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Abstract

SECURITY AND PERFORMANCE ANALYSIS FOR RFID PROTOCOLS

Bing LIANG

Singapore Management University, 2010

Thesis Director: Assistant Professor Yingjiu Li

Radio Frequency Identification (RFID) is an advanced object identification tech-

nology that has already been applied in various industries. However, the insecure

nature of the communication channel between readers and tags makes RFID sys-

tems vulnerable to various kinds of attacks. In recent years, many new methods

have been proposed to improve the security of RFID systems, such as disabling

tags, agent management and establishing cryptographic protocols. Among them,

we focus on the last approach, which is more economic and convenient in certain

cases.

The first part of our work is to categorize typical existing RFID protocols ac-

cording to their security levels. The result is vitally important to RFID system

administrators who need to find different protocols to be implemented in their sys-

tems. The trade-off to be made in decision is that higher security level typically

implies worse performance.



We examine the performance in two aspects: the look-up cost in RFID reader’s

back-end database and the tag-related cost. The tag-related cost includes the crypto-

graphic operation cost (cryptographic computation cost along with access operation

cost in RFID tag’s chip memory), and the communication cost between reader and

tag. We perform traditional database complexity analysis to assess the database

look-up cost, and conduct experiments to evaluate both the cryptographic operation

cost and and communication cost, so as to have a thorough understanding of the

overall time cost of each RFID protocol. This work is important because efficiency

is a major concern in the design of RFID protocols, especially when high secu-

rity level is achieved with complex cryptographic operations being performed on

resource-limited RFID tags. An inefficient RFID protocol could be a bottleneck of

the whole system in real applications.

Finally, we benchmark the performance of each RFID protocol, compare perfor-

mance of protocols in different security levels and investigate the extra cost required

to achieve certain security properties. We find a trade-off between look-up cost and

tag-related cost. Based on the results of performance benchmarks, we revise some

existing protocols and propose several design suggestions for creating new RFID

protocols.
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Chapter 1: Introduction

In this section, we briefly introduce the background of RFID systems, RFID system

performance measurements and the major contributions of this thesis.

1.1 RFID Systems

An Radio Frequency IDentification (RFID) System is a wireless device originated

from military systems. An RFID system comprises three components: a tag (transpon-

der), a reader (transceiver) and the reader’s back-end database. A tag usually has

a microchip for storing basic information (ID, manufacture’s info) and an antenna

for transmitting signals to RFID reader. A reader can interrogate a tag by sending

a signal via electro-magnetic fields. The tag receives the signal through its own

antenna and responds with information stored on its microchip, which is verified by

the reader against its back-end database.

According to different working frequencies, the tags can be categorized into

three classes: low frequency (LF) tags, working frequency from 124 to 135 kHz;

high frequency (HF) tags, working at around 13.56 MHZ and the ultra high fre-

quency (UHF) tags, working frequency from 860MHz to 960MHz [RCT06]. In

general, the higher the working frequency, the farther the read range of a tag. Typ-

ically, LF tags can be read within 30 cm, and HF ones can be interrogated up to 1

m. The UHF tags can even be read from 7 m away. According to the capability

of RFID tags, RFID tags can be also classified into passive tags and active tags

[RCT05]. Usually, active tags have their own batteries and extra memory storage

while passive tags do not. Therefore, they have more energy, more powerful com-

putational ability and larger memory. Their read range can be extended to more

than 100 m but the tags cost around $20 [Jue06]. However, a most important goal
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in industry is to minimize the cost (around $0.05 / p), so in this thesis, our topic

only focuses on the passive tags. A passive tag would respond automatically when

a reader interrogates with this tag. For the reason of low-cost features, RFID passive

tag has its own disadvantages compared to other wireless device. First, as discussed

above, the range between reader and tag is limited: from 0.1 m to 7 m. Second, due

to the low cost, there are only less than 5000 gates on a tag so that the tag has only

limited computational ability and storage. Thirdly, the chip on a tag is sensitive to

the external environment: metal, liquid, radio-reflect and radio-absorb material all

can affect the communication between a reader and a tag [Jue06,RCT06,WSRE03].

As an RFID system shown in Fig 1.1, it is generally assumed that the commu-

nication channel between a reader and its back-end database is secure while the

channel between a reader and a tag is wireless and insecure. A reader interrogates

a tag through forward channel and a tag responds to a reader through backward

channel. The signals in a backward channel are much weaker than the ones in a

forward channel, because the passive tag’s power is obtained from a reflection of

reader’s signal. The messages in the wireless channels can be eavesdropped by any

passive party with the receiver equipment. For a malicious party, it is more difficult

to eavesdrop in the backward channel than in the forward channel. An active ma-

licious party can even intercept, insert, block, modify the messages in the wireless

channel.

Reader
Back-end 

DatabaseTag

Interrogate

Respond

(Forward Channel)

(Backward Channel)

Wireless Insecure 

Channel

Secure Channel

Figure 1.1: RFID Systems

The RFID idea ordinates from the military system “Identification Friend or Foe”

(IFF) system shown in Fig 1.2 [IFF, RCT06], which is the radar system to identify

friend’s or enemy’s planes by ways of authenticating signals reflected from planes.
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IFF’s transponder and interrogator share a secret key, and encrypted information is

transferred between them. After receiving encrypted messages, the two party can

decrypt them with the sharing key. Though RFID originates from IFF, the techni-

cal requirements are different between IFF military systems and RFID applications.

The five main differences between RFID system and IFF military system are sum-

marized in the Table 1.1, based on Rieback, Crispo and Tanenbaum’s analysis in

[RCT06].

First, there is a clear definition about attackers and defenders in military sys-

tem, while the delineation becomes fluffy in RFID applications. For example, in

RFID systems, it is possible the former legitimate user becomes an attacker as time

changes. Second, IFF systems are physical secure, but in RFID systems, it is nearly

impossible to guarantee this situation. In RFID systems, the former legitimate users,

who once obtained RFID tags, can be potential attackers . Third, the security goals

for two applications are not similar: the IFF’s goal is to protect the confidentiality

and even sacrify the privacy, yet RFID system should protect both security and pri-

vacy. Fourth, the IFF’s back-end database is a stand-alone one, means one database

for each plane. However, the RFID’s database can be shared by various parties, and

different parties in RFID systems can access the database online or offline. Espe-

cially in supply chains, the database is shared by manufactories, retailers, logistic

parties, even single customers. The last but not the least, IFF system involves nation

security, so it is enforced at all cost. On the contrary, RFID system is an industrial

application, and the low cost is one of the most important concerns. Till now, the

acceptable cost is $0.05 per tag.

In the industrial field, the most popular application in logistic and retailer is

barcode nowadays. RFID is called next-generation barcode and considered as the

most possible substitute of today’s optical barcode. In certain cases, RFID systems

are more convenient and more efficient than barcode. In addition, they can adapt

to different environments. However, there exist potential privacy threats in RFID

systems. The different features of RFID and barcode are shown in Table 1.2.
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[IFF]

Figure 1.2: IFF Systems

Table 1.1: RFID Systems vs. IFF Systems
[RCT06]

RFID IFF System
Attack Model Fuzzy delineation between Clear delineation between

attackers and defenders attackers and defenders
Physical Security Physically insecure Physically Secure
Security Goal Security & Privacy Confidentiality
Back-end Infrastructure Shared Database Stand-alone database
Security Cost Low cost 5 cents, recycled At all cost

Compared with traditional method for object identification—barcode, RFID

systems have many different features. First of all, RFID tags can be identified

automatically in bulks without light, while barcode needs a person to scan codes

through line-of-sight one by one to identify the codes. These features improve effi-

ciency of an identification system significantly. In addition, RFID tags can identify

every single object with a unique ID, while barcode seems to have limited ability in

this aspect. Barcode is usually used to identify one class of items. For example, the

same type of Coca-Cola bottles has the same barcode in a supermarket nowadays.

In future, it is possible that every bottle of them is attached an RFID tag with a

unique ID. In case that a customer meets a problem with one bottle, not only does

the supermarket’s manager know exactly that there is a problem with Coca-Cola

drinks, but also he knows exactly which bottle has the problem. Next, RFID system

communication is through wireless channel and the range can be extended up to

7 m, while barcode needs a nearby scan and the effective range is limited. This
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Table 1.2: RFID vs. Barcode
[Jue06][MW04]

RFID Barcode
No need of Line-of-sight Need Line-of-sight
No human-intervention Need human-intervention

Proceed in Bulks Proceed one by one
Identify objects in item-level Identify objects in type-level

Wireless closely scanned
Low cost 5 cents, recycled Low cost, unrecycled

People unconsciously scanned People consciously scanned

merit dramatically eliminates the range limitation of barcode. What’s more, RFID

tags can be recycled and reused while barcode cannot. This advantage is specially

meaningful to a supply chain system that involves a large number of tags. The last

feature of RFID tags is that they can be read without the taker’s consciousness,

which is a potential threat of sensitive information leakage. According to RFID

systems’ special features, they can be applied in a wide range of everyday life. On

the contrary, RFID systems spring out a couple of security problems.

In lots of applications, especially supply chains, multiple tags need to commu-

nicate with a same reader. However, a reader can respond to only one tag at a time.

Therefore, there exist some anti-collision algorithms according to tags’ different

working frequencies. The anti-collision algorithm for high frequency (HF) tags is

the probabilistic “slotted aloha” algorithm [Bin00, MB83], while for ultra high fre-

quency (UHF) tags is the deterministic “binary tree walking” algorithm [SWE02].

The reason for different choices of anti-collision algorithms is that the bandwidth

of the UHF’s communication channel is more than the one of HF’s communica-

tion channel [SWE02]. These anti-collision methods help with the multi-response

problem in RFID systems.

1.2 RFID Applications

Because of the beneficial features of RFID systems, a wide range of applications

have been reported in industries. A few typical applications are given below:
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1. Supply Chain [RCT06]:

RFID technique’s potentially widest application is the supply chain and lo-

gistics. RFID tags can be attached onto the objects in a supply chain so that

every object has a unique ID. With the unique IDs, the transportation routine

can be supervised in the whole supply chain from manufactory to retailers

till stores. In an RFID supply chain, numerous RFID tags are needed as a

number of different goods are involved. Therefore, the cost-effectiveness is

an essential requirement in RFID supply chain. Low-cost and recyclable tags

meet this requirement perfectly. In addition, the overall cost of the supply

chain could be further reduced by adopting high efficiency bulk-processing

and non-human-intervention method. Another benefit is that RFID’s object-

level identification can guarantee the goods safety.

2. Animal Tracking [GJP05] [RCT06]:

RFID tags can either be used in animal scientific research or used in home

pet tracing. Scientists can implant RFID chips with GPS, into the endangered

animals to learn their habits and further protect them. For instance, some sci-

entists apply this methods on a couple of dolphins [GJP05]. Other scientists

implant tags into livestock to prevent, mitigate and control from a large scale

diseases bursting out such as H1N1 Flu [RCT06]. Other than the scientific

research, RFID tags can be implanted in pets to locate them in case that they

are lost.

3. Access Control [GJP05] [MW04] [RCT06] [Rot08]:

RFID tags can be a key and used in access control systems [MW04]. They

can be a security device to launch a car [GJP05]. Proximity card with RFID

chips can manage the entry of libraries, companies to guarantee these places’

security [RCT06] [Rot08].

4. Medical System [GJP05] [Jue06] [Rot08]:
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Once patients are attached or implanted by RFID tags in the future, doctors

can immediately obtain a patient’s detailed information such as the patient’s

ID, name, medical history, allergy history, and emergency contacts by scan-

ning the patient’s tag. This documentary mechanism is much more efficient

and accurate than the traditional manual checking. However, the sensitive

information such as the patient’s medical history can be stolen by being ille-

gally scanned.

5. Smart Appliance [Jue06]:

In future, appliances with RFID systems can be intelligent and provide a big

convenience in people’s everyday life. For example, smart washing machine

with an RFID reader may read information from the tags attached on the

clothes. Through checking the back-end database, this washing machine can

learn the knowledge of the clothes’ material and choose a suitable washing

mode (e.g economy, wool or fuzzy mode) for each clothes. Another example

is that a smart refrigerator with RFID reader can warn people about an expired

food by scanning the tag on package.

6. Automatic Payment [GJP05] [Jue06] [RCT06] :

Today, credit card’s serial-number-based payment is insecure and it is easy to

counterfeit a card for anyone who obtains the card’s number. To improve the

security, RFID tags are involved in credit card systems as a token. In such

credit card systems, only after the reader authenticates the token successfully,

the payment is made. RFID token enhances credit card system’s security a

lot, because only attackers with both specific reader equipment and the card’s

serial number can take malicious actions. The other automatic payment is the

public transportation ticket system. With RFID embedded card, bus systems

and subway systems can reduce costs from selling tickets manually. The

third RFID automatic payment system is automatic toll: these tolls can read

the tags in a car and charge the toll fee even when the car is traveling up to
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100 miles per hour [GJP05]. They are more efficient, accurate, convenient

than the traditional toll stations which collect fees by person.

7. E-passport [Jue06] [Rot08]:

RFID chips can be embedded in passports to record the holder’s biometric

information such as fingerprint and iris data. A key of 128 bits [Rot08] is

also used to protect the data in a tag’s chip. Compared to the traditional

passport with only a photo, RFID embedded passports are more difficult to

counterfeit. Therefore, e-passport could be of a great assistance in population

monitoring and management as well as national security.

1.3 EPC Specification in RFID Systems

Among the popular benchmarks of RFID protocols, EPCglobal organization pro-

posed EPC (Electronic Product Code) specification as RFID protocol standard. We

take EPC Class I Generation II as an example to give readers a brief introduction of

this standard. The working frequency of EPC Class I Gen II tags is from 860 MHz

to 960 MHz. In this industry standard, there are four memory banks in each tag

[Inc08]: user memory, reserved memory, EPC memory and TID memory. A users

can store user-specific data in a tag’s user memory. The 32-bit kill password and/or

the 32-bit access passwords are stored in the reserved memory. The tag’s manufac-

tory information such as a tag’s serial number is stored in the TID memory. Finally,

the tag’s unique EPC code is in the EPC memory. We take a 96-bit EPC code as

an example. The first 8-bit EPC code is the header. The next 28-bit is the general

manager number which identifies the organization owning the tag. The next 24-bit

code illustrates which class the object attached to the tag belongs to. The last 36-bit

serial number is the unique ID in the object class. The IP address of the database

containing the object’s detailed information such as delivery routine can be pointed

by the whole 96-bit EPC code [OSK03]. A typical industrial application of EPC
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Class I Gen II standard is supply chain and logistics.

1.4 Performance Measurements

It is important to measure the performance of an RFID system. On one hand, due to

the countless number of tags in industries such as supply chain, the search overhead

of a tag in the reader’s back-end database may be overwhelmingly high. Therefore,

the search cost should be a concern. On the other hand, in order to protect an RFID

system’s security, it is usually to implement an RFID protocol in the system. Thus,

another cost of RFID security protocol is cryptographic operation cost as well as

reader-tag communication cost. In [ADO05], Avoine claimed that a cryptographic

operation on a single computer only takes 2−23 second to finish, while it would

take a lot more time to finish a cryptographic operation on a tag due to a tag’s

limited memory and computational ability. Therefore, cryptographic operation cost

in RFID reader side is ignorable. In summary, we measure the performance of an

RFID system in two aspects:

1. Search cost in reader’s database

When there are a large number of tags in RFID system, the search cost of

a specific tag cannot be ignorable. Usually, it is assumed the total number

of tags is N , and we use functions with parameter N to represent the search

cost.

2. Tag-related cost

Tag-related cost comprises cryptographic operation cost in tags and commu-

nication cost between reader and tag. After simplifying the procedure, there

are four basic operations used in cryptographic operations in tags: tag-tag

read, tag-tag write, AES encryption and hash functions. The communication

cost comprises reader-to-tag operations, including reader-tag read and reader-

tag write, because RFID passive tags cannot actively launch communication
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sessions.

In the following, we will analyze search cost and tag-related cost in detail in

chapter 4 and 5, respectively.

1.5 Our Contribution and Thesis Organization

The main contribution of this thesis is three-fold:

1. First, existing RFID protocols are categorized into six classes in terms of

different security levels. Compared with previous work, our categorization

covers two categories of weak security protocols, which were not discussed

in previous security and privacy models. Our work is thus closer to real ap-

plications, which usually implement solutions with weak security.

2. Second, the relationship between security and a reader’s search cost is ana-

lyzed. We take BMM protocol as a case study to show the trade-off between

security and search cost. In addition, the search costs of typical protocols in

each category are summarized. We find that in certain cases, the search cost

is higher with higher security levels. In other cases, the search cost is not

related to security levels directly but more related to the data structure of a

reader’s back-end database.

3. Finally, the relationship between security and tag-related cost is investigated.

A formula is set up on tag-related cost for any generic RFID protocols. Ad-

ditionally, the tag-related time costs of typical protocols in six categories

are calculated according to the formula. The best performance protocols in

each category are selected as benchmarks to measure other protocols’ perfor-

mance. Through comparison, redundant operations of a couple of protocols

are discovered for revision. To make a trade-off between search cost and

tag-related cost, some protocol-design suggestions are proposed.
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The rest of my thesis is organized as follow: in Chapter 2, security problems and

existing solutions in RFID systems are introduced. In Chapter 3, existing RFID

protocols are categorized according to different security levels. In Chapter 5, the

relationship between security and tag-related cost is discussed. In Chapter 6, the

thesis is summarized and future research direction is pointed out.
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Chapter 2: Security Problems in RFID Systems and
Existing Solutions

There are three parts in the whole RFID system: tag, reader and back-end database.

The back-end database can be defended by traditional database security protection

such as encrypted database, access control, etc.. Thus, we do not consider the back-

end database security problem as an especial RFID system problem. In addition, the

connection between reader and back-end database is assumed as a secure channel;

therefore, we do not consider the attacks through this channel, either. In particu-

lar, we consider the following components for addressing the security problems in

RFID systems: RFID reader, RFID tag and reader-tag communication channel.

1. RFID Reader:

Adversary can mimic legitimate readers to interrogate authentic tags. Fake

readers can stole the sensitive information of tags and violate their privacies.

Several fake readers can even collude to trace a certain tag. If there are no

write protections on tags, malicious readers can even modify a tag’s content

arbitrarily.

2. RFID Tag:

Low-cost RFID tags could be easily cloned without enough protection. Re-

verse engineering can even clone tags through physical layer analysis. Adver-

saries can use cloned tags to replace the original ones. For example, they can

replace the valuable goods with cheap ones. If an attacker cracks a tag suc-

cessfully and obtains the tag’s secret, he/she can trace the previous messages

about the tag. In another aspect, adversaries can launch Denial of service
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(DoS) attacks on legitimate RFID readers by querying the reader with a num-

ber of fake tags. As a result, the reader cannot achieve normal interrogations

with real tags.

3. Communication Channel:

Malicious parties can sit in the communication channel for eavesdropping

the conversation between a legitimate reader and a tag. Active ones can even

intercept, relay, replay, block, change and insert messages between reader

and tag. An adversary can record and replay messages to launch man-in-the-

middle attacks.

2.1 Adversary Model

In typical RFID security scenarios, adversaries with different levels of power are

modeled to analyze different RFID authentication protocols [LLG08]. We simplify

the categorizing methods in [LLG08] and consider adversaries in three levels:

• Level-1 (Passive attack):

Able to perform passive eavesdropping and intercept messages over legiti-

mate protocol sessions.

• Level-2 (Active attack with protocol participation and protocol disrup-

tion): Able to communicate with a legitimate tag or reader by following

the steps specified under the protocol and to replay, corrupt, block or inject

(replace) messages.

• Level-3 (Active attack with secret compromise):

Able to capture a legitimate tag and extract its secrets through physical layer

attack and side channel attacks.
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2.2 Existing Solutions

Till now, there are three major types of solutions to address the security threats

in RFID systems: disabling tags, agent managements and cryptographic protocol

design. Of existing solutions, cryptographic protocol solution is the most popular

one because it is low-cost, without side-effect, convenient for users and it keeps

post-purchase functions of RFID systems.

2.2.1 Disabling tags

In order to prevent tags from illegal scanning, people proposed “permanently dis-

abling tags” and “temporarily disabling tags”.

1. Permanent Disabling Tags

In the EPC specification, a tag’s owner can “kill” it by writing a kill password

into the tag, so that a tag is destroyed and an attacker cannot trace the tag

anymore. However, after being killed, a tag’s post-purchase functions are

all disabled [Jue06]. For instance, if a customer buys a sweater and disables

its RFID tag at the shop’s counter, the smart washing function cannot be

achieved when he gets home. This strategy is also inapplicable in supply

chains that require recycling. Therefore, permanently disabling RFID tags is

not an excellent security solution.

2. Temporarily Disabling Tags [MRT09]

As permanent disabling tags is not a good solution, researchers use the method

of temporarily disabling tags instead. A tag’s manufacture sets a button on the

tag, and the tag’s owner can press the button and input a password to choose

either “sleeping” mode (tag temporarily inactive) or “wake” mode (tag active

again). However, the tag’s user suffers from heavy burdens of managing the

passwords [Jue06]. A second method to temporarily disable a tag is to use

a faraday cage [JRS03] to block the reader’s signals from tag at the physical
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layer. However, the faraday cage is inconvenient for mobile tags sticked to

human beings such as watches.

2.2.2 Agent Management

The second type of solutions is to bring a third party into the RFID system, which

takes up 11% of the publications in survey [SE09]. The third party agent can ei-

ther be an RFID guardian [RCT05] or blocker tags [JRS03]. RFID guardian is a

kind of battery-powered device, which can create scanning logs, achieve the access

control, take charge of key infrastructure, and mediate between RFID readers and

tags. Blocker tags can actively send jamming signals to disturb the communications

when a reader tries to query a private tag or private zones of RFID tags illegally.

Although agent management strategy can reduce extra security functions im-

plemented inside RFID tags, setting up an agent results in extra cost. In addition,

actively jamming is illegal and may affect the nearby electronic equipment.

In [CKSK08], context-recognition technique is combined with RFID system

and context-aware unit is added to the RFID system. Though this management is

simple as well as efficient and it can achieve backward compatibility, it requires

extra recognition unit. What’s more, the recognition templates are limited, thus the

recognition system is easy to be cracked by attackers.

2.2.3 Cryptographic Protocols

Compared with two previous solutions, cryptographic protocol strategy can keep

tags recyclable, easy-to-use, as well as low-cost and it does not interfere other

nearby electronic magnetic instruments. Therefore, my thesis focuses on crypto-

graphic protocol solution. The basic RFID protocol is in Fig 2.1. The left protocol

is a one-way authentication protocol, which means only a tag tells a reader who it

is. The right part is a mutual authentication protocol, which means both reader and

tag tell each other their own identities.
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About 82% publications in survey [SE09] are related to cryptographic protocols.

Though this strategy is the most feasible solution to RFID security problems in

certain cases and does not need extra single unit like agent management, it needs

extra memory and computational ability in RFID tags and extra search cost in RFID

reader’s database. In addition, some RFID protocol needs several communication

runs between RFID reader and tags instead of basic challenge-and-respond policy.

Hello

Hello, I am Tag A

Hello, I am Reader B

Hello

Hello, I am Tag A

Tag Authentication Mutual Authentication

Reader TagReaderTag

Figure 2.1: Basic Protocols

Numerous papers addressing RFID cryptographic protocols have been pub-

lished recently (please refer to [Jue06] for a detailed literature survey). One concern

in research realm is on tag authentication [Dim06, OSK03, Vau07] in the left part

shown in Fig 2.1, and the other one is on RFID reader/tag (mutual) authentication

in the right part shown in Fig 2.1, which has also been rigorously studied in the

literature [CCB06] [Dim05, Dim06, JPP08, MSW05, OSK03, Tsu06].

A couple of RFID authentication protocols based on secure one-way hash func-

tions have been proposed [WSRE03]. In one of the previous works, Ohkubo,

Suzuki and Kinoshita (OSK) proposed using hash chain to update the internal states

and responses to readers [OSK03]. The scheme needs to compute two different hash

function values, one to update the tag’s secret and the other one to compute the re-

sponse that is transmitted to the reader during tag identification. This method incurs

a large overhead at the reader’s side due to the exhaustive search in the back-end

database to identify the tag. To mitigate the high search cost, Avoine and Oech-

slin proposed an optimization of the scheme using a time-memory trade-off for the

computation of OSK hash chains [AO05]. However, in the later works [Dim05]
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and [Dim06], the authors pointed out that the optimized scheme is still vulnerable

to tag impersonation attack and suffers from low scalability in the presence of at-

tacks. Dimitriou in [Dim05] proposed a challenge-response protocol for tag-reader

authentication. However, it is still possible for an adversary to de-synchronize tags,

leading to a denial of service.

Pseudonym Random Function (PRF) has been used in the design of RFID pro-

tocols. In [Tsu06], Tsudik proposed YATRAP protocol for RFID authentication. It

only needs a single key and a single pseudorandom function (PRF) in a tag, but it is

vulnerable to de-synchronization and denial of service (DoS) attacks as the times-

tamps can be manipulated in this protocol. Then, Chatmon, van Le and Burmester’s

YATRAP+ and OTRAP [CCB06] were proposed to address the problem of YA-

TRAP. Their schemes were essentially designed mainly for privacy-preserving iden-

tification of tags without providing reader authentication.

To reduce reader’s search overhead, people proposed to use tree-structure in

RFID protocols. Dimitriou proposed a tree-based privacy-preserving RFID identi-

fication scheme [Dim06]. In [MSW05], Molnar, Soppera, and Wagner proposed a

tree based scheme with a high scalability of identifying tags. Under these schemes,

each tag stores a group of secret keys that lie along the path of a key tree from

root to leaf layer maintained by the back-end database. During RFID identification,

a tag responds a group of values computed using the group of secret keys over a

random challenge and the reader will use the group of responses to identify a tag.

However, it is difficult to implement key updating because some keys are shared by

different tags. Even worse, compromising attack exists, that is, if one tag’s secret is

compromised, it may affect other tags and leak their secrets.

Other than the search cost, another non-ignorable cost in RFID protocols is tag-

related cost, including cryptographic computational cost in tags and reader-tag com-

munication cost. Feldhofer achieved AES algorithm in HF tags [FDW04]. Later

on, he added on SHA-1. SHA-256, MD5, MD4 in his hardware implementation of

RFID system [FR06]. Chiew et al. implemented all the AES, MD5, SHA functions
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as well as achieved write/read operations on the IAIK UHF tag platform. In addi-

tion, this work measured time cost of each operation. This work made tag-related

cost evaluation possible [CLL+10]. In addition, more efficient pseudo-random gen-

erator and universal hash function instead of one-way hash function was proposed

in [BBEG09], which could be used to reduce tag-related cost by replacing tradi-

tional hash functions such as MD5. Other than symmetric key cryptographic op-

erations, public key cryptography was also implemented in tags, such as that ECC

was achieved in HF tag [KP06].

In Chapter 3, existing RFID protocols are categorized into six groups according

to their different security levels. The performance analysis of these protocols com-

prises two parts: one is the search cost in readers’ back-end database and the other

one (i.e. tag-related cost) covers the cryptographic operation and communication

cost in RFID tags, which are analyzed in Chapter 4 and Chapter 5, respectively.

Suggestions for balancing security and performance in RFID protocol design is

given in Chapter 5.
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Chapter 3: Categorization of RFID Protocols

In this chapter, we categorize the existing RFID protocols in terms of their security

levels. Compared with previous work, our work is less complex and closer to real

applications. Among several previous categorizations, Vaudenay’s work is one of

the most systematic one and widely cited by academic researchers. We will mainly

focus on comparing our categorization model with Vaudenay’s model.

3.1 Previous Work on Categorization

Narrow-Strong Narrow-WeakNarrow-Destructive Narrow-Forward

Strong WeakDestructive Forward

[Vau07]

Figure 3.1: Vaudenay’s Model

There exist several theoretic categorization works till now. In CCS’09, Ma et.al

categorized RFID models into two groups: INP (Indistinguishability-Based Pri-

vacy) and UNP (Unpredictability-Based Privacy). INP means an attacker cannot

distinguish two tags with a probability higher than a random guess. UNP means

an attacker cannot predict whether a message is an output of an protocol or a ran-

dom one with a probability higher than a random guess. However, this work only

roughly categorized protocols into two groups and thus was not fine-grained. An-

other theoretic categorization work was Vaudenay’s model. In [Vau07], Vaudenay

categorized the RFID tag authentication privacy models into eight different cat-

egories according to adversaries’ different abilities. In his model, an adversary

can simulate seven oracles: Createtagb(ID), Draw(distr), Free(vtag), Launch,

Sendreader(m,π), Result(π), Corrupt(vtag). Strong adversary is defined as who

can access all the oracles. Destructive adversary is defined as who never uses the
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target tag again after corrupting it. Forward adversary is defined as who can only

access corrupt oracle after the target tag being corrupted. Weak adversary can not

access corrupt oracle. Narrow adversary in the second line shown in Fig 3.1 can

not access result(π) oracle, which returns 1 if the protocol was complete, otherwise

0. Therefore, there are eight privacy models: strong, destructive, forward, weak;

narrow-strong, narrow-destructive, narrow-forward, narrow-weak. Their relation-

ship is illustrated in Fig 3.1. Later in ASIACCS’08 [PV08], the eight model was

extended into mutual authentication models. In ESORICS’08, Ng et al. further sim-

plified the eight RFID privacy models into three categories [NSMSN08]. Till now,

there still exist arguments about classification standards. Among previous works,

Vaudenay’s work is one of the most systematic one and widely cited. Nevertheless,

one category in his model cannot be achieved, which is the strong model. Yet an-

other category (narrow-strong) needs to be carried out by public-key cryptography

(PKC) [PV08], which is not a light-weighted solution. PKC costs much more to

achieve the same security level than symmetric key cryptography. In Table 3.1, Zhu

et al. in [LZL08] illustrated that the key size of Elliptic Curve Cryptography(ECC)

is at least twice that of the symmetric key cryptography to achieve the same secu-

rity level and the key size of RSA is between 16 and 60 time as long as symmetric

key. Therefore, till now, PKC is not suitable for low cost RFID applications because

PKC requires more memory cost and transmission cost than symmetric key security

solution and it is not a light-weighted solution for RFID system.

As PKC is infeasible for low cost RFID systems, the previous RFID protocol

categorization is not appropriate in many applications. In addition, all the three

categorization methods proposed by Ma, Vaudenay and Ng are based on theoretic

models. Unfortunately, they did not count in the feasibility. They did not consider

such protocols, which have weak security properties though, are quite relevant to

practice. We re-categorize the existing RFID protocols in terms of previous refer-

ences but our work mainly focuses on the symmetric cryptography protocols. To

our best knowledge, this categorization can cover most existing RFID symmetric
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Table 3.1: ECC Support for PKINIT, Comparable key sizes between symmetric key
and public cryptography (in bits)
[LZL08]

Symmetric ECC RSA

80 160-223 1024

112 224-255 2048

128 256-383 3072

192 384-511 7680

256 512+ 15360

key protocols.

3.2 Our Categorization and Typical Protocols

Similar to Vaudenay’s scheme [Vau07], we categorize RFID protocols based on

anti-tracing property and forward secrecy property . To measure anti-tracing

property, we need to see whether a tag’s response to reader changes. To measure

forward secrecy property, we need to see whether a tag’s internal state updates.

From the an attacker’s point of view, we categorize the existing RFID security pro-

tocols into six classes in terms of whether a tag’s response changes and whether

the tag’s internal state updates once the tag is queried. The tag’s response includes

three situations: unchanging plain ID, unchanging Meta ID (i.e. pseudoname) and

changing response, which are shown in Table 3.2 (a). It is required that based on

changing responses, it is impossible for an attacker to distinguish two tags with a

probability higher than a random guess. If an RFID system is implemented in the

first two response strategies, the tags in this system can be traced with unchanging

responses. As shown in Table 3.2 (b), the tag’s internal state also comprises three

ways: never updating internal state, only legitimate party updating the internal state,

the tag automatically updating its internal state every time a reader queries it. Af-

ter a tag’s internal state updates, it is impossible for an adversary who can corrupt
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a tag to obtain the tag’s internal states before the corruption. In other words, the

adversary cannot distinguish between two tags before corruption with a probabil-

ity higher than 50% even if the adversary can corrupt one or two of the tags after

updates.

(a)

Response
Unchanging ID

MetaID
Changing

(b)

Internal State
No updating

Updating Legitimate Party Updating
Automatically Updating

Table 3.2: Response and Internal State

Based on combination of tag’s response and internal state, existing RFID pro-

tocols can be categorized into 3 × 3 = 9 categories. However, in EPC protocol, a

tag sends plain ID only as a response to reader. Therefore, two situations: plain ID

response with legitimate party updating internal state and plain ID response with

automatically updating internal state do not exist. In addition, the case that a tag

responds unchanging MetaID with automatically updating internal state is mean-

ingless, because it is easily transferred into the case that a tag changes its response

with automatically updating internal state by means of updating internal state first

and responding to a reader later according to its internal state. Therefore, existing

RFID protocols can be categorized into six classes:

1. EPC protocol:

In EPC protocol, a tag does not update its internal state. The tag responds its

EPC code in plain text every time it is interrogated by a reader, so EPC pro-

tocol can guarantee neither forward secrecy nor anti-tracing. It is the weakest

protocol. EPC protocol only uses two passwords to protect RFID tags: one is

the kill password which is used to destroy the tag and the other one is the ac-

cess password to prevent malicious readers from writing into a tag arbitrarily.

Of our concern, EPC protocol is the baseline of all RFID security protocols.

2. Tracing Protocols:
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Better than the EPC protocol, a tag implemented with a tracing protocol does

not respond its EPC code directly to a reader. Instead, the tag responds with

its unchanging MetaID back to reader. Therefore, to some extent, it protects

the tag’s privacy. However, through the same MetaID (i.e. pseudoname),

attackers can still trace the same tag. Additionally, in tracing protocols, a

tag does not update its internal state. Thus, tracing protocols cannot achieve

forward secrecy, which means if a tag is corrupted and its internal state is

extracted by a malicious reader, the tag’s previous internal states can be re-

trieved by the malicious reader successfully. Hash-lock protocol [WSRE03]

and Key-Sharing protocol [JPP08] belong to this category.

3. Strong Anti-tracing Protocols:

Compared with previous two categories, strong anti-tracing property is added

to Category III protocols. Thanks to functions such as PRF (Pseudo random

function) in tags, tags can respond with different, unlinkable values every

time a reader interrogates them. As a result, with changing responses, an

adversary cannot distinguish two tags with a probability higher than a ran-

dom guess. Nevertheless, without updating internal state, strong anti-tracing

protocols still cannot guarantee forward secrecy. Strong anti-tracing proto-

cols comprise Random Hash-lock [WSRE03], Big Brother [Dim06], MW

Tree [MW04], Dual Mode protocol [CLLD09a], improved BMM protocol

[LLM+09], UNP protocol [MLDL09], zk-privacy protocol [DLYZ10] etc..

4. Weak Anti-tracing, Weak Forward Secrecy Protocols:

The next three categories achieve forward secrecy on different levers. Weak

forward secrecy is added in Category IV protocols. In Category IV, only le-

gitimate parties can update tags’ internal states and change tags’ responses.

Thus, a tag’s response and internal state keep unchanging between two legit-

imate parties. As a consequence, this kind of protocol is still vulnerable to

23



partial tracing attack and it can achieve only partial forward secrecy. For in-

stance, in a factory, the legitimate readers only interrogate tags at the entrance

and exit spots. Therefore, inside the factory, an adversary can easily trace the

same tag and if the tag is corrupted in the factory, the tag’s previous inter-

nal states as early as the entrance spot can be restored. Update Key-sharing

[CLM+09], LD supply chain protocol [LD07], lightweight RFID protocol

[Dim05] and HM hash-based protocol [HM04] are examples of category IV

protocols.

5. Strong Anti-Tracing, Weak Forward Secrecy Protocols:

In Category V protocols, with the help of PRFs in tags, tags respond with

changing, unlinkable messages every time and achieve strong anti-tracing all

the time rather than partial tracing in Category IV. However, as same as in

Category IV protocols, a tag updates its internal states only after successfully

authenticating legitimate parties in Category V protocols. Thus, between two

honest parties, forward secrecy still cannot be achieved in this category. A

couple of protocols belong to this category, including: SM protocol [SM08],

revised SM [CLLD09b].

6. Strong Anti-Tracing, Strong Forward Secrecy Protocols:

The last category owns the strongest security properties in our categorization.

In Category VI, a tag automatically updates not only its response but also the

internal state every time, regardless of whether the querying reader is legiti-

mate or not. Therefore, they can achieve both strong anti-tracing and strong

forward security. OSK [OSK03], RFIDDOT [Dim08], narrow-destructive

protocol [PV08] are three typical Category VI protocols.
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Figure 3.2: Comparison With Vaudenay’s Model

3.3 Comparison with Vaudenay’s model

Similar to Vaudenay’s model, our categorization is based on protocols’ different

security levels. There are two main differences between our work and Vaudenay’s

work. The first difference is that we do not consider the side-channel information

obtained by attackers, whereas the result(π) oracle is inaccessible by adversaries

in [Vau07]. Therefore, our categorization is located within narrow models in Vau-

denay’s categorization. Second, we add two weak categories and eliminate Vau-

denay’s strong model, which has to be achieved by PKC. Our Category I (EPC

Protocol) and II (Tracing Protocols) are weaker than Vaudenay’s weakest model.

However, they are most practical in reality. Category III (Strong anti-tracing Proto-

cols) is nearly equal to narrow-weak model in Vaudenay’s categorization. Category

IV and category III are parallel with each other, because Category IV is weaker

in aspect of anti-tracing than category III, while stronger in aspect of forward se-

crecy. Category V protocols is stronger than both category III and category IV. Our

strongest category protocols are similar to Vaudenay’s narrow-destructive models.

Note that our categorization does not cover Vaudenay’s narrow-strong model, which

demands PKC in implementation. The relationship between my categorization and

Vaudenay’s model is shown in Fig 3.2. In summary, my categorization is close to

industrial applications and focuses on symmetric cryptography.
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Chapter 4: RFID Security and Search Cost Analysis

One of the performance overhead for RFID security is the search cost in readers’

back-end database. Usually, there exist a large number of tags in RFID applications

and each tag has a unique ID. The look-up cost is non-ignorable on the reader side.

If a tag responds its their EPC code or MetaID directly to a reader, the search cost

of the corresponding tag is constant in terms of exact match. However, in order to

protect the tag’s privacy, the response is usually calculated by a function F based

on a secret k and a random number r, like (F (k, r)). Hence, a reader may need

an exhaustive search in its database to find the tag’s information. Accordingly, the

search cost is relatively high.

4.1 Existing Approaches

Assume there are N tags in an RFID system. The random hash-lock protocol

in [WSRE03] requires an exhaustive search in the reader’s database to identify a

tag, so the overhead of this protocol is O(N). In the OSK protocol [OSK03], the

reader has to calculate hash values with O(N) complexity. Molnar and Wagner’s

method manages the keys of tags in a tree structure [MW04] with a search cost of

O(log(N)). Although the cost is already much better than the exhaustive search

in other protocols, it is still non-ignorable when the number of tags increases to a

large one. In such cases, the scalability of tag search may become a performance

bottleneck.

In [BdMM08], Burmester, Medeiros and Motta (BMM) proposed an RFID au-

thentication protocol with constant key-lookup to balance the privacy requirement

and scalability. To the best of our knowledge, this protocol is one of the most

scalable solutions that preserve privacy as claimed. We take BMM protocol as an
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example to analyze the search cost in the reader’s database. However, this proto-

col has security vulnerabilities. We will analyze the vulnerabilities and give our

improvement.

4.2 Case Study on BMM Protocol

Now, we take BMM protocol as a case study to analyze the security and a reader’s

search cost.

4.2.1 Notation

First, a lot of notations of BMM protocol is introduced. If A(·, ·, ...) is a randomized

algorithm, then y ← A(x1, x2, ...; cn) means that y is assigned the unique output of

the algorithm A on inputs x1, x2, ... and coins cn. Let g be a pseudorandom function

(PRF) [GGM86]. If S is a set, then s ∈R S indicates that s is chosen uniformly at

random from S. If x1, x2, ... are strings, then x1||x2|| · · · denotes the concatenation

of them. If x is a string, then |x| denotes its bit length in binary code. Let ε denote

the empty string. If S is a set, then |S| denotes its cardinality (i.e. the number of

elements of S). If ctr is a counter which starts from n1 and ends with n`, then

ctr(j) denotes its jth value, i.e. ctr(j) = nj , where 1 6 j 6 `. Let IV be an initial

vector for the PRF g.

4.2.2 BMM Protocol

In the RFID system constructed by BMM protocol in Fig 4.1, there is a set-up

procedure which initializes the reader and every tag. Then, they will engage in a

protocol to identify the tag. The whole RFID system is described as follows.

Setup: When creating a new tag T , the system generates a secret key k, a pseudonym

seed q, a one-time pseudonym r, a counter ctr = 1, and a flag mode =

0. Then it sets up the initial state information of the tag T as the tuple
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Tag Reader

(k, r, q, mode, ctr) D = {k, ri, q, q
1
i , · · · , q`

i , i ∈ {old, cur},}
c←−−−−−−−−−−−− c ∈R {0, 1}n

If mode = 0 then ps ← r

Else

ps ← g(k; q||IV ||ctr),
Update ctr

ν0||ν1||ν2 ← g(k; ps||c)
auth ← ν1

ps||auth

−−−−−−−−−−−−→ If (k, ps) 6∈ D then REJECT

Else ν ′0||ν ′1||ν ′2 ← g(k; ps||c)
If ν ′1 6= auth then REJECT

Else conf ← ν ′2
conf←−−−−−−−−−−−−

If conf = ν2 then If ps = rcur then

If mode = 0 then r ← ν0 rold ← rcur and rcur ← ν ′0

Else Else if ps = rold then rcur ← ν ′0

mode ← 0 and q ← ν0 Else if ps = qj
cur then q ← ν ′0 and

Else mode ← 1 {qi
old ← qi

cur}`
i=1 and

{qi
cur ← g(k; q||IV ||ctr(i))}`

i=1

Else if ps = qj
old then q ← ν ′0 and

{qi
cur ← g(k; q||IV ||ctr(i))}`

i=1

Output ACCEPT

Figure 4.1: BMM Protocol
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(k, q, r, ctr,mode). The system also associates the tag T with its identity

IDT in the reader’s database by initiating a tuple (rold, rcur, q
1
old, · · · q`

old, q
1
cur,

· · · q`
cur, k, q, IDT ), where rold = rcur = r and qj

i = g(k; ||q||IV ||ctr(j), for

i = {old, cur}, and j = 1, · · · `.

The BMM Protocol: It runs in three rounds:

Round 1. First, the reader starts the protocol by sending a challenge c to the

tag. Upon receiving c, the tag first checks its mode state: if mode = 0, it

sets the pseudonym ps = r; otherwise, it computes ps = g(k; q||IV ||ctr)
and updates the counter ctr = ctr+1. Then, the tag calculates ν0||ν1||ν2

= g(k; ps||c). Here, ν0 is used to replace the pseudonym r; auth = ν1

is used to authenticate itself to the reader, and ν2 is used to authenticate

the reader.

Round 2. The tag sends the message ps||auth to the reader. Upon receiving

ps||auth, the reader requests to its back-end database to look up the

tuple (rold, rcur, q
1
old, · · · q`

old, q
1
cur, · · · q`

cur, k, q0, IDT ) such that ri = ps

or qj
i = ps, where i = {old, cur} and j = 1, · · · `, through using ps as

an index. If the tag is de-synchronized within ` times, we can find the

tuple in constant time by 2`+2 indexes. If the tuple is found, the reader

calculates ν ′0||ν ′1||ν ′2 ← g(k; ps||c) and accepts the tag if auth = ν ′1.

Otherwise, the tag is rejected. If a tag is accepted, the reader prepares a

confirmation message conf ← ν ′2.

Round 3. The reader sends the confirmation message conf to the tag. The

tag authenticates the reader by checking whether conf = ν2. If the

reader is successfully authenticated, the tag then updates its pseudonym:

if mode = 0, it updates the pseudonym r = ν0; if mode = 1, it updates

pseudonym seed q = ν0 and keep the pseudonym r unchanged. If the

reader is not authenticated, the tag sets mode = 1 and does nothing else.

On the reader side, it updates the tuple (rold, rcur, q
1
old, · · · , q`

old, q
1
cur, · · ·
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q`
cur, k, q0, IDT ) associated with the tag as follows. If ps = rcur, it

updates rold = rcur and rcur = ν ′0. If ps = rold, it only updates rcur =

ν ′0. If ps = qj
old for some j between 1 and `, it updates q = ν ′0 and qj

cur =

g(k; ||q||IV ||ctr(j) for j = 1, · · · `. If ps = qj
cur for some j between 1

and `, it updates q = ν ′0, qj
old = qj

cur and qj
cur = g(k; ||q||IV ||ctr(j) for

j = 1, · · · `.

4.2.3 Attacks on BMM Protocol

In following analysis, we identify the shortcoming in BMM protocol [BdMM08]

and propose an improved protocol accordingly. We argue that the improved pro-

tocol provides stronger privacy than the BMM protocol, while the performance of

the improved protocol is the same as the BMM protocol. Our contributions are

summarized below:

1. We analyze the BMM-protocol and find a subtle flaw, by which we can break

the privacy property, namely untraceability. Exploiting this flaw, we design

an easy-to-launch attack under a weak adversary model. Under our attack,

an adversary can easily trace a tag in a supply chain party. Thus, one by

one, we can trace such a tag in a whole supply chain if the BMM protocol is

implemented.

2. To improve the protocol, we propose an anonymous RFID authentication

protocol that can fulfill all privacy claims of [BdMM08], including defense

against eavesdropping attack, spoofing attack, replay attack, de-synchronization

attack, tracing attack and compromising attack.

Burmester, Medeiros and Motta claimed that this protocol can “support anonym-

ity with constant key-lookup cost; however, it suffers from entrapment attacks”

[BdMM08]. To preserve the privacy of a queried tag, an adversary that eavesdrops

over the protocol should not be able to figure out the identifier of the tag with higher
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likelihood than a pure random guess. The same should also apply to an unautho-

rized reader that attempts to query the tag. In other words, the protocol should

ensure “tag anonymity”, in terms of session unlinkability: an adversary should not

be able to link together two or more protocol sessions involving the same tag (re-

gardless whether the identity of the tag is known or not) to track the activities of

the tag. To achieve this, any two protocol exchanges involving the same tag must

appear reasonably random such that the adversary cannot differentiate it with non-

negligible probability from two protocol exchanges involving two different tags.

Unfortunately, there exist some flaws in the updating procedures in the design of

BMM protocol. The flaws can be subsequently exploited to launch a simple attack

to trace a tag in a series of protocol runs.

Adversary Model

We use the adversary model in Chapter 2.1. It is reasonable to assume that a higher

level adversary also possesses the abilities of all levels preceding it, i.e. a level-3

adversary has the abilities of level-1 and level-2 adversaries, as well as the set of

additional abilities of physical layer attacks and side channel attacks. As we will be

showing in next subsection, our attack requires a relatively weak adversary model

(w.r.t., a level-2 adversary), where an adversary has limited ability to communicate

with a legitimate tag following protocol steps.

Different kinds of attacks can achieve variable goals. Eavesdropping attacks

can track a tag successfully if the tag’s responses keep same. Attackers can com-

municate with trusted readers and trusted tags through spoofing and replay attack.

De-synchronization attacks can interrupt regular communications between trusted

readers and tags through blocking, modifying and injecting messages. Denial of

Service (DoS) attacks mean that a legitimate reader is flooded with useless mes-

sages so that it cannot communicate with legitimate tags normally.
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Three-Run Interleave Attack

We first give the intuition behind our attack. We observe that the state information

(index) ‘r’ in the tag always keeps unchanged in the protocol executions when

mode = 1 and conf = ν2 (see Figure 4.1). It means that the tag will reply with

the same response in the next interrogation. Our attack follows this observation and

uses a ‘three-run interleave’ technique to push the tag into the state of mode = 1

and conf = ν2.

As mentioned in Chapter 2.1, we assume a level-2 adversary as the malicious

reader, denoted by RM . We denote a legitimate tag by T and a trusted reader by

RT . The attack consists of three runs, during which T is interrogated by RM twice

and by RT once. We present the attack in detail as follows.

Tag Malicious Reader

(k, r, q, mode = 0, ctr) c ∈R {0, 1}n

c←−−−−
ps ← r and Update ctr

ν0||ν1||ν2 ← g(k; ps||c)
auth ← ν1

ps||auth

−−−−−→ Receive and Store

Send another

ν2 6= c Random Number c

and mode ← 1
c←−−−−

Figure 4.2: First Run of the Attack

• First Run: RM interrogates T

This first run of our attack is illustrated in Figure 4.2. During the first protocol

run, RM interrogates T with an incomplete protocol execution. We assume

that RM can launch attacks after several legitimate communications between

RT s and T , so we can consider the initial status of T as mode = 0. After

sending a challenge c, RM receives the reply message ps||auth = r||ν1 from
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T . As RM does not share any secret with T , it cannot compose the correct

confirmation message for T . Instead, RM sends a random value c to T . At

the tag’s side, c cannot be verified against conf , so T changes its status into

an attacked state with mode = 1. To this end,RM stores the reply ‘r||ν1’ and

continues to the next step.

Note that if RM sends queries to a tag continuously, he/she can only obtain

the unlinkable information ps||auth. Therefore, to get useful information,

which can link the same tag by comparing ‘r’, the adversary intentionally

involves a trusted reader RT in the second run.

• Second Run: RT interrogates T

The second run of our attack is shown in Figure 4.3. During the second

protocol run, T is put forward and interrogated by a trusted reader RT with

a complete protocol execution, while RM does nothing. Note that in the first

run of our attack, T toggles its mode in T to ‘1’; therefore, after T receives

the confirmation message from the legitimate reader, its mode is changed into

‘0’. As now, T only updates q into ν0 but keeps r unchanged.

• Third Run: RM interrogates T

During the third protocol run, RM interrogates with T again as in the first

run for tracing the same tag T that has been interrogated in the first run. To

achieve this,RM sends the same challenge c to the tag and expects a repeated

reply by T . Recall that in the second run, a successful protocol run between

RT and T toggles T to a secure status mode = 0. Following the protocol, T
shall reply with ps||auth = r||ν1, which is the same authentication informa-

tion as that in the first run. It is thus easy for the attacker to trace the tag T
by comparing the ps||auth values.
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Tag Legitimate Reader

(k, r, q, mode = 1, ctr) D = {k, ri, q, q
1
i , · · · , q`

i ,

i ∈ {old, cur}},
ps ← g(k; q||IV ||ctr), c′←−−−−−− c′ ∈R {0, 1}n

Update ctr

ν0||ν1||ν2 ← g(k; ps||c′)
auth ← ν1

ps||auth

−−−−−−→ If (k, ps) 6∈ D then REJECT

Else ν ′0||ν ′1||ν ′2 ← (k; ps||c′)
If ν ′1 6= auth then REJECT

Else conf ← ν ′2
conf←−−−−−−

If conf = ν2 If ps = qj
curthen q ← ν ′0 and

mode ← 0 and q ← ν0 {qi
old ← qi

cur}`
i=1 and

{qi
cur ← g(k; q||IV ||ctr(i))}`

i=1

Else if ps = qj
old then

q ← ν ′0 and

{qi
cur ← g(k; q||IV ||ctr(i))}`

i=1

Output ACCEPT

Figure 4.3: Second Run of the Attack
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Discussions

We stress that our attack is practical. There could be a number of ways to launch

such an attack.

Recall that in the first protocol run of our attack, a malicious reader interrogates

with a legitimate tag. We can further reduce this requirement if the adversary has

minimum eavesdropping and blocking capabilities: in the first run, the adversary

eavesdrops the first two protocol messages and blocks the third messages to make

the protocol incomplete. Thereafter, the tag is triggered into an insecure state and

the reader updates the status for the record of this tag. The attack continues with a

successful second run and an incomplete third run (same as that of the first run). By

comparing the eavesdropped messages in the first run and the third run, the adver-

sary can trace the tag. Such an adversary is more stealthy as no active interrogation

between a malicious reader and a legitimate tag is needed 1.

In summary, the attack can be extended, but not limited to the following forms:

¦ 99K RM 99K RT 99K RM 99K

¦ 99K RT
A 99K RT 99K RT

A 99K

¦ 99K RM 99K RT 99K RT
A 99K

¦ 99K RT
A 99K RT 99K RM 99K

WhereRT
A denotes an adversary’s presence in an interrogation between a trusted

reader and a legitimate tag.

4.2.4 Cracking a Whole Supply Chain by Using Basic Attack

Based on the basic three-run interleave attack, more advanced attacking strategies

are designed to crack an RFID-enabled supply chain that implements the BMM

protocol.
1Note that in the third run, a different challenge c′′ could be used by a trusted reader to challenge

the tag. As long as the r value is not updated in the second run, the ps value is still the same as the
one in the first run.
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Assumptions

We need to make several reasonable assumptions about an RFID-enabled supply

chain before we elaborate on our attacking strategies.

1. Trusted Zone:

We consider a geographically distributed supply chain, in which each party

in the supply chain may receive tagged articles, process these articles, and

ship them out. For simplicity, we consider the area as a trusted zone inside

a supply chain party, and public zone outside. An adversary is not able to

interact with a legitimate tag in a trusted zone, but can interrogate with a tag

in the public zone.

2. One-time Authentication:

While tagged articles are being processed by a supply chain party, the authen-

tication is performed only once (e.g., typically at the entry point of the trusted

zone). This is reasonable as authentication procedure is much more expensive

and time-consuming than identifier scanning procedure. As the area inside a

supply chain party is considered as a trusted domain, indeed no additional

authentication is necessary. While multiple scanning for identifying the tags

is still allowed to facilitate other operations (which are not security related).

This is to guarantee that only one successful session of authentication proto-

col is conducted in a trusted zone so that once the articles are shipped out to

the public zone, the adversary can launch the tracing attack.

3. Sticky Adversary:

We assume that an adversary may possess multiple readers at multiple loca-

tions or equivalently possess one reader at multiple instant locations. In other

words, we assume an ubiquitous adversary who is able to stick on the targeted

articles in the public zone along a supply chain.
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Figure 4.4: An Example for Cracking Supply Chain System

With these assumptions, we illustrate how to crack a supply chain system as in

Figure 4.4, where two supply chain parties are involved. In an attack, the adver-

sary can setup malicious readers in the public zones near each supply chain party.

Furthermore, two attacking strategies are given below.

Attacking Strategies

There are two potential strategies to attack a supply chain. The first focuses on a

special goods, for instance, a valuable jewelry or a secret weapon. The second one

can totally crack the supply chain and its threat is much more severer.

Case 1: Tracing a Single Tag along Supply Chain

Suppose an adversary targets on a particular article with an RFID tag T . Be-

fore it arrives at supply chain party A, a malicious reader can launch its attack by

interrogating with T and obtaining a ps value (ps = r) specific to this tag. In-

side the domain of party A, T is authenticated once and processed in some other

ways. At last, the article attached with T is shipped out. Once again, a malicious

reader scans all outbound articles and find this particular tag with the pseudonym

ps. Following on, the adversary repeats the attacks at various transportation lo-

cations visited by this article. Eventually, a list of visited sites of the article,

[99K A ⇒ B ⇒ C ⇒ D ⇒ E 99K], are recorded, which enables the total

visibility of this article (in the supply chain, which is serious breach of its privacy).

The tracing attack is illustrated in Figure 4.5.
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Figure 4.5: Tracing a Single Tag along its Supply Chain

Tag ps Location 1 Location 2 Location 3 Location 4 Location 5 · · ·
Tag 1 09310A78

√ √ × × √ · · ·
Tag 2 38901D43 × √ √ √ √ · · ·

... · · · · · · · · · · · · · · · · · · · · ·
Tag 100 9A7B2811

√ × √ √ × · · ·

Figure 4.6: The Adversary’s Database

Case 2: Tracing Multiple Tags and Constructing Supply Chain Map

Suppose an adversary, for the purpose of obtaining commercial secret, targets

on a manufacture who supplies its goods to various distributors, retailers, etc., via

complex supply chain paths. To construct such a map, he/she needs to trace all

the goods attached with tags along their supply chains. As such, the adversary first

builds a database for all the tags scanned immediately after the goods are shipped

out. Suppose 100 tags are being scanned and recorded in the database, as shown

in Figure 4.6. For each record of the database,
√

(or ×) represents whether the

tag is scanned at certain locations or not. ‘ps’ denote the pseudonyms of a tag, for

simplicity, |ps| = 32. As long as the adversary has enough resources to monitor all

potential locations via a number of supply chains, it will finally draw a complete

map for all delivery paths.

We assume that there are L possible locations for each tag, and the number of

total tags is N . An attacker only needs to set up a database with size of O(L×N).

He/she can efficiently query the information of a tag in polynomial time.
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4.2.5 Improving BMM Protocol

Tag Reader

(k, r, q, mode, ctr) D = {k, ri, q, q
1
i , · · · , q`

i , i ∈ {old, cur}}
c←−−−−−−−−−−−− c ∈R {0, 1}n

If mode = 0 then ps ← r

Else

ps ← g(k; q||IV ||ctr),
Update ctr

ν0||ν1||ν2||ν3 ← g(k; ps||c)
auth ← ν1

ps||auth

−−−−−−−−−−−−→ If(k, ps) 6∈ D then REJECT

Else ν ′0||ν ′1||ν ′2||ν ′3 ← g(k; ps||c)
If ν ′1 6= auth then REJECT

Else conf ← ν ′2
conf←−−−−−−−−−−−−

If conf = ν2 then If ps = r then r ← ν ′0

If mode = 0 then r ← ν0 Else if ps = qj
cur then q ← ν ′0

Else {qi
old ← qi

cur}`
i=1 and r ← ν ′3

mode ← 0 and {qi
cur ← g(k; q||IV ||ctr(i))}`

i=1

q ← ν0 and r ← ν3 Else if ps = qj
old then

Else mode ← 1 q ← ν ′0 and r ← ν ′3

{qi
cur ← g(k; q||IV ||ctr(i))}`

i=1

Output ACCEPT

Figure 4.7: Improved BMM Protocol

We observe that the main reason that the BMM protocol is vulnerable to our

three-run interleave attack is that the pseudonym ‘r’ shared between the legitimate

tag and the trusted reader is not properly updated. Intuitively, we solve the problem

by updating the pseudonym r at both side after the third protocol message is sent
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even if the mode is 1 for the tag.

Improved Protocol

Our improved protocol is shown Figure 4.7. In the first round, our protocol is the

same as the BMM protocol except that we separate the result g(k; ps||c) into four

parts ν0, ν1, ν2 and ν3. The new part ν3 is used to update r when the tag’s mode = 1,

and other parts are kept the same as those of the original BMM protocol. In the

second round, the reader also needs to divide the result of g(k; ps||c) into four parts

ν ′0, ν
′
1, ν

′
2 and ν ′3. Here, ν ′3 is used to update the reader when the received ps =

qj
i , i ∈ {old, cur}, j = 1, 2 · · · `, and the reader keeps other operations the same as

BMM protocol. In the third round, after receiving the confirmation message in the

protocol, we update the status of r at the tag’s side with r ← ν3 when ‘mode = 1’

holds in the tag. In this round, we also update the status as described in the boxed

parts at the reader in Figure 4.7. Since the pseudonym ‘r’ is updated whenever the

mode is 0 or 1, the response of the tag behaves randomly at every interrogation.

Therefore, our three-run interleave attack is no longer feasible.

Security Analysis

We analyze the improved protocol regarding some important security properties.

The essential objective of the protocol is to achieve mutual authentication between

a reader and a tag without disclosing the tag’s identity to a third party, and it is based

on a classic challenge-response mechanism. Without the shared secret, no polyno-

mial probabilistic time (PPT) adversary can generate the authentication messages

transferred between the two parties.

Our improved protocol’s main purpose is to protect the tags’ privacy, which

means to keep tags’ anonymity and untraceablity. Our improved protocol prevents

tags from tracing attack. The meaning of untraceability contains two aspects: 1)

The outputs of a tag in any two sessions are unlinkable, and 2) The outputs of read-

ers are independent from those of tags. First of all, we analyze the outputs of any
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two sessions of a tag. For any two session i and j, i 6= j of a tag, let ps(i)||auth(i)

and ps(j)||auth(j) denote the output of the session i and j, respectively.

ps =





r, mode = 0

g(k; q||IV ||ctr), mode = 1





If mode = 0, then ps = r, and r is updated by a PRF g(·) in the tag after

every successful protocol; otherwise, ps = g(k; q||IV ||ctr), the output of PRF

g(·). Therefore, whether ps = r or ps = g(k; q||IV ||ctr), ps(i) and ps(j) are

independent as the output of a PRF are pairwise independent. The latter part of the

tags’ output is auth = ν1 which is a part of g(k; ps||c) (g(·) is a PRF). Therefore,

auth(i) and auth(j) are independent and unlinkable. As a result, ps(i)||auth(i) is

independent from ps(j)||auth(j).

Second, we illustrate the output of the reader is independent from the output

of a tag. We consider the output of tag is ps||auth and the output of the reader is

conf . ps is the input of the PRF g(k; ps||c), and conf is the output of PRF g(·).
As the input and output of a PRF are independent, ps is independent from conf .

The auth = ν1 is the second part of the output g(k; ps||c), and conf = ν ′2 is the

third part of the output of the PRF g(k; ps||c). Therefore, auth is independent from

conf . In all, the output of tag ps||auth is independent from the output of the reader

conf . Thus, the independence of outputs between different sessions of a tag and the

independence of outputs between a reader and a tag guarantee the privacy of tags,

and attackers cannot trace a tag by eavesdropping or active interrogations.

Based on challenge-and-respond technique, mutual authentication, PRF in both

tag and reader, and update processes, Level-2 attacks cannot be applied here, for

instance, de-synchronization attack. Because the trusted reader keeps not only

the newly updated values, but also the old values corresponding to a former cor-

rupted protocol run, if a tag is pushed de-synchronized with the legitimate reader

by a malicious adversary, it can still be recognized by referring to the older record

qi
old, i = 1, 2, · · · , N in the database. By successful mutual authentication, the
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reader and tag can be re-synchronized again. As we argue in Chapter 2.1, our im-

proved protocol can prevent level-2 attack, so it can possess the ability of counter-

acting weaker attacks. To counteract Level-1 attacks, for example, eavesdropping

attack, an adversary can only obtain the challenge c and pseudonyms ps||auth and

ν ′2, which are generated by PRF, but nothing else. Level-1 adversaries cannot link

the information together to trace a tag, either. To prevent Level-2 attackers, the

challenge-and-respond technique protects the reader from Denial-of-Service (DoS)

attack. In addition, since fresh random numbers are generated by both the reader

and the tag for mutual authentication and both the tag and the reader update their

states after a successful protocol run, simple spoofing and replay attacks have neg-

ligible success rate. In addition, unlike some tree-based RFID protocol [MSW05],

if some tags are compromised unfortunately, released information will not affect

other tags’ secrecy due to that tags do not share secrets in our protocol.

Nevertheless, the improved protocol does not incur any additional high cost

with respect to storage and computation. Therefore, the lightweightness of the

BMM protocol is maintained. As stated in [BdMM08], the database stores lim-

ited numbers of qj
i , when these numbers are used up, the BMM protocol suffers

from an “entrapment attack”. The “entrapment attack” means “the tag is prevented

from communicating with authorized readers and can only be interrogated by the

adversary” [BdMM08]. In conclusion, as mentioned in Chapter 4.2.3, the secu-

rity analysis we conducted is limited to level-1 to level-2 adversaries, while level-3

adversary is more powerful and may bring more harmful attacks to the existing

protocol.

4.2.6 Case Study Summary

So far we have taken BMM protocol [BdMM08] as an example to investigate the

security and scalability. We found a subtle flaw in this protocol. Under a weak

adversary model, an attacker can launch a three-run interleave attack to trace and

42



identify a tag. Further on, complex attacking strategies can be constructed on crack-

ing the whole supply chain using such an authentication protocol. We improve this

protocol by eliminating the flaw in BMM protocol. We provide a security analy-

sis on the improved protocol and claim that it meets its security requirements and

that it is as efficient as the original protocol in each invocation. Though the read-

ers’ search cost of this protocol is constant by pre-computing all the indexes, it is

still vulnerable to “entrapment attack” when the indexes are used up. To our best

knowledge, the improved BMM protocol is an outstanding one to balance security

properties and search cost.

4.3 Search Costs of RFID Protocols by Category

Based on categorization in Chapter 3, the search costs of typical protocols in each

category are summarized in Table 4.1. In Category I and Category II, tags respond

with EPC code or unchanging MetaID, so the search costs are constant. In Category

III, tags change responses by calculating a function F (k, r) based on a secret k

and a random number r in the random hash-lock protocol and the UNP protocol,

which result in exhaustive searches. In the the big brother protocol and the MWTree

protocol, the back-end database is set up with a tree structure of tags’ keys and each

tag has a series of keys from the tree’s root layer till the leaf layer. Thus, the search

costs are reduced from O(N) to O(log(N)).The BMM protocol further reduces the

search cost to constant by taking pre-computing strategy. In the LD protocol of

Category IV, the reader needs an exhaustive search due to the use of a random

number in generating a tag’s response, while in the lightweight and HM hash-based

protocols, a reader only needs a constant search because a tag can be searched based

on the tag’s MetaID. In Category V and VI, because tags change responses every

time, the readers need exhaustive search. From the table, it is obvious that search

costs of Category V and VI are no lower than those of other four categories. In

Category III and IV, the search cost is not directly related to the security level of
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Table 4.1: Search Costs of Typical Protocols in each Category
I II III IV V VI

EPC Baseline Hash-Lock Random Hash-Lock LD SM OSK
O(1) O(1) O(N) O(N) O(N) O(N)

Key-Sharing Big Brother Lightweight Revised SM RFIDDOT
O(1) O(log(N)) O(1) O(N) O(N)

UNP HM Hash-based Narrow-Destructive
O(N) O(1) O(N)

MWTree
O(log(N))

BMM
O(1)

a protocol, but more related to the data structure of a reader’s back-end database.

For instance, in Category III, though the five protocols have same security level,

their search costs are different from each other. By using tree structures, exhaustive

search can be reduced to log-linear O(log(N)). In addition, some pre-computing

operations can help further reduce the search cost to constant.
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Chapter 5: RFID Security and Tag-Related Cost
Analysis

In the previous chapter, we analyzed the performance overhead of RFID security

on reader’s search cost. Now we analyze performance overhead of RFID security

on tag-related cost, including:

1. Cryptographic Operation in Tags

After simplifying and combining the operations, there are four basic oper-

ations in cryptographic operations in tags: tag-tag read, tag-tag write, AES

encryption, hash functions.

2. Communication Cost

Because RFID tags cannot actively launch communication sessions, com-

munication costs are reader-to-tag operations, including reader-tag read and

reader-tag write.

Based on the two costs mentioned above, we want to evaluate the performance

of protocols in different security levels and benchmark the optimal protocols.

5.1 Basic Operations in RFID Protocols

The existing RFID protocols can be decomposed into the following eleven basic

operations:

1. Hash

2. AES

3. XOR
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4. Concatenation ( || )

5. Left/Right Shift (<<,>>)

6. PRF (pseudo random function)

7. HMAC

8. Tag-Tag Read:

The reads from a tag to itself, noted as RT−>T
` , ` is the length of read opera-

tion.

9. Reader-Tag Read:

The reads from a reader to a tag, noted as RR−>T
` , ` is the length of read

operation.

10. Tag-Tag Write:

The writes from a tag to itself, noted as W T−>T
` , ` is the length of write

operation.

11. Reader-Tag Write:

The writes from a reader to a tag, noted as WR−>T
` , ` is the length of write

operation.

Note that AES algorithm and hash function includes numerous logic calculation

such as XOR, left shift (<<,>>). Therefore, compared to AES and hash calcula-

tion, the costs of XOR, concatenation ( | | ), left/right shift (<<,>>) are ignorable.

Additionally, in [FDW04,CHT09,KO10], authors pointed out that Pseudo Random

Function (PRF) can be achieved by AES or MAC, so PRF can be removed from

basic operations. HMAC can be implemented by two hash functions instead, as in

equation 5.1 in [GC97].

HMAC(k, m) = H((k
⊕

opad)||H((k
⊕

ipad)||m)) (5.1)
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After simplifying and combining the operations, we keep six operations as basic

operations: Hash, AES, RR−>T
` , RT−>T

` , WR−>T
` , and W T−>T

` .

5.2 Experimental Settings and Testing Results

To calculate the protocol’s performance, the cryptographic operations in tags and

the communication cost between reader and tag must be measured. Feldhofer

[FDW04] implemented AES on HF tags. In that work, AES module was finished

within 1016 clock cycles at 100kHz working frequency. Later on, hash functions

like MD5, SHA-1 were added into the experiments [FR06]. Besides symmetric key

cryptographic operations, some public key cryptographic functions were also im-

plemented in RFID tags. ECC (Elliptic Curve Cryptosystems) was implemented in

HF tags [KP06]. When the field size 113 was chosen, ECC calculation took 14.4ms

at 13.56 MHz working frequency, which was close to 2 × 105 clock cycles. The

number of clock cycles in this case was nearly 200 times more than that of AES in

[FDW04]. If larger field size was chosen, more clock cycles were needed. The ex-

perimental results further illustrate that public key solution is not light-weighted and

not suitable for RFID security systems. In later performance analysis, we will use

the experiment results from [CLL+10] because this work is the most complete one.

This work measured not only the symmetric key operations such as AES, MD5,

but also the read/write operations in a tag. The experiments were conducted on

CAEN A828 Reader with back-end database on an IBM T43 laptop with Windows

XP operating system. The RFID tag was simulated by IAIK UHF Demotag, whose

optimal working frequency was set on 868MHz. The Demotag was implemented

with ISO18000-6C standard by default [CLL+10].

The time cost of Read/Write operations are given in Table 5.1 and 5.2 [CLL+10].

It is obvious that the write operations are more expensive than the read operations.

Table 5.3 shows the time cost of three AES operations: AES-128, AES-192 and

AES-256. In AES algorithm, the input size, key size and output size are the same.
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Table 5.1: Time Costs of Reader-Tag Operations (ms)
[CLL+10]

Word 1 2 3 4 5 6 7 8

Read(RR−>T ) 46.9 46.9 46.9 47.0 47.1 47.1 47.3 47.1

Write (WR−>T ) 63.3 82.9 103.2 124.1 142.3 162.3 183.5 204.0

Word 9 10 11 12 13 14 15 16

Read(RR−>T ) 47.2 47.2 47.2 47.3 47.2 47.2 56.8 57.3

Write (WR−>T ) 222.6 243.3 263.6 283.3 303.2 324.5 344.6 364.1

Table 5.2: Time Costs of Tag-Tag Operations Per 16 bits (ms)
[CLL+10]

Read(RT−>T ) 0.007

Write (W T−>T ) 16.7

Different from AES operations, the input size of hash operations can be various,

but their outputs are of fixed length. Time costs of two hash functions: MD5 and

SHA (SHA-160, SHA-256, SHA-512) are given in Table 5.4. The reader is refered

to [CLL+10] for detailed calculations.

Table 5.3: Time Costs of AES Operations in Tags (ms)
[CLL+10]

AES-128 AES-192 AES-256

Encryption 2.8 3.3 4.3

Decryption 3.1 3.6 4.8
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Table 5.4: Time Costs of Hash Operations in Tags (ms)
[CLL+10]

One Block Input Size(Byte) Two Block Input size(Byte)

6 30 54 56 90 118

MD5 1.8 1.8 1.8 3.1 3.2 3.1

SHA-1 5.0 5.1 5.0 10.1 10.2 10.1

SHA-256 11.7 11.7 11.6 23.1 23.2 23.1

SHA-512 6 56 111 112 176 239

41.0 41.1 41.1 81.7 81.8 81.8

5.3 Systematic Evaluation of Typical RFID Protocols

In this section, we use the mathematic formula 5.2 to calculate protocols’ tag-related

time costs. This formula is generic for calculating the tag-related time cost of al-

most any symmetric key based RFID protocols. As long as the time costs of oper-

ations RT−>T
i′ , RR−>T

i′′ ,W T−>T
j′ ,WR−>T

j′′ , AESj, Hashj are given in experiments,

the tag-related time costs of any protocol can be calculated accordingly.

Total cost =
∑j

i Ti−j ·Xj
i +

∑
i′ T

T−>T
i′ ·XRT−>T

i′ +
∑

i′′ T
R−>T
i′′ ·XRR−>T

i′′

+
∑

j′ T
T−>T
j′ ·XW T−>T

j′ +
∑

j′′ T
R−>T
j′′ ·XWR−>T

j′′ ,

(5.2)

Where,
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i ∈ Cryptographic operation

(AES − 128, AES − 192, AES − 256,MD5, SHA functions)

j : Input length for each cryptographic operation

i′ : Read length from tag to tag (bits)

i′′ : Read length from reader to tag (bits)

j′ : Write length from tag to tag (bits)

j′′ : Write length from reader to tag (bits)

Xj
i : Time cost of operation i with input j bits in tag

RT−>T
i′ : Read i′ bits from tag to tag

RR−>T
i′′ : Read i′′ bits from reader to tag

W T−>T
j′ : Write j′ bits from tag to tag

WR−>T
j′′ : Write j′′ bits from reader to tag

XRT−>T
i′ : Time cost of read i′ bits from tag to tag

XRR−>T
i′′ : Time cost of read i′′ bits from reader to tag

XW T−>T
j′ : Time cost of write j′ bits from tag to tag

XWR−>T
j′′ : Time cost of write j′′ bits from reader to tag

Ti−j , T
T−>T
i′ , TR−>T

i′′ , T T−>T
j′ , TR−>T

j′′ :

The counts of cryptographic operation/read/write from reader/tag to tag

In order to calculate the tag-related time costs of protocols, first, we need to

decompose protocols into basic operations as shown in Table 5.5. Then, based on

the time costs of basic operations, the tag-related time costs of protocols can be

calculated according to formula 5.2.

To unify the criteria for the security measurement, the lengths of all the parame-

ters are set as ` bits (e.g. |key| = |ID| = `). Considering the low cost requirements

in RFID systems, we set |`| = 128 bits by default. MD5 and AES-128 are used

as cryptographic operations in later analysis. In addition, as previous discussed, we

use two kinds of PRFs. One kind of PRFs is generated by AES-128, called AES-128

based PRFs. The other kind of PRFs is generated by HMAC, called HMAC-based
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Table 5.5: Protocol→Basic Operations

Message from Reader to Tag Write Operation from Reader to Tag

Message from Tag to Reader Read Operation from Reader to Tag

Security Operation 1) Obtain input parameter from the tag’s own

memory bank through Tag-Tag Read Operation

2) Perform basic Security Operation

such as AES, HASH

3) Write the output into the tag’s memory bank

through Tag-Tag Write Operation

PRFs. We use two different kinds of PRFs, because their parameter requirements

are different. The input size, key size and output size of AES-128 based PRFs are

the same while input size and key size of HMAC based PRFs can be different. Their

output sizes are both of fixed length, 128 bits. To generate an AES-128 based PRF,

a tag first reads two 128-bit pads (ipad, opad) from its memory as an input as well as

a key, and it performs an AES-128 encryption to get a 128-bit output as the random

number; finally the tag writes the random number back to its memory. Next time,

the tag changes 1 bit of ipad/opad to generate another random number. Different

from AES-128 based PRFs, HMAC based PRFs are usually used as an authentica-

tion message. The input and the key of HMAC will be particularly provided, and a

tag performs two MD5 calculations with the input and the key to generate an output,

which the tag writes into its memory. The HMAC based PRFs cost more than AES-

128 based PRFs because HMAC calculation contains two MD5 functions, which

cost at least 2 × 1.8 = 3.6(ms), while the time cost of AES-128 encryption is 2.8

(ms). In later analysis, we also deduct redundant RT−>T and W T−>T operations

to minimize the total tag-related time costs of each protocol. In the next subsec-

tions, the tag-related time costs of protocols in each category are calculated and

compared.
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Reader Tag
query−−−−−−−−−−−−→

EPCcode←−−−−−−−−−−−−

Figure 5.1: EPC Protocol
[Inc08]

Table 5.6: Time Cost of EPC Protocol (ms)

Security Operation Nil

Tag-Tag Read Nil

Tag-Tag Write Nil

Reader-Tag Read RR−>T
128

Reader-Tag Write Nil

Search Cost in Reader O(1)

EPC Cost= XRR−>T
128

EPC Cost= 47.1ms

5.3.1 Category I: EPC Protocol

EPC protocol (Fig. 5.1) contains only one read operations. As claimed before, there

are no security protections in a tag except two passwords: kill password and access

password. The kill password is to destroy the tag and the access passwords is used

to prevent from writing a tag arbitrarily. A reader obtains a tag’s EPC ID through

a special command “inventory” of EPC standard which is similar to the RR−>T

operation. Overall, the tag-related time cost of EPC protocol is RR−>T
128 as shown in

Table 5.6. As a tag’s ID is transmitted in plain text in EPC protocol, the reader can

pre-compute and sort the EPC ID of each tag so that the search cost of a tag in a

reader’s database is constant.

5.3.2 Category II: Tracing Protocol

Two typical cryptographic operations are needed in tracing protocols:
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Reader Tag
query−−−−−−−−−−−−→

MetaID=h(k)

←−−−−−−−−−−−−

Figure 5.2: Hash-lock Protocol
[WSRE03]

Reader Tag
query−−−−−−−−−−−−→

(Ek(mi),Si)←−−−−−−−−−−−−

Figure 5.3: Key-Sharing Protocol
[JPP08]

1. Hash lock (Fig. 5.2)

In the hash lock protocol, a tag responds its MetaID (h(k)) instead of EPC

code, so the tag has to calculate a hash value. First, a tag reads its secret k

from its memory through RT−>T
128 operation. Then the tag performs an MD5

calculation through MD5128 operation. Finally, the tag writes the hash value

back to its memory through W T−>T
128 . A reader reads the MetaID from the

tag’s memory through RR−>T
128 operation.

2. Key-sharing (Fig.5.3)

The key-sharing protocol is designed for supply chain application. In this

protocol, the first supply chain party writes the encrypted information Ek(mi)

and a key-sharing Si into tag i’s memory. The following supply chain parties

need to collect enough key-sharings from a bunch of tags to recover the key k.

With the recovered k, the supply chain parties can decrypt the Ek(mi) to get

mi. In this scenario, the tag does not need to do any cryptographic calculation

and there are no write operations in this protocol except the first supply chain

party. The following supply chain parties only need to perform an RR−>T

operation to obtain (Ek(mi), Si). In paper [JPP08], the author claimed the
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(a)

Security Operation MD5128

Tag-Tag Read RT−>T
128

Tag-Tag Write W T−>T
128

Reader-Tag Read RR−>T
128

Reader-Tag Write Nil
Search Cost in Reader O(1)
Hash Lock Cost= X128

MD5 + XRT−>T
128 + XW T−>T

128 + XRR−>T
128

Hash Lock Cost= 1.8 + 0.007× 8 + 16.7× 8 + 47.1 = 182.556ms

(b)

Security Operation Nil
Tag-Tag Read Nil
Tag-Tag Write Nil

Reader-Tag Read RR−>T
144

Reader-Tag Write Nil
Search Cost in Reader O(1)
Key-Sharing Cost= XRR−>T

144

Key-Sharing Cost= 47.2ms

Table 5.7: Time Costs of Category II Protocols

length of Si was 16 bits, so only 16+128=144 bits data is transmitted in total.

All of the above two protocols respond a MetaID (h(ID)/Ek(mi)) to a reader.

The advantage is that, MetaID can be an index to help a reader find the corre-

sponding tag’s information conveniently, and that the readers’ search costs of both

protocols are constant. However, a MetaID releases a tag’s privacy and gives a hint

to an attacker for tracing a certain tag. The tag-related time costs of the two pro-

tocols are shown in Table 5.7. It is obvious that the key-sharing protocol is more

efficient than the hash-lock protocol because key-sharing protocol does not need a

tag to do any cryptographic calculations and write operations. Though the hash-

lock protocol requires a tag to conduct MD5 calculation and write hash value back

to the tag’s memory, the performance of the hash-lock protocol can be improved

by pre-computing the h(k) values in tags, in which case the tag-related time cost is

nearly the same as key-sharing protocol.
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Reader Tag
query−−−−−−−−−−−−→

R,h(R,ID)

←−−−−−−−−−−−−

Figure 5.4: Random Hash-Lock Protocol
[WSRE03]

5.3.3 Category III: Strong Anti-Tracing Protocols

Because random numbers are brought into strong anti-tracing RFID protocols, the

tracing problem is solved. After being queries by a reader, a tag would reply a

message containing a random number. However, without updating tags’ internal

states, there is still no forward secrecy in strong anti-tracing protocols. There are

five typical protocols in this category:

1. Random hash-lock Protocol (Fig 5.4) [WSRE03]:

In the random hash-lock protocol, a tag generates a random number R by an

AES-128 based PRF after a reader queries it. Therefore, there is an AES-

128 encryption. Then, the tag calculates a hash value h(R, ID) based on

its ID and the random number R through MD5256 operation. The reader

obtains the random number as well as the hash value through RR−>T
256 opera-

tion. However, without a reader’s challenge, the random hash-lock protocol

is vulnerable to “replay attack”, which means a malicious party can fake a

real tag by intercepting and replaying the message (R, h(R, ID)) to a reader.

After the real tag is stolen, the malicious party can still replay the message to

deceive the reader and make the reader believe that the real tag is still there.

2. Big brother Protocol (Fig 5.5)) [Dim06]:

In the big brother protocol, to avoid exhaustive search in a reader, a tree struc-

ture of keys is set up in reader’s database, so every tag owns a series of keys

from the root layer till the leaf layer. As claimed in [MW04], it is assumed

that there are total of 220 tags in the RFID system, so the key tree contain 20
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Reader Tag
query,NR−−−−−−−−−−−−→ Genarate Nt

R = NR||NT

NT ,F
k1
i
(R),F

k2
i
(R),···F

kd
i
(R)

←−−−−−−−−−−−−−−−−

Figure 5.5: Big Brother Protocol
[Dim06]

layers in total and every tag owns 20 keys. In the first round, a reader chal-

lenges a tag ‘i’ with a random number NR through WR−>T
128 operation. Tag ‘i’

generates another random number NT by an AES-128 based PRF operation.

Based on the two random numbers NR, NT and 20 keys k1
i , k

2
i , · · · , k20

i , tag

‘i’ calculates 20 HMAC-based PRF(Fk(·)) values through MD5 operations.

In the second run, the reader gets the random number NT as well as 20 PRF

values through RR−>T operation.

3. UNP protocol (Fig 5.6) [MLDL09]:

In the UNP protocol, there exists a counter in a tag. Every time a tag is

queried, the counter will increase by 1 bit. The time cost of counter operation

is ignorable. In the first run, a reader challenges a tag with a random number

c. Based on c and the tag’s ctr, the tag performs two HMAC-based PRFs

(Fk(·)) to generate a response to reader. In the HMAC-based PRF calcula-

tion, pad1 and pad2 are two fixed-length pads to guarantee |ctr||pad1| = 256

bits and |ctr||pad2| = 128 bits. In the second run, the reader gets the concate-

nation value of two PRFs’ outputs through RR−>T operation. This RR−>T

operation will not be mentioned in the following analysis.

4. MWTree Protocol (Fig 5.7) [MW04]:

Similar to the big brother protocol, there also exists a tree structure in the

MWTree protocol. The differences between them is that the big brother is

a tag-authentication protocol, while the MWTree protocol is a mutual au-

thentication protocol. Therefore, MWTree protocol needs a tag to calculate
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Reader Tag

{I, k, ctr, ID} (k, ctr)
c∈R{0,1}κ1

−−−−−−−−−−−−→

I = Fk(ctr||pad1)
r=r1||I←−−−−−−−−−−−− r1 = Fk(c||I)

⊕
(ctr||pad2)

If find tuple (I, k, ctr′, ID), then ctr = ctr + 1

If ctr′||pad2 = Fk(c||I)
⊕

r1, then

Update ctr′ = ctr′ + 1 and I = Fk(ctr
′||pad1), Accept

Else Reject

Else If∃(I ′, k, ctr′, ID)

such that ctr||pad2 = Fk(c||I)
⊕

r1 and Fk(ctr||pad1) = I, then

Update ctr′ = ctr + 1 and I ′ = Fk(ctr
′||pad1) and Accept

Else Reject

Figure 5.6: UNP Protocol
[MLDL09]
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(a)

Security Operation MD5256 + AES128

Tag-Tag Read 4RT−>T
128

Tag-Tag Write 2W T−>T
128

Reader-Tag Read RR−>T
256

Reader-Tag Write Nil
Search Cost in Reader O(N)
Random Hash lock Cost= X256

MD5 + X128
AES + 4XRT−>T

128 + 2XW T−>T
128

+ XRR−>T
256

Random Hash lock Cost= 1.8 + 2.8 + 4× 0.007× 8 + 2× 16.7× 8
+ 57.3 = 329.324ms

(b)

Security Operation AES128 + 20MD5128 + 20MD5512

Tag-Tag Read 22RT−>T
128 + RT−>T

256

Tag-Tag Write 21W T−>T
128

Reader-Tag Read 10RR−>T
256 + RR−>T

128

Reader-Tag Write WR−>T
128

Search Cost in Reader O(log(N))
Big Brother Cost= X128

AES + 20X128
MD5 + 20X512

MD5 + 24XRT−>T
128 +

21XW T−>T
128 + 10XRR−>T

256 + XRR−>T
128 + XWR−>T

128

Big Brother Cost= 2.8 + 1.8× 20 + 20× 3.2 + 24× 0.007× 8+
21× 16.7× 8 + 10× 57.3 + 47.1 + 204.0 = 3733.844ms

(c)

Security Operation 2MD5512 + 2MD5128

Tag-Tag Read 5RT−>T
128

Tag-Tag Write 2W T−>T
128

Reader-Tag Read RR−>T
256

Reader-Tag Write WR−>T
128

Search Cost in Reader O(N)
UNP Cost= 2X256

MD5 + 2X512
MD5 + 5XRT−>T

128 + 2XW T−>T
128 + XRR−>T

256

+ XWR−>T
128

UNP Cost= 1.8× 2 + 3.2× 2 + 5× 0.007× 8 + 2× 16.7× 8 + 57.3+
204.0 = 538.78ms

Table 5.8: Time Cost of Two-Run Category III Protocols
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Reader s ∈ {0, 1}n Tag

r1 ∈ R{0, 1}n
query,r1−−−−−−−−−−−−→

Find(s, ID) ∈ Ds.t
r2,σ=ID

⊕
fs(0,r1,r2)

←−−−−−−−−−−−−− r2 ∈R {0, 1}n,

ID = σ
⊕

fs(0, r1, r2)
τ=ID

⊕
fs(1,r1,r2)

−−−−−−−−−−−−→

Check ID = τ
⊕

fs(0, r1, r2)

Figure 5.7: MWTree Protocol
[MW04]

20 more HMAC-based PRFs (fs(·)) for verifying a reader by comparing 20

PRF’s outputs with reader’s authentication messages, which are obtained by

a tag through WR−>T operations in the third run.

5. Improved BMM protocol (Fig 4.7) [LLM+09]:.

In the improved BMM protocol, there exists a flag mode in a tag. When

mode = 0, the tag is queried by a legitimate reader; otherwise, if mode =

1, the tag is queried by a malicious one. As same as the UNP protocol,

there is a counter ctr in a tag. After being queried, firstly, a tag’s mode is

checked. Based on different values of mode, different ps is chosen as parts of

inputs to generate HMAC-based PRFs four times. Among the four time PRF

calculations, each time the input ps||c increases by 1 bit. The four outputs

are assigned to four parameters (ν0, ν1, ν2, ν3). In the last run, the state mode

is checked and updated. In addition, the index such as r is also updated by

W T−>T
128 operation in this run. The lengths of ctr is set as 40 bits [MLDL09],

and other parameters (ps, ν0, ν1, ν2, ν3, q, q
j
i , i ∈ {old, cur}, j ∈ {1, `}, IV, r)

are all set as 128 bits. The updating of ps||c, updating of ctr and updating

of mode are all 1 bit operations, so the time costs of them are ignorable. As

the reader party pre-computes and stores the indexes qj
i , the search cost of the

improved BMM protocol is constant. However, when the indexes are used

up, the tag is vulnerable to “entrapment attack”.
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(a)

Security Operation AES128 + 40MD5128 + 40MD5513

Tag-Tag Read 68RT−>T
128

Tag-Tag Write 21W T−>T
128

Reader-Tag Read 10RR−>T
256 + RR−>T

128

Reader-Tag Write 10WR−>T
256 + WR−>T

128

Search Cost in Reader O(log(N))
MWTree Cost= X128

AES + 40X128
MD5 + 40X513

MD5 + 68XRT−>T
128 + 21XW T−>T

128 +
10XRR−>T

256 + XRR−>T
128 + 10XWR−>T

256 + XWR−>T
128

MWTree Cost= 2.8 + (1.8 + 3.2)× 40 + 68× 0.007× 8 + 21× 16.7× 8+
10× 57.3 + 47.1 + 10× 364.1 + 204.0 = 7477.308ms

(b)

Security Operation 5MD5128 + MD5552 + 4MD5512

Tag-Tag Read 8RT−>T
128 + RT−>T

40

Tag-Tag Write 8W T−>T
128

Reader-Tag Read RR−>T
256

Reader-Tag Write 2WR−>T
128

Search Cost in Reader O(1)
Improved BMM Maximum Cost= 5X128

MD5 + X552
MD5 + 4X512

MD5 + 8XRT−>T
128 +

+ XRT−>T
40 + 8XW T−>T

128 + XRR−>T
256 + 2XWR−>T

128

Improved BMM Maximum Cost= 5× 1.8 + 3.2× 5 + 8× 0.007× 8+
0.007× 5 + 8× 16.7× 8 + 57.3 + 2× 204.0 = 1559.583ms

Table 5.9: Time Costs of Three-Run Category III Protocols

Figure 5.8: Time Cost Comparison in Category III
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The tag-related time costs of two-run protocols are shown in Table 5.8 and the

tag-related time costs of three-run protocols are shown in Table 5.9. We also com-

pare them directly in Fig 5.8. It is obvious that the random hash-lock protocol, UNP

protocol and improved BMM protocol’s tag-related time costs are less than those

of two tree structure protocols. From the tables, the random hash-lock protocol is

most efficient, but it is vulnerable to replay attack due to the lack of a random num-

ber from a reader. The UNP protocol costs more than random hash-lock, because

a reader challenges a tag by writing a random number in it. The third most effi-

cient protocol is the improved BMM protocol. Although the improved BMM is a

three-run protocol, its tag-related time cost is less than half that of the big brother

protocol, because of the tree structure in the big brother protocol. On one hand, a

tag has to generate and reply 20 HMAC-based PRF values in the big brother pro-

tocol, which increases the tag-related time cost a lot. On the other hand, if we do

not consider the pre-computing strategy, extra tree structure decreases the search

cost from O(N) to O(log(N)). Thus, it is a trade-off between tag-related time costs

in tags and search costs in readers. The MWTree is the least efficient protocol, be-

cause not only it has a tree structure, but also it is a three-run mutual authentication

protocol.

5.3.4 Category IV: Weak Anti-Tracing, Weak Forward Secrecy

Protocols

Forward secrecy exists in next three categories to various extents. Category IV

protocols can only achieve weak anti-tracing and weak forward secrecy. In these

protocols, only after being queried by a legitimate reader, a tag will respond chang-

ing, unlinkable values and only after a reader is authenticated successfully, a tag

will update its internal state. Malicious readers can repeat querying a certain tag

with the same challenge to trace it. If a tag is cracked and a malicious party ob-

tains its internal state between two honest parties A and B, all the tag’s internal
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Reader Tag

(ID, ki, ki+1) (α = ki

⊕
ID)

query,r−−−−−−−−−−−−→
t=H(r

⊕
α)

←−−−−−−−−−−−− t = H(r
⊕

α)

Check∃t = H(r
⊕

ID
⊕

ki)

IFso, Updatea = ki

⊕
ki+1,

b = H(ki+1

⊕
r
⊕

ID)

Otherwise,⊥
a=ki

⊕
ki+1,b=H(ki+1

⊕
r

⊕
ID)

−−−−−−−−−−−−−−−−−−−→

Check if b = H(ki+1

⊕
r
⊕

ID)

If so, update α = ki+1

⊕
ID

Otherwise, reject

Figure 5.9: LD Protocol
[LD07]

states from spot A till cracked spot can be totally retrieved. The LD protocol shown

in Fig 5.9 [LD07], the update key-sharing shown in Fig 5.10 [CLM+09] and the

lightweight protocol shown in Fig 5.11 [Dim05] belong to category IV. Note that in

the LD protocol, the tag’s updated content is written by a legitimate reader, while

in update key-sharing protocol, the tag’s content is updated by hash function. In the

lightweight protocol, the author used ID as the secret key to generate HMAC-based

PRF values as authentication messages in the second run and the third run. After

the reader is authenticated successfully in the third run, we assume that the new

ID is updated by an HMAC (IDi+1 = hIDi
(NR, NT )) operation. HM hash-based

protocol shown in Fig. 5.12 has some redundant information which can be deleted

from the protocol to save tag-related time cost. For example, the DB − ID in the

second round is to help a reader find the back-end database which stores the corre-

sponding tag’s information. This information is better stored in the reader’ side. In

addition, the ∆TID = TID − LST (TID is the transaction ID and LST is the last
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Reader Tag

k, k′, Si Si,mi, k, ci = h(k||Si)
query−−−−−−−−−−−−→

ci = h(k||Si),
(Ek(mi),Si)←−−−−−−−−−−−−

c′i = h(k′||S ′i)
A = (S ′i||m′

i)
⊕

h(′0′||ci)

B = c′i
⊕

h(′1′||ci)

C = h(ci||S ′i||m′
i||c′i)

A,B,C−−−−−−−−−−−−→

S ′i||m′
i = A

⊕
h(′0′||ci)

c′i = B
⊕

h(′1′||ci)

If C = h(ci||S ′i||m′
i||c′i)

Update Si ← S ′i

mi ← m′
i

ci ← c′i

Figure 5.10: Update Key-Sharing RFID Protocol
[CLM+09]

Reader Tag
query,NR−−−−−−−−−−−−→

h(IDi),NT ,hIDi
(NT ,NR)

←−−−−−−−−−−−−−−

IDi+1 = hIDi
(NR, NT )

hIDi+1
(NT ,NR)

−−−−−−−−−−−−→ IDi+1 = hIDi
(NR, NT )

If verify successfully, UpdateIDi = IDi+1

Figure 5.11: Lightweight RFID Protocol
[Dim05]
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Reader Tag
h(ID)/query

−−−−−−−−−−−−→
h(ID),DB−ID,h(TID

⊕
ID),4TID

←−−−−−−−−−−−−−−−−−−−−−
r, h(r

⊕
TID

⊕
ID)

−−−−−−−−−−−−→, If sucecessfully

ID = r
⊕

ID, LST = TID

Figure 5.12: HM Hash-Based Protocol
[HM04]

successful traction ID), which is transferred in plain text and can be easily modified

by an attacker, is also unnecessary. The time costs of the four protocols are given

in Table 5.10.

5.3.5 Category V: Strong Anti-Tracing, Weak Forward Secrecy

Protocols

Compared to category IV protocols, the tag automatically changes its response ev-

ery time in category V. Therefore, strong anti-tracing is achieved. Nevertheless,

forward secrecy is still weak because only after authenticating a reader success-

fully, a tag will update internal states. The revised SM protocol shown in Fig. 5.13

is a typical category V protocol.

The original SM protocol in [SM08] suffers from server impersonation attack,

tag impersonation attack and de-synchronization attack [CLLD09b] due to the in-

secure XOR operations. The revised SM protocol replaced XOR operations by

concatenations to eliminate these security flaws. A tag generates a random num-

ber r2 by an AES-128 based PRF after a reader interrogates it, so every response

from the tag is different from each other and unlinkable. Thus, strong anti-tracing

property is carried out. In the third round, only after reader-authentication is suc-

cessful, the tag updates its internal state by hash function calculation. In summary,

the revised SM protocol is strong anti-tracing and weak forward secrecy.
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(a)

Security Operation 2MD5128

Tag-Tag Read 5RT−>T
128

Tag-Tag Write 2W T−>T
128

Reader-Tag Read RR−>T
128

Reader-Tag Write WR−>T
256 + WR−>T

128

Search Cost in Reader O(N)
LD Cost= 2X128

MD5 + 5XRT−>T
128 + 2XW T−>T

128 + XRR−>T
128 + XWR−>T

256

+ XWR−>T
128

LD Cost= 2× 1.8 + 5× 0.007× 8 + 2× 16.7× 8 + 47.1 + 364.1
+ 204.0 = 886.28ms

(b)

Security Operation AES128 + 2MD5129 + MD5384

Tag-Tag Read 6RT−>T
128

Tag-Tag Write 3W T−>T
128

Reader-Tag Read RR−>T
144

Reader-Tag Write WR−>T
128 + WR−>T

256

Search Cost in Reader O(1)
Update Key-sharing Cost= X128

AES + 3X384
MD5 + 6XRT−>T

128 + 3XW T−>T
128 +

XRR−>T
144 + XWR−>T

128 + XWR−>T
256

Update Key-sharing Cost= 2.8 + 1.8× 3 + 6× 0.007× 8 + 3× 16.7× 8
+ 47.2 + 204.0 + 364.1 = 1024.636ms

(c)

Security Operation 3MD5512 + 4MD5128 + AES128

Tag-Tag Read 9RT−>T
128

Tag-Tag Write 4W T−>T
128

Reader-Tag Read RR−>T
128 + RR−>T

256

Reader-Tag Write 2WR−>T
128

Search Cost in Reader O(1)
Lightweight Cost= 4X128

MD5 + 3X512
MD5 + X128

AES + 9XRT−>T
128 + 4XW T−>T

128

+ XRR−>T
256 + XRR−>T

128 + 2XWR−>T
128

Lightweight Cost= 1.8× 4 + 3× 3.2 + 2.8 + 9× 0.007× 8 + 4× 16.7× 8
+ 57.3 + 47.1 + 2× 204.0 = 1066.904ms

(d)

Security Operation 3MD5128

Tag-Tag Read 6RT−>T
128

Tag-Tag Write 4W T−>T
128

Reader-Tag Read RR−>T
256

Reader-Tag Write WR−>T
256

Search Cost in Reader O(1)
HM Cost= 3X128

MD5 + 6XRT−>T
128 + 4XW T−>T

128 + XRR−>T
256 + XWR−>T

256

HM Cost= 3× 1.8 + 6× 0.007× 8 + 4× 16.7× 8 + 57.3+
364.1 = 961.536ms

Table 5.10: Time Cost of Category IV Protocols
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Reader Tag

(ki, ti)new, (ki, ti)old, Di [ti]

r1 ∈R {0, 1}l
r1−−−−−−−−−−−−→ r2 ∈R {0, 1}l

M1 = ti
⊕

r2

M2 = fti(r1||r2)

Check whether∃ti, s.t.
M1,M2,←−−−−−−−−−−−−

r2 ← M1

⊕
ti and M2 = fti(r1||r2)

M3 = h(r2)
⊕

ki

M3−−−−−−−−−−−−→

ki ← M3

⊕
h(r2)

ki(old) ← ki Check if h(ki) = ti

ti(old) ← ti ti ← h((ki ¿ l/4)
⊕

(ti À l/4)
⊕

r1

⊕
r2)

ki(new) ← (ki ¿ l/4)
⊕

(ti À l/4)
⊕

r1

⊕
r2

ti(new) ← h(ki(new))

Figure 5.13: Revised SM Protocol
[SM08] [CLLD09b]

From Table 5.11, we can see the tag-related time cost of the revised SM protocol

is more than 1 second, because a tag needs too many W T−>T operations.

5.3.6 Category VI: Strong Anti-Tracing, Strong Forward Se-

crecy Protocols

Tags implemented with strong anti-tracing and strong forward secrecy protocols can

automatically update responses and internal states every time being queried. This

category is the strongest one in our categorization. Three typical protocols intro-

duced here are OSK protocol [OSK03], RFIDDOT protocol [Dim08] and Narrow-

destructive protocol [PV08].

1. OSK Protocol
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Security Operation AES128 + 4MD5128 + MD5512

Tag-Tag Read 9RT−>T
128

Tag-Tag Write 4W T−>T
128

Reader-Tag Read RR−>T
256

Reader-Tag Write 2WR−>T
128

Search Cost in Reader O(N)
Revised SM Cost= X128

AES + 4X128
MD5 + X512

MD5 + 9XRT−>T
128 +

4XW T−>T
128 + XRR−>T

256 + 2XWR−>T
128

Revised SM Cost= 2.8 + 4× 1.8 + 3.2 + 9× 0.007× 8+
4× 16.7× 8 + 57.3 + 2× 204.0 = 1013.404ms

Table 5.11: Time Cost of Category V Protocols

Reader Tag
query−−−−−−−−−−−−→
G(k)

←−−−−−−−−−−−−

Update knew = H(k)

Figure 5.14: OSK Protocol
[OSK03]

The OSK protocol [OSK03] shown in Fig. 5.14 is a tag-authentication only

protocol. Every time a tag is queried, it performs two hash functions based

on its secret k. One value is sent back to a reader as a reply and the other

one is used to update its secret key. Thus, the OSK protocol needs a tag to

calculate two hash functions. However, without a reader’s challenge, replay

attack can be successful in the OSK protocol. In addition, the OSK protocol

is vulnerable to Denial of Service (DoS) attack, which means a malicious

reader can keep querying a certain tag and push the tag updating its secret

constantly. As a result, the malicious party de-synchronize the legitimate

reader and the tag. When a legitimate reader communicates with a tag, it

cannot authenticate the tag successfully or it needs to do an exhausive search

and compute many hash functions to find the corresponding tag because of

the de-synchronization.

2. RFIDDOT Protocol
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Reader Tag
query,NR−−−−−−−−−−−−→

NT ,Fk(NT ,NR)

←−−−−−−−−−−−−
R

⊕
Fk(NR,NT ),Fk(R,NR,NT )

−−−−−−−−−−−−−−−−−→

Knew = Fk(NR, R, NT , 1) Knew = Fk(NR, R, NT , 1)

Figure 5.15: RFIDDOT Protocol
[Dim08]

Reader (S = K) Tag
query,a−−−−−−−−−−−−→

c=FS(0,a)

←−−−−−−−−−−−− c = FS(0, a), d′ = FS(1, a)

S ← GS(S)

Find (ID, K) and i
d=FK(1,a)

−−−−−−−−−−−−→ Check if d = d′

s.t c = FK(0, Gi(K), a) and i < t Output OK, iff check

K ← Gi(K), Otherwise set k to random

d = FK(1, a), Output ID or⊥ if not found

Figure 5.16: Narrow-Destructive Privacy Protocol
[PV08]

Different from the OSK protocol, the RFIDDOT protocol shown in Fig 5.15 is

a mutual authentication protocol. More importantly, it prevents replay attack

with the reader’s challenge NR. Unfortunately, as same as the OSK protocol,

it is vulnerable to DoS attack too.

3. Narrow-destructive Protocol

The narrow-destructive protocol shown in Fig 5.16 is more efficient than the

RFIDDOT protocol, because a tag does not need to generate its own random

number through AES-128 based PRF, and in the third run the tag only sends

128 bit HMAC based PRF value back to a reader instead of 256 bit message

in the RFIDDOT protocol.
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(a)

Security Operation 2MD5128

Tag-Tag Read RT−>T
128

Tag-Tag Write 2W T−>T
128

Reader-Tag Read RR−>T
128

Reader-Tag Write Nil
Search Cost in Reader O(N)
OSK Cost= 2X128

MD5 + XRT−>T
128 + 2XW T−>T

128 + XRR−>T
128

OSK Cost= 2× 1.8 + 0.007× 8 + 2× 16.7× 8 + 47.1 = 317.956ms

(b)

Security Operation 4MD5128 + 2MD5640 + 2MD5512 + AES128

Tag-Tag Read 10RT−>T
128

Tag-Tag Write 3W T−>T
128

Reader-Tag Read RR−>T
256

Reader-Tag Write WR−>T
128 + WR−>T

256

Search Cost in Reader O(N)
RFIDDOT Cost= 4X128

MD5 + 2X640
MD5 + 2X512

MD5 + X128
AES + 10XRT−>T

128 +
3XW T−>T

128 + XRR−>T
256 + XWR−>T

128 + XWR−>T
256

RFIDDOT Cost= 4× 1.8 + 4× 3.2 + 2.8 + 10× 0.007× 8+
3× 16.7× 8 + 57.3 + 204.0 + 364.1 = 1049.56ms

(c)

Security Operation 3MD5128 + 2MD5385 + MD5384

Tag-Tag Read 4RT−>T
128

Tag-Tag Write 3W T−>T
128

Reader-Tag Read RR−>T
128

Reader-Tag Write 2WR−>T
128

Search Cost in Reader O(N)
Narrow-Destructive Cost= 3X128

MD5 + 2X385
MD5 + X384

MD5 + 4XRT−>T
128

+ 3XW T−>T
128 + XRR−>T

128 + 2XWR−>T
128

Narrow-Destructive Cost= 6× 1.8 + 4× 0.007× 8 + 3× 16.7× 8
+ 47.1 + 2× 204.0 = 866.924ms

Table 5.12: Time Cost of Category VI Protocols
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Figure 5.17: Time Cost Comparison of Best-Performance Protocols in Each Cate-
gory

The tag-related time cost of the OSK, the RFIDDOT and the narrow-destructive

protocols are given in Table 5.12. The RFIDDOT’s tag-related time cost is more

than three times that of the OSK protocol and the narrow-destructive protocol’s tag-

related time cost is twice more than that of the OSK protocol because they each

contain a reader’s challenge and add a reader authentication process. Though the

OSK protocol is the most efficient one, the OSK protocol is vulnerable to replay

attack without reader’s challenge. Note that though three protocols achieve strong

anti-tracing and strong forward secrecy, all of them are vulnerable to DoS attacks.

5.3.7 Comparison of RFID Protocols’ Performance

After analyzing tag-related time cost of every protocol in each category, we com-

pare them by category. The protocols with best performance in each category are

selected as benchmarks. Therefore, six protocols represent their own category and

their time efficiency is compared in Fig. 5.17. Note that the random hash-lock

protocol of category III is vulnerable to replay attack, so we use the UNP protocol

instead. The new comparison figure is given in Fig 5.18. In the first three categories,
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Figure 5.18: Time Cost Comparison of Best-Performance Protocols without Replay
Attacks

two run protocols (EPC protocol, the key sharing protocol and the UNP protocol)

can achieve their security properties, respectively. Category VI, V protocols need

reader-authentication, so they need three runs. To fairly compare the performance

with category IV, V, we use the three-run mutual authentication protocol in cate-

gory VI. The tag-related time costs of the protocols in the first two categories are

nearly the same and both protocols are efficient because there is only one RR−>T

operation being used. The main reason for the big gap of time costs between the

UNP protocol in category III and the first two protocols is that the UNP protocol

needs high-cost write operations, including WR−>T and W T−>T . The protocols

in the first three categories only have two runs, while there are three runs in last

three categories. This explains the extra time cost of the LD protocol in category

IV, compared with the UNP protocol in category III. It is reasonable that as secu-

rity properties gets stronger and the number of communication runs gets larger, the

tag-related time cost of a protocol increases.1 However, it is noted that although

1The strict sequence of security property from weak to strong is Category I, II, III, V, VI or
Category I, II, IV, V, VI. The security level of category III protocols is parallel with that of category
IV protocols. Because category III protocols are stronger in anti-tracing aspect than category IV
ones, while weaker in forward secrecy aspect. We just put them into the Fig 5.17 to show the trend.
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Reader Tag

(ID, ki) (ki)
query, r−−−−−−−−−−−−→

t=H(r
⊕

ki)←−−−−−−−−−−−− t = H(r
⊕

ki)

Check∃t = H(r
⊕

ki)

IFso, Update ki+1 = hki
(r),

b = H(ki+1

⊕
r)

Otherwise,⊥
b=H(ki+1

⊕
r)

−−−−−−−−−−−−→

Check if b = H(ki+1

⊕
r)

If so, update ki+1 = hki
(r)

Otherwise, reject

Figure 5.19: Revised LD Protocol
[LD07]

narrow-destructive protocol belongs to the strongest category, it costs less than the

revised SM protocol in category V and its cost is nearly the same as the LD proto-

col in category IV. This discovery surprises us. The reason of this phenomenon is

that the LD protocol and the revised SM protocol have a couple of redundant op-

erations. In the next subsection, these two protocols are analyzed and refined. The

performance of them are re-evaluated.

5.3.8 Revising Protocol and Re-evaluating Protocols’ Performance

The main reason of the high tag-related time cost of the LD protocol is that a tag’s

internal state is updated by WR−>T operations in the third run, which is neither

secure nor efficient. On one hand, the XOR value of old key ki and new key ki+1

is transferred in plain text. Once an adversary corrupts a tag and obtains ki+1, he

can recover the previous keys ki, ki−1, · · · with the previous intercepted messages

ki

⊕
ki+1, ki−1

⊕
ki+1, · · · . Thus, it is not secure to update a tag’s internal state by
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Table 5.13: Revised LD Protocol Performance
Security Operation 3MD5128 + MD5384

Tag-Tag Read 5RT−>T
128

Tag-Tag Write 2W T−>T
128

Read-Tag Read RR−>T
128

Read-Tag Write 2WR−>T
128

Search Cost in Reader O(N)
Revised LD Cost= 3X128

MD5 + X384
MD5 + 5XRT−>T

128 + 2XW T−>T
128

+ XRR−>T
128 + 2XWR−>T

128

Revised LD Cost= 3× 1.8 + 1.8 + 5× 0.007× 8 + 2× 16.7× 8
+ 47.1 + 2× 204.0 = 729.78ms

Reader (S = K) Tag
query,a−−−−−−−−−−−−→

Find (ID, K) and
b,c=FS(a,b)

←−−−−−−−−−−−− b, c = FS(a, b)

i.s.t c = FK(a, b)

d = FK(b, a)
d=FK(b,a)

−−−−−−−−−−−−→ Check if d = d′ = FS(b, a)

Update S ← GS(a, b, 1), iff check

Knew ← GK(a, b, 1),

Store old k prevent de− synchronized attacks

Output ID or⊥ if not found

Figure 5.20: Category V Protocol
[PV08]

writing keys’ XOR values into a tag. On the other hand, the write operation WR−>T

is quite costly and the update process in the original LD protocol is finished by this

high-cost operation. The write operation can be replaced by tag automatic update

with an HMAC calculation ki+1 = hki
(r). The revised protocol is shown in Fig

5.19 and the performance is given in Table 5.13.

The other protocol that can be improved is the revised SM protocol in category

V. The revised SM protocol is not efficient because it has redundant W T−>T oper-

ation. We design a new protocol shown in Fig 5.20 to improve it. This protocol is

based on Vaudenay’s narrow-destructive model, and the difference between them is
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Table 5.14: Category V Protocol Performance
Security Operation 3MD5128 + 2MD5512 + MD5513 + AES128

Tag-Tag Read 9RT−>T
128

Tag-Tag Write 3W T−>T
128

Read-Tag Read RR−>T
256

Read-Tag Write 2WR−>T
128

Search Cost in Reader O(N)
Category V Cost= 3X128

MD5 + 2X512
MD5 + X513

MD5 + X128
AES+

9XRT−>T
128 + 3XW T−>T

128 + XRR−>T
256 + 2XWR−>T

128

Category V Cost= 3× 1.8 + 3× 3.2 + 2.8 + 9× 0.007× 8
+ 3× 16.7× 8 + 57.3 + 2× 204.0 = 884.404ms

that a tag in this protocol does not automatically update its internal state. Only after

a tag authenticates a reader successfully, the tag updates its internal state. There-

fore, this protocol can prevent a malicious reader from illegally de-synchronizing

a legitimate reader and a tag. In addition, strong anti-tracing is achieved in this

protocol by a tag generating a random number. The performance analysis of this

protocol is given in Table 5.14 and its tag-related time cost is nearly as same as the

narrow-destructive protocol’s.

Figure 5.21: Revising of Time Cost Comparison of Best-Performance Protocols

After we use two refined protocols instead of the LD protocol and the revised

SM protocol in category IV and V, the revision of tag-related time cost comparison
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in each category is shown in Fig 5.21. After the adjustment, it is obvious that tag-

related time cost is positively correlated with security properties and the number of

communication runs, which means as security becomes stronger and the number

of communication runs become larger, the tag-related time cost of corresponding

protocol is more. As claimed in [BBEG09], it is impossible to achieve strong for-

ward secrecy and prevent infinite DoS attacks at the same time. Therefore, only

symmetric key cryptography cannot eliminate DoS attack in the narrow-destructive

and the RFIDDOT in category VI. Public key cryptography (PKC) [PV08,Su10], is

needed to get rid of DoS, which costs more than symmetric key cryptography. The

ideal model of tag-related time cost comparison is shown in Fig 5.22.

Figure 5.22: Ideal Model of Time Cost Comparison of Best-Performance Protocols

5.3.9 Suggestions for Protocol Designs

RFID tags have only limited memory and computational ability, so the tag-related

time cost may be the bottleneck of the whole process. It is important to reduce the

high-cost write operations as few as possible. In Fig. 5.23, the percentages of write

operations in typical protocols are shown. Except the first two protocols, the time

cost of write operations, including reader-tag write and tag-tag write, takes up more
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Figure 5.23: Write Operation Percentage

than 80% of total time cost. The other high-cost operation is RR−>T . We take 128

bit operation as an example, XWR−>T
128 > XW T−>T

128 > XRR−>T
128 > XRT−>T

128 . In

summary, one suggestion for future protocol design is to reduce write operation as

few as possible.

In certain situations, there exists a trade-off between the search cost in reader’s

database and the tag-related cost. For example, the tree structure in the big brother

protocol and the MWTree protocol can be used to reduce the search cost from O(N)

to O(log(N)), at the same time, the tag-related costs increase dramatically. This

is because the special data structure requires extra tag-related operations such as

HMAC-based PRFs and RR−>T . Therefore, if the number of tags is not too large,

RFID system’s administrator should avoid adopting such data structure in reader’s

database, which may result in high tag-related cost. On the contrary, if there are a

large number of tags in an RFID system, the administrator should compare the two

types of costs in advance and make an optimal decision.

Finally, we note that our categorization does not cover all security properties

in RFID system, but mainly focuses on anti-tracing and forward secrecy. In Table

5.15, some other potential attacks and their corresponding possible solutions are
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Table 5.15: Attacks and Defenses in RFID Systems
Attack Defense

Tag Cloning Tag Authentication
Eavesdropping PRF, Hash

Tag Tracing PRF, Hash
Unauthorized Reading Reader Authentication

Tag Impersonation Store Secret
Replay Attack Challenge and Response Authentication

Forward Traceavility Update key
Backward Traceability Cannot Intercept all Messages

De-synchronization Store Old Secrets
Denial of Service Store Old Secrets

illustrated.
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Chapter 6: Conclusions and Future Research

The thesis focused on security and performance analysis for RFID protocols. First,

existing RFID protocols were classified into six categories by their anti-tracing and

forward secrecy properties. The six categories included: EPC protocol, tracing

protocols, strong anti-tracing protocols, weak anti-tracing and weak forward se-

crecy protocols, strong anti-tracing and weak forward secrecy protocols, strong

anti-tracing and strong forward secrecy protocols. Among them, EPC protocol and

tracing protocols were merely discussed in previous categorization works. How-

ever, they were particularly relevant to practice. In this sense, our cateforization

model is more relevant to practice than other categorization models.

The administrator of an RFID system can choose protocols in different cate-

gories according to the system’s security requirements. The trade-off is that higher

security usually implies worse performance. We analyzed the performance in two

perspectives: search cost of a tag in a reader’s database and tag-related cost. The

tag-related costs include: cryptographic operations cost in tags and communication

cost between reader and tag.

On one hand, we investigated security and search cost by category using tra-

ditional database complexity analysis. We found that in some situations, higher

security levels resulted in higher search cost. In other situations, search cost was

not directly affected by security properties, but it was more related to the data struc-

ture of a reader’s back-end database.

On the other hand, we examined security and tag-related cost based on some

experimental results. A generic formula was set up to calculate the tag-related time

cost of any RFID protocol. The tag-related time costs of protocols in each category

were calculated using this formula. The best performance protocols in each cat-

egory were selected as benchmarks to evaluate other protocols’ performance. By
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comparison, redundant operations in a couple of existing RFID protocols are dis-

covered for revision. Finally, suggestions are proposed for future protocol design

so as to make a better trade-off between search cost and tag-related cost. This work

is significant because both high-cost operations on resource-limited RFID tags and

overwhelming search overhead in a reader’s back-end database might incur a long

time delay in an RFID system.

In the future, we intent to evaluate more protocols’ performance in each cate-

gory. In addition, aside from time costs evaluation in this thesis, other costs such as

gate count and energy consumption can be tested and calculated.
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