 
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Table 16: Event rates by ingredient 

ACE Inhibitor Labeled Events 

(exceptions bold in grey) Events

Events/ 

1000 

persons Events

Events/ 

1000 

persons Events

Events/ 

1000 

persons Events

Events/ 

1000 

persons Events

Events/ 

1000 

persons Events

Events/ 

1000 

persons Events

Events/ 

1000 

persons Events

Events/ 

1000 

persons

Acquired hemolytic anemia 4 0.01 1 0.01 0 0.00 0 0.00 4 0.01 0 0.00 0 0.00 1 0.02

Asthma 1534 2.20 143 1.48 10 3.00 57 2.05 593 1.75 3 0.60 24 1.86 98 1.94

Bronchospasm 84 0.12 3 0.03 0 0.00 2 0.07 40 0.12 1 0.20 2 0.16 2 0.04

Constipation 970 1.39 120 1.25 4 1.20 47 1.69 404 1.19 8 1.59 15 1.16 64 1.27

Cough 3713 5.33 486 5.05 21 6.31 168 6.05 1892 5.57 19 3.78 67 5.19 275 5.44

Diarrhea 1390 2.00 137 1.42 10 3.00 51 1.84 682 2.01 8 1.59 16 1.24 101 2.00

Dyspnea 6184 8.88 460 4.78 33 9.91 181 6.52 2003 5.90 16 3.18 69 5.35 475 9.39

Edema of larynx 19 0.03 1 0.01 0 0.00 0 0.00 14 0.04 1 0.20 0 0.00 2 0.04

End stage renal disease 89 0.13 5 0.05 0 0.00 3 0.11 33 0.10 0 0.00 1 0.08 4 0.08

Flushing 99 0.14 9 0.09 0 0.00 1 0.04 22 0.06 0 0.00 3 0.23 3 0.06

Generalized abdominal pain 1370 1.97 137 1.42 6 1.80 59 2.13 598 1.76 7 1.39 24 1.86 100 1.98

Hyperkalemia 492 0.71 44 0.46 5 1.50 19 0.68 208 0.61 1 0.20 6 0.47 49 0.97

Impaired renal function disorder 49 0.07 7 0.07 1 0.30 2 0.07 31 0.09 0 0.00 1 0.08 5 0.10

Leukopenia 40 0.06 3 0.03 1 0.30 1 0.04 19 0.06 0 0.00 1 0.08 2 0.04

Low back pain 3226 4.63 425 4.41 13 3.90 128 4.61 1578 4.65 22 4.38 57 4.42 229 4.53

Low blood pressure 623 0.89 36 0.37 3 0.90 18 0.65 282 0.83 4 0.80 8 0.62 65 1.29

Nausea 942 1.35 86 0.89 6 1.80 30 1.08 397 1.17 7 1.39 8 0.62 65 1.29

Oliguria and anuria 18 0.03 1 0.01 0 0.00 0 0.00 12 0.04 0 0.00 1 0.08 0 0.00

Orthostatic hypotension 205 0.29 17 0.18 1 0.30 16 0.58 109 0.32 1 0.20 3 0.23 17 0.34

Palpitations 4625 6.64 251 2.61 12 3.60 82 2.95 1155 3.40 9 1.79 49 3.80 248 4.91

Pruritus of skin 181 0.26 22 0.23 2 0.60 8 0.29 83 0.24 1 0.20 4 0.31 13 0.26

Tinnitus 326 0.47 44 0.46 3 0.90 14 0.50 139 0.41 0 0.00 4 0.31 19 0.38

Vomiting 473 0.68 52 0.54 5 1.50 22 0.79 241 0.71 4 0.80 5 0.39 27 0.53

RamiprilQuinaprilBenazepril Captopril Enalapril Lisinopril Moexipril

Unexposed 

comparator
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CHAPTER SEVEN: CONCLUSION AND DISCUSSION  

 

7.1. Motivation for study 

In the recent past, three remarkable forces have come together that have substantially 

raised the importance of  ‘real-world’ data in understanding key outcomes of health care: 

advances in health IT, regulatory imperatives, and public / political activism in assuring the 

safety of medications.   

The secondary use of automated healthcare databases, such as administrative claims 

and electronic health records, has been a cornerstone in pharmacoepidemiology, health 

outcomes and services research for many years.  Researchers with access to these data 

sources have designed observational studies to examine a safety issue reported to be 

associated with a medical product, to compare alternative therapies for a given disease, and 

to assess the impact of new interventions within the healthcare delivery system on health 

service utilization and quality of care.   While it has long been recognized that observational 

studies can suffer from various biases not present in an experimental setting, observational 

analyses remain a particularly valuable component of the evidence generation process for 

healthcare.  In settings where prospective randomized trials are infeasible or unethical, such 

as the study of rare safety events with a latent onset following intervention, observational 

results may be the best evidence available to inform medical decision-making. 
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Recent advances in health information technology have increased capture of 

observational healthcare data and raised interest in coordinating large-scale efforts to 

leverage these data to better understand the effects of medical treatments.  A recent report 

from the President's Council of Advisors on Science and Technology highlights the 

opportunities for how “improved health IT can directly affect, and improve, clinical 

encounters between doctor and patient, healthcare organizations, clinical research, and the 

monitoring of public health.242”   

In the US, several national efforts offer the promise to significantly expand the use of 

observational data for evidence development.  In 2007, Congress passed the Food and Drug 

Administration (FDA) Amendment Act, which called for the establishment of an “active 

postmarket risk identification and analysis system” with access to data from 100 million lives 

by 201211.  It is envisioned that an active surveillance system would “use sophisticated 

statistical methods to actively search for patterns in prescription, outpatient, and inpatient 

data systems that might suggest the occurrence of an adverse event, or safety signal, related 

to drug therapy”243. 

This reflects a significant evolution in the use of these data from the customized 

design of an individual study of a particular drug-outcome association applied to specific 

database at single point in time to the development of a systematic solution to a broader 

effort that effectively uses these data for active monitoring of any medical product and any 

health outcome of interest across a network of disparate databases.  The envisioned system 

would go beyond the retrospective evaluation of hypothesized effects to proactively explore 

the data to generate and refine hypotheses of potential issues that warrant further scrutiny.   
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In January 2011, as part of its Sentinel Initiative, FDA announced it had the “capacity 

to ‘query’ the electronic health information of more than 60 million people, posing specific 

questions in order to monitor the safety of approved medical products”244.  This initial focus 

on traditional pharmacoepidemiology evaluation studies of ‘specific questions’ supports the 

notion held by some that further research is needed to establish appropriate methods and gain 

understanding of operating characteristics prior to the system’s more widespread use.  

Consistent with the trends in networks of data sources and the investigation of new methods, 

The Observational Medical Outcomes Partnership (OMOP),  a public-private partnership 

chaired by the FDA and managed through the Foundation for the National Institutes of 

Health, is conducting methodological research to inform these national efforts by empirically 

measuring the performance of an array of alternative analysis methods across a network of 10 

databases covering over 200 million patient lives245.  Similar efforts are underway in Europe  

to assess performance of active surveillance methods across international data sources, 

including IMI-PROTECT246 and EU-ADR247.   

Within the American Recovery and Reinvestment Act of 2009, $1.1 billion was 

committed to comparative effectiveness research (CER).  The Federal Coordinating Council 

for Comparative Effectiveness Research defines CER as “the conduct and synthesis of 

research comparing the benefits and harms of different interventions and strategies to 

prevent, diagnose, treat and monitor health conditions in “real world” settings. The purpose 

of this research is to improve health outcomes by developing and disseminating evidence-

based information to patients, clinicians, and other decision-makers, responding to their 

expressed needs about which interventions are most effective for which patients under 

specific circumstances.”248  A key priority within this investment is establishing a data 
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infrastructure that provides coordinated linkage and access to administrative claims and 

electronic health records to enable research of medical interventions by a broad array of 

stakeholders.    

While the opportunities abound, substantial research is needed to inform the 

appropriate use of observational healthcare data for active drug safety surveillance and 

comparative effectiveness research.  Empirical studies are needed to determine the 

contribution of individual data sources into an observational data network and gain 

understanding of the performance characteristics of analytical methods when applied across 

the network in their ability to provide reliable evidence about the effects of medical products.  

This dissertation provides one body of research examining the use of a novel method across a 

network of observational databases to study the comparative safety of Angiotensin 

Converting Enzyme (ACE) Inhibitors. 

 

7.2. Review of study results 

 This dissertation compiles a series of efforts intended to shed some light on the 

potential opportunities and challenges of an active surveillance system.  First, it introduces a 

new method, COMPASS, designed to integrate standard pharmacoepidemiology principles 

into a systematic process for drug-outcome risk identification. The method was then applied 

in these experimental contexts to evaluate its performance, relative to other existing methods, 

and across a network of disparate observational databases.  Finally, the method was applied 

to the specific clinical context of the comparative safety of ACE inhibitors to assess its 

potential utility as a tool for evidence generation.   
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COMParator-Adjusted Safety Surveillance (COMPASS) is a statistical algorithm that 

estimates adjusted rate ratios for all outcomes of interest for a given medical product through 

propensity score stratification across exposed and unexposed cohorts within an incident user 

design.  COMPASS applies an automated heuristic for defining a comparator group based on 

the indication of the medical product and provides multivariate adjustment focused on 

minimizing bias from four primary sources: personal demographics (such as age and gender), 

confounding by indication, effects of comorbidity, and health service utilization.   

COMPASS was developed as a systematic process to support active surveillance, designed to 

incorporate basic epidemiologic principles typically used for evaluation studies of specific 

drug-outcome hypotheses but adapted to enable efficient, scalable analyses for proactive 

monitoring of multiple products and multiple outcomes simultaneously.  As such, 

COMPASS applies a consistent set of heuristics within the framework to approximate the 

subjective decisions typically made during an evaluation design, such as comparator 

selection, inclusion/exclusion criteria, covariate adjustment strategy, and time-at-risk 

definition.  It is important to reinforce that COMPASS is designed as an automated 

surveillance tool intended to supplement, not replace, existing pharmacovigilance practice.  

The outstanding question this research sought to address is whether COMPASS can provide 

useful supplemental information, as compared to other active surveillance methods under 

consideration.   

In “Systematic identification of drug safety issues in administrative claims data:  

Performance of hypothesis generation methods for active surveillance,” the first aim was 

addressed by characterizing the performance of COMPASS in identifying known safety 

issues association with ACE inhibitor exposure within an administrative claims database.  
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This study compared the operating characteristics of COMPASS with three existing active 

surveillance methods (disproportionality analysis, observational screening, and self-

controlled case series) within the Thomson MarketScan Commercial Claims and Encounters 

database.  Each method was applied to ACE inhibitor exposure, studying the same set of 

potential adverse events to assess the method’s discrimination between true positives (events 

listed on the product labeled which are known to be associated with ACE inhibitors, such as 

cough, hypotension, and renal dysfunction) and negative controls (events not believed to be 

drug-related).   

Amongst the four methods, COMPASS generated the fewest safety signals 

(statistically significant positive associations), had the lowest false positive rate, highest 

predictive probability and greatest precision.  COMPASS was the only method to have 

specificity > 0.95.  Given that COMPASS employed the most comprehensive strategy for 

addressing potential bias from between-person comparisons, it is reasonable to suggest that 

many of the false positives identified by disproportionality analysis and observational 

screening could be successfully mitigated through confounding adjustment.  While 

COMPASS has the highest discrimination of the four methods (AUC=0.648), the absolute 

performance demonstrates the significant opportunity for method improvement.  While 

COMPASS, along with all methods, performs substantially better than random, they are far 

from perfectly predictive models.  The observed sensitivity of 0.42 for COMPASS suggests 

further work is needed to ensure that the strategies applied are not too restrictive as to fail to 

identify true relationships.   

COMPASS’s positive predictive value (0.31), while substantially better than the other 

three methods, underscores the risk of a active surveillance system to generate a majority of 
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hypotheses that are false positives.  The tolerance of false positives comes at a tradeoff for 

acceptability of false negatives.  Only through empirical studies that provide experimental 

evidence of the operating characteristics of the active surveillance methods can stakeholders 

begin to establish policies for interpreting surveillance results.  As a frame of reference, 

many have held the Vaccine Safety Datalink (VSD) as the bellwether for successful 

implementation of an active surveillance system, as it has been used to enable the study of 

newly marketed vaccines across a network of health maintenance organization claims 

databases.  A recent assessment of the performance of the VSD system- which applies an 

unadjusted cohort design within the maximized sequential probability ratio testing 

framework- has highlighted that 9 of the 10 signals generated were subsequently determined 

to be false positives249, which would be the equivalent of PPV=0.10.  Given that 

epidemiologic study of vaccine exposure is often less susceptible to challenges with 

confounding (since most vaccines are administered to a more homogenous healthy infant or 

adolescent population), the fact that COMPASS shows superior performance within the 

context of surveillance for prescription drugs should provide strong encouragement of the 

promise of the active drug safety surveillance system. 

In “Integrating active drug safety surveillance analyses across a network of 

observational healthcare databases”, the consistency of COMPASS estimates was evaluated 

across five disparate data sources.  This study replicated the design as the first aim, 

measuring the operating characteristics of COMPASS when examining labeled events and 

negative control outcomes associated with ACE inhibitor exposure.  COMPASS was applied 

across five databases to assess the performance of each source independently, as well as 

alternative strategies for composite assessments across the data network.  COMPASS was 
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observed to have high specificity across all databases (>=0.97) and consistent positive 

predictive value (>=0.30), but with substantial differences in sensitivity (range: 0.04 to 0.45).  

Several differences among the data sources, such as population size; patient demographics 

and underlying disease severity; and longitudinality of data capture, may explain some of the 

performance inconsistency.  The variability in performance characteristics across data 

sources should provide caution to those looking to generalize methodological results to a 

wide array of data sources.  This study finding suggests each contributing source within a 

data network should be properly benchmarked through some retrospective empirical 

evaluation so as to gain sufficient understanding in how method results should be interpreted 

in the context of other findings. 

Perhaps the most noteworthy observation from the study was the magnitude of 

heterogeneity that existed across sources when evaluating specific outcomes and its apparent 

impact on alternative strategies to synthesizing evidence across a data network.  82% of the 

statistically significant outcomes were observed to have high heterogeneity (I2 > 75%) of 

point estimates among databases.   As a result, composite summaries based on both fixed-

effects and random-effects meta-analysis of source-specific effect estimates did not yield 

additional predictive ability or identify additional outcomes not found by individual sources 

alone.  The results suggest that, in the face of substantial heterogeneity, review should focus 

on the source-specific estimates and the explanation for why sources demonstrate 

consistency.  An alternative approach to assess outcomes is on the basis of how many sources 

yield statistically significant results, following the principle that repeated independent 

replication should provide higher confidence in results.  This study demonstrated that 

positive predictive value and specificity could be improved through increasingly restrictive 
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criteria requiring 2+, 3+ or 4+ significant findings from the five databases.  However, the 

number of pairs that satisfied these criteria decreased as well, reducing the sensitivity.  

Further independent replication was not sufficient to eliminate the risk of false positive 

findings, potentially due to consistent sources of bias that persisted throughout the analyses.  

These findings suggest that while highly consistent results across the network may be more 

reliable, it appears likely that a more common occurrence will be inconsistent estimates that 

are more difficult to discriminate. 

These findings should give pause to the current trajectory of development of the 

national active surveillance system.  A unique opportunity within a national system is the 

ability to examine the effects of medical products from across a network of disparate data 

sources, with the presumption that the source-specific estimates could be somehow combined 

to provide a more comprehensive summary.  By pooling populations across the network to 

comprise over 100 million persons, it has been expected that sample size increases for 

exposed patients would enable more precise estimates of effects and facilitate exploration of 

rare events that are challenging to study in one source alone.  The Mini-Sentinel protocol that 

evaluates the cardiovascular effects of saxagliptin and other oral anti-diabetic treatments 

assumes summary counts from each participating site across the Mini-Sentinel data network 

will be aggregated at the central coordinating center before conducting a composite Poisson 

regression at defined time intervals, and is powered accordingly for this type of pooled 

analysis250.  If the results from the present study were generalizable to the Mini-Sentinel 

protocol, there could be substantial concerns that the composite estimates produced could be 

biased and less accurate than review of source-specific estimates.  Further research is needed 

to determine the most effective strategies for synthesizing evidence across disparate 
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observational data sources, as traditional meta-analytic approaches based on inverse variance 

weighting are likely to be insufficient to meet the challenges of bias presented in these data. 

In “Comparative safety of ACE inhibitors: Evaluating an active surveillance 

framework,” the differential effects across ingredients within the ACE inhibitor class were 

explored using COMPASS against the Thomson MarketScan Commercial Claims and 

Encounters database.  This study offered the opportunity to apply the active surveillance 

method to seven products (lisinopril, benazepril, enalapril, ramipril, quinapril, captopril, and 

moexipril) to assess whether product labeling differences in adverse event reporting were 

true clinical phenomenon observable in an administrative claims database.  We observed 

substantial variation in the populations exposed and patterns of use amongst the seven 

products.  The product differences in FDA-approved indications and listed contraindications 

resulted in COMPASS’s automated heuristics selecting unique comparator cohorts for each 

product and demonstrating differential success in covariate balance through propensity score 

stratification.   Most risks were comparable across the ACE inhibitor class, with differences 

in product labeling not observed in real-world study.  Two hypotheses were generated that 

suggest the risk of hypotensive outcomes of ramipril and enalapril may be elevated, though 

further exploration would be necessary to determine if this is a true causal effect.  Also of 

note was that adverse events listed on the ACE inhibitor product labels did not appear to 

occur more frequently during ACE inhibitor exposure than the comparator groups.  

  This comparative safety assessment highlights the current gap in available evidence 

about relative safety effects of medical products.  While product labels offer evidence of the 

occurrence of adverse events during the product lifecycle, they do not communicate the level 

of confidence in a causal attribution of the effect nor are they intended to communicate 
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comparative differences between alternative treatments for the same indication.  National 

efforts to develop active drug safety surveillance and comparative effectiveness systems have 

a significant opportunity to enable the establishment of a centralized source of real-world 

evidence about relative effects of alternative therapies, so that patients and providers can 

have a greater understanding of the potential outcomes in treatment.    

 

7.3. Lessons through the evolution of the research program 

 
The three manuscripts represent a summary of the findings that were generated as a 

final work product from the research.  However, the body of work reflects an evolution in 

development from its inception.  The proposed research design was followed to specification 

where possible, but necessary adjustments that came from the exploratory process are worth 

mentioning. 

The most substantial area of improvement came in the iterative development of the 

COMPASS algorithm itself.  Several enhancements were incorporated into COMPASS to 

address apparent limitations impacting the method’s performance.  In an attempt to increase 

the balance between cohorts on important potential confounders, the set of covariates used in 

the propensity score model was expanded to include lifestyle risk factors (obesity, tobacco, 

alcohol and drug abuse) and comorbid diseases included within the Charlson index.  The 

lifestyle covariates were initially excluded due to the known limitations of administrative 

claims data in observing these effects.  However, even if available data elements were poor 

proxies for these risk factors, it could be still be valuable to provide some level of adjustment 

in light of the strong confounding these variables can often induce with specific outcomes.  

The inclusion of the individual diseases within the Charlson index ensured greater balance 



 

208 
 

among specific comorbidities in addition to balance of the composite index.  COMPASS was 

also enhanced to allow both restriction and adjustment of indications and contraindications, 

with the recognition that either or both forms of control may be considered when exploring a 

given medical product.  The current study’s application of restriction on both indication and 

contraindication came at the recommendation of the FDA, who are most focused on 

managing risks for medical products when used as recommended, as opposed to unintended 

effects during off-label use. 

A key lesson in the application of COMPASS that is not discussed in the study 

findings is the sensitivity of time-at-risk definition on effect estimates and method 

performance.  As part of the proposed heuristic, COMPASS generates an effect estimate by 

selecting the maximum risk observed across multiple alternative risk windows (acute, 

subacute, insidious, and delayed).  This was proposed under the premise that different 

adverse events have varied time-to-event relationships with exposure, which may not be fully 

characterized at the time of initial exploration.  All empirical studies showed that COMPASS 

performance was optimized by focusing instead on the acute risk window, defined as 30 days 

from exposure initiation.  This finding warrants further examination to determine if this is a 

consistent phenomenon or an artifact of this particular study design.  It could be hypothesized 

that the acute risk window yielded the highest accuracy simply because the test cases under 

study (labeled events for ACE inhibitors) were more likely to have been acute time-to-event 

relationships.  Alternatively, it is possible that using longitudinal healthcare data is more 

accurate during the immediate periods around exposure, and studies of effects requiring a 

longer duration between exposure and outcome are inherently more challenging due to the 

increasingly potential for confounding and noise in the data to surface.    
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The second study that examined COMPASS across a network of data sources was 

originally intended to include results from COMPASS against the Regenstrief Indiana 

Network of Patient Care (INPC) database, which would have provided an additional clinical 

source to complement the findings from the GE Centricity source.  COMPASS was 

developed within the OMOP research lab, which afforded the opportunity to have access to 

de-identified patient-level data for the five data sources used in the study.  The highly 

iterative process of methods development and evaluation demanded access to these data to 

support the exploration.  Results from INPC were not included because the method execution 

within a distributed network framework presented additional logistical challenges that made 

the same level of exploration and understanding inefficient and unobtainable.  The data 

access model currently advocated for active drug safety surveillance is a distributed network, 

whereby data holders maintain secure access to patient-level data and a central coordinating 

center is responsible for managing participation and aggregating summary-level results from 

across the network140, 143, 244.  While this model has the potential to offer the high level of 

patient data privacy and foster more active participation among organizations who see their 

data holdings as proprietary, it presents a legitimate obstacle to methods development and 

evaluation.  In-depth understanding of method performance often requires exploration of 

patient-level data to examine potential sources of unadjusted confounding or other previously 

unidentified artifacts in the data that can be biasing results.  Because of the observed 

heterogeneity across disparate sources, it is likely unsafe to assume a method implementation 

on one data source is sufficiently generalizable to address the particularities of another 

source.  The centralized data access model, where disparate sources are de-identified and 

made accessible through a common systems infrastructure, is more conducive to 
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transparency and enabling full data exploration but raises its own set of concerns with data 

sharing.  Until advanced analytics within an automated process can be demonstrated to be 

executed across a distributed network and yield reliable, accurate results, it seems reasonable 

to consider the choice of a data access model to be another outstanding question that requires 

further research. 

The original study design called for examination of all ingredients within the ACE 

inhibitor class for the third aim.  Beyond the seven products that were studied (lisinopril, 

benazepril, enalapril, ramipril, quinapril, captopril, and moexipril), this would have included 

fosinopril and perindopril.  Perindopril was the least commonly prescribed ACE inhibitor 

across all data sources, while the number of fosinopril exposures was comparable to that of 

captopril.  However, the automated heuristics in COMPASS were unable to be applied to 

these two products because the information source used for comparator selection did not 

include these ingredients in its set of relations.  This limitation underscores the need for 

constant manual review throughout the automated systematic process envisioned for an 

active surveillance system.  While the COMPASS algorithm was successfully applied in 

some circumstances, it is not feasible in other contexts, so it is important to determine the 

scenarios where the system will be unavailable to identify areas that require further 

supplemental effort. 

 

7.4. Limitations of the COMPASS method 

 
While the study results demonstrate promise for COMPASS as a viable active 

surveillance method, several limitations in the approach bear consideration for future 

enhancement.  COMPASS applies an automated heuristic to select alternative treatments that 
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serve as a comparator group.  This comparator group is intended as a proxy for standard of 

care, in that it is constructed based on the set of medical products that could have been used 

for the target drug indication.  This comparator group is used as a benchmark for assessing 

the relative effects of all potential outcomes.  The heuristic, selecting all drugs that share an 

FDA-approved indication but have a different mechanism of action, is an objective 

approximation of the expert-based selection typically required in a customized evaluation 

study.  Since the comparator can be comprised of multiple drugs, it is possible there is exists 

heterogeneity in effects amongst the comparator drugs that could results in the background 

rate being divergent from the true effects within any given comparator product.  This may be 

particularly true for medical products with multiple indications, in which case it may be 

reasonable to consider stratifying the analysis by each indicated condition.  It is also possible 

that the comparator may be inappropriate for certain outcomes, based on secondary 

indications or other factors.  Further research is needed to assess the concordance of 

comparator selection between what would have been chosen by experts as compared to 

automated heuristics, and to assess how different choices would impact accuracy of method 

performance. 

COMPASS uses a standardized procedure for covariate adjustment through 

propensity score stratification.  As with all applications in propensity score adjustment, it is 

important to assess balance in baseline characteristics.  In customized studies, when balance 

is insufficiently achieved, analysts may modify the propensity model and re-assess the 

adjustment approach.  Within an automated process such as COMPASS, it is important to 

provide a comprehensive summary of covariate balance.  While attempts have been made in 

this work and illustrated within the studies, it is possible that there is residual confounding 
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due to insufficient control which would impact the interpretation of the effect estimates.  

While the COMPASS model uses proxies for demographics, lifestyle risk factors, 

comorbidities and health service utilization, it is possible that other covariates are relevant 

which have not been included in the model.  For example, there may be additional covariates 

to consider that reflect diseases which are highly related to the indicated conditions.  Some 

covariates used may be poorly recorded in specific databases, such as obesity and tobacco 

use in administrative claims.  There are additional factors that may influence treatment 

selection that COMPASS doesn’t account for because they are unavailable in the data model, 

such as patient socioeconomic status and provider-level characteristics. 

COMPASS was implemented to be an efficient tool to facilitate rapid monitoring of 

medical products within an active surveillance network.  Within a cohort design, it becomes 

very straightforward to simultaneously assess multiple outcomes for a given treatment.  

Specific attention was made to develop COMPASS to efficiently explore multiple treatments 

concurrently, but the nature of the design makes this operation more computationally 

demanding.  One substantial value of the automated process is that multiple alternative 

design decisions can be evaluated simultaneously as part of a comprehensive sensitivity 

analysis.  However, further work is needed to determine how to interpret results from across 

the sensitivity analysis, particularly when inconsistent findings are observed among 

seemingly reasonable parameter settings. 

 

7.5. Limitations of observational data 

A key limitation of this study is the fundamental challenge facing the enterprises of 

active drug safety surveillance and comparative effectiveness-- the integrity of the 
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observational healthcare databases.  In these studies, we evaluated an analytic method in its 

ability to identify temporal associations between drug exposure and outcome occurrence.  

However, the secondary use of administrative claims and electronic health record data 

requires an array of assumptions to infer drug exposure and the temporal relationship to 

disease onset.  In neither type of data is there direct information about exposure, but instead 

information about prescriptions written by providers or dispensed by pharmacies.  Outcomes 

are inferred from diagnosis codes, either captured from billing claims as part of 

reimbursement justification or from problem lists recorded by clinicians to support their care 

process.  Typical pharmacoepidemiology evaluation studies may define outcomes using 

combinations of diagnosis codes, potentially in conjunction with other markers such as 

procedure codes or laboratory values, and often perform some level of source record 

verification to increase the confidence that observed events are true outcomes.  In this study, 

individual diagnosis codes were used as crude proxies for outcome occurrence, with no 

source record verification.  These diagnosis codes also serve to define the covariates used in 

the propensity adjustment and as the restriction criteria for indications and contraindications.  

COMPASS allows for cohort restriction based on prior indication recorded, but patients may 

have the indicated disease without having the diagnosis code recorded on a claim or have the 

indication show up in the record after exposure. This limitation of the underlying data could 

be a central reason for the overall poor performance of all surveillance methods and may 

provide one of the most significant opportunities for performance enhancements independent 

from the statistical methodology.  As more robust electronic medical records are established 

and disparate data sources (claims, EHRs, personal health records, registries, death indexes, 

clinical trials) are able to be linked through common patient identifiers, not only will more 
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comprehensive data be captured for individuals but also analyses should be able to more 

accurately ascertain patterns across populations. 

 

7.6. Limitations of the COMPASS experiments 

 
The studies conducted have provided initial evidence of the utility of COMPASS as a 

viable active surveillance method, but further studies should be designed to address some of 

the limitations in this existing work.  Perhaps most impactful is that in order to justify the use 

of COMPASS as a reliable tool, it is important to have confidence that prior methodological 

research is generalizable to the types of scenarios anticipated by the envisioned active 

surveillance system.  The current studies have focused on the performance of COMPASS 

within one class of medical products, ACE inhibitors, but it remains to be seen whether the 

operating characteristics observed are consistent with expectations for other prescription 

drugs.  Focus on one drug class has allowed for a deeper dive and firmer understanding of 

how the method behaved, but limits the overall generalizability.  OMOP has created a larger 

panel of drug-outcome pairs to study but suffers from problem of breadth vs. depth.  The 

knowledge needed to have confidence in the creation of a national system requires both 

breadth and depth in methodological research.  This study is only a first step in that direction. 

Evaluation of method performance in its accuracy to discriminate between positive controls 

and negative controls rests on the confidence that the ground truth established for the test 

cases is in fact accurate.  In this study, positive controls were defined by adverse events that 

were listed in the product labeling for ACE inhibitors, while negative controls were selected 

based on conditions that were unrelated to any known drug effect.   Given the maturity and 

wide use of the drug class, it seems reasonable to expect the negative controls to be accurate, 
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with little chance that a true effect exists among them that had not been previously 

discovered.  However, as the third study showed, some adverse events listed on product 

labels are not necessarily true causal effects and therefore shouldn’t expect to be observed as 

positive associations.  As a result, method performance may be understating sensitivity if 

some of the test cases are misclassified as true effects.  Future experiments should establish a 

reference set where all test cases have high confidence in correct classification of causal 

status to minimize this concern of measurement error.  Use of simulated data, where ground 

truth can be defined a priori, may be a valuable supplement to these real-world 

investigations. 

COMPASS was evaluated on its overall performance as a single tool for active 

surveillance.  However, it is quite possible that stakeholders should not expect a single 

method to be a magic bullet with consistently reliable performance, but instead should 

consider that the tool’s accuracy may vary by attributes of the drug and outcome under study 

or based on the database that it is applied against.  It could be that some methods are more or 

less appropriate for specific circumstances, but determining these scenario operating 

characteristics cannot be judged through expert subjective assessment alone and requires 

further empirical research. 

COMPASS was evaluated against five disparate databases, which represents one of 

the most comprehensive methodological assessments for drug safety to date.  However, given 

the substantial heterogeneity that was observed across those five sources, the study raises 

questions about the generalizability of the findings to other data sources.  It could be 

reasonable to expect that performance results would be different had COMPASS been 

applied to a different network of databases.  Further expansion of this methodological 
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research to additional data sources should begin to yield insights about the sources of 

heterogeneity and how to predict method accuracy across a broader range of available data 

resources. 

 

7.7. Contributions to the field 

With these limitations in mind, these studies provide a solid foundation of research that 

should directly inform an important national issue.  The results of this study should inform 

decisions about the appropriateness and utility of analyzing observational data as part of a 

future drug safety surveillance process and add to the literature in several important ways, 

with clinical, methodological, and policy implications. 

First, from the clinical perspective, the exploratory analyses of ACE inhibitors have 

provided the first known comprehensive assessment of the comparative safety of ACE 

inhibitors in an active surveillance framework.  In light of the comparable safety profiles, 

there may be interest in examining why these products have inconsistencies in product 

labeling and how further comparative studies can better inform clinical practice about 

appropriate use of products within the class. 

Second, from a methodological perspective, the study has detailed and provided 

empirical evidence to inform the potential use of a novel method for identifying drug safety 

issues in automated healthcare databases as part of an active surveillance system.  This 

method leverages advances in pharmacoepidemiology, biomedical informatics, and 

pharmaceutical sciences to provide an analytical framework that could support continued 

drug outcome research beyond the scope of this study's ACE inhibitor analyses. 
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Finally, from a policy perspective, the evaluation of how to interpret findings across a 

network of data sources may have broader implications for initiating the national active 

surveillance system.  There is little research to inform how decision-making processes will 

accommodate information when generating, strengthening and confirming hypotheses about 

potential drug-related effects23.  Prior to this study, the role of exploratory analyses in an 

active surveillance system and the relative confidence in information that can be gained from 

such analyses was undetermined.  The examination of heterogeneity across sources and the 

potential use of a meta-analytic framework to integrate estimates have provided insights that 

should inform the governance of the future national active surveillance system.  More 

broadly, the measurement of operating characteristics of an active surveillance system should 

help establish a greater understanding of how to interpret surveillance results in the context 

of all other available information as part of a causality assessment for an emerging drug 

safety issue.  

While this body of work represents a significant contribution to the field, it is a small step 

on a long-term journey toward developing a capability for improving our understanding of 

the effects of medical products.  This research has raised many additional questions that 

warrant further investigation.  Improving the performance of methods requires a deep-dive 

exploration to better explain why methods failed to identify known effects or falsely 

highlighted positive associations for negative controls, so that strategies can be developed to 

mitigate these inaccuracies.  This exploration requires further examination of other potential 

sources of bias and testing hypotheses about how inclusion of additional covariates and/or 

imposing new inclusion/exclusion criteria impacts effect estimates.  Such work demands 

clinical review of patient-level records and secondary confirmation that operational 
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definitions for exposure and outcome are providing appropriate ascertainment across the data 

sources.  Methods improvement needs to be complemented with more precise and 

comprehensive evaluations of performance through the expansion of methodological 

experiments to include a broader set of medical products and outcomes that better reflect the 

anticipated scenarios envisioned within a comparative effectiveness and active surveillance 

system.  A sustainable research partnership that supports a common experimental framework 

is paramount to establishing a benchmark for current expectations, facilitating discovery and 

development of methodological innovation, and measuring progress as research continues 

moving forward.   

Developing a high-quality system for evidence development using a network of 

observational healthcare databases requires active participation from all stakeholders, 

including government, industry, academia, and health care organizations, and it demands a 

full understanding of the perspectives from the decision-makers that these analyses should 

ultimately inform, including regulators, payers, providers, and patients.  Advancing the 

science of active surveillance and clinical effectiveness requires interdisciplinary 

collaboration between statistics, epidemiology, health services research, computer science, 

medical informatics, engineering, and the clinical sciences.  As these innovations are 

developed and applied in medical practice, special attention will continue to be needed to 

ensure the appropriate use of electronic healthcare data and interpretation of inferences about 

the effects of medical treatments. 
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